
Overview This paper presents an overview of Discrete Cosine Transform (DCT) and Inverse Discrete
Cosine Transform (IDCT) solutions using XIlinx Spartan™-II components with IP core
technology from Xilinx AllianceCORE™ partner Xentec, Inc.

Introduction XIlinx Spartan-II and AllianceCORE: The Ideal DCT/IDCT Solution
The Spartan-II family of FPGAs is effectively taking over many traditional ASSP markets,
primarily because of its ability to keep pace with the evolution of new, highly efficient IP core
algorithms. Traditional ASSP solutions cannot do this without incurring expensive overhead
costs due to re-spins.

The Spartan-II family of FPGAs are performance and price competitive solutions. The fast pace
of twenty-first century computing demands the very best solutions that target aggressive time
to market windows of opportunities. From deeply embedded solutions to networking solutions,
Xilinx FPGAs provide unparalleled benchmarks of flexibility, productivity and creativity.

Through Xentec, Inc., on the Web at http://www.xentec-inc.com, Xilinx is offering a novel DCT/
IDCT solution that is both compact and has high-performance. Xentec’s core provides an
effective combination for systems that require fast and efficient computation of DCT and IDCT.
Xentec is a new member of Xilinx AllianceCORE, which comprises of companies providing high
quality, high performance, synthesizable core solutions targeting the Spartan-II and other Xilinx
FPGA families.

Data Storage and Compression with DCT/IDCT
The area of compression is a vast subject, but the focus of this White Paper is the discrete
cosine transform (DCT) and its inverse, known as the inverse discrete cosine transform (IDCT).
DCT is actually the "even" part of the Fourier series, meaning only the part of the infinite series
that contains cosines.

While the idea of unlimited data storage is certainly pleasant to imagine, practical design
demands innovative solutions to the limitations imposed by real-world storage devices. In the
case of a picture taken by a digital camera, the information is stored in nonvolatile FLASH
memory. The goal is to compress the picture’s information as much as practicable so that a
larger number pictures can be taken and stored at one time.

In the case of multimedia systems, video and audio information can be efficiently transmitted
from point to point using compression. Compression allows more information to be squeezed
into the video and audio transmission medium. This means higher video frame rates, better
audio quality, additional system features like interactivity, and other extra tasks the system can
perform due to the extra time and space compression allows. Basically, there is extra time
because compression generates less video and audio information. The microprocessor is
effectively free during the saved time to attend to other tasks.

The compression occurs when a specific value or “threshold” is applied. This technique
eliminates those values of the calculated DCT which do not rise above the set threshold. The
end result is a reduced number of bits in the 1-D data sequence.

White Paper: Spartan-II Family

WP113 (v1.0) February 25, 2000

A Spartan-II DCT/IDCT
Programmable ASSP Solution
Author: Antolin Agatep

R

WP113 (v1.0) February 25, 2000 www.xilinx.com 1
1-800-255-7778

© 2000 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at
http://www.xilinx.com/legal.htm. All other trademarks and registered trademarks are the property of their respective owners.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xentec-inc.com
http://www.xentec-inc.com
http://www.xentec-inc.com

A Spartan-II DCT/IDCT Programmable ASSP Solution R
To visualize thresholding, think of a picture and then imagine dimming the light incrementally.
By increasing the "threshold value" in this analogy, the light eventually becomes too dim for the
picture to be seen. Thresholding in 2-D is generally applied to black and white images.

DCT/IDCT
Applications
Examples

Some typical DCT/IDCT applications
• Image storage

• Data compression

• Video compression

• Dolby AC2 and AC3, 1-D DCT

• JPEG (still images), 2-D DCT spatial compression

• MPEG1 and MPEG2, 2-D DCT plus motion compensation

• Cable TV networks use MPEG2 as the standard for compressing and decompressing
video for distribution and broadcasting.

• DBS (Direct Broadcast Satellite) will use MPEG2 for direct broadcast.

• HDTV (High-Definition Television also known as ATV)

• DVD uses MPEG2 for the encoding which helps make VOD (video on demand) possible.

• Medical imaging

• Image and pattern recognition

• Biomedical signals like EEGs and ECGs

• Speech information compression

JPEG and MPEG Encoding / Decoding
Figure 1 shows an example of where DCT and IDCT are being applied in a real-world
application, a JPEG encoder and a JPEG decoder. JPEG is most often used in digital still
image applications like digital cameras. JPEG can also be used in video, but it doesn’t take
advantage of redundant information in the frames. MPEG, another standard which uses DCT,
handles real-time video more efficiently through noting the locations of redundant information
within video frames and discarding it. This greatly improves efficiency, compute time and
transmission bandwidth.

