

The Set-Top Box Evolves Into a Residential Gateway

Agenda

- Spartan-II overview
- Spartan-II set-top box solutions
- The set-top box has become your residential gateway
- Summary

www.xilinx.com

FPGA Application Trends

Programmable ASIC/ASSP Replacement!

Set-Top Boxes

Spartan-II Feature Rich For Set-Top Box Solutions

Set-Top Boxes

Spartan-II Core Support

- BaseBLOX Basic Functions
 - Arithmetic (adders, counters, multipliers, etc.)
 - On-Chip memory (single port, dual port, FIFO, etc.)
- LogiCORE Support
 - PCI
 - DSP Functions

- AllianceCORE Support
 - Microprocessor peripherals
 - Microcontrollers
 - Memory controllers (SDRAM, QDR SRAM)
 - Communications
 - ATM (DSS, DSD, UTOPIA, etc.)
 - Ethernet (MAC)
 - Error correction (Reed-Solomon, Viterbi)
 - Telecom (HDLC, XF-HDLC, XF-MOD-DVB, etc.)

Spartan-II - System Integration

Set-Top Boxes

Set-Top Box - Block Diagram

Set-Top Boxes

Set-Top Box Technology

Cable

- Uses cable network to supply the TV channels
- Can use same network connection for PCs

xDSL

 Employs adaptive digital modulation technologies to achieve increased data rates (1.5 Mbps - 8 Mbps)

Satellite

Broadcasts to the home via satellite and dish-aerial

Terrestrial

 Broadcast via ground based transmitters in the same way as analog TV using old analog aerial

System Block Diagram

- Key functional blocks
 - Satellite interface
 - CPU complex
 - Host interface
 - Application specific system glue
- Application specific system glue required for interconnecting ASSPs

Satellite Modem Design

- Hughes Network Systems DirecPC®-USB receiver
- The challenge
 - Add USB interface to satellite modem architecture
 - Leverage ASIC technology developed for PCI card
- Spartan-II XC2S30 used for system level glue, interfaces:
 - CPU
 - Demodulator
 - HNS ASIC
 - USB controller

Satellite Modem Block Diagram

Set-Top Boxes

Generic DSL Line Card

Generic DSL Line Card

Set-Top Boxes

www.xilinx.com Slide: 14

Generic DSL Line Card

Logic and Interface Savings By Using Spartan-II FPGAs

Set-Top Boxes

Front End System Interface

Set-Top Boxes

Front End Interface

- Not cost effective to support multiple receivers
 - Cable, terrestrial, satellite and xDSL
 - Requires multiple set-top box designs

www.xilinx.com

Clock Distribution

Set-Top Boxes

Spartan-II Clock Management

Delay Locked Loops lower memory and board costs

Clock Generation and Distribution

- Spartan-II DLL circuits provide full clock management solution
- Clock generation
 - Synthesizing many clocks from a single reference crystal or clock
- Clock buffering and distribution
 - Providing multiple copies of a single clock
 - SDRAM clocks
- Spread spectrum clocks for EMI reduction
 - DLL circuits allow tolerance for ±2.5% variance

Memory Solutions

Set-Top Boxes

Spartan-II Memory Solutions

EMERGING STANDARDS

Set-Top Boxes

www.xilinx.com

Memory Corner

- Collaboration between Xilinx and major memory vendors to provide comprehensive web-based memory solutions
 - Free reference designs (VHDL/Verilog)
 - SRAM, DRAM & embedded FPGA memory solutions
 - Data sheets, app notes, tutorials, FAQs, design guidelines

Conditional Access System

XILINX® Slide: 24

Data Encryption

- Motivation for data encryption & cryptography
 - Data privacy
 - Integrity
 - Secrecy
 - Authenticating the source of the information
- Several methods of data encryption exist
 - RSA (Rivest-Shamir-Adleman), Diffie-Hellman, RC4/RC5
 - Secure Hashing Algorithm (SHA), Blowfish
 - Elliptic Curves, ElGamal, LUC (Lucas Sequence)
 - **DES (Data Encryption Standard) & Triple-DES (TDES)**

