
Introduction A Xilinx based fast UART to PC Card (PCMCIA) bridging solution is the ideal mechanism for
integrating industry standard Bluetooth communications into legacy systems. Such a solution
can be realized quickly, can leverage a wide variety of low cost Bluetooth components, and can
be optimized to impose a minimal impact on the host system implementation and performance.
The result is a cost effective solution, fast time-to-market, and preservation of host MIPS for the
primary device application.

With Xilinx programmable logic on board your design will also benefit from unprecedented
flexibility and re-programmability. FPGA and CPLD based systems can better deal with the
inevitable unknowns you will encounter from the benchtop in your lab to deployed products in
the field. Further, programmable solutions can be quickly and efficiently leveraged into
derivative configurations to rapidly address new market opportunities. When fully exploited,
these benefits can reap large rewards and greatly improve the return on your engineering
investment.

Bluetooth HCI
Bridging

Bluetooth is one of the fastest growing wireless technologies in the market. Intended to replace
the cables connecting almost every electronic device it promises great convenience. With over
2000 companies involved in the Bluetooth Special Interest Group it is now emerging in
countless devices with shipments expected to approach 1 billion units per year by 2005.

The Bluetooth specification defines a uniform structure for devices to communicate with
minimal user intervention. The technology can support peer-to-peer connections as well as
wireless access to LANs, PSTN, mobile phone networks and the Internet. However, typical
Bluetooth silicon solutions only provide a UART and USB host controller interface (HCI).

Figure 1 illustrates the typical interconnection between a Host system and a Bluetooth module.

The traditional Bluetooth module consists of the following three components:

• RF - Radio Frequency component

• BB - Baseband processor

• µC - Microcontroller

In many cases, this approach may not be workable for any of the following reasons:

• The host system may not have sufficient USB or UART ports for the application. This can
occur when the host has a limited number of ports, or when that application requires a
large number of ports.

• The host system may not have serial ports that can support the data rate required for full
Bluetooth performance. In order support maximum system level performance, Bluetooth
ASSPs include UARTs that are capable of supporting transfer rates of up to 1.5 Mbps.

White Paper: Spartan-II

WP141 (v1.0) April. 27, 2001

UART to PCMCIA Bridging for Bluetooth
Author: Antolin Agatep

R

Figure 1: Zero-Glue Bluetooth Interface

uC BB/LC

 RF

HOST

USB

UART
WP141 (v1.0) April. 27, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

UART to PCMCIA Bridging for Bluetooth
R

• Standard port interface ASSPs are not tailored for Bluetooth protocol handling, and as a
result they may consume significant processing resources when operating at Bluetooth
rates. And, interrupt processing overhead can become a drain on host processing
resources.

In any of these situations, a Xilinx Spartan-II FPGA can be used to implement an alternative
interface. This paper focuses on how to efficiently bridge from UART to PCMCIA to Bluetooth
enable a legacy system with a UART serial peripheral (which often exhibit the constraints listed
above).

UART A Universal Asynchronous Receiver and Transmitter (UART) is used for communication with
serial input/output devices. Serial communication is needed either for devices such as modems
and telephone lines, which are inherently serial, or when the cabling cost has to be reduced at
the expense of operating speed (e.g., a twisted pair in laboratory instrumentation).

Typically, the UART is connected between a central processor and a serial device. To the
processor, the UART appears as an 8-bit parallel port, which can be written to or read from. To
the serial device, the UART presents two data wires, one for input and one for output, which
serially communicate 8-bit data. The rate of data communication depends on the peripheral
device. Some devices operate at a single clock speed (e.g., old modem at 9600 baud) and
generate an internal clock. Other devices operate at multiple clock rates and get their clock
input from the UART.

A UART is used for building serial communication devices such as modems and serial ports. It
has a transmitter section and a receiver section. The transmitter converts the (8-bit) bytes into
a serial stream of data bits as they are prepared for transmission. The receiver takes the
incoming stream of bits and groups them into 8-bit chunks so they can be reconstructed as
bytes.

