Tornado™ BSP
Training Workshop

Wind River Systems, Inc.
1010 Atlantic Avenue
Alameda, CA 94501

510-749-2148
FAX: 510-749-2378
training@wrs.com
http://www.wrscom/training

a Wind River Systems, Inc. %Wﬂm

1997 = rritii

Copyright © Wind River Systems, Inc. 1986 - 1998
Version 1.0.2, April 1998

ALL RIGHTSRESERVED. No part of this publication
may be reproduced in any form, by photocopy, microfilm,
retrieval system, of by any other means now known or

hereafter invented without the prior written permission of

Wind River System, Inc.

This document isdesigned to support the Tornado BSP
Traning Workshop class. It is not designed as a
stand-alone document, nor can it substitute for Wind
River Systems BSP documentation. For information
about the Wind River Systems training program, contact:

Training Department Wind River Systems SA.R.L.
Wind River Systems, Inc. 27, Avenue de la Batique
1010 Atlantic Avenue Bétiment B4, LP739
Alameda, CA 94501 91962 Les Ulis Cedex

France
510-749-2148 (phone)
510-749-2378 (fax) 33-1-69-07-78-78 (phone)
EMALIL: traning@wrs.com 33-1-69-07-08- 26 (fax)

Wind River Systems Japarn/Asia-Pacific
Pola Ebisu Bldg. 11F

3-9-19 Higashi

Shibuya-ku

Tokyo 150

Japan

+81-03-5467-5900 (phone)
+81-03-5467-5877 (fax)

VxWorks® and Wind River Syssems® are registered trademarks and
Tornado, wind, windX, WindPower, WindNet, WindNet SNMP, WindView,
VXGNU, VxXGDB, VxSm, VxXVMI, VxMP, and MicroWorks are trademarks
of Wind River Systems, Inc. All other trademarks cited herein are the

properties of their respective owners.

L0 O O O B

Course Prerequisites

» Genera prerequisites.
« Solid knowledge of C programming, and familiarity with
general assembly level programming principles.
» Experience writing device drivers using the C
programming language.
» Basic understanding of standard embedded systems
hardware.

» Basic understanding of VxWorks and debugging
techniques.

« Basic understanding of makefiles and building executable
Images.
* Functional knowledge of host platform and Tornado tools:

o UNIX: user-level knowledge of make, csh, man, vi or
emacs, etc.

o Windows NT: user-level knowledge of Windows NT
graphical and command-line user interfaces, file systems,
and standard Windows editor.

» Tornado tools: configuration of atarget server to support
various back end connection strategies, practical
experience using CrossWind, and basic user-level
knowledge of other Tornado tools.

| = WindRer

L0 O O O B

Course Objectives

 Overview of BSP responsibilities and integration iSsues.
e Choose a BSP development strategy.
 Manage a BSP development environment.
e Choose BSP development tools.
« UseWDB agent for BSP development.
o Perform pre-kerndl initialization.
o Perform post-kernel initialization.
« WRSguiddlines for device driver design.
 Manageinterruptsin a BSP.
e Integrate timer drivers.
« Manage memory.
* Integrate serial communication controller for debugging.
* Build and support VxWorks images such as.
» Loadable images
* ROM-based images (compressed/uncompressed)
 ROM-resident images
e Writing and testing WRS a compliant BSP.

4 = WindRer

L0 O O O B

What Course Does Not Cover

* Writing generic device drivers (network, SCC, SCS, etc.).
Material covered in Tornado Device Driver Workshop.

e Using Tornado tools and non-BSP VxWorks facilities.
Material covered in Tornado Training Workshop.

o Architecture port issues.
e Specific vendor hardware:
o Target devices.
* Non-WRS development tools.

5 = WindRer

L0 O O O B

Table of Contents

Integration Issues
VxWorks Boot Sequence
Tornado Directory Structure
Conventions and Validation
System Hardware..........ccoceeeceeeciee s e e 2
Overview
Architecture I'ssues
Bus Systems
Memory
Devices
BSP Development ISSUES.........ccceeeevciiiiiee e, 3
Development Cycle Overview
Development Environment
Strategies For Getting Started
Pre-Kernel Initialization Overviewccccceuneee.. 4
Pre-Kerndl Initialization Sequence
BSP Files
Building VxWorks Images
Pre-Kernd Initialization - Boot Specific Code........5
Boot Specific vs. Generic Code
romlnit.s: romlnit()
PIC and VxWorks
bootlInit.c : romStart()
sysALib.s: sysinit()

= WindRyer

L0 O O O B

Pre-Kernd Initialization - Generic Code............c......... 6
Generic Code Overview

sysHwInit()
Activating the Kernel
Pre-Kernd Initialization - Debugging With Tornado...7
Overview
Using the WDB Agent
SCC Support For WDB Agent
Debugging Techniques
IMEBIMOTY . et 8
Overview
Configuring Memory
MMU Issues
Cache I'ssues
Memory Probes
Managing [NterTUPLS......cccvvviiciee e e 9
Overview
Installing ISRs
Supporting Interrupt Libraries
Initializing An Interrupt Controller
Optional Interrupt Support

Overview
System Clock
Auxiliary Clock
Timestamp
Completing the BSP - Finishing the Port 11
Overview
Remaining BSP Routines
Device Driver Issues
Final BSP Files

Validation Test Suite %Wﬂd&ﬂ@j

L0 O O O B

Chapter - 1

Overview

a Wind River Systems, Inc. 1997 2 ,,,,,,,

1-2

Overview

1.1 Integration I ssues
VxWorks Boot Sequence
Tornado Directory Structure

Conventions and Validation

JJJJJJJ

1-3

What i1s a BSP?

Provides VxWorkswith primary interface to hardware environment.
BSP Responsibilities:

e Hardware initialization on power-up.

 Support for VxWorksaccess to hardware drivers.

 Integration of hardware-dependent and hardware-independent
software in VxWorks

Components consist of:
 Source, include, and make files.
o Derived files.
e Binary driver modules.
May be validated to be WRS compliant.

JJJJJJJ

1-4

What a BSP i1s Not

A BSP is not a hardware driver:

A hardware driver accesses hardware.

Hardware drivers are classified as generic or BSP specific:
« Generic drivers manage devices which can be moved from one

target environment to another (e.g. LAN chip).

e BSP drivers manage devices which are specific to the target

environment (e.g. interrupt controller).
BSP developer responsible for:
« Complete support for BSP specific drivers.
e Integration of generic device drivers.

JJJJJJJ

1-5

BSPs and VxWorks

Hardware-independent Software

Tools - Application

/0 System VxWorks Libraries TCP/1P

* ¥ * ¥
| Filesystem | | MUX |
5 F 1

Hardware-Dependent Software
wind Kernel

¥ ¥
SCSL - G LAN
Liriver ™ BS51 Diriver
* [1 I 1
I —¥
SCSI pEbaware’ [y LAN
Controller S Timee Controller

=

WindRrver

5 Y s ¥ 2 M3

1-6

BSP Responsibility: Hardware

Initialization

V xWorks boot sequence specifics will vary with processors and
hardware environments.

Common initialization requirements:
 Provide code at specific location in memory which processor will

jump to on reset or power-up.

Set processor in a specific state.

Initialize memory and memory addressing.
Disable interrupts.

Pass control to additional bootstrapping code.
Load required VxWorks segment(s) into RAM.

Place hardware in quiescent state before initializing VxWorks

kerndl.

=

JJJJJJJ

1-7

BSP Responsibility: VxWorks Access
To Hardware Drivers

Some driver support is provided by BSP. Examples:

e Driver defines ISR(s), but BSP connects | SR(S) to interrupt vector
table.

« BSP creates structures (objects) which are passed to driver for
Initialization.
« Offset constants and access macros for hardware registers
provided by BSP and used by driver.
Provides portability for hardware driver code.
Device configuration management:
o Accessto full range of device features (possibly at alater time).
« Separate development/production configurations.

== WindRwver

JJJJJJJ

1-8

BSP Responsibility: Integration of
Hardware Dependent Software

Provides code flexibility and portability:
o Compile-time flexibility.
e Run-time portability.
Compile-time flexibility:
o Uses preprocessor macros to customize system.

* Provides ability to produce optimized modules without changing

source code.
Run-time portability:
 Uses pointers to access routines.
 Provides portability for compiled object modules.

=

JJJJJJJ

1-9

BSP Components: Primary Files

Primary BSP files:
o Sourcefiles.

e Includefiles.
o Makefiles.
Sourcefiles:

» Generic code iswritten in C. Architecture specific and
performance optimized code is assembly.

Include files:

 All includes and definitions specific to a CPU board are localized
In two files.

Makefile:
 Controls building of all images.

== WindRwver

JJJJJJJ

1-10

BSP Components: Derived Files

Derived BSP files are created using:
* Primary BSP files.
e Driver source files.
 ModulesinVxWorksarchive libraries.
Derived BSP files are classified as:
« Hardware initialization object modules.
o VxWorksbhoot object modules.
o VxWorksimages.
e VXWorksbhinary symbol table.
A complete BSP port will generate all of these files.

End users will recreate some of these files when configuring the
system.

== WindRwver

JJJJJJJ

BSP Development

e Development should occur in incremental steps:

» First set up development environment (down-load path(s), debug
strategies, etc.).

o Write pre-kerndl initialization code.

e Optionaly activate WDB agent and Tornado tools using polled
serial or ethernet interface.

« Start minimal VxWorkskernel adding support for a system clock,
and install interrupts.

e Complete BSP providing all necessary support for hardware
environment (full network support etc.).

 Clean-up, testing and documentation.
o Course material will be presented following this sequence as closdly

as possible.
== WindRwver

JJJJJJJ

1-11

1-12

BSP Development - cont.

Development time may be reduced by purchasing:
 The BSP Developer’ s Kit.
» Appropriate reference BSP.
BSP Developers Kit provides:
o A Validation Test Suite (VTS).
o Template BSP (all architectures).
 Template devicedrivers.

Purchasing a reference BSP which most closaely matches target
environment:

» Specific device drivers which are not part of reference BSP can
also be purchased from WRS.

Reference BSP obtained when Tornado is purchased.

== WindRwver

JJJJJJJ

1-13

BSP Validation

BSP validation:
 WRS validated.
 Non WRS validated.

A WRS validated BSP:

» Classified as Tornado Certified, and may be distributed displaying

this information.

« Contact WRS to obtain validation reguirements.
BSP validation uses a Validation Test Suite (VTYS):

o Automated test suite which runs on host and target to exercise

BSP and report defects.
 Included in BSP Developer’ s Kit.

e VTS distribution includes source to alow extension.

=

JJJJJJJ

1-14

Overview

Integration Issues
1.2 VxWorks Boot Sequence
Tornado Directory Structure

Conventions and Validation

JJJJJJJ

1-15

VxWorks Image Types

There are three classes of VxWorksimages.
L oadable images.
« ROM-based images - compressed/uncompressed.
 ROM-Resident images.

L oadable images are loaded into RAM by boot code.
« Boot codeis “burned’ into ROM or Flash.
e Boot code is a stand-alone VxWorks application.

ROM -based images |oad themselves into RAM from ROM or Flash.

ROM -resident images execute out of ROM or Flash.

e Only the data segment of the VxWorksimage isloaded into

RAM.

=

JJJJJJJ

1-16

Some Terminology

VxWorksboot image - A VxWorksimage designed to |load another
VxWorksimage containing application code (often referred to as
“boot code”).

e “Burned”’ into ROM or |loaded into Flash.

 May execute in ROM/Flash (ROM-resident).

« May execute out of RAM.
VxWorksimage - A VxWorksimage containing “end-user” code.
Sub-types:

« Loadable VxWorksimage - VxWorksimages loaded by VxWorks
boot image.

o VXxWorks ROM image - VxWorksimage “burned” into ROM or
loaded into Flash. May execute in ROM/Flash (ROM-resident) or
RAM.

== WindRwver

JJJJJJJ

1-17

VxWorks Startup Sequence

The sequence of events which occur at power-up are afunction of the
type of VxWorksimage which will run.

Theinitial phase of the start-up sequence is the same across all
VxWorksimage types.

Processor is“jumped” to the entry point of boot-strap code in ROM
or Flash. This code:

» Disablesinterrupts (viathe processor).

e |nitializes target memory.

 Loads appropriate VxWorksimage segments.

e Jumpsto code to place target in aquiet state.
Various startup sequences are discussed next.

== WindRwver

JJJJJJJ

1-18

Boot Sequence - Loadable VxWorks
Image

Bootstrap code executes and |oads text and data segments of boot
code (from ROM or Flash) into RAM.

Scenarios are:
e Boot code compressed - Decompression during copy
« Boot code uncompressed - Copy
e Boot code is ROM-resident - Copy data segment only

Boot program executes and loads VxWorks image into RAM. Jumps
to VxWorksload point.

System initialization code statically linked into loaded VxWorks
Image executes and completes initialization.

== WindRwver

JJJJJJJ

1-19

Loadable VxWorks Image

ROM/Flash RAM
BootStrap
Programs
VxWorks
ROM ! _
Boot Program ."L._
|
:

Boot Program

LoAL_MEM LDUAL_ALRES

HAM_LOW ADES

FREE HAM_ALHES

RAM HIGH ADNDES

1-20

Startup Sequence - ROM-based
VxWorks Image

Bootstrap code executes and |oads text and data segments of
VxWorks (from ROM or Flash) into RAM.

Scenarios are:
o VxWorks compressed - Decompression during copy
* VXxWorksuncompressed - Copy
Control transfers to VxWorksinitialization code in RAM.

System initialization code statically linked into VxWorksimage
executes (in RAM) and completes initialization.

JJJJJJJ

1-21

ROM-based VxWorks Image

ROM/Flash

RAM

BootStrap
Programs

e ——

=

ROM-
based

VxWorks
Image

—_—

gl

e

VxWorks

el MEM LOCAL, ADHS

RAM _LOW_ ALK

FREE_RAM_ADRS

1-22

Startup Seqguence - ROM-resident
VxWorks Image

Bootstrap code executes and |oads data segment of VxWorksimage
(from ROM or Flash) into RAM.

Control branchesto VxWorks initialization code in ROM or Flash.

System initialization code statically linked into VxWorksimage
executes (in ROM or Flash) and completes initialization.

JJJJJJJ

ROM-resident VxWorks Image

ROM/Flash RAM

LOCAL_MEM LOCAT_ADES
BootStrap
Programs

RAM_LOW ADRS
" VxWorks
VxWorks -7 | Data + B55

Text . .~ FREE RAM ADRS

VxWorks
Diata + B55S

1-24

Startup Sequence - VxWorks
Initialization

After (“end-user”) VxWorks segment(s) are loaded into RAM,

system initialization code statically linked into VxWorksimage
executes to complete the boot sequence.

This code will:
 Place hardware environment in a quiet state.
 |nitialize and start the wind kerndl.
e Spawn atask to complete system initialization.

System initialization task will initialize support for end-user specified
facilities, and start the end-user’ s application.

== WindRwver

JJJJJJJ

1-25

Overview

Integration Issues
VxWorks Boot Sequence
1.3 Tornado Directory Structure

Conventions and Validation

JJJJJJJ

Tornado Modularity

e Tornado is composed of a set of modular components.
 Modularity aids in portability, flexibility of use, and maintenance.

e Tornado modules are:
e Host Support Package (HSP).
» Generic (target independent) VxWorks
 Architecture Module.
» Board Support Package.
e Wind Debug Agent (WDB Agent).
e Tornado modules have been designed to minimize interdependence.

== WindRwver

JJJJJJJ

1-26

1-27

Tornado Modularity

H%P
Generic
VxWorks
WDEB
Agent
Arch
BS5P

JJJJJJJ

1-28

Tornado Modularity and the
Tornado Directory Tree

Files which make up Tornado are organized to reflect Tornado’ s
component modularity.

At the highest level files (relevant for BSP development) are
separated into host and target directories.

All BSP specific files are in the target directory. However, many
tools useful in developing a BSP are in the host directory.

Files which will be modified in developingaBSP arein a
configuration sub-directory of the target directory.

JJJJJJJ

1-29

Tornado Directory Tree

Tornado

_ host lornado host-
resident tools

——— share Shared XDR code

— target VxWorks 05
Board support
package

1-30

Host Directory Tree

host—

— include Header files for Tornado tools

- host-os Host-specific tools
—hin Tornado and GNU host execurables

—— lib Tornado Tool libraries

——man GNU man pages
- resource GUI Tel, and Help support files

— tel Standard Tl distribution
— mal UNIX man pages on Tornado tools
L sre Source for VxColor demo

=

WindRrver

5 Y s ¥ 2 M3

1-31

Target Directory Tree

target—

—config Files to configure and build VxWorks

_all Generic configuration files

—— hspName Board Support Package (BSF)
- h ViWorks header files

— lib Libraries provided by VxWorks
—man UNIX man pages

— S Partial VxWorks source code

— unsupported lools, drivers

1-32

BSP Relevant Files

All code which executes at power-up isin files within the config
directory.

BSP code vs. generic driver code:

» Generic device driver code is designed to be usable with multiple
BSPs (network drivers, seria drivers, etc.).

« BSP (device driver) codeistightly coupled to the target
environment and is not designed to be used with other BSPs

BSP specific code will alwaysreside in ../<bspName>.

Generic device driver code not supplied by WRS will reside in the
<bspName> directory or a subdirectory of <bspName>.

== WindRwver

JJJJJJJ

1-33

Overview

Integration Issues
VxWorks Boot Sequence
Tornado Directory Structure

1.4 Conventions and Validation

JJJJJJJ

1-34

BSP Conventions and Validation

BSP conventions and validation procedures are designed to help

guarantee integrity of BSP.

BSP conventions fall into categories:
« Coding conventions

e Documentation guidelines.

« BSP packaging.

e Driver guidelines.
Validation test:

» Package validation.

e |nstallation test.

e Functional test (VTS).

« Code review process and WRS validation process.

=

JJJJJJJ

1-35

Summary

BSP responsible for supporting system hardware environment:
e |nitialization of hardware environment.
« VVxWorkdapplication accessto hardware drivers.
e Hardware/software integration.
Provides VxWorkswith primary interface to hardware environment.
Components consist of:
« Source, include, and make files.
e Derived files.
May be validated to be WRS compliant.

JJJJJJJ

Chapter - 2

System Hardware

a Wind River Systems, Inc. 1997 2 ,,,,,,,

2-2

System Hardware

2.1 Overview
Architecture | ssues
Bus Systems
Memory

Devices

JJJJJJJ

2-3

Overview

BSPs have responsibilities for all componentsin the hardware

environment.
Embedded hardware categories

o Architecture specific (caches, MMUSs, interrupt controllers, and

floating point hardware).
* Bus specific (Bus controllers, and bus bridges).

 Memory specific (memory controllers, and chips).
 Devices (architecture/busmemory independent).

Support issues.
e |nitialization.
e AcCCcess.

=

JJJJJJJ

2-4

System Hardware

Overview

2.2 Architecture Issues
Bus Systems
Memory

Devices

JJJJJJJ

2-5

BSPs and CPUs

Libraries for managing CPUs are part of the Tornado architecture
module.

Some CPU specificswill be relevant for BSP devel opment:
« MMU Support
o Cache Issues
 |nterrupt Handling
 Hoating-Point Support

Many of these specificswill be important during the initialization
phase of booting aVxWorksimage.

== WindRwver

JJJJJJJ

2-6

MMUSs

Memory Management Unitscontrol memory access for:

 Allocating/de-allocating memory.
Resolving cache coherency issues.
Write protecting memory.

Virtual memory swapping.
Paging and segmentation.

« Garbage collection.

Requires RAM resident trandlation tables which map physical

memory into a virtual memory address space.

May be inappropriate for real-time applications due to latency

Increases and memory consumption.
Unit is often on the same ASIC as the CPU.

=

JJJJJJJ

2-7

MMU Support

Booting VxWorks
e MMU disabled until the wind kernel is activated.
e Build trandation tables.
e Enable MMU.

In VxXWorksatask does not include atranslation table as part of its

context:

o Tasksdo not reside invirtual memory.

o Default virtual memory mapsare global and flat.
MMU may be managed dynamically with:

e Bundled MMU library.

e Optional virtua memory management product (provides

programmatic accessto MMU).

=

JJJJJJJ

2-8

Caches

Fast memory interface between CPU and main memory.

Reduces read/write access time for CPU and local bus activity.

Most modern processors support separate data and instruction caches.
Cache Is accessed in quantized unitscalled cache lines.

Cache modes

 Write through - Data written to cache by processor flushed to
main memory.

o Copyback - Writesonly to cache, conserves processor bandwidth.

== WindRwver

JJJJJJJ

Caches - continued

e Cacheislocated:
e Onthesame ASIC asthe CPU - L1 cache
e Externa tothe CPU ASIC - L2 cache

o Backside L2 cache - External L1 cache (with specia busto
[Processor).

e Some architectures provide cache management instructions, others
bundle cache management with virtual memory support facilities

* If cacheisenabled, it isexamined by the CPU for each memory
acCess.

e |f dataisthere- cache hit.
 |f datais not there, access main memory- cache miss.

== WindRwer

JJJJJJJ

Cache Issues

e Cache coherency:
o |deally cached information mirrors main memory.

e Bus master or device with DMA support may update main
memory without updating cache.
« CPU may update cache without updating main memory, making
Information in main memory stale.
 To mantain cache coherency:
« Cache needsto be flushed when updated by CPU.

« Cache needsto beinvalidated (and updated) when main memory
ISsmodified by bus master or DMA transfer.
* Snooping circuitry.
o Copyback with snooping isfastest configuration.

== WindRwver

JJJJJJJ

2-10

2-11

Cache Support

Booting VxWorks

o Cache(s) disabled until the hardware environment is placed in a
quiet state.

 |Invalidate and configure cache mode.
« Enable cache(s) (beforewind kernel is activated).
Provide cache coherency for VxWorks
e Datacache/ RAM - Bus master and DMA access to RAM.

 Instruction cache / data cache - Loader, debugger, and ISR
connection routines

« Shared cache lines - Multiple task access to cache.
When MMU is enabled, cache management and mode control are

supplied by an MMU library.
== WindRwver

JJJJJJJ

Cache Support - continued

e Cache coherency is maintained:
« Map off-board addresses as non-cacheable.

« MMU enabled - Routine to allocate cache aligned memory
marked as non-cacheable (returned cacheable).

« MMU not enabled - Cache library support to flush and invalidate
cache when necessary.

» Architecture may have more than one cache implementation.
Hardware environment could then support multiple cache systems.

« BSP must supply support for selecting the appropriate cache
libraries.
 Linker must include needed cache library modules.

== WindRwver

JJJJJJJ

2-12

2-13

Interrupt Handling

Hardware interrupt request and acknowledgment transactions are
specific to:

e Hardware requesting interrupt service.

o CPU.

e System bus protocol(s).
Hardware device will:

« Determine which interrupt service is requested.

o Terminate device interrupt request upon |ACK or device access.

CPU will determine number of external interrupts and interrupt levels
supported using external interrupt lines and/or interrupt controller.

== WindRwver

JJJJJJJ

2-14

Interrupt Handling - continued

|IACK cyclesare afunction of local bus protocol:
 Vectored - Automatic acknowledgment.

» Autovectored - Acknowledgment done in software.
CPU will determine which | SR to execute based on:

o Externa interrupt line activated.
* Interrupt select register of interrupt controller.
 Interrupt select register on device.

o Combinations, often requiring interrupt service de-multiplexing in

software.

CPU will reset interrupt statusinfo after ISR completes

e Bitsin aCPU status register.
 Interrupt mask on external interrupt controller.

=

JJJJJJJ

Interrupt Handling Issues

« Designing interrupt scheme for hardware environment:
 Interrupt priority levels.

« Association of interrupts with devices and/or device service
requests.

 Number of ISRs- De-multiplex servicesin single ISR.
e Hardware support facilities

o CPU (and interrupt controller when present).

* Device specific (enable/disable, IACKS, etc.).
e [nterrupt service routines

e Latency.

 Interrupt context and hardware negotiation.

2-15

« Connecting. 2% IRtveEr

JJJJJJJ

2-16

Interrupt Circuitry Guidelines

To minimize latency in handling interrupts, design efficient interrupt
circuitry.

Choose devices which provide interrupt vectors with different
vectorsfor each requested service. If not possible, one vector for
device.

Ability to enable/disable each interrupt source separately.
* Deviceinterrupt control register.
 |nterrupt controller.

Well documented and diagramed interrupt vector scheme.