Figure 1: JPEG Encoding and Decoding

DCT
Coefficeint

Quantization

Zig Zag
Run Length
Encoding

Zig Zag
Run Length
Expansion

Huffman
Encoding

Pixel Data
Compressed
Data

Encoding Process

Huffman
Decoding IDCT

Coefficient
Denormalization

Compressed
Data

Reconstructed
Pixel Data

Decoding Process

WP113_01_022100
2 www.xilinx.com WP113 (v1.0) February 25, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com

A Spartan-II DCT/IDCT Programmable ASSP Solution R
Figure 2 depicts the MPEG-2 compression, or encoding, process block diagram. The two main
steps to MPEG-2 encoding are spatial compression within each frame using block encoding
techniques, and temporal compression between nearby frames (anchor frames) within the
video stream which removes redundant frame-to-frame information. This second step, which is
called motion estimation, is not used on all the compressed frames.

MPEG-2 has become synonymous with DVD primarily because DVD has adopted MPEG-2 as
its main means of dealing with motion video. The MPEG-2 standard delivers four times more
information than the regular MPEG-1 standard, thereby delivering the improved video quality
everyone expects from DVD technology.

The following figures, Figure 3 and Figure 4, depict diagrams of DVD mastering and DVD
player architecture, respectively. It can be observed within these diagrams where MPEG-2 and
AC-3 are implemented, which use DCT and IDCT. Also note that the DSP and microcontroller
blocks can be easily replaced by available Xilinx synthesizable core solutions as well.

Figure 2: MPEG Encoder Block Diagram (courtesy: C-Cube Microsystems)

WP113_02_022100

IDCT Inverse
Quantizer

DCT Quantizer

Motion
Compensator

Anchor Frame
Storage (2)

Motion
Estimator

Bitstream
Coder

Coded Video
Bitstream

Video to
be Coded

Reconstructed (Decoded) Frame

+

+
+

-

WP113 (v1.0) February 25, 2000 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

A Spartan-II DCT/IDCT Programmable ASSP Solution R

Figure 3: DVD Mastering Diagram (courtesy: C-Cube Microsystems)

WP113_03_022100

Master
Video Tape

Multiplexing
and Formatting

Q
ua

lit
y

C
on

tr
ol

H
um

an
 A

ss
is

ta
nt

 R
ec

od
in

g

E
m

ul
at

io
n

Master
Audio Tape

Variable Bit Rate
MPEG-2

Video Encoder

Dolby AC3 or
MPEG-2

Audio Encoder

Master
Disc

Figure 4: DVD Player Architecture (courtesy: C-Cube Microsystems)

WP113_04_022100

DVD
DSP

Demuli-
plexer

Micro-
Controller

NTSC/
PAL

Encoder
Subpicture
Processing

Dolby AC3 or
MPEG-2

Audio Decoder

OSD
Graphics

MPEG-2
Video Decoder

To Audio System

Digital Audio/Video Decoder

DVD
Player

Front Panel

To TV

10:00:36
4 www.xilinx.com WP113 (v1.0) February 25, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com

A Spartan-II DCT/IDCT Programmable ASSP Solution R
How it Works Mathematical Computation for a One-Dimensional DCT
One-dimensional DCT is commonly used on a sequence of digital information like voice or
heartbeat information in an ECG. Two-dimensional DCT is applied generally to data sets which
have a naturally two-dimensional characteristic, like a digital image in the form of a picture
taken by a digital camera.

Calculating a two-dimensional DCT by hand, which is what’s used in compressing a digital
image for example, is very tedious; therefore, a one-dimensional computation1 is presented
here.

In a data compression system, for example, the data is transformed first and then the newly
calculated values are threshold limited to a magnitude of 0.375. Assuming the data sequence
to be {1, 2, 0, 5}, the one-dimensional Discrete Cosine Transform formula

will be used.

Let x0 = 1, x1 = 2, x2 = 0, x3 = 5:

Therefore, the entire DCT sequence is {2, 0.25, -6, 0.25}. The values that remain after
thresholding (|values| > 0.375) are 2 and –6.

