

Xilinx Solutions for Home Networking Products

Spartan-II FPGAs + IP Cores

Strategic Applications

Agenda

- Introduction
 - Spartan-II solutions for home networking products
- IP cores information
- Summary

Spartan-II Solutions for Home Networking Products

- I/O control
 - Multiple front end interfaces
 - Multiple back end interfaces
- Hard disk drive interface
- Clock distribution
 - DLLs
- MPEG decoder
- Ethernet MAC
- Error correction
 - Reed-Solomon, Viterbi
- PCI

- Memory solutions
 - On-chip Distributed memory, BlockRAM
 - Memory controllers
- CPU / microcontroller
- HDLC controller
- ADPCM
- Color Space Converters
- Glue logic & system integration
 - LCD controllers, UARTs, DMA controllers

I/O Control

Front End Interface (to Broadband Access)

Back End Interface (for Home Networking)

I/O Control - Front End Interface

- Cost prohibitive to support multiple receivers
 - Multiple receivers are required to have one product fit maximum markets
 - Cable, terrestrial, satellite and xDSL

Back End Interface For Multiple Home Networking Technologies

- RGs network multiple technologies within the home
 - USB/USB 2.0, Ethernet, 1394/FireWire,
 - HomePNA (phonelines), powerlines
 - HomeRF, Wireless LANs (IEEE 802.11a, IEEE 802.11b, HiperLAN2), Bluetooth
- Interfaces to multiple receivers & multiple home networking chipsets are imperative
 - Several products for different markets is cost prohibitive
 - OEMs are always second guessing if another technology will prevail and if their products will remain in the market
 - FPGAs provide the needed time-to-market and time-in-market

Hard Disk Drive Interface

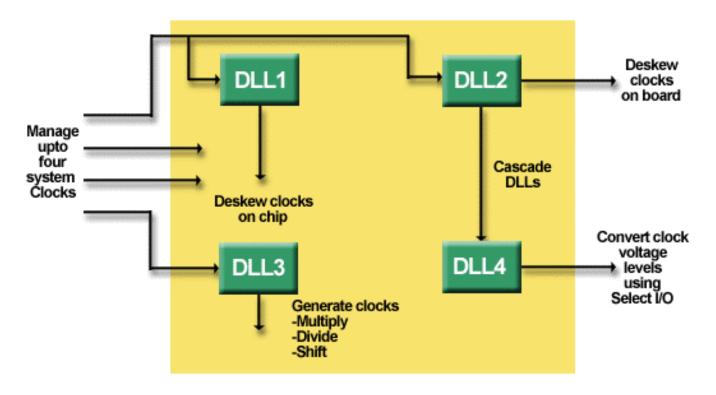
HDD Interface

- Spartan-II FPGAs provide value as hard disk drive interfaces to a residential gateway
 - Provide capability to store video on hard disk drives
 - Provide capability to record and view video simultaneously like in digital VCRs (TiVo, Replay)
- Provides data buffer and disk control logic
 - On-chip memory for FIFOs
- Provides ability to support evolving disk drive technologies
 - Optimized for simultaneous disk read and write
- Enables dual sourcing of multiple types of hard disk drives

Spartan-II FPGA Enables New Set-Top Box Technology

- Spartan-II FPGAs are used to revolutionize the TV experience
 - Pause live TV
 - Instant replay
 - Automatically records favorite programs
 - Advanced TV program search

Xilinx at Work in Home Networking



Clock Management

DLLs

Spartan-II - Clock Management

Delay Locked Loops Lower Memory and Board Costs

XILINX®

Clock Generation and Distribution

- Spartan-II DLL circuits provide full clock management solution
- Clock generation
 - Synthesizing many clocks from a single reference crystal or clock
- Clock buffering and distribution
 - Providing multiple copies of a single clock
 - SDRAM clocks
- Spread spectrum clocks for EMI reduction
 - DLL circuits allow tolerance for ±2.5% variance

MPEG Decoder

DCT/IDCT

MPEG Decoder

- DCT/IDCT compression allows increased throughput through transmission medium
 - Discrete Cosine Transform (DCT) and Inverse DCT (IDCT)
 - Video & audio compression makes multimedia systems very efficient
 - Increases CPU bandwidth
 - Higher video frame rates
 - Better audio quality
 - Enables multimedia interactivity
- DCT / IDCT are widely used in video & audio compression

DCT/IDCT Applications

- List of some end applications
 - DVD/Video CD players
 - Cable TV
 - DBS systems
 - HDTV
 - Graphics/image processing cards
 - Ultrasound/MRI systems
 - Digital VCRs
 - Set-top boxes
 - Digital camera

Spartan-II DCT/IDCT Solution Features

Features	Spartan-II
Device	XC2S100-6
CLBs	1026
Clock IOBs	1
IOBs	28
Performance (MHz)	33.3

AllianceCORE Xentec DCT/IDCT Core

Top End Set-Top Box Solution

- Spartan-II FPGAs provide low cost, high performance MPEG encoding/decoding
 - DCT/IDCT AllianceCORE IP from Xentec
 - Offload processor for high performance system

Fast Ethernet MAC

Fast Ethernet Media Access Controller

- Spartan-II Fast Ethernet MAC transmitter and receiver cores are provided by CoreEl MicroSystems
 - Cores may be purchased and used separately for systems that only require a transmit or receive function
- Applications of the Fast Ethernet MAC cores
 - Applications requiring CSMA-CD protocol for media access
 - Used to implement a multi-channel MAC chip with other common functions like a linked list buffer manager and a DMA control function
 - Used for Ethernet switches, hubs and network interface cards (NICs)

Features of the Fast Ethernet MAC Core by CoreEl MicroSystems

- Individual transmitter & receiver cores
 - Available separate or together
- Fully synchronous logic design
- Fully meets IEEE 802.3 spec
- Supports half & full duplex operation
- Supports full duplex flow control feature (802.3x)
- Flexible frame retransmission or abort feature
- Media Independent Interface (MII)
- Meets Virtual Socket Interface (VSI) spec for a Soft Virtual Component

- Short frame transmission by padding
- Programmable inter-packet gap
- MAC address match feature
- Pause control frame detection
- Multicast & broadcast frame detection
- Extensive statistics information on transmit frames for RMON and MIBs
- Simple host data transfer interface
- Two host interface data path width options: 8- or 16-bits
- Optional long frame transmission & reception