== WindRwver

JJJJJJJ

2-17

Interrupt Handling Support

VxWorks uses an interrupt table:

* |SRs must be connected to unique interrupt vectors after wind
kerndl is started.

e Table contains addresses for interrupt handlers

VxWorksis interrupt aware, preventing the OS from providing
blocking services at interrupt time.

Device interrupts must be disabled before kernel is activated, and
enabled after | SRs are connected.

Architecture and device driver libraries
* Provide ISR code.
* Provide hardware interrupt management code.

== WindRwver

JJJJJJJ

Interrupt Handling Support -continued

« ABSP
» Disablesdevice interrupts at system start-up.
« Connects |SRsto interrupt table.
o Suppliesinterrupt level/vector bindings to devices.

 Suppliesaddresses and control values associated with hardware
Interrupt status and control registers.

 Supplies routine which transfers control to boot code if an ISR
throws an exception.

e BSPinterrupt support should make device driversasflexible as
possible so they can be reused in hardware environments with
different interrupt structures

== WindRwver

JJJJJJJ

2-18

2-19

Floating Point Support

Support for floating-point operations:
 Hoating-point/math co-processor(s).
 Software emulation.

VxWorks contextsdo not save/restore floating-point registers by
defaullt:

» Tasksallow an optional context extensionwhich will include
floating point registers.

* |SRsand exception handlersuse bundled routine to
programmatically manage floating-point registers.
Architecture is responsible for floating-point support.
Some BSPswill have configuration macrosfor FPU or software

floating-point emulation.
== WindRwver

JJJJJJJ

Additional Architecture
Considerations

e Additional architecture issues which may impact a BSP:
Big-endiar/little-endian byte ordering.

Processor specific initialization.

Register and memory alignment.

Addressing mode constraints

TAS operations and external bus access.

* Any of these issues may reguire BSP configuration macros to be
defined.

2-20

JJJJJJJ

2-21

System Hardware

Overview
Architecture | ssues

2.3 Bus Systems
Memory

Devices

JJJJJJJ

2-22

Bus Systems

Buses are classified relative to the processor:

 Local bus (processor bus).
o External buses(all others).

Hardware environment may have:

« Multiple external bus systems.
* No external bus system.

Bus system characteristics

Cycles ((a)synchronous, multiplexed, etc.).
Arbitration (bus-locking, priority levels, etc.).

Data transfers (memory-mapped, |/O mapped, &tc.).
Data properties (width, big/little endian, etc.).
Interrupt policies (generation, IACK, routing, €tc.).

=

JJJJJJJ

2-23

Bus System Issues

BSP developer will need to be aware of bus protocols
o Datatransfer rates and formats
e Busrequirements for DMA transfers.
 Interrupt protocols
For hardware environments with multiple buses, bridge

chips may

connect the busses, and provide an interface for inter-operability:

o Datatransfer.
* Interrupt services.
Bus system initialization:
o Minimuminitialization to boot VxWorks
o Completeinitialization to support application.

=

JJJJJJJ

2-24

Bus System Support

Bus systems and bus bridges have devicedrivers
Generic device drivers should be decoupled from bus specific issues.
A BSP provides configuration and access support for:
e Busdrivers
e Busbridge drivers
» Generic driversfor bus resident devices.
A BSP isresponsible for bus initialization:

« Bootstrap code identifieslocal bus speed, initializes local CPU
bus, and necessary bus bridges.

e Boot code/VxWorks completesinitialization, paricularly support
for external buses.

== WindRwver

JJJJJJJ

2-25

System Hardware

Overview
Architecture | ssues
Bus Systems

2.4 Memory

Devices

JJJJJJJ

2-26

Memory Types

Memory types traditionally supported by embedded systems:
« RAM - Random Access Memory

e ROM - Read Only Memory

* Non-Volatile memory - NVRAM and Flash.

Memory types represent different technologieswith different access
characteristics, capabilities, and costs.

Each memory type itself has multiple sub-types.
Embedded systems will typically use some or al of these memory
types.

== WindRwver

JJJJJJJ

2-27

Memory Access

Memory Is accessed via uniquely addressed |ocations (which may be
mapped to a separate address space).

A memory controller provides hardware support allowing the CPU to
access memory. Provides:

e Address decode logic.

e Timing control.

 Memory bus interface support.
 Control of memory mapped devices.

To access memory mapped addresses in a different physical address
space, the hardware environment may have a separate memory
controller ASIC.

Hardware environment may have multiple maps.

== WindRwver

JJJJJJJ

2-28

Memory Access Issues

Memory access I Ssues.
 |nitialize memory hardware.
* Provide support for software access.
Initializing memory hardware:
« Enable memory controller.
« Enable memory chips.
 Enable bridge/memory controller(s).
e Check integrity of memory.
Supporting software access.
e |nitialize dynamic memory management facilities

e Maintainintegrity of system/application memory pools.

=

JJJJJJJ

2-29

Memory Access Support

Memory access.
e Hardware support.
« Software support.
Hardware support:

 |nitialization to load ROM code into RAM performed at power -

up.

« Remainder of memory hardwareinitialized by pre-kernel

Initialization code in VxWorks
Software support:
« Management of virtual memory maps.
e Initialize partition library after kernel is activated.
* Enable and initialize MMU after kernel is activated.

=

JJJJJJJ

2-30

RAM

Random Access Memory:
e Dynamic RAM (DRAM)
o Static RAM (SRAM)

DRAM
* Primary storage technology.
 Store/hold capacitor technology.
 Limited read/write cycle times.
» Refresnh cyclesrequired.

SRAM

e Most often used for cache storage, often on CPU chip
 Flip-flop technology, fast read/write cycle times.

* Norefresh cycles.

=

JJJJJJJ

2-31

RAM Support

RAM configuration:
e Main memory.
o Cache memory.
Man memory RAM configuration:

o Zeroed at power-up for cold-boot to prevent parity errors.
o Configured and enabled by ROM code at system power-up.

Cache memory RAM configuration:

o Usually disabled at power-up, enabled by VxWorks pre-kernel

Initialization code.
* Provide cache management libraries

=

JJJJJJJ

2-32

ROM

Read Only Memory types.

* Programmable ROM (PROM).
 Erasable Programmable ROM (EPROM).
 Electrically Erasable PROM (EEPROM).
ROM properties

* Non-volatile. Modified using a ROM programmer.
o Usually longer access times than DRAM/SRAM.

 Memory controller interfaces ROM to CPU.
Non-volatile property allows
o System boot code storage.

« Hardware environment configured to jump to a ROM address at

power-up.

=

JJJJJJJ

2-33

Flash

Flash is non-volatile memory which can be modified
programmatically.

Used asa“silicon” hard disk:
« System boot code storage.

« Hardware environment configured to jump to a flash address at

power-up.
« Maintaining data integrity during power-outs.

Accesstimes dightly slower than DRAM but faster than ROM.
Flash memory cellshave afinite number of erase/ program cycles

(~10,000 - 100,000).

=

JJJJJJJ

2-34

Flash vs. PROM

Flash and ROM use similar memory cell technology:
o Storage transistor employs transistor tunnelling.
* No battery to provide non-volatility.
» Accesstimes are roughly the same.

Flash technology requires|ower voltage to erase/ program than
PROM.

Flash power supply unit allows flash to be modified without being
removed from hardware environment.

« Contents may be modified over a network interface.
« Contents may be modified by application code.
Many flash chips support configurable write protection.

== WindRwver

JJJJJJJ

2-35

Flash/PROM Support

Flash/PROM support facilities
e At system start-up.
 For application code.
System start-up support:

» Code executing out of flash/PROM in Tornado tree.

» Makefile support to build boot code.
e Hash file system to load VxWorks from flash.
e Minimum capacity PROM.

Application code support:

» Code (driver/file system) to uniformly access flash.
 |Large capacity PROM for ROM-resident and un-compressed

VxWorkgboot code images.

=

JJJJJJJ

2-36

NVRAM

Non-volatile RAM:
* Non-volatility usually provided by battery.

 May be implemented using CMOS RAM, battery-backed SRAM,

or flash.

Units may contain a programmabl e time-of-day (TOD) clock:

e TOD information isstored in NVRAM.
Used to store boot parameters for VxWorks image:

o VXxWorks boot parameters may use up 255 bytes.
If a hardware environment does not have NVRAM, boot parameters

are statically linked into boot code.

=

JJJJJJJ

System Hardware

Overview
Architecture Issues
Bus Systems
Memory

2.5 Devices

== WindRwer

JJJJJJJ

2-38

Embedded System Devices

Generic devices are independent of architecture, buses, and memory
hardware.

Typical devices.

e Timers

o Serial Communication Controllers (SCC).

* Network interfaces.

o SCSI controllers

e Custom ASICs(DSP chips etc.)

Devices should support:

« Read/write access.

« Any mandatory access timing requirements.

== WindRwver

JJJJJJJ

2-39

Timers

Hardware timersare used for:
o System clock interrupt (mandatory).
o Auxiliary clock for high speed polling.
e Timestamp for WindView.
e TOD clocks(“Real Time Clocks’ - RTCs).
Timers operate in one of three modes
 Periodic interrupt.
e One-shot interrupt.
e Timestamp.
Timer use dictated by mode(s) supported by hardware.

Timers are initialized after the kernel is activated.

JJJJJJJ

Timers - cont.

* Thethree modes for timer operation are:

 Periodic interrupt - Counts up/down to programmed terminal
count, generates interrupt, resets counter.

* One-shot interrupt - Counts up/down to programmed terminal
count, generatesinterrupt, disables counter.

e Timestamp - Counts up/down to maximum count, generates interrupt to
log counter rollover, restarts count. Unlike periodic interrupt, counter is

polled to obtain high-fidelity timestamp, interrupt is only used to mark
counter rollover.

e TOD clockswill aso contain date information.

2-40

JJJJJJJ

Serial Communication Controllers

e SCCsusedas
» Download/debug path during BSP/application devel opment.
« Communication channel for application.

o Support for interrupt and polled mode operation:
« System level debugging (pre/post kernel).
o Task level debugging (post kerndl).
* Dual level debugging (post kerndl).

e Inpolled mode, seria interface can be used for system level
debugging prior to kernel activation.

o For pre-kerndl system level debugging serial port is accessed by
WDB agent.

== WindRwver

JJJJJJJ

2-41

2-42

Network Interfaces

Provides support for:
» Application development using Tornado.
 Distributed applications.

V xWorks supports two network stacks.
e 4.3 BSD TCPF/IP stack.

o SENS - Scalable Enhanced Network Stack.
SENS supports:

« 44BSD TCP/IP stack.

» A proprietary MUX interface between the link and protocol

layers

 END - Enhanced Network driver which decouples network driver

from network protocols

=

JJJJJJJ

2-43

SCSI Controllers

Used to provide access to hard disks, tape drives, etc..
 For booting VxWorks.
« Application data storage/retrieval.
VxWorks supports SCSI-2 systems. Support consist of:
 Architecture independent libraries.
o Architecture specific controller driver.
« Board specific device initialization code.
Devices accessed by application through:
» Filesystem (DOS or RAW) for block devices.
» Tapefile system for sequentia devices.

o Customized SCSI commands for unsupported device classes.

=

JJJJJJJ

2-44

Summary

A BSP will provide support for several hardware categories.

Architecture specific:

e Caches

e MMUs.

e Interrupt controllers

 Hoating point hardware.
Bus specific:

e Buscontrollers

e Busbridges

JJJJJJJ

2-45

Summary

Memory specific:
 Memory controllers
 Memory chips.
Devices:.
e Timers
o Serial Communication Controllers
Network interfaces.
SCSI controllers
Custom ASICs.

Support issues involve initialization and hardware access by
application code.

== WindRwver

JJJJJJJ

Chapter - 3

BSP Development
| ssues

a Wind River Systems, Inc. 1997 2 ,,,,,,,

BSP Development Issues

3.1 Development Cycle Overview
Development Environment

Strategies For Getting Started

== WindRwver

JJJJJJJ

3-3

Development Cycle Overview

Development of BSP proceeds in stages, with each stage depending
on developments from previous stages.

Obtain appropriate reference BSP and template code.
Prepare the development environment.
Write the VxXWorks pre-kernel initialization code.

Optionally supply support for Tornado access using a polled serial
driver.

Once kernel is activated, connect system interrupts.
Enable the system clock.

Complete BSP by supporting desired features.

Test and document BSP following WRS standards.

Details will depend on development environment and desired BSP
features.

== WindRwver

JJJJJJJ

3-4

Reference BSP

Choosing an appropriate reference BSP involves obtaining maximum
coverage for desired target features, and reducing development time.

Must obtain Tornado package for correct development platform and
target architecture.

Give priority to matching system features over generic (BSP
Independent) devices.

» Local and external bus support.
o Target bridges and controllers.

May be able to obtaindrivers for generic devices (e.g. serial, LAN,
SCSl, etc.) separately from WRS or third party.

== WindRwver

JJJJJJJ

35

BSP Template

BSP template files are obtained when BSP devel opers purchase the
BSP developer’ skit.

e Includesall architectures
This should be the starting point for all code development:
e Do not “hack” reference BSP files, unless development consists of
simply adding generic drivers.
e Examine and analyze reference BSP code, but build BSP using
template files.

The template BSP will compile, but most optional features have been
disabled.

== WindRwver

JJJJJJJ

3-6

Development Environment

Primary components of development environment:
» Technique for downloading code to target.
» Technique(s) for testing and debugging code.

Appropriate and available development tools are dependent on
development stage:

o Early pre-kernel initialization phase requires BSP devel oper to
define development environment.

* Post-kernel initialization phase will have access to Tornado tools.

Early pre-kernel development environment needs to provide
download path and mechanism to jump to code entry points and
execute code successfully.

== WindRwver

JJJJJJJ

Pre-Kernel Development
Environment

e Common download paths.
e Target vendor’ sdebug ROM.
« ROM emulator.
e In-Circuit Emulator (ICE).
e Common debug toals:
e Target vendor’ sdebug ROM.
* |CE.
Logic analyzer.
Target features such asLEDs
Tornado tool set.

JJJJJJJ

3-8

BSP Development Issues

Development Cycle Overview
3.2 Development Environment

Strategies For Getting Started

JJJJJJJ

3-9

Development Environment
Requirements

Developer must define pre-kernel development environment, often
the same tool will provide download mechanism and debug facilities:

* |ICE.
o Target vendor’ sdebug ROM (if available).
Sometimes a combination of tools will be required.
e For aROM emulator, debug tools will need to be supplied
separately.
A download path will be needed for some debug tools:
e Logic analyzer.
o Target statusindicators.

== WindRwver

JJJJJJJ

3-10

INn-Circuit Emulation

Processor replaced by probe with cables connected to emulation unit:

o Specific architectureis emulated.

e Emulation unit contains copy of processor being emulated.
Technique allows access to processor bus to monitor or inject signals
Into systemvia

e Emulator processor.

o Emulator circuitry.

Emulator processor allows code to execute at full CPU speed
providing timing information and allowing race conditions to be
caught.

== WindRwver

JJJJJJJ

In-Circuit Emulation - cont.

e Emulator circuitry provides debug capabilities
« Source level debugging.

« Halt emulation (breakpoint) on events not supported by software

debuggers (trap code insertion).
» |CE debug extended feature examples:
e Breakpointsin ROM or RAM.
« Hardware breakpoints(watched points).

* Breakpointson “don’t care’ addresses and data (e.g.

O0x0247X X XX).
« Breakpointson certain bus events.

» Breakpointson processor cycles (interrupt acknowledge, cache

writeback, etc.)
» Code fetcheswith specific data patterns.

3-11

=

JJJJJJJ

3-12

In-Circuit Emulators

Primary issues:
* Must have correct emulator for target architecture.
e Cost.

| CE systems usually come with support for code downloads via serial
or network interface:

 To RAM (loadable VxWorksimage).
e To Flash (ROM -based and ROM -resident images).
Most emulatorscontain memory for code storage:

 Allowsre-mapping of target memory regions to emulator (e.g.
mapping ROM to emulator RAM).

» Off-loads system software from hogt, reducing host load while

using ICE.
== WindRwver

JJJJJJJ

3-13

In-Circuit Emulators - cont.

Often | CE will bundle enhanced facilities:
» Logic state analyzer.
e Logictiming analyzer.
 Pulse and pattern generator.
e Multiple trace capability.
o User-friendly GUI.
 |Integrated debugger.

e Expansionbussesfor additional hardware access.

* Event ID and isolation capability.
» Red-time trace and filter.

If target server backend is developed for an ICE, it can be used with

Tornado tools.

=

JJJJJJJ

3-14

Tornado / ICE Integration

Two | CEswhich can be used with Tornado:
e visonlCE
e TRACE 32ICE

Both productsprovide ethernet download capability, support for
severa popular architectures and many enhanced features for real-
time systems.

Target server backend for these | CEs have been devel oped.:
* Provides accessto Tornado toolsprior to kernel activation.

Contact WRS for more information concerning | CEs which can be
Integrated with Tornado.

== WindRwver

JJJJJJJ

3-15

ROM Emulators

ROM emulator gives host machine access to target via ROM socket:

e Target ROM chip is removed and emulator pods are plugged into
(standard) ROM socket.

» Pods are connected to emulator, which in turn connects to host
machine via seria or network link.

ROM emulators not architecture dependent, can be used with any
target which has ROM socket.

ROM emulator unit contains memory which replaces target ROM:
e Code downloaded from host to emulator memory.
e Emulator memory appearsas part of target memory.

== WindRwver

JJJJJJJ

3-16

ROM Emulators - cont.

VxWorks can be executed:
e Out of emulator memory (ROM -resident image).
 Out of target memory (ROM -based image).

ROM emulator provides download path, but not debug tools. Debug
toolsobtained via:

e Logic analyzer.
* Debug agent linked with software loaded to emulator memory.

Most ROM emulators provide communication path and protocol to
pass debug messages fromtarget to hos.

If target server backend is developed for aROM emulator it can be
used with Tornado tooals.

== WindRwver

JJJJJJJ

3-17

NetROM

One ROM emulator which can be used with Tornado toolsis
NetROM:

o Convertstarget with ROM socket to network node.

e 1 MB of emulation memory.

» Ethernet downloads viatftp or TCP.

e 2 KB of dual ported RAM for debug communication.
NetROM target server backend option bundled with Tornado:

* Provides accessto Tornado toolsprior to kernel activation.

See Tornado User’ s Guide for more information on configuring and
using NetROM.

== WindRwver

JJJJJJJ

3-18

Vendor Debug ROM

Vendor native debug ROM (when available) comes with target board.
Development software burned into ROM on target:

e Dynamic loader.

 Supported download path.

 Ability to jJump to address and begin execution.

* Debug tools.

« Diagnostics.
Target environment may have jumper allowing board to boot from
ROM or some non-volatile RAM.

After development can be replaced by ROM containing VxWorks
Image.

== WindRwver

JJJJJJJ

3-19

Vendor Debug ROM - cont.

Downloading code:
e Seria or network interface.

e Download path to RAM (VxWorks |oadable image).

 Often download paths to Flash (ROM -based or

ROM -resident images).

Debug ROM code suppliesdevice driver for communication interface

port (seria or network).

Example debug/diagnostic facilities (support varies):

o Set breakpointsand step code.
e Examine and modify memory.

o Set environmental parameters (bus clock speed, etc.).

o Self-test to verify integrity of target.

=

JJJJJJJ

3-20

Logic Analyzer

Provides tool to monitor processor’s address, data, control, and status
lines.

» Connectsto processor pins via multiple probes

« Contains memory for data capture.
Provides pre-kernel development services such as.

* Tracing onclock cycle or bus pattern triggers to monitor device
reSPONSES.

 Locate hardware interrupt sources.

e Monitor address access to check memory mapping.

* Processor state evolution to monitor code execution sequences.
Bundled with many | CEs

== WindRwver

JJJJJJJ

3-21

Target Feature Debug Tools

Native target environment may provide several features which can be
used as diagnostic/debug tools:

o Accessible memory mapped LEDs

 Local or off board persistent memory.

e Serial port.
Write library to manage target feature to be used as diagnostic/debug
tool:

 Flash LEDsN timesto mark code seguence events.

o Write state information to persistent memory for analysis after
system reboot.

» Polled seria driver to send character(s) to host to mark code

sequence events.
== WindRwver

JJJJJJJ

3-22

WDB Agent And Tornado Tools

Wind DeBug (WDB) agent is statically linked with VxWorksimage.
Provides advantages over traditional ROM monitor:

e One set of initialization code for agent and OS.
* Reduced size asagent shareslibrarieswith OS.

* Provides accessto full featured debug environment,

e Can run in system or task mode (post-kernel).

Requires target server backend support to access Tornado tools. For

pre-kernel development:
 NetROM (bundled).
o Serial line (bundled).
« Some | CEs(vendor or third party supplied).

=

JJJJJJJ

Host - Target Interaction

- e
Tool
{ 00 } VxWorks

tgtsvr

N -

back end ﬁNDB ﬁgﬁﬂﬂ

== WindRwver

JJJJJJJ

BSP Development Issues

Development Cycle Overview
Development Environment

3.3 Strategies For Getting Started

== WindRwver

JJJJJJJ

3-25

Getting Started

Obtain appropriate reference BSP, Tornado BSP Developer’ sKit for
VxWorks and devicedrivers

Once WRS software is provided but before starting development
code:

« Determine development environment and obtain appropriate
hardware.

o Configure target hardware based on documentation and
development strategy.

» Choose appropriate development image type.
 |dentify and configure required software tools.
Once Tornado access has been achieved, development environment

and strategy may be changed.
== WindRwver

JJJJJJJ

Development Environment

e Will need to determine:
e Development tooals.
e Target download path.
e For ICE or ROM emulator:
« Download tools provided.

o Determine to execute image in emulator memory or target
memory (ROM-resident or ROM-based devel opment image).

« Will need to provide debug tools for ROM emulator.
e For ROM monitor:

* Download and debug tools supplied.

* Development image may be loadable or ROM.

== WindRwver

JJJJJJJ

3-26

3-27

Development Environment - cont.

For vendor debug ROM:
* Download and debug tools provided.
 Load image to Flash (ROM -resident or ROM -based).

e Load image to RAM (can use loadable VxWorks image if ROM
debug code initializes RAM).

For tools without download facilities (logic analyzer and target
features):

« Use with toolssuppling download path.
e Burndevelopment image into ROM.

Target environment may need hardware configuration - boot from
Flash or ROM, external bus status, activation of download port,

ROM swap, etc.
== WindRwver

JJJJJJJ

3-28

Loadable vs. ROM images

Difference between ROM and |oadable image is |oadable image does
not initialize RAM.

If development image is aloadable image RAM will need to be
Initialized by some other facility:
o |f RAM initialization facility is not be present in production
environment, start with ROM image.

If loadable image is only option for development environment, and
RAM initialization facility will not be available in production
environment:

* Will need alternative environment to develop and test VxWorks
RAM initialization code.

Course will assume development image is ROM image.

== WindRwver

JJJJJJJ

3-29

Code Preparation

Development modules must be fully linked:
» Set appropriate cross-compiler, assembler, and linker flags.

Linker must produce image with appropriate format for download
methodol ogy.

WRS provides cross-devel opment tools:

Appropriate cross-compiler, assembler, and linker.

Architecture specific nmX command to dump object module
symbol table.

Architecture specific objdumpX command to compare host
assembly code with assembly code |oaded to target.

Routines to convert various object modulesto hex (with

appropriate S-record format).
== WindRuver

JJJJJJJ

3-30

Code Preparation - cont.

VxWorksimage code isbuilt using makefiles Macros provided to

specify build detalls:
o Cross-compiler and linker flags.
* Module components linked with image.
e Image types.

For code not linked into a VxWorksimage, developer will need to
create makefile(s) to produce fully linked object module(s) which can

be downloaded.:
o Use WRS supplied cross-development tools.

* May need different cross-compiler and linker options during

different phases of development.

 Build librariesan place them outside of Tornado directory

structure.

=

JJJJJJJ

Code Preparation Example

e A routineto establish initial contact with target:
» Blinkstarget LED on 68k board.
e L oaded viaseria line from UNIX hosgt.
o Target RAM previoudsly initialized.
 RoutineinfiletalkToTarget.c:
[* talkToTarget.c */
/* Routinesto blink lights ontarget board. */
#define WAIT_CNT 100000 /* Loop count for delay. */
[* Forward declarations. */
void lightBlink (void);
void wait (void);

== WindRwver

JJJJJJJ

3-31

Code Preparation Example - cont.

void lightBlink (void)

{
int * pBrdLight= (int *) OXxFFF40060;
for(;;)
{
pBrdLight = 0x43000000; / Turn light on. */

wait ();
pBrdLight = 0x41000000; / Turn light off. */
walt ();

}

return;

void wait (void)

o

inti;
for(i=0;i<WAIT_CNT;i++)

== WindRwer

JJJJJJJ

3-33

Code Preparation Example - cont.