The UART also monitors input control lines and has the ability to change the state of output
lines depending on the program code running at the time. UARTs can be wired as either Data
Terminal Equipment (DTE) or Data Communication Equipment (DCE). They are controlled by
a clock usually running at different speeds. A buffer is also used to temporarily hold incoming
data. This buffer varies by design and is usually very small, ranging anywhere from 1 byte to
128 bytes.

For example, a 16-byte FIFO may not sound like much, but it allows up to 16 characters to be
received before the host has to service the interrupt. This increases the maximum bps rate the
host can process reliably from 9600 to 153,000 bps, if it has a 1 ms interrupt dead time. A
32-byte FIFO increases the maximum rate to over 300,000 bps.

The two different types of RAM that can be implemented on a Xilinx device are Distributed
SelectRAM and Block SelectRAM. Distributed SelectRAM is implemented in LUTs and is
suitable for shallow memory structures and small FIFOs. Block SelectRAM are dedicated
4K-bit RAM blocks, in which depths and widths are parameterizable. These are suitable for
applications that require larger blocks of memory. The memory resources available on even the
smallest Spartan-II are more than sufficient to build highly efficient fast UARTs.

As illustrated in Figure 2, a typical UART architecture consists of the following blocks:

• Transmit

• Receive

• Control Logic

• Baud Rate Generator

• Internal Control

• Modem Control
2 www.xilinx.com WP141 (v1.0) April. 27, 2001
1-800-255-7778

http://www.xilinx.com

UART to PCMCIA Bridging for Bluetooth
R

Transmit Block
The Transmit block includes the Transmitter Holding Register (THR), Transmitter Shift Register
(TSR), Transmitter FIFO Register (TFR),and Transmitter Flow Control Logic. Whenever the
CPU writes parallel data into the Transmitter Holding Register or the Transmitter FIFO, it is
immediately transferred to the Transmitter Shift Register. Data is shifted out serially from the
TSR.

Receive Block
The Receive block includes the Receiver Buffer Register (RBR), Receiver Shift Register (RSR),
Receiver FIFO, and Receiver Flow Control Logic. Whenever the Receiver Shift Register has
received a complete character, it is immediately transferred to the Receiver Buffer Register (in
character mode) or to the receiver FIFO (in FIFO mode). The CPU reads parallel data either
from the RBR or from the RFR depending upon the mode of operation.

Control Logic Block
The Control Logic block consists of two sub-blocks — Select and Control logic blocks. They
decode the address lines and chips select lines and generate enables to various UART internal
registers. The Register Control block includes two control registers — the line control register
and the FIFO control register. The bits set in these two control registers control the operation of
the UART.

Internal Registers
A typical UART device provides internal registers for monitoring and control. These registers
function as data holding registers (THR/RHR), interrupt status and control registers (IER/ISR),
FIFO control registers (FCR), line status and control registers (LSR/LCR), modem status and
control registers (MSR/MCR), programmable data rate (clock) control registers (DLL/DLM),
and as a user assessable scratchpad register (SPR).

• FIFO Control Register (FCR) is used to enable the FIFOs, clear the FIFOs, set the
transmit/receive FIFO trigger levels, and select the DMA mode.

• Interrupt Status Register (ISR) — A UART device should provide six levels prioritized
interrupts to minimize external software interaction. The Interrupt Status Register (ISR)

Figure 2: Standard UART Functional Blocks

Transmit

FIFO

Registers

Flow

Control

Logic

Flow

Control

Logic

Receive

FIFO

Registers

Receive

Shift

Registers

Data Bus &

Control Logic

Register Select

Logic

Interrupt Control

Logic

 Transmit

 Shift

Registers

B
us

 a
nd

 C
on

tr
ol

 S
ig

na
ls

 TX

RX
Clock and Baud

Rate Generator

Modem Control
Logic
WP141 (v1.0) April. 27, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

UART to PCMCIA Bridging for Bluetooth
R

provides the user with six interrupt status bits. Performing a read cycle on the ISR will
provide the user with the highest pending interrupt level to be serviced. No other interrupts
are acknowledged until the pending interrupt is serviced. Whenever the interrupt status
register is read, the interrupt status is cleared.