 XILINX®

Xilinx at Work in Home Networking

www.xilinx.com Slide: 20

Fast Ethernet MAC Transmitter

Fast Ethernet MAC Receiver

Spartan-II Based Fast Ethernet MAC

Spartan-II FPGAs Based Fast Ethernet MAC Specifics		
Product Families	Virtex, Virtex-E,	
Supported	Spartan-II	
Device Tested	XC2S150	
CLBs - Transmitter:	440	
CLBs - Receiver:	332	
Clk IOBs - Transmitter:	1	
Clk IOBs - Receiver:	1	
IOBs - Transmitter:	99	
IOBs - Receiver:	261	
Performance (MHz)	50	

Spartan-II Solutions In Error Correction

Reed-Solomon

Viterbi

Error Correction

- Data transmission & storage are fundamental functions in most electronic systems
- In an Ideal Communication Medium
 - Errors do not come into play during transmission
- In the Real World
 - Noise causes data corruption
- Error-correcting coding systems are required
 - Reed Solomon
 - Block codes
 - Viterbi
 - Convolution codes

Xilinx at Work in Home Networking

Reed-Solomon Encoder / Decoder

- Reed-Solomon
 - An error-correcting coding system that corrects multiple errors, especially burst-type errors in communication systems
 - Transmitter (encoder)
 - Data is encoded to be corrected in an event it acquires errors
 - Receiver (decoder)
 - Uses the appended encoded bits to determine errors
 - Corrects the errors upon reception of the transmitted signal

Spartan-II Reed-Solomon IP Solutions

- Spartan-II + Reed-Solomon IP = Programmable Reed-Solomon Solution
- Xilinx Reed-Solomon is provided through LogiCORE program by
 - Integrated Silicon Systems
 - Reed-Solomon Encoder & Decoder core
- Reed-Solomon solutions are also provided by the following AllianceCORE partner
 - Memec Design Services
 - XF-RSENC Reed-Solomon core Encoder
 - XF-RSDEC Reed-Solomon core Decoder

Integrated Silicon Systems

Reed-Solomon Encoder Block Diagram

Xilinx at Work in Home Networking

XILINX®

www.xilinx.com

Integrated Silicon Systems

Xilinx Reed-Solomon

Reed-Solomon Decoder Block Diagram

Xilinx at Work in Home Networking

XILINX®

www.xilinx.com

Memec Design Services

XF-RSENC Core with External Logic - Reed-Solomon Encoder

XILINX®

Memec Design Services

XF-RSDEC Core with External Logic - Reed-Solomon Decoder

Xilinx at Work in Home Networking

XILINX®

www.xilinx.com

Memec Design Services

XF-RSDEC Core - Reed-Solomon Decoder Block Diagram

Xilinx at Work in Home Networking

XILINX®

www.xilinx.com

Spartan-II Reed-Solomon IP Solutions - Features

- Encoder and decoder cores
 - Available Separately
- Web-based configuration and download
 - Supports many Reed-Solomon coding standards and "rollyour-own"
 - Receive customized core in minutes (via email)
 - Generate unlimited number of cores (site licensing)
- Both cores can be considered as black boxes
- RPM Technology
 - Used for predictable performance & fast implementation times

Spartan-II Reed-Solomon IP Solutions - Advantages

- The Xilinx decoder core is half the size than any competitor's offering
- Automatically configured from user parameters
 - Supports all major coding standards and custom implementations
- Can be optimized for area or speed
- Incorporates Xilinx Smart-IP technology for design predictability

Xilinx Smart-IP Technology

Features

FPGA Architecture tailored to cores

Segmented routing

Distributed & block memory

Pre-defined core placement & routing

Customer Benefits

- Performance independent of:
 - Core placement
 - Number of cores used
 - Surrounding user logic
 - Device size
 - EDA tools

Consistent performance Core A Core A

XILINX®

Spartan-II Competitive Advantage

Features	Typical Reed-Solomon ASSPs	Reed-Solomon in Spartan-II
Polynomial	Fixed	Parameterizable
Symbol Width	Fixed	Parameterizable
Block Length	Programmable (3 - 255)	Parameterizable (3 - 4095)
Correctable Errors	Programmable (1 - 10)	Parameterizable (1 - 64)
Erasure Handling	Fixed	Parameterizable
Maximum Throughput	12.5 Mbytes/sec	Decoder: 62 Mbytes/sec
	12.5 Mbyte5/5ec	Encoder: 108 Mbytes/sec
Latency	1181 cycles	418 cycles
Cost (in 250k units)	\$20	9.95*

^{*} With Reed-Solomon configuration comparable to listed Typical ASSP example. The price is based on 250KU resale price for XC2S100

The Spartan-II Solution has a clear competitive advantage over stand-alone ASSPs

The Reed-Solomon Spartan-II solution is priced below ASSP prices:

Encoder and Decoder Solution = \$9.95

Encoder Solution = \$3.95

XILINX®

Viterbi

- Viterbi algorithm
 - It is a convolutional code to correct random errors
 - It minimizes the number of sequences in the trellis search as new data is received by the demodulator
 - Developed by Dr. Andrew J. Viterbi
 - Co-founder, Retired Vice chairman, Board of Directors of QUALCOMM
- Xilinx Viterbi Decoder IP is provided by CSELT
 - VITERBI_DEC Viterbi Decoder
 - Used to decode convolutional codes

Features of the Spartan-II Based Viterbi Decoder IP

- Decoder of convolutional codes
- Customizes VHDL source code available, allowing generation of different netlist versions
- Customized testbench for pre- and post-synthesis verification supplied with the module

Features of the Spartan-II Based Viterbi Decoder IP (contd.)