First talkToTarget.c iscross-compiled usng WRS cross-compiler:
cc68k -¢c -DCPU=MC68040 - FLAGStakToTarget.c
Produces rel ocatable object module talkToTarget.o.
Symbol table dumped with nm68k:
00000000 T _lightBlink
00000028 T _wait
00000000 t gcc2_compiled.

Convert to fully linked module with desired download address
(0x100000) using WRS link-load tool:

|d68k -Ttext 100000 talkToTarget.o

== WindRwver

JJJJJJJ

3-34

Code Preparation Example - cont.

Produces a.out file, dumping symbol table with nme8k:

00000000 A _ DYNAMIC
00120000 B end
00120000 D _edata
00120000 B _end
00120000 T _etext
00100000 T _lightBlink
00100028 T _wait
00100000 t gcc2_compiled.
00100000 t talkToTarget.o

Convert to S-record format for serial line download using WRS toaol.

hex a.out > talkToTarget.hex
Thisfile may now be downloaded to target RAM.

== WindRwver

JJJJJJJ

3-35

Summary

First stage of BSP development involves:

« Obtaining appropriate reference BSP, template code, and device
drivers

» Define pre-kernel development environment.
Pre-kernel development environment will specify:

o Target download mechanism.

 Diagnostic and debug tools.

» Appropriate VxWorksdevelopment image.

WRS cross-development tools will be useful for preparing code not
statically linked with VxWorks.

Post-kernel development may employ a different devel opment

environment using Tornado tooals.
== WindRwver

JJJJJJJ

Chapter - 4

Pre-K ernel
| nitialization
Overview

a Wind River Systems, Inc. 1997 2 ,,,,,,,

4-2

Pre-Kernel Initialization Overview

4.1 Pre-Kerndl Initialization
Seguence

BSP Files

Building VxWorksImages

JJJJJJJ

VxWorks Boot and ROM Images

o Asoutlined in the Overview chapter, on power-up bootstrap code
executes.

e The processor is “jumped” to aroutine rominit() in ROM/Flash.

o rominit() resets processor, initializes memory system, and
performs any other required hardware initialization.

« rominit() branches to romStart() which loads the ROM image
(boot or VxWorks) into RAM.

* Processor jumpsto pre-kernel initialization code statically linked
Into VxWorksimage (usrinit()).

* For ROM-resident images.
o romStart() only loads data segment of image into RAM.

== WindRwver

JJJJJJJ

4-3

4-4

VxWorks Loadable Images

After “end-user” VxWorksimage isloaded in RAM, the processor is
“jumped” to the VxWorksload address.

A routine syslnit() resides at this address. This routine resets the
processor, and performs other hardware initialization if required.

 sysinit() branchesto usrinit() which completes the pre-kernel
Initialization.
Both of these routines are statically linked into aloadable VxWorks
Image.
sysinit() is functionally ssimilar to rominit(). The difference is that

rominit() initializes memory and syslnit() does not. (DRAM and
memory controller usually need to be initialized once.)

== WindRwver

JJJJJJJ

4-5

Generic Pre-Kernel Initialization

The routine usrinit() is ageneric routine:
o Statically linked into all VxWorksimage types.
« Callsroutine which activates VxWorkskernel.

Primary responsibility to place hardware in a quiet state so kernel can
be activated:

e Disable all hardware interrupts.
 Initialize hardware to a known quiescent state.

rominit()/syslnit() perform the minimal initialization necessary to
allow usrinit() to execute.

“VxWorks’ provides the remainder of the hardware initialization via
usrinit().

== WindRwver

JJJJJJJ

4-6

Generic Pre-Kernel Initialization - cont.

The routine which places hardware in the initial quiet state prior to
activating the kernel issysHwInit().

The routine which activates the VxWorkskernel is kerne Init().

kernelInit() activates the multitasking environment and spawns a task
which:

 |nstallsdrivers and creates devices.
o InitializesVxWorkslibrary facilities.
o Calls application start-up code.

JJJJJJJ

4-7

Pre-Kernel Initialization Sequence
VxWorks Boot and ROM Images

Fower-up :

Load Image
Segments into
RAM !

Code comumon
to all VxWorks
Image types :

romdnit {)

¥
romStart()

u.'-.:rIm'F{J

e sysHwlnit()

| kernellnit()

=

JJJJJJJ

4-8

Pre-Kernel Initialization Sequence
Loadable VxWorks Image

Fower-up :

Load lmage
SESIMents into
RAM :

Code common
to all Vx\Warks

image types :

romdnit()

romStart()

usrinit(]

| sysHwlnic()

| e kernellnit()

=

JJJJJJJ

4-9

What Executes Where?

rominit() always executes in ROM/Flash, and jumps to romStart() in
ROM/Flash.

romStart() always begins execution in ROM/FHash.

 ROM -resident images load data segment to RAM and continue to
execute in ROM.

* Images which are not ROM-resident copy start-up code to a RAM
address, and then jump to that RAM address.

usrinit() executes out of RAM except for ROM-resident boot and
ROM -resident VxWorksimages.

syslnit() always executes out of RAM.

== WindRwver

JJJJJJJ

Pre-Kernel Initialization Overview

Pre-Kernel Initialization Sequence
4.2 BSP Files

Building VxWorksImages

== WindRwver

JJJJJJJ

4-11

BSP Files - Overview

BSP component files are located in:
o ../config/<bspName>

Directories containing BSP related files are:
o _/config/all
e ../n/make

Related directories providing support for device drivers will also be
referenced during BSP development:

e ./src/drv
e ./hdrv

BSP development will focus on BSP files. All files which must be
customized are in ../config/<bspName>.

== WindRwver

JJJJJJJ

4-12

BSP Files - Overview

Filesin the ../config/all directory are delivered as part of the Tornado
distribution. These files should not be modified.

Filesin the ../config/<bspName> directory are not delivered as part of
the Tornado distribution:

 BSPisasegparate product (sales and installation).

All VxWorksimage type builds are controlled by the Makefile in the
..[config/<bspName> directory.

Support makefiles containing rules and dependencies are located In
./h/make. Modifications will be needed in the primary Makefile as
part of BSP devel opment.

== WindRwver

JJJJJJJ

4-13

BSP Files - Overview

The components of aBSP are:
o Sourcefiles.

* Includefiles.

o Makefiles.

o Derived files.

e Document files.

BSP, and BSP related files will be presented as follows:

o Sourcefilesinthe ../configdirectories.
* Includefilesin the../configdirectories.

« Makefilesin ../config/<bspName> and ../h/make.

e Derived filesin ../config/<bspName>.
e Document filesin ../config/<bspName>.

=

JJJJJJJ

4-14

BSP Related Files - Source Files

BSP related source filesin ../config/all:

bootConfig.c - The primary initialization file for VxWorksboot
Images. Contains the routine usrinit().

usrConfig.c - The primary initialization file for VxWorksimages.
Contains the routine usrinit().

bootlnit.c - Consists of the routine romStart() and two support
routines whichromStart() calls.

version.c - Used for each VxWorks build. Provides VxWorks
version |ID aswell as date and time of build using the ANSI
DATE and TIME_macros.

aataSegPad.c - Insures that text and data segments of VxWorks
Images do not share a MMU page when using VxVMI. Not used
In the pre-kernel initialization sequence.

== WindRwver

JJJJJJJ

BSP Files - Source Files

 BSPsourcefilesin ../config/<bspName>:
e rominit.s - Assembly language source for rominit().
e sysALib.s - Assembly language source for sysinit().

e syslLib.c - File containing routines providing board-level accessin
a generic fasnion. It #includes al driver modules (or causes them
to be linked into VxWorksimages). Contains the routines
sysHwiInit(), sysHwInit2(), aswell as many other routines which
must be provided as part of a BSP. Primary BSP sourcefile.

== WindRwver

JJJJJJJ

4-15

BSP Files - Source Files

e Optiona BSP source filesin ../config/<bspName>:

e sysSerial.c - File containing routines to provide initialization for
seria |/O devices. Some routines in thisfile are called via
sysHwiInit() as part of pre-kernel initialization. Not required if
serial 1/0 interface is not used.

e SysScs.c - File containing SCSI configuration routines. These
routines execute after the kernel is activated. Not required if SCS
support not needed.

e sysNet.c - File containing routines for initialization and
configuration of network interface devices. Not required if LAN
Interface is not present.

o If the BSP requires any unique drivers they should be located in
./config/<bspName> (not ../src/drv).
== WindRwver

JJJJJJJ

4-16

BSP Files - Include Files

« BSPrelated includefilesin ../config/all:

« configAll.h - Thisfile establishes the default configuration for
VxWorks It should not be modified.

« BSPincludefilesin ../config/<bspName>:

e config.h - Thisfileis used to modify VxWorksand BSP hardware
configurations. This file will be modified as BSP devel opment
evolves.

e <pbgp>.h - Thisfile contains fixed hardware values (hardware
addresses, hardware interrupt levels, etc.). Should not be modified
unless hardware environment is modified.

== WindRwver

JJJJJJJ

4-17

4-18

BSP Files - Makefiles

BSP makefile in ../config/<bspName>:

o Makefile - Controls building of all VxWorksimage types.
Probably will need to be modified as part of the pre-kernel code
devel opment.

BSP related sub-makefilesin ../h/make:

e rules.bsp - Contains the rules for building the various VxWorks
Image types, as well as the rules for BSP object modules which

are used in VxWorks builds.
o defsbsp - Contains definitions of BSP build control macros for
compilation and linking.
Other sub-makefilesin ../n/make control host and architecture
specific build parameters.

== WindRwver

JJJJJJJ

4-19

BSP Files - Derived Files

BSP derived filesin ../config/<bspName>:

VxWorksimages.
V xWorks boot images.

Object modules generated when source filesin the ../ config
directories are compiled (bootConfig.o, usrConfig.o, bootlnit.o,
rominit.o, sysALib.o, and sysLib.o).

depend.<bspName> - Make will generate this dependenciesfile
when a VxWorksbuild is done.

C files and associated object module files for atarget resident
symbol table (symThbl.c and symTbl.o) and C++
constructors/destructors(ctdt.c and ctdt.o).

VxWorksimage types will be discussed in greater detail |ater.

== WindRwver

JJJJJJJ

BSP Files - Document Files

 BSP documentation filesin ../config/<bspName>:

o target.nr - File containing board specific information necessary to
execute VxWorksimage types. Fileis nroff format and divided
INto sections involving supported/unsupported features,
Instructions for using boot ROM<s, summary of hardware devices,
target environment layout, and description of board jumpers.

o target.txt - ASCII version of target.nr.

 README - File contains BSP release record. Thisinformation is
averson number/revision number.

e A BSP version number identifies the BSP' s generation, a BSP
revision number incrementally identifies a release within a BSP
generation.

4-20 % rrrrrrr

Pre-Kernel Initialization Overview

Pre-Kernel Initialization Sequence
BSP Files

4.3 Building VxWorks Images

== WindRwver

JJJJJJJ

4-22

VxWorks Builds

VxWorksbuilds are controlled by the Makefilein the ../
config/<bspName> directory.

The type of VxWorksimage which will be built is specified by the
object type name specified. These “target” names appear in thefile
./h/make/rules.bsp.

VxWorksimage types can be divided into:
o VxWorksimages - Loadable, ROMable, and ROM-resident.
« VVxWorksboot images - ROMable and ROM-resident.

All ROMable (non-ROM -resident) images can be sub-divided as
compressed or uncompressed.

== WindRwver

JJJJJJJ

4-23

VxWorks Image Types

The build rules for VxWorkswill produce images for the following
object type names.

vxWorks - Loadable binary VxWorksimage. (Also builds a
separate vxWorks.sym symbol tablefile).

vxWorks rom - Uncompressed ROMable binary VxWorksimage.

vxWorks st - Stand-alone loadable binary VxWorks image.
Symbol table linked in.

vxWorksst_rom - Compressed ROMable version of vxWorks <.

vxWorksres rom - Uncompressed ROM-resident version of
vxWorks <.

vxWorksres rom _nosym - ROM-resident version of vxWorkss
without symbol table.

== WindRwver

JJJJJJJ

4-24

VxWorks Image Types - continued

 bootrom - Compressed ROMable binary VxWorks boot image.

* bootrom_uncmp - Uncompressed rommable binary VxWorks boot
Image.

* bootrom res- ROM-resident binary VxWorks boot image.

S-record formatted versions for all rommable and ROM-resident

Images can be built by using the object type name show here and
adding a“.hex” extension.

Note, uncompressed ROMable images may reguire extra capacity
ROMs.

All ROMable and ROM -resident images can be configured to be
“burned’ into Flash or PROM.

== WindRwver

JJJJJJJ

4-25

The VxWorks Makefile

Thefile Makefile in the ../config/<bspName> directory controls all

VxWorksbuilds. It contains:
* Required BSP specific macros.
e Additional (non-required) support macros.
e Includes of support makefilesin ../h/make.
Some macros defined in Makefile are also defined in

./[config/<bspName>/config.h. Definitions must be identical.
Compilation rules, linking rules and support macro definitions for

building images are in ../h/make.

=

JJJJJJJ

VxWorks Makefile Macros

 The BSP developer isresponsible for defining the following required
BSP gpecific macrosin ../config/ <bspName>/M akefile:

e CPU - Target CPU.

« TOOL - Host tool chain (e.g., gnu)

« TGT _DIR - By default set to $(WIND_BASE)/target.
« TARGET_DIR - BSP directory name.

« VENDOR - Board manufacturer’ s name

e BOARD - Name of board.

« ROM_TEXT_ADRS - Boot ROM entry address in hexadecimal.
Will be a Flash address if processor is “jumped” to Flash on
power-up.

== WindRwver

JJJJJJJ

4-26

VxWorks Makefile Macros -continued

e ROM_SIZE - Size of ROM areain hexadecimal.

« RAM_LOW_ADRS - Address at which non-ROM-resident
application VxWorksimages begin. (It isalso theinitial load
address for compressed VxWorks boot images. Thiswill be
discussed in the next chapter.)

e RAM_HIGH_ADRS - Destination address for non-ROM- resident
VxWorksboot images. (Also initial load address for non-ROM -
resident compressed VxWorks ROM images.)

« HEX FLAGS - Architecture specific flags for building S-record
formatted versions of images.

« MACH_EXTRA - Extra machine-dependent filesto be linked.
Initialize as empty declaration.

== WindRwver

JJJJJJJ

4-27

4-28

VxWorks Makefile Macros -continued

The following macros must be identically defined in
./h/<bspName>/config.h:

« ROM_TEXT ADRS
« ROM_SIZE

« RAM_LOW ADRS
« RAM_HIGH_ADRS

There may also be some architecture specific macros required in the
Makefile file. (Example, the 1960 CPU needs to know where to link
the Initial Boot Record.)

Hexadecimal addresses used in macro definitions should not have a
leading Ox in Makefile.

== WindRwver

JJJJJJJ

4-29

VxWorks Makefile Macros For
Customized Builds

Additional (non-required) macros to customize VxWorksbuilds fall
Into two categories.

* Those used by application developers.
e Those used by BSP developers.

Macros for application developers contain ADDED in their name.
These macros allow the user to specify compile time options.

Macros for BSP developers contain EXTRA in their name. These
macros allow additional object modules to be compiled and linked
with VxWorks.

== WindRwver

JJJJJJJ

4-30

The Makefile and Sub-makefiles

The Makefile file contains includes of sub-makefiles containing
definitions and rules necessary for VxWorks builds. These sub-
makefilesare in ../h/make:

defs.bsp - File containing default make definitions. These
definitions can be customized in Makefile.

make.(CPU)(TOOL) - File contains CPU specific macros for a
specific tool chain.

defs$(WIND HOST TYPE) - File where host specific macros
are defined.

rules.bsp - File containing rules for VxWorksbuilds.

rules.$(WIND_HOST TYPE) - Files contains host specific build
rules.

== WindRwver

JJJJJJJ

4-31

Summary

Pre-kernel initialization code is responsible for placing the hardware
environment in a state which allows the VxWorkskernel to be
activated.

Pre-kernel initialization code Is specific to boot strategy and statically
linked into the appropriate VxWorks image type:

L oadable image - Contains application code.
« ROM image - May contain application or boot code.
 ROM-resident image - May contain application or boot code.

VxWorks builds controlled by Makefile file which uses sub-
makefiles containing make definitions and rules.

== WindRwver

JJJJJJJ

Chapter - 5

Pre- Kerneg
| nitialization - Boot
Specific Code

a Wind River Systems, Inc. 1997 2 ,,,,,,,

5-2

Pre-Kernel Initialization - Boot
Specific Code

5.1 Boot Specific vs. Generic Code
rominit.s : rominit()
PIC and VxWorks
bootlnit.c : romStart()

sysALib.s: sysinit()

JJJJJJJ

5-3

VxWorks Image Types and Generic
Code

Details of pre-kernel initialization depend on VxWorks image type
characteristics:

« ROM image - Boot or “end-user” image.

a. compressed

b. uncompressed
 ROM-resident image - Boot or “end-user” image.
» L oadable image - “End-user” image.

Generic pre-kernel code common to all image typesis usrinit() and
the routines it calls. These will be discussed in the next chapter.

== WindRwver

JJJJJJJ

5-4

Boot Specific Pre-kernel
Initialization Code

V xWorksimage type specific code:

e rominit()

e romStart()

e sysinit()

rominit() and romStart() execute for all images “burned” into ROM.
syslnit() only executes for all loadable VxWorksimages.

rominit() and sysinit() are ssmilar routines except rominit() initializes
memory and syslnit() does not (thisis done by rominit() in the boot

Image).

== WindRwver

JJJJJJJ

5-5

Choice of First Image

Which type of image is developed first depends on download path:
 Download to RAM - Use vxWorks

 Download to ROM - Use vxWorks rom or
vxWorksres rom_nosym.

The initial image should not be compressed or contain a symbol
table. These features can be added | ater.

Thefirst image for a download path to ROM:

o vXWorks rom - Allows software breakpoints for code which
executesin RAM.

o vXWorksres rom nosym - Provides asmaller RAM footprint
(and possibly reduced start-up time).

== WindRwver

JJJJJJJ

5-6

Pre-Kernel Initialization - Boot
Specific Code

Boot Specific vs. Generic Code
5.2 romlnit.s: rominit()

PIC and VxWorks

bootlnit.c : romStart()

sysALib.s: sysinit()

JJJJJJJ

S5-7

rominit() Basics

First code to execute on power-up. Entry point for all VxWorks ROM
Images.
Performs minimum reguired setup to execute romStart(). The

remainder of hardware initialization is performed by generic pre-
kernel code.

Routine must:
o Mask processor interrupts and reset processor.
 Initialize the memory system.

* |nitialize stack pointer and other registers to begin executing
romStart() and passing the boot type.

Routine is written is assembly language and resides in file rominit.s.

== WindRwver

JJJJJJJ

5-8

Architecture vs. BSP Specific Issues

Much of what romlInit() needs to do is processor specific and can be
copied from the reference BSP-

» Masking processor interrupts.
e |nitializing on-processor caches.

Initializing the stack pointer.

Non-processor specific initialization involves DRAM and will be
specific to the hardware environment.

Walt states.

Refresh rates.

Chip selects (bridge/bus/memory controllers, etc.)
Disabling of L2 caches (if necessary).

=

JJJJJJJ

5-9

Cold vs. Warm Boots

Two boot types:
e Cold boot - Power-up of hardware environment.

 Warm boot - Call to reboot(), X, or exception at interrupt level.
The routine which passes control to the ROM monitor is
sysToMonitor() in sysLib.c.

Where romlnit() begins execution is a function of the boot type:

« Cold boot - Execution begins at the entry point rominit(). Boot
typeisforced to be BOOT _COLD.

 Warm boot - Execution begins at rominit() plus asmall offset
(usually 4 bytes). Boot type is saved.

Boot type (cold/warm) is stored in an architecture specific regi ster

and passed to romStart().
== WindRwver

JJJJJJJ

5-10

Stack Pointer Initialization

Macro which configures beginning of stack is STACK_ADRSIn
configAll.h.

For ROM-resident images the stack will begin:

 InRAM at the start of the VxWorks data segment for stacks
which grow down.

* In RAM at the start of the VxWorks data segment |ess the size of
the stack for stacks which grow up.

For non-ROM -resident images the stack will begin:

* InRAM at the start of the text segment of the VxWorksimage for
stacks which grow down.

* InRAM at the start of the text segment of the VxWorksimage
less the size of the stack for stacks which grow up.

== WindRwver

JJJJJJJ

5-11

rominit() - PIC

romlnit(), which runs in ROM/Hash, must be written as Position
Independent Code (PIC) to support the various boot strategies for
VxWorksimages.

PIC code is program counter (PC) relative.

If a ROM address cannot be made program counter relative then it
must be recomputed by:

o Subtracting rominit (The entry point for rominit().)

e Adding ROM_TEXT_ADRS (Boot ROM/Flash entry address.
Where ROM codeis*burned”.)

This agorithm ensures that a ROM address is expressed relative to
the PC value for rominit() regardless of the address assigned to
rominit() by the compiler/linker.

== WindRwver

JJJJJJJ

5-12

romlinit() - Some do’s and don'’ts

Perform minimum necessary initialization. Leave most hardware
Initialization to generic routine sysHwinit().
Do not call out to other modules or routines:
e May cause linking problems for compressed images.
« Call outsto C routines may use absolute not PC relative
addressing.
Make surerominit() isthe first routine in rominit.s.
Start with romlinit() from reference BSP.
Make sure macros in Makefile and config.h are correct:
« ROM_TEXT_ADRS
« ROM_SIZE

== WindRwver

JJJJJJJ

5-13

Pre-Kernel Initialization - Boot
Specific Code

Boot Specific vs. Generic Code
rominit.s: rominit()

5.3 PIC and VxWorks
bootlnit.c : romStart()

sysALib.s: sysinit()

JJJJJJJ

5-14

PIC and VxWorks Builds

romlnit() which executes in ROM needs to be PIC to support various
VxWorksimage types.

Thisis because romlinit() islinked into all non-loadable VxWorks
Images, al of which do not execute in ROM.

To understand how rominit() (as well as other routines) are linked
Into VxWorksimages the build rules in ../n/ make/rules.bsp must be
examined.

Examine the link instructions for vxWorks rom:
« Uncompressed rommable binary image.
e Begins execution in ROM.
e Transfers execution to RAM inromStart().

== WindRwver

JJJJJJJ

vxWorks rom Build

 Thelink instructions for the target vxWorks romare:
vxXWorks rom:

$(LD) $(LDFLAGS) $(LD_PARTIAL_FLAGS) \
-0 ctmp.o usrConfig.o \
$(MACH_DEP) version.o $(LIBS)

$(LD) $(LDFLAGS) -e $(ROM_ENTRY) $(LD_LOW FLAGS)\

-0 $@ rominit.o bootlnit_uncmp.o dataSegPad.o \
ctmp.o ctdt.o

 Dots, “....” indicate missing code. Missing code consists of

compilation and file management instructions.
== WindRwver

JJJJJJJ

5-15

5-16

vxWorks rom Build Link Flags

Thefirst link builds most of the image and places it in the relocatable
module ctmp.o.

The second link builds the final fully linked relocatable image
vxWorks rom (thisistarget name for “$@").

Thelink flags are:
e LD =Ildppc (make.(CPU)(TOOL))
« LDFLAGS=-X -N (defs.bsp)
« LD _PARTIAL_FLAGS=-X -r (defs.bsp)

Note, it isthe “-r” flag which produces a partially linked relocatable
module (ctmp.o) for the first link, but not for the second which
produces vxWorks rom.

== WindRwver

JJJJJJJ

5-17

vxWorks rom Build - ctmp.o

The temporary rel ocatable module ctmp.o uses the macro expansions
(defsbsp):

 MACH _DEP = sysALib.o sysLib.o ..
o LIBS=_/lib/lib(CPU)(TOOL)vx.a
Pre-kernel initialization code in ctmp.o:

e sysinit() - in sysALib.o

o sysHwinit() - insysLib.o

e usrinit() - in usrConfig.o

Remainder of the ctmp.o contains modules from the appropriate
VxWorkslibrary archive and version.o.

