HiperLAN & HiperLAN2

High Performance Radio LAN

Backgrounder

- ETSI (European Telecommunications Standards Institute)
 - Developing HiperLAN standards as part of an effort called BRAN (Broadband Radio Access Network)
 - Effort includes 4 standards
 - HiperLAN1
 - HiperLAN2
 - HiperLink
 - Designed for indoor radio backbones
 - HiperAccess
 - Designed for fixed outdoor use to provide access to a wired infrastructure

Backgrounder

- Both HiperLAN standards are approved standards for European spectrum
- HiperLAN2 has a key advantage over IEEE 802.11a
 - 802.11a products may not be usable in Europe

Office

- HiperLAN2 benefits companies with a flexible workforce
- Employees can transfer their laptop computers from one project to another
- Allows continuous exchange of large amounts of information between project members and the company server
- It is also possible to connect several desktop computers & video projectors via HiperLAN2

Construction

- With HiperLAN2 installed, workers on a construction site can use laptops to collect blue prints, order materials & communicate with experts
- By sending short video sequences via the integrated camera to an expert in real time, a problem can be looked at, discussed & solved, using the high quality audio function
- The broadcast function also means that everyone working on site can be contacted with any information and that creates a more efficient on-site operation

Home

- Domestic electronics like TVs, cameras, stereo equipment & PCs can all be interconnected by HiperLAN2 using small H2 modules which automatically establish connectivity
- HiperLAN2 allows multimedia equipment to be intelligently controlled from any computing device in the home without the need for network cables

Airport

- HiperLAN2 enables travelers and employees to work while on the move
 - Gives them access to the company network, Internet & the ability to make and receive multimedia calls
- Aircraft Engineers
 - Using customized software can gain access to information from databases & get in touch with experts on site

- University
 - HiperLAN2 benefits both students and lecturers, allowing wireless access to the university Internet
 - Covering the entire campus, students can access information, such as videotaped lectures and remote supervision transmitted by their lecturer
 - Two-way communication can take place between students and lecturers through laptops

5GHz vs. 2.4GHz

The Better Spectrum Band for Wireless LANs

- 2.4GHz Band
 - Most LANs operate in this unlicensed band
 - Several limitations
 - Only 80MHz wide
 - Mandates use of spread spectrum technology
 - WLAN users must not interfere with primary license holders

5GHz Band

- Developed after recognition the limitations of 2.4GHz band
- Licensing authorities around the world have allocated large blocks of spectrum in the 5GHz band
- Broad blocks of spectrum & lenient operating rules enable high-speed operation by large numbers of users

HiperLAN1

- Next generation, high-speed wireless LAN technology
- Standard is complete
 - Leading wireless LAN vendor Proxim is now delivering products based on it
- Offers the fastest route to market for a high-speed wireless LAN technology while minimizing the complexity of the radio technology

HiperLAN1

- Uses Gaussian Minimum Shift Keying (GMSK)
 - Well understood
 - Broadly used in GSM (Global System for Mobile Communications) cellular networks & CDPD
- Throughput up to 25Mbps

HiperLAN2

- Most sophisticated (& technically challenging) wireless LAN technology so far defined
 - Uses a new type of radio technology called Orthogonal Frequency Division Multiplexing (OFDM)
- Spec will be completed in year 2000
 - Products will not appear till 2001
- Is not the only standard deployed in this class
 - HiperLAN1 products will precede HiperLAN2
 - IEEE 802.11a will offer comparable performance
 - IEEE 802.11a & HiperLAN2 have the same PHY layer
 - Allows sharing components & cost reduction

HiperLAN2 Global Forum

- Launched in September 1999
 - Founded by Bosch, Dell, Ericsson, Nokia, Telia & Tl
 - Strong industry backing
 - Alcatel, Cambridge Silicon Radio, Canon, Lucent, Intersil, Panasonic, Mitsubishi, Motorola, National Semiconductor, NTT, Philips, Samsung, Siemens, Sony, Silicon Wave, Toshiba
- Mission
 - Drive the adoption of HiperLAN2 as the global broadband wireless technology in 5GHz band
 - Providing untethered connectivity for mobile devices in corporate, public & home environments
- www.hiperlan2.com