• Line Control Register (LCR) is used to specify the asynchronous data communication
format. The word length, the number of stop bits, and the parity are selected by writing the
appropriate bits in this register.

• Line Status Register (LSR) provides the status of data transfers between the UART
device and the CPU

• Modem Control Register (MCR) controls the interface with the modem or a peripheral
device.

• Modem Status Register (MSR) provides the current state of the control interface signals
from the modem or other peripheral device that the UART device is connected to.

Modem Control Block
The Modem Control block includes the modem control register and the modem status register.
It monitors changes in the modem input signals and sets corresponding bits in the modem
status register. The CPU sets bits in the modem control register whenever it wishes to transmit
data to another terminal or handshake to the modem input signals.

Interrupt Control Block

The Interrupt Control block includes the interrupt enable register (which masks the interrupts from the
receiver ready, transmitter empty, line status and modem status registers) and the interrupt identification
register. The function of this block is to generate an interrupt whenever:

• Data is received

• Error in the received character

• Character timeout occurs

• Transmitter holding register becomes empty

• Change in the modem input signals.

Programmable
Baud Rate
Generator

A single baud rate generator is provided for the transmitter and the receiver, allowing
independent TX/RX channel control. The programmable Baud Rate Generator is capable of
accepting an input clock up to 24 MHz, as required for supporting a 1.5 Mbps data rate.

The generator divides the input 16X clock by any divisor from 1 to 16. A UART device divides
the basic crystal or external clock by 16. Further division of this 16X clock provides two table
rates to support low and high data rate applications using the same system design. Customized
(using an FPGA) baud rates can be achieved by selecting the proper divisor values for the MSB
and LSB sections of baud rate generator. Programming the Baud Rate Generator Registers
DLM (MSB) and DLL (LSB) gives the user the capability for selecting the desired final baud
rate.

PC Card
(PCMCIA)
Introduction

In the early 1990s, the rapid growth of mobile computing drove the development of smaller,
lighter, and more portable tools for information processing. One of the most exciting of these
innovations was PC.

Card Technology
The power and versatility of PC Cards quickly made them standard equipment in mobile
computers. The rapid development and worldwide adoption of PC Card technology has been
due in large part to the standards efforts of the Personal Computer Memory Card International
Association (PCMCIA).
4 www.xilinx.com WP141 (v1.0) April. 27, 2001
1-800-255-7778

http://www.xilinx.com

UART to PCMCIA Bridging for Bluetooth
R

The first release of the standard defined the 68-pin interface and the Type I and Type II PC Card
form factors. The initial release of the PCMCIA Standard specified the electrical and physical
requirements for memory cards only. It defined the Metaformat or Card Information Structure
(CIS) that is critical to interoperability and plug-and-play for PC Cards. There was no concept of
input/output (I/O) cards in the first release of the PC Card Standard.

The second release of the standard defined an I/O interface for the same 68-pin interface as
was used for the PCMCIA memory cards in the first release of the Standard. Release 2.0 also
added various clarifications to the first release, support for dual-voltage memory cards, and
sections dealing with card environmental requirements and test methods. Release 2.01 added
the PC Card ATA specification, the Type III card type, and the Auto-Indexing Mass Storage
(AIMS) specification geared toward digital images was also added. It also included the initial
version of the Card Services Specification. Release 2.1 further enhanced the Card and Socket
Services Specification and made improvements to the Card Information Structure.

The latest release of the PC Card Standard added information to improve compatibility and
added support for features such as 3.3V operation, DMA support, and 32-bit CardBus bus
mastering.

Metaformat (CIS) Specification
The goal of the Metaformat Specification is to allow PC Cards to handle numerous, somewhat
incompatible data-recording formats and data organizations. Metaformat is also known as Card
Information Structure (CIS). The Metaformat is a hierarchy of layers. Below the Metaformat is
the physical layer, the electrical and physical interface characteristics of PC Cards. The
Metaformat layers are Basic Compatibility, Data Recording, Data Organization, and System-
Specific.

