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• General prerequisites:

• Solid knowledge of C programming, and  familiarity with 
general assembly level programming principles.

• Experience writing device drivers using the C 
programming language.

• Basic understanding of standard embedded systems 
hardware.

• Basic understanding of VxWorks and debugging 
techniques.

• Basic understanding of makefiles and building executable 
images.

• Functional knowledge of host platform and Tornado tools:

• UNIX: user-level knowledge of make, csh, man, vi or 
emacs, etc.

• Windows NT: user-level knowledge of Windows NT 
graphical and command-line user interfaces, file systems, 
and standard Windows editor.

• Tornado tools: configuration of a target server to support 
various back end connection strategies, practical 
experience using CrossWind, and basic user-level 
knowledge of other Tornado tools.

Course Prerequisites
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• Overview of BSP responsibilities and integration issues.

• Choose a BSP development strategy.

• Manage a BSP development environment.

• Choose BSP development tools.

• Use WDB agent for BSP development.

• Perform pre-kernel initialization.

• Perform post-kernel initialization.

• WRS guidelines for device driver design.

• Manage interrupts in a BSP.

• Integrate timer drivers.

• Manage memory.

• Integrate serial communication controller for debugging.

• Build and support VxWorks images such as:

• Loadable images

• ROM-based images (compressed/uncompressed)

• ROM-resident images

• Writing and testing WRS a compliant BSP.

Course Objectives
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• Writing generic device drivers (network, SCC, SCSI, etc.). 
Material covered in Tornado Device Driver Workshop.

• Using Tornado tools and non-BSP VxWorks facilities. 
Material covered in Tornado Training Workshop.

• Architecture port issues.

• Specific vendor hardware:

• Target devices.

• Non-WRS development tools.

What Course Does Not Cover
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1.1 Integration Issues

VxWorks Boot Sequence

Tornado Directory Structure

Conventions and Validation

Overview
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• Provides VxWorks with primary interface to hardware environment.
• BSP Responsibilities:

• Hardware initialization on power-up.
• Support for VxWorks access to hardware drivers.
• Integration of hardware-dependent and hardware-independent 

software in VxWorks.
• Components consist of:

• Source, include, and make files.
• Derived files.
• Binary driver modules.

• May be validated to be WRS compliant.

What is a BSP?
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• A BSP is not a hardware driver:
• A hardware driver accesses hardware.

• Hardware drivers are classified as generic or BSP specific:
• Generic drivers manage devices which can be moved from one 

target environment to another (e.g. LAN chip).
• BSP drivers manage devices which are specific to the target 

environment (e.g. interrupt controller).
• BSP developer responsible for:

• Complete support for BSP specific drivers.
• Integration of generic device drivers.

What a BSP is Not
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BSPs and VxWorks
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• VxWorks boot sequence specifics will vary with processors and 
hardware environments.

• Common initialization requirements:
• Provide code at specific location in memory which processor will

jump to on reset or power-up.
• Set processor in a specific state.
• Initialize memory and memory addressing.
• Disable interrupts.
• Pass control to additional bootstrapping code.
• Load required VxWorks segment(s) into RAM.
• Place hardware in quiescent state before initializing VxWorks

kernel.

BSP Responsibility: Hardware
Initialization
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• Some driver support is provided by BSP. Examples:
• Driver defines ISR(s), but BSP connects ISR(s) to interrupt vector 

table.
• BSP creates structures (objects) which are passed to driver for 

initialization.
• Offset constants and access macros for hardware registers 

provided by BSP and used by driver.
• Provides portability for hardware driver code.
• Device configuration management:

• Access to full range of device features (possibly at a later time).
• Separate development/production configurations.

BSP Responsibility: VxWorks Access
To Hardware Drivers
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• Provides code flexibility and portability:
• Compile-time flexibility.
• Run-time portability.

• Compile-time flexibility:
• Uses preprocessor macros to customize system.
• Provides ability to produce optimized modules without changing 

source code.
• Run-time portability:

• Uses pointers to access routines.
• Provides portability for compiled object modules.

BSP Responsibility: Integration of
Hardware Dependent Software
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• Primary BSP files:
• Source files.
• Include files.
• Make files.

• Source files:
• Generic code is written in C. Architecture specific and 

performance optimized code is assembly.
• Include files:

• All includes and definitions specific to a CPU board are localized 
in two files.

• Make file:
• Controls building of all images.

BSP Components: Primary Files
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• Derived BSP files are created using:
• Primary BSP files.
• Driver source files.
• Modules in VxWorks archive libraries.

• Derived BSP files are classified as:
• Hardware initialization object modules.
• VxWorks boot object modules.
• VxWorks images.
• VxWorks binary symbol table.

• A complete BSP port will generate all of these files.
• End users will recreate some of these files when configuring the

system.

BSP Components: Derived Files
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• Development should occur in incremental steps:
• First set up development environment (down-load path(s), debug 

strategies, etc.).
• Write pre-kernel initialization code.
• Optionally activate WDB agent and Tornado tools using polled 

serial or ethernet interface.
• Start minimal VxWorks kernel adding support for a system clock, 

and install interrupts.
• Complete BSP providing all necessary support for hardware 

environment (full network support etc.).
• Clean-up, testing and documentation.

• Course material will be presented following this sequence as closely 
as possible.

BSP Development
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• Development time may be reduced by purchasing:
• The BSP Developer’s Kit.
• Appropriate reference BSP.

• BSP Developers Kit provides:
• A Validation Test Suite (VTS).
• Template BSP (all architectures).
• Template device drivers.

• Purchasing a reference BSP which most closely matches target 
environment:
• Specific device drivers which are not part of reference BSP can 

also be purchased from WRS.
• Reference BSP obtained when Tornado is purchased.

BSP Development - cont.
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• BSP validation:
• WRS validated.
• Non WRS validated.

• A WRS validated BSP:
• Classified as Tornado Certified, and may be distributed displaying 

this information.
• Contact WRS to obtain validation requirements.

• BSP validation uses a Validation Test Suite (VTS):
• Automated test suite which runs on host and target to exercise 

BSP and report defects.
• Included in BSP Developer’s Kit.
• VTS distribution includes source to allow extension.

BSP Validation
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Integration Issues

1.2 VxWorks Boot Sequence

Tornado Directory Structure

Conventions and Validation

Overview
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• There are three classes of VxWorks images:
• Loadable images.
• ROM-based images - compressed/uncompressed.
• ROM-Resident images.

• Loadable images are loaded into RAM by boot code.
• Boot code is “burned” into ROM or Flash.
• Boot code is a stand-alone VxWorks application.

• ROM-based images load themselves into RAM from ROM or Flash.
• ROM-resident images execute out of ROM or Flash.

• Only the data segment of the VxWorks image is loaded into 
RAM.

VxWorks Image Types
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• VxWorks boot image - A VxWorks image designed to load another
VxWorks image containing application code (often referred to as 
“boot code”).
• “Burned” into ROM or loaded into Flash.
• May execute in ROM/Flash (ROM-resident).
• May execute out of RAM.

• VxWorks image - A VxWorks image containing “end-user” code. 
Sub-types:
• Loadable VxWorks image - VxWorks images loaded by VxWorks

boot image.
• VxWorks ROM image - VxWorks image “burned” into ROM or 

loaded into Flash. May execute in ROM/Flash (ROM-resident) or 
RAM.

Some Terminology
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• The sequence of events which occur at power-up are a function of the 
type of VxWorks image which will run.

• The initial phase of the start-up sequence is the same across all
VxWorks image types.

• Processor is “jumped” to the entry point of boot-strap code in ROM 
or Flash. This code:
• Disables interrupts (via the processor).
• Initializes target memory.
• Loads appropriate VxWorks image segments.
• Jumps to code to place target in a quiet state.

• Various startup sequences are discussed next.

VxWorks Startup Sequence
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• Bootstrap code executes and loads text and data segments of boot
code (from ROM or Flash) into RAM.
Scenarios are:
• Boot code compressed - Decompression during copy
• Boot code uncompressed - Copy
• Boot code is ROM-resident - Copy data segment only

• Boot program executes and loads VxWorks image into RAM. Jumps 
to VxWorks load point.

• System initialization code statically linked into loaded VxWorks
image executes and completes initialization.

Boot Sequence - Loadable VxWorks
Image
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Loadable VxWorks Image
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• Bootstrap code executes and loads text and data segments of
VxWorks (from ROM or Flash) into RAM.
Scenarios are:
• VxWorks compressed - Decompression during copy
• VxWorks uncompressed - Copy

• Control transfers to VxWorks initialization code in RAM.
• System initialization code statically linked into VxWorks image 

executes (in RAM) and completes initialization.

Startup Sequence - ROM-based
VxWorks Image
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ROM-based VxWorks Image
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• Bootstrap code executes and loads data segment of VxWorks image 
(from ROM or Flash) into RAM.

• Control branches to VxWorks initialization code in ROM or Flash.
• System initialization code statically linked into VxWorks image 

executes (in ROM or Flash) and completes initialization.

Startup Sequence - ROM-resident
VxWorks Image
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ROM-resident VxWorks Image
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• After (“end-user”) VxWorks segment(s) are loaded into RAM, 
system initialization code statically linked into VxWorks image 
executes to complete the boot sequence.

• This code will:
• Place hardware environment in a quiet state.
• Initialize and start the wind kernel.
• Spawn a task to complete system initialization.

• System initialization task will initialize support for end-user specified 
facilities, and start the end-user’s application.

Startup Sequence - VxWorks
Initialization
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Integration Issues

VxWorks Boot Sequence

1.3 Tornado Directory Structure

Conventions and Validation

Overview
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• Tornado is composed of a set of modular components.
• Modularity aids in portability, flexibility of use, and maintenance.
• Tornado modules are:

• Host Support Package (HSP).
• Generic (target independent) VxWorks.
• Architecture Module.
• Board Support Package.
• Wind Debug Agent (WDB Agent).

• Tornado modules have been designed to minimize interdependence.

Tornado Modularity
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Tornado Modularity
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• Files which make up Tornado are organized to reflect Tornado’s 
component modularity.

• At the highest level files (relevant for BSP development) are 
separated into host and target directories.

• All BSP specific files are in the target directory. However, many 
tools useful in developing a BSP are in the host directory.

• Files which will be modified in developing a BSP are in a 
configuration sub-directory of the target directory.

Tornado Modularity and the
Tornado Directory Tree
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Tornado Directory Tree
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Host Directory Tree
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Target Directory Tree
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• All code which executes at power-up is in files within the config
directory.

• BSP code vs. generic driver code:
• Generic device driver code is designed to be usable with multiple

BSPs (network drivers, serial drivers, etc.).
• BSP (device driver) code is tightly coupled to the target 

environment and is not designed to be used with other BSPs.
• BSP specific code will always reside in ../<bspName>.
• Generic device driver code not supplied by WRS will reside in the 

<bspName> directory or a subdirectory of <bspName>.

BSP Relevant Files
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Integration Issues

VxWorks Boot Sequence

Tornado Directory Structure

1.4 Conventions and Validation

Overview
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• BSP conventions and validation procedures are designed to help 
guarantee integrity of BSP.

• BSP conventions fall into categories:
• Coding conventions
• Documentation guidelines.
• BSP packaging.
• Driver guidelines.

• Validation test:
• Package validation.
• Installation test.
• Functional test (VTS).
• Code review process and WRS validation process.

BSP Conventions and Validation
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• BSP responsible for supporting system hardware environment:
• Initialization of hardware environment.
• VxWorks/application access to hardware drivers.
• Hardware/software integration.

• Provides VxWorks with primary interface to hardware environment.
• Components consist of:

• Source, include, and make files.
• Derived files.

• May be validated to be WRS compliant.

Summary
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System Hardware

Chapter - 2
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2.1 Overview

Architecture Issues

Bus Systems

Memory

Devices

System Hardware
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• BSPs have responsibilities for all components in the hardware 
environment.

• Embedded hardware categories:
• Architecture specific (caches, MMUs, interrupt controllers, and

floating point hardware).
• Bus specific (Bus controllers, and bus bridges).
• Memory specific (memory controllers, and chips).
• Devices (architecture/bus/memory independent).

• Support issues:
• Initialization.
• Access.

Overview
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Overview

2.2  Architecture Issues

Bus Systems

Memory

Devices

System Hardware
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• Libraries for managing CPUs are part of the Tornado architecture 
module.

• Some CPU specifics will be relevant for BSP development:
• MMU Support
• Cache Issues
• Interrupt Handling
• Floating-Point Support

• Many of these specifics will be important during the initialization 
phase of booting a VxWorks image.

BSPs and CPUs
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• Memory Management Units control memory access for:
• Allocating/de-allocating memory.
• Resolving cache coherency issues.
• Write protecting memory.
• Virtual memory swapping.
• Paging and segmentation.
• Garbage collection.

• Requires RAM resident translation tables which map physical 
memory into a virtual memory address space.

• May be inappropriate for real-time applications due to latency 
increases and memory consumption.

• Unit is often on the same ASIC as the CPU.

MMUs
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• Booting VxWorks:
• MMU disabled until the wind kernel is activated.
• Build translation tables.
• Enable MMU.

• In VxWorks a task does not include a translation table as part of its
context:
• Tasks do not reside in virtual memory.
• Default virtual memory maps are global and flat.

• MMU may be managed dynamically with:
• Bundled MMU library.
• Optional virtual memory management product (provides

programmatic access to MMU).

MMU Support
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• Fast memory interface between CPU and main memory.
• Reduces read/write access time for CPU and local bus activity.
• Most modern processors support separate data and instruction caches.
• Cache is accessed in quantized units called cache lines.
• Cache modes:

• Write through - Data written to cache by processor flushed to 
main memory.

• Copyback - Writes only to cache, conserves processor bandwidth.

Caches
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• Cache is located:
• On the same ASIC as the CPU - L1 cache
• External to the CPU ASIC - L2 cache
• Backside L2 cache - External L1 cache (with special bus to

processor).
• Some architectures provide cache management instructions, others

bundle cache management with virtual memory support facilities.
• If cache is enabled, it is examined by the CPU for each memory 

access:
• If data is there - cache hit.
• If data is not there, access main memory- cache miss.

Caches - continued
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• Cache coherency:
• Ideally cached information mirrors main memory.
• Bus master or device with DMA support may update main 

memory without updating cache.
• CPU may update cache without updating main memory, making 

information in main memory stale.
• To maintain cache coherency:

• Cache needs to be flushed when updated by CPU.
• Cache needs to be invalidated (and updated) when main memory

is modified by bus master or DMA transfer.
• Snooping circuitry.

• Copyback with snooping is fastest configuration.

Cache Issues
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• Booting VxWorks:
• Cache(s) disabled until the hardware environment is placed in a

quiet state.
• Invalidate and configure cache mode.
• Enable cache(s) (before wind kernel is activated).

• Provide cache coherency for VxWorks:
• Data cache / RAM - Bus master and DMA access to RAM.
• Instruction cache / data cache - Loader, debugger, and ISR 

connection routines.
• Shared cache lines - Multiple task access to cache.

• When MMU is enabled, cache management and mode control are
supplied by an MMU library.

Cache Support
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• Cache coherency is maintained:
• Map off-board addresses as non-cacheable.
• MMU enabled - Routine to allocate cache aligned memory 

marked as non-cacheable (returned cacheable).
• MMU not enabled - Cache library support to flush and invalidate

cache when necessary.
• Architecture may have more than one cache implementation.

Hardware environment could then support multiple cache systems.
• BSP must supply support for selecting the appropriate cache 

libraries.
• Linker must include needed cache library modules.

Cache Support - continued
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• Hardware interrupt request and acknowledgment transactions are
specific to:
• Hardware requesting interrupt service.
• CPU.
• System bus protocol(s).

• Hardware device will:
• Determine which interrupt service is requested.
• Terminate device interrupt request upon IACK or device access.

• CPU will determine number of external interrupts and interrupt levels
supported using external interrupt lines and/or interrupt controller.

Interrupt Handling
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• IACK cycles are a function of local bus protocol:
• Vectored - Automatic acknowledgment.
• Autovectored - Acknowledgment done in software.

• CPU will determine which ISR to execute based on:
• External interrupt line activated.
• Interrupt select register of interrupt controller.
• Interrupt select register on device.
• Combinations, often requiring interrupt service de-multiplexing in 

software.
• CPU will reset interrupt status info after ISR completes:

• Bits in a CPU status register.
• Interrupt mask on external interrupt controller.

Interrupt Handling - continued
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• Designing interrupt scheme for hardware environment:
• Interrupt priority levels.
• Association of interrupts with devices and/or device service 

requests.
• Number of ISRs - De-multiplex services in single ISR.

• Hardware support facilities:
• CPU (and interrupt controller when present).
• Device specific (enable/disable, IACKs, etc.).

• Interrupt service routines:
• Latency.
• Interrupt context and hardware negotiation.
• Connecting.

Interrupt Handling Issues
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• To minimize latency in handling interrupts, design efficient interrupt
circuitry.

• Choose devices which provide interrupt vectors, with different 
vectors for each requested service. If not possible, one vector for 
device.

• Ability to enable/disable each interrupt source separately.
• Device interrupt control register.
• Interrupt controller.

• Well documented and diagramed interrupt vector scheme.

Interrupt Circuitry Guidelines
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• VxWorks uses an interrupt table:
• ISRs must be connected to unique interrupt vectors after wind 

kernel is started.
• Table contains addresses for interrupt handlers.

• VxWorks is interrupt aware, preventing the OS from providing 
blocking services at interrupt time.

• Device interrupts must be disabled before kernel is activated, and 
enabled after ISRs are connected.

• Architecture and device driver libraries:
• Provide ISR code.
• Provide hardware interrupt management code.

Interrupt Handling Support
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• A BSP:
• Disables device interrupts at system start-up.
• Connects ISRs to interrupt table.
• Supplies interrupt level/vector bindings to devices.
• Supplies addresses and control values associated with hardware

interrupt status and control registers.
• Supplies routine which transfers control to boot code if an ISR

throws an exception.
• BSP interrupt support should make device drivers as flexible as 

possible so they can be reused in hardware environments with 
different interrupt structures.

Interrupt Handling Support -continued
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• Support for floating-point operations:
• Floating-point/math co-processor(s).
• Software emulation.

• VxWorks contexts do not save/restore floating-point registers by 
default:
• Tasks allow an optional context extension which will include 

floating point registers.
• ISRs and exception handlers use bundled routine to 

programmatically manage floating-point registers.
• Architecture is responsible for floating-point support.
• Some BSPs will have configuration macros for FPU or software 

floating-point emulation.

Floating Point Support
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• Additional architecture issues which may impact a BSP:
• Big-endian/little-endian byte ordering.
• Processor specific initialization.
• Register and memory alignment.
• Addressing mode constraints.
• TAS operations and external bus access.

• Any of these issues may require BSP configuration macros to be 
defined.

Additional Architecture
Considerations
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Overview

Architecture Issues

2.3 Bus Systems

Memory

Devices

System Hardware
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• Buses are classified relative to the processor:
• Local bus (processor bus).
• External buses (all others).

• Hardware environment may have:
• Multiple external bus systems.
• No external bus system.

• Bus system characteristics:
• Cycles ((a)synchronous, multiplexed, etc.).
• Arbitration (bus-locking, priority levels, etc.).
• Data transfers (memory-mapped, I/O mapped, etc.).
• Data properties (width, big/little endian, etc.).
• Interrupt policies (generation, IACK, routing, etc.).

Bus Systems
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• BSP developer will need to be aware of bus protocols:
• Data transfer rates and formats.
• Bus requirements for DMA transfers.
• Interrupt protocols.

• For hardware environments with multiple buses, bridge chips may
connect the busses, and provide an interface for inter-operability:
• Data transfer.
• Interrupt services.

• Bus system initialization:
• Minimum initialization to boot VxWorks.
• Complete initialization to support application.

Bus System Issues
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• Bus systems and bus bridges have device drivers.
• Generic device drivers should be decoupled from bus specific issues.
• A BSP provides configuration and access support for:

• Bus drivers.
• Bus bridge drivers.
• Generic drivers for bus resident devices.

• A BSP is responsible for bus initialization:
• Bootstrap code identifies local bus speed, initializes local CPU

bus, and necessary bus bridges.
• Boot code/VxWorks completes initialization, paricularly support

for external buses.

Bus System Support
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Overview

Architecture Issues

Bus Systems

2.4 Memory

Devices

System Hardware
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• Memory types traditionally supported by embedded systems:
• RAM - Random Access Memory
• ROM - Read Only Memory
• Non-Volatile memory - NVRAM and Flash.

• Memory types represent different technologies with different access
characteristics, capabilities, and costs.

• Each memory type itself has multiple sub-types.
• Embedded systems will typically use some or all of these memory

types.

Memory Types
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• Memory is accessed via uniquely addressed locations (which may be
mapped to a separate address space).

• A memory controller provides hardware support allowing the CPU to 
access memory. Provides:
• Address decode logic.
• Timing control.
• Memory bus interface support.
• Control of memory mapped devices.

• To access memory mapped addresses in a different physical address
space, the hardware environment may have a separate memory 
controller ASIC.

• Hardware environment may have multiple maps.

Memory Access
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• Memory access issues:
• Initialize memory hardware.
• Provide support for software access.

• Initializing memory hardware:
• Enable memory controller.
• Enable memory chips.
• Enable bridge/memory controller(s).
• Check integrity of memory.