Compelling Features of HiperLAN2

- Mobility
- High speed transmission
 - Raw over-the-air rate is 54Mbps at the PHY layer
 - Sustained throughput for applications is 20Mbps
- QoS
 - Connection-oriented network
 - Data is transmitted on connections between the MT (mobile terminal) and the AP that have been established prior to the transmission
 - Straight forward to implement QoS support
 - Important for applications like video & voice

HiperLAN2 Architecture

- Network and application independence
 - HiperLAN2 protocol stack has a flexible architecture for easy adaptation & integration with a variety of fixed network
 - Provides connections to multiple network infrastructures
 - Includes Ethernet, IP, ATM, PPP, 3G cellular networks
- Automatic frequency management
 - Like cellular networks such as GSM there is no need for manual frequency planning
 - APs have a built-in support for automatically selecting appropriate radio channels for transmission within each AP's coverage area
 - Simplifies deployment

HiperLAN2 Architecture

Security

- Authentication & Encryption
 - AP & MT can authenticate each other to ensure authorized network access
 - Authentication relies on supporting functions such as directory service
 - Encryption protects the user traffic on an established connection against eaves-dropping & man-in-middle attacks

HiperLAN2 Architecture

Power save

- MT may at anytime request the AP to enter a low power state and provide a sleep period
- At the expiration of the negotiated sleep period the MT searches for any wake up indication from the AP
- In the absence of a wake up indication the MT reverts back to its low power state for the next sleep period
- The AP defers any pending data to an MT until the corresponding sleep period expires
- Different sleep periods are supported to allow either short latency requirement or low power requirement

HiperLAN2 Technology

- Connects mobile terminals to access points
 - To bridge traffic to wired networks
- Also allows mobile nodes to communicate directly with each other
- Seamless extension to other networks
 - Wired network nodes see HiperLAN2 nodes as other network nodes
 - All common networking protocols at layer 3 (IP, IPX & AppleTalk) will operate over HiperLAN2
 - Permits network-based applications to operate

Network Topology

- HiperLAN2 defines a PHY layer & a Data-link layer
- Above these layers is a Convergence layer
 - Accepts packets or cells from existing networking systems & formats them for delivery over the wireless medium

HiperLAN2 Protocols

Network Infrastructure

Network Layer (IP)	
Link Layer	Higher Layers
(Ethernet)	(ATM)

HiperLAN2

Packet-based	Cell-based
Convergence Layer	Convergence Layer

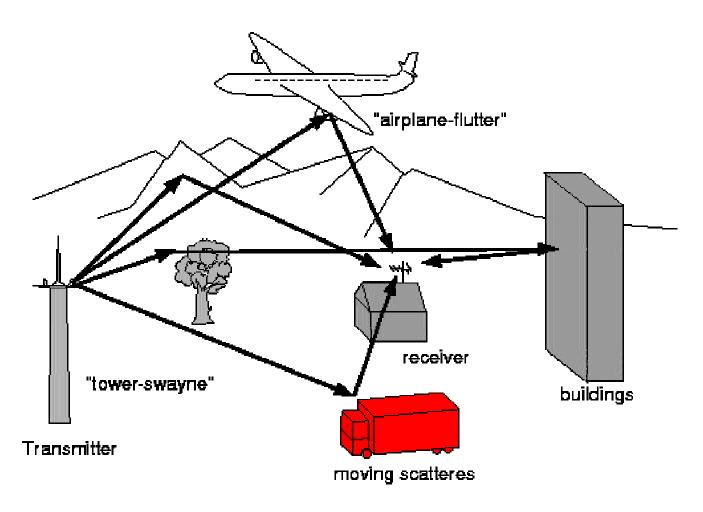
Link Control Mechanism (radio resource, association, connection, error)

> Media Access Control (time slots with QoS)

Physical layer (Orthogonal Frequency Division Multiplexing [OFDM], multiple coding methods, multiple modulation methods)

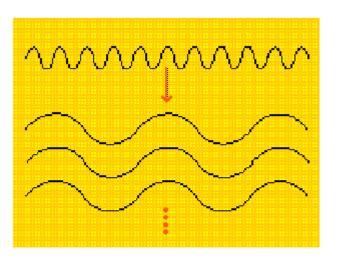
Orthogonal Frequency Division Multiplexing - OFDM

- First time being used as a WLAN standard
 - Used in wireless broadcast application for European Digital Audio Broadcast (DAB)
 - Discrete Multitone (DMT) for ADSL (Asymmetric Digital Subscriber Lines)
- Extremely effective in a time-dispersive environments
 - Signals can take many paths to reach their destinations
 - Results in variable time delays
 - At high data rates these time delays can reach a significant proportion of the transmitted symbol (a modulated waveform)
 - Results in one symbol interfering with the next
 - OFDM is the answer to this "intersymbol interference"


