
Introduction A Xilinx UART (Universal Asynchronous Receiver and Transmitter) to PCI (Peripheral
Component Interconnect bus) bridging solution is ideal to integrate the emerging Bluetooth
communications standard into legacy systems. It leverages a wide variety of low-cost Bluetooth
components, and can be quickly implemented and optimized to ensure minimal impact on host
system performance. The result is a fast-to-market, cost effective solution that preserves host
MIPS for the primary device application.

With on-chip programmable logic, Xilinx designs benefit from unprecedented flexibility and
reprogrammability FPGA- and CPLD-based systems are best for handling the inevitable
unknowns encountered during a design flow from the benchtop phase through to product
deployment in the field. Further, Xilinx programmable solutions can be quickly and efficiently
leveraged into derivative configurations to address new market opportunities. In short, the
benefits of Xilinx programmable logic provide unprecedented flexibility and an increased return
on engineering investment.

Bluetooth to
HCI Bridging

Bluetooth is one of the fastest growing wireless technologies in the marketplace. By offering an
alternative to cabled systems that currently connect most electronic devices, it promises a new
level of customer convenience and demand. More than 2,000 companies currently participate
in the Bluetooth Special Interest Group, and Bluetooth product shipments are expected to
approach one billion units per year by the year 2005.

The Bluetooth specification defines a device communications interface that requires minimal
user intervention. It supports wireless peer-to-peer connections as well as wireless access to
LANs, PSTNs, mobile phone networks, and the Internet. At present, however, most standard
Bluetooth silicon solutions simply provide a UART and USB host controller interface (HCI).

Figure 1 illustrates a standard interconnection between a host system and a Bluetooth module.

The traditional Bluetooth module consists of the following three components:

• RF - Radio frequency component

• BB - Baseband processor

• µC - Microcontroller

In many cases, the traditional approach may not be practicable, for instance:

• The host system may not have an available USB or UART port
• The host system may not have a UART port with adequate performance
• The host system is MIPS limited and implementing these port interfaces in the typical

manner imposes excessive processing overhead
• The target application is intended to integrate additional capabilities not supported in the

standard components

White Paper: Spartan-II

WP142 (v1.0) May 8, 2001

UART to PCI Bridging for Bluetooth
Applications
Author: Mamoon Hamid

R

Figure 1: Zero-Glue Bluetooth Interface

uC BB/LC

 RF

HOST

USB

UART
WP142 (v1.0) May 8, 2001 www.xilinx.com 1
1-800-255-7778

© 2001 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

UART to PCI Bridging for Bluetooth Applications
R

In any of these situations, a Xilinx Spartan FPGA can be used to implement an alternative
interface. In this paper, we focus on how you can efficiently bridge from the UART to PCI to
Bluetooth enable a legacy system with a PCI bus (which often exhibit the constraints listed
above).

While Spartan FPGAs can implement either a USB or UART port, the simpler transport
protocol of the UART results in a more cost-effective solution with better system level
performance. Since a UART operates in a single mode with eight bits of data, no parity, and one
stop bit, the FPGA implementation can be very simple and operate at very high speed. In
addition, unlike USB or RS232, the UART transport layer does not need external level shifters
or transceivers when implemented in an FPGA. Finally, reduced implementation complexity
and better system level performance can be achieved by tailoring the solution specifically to the
characteristics of the target components.

UART A Universal Asynchronous Receiver and Transmitter (UART) is used for communication with
serial input/output devices. Serial communication is needed either for devices such as modems
and telephone lines, which are inherently serial, or when the cabling cost has to be reduced at
the expense of operating speed (e.g., a twisted pair in laboratory instrumentation).

Typically, the UART is connected between a central processor and a serial device. To the
processor, the UART appears as an 8-bit parallel port, which can be written to or read from. To
the serial device, the UART presents two data wires, one for input and one for output, which
serially communicate 8-bit data. The rate of data communication depends on the peripheral
device. Some devices operate at a single clock speed (e.g., old modem at 9600 baud) and
generate an internal clock. Other devices operate at multiple clock rates and get their clock
input from the UART.

A UART is used for building serial communication devices such as modems and serial ports. It
has a transmitter section and a receiver section. The transmitter converts the (8-bit) bytes into
a serial stream of data bits as they are prepared for transmission. The receiver takes the
incoming stream of bits and groups them into 8-bit chunks so they can be reconstructed as
bytes.