- Core customization
 - Convolutional code definition parameters: Code rate; Code generation vectors; Code constraint length
 - Number of input bits per symbol bit (specifies number of quantization levels for soft decoding)
 - Traceback decision depth
 - Radix-2 / radix-4 architecture selection
 - ACS processors sharing factor
 - Optional inclusion of depuncturing unit interface
 - Optional inclusion of stream alignment/BER estimation unit
 - Estimated BER precision

Viterbi Decoder Block Diagram

Slide: 40

XILINX®

Xilinx at Work in Home Networking

Spartan-II Based Viterbi Decoder

Spartan-II FPGAs Based Viterbi Decoder Specifics		
Product Families Supported	Spartan, Spartan-II, Virtex, Virtex-E	
Device Tested	XC2S50-6	
CLBs	495	
Clock IOBs	× 1	
IOBs	34	
Performance (MHz)	56	
Special Features	4 BlockRAMs	

Memory Solutions

Distributed RAM and Block RAM
Memory Controllers

Spartan-II Memory Solutions

www.xilinx.com

Spartan-II Block RAM

- True Dual-port Static RAM 4K bits
 - Independently configurable port data width
 - 4K x 1; 2K x 2; 1K x 4; 512 x 8; 256 x 16
 - Fast synchronous read and write
 - 2.5-ns clock-to-output with 1-ns input address/data setup

Data Flow	Spartan-II
A to B	Yes
B to A	Yes
A to A	Yes
B to B	Yes

Slide: 44

Xilinx at Work in Home Networking

XILINX®

www.xilinx.com

Spartan-II Memory Controllers

- Spartan-II FPGAs
 - Unique and extensive features, flexible architecture, low cost
- Memory controller for interface to different types of SRAM, DRAM & Flash memory
 - Xilinx provides FREE VHDL source code for implementing the memory controllers in Spartan-II

Spartan-II Memory Controllers Reference Designs

- DRAM reference designs
 - 64-bit DDR DRAM controller
 - 16-bit DDR DRAM controller
 - SDRAM controller
- SRAM reference designs
 - ZBT SRAM controller
 - QDR SRAM controller
- Flash controller
 - NOR / NAND flash controller

- Embedded memory reference designs
 - CAM for ATM applications
 - CAM using shift registers
 - CAM using Block SelectRAM
 - Data-width conversion FIFO
 - 170MHz FIFO for Virtex

Slide: 46

High speed FIFO for Spartan-II

These Reference Designs are Available for Immediate Download at the Memory Corner

XILINX®

Memory Corner

- Collaboration between Xilinx and major memory vendors to provide comprehensive web-based memory solutions
 - Free reference designs (VHDL/Verilog)
 - SRAM, DRAM & embedded FPGA memory solutions
 - Data sheets, app notes, tutorials, FAQs, design guidelines

Microprocessors and Microcontrollers

- 8-bit 8051 Microcontroller
- 32-Bit Reconfigurable RISC Processor

Processors & Microcontrollers

- Xilinx offers 8-bit 8051 microcontrollers
 - IP Cores by Dolphin Integration & CAST
 - CPU (with Boolean processor)
 - Includes program counter, ALU, working registers, clock circuits
 - Internal RAM, I/O ports with programmable ports, 5 or 6 interrupts, 2 or 3 16-bit counters/timers, programmable full-duplex serial port, 32 I/O lines (four 8-bit ports)

- Xilinx offers configurable 32-bit RISC processor
 - By ARC Cores

8051 μC Applications - Home

- Home networking appliances
- Bluetooth appliances
- xDSL modems
- Cable modems
- Set-top boxes
- Voice recognition
- Video-processing
- Secure surveillance systems
- TVs, HDTV, digital TV

- Home PCs & notebooks
 - CD-ROM & tape drives
 - Keyboards & mouse
 - Printers & scanners
 - Modems
 - PC & Digital Cameras
- VCRs, DVD/VCD players
- Camcorders & camera

- Remote control
- Cable TV tuner
- Microwave

8051 µC in Home & Office Applications

- Printers (Laser & Inkjet)
- Scanners
- Digital telephones
- Copiers
- Vending machines
- POS terminals

- Security systems
- Answering machines
- Fax machines
- Garage door openers
- Lighting control
- Intercom
- LCD displays

8051 μC in Automotive Applications

- Trip computer
- Engine control
- Air bag
- ABS
- Instrumentation
- Security system

- Transmission control
- Entertainment
 - Radio/Cassette/CD controls
 - CD Changers
 - GPS Navigation Systems

- Climate control
- Cellular phone
- Keyless entry

8051 µC in Other Applications

- Industrial controls
- System supervision
- Motor control
- Aerospace
- Biomedical instruments
- Telecom, datacom & networking
 - Line cards
 - Wireless: Cellular phones, pagers
 - Repeaters & Switches

- Communication through power lines
- Video games, toys, exercise equipment
- Hand-held/portable devices
- Data logging equipment
- Light-rail equipment
- Satellite base stations
- Wireless monitoring systems

Spartan-II 8051 µC Solutions

	Xilinx Spartan-II Solutions		
i i	Dolphin Integration	CAST	
Speed	29.8MHz	51MHz	
Performance	20 MIPS		
Memory	Dual Data Pointer, De-Multiplexed Address/Data bus	Addressable up to 256 bytes of Read/Write (internal), Addressable 64K bytes (external), Dual Data Pointer, Variable MOVX to access fast/slow RAM/Peripheral	
Serial Interface	Provides 4 I/O ports	Provides 4 I/O ports	
Counter/Timer	2 or 3 timers	Two 16-bit timers/counters, 15-bit programmable watchdog timer	
Interrupts	6 external interrupt plus software interrupt	14 interrupt sources	
Functional Description	IR Unit, Control Unit, ALU, Boolean Operation Unit, Multiply/Division Unit, Register Unit, PC Unit	8-bit Control Unit, 8-bit ALU, Memory Control Unit, RAM & SFR CU, 32-bit fast multiple/division unit	

Spartan-II 8051 Solutions by AllianceCore Partners - Dolphin Integration & CAST

Xilinx at Work in Home Networking

XILINX®

Slide: 54

www.xilinx.com

Dolphin Integration

Flip805x-PR Microcontroller Core - Block Diagram

Xilinx at Work in Home Networking

www.xilinx.com Slide: 55

XILINX®

CAST - DS80530 Microcontroller Core - Block Diagram

Xilinx at Work in Home Networking

XILINX®

Slide: 56

www.xilinx.com

CAST - DS80530C (Compact) Microcontroller Core - Block Diagram

Xilinx at Work in Home Networking

XILINX®

Slide: 57

www.xilinx.com

Spartan-II 8-bit µC Solutions

 Spartan-II 8051 microcontroller solutions from CAST & Dolphin Integration

F3.23	Spartan-II Solution	
Features	CAST	Dolphin Integration
Spartan-II Device	XC2S150-6	XC2S150-6
CLB Slices	1515	1174
Clock IOBs	1	1
IOBs	143	
Performance (MHz)	51	29.8
Percentage Device (CLBs) Used	87.67%	67.94%

