
Summary This application note describes methods of efficiently generating standard video test patterns
in Xilinx FPGAs. Video test patterns are used to verify the proper operation of video equipment.
Most video equipment capable of generating a video signal can produce one or more video test
patterns to verify proper operation of the video generator and attached video equipment. Thus,
there is often a need to have a video test pattern generator embedded in the video equipment.

Two basic video pattern generator designs have been described in this application note. The
first is based on distributed SelectRAM™ memory and is applicable to any current generation
Xilinx FPGA family. The second design is based on the block SelectRAM memory in the
Virtex™-II series. The design can implement sophisticated and flexible video pattern
generation using very few Virtex-II device resources.

A Brief
Component
Digital Video
Primer

Component Digital Video Standards
There are many different video standards, both analog and digital. Today, most broadcast
studios and video production centers use component digital video when creating, storing, and
transporting video. Component digital video can be readily compressed using digital video
compression standards. It can also be encoded into analog composite video for broadcast.

Probably, the most common component digital video standards in use today are based on the
4:2:2 sampling scheme. The 4:2:2 component digital video format is used in various standards
for 525-line (NTSC), 625-line (PAL), wide-screen NTSC and PAL, and HDTV. Table 1 lists some
of the 4:2:2 component digital video standards.

The digital test pattern generators described in this application note are all designed to
generate 4:2:2 component digital video. These designs are focused on standard definition
video standards but are flexible enough in design to allow them to be modified to support HDTV
standards.

Application Note: MicroBlaze and Multimedia Development Board

XAPP248 (v1.0) January 7, 2002

Digital Video Test Pattern Generators
Author: John F. Snow

R

Table 1: Common 4:2:2 Component Digital Video Standards

Standard Description

SMPTE 125M(1) and
ITU-R BT.601-5(2)

NTSC & PAL 4x3 aspect ratio 4:2:2 component digital video

SMPTE 267M NTSC 16x9 aspect ratio 4:2:2 component digital video

SMPTE 260M 1125 Line 60-Hz HDTV

SMPTE 274M 1920 x 1080 Scanning – Progressive and interlaced HDTV

SMPTE 293M 720 x 483 Active – Progressive Scan HDTV

SMPTE 296M 1280 x 720 Active – Progressive Scan HDTV

Notes:
1. SMPTE - Society of Motion Picture and Television Engineers
2. ITU - International Telecommunication Union
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 1
1-800-255-7778

© 2002 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and disclaimers are as listed at http://www.xilinx.com/legal.htm.
All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Digital Video Test Pattern Generators
R

Color Space
Black-and-white TV uses only intensity information, called luminance or luma designated with
the letter Y. When color information was added, the luma signal was left intact for compatibility
with existing equipment, and two components of color information, called U and V, were added.
The two color components are often called color difference signals because they are derived by
taking the difference between a color’s intensity and the overall luminance of the sample. The
U component is the difference between blue and Y. The V component is the difference between
red and Y.

The PAL and NTSC TV broadcast systems are both based on the YUV color space. NTSC can
also optionally use a derivative of YUV, called YIQ. "I" stands for in-phase and "Q" for
quadrature, reflecting the modulation method used to transmit the color information.

The YCbCr color space is commonly used in component digital video. YCbCr is a scaled and
offset version of the YUV color space with a luma component (Y) and two chroma (color
difference) components (Cb and Cr). The Y component has a nominal 8-bit range of 16 through
235. The two chroma components have nominal 8-bit ranges of 16 to 240. Some values above
and below the nominal ranges are used to encode special signals.

Sampling Schemes
One of the key characteristics of digital component video formats is the sampling scheme.
Component video sampling schemes are denoted with a sequence of numbers separated by
colons, such as 4:2:2 and 4:4:4.

A 4:2:2 sampling scheme indicates that for every four samples of luma (Y), there are two
samples each of the two chroma signals (Cb and Cr). In standard definition video, the luma is
sampled at a 13.5-MHz rate, while each chroma component is sampled at half that rate. This
takes advantage of the fact that the human eye is less sensitive to color than to intensity to
reduce the signal bandwidth by sampling color components at a lower frequency than the luma
components.

Other common video sampling schemes are 4:4:4, where there are an equal number of Y, Cb,
and Cr samples, and 4:1:1, where there is only one sample of each chroma signal for every four
luma samples. A sampling scheme called 4:2:0 is often used in digital video compression
standards and involves compression of the chroma components in both the horizontal and
vertical direction rather than just the horizontal direction as is in 4:2:2. However, 4:2:2 is the
most common sampling scheme in use today for component digital video in broadcast studios
and video production centers.

For more detailed information on video sampling schemes, refer to XAPP294: Digital
Component Video Conversion 4:2:2 to 4:4:4.

Video Format
For NTSC video, each video line contains 858 samples. As shown in Figure 1, a sample
contains two words: a Y component word and a chroma component word, either Cb or Cr.
Consecutive samples alternate between containing Cb or Cr components. The active video
portion of the line consists of samples 0 through 719. The inactive portion or horizontal blanking
interval of the line consists of samples 720 through 857.

For NTSC video, the four words of sample pairs 720/721 and 856/857 contain special codes
called timing reference signals (TRS). The 720/721 pair contains the end of active video (EAV)
TRS symbol, and the 856/857 pair contains the start of active video (SAV) TRS symbol. These
TRS symbols are used to mark the transitions between the active and inactive portions of the
line and also contain other timing information. When using 10-bit video words, the first three
words of the TRS symbol are 3FFHEX, 000HEX, and 000HEX. The fourth word of the TRS
symbol is called the XYZ word. Three bits of the XYZ word are used to indicate the status of the
F, V, and H bits; four bits are used as error detection bits; and the remaining bits are fixed in
value.
2 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/apps/xapp.htm
http://www.xilinx.com/apps/xapp.htm

Digital Video Test Pattern Generators
R

The F bit indicates whether field one (F = 0) or field two (F = 1) is active. The V bit is set to 1 in
TRS symbols on lines that are part of the vertical blanking interval. On active video lines, the
V bit is 0. The H bit distinguishes between EAV and SAV symbols. "H" is always a 1 in EAV
symbols and always a 0 in SAV symbols.

The encoding of the TRS symbol’s XYZ word is shown below:

The bits labeled P3 through P0 are protection bits and are calculated in the following manner:

P3 = V XOR H

P2 = F XOR H

P1 = F XOR V

P0 = F XOR V XOR H

Figure 2 and Figure 3 show the arrangement of the vertical regions for both NTSC and PAL
component digital video. The diagram shows the line numbers on which the F and V bits
change values. For example, in NTSC video, lines 1 through 3 have both the F and V bits set to
"1". On lines 4 through 19, the V bit is still a "1", but the F bit is a "0".

An NTSC video frame consists of 525 lines and is divided into two interlaced fields. Frames are
drawn at a rate of 30 Hz. However, because new fields are drawn at a rate of 60 Hz, the flicker
that the eye would perceive in a 30-Hz image is significantly reduced.

PAL video lines have the same number of active samples (720) as NTSC video. However, PAL
has a few more inactive samples per line. PAL frames consist of 625 lines divided into two
interleaved fields. The refresh rate of PAL is lower than NTSC with frames drawn at a 25-Hz
rate (50-Hz field rate).

More detailed information about NTSC and PAL digital component video formats can be found
in XAPP286: Line Field Decoder.