Introducing OFDM Technology

- Allows transmission over high data rates over extremely hostile channels at comparable low complexity
- Issue data transmission over multipath channels
 - Different from satellite communication where there is one single direct path from transmitter to receiver
 - In the classical terrestrial broadcasting scenario we have to deal with a multipath channel
 - The transmitted signal arrives at the receiver in various paths of different length
 - Since multiple versions of the signal interfere with each other (inter symbol interference (ISI)) it becomes very hard to extract the original information

Multipath Transmission in a Broadcasting Application


OFDM - Technology

- Special method of multi-carrier modulation
 - Like all wireless transmission schemes, OFDM encodes data onto a radio frequency (RF) signal
 - OFDM transmits multiple high data rate signals concurrently on different frequencies
 - The channel spectrum is passed into a number of independent non-selective frequency sub-channels
 - These subchannels are used for one transmission link between the AP and MTs

OFDM

Single high-frequency carrier is replaced by multiple subcarriers, each operating at a significantly lower frequency

- Division of a single high-frequency radio channel into multiple subcarriers
 - Data is transmitted in parallel bit streams on them
 - Each one of these bit streams is modulated on a separate subcarrier
 - Aggregate throughput is the same but the data rate on each subcarrier is much lower
 - Makes each symbol longer
 - Practically eliminates the effect of the variable time delays

OFDM & Synchronization

- HiperLAN2 products will cost more than lower-speed alternatives
 - OFDM demands extremely linear power amplifiers
 - Increase the cost of the radio
- Spectral allocation for Europe
 - HiperLAN2 channels will be spaced 20MHz apart
 - Total of 19 channels
 - Each channel will be divided into 52 subcarriers
 - 48 data carriers & 4 as pilots to provide synchronization
 - Synchronization enables coherent in-phase demodulation
 - Through DSP, subchannels are divided through mathematical processing rather than in the analog domain

OFDM in Practice

- OFDM is efficiently realized by using effective signal processing, fast-fourier transforms (FFT) in the transmitter & receiver
 - Significantly reduces the amount of hardware required compared to earlier FDM-systems
- OFDM requires a properly designed system
 - Specially important is the design of frequency synchronization
 8 power amplifier back-off in the receiver

Advantages of OFDM

- OFDM results in a <u>very efficient</u> use of bandwidth
 - Provides robust communications in the presence of noise, intentional or unintentional interference & reflected signals that degrade radio communications
 - Conventional single carrier transmission schemes like AM/FM send only one signal at a time using one RF
- Lesser utilization of hardware
 - Effective signal processing, FFT

Advantages of OFDM

- Increased spectral efficiency
 - That is, more bps/Hz than conventional transmission schemes
 - Spectrally efficient because the spectrum can be made to look like a rectangular window
 - Because the subcarriers are packed maximally close together
 - All frequencies are utilized similarly
- Robustness against the adverse effects of multipath propagation with respect to intersymbol interference
- OFDM is less sensitive to timing errors
 - A timing error is simply translated to a phase offset in the frequency domain

OFDM Compared to Other PHY Technologies

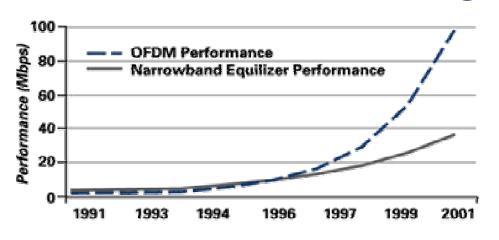
- The 3 RF technologies available to solve the challenge of increasing the speed of wireless data/Internet networking
 - Narrow band microwave
 - Spread spectrum
 - Frequency Hopping Spread Spectrum
 - Direct Sequence Spread Spectrum
 - OFDM