The remainder of the pre-kernel initialization code is included in the

second link.
== WindRwver

JJJJJJJ

5-18

vxWorks rom Image

Thefinal link includes the remainder of the kernel initialization code:
e rominit() - inromlnit.o
o romStart() - in bootInit_unmcp.o

Thefinal vxWorks rom image uses the macro expansions (defs.bsp):
« ROM_ENTRY =_rominit
e LD LOW _FLAGS = -Ttext $(RAM_LOW_ADRYS)

The ROM_ENTRY macro for the “-e” flag insures that rominit() will
be the execution entry point.

TheLD LOW_FLAGS produces text addresses starting in RAM not
ROM!

== WindRwver

JJJJJJJ

5-19

vxWorks rom Image and PIC

The vxWorks romimage is“burned” into ROM (or Flash) at the

address ROM_TEXT_ADRS (Makefile). Thisishow ROM_ENTRY
= ROM_TEXT_ADRS.

Execution will begin in ROM even though the linker has assigned
RAM addresses to the text for rominit().

Thisisthe reason why rominit() must be PIC code for thisimage.

For addresses which are not program counter relative, address
recalculations are usually done with a macro:
#define ROM_OFFSET(x)((X) - _romInit+ROM_TEXT_ADRS)

== WindRwver

JJJJJJJ

5-20

vxWorks.res rom_nosym

Next consider a ROM-resident image:

vxWorks.res rom_nosym:

$(LD) -0 5@ $(LDFLAGS) $(ROM_LDFLAGS) \
-e $(ROM_ENTRY) $(RES_LOW_FLAGS) \
romlnit_res.o bootlnit_res.o\
ctmp.o ctdt.o

Thelinker flag RES LOW_FLAGS expands to:
-Ttext $(ROM_TEXT_ADRS) -Tdata $(RAM_LOW_ADRS)

e Textisassigned ROM addresses.
o Dataisassigned RAM addresses.

rominit() does not need to be PIC for thisimage, or any ROM -
resident image.

== WindRwver

JJJJJJJ

5-21

Pre-Kernel Initialization - Boot

Specific Code

Boot Specific vs. Generic Code
romlnit.s: rominit()
PIC and VxWorks

5.4 bootlnit.c : romStart()

sysALib.s: sysinit()

JJJJJJJ

5-22

romStart() Basics

Jumped to by rominit() which places the start type on the stack for
romStart().

Performs necessary code relocation, uncompression, and RAM
Initialization for ROM Iimages:

o Copies appropriate ROM image segmentsto RAM.

» Clears portions of RAM not being used (cold boot).

e Performs uncompressionif required.

 Passes control to generic pre-kernel code (usrinit()).

Codeiswritten in C and resides in ../all/bootlnit.c. Portion which
executes in ROM should be PIC.

Do not modify code. Functionality is controlled by configuration

Macros.
== WindRwver

JJJJJJJ

5-23

Code Relocation

Which image segments are relocated by romStart():
« ROM images - Text and data.
 ROM-resident images - Data.

Final RAM destination for ROM image segments:

o Uncompressed VxWorksboot - RAM_HIGH _ADRS

Compressed VxWorksboot - RAM_HIGH_ADRS
Uncompressed VxWorks- RAM_LOW_ADRS
Compressed VxWorks- RAM_LOW_ADRS

* ROM-resident VxWorks- RAM_LOW_ADRS

ROM -resident VxWorksboot - RAM_HIGH ADRS

For uncompressed ROM images there is only one relocation from

ROM to the final RAM destination. 2

JJJJJJJ

5-24

Compressed Image Relocations

Compressed ROM images contain an uncompressed component and a
compressed component.

rominit.s, and bootlnit.c code is in the uncompressed component.
Remainder of image is compressed.

There are two relocations for these images:

 First relocation moves uncompressed component from ROM to
RAM.

 Second relocation occurs when compressed component of image
IS uncompressed and relocated from ROM to final destination in
RAM.

Second relocation is performed by romStart() in RAM. romStart() is
moved into RAM during first relocation.

== WindRwver

JJJJJJJ

5-25

Compressed Binary Images

Compressed VxWorks boot images:

» Relocate uncompressed component of ROM image to RAM

location RAM_LOW_ADRS.

« Uncompression code executes in RAM uncompressing and
relocating VxWorksboot image from ROM to RAM location

RAM_HIGH ADRS.
« Execution jumpsto usrinit().

Compressed VxWorks application images.

» Relocate uncompressed component of ROM image to RAM

location RAM_HIGH_ADRS.

« Uncompression code executes in RAM uncompressing and
relocating VxWorksimage from ROM to RAM location

RAM_LOW_ADRS.
« Execution jumpsto usrinit().

=

JJJJJJJ

5-26

Clearing Memory For Cold Boots

For cold boots RAM isre-initialized.

Mitigates parity error generation for some hardware (usually

activated by read access without initialization).

After romStart() relocates ROM image to RAM (but prior to
uncompression if necessary) it clears all memory not filled with text

and data.
Memory isre-initialized to zero along at atime.
Additional memory which is not re-initialized:

e Resarved using USR_RESERVED MEM (config.h).

* Reserved using RESERVED (configAll.h).
* Reserved using STACK_SAVE (configAll.h).

=

JJJJJJJ

5-27

romStart() Stack

Stack pointer for romStart() start initialized to STACK_ADRS by
rominit().

romStart() does not return. It’ s stack i1s used until kernel is activated.

The VxWorkskerndl is activated by kernelInit() which spawns a task
(with its own stack) to complete system configuration and start user
application (usually by spawning another task).

Memory for romStart() stack is not re-initialized on cold boot.

JJJJJJJ

5-28

Checking Initialization

After final relocation of image, there may still be problems:

 RAM access not working properly.

e For ROM-resident images data segment may not have been

relocated to correct address in RAM.
« Download environment problems not solved.
» Code problems.

Verify RAM access by writing to an un-initialized global:

int dummyVar; /* BSS segment variable */

dummyVar = 13;
If (dummyVar !=13)
somethingWrongWithRAM();

JJJJJJJ

5-29

ROM-resident Data Segment

For ROM-resident images verify that the data segment has been
correctly initialized after the final relocation:
static int testVal = 13; /* data segment variable */

if (testVal != 13)
somethingWrongWithDat&);
If there are problems and RAM access works, check relocation of
data segment to RAM.

For ROM-resident images romStart() copies the data segment to an
architecture specific RAM address computed as an offset from the
end of text in ROM.

Check offset, particularly if WRS tools were not used to make ROM -
resident image.
== WindRwver

JJJJJJJ

5-30

Modifying romStart()

During BSP development debug code may need to be placed into
bootlnit.c.

Do not modify ../config/all/bootinit.c. Make a copy of thisfilein the
BSP directory, and modify the copied file.

To link the copy and not the original file, add the following line to
Makefile after the macro HEX FLAGS:
BOOTINIT = bootlnit.c

Macro BOOTINIT is used to access bootlnit.c during VxWorks
builds in rules.bsp.

Default value for this macro is defined in
defs$(WIND HOST TYPE) as../config/all/bootInit.c.

== WindRwver

JJJJJJJ

5-31

romStart() Configuration Macros

Configuration macros control behavior of romStart(). These macros
are defined in config.h, Makefile, configAll.h, and bootlnit.c.

BSP developers are responsible for the configuration macros in
config.h, <bsp>.h, and Makefile.

bootlnit.c should not be modified. Macros in thisfile are:

e BSP (or architecture) dependent. - Controlled from config.h,
Makefile, and configAll.h.

* Image type specific. - Controlled at compile time in rules.bsp.
BSP developer does not need to modify.

« Specific to code in bootlnit.c.

== WindRwver

JJJJJJJ

5-32

romStart() Configuration Macros
continued

romStart() configuration macros defined in config.h:

LOCAL _MEM_LOCAL_ADRS - Start of RAM.
LOCAL MEM _SIZE - Size of RAM.
USER RESERVED MEM - Number of reserved bytes.

Memory reserved from top of RAM and will not be cleared on
cold boot or used by VxWorks.

RAM HIGH ADRS - RAM load address for non-ROM -resident
VxWorks boot images.

RAM_LOW_ADRS - RAM load address for non-ROM -resident
VxWorks application images.

ROM_TEXT ADRS - Boot ROM entry address.
ROM_SIZE - Size of ROM.
ROM_ BASE ADRS - Base address of ROM.

== WindRwver

JJJJJJJ

5-33

romStart() Configuration Macros

continued

romStart() configuration macros defined in Makefile:
« RAM_HIGH_ADRS - Must agree with config.h
« RAM_LOW_ADRS - Must agree with config.h
« ROM_TEXT_ADRS - Must agree with config.h
« ROM_SIZE - Must agree with config.h
romStart() configuration macros defined in configAll.h:

« RESERVED - Number of reserved bytes. Memory reserved from
bottom of RAM, and will not be cleared on cold boot.

« STACK_SAVE - Maximum stack size for romStart().

Architecture specific. Not cleared on cold reboot.

=

JJJJJJJ

5-34

romStart() Configuration Macros
continued

romStart() configuration macros defined in bootlnit.c:

USER RESERVED_ MEM - Will be defined as zero if not
defined in config.h.

SYS MEM BOTTOM - For cold boot, memory will be cleared
starting at this address. It expands to:

LOCAL_MEM_ LOCAL_ADRS + RESERVED.

SYS MEM_TORP - For cold boot, memory will be cleared up to
(but not including) this address. It expands to:
LOCAL MEM _LOCAL_ADRS+

LOCAL_MEM SIZE - USR RESERVED MEM.
UNCMP_RTN - Name (address) of uncompression routine.
ROM _OFFSET - Macro to re-compute absol ute addresses which

are not PIC compatible.
== WindRwver

JJJJJJJ

5-35

romStart() Configuration Macros
continued

RAM_DST_ADRS - Final relocation address for compressed
Image. Default valueis RAM_HIGH_ADRS, redefined when
necessary at compiletime in rules.bsp.

RESIDENT_DATA - Architecture specific. Defined as
RAM_DST_ADRS for MIPS and PowerPC. Defined as the start
of the data segment otherwise.

ROM_COPY _SIZE - For uncompressed and ROM -resident
Images size of image to relocate.

ROM_BASE ADRS - Defined in config.h. Redefined as rominit
If BOOTCODE_IN_RAM isdefined.

binArrayStart - Start of compressed binary image.
binArrayEnd - End of compressed binary image.

== WindRwver

JJJJJJJ

romStart() Configuration Macros
continued

e Optionally defined configuration macros for romStart():

« BOOTCODE_IN RAM - Used to not clear RAM on cold boot. If
RAM isaready initialized this macro allows BSP developer to
avold RAM initialization on cold boot. Must be defined in
config.h (x86 architecture only).

« UNCOMPRESS - Defined at compile timein rules.bsp for
uncompressed image. Does not need to be redefined.

« ROM_RESIDENT - Defined at compile time in rules.bsp for
ROM -resident image. Does not need to be redefined.

== WindRwver

JJJJJJJ

5-36

5-37

ROM Layout

Compressed
Image Segment

Uncompressed
Image Segment

ROM_BASE_ADRS

——

ROM_SIZE

binArrayEnd

binArrayStart

ROM_TEXT_ADES

ROM_BASE_ADRS

=

WindRrver

5 Y s ¥ 2 M3

5-38

RAM Layout

User reserved

zero hilled
on cold boot

Eelocated
ROM Image

STACK _SAVE

zero filled
on cold boot

RESEREVED

sysPhysMemTop()

SYS5_MEM_TOP

RAM DST_ADRS

S5¥S_MEM _BOTTOM

LOCAL_MEM_LOCAL_ADRS

=

WindRrver

5 Y s ¥ 2 M3

5-39

romStart() - Some do’s and don’ts

Do not modify code. Functionality is controlled by modifying
configuration macros.

Code iswritten in C. Portion which executes in ROM should be PIC
and should use a macro to compute PC relative addresses when
necessary.

Sequence of execution:
o Copies appropriate ROM image segments to RAM.
» Clears portions of RAM not being used (cold boot).
» Performs uncompressionif required.
 Passes control to generic pre-kernel code (usrinit()).
usrinit() stack begins at final relocation address and grows away from

relocated image.
== WindRwver

JJJJJJJ

5-40

Pre-Kernel Initialization - Boot

Specific Code

Boot Specific vs. Generic Code
rominit.s: rominit()

PIC and VxWorks

bootlnit.c : romStart()

5.5 sysALib.s: syslnit()

JJJJJJJ

5-41

sysinit() Basics

Entry point for loadable VxWorks images. Processor is jumped to
syslnit() after image is loaded into RAM.

syslinit() resides at the load address for |oadable VxWorksimages
RAM_LOW_ADRS.

Performs minimum reguired setup to execute usrinit(). The remainder
of hardware initialization is performed by generic pre-kernel code.

Performs all the functions of rominit() except for memory system
Initialization.
Routine is written in assembly language and resides in file sysALIb.s.

== WindRwver

JJJJJJJ

5-42

sysinit() Code

Routine must:
e Mask processor interrupts and reset processor.

 Initialize stack pointer and other registers to begin executing
usrinit() and passing the boot type.

Hardware initialization completed in sysHwinit().

Once romlnit() code has been written, it will only need to be
modified to create syslnit():

e Memory initialization code removed.
« Upon completion jump to usrinit() not romstart().
e Code executesin RAM, does not need to be PIC.
Linked into all VxWorksimage types but only executed for loadable

images. 2 i .

JJJJJJJ

5-43

Stack Initialized by sysinit()

Stack for usrinit() set up by sysinit() grows away from VxWorks
Image to lower addresses in memory.

Must be accounted for when determining load address for VxWorks
Image.
Memory between RAM_LOW_ADRS and
LOCAL _MEM_LOCAL_ADRS contains parameters which should
not be over-written by the stack for usrinit() (which never returns).
Some of these parameters are target environment specific others are
generic:

 EXxception description message.

« Shared memory anchor address.

e Boot line.

JJJJJJJ

5-44

RAM Layout

YVaxWorks

= sysPhyvsMemTop()

Initial Stack

RAM LOW_ADRS

-— LOCATL, MEM LOCAL_ADRS

=

WindRrver

5 Y s ¥ 2 M3

5-45

Summary

Details of pre-kernel initialization depend on VxWorks image type.
VxWorksimage type specific code:

e rominit()

e romStart()

e syslnit()
rominit() and romStart() execute for al images “ burned” into ROM.
syslnit() only executes for |loadable VxWorksimages.

Next stage of pre-kernel initialization (following romStart() or
syslnit()) is the generic routine usrinit().

== WindRwver

JJJJJJJ

Chapter - 6

Pre- Kernd
| nitialization - Generic
Code

a Wind River Systems, Inc. 1997 2 ,,,,,,,

6-2

Pre-Kernd Initialization - Generic Code

6.1 Generic Code Overview
sysHwiInit()

Activating the Kernel

JJJJJJJ

6-3

Generic Pre-Kernel Initialization
Responsibilities

The generic phase of pre-kernel initialization must produce an
environment which allows the VxWorks kernel to be activated.

Prior to kernel activation the system memory pool has not been
Initialized. Some implications.

e No multi-tasking.

* No interrupt handlers.

e No I/O access to hardware.

 No network interface access.

Post-kernel code performs initialization requiring system memory

pool or multi-tasking environment.
== WindRwver

JJJJJJJ

6-4

Generic Pre-Kernel Initialization

Generic pre-kerndl initialization is performed by the C routine
usrinit():

o Statically linked into all VxWorksimage types.

« Callsroutine which activates VxWorkskernel.

Primary responsibility to place hardware in a quiet state so kernel can
be activated (sysHwInit()):

e Disable all hardware interrupts.
 |nitialize hardware to a known quiescent state.

romlnit()/sysinit() perform the minimal initialization necessary to
allow usrinit() to execute.

usrinit() performs the minimal initialization necessary to activate

kernel.
== WindRwver

JJJJJJJ

6-5

Activating the WDB Agent Before
the Kernel

Tornado tools may be accessed using the WDB agent in system mode
prior to kernel activation.

WDB agent can be activated in system mode using a polled serial
driver after sysHwlnit() has executed:

 Interrupts are masked until kernelInit() executes.

» Necessary serial controller device initialization is performed in
sysHwInit().

System mode debugging will allow developer to access CrossWind:
e Debug interrupt handlers.
» Debug post-kernel device initialization.

== WindRwver

JJJJJJJ

Pre-Kernel Initialization Sequence -VxWorks
Boot and ROM Images

HowWer-up - roamdnit(}

Load lmage
Segments into romStart(}
RAN :

Code commorn
to all VxWorks usidnit()
image {ypes :

- e sysHwInit()
Cprionally activate =
WVWIIB acent
(svstem mode only) | u kernellmnit()

== WindRwver

-6 =" sy rsyams

Pre-Kernel Initialization Sequence -Loadable
VxWorks Image

6-7

Power-1p:

jumpg to
VxWorks
Image load
adldiress ;

Optionally activate
WDB agem
(system mode only)

bExecute VxWorlks Boot
Image Sequence and
load VxWorks image.

sysl m‘rl{}

l

tsrinit{}

L sysHwInit()

—w kernelinit{)

== WindRwver

JJJJJJJ

6-8

usrinit() Stack

usrinit() stack begins at:

* Image |load address (grows down).

* Image load address less stack size (grows up).
Stack initialized by:

 sysinit() for loadable image.

e rominit() for ROM image.
usrinit() routine does not return.

Its stack is used until kernelInit() spawns post-kernel initialization
task tUsrRoot.

Stack sizeiscontrolled by STACK_SAVE.
Can examine stack using CrosswWind in external mode.

== WindRwver

JJJJJJJ

6-9

usrinit() Code

Coderesidesin ../config/all/usrConfig.c.

Should not be modified except to activate WDB agent in system

mode.

Functionality of routine is controlled by support routines and

configuration parameters.

BSP developer will write or modify reference BSP version of:

o sysHwinit().

 Support routines - sysX().

e BSP and driver configuration files.
e Devicedriver code.

JJJJJJJ

Pre-Kernel Initialization - Generic
Code

Generic Code Overview
6.2 sysHwInit()

Activating the Kernel

== WindRwver

JJJJJJJ

6-11

sysHwInit() Responsibilities

Place hardware environment in quiet state prior to activating
VxWorkskernel:

 Initialize features of hardware environment.
* Disable hardware interrupts.
o |nitialize device control/status registers.

Initialization requirements for device registers and environment
parameters is BSP specific.

Hardware interrupts must be disabled for all devices:
o sysHwinit() executes with interrupts locked.
 Interrupts are unlocked when kernel is activated by kernelInit().
* |SRscannot be installed until kernel is activated.

== WindRwver

JJJJJJJ

6-12

Environment, Devices and Interrupts

Environment and device initialization is performed primarily to
support disabling interrupts.

Generally the environment must be partially configured before
specific devices can be accessed. May need to:

 |nitialize memory controller.
» Configure bus access to devices.
Environment may include an interrupt controller.

Generally devices must be partially initialized before interrupts can
be disabled:

* Device may need to be configured to allow interrupt control
registers to be accessed.

 Interrupt controller may need to be initialized.

== WindRwver

JJJJJJJ

6-13

Environment Initialization For

Device Access

To access devices, must have:
e CPU accessto system bus(es).
» Devices accessible via system bug(es).

CPU access to system bus(es) is usually provided by:
e romlnit() or sysinit() if local busisthe only bus.
o sysHwinit() if local bus connected to other system bus(es).
Device accessibility over system bus(es) provided by:

. sysHwInit().

=

JJJJJJJ

6-14

Device Initialization

After hardware devices are accessible, sysHwiInit() can begin
Initialization.
Generally device initialization in sysHwinit() is confined to disabling
Interrupts.

e Interrupt handlers not available.

« Devices not used until after kernel is activated.
Remainder of device initialization performed after kernel activation.
Exceptions are:

» Devices controlled by BSP (examples: bus bridges and interrupt
controllers).

o Serial controller (polled mode).

== WindRwver

JJJJJJJ

6-15

Devices Under BSP Control

Generic device driver code:
« Controls hardware (other than the CPU).
e Can be used in multiple BSP environments
e WRScodein ../src/drv and ../h/drv directories.

Devices managed by code which is specific to a particular BSP are
under BSP control:

» Unique devices and devices not supported by WRS.
e Code should reside in the BSP directory.

In addition to disabling interrupts, provide initialization for BSP
devices in sysHwInit():

o Impacts target environment and generic device operation.

== WindRwver

JJJJJJJ

BSPs With An Interrupt Controller

e Interrupt controller isinitialized in sysHwiInit().
* For devices connected to interrupt controller, interrupts are masked
(disabled) at the controller.

» For devices with drivers, interrupt and other control registers are
Initialized after the kerndl Is activated using driver code except for
seria controllers.

 For devices which are under BSP control, interrupt and other
control registers areinitialized in sysHwInit().

* Non-interrupt related initialization may consist of:
* Probing to test for presence of device.
« Minimal device specific initialization to allow access to device.

== WindRwver

JJJJJJJ

6-16

6-17

BSPs Without An Interrupt Controller

Without an external interrupt controller device interrupt reques lines
connect directly to CPU.

Device interrupt control registers are accessed:

e Directly over local bus.

e Mediated by an external memory controller.
Memory controller may need to be initialized to access devices.
Interrupts must be disabled in sysHwInit():

 Individually.

* On aper device basis. (Through master interrupt control register
for the device.)

== WindRwver

JJJJJJJ

6-18

Serial Controller Initialization

Serial controller initialized for polled mode operation to allow system
level debugging prior to kernel activation.

Initialization routine is sysSerialHwInit():
o Called by sysHwiInit().
o CodeinsysSerial.c
sysSerialHwInit():
e |nitializes SCC control structures for each channel.
o Callsdriver initialization code which disables interrupts.

SCC control structure contains callback routines which are called by
WDB agent to access the device in polled mode.

== WindRwver

JJJJJJJ

6-19

Additional Initialization

In addition to disabling interrupts for all devices and configuring
SCCsfor polled mode access, sysHwInit() may:

e Initialize devices under BSP control.
e Perform memory autosizing (if supported).
o Extract hardware addresses for network interfaces.

Board network interface hardware addresses are often stored in
NVRAM or battery-backed RAM.

Autosizing is activated by a call to sysPhysMemTop() if:
e Supported.
« Macro LOCAL_MEM_AUTOSIZE isdefined (config.h).
e Macro LOCAL MEM_ SIZE is set to zero.

== WindRwver

JJJJJJJ

6-20

sysHwiInit() and sysLib

sysHwiInit() is part of the sysLib library:
« Hardware access for VxWorksand “ end-user” code.
e Hardware environment independent interface.
* Most routines not called by “end-user” applications.

Routines in sysLib.c are members of syslLib, however, sysLib aso
contains routines in other files. These routines are of the form sysX().

sysLib.c does #include support files for:

e Driver code which must be accessed by the BSP in the ../src/drv
and BSP directories.

* Environment and driver control parametersin the ../target/config,
./h, and ../h/drv directories.

== WindRwver

JJJJJJJ

6-21

Debugging sysHwInit()

If after kernel activation the initialization task tUsrRoot is not
spawned, device initialization in sysHwiInit() is probably not
compl ete.

e One or more devices may be generating interrupts.

» Source(s) of interrupt(s) must be found.

Debug techniques:
o Modify sysHwlInit() to connect debug routines to suspect device
Interrupts.
e Usean ICE to set breakpoints in the interrupt vector table.
« Usealogic analyzer to check for instruction access to interrupt
vector table.

== WindRwver

JJJJJJJ

6-22

Connecting Debug ISRs

Connect debug | SR(s) using the routine intV ecSet() if supported for
architecture.

 intConnect() cannot be used until kernel is activated.
First locate the interrupt vector of the suspect interrupt:
» Relative to base of interrupt vector table.

e Base of interrupt vector table configured prior to calling
sysHwInit() in usrinit().

e UseINUM_TO IVEC() macro to compute WRS interrupt vector.
Connect debug handler to interrupt vector:

iIntVec = INUM_TO _IVEC(intNum);

IntVecSet (intVec, debuglISR);
The debug ISR should indicate the source of interrupt

JJJJJJJ

6-23

Caveat For Connecting Debug ISRs

The base of the interrupt vector table isinitialized by:

IntVecBaseSet (FUNCPTR *) VEC _BASE_ADRS)

Thisroutine initializes the CPU’ s vector base register to the value of
the macro VEC _BASE ADRS (configAll.h)

Not all architectures have an interrupt vector base register.
IntV ecBaseSet() 1s no-op in this case.

* These architectures may also not support intVecSet().
If intVecSet() Is not supported:

o Statically create a system interrupt table.

* Write support routine for intVecSet().

 Supporting intVecSet() will be discussed in an upcoming chapter.