It is evident that two of the 0.25 values are lost in the original sequence—and in fact, this is
what’s happening with the analogy of dimming the light. The outstanding result is that there is
a lesser number of values, specifically 50% less in this case! When the picture is too dark to
see, it is the point when the threshold value is high enough that all or the majority of the data in
the transformed sequence is rejected.

The one dimensional Inverse Discrete Cosine Transform (IDCT) is given by

Xc k() 1 N⁄() xn k2πn N⁄() k 0, 1, 2, ..., N-1=,cos
n 0=

N 1–

∑=

Xc 0() ¼()x0 0cos x1 0cos x3 0cos ¼() 1 2 0 5+ + +() 2= =+ +=

Xc 1() ¼() xn 2πn 4⁄()cos
n 0=

3

∑=

¼() xn nπ 2⁄()cos
n 0=

3

∑=

¼() x0 x1 π 2⁄()cos x2 2π 2⁄()cos x3 3π 2⁄()cos+ + +[]=

¼() 1 0 0 0+ + +[] 0.25==

Xc 2() ¼() x0 x1 x2 x3–+ +() ¼() 1 2– 0 5–+() 6–= = =

Xc 3() ¼() 1 0 0 0+ + +() 0.25= =

Xc k() c u[] xn k2πn N⁄() k 0, 1, 2, ..., N-1=,cos
n 0=

N 1–

∑=
WP113 (v1.0) February 25, 2000 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

A Spartan-II DCT/IDCT Programmable ASSP Solution R
where:

 Xn is the inverse DCT result

The fact that the Discrete Cosine Transform gives a mean-squared error result that is close to
the theoretical limit of the Karhuenen-Loeve transform is the reason why the DCT is very
prevalent in two-dimensional image compression.

"Mean-squared error" is basically the summation over the area (2-D data set) of the square of
the difference between the individual elements of the original and recovered image divided by
the square of the width of the image.

The definition2 of the DCT for an N by N image is

where:

u, v = discrete frequency variables (0, 1, 2, …, N - 1)

f[m, n] = N by N image pixels (0, 1, 2, …, N - 1)

F[u, v] = the DCT result

The inverse DCT (IDCT) definition is

where:

m, n = image result pixel indices (0, 1, 2, …, N – 1)

F[u, v] = N by N DCT result

f[m, n] = N by N IDCT result

c u[]
1, for u = 0,

2, for u = 1, 2, 3, ..., N-1



=

F u v,[] 1 N
2⁄ f m n,[] 2m 1+()uπ 2N⁄[]cos

n 0=

N 1–

∑ 2n 1+()vπ 2N⁄[]cos
m 0=

N 1–

∑=

f m n,[] c u[] c v[]F u v,[] 2m 1+()uπ 2N⁄[]cos
n 0=

N 1–

∑ 2n 1+()vπ 2N⁄[]cos
m 0=

N 1–

∑=

c λ[]
1, for λ 0=

2, for λ 1, 2, 3, ..., N-1=



=

6 www.xilinx.com WP113 (v1.0) February 25, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com

A Spartan-II DCT/IDCT Programmable ASSP Solution R
DCT/IDCT Process Flow
The general flow of transforming a sampled image is shown by Figure 5 and the reverse of this,
which is the recovery of the image from the transformed or rather compressed image
information is shown by Figure 6. Also, note that the Coefficient Selection block of Figure 5 is
actually the thresholding part of the previous 1-D DCT example calculation.

In Figure 7, note that the recovered image is not equal to the original image but rather a good
approximation to it. The transformation process in which the DCT is used gets rid of certain
values. This transformation process using the DCT can be done to a picture because it contains
a lot of redundant information.

Figure 5: DCT Used in Compression

Figure 6: IDCT Used in Recovery of Image from Compressed Information

Original
Image

Forward
Transform

(DCT)

Coefficient
Selection

Quantize
DCT

Transformed
Image

WP113_05_022100

DCT
Transformed

Image

Inverse
Transform

(IDCT)

Coefficient
Zero Fill

Expand
Quantization

Original
Image

WP113_06_022100

Figure 7: Compressing an Image Using DCT/IDCT
(courtesy: The Scientist and Engineer’s Guide to Digital Signal Processing by Steven W. Smith)

The image is broken into 8x8
groups, each containing 64
pixels. Three of these 8x8
groups are enlarged in this

figure, showing the values of
the individual pixels, a single
byte value between 0 and 255.