• The Basic Compatibility Layer specifies a minimal level of card-data organization.
Tuples at this level provide fundamental information about the PC Cards including
supported configurations, manufacturer, and individual device characteristics such as size,
speed, and programming information. An exampleof a tuple from the Basic Compatibility

Table 1: PC Card Physical Characteristics

Physical Interface 68 Pins

Back End I/O Connectors Proprietary(1)

Length 85.6 mm

Width 54.0 mm

Thickness Type I = 3.3 mm
Type II = 5.0 mm
Type III = 10.5 mm

Operating Temperature 0 to 55°C

Storage Temperature –20 to 65°C

Minimum Insertions Office Env. 10,000
Harsh Env. 5,000

Notes:
1. Two standardized connectors are available as part of the optional PCMCIA Specific Extensions

Specifications
WP141 (v1.0) April. 27, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

UART to PCMCIA Bridging for Bluetooth
R

Layer is the Function ID Tuple, shown here.

• The Data Recording Layer includes tuples that describe partitioning information and
provide card initialization information.

• The Data Organization Layer currently includes a single tuple, CISTPL_ORG, which
specifies the partition organization (for example, the file system) in use in a partition
described by Data Recording Format Layer tuple(s).

• The System-Specific Layer includes the special purpose tuple, CISTPL_SPCL, and the
range of vendor-unique tuple codes. The special purpose tuple provides a mechanism for
documenting the format and interpretation of special tuple usage within the PC Card
Standard.

UART to PC
Card (PCMCIA)
HCI Bridging

Figure 4 provides an overview of the HCI bridge. The Spartan-II device takes in Bluetooth
frames from the UART at one end and communicates this to the PC Card (PCMCIA) interface
in the other end. And, in the opposite direction, the Spartan-II device takes in information from
the PC Card (PCMCIA) bus and sends commands and or data to the UART connected to a
Bluetooth module.

Table 2: CISTPL_FUNCID: Function Identification Tuple

Code Name Code Name

0 Multi-Function 7 AIMS

1 Memory 8 SCSI

2 Serial Port 9 Security

3 Parallel Port A - FD Reserved

4 Fixed Disk FE Vendor Specific

5 Video Adapter FF Do Not Use

6 Network Adapter - -

Figure 3: A Typical 16-bit PC Card Subsystem

Host Bus PCMCIA Socket

Interface

PCMCIA

Host Bus

Adapter

(HBA)

PC CARD
FUNCTION

(Memory,

I/O, etc)

CIS

PC Card Socket
6 www.xilinx.com WP141 (v1.0) April. 27, 2001
1-800-255-7778

http://www.xilinx.com

UART to PCMCIA Bridging for Bluetooth
R

Several of the immediate areas that are accelerated by using Spartan-II devices are FIFOs and
shift registers. The FIFOs could be reconfigured in depth and width to accommodate much
faster data rates as well as wider words and custom word widths. The shift registers can also be
made wider to enable them to deal with different word widths.

Figure 5 shows the functional components of the standard PCMCIA to UART bridge while
Figure 6 shows an identical block diagram of the bridge with the DMA and Bluetooth HCI frame
transfer state machine logic. This approach improves system level performance by reducing the
overhead of servicing interrupts for transmission and reception. Unlike traditional UARTs where
an interrupt is generated every time the small on-chip FIFOs are filled or emptied, this design
generates an interrupt only when a complete HCI frame has been transmitted or received. This
is accomplished by having application specific logic that decodes the frame size information in
the HCI header and configures the DMA logic appropriately. This logic also checks to ensure
that proper frame level synchronization is being maintained.

