

Xilinx IQ Solutions for Automotive Intelligence

Xilinx IQ Products for Automotive Applications

Karen Parnell, Manager Automotive Product Marketing Karen.Parnell@xilinx.com Joe Fabula, Manager High Reliability Operations joef@xilinx.com

Overview

- PLDs in the Automotive sector
- How PLDs fits in Telematics & Infotainment
- Multimedia Platforms
- Applications Overview
- Reliability Verification
- Summary

Telematics - A New Platform for Service Delivery

- Perfect application for programmable logic solutions
- Benefits from re-programmable platform
 - New applications/services, user interface, look & feel, etc.

- System Technology: 2G or 3G mobile, satellites, RDS, Bluetooth, WAP, DAB, DVD, etc.
- Mobile Multimedia: traffic information, internet access, electronic games, pay-TV, advertising, MPEG music downloads, digital radio broadcasting and mobile commerce services

MultiMedia Products

From the Lab to the Road -Multimedia Platform Design

Production

- Develop system
- Integrate functionality / new standards
- Evaluate operation

Large FPGAs

 Flexible and field upgradeable

- Single platform, multiple manufacturing variations
- Customized look & feel
- New features, functions
- Requires extended
 temperature operation

Smaller Low Cost FPGAs for Production

Shorter Development Cycles Increase Revenue Potential

A Based on an average of 391 different sized designs

In-Car Digital Convergence

- Technologies are based on multiple, new and changing standards
 - Bluetooth, WAP, GPS, MOST, CAN, etc.
- Integration of multiple complex technologies in auto environment
 - Display, computing, audio, RF, etc.
- Requires flexible solution
- Time-to-market pressures as automotive is shrinking from 6 to 2 years
- Traditional solution challenges
 - Microcontroller insufficient compute capability
 - ASIC design cycle flexibility, upgradeability

Bridging Automotive Networks

In-Car GPS Receiver

X-by-Wire

- Replacing mechanical and hydraulic systems with communications busses to control:
 - Throttle, Steering, Braking, traction control etc
- Real-time response needed (paralleling the CPU? DSP Coprocessing?)
- Special interrupt/safety/task structure needed
- Hardware based designs are less prone to software based `bugs`
- New way of designing with FPGA based reconfigurable hardware:
 - Prototype and testing with FPGAs concept proving/quick changes
 - Pre-production with low cost FPGAs (shrink/optimise designs)
 - Production move to ASIC? (Depending on NRE charges and risk)
- Field/customer feedback on additional functionalities required can be added during development and/or production

Safety and Security

- Utilizing the power of IRL units that are stolen can be deactivated remotely over any network
- Functions implemented in Hardware (programmable logic) can be fully tested vs. software in embedded microprocessors
 - 200MHz + in PLDs vs. 20MHz in Microcontrollers
 - PLDs can be used as a system co-processors for fast operations and interfaces
 - Coding in hours vs. days
 - Functions can be re-used and created as a 'standard' application 'core' or 'macro' to be shared by engineers

Xilinx fab partners use FPGAs to drive their process

Package Density Drivers (Lead Pitch)

2002

XILINX

- Package Interconnect must shrink with die-size resulting to Array Packaging instead of Perimeter
- Aimed at smaller size packages
- High Performance / Frequency / Density Designs
- Efficient Cost

Xilinx Quality Standard Roadmap

Industry Quality Standards A Journey to Quality Excellence TODAY				
	ISO9000/QML/PURE			
former	ISO-9000:2000			
 ISO9000/QML/PURE ISO-9000:1994 meet minimum requirements QML, PURE Certified ISO-14000 (Q4CY2001) Quality systems focus on re-estabilization Meet customer rqts. Wim's Quality Initiatives Internalize worldwide WW training Continuous drive needed 	 Emphasis on continuous improvement Customer input is significant Top management quality review Analysis & Use of Data (FOL> EOL, SPC, Metrics) Completed in July 02 			

Q4' CY03

ISO9000/QML/PURE/TL9000

TL9000 (Telec. Stds.)