Figure 1: NTSC and PAL Video Line Detail

Cr
359

Y
719

Sample 719

Cb
360

Y
720

Sample 720

Cr
360

Y
721

Sample 721

Cb
361

Y
722

Sample 722

Cr
427

Y
855

Sample 855

Cb
428

Y
856

Sample 856

Cr
428

Y
857

Sample 857

Cb
000

Y
000

Sample 000

Cr
000

Y
001

Sample 001

Last Sample
Active Video EAV TRS Symbol SAV TRS Symbol

Horizontal Blanking Interval
First Sample
Active Video

3FF 000 000 XYZ 3FF 000 000 XYZ

Cr
359

Y
719

Sample 719

Cb
360

Y
720

Sample 720

Cr
360

Y
721

Sample 721

Cb
361

Y
722

Sample 722

Cr
430

Y
861

Sample 861

Cb
431

Y
862

Sample 862

Cr
431

Y
863

Sample 863

Cb
000

Y
000

Sample 000

Cr
000

Y
001

Sample 001

Last Sample
Active Video EAV TRS Symbol SAV TRS Symbol

Horizontal Blanking Interval
First Sample
Active Video

3FF 000 000 XYZ 3FF 000 000 XYZ

NTSC Line Detail

PAL Line Detail
x248_01_112801

Bit 9 8 7 6 5 4 3 2 1 0

1 F V H P3 P2 P1 P0 0 0
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 3
1-800-255-7778

http://www.xilinx.com
http://www.xilinx.com/apps/xapp.htm

Digital Video Test Pattern Generators
R

Figure 2: NTSC Video Frame Details

EAV
H=1

Horizontal
Blanking

SAV
H=0

F V
1 1

Active Portion of Line

1 1

1 1

0 1

0 1

0 1

0 1

0 0

0 0

0 0

0 0

0 1

0 1

1 1

1 1

1 1

1 1

1 0

1 0

Line 1

2

3

4

5

19

6-18

20

21

22-262

263

264

265

266

267

268-281

282

283

284

285-524

1 0

1 1

1 1

1 1

0 1

525

1

2

3

4

1 0

Vertical
Blanking
Interval

Vertical
Blanking
Interval

Vertical
Blanking
Interval

Odd
Field

Even
Field

0 15

Even
Field

F V
1 1

1 1

1 1

0 1

0 1

0 1

0 1

0 0

0 0

0 0

0 0

0 1

0 1

1 1

1 1

1 1

1 1

1 0

1 0

1 0

1 1

1 1

1 1

0 1

1 0

0 1

Active
Portion of
Even Field

Active
Portion of
Odd Field

Odd
Field

x248_02_010302
4 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

Numbering Quirks
There are a few interesting quirks with the numbering of lines and samples in digital video.
Lines are numbered beginning with one. In NTSC video, field 1 begins with line 4, not line 1.
Field 1 includes lines 4 through 265 and field 2 includes lines 266 through 525 plus lines 1
through 3.

The samples along a horizontal line are numbered starting with zero. Sample 0 is the first
sample of the active portion of the line. However, a new line does not actually begin at
sample 0. Most digital video standards specify the beginning of the line as the first sample of
the EAV symbol, sample 720. This is because the EAV symbol’s V and F bits reflect the status
of the line that follows, so it is convenient to think of the EAV symbol as being the beginning of
the line.

Figure 3: PAL Video Frame Details

EAV
H=1

Horizontal
Blanking

SAV
H=0

F V
0 1

Active Portion of Line

0 1

0 1

0 0

0 1

0 1

0 0

1 1

1 1

1 1

1 0

1 0

1 0

1 1

Line 1

2

3-21

22

23

25-309

24

310

311

312

313

314

315-334

335

336

337

338-622

623

624

625

0 1

0 1

0 1

1

2

3

Vertical
Blanking
Interval

Vertical
Blanking
Interval

Vertical
Blanking
Interval

Odd
Field

Even
Field

F V
0 1

0 1

0 1

0 1

0 0

0 0 0 0

0 0

0 1

0 0 0 0

1 1 1 1

1 1

1 1

0 1 0 1

1 1

1 0

1 0

1 0

1 1

1 0 1 0

0 1

0 1

1 1 1 1

0 1

Active
Portion of
Even Field

Active
Portion of
Odd Field

Odd
Field

x248_03_010402
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 5
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

In NTSC video, the definition of line 20 is somewhat unclear. Some documents define line 20 as
the first active line of the odd field. Others define line 20 as the last line in the vertical blanking
interval and line 21 as the first active line. Some of this confusion arises from the fact that the
number of lines in the vertical blanking interval is given as a minimum of 19 lines in many NTSC
standards, implying that it can be longer than 19 lines. If lines 1 through 19 are used as the
vertical blanking interval, then line 20 is the first active line. Some prefer to use line 21 as the
first active line because this gives an equal number of active lines (243) in each field. Using line
20 as the first active line gives 244 lines in the odd field and 243 in the even field.

Another element in this confusion is that some earlier versions of the NTSC digital component
video standards ANSI/SMPTE 125M and ITU-R BT.656 allowed the V bit in the TRS XYZ word
to transition from 1 to 0, indicating the end of the vertical blanking interval, on any line from 10
to 20 for the odd field and 273 to 283 for the even field. Current versions of these documents
are now very precise in specifying that the V bit should be 1 on line 19 and 0 on line 20, making
line 20 the first active line of the odd field.

Because of the ambiguity surrounding line 20, some video equipment manufacturers building
NTSC digital video equipment treat line 20 as an active line, but avoid putting critical video
information in the active video portion of line 20. The video test pattern generators in this
application note all treat NTSC line 20 as a valid active line.

Video
Test Pattern
Standards

Standards for Color Bar Test Patterns
Many of the most commonly used video test patterns fall into the class called "color bars." Color
bar test patterns consist of several vertical bars filled with primary and complementary colors.
Color bar test patterns are particularly useful for verifying proper operation of video encoders
and decoders and for adjusting video monitors.

One of the early color bar standards, traditionally called RS-189-A, is now officially called EIA-
189-A.[Ref.3] Refer to Figure 4 for a diagram of the EIA-189-A color bar standard.

Figure 4: EIA-189-A Color Bar Pattern

MAGENTAGRAY YELLOW CYAN GREEN RED BLUE

-I WHITE +Q BLACK

b b b b b b b

5/4b 5/4b 5/4b

75%

100%

b = 1/7 Active Line Time X248_04_010302
6 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

The EIA-189-A test pattern consists of seven vertical color bars that occupy the top 75% of the
test pattern. These color bars are called "75% bars," not because they occupy 75% of the
picture, but because the luma value of these bars is set to 75% of the maximum luma value.

The bottom 25% of the test pattern consists of four bars of the colors –I, white, +Q, and black.
The white bar is called 100% white because the luma component it set to 100%. The black bar
is often called 0% black because the luma component is set to the black level or 0% luma. The
–I and +Q colors represent full scale I and Q values in the YIQ color space. The –I color
represents a signal with the maximum negative I value and a Q value of zero. The +Q signal
represents a signal with a maximum positive Q value and an I value of zero.

SMPTE improved the EIA-189-A color bar pattern in engineering guideline, EG 1-1990. The
SMPTE EG 1 test pattern is now one of the most commonly used video test patterns.

As shown in Figure 5, the EG 1 color bar pattern added to the EIA-189-A pattern a narrow
middle band of color bars called the "new chroma set" bars. The new chroma set bars are
arranged so that when the red and blue guns of a video monitor are turned off and only the blue
gun is active, the brightness of each bar in the new chroma set should match the brightness of
the 75% bar located immediately above it.

EG 1 also adds several narrow "near black" bars useful for setting the black level of monitors.
These bars are sometimes called the PLUGE signal (Picture Line Up Generating Equipment).
To adjust the black level of the monitor the brightness control is adjusted so that the black+4%
(or whiter-than-black) bar is just visible but the black–4% (or blacker-than-black) bar is not
distinguishable from the surrounding 0% black bars.