DCT

IDCT

Frequency
Coefficients
Compared to
Magnitude
Thresholds
Resulting in
Compressed
Data Streams

Original Image

Recovered Image

(Notice Lesser Image Quality)

WP113_07_022400
WP113 (v1.0) February 25, 2000 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

A Spartan-II DCT/IDCT Programmable ASSP Solution R
Image Block Breakdown
Figure 8 shows4 that the typical picture frame, whether that of a still image or that of a video, is
divided into smaller more manageable blocks which are easily fed into the DCT transform
block. This is also true for the reverse process in which the IDCT transform is used.

Specifically, Figure 8 breaks down the regular image into 16 x 16 blocks called macroblocks
and then these macroblocks are further subdivided into sixteen by sixteen parts of which four
8 x 8 blocks can be DCT transformed readily, depicted in Figure 9, which shows the conceptual
transformation of an eight by eight block. This process takes the 8 x 8 block from the time
domain to the frequency domain.

The reason in applying the DCT transform to an image is to bring out a set of numbers, also
referred to as coefficients, shown in Figure 9. These coefficients represent the image but are
uncorrelated, which means that each number in the 2-D array that represents the image is
unique. A coefficient’s usefulness is determined by its variance over a set of images, as in
video’s case. If a coefficient maintains a value over a set of images, then it does not convey a
lot of information about the difference in the images in this set and it can be replaced by a
constant in the receiving end without affecting the quality. But if a coefficient has a lot of
variance over a set, then it cannot be removed without affecting the picture quality.

The 8 x 8 block is generally used in DCT computation because experiments have shown little
compaction gains can be achieved by using larger transform sizes, especially in light of the
increased implementation complexity. A fast DCT algorithm will require approximately twice the
number of arithmetic operations per sample when the linear transform point size is doubled.

Figure 8: Picture Breakdown into Macroblocks, Blocks and Pixels

Figure 9: DCT Transformation of an 8 x 8 Block

WP113_08_022100

Divide picture into
16 by 16 blocks.
(macroblocks)

Each macroblock is
16 pixels by 16 lines
(4 blocks)

Each block is 8
pixels by 8 lines

WP113_09_022100

8 x 8 Block

DCT

Frequency
Coefficient
8 www.xilinx.com WP113 (v1.0) February 25, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com

A Spartan-II DCT/IDCT Programmable ASSP Solution R
The best compaction efficiency has been demonstrated using locally adaptive block sizes (e.g.,
16x16, 16x8, 8x8, 8x4, and 4x4).6

Function Plots
Figure 10 illustrates the contour plot of the function Cos(x) * Cos(y).

The DCT and IDCT equations do use this function, and the interesting part of the generated
surface is that the minimum value can be readily checked to be zero, and the maximum value
is one. This is expected, because the product of the two cosines produces an absolute value
effect.

Figure 10: Plot of f(x,y) = Cos(x) * Cos(y) for Values of x and y from 0 to 2π

WP113_10_022400
WP113 (v1.0) February 25, 2000 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

A Spartan-II DCT/IDCT Programmable ASSP Solution R
Figure 11 below shows the top view of the Cos(x) * Cos(y) function.

Approaches to 2-D FPGA Implementation
Two-dimensional DCT FPGA implementation can be done several ways. Three of these ways
are:

• one dimensional row and one dimensional column DCT computations done in sequence;

• performing the one dimensional rows’ DCTs in parallel and also, the one dimensional
column DCT calculations also in parallel; and lastly,

• using the polynomial approach to represent the row and column values as coefficients of
variables in polynomials.

The technique behind the separate one dimensional row and column computation relies on the
fact that the two dimensional DCT can be reduced to a multiplication of two summations. That
is, the two summations can be treated as two separate summations of the two cosines and then
multiplied together. This calculation is of course obviously slow.

A way of speeding up the described sequential chain of events is by having a separate DCT
processor for each row and each column, thereby having the ability to perform the row DCT
transform in parallel and the same with the column DCT transforms. An unfortunate obvious
result of this is that this takes more of the FPGA resources compared to the simpler approach
previously but the speedup is still very useful.