• Supporting software access:
• Initialize dynamic memory management facilities.
• Maintain integrity of system/application memory pools.

Memory Access Issues
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• Memory access:
• Hardware support.
• Software support.

• Hardware support:
• Initialization to load ROM code into RAM performed at power-

up.
• Remainder of memory hardware initialized by pre-kernel 

initialization code in VxWorks.
• Software support:

• Management of virtual memory maps.
• Initialize partition library after kernel is activated.
• Enable and initialize MMU after kernel is activated.

Memory Access Support



2-30

• Random Access Memory:
• Dynamic RAM (DRAM)
• Static RAM (SRAM)

• DRAM
• Primary storage technology.
• Store/hold capacitor technology.
• Limited read/write cycle times.
• Refresh cycles required.

• SRAM
• Most often used for cache storage, often on CPU chip
• Flip-flop technology, fast read/write cycle times.
• No refresh cycles.

RAM
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• RAM configuration:
• Main memory.
• Cache memory.

• Main memory RAM configuration:
• Zeroed at power-up for cold-boot to prevent parity errors.
• Configured and enabled by ROM code at system power-up.

• Cache memory RAM configuration:
• Usually disabled at power-up, enabled by VxWorks pre-kernel

initialization code.
• Provide cache management libraries.

RAM Support
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• Read Only Memory types:
• Programmable ROM (PROM).
• Erasable Programmable ROM (EPROM).
• Electrically Erasable PROM (EEPROM).

• ROM properties:
• Non-volatile. Modified using a ROM programmer.
• Usually longer access times than DRAM/SRAM.
• Memory controller interfaces ROM to CPU.

• Non-volatile property allows:
• System boot code storage.
• Hardware environment configured to jump to a ROM address at 

power-up.

ROM
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• Flash is non-volatile memory which can be modified 
programmatically.

• Used as a “silicon” hard disk:
• System boot code storage.
• Hardware environment configured to jump to a flash address at 

power-up.
• Maintaining data integrity during power-outs.

• Access times slightly slower than DRAM but faster than ROM.
• Flash memory cells have a finite number of erase/ program cycles

(~10,000 - 100,000).

Flash
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• Flash and ROM use similar memory cell technology:
• Storage transistor employs transistor tunnelling.
• No battery to provide non-volatility.
• Access times are roughly the same.

• Flash technology requires lower voltage to erase/ program than 
PROM.

• Flash power supply unit allows flash to be modified without being 
removed from hardware environment.
• Contents may be modified over a network interface.
• Contents may be modified by application code.

• Many flash chips support configurable write protection.

Flash vs. PROM
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• Flash/PROM support facilities:
• At system start-up.
• For application code.

• System start-up support:
• Code executing out of flash/PROM in Tornado tree.
• Makefile support to build boot code.
• Flash file system to load VxWorks from flash.
• Minimum capacity PROM.

• Application code support:
• Code (driver/file system) to uniformly access flash.
• Large capacity PROM for ROM-resident and un-compressed 

VxWorks/boot code images.

Flash/PROM Support
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• Non-volatile RAM:
• Non-volatility usually provided by battery.
• May be implemented using CMOS RAM, battery-backed SRAM, 

or flash.
• Units may contain a programmable time-of-day (TOD) clock:

• TOD information is stored in NVRAM.
• Used to store boot parameters for VxWorks image:

• VxWorks boot parameters may use up 255 bytes.
• If a hardware environment does not have NVRAM, boot parameters 

are statically linked into boot code.

NVRAM
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Overview

Architecture Issues

Bus Systems

Memory

2.5 Devices

System Hardware
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• Generic devices are independent of architecture, buses, and memory 
hardware.

• Typical devices:
• Timers.
• Serial Communication Controllers (SCC).
• Network interfaces.
• SCSI controllers.
• Custom ASICs (DSP chips, etc.)

• Devices should support:
• Read/write access.
• Any mandatory access timing requirements.

Embedded System Devices
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• Hardware timers are used for:
• System clock interrupt (mandatory).
• Auxiliary clock for high speed polling.
• Timestamp for WindView.
• TOD clocks (“Real Time Clocks” - RTCs).

• Timers operate in one of three modes:
• Periodic interrupt.
• One-shot interrupt.
• Timestamp.

• Timer use dictated by mode(s) supported by hardware.
• Timers are initialized after the kernel is activated.

Timers
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• The three modes for timer operation are:
• Periodic interrupt - Counts up/down to programmed terminal 

count, generates interrupt, resets counter.
• One-shot interrupt - Counts up/down to programmed terminal 

count, generates interrupt, disables counter.
• Timestamp - Counts up/down to maximum count, generates interrupt to

log counter rollover, restarts count. Unlike periodic interrupt, counter is
polled to obtain high-fidelity timestamp, interrupt is only used to mark 
counter rollover.

• TOD clocks will also contain date information.

Timers - cont.
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• SCCs used as:
• Download/debug path during BSP/application development.
• Communication channel for application.

• Support for interrupt and polled mode operation:
• System level debugging (pre/post kernel).
• Task level debugging (post kernel).
• Dual level debugging (post kernel).

• In polled mode, serial interface can be used for system level 
debugging prior to kernel activation.

• For pre-kernel system level debugging serial port is accessed by 
WDB agent.

Serial Communication Controllers
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• Provides support for:
• Application development using Tornado.
• Distributed applications.

• VxWorks supports two network stacks:
• 4.3 BSD TCP/IP stack.
• SENS - Scalable Enhanced Network Stack.

• SENS supports:
• 4.4 BSD TCP/IP stack.
• A proprietary MUX interface between the link and protocol 

layers.
• END - Enhanced Network driver which decouples network driver

from network protocols.

Network Interfaces
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• Used to provide access to hard disks, tape drives, etc.:
• For booting VxWorks.
• Application data storage/retrieval.

• VxWorks supports SCSI-2 systems. Support consist of:
• Architecture independent libraries.
• Architecture specific controller driver.
• Board specific device initialization code.

• Devices accessed by application through:
• File system (DOS or RAW) for block devices.
• Tape file system for sequential devices.
• Customized SCSI commands for unsupported device classes.

SCSI Controllers
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• A BSP will provide support for several hardware categories.
• Architecture specific:

• Caches.
• MMUs.
• Interrupt controllers.
• Floating point hardware.

• Bus specific:
• Bus controllers.
• Bus bridges.

Summary
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• Memory specific:
• Memory controllers.
• Memory chips.

• Devices:
• Timers.
• Serial Communication Controllers.
• Network interfaces.
• SCSI controllers.
• Custom ASICs.

• Support issues involve initialization and hardware access by
application code.

Summary
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BSP Development
Issues
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3.1 Development Cycle Overview

Development Environment

Strategies For Getting Started

BSP Development Issues
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• Development of BSP proceeds in stages, with each stage depending
on developments from previous stages:
• Obtain appropriate reference BSP and template code.
• Prepare the development environment.
• Write the VxWorks pre-kernel initialization code.
• Optionally supply support for Tornado access using a polled serial 

driver.
• Once kernel is activated, connect system interrupts.
• Enable the system clock.
• Complete BSP by supporting desired features.
• Test and document BSP following WRS standards.

• Details will depend on development environment and desired BSP 
features.

Development Cycle Overview
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• Choosing an appropriate reference BSP involves obtaining maximum 
coverage for desired target features, and reducing development time.

• Must obtain Tornado package for correct development platform and 
target architecture.

• Give priority to matching system features over generic (BSP 
independent) devices:
• Local and external bus support.
• Target bridges and controllers.

• May be able to obtain drivers for generic devices (e.g. serial, LAN, 
SCSI, etc.) separately from WRS or third party.

Reference BSP
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• BSP template files are obtained when BSP developers purchase the 
BSP developer’s kit.
• Includes all architectures.

• This should be the starting point for all code development:
• Do not “hack” reference BSP files, unless development consists of 

simply adding generic drivers.
• Examine and analyze reference BSP code, but build BSP using

template files.
• The template BSP will compile, but most optional features have been 

disabled.

BSP Template
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• Primary components of development environment:
• Technique for downloading code to target.
• Technique(s) for testing and debugging code.

• Appropriate and available development tools are dependent on 
development stage:
• Early pre-kernel initialization phase requires BSP developer to 

define development environment.
• Post-kernel initialization phase will have access to Tornado tools.

• Early pre-kernel development environment needs to provide 
download path and mechanism to jump to code entry points and 
execute code successfully.

Development Environment
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• Common download paths:
• Target vendor’s debug ROM.
• ROM emulator.
• In-Circuit Emulator (ICE).

• Common debug tools:
• Target vendor’s debug ROM.
• ICE.
• Logic analyzer.
• Target features such as LEDs.
• Tornado toolset.

Pre-Kernel Development
Environment
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Development Cycle Overview

3.2 Development Environment

Strategies For Getting Started

BSP Development Issues
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• Developer must define pre-kernel development environment, often 
the same tool will provide download mechanism and debug facilities:
• ICE.
• Target vendor’s debug ROM (if available).

• Sometimes a combination of tools will be required.
• For a ROM emulator, debug tools will need to be supplied 

separately.
• A download path will be needed for some debug tools:

• Logic analyzer.
• Target status indicators.

Development Environment
Requirements
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• Processor replaced by probe with cables connected to emulation unit:
• Specific architecture is emulated.
• Emulation unit contains copy of processor being emulated.

• Technique allows access to processor bus to monitor or inject signals 
into system via:
• Emulator processor.
• Emulator circuitry.

• Emulator processor allows code to execute at full CPU speed 
providing timing information and allowing race conditions to be 
caught.

In-Circuit Emulation
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• Emulator circuitry provides debug capabilities:
• Source level debugging.
• Halt emulation (breakpoint) on events not supported by software

debuggers (trap code insertion).
• ICE debug extended feature examples:

• Breakpoints in ROM or RAM.
• Hardware breakpoints (watched points).
• Breakpoints on “don’t care” addresses and data (e.g. 

0x0247XXXX).
• Breakpoints on certain bus events.
• Breakpoints on processor cycles (interrupt acknowledge, cache 

writeback, etc.)
• Code fetches with specific data patterns.

In-Circuit Emulation - cont.
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• Primary issues:
• Must have correct emulator for target architecture.
• Cost.

• ICE systems usually come with support for code downloads via serial 
or network interface:
• To RAM (loadable VxWorks image).
• To Flash (ROM-based and ROM-resident images).

• Most emulators contain memory for code storage:
• Allows re-mapping of target memory regions to emulator (e.g.

mapping ROM to emulator RAM).
• Off-loads system software from host, reducing host load while 

using ICE.

In-Circuit Emulators
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• Often ICE will bundle enhanced facilities:
• Logic state analyzer.
• Logic timing analyzer.
• Pulse and pattern generator.
• Multiple trace capability.
• User-friendly GUI.
• Integrated debugger.
• Expansion busses for additional hardware access.
• Event ID and isolation capability.
• Real-time trace and filter.

• If target server backend is developed for an ICE, it can be used with 
Tornado tools.

In-Circuit Emulators - cont.
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• Two ICEs which can be used with Tornado:
• visionICE
• TRACE 32 ICE

• Both products provide ethernet download capability, support for 
several popular architectures, and many enhanced features for real-
time systems.

• Target server backend for these ICEs have been developed:
• Provides access to Tornado tools prior to kernel activation.

• Contact WRS for more information concerning ICEs which can be 
integrated with Tornado.

Tornado / ICE Integration
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• ROM emulator gives host machine access to target via ROM socket:
• Target ROM chip is removed and emulator pods are plugged into 

(standard) ROM socket.
• Pods are connected to emulator, which in turn connects to host 

machine via serial or network link.
• ROM emulators not architecture dependent, can be used with any

target which has ROM socket.
• ROM emulator unit contains memory which replaces target ROM:

• Code downloaded from host to emulator memory.
• Emulator memory appears as part of target memory.

ROM Emulators
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• VxWorks can be executed:
• Out of emulator memory (ROM-resident image).
• Out of target memory (ROM-based image).

• ROM emulator provides download path, but not debug tools. Debug 
tools obtained via:
• Logic analyzer.
• Debug agent linked with software loaded to emulator memory.

• Most ROM emulators provide communication path and protocol to 
pass debug messages from target to host.

• If target server backend is developed for a ROM emulator it can be 
used with Tornado tools.

ROM Emulators - cont.
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• One ROM emulator which can be used with Tornado tools is
NetROM:
• Converts target with ROM socket to network node.
• 1 MB of emulation memory.
• Ethernet downloads via tftp or TCP.
• 2 KB of dual ported RAM for debug communication.

• NetROM target server backend option bundled with Tornado:
• Provides access to Tornado tools prior to kernel activation.

• See Tornado User’s Guide for more information on configuring and 
using NetROM.

NetROM
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• Vendor native debug ROM (when available) comes with target board.
• Development software burned into ROM on target:

• Dynamic loader.
• Supported download path.
• Ability to jump to address and begin execution.
• Debug tools.
• Diagnostics.

• Target environment may have jumper allowing board to boot from 
ROM or some non-volatile RAM.

• After development can be replaced by ROM containing VxWorks
image.

Vendor Debug ROM
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• Downloading code:
• Serial or network interface.
• Download path to RAM (VxWorks loadable image).
• Often download paths to Flash (ROM-based or

• ROM-resident images).
• Debug ROM code supplies device driver for communication interface

port (serial or network).
• Example debug/diagnostic facilities (support varies):

• Set breakpoints and step code.
• Examine and modify memory.
• Set environmental parameters (bus clock speed, etc.).
• Self-test to verify integrity of target.

Vendor Debug ROM - cont.
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• Provides tool to monitor processor’s address, data, control, and status
lines:
• Connects to processor pins via multiple probes.
• Contains memory for data capture.

• Provides pre-kernel development services such as:
• Tracing on clock cycle or bus pattern triggers to monitor device 

responses.
• Locate hardware interrupt sources.
• Monitor address access to check memory mapping.
• Processor state evolution to monitor code execution sequences.

• Bundled with many ICEs.

Logic Analyzer
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• Native target environment may provide several features which can be 
used as diagnostic/debug tools:
• Accessible memory mapped LEDs.
• Local or off board persistent memory.
• Serial port.

• Write library to manage target feature to be used as diagnostic/debug 
tool:
• Flash LEDs N times to mark code sequence events.
• Write state information to persistent memory for analysis after 

system reboot.
• Polled serial driver to send character(s) to host to mark code

sequence events.

Target Feature Debug Tools
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• Wind DeBug (WDB) agent is statically linked with VxWorks image. 
Provides advantages over traditional ROM monitor:
• One set of initialization code for agent and OS.
• Reduced size as agent shares libraries with OS.
• Provides access to full featured debug environment,
• Can run in system or task mode (post-kernel).

• Requires target server backend support to access Tornado tools. For
pre-kernel development:
• NetROM (bundled).
• Serial line (bundled).
• Some ICEs (vendor or third party supplied).

WDB Agent And Tornado Tools
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Host - Target Interaction
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Development Cycle Overview

Development Environment

3.3 Strategies For Getting Started

BSP Development Issues
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• Obtain appropriate reference BSP, Tornado BSP Developer’s Kit for
VxWorks, and device drivers.

• Once WRS software is provided but before starting development 
code:
• Determine development environment and obtain appropriate 

hardware.
• Configure target hardware based on documentation and 

development strategy.
• Choose appropriate development image type.
• Identify and configure required software tools.

• Once Tornado access has been achieved, development environment 
and strategy may be changed.

Getting Started
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• Will need to determine:
• Development tools.
• Target download path.

• For ICE or ROM emulator:
• Download tools provided.
• Determine to execute image in emulator memory or target 

memory (ROM-resident or ROM-based development image).
• Will need to provide debug tools for ROM emulator.

• For ROM monitor:
• Download and debug tools supplied.
• Development image may be loadable or ROM.

Development Environment
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• For vendor debug ROM:
• Download and debug tools provided.
• Load image to Flash (ROM-resident or ROM-based).
• Load image to RAM (can use loadable VxWorks image if ROM 

debug code initializes RAM).
• For tools without download facilities (logic analyzer and target

features):
• Use with tools suppling download path.
• Burn development image into ROM.

• Target environment may need hardware configuration - boot from 
Flash or ROM, external bus status, activation of download port, 
ROM swap, etc.

Development Environment - cont.
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• Difference between ROM and loadable image is loadable image does
not initialize RAM.

• If development image is a loadable image RAM will need to be 
initialized by some other facility:
• If RAM initialization facility is not be present in production 

environment, start with ROM image.
• If loadable image is only option for development environment, and 

RAM initialization facility will not be available in production
environment:
• Will need alternative environment to develop and test VxWorks

RAM initialization code.
• Course will assume development image is ROM image.

Loadable vs. ROM images
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• Development modules must be fully linked:
• Set appropriate cross-compiler, assembler, and linker flags.
• Linker must produce image with appropriate format for download 

methodology.
• WRS provides cross-development tools:

• Appropriate cross-compiler, assembler, and linker.
• Architecture specific nmX command to dump object module 

symbol table.
• Architecture specific objdumpX command to compare host

assembly code with assembly code loaded to target.
• Routines to convert various object modules to hex (with

appropriate S-record format).

Code Preparation
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• VxWorks image code is built using makefiles. Macros provided to
specify build details:
• Cross-compiler and linker flags.
• Module components linked with image.
• Image types.

• For code not linked into a VxWorks image, developer will need to
create makefile(s) to produce fully linked object module(s) which can 
be downloaded:
• Use WRS supplied cross-development tools.
• May need different cross-compiler and linker options during 

different phases of development.
• Build libraries an place them outside of Tornado directory 

structure.

Code Preparation - cont.
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• A routine to establish initial contact with target:
• Blinks target LED on 68k board.
• Loaded via serial line from UNIX host.
• Target RAM previously initialized.

• Routine in file talkToTarget.c:
/* talkToTarget.c */
/* Routines to blink lights on target board. */
#define WAIT_CNT 100000 /* Loop count for delay. */
/* Forward declarations. */
void lightBlink (void);
void wait (void);

Code Preparation Example
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void lightBlink (void)
{
int * pBrdLight= (int *) 0xFFF40060;
for(;;)

{
*pBrdLight = 0x43000000; /* Turn light on. */
wait ();
*pBrdLight = 0x41000000; /* Turn light off. */
wait ();
}

return;
}

void wait (void)
{
int i;

for(i=0;i<WAIT_CNT;i++)
;

Code Preparation Example - cont.
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• First talkToTarget.c is cross-compiled using WRS cross-compiler:
cc68k -c -DCPU=MC68040 - FLAGS talkToTarget.c

• Produces relocatable object module talkToTarget.o. 
Symbol table dumped with nm68k:
00000000 T _lightBlink
00000028 T _wait
00000000 t gcc2_compiled.

• Convert to fully linked module with desired download address 
(0x100000) using WRS link-load tool:
ld68k -Ttext 100000 talkToTarget.o

Code Preparation Example - cont.
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• Produces a.out file, dumping symbol table with nm68k:
00000000 A __DYNAMIC
00120000 B __end
00120000 D _edata
00120000 B _end
00120000 T _etext
00100000 T _lightBlink
00100028 T _wait
00100000 t gcc2_compiled.
00100000 t talkToTarget.o

• Convert to S-record format for serial line download using WRS tool:
hex a.out > talkToTarget.hex

• This file may now be downloaded to target RAM.

Code Preparation Example - cont.
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• First stage of BSP development involves:
• Obtaining appropriate reference BSP, template code, and device

drivers.
• Define pre-kernel development environment.

• Pre-kernel development environment will specify:
• Target download mechanism.
• Diagnostic and debug tools.
• Appropriate VxWorks development image.

• WRS cross-development tools will be useful for preparing code not
statically linked with VxWorks.

• Post-kernel development may employ a different development 
environment using Tornado tools.

Summary
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Pre-Kernel
Initialization

Overview

Chapter - 4
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4.1 Pre-Kernel Initialization
Sequence

BSP Files

Building VxWorks Images

Pre-Kernel Initialization Overview
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• As outlined in the Overview chapter, on power-up bootstrap code 
executes:
• The processor is “jumped” to a routine romInit() in ROM/Flash.
• romInit() resets processor, initializes memory system, and 

performs any other required hardware initialization.
• romInit() branches to romStart() which loads the ROM image 

(boot or VxWorks) into RAM.
• Processor jumps to pre-kernel initialization code statically linked 

into VxWorks image (usrInit()).
• For ROM-resident images:

• romStart() only loads data segment of image into RAM.

VxWorks Boot and ROM Images
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• After “end-user” VxWorks image is loaded in RAM, the processor is 
“jumped” to the VxWorks load address.
• A routine sysInit() resides at this address. This routine resets the 

processor, and performs other hardware initialization if required.
• sysInit() branches to usrInit() which completes the pre-kernel 

initialization. 
• Both of these routines are statically linked into a loadable VxWorks

image.
• sysInit() is functionally similar to romInit(). The difference is that

romInit() initializes memory and sysInit() does not. (DRAM and 
memory controller usually need to be initialized once.)

VxWorks Loadable Images
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• The routine usrInit() is a generic routine:
• Statically linked into all VxWorks image types.
• Calls routine which activates VxWorks kernel.

• Primary responsibility to place hardware in a quiet state so kernel can 
be activated:
• Disable all hardware interrupts.
• Initialize hardware to a known quiescent state.