DES Concept

- The Data Encryption Standard (DES) algorithm
 - Developed by IBM Corporation
 - Most prevalent encryption algorithm
 - Adopted by the US government in 1977, as the federal standard for encryption of commercial and sensitive-yetunclassified data
 - Is a Block cipher
 - Encryption algorithm that encrypts block of data all at once, and then goes on to the next block
 - Divides 64-bit plaintext into blocks of fixed length (ciphertext)
 - Enciphers using a 56-bit secret internal key

Triple-DES Concept

- Triple-DES concept
 - More powerful & more secure
 - Equivalent to performing DES 3 times on plaintext with 3 different keys
 - TDES use 2 or 3 56-bit keys
 - With one key, TDES performs the same as DES
 - TDES implementation: serial and parallel
 - Parallel improves performance and reduces gate count

Spartan-II "Secure" Applications

- eCommerce security enabled PCs
- Cable TV
- DVD/Video CD players
- Ultrasound/MRI systems
- Bluetooth wireless systems
- Home networking
- Financial transactions
 - prepaid smart cards
 - personal banking systems

- Graphics/image processing cards
- DBS systems
- HDTV
- Cable modems
- Set-top boxes
- Wireless LAN
- Digital VCRs
- Digital camera

Spartan-II DES/TDES Solution

Spartan-II DES & Triple-DES solutions

Features	Spartan-II Solution	
	DES	Triple - DES
Spartan-II Device	XC2S100-6	XC2S150-6
CLB Slices	235	1611
Clock IOBs	1	3
IOBs	188	244
Performance (MHz)	94	48
Percentage Device (CLBs) Used	19.58%	93.23%

Driving New Technology

FPGA Drives New STB Features

- Spartan-II FPGA drives a new generation of set-top box
 - Capability to store video on hard disk drives
 - Provides capability to record and view video simultaneously (TiVO, Replay)
- Provides data buffer and disk control logic
 - On-chip memory for FIFOs
- Provides ability to support evolving disk drive technologies
 - Optimized for simultaneous disk read and write
- Enables dual sourcing of multiple types of hard disk drives

Spartan-II FPGA Enables New Set-Top Box Technology

- Spartan-II FPGAs are used to revolutionize the TV experience
 - Pause live TV
 - Instant replay
 - Automatically records favorite programs
 - Advanced TV program search

Set-Top Boxes

Top End Set-Top Box

Set-Top Boxes

DCT/IDCT Compression

- Compression allows increased throughput through transmission medium
 - Video and audio compression makes multimedia systems very efficient
 - Increases CPU bandwidth
 - Higher video frame rates
 - Better audio quality
 - Enables multimedia interactivity
- DCT and IDCT are widely used in video and audio compression

DCT/IDCT Applications

- List of some end applications
 - DVD/Video CD players
 - Cable TV
 - DBS systems
 - HDTV
 - Graphics/image processing cards
 - Ultrasound/MRI systems
 - Digital VCRs
 - Set-top boxes
 - Digital camera

Spartan-II DCT/IDCT Solution Features

Features	Spartan-II
Device	XC2S100-6
CLBs	1026
Clock IOBs	1
IOBs	28
Performance (MHz)	33.3

AllianceCORE Xentec DCT/IDCT Core

Top End Set-Top Box Solution

- Spartan-II FPGAs provide low cost, high performance MPEG encoding/decoding
 - DCT/IDCT AllianceCORE IP from Xentec
 - Offload processor for high performance system

ARC Cores - General Description

- ARC is a configurable 32-bit RISC processor technology supplied as two generic pre-configured processor systems
 - First system is a basic (or basecase) configuration that is simply a minimal 32-bit RISC processor
 - Second configuration is a larger, but more powerful, DSP configuration
- Designed to make the addition of custom instructions, condition flags, special registers and custom interfaces very easy

ARC 32-bit RISC Processor System Block Diagram

Implementation Data

Example Implementation	Basecase ARC	Basecase ARC
Device Tested	2S150-6	V400E-8
CLB Slices	1538	1517
Clock IOBs1	2	2
IOBs ¹	82	82
Performance (MHz)	37	41
Xilinx Tools	M2.1i SP6	M2.1i SP6
Special Features	9 Block RAMs	9 Block RAMs
ARC Extensions Used	2Kb I-Cache	2Kb I-Cache