Spartan-II Value Proposition In 8-Bit µC

- High performance
 - DS80530C Core by CAST in a Spartan-II
 - Operates at 51MHz
 - Instruction execution performance equal to 2.5 times legacy 8051s
 - Flip8051 by Dolphin in a Spartan-II
 - Operates on an average 8 times faster than legacy 8051s
 - Higher performance than other 8051 ASSPs
 - Expensive (16- or 32-bit) microcontrollers are not required for higher processing power
 - Advanced power management capabilities
- High flexibility in programmable logic

Spartan-II Value Proposition In 8-Bit µC

- Advantages of programmable ASSP over ASSPs
- Embedded solutions
 - Choosing right feature set & optimization
 - Value proposition within same piece of silicon
 - FPGA logic not used from the 8051 IP can be integrate other IP
 - Product Customization
 - Reduced cost
 - High-performance "8051 + other IP" Integrated solutions
 - PCs, cable modems, set-top boxes, home networking, Bluetooth, image processing, wireless, voice recognition

32-bit Reconfigurable RISC Processors - ARC Cores

- ARC is a configurable 32-bit RISC processor technology supplied as two generic pre-configured processor systems
 - First system is a basic (or basecase) configuration that is simply a minimal 32-bit RISC processor
 - Second configuration is a larger, but more powerful, DSP configuration
- Has been designed to make the addition of custom instructions, condition flags, special registers & custom interfaces very easy

32-Bit RISC Processor Applications

- 32-bit processing applications
 - Systems that require a 32-bit processor with custom interfaces or instructions
- DSP applications
- Network processors and routers
- Digital cameras
- Set-top boxes
- Bluetooth & wireless LAN devices
- Cellular base stations

ARC 32-bit RISC Processor System Block Diagram

Xilinx at Work in Home Networking

XILINX®

Slide: 63

www.xilinx.com

32-Bit RISC Processor Implementation Data

Example Implementation	Basecase ARC	Basecase ARC
Device Tested	2S150-6	V400E-8
CLB Slices	1538	1517
Clock IOBs1	2	2
IOBs ¹	82	82
Performance (MHz)	37	41
Xilinx Tools	M2.1i SP6	M2.1i SP6
Special Features	9 Block RAMs	9 Block RAMs
ARC Extensions Used	2Kb I-Cache	2Kb I-Cache

32-Bit RISC Processor Features

- RISC architecture for low gate count & high performance
- Full RISC orthogonal instruction set
- 4-stage pipeline
- 16 single-cycle instructions (basecase)
- 32-bit ALU; all ALU instructions are conditional
- 32-bit data bus

- 32-bit Load/Store address bus
- 32-bit instruction bus
- 24-bit instruction address bus
- 32 general purpose core registers
- 24-bit program counter and stack pointer
- Maskable external interrupts

32-Bit RISC Processor Features

- Jumps/branches with single instruction delay slot
- Delay slot execution modes
- Zero overhead loops
- Integrated PC parallel port debug interface
 - Allows the debugger to access the processor registers and memory

- C Compiler, debugger, and simulator available from MetaWare Inc.
 - GNU version also available.
- ARCangel[™] development system
 - Available for evaluation and rapid product development
- Custom versions of processor available through ARC Certified Design Centers (ACDC)

HDLC Controllers

Spartan-II IP Solutions for HDLC Controllers

- Spartan-II + HDLC Controller IP = Programmable HDLC Controller Solution
- AllianceCORE partners
 - Memec Design Services
 - Single channel XF-HDLC controller core
 - CoreEl Microsystems
 - PPP8 HDLC (CC318f) controller core
- The two IP solutions are crafted to cater to different applications

Slide: 68

SPARTAN-III

Spartan-II IP Solutions for HDLC Controllers

AllianceCORE Partners	Memec Design Services	CoreEl Microsystems
Products/Cores	Single Channel XF-HDLC Controller	CC318f - PPP8 HDLC
Specification Standard	International ISO/IEC3309	RFC1619 PPP over SONET
Address Recognition	N.A.	N.A.
Data Rate	DC to 53Mbps (STS-1)	N.A.
CRC/FCS	16- & 32- Bit	16- & 32- Bit
FIFO customization	Yes	N.A.
DMA customization	Yes	N.A.
Multiple HDLC Scaling	Yes	Yes
Synchronous	Full	N.A.
Features		supports programmable address,
	full duplex operation allowed	control, protocol fields; supports 8-
	i uli uupiex operation alioweu	bit pkt & framer interface; error
		detection statistics

XILINX®

Memec Design Services

Single-Channel XF-HDLC Controller Block Diagram

CoreEL MicroSystems

CC318f HDLC Controller (Transmitter) Block Diagram

XILINX®

CoreEL MicroSystems

CC318f HDLC Controller (Receiver) Block Diagram

Xilinx at Work in Home Networking

XILINX®

www.xilinx.com

The Spartan-II Competitive Advantage: Data Rate/Throughput

- HDLC controller solution data throughput
 - Spartan-II
 - 53Mbps
 - Typical HDLC controller ASSP data throughput
 - ~ 2.5 8.192Mbps
- HDLC controller solution CRC
 - Spartan-II
 - 16-bit and 32-bit provided
 - Typical HDLC controller ASSP
 - No flexibility

The Spartan-II Competitive Advantage: 100k Unit Cost

- Typical HDLC controller ASSP
 - ~\$4.56 (1 channel)
 - ~\$60 \$120 (multi channel)
- Spartan-II HDLC controller solution
 - ~\$3.95 (1 channel)
 - ~\$10 (multi channel)