• romInit()/sysInit() perform the minimal initialization necessary to 
allow usrInit() to execute.

• “VxWorks” provides the remainder of the hardware initialization via
usrInit().

Generic Pre-Kernel Initialization
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• The routine which places hardware in the initial quiet state prior to 
activating the kernel is sysHwInit().

• The routine which activates the VxWorks kernel is kernelInit().
• kernelInit() activates the multitasking environment and spawns a task 

which:
• Installs drivers and creates devices.
• Initializes VxWorks library facilities.
• Calls application start-up code.

Generic Pre-Kernel Initialization - cont.
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Pre-Kernel Initialization Sequence 
VxWorks Boot and ROM Images
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Pre-Kernel Initialization Sequence 
Loadable VxWorks Image
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• romInit() always executes in ROM/Flash, and jumps to romStart() in 
ROM/Flash.

• romStart() always begins execution in ROM/Flash.
• ROM-resident images load data segment to RAM and continue to 

execute in ROM.
• Images which are not ROM-resident copy start-up code to a RAM 

address, and then jump to that RAM address.
• usrInit() executes out of RAM except for ROM-resident boot and 

ROM-resident VxWorks images.
• sysInit() always executes out of RAM.

What Executes Where?
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Pre-Kernel Initialization Sequence

4.2 BSP Files

Building VxWorks Images

Pre-Kernel Initialization Overview
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• BSP component files are located in:
• ../config/<bspName>

• Directories containing BSP related files are:
• ../config/all
• ../h/make

• Related directories providing support for device drivers will also be 
referenced during BSP development:
• ../src/drv
• ../h/drv

• BSP development will focus on BSP files. All files which must be
customized are in ../config/<bspName>.

BSP Files - Overview



4-12

• Files in the ../config/all directory are delivered as part of the Tornado 
distribution. These files should not be modified.

• Files in the ../config/<bspName> directory are not delivered as part of 
the Tornado distribution:
• BSP is a separate product (sales and installation).

• All VxWorks image type builds are controlled by the Makefile in the 
../config/<bspName> directory.

• Support makefiles containing rules and dependencies are located in 
../h/make. Modifications will be needed in the primary Makefile as 
part of BSP development.

BSP Files - Overview
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• The components of a BSP are:
• Source files.
• Include files.
• Makefiles.
• Derived files.
• Document files.

• BSP, and BSP related files will be presented as follows:
• Source files in the ../config directories.
• Include files in the ../config directories.
• Makefiles in ../config/<bspName> and ../h/make.
• Derived files in ../config/<bspName>.
• Document files in ../config/<bspName>.

BSP Files - Overview
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• BSP related source files in ../config/all:
• bootConfig.c - The primary initialization file for VxWorks boot 

images. Contains the routine usrInit().
• usrConfig.c - The primary initialization file for VxWorks images. 

Contains the routine usrInit().
• bootInit.c - Consists of the routine romStart() and two support 

routines which romStart() calls.
• version.c - Used for each VxWorks build. Provides VxWorks

version ID as well as date and time of build using the ANSI 
_DATE_ and _TIME_ macros.

• dataSegPad.c - Insures that text and data segments of VxWorks
images do not share a MMU page when using VxVMI. Not used 
in the pre-kernel initialization sequence.

BSP Related Files - Source Files
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• BSP source files in ../config/<bspName>:
• romInit.s - Assembly language source for romInit().
• sysALib.s - Assembly language source for sysInit().
• sysLib.c - File containing routines providing board-level access in 

a generic fashion. It #includes all driver modules (or causes them 
to be linked into VxWorks images). Contains the routines 
sysHwInit(), sysHwInit2(), as well as many other routines which 
must be provided as part of a BSP. Primary BSP source file.

BSP Files - Source Files
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• Optional BSP source files in ../config/<bspName>:
• sysSerial.c - File containing routines to provide initialization for 

serial I/O devices. Some routines in this file are called via
sysHwInit() as part of pre-kernel initialization. Not required if 
serial I/O interface is not used.

• sysScsi.c - File containing SCSI configuration routines. These 
routines execute after the kernel is activated. Not required if SCSI 
support not needed.

• sysNet.c - File containing routines for initialization and 
configuration of network interface devices. Not required if LAN 
interface is not present.

• If the BSP requires any unique drivers they should be located in
../config/<bspName> (not ../src/drv).

BSP Files - Source Files
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• BSP related include files in ../config/all:
• configAll.h - This file establishes the default configuration for

VxWorks. It should not be modified.
• BSP include files in ../config/<bspName>:

• config.h - This file is used to modify VxWorks and BSP hardware 
configurations. This file will be modified as BSP development 
evolves.

• <bsp>.h - This file contains fixed hardware values (hardware 
addresses, hardware interrupt levels, etc.). Should not be modified 
unless hardware environment is modified.

BSP Files - Include Files
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• BSP makefile in ../config/<bspName>:
• Makefile - Controls building of all VxWorks image types. 

Probably will need to be modified as part of the pre-kernel code 
development.

• BSP related sub-makefiles in ../h/make:
• rules.bsp - Contains the rules for building the various VxWorks

image types, as well as the rules for BSP object modules which 
are used in VxWorks builds.

• defs.bsp - Contains definitions of BSP build control macros for 
compilation and linking.

• Other sub-makefiles in ../h/make control host and architecture 
specific build parameters.

BSP Files - Makefiles
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• BSP derived files in ../config/<bspName>:
• VxWorks images.
• VxWorks boot images.
• Object modules generated when source files in the ../ config

directories are compiled (bootConfig.o, usrConfig.o,  bootInit.o,
romInit.o, sysALib.o, and sysLib.o).

• depend.<bspName> - Make will generate this dependencies file 
when a VxWorks build is done.

• C files and associated object module files for a target resident
symbol table (symTbl.c and symTbl.o) and C++ 
constructors/destructors (ctdt.c and ctdt.o).

• VxWorks image types will be discussed in greater detail later.

BSP Files - Derived Files
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• BSP documentation files in ../config/<bspName>:
• target.nr - File containing board specific information necessary to 

execute VxWorks image types. File is nroff format and divided 
into sections involving supported/unsupported features, 
instructions for using boot ROMs, summary of hardware devices, 
target environment layout, and description of board jumpers.

• target.txt - ASCII version of target.nr.
• README - File contains BSP release record. This information is 

a version number/revision number.
• A BSP version number identifies the BSP’s generation, a BSP 

revision number incrementally identifies a release within a BSP 
generation.

BSP Files - Document Files
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Pre-Kernel Initialization Sequence

BSP Files

4.3 Building VxWorks Images

Pre-Kernel Initialization Overview
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• VxWorks builds are controlled by the Makefile in the ../ 
config/<bspName> directory.

• The type of VxWorks image which will be built is specified by the 
object type name specified. These “target” names appear in the file 
../h/make/rules.bsp.

• VxWorks image types can be divided into:
• VxWorks images - Loadable, ROMable, and ROM-resident.
• VxWorks boot images - ROMable and ROM-resident.

• All ROMable (non-ROM-resident) images can be sub-divided as 
compressed or uncompressed.

VxWorks Builds
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• The build rules for VxWorks will produce images for the following 
object type names:
• vxWorks - Loadable binary VxWorks image. (Also builds a 

separate vxWorks.sym symbol table file).
• vxWorks_rom - Uncompressed ROMable binary VxWorks image.
• vxWorks.st - Stand-alone loadable binary VxWorks image. 

Symbol table linked in.
• vxWorks.st_rom - Compressed ROMable version of vxWorks.st.
• vxWorks.res_rom - Uncompressed ROM-resident version of

vxWorks.st.
• vxWorks.res_rom_nosym - ROM-resident version of vxWorks.st

without symbol table.

VxWorks Image Types
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• bootrom - Compressed ROMable binary VxWorks boot image.
• bootrom_uncmp - Uncompressed rommable binary VxWorks boot 

image.
• bootrom_res - ROM-resident binary VxWorks boot image.

• S-record formatted versions for all rommable and ROM-resident 
images can be built by using the object type name show here and 
adding a “.hex” extension.

• Note, uncompressed ROMable images may require extra capacity
ROMs.

• All ROMable and ROM-resident images can be configured to be 
“burned” into Flash or PROM.

VxWorks Image Types - continued
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• The file Makefile in the ../config/<bspName> directory controls all
VxWorks builds. It contains:
• Required BSP specific macros.
• Additional (non-required) support macros.
• Includes of support makefiles in ../h/make.

• Some macros defined in Makefile are also defined in 
../config/<bspName>/config.h. Definitions must be identical.

• Compilation rules, linking rules and support macro definitions for 
building images are in ../h/make.

The VxWorks Makefile
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• The BSP developer is responsible for defining the following required 
BSP specific macros in ../config/ <bspName>/Makefile:
• CPU - Target CPU.
• TOOL - Host tool chain (e.g., gnu)
• TGT_DIR - By default set to $(WIND_BASE)/target.
• TARGET_DIR - BSP directory name.
• VENDOR - Board manufacturer’s name
• BOARD - Name of board.
• ROM_TEXT_ADRS - Boot ROM entry address in hexadecimal. 

Will be a Flash address if processor is “jumped” to Flash on 
power-up.

VxWorks Makefile Macros
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• ROM_SIZE - Size of ROM area in hexadecimal.
• RAM_LOW_ADRS - Address at which non-ROM-resident 

application VxWorks images begin. (It is also the initial load 
address for compressed VxWorks boot images. This will be 
discussed in the next chapter.)

• RAM_HIGH_ADRS - Destination address for non-ROM- resident 
VxWorks boot images. (Also initial load address for non-ROM-
resident compressed VxWorks ROM images.)

• HEX_FLAGS - Architecture specific flags for building S-record 
formatted versions of images.

• MACH_EXTRA - Extra machine-dependent files to be linked. 
Initialize as empty declaration.

VxWorks Makefile Macros -continued
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• The following macros must be identically defined in 
../h/<bspName>/config.h:
• ROM_TEXT_ADRS
• ROM_SIZE
• RAM_LOW_ADRS
• RAM_HIGH_ADRS

• There may also be some architecture specific macros required in the
Makefile file. (Example, the i960 CPU needs to know where to link 
the Initial Boot Record.)

• Hexadecimal addresses used in macro definitions should not have a 
leading 0x in Makefile.

VxWorks Makefile Macros -continued
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• Additional (non-required) macros to customize VxWorks builds fall 
into two categories:
• Those used by application developers.
• Those used by BSP developers.

• Macros for application developers contain ADDED in their name. 
These macros allow the user to specify compile time options.

• Macros for BSP developers contain EXTRA in their name. These 
macros allow additional object modules to be compiled and linked
with VxWorks.

VxWorks Makefile Macros For
Customized Builds
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• The Makefile file contains includes of sub-makefiles containing 
definitions and rules necessary for VxWorks builds. These sub-
makefiles are in ../h/make:
• defs.bsp - File containing default make definitions. These 

definitions can be customized in Makefile.
• make.$(CPU)$(TOOL) - File contains CPU specific macros for a 

specific tool chain.
• defs.$(WIND_HOST_TYPE) - File where host specific macros 

are defined.
• rules.bsp - File containing rules for VxWorks builds.
• rules.$(WIND_HOST_TYPE) - Files contains host specific build 

rules.

The Makefile and Sub-makefiles
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• Pre-kernel initialization code is responsible for placing the hardware 
environment in a state which allows the VxWorks kernel to be 
activated.

• Pre-kernel initialization code is specific to boot strategy and statically 
linked into the appropriate VxWorks image type:
• Loadable image - Contains application code.
• ROM image - May contain application or boot code.
• ROM-resident image - May contain application or boot code.

• VxWorks builds controlled by Makefile file which uses sub-
makefiles containing make definitions and rules.

Summary
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5.1 Boot Specific vs. Generic Code

romInit.s : romInit()

PIC and VxWorks

bootInit.c : romStart()

sysALib.s : sysInit()

Pre-Kernel Initialization - Boot
Specific Code
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• Details of pre-kernel initialization depend on VxWorks image type 
characteristics:
• ROM image - Boot or “end-user” image.

a. compressed
b. uncompressed

• ROM-resident image - Boot or “end-user” image.
• Loadable image - “End-user” image.

• Generic pre-kernel code common to all image types is usrInit() and 
the routines it calls. These will be discussed in the next chapter.

VxWorks Image Types and Generic
Code
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• VxWorks image type specific code:
• romInit()
• romStart()
• sysInit()

• romInit() and romStart() execute for all images “burned” into ROM.
• sysInit() only executes for all loadable VxWorks images.
• romInit() and sysInit() are similar routines except romInit() initializes 

memory and sysInit() does not (this is done by romInit() in the boot 
image).

Boot Specific Pre-kernel
Initialization Code



5-5

• Which type of image is developed first depends on download path:
• Download to RAM - Use vxWorks.
• Download to ROM - Use vxWorks_rom or 

vxWorks.res_rom_nosym.
• The initial image should not be compressed or contain a symbol 

table. These features can be added later.
• The first image for a download path to ROM:

• vxWorks_rom - Allows software breakpoints for code which 
executes in RAM.

• vxWorks.res_rom_nosym - Provides a smaller RAM footprint 
(and possibly reduced start-up time).

Choice of First Image
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Boot Specific vs. Generic Code

5.2 romInit.s : romInit()

PIC and VxWorks

bootInit.c : romStart()

sysALib.s : sysInit()

Pre-Kernel Initialization - Boot
Specific Code
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• First code to execute on power-up. Entry point for all VxWorks ROM 
images.

• Performs minimum required setup to execute romStart(). The 
remainder of hardware initialization is performed by generic pre-
kernel code.

• Routine must:
• Mask processor interrupts and reset processor.
• Initialize the memory system.
• Initialize stack pointer and other registers to begin executing 

romStart() and passing the boot type.
• Routine is written is assembly language and resides in file romInit.s.

romInit() Basics
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• Much of what romInit() needs to do is processor specific and can be 
copied from the reference BSP:
• Masking processor interrupts.
• Initializing on-processor caches.
• Initializing the stack pointer.

• Non-processor specific initialization involves DRAM and will be 
specific to the hardware environment.
• Wait states.
• Refresh rates.
• Chip selects (bridge/bus/memory controllers, etc.)
• Disabling of L2 caches (if necessary).

Architecture vs. BSP Specific Issues
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• Two boot types:
• Cold boot - Power-up of hardware environment.
• Warm boot - Call to reboot(), ^X, or exception at interrupt level. 

The routine which passes control to the ROM monitor is
sysToMonitor() in sysLib.c.

• Where romInit() begins execution is a function of the boot type:
• Cold boot - Execution begins at the entry point romInit(). Boot 

type is forced to be BOOT_COLD.
• Warm boot - Execution begins at romInit() plus a small offset 

(usually 4 bytes). Boot type is saved.
• Boot type (cold/warm) is stored in an architecture specific register 

and passed to romStart().

Cold vs. Warm Boots
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• Macro which configures beginning of stack is STACK_ADRS in
configAll.h.

• For ROM-resident images the stack will begin:
• In RAM at the start of the VxWorks data segment for stacks 

which grow down.
• In RAM at the start of the VxWorks data segment less the size of 

the stack for stacks which grow up.
• For non-ROM-resident images the stack will begin:

• In RAM at the start of the text segment of the VxWorks image for 
stacks which grow down.

• In RAM at the start of the text segment of the VxWorks image 
less the size of the stack for stacks which grow up.

Stack Pointer Initialization
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• romInit(), which runs in ROM/Flash, must be written as Position 
Independent Code (PIC) to support the various boot strategies for
VxWorks images.

• PIC code is program counter (PC) relative.
• If a ROM address cannot be made program counter relative then it

must be recomputed by:
• Subtracting _romInit (The entry point for romInit().)
• Adding ROM_TEXT_ADRS (Boot ROM/Flash entry address. 

Where ROM code is “burned”.)
• This algorithm ensures that a ROM address is expressed relative to 

the PC value for romInit() regardless of the address assigned to
romInit() by the compiler/linker.

romInit() - PIC
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• Perform minimum necessary initialization. Leave most hardware 
initialization to generic routine sysHwInit().

• Do not call out to other modules or routines:
• May cause linking problems for compressed images.
• Call outs to C routines may use absolute not PC relative 

addressing.
• Make sure romInit() is the first routine in romInit.s.
• Start with romInit() from reference BSP.
• Make sure macros in Makefile and config.h are correct:

• ROM_TEXT_ADRS
• ROM_SIZE

romInit() - Some do’s and don’ts
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Boot Specific vs. Generic Code

romInit.s : romInit()

5.3 PIC and VxWorks

bootInit.c : romStart()

sysALib.s : sysInit()

Pre-Kernel Initialization - Boot
Specific Code
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• romInit() which executes in ROM needs to be PIC to support various
VxWorks image types.

• This is because romInit() is linked into all non-loadable VxWorks
images, all of which do not execute in ROM.

• To understand how romInit() (as well as other routines) are linked 
into VxWorks images the build rules in ../h/ make/rules.bsp must be 
examined.

• Examine the link instructions for vxWorks_rom:
• Uncompressed rommable binary image.
• Begins execution in ROM.
• Transfers execution to RAM in romStart().

PIC and VxWorks Builds
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• The link instructions for the target vxWorks_rom are:
vxWorks_rom : ....
....
$(LD) $(LDFLAGS) $(LD_PARTIAL_FLAGS) \

-o ctmp.o usrConfig.o \
$(MACH_DEP) version.o $(LIBS)

....
$(LD) $(LDFLAGS) -e $(ROM_ENTRY) $(LD_LOW_FLAGS) \

-o $@ romInit.o bootInit_uncmp.o dataSegPad.o \
ctmp.o ctdt.o

....

• Dots, “....” indicate missing code. Missing code consists of 
compilation and file management instructions.

vxWorks_rom Build
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• The first link builds most of the image and places it in the relocatable
module ctmp.o.

• The second link builds the final fully linked relocatable image 
vxWorks_rom (this is target name for “$@”).

• The link flags are:
• LD = ldppc (make.$(CPU)$(TOOL) )
• LDFLAGS = -X -N (defs.bsp)
• LD_PARTIAL_FLAGS = -X -r (defs.bsp)

• Note, it is the “-r” flag which produces a partially linked relocatable
module (ctmp.o) for the first link, but not for the second which 
produces vxWorks_rom.

vxWorks_rom Build Link Flags
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• The temporary relocatable module ctmp.o uses the macro expansions 
(defs.bsp):
• MACH_DEP = sysALib.o sysLib.o ..
• LIBS = ../lib/lib$(CPU)$(TOOL)vx.a

• Pre-kernel initialization code in ctmp.o:
• sysInit() - in sysALib.o
• sysHwInit() - in sysLib.o
• usrInit() - in usrConfig.o

• Remainder of the ctmp.o contains modules from the appropriate 
VxWorks library archive and version.o.

• The remainder of the pre-kernel initialization code is included in the 
second link.

vxWorks_rom Build - ctmp.o
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• The final link includes the remainder of the kernel initialization code:
• romInit() - in romInit.o
• romStart() - in bootInit_unmcp.o

• The final vxWorks_rom image uses the macro expansions (defs.bsp):
• ROM_ENTRY = _romInit
• LD_LOW_FLAGS = -Ttext $(RAM_LOW_ADRS)

• The ROM_ENTRY macro for the “-e” flag insures that romInit() will 
be the execution entry point.

• The LD_LOW_FLAGS produces text addresses starting in RAM not 
ROM!

vxWorks_rom Image
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• The vxWorks_rom image is “burned” into ROM (or Flash) at the 
address ROM_TEXT_ADRS (Makefile). This is how ROM_ENTRY 
= ROM_TEXT_ADRS.

• Execution will begin in ROM even though the linker has assigned 
RAM addresses to the text for romInit().

• This is the reason why romInit() must be PIC code for this image.
• For addresses which are not program counter relative, address 

recalculations are usually done with a macro:
#define ROM_OFFSET(x)((x) - _romInit+ROM_TEXT_ADRS)

vxWorks_rom Image and PIC
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• Next consider a ROM-resident image:
vxWorks.res_rom_nosym: ....
$(LD) -o $@ $(LDFLAGS) $(ROM_LDFLAGS) \

-e $(ROM_ENTRY) $(RES_LOW_FLAGS) \
romInit_res.o bootInit_res.o \
ctmp.o ctdt.o

• The linker flag RES_LOW_FLAGS expands to:
-Ttext $(ROM_TEXT_ADRS) -Tdata $(RAM_LOW_ADRS)

• Text is assigned ROM addresses.
• Data is assigned RAM addresses.

• romInit() does not need to be PIC for this image, or any ROM-
resident image.

vxWorks.res_rom_nosym
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Boot Specific vs. Generic Code

romInit.s : romInit()

PIC and VxWorks

5.4 bootInit.c : romStart()

sysALib.s : sysInit()

Pre-Kernel Initialization - Boot
Specific Code
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• Jumped to by romInit() which places the start type on the stack for
romStart().

• Performs necessary code relocation, uncompression, and RAM 
initialization for ROM images:
• Copies appropriate ROM image segments to RAM.
• Clears portions of RAM not being used (cold boot).
• Performs uncompression if required.
• Passes control to generic pre-kernel code (usrInit()).

• Code is written in C and resides in ../all/bootInit.c. Portion which 
executes in ROM should be PIC.