OFDM Compared to Narrowband Microwave

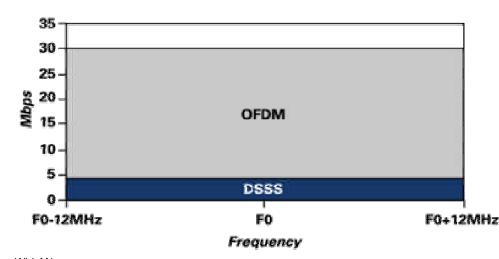
- Narrow band systems
 - Power to transmit the data is increased to overcome the noise
 - This improves the performance of the transmission, but interferes with other signals that are being sent by other users of the band, causing data errors for others
 - Sensitive to multipath interference
 - In this your own signal is reflected off another object and arrives late at the destination, scrambling the original signal
 - This requires on-going tuning and adjustment using specific hardware which means an increased system cost

OFDM Compared to Spread Spectrum

- Spread spectrum technology
 - Uses much more bandwidth than is absolutely required to send signals, but this allows it to overcome noise & multipath problems
 - As the amount of data increases, the bandwidth required rises
 - The best systems to date deliver 11 Mbps and use 22MHz of spectrum.
 - That translates to less than 44 Mbps maximum if one used the entire 2.4 GHz license-exempt band
 - The best possible speed achievable is approximately 15 Mbps in 22 MHz, which means that spread spectrum technology is approaching its limits in speed


OFDM Compared to Other PHY Technologies

- OFDM technology
 - Breaks one high-speed data signal into tens or hundreds of lower speed signals, which are all transmitted in parallel
 - This creates a system highly tolerant to noise and multipath &, at the same time, is very efficient in its use of bandwidth
 - Noise and multipath immunity allow for wide-area, multipoint coverage, and the efficient use of bandwidth allows for many more high-speed channels within a frequency band
- Therefore, the main difficulties in narrow band and spread spectrum are overcome by OFDM



OFDM Compared to Other PHY Technologies

OFDM vs. Narrowband

OFDM vs. DSSS

OFDM is Gaining Popularity

- OFDM is a very efficient technology, but it was proven to be difficult to implement until now
 - Recent advances in DSPs now permit OFDM systems to be cost-effectively constructed creating a renewed interest
- The digital audio and terrestrial digital video broadcasting standards are based on OFDM
- In 1998, the IEEE 802.11a approved the use OFDM
 - For its high-speed (6 to 54 Mbps) extension to the 802.11 WLAN standard
- ETSI is using OFDM for the ETSI BRAN HiperLAN2 standard

Advantages of Wideband OFDM (W-OFDM)

- Great performance against multipath, through a simple division by the channel frequency response
- Enhanced equalization of radio distortions, through a division by the channel frequency response that includes the radio distortion
- Easy inclusion and optimal exploitation of forward error correcting codes, like Reed-Solomon, ensuring the integrity of transmitted data
 - This includes the ability to recover the symbols, even if some carriers are totally absent
- Less sensitive to carrier offset

Advantages of W-OFDM

- More amenable to erasures of errors in the forward error corrector
 - Improves the bit error rate performance by over an order of magnitude
 - The positions of the errors can easily be determined from the estimated channel frequency response
- The whitening process reduces the peak to average ratio, thus reducing linearity requirement of the power amplifiers
- The group delay of the frequency response can be used to deliver an estimate of the propagation time between the transmitter and receiver

PHY Layer

Includes Data Encoding & Subchannel Modulation Type

- OFDM does not fully describe the PHY layer
- Encoding involves serial sequencing of data & FEC
 - Lower speed wireless LANs do not employ FEC
 - HiperLAN2 provides multiple levels
 - Each capable of protecting against a certain % of bit errors
- HiperLAN2 employs multiple types of modulation
 - Dynamic adaptation of the FEC & modulation to varying conditions
 - Allows data transmission at
 - Higher data rates with a strong signal relative to noise
 - Lower throughputs under adverse conditions

H2 - Data-link Layer

- Data-link layer constitutes the logical link between an AP and the MTs
 - Data-link sub layers include MAC protocol, Error Control (EC) protocol, Radio-Link Control (RLC) protocol
- Data-link layer in HiperLAN2 is connection-oriented differentiating it from other wireless LANs
 - Before a mobile terminal transmits data the Data-link layer communicates with the AP in the signaling plane to set-up a temporary connection
 - This allows the negotiation of QoS parameters like bandwidth & delay requirements
 - Assures that other terminals will not interfere with subsequent transmissions

H2 - Data-link Layer

- HiperLAN2 contrasts with MTs conforming to IEEE 802.11 std.
 - IEEE 802.11
 - They communicate when the radio channel becomes available
 - May experience packet collisions from other terminals
 - IEEE 802.11 does provide separate mechanism for synchronous applications like voice