The Spartan-II Solution has a Clear Competitive Advantage over Stand-alone ASSPs

Conditional Access

DES/Triple DES

Others

Broadcaster Proprietary

Data Encryption for Conditional Access

- Motivation for data encryption & cryptography
 - Data privacy
 - Integrity
 - Secrecy
 - Authenticating the source of the information
- Several methods of data encryption exist
 - RSA (Rivest-Shamir-Adleman), Diffie-Hellman, RC4/RC5
 - Secure Hashing Algorithm (SHA), Blowfish
 - Elliptic Curves, ElGamal, LUC (Lucas Sequence)
 - DES (Data Encryption Standard) & Triple-DES (TDES)

DES Concept

- The Data Encryption Standard (DES) algorithm
 - Developed by IBM Corporation
 - Most prevalent encryption algorithm
 - Adopted by the US government in 1977, as the federal standard for encryption of commercial and sensitive-yetunclassified data
 - Is a Block cipher
 - Encryption algorithm that encrypts block of data all at once, and then goes on to the next block
 - Divides 64-bit plaintext into blocks of fixed length (ciphertext)
 - Enciphers using a 56-bit secret internal key

Triple-DES Concept

- Triple-DES concept
 - More powerful & more secure
 - Equivalent to performing DES 3 times on plaintext with 3 different keys
 - TDES use 2 or 3 56-bit keys
 - With one key, TDES performs the same as DES
 - TDES implementation: serial and parallel
 - Parallel improves performance and reduces gate count

Spartan-II "Secure" Applications

- eCommerce security enabled PCs
- Cable TV
- DVD/Video CD players
- Ultrasound/MRI systems
- Bluetooth wireless systems
- Home networking
- Financial transactions
 - prepaid smart cards
 - personal banking systems

- Graphics/image processing cards
- DBS systems
- HDTV
- Cable modems
- Set-top boxes
- Wireless I AN
- Digital VCRs
- Digital camera

Spartan-II DES/TDES Solution

- Spartan-II DES & Triple-DES solutions
- Spartan-II DES solution is NIST approved

Factoria	Spartan-II Solution		
Features	DES	Triple - DES	
Spartan-II Device	XC2S100-6	XC2S150-6	
CLB Slices	235	1611	
Clock IOBs	1	3	
IOBs	188	244	
Performance (MHz)	94	48	
Percentage Device (CLBs) Used	19.58%	93.23%	

Spartan-II Value Proposition in DES and Triple DES

- High performance, many features and cost effective
- High scalability and flexibility
 - Reconfigurable fabric and Internet Reconfigurable Logic
- Embedded solutions
 - FPGA logic not used from DES/Triple-DES soft IP can be used for other IP solutions
 - DCT/IDCT and DES/TDES soft IP in a Spartan-II FPGA can be used in multimedia and imaging applications
 - Increase the value proposition and reduces solution cost
- Spartan-II can be programmed with broadcaster proprietary conditional access algorithms

XILINX®

Spartan-II Advantages Over Hardware & Software Solutions

PCI Bus Interface

Peripheral Component Interconnect Bus (PCI)

PCI - Concept

- Peripheral Component Interconnect
- Originated in the PC industry
- High performance bus that provides a processor independent data path between the CPU and high-speed peripherals
- Robust interconnect mechanism developed to relieve the I/O bottlenecks
- Used in the multiple high performance peripherals for graphics, full motion video, SCSI, LAN & embedded systems

XILINX®

PCI End Applications

- Xilinx PCI Solutions are used in a Wide-Array of Applications:
 - Processor Bus to PCI Bus Conversions
 - Data Encryption/Decryption
 - High Speed Networking
 - Digital Video Applications
 - I/O Communications Ports
 - Memory Interfaces
 - High Speed Data Input/Output (Acquisition)
 - Multimedia Communications

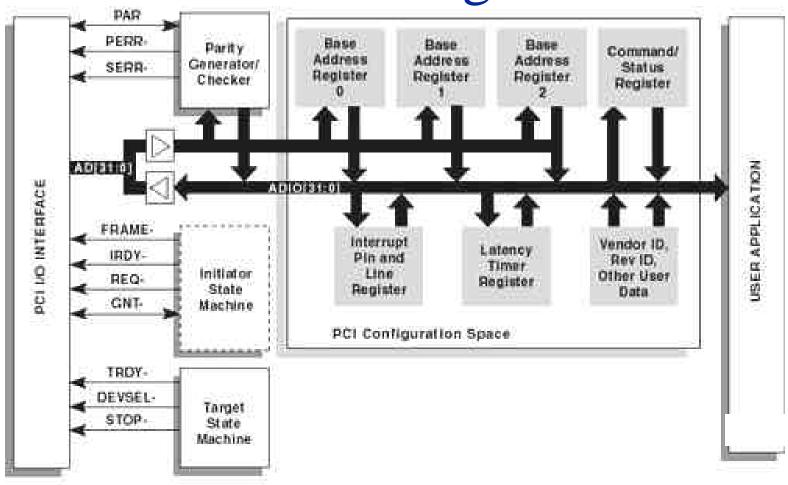
Spartan-II PCI Solution Overview

- First 64-bit PCI solution under \$13
 - Supports 33 MHz PCI (50 MHz embedded designs)
- First 32-bit PCI solution under \$6
 - Supports up to 66 MHz PCI Designs
- Customizable asynchronous FIFO reference designs
 - Integrate seemlessly with PCI cores

Spartan-II PCI Customer Benefits

- Reduces cost over PCI ASSPs
 - Cost savings of more than 50%
- Integrate and replace system functions
 - PLL/DLL clock management devices
 - SSTL-3/HSTL translators
 - Back plane logic and Drivers
 - External Memory devices
 - System & caches controllers
- Significant time to market advantage

ASSP Replacement & Integration


Real-PCI from Xilinx

- Real-Compliance
 - Guarantees Setup, Hold and Min/Max Clock-to-Out timing
- Real-Flexibility
 - Supports a wide range of Spartan-II devices allowing for easy device migration
 - Back-end decoupled from the PCI Interface to allow customization without affecting PCI timing
- Real Performance
 - Zero-wait state
 - Up to 264 MB/sec sustained throughput
- Real-Availability Right Here Right Now!

Xilinx at Work in Home Networking

XILINX®

Spartan-II LogiCORE PCI Block Diagram

Xilinx at Work in Home Networking

XILINX®

Slide: 90

LC005

www.xilinx.com

Download Over The Internet!