- **Telecom Industry Standards** Design Control, NPI, Traceability/ Prod. I.D., Product Lifecycle, PCN/PDN)
- Significant Involvement and Participation of Top Mgmt (Software, Hardware)
- Emphasis on continuous improvement and customer satisfaction
- High on balanced metrics and communication systems, tracking results
 - Supplier customer relationship
 - >performance feedback
 - problem escalation & resolution

Q1' CY05

ISO9000/QML/PURE/ TL9000/QS9000

QS9000 or TS16949

- Systems Expectations for Automotive Industry
- Customer and Supplier relationship
- Top Mamt Involvement
- **Design Process Control**

Design Control, NPI, Traceability/ Prod. I.D., Product Lifecvcle, PCN/PDN)

Specific Emphasis on statistical tools & techniques continuous improvement

> Gauge R&R; SPC Charts, FMEA

System Reliability

• For system failure rates, the relationship is quite simple (i.e the sum of the failure rates of all the individual components)

$$h_s(t) = \sum_{i=1}^n h_i(t)$$

- PLD's reduce the number of components in a system (fewer solder connections, fewer devices)
- Increasing levels of integration in automotive
 - e.g car radio is now integrated into dashboard system

Process Qualification Tests

2.1 New Wafer Process Qualification

<u>Reliability Test</u>	Condition	<u>Duration</u>	Lot Qty	<u>SS/lot^A</u>	Acceptance
High Temperature Operating Life (HTOL)	Ta >=125°C, $V_{DD Max}$	1,000 hours	3	76	0 fail
Temperature Humidity Bias (THB)	85°C, 85% R.H., V _{DD}	1,000 hours	2	76	0 fail
Temperature Cycling (TC)	-65°C/+150°C or -55°C/+125°C ^B	500 cycles or 1,000 cycles	1	76	0 fail
High Temperature Storage (HTS) ^C	$Ta = 150^{\circ}C$	1,000 hours	1	76	0 fail
Data Retention ^D	$Ta = 150^{\circ}C$	1,000 hours	1	76	0 fail
Program Erase ^{C,D}	$Ta = 75^{\circ}C$	10,000 cycles	1	76	0 fail

Note: A. The sample size listed is based on the die size $</= 237 \text{ mm}^2$. For bigger die size, the sample size may be reduced.

- B. For plastic flat pack packages use conditions of -65°C/+150°C, the duration is 500 cycles.
 For ball grid array packages use conditions of -55°C/+125°C, the duration is 1000 cycles.
 C. This is not a mandatory test.
- D. For CPLD and Eprom products only
- E. Package precondition is performed prior to THB & TC tests.

Package Qualification Tests

TABLE I Continued

2.2 New Non-Hermetic Package/Assembly Qualification:

<u>Reliability Test</u>	<u>Condition</u>	<u>Duration</u>	<u>Lot</u> Qty	<u>SS/lot^A</u>	<u>Acceptance</u>
Temperature Humidity	85°C, 85% R.H.,	1,000	1	76	0 fail
Bias (THB) or	V _{DD} or	hours			
High Accelerated stress	130°C, 85% R.H.,				
Test (HAST)	V _{DD}				
Temperature Cycling	-65°C/+150°C,	500 cycles	1	76	0 fail
$(TC)^{B}$	-55°C/+125°C,	or			
	-40°C/+125°C or	1,000			
	-0°C/+100°C	cycles			
Autoclave or	121°C, 100% R.H.or	96 hours	1	76	0 fail
Moisture Resistance	85°C, 85% R.H	1,000			
	,	hours			
Resistance to Solvent			1	3	0 fail
Solderability			1	3	0 fail
Lead Fatigue			1	3	0 fail
Ball Shear			1	$5(40)^{\rm C}$	0 fail
Bond Pull			1	5 (40) ^C	0 fail

Note:

- A. The sample size listed is based on the die size $</= 237 \text{ mm}^2$. For bigger die size, the sample size may be reduced.
- B. For plastic flat pack packages use conditions -65° C/+150°C, the duration is 500 cycles.
 - For ball grid array packages use conditions -55°C/+125°C, the duration is 1,000 cycles.

For Flip chip packages use conditions $-40^{\circ}C/+125^{\circ}C$, the duration is 500 cycles and conditions $-040^{\circ}C/+100^{\circ}C$, the duration is 1,000 cycles.