Figure 5: SMPTE EG 1-1990 Color Bar Pattern

MAGENTAGRAY YELLOW CYAN GREEN RED BLUE

–I WHITE +Q BLACK BLACK
BLK

–4
BLK BLK

+4

CYANBLUE BLACK MAGENTA BLACK BLACK GRAY

b b b b b b b

5/4b 5/4b 5/4b 5/4b bb/3 b/3 b/3

67%

8%

100%

b = 1/7 Active Line Time

New Chroma Set

PLUGE

x248_05_010402
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 7
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

SDI Pathological Test Patterns
Many video test patterns have been developed to aid in testing specific aspects of video
equipment performance. An example of this is the SMPTE RP 178-1996 Serial Digital Interface
(SDI) Checkfield.

Equipment complying with the SMPTE 259M SDI standard is widely used in broadcast studios
and production centers to transport digital video over standard video coax cable. The SDI
standard defines how to send digital video serially at bit rates ranging from 143 Mb/s to
360 Mb/s. To compensate for signal loss in the coax cable, the SDI standard requires adaptive
cable length equalization at the receiver. This equalization circuit can be stressed by
waveforms that have a high amount of DC content.

SDI receivers also require a clock and data recovery (CDR) circuit, usually based on a Phase
Locked Loop (PLL), to recover the serial bitstream at the receiver. The CDR circuit requires bit
transitions periodically to stay locked to the bit rate of the bitstream. Low frequency waveforms
with long runs of 1s or 0s stress the CDR’s ability to stay locked when few transitions are
present in the bitstream.

The SMPTE recommended practice RP 178-1996 defines two test patterns, one to test the
receiver equalization by producing a bitstream with a maximum amount of DC content and
another to test the CDR circuit’s low frequency response by producing a bitstream with long
runs of 1s or 0s. The SDI "checkfield", as the RP 178 test pattern is called, has a cable
equalizer test pattern in the first half (top) of each active video field and a CDR test pattern in
the second half (bottom) of each active video field.

In the cable equalizer test pattern, all chroma (Cb and Cr) components have values of 300HEX
(all values are 10-bit values) and the luma (Y) components have values of 198HEX. This pattern,
when encoded by an SDI encoder, occasionally generates a repeating serial pattern that has
19 High bits followed by one Low bit or 19 Low bits followed by one High bit. This pattern
produces a maximum amount of DC offset. To insure that both polarities of this pattern are
generated, the entire video frame must have an odd number of 1 bits at the input to the SDI
encoder. This is done by setting the Y component of the last sample on the first active line of the
first field (line 20 for NTSC or line 23 for PAL) to a value of 080HEX instead of 198HEX.

In the CDR test pattern, all chroma components have a value of 200HEX and all luma
components have a value of 110HEX. Feeding this pattern into an SDI encoder for one-half of a
field produces several lines of a repeating waveform that has 20 consecutive bits of one polarity
followed immediately by 20 consecutive bits of the opposite polarity, producing a minimum
number of transitions to the CDR circuit.

The SDI encoding scheme uses a linear feedback shift register (LFSR) to scramble the video
data. The starting state of the LFSR affects how any 10-bit video word is encoded by the SDI
encoder. An SDI encoder has 511 different possible starting states. When the RP 178 patterns
are encoded by an SDI encoder, they do not immediately nor consistently generate the
pathologic waveforms. They only generate the pathological waveforms once the encoder has
reached a certain starting state. In the half field where each of the two test patterns is applied
to the SDI encoder, the pathological waveforms are only generated by the encoder during a few
of the active video lines.

Reference
Designs

Two basic video pattern generator designs are presented here, with a few minor variations of
each design type also provided. The first type of pattern generator is based on distributed RAM
found in most Xilinx FPGA families. The second basic type is based on the Virtex-II
synchronous 18K-bit block RAM.

Limiting Signal Transition Rates
Many video standards require the video component values to have limited transition rates. This
is because analog video devices have a limited amount of bandwidth and cannot handle video
signals that transition quickly from one value to another. Color bar patterns have high transition
rates at the borders between adjacent color bars.
8 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

A test pattern generator can limit the signal transition rates by ramping the value of the digital
components at the color bar transitions. However, since video encoders often limit signal
transition rates, it is often easier to let the video encoder perform this function.

The test pattern generators described in this application note do not limit the transition rates of
the signals. If transition rate limiting needs to be implemented in the FPGA, this can be done
with a video FIR filter connected to the output of the test pattern generator. The FIR filter
function must only be applied to the active video data and not to the timing reference signals or
any non-video digital data that may be included in the blanking intervals. The design of a video
FIR filter is outlined in other Xilinx applications notes.

Some test patterns, such as the RP 178 SDI test patterns, must not be filtered. Filtering the
RP 178 patterns prior to SDI encoding does not achieve the correct test effect.

Distributed RAM Video Pattern Generators
Figure 6 provides a block diagram of a color bar pattern generator based on ROMs
implemented in distributed RAM. This pattern generator produces the SMPTE EG 1 color bar
pattern. The pattern generator can be broken down into three main sections: the horizontal
section, the vertical section, and the component video generator section.

Horizontal Section

The horizontal section contains a horizontal counter and a horizontal state machine. The
horizontal counter increments every clock cycle, counting the number of words (two words per
video sample) on a horizontal video line. The two least significant bits (LSBs) of the horizontal
counter are used to determine which component to output: Y (01 or 11), Cb (00), or Cr(10). The

Figure 6: Distributed RAM EG 1 Pattern Generator

h_counter
h_region
counterinc

clr

h_rom

4

=

h_next_evnt

trs h

v_counter
v_region
counterinc clr

v_rom

4

=

v_next_evnt

f v

ceinc

color
romvband

2

4

0,f,v,h

trs

video
rom

comp
logictrs

10

3ff

000

out
reg

q
10

trs
h

h_sync

v_sync

field

v

f

H State
Machine

V State
Machine

Component
Video Generation

4

2

sample
code

11

10

2 LSBs

9 MSBs

RP178
Video
Gen

h_counter

v_counter

pattern
clr

h_region

Optional RP 178
Pattern Generator

clr_h
inc_v

clr_v

X248_06_010302
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 9
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

horizontal counter is reset to zero by the horizontal state machine when the end of the video
line is reached.

The horizontal state machine sequences through a series of horizontal regions on each video
line. The transition from one horizontal region to another is called a horizontal "event." A
horizontal event must be defined at each possible point on the line where the outputs of the
horizontal state machine must change. These events occur where a new color bar could begin
or a TRS symbol must be generated. In this design, horizontal events can only occur at four
clock boundaries. That is, horizontal regions can only begin where the least significant two bits
of the horizontal counter are both zero.

Figure 7 shows the EG 1 color bar pattern. Along the bottom of the drawing, the horizontal
events and regions are defined. Each horizontal event is marked by a dotted line. The
horizontal counter value for the beginning of each horizontal region is also shown. These
counts are valid for NTSC video. Note how some color bars span multiple horizontal regions.
For example, the top red color bar spans three regions because of the three small PLUGE bars
located below it.

The last horizontal region on the right of the pattern is defined as just the last two samples of
the line and is the horizontal region where the horizontal state machine asserts a signal to
cause the vertical state machine to increment the line counter.

The horizontal state machine consists of a horizontal region counter containing the current
state (horizontal region) of the state machine and a ROM to decode the current state into the
control outputs. One of the outputs of the ROM is a 9-bit "next-event" value. A comparator
constantly compares the most significant nine bits from the horizontal counter to the next-event
value from the ROM. When they match, an event has been reached and the horizontal region

Figure 7: Horizontal Regions of the EG 1 Test Pattern Generator

MAGENTAGRAY YELLOW CYAN GREEN RED BLUE

-I WHITE +Q BLACK BLACK
BLK

-4
BLK
+4

CYANBLUE BLACK MAGENTA BLACK BLACK GRAY

BLK

HORIZONTAL
BLANKING
INTERVAL

EAV SAV

14
40

14
44

17
12

0

20
8

26
0

41
6

52
0

62
4

78
0

83
2

10
40

11
08

11
80

12
48

14
36

14
40

0 1 2 3 4 5 6 7 8 9 A B C D E F h_region codes

assert inc_v hereassert clr_h here

Pattern 1

Pattern 2

Pattern 3

X248_07_010302
10 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

counter is incremented, moving the horizontal state machine to the next horizontal region. The
horizontal region counter will only increment when the least significant two bits of the horizontal
counter are both 1s.