Supported Synthesis Tools

 $Syn \textit{plicity}^{\circ}$

Supported Simulation Tools

Virtex Configuration Space Header XPCI Virtex64 Device ID: 0300h Vendor ID: 10EEh Rev ID: 00h Class Code: 0B4000h Header Type Latency Timer Cache Ln Size ▼ Latency Tmr Enable Base Address Register 0: 01000000h **▼** BAR 0 Enable Base Address Register 1: 01000000h **▼** BAR 1 Enable Base Address Register 2: 01000000h **▼** BAR 2 Enable Base Address Register 4 Cardbus CIS Pointer Subsystem ID: 0000h Subsystem Vndr ID: 0000h External Subsystem CLst Ptr:80h Cap List Enable Max_Lat: 80h Min_Gnt: 80h Irpt Pin: 01h Irpt Line: FFh **▼** INTA Enable Reserved ✓ User Config Space Defaults Hide Download Help Programming C Log

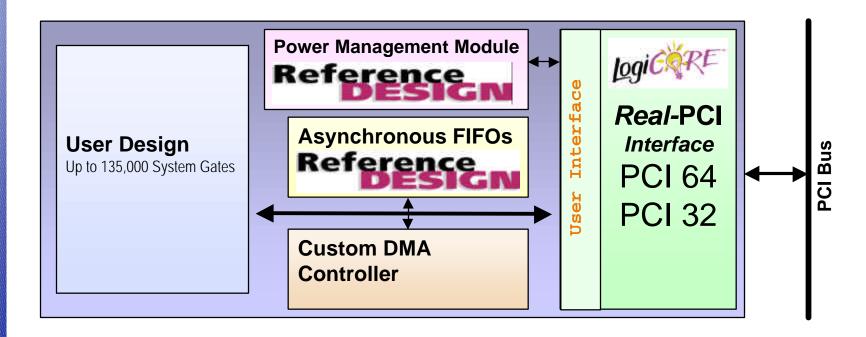
Spartan-II PCI Solutions

Spartan-II Device	PCI core	Speed	Available user- logic (system gates)	Available BlockRAM Bits
2S30	PCI 32	33 MHz 50 MHz	15K	24,576
2S50	PCI 32	33 MHz 50 MHz 66 MHz*	35K	32,768
2S100	PCI 32 PCI 64	33 MHz 50 MHz 66 MHz*	80K-85K	40,960
2S150	PCI 32 PCI 64	33 MHz 50 MHz 66 MHz*	130K-135K	49,152

^{*} PCI32 only. Available from Xilinx PCI XPERTS partners

PCI - A Successful Programmable Solution

Xilinx at Work in Home Networking


─ XILINX®

Slide: 93

Solution <\$6

Supporting Reference Designs

- Asynchronous FIFOs and DMA Controller
- Power Management Module

XILINX®

- Brings Time-to-Market Advantage to Embedded Systems Developers
 - Addresses a wide range of end-applications
- Xilinx Spartan-II XC2S100 implements a seamless interface between the SA1110 processor bus and the industry standard PCI bus
- Supported by Avnet Design Services
 - Engineering consulting services to customize your design and further speed your time to market
- Designed to work with Intel and third party development tools

Xilinx at Work in Home Networking

XILINX®

Slide: 95

www.xilinx.com

Xilinx at Work in Home Networking

XILINX®

www.xilinx.com

- Hardware Features
 - Intel StrongARM SA-1110
 - Xilinx Spartan II FPGA including Xilinx PCI Core IP
 - 64MB SDRAM (16Mx32)
 - 32MB of System Flash (8Mx32)
 - RS232 Serial port interface
 - Ethernet Port
 - USB client support
 - PCMCIA support cards (adapter card required)
 - IrDA support
 - Stand alone mode of operation
 - WinCE compatible

Intel StrongARM SA1110

XILINX®

Intel StrongARM SA1110

Performance	133 MHz	206MHz	
Voltage, Power, Temperature, Process, Packaging	150 Dhrystone 2.1 MIPS	235 Dhrystone 2.1 MIPS	
VDD Minimum internal power supply voltage Nominal internal power supply voltage Maximum internal power supply voltage	1.47 V 1.55 V 1.63 V	1.65 V 1.75 V 2.10 V	
VDDX Minimum external power supply voltage Nominal external power supply voltage Maximum external power supply voltage	3.00 V 3.30 V 3.60 V	3.00 V 3.30 V 3.60 V	
Typical power dissipation †	Normal mode = <240 mW Idle mode = <75 mW Sleep mode = <50 μA	Normal mode = <400 mW idle mode = <100 mW Sleep mode = <50 µA	
Ambient operating temperature	0°C (32°F) min 70°C (158°F) max	0°C (32°F) min 70°C (158°F) max.	
Storage temperature	-20°C to +125°C (-4°F to +257°F)	-20°C to +125°C (-4°F to +257°F)	
Packaging	256 mBGA	256 mBGA	
Process technology	.35 µm, 3-layer metal	.35 µm, 3-layer metal	
Transistor count	2.5 million	2.5 million	
Order number	GDS1110AB	GDS1110BB	

 $^{^{\}dagger}$ Power dissipation, particularly in idle mode, is strongly dependent on the details of the system design.

Intel StrongARM SA1110

	133 MHz	206 MHz
Unit Performance	150 MIPS	235 MIPS
Supply	1.55 V	1.75 V
USB	12 Mbps	12 Mbps
IrDA	115 Kbps, 4 Mbps	115 Kbps, 4 Mbps
UART	230 Kbps	230 Kbps
Codec	UCB1100, UCB1200, SPI, TI, μWire	UCB1100, UCB1200, SPI, TI, μWire
LCD	1-, 2-, 4-, 8-, 12-, 16-bits/pixel	1-, 2-, 4-, 8-, 12-, 16-bits/pixel
Memory	EDO, DRAM, ROM, Flash, SRAM, SMROM, and SDRAM	EDO, DRAM, ROM, Flash, SRAM, SMROM, and SDRAM
Interrupt	FIQ, IRQ, Wake-up	FIQ, IRQ, Wake-up

Development Kit Contents

- Development Board
- StrongARM PCI Module
- Xilinx PCI Core Software License
- Schematics and Bill of Materials
- 16 hours Technical Support
- Software Manuals & Datasheets

