
Overview This paper presents an overview of Discrete Cosine Transform (DCT) and Inverse Discrete 
Cosine Transform (IDCT) solutions using XIlinx Spartan™-II components with IP core 
technology from Xilinx AllianceCORE™ partner Xentec, Inc.

Introduction XIlinx Spartan-II and AllianceCORE: The Ideal DCT/IDCT Solution
The Spartan-II family of FPGAs is effectively taking over many traditional ASSP markets, 
primarily because of its ability to keep pace with the evolution of new, highly efficient IP core 
algorithms. Traditional ASSP solutions cannot do this without incurring expensive overhead 
costs due to re-spins.

The Spartan-II family of FPGAs are performance and price competitive solutions. The fast pace 
of twenty-first century computing demands the very best solutions that target aggressive time 
to market windows of opportunities. From deeply embedded solutions to networking solutions, 
Xilinx FPGAs provide unparalleled benchmarks of flexibility, productivity and creativity.

Through Xentec, Inc., on the Web at http://www.xentec-inc.com, Xilinx is offering a novel DCT/
IDCT solution that is both compact and has high-performance. Xentec’s core provides an 
effective combination for systems that require fast and efficient computation of DCT and IDCT. 
Xentec is a new member of Xilinx AllianceCORE, which comprises of companies providing high 
quality, high performance, synthesizable core solutions targeting the Spartan-II and other Xilinx 
FPGA families.

Data Storage and Compression with DCT/IDCT
The area of compression is a vast subject, but the focus of this White Paper is the discrete 
cosine transform (DCT) and its inverse, known as the inverse discrete cosine transform (IDCT). 
DCT is actually the "even" part of the Fourier series, meaning only the part of the infinite series 
that contains cosines. 

While the idea of unlimited data storage is certainly pleasant to imagine, practical design 
demands innovative solutions to the limitations imposed by real-world storage devices. In the 
case of a picture taken by a digital camera, the information is stored in nonvolatile FLASH 
memory. The goal is to compress the picture’s information as much as practicable so that a 
larger number pictures can be taken and stored at one time. 

In the case of multimedia systems, video and audio information can be efficiently transmitted 
from point to point using compression. Compression allows more information to be squeezed 
into the video and audio transmission medium. This means higher video frame rates, better 
audio quality, additional system features like interactivity, and other extra tasks the system can 
perform due to the extra time and space compression allows. Basically, there is extra time 
because compression generates less video and audio information. The microprocessor is 
effectively free during the saved time to attend to other tasks.

The compression occurs when a specific value or “threshold” is applied. This technique 
eliminates those values of the calculated DCT which do not rise above the set threshold. The 
end result is a reduced number of bits in the 1-D data sequence.
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To visualize thresholding, think of a picture and then imagine dimming the light incrementally. 
By increasing the "threshold value" in this analogy, the light eventually becomes too dim for the 
picture to be seen. Thresholding in 2-D is generally applied to black and white images.

DCT/IDCT 
Applications 
Examples

Some typical DCT/IDCT applications
• Image storage

• Data compression

• Video compression

• Dolby AC2 and AC3, 1-D DCT

• JPEG (still images), 2-D DCT spatial compression

• MPEG1 and MPEG2, 2-D DCT plus motion compensation

• Cable TV networks use MPEG2 as the standard for compressing and decompressing 
video for distribution and broadcasting.

• DBS (Direct Broadcast Satellite) will use MPEG2 for direct broadcast.

• HDTV (High-Definition Television also known as ATV)

• DVD uses MPEG2 for the encoding which helps make VOD (video on demand) possible.

• Medical imaging

• Image and pattern recognition

• Biomedical signals like EEGs and ECGs

• Speech information compression

JPEG and MPEG Encoding / Decoding 
Figure 1 shows an example of where DCT and IDCT are being applied in a real-world 
application, a JPEG encoder and a JPEG decoder. JPEG is most often used in digital still 
image applications like digital cameras. JPEG can also be used in video, but it doesn’t take 
advantage of redundant information in the frames. MPEG, another standard which uses DCT, 
handles real-time video more efficiently through noting the locations of redundant information 
within video frames and discarding it. This greatly improves efficiency, compute time and 
transmission bandwidth.