The horizontal ROM also generates several other outputs:

clr_h clears the horizontal counter when the end of the line is reached

inc_v causes the vertical counter to increment to the next video line

trs indicates that a TRS symbol will be generated in the current horizontal region

h H bit (horizontal blanking indicator) for the TRS XYZ word

Vertical Section

The vertical section contains a vertical counter that keeps track of the current line number. It
increments from one to the maximum number of lines in the frame. The horizontal section
controls when the vertical counter increments by asserting the inc_v signal at the end of each
horizontal line. The vertical counter is cleared to a value of 1(remember that the first video line
is 1) when the vertical state machine asserts the clr_v signal indicating the end of the frame.

The vertical section also contains a vertical state machine that is almost identical to the
horizontal state machine. A vertical region counter contains the current vertical region value.

A ROM decodes the vertical region value into a number of control bits, including a 10-bit next-
event value that is constantly compared to the current value of the vertical counter. When the
current line number matches the next-event value from the ROM, the vertical region counter is
incremented. The vertical region counter only increments at the beginning of the video line as
indicated by the horizontal state machine asserting the inc_v signal.

Different vertical regions are required to keep track of the changes in the V and F bits and for
the different vertical patterns in the EG 1 pattern. Figure 8 shows an NTSC video frame with the
11 different vertical regions that the vertical state machine cycles through to process one frame
of video. Note that the last region, region 10, is only active for the last video line. During this
region, the clr_v signal is asserted to cause the vertical counter and the vertical state machine
to reset to the beginning of the frame when the end of the line is reached.
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 11
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

The outputs of the vertical state machine are:

f is the F bit (field indicator) for the TRS XYZ word

v is the V bit (vertical blanking indicator) for the TRS XYZ word

clr_v clears the vertical counter and the vertical region counter at the end of the video
frame

vband indicates which vertical region is currently active

The two-bit vband signal indicates which of the three patterns (color bar sets) should be
generated, based on the current vertical position. The EG 1 test pattern has three color bar sets
located in three different rows on the screen The fourth value that vband can assume indicates
that the current vertical region is a vertical blanking interval.

Component Video Generator Section

The component video generator section converts the 2-bit sample code from the horizontal
counter, the 4-bit horizontal region code, and the 2-bit vband code into actual video component
values. Two ROMs are used in the component video generator section.

The color ROM converts the vband and horizontal region codes into a 4-bit color code. The
EG 1 test pattern uses 13 different colors, leaving three unused color codes.

When generating colors, not TRS symbols, the 4-bit code from the color ROM and a 2-bit
sample code derived from the two LSBs of the horizontal counter form the address into the
video ROM. The video ROM generates the 10-bit value for each component of the color.

The sample code tells the video ROM whether to output the Y, Cb, or Cr components of the
color. This uses three of the four possible values of the sample code. The fourth value of the
sample code indicates that a TRS symbol should be generated. When the horizontal state
machine asserts the TRS signal, a MUX located between the color ROM and the video ROM

Figure 8: Vertical Regions of the EG 1 Test Pattern Generator

Pattern 1

Pattern 2

Pattern 3

Pattern 1

Pattern 2

Pattern 3

V = 1 F =0
V = 1 F =1

V = 1 F =0

V = 1 F =1

clr_v = 1

Field 1
(Odd)

Field 2
(Even)

Line 1
Line 4

Line 20

Line 183
Line 203

Line 264
Line 266
Line 283

Line 446
Line 465

Line 525
Line 3

Vertical Regions

0
1

2

3
4
5
6

7

8

9

10

Vertical Blanking Interval

Vertical Blanking Interval

Vertical Region
Starting Line Number

x248_08_010402
12 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

replaces the color code from the color ROM with the F, V, and H bits. The video ROM encodes
the F, V, and H bits into a 10-bit XYZ word for the TRS symbol.

The video ROM only generates the XYZ word of the TRS symbol. It does not generate the first
three words of the TRS symbol. The values of these first three words are 3FFHEX, 000HEX, and
000HEX. These values are generated by a MUX on the output of the video ROM. When a TRS
symbol is being generated, the MUX supplies 3FF for the first word, 000 for the second and
third words, and the video ROM supplies the XYZ word for the fourth word. The use of a MUX
to generate the trivial 3FF and 000 values reduces the amount of space needed in the video
ROM.

The EG 1 color bar generator using distributed RAM is implemented in the cb_eg1.v and
cb_eg1.vhd files. When generating NTSC or PAL video using this design, a 27-MHz clock
should be used.

Generating the RP 178 SDI Checkfield

The RP 178 SDI checkfield pattern is relatively simple. It consists of one pattern during the first
half of the active field and another pattern during the second half. However, there is one
exception where the last Y component on the first active line of the first field has a different
value than the other Y components in the cable equalization pattern.

In the cb_eg1_rp178.* files, an RP 178 pattern generator has been grafted onto the EG 1 color
bar generator described above. An input signal to this module indicates whether the EG 1 or
RP 178 pattern should be generated. The RP 178 generator simply looks at the horizontal and
vertical counters to determine which video component values to output. This RP 178 generator
only generates values during the active portion of the video. The regular color bar pattern
generator takes over and generates the TRS symbols and blanking interval values.

A reference design that generates only the RP 178 SDI Checkfield test pattern is provided in
the rp178.v and rp178.vhd files. This design is based on the distributed RAM test pattern
generator design, but only generates the RP 178 test pattern, making it smaller than the
combined EG 1 and RP 178 test pattern generator.

Simple Color Bars

The HDL files colorbars.* contain a simplified version of the EG 1 color bar generator. This
version simplifies the bottom pattern so that a gray bar occupies the left half of the pattern and
black bar occupies the right half. This eliminates the need to generate the colors –I, +Q, white,
and the two near-black signals. This reduces the number of colors needed from 13 to 8,
allowing the color code generated by the color ROM to be reduced from four to three. These
changes reduce the size of the video ROM to half and eliminate one bit from the color ROM,
resulting in a smaller implementation.

This simplified version can be used when space is at a premium in the FPGA and strict
adherence to the EG 1 standard is not required.

Block RAM Video Pattern Generators
The dual-port Virtex-II block RAMs allow two independent test pattern generators to be
implemented, using the same amount of hardware as required to implement one pattern
generator. The second generator is essentially free. The two pattern generators must share the
same ROM data, meaning they generate the same patterns but do not have to be synchronized
in any way. An EG 1 color bar generator can be made using three Virtex-II block RAMs and very
few other FPGA resources.

Figure 9 is a block diagram of a block RAM-based video pattern generator. The block diagram
shows only one pattern generator, but this design implements two independent pattern
generators in three block RAMs and four Virtex-II slices. If there are three unused block RAMs
in a design, a video pattern generator can be added for almost no additional cost.
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 13
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

HROM

The HROM is a block RAM configured as a 1Kx18 device. It implements the horizontal state
machine with the internal register of the block RAM serving as the current state register. Ten
bits out of the HROM form the "next-state" value and wrap back around to the address input of
the HROM. The HROM state machine advances one state every four clock cycles. A 2-bit
sample counter is decoded to provide the clock enable signal for the HROM.

The HROM can implement up to 1024 states. Because each state lasts for two video samples,
the HROM can accommodate test patterns that are up to 2048 samples wide, sufficient to cover
most standard definition video formats. Some wide-screen standard definition video formats
and some high-definition video formats have more than 2048 samples per line. There are two
ways to adapt the design for these HDTV video formats. First, the number of samples per state
could be increased to four, providing for up to 4096 samples. Doing so would require some
changes to the design to correctly generate the TRS symbol during half of the state. Second,
an additional HROM could be added to expand the HROM to 2Kx18, providing twice as many
states.