The net result is the burden of interrupt handling is considerably reduced for the host processor.
As a result more processor performance is available for other value added functions. In

Figure 4: Block Diagram of UART to PC Card (PCMCIA) Bridge

Figure 5: Functional Blocks of Standard PCMCIA to UART Bridging Using Spartan-II

EEPROM

Xilinx
UART to PC Card

Bridge

SRAM

Serial

PROM

UART

PC CARD
FUNCTION

(Memory,

I/O, etc)

CIS

PC Card Socket

Host Bus

PCMCIA

Host Bus
Adapter

(HBA)

PC Card Socket

PCMCIA

Interface
RX

TX

RX Shift

Register

TX Shift

Register

FIFO

Control

&
Interconnect
WP141 (v1.0) April. 27, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

UART to PCMCIA Bridging for Bluetooth
R

addition, with the wide range of standard interface and memory controller IP available, the
Spartan device can be used to implement other core logic functions as well.

Sustainability
Complementing the previously described solution are the following technologies:

• IRL — enables the remote upgrade and servicing of designs incorporating Xilinx FPGAs,

• Select I/O — allows the system designer to effectively target all existing industry I/O
standards from PCI to AGP to LVDS to etc, and

• Reconfigurability — Xilinx FPGAs are truly, dynamically and partially reconfigurable,
enabling the products they’re designed in to have much longer time in market.

Derivatives
Extending the design of the Figure 6 bridge to support multiple UART interfaces, one would get
the system shown below by Figure 7. This extended architecture will allow several
simultaneous Bluetooth HCI bridging which in turn effectively increases the bandwidth and
frame transactions per unit time.

Another advantage that is not apparent with the Figure 7 system is that additional fast UARTs
can be created to address communications with multiple serial devices.

Altogether, Figure 7 can be extended again to meet the 33 MHz, 32-bit, Hot-Pluggable, PCI
compliant CardBus architecture for applications that require much higher system performance.

Figure 6: Functional Blocks of High Speed PCMCIA to UART Bridge

Figure 7: Functional Blocks of PC Card (PCMCIA) to Multiple UARTs Bridge

PCMCIA
Interface

RX FIFO

TX FIFO

RX Shift

Register

TX Shift

Register FIFO Control
&

Interconnect DMA
Bluetooth

HCI Framer

PCMCIA
Interface

RX

TX FIFO

RX Shift

Register

TX Shift

RegisterFIFO Control
&

Interconnect DMA
Bluetooth

HCI Framer

TX FIFO

TX Shift

Register

TX FIFO

TX Shift

Register

TX FIFO

TX Shift

Register

RX RX RX

RX Shift

Register

RX Shift

Register

RX Shift

Register
8 www.xilinx.com WP141 (v1.0) April. 27, 2001
1-800-255-7778

http://www.xilinx.com

UART to PCMCIA Bridging for Bluetooth
R

Xilinx System
Strengths

To summarize, the following immediate benefits can be achieved by designing with Xilinx
Spartan-II FPGAs:

• Deeper FIFOs for support of higher speeds in transmission and reception

• Wider FIFOs to accommodate various bus and data widths

• Faster Transmit and Receive Shift Registers

• Wider Transmit and Receive Shift Registers

• DMA to allow more efficient bus traffic

• Multiple transmit and receive blocks for independent additional fast serial channels

• All of the above implemented in a fully reconfigurable Spartan-II fabric

• Spartan-II FPGAs are all PCI compliant devices that provide a path to the Hot-Pluggable,
high-performance, 32-bit, 33 MHz CardBus standard

The Benefits of
Programmable
Logic

As we have seen, programmable logic provides an excellent platform for integrating Bluetooth
technology into embedded systems. Let’s highlight the key benefits that they bring:

Time-to-Market
Xilinx programmable logic provides several advantages that reduces time-to-market. First, a
broad range of IP support from Xilinx and a ever growing number of third party IP partners
provide quick access to key design building blocks. Second, as benchtop programmable
solutions, they allow the system designer to achieve a functional hardware platform more
rapidly than any alternative. And third, programmable devices are standard parts that are easy
to rproduce quickly in limited-to-high volumes to capture a position in strategic accounts before
the competition.