H2 - QoS

- QoS parameters include
 - Bandwidth, bit error rate, latency, jitter
- HiperLAN2 implements QoS through time slots
 - Original request by a mobile terminal made to send data uses specific time slots allocated for random access
 - Collisions from other mobile terminals can occur in this random-access channel
 - Since messages are brief, this is not a problem

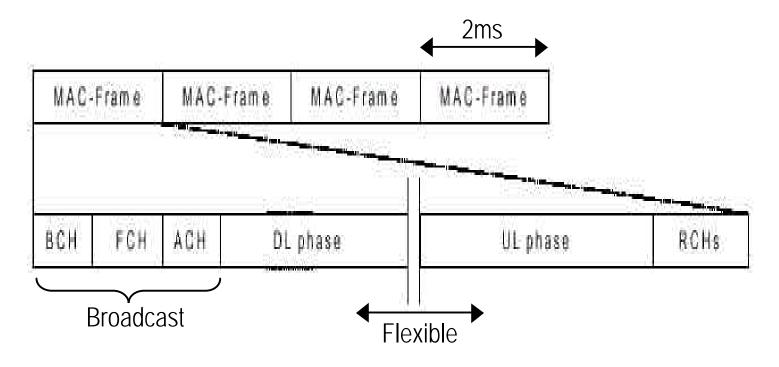
H2 - Data-Link Layer

- Transport channels
 - Access point grants access by allocating specific time slots for a specific duration
 - Mobile terminal then sends data without interruption from other mobile terminals operating on that frequency
 - Control channel provides feedback to the sender
 - Indicates whether data was received in error & if it needs to be retransmitted

H2 - MAC Protocol

MAC protocol

- Used for access to the medium with the resulting transmission of data onto that medium
- Control is centralized to the AP which informs the MTs
 - It is at this point that the MAC frame is allowed to transmit data


MAC frame in H2

- Air interface is time-division duplex (TDD) & dynamic timedivision multiple access (TDMA)
 - Time slotted structure of the medium allows for simultaneous communication in both downlink and uplink within the same time frame
- MAC frame forms the interface between Data link & PHY layer

H2 - Frame Structure

- Centrally controlled TDMA/TDM with TDD
- Packet sizes 54 bytes (data) & 9 bytes (control)

H2 - Error Control Protocol

- Selective repeat (SR) ARQ is the Error Control (EC) mechanism
 - Increases reliability over the radio link
 - Detects bit errors and and retransmits U-PDU(s) if such errors occur

H2 - Convergence Layer (CL)

- Exists above the Data-link layer & has 2 main functions
 - Adaptive service requests
 - Responds to service requests from higher layers to the service offered by the data link layer
 - To convert the higher layer packets (SDUs) with variable or possibly fixed size that is used within the data link layer
 - Formats data (padding, segmentation & reassembly function)
- Generic architecture of the CL makes HiperLAN2 suitable for a diversity of fixed networks
 - E.g., Ethernet, IP, ATM, UMTS, etc.
- 2 different types of defined CLs: packet-based (Ethernet)
 & cell-based (ATM) communication

H2 - Radio Network Functions

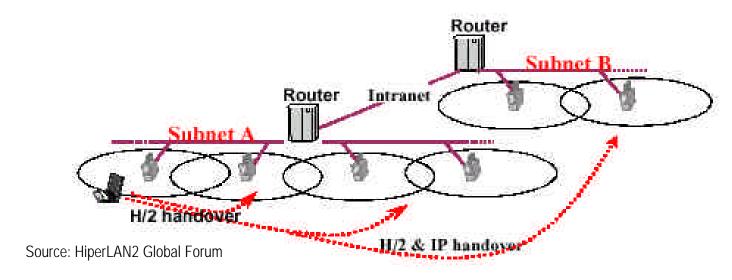
- H2 standard defines measurement & signaling to support a number of radio network functions
 - Dynamic frequency selection
 - Link adaptation
 - Antennas
 - Handover
 - Power Control

HiperLAN2 - AFA

- Comes with Automatic Frequency Allocation (AFA)
 - To provide continuous coverage access points need to have overlapping coverage areas
 - Coverage extends 30m indoors & 150m in unobstructed environments
 - APs monitor the HiperLAN radio channels & automatically selects an unused channel
 - Eliminates the need for frequency planning
 - Makes deployment relatively straightforward