The HROM generates an h_region code to indicate which horizontal region is currently active.
The h_region code can be either four or five bits wide, depending on the requirements of the
test pattern.

The HROM asserts a signal called h during the horizontal blanking interval. It also generates an
enable signal to the vertical state machine. This enable signal indicates the end of the current
line and causes the vertical state machine to increment to the next line when asserted.

VROM

The VROM is another 1Kx18 block RAM used to implement the vertical state machine. It is
configured just like the HROM state machine with ten bits out of the VROM forming the next
state value and wrapping back around to the VROM’s address input.

The VROM can implement up to 1024 states. With each state corresponding to one video line,
the VROM has enough states to cover most current video resolutions, but does not cover the
1080-line HDTV standards. To adapt this design to cover the higher resolution standards, the
VROM can be implemented in two block RAMs each configured as 2Kx9, giving a total RAM
space of 2Kx18.

Figure 9: Video Pattern Generator Using Block RAMs

HROM
1Kx18

clk

h_next_state

10

h

VROM
1Kx18

clk

v_next_state

10

v

f

EN

ADDR

ADDR

EN

CROM
2Kx9

sample
counter

ADDR

2

4 or 5

4 or 5

patsel

v_region

h_region clk

out
reg

clk

9

duplicate
LSB

q[9:0]

f

v

h

field

v_sync

h_sync

H State
Machine

V State
Machine

Component
Video Generation

X248_09_010302
14 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

The VROM generates a v_region code to indicate the current vertical region. The v_region
code can be four or five bits wide. The VROM also generates a field indicator bit (f) and a
vertical blanking indicator bit (v).

CROM

The CROM is a third block RAM in a 2Kx9 configuration and is used as the video component
generator. The address inputs for CROM come from the 2-bit sample counter, the h_region
code from the HROM, and the v_region code from the VROM. If both h_region and v_region
are four bits wide, then there is an extra address input to the CROM available. This design
example takes advantage of this extra address pin as a pattern select input, allowing either the
EG 1 or RP 178 test pattern to be selected.

With the two independent test pattern generators available due to the dual-port nature of the
block RAM, one generator can be generating the EG 1 pattern while the other is generating the
RP 178 pattern. Or, they can both be generating the same pattern.

The CROM has a 9-bit wide output, so it can only produce 9-bit color components. While this is
generally sufficient for most color bar applications, the RP 178 test patterns require all
components to be generated at 10-bit resolution. TRS symbols should also be generated
accurately to 10-bit resolution. There are several ways to solve this problem.

First, the CROM can be configured as a 1Kx18 part, allowing for more output resolution. This
would limit the v_region and h_region codes to 4-bit values and would eliminate the ability to
put two patterns in the CROM.

Second, an additional block RAM can be used to double the number of bits out of the CROM.
Since many applications only require 10-bit video, it seems a waste to use an entire block RAM
to generate one more bit.

Because generating video test patterns as efficiently as possible was a goal of this reference
design, another technique was used. The LSB from the CROM is duplicated and used as both
of the two LSBs of the component value. This can produce color component values that may be
1-bit different than recommended by some standards. However, it does accurately generate all
TRS symbol words, and it also correctly generates all RP 178 test pattern component values.

A 3-bit output register is used to delay the f, v, and h bits from the VROM and HROM by one
clock cycle to match the clock cycle of delay in the CROM.

When generating NTSC or PAL video using the vidgen design, a 27-MHz clock should be
used.

Generating the ROM Contents

Using block RAMs as the basis for a video test pattern generator makes a very flexible design.
The test patterns can be changed simply by changing the initialization values of the RAMs, or
by reloading the RAMs on the fly. The difficult part is coding the contents of the these large
RAMs by hand.

As part of the reference design, a utility called cbgen has been provided. This utility reads a
text file that describes the test pattern and generates initialization files for the three RAMs. Two
initialization files are generated for each RAM, one containing the initialization code for
simulation and the other containing the synthesis initialization code. This utility generates the
initialization files in either VHDL or Verilog and will produce correct synthesis code for XST,
Leonardo, FPGA Express, or Synplify.

The utility can also generate files compatible with the Xilinx XDL tool, which allows the
initialization values of the ROMs to be changed without resynthesizing or rerouting the FPGA
design. Refer to the cbgen User Guide for a complete description on how to use the cbgen
utility.

The vidgen.v and vidgen.vhd files contain the HDL descriptions of the block RAM-based
video pattern generator. The vidgen.v files contain the ‘include directives that include the six
RAM initialization files. Some Verilog synthesis tools do not implement the ‘include directive. In
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 15
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

these cases, the initialization files should be inserted directly into the vidgen.v file where the
‘include directives currently exist.

VHDL lacks a file include directive, so the *.vhd initialization files should be inserted directly
into the vidgen.vhd file at the places indicated by the comments.

The supplied RAM initialization files generate both the EG 1 and RP 178 test patterns for 4x3
aspect ratio, 525-line NTSC video. A pattern definition file that can be processed by cbgen is
also provided for the EG 1 and RP 178 test patterns in 625-line PAL format.

The cbgen utility is provided pre-compiled and ready to run on a PC under Windows. The C
source code for cbgen is also provided so that it can be compiled for use under other operating
systems.

Reference
Design Results

Table 2 shows the results after "place and route" of the various modules implemented in this
application note. All results were obtained using the Verilog versions of the designs with Xilinx
ISE version 4.1i using XST as the synthesis tool. Results using the VHDL files are not shown,
but are essentially identical. Virtex-II device results are for a –5 speed grade device.
Spartan-II device results are for a –6 speed grade device.

Reference
Design Files

The reference design files can be downloaded from the Xilinx FTP site under xapp248.zip.

Conclusions Video test pattern generators are often included in many types of video equipment, sometimes
to provide a quick go/no-go test to determine if the equipment is functional, other times to
provide sophisticated diagnostic capabilities.

Xilinx FPGAs are now commonly used in video equipment, so there is a need to efficiently
implement video test pattern generators in Xilinx FPGAs. Two basic video pattern generator
designs have been described in this application note.

References The following references are recommended:

1. All of the SMPTE standards referenced in this application note are available from The
Society of Motion Picture and Television Engineers and can be purchased at the SMPTE
web site: http://www.smpte.org

2. The ITU-R BT.601-5 standard can be purchased from the International Telecommunication
Union at: http://www.itu.int/itudoc/itu-r/rec/bt/

3. The EIA-189-A standard can be purchased from the Electronic Industries Alliance at:
http://www.eia.org

Table 2: Reference Design Results

Design Name

Optimized for Area Optimized for Speed

Size
LUTs/FFs

Speed
Virtex-II
Device

Speed
Spartan-II

Device
Size

LUTs/FFs

Speed
Virtex-II
Device

Speed
Spartan-II

Device

colorbars.v 116/42 100 MHz 60 MHz 117/46 140 MHz 80 MHz

cb_eg1.v 132/42 100 MHz 60 MHz 137/60 140 MHz 80 MHz

cb_eg1_rp178.v 160/43 90 MHz 60 MHz 171/47 140 Mhz 80 MHz

rp178.v 82/41 140 MHz 90 MHz 86/41 165 MHz 100 MHz

vidgen.v 6/10 175 MHz NA 6/10 200 MHz NA
16 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com
http://www.eia.org
http://www.smpte.org
http://www.itu.int/itudoc/itu-r/rec/bt/
ftp://ftp.xilinx.com/pub/applications/xapp/xapp248.zip

Digital Video Test Pattern Generators
R

Appendix A User Guide - cbgen

Introduction The cbgen utility was developed to make it easier to generate the block RAM initialization files
for the three ROMs in the vidgen video pattern generator reference design in Xilinx application
note XAPP248. The utility reads a text file that describes the video test pattern and generates
two initialization files for each of the three ROMs, one for simulation and one for synthesis.