Figure 1:  JPEG Encoding and Decoding
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Figure 2 depicts the MPEG-2 compression, or encoding, process block diagram. The two main 
steps to MPEG-2 encoding are spatial compression within each frame using block encoding 
techniques, and temporal compression between nearby frames (anchor frames) within the 
video stream which removes redundant frame-to-frame information. This second step, which is 
called motion estimation, is not used on all the compressed frames. 

MPEG-2 has become synonymous with DVD primarily because DVD has adopted MPEG-2 as 
its main means of dealing with motion video. The MPEG-2 standard delivers four times more 
information than the regular MPEG-1 standard, thereby delivering the improved video quality 
everyone expects from DVD technology.

The following figures, Figure 3 and Figure 4, depict diagrams of DVD mastering and DVD 
player architecture, respectively. It can be observed within these diagrams where MPEG-2 and 
AC-3 are implemented, which use DCT and IDCT. Also note that the DSP and microcontroller 
blocks can be easily replaced by available Xilinx synthesizable core solutions as well.

Figure 2:  MPEG Encoder Block Diagram (courtesy: C-Cube Microsystems)
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Figure 3:  DVD Mastering Diagram (courtesy: C-Cube Microsystems)
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Figure 4:  DVD Player Architecture (courtesy: C-Cube Microsystems)
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How it Works Mathematical Computation for a One-Dimensional DCT
One-dimensional DCT is commonly used on a sequence of digital information like voice or 
heartbeat information in an ECG. Two-dimensional DCT is applied generally to data sets which 
have a naturally two-dimensional characteristic, like a digital image in the form of a picture 
taken by a digital camera.

Calculating a two-dimensional DCT by hand, which is what’s used in compressing a digital 
image for example, is very tedious; therefore, a one-dimensional computation1 is presented 
here.

In a data compression system, for example, the data is transformed first and then the newly 
calculated values are threshold limited to a magnitude of 0.375. Assuming the data sequence 
to be {1, 2, 0, 5}, the one-dimensional Discrete Cosine Transform formula  

will be used.

Let x0 = 1, x1 = 2, x2 = 0, x3 = 5: 

Therefore, the entire DCT sequence is {2, 0.25, -6, 0.25}. The values that remain after 
thresholding (|values| > 0.375) are 2 and –6.

It is evident that two of the 0.25 values are lost in the original sequence—and in fact, this is 
what’s happening with the analogy of dimming the light. The outstanding result is that there is 
a lesser number of values, specifically 50% less in this case! When the picture is too dark to 
see, it is the point when the threshold value is high enough that all or the majority of the data in 
the transformed sequence is rejected.

The one dimensional Inverse Discrete Cosine Transform (IDCT) is given by 

Xc k( ) 1 N⁄( ) xn k2πn N⁄( ) k 0, 1, 2, ..., N-1=,cos
n 0=

N 1–

∑=

Xc 0( ) ¼( )x0 0cos x1 0cos x3 0cos ¼( ) 1 2 0 5+ + +( ) 2= =+ +=

Xc 1( ) ¼( ) xn 2πn 4⁄( )cos
n 0=

3

∑=

¼( ) xn nπ 2⁄( )cos
n 0=

3

∑=

¼( ) x0 x1 π 2⁄( )cos x2 2π 2⁄( )cos x3 3π 2⁄( )cos+ + +[ ]=

¼( ) 1 0 0 0+ + +[ ] 0.25==

Xc 2( ) ¼( ) x0 x1 x2 x3–+ +( ) ¼( ) 1 2– 0 5–+( ) 6–= = =

Xc 3( ) ¼( ) 1 0 0 0+ + +( ) 0.25= =

Xc k( ) c u[ ] xn k2πn N⁄( ) k 0, 1, 2, ..., N-1=,cos
n 0=

N 1–

∑=
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where:

      Xn is the inverse DCT result  

The fact that the Discrete Cosine Transform gives a mean-squared error result that is close to 
the theoretical limit of the Karhuenen-Loeve transform is the reason why the DCT is very 
prevalent in two-dimensional image compression. 

"Mean-squared error" is basically the summation over the area (2-D data set) of the square of 
the difference between the individual elements of the original and recovered image divided by 
the square of the width of the image.