Figure 11: Contour Plot of the Function f(x,y) = Cos(x) * Cos(y)

WP113_11_022400
10 www.xilinx.com WP113 (v1.0) February 25, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com

A Spartan-II DCT/IDCT Programmable ASSP Solution R
The third method is much more efficient. Figure 12 shows the block diagram of the polynomial
transform DCT.3

The advantage of the polynomial transform DCT method is that multiplications are eliminated
which in effect removes the computational noise inherent in rounding calculations. Another
advantage is that this DCT architecture uses only 62% of the CLB resources of the Distributed
Arithmetic approach for the same throughput.

Traditionally, high-end consumer applications like set-top boxes and digital cameras use 32-bit
embedded controllers. In these devices, the DCT and IDCT transforms are implemented
oftentimes in software. Figure 13 highlights the XIlinx advantage.

Summary
As exhibited, DCT and IDCT are indeed computationally intensive and are quite easily handled
by Xentec’s synthesizable solution. This solution takes advantage of silicon reuse by using a
mode pin that switches the core to a DCT or an IDCT functionality and vice versa. Xilinx
provides this high-performance solution as a part of its AllianceCORE offering.

Having the programmable ASSP solution, Xilinx provides not only the capabilities to compete in
the presently evolving market but also at future evolving markets. In a very practical sense, the
programmable ASSP roadmap provided by Xilinx, future proofs all products and applications

Figure 12: Polynomial Transform DCT System Architecture

Input
Re-ordering

Input
Data

DCT Calculation
Along Extended

Diagonals

Polynomial
Transform

Output
Re-ordering

2-D
DCT

Result

WP113_12_022100

Input Permutation
Processor

1-D Distributed
Arithmetic DCT

Processors

Parallel Pipelined
Polynomial Transform

Calculator

Output
Permutation
Processor

Figure 13: Xilinx DCT/IDCT Solution Compared to a 32-bit µP Software Solution

0

50

100

150

R
el

at
iv

e
P

er
fo

rm
an

ce

266 MHz
32-bit µP

266 MHz
32-bit µP with

Multimedia
Extensions

Spartan-II

180

31

200
WP113 (v1.0) February 25, 2000 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

A Spartan-II DCT/IDCT Programmable ASSP Solution R
that incorporate the Spartan-II family of FPGAs as well as other Xilinx programmable ASSP
solutions.

Compared to traditional ASSP solutions for DCT and IDCT, the Xilinx solution provided by
Xentec provides both DCT and IDCT in one synthesizable high-performance core that fits in
85% of a Spartan-II XC2S100 with enough BRAMs (block RAMs) and slices to implement
several high-speed buffers. This DCT/IDCT core operates at 33.3 MHz and can easily flip
between DCT and IDCT with the use of one mode pin. This definitely promotes silicon reuse as
well as efficient use of board space.

Conclusion The Spartan-II based solution offers higher throughput and flexibility in comparison to
embedded software-based DCT/IDCT implementations.

Spartan-II FPGAs offer more than 100,000 system gates at under $10 and are the most cost-
effective solution ever offered. They build on the capabilities of the very successful Virtex family
and supports all the associated features including SelectI/O™ BlockRAM, Distributed RAM,
DLLs, and support clock speeds up to and including 200 MHz. Spartan-II extends the Spartan
family focus in replacing inflexible ASICs and traditional ASSPs.

References 1. Digital Signal Processing A Practical Approach by Ifeachor and Jervis

2. C Language Algorithms For Digital Signal Processing by Embree and Kimble

3. Minimum Multiplicative Complexity Implementation of the 2-D DCT using Xilinx FPGAs by Chris Dick

4. Video Demystified by Keith Jack

5. Xentec DCT/IDCT Datasheet

6. Efficient Quadtree Coding of Images and Video by Gary Sullivan and Rich Baker, ICASSP 91, pp 2661-
2664.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

2/25/00 1.0 Initial Xilinx release.
12 www.xilinx.com WP113 (v1.0) February 25, 2000
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com

	Overview
	Introduction
	XIlinx Spartan-II and AllianceCORE: The Ideal DCT/IDCT Solution
	Data Storage and Compression with DCT/IDCT

	DCT/IDCT Applications Examples
	Some typical DCT/IDCT applications
	JPEG and MPEG Encoding / Decoding

	How it Works
	Mathematical Computation for a One-Dimensional DCT
	DCT/IDCT Process Flow
	Image Block Breakdown
	Function Plots
	Approaches to 2-D FPGA Implementation
	Summary

	Conclusion
	References
	Revision History