• Do not modify code. Functionality is controlled by configuration
macros.

romStart() Basics 
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• Which image segments are relocated by romStart():
• ROM images - Text and data.
• ROM-resident images - Data.

• Final RAM destination for ROM image segments:
• Uncompressed VxWorks boot - RAM_HIGH_ADRS
• Compressed VxWorks boot - RAM_HIGH_ADRS
• Uncompressed VxWorks - RAM_LOW_ADRS
• Compressed VxWorks - RAM_LOW_ADRS
• ROM-resident VxWorks boot - RAM_HIGH_ADRS
• ROM-resident VxWorks - RAM_LOW_ADRS

• For uncompressed ROM images there is only one relocation from 
ROM to the final RAM destination.

Code Relocation
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• Compressed ROM images contain an uncompressed component and a 
compressed component.

• romInit.s, and bootInit.c code is in the uncompressed component. 
Remainder of image is compressed.

• There are two relocations for these images:
• First relocation moves uncompressed component from ROM to 

RAM.
• Second relocation occurs when compressed component of image 

is uncompressed and relocated from ROM to final destination in 
RAM.

• Second relocation is performed by romStart() in RAM. romStart() is 
moved into RAM during first relocation.

Compressed Image Relocations
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• Compressed VxWorks boot images:
• Relocate uncompressed component of ROM image to RAM 

location RAM_LOW_ADRS.
• Uncompression code executes in RAM uncompressing and 

relocating VxWorks boot image from ROM to RAM location 
RAM_HIGH_ADRS.

• Execution jumps to usrInit().
• Compressed VxWorks application images:

• Relocate uncompressed component of ROM image to RAM 
location RAM_HIGH_ADRS.

• Uncompression code executes in RAM uncompressing and 
relocating VxWorks image from ROM to RAM location 
RAM_LOW_ADRS.

• Execution jumps to usrInit().

Compressed Binary Images
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• For cold boots RAM is re-initialized.
• Mitigates parity error generation for some hardware (usually 

activated by read access without initialization).
• After romStart() relocates ROM image to RAM (but prior to

uncompression if necessary) it clears all memory not filled with text 
and data.

• Memory is re-initialized to zero a long at a time.
• Additional memory which is not re-initialized:

• Reserved using USR_RESERVED_MEM (config.h).
• Reserved using RESERVED (configAll.h).
• Reserved using STACK_SAVE (configAll.h).

Clearing Memory For Cold Boots
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• Stack pointer for romStart() start initialized to STACK_ADRS by
romInit().

• romStart() does not return. It’s stack is used until kernel is activated.
• The VxWorks kernel is activated by kernelInit() which spawns a task 

(with its own stack) to complete system configuration and start user 
application (usually by spawning another task).

• Memory for romStart() stack is not re-initialized on cold boot.

romStart() Stack



5-28

• After final relocation of image, there may still be problems:
• RAM access not working properly.
• For ROM-resident images data segment may not have been 

relocated to correct address in RAM.
• Download environment problems not solved.
• Code problems.

• Verify RAM access by writing to an un-initialized global:
int dummyVar; /* BSS segment variable */
....

dummyVar = 13;
if  (dummyVar != 13)

somethingWrongWithRAM();

Checking Initialization
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• For ROM-resident images verify that the data segment has been 
correctly initialized after the final relocation:
static int testVal = 13; /* data segment variable */
....

if  (testVal != 13)
somethingWrongWithData();

• If there are problems and RAM access works, check relocation of 
data segment to RAM.

• For ROM-resident images romStart() copies the data segment to an 
architecture specific RAM address computed as an offset from the
end of text in ROM.

• Check offset, particularly if WRS tools were not used to make ROM-
resident image.

ROM-resident Data Segment
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• During BSP development debug code may need to be placed into
bootInit.c.

• Do not modify ../config/all/bootInit.c. Make a copy of this file in the 
BSP directory, and modify the copied file.

• To link the copy and not the original file, add the following line to
Makefile after the macro HEX_FLAGS:

BOOTINIT = bootInit.c

• Macro BOOTINIT is used to access bootInit.c during VxWorks
builds in rules.bsp.

• Default value for this macro is defined in 
defs.$(WIND_HOST_TYPE) as ../config/all/bootInit.c.

Modifying romStart()
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• Configuration macros control behavior of romStart(). These macros 
are defined in config.h, Makefile, configAll.h, and bootInit.c.

• BSP developers are responsible for the configuration macros in
config.h, <bsp>.h, and Makefile.

• bootInit.c should not be modified. Macros in this file are:
• BSP (or architecture) dependent. - Controlled from config.h,

Makefile, and configAll.h.
• Image type specific. - Controlled at compile time in rules.bsp. 

BSP developer does not need to modify.
• Specific to code in bootInit.c.

romStart() Configuration Macros
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• romStart() configuration macros defined in config.h:
• LOCAL_MEM_LOCAL_ADRS - Start of RAM.
• LOCAL_MEM_SIZE - Size of RAM.
• USER_RESERVED_MEM - Number of reserved bytes.

Memory reserved from top of RAM and will not be cleared on 
cold boot or used by VxWorks.

• RAM_HIGH_ADRS - RAM load address for non-ROM-resident 
VxWorks boot images.

• RAM_LOW_ADRS - RAM load address for non-ROM-resident 
VxWorks application images.

• ROM_TEXT_ADRS - Boot ROM entry address.
• ROM_SIZE - Size of ROM.
• ROM_BASE_ADRS - Base address of ROM.

romStart() Configuration Macros
continued
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• romStart() configuration macros defined in Makefile:
• RAM_HIGH_ADRS - Must agree with config.h
• RAM_LOW_ADRS - Must agree with config.h
• ROM_TEXT_ADRS - Must agree with config.h
• ROM_SIZE - Must agree with config.h

• romStart() configuration macros defined in configAll.h:
• RESERVED - Number of reserved bytes. Memory reserved from 

bottom of RAM, and will not be cleared on cold boot.
• STACK_SAVE - Maximum stack size for romStart(). 

Architecture specific. Not cleared on cold reboot.

romStart() Configuration Macros
continued
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• romStart() configuration macros defined in bootInit.c:
• USER_RESERVED_MEM - Will be defined as zero if not 

defined in config.h.
• SYS_MEM_BOTTOM - For cold boot, memory will be cleared 

starting at this address. It expands to:
LOCAL_MEM_LOCAL_ADRS + RESERVED.

• SYS_MEM_TOP - For cold boot, memory will be cleared up to 
(but not including) this address. It expands to: 
LOCAL_MEM_LOCAL_ADRS +
LOCAL_MEM_SIZE - USR_RESERVED_MEM.

• UNCMP_RTN - Name (address) of uncompression routine.
• ROM_OFFSET - Macro to re-compute absolute addresses which 

are not PIC compatible.

romStart() Configuration Macros
continued
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• RAM_DST_ADRS - Final relocation address for compressed 
image. Default value is RAM_HIGH_ADRS, redefined when 
necessary at compile time in rules.bsp.

• RESIDENT_DATA - Architecture specific. Defined as 
RAM_DST_ADRS for MIPS and PowerPC. Defined as the start 
of the data segment otherwise.

• ROM_COPY_SIZE - For uncompressed and ROM-resident 
images size of image to relocate.

• ROM_BASE_ADRS - Defined in config.h. Redefined as romInit
if BOOTCODE_IN_RAM is defined.

• binArrayStart - Start of compressed binary image.
• binArrayEnd - End of compressed binary image.

romStart() Configuration Macros
continued
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• Optionally defined configuration macros for romStart():
• BOOTCODE_IN_RAM - Used to not clear RAM on cold boot. If 

RAM is already initialized this macro allows BSP developer to 
avoid RAM initialization on cold boot. Must be defined in
config.h (x86 architecture only).

• UNCOMPRESS - Defined at compile time in rules.bsp for 
uncompressed image. Does not need to be redefined.

• ROM_RESIDENT - Defined at compile time in rules.bsp for 
ROM-resident image. Does not need to be redefined.

romStart() Configuration Macros
continued
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ROM Layout
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RAM Layout
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• Do not modify code. Functionality is controlled by modifying 
configuration macros.

• Code is written in C. Portion which executes in ROM should be PIC 
and should use a macro to compute PC relative addresses when 
necessary.

• Sequence of execution:
• Copies appropriate ROM image segments to RAM.
• Clears portions of RAM not being used (cold boot).
• Performs uncompression if required.
• Passes control to generic pre-kernel code (usrInit()).

• usrInit() stack begins at final relocation address and grows away from 
relocated image.

romStart() - Some do’s and don’ts
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Boot Specific vs. Generic Code

romInit.s : romInit()

PIC and VxWorks

bootInit.c : romStart()

5.5 sysALib.s : sysInit()

Pre-Kernel Initialization - Boot
Specific Code
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• Entry point for loadable VxWorks images. Processor is jumped to
sysInit() after image is loaded into RAM.

• sysInit() resides at the load address for loadable VxWorks images 
RAM_LOW_ADRS.

• Performs minimum required setup to execute usrInit(). The remainder 
of hardware initialization is performed by generic pre-kernel code.

• Performs all the functions of romInit() except for memory system 
initialization.

• Routine is written in assembly language and resides in file sysALib.s.

sysInit() Basics
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• Routine must:
• Mask processor interrupts and reset processor.
• Initialize stack pointer and other registers to begin executing 

usrInit() and passing the boot type.
• Hardware initialization completed in sysHwInit().
• Once romInit() code has been written, it will only need to be 

modified to create sysInit():
• Memory initialization code removed.
• Upon completion jump to usrInit() not romstart().
• Code executes in RAM, does not need to be PIC.

• Linked into all VxWorks image types but only executed for loadable
images.

sysInit() Code
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• Stack for usrInit() set up by sysInit() grows away from VxWorks
image to lower addresses in memory.

• Must be accounted for when determining load address for VxWorks
image.

• Memory between RAM_LOW_ADRS and 
LOCAL_MEM_LOCAL_ADRS contains parameters which should 
not be over-written by the stack for usrInit() (which never returns). 
Some of these parameters are target environment specific others are 
generic:
• Exception description message.
• Shared memory anchor address.
• Boot line.

Stack Initialized by sysInit()
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RAM Layout
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• Details of pre-kernel initialization depend on VxWorks image type.
• VxWorks image type specific code:

• romInit()
• romStart()
• sysInit()

• romInit() and romStart() execute for all images “burned” into ROM.
• sysInit() only executes for loadable VxWorks images.
• Next stage of pre-kernel initialization (following romStart() or

sysInit()) is the generic routine usrInit().

Summary
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Pre - Kernel
Initialization - Generic

Code

Chapter - 6
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6.1 Generic Code Overview

sysHwInit()

Activating the Kernel

Pre-Kernel Initialization - Generic Code
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• The generic phase of pre-kernel initialization must produce an 
environment which allows the VxWorks kernel to be activated.

• Prior to kernel activation the system memory pool has not been 
initialized. Some implications:
• No multi-tasking.
• No interrupt handlers.
• No I/O access to hardware.
• No network interface access.

• Post-kernel code performs initialization requiring system memory 
pool or multi-tasking environment.

Generic Pre-Kernel Initialization
Responsibilities
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• Generic pre-kernel initialization is performed by the C routine 
usrInit():
• Statically linked into all VxWorks image types.
• Calls routine which activates VxWorks kernel.

• Primary responsibility to place hardware in a quiet state so kernel can 
be activated (sysHwInit()):
• Disable all hardware interrupts.
• Initialize hardware to a known quiescent state.

• romInit()/sysInit() perform the minimal initialization necessary to 
allow usrInit() to execute.

• usrInit() performs the minimal initialization necessary to activate 
kernel.

Generic Pre-Kernel Initialization
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• Tornado tools may be accessed using the WDB agent in system mode
prior to kernel activation.

• WDB agent can be activated in system mode using a polled serial 
driver after sysHwInit() has executed:
• Interrupts are masked until kernelInit() executes.
• Necessary serial controller device initialization is performed in

sysHwInit().
• System mode debugging will allow developer to access CrossWind:

• Debug interrupt handlers.
• Debug post-kernel device initialization.

Activating the WDB Agent Before
the Kernel
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Pre-Kernel Initialization Sequence -VxWorks
Boot and ROM Images
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Pre-Kernel Initialization Sequence -Loadable
VxWorks Image
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• usrInit() stack begins at:
• Image load address (grows down).
• Image load address less stack size (grows up).

• Stack initialized by:
• sysInit() for loadable image.
• romInit() for ROM image.

• usrInit() routine does not return.
• Its stack is used until kernelInit() spawns post-kernel initialization 

task tUsrRoot.
• Stack size is controlled by STACK_SAVE.
• Can examine stack using CrossWind in external mode.

usrInit() Stack
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• Code resides in ../config/all/usrConfig.c.
• Should not be modified except to activate WDB agent in system 

mode.
• Functionality of routine is controlled by support routines and 

configuration parameters.
• BSP developer will write or modify reference BSP version of:

• sysHwInit().
• Support routines - sysX().
• BSP and driver configuration files.
• Device driver code.

usrInit() Code
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Generic Code Overview

6.2 sysHwInit()

Activating the Kernel

Pre-Kernel Initialization - Generic
Code
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• Place hardware environment in quiet state prior to activating 
VxWorks kernel:
• Initialize features of hardware environment.
• Disable hardware interrupts.
• Initialize device control/status registers.

• Initialization requirements for device registers and environment
parameters is BSP specific.

• Hardware interrupts must be disabled for all devices:
• sysHwInit() executes with interrupts locked.
• Interrupts are unlocked when kernel is activated by kernelInit().
• ISRs cannot be installed until kernel is activated.

sysHwInit() Responsibilities
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• Environment and device initialization is performed primarily to 
support disabling interrupts.

• Generally the environment must be partially configured before 
specific devices can be accessed. May need to:
• Initialize memory controller.
• Configure bus access to devices.

• Environment may include an interrupt controller.
• Generally devices must be partially initialized before interrupts can 

be disabled:
• Device may need to be configured to allow interrupt control 

registers to be accessed.
• Interrupt controller may need to be initialized.

Environment, Devices and Interrupts
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• To access devices, must have:
• CPU access to system bus(es).
• Devices accessible via system bus(es).

• CPU access to system bus(es) is usually provided by:
• romInit() or sysInit() if local bus is the only bus.
• sysHwInit() if local bus connected to other system bus(es).

• Device accessibility over system bus(es) provided by:
• sysHwInit().

Environment Initialization For
Device Access
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• After hardware devices are accessible, sysHwInit() can begin 
initialization.

• Generally device initialization in sysHwInit() is confined to disabling 
interrupts:
• Interrupt handlers not available.
• Devices not used until after kernel is activated.

• Remainder of device initialization performed after kernel activation.
• Exceptions are:

• Devices controlled by BSP (examples: bus bridges and interrupt 
controllers).

• Serial controller (polled mode).

Device Initialization
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• Generic device driver code:
• Controls hardware (other than the CPU).
• Can be used in multiple BSP environments
• WRS code in ../src/drv and ../h/drv directories.

• Devices managed by code which is specific to a particular BSP are 
under BSP control:
• Unique devices and devices not supported by WRS.
• Code should reside in the BSP directory.

• In addition to disabling interrupts, provide initialization for BSP 
devices in sysHwInit():
• Impacts target environment and generic device operation.

Devices Under BSP Control
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• Interrupt controller is initialized in sysHwInit().
• For devices connected to interrupt controller, interrupts are masked 

(disabled) at the controller.
• For devices with drivers, interrupt and other control registers are 

initialized after the kernel is activated using driver code except for 
serial controllers.

• For devices which are under BSP control, interrupt and other 
control registers are initialized in sysHwInit().

• Non-interrupt related initialization may consist of:
• Probing to test for presence of device.
• Minimal device specific initialization to allow access to device.

BSPs With An Interrupt Controller
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• Without an external interrupt controller device interrupt request lines 
connect directly to CPU.

• Device interrupt control registers are accessed:
• Directly over local bus.
• Mediated by an external memory controller.

• Memory controller may need to be initialized to access devices.
• Interrupts must be disabled in sysHwInit():

• Individually.
• On a per device basis. (Through master interrupt control register 

for the device.)

BSPs Without An Interrupt Controller
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• Serial controller initialized for polled mode operation to allow system 
level debugging prior to kernel activation.

• Initialization routine is sysSerialHwInit():
• Called by sysHwInit().
• Code in sysSerial.c

• sysSerialHwInit():
• Initializes SCC control structures for each channel.
• Calls driver initialization code which disables interrupts.

• SCC control structure contains callback routines which are called by 
WDB agent to access the device in polled mode.

Serial Controller Initialization
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• In addition to disabling interrupts for all devices and configuring 
SCCs for polled mode access, sysHwInit() may:
• Initialize devices under BSP control.
• Perform memory autosizing (if supported).
• Extract hardware addresses for network interfaces.

• Board network interface hardware addresses are often stored in 
NVRAM or battery-backed RAM.

• Autosizing is activated by a call to sysPhysMemTop() if:
• Supported.
• Macro LOCAL_MEM_AUTOSIZE is defined (config.h).
• Macro LOCAL_MEM_SIZE is set to zero.

Additional Initialization
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• sysHwInit() is part of the sysLib library:
• Hardware access for VxWorks and “end-user” code.
• Hardware environment independent interface.
• Most routines not called by “end-user” applications.

• Routines in sysLib.c are members of sysLib, however, sysLib also 
contains routines in other files. These routines are of the form sysX().

• sysLib.c does #include support files for:
• Driver code which must be accessed by the BSP in the ../src/drv

and BSP directories.
• Environment and driver control parameters in the ../target/config, 

../h, and ../h/drv directories.

sysHwInit() and sysLib
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• If after kernel activation the initialization task tUsrRoot is not 
spawned, device initialization in sysHwInit() is probably not 
complete.
• One or more devices may be generating interrupts.
• Source(s) of interrupt(s) must be found.

• Debug techniques:
• Modify sysHwInit() to connect debug routines to suspect device 

interrupts.
• Use an ICE to set breakpoints in the interrupt vector table.
• Use a logic analyzer to check for instruction access to interrupt 

vector table.

Debugging sysHwInit()
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• Connect debug ISR(s) using the routine intVecSet() if supported for 
architecture.
• intConnect() cannot be used until kernel is activated.

• First locate the interrupt vector of the suspect interrupt:
• Relative to base of interrupt vector table.
• Base of interrupt vector table configured prior to calling 

sysHwInit() in usrInit().
• Use INUM_TO_IVEC() macro to compute WRS interrupt vector.

• Connect debug handler to interrupt vector:
intVec = INUM_TO_IVEC(intNum);
intVecSet (intVec, debugISR);

• The debug ISR should indicate the source of interrupt.

Connecting Debug ISRs
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• The base of the interrupt vector table is initialized by:
intVecBaseSet ((FUNCPTR *) VEC_BASE_ADRS)

• This routine initializes the CPU’s vector base register to the value of 
the macro VEC_BASE_ADRS (configAll.h)

• Not all architectures have an interrupt vector base register.
intVecBaseSet() is no-op in this case.
• These architectures may also not support intVecSet().

• If intVecSet() is not supported:
• Statically create a system interrupt table.
• Write support routine for intVecSet().
• Supporting intVecSet() will be discussed in an upcoming chapter.

Caveat For Connecting Debug ISRs
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• If sysHwInit() encounters an error which prevents it from continuing 
initialization it will restart the system:

STATUS sysToMonitor (startType)

startType Restart type. Variable type: int.

• Transfers control to ROM monitor. BSP Specific.
• Restart types defined in ../h/sysLib.h:

• BOOT_NORMAL - Normal reboot with countdown.
• BOOT_NO_AUTOBOOT - No autoboot.
• BOOT_CLEAR - Clear memory.
• BOOT_QUICK_AUTOBOOT - Fast autoboot.

System Restarts



6-25

• sysHwInit() initialization details will be specific to BSP environment. 
Generic responsibilities:
• Complete any initialization performed in romInit()/ sysInit() 

which is required to access devices.
• Disable all hardware interrupts.
• Leave additional configuration to driver routines after kernel is 

activated, except for serial controller(s) and hardware under BSP 
control.

• Initialize serial controller to be accessible in polled mode for
system level debugging prior to kernel activation.

• Configure autosizing for physical memory if supported.

Review of Initialization In sysHwInit()
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Generic Code Overview

sysHwInit()

6.3 Activating the Kernel

Pre-Kernel Initialization - Generic Code
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• Kernel is activated by the kernelInit() routine:
• Initializes and starts the kernel.
• Defines system memory partition.
• Activates a task tUsrRoot to complete initialization.
• Unlocks interrupts.
• Uses usrInit() stack.

• Kernel data structures are configured by usrKernelInit() which is called after
sysHwInit() but before kernelInit():
• Routine in ../src/config/usrKernel.c
• Uses configuration macros in configAll.h to initialize appropriate libraries.
• Data structures include: binary semaphores, watch-dog timers, kernel queues, 

etc.

Kernel Activation
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• Top and bottom of system memory partition passed as arguments of
kernelInit().

• Bottom of system memory partition:
• FREE_RAM_ADRS if INCLUDE_WDB is not defined.
• FREE_RAM_ADRS + WDB_POOL_SIZE if INCLUDE_WDB 

is defined.
• Top of the system memory partition will be the return value of

sysMemTop().
• tUsrRoot will:

• Initialize memory partition management libraries.
• Optionally initialize MMU management facilities.