== WindRwver

JJJJJJJ

System Restarts

o |f sysHwInit() encounters an error which prevents it from continuing
Initialization it will restart the system:

STATUS sysToMonitor (startType)
startType Restart type. Variable type: int.

e Transfers control to ROM monitor. BSP Specific.
* Redtart typesdefined in ../h/sysLib.h:

« BOOT_NORMAL - Normal reboot with countdown.
« BOOT_NO AUTOBOOT - No autoboot.

« BOOT_CLEAR - Clear memory.

« BOOT QUICK _AUTOBOOT - Fast autoboot. 2

JJJJJJJ

6-24

Review of Initialization In sysHwlInit()

o sysHwiInit() initialization details will be specific to BSP environment.
Generic responsibilities:
o Complete any initialization performed in romlnit()/ sysinit()
which is required to access devices.
o Disable all hardware interrupts.

« Leave additional configuration to driver routines after kernel is
activated, except for serial controller(s) and hardware under BSP
control.

 |nitialize serial controller to be accessible in polled mode for
system level debugging prior to kerndl activation.

« Configure autosizing for physical memory if supported.

== WindRwver

JJJJJJJ

6-25

Pre-Kernel Initialization - Generic Code

Generic Code Overview
sysHwiInit()

6.3 Activating the Kernel

== WindRwver

JJJJJJJ

6-27

Kernel Activation

Kerndl is activated by the kernellnit() routine:
 [nitializes and starts the kernel.
* Defines system memory partition.
» Activates atask tUsrRoot to complete initialization.
» Unlocks interrupts.
o Usesusrinit() stack.

Kernel data structures are configured by usrKernelInit() which is called after
sysHwiInit() but before kerndinit():

* Routinein ../src/config/usrKernel.c
» Uses configuration macros in configAll.h to initialize appropriate libraries.

» Data structures include: binary semaphores, watch-dog timers, kernel queues,
elc.

== WindRwver

6-28

System Memory Partition

Top and bottom of system memory partition passed as arguments of
kernelInit().

Bottom of system memory partition:
« FREE RAM_ADRSIf INCLUDE WODB is not defined.

« FREE RAM_ADRS+ WDB_POOL_SIZE if INCLUDE_WDB
is defined.

Top of the system memory partition will be the return value of
sysMemTop().

tUsrRoot will:
e |nitialize memory partition management libraries.
o Optionaly initialize MMU management facilities.

== WindRwver

JJJJJJJ

6-29

tUsrRoot

Activated in kernelInit(). First task to run, stack allocated from
system memory partition:

e Priority O.
o Stack size controlled by ROOT_STACK_SIZE.
tUsrRoot will:
* |nitialize memory partition library.
 Initialize the system clock.
Initialize the |/O system - optional.
Create devices - optional.
Configure network - optional.
Activate WDB agent - optional.

Activate application. 2% IRtveEr

JJJJJJJ

6-30

Unlocking Interrupts

Interrupts unlocked as part of the kernel call which initializes
tUsrRoot (taskinit()).

If all interrupts have not been disabled in sysHwinit() tUsrRoot may
not execute properly.

If architecture supports a dedicated interrupt stack:
 Stack memory size specified through argument list.
» Placed at beginning of system memory partition.
 Hlled with Oxee for checkStack().

Interrupts will be enabled after appropriate | SRs are placed on the
Interrupt vector table. Examples will be given as the course
progresses.

== WindRwver

JJJJJJJ

6-31

Summary

Generic phase of pre-kernd initialization must produce an
environment which allows the VxWorks kernel to be activated by
kernelInit().

Generic pre-kernel initialization is performed by the C routine
usrinit() which is statically linked into all VxWorksimage types.

usrinit() calls sysHwinit() to disable all hardware interrupts.

WDB agent may be activated in system mode after sysHwlinit()
returns. Provides access to Tornado tools.

kernelInit() activates kernel and unlocks interrupts.

== WindRwver

JJJJJJJ

Chapter - 7

Pre- Kernel
Initialization - Debugging
With Tornado

a Wind River Systems, Inc. 1997 2 ,,,,,,,

7-2

Pre-Kernel Initialization - Debugqging
With Tornado

7.1 Overview
Using the WDB Agent
SCC Support For WDB Agent

Debugging Techniques

JJJJJJJ

Pre-Kernel Tornado

Tornado tools may first be accessed after sysHwinit() completes:
* Toolsavailable prior to kernel activation.

» Toolsavailable after kernel activation but prior to interrupts being
enabled for target backend.

Access will require WDB agent to execute in system mode.
In system mode elther VxWorks executes or WDB agent executes:

o Similar to ROM monitor, only debug agent statically linked into
VxWorksimage.

7-3

JJJJJJJ

7-4

Tornado Tools

Tornado tools include host based:
* Debugger - CrossWind.
Shdl - WindSh.
Configuration tool - WindConfig.
ODbject |oader/unloader.
Symbol table management.
e Customized toals.

Tools can be modified and enhanced using the Tool Command

Language (Tcl).

Target server mediates host platform access to target.
Target agent (WDB agent) can execute as a VxWorks task or

Independently of the VxWorkskernel.

=

JJJJJJJ

Host - Target Interaction

4 e
Tool
{ 0o } VxWorks

I
tgtsvr

- i

back end @UDH Agﬁﬂﬂ

JJJJJJJ

7-6

Activating the WDB Agent Before
the Kernel

Tornado tools may be accessed using the WDB agent in system mode
prior to kernel activation.

WDB agent can be activated in system mode using a polled driver
after sysHwiInit() has executed.

 Interrupts are masked until kernelInit() executes.

* Necessary deviceinitialization is performed in sysHwInit().
System mode debugging will allow developer to access CrosswWind.

e Debug interrupt handlers.

» Debug post-kernel device initialization.

JJJJJJJ

77

Pre-Kernel Initialization - Debugqging
With Tornado

Overview
7.2 Using the WDB Agent
SCC Support For WDB Agent

Debugging Techniques

JJJJJJJ

7-8

Using the WDB Agent - Overview

Supporting access to Tornado tools prior to kernel activation requires.

 NetROM.

e Customized backend for ICE.
e Sarid Interface.

WDB agent must be configured for the appropriate backend connect

strategy.
For a serid Interface:

o Appropriate SCC channel must be configured to be accessed in

polled mode.

 usrinit() must be modified to initialize WDB agent and suspend

execution.

=

JJJJJJJ

7-9

Configuring the WDB Agent

Configuration of WDB agent requires specification of:
« Backend connection policy.
« Agent execution mode.
Configuration done in config.h.
Backend connections (prior to kernel activation):
« WDB_COMM_NETROM - NetROM interface.
« WDB_COMM_SERIAL - SCC interface.
« WDB COMM_ CUSTOM - Custom interface.
Agent mode must be system (external):
« WDB_MODE EXTERN

Run-time configuration done by a routine wdbConfig().

=

JJJJJJJ

7-10

Activation of External WDB Agent

WDB agent must be configured and then activated in usrinit() after
sysHwiInit() executes.

Configuration and activation require the following routines to be
called:

« wdbConfig() - Configures agent.
o wdbSuspendSystemHere() - Activates agent.
wdbConfig() sets up the external agent’ s context and returns.

wdbSuspendSystemHerg() transfers control of the CPU to the
external agent.

Tornado tools can then access target.

== WindRwver

JJJJJJJ

Modifications to usrinit()

e |nusrConfig.c insert the following code:

sysHwinit (); [* Initialize system hardware */

[* System debug mode */
wdbConfig();

wdbSuspendSystemHere(NULL, 0);
usrKernelInit (); /*configure the Wind kerngl*/

* InusrConfig.c comment out the call to wdbConfig() (in usrRoot()).

7-11

JJJJJJJ

Suspending the System

e The routine wdbSuspendSystemHere():

» Locks interrupts before transferring control to the external agent
(thisis not relevant here as interrupts are locked).

 Callsthe underlying routine wdbSuspendSystem() which isthe
routine called by Tornado’ s breakpoint library to halt execution.

» Allows acallback routine (with one argument) to be executed
after system is suspended. Parameters are passed through
argument list.

e To begin aCrosswWind debug session use the attach command as
usual:

(gdb) attach system

7-12 % rrrrrrr

7-13

Pre-Kernel Initialization - Debugging
With Tornado

Overview
Using the WDB Agent
7.3 SCC Support For WDB Agent

Debugging Techniques

JJJJJJJ

7-14

System Level Debugging With Serial
Backend

For a serial backend in external mode, WDB agent code will call:

» Polled serial driversfor input and output.

« Configuration routines to access seria device.

If target contains WRS supported SCC, only configuration which is
required:

« Backend interface - WDB_COMM_SERIAL

 WDB agent mode - WDB_MODE_EXTERN

* Undefine INCLUDE _WDB VIO

If target does not contain WRS supported SCC, use template serial
driver to develop driver.

== WindRwver

JJJJJJJ

7-15

Serial Support For WDB Agent

Support for WDB agent in system mode prior to kernel activation
requires.
 |nitialization of serial 1/O control structures.
* |octl() routine to set access mode as polled.
 |nput and output poll routines.
o |dentification serial channel to be used.
Providing this support will require modification of files:
o ./src/drv/sio/templateSio.c
o ../config/<bspName>/sysSerial.c
o ./ndrv/so/templateSio.h
Support routines are invoked by sysSerialHwInit(), wdbConfig(), and

wdbSuspendSystemHereg(). 2
WindRrver

JJJJJJJ

7-16

Structure of A Serial Driver

One control structure for each serial device (refer to templateSio.h):

e Contains control structure for each SCC channd
(TEMPLATE_CHAN).

« Each channel control structure hasa SIO CHAN structure as its
first member.

SIO _CHAN structure has one member; a pointer to a
SIO DRV_FUNCS structure.

SIO DRV_FUNCS structure has five members, used to manage
serial device. Will be invoked by WDB agent.

Both SIO CHAN and SIO DRV_FUNCS are defined in sioLib.h.

== WindRwver

JJJJJJJ

7-17

Channel Control Structure

Declared in templateSio.h:

/* device and channgl structures */

typedef struct
{
/* must be first */
SIO CHAN

Int
Int
Int
} TEMPLATE_CHAN,;

90;

mode;

baudFreq;

options;

/* SIO_CHAN element */

[* current mode */
/* clock freq*/
[* Hardware ops */

=

JJJJJJJ

7-18

Device Control Structure

For template serial device with two channels (portA and portB):
typedef struct

{
TEMPLATE_CHAN portA;

TEMPLATE _CHAN portB;

volatile char * masterCr;
} TEMPLATE DUSART,

Note master control register operates on a chip (not channel) leve.
Separate channel control structure for each channel.

Declared in templateSio.h.
Can also use array elements for SCC channels.

=

JJJJJJJ

SIO_CHAN Structure

« SIO _CHAN structure is apointer to a structure containing driver
callbacks, SIO DRV _FUNCS:

LOCAL SIO DRV_FUNCS templateSioDrvFuncs =
{
templatel octl,
templateTxStartup,
templateCallbackinstall
templatePoll I nput,
templatePol | Output
¥

e Declared intemplateSio.c.

« Will need to modify templatel octl(), templatePolloutput(), and

templatel nput().

e Other routines can be NUL L ed.

== WindRwver

JJJJJJJ

7-19

Initialization of SCC

* For each SCC device, SCC control structure initialized by
sysSerialHwInit() (refer to sysSerial.c):
 |nitialization control structures for each channel of SCC
(TEMPLATE_CHAN). Control macros defined in templateSio.h.
o Call serial driver routine, templateDevinit(), to initialize
SIO DRV_FUNCS structure and hardware (code in driver
templateSio.c).
e Each SCC control structure declared in sysSerial.c.
 Array of channel control structures with one element per channel
(refer to sysSerial.c).
o Structure with one channel control structure member per channel
(refer to templateSio.h).

== WindRwver

7-20 === sy rsyams

7-21

Configuring SCC Access

Baud rate and access mode for the SCC controlled by the
templatel otcl() routine. Required commands:

« SIO MODE_SET
« SIO BAUD _SET
Mode configuration:
 Modify TEMPLATE INT_ENABLE intemplateSio.h.

 |f necessary modify interrupt disable code in templateM odeSet()
routine.

Baud rate configuration:
 Modify code to support setting baud rate.

 Modify TEMPLATE BAUD_ MIN and
TEMPLATE BAUD MAX macros intemplateSio.h.

== WindRwver

JJJJJJJ

7-22

Controlling SCC Access

Access is provided by the polling routines templatePoll I nput() and
templatePol | Output():

Need to define parameters intemplateSio.h:
 Modify TEMPLATE _TX READY macro for output.
 Modify TEMPLATE RX_AVAIL macro for input.
For many SCCswill not need to modify code.

For some SCCswill need to modify data transfer register
management code.

These routines will be called in aloop by the WDB agent after
wdbSuspendSystemHere() is called.

== WindRwver

JJJJJJJ

7-23

Channel Access

The WDB agent uses the configuration macro
WDB TTY_ CHANNEL to determine which channd it will useto
access a SCC. The default valueis 1.

To configure the SCC access channel the agent must first obtain
address of SIO_CHAN structure for that channel.

The routine sysSerial ChanGet() converts a channel number to an
address of a SIO_CHAN structure.

As part of wdbConfig(), sysSerial ChanGet() will be called with the
argument WDB_TTY CHANNEL.

Should not need to modify sysSerial ChanGet() in sysSerial.c (except
channel control structure name).

== WindRwver

JJJJJJJ

7-24

Pre-Kernel Initialization - Debugqging
With Tornado
Overview
Using the WDB Agent
SCC Support For WDB Agent

7.4 Debugging Techniques

JJJJJJJ

7-25

Tornado Tools and Debuggi

ng

Primary Tornado debug tool will be Crosswind in system mode.

WindSh may also be useful for:

e Dynamically allocating memory for new global variables
eliminating the need to re-build and re-load a VxWorksimage.

» Using Ikup to examine the symbol table.
Custom debug tools can also be devel oped:
e Customize CrossWind.
* Write a new |loader to support unsupported OMF.

* Build and install a custom Tornado tool using WTX protocol.

=

JJJJJJJ

7-26

CrossWind Customization

Standard system mode debugging facilities available.
CrossWind can be modified to support features such as:.
e Hardware breakpoints.
e Menu access to customized debug commands.
 Defining new buttons.
 |nitialization of debug session(s).
Modifications can be made to:
o GUI interface.
« GDB debug engine.

CrossWind interaction with target server can be customized using the
WTX libraries.

== WindRwver

JJJJJJJ

CrossWind Customization Files

e CrossWind can be modified using Tcl and GDB commands.
o Place Tcl scriptsin ~/.wind/cosswind.tcl to:

 Modify graphical presentation.

* Define new buttons.

* Provide menu access to customized commands.
o Place Tcl scriptsin ~/.wind/gdb.tcl to:

o Define Tcl procedures for new GDB commands.
 Place GDB commands in ~/.gdbinit to:

* |nitialize adebug session. (This script file Is executed each time a
GDB session, not just a CrossWind session, is started.)

== WindRwver

JJJJJJJ

7-27

7-28

Dynamic Callbacks and Debugging

Time to place VxWorksimage in target environment at this phase of
development may be expensive.

e Low bandwidth serial line load to RAM or Fash.
e Burning VxWorks ROM image.
Using dynamic callback code may be more efficient.
Code can be dynamically replaced using CrossWind:
* Declare acallback (or hook routine) in loaded Vxworksimage.
« Conditionally call routine in loaded image.
 Load module with desired code using Crosswind.
» Use GDB set command to assign desired function to callback.

== WindRwver

JJJJJJJ

Dynamic Callback Example

e Includein loaded image:
void (*debugCallback) (void);

void sysBspCode (void)

{
if (debugCallback != NULL)

{
debugCallback():

return;

}

e From CrossWind load the module containing routine of interest (e.g.
debugRoutine()); and from GDB prompt:
* (gdb) set debugCallback = debugRoutine 2

7-29

JJJJJJJ

7-30

Other CrossWind Applications

Instead of hot-swapping, dynamically loaded code can be invoked
using the GDB call command:
* (gdb) call debugRoutine

Disadvantage of using call command is that original code still
executes.

If hardware environment has abort switch consider connecting a
debug routine to the abort interrupt using intVecSet().

Use CrossWind to set breakpoint in abort debug | SR:
« Allows developer to gain control of system when it dies.

== WindRwver

JJJJJJJ

7-31

Summary

Tornado tools can be accessed prior to kernel activation using the
WDB agent:

o Configured for external mode.
« Configured to use appropriate backend connection.
« Configured not to include virtual 1/0.

In system (external) mode either VxWorks executes or WDB agent
executes.

usrinit() must be modified after the call to sysHwinit() to call:
« wdbConfig()
o wdbSuspendSystemHere()

Crosswind can attach to system to provide debug tools.

== WindRwver

JJJJJJJ

Chapter - 8

Memory

a Wind River Systems, Inc. 1997 2 ,,,,,,,

8-2

Memory

8.1 Overview
Configuring Memory
MMU |ssues
Cache Issues

Memory Probes

JJJJJJJ

8-3

Overview

Primary memory management issues for BSP:
e |nitiaization.
» Accessinterface.

Main memory initialized by rominit(), bus access (for devices)

Initialized in sysHwinit() if required.

BSP will need to support memory access and management strategies.

o Configuration of main memory.
Accessto NVRAM.

Virtual maps for MMU.

Cache strategies.

Memory probes.

JJJJJJJ

8-4

Memory

Overview

8.2 Configuring Memory
MMU lssues
Cache Issues

Memory Probes

JJJJJJJ

8-5

Memory Configuration

BSP responsible for configuring main memory for post-kernel

operation:
 Critical addresses must be defined.
o If MMU isused memory maps must be specified.
 Support routines must be provided.
Memory addresses specified in:
« config.h - User configurable.
o <bgp>.h - Target dependent not user configurable
Required BSP memory support routines.
o sysMemTop().
o sysNvRamSet().

o sysNvRamGet(). 2

JJJJJJJ

8-6

RAM Layout

-—LOCAT,_ MEM LOCAT, ADRS

Initial Stack
RAM_LOW_ADRS

VxWorks
WDB Pool FREE RAM ADRS +
~ WDE_POCL_SIZE
Systenl

hMemory Pool
«— svshemTop()

User Reserved

w— sysPhysMemTop()

=

WindRrver

5 Y s ¥ 2 M3

Top of System Memory

char * sysMemTop (void)

« Routine returns address of the top of system memory:
char * sysMemTop (void)
{
static char * memTop = NULL;
If (memTop == NULL)
{

memTop = sysPhysMemTop() - USER_ RESERVED MEM;

}

return memTop;

}
e CodeinsyslLib.c.

== WindRwver

JJJJJJJ

8-7

Memory Autosizing

 Memory autosizing allows the size of physical memory to be
configured during initialization.
 |f autosizing is not activated (or supported) size of physical
memory is statically defined as LOCAL_MEM_SIZE in config.h.
« Autosizing details are architecture dependent, typically:

 When DRAM isinitialized in romlinit(), configuration information
IS stored in memory controller registers or/and software structures.

 During autosizing, configuration information is read and
Interrupted to compute the total size of physical memory.

* Routine to support autosizing is sysPhysMemTop().

== WindRwver

JJJJJJJ

8-8

8-9

Memory Autosizing - cont

char * sysPhysMemTop (void)

Routine returns address of top of physical memory.
Thisroutine will provide dynamic memory sizing if
LOCAL _MEM_AUTOSIZE is defined in config.h.

BSP autosizing support is optional. If reference BSP code is not
modified statically defined default value will be returned.

sysPhysMemTop() is called by sysHwinit():

e Must be called before kernelInit() asthisis when sysMemTop() is

called.

=

JJJJJJJ

8-10

NVRAM Configuration

All BSPs must have an NVRAM interface even if there is no non-
volatile RAM in the target environment. Interface must support:

o sysNvRamSet()
o sysNvRamGet()
Total NVRAM size must be defined inconfighasNV_RAM_SIZE.
e |f no NVRAM present define as NONE.
If present, NVRAM is used to store boot parameters for loadable
Images.

Default configuration reserves 255 bytes at the beginning of
NVRAM for boot parameters.

== WindRwver

JJJJJJJ

NVRAM Configuration - cont.

« NVRAM size and location for boot parameters defined in
configAll.h:

« BOOT LINE_SIZE defines NVRAM size reserved for boot
parameters. Default is 255 bytes.

« NV_BOOT_OFFSET defines beginning of NVRAM reserved for
boot parameters. Default is 0.

* To overide default values, redefine macros in config.h.
e Routinesto set/get NVRAM contents:
 Part of driver located in ../src/drv/mem.
e |f no NVRAM present use ../src/drv/meny nullNvRam.c.

e Included insysLib.c.

== WindRwver

811 === sy rsyams

NVRAM Support Routines

STATUS sysNvRamSet (string, strLen,

offset)

string String to be copied into NVRAM.
Variable type: char *

strLen Number of bytesto copy. Variable
type:
Int.

offset Byte offset into NVRAM, Variable
type: int.

* Routine will:
o Copy string to location NV_BOOT_OFFSET + offset.

 Enable NVRAM read/write and write data.
== WindRwver

JJJJJJJ

8-12

NVRAM Support Routines

STATUS sysNvRamGet (string, strLen,

offset)

string Where to copy NVRAM. Variable type:
char *

strLen Number of bytesto copy. Variable type:
Int.

offset Byte offset into NVRAM, Variable tyoe:
Int.

* Routine will:
» Copy contents of NVRAM location NV_BOOT_OFFSET + offset
to string.

« Read data and terminate string with EOS.

== WindRwer

JJJJJJJ

8-14

Caveat For NVRAM Access

NVRAM set/get routines displace offset parameter by
NV_BOOT_OFFSET before accessing NVRAM:

. offset += NV _BOOT OFFSET:

If NV_BOOT_OFFSET is greater than zero, provide access to
NVRAM bytes before boot code with a negative offset values.

BOOT LINE SIZE

(]
Start of NVREAM MV _BOOT_OFFSET

JJJJJJJ

8-15

Memory

Overview

Configuring Memory
8.3 MMU Issues

Cache I'ssues

Memory Probes

JJJJJJJ

8-16

MMU Overview

MMU is primarily under the control of architecture library, however,
BSP isresponsible for providing support with physical memory
description.

e Physical memory description used by MMU to create initial maps
to virtual address space.

o Default maps are flat, one-to-one between physical and virtual
memory Spaces.

MMU initialized by tUsrRoot call to usrMmulnit() which initializes
and enables MM U:

o Hirstinitialization of system memory pool facilities.
« Second initialization of MMU.
« MMU available for remainder of post-kernel initialization.

== WindRwver

JJJJJJJ

8-17

Physical Memory Descriptor

Initial (static) physical memory map defined in
sysLib.c. It isan array of structures of type

SYS PHYS MEM DESC defined in ../h/vmLib.h:

typedef struct phys mem desc

{
void *virtualAddr; [* Virtual address. */
void *physical Addr; [* Physical address. */
UINT len; [* Length of mapping */
UINT initiaStateMask; /* State mask for map. */
UINT initial State; [* State for map. */
} PHYS MEM_DESC,

States for maps:

e Validor invalid.
e Writable or not.
e Cacheable or not.

JJJJJJJ

Physical Memory Descriptor - cont.

 Example virtual-to-physical map element:
PHYS MEM_DESC sysPhysMemDesc [] =

{

{
/* Local DRAM */

(void *) RAM_LOW_ADRS,
(void *) RAM_LOW_ADRS,
LOCAL_MEM_SIZE - RAM_LOW_ADRS,

VM_STATE MASK_VALID |
VM_STATE_MASK_WRITABLE

| VM_STATE MASK_CACHEABLE,
VM_STATE VALID | VM_STATE WRITABLE
| VM_STATE CACHEABLE
}

» Configuration macros used by architecture library to initialize MMU trandlation tables.

Virtual Memory Mapping

 To modify physical-to-virtua memory map(s):
o Modify sysPhysMembDesc|] (static maps).
o Call vmBaseStateSet() (dynamic modification).
 Memory mapped on a per page basis.
» Page size controlled by macrois VM_PAGE_SIZE defined in
configAll.h, Default is 8K (except for PowerPC architectures -

4K).
» Length of maps for sysPhysMemDesc[] should be integral number
of page size.
e Eachtable entry will require a page table entry in physical memory:
o Sets an upper limit on how many address maps can be defined.

== WindRwver

JJJJJJJ

8-19

8-20

Dynamic Virtual Mapping

STATUS vmBaseStateSet (context,
pVirtua, len, stateMask state)

context Context for map. Variable type:
VM_CONTEXT _ID.

pVirtua Virtual addressto modify state of.
Variabletype: void *.

len Length of mapping. Variable type:
Int.

stateM ask State Mask. Variable type: Unsigned
Int.

state State. Variable type: Unsigned int.