The definition2 of the DCT for an N by N image is  

where:

u, v = discrete frequency variables (0, 1, 2, …, N - 1)

f[m, n] = N by N image pixels (0, 1, 2, …, N - 1)

F[u, v] = the DCT result

The inverse DCT (IDCT) definition is  

where:

m, n = image result pixel indices (0, 1, 2, …, N – 1)

F[u, v] = N by N DCT result  

f[m, n] = N by N IDCT result 

c u[ ]
1, for u = 0,

2, for u = 1, 2, 3, ..., N-1



=

F u v,[ ] 1 N
2⁄ f m n,[ ] 2m 1+( )uπ 2N⁄[ ]cos

n 0=

N 1–

∑ 2n 1+( )vπ 2N⁄[ ]cos
m 0=

N 1–

∑=

f m n,[ ] c u[ ] c v[ ]F u v,[ ] 2m 1+( )uπ 2N⁄[ ]cos
n 0=

N 1–

∑ 2n 1+( )vπ 2N⁄[ ]cos
m 0=

N 1–

∑=

c λ[ ]
1, for λ 0=

2, for λ 1, 2, 3, ..., N-1=



=
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DCT/IDCT Process Flow
The general flow of transforming a sampled image is shown by Figure 5 and the reverse of this, 
which is the recovery of the image from the transformed or rather compressed image 
information is shown by Figure 6. Also, note that the Coefficient Selection block of Figure 5 is 
actually the thresholding part of the previous 1-D DCT example calculation.  

In Figure 7, note that the recovered image is not equal to the original image but rather a good 
approximation to it. The transformation process in which the DCT is used gets rid of certain 
values. This transformation process using the DCT can be done to a picture because it contains 
a lot of redundant information.

Figure 5:  DCT Used in Compression

Figure 6:  IDCT Used in Recovery of Image from Compressed Information
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Figure 7:  Compressing an Image Using DCT/IDCT
(courtesy: The Scientist and Engineer’s Guide to Digital Signal Processing by Steven W. Smith)

The image is broken into 8x8
groups, each containing 64
pixels. Three of these 8x8
groups are enlarged in this

figure, showing the values of
the individual pixels, a single
byte value between 0 and 255.

DCT

IDCT

Frequency
Coefficients
Compared to
Magnitude
Thresholds
Resulting in
Compressed
Data Streams

Original Image

Recovered Image

(Notice Lesser Image Quality)

WP113_07_022400
WP113 (v1.0) February 25, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com


A Spartan-II DCT/IDCT Programmable ASSP Solution R
Image Block Breakdown
Figure 8 shows4 that the typical picture frame, whether that of a still image or that of a video, is 
divided into smaller more manageable blocks which are easily fed into the DCT transform 
block. This is also true for the reverse process in which the IDCT transform is used.

Specifically, Figure 8 breaks down the regular image into 16 x 16 blocks called macroblocks 
and then these macroblocks are further subdivided into sixteen by sixteen parts of which four 
8 x 8 blocks can be DCT transformed readily, depicted in Figure 9, which shows the conceptual 
transformation of an eight by eight block. This process takes the 8 x 8 block from the time 
domain to the frequency domain. 

The reason in applying the DCT transform to an image is to bring out a set of numbers, also 
referred to as coefficients, shown in Figure 9. These coefficients represent the image but are 
uncorrelated, which means that each number in the 2-D array that represents the image is 
unique. A coefficient’s usefulness is determined by its variance over a set of images, as in 
video’s case. If a coefficient maintains a value over a set of images, then it does not convey a 
lot of information about the difference in the images in this set and it can be replaced by a 
constant in the receiving end without affecting the quality. But if a coefficient has a lot of 
variance over a set, then it cannot be removed without affecting the picture quality.

The 8 x 8 block is generally used in DCT computation because experiments have shown little 
compaction gains can be achieved by using larger transform sizes, especially in light of the 
increased implementation complexity. A fast DCT algorithm will require approximately twice the 
number of arithmetic operations per sample when the linear transform point size is doubled. 