C. Five units w/ a total of 40 balls or bonding wires.

Device Qualification & Rel Monitor

2.3 New Device Qualification:

For a new device from a previously qualified process, the requirements are as follows:

<u>Reliability Test</u>	<u>Condition</u>	Lot Qty	<u>SS/lot^A</u>	<u>Acceptance</u>
ESD	HBM	1	3	>=2000V
Latch up	Current injection Ta =25°C	1	4	>=200mA

2.4 Hermetic Packages: The hermetic package qualification requires a full group D test per MIL-STD-883, Method 5005.

2.5 Reliability Monitor

2.5.1 <u>Wafer Process</u>

<u>Reliability Test</u>	<u>Condition</u>	<u>Duration</u>	Lot Qty	<u>SS/ process</u> family/quarte <u>r</u>	<u>Acceptance</u>
High Temperature	$Ta >= 125^{\circ}C V_{DD Max}$	1,000	1	45	0 fail
Operating Life (HTOL)		hours			
Data Retention ^A	Ta=150C	1,000	1	45	0 fail
		hours			
Extended Static Life Test	$Ta >= 125^{\circ}C V_{DD Max}$	2,000	1 ^B	45	0 fail
		hours			

A- For CPLD and Eprom products only.

B. 1 of the lot that is pulled per quarter is extended to 2,000 hours.

Package Rel Monitor

2.5 Reliability Monitor (cont'd)

2.5.2 Package/ Assembly (Monitor)

<u>Reliability Test</u>	<u>Condition</u>	<u>Duration</u>	<u>Lot</u> Qty	<u>SS/ site /pkg</u> <u>family/quarter</u>	<u>Acceptance</u>
Temperature	85°C, 85% R.H.,	1,000 hours	1	45	0 fail
(THB) or	V _{DD}				
High Accelerated stress Test (HAST)	130°C, 85% R.H., V _{DD}	100 hours	1	22	0 fail
Temperature Cycling (TC) ^B	-65°C/+150°C, -55°C/+125°C, -40°C/+125°C or -0°C/+100°C	500 cycles or 1,000 cycles	1	45	0 fail
Autoclave or	121°C, 100% R.H.	96 hours	1	45	0 fail
Solderability	or		1	3	0 fail
Mark Permanency			1	3	0 fail
Lead Fatigue			1	3	0 fail
Physical Dimension			1	5	0 fail

Note:

- A. The sample size listed is based on the die size </= 237 mm². For bigger die size, the sample size may be reduced.
- B. For plastic flat pack packages use conditions -65°C/+150°C, the duration is 500 cycles. For ball grid array packages use conditions -55°C/+125°C, the duration is 1,000 cycles. For Flip chip packages use conditions -40°C/+125°C, the duration is 500 cycles and conditions - 040°C/+100°C, the duration is 1,000 cycles.

Reliability Fit Rate: 2 years Rolling

Reliability Fit Rate: 2 years Rolling

Failure Rate Curve

XILINX

AEC Reliability Workshop Presentation 22

http://www.xilinx.com/products/qa_data/relreprt.pdf

Introducing IQ Products

- Why IQ?
 - New range of devices with an extended Industrial Temperature option
 - Consists of CPLD and FPGA families already available in I Grade - and the addition of selected devices with an extended temperature 'Q' grade option
 - IQ it's the intelligent choice for Automotive designers!!
- For FPGAs Q grade means:
 - -40°C to +125°C <u>Junction</u> Temperature
- For CPLDs Q Grade means:
 - -40°C to +125°C Ambient Temperature

Ambient = the temperature of the air surrounding the device Junction = is the temperature of the die in the package

Automotive SSB Solutions

- Divio
 - Digital video decoder & CODEC
 - Based on Xilinx Spartan-II FPGA
 - Single chip DV codec
 - Separate 1394 link layer & PHY

- ACUNIA
 - CarCube[™]: prototype design for in-vehicle telematics terminal, based on XINGU[®] 8000 series processing platform, featuring:
 - Intel[®] Xscale[™] micro-architecture
 - Xilinx Spartan-II FPGA companion chip

Xilinx in Infotainment Systems Today

- Siemens VDO Dayton MP3 car radio CD
 - Spartan-II FPGAs
 - Perform peripheral interfacing and audio control
 - Selected for
 - Ability to upgrade via reprogrammability to accomodate changing standards
 - Ease-of-use
 - Low cost
- Siemens VDO has been using Xilinx FPGAs for its advance in-car systems since 1997

Summary

- The fastest growing area for semiconductors in the automotive sector today is in-car applications
- Different mobile technologies are merging and will be combined in new car solutions consumer product business models plus wireless communication challenges must be met
- Multimedia platforms are being developed to provide bespoke in-car infotainment using one common reconfigurable platform
- Reconfigurable logic devices
 - shorten time to market
 - lengthen time in market
 - allow for for changing standards and protocols
 - provide lower total solution costs