System Memory Partition
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• Activated in kernelInit(). First task to run, stack allocated from 
system memory partition:
• Priority 0.
• Stack size controlled by ROOT_STACK_SIZE.

• tUsrRoot will:
• Initialize memory partition library.
• Initialize the system clock.
• Initialize the I/O system - optional.
• Create devices - optional.
• Configure network - optional.
• Activate WDB agent - optional.
• Activate application.

tUsrRoot
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• Interrupts unlocked as part of the kernel call which initializes
tUsrRoot (taskInit()).

• If all interrupts have not been disabled in sysHwInit() tUsrRoot may 
not execute properly.

• If architecture supports a dedicated interrupt stack:
• Stack memory size specified through argument list.
• Placed at beginning of system memory partition.
• Filled with 0xee for checkStack().

• Interrupts will be enabled after appropriate ISRs are placed on the 
interrupt vector table. Examples will be given as the course 
progresses.

Unlocking Interrupts
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• Generic phase of pre-kernel initialization must produce an 
environment which allows the VxWorks kernel to be activated by
kernelInit().

• Generic pre-kernel initialization is performed by the C routine 
usrInit() which is statically linked into all VxWorks image types.

• usrInit() calls sysHwInit() to disable all hardware interrupts.
• WDB agent may be activated in system mode after sysHwInit() 

returns. Provides access to Tornado tools.
• kernelInit() activates kernel and unlocks interrupts.

Summary
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7.1 Overview

Using the WDB Agent

SCC Support For WDB Agent

Debugging Techniques

Pre-Kernel Initialization - Debugging
With Tornado
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• Tornado tools may first be accessed after sysHwInit() completes:
• Tools available prior to kernel activation.
• Tools available after kernel activation but prior to interrupts being 

enabled for target backend.
• Access will require WDB agent to execute in system mode.
• In system mode either VxWorks executes or WDB agent executes:

• Similar to ROM monitor, only debug agent statically linked into
VxWorks image.

Pre-Kernel Tornado
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• Tornado tools include host based:
• Debugger - CrossWind.
• Shell - WindSh.
• Configuration tool - WindConfig.
• Object loader/unloader.
• Symbol table management.
• Customized tools.

• Tools can be modified and enhanced using the Tool Command 
Language (Tcl).

• Target server mediates host platform access to target.
• Target agent (WDB agent) can execute as a VxWorks task or 

independently of the VxWorks kernel.

Tornado Tools
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Host - Target Interaction
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• Tornado tools may be accessed using the WDB agent in system mode
prior to kernel activation.

• WDB agent can be activated in system mode using a polled driver 
after sysHwInit() has executed:
• Interrupts are masked until kernelInit() executes.
• Necessary device initialization is performed in sysHwInit().

• System mode debugging will allow developer to access CrossWind:
• Debug interrupt handlers.
• Debug post-kernel device initialization.

Activating the WDB Agent Before
the Kernel
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Overview

7.2 Using the WDB Agent

SCC Support For WDB Agent

Debugging Techniques

Pre-Kernel Initialization - Debugging
With Tornado
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• Supporting access to Tornado tools prior to kernel activation requires:
• NetROM.
• Customized backend for ICE.
• Serial Interface.

• WDB agent must be configured for the appropriate backend connect
strategy.

• For a serial interface:
• Appropriate SCC channel must be configured to be accessed in 

polled mode.
• usrInit() must be modified to initialize WDB agent and suspend 

execution.

Using the WDB Agent - Overview
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• Configuration of WDB agent requires specification of:
• Backend connection policy.
• Agent execution mode.

• Configuration done in config.h.
• Backend connections (prior to kernel activation):

• WDB_COMM_NETROM - NetROM interface.
• WDB_COMM_SERIAL - SCC interface.
• WDB_COMM_CUSTOM - Custom interface.

• Agent mode must be system (external):
• WDB_MODE_EXTERN

• Run-time configuration done by a routine wdbConfig().

Configuring the WDB Agent
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• WDB agent must be configured and then activated in usrInit() after
sysHwInit() executes.

• Configuration and activation require the following routines to be 
called:
• wdbConfig() - Configures agent.
• wdbSuspendSystemHere() - Activates agent.

• wdbConfig() sets up the external agent’s context and returns.
• wdbSuspendSystemHere() transfers control of the CPU to the 

external agent.
• Tornado tools can then access target.

Activation of External WDB Agent
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• InusrConfig.c insert the following code:
....
sysHwInit (); /* initialize system hardware */
/* System debug mode */

wdbConfig();
wdbSuspendSystemHere(NULL, 0);
usrKernelInit (); /*configure the Wind kernel*/

• InusrConfig.c comment out the call to wdbConfig() (in usrRoot()).

Modifications to usrInit()
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• The routine wdbSuspendSystemHere():
• Locks interrupts before transferring control to the external agent 

(this is not relevant here as interrupts are locked).
• Calls the underlying routine wdbSuspendSystem() which is the 

routine called by Tornado’s breakpoint library to halt execution.
• Allows a callback routine (with one argument) to be executed 

after system is suspended. Parameters are passed through 
argument list.

• To begin a CrossWind debug session use the attach command as 
usual:

(gdb)   attach system

Suspending the System
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Overview

Using the WDB Agent

7.3 SCC Support For WDB Agent

Debugging Techniques

Pre-Kernel Initialization - Debugging
With Tornado
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• For a serial backend in external mode, WDB agent code will call:
• Polled serial drivers for input and output.
• Configuration routines to access serial device.

• If target contains WRS supported SCC, only configuration which is 
required:
• Backend interface - WDB_COMM_SERIAL
• WDB agent mode - WDB_MODE_EXTERN
• Undefine INCLUDE_WDB_VIO

• If target does not contain WRS supported SCC, use template serial 
driver to develop driver.

System Level Debugging With Serial
Backend
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• Support for WDB agent in system mode prior to kernel activation 
requires:
• Initialization of serial I/O control structures.
• Ioctl() routine to set access mode as polled.
• Input and output poll routines.
• Identification serial channel to be used.

• Providing this support will require modification of files:
• ../src/drv/sio/templateSio.c
• ../config/<bspName>/sysSerial.c
• ../h/drv/sio/templateSio.h

• Support routines are invoked by sysSerialHwInit(), wdbConfig(), and
wdbSuspendSystemHere().

Serial Support For WDB Agent
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• One control structure for each serial device (refer to templateSio.h):
• Contains control structure for each SCC channel 

(TEMPLATE_CHAN).
• Each channel control structure has a SIO_CHAN structure as its 

first member.
• SIO_CHAN structure has one member; a pointer to a 

SIO_DRV_FUNCS structure.
• SIO_DRV_FUNCS structure has five members; used to manage 

serial device. Will be invoked by WDB agent.
• Both SIO_CHAN and SIO_DRV_FUNCS are defined in sioLib.h.

Structure of A Serial Driver
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• Declared in templateSio.h:
/* device and channel structures */
typedef struct

{
/* must be first */
SIO_CHAN sio; /* SIO_CHAN element */

....
int mode; /* current mode */
int baudFreq; /* clock freq */
int options; /* Hardware ops */
} TEMPLATE_CHAN;

Channel Control Structure
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• For template serial device with two channels (portA and portB):
typedef struct

{
TEMPLATE_CHAN portA;
TEMPLATE_CHAN portB;
volatile char * masterCr;
} TEMPLATE_DUSART;

• Note master control register operates on a chip (not channel) level.
• Separate channel control structure for each channel.
• Declared in templateSio.h.
• Can also use array elements for SCC channels.

Device Control Structure
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• SIO_CHAN structure is a pointer to a structure containing driver
callbacks, SIO_DRV_FUNCS:
LOCAL SIO_DRV_FUNCS templateSioDrvFuncs =

{
templateIoctl,
templateTxStartup,
templateCallbackInstall,
templatePollInput,
templatePollOutput
};

• Declared in templateSio.c.
• Will need to modify templateIoctl(), templatePolloutput(), and

templateInput().
• Other routines can be NULLed.

SIO_CHAN Structure
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• For each SCC device, SCC control structure initialized by 
sysSerialHwInit() (refer to sysSerial.c):
• Initialization control structures for each channel of SCC 

(TEMPLATE_CHAN). Control macros defined in templateSio.h.
• Call serial driver routine, templateDevInit(), to initialize 

SIO_DRV_FUNCS structure and hardware (code in driver
templateSio.c).

• Each SCC control structure declared in sysSerial.c.
• Array of channel control structures with one element per channel

(refer to sysSerial.c).
• Structure with one channel control structure member per channel 

(refer to templateSio.h).

Initialization of SCC
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• Baud rate and access mode for the SCC controlled by the 
templateIotcl() routine. Required commands:
• SIO_MODE_SET
• SIO_BAUD_SET

• Mode configuration:
• Modify TEMPLATE_INT_ENABLE in templateSio.h.
• If necessary modify interrupt disable code in templateModeSet() 

routine.
• Baud rate configuration:

• Modify code to support setting baud rate.
• Modify TEMPLATE_BAUD_MIN and 

TEMPLATE_BAUD_MAX macros in templateSio.h.

Configuring SCC Access
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• Access is provided by the polling routines templatePollInput() and
templatePollOutput():

• Need to define parameters in templateSio.h:
• Modify TEMPLATE_TX_READY macro for output.
• Modify TEMPLATE_RX_AVAIL macro for input.

• For many SCCs will not need to modify code.
• For some SCCs will need to modify data transfer register 

management code.
• These routines will be called in a loop by the WDB agent after

wdbSuspendSystemHere() is called.

Controlling SCC Access
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• The WDB agent uses the configuration macro 
WDB_TTY_CHANNEL to determine which channel it will use to 
access a SCC. The default value is 1.

• To configure the SCC access channel the agent must first obtain 
address of SIO_CHAN structure for that channel.

• The routine sysSerialChanGet() converts a channel number to an 
address of a SIO_CHAN structure.

• As part of wdbConfig(), sysSerialChanGet() will be called with the 
argument WDB_TTY_CHANNEL.

• Should not need to modify sysSerialChanGet() in sysSerial.c (except 
channel control structure name).

Channel Access
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Overview

Using the WDB Agent

SCC Support For WDB Agent

7.4 Debugging Techniques

Pre-Kernel Initialization - Debugging
With Tornado
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• Primary Tornado debug tool will be CrossWind in system mode.
• WindSh may also be useful for:

• Dynamically allocating memory for new global variables 
eliminating the need to re-build and re-load a VxWorks image.

• Using lkup to examine the symbol table.
• Custom debug tools can also be developed:

• Customize CrossWind.
• Write a new loader to support unsupported OMF.
• Build and install a custom Tornado tool using WTX protocol.

Tornado Tools and Debugging
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• Standard system mode debugging facilities available.
• CrossWind can be modified to support features such as:

• Hardware breakpoints.
• Menu access to customized debug commands.
• Defining new buttons.
• Initialization of debug session(s).

• Modifications can be made to:
• GUI interface.
• GDB debug engine.

• CrossWind interaction with target server can be customized using the 
WTX libraries.

CrossWind Customization
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• CrossWind can be modified using Tcl and GDB commands.
• Place Tcl scripts in ~/.wind/cosswind.tcl to:

• Modify graphical presentation.
• Define new buttons.
• Provide menu access to customized commands.

• Place Tcl scripts in ~/.wind/gdb.tcl to:
• Define Tcl procedures for new GDB commands.

• Place GDB commands in ~/.gdbinit to:
• Initialize a debug session. (This script file is executed each time a 

GDB session, not just a CrossWind session, is started.)

CrossWind Customization Files
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• Time to place VxWorks image in target environment at this phase of 
development may be expensive.
• Low bandwidth serial line load to RAM or Flash.
• Burning VxWorks ROM image.

• Using dynamic callback code may be more efficient.
• Code can be dynamically replaced using CrossWind:

• Declare a callback (or hook routine) in loaded Vxworks image.
• Conditionally call routine in loaded image.
• Load module with desired code using CrossWind.
• Use GDB set command to assign desired function to callback.

Dynamic Callbacks and Debugging
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• Include in loaded image:
void (*debugCallback) (void);
....
void sysBspCode (void)

{
if (debugCallback != NULL)

{
debugCallback();
return;
}

....
}

• From CrossWind load the module containing routine of interest (e.g.
debugRoutine()); and from GDB prompt:
• (gdb) set debugCallback = debugRoutine

Dynamic Callback Example
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• Instead of hot-swapping, dynamically loaded code can be invoked 
using the GDB call command:
• (gdb) call debugRoutine

• Disadvantage of using call command is that original code still 
executes.

• If hardware environment has abort switch consider connecting a 
debug routine to the abort interrupt using intVecSet().

• Use CrossWind to set breakpoint in abort debug ISR:
• Allows developer to gain control of system when it dies.

Other CrossWind Applications
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• Tornado tools can be accessed prior to kernel activation using the 
WDB agent:
• Configured for external mode.
• Configured to use appropriate backend connection.
• Configured not to include virtual I/O.

• In system (external) mode either VxWorks executes or WDB agent 
executes.

• usrInit() must be modified after the call to sysHwInit() to call:
• wdbConfig()
• wdbSuspendSystemHere()

• CrossWind can attach to system to provide debug tools.

Summary
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Overview

• Primary memory management issues for BSP:
• Initialization.
• Access interface.

• Main memory initialized by romInit(), bus access (for devices) 
initialized in sysHwInit() if required.

• BSP will need to support memory access and management strategies:
• Configuration of main memory.
• Access to NVRAM.
• Virtual maps for MMU.
• Cache strategies.
• Memory probes.
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Memory

Overview

8.2 Configuring Memory

MMU Issues

Cache Issues

Memory Probes
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• BSP responsible for configuring main memory for post-kernel 
operation:
• Critical addresses must be defined.
• If MMU is used memory maps must be specified.
• Support routines must be provided.

• Memory addresses specified in:
• config.h - User configurable.
• <bsp>.h - Target dependent not user configurable

• Required BSP memory support routines:
• sysMemTop().
• sysNvRamSet().
• sysNvRamGet().

Memory Configuration
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RAM Layout
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char * sysMemTop (void)

• Routine returns address of the top of system memory:
char * sysMemTop (void)

{
static char * memTop = NULL;
if (memTop == NULL)

{
memTop = sysPhysMemTop() - USER_RESERVED_MEM;

}
return memTop;
}

• Code in sysLib.c.

Top of System Memory
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• Memory autosizing allows the size of physical memory to be 
configured during initialization.
• If autosizing is not activated (or supported) size of physical 

memory is statically defined as LOCAL_MEM_SIZE in config.h.
• Autosizing details are architecture dependent, typically:

• When DRAM is initialized in romInit(), configuration information 
is stored in memory controller registers or/and software structures.

• During autosizing, configuration information is read and 
interrupted to compute the total size of physical memory.

• Routine to support autosizing is sysPhysMemTop().

Memory Autosizing
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char * sysPhysMemTop (void)

• Routine returns address of top of physical memory.
• This routine will provide dynamic memory sizing if 

LOCAL_MEM_AUTOSIZE is defined in config.h.
• BSP autosizing support is optional. If reference BSP code is not 

modified statically defined default value will be returned.
• sysPhysMemTop() is called by sysHwInit():

• Must be called before kernelInit() as this is when sysMemTop() is 
called.

Memory Autosizing - cont.
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• All BSPs must have an NVRAM interface even if there is no non-
volatile RAM in the target environment. Interface must support:
• sysNvRamSet()
• sysNvRamGet()

• Total NVRAM size must be defined in config.h as NV_RAM_SIZE.
• If no NVRAM present define as NONE.

• If present, NVRAM is used to store boot parameters for loadable
images.

• Default configuration reserves 255 bytes at the beginning of 
NVRAM for boot parameters.

NVRAM Configuration
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• NVRAM size and location for boot parameters defined in 
configAll.h:
• BOOT_LINE_SIZE defines NVRAM size reserved for boot 

parameters. Default is 255 bytes.
• NV_BOOT_OFFSET defines beginning of NVRAM reserved for 

boot parameters. Default is 0.
• To override default values, redefine macros in config.h.

• Routines to set/get NVRAM contents:
• Part of driver located in ../src/drv/mem.
• If no NVRAM present use ../src/drv/mem/ nullNvRam.c.
• Included in sysLib.c.

NVRAM Configuration - cont.
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STATUS sysNvRamSet (string, strLen,
offset)

string String to be copied into NVRAM.
Variable type: char *

strLen Number of bytes to copy. Variable 
type:
int.

offset Byte offset into NVRAM, Variable 
type: int.

• Routine will:
• Copy string to location NV_BOOT_OFFSET + offset.
• Enable NVRAM read/write and write data.

NVRAM Support Routines
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STATUS sysNvRamGet (string, strLen,
offset)

string Where to copy NVRAM. Variable type:
char *

strLen Number of bytes to copy. Variable type:
int.

offset Byte offset into NVRAM, Variable tyoe:
int.

• Routine will:
• Copy contents of NVRAM location NV_BOOT_OFFSET + offset 

to string.
• Read data and terminate string with EOS.

NVRAM Support Routines
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• NVRAM set/get routines displace offset parameter by 
NV_BOOT_OFFSET before accessing NVRAM:
• offset += NV_BOOT_OFFSET;

• If NV_BOOT_OFFSET is greater than zero, provide access to 
NVRAM bytes before boot code with a negative offset values.

Caveat For NVRAM Access
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Overview

Configuring Memory

8.3 MMU Issues

Cache Issues

Memory Probes

Memory
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• MMU is primarily under the control of architecture library, however, 
BSP is responsible for providing support with physical memory 
description.
• Physical memory description used by MMU to create initial maps 

to virtual address space.
• Default maps are flat, one-to-one between physical and virtual 

memory spaces.
• MMU initialized by tUsrRoot call to usrMmuInit() which initializes 

and enables MMU:
• First initialization of system memory pool facilities.
• Second initialization of MMU.
• MMU available for remainder of post-kernel initialization.

MMU Overview
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• Initial (static) physical memory map defined in
sysLib.c. It is an array of structures of type
SYS_PHYS_MEM_DESC defined in ../h/vmLib.h:
typedef struct phys_mem_desc

{
void *virtualAddr; /* Virtual address. */
void *physicalAddr; /* Physical address. */
UINT len; /* Length of mapping */
UINT initialStateMask; /* State mask for map. */
UINT initialState; /* State for map. */
} PHYS_MEM_DESC;

• States for maps:
• Valid or invalid.
• Writable or not.
• Cacheable or not.

Physical Memory Descriptor
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• Example virtual-to-physical map element:
PHYS_MEM_DESC sysPhysMemDesc [] =

{
{
/* Local DRAM */
(void *) RAM_LOW_ADRS,
(void *) RAM_LOW_ADRS,
LOCAL_MEM_SIZE - RAM_LOW_ADRS,
VM_STATE_MASK_VALID | 
VM_STATE_MASK_WRITABLE

| VM_STATE_MASK_CACHEABLE,
VM_STATE_VALID | VM_STATE_WRITABLE

| VM_STATE_CACHEABLE
},

• Configuration macros used by architecture library to initialize MMU translation tables.

Physical Memory Descriptor - cont.
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• To modify physical-to-virtual memory map(s):
• Modify sysPhysMemDesc[] (static maps).
• Call vmBaseStateSet() (dynamic modification).

• Memory mapped on a per page basis:
• Page size controlled by macro is VM_PAGE_SIZE defined in

configAll.h, Default is 8K (except for PowerPC architectures -
4K).

• Length of maps for sysPhysMemDesc[] should be integral number 
of page size.

• Each table entry will require a page table entry in physical memory:
• Sets an upper limit on how many address maps can be defined.

Virtual Memory Mapping



8-20

STATUS vmBaseStateSet (context,
pVirtual, len, stateMask state)

context Context for map. Variable type:
VM_CONTEXT_ID.

pVirtual Virtual address to modify state of.
Variable type: void *.

len Length of mapping. Variable type: 
int.

stateMask State Mask. Variable type: Unsigned 
int.

state State. Variable type: Unsigned int.
• Routine changes the state of a block of virtual memory.

• Use to modify initial memory maps defined by sysPhysMemDesc[].

Dynamic Virtual Mapping
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• Must map all of physical memory which is to be accessed. This 
includes memory mapped devices (Ethernet, SCSI, etc.).

• Writing to addresses not included in the virtual-to-physical maps will 
result in a bus error when the MMU is enabled.

• Usually virtual-to-physical maps are configured:
• Local RAM - valid, writable, cacheable.
• ROM - valid, read-only, often cacheable.
• Flash - valid, writable, non-cacheable.
• I/O devices - valid, writable, non-cacheable.
• Off-target memory - valid, writable, non-cacheable.

Virtual Memory Mapping - cont.
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• Cache and MMU configuration is architecture dependent, may be 
highly integrated or independent.

• In VxWorks, if MMU is enabled cache is under MMU control.
• Architecture library (cacheLib) provides basic cache management

support. BSP responsibilities:
• Select appropriate cache library and modes for multiple cache 

implementations.
• If MMU is enabled, memory maps labeled as cacheable or not.
• Follow cache strategy guidelines for device drivers, for system 

devices under BSP control.

Cache Overview
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STATUS cacheLibInit (instMode,
dataMode)

instMode Specifies mode for instruction cache.
Variable type: CACHE_MODE.

dataMode Specifies mode for data cache. Variable
type: CACHE_MODE.