Routine changes the state of a block of virtual memory.
e Useto modify initial memory maps defined by sysPhysMemDesc|].

== WindRwver

JJJJJJJ

8-21

Virtual Memory Mapping - cont.

Must map all of physical memory which isto be accessed. This
Includes memory mapped devices (Ethernet, SCSI, etc.).

Writing to addresses not included in the virtual-to-physical mapswill
result in a bus error when the MMU s enabled.

Usually virtual-to-physical maps are configured:
 Local RAM - valid, writable, cacheable.

ROM - valid, read-only, often cacheable.

Flash - valid, writable, non-cacheable.

1/O devices - valid, writable, non-cacheable.

Off-target memory - valid, writable, non-cacheable.

== WindRwver

JJJJJJJ

8-22

Memory

Overview
Configuring Memory
MMU lssues

8.4 Cache |ssues

Memory Probes

JJJJJJJ

8-23

Cache Overview

Cache and MMU configuration is architecture dependent, may be
highly integrated or independent.

In VxWorks, if MMU is enabled cache is under MMU control.

Architecture library (cachelib) provides basic cache management
support. BSP responsibilities:

» Select appropriate cache library and modes for multiple cache
Implementations.

o |f MMU isenabled, memory maps labeled as cacheable or not.

» Follow cache strategy guidelines for device drivers, for system
devices under BSP control.

== WindRwver

JJJJJJJ

Cache Library Initialization

STATUS cacheLiblnit (instMode,
dataM ode)
InstM ode Specifies mode for instruction cache.
Variable type: CACHE _MODE.
dataMode Specifies mode for data cache. Variable
type: CACHE_MODE.
* Initializes cachelLib facilities:
« Callsarchitecture specific initialization routine.
« Places cachein quiet state.
o Called by usrinit() before sysHwInit().
e Argumentsspecify modes for instruction/data caches.

== WindRwver

JJJJJJJ

8-24

8-25

Cache Library Initialization - cont.

Cache mode configuration macros:
« USR | CACHE MODE - first argument.
« USR D _CACHE _MODE - second argument.

Default values for cache mode configuration macros defined in configAll.h. If necessary

BSP redefines in config.h. Choices are defined in ../h/cacheLib.h:

#define CACHE_DISABLED

#define CACHE_WRITETHROUGH
#define CACHE_COPYBACK

#define CACHE_WRITEALLOCATE
#define CACHE_NO WRITEALLOCATE
#define CACHE_SNOOP ENABLE
#define CACHE_SNOOP DISABLE
#define CACHE _BURST ENABLE
#define CACHE_BURST DISABLE

0x00
O0x01
0x02
0x04
0x08
0x10
0x20
0x40
0x80

8-26

Cache Library Initialization - cont.

If target supports multiple cache implementations BSP is respongble
for selecting appropriate library package:

e Macro ARCH MULTIPLE CACHELIB must be defined as
TRUE or FALSE in ../h/arch/<someArch>/ arch<someArch>.h.

 |If TRUE supply correct cache initialization routine by declaring
and initializing sysCacheLiblnit in sysLib.c or config.h:

FUNCPTR sysCacheLiblnit = (FUNCPTR) cacheX Liblnit;
For L2 cache, BSP may need to supply separate cache management
library:

« Maybe obtained from processor manufacturer.

== WindRwver

JJJJJJJ

8-27

Cache Enable

STATUS cacheEnable (cache)
cache Cache to enable. Variable type:
CACHE TYPE.

Enables specified cache type, instruction, data, or branch using
architecture specific routine.

Must undefine macros in config.h to disable:
 INCLUDE CACHE SUPPORT for any cachetype.
« USER | CACHE ENABLE for instruction cache.

« USER D CACHE ENABLE for data cache.
« USER B CACHE ENABLE for branch cache.

Routine is called in usrinit() just before kernelInit() call

== WindRwver

JJJJJJJ

Cache and Device Code

e Guidelinesfor managing code which accesses devices are valid
whether or not device is BSP independent:

* Maintaining cache coherency with respect to DMA devices and
hardware registers.

« Manage device memory access methods.

« Preventing out of order instruction execution with RISC
Processors.

* Desired cache management is implemented using cachelib:
» To alocate cache safe buffers.

o Assign attributes to adriver (system device or BSP independent
device driver) and apply implementation method(s).

== WindRwver

JJJJJJJ

8-28

Cache and Memory Access

« Cache management facilities for devices are related to how memory
accessed by deviceis allocated.

 Memory accessed by devices allocated using:

cacheDmaMalloc().

malloc() and memalign().

Data and bss segment memory.

Special memory region outside of system pool.
 Allocation method unknown.

* Deviceregister memory:

 |f memory mapped, will be allocated using one of the methods
listed above.

 |f not memory mapped, will not be cacheable.

== WindRwver

JJJJJJJ

8-29

8-30

cacheLib and Memory Allocation

void * cacheDmaMalloc (bytes)

bytes Number of bytesto allocate. Variable
type: size t.
Routine allocates cache-aligned, cache-safe buffer for DMA devices.
Returns pointer to start of memory.

Cache coherency management for memory allocated with
cacheDmaMalloc() is dependent on MMU being enabled or not:
e |[f MMU isenabled, allocated memory is marked as non-
cacheable.

e [f MMU isnot enabled, flush and invalidate macro routine calls
must be inserted into code.

== WindRwver

JJJJJJJ

8-31

Cache Macro Routines

cachel.ib manages flush, invalidate, and other macro routineswith
CACHE_FUNCS and CACHE_LIB structures(see ../n/cacheLib.h).
Example:

typedef struct /* Driver Cache Routine Pointers */
{
FUNCPTR flushRtn;
FUNCPTR invalidateRtn;
FUNCPTR virtToPhysRtn;
FUNCPTR physToVirtRtn;
} CACHE_FUNCS;

Macro routines use routine pointersin CACHE _FUNCS and
CACHE_LIB structures. Example:

#define CACHE _DRV_FLUSH(pFuncs, adrs, bytes) \
(((pFuncs)->flushRtn == NULL) ?OK : \

((pFuncs)->flushRtn) (DATA_CACHE, (adrs), (bytes))) 2 Wﬁ[ﬁl dRILV er

JJJJJJJ

8-32

Cache Macro Routines - cont.

In general if a particular macro routineisano-op it’s

CACHE_FUNCS or CACHE_LIB routine pointer member is set to

NULL.

 For full snooping, flush and invalidate routines are set to NULL.

Macro routines are classified into two groups:

« CACHE DMA_xxxx - These routines flush, invalidate, and
perform other operations on memory regions allocated with

cacheDmaMalloc().

« CACHE _USER xxxx - These routines flush, invalidate, and
perform other operations on(user) memory not acquired using

cacheDmaMalloc().

=

JJJJJJJ

8-33

Cache Macro Routines - cont.

CACHE DMA_ XXXX and CACHE _USER XXXX macros defined
using lower level macro routines CACHE_DRV_XXXX.

CACHE DRV_XXXX macros alow flexibility in providing cache
coherency independent of memory allocation method:

* Routines have additional first argument which isapointer to a
CACHE FUNCS structure.

Developer can use CACHE. DRV _XXXX macros to control cache
coherency for:

e Driver controlled memory.
e Customized cache management.

JJJJJJJ

Cache Management Example

STATUS drvDmaExample (void * pBuf)
{
LOCAL BOOL freeFlag= FALSE;
If (pBuf '=NULL)
{
/* No buffer cache coherency problems. */
pDrvFuncs = cacheNull Funcs,

}

{
pBuf = cacheDmaMalloc (BUF_SIZE);

pDrvFuncs = cacheDmakFuncs
If (pBuf == NULL)

return (ERROR);
freeFlag= TRUE;

}
== WindRwver

JJJJJJJ

ese

8-35

Cache Management Example -

[* Driver initidlization and buffer filling. */
CACHE _DRV_FLUSH (pDrvFuncs, pBuf, BUF _SIZE);

drvWrite (pBuf); [* Output datato device. */
/* Driver code. */

CACHE_DRV_INVALIDATE (pDrvFuncs, pBuf, BUF_SIZE);

drvWait (); [* Wait for device data. */
[* Read and handle input data from device. */
If (freeFlag)

cacheDmaFree (pBuf); /* Return buffer. */
return (OK);

}

cont.

JJJJJJJ

8-36

Cache Strategies and Attributes

Cache strategies for devices will determine which cachelib facilities
to use.

BSP developer should develop cache strategy based attributes of
driver. Attributes:

WRITE_PIPING

SNOOPED

MMU TAGGING

USER DATA UNKNOWN
DEVICE_WRITES ASYNCHRONOUSLY
SHARED CACHE LINES

SHARED POINTERS

Attributes will dictate how cachelLib will be of use.

=

JJJJJJJ

8-37

Example Cache Attribute -
WRITE_PIPING

Most RISC processors use write pipelining which can delay delivery
of commands or data to adevice.

Macro routine CACHE _PIPE_FLUSH will flush write pipeline. Calls
placed at appropriate locations in code.

Will not resolve cache issues, driver must still flush cache.
Must know device;
« Some devices not impacted by pipelining delays.

« Some devices may not function correctly without frequent
pipeline flushes to sync. driver and device.

== WindRwver

JJJJJJJ

Memory

Overview
Configuring Memory
MMU lssues

Cache I'ssues

8.5 Memory Probes

8-38

JJJJJJJ

Memory Probes and Busses

o VXxWorksprovides support for bus probes of memory:

 vXLib routine to probe an address on the local bus for memory
read/write bus errors. Routine is vxMemProbe().

e VXALIb routine to perform an atomic test and set on local bus.
RoutineisvxTay).

 BSP may optionally support system specific bus inquiry routinesto
probe addresses not on local bus:

« Use hook routine supplied for vxMemProbe() to access system
busses (including an off-board bus if present).

» Createtest and set routine for external system bus (if present)
using vxTay).

== WindRwver

JJJJJJJ

8-39

Memory Bus Error Probe

STATUS vxMemProbe (adrs mode,

length, pVal)
adrs Addressto be probed. Variable type: char
mode Read or write. Variable type: int.
length 1, 2, or 4 bytes. Variable type: int.
pVal Where to return value, or pointer to value

to be written. Variable type: char *.

* Routine will trap read/write bus errors; returns OK if no buserror,
and returns ERROR after handling bus error. Will not trap other
errors, task making call will be suspended if no handler installed.

== WindRwer

JJJJJJJ

8-41

Memory Bus Error Probe Code

vxMemProbe() provides routine pointer to hook BSP specific

memory probe routine:

STATUS gtatus,

If (_func_vxMemProbeHook = NULL)
[* BSP specific probe routine */
status = (* _func_vxMemProbeHook)

((void *)adrs, mode, length,(void *)pVal);

else
[* architecture specific probe routine */

_func_vxMemProbeHook variable should be initialized in

sysHwiInit() after initialization of busses.

=

JJJJJJJ

8-42

System Memory Probes

Memory probe hook routine called by vxMemProbe() should
determine which bus is being probed based on input address, and call
an appropriate probe routine.

o |f address corresponds to local bus BSP probe routine should call
V xWorks supplied architecture specific probe routine.

BSP probe routine is also responsible for managing any errors
generated during probe:

* Reset bridge or bus controller registers if necessary.
» Execute any device specific exception handlers if necessary.
Useful for probing system busses. PCI, VME, |SA, etc.

== WindRwver

JJJJJJJ

8-43

System Test And Set

BOOL sysBusTas (adrs
routine Address to be tested and set. Variable
type: char *.
Routine to test and set an address across the system external bus if

present. Returns TRUE if the value had not been set but is now,
returns FAL SE if values was set aready.

Routine should provide atomic test and set using indivisible Read
Modify Write cycles across external bus.

Routine callsvxTaq)) if thisis meaningful.

JJJJJJJ

8-44

Summary

BSP isresponsible for initializing memory and providing
configuration support:

Configure system memory pool parameters and autosizing if
supported.

Provide NVRAM access routines.
Provide physical memory descriptor for MMU.

Develop a cache strategy for system devices, initialize the
appropriate cache library (or libraries) with appropriate modes,
and re-initialize cachelLib function pointers in sysHwinit() if
required.

Provide librariesfor L2 caches if present.

Provide system specific memory probes for addresses not on local
bus if desired. Hook to vxMemProbe() in sysHwinit().

== WindRwver

JJJJJJJ

Chapter - 9

Managing I nterrupts

a Wind River Systems, Inc. 1997 2 ,,,,,,,

9-2

Managing Interrupts

9.1 Overview
Installing ISRs
Supporting Interrupt Libraries
Initializing An Interrupt Controller

Optional Interrupt Support

=

JJJJJJJ

Interrupts and VxWorks

o VxWorksuses an interrupt table to provide interrupt level services
* |SRs connected to unigue interrupt vectors

« Table contains addresses for interrupt handlersat appropriate
Interrupt vectors

o A VxWorksinterrupt handler:
« Savesthe CPU interrupt context.
o CdlsaC language |SR.
* Restoresthe CPU context after the ISR returns.

e Manages an interrupt context variable which allows VxWorksto
be interrupt aware.

o Base of table was configured in usrinit().

== WindRwer

JJJJJJJ

9-4

Interrupt Vectors

An interrupt vector is the address of the table entry for ainterrupt
handler. The address is relative to the base of the interrupt table.

Interrupt numbers sequentially label interrupt table entries. Must refer
to hardware documentation to obtain interrupt numbers.

The macro INUM_TO IVEC() convertsand interrupt number to an
Interrupt vector. Usage:

intVector = INUM_TO_IVEC (intNumber());
Macro definition in ../h/arch/<archName>.
WRS definition of interrupt vector is not universal.

== WindRwver

JJJJJJJ

9-5

BSP Responsibilities

BSP is responsible for managing interrupts. Must supply routinesto:

« Connect interrupts.
« Enable/disable interrupts for BSP hardware.
e Manage interrupt hardware control registers.

« Transfer control to boot code if ISR throws exception.

Details depend on:
* Presence of external interrupt controller(s) or not.
 Interrupt policies of system bug(es).

» Form factor for CPU interrupt support (number of external

Interrupt pins).
* Protocol of devices requesting interrupt services.

=

JJJJJJJ

9-6

Reboot From Interrupt Level

STATUS sysToMonitor (startType)

startType Parameter passed to ROM/FHash to tell
how to boot. Variable type: int.

This routine transfers control to ROM/Flash if ISR throws and
exception:

* Routineisgeneric and is called by reboot().
» Routine may reset board environment.
e Jumpsto rominit() (warm boot).

User can create startType values to support custom boot strategies.

Default Isawarm boot for exceptions thrown at interrupt level.

== WindRwver

JJJJJJJ

9-7

Interrupt Stack

If architecture supports a dedicated interrupt stack, stack size is

configured when kernel is activated.

e Control macroisISR_STACK_SIZE defined in configAll.h

(default is 1000 bytes).

 Interrupt stack memory isallocated from system memory pool.
o |f dedicated interrupt stack is not supported task stack for current

task 1S used.

To determine if aprocessor supports a dedicated interrupt stack see:

o VxWorks Programmer’ s Guide.

e Tornado BSP Developer’ s Kit for VxWorks User’ s Guide.

* Processor documentation.

=

JJJJJJJ

9-8

Interrupt Management Routines

The application interface for managing interrupts is provided by
IntArchLib and intLib. API supplies support for:

 Locking/unlocking interrupts.

Setting interrupt lock level.

Connecting interrupts.

Enabling/disabling interrupts.

Determining current depth of interrupt nesting.

Some routinesin intArchLib require BSP support for some
architectures implementation is BSP dependent.

To illustrate different implementations thischapter will discuss 68k
and PowerPC based BSP implementations.

== WindRwver

JJJJJJJ

9-9

68k and PowerPC Interrupts

For 68k targets

e 68k based local bus.

e Three IRQ lines supporting seven interrupt levels.
o 255 distinct interrupt vectors(vialocal bus).
» Vectored external interrupts.

* No interrupt controller.

For PowerPC targets

* PowerPC local bus and bridge controller.

e One external interrupt line.

 Interrupt controller(s).

o Auto-vectored external interrupts.

* No interrupt vector base register.

JJJJJJJ

9-10

Managing Interrupts

Overview

9.2 Installing |SRs
Supporting Interrupt Libraries
Initializing An Interrupt Controller

Optional Interrupt Support

=

JJJJJJJ

9-11

Installing Interrupts - Overview

| nterrupts should be connected to the interrupt table by the BSP.
The routine used to connect interrupts isintConnect():

« Builds awrapper around | SR to create an interrupt handler.

* Registers handler on the interrupt table at the appropriate entry.

Construction and registration of interrupt handlerswill vary with
different architectures. For some architectures BSP is involved.

When interrupts should be connected will be discussed in an later
chapter.

== WindRwver

JJJJJJJ

9-12

Installing Interrupts

STATUS intConnect (vector, routine, arg)

vector Interrupt vector to attach to. Variable
type: VOIDFUNCPTR pointer.

routine Routineto be called as ISR. Variable
type: VOIDFUNCPTR.

arg Optional argument. Variable type: int.

Returns OK or ERROR on error.

The macro INUM_TO IVEC() is used to compute the first argument
to intConnect().

Depending ontarget architecture, BSP may or may not be involved in
supporting intConnect().

== WindRwver

JJJJJJJ

9-13

Building Interrupt Handlers - 68k

IntConnect() callsintHandlerCreate() to create interrupt handler.

IntHandlerCreate() routine:
o Callsmalloc() to obtain memory for wrapper.

e PlacesanintEnt() routine at beginning of handler.
» Placescall to routine (with argument) after intEnt().

« Places anintExit() routine at end of handler.
e Returns address returned from malloc() call.
IntEnt()/intExit() routines

e Manage intCnt variable tracking interrupt nesting.

« Masking/unmasking interrupt levels.
 Saving/restoring contexts

=

JJJJJJJ

9-14

Creating A Handler

FUNCPTR intHandlerCreate (routine, arg)

routine Routineto be called as ISR. Variable
type: FUNCPTR.
arg Optional argument. Variable type: int.

Returns address of interrupt handler or NULL on error.

Thisroutine may called directly for 68K and some other architectures
(not PowerPC). See Tornado Reference Guide.

Note, architectureswhich support intHandlerCreate() may use
different implementations.

== WindRwver

JJJJJJJ

9-15

Attaching Interrupt Handlers - 68k

IntConnect() callsintVecSet() to install an interrupt handler on
Interrupt vector table.

IntVecSet() routine:

o Computestable entry address by offsetting interrupt vector by
address for base of interrupt vector table.

» Places interrupt handler at this address.
INUM_TO IVEC() macro is used to obtain interrupt vector:

o Convertsinterrupt number to interrupt vector by multiplying
Interrupt number by four.

Attaching interrupt handlersis completely handled by intArchLib.

== WindRwver

JJJJJJJ

Attaching A Handler

void intVecSet (vector, function)

vector Interrupt vector to attach to. Variable
type: FUNCPTR pointer.
function Address of handler. Variable

type: FUNCPTR.
o vector = INUN_TO IVEC (interruptNumber)

e Can be called directly for many architectures (including 68k but no-
op for PowerPC).

o Useful for installing debug | SRsduring pre-kernel porting phase
when interrupt wrapper code is not necessary.

== WindRwver

JJJJJJJ

9-16

Installing Interrupts - PowerPC

 Interruptsinstalled with intConnect(), however, implementation
Involves BSP unlike the 68k case.

 WRS PowerPC targetsuse external interrupt controllers. Controllers
have driverswhich are part of the BSP. These drivers help support
IntArchLib:

e Thisishow the BSP isinvolved with interrupt management
routines.

e Driver routinesfor interrupt controller arein the ../src/ drv/intrCtl or
BSP directory:

e |nitializing interrupt controller.
 Installing interrupts.
 Enabling/disabling interrupts.

== WindRwver

JJJJJJJ

9-17

Installing Interrupts - PowerPC cont.

e intArchLib usesahook routine, func_intConnectRtn() to install
Interrupts.

 intConnect() calls func_intConnectRtn().

« BSP assignsthe appropriate routine(s) to _func_intConnectRtn()
during initialization of interrupt controller in sysHwinit().

e Interrupt controller installation routine is sysXIntConnect(), where X
labelsthe particular interrupt controller.

e Interrupt controller initialization routine, sysXInit(), must make the
assignment:

_func_intConnectRtn = sysXIntConnect;

== WindRwver

JJJJJJJ

9-18

9-19

Installing Interrupts - PowerPC cont.

|mplementation of sysXIntConnect() will be architecture and
Interrupt controller dependent.

* For example, many 603 and 604 PowerPC BSPs have multiple
Interrupt controller devices.

sysXIntConnect() routine:
o Callsmalloc() to obtain memory for handler.
« Connectsl|SR and optional argument to interrupt table.
e Returns OK.

Note, sysXIntConnect() does not install wrapper code in handler (like
IntHandlerCreate() for 68K) or call intVecSet() to register handler.

== WindRwver

JJJJJJJ

9-20

Interrupt Table - PowerPC

PowerPC architecture does not have an interrupt vector base register.
Default is no support for:

o IntVecBaseSet()
o INtVecSet()

System interrupt table is a statically declared array of pointersto
Interrupt handler descriptors. Serves as interrupt vector table.

An interrupt handler descriptor contains
e Addressof ISR.

* The optional integer parameter.
e Tableindex. (To label interrupt or manage nested interrupts.)

== WindRwver

JJJJJJJ

9-21

Interrupt Table - PowerPC cont.

The routine sysXIntConnect():
» Recelves same argumentsas intConnect().

o Callsmalloc() to obtain memory for an interrupt handler
descriptor structure.

e |nitializesinterrupt handler descriptor structure.

 Insertsreturn value of malloc() in appropriate element of system
Interrupt table.

System interrupt table index is the interrupt number:
e INUM_TO IVEC(intNum) returns intNum.

Note, no code to manage hardware or contextson system interrupt
table:

 Interrupt demultiplexer routine handlesthese issues.

== WindRwver

JJJJJJJ

9-22

Interrupt Table - PowerPC cont.

interrupt

numbser

’ -
andler
ray
1ext ptrt

1

handl exr

arg

next Dtfo

Fl

>

Aridl e

g

=XT pLCY.

W

interrupt descriptors

== WindRwver

JJJJJJJ

9-23

Interrupt Demultiplexer - PowerPC

PowerPC has one external interrupt, when asserted:
 Processor jumpsto (interrupt dispatch) stub code.
o Savesregisters (context) and increments intCnt.

o Callsinterrupt demultiplexer routine.

* When demultiplexer routine returns, (exit) stub code restores
registers (context) and decrementsintCnt.

|nterrupt demultiplexer code:
o Completesinterrupt acknowledgment cycle.
Gets interrupt vector from interrupt controller.
Manages processor interrupt mask.
Resetsexternal interrupt line.
Callsinterrupt handler on system interrupt table using interrupt

VEector. 2 o

JJJJJJJ

Installing Demultiplexer Routine

STATUS excintConnect (EXC OFF _INTR,

sysXIntHandler)
_EXC OFF INTR Interrupt vector to attach to. Variable
type: VOIDFUNCPTR pointer.
sysXIntHandler Routine to be called as demultipler
routine. Variable type:
VOIDFUNCPTR.

e Returns OK or ERROR onerror.
o Cadled by sysXlInit() in sysHwiInit().

* Interrupt demultiplexer is stored on exception table not on system
Interrupt table.

« Managed by architecture libraries, BSP not involved.

== WindRwver

JJJJJJJ

9-24

9-25

Pre-Kernel Debug ISRs - PowerPC

kernel Init() will unmask the external interrupt line, CPU may receive
hardware service regquests if interrupt controller or/and devices were
not properly initialized in sysHwinit().

To identify interrupt source use exclntConnect() to replace

demultiplexer routine with debug ISR (sysXIntHandler() for
PowerPC).

Interrupt acknowledgment will identify interrupt level activated in
Interrupt controller:

e Disablethisinterrupt level in sysHwlinit().
Note, intVecSet() is not used.

JJJJJJJ

9-26

Managing Interrupts

Overview
Installing ISRs

9.3 Supporting Interrupt Libraries
Initializing An Interrupt Controller

Optional Interrupt Support

JJJJJJJ

9-27

Interrupt Libraries

There are two user accessible interrupt libraries
 intLib - Architecture-independent library.
 IntArchLib - Architecture-dependent library.