HiperLAN2 - Roaming

- Mobile terminal roams from coverage area of one AP to another
 - Initiates handoff to the new access point after detecting a better signal on another radio channel
 - New AP obtains details of the mobile terminal's connection from old AP
 - Allows communication to continue smoothly



HiperLAN2 - Security Mechanism

- Mobile terminal creates a secure communication session (association) with the AP
 - First using Diffie Hellman key exchange to negotiate a secret session key
 - Then mutual authentication process via a secret key or public hey if a PKI is available
 - Data traffic is encrypted using DES or Triple DES
- Communication over HiperLAN2 should be as secure as wired LANs

Corporate LAN

- Example of a corporate network built around ethernet LAN and IP routers
- A H2 network is used as the last segment between the MTs and the network/LAN
- The H2 network supports mobility within the same LAN/subnet
- Moving between subnets implies IP mobility which must be taken care of on a layer above H2

- Hot spots
 - H2 networks can be deployed at hot spot areas, enabling an easy way of offering remote access and Internet services to business people
 - E.g. airports, hotels, etc.
 - An access server to which the H2 network is connected can route a connection request for a point-to-point connection (PPP) over a tunnel either to to the corporate network (via a preferred ISP) or perhaps to an ISP for Internet access

- Access to 3 rd generation cellular network
 - HiperLAN/2 can be used as an alternative access technology to a 3 rd generation cellular network
 - One may think of the possibility to cover hot spots and city areas with HiperLAN/2 and the wide area with W-CDMA technology
 - In this way, a user can benefit from a high-performance network wherever it is feasible to deploy HiperLAN/2 and use W-CDMA elsewhere
 - The core network sees to that the user is automatically and seamlessly handed over between the two types of access networks as the user moves between them

- Home network
 - The use of this technology in a home environment to create a wireless infrastructure for home devices
 - E.g. home PCs, VCRs, cameras, printers, etc.
 - The high throughput and QoS features of HiperLAN/2 support the transmission of video streams in conjunction with the datacom applications
 - The AP may in this case include an "uplink" to the public network - "Residential Gateway"
 - E.g. ADSL or cable modem

HiperLAN2 - Features Summary

- PHY layer
 - OFDM modulation, variable bit rate
 - FEC error control
- Data-link layer
 - QoS via dynamic fixed time slots (within MAC)
 - ARQ (within EC)
 - Dynamic frequency selection
 - Power control
 - Cellular handover
 - Public & private key encryption
- Convergence layer
 - Supports both cell & packet based networks

HiperLAN2 - Summary

- Lots of bandwidth, up to 54Mbps
- QoS
- Plug & play radio network
- Service negotiation
- Security, authentication & encryption

- Spectrum availability
- Scalable
- Generic architecture supporting Ethernet, Firewire, ATM, PPP, 3G, etc.
- Considerably cheap

IEEE 802.11 vs. HiperLAN2

Comparison - 802.11 vs. HiperLAN2

Characteristic	802.11	802.11b	802.11a	HiperLAN2
Spectrum	2.4 GHz	2.4 GHz	2.4 GHz	5 GHz
Maximum physical rate (apprx.)	2 Mbps	11 Mbps	54 Mbps	54 Mbps
Maximum data rate, layer 3 (approx.)	1,2 Mbps	5 Mbps	32 Mbps	32 Mbps
Medium access control/Media sharing	Carrier sense – CSMA/CA	CSMA/CA		Central resource control/TDMA/TDD
Connectivity	Connection-less	Connection-less	Connection-less	Connection-oriented
Multicast	Yes	Yes	Yes	Yes
QoS support	PCF	PCF	PCF	ATM/802.1p/RSVP/DiffServ (full control)
Frequency selection	Frequency-hopping or DSSS	DSSS	Single carrier	Single carrier with Dynamic Frequency Selection
Authentication	No	No	No	NAI/IEEE address/X.509
Encryption	40-bit RC4	40-bit RC4	40-bit RC4	DES, Triple-DES
Handover support	No	No	No	No
Fixed network support	Éthernet	Ethernet	Ethernet	Ethernet, IP, ATM, UMTS, Firewire, PPP
Management	802.11 MIB	802.11 MIB	802.11 MIB	HiperLAN/2 MIB
Radio link quality control	No	No	No	Link adaptation

PCF - Point Control Function; Concept defined in 802.11 to allow certain time slots being allocated for real-time