• Initializes cacheLib facilities:
• Calls architecture specific initialization routine.
• Places cache in quiet state.
• Called by usrInit() before sysHwInit().

• Arguments specify modes for instruction/data caches.

Cache Library Initialization
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• Cache mode configuration macros:
• USR_I_CACHE_MODE - first argument.
• USR_D_CACHE_MODE - second argument.

• Default values for cache mode configuration macros defined in configAll.h. If necessary 
BSP redefines in config.h. Choices are defined in ../h/cacheLib.h:
#define CACHE_DISABLED 0x00
#define CACHE_WRITETHROUGH 0x01
#define CACHE_COPYBACK 0x02
#define CACHE_WRITEALLOCATE 0x04
#define CACHE_NO_WRITEALLOCATE 0x08
#define CACHE_SNOOP_ENABLE 0x10
#define CACHE_SNOOP_DISABLE 0x20
#define CACHE_BURST_ENABLE 0x40
#define CACHE_BURST_DISABLE 0x80

Cache Library Initialization - cont.
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• If target supports multiple cache implementations BSP is responsible 
for selecting appropriate library package:
• Macro _ARCH_MULTIPLE_CACHELIB must be defined as 

TRUE or FALSE in ../h/arch/<someArch>/ arch<someArch>.h.
• If TRUE supply correct cache initialization routine by declaring

and initializing sysCacheLibInit in sysLib.c or config.h:
FUNCPTR sysCacheLibInit = (FUNCPTR) cacheXLibInit;

• For L2 cache, BSP may need to supply separate cache management
library:
• Maybe obtained from processor manufacturer.

Cache Library Initialization - cont.
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STATUS cacheEnable (cache)
cache Cache to enable. Variable type:

CACHE_TYPE.
• Enables specified cache type, instruction, data, or branch using 

architecture specific routine.
• Must undefine macros in config.h to disable:

• INCLUDE_CACHE_SUPPORT for any cache type.
• USER_I_CACHE_ENABLE for instruction cache.
• USER_D_CACHE_ENABLE for data cache.
• USER_B_CACHE_ENABLE for branch cache.

• Routine is called in usrInit() just before kernelInit() call

Cache Enable
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• Guidelines for managing code which accesses devices are valid 
whether or not device is BSP independent:
• Maintaining cache coherency with respect to DMA devices and 

hardware registers.
• Manage device memory access methods.
• Preventing out of order instruction execution with RISC 

processors.
• Desired cache management is implemented using cacheLib:

• To allocate cache safe buffers.
• Assign attributes to a driver (system device or BSP independent

device driver) and apply implementation method(s).

Cache and Device Code
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• Cache management facilities for devices are related to how memory 
accessed by device is allocated.

• Memory accessed by devices allocated using:
• cacheDmaMalloc().
• malloc() and memalign().
• Data and bss segment memory.
• Special memory region outside of system pool.
• Allocation method unknown.

• Device register memory:
• If memory mapped, will be allocated using one of the methods 

listed above.
• If not memory mapped, will not be cacheable.

Cache and Memory Access
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void * cacheDmaMalloc (bytes)

bytes Number of bytes to allocate. Variable
type: size_t.

• Routine allocates cache-aligned, cache-safe buffer for DMA devices. 
Returns pointer to start of memory.

• Cache coherency management for memory allocated with 
cacheDmaMalloc() is dependent on MMU being enabled or not:
• If MMU is enabled, allocated memory is marked as non-

cacheable.
• If MMU is not enabled, flush and invalidate macro routine calls 

must be inserted into code.

cacheLib and Memory Allocation
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• cacheLib manages flush, invalidate, and other macro routines with 
CACHE_FUNCS and CACHE_LIB structures (see ../h/cacheLib.h). 
Example:
typedef struct /* Driver Cache Routine Pointers */

{
FUNCPTR flushRtn;
FUNCPTR invalidateRtn;
FUNCPTR virtToPhysRtn;
FUNCPTR physToVirtRtn;
} CACHE_FUNCS;

• Macro routines use routine pointers in CACHE_FUNCS and 
CACHE_LIB structures. Example:
#define CACHE_DRV_FLUSH(pFuncs, adrs, bytes) \
(((pFuncs)->flushRtn == NULL) ? OK : \
((pFuncs)->flushRtn) (DATA_CACHE, (adrs), (bytes)))

Cache Macro Routines
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• In general if a particular macro routine is a no-op it’s 
CACHE_FUNCS or CACHE_LIB routine pointer member is set to 
NULL.
• For full snooping, flush and invalidate routines are set to NULL.

• Macro routines are classified into two groups:
• CACHE_DMA_xxxx - These routines flush, invalidate, and 

perform other operations on memory regions allocated with
cacheDmaMalloc().

• CACHE_USER_xxxx - These routines flush, invalidate, and 
perform other operations on(user) memory not acquired using
cacheDmaMalloc().

Cache Macro Routines - cont.
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• CACHE_DMA_XXXX and CACHE_USER_XXXX macros defined
using lower level macro routines CACHE_DRV_XXXX.

• CACHE_DRV_XXXX macros allow flexibility in providing cache
coherency independent of memory allocation method:
• Routines have additional first argument which is a pointer to a 

CACHE_FUNCS structure.
• Developer can use CACHE_DRV_XXXX macros to control cache

coherency for:
• Driver controlled memory.
• Customized cache management.

Cache Macro Routines - cont.
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STATUS drvDmaExample (void * pBuf)
{
LOCAL BOOL freeFlag = FALSE;
if (pBuf != NULL)

{
/* No buffer cache coherency problems. */
pDrvFuncs = cacheNullFuncs;
}

else
{
pBuf = cacheDmaMalloc (BUF_SIZE);
pDrvFuncs = cacheDmaFuncs;
if (pBuf == NULL)

return (ERROR);
freeFlag = TRUE;
}

Cache Management Example
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/* Driver initialization and buffer filling. */
CACHE_DRV_FLUSH (pDrvFuncs, pBuf, BUF_SIZE);
drvWrite (pBuf); /* Output data to device. */
/* Driver code. */
CACHE_DRV_INVALIDATE (pDrvFuncs, pBuf, BUF_SIZE);
drvWait (); /* Wait for device data. */
/* Read and handle input data from device. */
if (freeFlag)

cacheDmaFree (pBuf); /* Return buffer. */
return (OK);
}

Cache Management Example - cont.
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• Cache strategies for devices will determine which cacheLib facilities 
to use.

• BSP developer should develop cache strategy based attributes of 
driver. Attributes:
• WRITE_PIPING
• SNOOPED
• MMU_TAGGING
• USER_DATA_UNKNOWN
• DEVICE_WRITES_ASYNCHRONOUSLY
• SHARED_CACHE_LINES
• SHARED_POINTERS

• Attributes will dictate how cacheLib will be of use.

Cache Strategies and Attributes
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• Most RISC processors use write pipelining which can delay delivery 
of commands or data to a device.

• Macro routine CACHE_PIPE_FLUSH will flush write pipeline. Calls 
placed at appropriate locations in code.

• Will not resolve cache issues, driver must still flush cache.
• Must know device:

• Some devices not impacted by pipelining delays.
• Some devices may not function correctly without frequent

pipeline flushes to sync. driver and device.

Example Cache Attribute -
WRITE_PIPING
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• VxWorks provides support for bus probes of memory:
• vxLib routine to probe an address on the local bus for memory 

read/write bus errors. Routine is vxMemProbe().
• vxALib routine to perform an atomic test and set on local bus. 

Routine is vxTas().
• BSP may optionally support system specific bus inquiry routines to 

probe addresses not on local bus:
• Use hook routine supplied for vxMemProbe() to access system 

busses (including an off-board bus if present).
• Create test and set routine for external system bus (if present)

using vxTas().

Memory Probes and Busses
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STATUS vxMemProbe (adrs, mode,
length, pVal)

adrs Address to be probed. Variable type: char
*.

mode Read or write. Variable type: int.
length 1, 2, or 4 bytes. Variable type: int.
pVal Where to return value, or pointer to value

to be written. Variable type: char *.
• Routine will trap read/write bus errors; returns OK if no bus error, 

and returns ERROR after handling bus error. Will not trap other 
errors, task making call will be suspended if no handler installed.

Memory Bus Error Probe
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• vxMemProbe() provides routine pointer to hook BSP specific
memory probe routine:

STATUS status;
if (_func_vxMemProbeHook != NULL)

/* BSP specific probe routine */
status = (* _func_vxMemProbeHook)

((void *)adrs, mode, length,(void *)pVal);
else

/* architecture specific probe routine */

• _func_vxMemProbeHook variable should be initialized in
sysHwInit() after initialization of busses.

Memory Bus Error Probe Code



8-42

• Memory probe hook routine called by vxMemProbe() should 
determine which bus is being probed based on input address, and call 
an appropriate probe routine.
• If address corresponds to local bus BSP probe routine should call

VxWorks supplied architecture specific probe routine.
• BSP probe routine is also responsible for managing any errors

generated during probe:
• Reset bridge or bus controller registers if necessary.
• Execute any device specific exception handlers if necessary.

• Useful for probing system busses: PCI, VME, ISA, etc.

System Memory Probes
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BOOL sysBusTas (adrs)
routine Address to be tested and set. Variable

type: char *.
• Routine to test and set an address across the system external bus if 

present. Returns TRUE if the value had not been set but is now, 
returns FALSE if values was set already.

• Routine should provide atomic test and set using indivisible Read 
Modify Write cycles across external bus.

• Routine calls vxTas() if this is meaningful.

System Test And Set
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• BSP is responsible for initializing memory and providing 
configuration support:
• Configure system memory pool parameters and autosizing if 

supported.
• Provide NVRAM access routines.
• Provide physical memory descriptor for MMU.
• Develop a cache strategy for system devices, initialize the 

appropriate cache library (or libraries) with appropriate modes,
and re-initialize cacheLib function pointers in sysHwInit() if 
required.

• Provide libraries for L2 caches if present.
• Provide system specific memory probes for addresses not on local 

bus if desired. Hook to vxMemProbe() in sysHwInit().

Summary
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• VxWorks uses an interrupt table to provide interrupt level services:
• ISRs connected to unique interrupt vectors.
• Table contains addresses for interrupt handlers at appropriate 

interrupt vectors.
• A VxWorks interrupt handler:

• Saves the CPU interrupt context.
• Calls a C language ISR.
• Restores the CPU context after the ISR returns.
• Manages an interrupt context variable which allows VxWorks to 

be interrupt aware.
• Base of table was configured in usrInit().

Interrupts and VxWorks
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• An interrupt vector is the address of the table entry for a interrupt 
handler. The address is relative to the base of the interrupt table.

• Interrupt numbers sequentially label interrupt table entries. Must refer 
to hardware documentation to obtain interrupt numbers.

• The macro INUM_TO_IVEC() converts and interrupt number to an 
interrupt vector. Usage:

intVector = INUM_TO_IVEC (intNumber());

• Macro definition in ../h/arch/<archName>.
• WRS definition of interrupt vector is not universal.

Interrupt Vectors
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• BSP is responsible for managing interrupts. Must supply routines to:
• Connect interrupts.
• Enable/disable interrupts for BSP hardware.
• Manage interrupt hardware control registers.
• Transfer control to boot code if ISR throws exception.

• Details depend on:
• Presence of external interrupt controller(s) or not.
• Interrupt policies of system bus(es).
• Form factor for CPU interrupt support (number of external 

interrupt pins).
• Protocol of devices requesting interrupt services.

BSP Responsibilities
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STATUS sysToMonitor (startType)

startType Parameter passed to ROM/Flash to tell
how to boot. Variable type: int.

• This routine transfers control to ROM/Flash if ISR throws and
exception:
• Routine is generic and is called by reboot().
• Routine may reset board environment.
• Jumps to romInit() (warm boot).

• User can create startType values to support custom boot strategies. 
Default is a warm boot for exceptions thrown at interrupt level.

Reboot From Interrupt Level
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• If architecture supports a dedicated interrupt stack, stack size is
configured when kernel is activated.
• Control macro is ISR_STACK_SIZE defined in configAll.h 

(default is 1000 bytes).
• Interrupt stack memory is allocated from system memory pool.
• If dedicated interrupt stack is not supported task stack for current 

task is used.
• To determine if a processor supports a dedicated interrupt stack see:

• VxWorks Programmer’s Guide.
• Tornado BSP Developer’s Kit for VxWorks User’s Guide.
• Processor documentation.

Interrupt Stack
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• The application interface for managing interrupts is provided by
intArchLib and intLib. API supplies support for:
• Locking/unlocking interrupts.
• Setting interrupt lock level.
• Connecting interrupts.
• Enabling/disabling interrupts.
• Determining current depth of interrupt nesting.

• Some routines in intArchLib require BSP support for some 
architectures, implementation is BSP dependent.

• To illustrate different implementations this chapter will discuss 68k 
and PowerPC based BSP implementations.

Interrupt Management Routines
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• For 68k targets:
• 68k based local bus.
• Three IRQ lines supporting seven interrupt levels.
• 255 distinct interrupt vectors (via local bus).
• Vectored external interrupts.
• No interrupt controller.

• For PowerPC targets:
• PowerPC local bus and bridge controller.
• One external interrupt line.
• Interrupt controller(s).
• Auto-vectored external interrupts.
• No interrupt vector base register.

68k and PowerPC Interrupts
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• Interrupts should be connected to the interrupt table by the BSP.

• The routine used to connect interrupts is intConnect():

• Builds a wrapper around ISR to create an interrupt handler.

• Registers handler on the interrupt table at the appropriate entry.

• Construction and registration of interrupt handlers will vary with 
different architectures. For some architectures BSP is involved.

• When interrupts should be connected will be discussed in an later
chapter.

Installing Interrupts - Overview
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STATUS intConnect (vector, routine, arg)

vector Interrupt vector to attach to. Variable
type: VOIDFUNCPTR pointer.

routine Routine to be called as ISR. Variable
type: VOIDFUNCPTR.

arg Optional argument. Variable type: int.
• Returns OK or ERROR on error.
• The macro INUM_TO_IVEC() is used to compute the first argument

to intConnect().
• Depending on target architecture, BSP may or may not be involved in 

supporting intConnect().

Installing Interrupts
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• intConnect() calls intHandlerCreate() to create interrupt handler.
• intHandlerCreate() routine:

• Calls malloc() to obtain memory for wrapper.
• Places an intEnt() routine at beginning of handler.
• Places call to routine (with argument) after intEnt().
• Places an intExit() routine at end of handler.
• Returns address returned from malloc() call.

• intEnt()/intExit() routines:
• Manage intCnt variable tracking interrupt nesting.
• Masking/unmasking interrupt levels.
• Saving/restoring contexts.

Building Interrupt Handlers - 68k
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FUNCPTR intHandlerCreate (routine, arg)

routine Routine to be called as ISR. Variable
type: FUNCPTR.

arg Optional argument. Variable type: int.

• Returns address of interrupt handler or NULL on error.

• This routine may called directly for 68K and some other architectures 
(not PowerPC). See Tornado Reference Guide.

• Note, architectures which support intHandlerCreate() may use 
different implementations.

Creating A Handler
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• intConnect() calls intVecSet() to install an interrupt handler on 
interrupt vector table.

• intVecSet() routine:
• Computes table entry address by offsetting interrupt vector by 

address for base of interrupt vector table.
• Places interrupt handler at this address.

• INUM_TO_IVEC() macro is used to obtain interrupt vector:
• Converts interrupt number to interrupt vector by multiplying 

interrupt number by four.
• Attaching interrupt handlers is completely handled by intArchLib.

Attaching Interrupt Handlers - 68k
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void intVecSet (vector, function)

vector Interrupt vector to attach to. Variable
type: FUNCPTR pointer.

function Address of handler. Variable
type: FUNCPTR.

• vector = INUN_TO_IVEC (interruptNumber)
• Can be called directly for many architectures (including 68k but no-

op for PowerPC).
• Useful for installing debug ISRs during pre-kernel porting phase 

when interrupt wrapper code is not necessary.

Attaching A Handler
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• Interrupts installed with intConnect(), however, implementation 
involves BSP unlike the 68k case.

• WRS PowerPC targets use external interrupt controllers. Controllers
have drivers which are part of the BSP. These drivers help support 
intArchLib:
• This is how the BSP is involved with interrupt management 

routines.
• Driver routines for interrupt controller are in the ../src/ drv/intrCtl or 

BSP directory:
• Initializing interrupt controller.
• Installing interrupts.
• Enabling/disabling interrupts.

Installing Interrupts - PowerPC
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• intArchLib uses a hook routine, _func_intConnectRtn() to install 
interrupts.
• intConnect() calls _func_intConnectRtn().
• BSP assigns the appropriate routine(s) to _func_intConnectRtn() 

during initialization of interrupt controller in sysHwInit().
• Interrupt controller installation routine is sysXIntConnect(), where X

labels the particular interrupt controller.
• Interrupt controller initialization routine, sysXInit(), must make the

assignment:
_func_intConnectRtn =  sysXIntConnect;

Installing Interrupts - PowerPC cont.
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• Implementation of sysXIntConnect() will be architecture and 
interrupt controller dependent.
• For example, many 603 and 604 PowerPC BSPs have multiple 

interrupt controller devices.
• sysXIntConnect() routine:

• Calls malloc() to obtain memory for handler.
• Connects ISR and optional argument to interrupt table.
• Returns OK.

• Note, sysXIntConnect() does not install wrapper code in handler (like
intHandlerCreate() for 68K) or call intVecSet() to register handler.

Installing Interrupts - PowerPC cont.
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• PowerPC architecture does not have an interrupt vector base register. 
Default is no support for:
• intVecBaseSet()
• intVecSet()

• System interrupt table is a statically declared array of pointers to 
interrupt handler descriptors. Serves as interrupt vector table.

• An interrupt handler descriptor contains:
• Address of ISR.
• The optional integer parameter.
• Table index. (To label interrupt or manage nested interrupts.)

Interrupt Table - PowerPC



9-21

• The routine sysXIntConnect():
• Receives same arguments as intConnect().
• Calls malloc() to obtain memory for an interrupt handler 

descriptor structure.
• Initializes interrupt handler descriptor structure.
• Inserts return value of malloc() in appropriate element of system 

interrupt table.
• System interrupt table index is the interrupt number:

• INUM_TO_IVEC(intNum) returns intNum.
• Note, no code to manage hardware or contexts on system interrupt 

table:
• Interrupt demultiplexer routine handles these issues.

Interrupt Table - PowerPC cont.
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Interrupt Table - PowerPC cont.
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• PowerPC has one external interrupt, when asserted:
• Processor jumps to (interrupt dispatch) stub code.
• Saves registers (context) and increments intCnt.
• Calls interrupt demultiplexer routine.
• When demultiplexer routine returns, (exit) stub code restores 

registers (context) and decrements intCnt.
• Interrupt demultiplexer code:

• Completes interrupt acknowledgment cycle.
• Gets interrupt vector from interrupt controller.
• Manages processor interrupt mask.
• Resets external interrupt line.
• Calls interrupt handler on system interrupt table using interrupt

vector.

Interrupt Demultiplexer - PowerPC
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STATUS excIntConnect (_EXC_OFF_INTR,
sysXIntHandler)

_EXC_OFF_INTR Interrupt vector to attach to. Variable 
type: VOIDFUNCPTR pointer.

sysXIntHandler Routine to be called as demultipler  
routine. Variable type: 

VOIDFUNCPTR.
• Returns OK or ERROR on error.
• Called by sysXInit() in sysHwInit().
• Interrupt demultiplexer is stored on exception table not on system 

interrupt table.
• Managed by architecture libraries, BSP not involved.

Installing Demultiplexer Routine
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• kernelInit() will unmask the external interrupt line, CPU may receive 
hardware service requests if interrupt controller or/and devices were 
not properly initialized in sysHwInit().

• To identify interrupt source use excIntConnect() to replace 
demultiplexer routine with debug ISR (sysXIntHandler() for
PowerPC).

• Interrupt acknowledgment will identify interrupt level activated in 
interrupt controller:

• Disable this interrupt level in sysHwInit().

• Note, intVecSet() is not used.

Pre-Kernel Debug ISRs - PowerPC
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• There are two user accessible interrupt libraries:
• intLib - Architecture-independent library.
• intArchLib - Architecture-dependent library.

• intArchLib is responsible for providing routines to:
• Enable/disable interrupts.
• Lock/unlock interrupts.
• Set interrupt lock level.
• Creating and installing interrupt handlers.

• If target uses an interrupt controller, BSP code is involved in
managing interrupts through intArchLib (e.g. PowerPC, i86, and 
ARM).
• Required support is architecture/BSP specific.

Interrupt Libraries



9-28

• If BSP support is required, will consist of:
• Initializing interrupt controller.
• Providing run-time support for controller (e.g. ACK).

• Initializing the interrupt controller is a BSP responsibility which does
not involve intArchLib.

• Run-time support will involve intArchLib API:
• For a given architecture BSP support of intArchLib facilities may

vary.
• For all architectures WRS supplies support for:

• Interrupt dispatch and exit code.
• intLock()/intUnlock() routines.

Supporting Interrupt Libraries
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• Supported routines are architecture dependent (see Tornado 
Reference Manual).