StrongARM PCI Development Kit Strengths

- Flexible Development Environment to Create Designs With the StrongARM Processor
- Variety of System Functions on the Board Make it a Good Starting Point for Most StrongARM Based Embedded Applications
- Adapt to Different Needs
 - Designers can modify the Spartan-II FPGA, to accommodate different needs
 - Something a standard product would not allow

Development Kit Pricing

Part Number	Hardware	Resale
ADS-ISTA-PCI-KIT	ADS Intel StrongARM PCI Development Kit	\$8995

For Specific Details Please Visit

http://www.ads.avnet.com/solutions/strongarm/

XILINX®

Summary

- The Catalyst PCI Development Board offers a modular hardware development environment for StrongARM processors
 - Enables customers to speed their time to market
- Spartan-II FPGAs Offer Flexibility, Customization, and Time-to-Market Advantages at Prices lower than ASSPs
 - PCI solution at half the price of equivalent ASSP
 - 100,000 gates for \$10
- Avnet Design Services
 - Engineering consulting services to customize your design and further speed your time to market

ADPCM

ADPCM Overview

- Adaptive differential pulse code modulation (ADPCM)
 - Very popular waveform coding technique
- Main application: Telecommunication
 - Speech compression for transmission, storage and reconstruction
 - Reduce the bit data rate while maintaining good voice quality
 - Technique can apply to all waveforms which need high-quality audio, image and modem data

ADPCM Overview

- ADPCM digital transcoding process
 - PCM input bit flow is 64 kbit/s (8 kHz sampling x 8-bit PCM word)
 - Process in real-time to produce a 40, 32, 24 or 16 kbit/s (8 kHz
 * 5, 4, 3 or 2-bit ADPCM word)
 - International Telecommunications Union
 - (ITU) ADPCM Standards
 - G.726 40, 32, 24, 16 kbps
 - G.723 40, 32, 24 kbps
 - G.721 32 kbps
 - ADPCM encoded voice traffic can be interchanged between packet voice, PSTN, and PBX networks

ADPCM32 Applications

- Applications
 - Wireless Local Loops (WLL) and Radio Local Loops
 - Digital cordless and PCS communication systems
 - DECT, WDCT, CT2 and PHS all specify that G.726 to be used for 32-Kbps voice channels
 - 2.4 GHz/WDCT cordless phones base stations
 - (Worldwide Digital Cordless Telecommunications)
 - Satellite communications
 - Access concentrators
 - Internet phone systems
 - VoIP
 - Voice over ATM/Frame Relay

ADPCM32 Applications

- Applications cont.
 - Computer Telephony systems
 - PBXs
 - Voice mail systems
 - H100/H110 CT
 - Video conferencing systems
 - H.323
 - Digital audio storage
 - Commercial aircraft telephony

Xilinx 32 Channel ADPCM Codec ADPCM32 Core

- Communications speech compression coder/decoder
- LogiCORE Product
 - Licensed from Integrated Silicon Systems, Ltd. (ISS)

www.xilinx.com

- Low cost, fixed function nethist core
 - Virtex-F
 - Virtex
 - SpartanII
 - Future families
- Downloadable over the Internet

ADPCM32 Core Features

- Fully Compliant with ITU G.726, G.721and G.723
- 32 duplex channels or up to 64 independent single mode channels
- Accepts A-, µ -law and uniform PCM data and 2-5 bit ADPCM data
- On line configurable compression rate between 40,32,24 and 16 kbits/s

- On-line configurable for µ-law and A-law encoding or decoding on a channel to channel basis
- Burst and continuous mode operation
- Global and individual channel reset
- Coding of each data sample complete in 16 cycles
- Optimized for Virtex, Virtex-E and Spartan-II architectures

Slide: 112

XILINX®

Example Implementations

Target Device	Virtex xcv200-6	Virtex E xcv200e-8	Spartan II xc2s150-6
Size	1822 Slices	1804 Slices	1728 Slices
Speed	16.6 MHz	21.3 MHz	17.8 MHz

Obtainable without stringent place and route constraints

ADPCM32 Block Diagram

Example Application

Digital voicemail phone system

Example Application

DECT phone system

DECT used in a cordless Office

Summary

- LogiCORE ADPCM32 provides a high performance solution with a simple interface
- Compliance with all relevant standards
- Downloadable over the internet
- Easy integration into Xilinx tools flow
- Available through Xilinx CORE generator

Color Space Converters

Applications

- Many applications perform video operations in different color spaces
 - RGB : Red Green Blue
 - Color computer graphics, Color TV, Color imaging
 - YUV: Luma, U color difference, V color difference
 - Composite color video standards PAL, NTSC and SECAM
 - YCrCb : Luma, Chroma Red, Chroma Blue
 - Broadcast television, JPEG schemes
 - Video processing can require switching between these

Example Application Image Compression System

Implementation

Target Device Family RGB2YCrCb	Spartan II xc2s30-6		Virtex-E xcv100e-8
Size	211 Slices	211	211
Speed	>65 MHz	>60 MHz	>90 MHz

Target Device Family YCrCb2RGB	Spartan II xc2s30-6		Virtex-E xcv100e-8
Size	186 Slices	186	186
Speed	>70 MHz	>75 MHz	>90 MHz

XILINX®

Implementation

Target Device Family RGB2YUV		Virtex xcv50-6	
Size	230 Slices	230	230
Speed	>80 MHz	>75 MHz	>100 MHz

Target Device Family YUV2RGB		Virtex xcv100-6	
Size	147 Slices	147	147
Speed	>65 MHz	>75 MHz	>100 MHz

