
by Tom Dillon
President, Dillon Engineering Inc.,
tdillon@dilloneng.com

In the early part of 2001, one of our clients
asked us to consult on a sophisticated digi-
tal image processing system requiring a
combination of high resolution and high
frame rates. A key element in this applica-
tion was to perform FFTs (Fast Fourier
Transforms) on a huge amount of data at
very high speed.

The client’s existing solution for the FFT
portion of the system was based on more
than 40 high-end, fourth-generation (G4)
IBM® PowerPC™ CPUs. This system had
been intended to achieve at least 30 fps
(frames per second), but in fact, it never
delivered more than 15 fps.

After evaluating a number of design alter-
natives, we determined an implementation
based on two Xilinx® Virtex™-II FPGAs
would satisfy our client’s immediate
requirement for 120 fps – and would be
scalable to 240 fps in the future. In addi-
tion to being one of the fastest – if not the
fastest – FFT processor in the world, our
solution would also cost only a fraction of
our client’s existing implementation.

Success Story Design Win

Dillon Engineering not only exceeded their client’s performance
specifications, but they also delivered the solution under budget
by an order of magnitude.

70 Xcell Journal Fall/Winter 2001

Two Virtex-II FPGAs Deliver Fastest,
Cheapest, Best High-Performance Image
Processing System
Dillon Engineering not only exceeded their client’s performance
specifications, but they also delivered the solution under budget
by an order of magnitude.

Two Virtex-II FPGAs Deliver Fastest,
Cheapest, Best High-Performance Image
Processing System

Success Story Design Win

In this article, we will first describe the
scale of the challenge, then look at the
alternatives we considered, and finally,
reveal the solution we implemented, using
our proprietary ParaCore Architect™ core
generation utility, Mentor Graphic’s
LeonardoSpectrum™ 2001 synthesis tech-
nology, and two Xilinx Virtex-II
XC2V6000 Platform FPGAs.

The Challenge

Unfortunately, our
nondisclosure agree-
ment with our client
bars us from reveal-
ing their identity or
even the nature of
their extremely com-
petitive business.
Thus, we cannot
describe the actual
application in great
detail or show
images of the final
hardware implemen-
tation. We must,
therefore, leave any
possible applications
to your imagination.

What we can say is
the most challeng-
ing part of this image processing system was
to accept high-resolution digital images at
120 fps and generate a corresponding two-
dimensional (2D) FFT for each frame. By
generating these 2D FFTs, the images were
transformed into frequency domain repre-
sentations that can be used to analyze vari-
ous features of the object being viewed.

The processing requirements associated
with such a system are tremendous. The
combination of 16-bit pixel data, a resolu-
tion of 2K x 2K pixels (2,048 x 2,048 =
four megapixels), and a required frame rate
of 120 fps results in 480 megasamples of
16-bit data per second. This huge amount
of raw data must undergo extensive pro-
cessing to convert it into the final 2D FFT,
as depicted in Figure 1.

The system comprises two FFT proces-
sors. The first processor is used to gener-

ond FFT processor is converting the 1D
FFT into its 2D equivalent.

The smallest computational element used to
generate an FFT is called a “butterfly,” which
consists of a complex multiplication, a com-
plex addition, and a complex subtraction as
shown in Figure 2. In turn, the complex
multiplication requires four simple multipli-
cations and two simple additions, while the
complex addition and complex subtraction

each require two sim-
ple additions. This
means that each but-
terfly requires a total
of four simple multi-
plications and six sim-
ple additions.

Processing a single
2,048 pixel row (or
column) requires a
total of 11,256 but-
terflies organized in
eleven “ranks,” where
the outputs from the
butterflies forming
the first rank are used
to drive the butter-
flies forming the sec-
ond rank, and so
forth. Thus, process-

ing a single row requires 45,025 simple
multiplications and 67,536 simple addi-
tions. In order to generate the FFT for an
entire frame, this process has to be repeat-
ed for each of the 2,048 rows (or columns)
forming the frame. This means that in
order to achieve a frame rate of 120 fps, the
processing associated with each row (or col-
umn) must be completed within 4 µs
(microseconds). This leads to a time budg-
et of 90 ps (picoseconds) per simple multi-
plication and 60 ps per simple addition.

Alternative Solutions

The first stage of this project involved
doing our “homework” into the current
state-of-the-art for FFT processing. We had
to become intimately familiar with the
myriad reduction techniques and computa-
tional “tricks” available. We then started to
evaluate a range of alternative implementa-
tion strategies.

ate a one-dimensional (1D) FFT of the
frame. The second processor then con-
verts this 1D FFT into a 2D FFT. The
first FFT processor works on a row-by-
row basis. The FFT for each row also con-
tains 2,048 pixels, but in this case each
pixel now represents a component in the
frequency domain. Each of the 2,048
rows forming the frame requires an asso-
ciated FFT to be generated. The result is
a 1D FFT of the whole image.