The UART also monitors input control lines and has the ability to change the state of output
lines depending on the program code running at the time. UARTs can be wired as either Data
Terminal Equipment (DTE) or Data Communication Equipment (DCE). They are controlled by
a clock usually running at different speeds. A buffer is also used to temporarily hold incoming
data. This buffer varies by design and is usually very small, ranging anywhere from 1 byte to
128 bytes.

For example, a 16-byte FIFO may not sound like much, but it allows up to 16 characters to be
received before the host has to service the interrupt. This increases the maximum bps rate the
host can process reliably from 9600 to 153,000 bps, if it has a 1 ms interrupt dead time. A
32-byte FIFO increases the maximum rate to over 300,000 bps.

The two different types of RAM that can be implemented on a Xilinx device are Distributed
SelectRAM and Block SelectRAM. Distributed SelectRAM is implemented in LUTs (look-up
tables) and is suitable for shallow memory structures and small FIFOs. Block SelectRAM are
dedicated 4K-bit RAM blocks, in which depths and widths are parameterizable. These are
suitable for applications that require larger blocks of memory. The memory resources available
on even the smallest Spartan-II are more than sufficient to build highly efficient fast UARTs.

As illustrated in Figure 2, a typical UART architecture consists of the following blocks:

• Transmit

• Receive

• Control Logic

• Baud Rate Generator

• Internal Control

• Modem Control
2 www.xilinx.com WP142 (v1.0) May 8, 2001
1-800-255-7778

http://www.xilinx.com

UART to PCI Bridging for Bluetooth Applications
R

Transmit Block
The Transmit block includes the Transmitter Holding Register (THR), Transmitter Shift Register
(TSR), Transmitter FIFO Register (TFR),and Transmitter Flow Control Logic. Whenever the
CPU writes parallel data into the Transmitter Holding Register or the Transmitter FIFO, it is
immediately transferred to the Transmitter Shift Register. Data is shifted out serially from the
TSR.

Receive Block
The Receive block includes the Receiver Buffer Register (RBR), Receiver Shift Register (RSR),
Receiver FIFO, and Receiver Flow Control Logic. Whenever the Receiver Shift Register has
received a complete character, it is immediately transferred to the Receiver Buffer Register (in
character mode) or to the receiver FIFO (in FIFO mode). The CPU reads parallel data either
from the RBR or from the RFR depending upon the mode of operation.

Control Logic Block
The Control Logic block consists of two sub-blocks — Select and Control logic blocks. They
decode the address lines and chip select lines and generate enables to various UART internal
registers. The Register Control block includes two control registers — the line control register
and the FIFO control register. The bits set in these two control registers control the operation of
the UART.

Internal Registers
A typical UART device provides internal registers for monitoring and control. These registers
function as data holding registers (THR/RHR), interrupt status and control registers (IER/ISR),
FIFO control registers (FCR), line status and control registers (LSR/LCR), modem status and
control registers (MSR/MCR), programmable data rate (clock) control registers (DLL/DLM),
and as a user assessable scratchpad register (SPR).

• FIFO Control Register (FCR) is used to enable the FIFOs, clear the FIFOs, set the
transmit/receive FIFO trigger levels, and select the DMA mode.

• Interrupt Status Register (ISR) — A UART device should provide six levels prioritized
interrupts to minimize external software interaction. The Interrupt Status Register (ISR)

Figure 2: Standard UART Functional Blocks

Transmit

FIFO

Registers

Flow

Control

Logic

Flow

Control

Logic

Receive

FIFO

Registers

Receive

Shift

Registers

Data Bus &

Control Logic

Register Select

Logic

Interrupt Control

Logic

 Transmit

 Shift

Registers

B
us

 a
nd

 C
on

tr
ol

 S
ig

na
ls

 TX

RX
Clock and Baud

Rate Generator

Modem Control
Logic
WP142 (v1.0) May 8, 2001 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com

UART to PCI Bridging for Bluetooth Applications
R

provides the user with six interrupt status bits. Performing a read cycle on the ISR will
provide the user with the highest pending interrupt level to be serviced. No other interrupts
are acknowledged until the pending interrupt is serviced. Whenever the interrupt status
register is read, the interrupt status is cleared.