• For PowerPC intArchLib uses hook routines to provide functionality 
through interrupt controller:
• _func_intConnectRtn()
• _func_intVecSetRtn()
• _func_intVecBaseSetRtn()
• _func_intVecBaseGetRtn()
• _func_intLevelsetRtn()
• _func_intEnableRtn()
• _func_intDisableRtn()

• Hook routines prototyped in ../h/arch/ppc/ivPpc.h.

intArchLib Support - PowerPC
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• Hook routines are called by intArchLib routines.
• Hook routines are initialized by BSP:

• Hook routines initialized to interrupt controller driver routines.
• Some hook routines may not be supported.

• Hook routines initialized by sysXInit() which is called by 
sysHwInit().
• sysXInit() is part of interrupt controller device driver code.

• Note, no hooks to lock/unlock interrupts:
• Routines provided as part of PowerPC architecture.
• Routines written in assembler for speed.

intArchLib Support - PowerPC cont.
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• WRS supplies interrupt dispatch and exit code used as wrapper code
for interrupt demultiplexer routine (installed by excIntConnect()).

• Hook routines which must be supported for each interrupt controller
by BSP:
• _func_intConnectRtn()
• _func_intEnableRtn()
• _func_intDisableRtn()

• PowerPC can disable its single external interrupt line to lock 
interrupts, so _func_intLevelSetRtn() does not need to be supported.

intArchLib Support - PowerPC cont.
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• Hook routines initialized to BSP routines 
sysXIntEnable()/sysXIntDisable().

• Routines enable and disable a particular interrupt level:
• Interrupt level passed as (sole) argument.
• Number of supported levels is a function of interrupt controller 

and BSP.
• Single level may identify a specific device.
• Typically check for legal interrupt level before modifying level.
• Code in ../src/drv/intrCtl or in BSP directory.

Enabling / Disabling Interrupts
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• Each interrupt controller will have its own driver to manage interrupt
services for connected devices.

• For multiple interrupt controllers, must determine which controller
provides single external exception demultiplexer:
• Usually host controller.

• Controller which provides external exception demultiplexer registers 
other interrupt controller demultiplexers on its interrupt table:
• Interrupt services are cascaded using system interrupt table.

Multiple Interrupt Controllers - PowerPC
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• Interrupt controllers may be:
• On-processor.
• External devices.

• Differences in initialization involve additional initialization required 
for off-processor controllers:
• Initialization of bus(es) and bridges connecting processor and

controller.
• Initialization of additional features of chip, such as interrupt 

controllers on same chip with bus bridge.
• Initialization of addition controllers if controllers are cascaded.

• Initialization performed in sysHwInit() and interrupt generation 
capabilities enabled after kernel is activated.

Initializing An Interrupt Controller
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• Controller features which may need to be initialized:
• Interrupt source vector registers.
• Registers controlling internal interrupts.
• Mode for interrupt trigger (level or edge sensitive).
• Clearing pending interrupts and interrupt errors.
• Base register for interrupt table.
• Software control structures.
• Master interrupt control register(s) to disable interrupts until

software interrupt handlers are available.
• Create separate interrupt controller initialization routine for each

controller.

Initializing An Interrupt Controller - cont.
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• There are several optional BSP routines. WRS provides API, BSP 
developer must supply implementation code.

• Provided to support system level operations (e.g. managing an
external bus if present).

• Some of these routines support system interrupts.
• Interrupt management support routines are:

• sysBusIntAck() - Ack. external bus interrupt.
• sysBusIntGen() - Generate external bus interrupt.
• sysIntEnable() - Enable external bus interrupt level.
• sysIntDisable() - Disable external bus interrupt level.

Optional Interrupt Support
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int sysBusIntAck (intLevel)

intLevel Interrupt level to acknowledge. Variable
type: int.

• Routine should complete the bus interrupt acknowledgment cycle. 
Return value is bus specific.

• Provided to respond to external bus interrupts.
• May need to be a dummy routine:

• Hardware completes interrupt acknowledge cycle for vectored
systems.

• ISR may complete interrupt acknowledge cycle for auto-vectored
systems.

Bus Interrupt Acknowledgment
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STATUS sysBusIntGen (intLevel, vector)

intLevel Interrupt level to generate. Variable
type: int.

vector Interrupt vector to generate. Variable
type: int.

• Generate an external bus interrupt with a specified interrupt vector. 
Returns ERROR if level is out of range or target cannot generate
interrupt.

• Routine details depend on bridge or controller for external bus as well 
a bus protocol.

Bus Interrupt Generation
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STATUS sysIntEnable (intLevel)

intLevel Interrupt level to enable. Variable type:
int.

STATUS sysIntDisable (intLevel)

intLevel Interrupt level to disable. Variable type:
int.

• Enable/disable external bus interrupt. Return ERROR if intLevel is 
out of range or not supported.

Bus Interrupt Enable / Disable
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• VxWorks uses and interrupt table to supply interrupt level services.
• For some architectures BSP is responsible for managing interrupts. 

Must supply routines to:
• Connect interrupts.
• Enable/disable interrupts.
• Manage interrupt hardware control registers.
• Transfer control to boot code if ISR throws exception.

• Details depend on:
• Presence of external interrupt controller(s) or not.
• Interrupt policies of local bus(es).
• Form factor for CPU interrupt support.

Summary
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• VxWorks uses timers for:
• System clock.
• Auxiliary clock.
• Timestamp.

• VxWorks requires the presence of a single dedicated timer for the 
system clock.

• BSP designer may support one optional auxiliary clock.
• BSP developer may support one optional timestamp.
• Code for system clock, auxiliary clock, and timestamp are part of

driver for appropriate timer:
• WRS timer drivers in ../src/drv/timer/xxTimer.c.

Overview
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• System clock support is required, and is a BSP developer’s 
responsibility.

• System clock is initialized and enabled at the start of tUsrRoot after
initialization of memory facilities.

• System clock is a software clock provided by an ISR:
• Highest priority interrupt for system.
• ISR is usrClock().

• Routine to connect the system clock interrupt:
• Connects system clock interrupt.
• Calls routine, sysHwInit2(), to install other system hardware 

interrupts.

System Clock
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void sysHwInit2 (void)
• sysHwInit2() is provided to allow initialization of system devices

which are not initialized in sysHwInit().
• Routine’s primary responsibility is to install and enable system 

interrupts:
• All system (non-generic driver and system clock) interrupts 

should be installed in this routine.
• Devices which have generic drivers may enable their interrupts 

later when device is initialized.
• May also provide configuration for system devices not configured in

sysHwInit().

Connecting Interrupts
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• Auxiliary clock support is optional:
• Used for high (or low) speed polling.
• Required to use Tornado’s spy() routine.
• BSP may support one auxiliary clock.
• Cannot share timer with system clock.

• Timer interrupt for auxiliary clock installed in sysHwInit2() by BSP
developer:
• End-user provides routine called by auxiliary clock timer ISR.

• Timer interrupt for auxiliary clock enabled when auxiliary clock is
activated.

Auxiliary Clock
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• Timestamp support is optional:
• Implemented as a driver accessed by VxWorks tasks.
• Driver reads timer register to obtain timestamp.
• Provides very high fidelity timestamps for WindView or user 

applications.
• BSP may support one timestamp.
• Usually does not share timer with system clock.

• If a timestamp driver requires an interrupt it should be installed in 
sysHwInit2() and enabled when timestamp is activated.

• Timestamp driver and auxiliary clock may share the same timer, but 
not at the same time.

Timestamp
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• Hardware timers for system clock, auxiliary clock, and timestamps 
may be:
• On processor.
• Off processor dedicated chip.
• Off processor ASIC supporting other features (e.g. I/O chip with

timer).
• Timers operate in one of three modes. Use of timer is effected by

supported mode:
• Periodic interrupt - Used for system and auxiliary clocks.
• One-shot interrupt - Currently not supported by WRS BSPs.
• Timestamp - Used for timestamps.

Timer Features
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• Due to generic nature of the system clock, this section will discuss 
support issues using the WRS template system clock.

• The BSP must provide support for the following user accessible 
routines:
• sysClkConnect() - Installs system clock routine.
• sysClkRateSet() - Sets system clock rate.
• sysClkRateGet() - Gets system clock rate.
• sysClkEnable() - Activates system clock.
• sysClkDisable() - Deactivates system clock.

• BSP must also supply timer ISR for system clock timer. Standard 
name - sysClkInt().

System Clock Support
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• Connecting the system clock consists of:
• Obtaining and registering name of system clock routine called by 

system clock timer ISR.
• Installing system clock timer ISR.
• Calling sysHwInit2().

• Name of system clock routine:
• Passed as argument of sysClkConnect().
• Default is usrClock(). Code in ../all/usrConfig.c.

• System clock timer ISR may be installed explicitly in 
sysClkConnect() or in sysHwInit2().

• sysClkConnect() will always call sysHwInit2().

Installing The System Clock



10-12

• Template code:
STATUS sysClkConnect

(
FUNCPTR routine,
int arg
)
{
sysHwInit2 ();

sysClkRoutine = NULL;
sysClkArg = arg;
sysClkRoutine = routine;
return (OK);
}

Installing The System Clock - cont.
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• This routine will call the system clock routine initialized by 
sysClkConnect() using the global variables sysClkRoutine and
sysClkArg.

• Template code:
void sysClkInt (void)

{
/* TODO - acknowledge the interrupt if needed */
/* call system clock service routine */
if  (sysClkRoutine != NULL)

(* sysClkRoutine) (sysClkArg);
}

System Clock Timer ISR
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• Setting the system clock rate consists of specifying the number of 
system clock ticks (interrupts) per second.
• The time unit for VxWorks is a system clock tick.

• System clock rate supplied through single argument passed to
sysClkRateSet().
• Default rate is 60 (ticks per second).
• Clock rate activated when system clock is enabled.

• To obtain the current system clock rate, user calls sysClkRateGet() 
which returns current rate of system clock.

• Minimum and maximum allowable system clock rates are determined
by system clock timer.

The System Clock Rate
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• Template code for setting the system clock rate:
STATUS sysClkRateSet

(
int ticksPerSecond
)
{
if  (ticksPerSecond < SYS_CLK_RATE_MIN ||

ticksPerSecond > SYS_CLK_RATE_MAX)
return (ERROR);

sysClkTicksPerSecond = ticksPerSecond;
if  (sysClkRunning)

{
sysClkDisable ();
sysClkEnable ();
}

return (OK);
}

The System Clock Rate - cont.
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• Enabling the system clock consists of:
• Configuring the system clock timer to generate interrupts at a

frequency of sysClkTicksPerSecond.
• Enable system clock timer interrupt.
• Setting sysClkRunning variable to TRUE.

• In addition, sysClkEnable() should check that a system clock timer
ISR has been installed. If not, install one.
• This check is performed using a local static variable in template 

routine.
• Disabling the system clock consists of:

• Disabling system clock timer interrupt.
• Setting sysClkRunning variable to FALSE.

System Clock Enable/Disable
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• Template code:
void sysClkEnable (void)

{
static connected = FALSE;
if (!connected)

{
/* Connect sysClkInt to interrupt */
connected = TRUE;
}

if (!sysClkRunning)
{
/* Start system timer interrupts */
sysClkRunning = TRUE;
}

}

Enabling The System Clock
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• System clock can be tested by generating output (e.g. blinking a 
LED) periodically using taskDelay().
• Period test several seconds.
• Use reference clock or count many periods.

• Can modify usrRoot() (use usrConfig.c in BSP directory and modify
USRCONFIG macro in Makefile). Example:
void testSysClk (void)

{
while  (1)

{
taskDelay(5*sysClockRateGet());
sysFlashLed();
}

}

Testing the System Clock
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• Auxiliary clock support requirements mirror those of the system
clock.

• Functional requirements for support routines identical to 
corresponding system clock routines.

• The BSP must provide support for the following end-user accessible 
routines:
• sysAuxClkConnect() - Installs auxiliary clock routine
• sysAuxClkRateSet() - Sets auxiliary clock rate.
• sysAuxClkRateGet() - Gets auxiliary clock rate.
• sysAuxClkEnable() - Activates auxiliary clock.
• sysAuxClkDisable() - Deactivates auxiliary clock.
• sysAuxClkInt() - Auxiliary clock timer ISR.

Auxiliary Clock Support
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• System clock is required, auxiliary clock is not.
• No VxWorks OS overhead associated with auxiliary clock.
• User supplies auxiliary clock routine. No default routine like

usrClock() for the system clock.
• User installs auxiliary clock routine with a call to 

sysAuxClkConnect().
• BSP installs auxiliary clock timer device ISR in sysHwInit2(). Timer 

device ISR calls sysAuxClkInt().
• Auxiliary clock timer device often has other features in addition to a

timer.

Differences From System Clock
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• Timestamp supplied by timestamp driver:
• Some routines mirror system and auxiliary clock routines.
• Some routines unique to timestamp driver code.

• Timestamp driver works by reading tick count variable on timestamp 
timer count register. When timer count register rolls over timestamp
ISR manages the event.

• Timestamp driver specific routines deal with:
• Reading timer tick count register.
• Timer tick count rollover.

• Template timestamp code can be found in ../src/drv/ 
timer/templateTimer.c.

Supporting Timestamp
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• The BSP must provide support for the following end-user accessible 
routines:

• Routines mirroring system and auxiliary clocks:
• sysTimestampConnect() - Installs timestamp ISR.
• sysTimestampEnable() - Activates timestamp.
• sysTimestampDisable() - Deactivates timestamp.

• Routines specific to timestamp driver:
• sysTimestampFreq() - Get timestamp frequency.
• sysTimestampPeriod() - Get timestamp period.
• sysTimestamp() - Get timestamp from timer.
• sysTimestampLock() - Get timestamp from timer with interrupts 

locked.

Timestamp Support Routines
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• Primary timer hardware issues impacting timestamp driver design 
and performance:
• Read while enabled capability.
• Existence of prescaler counter.
• Width of counter register.
• Preload after disable required.
• Cache coherency of timer registers.

• Timer read while enable capability allows timer tick counter to be 
read without stopping timer count. If not supported:
• Produces time skew which accumulates each time timer count is 

read.

Timestamp Timer Issues
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• Time skew must be mitigated possibly using another timer,
periodically resetting timer, locking interrupts while reading timer 
count, etc.

• Degrades real-time performance.
• Prescaler counter divides the input clock frequency to provide lower 

frequency timestamp.
• Useful for tuning timer fidelity.
• Timer resolution = (prescaler) / (input frequency).
• For an effective WindView timestamp, resolution should be 10

microseconds or less. This requirement arises to ensure all
instrumented kernel events will be distinguishable.

Timestamp Timer Issues - cont.
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• Width of timer tick counter register determines maximum count value
for timer, which dictates rollover period (referred as period) for
timestamp timer:
• period = (maximum count) X (timer resolution).
• Performance degrades as period is reduced due to overhead in

managing rollover interrupt.
• Minimum recommend period is at least 10 milliseconds.

• For timers which require the counter to be preloaded with a value
before counting a problem arises if timer cannot be read while
enabled.
• Corrects skew, but adds time when timer is disabled, correcting 

for this can be difficult.

Timestamp Timer Issues - cont.
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• Timer registers must be cache coherent to ensure registers and not 
just data cache values are accessed:
• If MMU is not present or enabled, register location must be

flushed and invalidated as appropriate for type of cache being 
used.

• With MMU make timer registers non-cacheable.
• VxWorks kernel instrumentation for use with WindView requires the 

following timestamp timer features:
• Capability to generate rollover interrupt.
• Resolution of 10 microseconds or less.
• Period of 10 milliseconds or more.

Timestamp Timer Issues - cont.
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• Timestamp timer frequency and period will configured when the
timer is unitized:
• Routine sysXInt() where X refers to the name of the timer chip.
• Usually done in sysHwInit2() as part of timestamp device 

initialization.
• Timestamp frequency (in Hertz) defined in xxTimer.c.

• For template timestamp:
#define TIMESTAMP_HZ 1000000

• Timestamp period expressed in system clock ticks.

Timestamp Period and Frequency
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• Template routine to get timestamp frequency:
UINT32 sysTimestampFreq (void)

{
/* When possible read timer register(s). */
return (TIMESTAMP_HZ);
}

• Template routine to get timestamp period:
UINT32 sysTimestampPeriod (void)

{
/* When possible read timer registers(s). */
sysTimestampPeriodValue = TIMESTAMP_HZ /

sysClkTicksPerSecond;
return (sysTimestampPeriodValue);
}

Frequency and Period Routines
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• The timestamp routine reads the timestamp timer tick register. May 
also need to:
• Preload counter.
• Invalidate data cache.
• Convert to seconds by dividing count by sysTimestampFreq().

• Template timestamp routine:
UINT32 sysTimestamp (void)

{
UINT32 count = 0;
/* Read the timestamp timer value */
return (count);
}

Timestamp
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• Template routine to get timestamp timer tick count for timer which
cannot be read while enabled:
UINT32 sysTimestampLock (void)

{
UINT32 result;
int oldLevel;
oldLevel = intLock ();
result = sysTimestamp ();
intUnlock (oldLevel);
return (result);
}

• May also need to correct for time skew.

Timestamp - cont.
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• Timestamps can also be obtained from the system clock with some
caveats:
• Timer must support read while enabled.
• Timestamp driver must not have rollover ISR which will interfere

with system clock ISR. Timer must be monitored for counter 
rollovers.

• Timestamp driver should not reset counter.
• System clock should set timer period.
• sysClkRateSet() should not be callable while using timestamp 

driver.
• In general timestamp driver and system clock will be needed in 

different frequency regimes and will require separate timers.

Timestamps and the System Clock
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• BSP support for VxWorks timers - use template code:
• System clock.
• Auxiliary clock.
• Timestamp.

• VxWorks requires the presence of a single dedicated timer for the 
system clock.
• Installation routine for system clock also calls sysHwInt2() which

completes initialization of system devices started in sysHwInit().
• Optional auxiliary clock used for high speed polling.
• BSP support routines details for timestamp depend on nature of timer

used and cache configuration.

Summary
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• Once initial VxWorks image kernel is successfully activated and 
system clock is enabled, developer becomes involved in BSP 
completion activities.

• Primary BSP completion activities:
• Ensuring all required BSP routines are present.
• Providing support for appropriate optional BSP routines (e.g. 

auxiliary clock routines).
• Obtaining and integrating generic device drivers.
• Clean-up of code content and location.
• Final configuration of system features.
• Documentation.
• Validation testing.

Finishing the BSP
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• Milestones for BSP development:
• Prepare development environment, obtain reference BSP, BSP 

template files, and choose appropriate initial VxWorks image 
type.

• Make necessary modifications to reference romInit.s.
• Test romInit.s performance and romStart() configuration 

parameters using development tools or/and LEDs. Need to get to
usrInit().

• Write and test sysHwInit() and necessary pre-kernel BSP support 
libraries. Need to activate kernel.

• Optionally develop polled mode serial driver to provide Tornado 
access.

• Develop and install system clock and system ISRs.
• Perform BSP completion activities.

BSP Development Cycle
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• Portions of the BSP completion phase may involve interfacing with 
non-BSP developers suppling driver code for target devices:
• Driver groups will require integration support.
• BSP developer(s) will require driver information for 

documentation.
• BSP developer should provide all code and documentation required

by generic device driver developers to successfully:
• Integrate code.
• Initialize generic device.
• Support runtime driver operation.

Final System Configuration
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• BSP developer should be familiar with generic device driver issues:
• Location of driver code.
• Location of driver configuration and control parameters.
• Interrupt assignments for both generic and BSP specific devices.
• Bus access issues for generic driver.

• BSP developer(s) should obtain device and driver documentation 
from driver developer and add to BSP documentation files.
• Generic driver developer is responsible for documentation in driver 

code files.

Final System Configuration - cont.
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• If there are non-standard hardware configurations which were used 
during development (e.g. jumper controlling boot from socketed
ROM or Flash):
• Hardware should be reconfigured.
• Documentation should clearly state which configurations are and 

are not supported.
• Build ROM(s) if appropriate.
• Provide support for additional timers (if appropriate):

• Auxiliary clock.
• Timestamp.

• Provide support for external buses (if appropriate).

System Feature Configuration
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• Should be able to build all VxWorks images supported in 
../h/make/rules.bsp.
• Test that images can be built and booted.

• Conversion from development image should be almost transparent:
• Will need to convert romInit.s to sysALib.s for loadable images.
• Configure bootrom images after required driver(s) (network, 

serial, SCSI) are available.
• Provide NVRAM support for loadable images, and place default 

BSP boot parameters in config.h.
• Makefile in BSP directory appropriately modified (will be 

discussed in upcoming section).

VxWorks Images
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• Boot ROM images relocate a loadable VxWorks image using a 
network interface, serial line, SCSI disk, etc.
• Boot parameters stored in NVRAM.
• Boot parameters may be modified at boot time.

• For boot ROM images, bootConfig.c replaces usrConfig.c:
• usrRoot() will spawn a task, tBoot, which will relocate loadable

image.
• File contains support routines to manage boot parameters, image 

relocations, and user interaction.
• BSP developer will not need to modify bootConfig.c unless custom 

boot path is to be supported.

Boot ROM Images
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• Entry point for task tBoot is bootCmdLoop():
• Will autoboot image based on boot parameters in NVRAM after 

timeout expires with no user interaction by calling autoboot().
• For interactive session, code loops in interactive session until boot 

continuation command is issued.
• Routine which relocates loadable image is bootLoad():

• Boot parameters passed in through argument list.
• Identifies appropriate device interface for load.
• Performs any necessary initialization on load device.
• Loads image.