The utility generates the initialization files in either VHDL or Verilog or in a format compatible
with the Xilinx XDL tool. XDL allows the ROM initialization values to be modified after synthesis
and place and route.

The utility is written in C and the source code is provided to allow the utility to be modified or to
be compiled for different operating systems.

This version of cbgen is limited to generating initialization files for designs with only one block
RAM per section. It cannot support video formats with more than 1023 lines or 2048 samples
per line.

Input File Format

Basic Syntax

The cbgen input file is a text file that describes the video test pattern to be generated.

The file may contain comments that will be ignored by cbgen. The comment character is // and
may occur anywhere on a line. Anything to the right of the comment character will be ignored.
Blank lines are ignored.

Generally, cbgen expects a command to exist on a single line of the text file. However, there is
a line continuation character: \. Anything on a line to the right of the line continuation character
will be ignored. The following line is appended to any line with a line continuation character.

Some commands require an item to be named, such as the color definition lines in a PALETTE
block. Names must only be a single word so they may not contain spaces.

The different elements on a command line must be separated by one or more space or tab
characters.

File Sections

The input file is divided into different sections. The sections must appear in the proper order.

The first section contains a number of different commands that establish various parameters.
These parameters include the number of words per video line, the number of lines in the video
frame, and the names of the output files.

Next, the color palettes are defined using the PALETTE block. This block defines the colors that
will be used in the video test pattern.

The HORIZONTAL_REGIONS block must come after the palette blocks. This block describes
where each horizontal region in the test pattern begins and ends on a video line.

The LINE_FORMATS block must come after the horizontal regions block. This block defines
the possible formats that a video line may have. It defines what colors should be generated in
each horizontal region for different line types. A different type of line (or format) occurs in each
vertical region. For example, in the EG 1 test pattern, the lines in the 75% color bars pattern at
the top of the screen have a different format than either the lines in the middle "new chroma set"
pattern or the lines in the bottom pattern.

The last section of the input file is the VERTICAL_REGIONS block. This block is where the
extent of each vertical region is defined. It also associates the lines within each vertical region
with a line format.
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 17
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

Parameter Commands

At the beginning of the file, there must be several single-line parameter commands. These
commands may come in any order relative to one another. These commands are described
below.

PALETTES num

This command specifies how many color palettes will be used in the test pattern. The numeric
parameter may be either 1 or 2. The number of palettes used is usually one, unless two
different test patterns are to be stored with a pattern select bit used to select between them.
The pattern select bit is an extra address bit to the CROM and essentially selects between the
two possible color palettes.

Only one color palette may be used if either the hregion or vregion codes are five bits wide.

If the PALETTES command does not appear in the pattern definition file, the number of palettes
will default to 1.

HREGION_BITS num

This command specifies how many bits are used to encode the horizontal region. The numeric
parameter may be either 4 or 5. Four bits allows 16 horizontal regions to be defined and five bits
allows 32 horizontal regions to be defined. In determining how many horizontal regions to use,
be sure to note that three horizontal regions are consumed by the EAV, horizontal blanking, and
SAV regions. If five bits are used for the horizontal region code, only four bits may be used for
the vertical region code and only one color palette may be used.

If the HREGION_BITS command does not appear in the pattern definition file, the number of
horizontal region code bits defaults to 4.

VREGION_BITS num

This command specifies how many bits are used to encode the vertical region. The numeric
parameter may be either 4 or 5. Four bits allow 16 vertical regions to be defined and five bits
allow 32 vertical regions to be defined.

If the VREGION_BITS command does not appear in the pattern definition file, the number of
vertical region code bits defaults to 4.

H_TOTAL num

This command specifies the total number of words on a horizontal video line. For NTSC video,
this value should be 1716. The value must be less than 2048. If the H_TOTAL command does
not appear in the pattern definition file, the number of horizontal samples per line defaults to the
NTSC value of 1716.

V_TOTAL num

This command specifies the total number of video lines in the frame. For NTSC video, this value
should be 525. The value must be less than 1024. If the V_TOTAL command does not appear
in the pattern definition file, the number of vertical lines per frame defaults to the NTSC value of
525.

HROM_FILENAME "file name prefix"
VROM_FILENAME "file name prefix"
CROM_FILENAME "file name prefix"

These commands specify the prefixes for the names of the output files. The file name prefix
must be enclosed in quotation marks. cbgen will append to the supplied file name prefix either
"_sim" for the simulation initialization file or "_syn" for the synthesis initialization file and the
appropriate file extension type. Because the file name prefix string is enclosed in quotes, space
characters are acceptable in the name. If these commands do not appear in the pattern
definition file, default file names of "horz_rom", "vert_rom", and "comp_rom" will be used.
18 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

HROM_INSTANCE "instance name"
VROM_INSTANCE "instance name"
CROM_INSTANCE "instance name"

These commands specify the instance names of the various ROMs. These instance names
must match the instance names of the ROMs in the Verilog or VHDL code file. The instance
name must be enclosed in quotation marks. If these commands do not appear in the pattern
definition file, the instance names default to "HROM," "VROM," and "CROM".

HROM_INIT_STATE num

This command specifies the starting state for the HROM state machine. This is the state that
the state machine will enter after being reset. The state number must be less than 2048. If this
command does not appear in the pattern definition file, the HROM init state defaults to zero.

VROM_INIT_STATE num

This command specifies the starting state of the VROM state machine. This is the state that the
state machine will enter after being reset. The state number must be less than 1024. If this
command does not appear in the pattern definition file, the VROM init state defaults to the
V_TOTAL value.

V_INCREMENT num

This command specifies the horizontal count on which the HROM will assert the inc_v signal to
cause the VROM to increment to the next vertical line. The inc_v signal is actually asserted for
four counts and the two least significant bits of the supplied numeric parameter are ignored. If
this command does not appear in the pattern definition file, the value defaults to 1440.

Palette Blocks

The palette block defines the colors that will be used in a pattern. Either one or two palette
blocks may be defined as specified with the PALETTES command described previously.
Generally only one palette is used, but if the pattern generator has a pattern select input to the
CROM, this pattern select bit can select between two different color palettes.

A palette block begins with a line containing the PALETTE command and the name of the
palette. A palette must be given a name.

After the PALETTE command line comes a series of color definition lines. One color in the
palette is defined on each separate line. The palette block ends with a line containing the END
command. Anything else after the END command on the same line will be ignored, so you can
use a command like END PALETTE.

Each color definition line begins with the name of the color followed by the color type as
indicated by the reserved words TYPE0 and TYPE1. After the type code, an optional IS word
may be used as a separator before either three or four numeric parameters are supplied to
define the components of the color.

TYPE0 colors are specified with three components in the following order: Cb, Y, and Cr. The
component values are specified in decimal and are 10-bit values. The single Y value is
repeated for both samples of the color.

TYPE1 colors are specified with four components in the following order: Cb, Y0, Cr, and Y1.
This type allows the specification of different Y values for the two samples of the color.

IMPORTANT: The first color definition line of every palette block must define a color named
BLANK. This color is generated during the horizontal and vertical blanking intervals.

All color component values must be supplied as 10-bit decimal numbers in the range 0 to 1023.
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 19
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

Below is an example of a palette block.