Features

- RISC architecture for low gate count & high performance
- Full RISC orthogonal instruction set
- 4-stage pipeline
- 16 single-cycle instructions (basecase)
- 32-bit ALU; all ALU instructions are conditional
- 32-bit data bus

- 32-bit Load/Store address bus
- 32-bit instruction bus
- 24-bit instruction address bus
- 32 general purpose core registers
- 24-bit program counter and stack pointer
- Maskable external interrupts

Features

- Jumps/branches with single instruction delay slot
- Delay slot execution modes
- Zero overhead loops
- Integrated PC parallel port debug interface
 - Allows the debugger to access the processor registers and memory

- C Compiler, debugger, and simulator available from MetaWare Inc.
 - GNU version also available.
- ARCangel[™] development system
 - Available for evaluation and rapid product development
- Custom versions of processor available through ARC Certified Design Centers (ACDC)

Applications

- 32-bit processing applications
 - Systems that require a 32-bit processor with custom interfaces or instructions
- DSP applications
- Network processors and routers
- Digital cameras
- Set-top boxes
- Bluetooth & Wireless LAN devices
- Cellular base stations

Programmable Solutions Advantages

Spartan-II FPGAs: Programmable ASSP

- 100,000 system gates at under \$10
 - Extensive features: Block RAM, DLL, SelectI/O
- IP portfolio allows replacement of traditional ASSPs
 - Provide density, features, performance at ASIC prices
 - IP cores
 - DCT/IDCT, DES, QDR SRAM, Reed-Solomon, PCI
 - See IP Center for additional cores

Spartan-II FPGA with IP provides Programmable ASSP

Programmable ASSP - Value

- Benefits
 - Time to Market
 - Flexibility
 - Product customization to meet customer needs
 - Adapt to specification updates
 - Feature upgrades
 - Low risk evaluation of new markets
 - Field upgradability
 - H/W and S/W upgradability opens new applications
 - Efficiently address lower volume strategic applications
 - Distribution and inventory management

A Successful Programmable Solution

Spartan-II FPGAs
Lower Overall
System Cost

Solution <\$6

Set-Top Boxes

Xilinx On-line Field Upgradability

- Remote update of software and hardware
- Results in increased lifetime for a product
- Enable product features per end-user needs
 - Opening up new opportunities in the ASSP area

Set-Top Boxes

Programmable Logic Solutions in Set-Top Boxes

- Glue Logic
 - Between Host CPU and I/O Devices
 - Interface Between Multiple Front-ends and Back-ends
 - Interface between ASSPs
- Clock Distribution
- Memory Controller and Buffer
- ASSP Replacement

Spartan-II Enables Advanced Features Not Found in ASSPs

- Disk Drive Storage of Broadcast Channels
- ASSPs will be Developed with this Interface but will take 12 Months
- ASICs could be Spun in 6 Months
- FPGA could be Designed and Integrated in 1-2 Months

Spartan-II Enhancing Advantages of Programmable Logic

- Time to Market
- Flexibility
- Field Upgradable
- Cost Competitive

Set-Top Box Evolves As Next Generation Residential Gateways

Home Networking

Problem: Islands of Technology

Residential Gateway The Key Ingredient For Home Networking

- RGs provide integration of different broadband access types & different home networking solutions
 - Broadband access: xDSL & cable modems
 - Each modem offers an Ethernet port for connecting one computer
 - Increasing number of households have multiple computers
 - Tech-savvy users may install Ethernet hub and pull Cat5 cabling to each computer
 - Most users will not find this a viable option due to installation obstacles or cost
 - Home networking solutions: HomePNA, HomePlug, HomeRF, Wireless LANs, IEEE 1394

Four Aspects to Home Networking

RG Deployment -The Incremental Change

CESP EMERGING STANDARDS & PROTOCOLS XILINX®

Super Set-Top Box: Residential Gateway

Cable Modem Residential

Set-Top Boxes

XILINX®

www.xilinx.com

Summary

- Spartan-II FPGAs are ideal solutions for STBs
- Set-top boxes will evolve into the next generation residential gateways to network your home
 - The digital revolution and the Internet are forcing broadband access to the home
 - Home networking will cause bridging the technology islands in the home today
- In the chaotic home networking market Spartan-II FPGAs will become the heart of the system