Figure 8:  Picture Breakdown into Macroblocks, Blocks and Pixels

Figure 9:  DCT Transformation of an 8 x 8 Block
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The best compaction efficiency has been demonstrated using locally adaptive block sizes (e.g., 
16x16, 16x8, 8x8, 8x4, and 4x4).6

Function Plots
Figure 10 illustrates the contour plot of the function Cos(x) * Cos(y).  

The DCT and IDCT equations do use this function, and the interesting part of the generated 
surface is that the minimum value can be readily checked to be zero, and the maximum value 
is one. This is expected, because the product of the two cosines produces an absolute value 
effect. 

Figure 10:  Plot of f(x,y) = Cos(x) * Cos(y) for Values of x and y from 0 to 2π
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Figure 11 below shows the top view of the Cos(x) * Cos(y) function.

Approaches to 2-D FPGA Implementation
Two-dimensional DCT FPGA implementation can be done several ways. Three of these ways 
are: 

• one dimensional row and one dimensional column DCT computations done in sequence; 

• performing the one dimensional rows’ DCTs in parallel and also, the one dimensional 
column DCT calculations also in parallel; and lastly, 

• using the polynomial approach to represent the row and column values as coefficients of 
variables in polynomials.

The technique behind the separate one dimensional row and column computation relies on the 
fact that the two dimensional DCT can be reduced to a multiplication of two summations. That 
is, the two summations can be treated as two separate summations of the two cosines and then 
multiplied together. This calculation is of course obviously slow.

A way of speeding up the described sequential chain of events is by having a separate DCT 
processor for each row and each column, thereby having the ability to perform the row DCT 
transform in parallel and the same with the column DCT transforms. An unfortunate obvious 
result of this is that this takes more of the FPGA resources compared to the simpler approach 
previously but the speedup is still very useful.

Figure 11:  Contour Plot of the Function f(x,y) = Cos(x) * Cos(y)
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The third method is much more efficient. Figure 12 shows the block diagram of the polynomial 
transform DCT.3  

The advantage of the polynomial transform DCT method is that multiplications are eliminated 
which in effect removes the computational noise inherent in rounding calculations. Another 
advantage is that this DCT architecture uses only 62% of the CLB resources of the Distributed 
Arithmetic approach for the same throughput.

Traditionally, high-end consumer applications like set-top boxes and digital cameras use 32-bit 
embedded controllers. In these devices, the DCT and IDCT transforms are implemented 
oftentimes in software. Figure 13 highlights the XIlinx advantage.

Summary
As exhibited, DCT and IDCT are indeed computationally intensive and are quite easily handled 
by Xentec’s synthesizable solution. This solution takes advantage of silicon reuse by using a 
mode pin that switches the core to a DCT or an IDCT functionality and vice versa. Xilinx 
provides this high-performance solution as a part of its AllianceCORE offering. 

Having the programmable ASSP solution, Xilinx provides not only the capabilities to compete in 
the presently evolving market but also at future evolving markets. In a very practical sense, the 
programmable ASSP roadmap provided by Xilinx, future proofs all products and applications 

Figure 12:  Polynomial Transform DCT System Architecture
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that incorporate the Spartan-II family of FPGAs as well as other Xilinx programmable ASSP 
solutions.

Compared to traditional ASSP solutions for DCT and IDCT, the Xilinx solution provided by 
Xentec provides both DCT and IDCT in one synthesizable high-performance core that fits in 
85% of a Spartan-II XC2S100 with enough BRAMs (block RAMs) and slices to implement 
several high-speed buffers. This DCT/IDCT core operates at 33.3 MHz and can easily flip 
between DCT and IDCT with the use of one mode pin. This definitely promotes silicon reuse as 
well as efficient use of board space. 

Conclusion The Spartan-II based solution offers higher throughput and flexibility in comparison to 
embedded software-based DCT/IDCT implementations. 

Spartan-II FPGAs offer more than 100,000 system gates at under $10 and are the most cost-
effective solution ever offered. They build on the capabilities of the very successful Virtex family 
and supports all the associated features including SelectI/O™ BlockRAM, Distributed RAM, 
DLLs, and support clock speeds up to and including 200 MHz. Spartan-II extends the Spartan 
family focus in replacing inflexible ASICs and traditional ASSPs.
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