• Line Control Register (LCR) is used to specify the asynchronous data communication
format. The word length, the number of stop bits, and the parity are selected by writing the
appropriate bits in this register.

• Line Status Register (LSR) provides the status of data transfers between the UART
device and the CPU

• Modem Control Register (MCR) controls the interface with the modem or a peripheral
device.

• Modem Status Register (MSR) provides the current state of the control interface signals
from the modem or other peripheral device that the UART device is connected to.

Modem Control Block
The Modem Control block includes the modem control register and the modem status register.
It monitors changes in the modem input signals and sets corresponding bits in the modem
status register. The CPU sets bits in the modem control register whenever it wishes to transmit
data to another terminal or handshake to the modem input signals.

Interrupt Control Block
The Interrupt Control block includes the interrupt enable register (which masks the interrupts
from the receiver ready, transmitter empty, line status and modem status registers) and the
interrupt identification register. The function of this block is to generate an interrupt whenever:

• Data is received

• Error in the received character

• Character timeout occurs

• Transmitter holding register becomes empty

• Change in the modem input signals.

Programmable Baud Rate Generator
A single baud rate generator is provided for the transmitter and the receiver, allowing
independent TX/RX channel control. The programmable Baud Rate Generator is capable of
accepting an input clock up to 24 MHz, as required for supporting a 1.5 Mbps data rate.

The generator divides the input 16X clock by any divisor from 1 to 16. A UART device divides
the basic crystal or external clock by 16. Further division of this 16X clock provides two table
rates to support low and high data rate applications using the same system design. Customized
(using an FPGA) baud rates can be achieved by selecting the proper divisor values for the MSB
and LSB sections of baud rate generator. Programming the Baud Rate Generator Registers
DLM (MSB) and DLL (LSB) gives the user the capability for selecting the desired final baud
rate.

PCI Interface The PCI (Peripheral Component Interconnect) Local Bus is one of the most successful
standards in history, serving as the main general-purpose bus in virtually every desktop
computer and an ever growing number of embedded systems throughout the world. A great
deal of this success can be attributed to PCI's original forward-thinking design. The flexibility of
PCI has allowed it keep pace with tremendous increases in CPU performance and data
capacity, while making it suitable for laptops, desktops, servers, and embedded applications.

PCI's standardized components and silicon have also enabled huge economies of scale that
make PCI products easy and inexpensive to develop. As a result, PCI has become the
universal connection standard for all types of low-cost subsystems and peripherals, and has
4 www.xilinx.com WP142 (v1.0) May 8, 2001
1-800-255-7778

http://www.xilinx.com

UART to PCI Bridging for Bluetooth Applications
R

given PCs an affordable graphics capability that was unachievable with previous bus
technologies.

PCI has become one of the most popular bus standards, not only for personal computers, but
also for industrial computers, communication switches, routers, and instrumentation. It solves a
wide range of compatibility problems and performance limitations that were encountered with
the older ISA and VME standards.

However, PCI is a significant design challenge; the stringent electrical, functional, and timing
specifications are difficult to meet in any technology-and the standard continues to evolve to
meet the dynamic needs of the industry.

One needs a flexible PCI solution that will meet both current and future requirements, while
guaranteeing full PCI compliance with no limitations on performance or functionality. Xilinx
released its first PCI product in January, 1996 and since have been proven in over 1000
customer designs, demonstrating its flexibility and a cost-effective solution for a fully compliant,
high-performance PCI system.

The Xilinx LogiCORE PCI32 and LogiCORE PCI64 are 5V and 3.3V fully compliant 32-bit and
64-bit PCI interfaces for up to 66 MHz designs. Together, with Spartan-II, they provide a flexible
PCI solution, that is field upgradeable and able to meet both current and future requirements for
the lowest possible cost. This allows replacement of many ASSPs, such as a UART to PCI
Bridge. A typical PCI design requires additional FPGAs or CPLDs for value added logic
devices, all of this can be integrated with the PCI interface in a single Xilinx Spartan-II FPGA.
Figure 3 illustrates a 32-bit PCI interface as Xilinx provides it. To the left hand side are the
standard PCI bus signals and to the right are the user interface signals needed to interface to
User Application, which in this case is any variation of a UART.