• When bootLoad() returns processor is jumped to the entry point of 
the loaded image, sysInit().

Boot ROM Images - cont.
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• Sequence of events after romStart() jumps to usrInit():

Boot ROM Images - cont.
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• The following routines must be in the sysLib.o module. If not, an 
unresolved global error will be generated during linking of VxWorks:
• sysBspRev() - Return BSP version and revision number, in

sysLib.c.
• sysClkConnect() - Connect a routine to the system clock ISR, in 

../src/drv/timer/xxTimer.c.
• sysClkDisable() - Disable system clock timer interrupts, in 

../src/drv/timer/xxTimer.c.
• sysClkEnable() - Enable system clock timer interrupts, in 

../src/drv/timer/xxTimer.c.
• sysClkInt() - Handler for system clock timer interrupt, int

../src/drv/timer/xxTimer.c.

Required BSP Routines
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• sysClkRateGet() - Get system clock rate, in ../src/drv/ 
timer/xxTimer.c.

• sysClkRateSet() - Set system clock rate, in ../src/drv/ 
timer/xxTimer.c.

• sysHwInit() - Initialization of system hardware before kernel 
activation, in sysLib.c.

• sysHwInit2() - Initialization of system hardware after kernel 
activation, in sysLib.c.

• sysMemTop() - Return the address of the top of the system 
memory pool, in sysLib.c.

• sysModel() - Return model name for target environment, in
sysLib.c.

• sysNvRamGet() - Get the contents of NVRAM, in 
../src/drv/mem/xxNvRam.c.

Required BSP Routines - cont.
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• sysNvRamSet() - Set the contents of NVRAM, in 
../src/drv/mem/xxNvRam.c.

• sysSerialHwInit() - Initialized serial devices to quiet state prior to 
kernel activation, in sysSerial.c.

• sysSerialHwInit2() - Connect serial device ISRs after kernel 
activation, sysSerial.c

• sysSerialChanGet() - Get the address of a SIO_CHAN structure 
associated with a serial channel, in sysSerial.c.

• sysToMonitor() - Transfer control to the ROM/Flash monitor, in
sysLib.c.

• Routines not discussed previously:
• sysBspRev().
• sysModel().

Required BSP Routines - cont.
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char * sysBspRev (void)
• Routine returns pointer to BSP version/revision number string. 

Values defined as macros in config.h:
• BSP_VERSION
• BSP_REV

• Combination of version and revision numbers are the release 
numbers for the BSP.
• Version number identifies BSP generation.
• Revision number is an incrementing number identifying release 

within a generation, Should begin with zero for first release.

Release Numbers
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char * sysModel (void)
• Returns pointer to model name for BSP:
• char *sysModel (void)

{
return (SYS_MODEL);
}

• SYS_MODEL defined in <bsp>.h or sysLib.c.
• Model name string printed to standard output by tUsrRoot as part of 

WDB agent banner.
• Routine resides in sysLib.c.

BSP Model Name
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• The following routines are optional but are usually present as part of 
a BSP:
• sysAuxClkConnect() - Connect a routine to the auxiliary clock 

ISR, in ../src/drv/timer/xxTimer.c.
• sysAuxClkDisable() - Disable the auxiliary clock timer interrupt, 

in ../src/drv/timer/xxTimer.c.
• sysAuxClkEnable() - Enable the auxiliary clock timer interrupt, in 

../src/drv/timer/xxTimer.c.
• sysAuxClkInt() - Handler for auxiliary clock timer interrupt, in 

../src/drv/timer/xxTimer.c.
• sysAuxClkRateGet() - Get auxiliary clock rate, in ../ 

src/drv/timer/xxTimer.c.
• sysAuxClkRateSet() - Set auxiliary clock rate, in ../ 

src/drv/timer/xxTimer.c.

Optional BSP Routines
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• sysPhysMemTop() - Get the top of physical memory for the 
target, in sysLib.c.

• These routines have all been discussed previously.
• There is also a set of optional routines for managing system busses if 

present. Some of these routines have been discussed previously, a 
complete list appears in the Tornado BSP Developer’s Kit for
VxWorks User’s Guide.
• There is also a macro, BUS_TYPE defined in ../h/ vxWorks.h to 

identify system bus(es).
• Any other custom BSP specific routines should placed in sysLib.c or 

the appropriate file in the BSP directory or sub-directory.

Optional BSP Routines - cont.
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• BSP developer is not responsible for writing BSP independent device 
drivers, however, BSP developer is responsible for integration of 
these device drivers.

• BSP developer should be aware of driver issues:
• Location of files.
• Configuration parameters.
• Design strategies.
• Driver structure.

• In addition BSP developer should provide sufficient documentation 
for device driver writers as well as end-users.

Device Drivers and the BSP
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• All device driver code not developed by WRS should be placed in:
• BSP directory.
• A sub-directory of the BSP directory.
• Developer created directory directly below ../config.

• Popular configuration - BSP drivers in BSP directory, generic driver 
code in subdirectory of BSP directory.

• WRS places it’s generic device driver code in ../src/drv/ xxxx and 
../h/drv/xxxx.
• These device drivers can be used with any BSP.
• WRS reserves all rights with respect to these directories.

Location of Device Driver Code
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• End-user modifiable BSP configuration file will contain some generic
driver configuration and control variables in addition to specific BSP 
parameters:

• General BSP control parameters in config.h:
• Default boot parameters.
• Local memory configuration.
• Off-target memory (e.g. VME bus window sizes).
• Interrupt controller configuration bit patterns.
• Cache and MMU options (e.g. L2 cache support).
• Bus configuration (e.g PCI bus numbers).
• Shared memory network definitions.

• config.h contains #include of <bsp>.h.

config.h
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• Generic driver related parameters in config.h:
• Device support macros.
• Number of supported serial channels.
• Auxiliary clock timer device ID (if supported).
• Network device support (e.g. link buffer pool size).
• SCSI device support (e.g. fast and wide).

• Device specific, target independent configuration and control 
parameters should be placed in the xxDrv.h header file.

• Generic device parameters appearing in config.h associated with 
device features which would change if device was installed in 
different target environment.

config.h - cont.
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• <bsp>.h contains parameters which are not configurable by the end-
user:
• Device base addresses (bridges, controllers, etc.).
• Register offsets system devices.
• BSP device control bit patterns.
• System and auxiliary clock minimum and maximum rates.
• Local bus maps and bus speeds.
• External bus maps.
• System interrupt vectors and levels.

• After completion of BSP, parameters in <bsp>.h should only be 
changed as part of modification of BSP design. 

<bsp>.h
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• These guidelines are valid for both BSP dependent and independent 
device drivers.

• Primary design problems involve:
• Device hardware.
• Performance enhancement.
• Code re-entrancy.
• Configuration and portability.

• There will be trade-offs associated with attempting to resolve these 
design problems.

• Some design issues will require an understanding of the VxWorks
OS, and how driver code is accessed by VxWorks.

Driver Design Strategies
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• For multi-function chips providing more than one device on a single 
ASIC the primary goal should be scalability:
• Do not write one driver for ASIC.
• Write separate driver for each device.
• If devices must share ASIC resources or one driver needs to 

support an other, clearly document dependences in dependent 
driver code.

• Chip may be accessed as memory mapped device or I/O mapped 
device:
• Access memory mapped devices via access macros.
• For I/O mapped devices assembly routines will be required to 

reach I/O, direct C expression will not.

Design and Device Hardware
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• Optimizing device driver performance will require some knowledge
of the VxWorks real-time kernel operation.
• Tornado Training Workshop or Tornado Device Driver Workshop 

provide more relevant information.
• Designing for performance will involve:

• Using device DMA capabilities if present.
• Minimizing interrupt latency.
• Minimizing subroutine nesting.
• Developing an appropriate cache strategy.
• Assignment of priorities for tasks accessing driver code.
• Providing mutual exclusion and synchronization.

Driver Performance
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• Device driver code will be called in the context of tasks in VxWorks.
• Re-entrancy necessary to prevent race conditions.

• Driver code may manage multiple instances of a device (a serial 
driver may control several channels), must be reentrant to prevent 
device “cross-talk”:
• Each device should have a separate control structure for the device 

and pass it to driver routines for initialization and device control.
• Device control structure obtained using malloc() when device is 

initialized or as an array of device control structures with a 
separate element for each device instance.

Driver Code Re-entrancy
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• Driver should not inhibit device feature access:
• Driver code should provide end user with flexible user-friendly 

configuration interface.
• If all features of device will not be supported, design should not 

preclude support at a later time.
• Portability supported through use of configuration and hardware 

access macros:
• Register addresses.
• Control and status inquiry parameters.
• Hardware management access macros.

• Portability also improved by standard driver interface.

Device Configuration and Code
Portability
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• WRS has established general guidelines for device driver structure:
• For both standard and non-standard drivers.
• For BSP independent and BSP dependent devices.

• General guidelines for the structure of a device driver to be used with 
WRS products:
• Object-oriented design for device control structures.
• Device register access through macros.
• Driver does not connect ISRs.
• Comprehensive driver documentation.

• More information in Tornado Device Driver Workshop.

Overview Of Driver Structure
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• Each device should be represented by a single control structure 
containing all state information associated with the device:
• Structure created when device is created with xxDevCreate() 

routine.
• xxDevCreate() routine should check that device is present and that 

appropriate driver code to manage device is present.
• Device control structure should contain methods (routines) to manage 

the device structure.
• If device has multiple channels, each channel should have its own 

control structure.

Device Control Structures
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• This example (template) device is serial chip with two channels 
(ports A and B). So there will be control structures for:
• SCC chip.
• Each channel for chip.

• Control structure for template serial chip (device):
typedef struct

{
TEMPLATE_CHAN portA;
TEMPLATE_CHAN portB;
volatile char * masterCr;
} TEMPLATE_DUSART;

Example Device Control Structure
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• Per-channel control structure:

typedef struct
{

SIO_CHAN sio; /* SIO_CHAN element */

/* callbacks */

STATUS (*getTxChar) ();
STATUS (*putRcvChar) ();
void * getTxArg;
void * putRcvArg;

Example Device Control Structure - cont.
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/* register addresses */

volatile char * cr; /* control register */
volatile char * dr; /* data register */
volatile char * sr; /* status register */
volatile char * ms; /* modem status */
volatile char * mc; /* modem control */
volatile short * br; /* baud constant */

/* misc */

int mode; /* current mode */
int baudFreq; /* clock frequency */
int options; /* Hardware options */
} TEMPLATE_CHAN;

Example Device Control Structure - cont.
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• Access to hardware registers should be made through macros:
• Code to read and modify chip registers.
• Chip register address definitions.

• Usually access methods will require read, write, and perhaps bit
modification macros:
WIDGET_READ (adrs, pData)
WIDGET_WRITE (adrs, pData)
WIDGET_CLR_SET (adrs, clear-bits, set_bits)

• Return values by reference through macro routine argument list, not 
as a routine return value.

Access Macros
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• Minimize use of conditional statements within code blocks. Example:
#ifdef INCLUDE_MY_WIDGET

widgetReset (&myWidget,
#else

widgetReset (&stdWidget,
#endif

arg1, arg2)
• A better approach:

#ifdef INCLUDE_MY_WIDGET
# define THE_WIDGET myWidget;
#else
# define THE_WIDGET stdWidget;
#endif
....
widgetReset(&THE_WIDGET, arg1, arg2);

Access Macros - cont.
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• Do not use structures which map hardware registers, code will not be 
portable (even using the same toolchain across architectures):

typedef struct {
char WIDGET_CR;
char WIDGET_SR;
char WIDGET_DATA:
}MY_WIDGET

• Use macros to convert a base address to a register address, and to 
specify offsets for registers:
#define WIDGET_ADRS(reg) (WIDGET_BASE_ADRS + reg);
....
#define WIDGET_CR WIDGET_ADRS(WIDGET_CR_OFFSET);
....
#define WIDGET_CR_OFFSET 0x020447

Access Macros - cont.
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• ISR code will be in file with other driver code but driver should not 
call intConnect() for ISR:
• Interrupts connected by BSP in sysHwInit2().
• Use INCLUDE_XXX macros to conditionally connectISRs if 

device is being supported.
• Driver will enable hardware interrupt when ready.
• Device driver ISRs should exit immediately if device hardware is not 

asserting and interrupt:
• Do not assume one-to-one mapping of interrupt vectors and 

handlers. Interrupt lines may be multiplexed.
• Driver ISR should check device to determine if it is generating 

request for interrupt service.

Device Driver ISRs
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• Documentation should provide comprehensive description of 
hardware features:
• Clearly identify which features are and are not supported.
• Should be an introduction to both the chip and the device driver.

• Documentation placed in file with driver code, and can be included in 
Tornado man pages for users.

• Device driver writer and BSP developer will need to:
• Develop documentation detailing how driver is integrated into 

BSP (in xxDrv.c).
• Develop documentation for BSP description in target.txt.

Device Driver Documentation
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• General strategy is perform-top down design, and bottom-up 
implementation and testing.

• Top-down design sequence:
• Start with template file, if there is no template file use existing 

driver.
• Obtain hardware manual and write documentation describing 

device and driver support.
• Define per-device (and driver) control structures. 
• Define and document access and configuration macros for driver.
• Declare all routines which BSP developer and users will need to 

use this driver.
• Create declarations for driver routines and comment.

Device Driver Development
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• Bottom-up implementation and testing sequence:
• Write device initialization code. Configures hardware registers,

enables/disables device interrupts, and installs routines on driver 
table for standard drivers.

• Write device control structure initialization routine which accepts 
a device control structure and initializes it.

• Complete remainder of driver routines, perform compile checks, 
and verify that only desired external routines are unresolved.

• Run-time test, debug, and re-compile as dictated by project 
requirements.

• Performance test. Benchmark driver using industry standards if 
available.

Device Driver Development - cont.
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Remaining BSP Routines

Device Driver Issues

11.4 Final BSP Files

Validation Test Suite

Completing The BSP



11-44

• BSP files were listed and described earlier. Part of completing a BSP 
is ensuring the BSP files which the BSP developer modifies are in 
their proper final form:
• Source files.
• Include files.
• Makefiles.
• Derived files.
• Document files.

• All files which developer modifies (or creates) are in BSP directory, 
BSP subdirectory, or directory which developer has created directly 
below ../config.

Final BSP Files
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• Source files relevant to BSP development:
• Developer created files.
• Modified reference BSP files.
• Modified WRS supplied generic driver routines.
• Modified template files.
• Third party supplied files.

• All these files belong in one of the following directories:
• BSP directory (../config/<bspName>).
• Sub-directory of BSP directory.
• Developer created sub-directory under config.

• Popular configuration - Non-WRS generic device drivers in BSP 
subdirectory.

Source Files
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• Will need to provide sysALib.s for loadable VxWorks images (if not 
done previously):
• Cut and paste romInit.s into sysALib.s.
• Change routine name from romInit() to sysInit().
• Remove any memory initialization code.
• Modify routine to jump to usrInit() (not romStart()).

• Default sysALib.s may contain code which will be lost if romInit.s is 
copied into (overwrites) sysALib.s:
• Example - system bus access routines written in assembler.
• sysALib.o (and sysLib.o) included in all VxWorks builds through

macro MACH_DEP defined in ../h/ defs.bsp.

sysALib.s
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• BSP include files, <bsp>.h and config.h, are modified during 
development.
• May need to provide macro definitions and documentation for 

extendable hardware features which are not currently supported.
• Check that variables are in appropriate include file.

• <bsp>.h contains target specific information which is not 
configurable by the end-user.

• config.h is end-user configurable. Contains BSP specific 
parameters and (un)definitions of configAll.h macros.

• Include files for non-WRS drivers will appear in directory with driver 
source code (generic and BSP).

Include Files
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• Makefiles should only need to be modified for:
• Clean-up of development Makefile configurations.
• Builds of non-WRS device driver code.
• Custom VxWorks builds.

• Remove or redefine any BSP Makefile macros which have been 
configured specifically for BSP development.
Examples:
• If private copies of bootInit.c, usrConfig.c or/and configAll.h were 

used for development, reinstall generic versions by removing 
definitions of,
BOOTINIT, USRCONFIG, and/or CONFIG_ALL.

• USR_ENTRY set equal to usrInit.
• Modify EXTRA_XXXX components if necessary.

Makefiles
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• BSP independent driver code not supplied by WRS should reside in a 
BSP sub-directory.
• Makefile in this sub-directory specifies rules to build driver object 

module(s) and place them in BSP directory if no #include in
sysLib.c.

• Driver target make is performed by Makefile in BSP directory. 
These make commands need to be added.

• BSP specific driver code should reside in BSP directory, and there 
should be a #include in sysLib.c.

• If non-supported VxWorks image type is required supply build rules
and necessary definitions in Makefile residing in BSP directory.

Makefiles - cont.6
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• The only “non-standard” derived files will be object modules for 
device drivers (generic and BSP) not supplied by WRS and with no
#include in sysLib.c.

• In addition to documentation provided in source files, BSP must 
supply documentation for:
• target.txt - BSP developer is responsible for this file, may need 

contributions from BSP independent device driver writers or 
documentation

• README - Provide detailed release record information, pay 
particular attention to any caveats which user must be aware of to 
use VxWorks with this BSP. If modifying an existing BSP, update
this file, and provide any known information concerning SPRs
filed against the BSP (if relevant).

Derived and Documentation Files
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Completing The BSP
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• Validation Test Suite (VTS) designed to provide report(s) allowing
analysis of basic BSP functionality:
• Auxiliary clock functionality.
• System clock functionality.
• Serial communication at supported baud rates.
• Commands executable from VxWorks boot prompt.
• RAM read operations.
• ROM read operations
• Local and external bus access.
• Reboots and catastrophic error recovery.
• NVRAM access.
• Networking facilities.
• SCSI read and write operations.

Validation Test Suite Overview
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• Test host (UNIX or Windows) controls execution of tests of BSP 
functionality on target.
• All VTS facilities are host initiated.

• VTS can run with single or multiple VxWorks targets.
• Minimum requirements:

• Tornado.
• Appropriate host tools (host compilers, etc.)
• Complete BSP Developers Kit (correct release level).
• Complete source for BSP to be tested.
• Network or serial target/host connection.

Validation Test Suite Overview -cont.
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• VTS only runs in Tornado environment using Tcl/WTX scripts to 
perform BSP tests:
• If basic tests are inadequate, source code may be modified to 

provide needed tests.
• Tests activated with single command:

• Script attaches target server to first VxWorks target (Target 0) 
which uses network link.

• If serial communication is required channel ttya (UNIX) or COM1 
(Windows) opened to Target 0’s / tyCo/0 serial port.

• Connects subsequent target servers to ttyx (UNIX) or COMx to 
Target N’s /tyCo/N serial port.

• Host interacts with target using WTX and windSh commands.

VTS Structure
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VTS Configuration
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• Configuration parameters controlling VTS for a single target reside in 
../host/resource/test/bspVal/ <bspName>.T1.
• Boot parameters.
• Serial device and baud rate for console connection.
• Timeout for loading VxWorks and other files.
• Parameters for desired functional tests.

• Take default file <xxxx>.T1 in ../host/resource/test/ bspVal directory 
and copy it into <bspName>.T1.
• Modify file as required. See documentation for test control 

parameters.
• For additional targets files are <bspName>.TN (N = 1,2,...).

VTS Files
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• VTS script source files are located in directories:
• ../host/src/test/bspVal/src/test
• ../host/src/test/bspVal/src/lib

• Most test script files are located in ../host/src/test/ bspVal/src/tests, 
however if procedure is shared by multiple test the code is stored in 
../host/src/test/ bspVal/src/lib.
• Example - tests for system clock is stored in ../test/ sysClock.tcl.
• Example - procedure to reboot VxWorks in ../host/ 

src/test/bspVal/src/lib.
• Complete source for Tcl available.

VTS Files - cont.
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• BSP VTS is activated with a test script (see documentation for details 
for UNIX and Windows platforms).

• All output goes to standard output (host platform) by default, must 
use logfile for permanent storage:
• Header with name of target server, BSP, and logfile.
• As test begins, test name is displayed.
• As sub-tests complete, name is displayed along with PASS/FAIL

status information.
• Normally if test fails, other test will still run.

• If fatal error is generated, VTS aborts and displays a FATAL 
ERROR message.

Running the VTS
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• Goal of validation to ensure integrity of BSP. WRS supplies a BSP
validation checklist:
• Product Packaging Test.
• BSP VTS checklist.
• Target Information test sheet.

• To have a BSP certified by WRS, documents associated with these 
test, along with complete BSP source, and two targets must be 
provided to WRS:
• WRS will test all aspects of the BSP - installation, packaging 

(correct file organization and content), and functionality (see BSP 
VTS checklist).

• WRS certified BSP products can be distributed displaying that 
they are WRS certified.

BSP Validation
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• After development image activates kernel and system clock, 
developer enters final stage of BSP development:
• Provide any missing required BSP routines.
• Integrate generic driver code.
• Add support for missing optional BSP routines.
• Clean-up and complete BSP files.
• Ensure all standard VxWorks images can be booted.
• Test (use VTS if available) and document BSP.

• BSP development can be an on-going project as new drivers are 
added, and new features are supported.
• Documentation is the key to maintaining continuity.

• Contact WRS if BSP certification is desired.

Summary