PALETTE eg1
// name type Cb Y Cr Y (type 1 only)
// ------- ----- --- --- --- ---
 BLANK TYPE0 IS 512 64 512
 gray TYPE0 IS 512 721 512
 yellow TYPE0 IS 176 674 543
 cyan TYPE0 IS 589 581 176
 green TYPE0 IS 253 534 207
 magenta TYPE0 IS 771 251 817
 red TYPE0 IS 435 204 848
 blue TYPE0 IS 848 111 481
 black TYPE0 IS 512 64 512
 i TYPE0 IS 612 244 395
 q TYPE0 IS 697 141 606
 white100 TYPE0 IS 512 940 512
 black-4 TYPE0 IS 512 29 512
 black+4 TYPE0 IS 512 99 512
END

Horizontal Regions Block

The horizontal regions block defines the different horizontal regions in a test pattern. A
horizontal region must be defined for each possible place on a line that a different color may be
generated. For example, in the EG 1 color bar pattern, the red bar in the top color bar pattern
actually occupies three separate horizontal regions, one for each of the small black and near-
black PLUGE bars below it in the bottom pattern.

The horizontal regions block begins with a command line containing the command
HORIZONTAL_REGIONS and ends with the END command line. In between, each horizontal
region is defined on an individual line. The horizontal regions of a test pattern are defined from
left to right across the video line beginning with the first active sample of the line (count 0). All
horizontal count values from zero to the value specified by the H_TOTAL command must be
included in a horizontal region.

A horizontal region definition line begins with the horizontal region code to be associated with
the region. The code value is specified in decimal and must be between 0 and 15 if
HREGION_BITS is 4 or between 0 and 31 if HREGION_BITS is 5. The horizontal region code
is used as an address into the CROM and tells it which color to generate based on which
horizontal region is active. Horizontal regions may share the same code so it is possible to
define more than 16 or 32 horizontal regions. However, horizontal regions that share the same
codes must always share the same color in each vertical region.

Three horizontal region codes must be reserved for the EAV, BLANK, and SAV horizontal
regions and these three regions must be defined in the horizontal regions block.

Because of how the horizontal code value is used in the LINE_FORMATS block, it is easier to
assign the codes sequentially and to put the EAV, BLANK, and SAV codes together at the end
of the code space as shown in the example below.

Following the code value on the horizontal region definition line there may be an option IS
keyword. After that, the extent of the horizontal region is specified by a starting horizontal count
value and an ending horizontal count value separated by the keyword TO. Horizontal count
values are specified in decimal and indicate the actual horizontal count (there are two counts
per video sample, one for the chroma component and one for the luma component). Horizontal
regions must begin on a count value that is divisible by four and must end on a value that is one
less than a value divisible by four. The first horizontal region should begin at 0 and the last
horizontal region should end at one less than the H_TOTAL value.

After the horizontal region’s extent, the region type must be specified. Regions may be of type
ACTIVE for regions in the active video space, BLANK for regions in the horizontal blanking
region, EAV or SAV for the regions where the TRS symbols are generated. The EAV and SAV
regions must have extents of exactly four counts.
20 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

HORIZONTAL_REGIONS
// code start end type
// ---- ----- ---- ------
 0 IS 0 TO 207 ACTIVE
 1 IS 208 TO 259 ACTIVE
 2 IS 260 TO 415 ACTIVE
 3 IS 416 TO 519 ACTIVE
 4 IS 520 TO 623 ACTIVE
 5 IS 624 TO 779 ACTIVE
 6 IS 780 TO 831 ACTIVE
 7 IS 832 TO 1039 ACTIVE
 8 IS 1040 TO 1107 ACTIVE
 9 IS 1108 TO 1179 ACTIVE
 10 IS 1180 TO 1247 ACTIVE
 11 IS 1248 TO 1435 ACTIVE
 12 IS 1436 TO 1439 ACTIVE
 14 IS 1440 TO 1443 EAV
 13 IS 1444 TO 1711 BLANK
 15 IS 1712 TO 1715 SAV

END HORIZONTAL_REGIONS

Line Formats Block

The line formats block specifies the various formats used by the video lines in the test pattern.
For example, the EG 1 test pattern contains three different patterns, the top 75% color bar
pattern, the middle "new chroma set" pattern, and the bottom pattern with the PLUGE signals.
To implement an EG 1 color bar pattern, three different line formats would be defined, one for
each pattern in the EG 1 test pattern.

If two different test patterns are being defined for the pattern generator, then the line formats
block should have line formats defined for both patterns. The example below includes formats
for both the EG 1 and the RP 178 test patterns in the same line formats block.

The line formats block begins with a LINE_FORMATS command line and ends with the END
command line. In between, each line format is specified on an individual line format definition
line. Because line format definitions can be long, it is often handy to use the line continuation
character to format these lines.

A line format definition begins with a name to be given to the line format. After the name, there
may be an optional IN reserved word followed by the name of the color palette to be used for
this line format.

After the color palette name comes a list of colors to be used for each horizontal region on the
line. A horizontal region is assigned to a color with the syntax:

region_code IS color_name

For example, the command "0 IS gray" assigns the color gray to the horizontal region code
of 0 in this line format. All samples on the video line that fall in any horizontal region having a
horizontal region code of 0 will be gray in color.

It is common for several continuous regions to have the same color. If these regions have been
assigned sequential horizontal region codes, a short hand command can be used to assign
them all to the same color. This syntax has the format

region_code TO region_code ARE color_name

For example, the command "8 TO 10 ARE red" assigns horizontal region codes 8, 9, and
10 the color red.

Every horizontal region except the EAV, SAV, and BLANK regions must be assigned to a color
on each line format definition line.
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 21
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

LINE_FORMATS

// name palette colors to use for each horizontal code
// -------- ------- ---
top_band IN eg1 0 IS gray 1 TO 2 ARE yellow 3 TO 4 ARE cyan \

5 TO 6 ARE green 7 IS magenta 8 TO 10 ARE red \
11 TO 12 ARE blue

mid_band IN eg1 0 IS blue 1 TO 2 ARE black 3 TO 4 ARE magenta\
5 TO 6 ARE black 7 IS cyan 8 TO 10 ARE black \

11 TO 12 ARE gray

bot_band IN eg1 0 TO 1 ARE i 2 TO 3 ARE white100 4 TO 5 ARE q\
6 TO 7 ARE black 8 IS black-4 9 IS black \

10 IS black+4 11 TO 12 ARE black

rp178_ceqx IN rp178 0 TO 11 ARE ceq 12 IS ceqx

rp178_ceq IN rp178 0 TO 12 ARE ceq

rp178_pll IN rp178 0 TO 12 ARE pll

END LINE_FORMATS

Vertical Regions Block

The vertical regions block defines the extent of each vertical region in the video frame. Different
vertical regions occur where the test pattern changes from one line format to another. Vertical
regions must also be defined for the vertical blanking interval. Usually, more than one vertical
region must be defined in each blanking interval because the field indicator bit (F) must
transition during the vertical blanking interval.

The vertical region block begins with a line containing the VERTICAL_REGIONS command
and ends with the END command line. In between, each vertical region is defined on a
separate vertical region definition line.

The vertical region definition line begins with a vertical region code value to be assigned to the
vertical region. Multiple vertical regions can be assigned the same vertical region code as long
as they have the same attributes. In order to share a code, they must be in the same field and
of the same type (ACTIVE or BLANK) and the video lines in the regions must use the same line
format. Sharing vertical region codes is usually easier than sharing horizontal regions codes
because there are often vertical regions with identical attributes. Note in the example below
how vertical region code 0 is used by both vertical blanking intervals in field 1.

After the vertical region code, there may be an optional IS keyword. This is followed by the
vertical region extent definition. The extent is defined with the syntax:

start_line TO end_line

All lines in the frame from 1 to the last line must be included in a vertical region.

After the region extent definition is an optional IN reserved word followed by the field definition:
FIELD0 or FIELD1. This defines whether the F bit generated by the VROM will be 0 (FIELD0)
or 1 (FIELD1).

After the field definition is the vertical region type, either ACTIVE for regions in the active video
region or BLANK for regions in the vertical blanking interval.