Figure 3: The PCI LogiCore Block

PCI
LogiCore

AD[31:0]

CB[3:0]

PAR

FRAME

TRDY

IRDY

STOP

DEVSEL

IDSEL

INTA

PERR

SERR

REQ

GNT

Address/Data

Interface

Interrupts

Errors

Arbitration

CLK

RST

Cycle Control

Target Control

Initiator Control

State Machine

Misc

CLK

RST

Interface
To User

Application
WP142 (v1.0) May 8, 2001 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

UART to PCI Bridging for Bluetooth Applications
R

The LogiCORE PCI32 Master and Slave Interface is partitioned into five major blocks and a
user application as described below. Figure 4 shows the detailed block diagram of the PCI
solution.

PCI Configuration Space
This block provides the first 64 Bytes of Configuration Space Header (CSH) to support
software-driven “Plug-and Play” initialization and configuration. This includes information for
Command, Status, and three Base Address Registers (BARs).

Each BAR sets the base address for the interface and allows the system software to determine
the addressable range required by the interface. Every BAR designated as a memory space
can be made to represent a 32-bit space. Using a combination of Configurable Logic Block
(CLB) flip-flops for the read/write registers and CLB look-up tables for the read-only registers
results in optimized logic mapping and placement.

PCI I/O Interface Block
The I/O interface block handles the physical connection to the PCI bus including all signaling,
input and output synchronization, output three-state controls, and all request-grant
handshaking for bus mastering.

Parity Generator/Checker
This block generates/checks even parity across the AD bus, the CBE lines, PAR and the PAR
signal. It also reports data parity errors via PERR- and address parity errors via SERR-.

Target State Machine
This block controls the PCI interface for Target functions. The states implemented are a subset
of equations defined in “Appendix B” of the PCI Local Bus Specification. The controller is a
high-performance state machine using one-hot (state-per-bit) encoding for maximum
performance. State-per-bit encoding of the next-state logic functions facilitates a high
performance implementation in the Xilinx FPGA architecture.

Figure 4: Breakdown of the PCI LogiCore

Initiator
State

Machine

Target
State

Machine

Parity
Generator/
Checker

Vendor ID
Rev ID,
Other

User Data

FRAME-_

GNT-

TRDY-

DEVSEL-

STOP

ADIO[31:0]

IRDY-

REQ-_

 U
se

r
A

p
p

lic
at

io
n

PCI Configuration Space

AD[31:0]

PC
I I

nt
er

fa
ce

BAR 0 BAR 1 BAR 2 CSR

Interrupt
Pin and

Line
Register

Latency
Timer

Register
6 www.xilinx.com WP142 (v1.0) May 8, 2001
1-800-255-7778

http://www.xilinx.com

UART to PCI Bridging for Bluetooth Applications
R

Initiator State Machine
This block controls the PCI interface for Initiator functions. The states implemented are a subset
of equations defined in “Appendix B” of the PCI Local Bus Specification. The Initiator Control
Logic also uses state-per-bit encoding for maximum performance.

UART to PCI
Bridge

The immediate areas accelerated by using Spartan-II FPGAs are the FIFO Buffers. These
FIFOs can be reconfigured in depth and width to accommodate much faster data rates as well
as wider words and custom word widths. Spartan-II BlockRAM is ideal for use for deep
memory structures whereas distributed SelectRAM is suitable for shallower memory blocks
and small FIFOs. Figure 5 shows the functional components of a single-channel UART to PCI
Bridge.

Shown also is the interface to the PCI LogiCore block. This block on one side provides the
standard PCI bus signals and on the back side provides the interface signals necessary to
implement a useful user application, which in this case happens to be DMAs and FIFOs to
control the data flow to the UART.

The Initiator “DMA” (Direct Memory Access) engine accepts requests from the local side to
perform block transfers. It then issues a transaction across the PCI bus to satisfy the local
side’s request in as many PCI transactions as required. Similarly, a representation of the
interface to the PCI LogiCore and the Target Read and Write FIFOs are shown. For more
details on the implementation of Initiator and Target Design, refer to the PCI Implementation
Guide (see references).

The critical portion of this design is the control of the data flow from the PCI bus, which can
reach optimal throughput of 132 MB/s on 32-bit/33 MHz architecture. Since a single channel
UART only performs at a fraction (1%) of this bandwidth, the Control and Interconnect needs to
be carefully designed to interface to the UART RX and TX FIFOs to control the data flow.