Rapid Software Development
Software development is one of the biggest issues in integrating Bluetooth technology. And,
obviously, since programmable logic can achieve functional hardware sooner it creates an
advantage in this area. However, this advantage can be even greater when you consider the
flexibility that programmability brings to the equation. For instance, it is often desirable to use
existing or third party drivers and firmware. With a programmable solution, you have full control
over the behavior of the interface ensuring a workable approach. This can be particularly
valuable when third party code is involved because it may not be well documented or
understood and modifications can raise support and maintenance concerns.

Time-in-Market
Product development by its nature is not an exact science. Bugs and incompatibilities are
simply a reality that engineering must deal with. Here, especially Xilinx programmable devices
can provide a valuable advantage, as our solutions are inherently reprogrammable. Thus,
patches for known problems can be put into production as soon as they are validated on the
existing hardware revision and can also be deployed to installed systems. This allows you to
keep your existing design shipping and greatly reduces the risk of obsolete part inventories and
expensive field replacement programs.

Rapid Design Derivation
A system design is a corporate asset and in today’s world of hyper competition and
compressed development cycles, these assets must be flexible. Standards evolve, customers
request new features, and experience reveals new business opportunities that can be
exploited. Thoughtful designs that incorporate programmable logic are inherently more
scalable and are superior platforms for rapid and efficient product derivation. Thus, well
exploited programmable logic can make your future product roadmap a strategic competitive
advantage.
WP141 (v1.0) April. 27, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

UART to PCMCIA Bridging for Bluetooth
R

System Level Cost Reduction
In the past, the use of programmable logic was considered an expensive solution. However,
times have changed because Moore’s Law has worked to the advantage of programmable
solutions. Today, $10 will buy 100,000 system gates in volume, off the shelf, and ready to go.
And, as these devices usually replace other functions in your design as well, they can often
enable real system level cost reductions. Programmable logic has replaced the small cost
reduction ASICs of yesterday and brings many other advantages to your system too!

Conclusion An investment in engineering is the same as any financial investment. Every time a company
decides to develop a product, it is taking risks that the effort will pay off with big rewards. Often
times the risks are overly simplified and don’t become apparent until later when modifications
are impossible or prohibitively expensive.

The present markets for emerging technologies are accelerating towards convergence, which
exacerbates the situation. More and more products compete to get to market first with the
newest features and capabilities and there just isn’t enough time to properly debug design flaws
and/or perhaps add features that weren’t considered but that suddenly become crucial to a
product’s success. Xilinx Spartan-II FPGAs time and again have proven themselves to be the
ultimate system building blocks that enable future proofing of emerging and vertical market
applications which directly translate to profits and market leadership for those who employ
them.

References 1. Bluetooth HCI Bridging. White Paper, January 2001, Kent Dahlgren

2. UART to 1394, White Paper, March 2001, Saeid Mousavi

3. 200 MHz UART design by Ken Chapman, http://support.xilinx.com/xapp/xapp223.pdf

4. Specification of the Bluetooth System, Core, version 1.0B December 1999, Bluetooth SIG

5. Bluetooth PC Card Transport Layer, White Paper, version 1.0 August 1999, Bluetooth SIG

Revision
History

The following table shows the revision history for this document.

Date Version Revision

04/27/01 1.0 Initial Xilinx release.
10 www.xilinx.com WP141 (v1.0) April. 27, 2001
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/xapp/xapp223.pdf

	Introduction
	Bluetooth HCI Bridging
	UART
	Transmit Block
	Receive Block
	Control Logic Block
	Internal Registers
	Modem Control Block
	Interrupt Control Block

	Programmable Baud Rate Generator
	PC Card (PCMCIA) Introduction
	Card Technology
	Metaformat (CIS) Specification

	UART to PC Card (PCMCIA) HCI Bridging
	Sustainability
	Derivatives

	Xilinx System Strengths
	The Benefits of Programmable Logic
	Time-to-Market
	Rapid Software Development
	Time-in-Market
	Rapid Design Derivation
	System Level Cost Reduction

	Conclusion
	References
	Revision History