IntArchLib isresponsible for providing routines to:
« Enable/disable interrupts.
 Lock/unlock interrupts.

e Set interrupt lock level.
* Creating and installing interrupt handlers

If target uses an interrupt controller, BSP code isinvolved in
managing interrupts through intArchLib (e.g. PowerPC, 186, and
ARM).

* Required support is architecture/BSP specific.

== WindRwver

JJJJJJJ

9-28

Supporting Interrupt Libraries

If BSP support isrequired, will consist of:
e [nitializing interrupt controller.
 Providing run-time support for controller (e.g. ACK).

Initializing the interrupt controller isa BSP responsibility which does
not involve intArchLib.

Run-time support will involve intArchLib API:
» For agiven architecture BSP support of intArchLib facilities may
vary.
For all architectures WRS supplies support for:
e Interrupt dispatch and exit code.
o intLock()/intUnlock() routines.

JJJJJJJ

9-29

iIntArchLib Support - PowerPC

Supported routines are architecture dependent (see Tornado

Reference Manual).

For PowerPC intArchLib uses hook routinesto provide functionality

through interrupt controller:

o func_intConnectRtn()

_func_intVecSetRtn()
_func_intVecBaseSetRtn()
_func_intVecBaseGetRtn()
_func_intLevelsetRtn()

_func_intEnableRtn()

e func_intDisableRtn()

Hook routines prototyped in ../h/arch/ppc/ivPpc.h.

=

JJJJJJJ

9-30

iIntArchLib Support - PowerPC cont.

Hook routinesare called by intArchLib routines

Hook routinesare initialized by BSP:
« Hook routinesinitialized to interrupt controller driver routines.
e Some hook routines may not be supported.

Hook routines initialized by sysXInit() which is called by
sysHwInit().

o sysXlInit() ispart of interrupt controller device driver code.
Note, no hooksto lock/unlock interrupts:

 Routines provided as part of PowerPC architecture.

« Routineswritten in assembler for speed.

== WindRwver

JJJJJJJ

9-31

iIntArchLib Support - PowerPC cont.

WRS suppliesinterrupt dispatch and exit code used as wrapper code
for interrupt demultiplexer routine (installed by exclntConnect()).

Hook routineswhich must be supported for each interrupt controller
by BSP:

e func_intConnectRtn()
o func_intEnableRtn()
o func_intDisableRtn()

PowerPC can disable its single external interrupt line to lock
Interrupts, so _func_intLevel SetRtn() does not need to be supported.

== WindRwver

JJJJJJJ

Enabling / Disabling Interrupts

 Hook routinesinitialized to BSP routines
sysXIntEnable()/sysXIntDisabl&().

* Routines enable and disable a particular interrupt level:
Interrupt level passed as (sole) argument.

Number of supported levelsis afunction of interrupt controller
and BSP.

Single level may identify a specific device.
Typically check for legal interrupt level before modifying level.
Codein ../sra/drv/intrCtl or in BSP directory.

== WindRwver

JJJJJJJ

9-32

Multiple Interrupt Controllers - PowerPC

9-33

Each interrupt controller will have its own driver to manage interrupt
services for connected devices.

For multiple interrupt controllers must determine which controller
provides single external exception demultiplexer:

o Usually host controller.

Controller which provides external exception demultiplexer registers
other interrupt controller demultiplexerson its interrupt table:

 Interrupt servicesare cascaded using system interrupt table.

== WindRwver

JJJJJJJ

9-34

Managing Interrupts

Overview
Installing | SRs
Supporting Interrupt Libraries

9.4 Initializing An Interrupt
Controller

Optional Interrupt Support

=

JJJJJJJ

9-35

Initializing An Interrupt Controller

Interrupt controllers may be:
e On-processor.
e External devices.

Differencesininitialization involve additional initialization required
for off-processor controllers

« |nitialization of bug(es) and bridges connecting processor and
controller.

 |nitialization of additional features of chip, such as interrupt
controllerson same chip with bus bridge.

e |nitiaization of addition controllersif controllers are cascaded.

Initialization performed in sysHwlnit() and interrupt generation
capabilities enabled after kernel is activated.

== WindRwver

JJJJJJJ

Initializing An Interrupt Controller - cont.

9-36

Controller features which may need to be initialized:

Interrupt source vector registers.

Registers controlling internal interrupts.

Mode for interrupt trigger (level or edge sensitive).
Clearing pending interrupts and interrupt errors.
Base register for interrupt table.

Software control structures

Master interrupt control register(s) to disable interrupts until
software interrupt handlers are available.

Create separate interrupt controller initialization routine for each
controller.

== WindRwver

JJJJJJJ

Managing Interrupts

Overview

Installing ISRs

Supporting Interrupt Libraries
Initializing An Interrupt Controller

9.5 Optional Interrupt Support

9-37 2

JJJJJJJ

9-38

Optional Interrupt Support

There are severa optional BSP routines. WRS provides API, BSP
developer must supply implementation code.

Provided to support system level operations (e.g. managing an
external busif present).

Some of these routines support system interrupts.
|nterrupt management support routines are:

o sysBusintAck() - Ack. external businterrupt.

o sysBusintGen() - Generate external businterrupt.

» sysintEnable() - Enable external businterrupt level.
» sysintDisable() - Disable external businterrupt level.

== WindRwver

JJJJJJJ

9-39

Bus Interrupt Acknowledgment

Int sysBusintAck (intLevel)

IntLevel Interrupt level to acknowledge. Variable
type: int.
Routine should complete the bus interrupt acknowledgment cycle.
Return value isbus specific.
Provided to respond to external bus interrupts.
May need to be adummy routine:

« Hardware completesinterrupt acknowledge cycle for vectored
systems.

* |SR may complete interrupt acknowledge cycle for auto-vectored
systems.

== WindRwver

JJJJJJJ

9-40

Bus Interrupt Generation

STATUS sysBuslntGen (intLevel, vector)

IntLevel Interrupt level to generate. Variable
type: int.

vector Interrupt vector to generate. Variable
type: int.

Generate an external bus interrupt with a specified interrupt vector.

Returns ERROR if level is out of range or target cannot
Interrupt.

generate

Routine details depend on bridge or controller for external bus as well

a bus protocaol.

=

JJJJJJJ

Bus Interrupt Enable / Disable

STATUS sysintEnable (intLevel)

IntLevel Interrupt level to enable. Variable type:
Int.

STATUS sysintDisable (intLevel)

intLevel Interrupt level to disable. Variable type:
Int.

« Enable/disable external businterrupt. Return ERROR if intLevel is
out of range or not supported.

== WindRwver

JJJJJJJ

9-41

9-42

Summary

VxWorks uses and interrupt table to supply interrupt level services.
For some architectures BSP is responsible for managing interrupts.

Must supply routinesto:
o Connect interrupts.

 Enable/disable interrupts.
e Manage interrupt hardware control registers.

« Transfer control to boot code if ISR throws exception.

Details depend on:

* Presence of external interrupt controller(s) or not.

e Interrupt policies of local bug(es).
« Form factor for CPU interrupt support.

=

JJJJJJJ

Chapter - 10

Timers

a Wind River Systems, Inc. 1997 2 ,,,,,,,

10-2

Timers

10.1 Overview
System Clock
Auxiliary Clock

Timestamp

JJJJJJJ

10-3

Overview

VxWorks usestimersfor:
o System clock.
o Auxiliary clock.
e Timestamp.
V xWorksreguires the presence of a single dedicated timer for the
system clock.
BSP designer may support one optional auxiliary clock.
BSP developer may support one optional timestamp.

Code for system clock, auxiliary clock, and timestamp are part of
driver for appropriate timer:

e WRStimer driversin ../src/drv/timer/xxTimer.c.

== WindRwver

JJJJJJJ

10-4

System Clock

System clock support isrequired, and isa BSP developer’s

responsibility.

System clock isinitialized and enabled at the start of tUsrRoot after

Initiali zation of memory facilities

System clock is a software clock provided by an | SR:

e Highest priority interrupt for system.
o ISR isusrClock().

Routine to connect the system clock interrupt:
« Connectssystem clock interrupt.

« Callsroutine, sysHwlinit2(), to install other system hardware

Interrupts

=

JJJJJJJ

10-5

Connecting Interrupts

void sysHwInit2 (void)
sysHwInit2() is provided to allow initialization of system devices
which are not initialized in sysHwlnit().
Routine’ sprimary responsibility isto install and enable system
Interrupts

« All system (non-generic driver and system clock) interrupts
should be installed in thisroutine.

* Deviceswhich have generic driversmay enable their interrupts
later when deviceisinitialized.

May also provide configuration for system devices not configured in
sysHwinit().

== WindRwver

JJJJJJJ

10-6

Auxiliary Clock

Auxiliary clock support isoptional:
» Used for high (or low) speed polling.
* Required to use Tornado’ s spy() routine.
e BSP may support one auxiliary clock.
 Cannot share timer with system clock.

Timer interrupt for auxiliary clock installed in sysHwiInit2() by BSP

developer:

* End-user providesroutine called by auxiliary clock timer ISR.
Timer interrupt for auxiliary clock enabled when auxiliary clock is

activated.

=

JJJJJJJ

10-7

Timestamp

Timestamp support isoptional:
* Implemented as adriver accessed by VxWorks tasks.
* Driver readstimer register to obtain timestamp.

« Provides very high fidelity timestamps for WindView or user
applications.

e BSP may support one timestamp.
o Usually does not share timer with system clock.

If atimestamp driver requires aninterrupt it should be installed in
sysHwiInit2() and enabled when timestamp is activated.

Timestamp driver and auxiliary clock may share the same timer, but
not at the sametime.

== WindRwver

JJJJJJJ

10-8

Timer Features

Hardware timersfor system clock, auxiliary clock, and timestamps
may be:

e On processor.

 Off processor dedicated chip.

» Off processor ASIC supporting other features (e.g. 1/0 chip with

timer).

Timers operate in one of three modes Use of timer Is effected by
supported mode:

 Periodic interrupt - Used for system and auxiliary clocks.

e One-shot interrupt - Currently not supported by WRS BSPs

o Timestamp - Used for timestamps.

== WindRwver

JJJJJJJ

10-9

Timers

Overview
10.2 System Clock
Auxiliary Clock

Timestamp

JJJJJJJ

10-10

System Clock Support

Due to generic nature of the system clock, this section will discuss
support issues using the WRS template system clock.

The BSP must provide support for the following user accessible
routines.

» sysClkConnect() - Installs system clock routine.
o sysClkRateSet() - Sets system clock rate.

o sysClkRateGet() - Gets system clock rate.

» sysClkEnable() - Activates system clock.

o sysClkDisable() - Deactivates system clock.

BSP must also supply timer ISR for system clock timer. Standard
name - sysClkint().

== WindRwver

JJJJJJJ

10-11

Installing The System Clock

Connecting the system clock consistsof:

« Obtaining and registering name of system clock routine called by
system clock timer |SR.

 |Installing system clock timer ISR.
e Calling sysHwInit2().
Name of system clock routine:
» Passed as argument of sysClkConnect().
o Default isusrClock(). Codein ../al/usrConfig.c.

System clock timer ISR may beinstalled explicitly in
sysClkConnect() or in sysHwiInit2().

sysClkConnect() will always call sysHwInit2().

== WindRwver

JJJJJJJ

10-12

Installing The System Clock - cont.

Template code:
STATUS sysClkConnect

(
FUNCPTR routine,

Int arg
)

{
sysHwInit2 ();

sysClkRoutine= NULL,;
sysClkArg= arg;

sysClkRoutine = routine;

return (OK);
}

JJJJJJJ

10-13

System Clock Timer ISR

Thisroutine will call the system clock routine initialized by
sysClkConnect() using the global variables sysClkRoutine and
sysCIKATrg.

Template code:
void sysClkint (void)
{
[* TODO - acknowledge the interrupt if needed */
[* call system clock service routine */
If (sysClkRoutine!=NULL)
(* sysCIkRoutine) (sysClkArg);

}

JJJJJJJ

10-14

The System Clock Rate

Setting the system clock rate consists of specifying the number of
system clock ticks (interrupts per second.

e Thetime unit for VxWorksis a system clock tick.

System clock rate supplied through single argument passed to
sysClkRateSet().

o Default rateis 60 (ticks per second).
» Clock rate activated when system clock i1senabled.

To obtain the current system clock rate, user calls sysClkRateGet()
which returns current rate of system clock.

Minimum and maximum allowable system clock rates are determined
by system clock timer.

== WindRwver

JJJJJJJ

The System Clock Rate - cont.

 Template code for setting the system clock rate:
STATUS sysClkRateSet

(
Int ticksPerSecond
)

{
if (ticksPerSecond < SYS CLK_RATE _MIN ||

ticksPerSecond > SYS CLK_RATE _MAX)
return (ERROR));
sysCIkTicksPerSecond = ticksPerSecond,;
If (sysClkRunning)
{
sysClkDisable ();
sysClkEnable ();

}
return (OK);

}

10-15

JJJJJJJ

10-16

System Clock Enable/Disable

Enabling the system clock consists of:

« Configuring the system clock timer to generate interrupts at a
frequency of sysCIkTicksPerSecond.

« Enable system clock timer interrupt.
» Setting sysClIkRunning variable to TRUE.

In addition, sysClkEnable() should check that a system clock timer
|SR has been installed. If not, install one.

* Thischeck isperformed using alocal static variable intemplate
routine.

Disabling the system clock consists of:
» Disabling system clock timer interrupt.
o Setting sysCIkRunning variable to FALSE.

== WindRwver

JJJJJJJ

Enabling The System Clock

e Template code:
void sysClkEnable (void)

{
static connected = FALSE;

If (connected)
{
[* Connect sysClkint to interrupt */
connected = TRUE;

}
If (!sysClkRunning)

{

[* Start system timer interrupts */
sysClkRunning = TRUE;

} == WindRwver

JJJJJJJ

10-17 }

Testing the System Clock

e System clock can be tested by generating output (e.g. blinking a
LED) periodically using taskDelay().

 Period test several seconds.
» Usereference clock or count many periods.

o Can modify usrRoot() (use usrConfig.c in BSP directory and modify
USRCONFIG macro in Makefile). Example:
void testSysClk (void)
{
while (1)
{
taskDelay(5* sysClockRateGet());
sysFlashL ed();

}
ow == WindRwver

JJJJJJJ

10-19

Timers

Overview
System Clock
10.3 Auxiliary Clock

Timestamp

JJJJJJJ

10-20

Auxiliary Clock Support

Auxiliary clock support requirements mirror those of the system
clock.

Functional requirementsfor support routines identical to
corresponding system clock routines.

The BSP must provide support for the following end-user accessible
routines.

o sysAuxClkConnect() - Installs auxiliary clock routine
sySAuxClkRateSet() - Setsauxiliary clock rate.
sysAuxClkRateGet() - Getsauxiliary clock rate.
sysAuUxClkEnable() - Activates auxiliary clock.
sySAuUxClkDisable() - Deactivates auxiliary clock.
sySAuUxCIkInt() - Auxiliary clock timer ISR.

== WindRwver

JJJJJJJ

10-21

Differences From System Clock

System clock is required, auxiliary clock is not.

No VxWorks OS overhead associated with auxiliary clock.
User supplies auxiliary clock routine. No default routine like

usrClock() for the system clock.

User installs auxiliary clock routine with acall to
sySAuUxClkConnect().

BSP installs auxiliary clock timer device ISR in sysHwInit2(). Timer

device ISR calls sysAuxClkInt().

Auxiliary clock timer device often has other features in addition to a

timer.

=

JJJJJJJ

10-22

Timers

Overview
System Clock
Auxiliary Clock

10.4 Timestamp

JJJJJJJ

10-23

Supporting Timestamp

Timestamp supplied by timestamp driver:
e Some routines mirror system and auxiliary clock routines.
e Some routines unique to timestamp driver code.

Timestamp driver works by reading tick count variable on timestamp
timer count register. When timer count register rollsover timestamp
| SR manages the event.

Timestamp driver specific routinesdea with:
« Reading timer tick count register.
e Timer tick count rollover.

Template timestamp code can be found in ../src/drv/
timer/templateTimer.c.

== WindRwver

JJJJJJJ

10-24

Timestamp Support Routines

The BSP must provide support for the following end-user accessible
routines.

Routines mirroring system and auxiliary clocks
o sysTimestampConnect() - Installs timestamp |SR.
o sysTimestampEnable() - Activates timestamp.
o sysTimestampDisable() - Deactivates timestamp.
Routines specific to timestamp driver:
o sysTimestampFreq() - Get timestamp frequency.
o sysTimestampPeriod() - Get timestamp period.
o sysTimestamp() - Get timestamp from timer.
o sysTimestampLock() - Get timestamp from timer with interrupts

locked.
> == WindRver

JJJJJJJ

10-25

Timestamp Timer Issues

Primary timer hardware issues impacting timestamp driver design

and performance:
« Read while enabled capability.
* Existence of prescaler counter.
o Width of counter register.
» Preload after disable required.
» Cache coherency of timer registers

Timer read while enable capability allows timer tick counter to be

read without stopping timer count. If not supported:

* Producestime skew which accumulates each time timer count 1S

read.

=

JJJJJJJ

10-26

Timestamp Timer Issues - cont.

* Time skew must be mitigated possibly using another timer,

periodically resetting timer, locking interrupts while
count, €tc.

» Degrades real-time performance.

reading timer

Prescaler counter dividesthe input clock frequency to provide lower

frequency timestamp.
o Useful for tuning timer fidelity.
* Timer resolution = (prescaler) / (input frequency).

 For an effective WindView timestamp, resolution should be 10
microseconds or less. This requirement arises to ensure all

Instrumented kernel eventswill be distinguishable.

=

JJJJJJJ

10-27

Timestamp Timer Issues - cont.

Width of timer tick counter register determines maximum count value
for timer, which dictates rollover period (referred as period) for

timestamp timer:
e period = (maximum count) X (timer resolution).

* Performance degrades as period is reduced due to overhead in
managing rollover interrupt.
o Minimum recommend period isat least 10 milliseconds.

For timerswhich require the counter to be preloaded with a value

before counting a problem arisesif timer cannot be read while
enabl ed.

 Corrects skew, but adds time when timer isdisabled, correcting
for this can be difficult.

== WindRwver

JJJJJJJ

10-28

Timestamp Timer Issues - cont.

Timer registers must be cache coherent to ensure registers and not
just data cache values are accessed:

o |f MMU isnot present or enabled, register location must be
flusned and invalidated as appropriate for type of cache being
used.

o With MMU make timer registers non-cacheable.

VxWorks kernel instrumentation for use with WindView requires the
following timestamp timer features:

o Capability to generate rollover interrupt.
e Resolution of 10 microseconds or |ess.
e Period of 10 milliseconds or more.

JJJJJJJ

10-29

Timestamp Period and Frequency

Timestamp timer frequency and period will configured when the
timer is unitized:
* Routine sysXInt() where X refersto the name of the timer chip.
o Usually done in sysHwlnit2() as part of timestamp device
Initialization.
Timestamp frequency (in Hertz) defined in xxTimer.c.

 For template timestamp:
#define TIMESTAMP_HZ 1000000

Timestamp period expressed in system clock ticks.

== WindRwver

JJJJJJJ

10-30

Frequency and Period Routines

Template routine to get timestamp frequency:.
UINT32 sysTimestampFreq (void)
{
[* When possible read timer register(s). */
return (TIMESTAMP_HZ);
}
Template routine to get timestamp period:
UINT32 sysTimestampPeriod (void)
{
[* When possible read timer registery(s). */
sysTimestampPeriodVaue=TIMESTAMP_HZ/

sysClkTicksPerSecond,

return (sysTimestampPeriodValue);
}

JJJJJJJ

Timestamp

* The timestamp routine reads the timestamp timer tick register. May
also need to:

» Preload counter.

 |nvalidate data cache.

« Convert to seconds by dividing count by sysTimestampFreq().
e Template timestamp routine:

UINT32 sysTimestamp (void)

{
UINT32 count = 0;
[* Read the timestamp timer value */

return (count);

}

JJJJJJJ

10-31

10-32

Timestamp - cont.

Template routine to get timestamp timer tick count for timer which

cannot be read while enabl ed:
UINT32 sysTimestampL ock (void)
{
UINT32 result;
Int oldLevel,;
oldLevel = intLock ();
result = sysTimestamp ();
IntUnlock (oldLevel);
return (result);

}
May also need to correct for time skew.

JJJJJJJ

Timestamps and the System Clock

e Timestamps can also be obtained from the system clock with some
caveats

o Timer must support read while enabled.

e Timestamp driver must not have rollover ISR which will interfere
with system clock ISR. Timer must be monitored for counter
rollovers

o Timestamp driver should not reset counter.
« System clock should set timer period.

» sysClkRateSet() should not be callable while using timestamp
driver.

e In genera timestamp driver and system clock will be needed in
different frequency regimesand will require separate timers

== WindRwver

JJJJJJJ

10-33

10-34

Summary

BSP support for VxWorks timers- use template code:

o System clock.

o Auxiliary clock.

e Timestamp.
V xWorksreguires the presence of a single dedicated timer for the
system clock.

 |Installation routine for system clock also calls sysHwInt2() which
completes initialization of system devices started in sysHwInit().

Optional auxiliary clock used for high speed polling.

BSP support routines details for timestamp depend on nature of timer
used and cache configuration.

== WindRwver

JJJJJJJ

Chapter - 11

Completing The BSP

a Wind River Systems, Inc. 1997 2 ,,,,,,,

11-2

Completing The BSP

11.1 Overview
Remaining BSP Routines
Device Driver Issues
Final BSP Files

Validation Test Suite

JJJJJJJ

11-3

Finishing the BSP

Once initial VxWorksimage kernel is successfully activated and
system clock is enabled, developer becomes involved in BSP
completion activities.

Primary BSP compl etion activities:

Ensuring all required BSP routines are present.

Providing support for appropriate optional BSP routines (e.g.
auxiliary clock routines).

Obtaining and integrating generic device drivers.
Clean-up of code content and location.

Final configuration of system features.
Documentation.

Validation testing.

JJJJJJJ

11-4

BSP Development Cycle

Milestones for BSP devel opment:

Prepare development environment, obtain reference BSP, BSP
template files, and choose appropriate initial VxWorksimage

type.
Make necessary modifications to reference rominit.s.

Test rominit.s performance and romStart() configuration

parameters using development tools or/and LEDSs Need to get to
usrinit().

Write and test sysHwiInit() and necessary pre-kernel BSP support
libraries. Need to activate kernel.

Optionally develop polled mode serial driver to provide Tornado
access.

Develop and install system clock and system | SRs.
Perform BSP completion activities. 2

JJJJJJJ

11-5

Final System Configuration

Portions of the BSP completion phase may involve interfacing with
non-BSP developers suppling driver code for target devices:

* Driver groups will require integration support.

o BSP developer(s) will require driver information for
documentation.

BSP developer should provide al code and documentation required
by generic device driver developers to successfully:

* Integrate code.
* |nitialize generic device.
 Support runtime driver operation.

JJJJJJJ

11-6

Final System Configuration - cont.

BSP developer should be familiar with generic device driver issues.

e Location of driver code.

 Location of driver configuration and control parameters.
 Interrupt assignments for both generic and BSP specific devices.

» Bus access issues for generic driver.

BSP developer(s) should obtain device and driver documentation
from driver developer and add to BSP documentation files.

» Generic driver developer isresponsible for documentation in driver

codefiles.

=

JJJJJJJ

11-7

System Feature Configuration

If there are non-standard hardware configurations which were used
during development (e.g. jumper controlling boot from socketed
ROM or Flash):

e Hardware should be reconfigured.

* Documentation should clearly state which configurations are and
are not supported.

Build ROM(s) if appropriate.

Provide support for additional timers (if appropriate):
e Auxiliary clock.

e Timestamp.

Provide support for external buses (if appropriate).

== WindRwver

JJJJJJJ

11-8

VxWorks Images

Should be able to build all VxWorksimages supported in
./h/make/rules.bsp.

» Test that Images can be built and booted.
Conversion from development image should be almost transparent:

Will need to convert rominit.sto sysALib.s for loadable images.

Configure bootrom images after required driver(s) (network,
serial, SCSl) are available.

Provide NVRAM support for loadable images, and place default
BSP boot parameters in config.h.

Makefile in BSP directory appropriately modified (will be
discussed In upcoming section).

== WindRwver

JJJJJJJ

11-9

Boot ROM Images

Boot ROM images relocate aloadable VxWorksimage using a
network interface, serial line, SCSI disk, etc.

* Boot parameters stored in NVRAM.
* Boot parameters may be modified at boot time.
For boot ROM images, bootConfig.c replaces usrConfig.c:
 usrRoot() will spawn atask, tBoot, which will relocate loadable
Image.
 File contains support routines to manage boot parameters, image
relocations, and user interaction.