XILINX®

Competitive Analysis

Feature	Perigee Core	Xilinx LogiCore	Perigee Core	Xilinx Logicore
Product/Cores	RGB2YCrCb	RGB2YCrCb YCrCb2RGB		YCrCb2RGB
Size:				
Virtex / Virtex-E	266 Slices	211 Slices	188 Slices	186 Slices
Synchronous	Full	Full	Full	Full
Supported Family	4000X,	Spartan-II,	4000X, Spartan,	Spartan-II,
	Spartan,	Virtex, Virtex-E	Spartan-II, Virtex,	Virtex, Virtex-E
	Spartan-II,		Virtex-E	
	Virtex, Virtex-E			
Latency	6 Clock Cycles	3 Clock Cycles	6 Clock Cycles	3 Clock Cycles
Performance:				
Virtex	165 MHz	>60 MHz	154 MHz	>75 MHz
Virtex-E	202 MHz	>90 MHz	230 MHz	>90 MHz
SDTV (27 MHz)	6 (Virtex)	2 (Virtex)	5 (Virtex)	2 (Virtex)
Time Multipliexed	7 (Virtex E)	3 (Virtex E)	8 (Virtex)	3 (Virtex E)
Channels	/ (VIIICA L)	J (VIITON L)		
HDTV (75 MHz)	2 (Virtex)	N/A (Virtex)	2 (Virtex)	1(Virtex)
Time Multipliexed	2 (Virtex E)	1 (Virtex E)	3 (Virtex E)	1 (Virtex E)
Cost	\$2,500	\$995	\$2,500	\$995

XILINX®

Summary

- LogiCORE Color Space Converters provide straight forward, accurate high performance conversion useable in a wide range of video/image applications
- More area efficient than existing cores
- Speeds ensure operation in all TV and HDTV applications
- Available through Xilinx Coregen

System Interconnectivity

DMA Controller
Keyboard Display Interface
UARTs

DMA Controller

- Multi-mode Direct Memory Access (DMA) controller
 - IP Core provided by Virtual IP Group
- Applications
 - Multi-mode Programmable, multi-channel DMA
 - Support Controller for Microprocessor based systems

DMA Controller Features

- Functionally compatible to Intel 8237
- Four independent DMA channels
- Independent auto-initialization of all channels
- Directly expandable to any number of channels
- Memory-to-memory transfers
- Memory block initialization
- Software DMA request

- Enable/disable control of individual DMA requests
- Address increment/decrement selection control for all channels
- High performance transfers up to 1.6 MBytes/sec with 5MHz
- End of process input to terminate transfers
- Programmable polarity control for DMA Request and DACK signals

Slide: 127

Xilinx at Work in Home Networking

XILINX®

DMA Controller Block Diagram

Xilinx at Work in Home Networking

XILINX®

Slide: 128

www.xilinx.com

Keyboard Display Interface

- Programmable keyboard display interface
 - IP core is provided by Memec Design Services
- Application
 - User interface for embedded systems
- Features
 - Compatible with Xilinx CORE Generator tool
 - Simultaneous keyboard & display operations
 - Scanned keyboard mode & scanned sensor mode
 - 8-character keyboard FIFO
 - Dual 4, 8 or 16 numerical display & single 8 or 16 character display

XILINX®

Programmable Keyboard Display Interface Block Diagram

Xilinx at Work in Home Networking

XILINX®

Slide: 130

www.xilinx.com

UARTs (Universal Asynchronous Receiver / Transmitter)

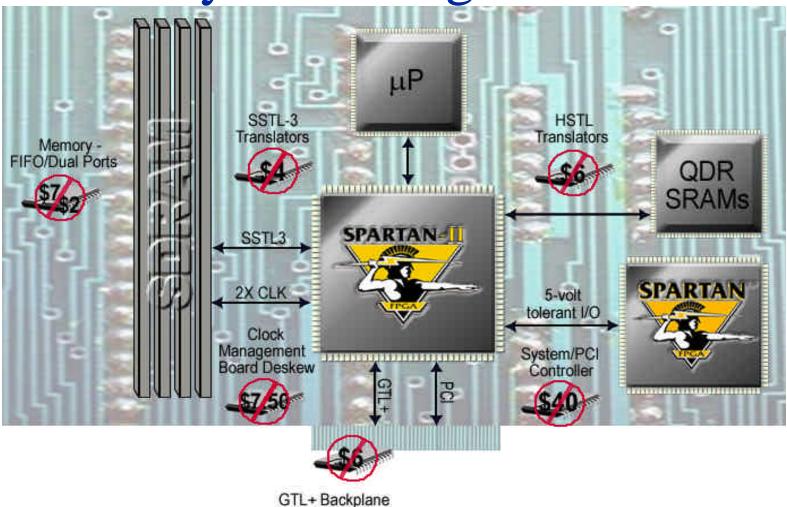
- UART variations
 - With FIFOs, with RAM, compact
 - IP providers: CAST, Memec Design Services, Virtual IP Group
- Applications
 - Serial data communications & modems
- Features
 - Full double buffering, asynchronous operation
 - Independently controlled Transmit, Line Status, Receive & data set interrupts
 - Programmable data word length (5 8 bit), parity & stop bits
 - Parity, overrun and framing error checking

UART Block Diagram

Xilinx at Work in Home Networking

XILINX®

Slide: 132


www.xilinx.com

UART Core Implementation Data

Supported Family	Device Tested	CLB Slices ²	Clock IOBs	IOBs [†]	Performance (MHz)
Virtex	V50-6	225	1	40	66
Virtex-E	V50E-8	225	1	40	77
Spartan-II	2S50-6	225	1	40	60

Spartan-II Features Provide System Integration

Xilinx at Work in Home Networking

XILINX®

Slide: 134

www.xilinx.com

Drivers

Summary

- Spartan-II FPGAs + IP cores enable home networking products
 - Provide solutions (functionality and performance) like ASSPs
 - Provide flexibility that is unparalleled to ASSPs
 - Embedded solutions : FPGA logic not used from IP can be programmed with other IP cores
 - Example: DCT/IDCT and DES/TDES soft IP in a Spartan-II FPGA can be used in multimedia and imaging applications
 - Increases the value proposition and reduces solution cost
 - Features within the Spartan-II FPGAs provide system integration
 - Reprogrammability enables time-to-market & flexibility
 - Internet Reconfigurable Logic allows time-in-market as specs in emerging technologies keep evolving
 - Cost effective

Summary

- I/O control
 - Multiple front end interfaces
 - Multiple back end interfaces
- Hard disk drive interface
- Clock distribution
 - DLLs
- MPEG decoder
- Ethernet MAC
- Error correction
 - Reed-Solomon, Viterbi
- PCI

- Memory solutions
 - On-chip Distributed memory, BlockRAM
 - Memory controllers
- CPU / microcontroller
- HDLC controller
- ADPCM
- Color Space Converters
- Glue logic & system integration
 - LCD controllers, UARTs, DMA controllers