A variation of figure 5 is the block diagram shown in Figure 7. To increase the supported
Bluetooth connection density it may be desirable to instantiate multiple UARTs each with a
separate Bluetooth module. This example illustrates a quad-channel UART variation, each with

Figure 5: Single-Channel UART to PCI Bridge

P
C

I L
o

gi
C

o
re

Initiator
DMA Engine
with FIFOs

Initiator State

Initiator Control
Ta

rg
et

C
on

tr
ol

Target
Read FIFO

Target
Write FIFO

AD/CBE

Target
Control

C
o

nt
ro

l &
In

te
rc

o
nn

ec
t

P
C

I B
us

Customizable
FIFO Buffer TX

RXCustomizable
FIFO Buffer

Serial
Out

Serial
In

Single-Channel UART

User Application

U
A

R
T

In
te

rf
ac

e

Target State
WP142 (v1.0) May 8, 2001 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

UART to PCI Bridging for Bluetooth Applications
R

a 16 byte FIFO, which could easily support FOUR simultaneous 721 Kbps maximum data rate
Bluetooth connections.

Figure 7 illustrates another derivative of Figure 5, in this case with intelligent DMA functionality.
With the integration of a DMA engine and Bluetooth HCI frame transfer state machine logic the
host system overhead for servicing interrupts can be significantly reduced. Unlike traditional
UARTs where an interrupt is generated every time the small on-chip FIFOs are filled or
emptied, this design generates an interrupt only when a complete HCI frame has been
transmitted or received. This can be accomplished with application specific logic that decodes
the frame size information in the HCI header and configures and manages the DMA
appropriately. This logic can also ensure that proper frame level synchronization is being
maintained. The net result is considerably reduced overhead for the host processor preserving
more MIPS for its primary value-add applications.

With the wide range of standard interface and memory controller IP available for Spartan
FPGAs similar derivative designs can be constructed to implement almost any other core logic

Figure 6: Quad-Channel UART to PCI Bridge

Figure 7: Single-Channel UART to PCI Bridge with Added Functionality

P
C

I L
o

g
iC

o
re

Initiator
DMA Engine
with FIFOs

Initiator State

Initiator Control

T
ar

g
et

C
o

n
tr

o
l

Target
Read FIFO

Target
Write FIFO

AD/CBE

Target
Control

C
o

n
tr

o
l &

In
te

rc
o

n
n

ec
t

P
C

I B
u

s

Customizable
FIFO Buffer TX

RX
Customizable
FIFO Buffer

Serial
Out
Serial
In

User Application

Target State

Customizable
FIFO Buffer TX

RX
Customizable
FIFO Buffer

Serial
Out
Serial
In

Customizable
FIFO Buffer TX

RX
Customizable
FIFO Buffer

Serial
Out
Serial
In

Customizable
FIFO Buffer TX

RX
Customizable
FIFO Buffer

Serial
Out
Serial
In

Quad-Channel UART

U
A

R
T

 In
te

rf
ac

e

P
C

I L
o

g
iC

o
re

Initiator
DMA Engine
with FIFOs

Initiator State

Initiator Control

T
ar

g
et

C
o

n
tr

o
l

Target
Read FIFO

Target
Write FIFO

AD/CBE

Target
Control

C
o

n
tr

o
l &

In
te

rc
o

n
n

ec
t

P
C

I B
u

s

Customizable
FIFO Buffer

TX

RX
Customizable
FIFO Buffer

Serial
Out

Serial
In

Single-Channel UART

User Application

U
A

R
T

 In
te

rf
ac

e

Target State

SDRAM
Controller

Bluetooth
HCI Framer

Custom
Logic

Other I/F
Logic
8 www.xilinx.com WP142 (v1.0) May 8, 2001
1-800-255-7778

http://www.xilinx.com

UART to PCI Bridging for Bluetooth Applications
R

function as well. For instance, Figure 7 also illustrates how you can integrate additional value
adding features such as an SDRAM controller and custom logic. Such versatility builds staying
power and punch into your engineering investment, positioning you to quickly and efficiently
evolve your design to address emerging market opportunities before your competition.