ACTIVE region definitions must end with one or two format assignments, depending on how
may palettes are defined. BLANK regions do not have a format assignment. The format
assignment syntax is:

palette_name IS line_format_name

This specifies that for all video lines in this vertical region, if the named palette is selected, the
given line format should be generated.
22 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

VERTICAL_REGIONS

// code start end field type palette format palette format
// ---- ----- --- ----- ---- ------- ------ ------- ------

0 IS 1 TO 3 IN FIELD1 BLANK
1 IS 4 TO 19 IN FIELD0 BLANK
2 IS 20 TO 20 IN FIELD0 ACTIVE eg1 IS top_band rp178 IS rp178_ceqx
3 IS 21 TO 141 IN FIELD0 ACTIVE eg1 IS top_band rp178 IS rp178_ceq
4 IS 142 TO 196 IN FIELD0 ACTIVE eg1 IS top_band rp178 IS rp178_pll
5 IS 197 TO 217 IN FIELD0 ACTIVE eg1 IS mid_band rp178 IS rp178_pll
6 IS 218 TO 263 IN FIELD0 ACTIVE eg1 IS bot_band rp178 IS rp178_pll
1 IS 264 TO 265 IN FIELD0 BLANK
0 IS 266 TO 282 IN FIELD1 BLANK
7 IS 283 TO 402 IN FIELD1 ACTIVE eg1 IS top_band rp178 IS rp178_ceq
8 IS 403 TO 459 IN FIELD1 ACTIVE eg1 IS top_band rp178 IS rp178_pll
9 IS 460 TO 480 IN FIELD1 ACTIVE eg1 IS mid_band rp178 IS rp178_pll
10 IS 481 TO 525 IN FIELD1 ACTIVE eg1 IS bot_band rp178 IS rp178_pll

END VERTICAL_REGIONS

Running cbgen After the pattern definition file has been created, the cbgen utility is used to generate the ROM
initialization files. The cbgen utility is a command line utility and should be executed in a
command line shell in Windows.

The syntax for executing the cbgen utility is:

cbgen [-s synth_tool] [-l language] input_filename

The optional –s flag specifies which synthesis tool to target with the initialization files. Different
synthesis tools have slightly different syntax for initialization of Xilinx block RAMs. The choices
are: XST, SYNOPSYS (for FPGA Express), LEONARDO, and SYNPLIFY. If the –s flag is not
provided, the synthesis tool defaults to XST.

The optional –l flag specifies which language to use for the initialization files. The choices are:
VERILOG, VHDL, and XDL. If the –l flag is not provided, the language defaults to Verilog. If the
XDL option is chosen for the language, then the –s flag is ignored.

The input_filename must be the full name, including extension, of the pattern definition file.

Using the RAM Initialization Files

Verilog

The cbgen utility creates two Verilog files for each of three ROMs. One Verilog file contains the
simulation initialization code and the other contains the synthesis initialization code. If the
simulation and synthesis tools used supports the Verilog `include directive, then simply modify
the six include directives in the vidgen.v file to include the correct file. If the tools do not support
the include directive, insert the contents of the appropriate initialization file in place of each
include directive in the vidgen.v file.

The simulation initialization code is surrounded by commands to cause the synthesis tool to
ignore the simulation specific code. The synthesis specific code is written in the form of a
Verilog comment block and is ignored by the simulation tool.

VHDL

The cbgen utility creates two VHDL files for each of the three ROMS. One VHDL file contains
the simulation initialization code and the other contains the synthesis initialization code.

Unlike Verilog, VHDL does not have a file inclusion directive. So, you must use an editor to
manually insert the files generated by cbgen into the vidgen.vhd file at the places indicated by
the comments.

The initialization code for simulation is in the form of a generic map for each ROM. This generic
map is surrounded by directives to cause the synthesis tool to ignore it.
XAPP248 (v1.0) January 7, 2002 www.xilinx.com 23
1-800-255-7778

http://www.xilinx.com

Digital Video Test Pattern Generators
R

The synthesis initialization code is a series of attribute definitions. These are user defined
attributes and have to be declared before they can be used. The synthesis init file for the HROM
defines all the attributes used by the initialization code. Therefore, the HROM synthesis file
must be inserted in the vidgen.vhd file before the synthesis files for the other two ROMs.

XDL

XDL is a Xilinx utility included with ISE. XDL converts an NCD file to a text file so that it can be
manually edited and then converts the text file back to an NCD file. This allows a design that
has been run through the synthesis and place-and-route tools to be manually edited. Using the
XDL files created by cbgen allows the block RAMs of the vidgen pattern generator to be
updated with new initialization values without having to resynthesize or run PAR.

The procedure for using the XDL files is:

1. Run cbgen with the –l XDL flag to generate the three initialization XDL files, one for each
ROM.

2. Convert the NCD file of the FPGA design to an XDL text file using the following command:
xdl –ncd2xdl ncd_filename

XDL will create a text file with the same name as the NCD file with a .xdl extension.

3. Open the XDL file created by the xdl utility in a text editor. Search for the HROM instance.
The first few lines of the HROM instance will look like this:

inst "HROM" “RAMB16” , placed BMR8C1 RAMB16_X0Y0 ,
cfg "ENAINV::ENA CLKAINV::CLKA WEAINV::WEA SSRAINV::SSRA

 CLKBINV::CLKB WEBINV::WEB ENBINV::ENB SSRBINV::SSRB
 WRITEMODEA::READ_FIRST PORTA_ATTR::1024X18 RAMB16A:HROM.A:
 WRITEMODEB::READ_FIRST PORTB_ATTR::1024X18 RAMB16B:HROM.B:
INIT_00::0X0010000F000E000D000C000B000A000900080007000600050004000300020001
INIT_01::0X0020001F001E001D001C001B001A001900180017001600150014001300120011

Replace all the lines starting with the line beginning with WRITEMODEA through, but not
including the final line of the instance block, with the contents of the HROM XDL file. The last
line of the instance block is a line with a semicolon (;) on a line by itself. Leave the last line
intact.

Repeat step 3 for the VROM and CROM instances.

4. Convert the XDL file back to an NCD file using the XDL utility like this:
xdl –xdl2ncd xdl_filename [ncd_filename]

An optional ncd_filename can be supplied, otherwise the original NCD file will be overwritten.

5. The resulting NCD file can be processed to generate a bit file that can be loaded into the
FPGA.

Revision
History

The following table shows the revision history for this document.

Date Version Revision

01/07/02 1.0 Initial Xilinx release.
24 www.xilinx.com XAPP248 (v1.0) January 7, 2002
1-800-255-7778

http://www.xilinx.com

	Summary
	A Brief Component Digital Video Primer
	Component Digital Video Standards
	Color Space
	Sampling Schemes
	Video Format
	Numbering Quirks

	Video Test Pattern Standards
	Standards for Color Bar Test Patterns
	SDI Pathological Test Patterns

	Reference Designs
	Limiting Signal Transition Rates
	Distributed RAM Video Pattern Generators
	Horizontal Section
	Vertical Section
	Component Video Generator Section
	Generating the RP 178 SDI Checkfield
	Simple Color Bars

	Block RAM Video Pattern Generators
	HROM
	VROM
	CROM
	Generating the ROM Contents

	Reference Design Results
	Reference Design Files
	Conclusions
	References
	Appendix A
	User Guide - cbgen

	Introduction
	Input File Format
	Basic Syntax
	File Sections
	Parameter Commands
	PALETTES num
	HREGION_BITS num
	VREGION_BITS num
	H_TOTAL num
	V_TOTAL num
	HROM_INIT_STATE num
	VROM_INIT_STATE num
	V_INCREMENT num

	Palette Blocks
	Horizontal Regions Block
	Line Formats Block
	Vertical Regions Block

	Running cbgen
	Using the RAM Initialization Files
	Verilog
	VHDL
	XDL

	Revision History