BSP developer will not need to modify bootConfig.c unless custom
boot path is to be supported.

== WindRwver

JJJJJJJ

11-10

Boot ROM Images - cont.

Entry point for task tBoot isbootCmdL oop():

« Will autoboot image based on boot parameters in NVRAM after
timeout expires with no user interaction by calling autoboot().

 For interactive session, code loops in interactive session until boot
continuation command is issued.

Routine which rel ocates |oadable image isbootL oad():
e Boot parameters passed in through argument list.
 |dentifies appropriate device interface for load.
* Performs any necessary initialization on load device.
L oadsimage.

When bootL oad() returns processor is jumped to the entry point of
the loaded image, sysinit().

== WindRwver

JJJJJJJ

11-11

Boot ROM Images - cont.

Sequence of events after romStart() jumps to usrinit():

usrinit()

tUsrkoot (usrRoot())

tBoot (bootCmdLoop())

autoBoot()

L » bootlLoad()

L go(

- = bootlLoad()

— go()

=

JJJJJJJ

11-12

Completing The BSP

Overview

11.2 Remaining BSP Routines
Device Driver Issues
Final BSP Files

Validation Test Suite

JJJJJJJ

11-13

Required BSP Routines

The following routines must be in the syslL.ib.o module. If not, an
unresolved global error will be generated during linking of VxWorks

» sysBspRev() - Return BSP version and revision number, in

sysLib.c.

sysClkConnect() - Connect a routine to the system clock ISR, in

JJsre/drvitimer/xxTimer.c.

sysClkDisable() - Disable system clock timer interrupts, in

Jsre/drvitimer/xxTimer.c.

sysClkEnable() - Enable system clock timer interrupts, in

JJsre/drvitimer/xxTimer.c.

sysClkint() - Handler for system clock timer interrupt, int

JJsre/drvitimer/xxTimer.c.

=

JJJJJJJ

11-14

Required BSP Routines - cont.

sysClkRateGet() - Get system clock rate, in ../src/drv/
timer/xxTimer.c.

sysClkRateSet() - Set system clock rate, in ../src/drv/
timer/xxTimer.c.

sysHwiInit() - Initialization of system hardware before kernel
activation, in sysLib.c.

sysHwInit2() - Initialization of system hardware after kernel
activation, in sysLib.c.

sysMemTop() - Return the address of the top of the system
memory pool, in sysLib.c.

sysModel() - Return model name for target environment, in
sysLib.c.

sysNvVRamGet() - Get the contents of NVRAM, In
.Jsrc/drvimenyxxNvRam.c.
== WindRwver

JJJJJJJ

Required BSP Routines - cont.

o sysNvRamSet() - Set the contents of NVRAM, in
.Jsrc/drv/imem/xxNvRam.c.

o sysSerialHwInit() - Initialized serial devicesto quiet state prior to
kernel activation, in sysSerial.c.

o sysSerialHwInit2() - Connect serial device | SRs after kernel
activation, sysSerial.c

o sysSerialChanGet() - Get the address of aSIO_ CHAN structure
associated with a serial channel, in sysSerial.c.

» sysToMonitor() - Transfer control to the ROM/Fash monitor, in
sysLib.c.

* Routines not discussed previoudly:
o sysBspRev().
* sysModel(). == WindRuver

JJJJJJJ

11-15

Release Numbers

char * sysBspRev (void)
« Routine returns pointer to BSP version/revision number string.
Values defined as macros in config.h:
« BSP VERSION
« BSP REV

e Combination of version and revision numbers are the release
numbers for the BSP.

e Version number identifies BSP generation.

* Revision number is an incrementing number identifying release
within a generation, Should begin with zero for first release.

== WindRwver

JJJJJJJ

11-16

11-17

BSP Model Name

char * sysModel (void)
Returns pointer to model name for BSP:
char *sysModel (void)

{
return (SYS_MODEL);

}
« SYS MODEL defined in <bsp>.h or syslLib.c.

Model name string printed to standard output by tUsrRoot as part of

WDB agent banner.
Routineresidesin sysLib.c.

=

JJJJJJJ

Optional BSP Routines

 Thefollowing routines are optional but are usually present as part of
aBSP:

o sysAuxClkConnect() - Connect aroutine to the auxiliary clock
ISR, In ../src/drv/timer/xxTimer.c.

e sysAuxClkDisable() - Disable the auxiliary clock timer interrupt,
In ../src/drv/timer/xxTimer.c.

o sysAuxClkEnable() - Enable the auxiliary clock timer interrupt, in
Jsra/drv/timer/xxTimer.c.

o sysAuxCIkint() - Handler for auxiliary clock timer interrupt, in
Jsrc/drv/timer/xxTimer.c.

o sysAuxClkRateGet() - Get auxiliary clock rate, in ../
src/drv/timer/xxTimer.c.

o sysAuxClkRateSet() - Set auxiliary clock rate, in ../
sre/drv/timer/xxTimer.c. §

11-18

JJJJJJJ

11-19

Optional BSP Routines - cont.

o sysPhysMemTop() - Get the top of physical memory for the
target, in sysLib.c.
These routines have all been discussed previoudly.
There is also a set of optional routines for managing system busses if
present. Some of these routines have been discussed previoudly, a

complete list appears in the Tornado BSP Developer’ s Kit for
VxWorks User’ s Guide.

 Thereisalso amacro, BUS TYPE defined in ../n/ vxWorksh to
Identify system bus(es).

Any other custom BSP specific routines should placed in sysLib.c or
the appropriate file in the BSP directory or sub-directory.

== WindRwver

JJJJJJJ

11-20

Completing The BSP

Overview

Remaining BSP Routines
11.3 Device Driver Issues

Final BSP Files

Validation Test Suite

JJJJJJJ

11-21

Device Drivers and the BSP

BSP developer is not responsible for writing BSP independent device
drivers, however, BSP developer is responsible for integration of
these device drivers.
BSP devel oper should be aware of driver issues:

 Location of files.

« Configuration parameters.

e Design strategies.

e Driver structure.

In addition BSP developer should provide sufficient documentation
for device driver writers aswell as end-users.

== WindRwver

JJJJJJJ

11-22

Location of Device Driver Code

All device driver code not developed by WRS should be placed in:
« BSPdirectory.
» A sub-directory of the BSP directory.
» Developer created directory directly below ../config.

Popular configuration - BSP driversin BSP directory, generic driver
code in subdirectory of BSP directory.

WRS places it’ s generic device driver code in ../src/drv/ xxxx and
Ih/drv/xxxx.

* These device drivers can be used with any BSP.
 WRSreserves al rights with respect to these directories.

== WindRwver

JJJJJJJ

11-23

config.h

End-user modifiable BSP configuration file will contain some generic
driver configuration and control variables in addition to specific BSP
parameters:

General BSP control parameters in config.h:
o Default boot parameters.
 Local memory configuration.
o Off-target memory (e.g. VME bus window sizes).
 Interrupt controller configuration bit patterns.
e Cache and MMU options (e.g. L2 cache support).
» Bus configuration (e.g PCl bus numbers).
o Shared memory network definitions.
config.h contains #include of <bsp>.h. 2

JJJJJJJ

11-24

config.h - cont.

Generic driver related parameters in config.h:
* Device support macros.
* Number of supported serial channels.
o Auxiliary clock timer device ID (if supported).
« Network device support (e.g. link buffer pool size).
o SCSI device support (e.g. fast and wide).

Device specific, target independent configuration and control
parameters should be placed in the xxDrv.h header file.

Generic device parameters appearing in config.h associated with
device features which would change if device was installed in
different target environment.

== WindRwver

JJJJJJJ

<bsp>.h

» <bsp>.h contains parameters which are not configurable by the end-
user:

» Device base addresses (bridges, controllers, etc.).

» Register offsets system devices.

BSP device control bit patterns.

System and auxiliary clock minimum and maximum rates.
Local bus maps and bus speeds.

External bus maps.

» System interrupt vectors and levels.

o After completion of BSP, parameters in <bsp>.h should only be
changed as part of modification of BSP design.

== WindRwver

JJJJJJJ

11-25

11-26

Driver Design Strategies

These guidelines are valid for both BSP dependent and independent
devicedrivers.

Primary design problems involve:
* Device hardware.
 Performance enhancement.

« Code re-entrancy.

o Configuration and portability.

There will be trade-offs associated with attempting to resolve these
design problems.

Some design issues will require an understanding of the VxWorks
OS, and how driver code is accessed by VxWorks.

== WindRwver

JJJJJJJ

11-27

Design and Device Hardware

For multi-function chips providing more than one device on asingle
ASIC the primary goal should be scalability:

e Do not write one driver for ASIC.
» Write separate driver for each device.

e |[f devices must share ASIC resources or one driver needs to
support an other, clearly document dependencesin dependent
driver code.

Chip may be accessed as memory mapped device or 1/0O mapped
device:

» Access memory mapped devices via access macros.
 For I/O mapped devices assembly routines will be required to

reach 1/O, direct C expression will not.
== WindRwver

JJJJJJJ

Driver Performance

e Optimizing device driver performance will require some knowledge

of the VxWorksreal -time kernel operation.

e Tornado Training Workshop or Tornado Device Driver Workshop

provide more relevant information.
e Designing for performance will involve;
« Using device DMA capabilitiesif present.
Minimizing interrupt latency.
Minimizing subroutine nesting.
Developing an appropriate cache strategy.

11-28

=

Assignment of priorities for tasks accessing driver code.
Providing mutual exclusion and synchronization.

JJJJJJJ

Driver Code Re-entrancy

e Devicedriver codewill be called in the context of tasksin VxWorks

« Re-entrancy necessary to prevent race conditions.
* Driver code may manage multiple instances of a device (a seria
driver may control several channels), must be reentrant to prevent
device “cross-talk”:

» Each device should have a separate control structure for the device
and pass it to driver routines for initialization and device control.

* Device control structure obtained using malloc() when deviceis
Initialized or as an array of device control structures with a
separate element for each device instance.

== WindRwver

JJJJJJJ

11-29

11-30

Device Configuration and Code
Portability

Driver should not inhibit device feature access:

 Driver code should provide end user with flexible user-friendly
configuration interface.

o |f all features of device will not be supported, design should not
preclude support at alater time.

Portability supported through use of configuration and hardware
acCess mMacros.

* Register addresses.
e Control and status inquiry parameters.
e Hardware management access macros.
Portability also improved by standard driver interface.

== WindRwver

JJJJJJJ

11-31

Overview Of Driver Structure

WRS has established general guidelines for device driver structure:
 For both standard and non-standard drivers.
» For BSP independent and BSP dependent devices.

Genera guidelines for the structure of a device driver to be used with
WRS products:

» Object-oriented design for device control structures.
» Deviceregister access through macros.
* Driver does not connect ISRs.
o Comprehensive driver documentation.
More information in Tornado Device Driver Workshop.

== WindRwver

JJJJJJJ

11-32

Device Control Structures

Each device should be represented by a single control structure
containing all state information associated with the device:

o Structure created when device is created with xxDevCreate()
routine.
« xxDevCreate() routine should check that device is present and that
appropriate driver code to manage device is present.
Device control structure should contain methods (routines) to manage
the device structure.

If device has multiple channels, each channel should have its own
control structure.

== WindRwver

JJJJJJJ

Example Device Control Structure

e Thisexample (template) deviceis seria chip with two channels
(ports A and B). So there will be control structures for:

o SCC chip.
« Each channel for chip.
o Control structure for template seria chip (device):
typedef struct

{
TEMPLATE_CHAN portA;
TEMPLATE CHAN portB;
volatile char * masterCr;
} TEMPLATE DUSART;

11-33

JJJJJJJ

Example Device Control Structure - cont.

11-34

Per-channdl control structure:

typedef struct
{

SIO CHAN
[* callbacks */

STATUS
STATUS
void *
void *

s0; /* SIO CHAN eement */

(*getTxChar) ();
(* putRcvChar) ();
getTxArg;
PUtRCcVATQ;

JJJJJJJ

Example Device Control Structure - cont.

11-35

[* register addresses */

volatile char * Cr;
volatile char * dr;
volatile char * q;
volatile char * ms;
volatile char * mC;
volatile short * br:
[* misc */

Int mode;

Int baudFreq;
Int options,

} TEMPLATE_CHAN;

[* control register */
[* dataregister */

[* status register */
[* modem status */
[* modem control */
[* baud constant */

[* current mode */
* clock frequency */
[* Hardware options */

== WindRwver

JJJJJJJ

Access Macros

e Accessto hardware registers should be made through macros:
» Codeto read and modify chip registers.
o Chip register address definitions.

e Usually access methods will require read, write, and perhaps bit
modification macros.

WIDGET READ (adrs pData)
WIDGET _WRITE (adrs pData)
WIDGET_CLR_SET (adrs clear-bits, set_hits)

* Return values by reference through macro routine argument list, not
as aroutine return value.

== WindRwver

JJJJJJJ

11-36

11-37

Access Macros - cont.

Minimize use of conditional statements within code blocks. Example:

#ifdef INCLUDE MY _WIDGET

widgetReset (& myWidget,
#Helse

widgetReset (& stdWidget,
#endif

argl, arg2)

A better approach:
#ifdef INCLUDE MY WIDGET
define THE_ WIDGET myWidget;
#Helse
define THE_ WIDGET stdWidget;

#endif
widgetReset(& THE WIDGET, argl, arg2);

JJJJJJJ

11-38

Access Macros - cont.

Do not use structures which map hardware registers, code will not be
portable (even using the same tool chain across architectures):

typedef struct {
char WIDGET_CR;
char WIDGET_SR,;
char WIDGET _DATA:
MY _WIDGET

Use macros to convert a base address to aregister address, and to
specify offsets for registers:.

#define WIDGET_ADRS(reg) (WIDGET_BASE_ADRS + reg);

#define WIDGET _CR WIDGET_ADRS(WIDGET_CR_OFFSET);

#define WIDGET CR_OFFSET 0x020447

== WindRwver

JJJJJJJ

11-39

Device Driver ISRs

|SR code will bein file with other driver code but driver should not
call intConnect() for I SR:

 Interrupts connected by BSP in sysHwInit2().

o Use INCLUDE XXX macrosto conditionally connectl SRsif
device is being supported.

Driver will enable hardware interrupt when ready.

Device driver ISRs should exit immediately if device hardware is not
asserting and interrupt:

* Do not assume one-to-one mapping of interrupt vectors and
handlers. Interrupt lines may be multiplexed.

* Driver ISR should check device to determine if it is generating

request for interrupt service.
== WindRwver

JJJJJJJ

11-40

Device Driver Documentation

Documentation should provide comprehensive description of
hardware features.

o Clearly identify which features are and are not supported.
 Should be an introduction to both the chip and the device driver.

Documentation placed in file with driver code, and can be included in
Tornado man pages for users.

Device driver writer and BSP developer will need to:

* Develop documentation detailing how driver isintegrated into
BSP (in xxDrv.c).

» Develop documentation for BSP description in target.txt.

== WindRwver

JJJJJJJ

Device Driver Development

o Generad strategy is perform-top down design, and bottom-up
Implementation and testing.

e Top-down design sequence:

o Start with template file, if there is no template file use existing
driver.

 Obtain hardware manual and write documentation describing
device and driver support.

o Define per-device (and driver) control structures.
» Define and document access and configuration macros for driver.

e Declare al routines which BSP developer and users will need to
usethisdriver.

e Create declarations for driver routines and comment.

== WindRwver

JJJJJJJ

11-42

Device Driver Development - cont.

Bottom-up implementation and testing sequence:

Write device initialization code. Configures hardware registers,
enables/disables device interrupts, and installs routines on driver
table for standard drivers.

Write device control structure initialization routine which accepts
a device control structure and initializesit.

Complete remainder of driver routines, perform compile checks,
and verify that only desired external routines are unresolved.

Run-time test, debug, and re-compile as dictated by project
regquirements.

Performance test. Benchmark driver using industry standards if
avallable.

== WindRwver

JJJJJJJ

11-43

Completing The BSP

Overview

Remaining BSP Routines

Device Driver Issues
11.4 Final BSP Files

Vadidation Test Suite

JJJJJJJ

Final BSP Files

 BSPfileswerelisted and described earlier. Part of completing a BSP
IS ensuring the BSP files which the BSP developer modifies are in
their proper final form:

o Sourcefiles.
 Includefiles.

o Makefiles.

e Derived files.
e Document files.

« All fileswhich developer modifies (or creates) are in BSP directory,
BSP subdirectory, or directory which developer has created directly
below ../config.

== WindRwver

JJJJJJJ

11-44

11-45

Source Files

Source files relevant to BSP devel opment:
e Developer created files.
e Modified reference BSP files.
 Modified WRS supplied generic driver routines.
* Modified template files.
e Third party supplied files.
All these files belong in one of the following directories:
o BSPdirectory (../config/<bspName>).
e Sub-directory of BSP directory.
» Developer created sub-directory under config.

Popular configuration - Non-WRS generic device driversin BSP
subdirectory.

== WindRwver

JJJJJJJ

11-46

SysALIb.s

Will need to provide sysALib.s for loadable VxWorksimages (if not
done previoudly):

o Cut and paste romlnit.sinto sysALIb.s.

« Change routine name fromrominit() to syslnit().

* Remove any memory initialization code.

* Modify routine to jump to usrinit() (not romStart()).

Default sysALib.s may contain code which will belost if romlnit.sis
copied into (overwrites) sysALib.s.

e Example - system bus access routineswritten in assembler.

e sysALib.o (and sysLib.o) included in all VxWorksbuilds through
macro MACH_DEP defined in ../h/ defsbsp.

== WindRwver

JJJJJJJ

11-47

Include Files

BSP include files, <bsp>.h and config.h, are modified during
development.

* May need to provide macro definitions and documentation for
extendable hardware features which are not currently supported.

Check that variables are in appropriate include file.

e <bsp>.h contains target specific information which is not
configurable by the end-user.

« config.h isend-user configurable. Contains BSP specific
parameters and (un)definitions of configAll.h macros

Include files for non-WRS drivers will appear in directory with driver
source code (generic and BSP).

== WindRwver

JJJJJJJ

11-48

Makefiles

Makefiles should only need to be modified for:
» Clean-up of development Makefile configurations.
e Builds of nonr-WRS device driver code.
o Custom VxWorksbuilds.

Remove or redefine any BSP Makefile macros which have been
configured specifically for BSP devel opment.

Examples:

o |f private copies of bootlnit.c, usrConfig.c or/and configAll.h were

used for development, reinstall generic versions by removing
definitions of,

BOOTINIT, USRCONFIG, and/or CONFIG_ALL.
« USR ENTRY set equal to usrinit.
o Modify EXTRA_XXXX components if necessary.

== WindRwver

JJJJJJJ

11-49

Makefiles - cont.6

BSP independent driver code not supplied by WRS should reside in a
BSP sub-directory.
o Makefilein this sub-directory specifiesrulesto build driver object
module(s) and place them in BSP directory if no #include in
sysLib.c.

e Driver target make is performed by Makefile in BSP directory.
These make commands need to be added.

BSP specific driver code should reside in BSP directory, and there
should be a#include in sysLib.c.

If non-supported VxWorks image type is required supply build rules
and necessary definitions in Makefile residing in BSP directory.

== WindRwver

JJJJJJJ

11-50

Derived and Documentation Files

Theonly “ non-standard” derived files will be object modules for
device drivers (generic and BSP) not supplied by WRS and with no

#include in sysLib.c.

In addition to documentation provided in source files, BSP must

supply documentation for:
o target.txt - BSP developer isresponsible for thisfile,

may need

contributions from BSP independent device driver writers or

documentation

« README - Provide detailed release record information, pay
particular attention to any caveats which user must be aware of to
use VxWorkswith this BSP. If modifying an existing BSP, update
thisfile, and provide any known information concerning SPRs

filed against the BSP (if relevant).

=

JJJJJJJ

Completing The BSP

Overview

Remaining BSP Routines
Device Driver Issues
Final BSP Files

11.5 Validation Test Suite

11-51 2

JJJJJJJ

11-52

Validation Test Suite Overview

Validation Test Suite (VTS) designed to provide report(s) allowing

analysis of basic BSP functionality:
o Auxiliary clock functionality.
o System clock functionality.
e Serial communication at supported baud rates.
« Commands executable from VxWorks boot prompt.
 RAM read operations.
« ROM read operations
« Local and external bus access.
» Reboots and catastrophic error recovery.
* NVRAM access.
* Networking facilities.

« SCSI read and write operations. 2

JJJJJJJ

11-53

Validation Test Suite Overview -cont.

Test host (UNIX or Windows) controls execution of tests of BSP
functionality on target.

o All VTSfacilities are host initiated.
VTS can run with single or multiple VxWorkstargets.
Minimum requirements:

e Tornado.
Appropriate host tools (host compilers, etc.)
Complete BSP Developers Kit (correct release level).
Complete source for BSP to be tested.
Network or serial target/host connection.

== WindRwver

JJJJJJJ

11-54

VTS Structure

VTS only runsin Tornado environment using Tcl/WTX scripts to

perform BSP tests:

 |f basic tests are inadequate, source code may be modified to

provide needed tests.
Tests activated with single command:

o Script attaches target server to first VxWorkstarget (Target O)

which uses network link.

 |f serial communication is required channel ttya (UNIX) or COM 1

(Windows) opened to Target 0’ s/ tyCo/0O serial port.

« Connectssubseguent target serversto ttyx (UNIX) or COMx to

Target N’ s /tyCo/N seria port.

e Hodst interacts with target using WTX and windSh commands.

=

JJJJJJJ

11-55

VTS Configuration

!'H' 1S5t
farget |
Server
rest
SCript
Fﬁ reel
Berver

network
=

link

‘fttva or

ML

My Lo/l

network

VxWorks

(Target)

‘ "
link

fttvh or

=

CUNZ

=)

tylLo/U

VxWorks

(Target 1)

VTS Files

o Configuration parameters controlling VTS for asingle target resdein
../host/resourceftest/bspVal/ <bspName>.T1.

* Boot parameters.
e Searial device and baud rate for console connection.

e Timeout for loading VxWorksand other files.

« Parameters for desired functional tests.
o Takedefault file<xxxx>.T1in ../host/resource/test/ bspVal directory
and copy it into <bspName>.T 1.
« Modify file as required. See documentation for test control
parameters.
e For additional targetsfiles are <bspName>.TN (N =1,2,...).

== WindRwver

JJJJJJJ

11-56

11-57

VTS Files - cont.

VTS script source files are located in directories.
o ../host/src/test/bspVal/src/test
o ../host/src/test/bspVal/srcllib

Most test script files arelocated in ../host/src/test/ bspVal/src/tests,
however if procedure is shared by multiple test the code is stored in

./host/src/test/ bspVal/srd/lib.

o Example - tests for systemclock is stored in ../test/ sysClock.tcl.
e Example - procedure to reboot VxWorksin ../host/

src/test/bspVal/srd/lib.
Complete source for Tcl available.

=

JJJJJJJ

11-58

Running the VTS

BSP VTS s activated with atest script (see documentation for details
for UNIX and Windows platforms).
All output goes to standard output (host platform) by default, must
use logfile for permanent storage:

» Header with name of target server, BSP, and logfile.

o Astest begins, test name is displayed.

» As sub-tests complete, name is displayed along with PASS/FAIL

status information.
Normally if test fails other test will still run.
o |f fatal error isgenerated, VTS aborts and displaysa FATAL

ERROR message.

== WindRwver

JJJJJJJ

11-59

BSP Validation

Goal of validation to ensure integrity of BSP. WRS supplies a BSP
validation checklist:

 Product Packaging Test.
e BSPVTS checklist.
o Target Information test sheet.

To have a BSP certified by WRS, documents associated with these
test, along with complete BSP source, and two targets must be
provided to WRS:

« WRSwill test all aspects of the BSP - installation, packaging
(correct file organization and content), and functionality (see BSP
VTS checklist).

 WRS certified BSP products can be distributed displaying that
they are WRS certified.

== WindRwver

JJJJJJJ

11-60

Summary

After development image activates kernel and system clock,
developer entersfinal stage of BSP devel opment:

* Provide any missing required BSP routines.
Integrate generic driver code.

Add support for missing optional BSP routines.
Clean-up and complete BSP files.

Ensure all standard VxWorksimages can be booted.
e Test (use VTSIf available) and document BSP.

BSP development can be an on-going project as new drivers are
added, and new features are supported.

* Documentation isthe key to maintaining continuity.
Contact WRS if BSP certification is desired.

== WindRwver

JJJJJJJ