Once the 1D FFT associated with a frame
has been produced, it is stored in main
memory. If we visualize the first FFT
processor as working “horizontally” across
all of the pixels forming a row, we can con-
sider the second FFT processor to work
“vertically” and process the columns
formed by taking the equivalent pixels in
each row. That is, the second FFT proces-
sor will start working on the first column
formed by pixel 0 on row 0, pixel 0 on row
1, pixel 0 on row 2, and so on. Once the
second FFT processor has completed this
column, it will commence working on the
column formed by pixel 1 on row 0, pixel
1 on row 1, pixel 1 on row 2, and so on.

Note that as soon as the 1D FFT has been
generated and stored in main memory, the
camera is free to take another image. The
first FFT processor then starts working on
this new frame at the same time as the sec-

Fall/Winter 2001 Xcell Journal 71

Figure 1 - Generating a 2D FFT
is computationally demanding.

Success Story Design Win

The first of these was to extend the cus-
tomer’s existing implementation, but we
calculated that it would require more than
100 of the most powerful PowerPCs cur-
rently available to achieve 120 fps. In addi-
tion to being cost-prohibitive, this solution
would not have been easily scaleable up to
240 fps in the future. Having ruled out a
PowerPC solution, we moved on to consid-
er off-the-shelf approaches – FFT process-
ing boards, DSP-based solutions, and
ASIC-based solutions – versus a custom
FPGA-based design.

Off-the-Shelf Approaches

In the case of an off-the-shelf (commercial-
ly available) FFT processing board, the
most appropriate option required 16
VMEbus boards, each costing $30K.

With regard to a DSP-based solution,
high-end alternatives like the C67™
device from Texas Instruments or the
Shark™ chip from Analog Devices took
300 µs and 900 µs to perform a 2k-point
FFT, respectively (remember that our
requirement was for 4 µs). Even using mul-
tiple devices, the end result would be slow-
er than a PowerPC-based solution.

In the case of an off-the-shelf ASIC-based
approach, the best options to implement a
2k-point FFT were the Pathfinder-2™
device from Catalina Research (31 µs), the

PowerFFT™ chip from doubleBW (41
µs), and the DSP24™ component from
DSP Architects (60 µs). A solution based
on the fastest of these – the Pathfinder-2
device – would have required 32 of these
components at $10K each, plus the cost of
any supporting ICs.

Custom FPGA-based Solution

And so we came to consider a custom
FPGA-based solution. We’ve been a member
of the Xilinx XPERTS
program since day one.
Thus, it was no surprise
to us that the Virtex-II
family of Platform
FPGAs leads the field
for this class of compu-
tationally demanding,
data-intensive applica-
tion. In fact, using a
Virtex-II XC2V6000,
we managed to execute
a 2k-point FFT in only
2.8 µs (well within the
4 µs budget required to
satisfy our 120 fps
design criteria). What’s
more, we achieved this
with a clock frequency
of only 125 MHz. The
final product was a sin-

gle VME board with two Virtex-II
XC2V6000 devices (one each for the 1D
and 2D FFTs) – at only one-twentieth the
cost of the best off-the-shelf alternative as
illustrated in Table 1.

ParaCore Architect

A critical factor in the design of the 2k-
point FFT was our internally developed
ParaCore Architect technology. Developed
over a number of years, this technology
facilitates the design of parameterized
cores. The process begins by creating a
source file containing a highly parameter-
ized description of the design at an
extremely high level of abstraction. The
ParaCore Architect utility takes this
description, combines it with parameter
values specified by the user, and then gen-
erates an equivalent HDL representation.
The resulting HDL is guaranteed suitable
for use in any simulation and synthesis
environment, so it isn’t necessary to run
any form of HDL rule-checking program.

The beauty of this type of highly parame-
terized representation is that it’s extremely
easy to target it toward a new application or
an alternative device. For example, if we
decide to change the length of the FFT
from 2k to 1k points, setting a single
parameter takes care of all of the details,
including re-sizing the RAMS used to store

72 Xcell Journal Fall/Winter 2001

Solution

Off-the-shelf FFT
processing board

DSP-based solution

Off-the-shelf ASIC-
based solution

Custom FPGA-
based solution

Comments

Required 16 Cheetah™ boards
from Catalina Research

Required 5 PowerPC G4 VME
boards from Mercury Computing
(75 CPUs with DSP functionality)

Required 32 Pathfinder-2 ASICs
from Catalina Research (plus
supporting memory and logic)

Required 2 Xilinx Virtex-II
XC2V6000 FPGAs plus SRAM
on a single VME board

Total Cost

$480,000

$750,000

$320,000+

$20,000

Figure 2 - A “butterfly” is the smallest
computational element used to generate an FFT.