The Benefits of
Programmable
Logic

As we have seen, programmable logic provides an excellent platform for integrating Bluetooth
technology into embedded systems. Let’s highlight the key benefits that they bring:

Time-to-Market
Xilinx programmable logic provides several advantages that reduces time-to-market. First, a
broad range of IP support from Xilinx and a ever growing number of third party IP partners
provide quick access to key design building blocks. Second, as benchtop programmable
solutions, they allow the system designer to achieve a functional hardware platform more
rapidly than any alternative. And third, programmable devices are standard parts that are easy
to reproduce quickly in limited-to-high volumes to capture a position in strategic accounts
before the competition.

Rapid Software Development
Software development is one of the biggest issues in integrating Bluetooth technology. And,
obviously, since programmable logic can achieve functional hardware sooner it creates an
advantage in this area. However, this advantage can be even greater when you consider the
flexibility that programmability brings to the equation. For instance, it is often desirable to use
existing or third party drivers and firmware. With a programmable solution, you have full control
over the behavior of the interface ensuring a workable approach. This can be particularly
valuable when third party code is involved because it may not be well documented or
understood and modifications can raise support and maintenance concerns.

Time-in-Market
Product development by its nature is not an exact science. Bugs and incompatibilities are
simply a reality that engineering must deal with. Here, especially Xilinx programmable devices
can provide a valuable advantage, as our solutions are inherently reprogrammable. Thus,
patches for known problems can be put into production as soon as they are validated on the
existing hardware revision and can also be deployed to installed systems. This allows you to
keep your existing design shipping and greatly reduces the risk of obsolete part inventories and
expensive field replacement programs.

Rapid Design Derivation
A system design is a corporate asset and in today’s world of hyper competition and
compressed development cycles, these assets must be flexible. Standards evolve, customers
request new features, and experience reveals new business opportunities that can be
exploited. Thoughtful designs that incorporate programmable logic are inherently more
scalable and are superior platforms for rapid and efficient product derivation. Thus, well
exploited programmable logic can make your future product roadmap a strategic competitive
advantage.

System Level Cost Reduction
In the past, the use of programmable logic was considered an expensive solution. However,
times have changed because Moore’s Law has worked to the advantage of programmable
solutions. Today, $10 will buy 100,000 system gates in volume, off the shelf, and ready to go.
And, as these devices usually replace other functions in your design as well, they can often
enable real system level cost reductions. Programmable logic has replaced the small cost
reduction ASICs of yesterday and brings many other advantages to your system too!
WP142 (v1.0) May 8, 2001 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

UART to PCI Bridging for Bluetooth Applications
R

References 1. Bluetooth HCI Bridging, White Paper, January 2001, Kent Dahlgren

2. UART to PCMCIA, White Paper, March 2001, Antolin Agatep

3. UART to 1394, White Paper, March 2001, Saeid Mousavi

4. 200 MHz UART Design by Ken Chapman, http://support.xilinx.com/xapp/xapp223.pdf

5. PCI SIG, pcisig.org

6. The PCI Design Guide,
http://www.xilinx.com/products/logicore/pci/docs/design_guide_30.pdf

7. Specification of the Bluetooth System, Core, version 1.0B December 1999, Bluetooth SIG

8. Bluetooth PC Card Transport Layer, White Paper, version 1.0 August 1999, Bluetooth SIG

Revision
History

The following table shows the revision history for this document.

Date Version Revision

05/08/01 1.0 Initial Xilinx release.
10 www.xilinx.com WP142 (v1.0) May 8, 2001
1-800-255-7778

http://www.xilinx.com
http://support.xilinx.com/xapp/xapp223.pdf
http://www.xilinx.com/products/logicore/pci/docs/design_guide_30.pdf

	Introduction
	Bluetooth to HCI Bridging
	UART
	Transmit Block
	Receive Block
	Control Logic Block
	Internal Registers
	Modem Control Block
	Interrupt Control Block
	Programmable Baud Rate Generator

	PCI Interface
	PCI Configuration Space
	PCI I/O Interface Block
	Parity Generator/Checker
	Target State Machine
	Initiator State Machine

	UART to PCI Bridge
	The Benefits of Programmable Logic
	Time-to-Market
	Rapid Software Development
	Time-in-Market
	Rapid Design Derivation
	System Level Cost Reduction

	References
	Revision History