Table 1 - Cost comparison of alternative implementation options

Success Story Design Win

any internal results, and so forth.
Similarly, another parameter can be used
to select between fixed- and floating-point
math formats (in the latter case, two fur-
ther parameters are used to specify the size
of the exponent and the mantissa).

Of particular interest is the way in which
our FFT algorithm is implemented.
Consider the 11,256 butterfly operations
required to implement a 2k-point FFT. If
execution time were not a major factor, it
would only be necessary to use a Virtex-II
XC2V40 device with its 4x multiplier
blocks, create a single butterfly structure
(four simple multipliers and six simple
adders) and to cycle all of the butterfly
operations through this structure. The
resulting structure would take 90 µs to
generate each 2k-point FFT. Although
this is extremely respectable, it falls well
short of the 4 µs time budget required by
our image processing application.

The easiest way to increase the speed of
the algorithm was to increase the number
of butterfly structures instantiated in
hardware and to perform more of the pro-
cessing in parallel. In the case of
XC2V6000 devices with 6 million system
gates, 144 x 18-bit multipliers, and 144 x
18-kilobit RAM blocks, it was possible to
perform an entire 2k x 2k-point FFT fast
enough to achieve our 120 fps system
requirement. And using XC2V10000
components, we will be able to scale the
system to achieve 240 fps. To target these
different devices only requires setting a
single ParaCore Architect parameter to
specify the number of butterfly structures
we require to be instantiated in hardware.

LeonardoSpectrum 2001

When you’re designing an FPGA with 6
million system gates, it’s very difficult to
achieve optimum performance without
(a) spending decades working on the
problem by hand or (b) having great
tools. Our client would not have accept-
ed the first approach, so we decided to go
with option (b).

Thus, another vital factor in our design
was to use the LeonardoSpectrum 2001

synthesis tool from Mentor Graphics.
We’ve been using Mentor’s tools for eight
years and have always been satisfied with
their power and functionality, but we still
took the time to consider other options
that were available. In the case of this
project, there were a number of factors
that made Mentor the vendor – and
LeonardoSpectrum the tool – of choice:

• The excellent relationship between
Mentor and Xilinx means that
LeonardoSpectrum synthesis technolo-
gy is at the cutting edge of the Xilinx
product offerings. In this case, it was
ready for Virtex-II devices pre-silicon,
which allowed us to start designing well
ahead of the physical components
becoming available.

• We didn’t have to create any special con-
structs in our HDL, because the
LeonardoSpectrum tool inherently
understands functional elements like
multipliers, adders, block RAM, and the
like. The tool automatically instantiates
the functional elements’ equivalent hard-
ware counterparts in Virtex-II devices.
(Other tools we evaluated would have
required us to go to extremes to code our
HDL in strange and amazing ways to
achieve the same effect).

• For initial design evaluations, the
LeonardoSpectrum interface has a “sin-
gle pushbutton” mode that we used to
good effect. Later in the design process,
we moved to using the more advanced
modes that allow every synthesis attrib-
ute to be controlled step-by-step.

• Furthermore, the LeonardoSpectrum
interface can be used to drive the Xilinx
Foundation™ place-and-route software.
Having a single user interface to drive
both tools made our lives much easier.

• Last, but not least, LeonardoSpectrum’s
TimeCloser™ technology allowed us to
“close the loop” by seamlessly importing
timing data from Foundation place-
and-route back into synthesis to re-syn-
thesize critical paths.

Conclusion

As you can imagine, everyone at Dillon
Engineering is extremely happy with the
outcome of this project. In addition to a
significant design win, we currently have
what we believe to be the fastest 2k-point
FFT processor in the world. Besides lever-
aging our core competency in FPGA-
based, high-bandwidth, real-time digital
signal and image processing, this project
also allowed us to take full advantage of our
ParaCore Architect utility.

Furthermore, in addition to solving our
client’s immediate problem by providing
them with a 120 fps solution, this solution
is an order of magnitude less expensive
than their existing implementation (which
can only achieve 15 fps on a good day).

Finally, our solution is scalable and can be
enhanced to provide 240 fps using Virtex-II
XC2V10000 devices – just as soon as they
hit the market.

Fall/Winter 2001 Xcell Journal 73

The Xilinx XPERTS Program
identifies engineering firms around
the world who have demonstrated
significant expertise in developing

Xilinx FPGA-based electronic
products and solutions.

Dillon Engineering Inc. of Edina,
Minnesota, has been a member

of this program since its inception.
For more information on

Dillon Engineering, please visit
www.dilloneng.com.

For more information on the
Xilinx XPERTS Program, go to

www.xilinx.com/company/consultants/.

