## 제품 전원 입력부 설계방법 - 전원 Overshoot 에 주의하자 !!!

오늘은,....
회로 설계시 흔히 저지르기 쉬운 실수중 하나인 전원 입력부 설계방법에 대해 짧은 글을 하나 작성해 보겠습니다.
사실 너무나 쉽고, 흔한 회로라서 많은 분들이 간과하고 넘어가고 또, 실제로 별 탈 없이 넘어가기도 합니다만, 어찌어찌 하다보면 심하게 발목을 잡는 상황이 올 수도 있는지라....
조금 자세히 한번 살펴보도록 하겠습니다.

장치내에 장착된 배터리로 전원을 공급받는 경우라면 별 문제가 없겠습니다만, 많은경우 아답터나 긴 전선을 이용해 장비 에 전원을 공급하게 됩니다.

문제는 그 긴 전원선이 inductance 성분을 갖고 있을수 밖에 없다는 점입니다.
길면 길수록 inductance도 커져가기만 합니다.
그 큰 inductor 와 장비 전원 인입부에 설치된 bypass capacitor 가 만나면 L-C 회로가 되어 버리고 전원 투입순간 Overshoot 이 발생하게 됩니다.
전원선이 그렇게 길지 않아도 노이즈를 잡겠다고 Ferrite Bead나 Inductor 를 넣어놨다면 긴 전원선과 동일한 결과를 얻게 되겠구요.

만일 아래 회로에서 C=4.7uF MLCC 를 사용하고 있다면, 과연 이 회로는 정상적으로 동작할수 있을까요?


전원 투입시 C 양단의 전압을 측정해 보았습니다.
무려 22.1Volts 까지 overshoot 이 발생하는군요. ^^;
FET와 Regulator 는 이미 사망각이 나옵니다. Tד

제품을 개발하는 실험실에서는 고장이 잘 안날지 모르지만, 생산 line에서 일정부분 불량율을 보일터이고, 제품이 소비자

손에 전달되고 일정 시간이 지나면 슬슬 한개 두개씩 망가지는 제품이 나오겠지요.

DSO-X 2022A, MY51450453: Tue 0ct 25 16:57:39 2022


C를 1 uF MLCC로 바꿔봅니다.

DSO-X 2022A, M $/ 51450453:$ Tue 0ct 25 17:29:11 2022


뭐, $\ldots$ 별 효과가 없습니다.
이런 overshoot은 전원선이 갖고있는 inductance와 MLCC의 ESR에 의한 현상이기에 L-C charge loop의 Q를 낮춰주지 않고서는 피할길이 없습니다.

따라서, 해결 방법은 사실.... 간단합니다.
전원 공급라인에 직렬로 저항을 넣어주거나...


DSO-X 2022A, MY51450453: Tue Oct 25 17:07:192022


전원에 직렬로 연결된 Rs $=1$ 옴일때 전원 투입시 4.7 uF MLCC 양단의 전압변화

MLCC의 ESR을 높여주기 위해 MLCC와 직렬로 저항을 넣어주거나...


DSO-X 2022A, MY51450453: Tue Oct 25 17:45:20 2022


MLCC 와 직렬로 연결된 $\mathrm{Rs}=0.5$ 옴일때 전원 투입시 4.7 uF MLCC 양단의 전압변화
또는.....
그냥 C 를 전해 capacitor나 Tantal capacitor로 바꿔주시면 됩니다.


1uF Tantal 을 사용했을때의 C 양단의 전압변화

언젠가... 누군가가... 댓글에서 이런 문제는 이론적으로만 그렇고 실제로는 아무 상관없습니다. ~~~ 라고 써 놓은것을 본 후로 꼭 실제 파형을 측정해서 글을 작성해 보고 싶었습니다.

특히나 이정도의 간단한 회로에서는... 이론과 실제는 항상 일치 할 수 밖에 없습니다. !!!

오늘은 이만~

- 끝 -

댓글 등록순 최신순 $C$

## 성미아빠 떠


2022.10.25. 18:00 답글쓰기

브레인 각성자
가끔은 농사나 기계 가공에 대한 글 말고 전자 회로에 대한 글도 써야 하기에..... ^^;
2022.10.25. 18:02 답글쓰기

ControlPlus ${ }^{3}$
이유도 모른채 $220 u$ 전해를 고집해 왔었는데 근거를 찾았습니다 ㅎㅎㅎ 좋은 글 감사합니다^^
2022.10.25. 18:31 답글쓰기

브레인 미 작성자
전해 capacitor 의 ESR이 높아서 유리하긴 하지만...... 언제 기회가 되면 한번 측정해 봐야겠네요..
지금은 측정하던 회로를 다 치워버린지라 ~
2022.10.25. 18:34 답글쓰기

전해나 탄탈의 ESR이 MLCC에 비해서 상대적으로 더 높은가요?
윗분의 댓글에 답을 주셨군요. ㅎㅎ
2022.10.25. 18:35 답글쓰기
2022.10.25. 18:36 답글쓰기

## 베베꼬아 ㅁ


2022.10.25. 19:47 답글쓰기
(a) becool ll

만약 부하에서 전류를 꽤 사용하는 경우. 예를 들어 1 A 이상을 사용한다면, 직렬로 저항을 연결하게되면 열이 꽤 나는데, 캐패 시터 앞에 놓으면 발열문제는 괜찮을까요?
2022.10.25. 20:07 답글쓰기

## 브레인 ㅁ 작성자

전원에 직렬로 저항을 사용한다면 당근 전압강하와 발열을 피할 길은 없습니다.
그러니 그런 경우를 대비해서 여러가지 다른 방안을 제시한 것입니다.
2022.10.25. 20:46 답글쓰기

화성 찬란한영혼 지
쩐띠기 해본 사람들은 금방 알지요. 별일있겠어 하는 순간 콜각이고 패널티는 덤이지요..
입력 C를 전해 커패시터와 MLCC로 설계해도 효과가 있더군요...
간만에 재미있는글 보고 갑니다.
2022.10.26. 09:31 답글쓰기

## 초크사 1

안녕하세요 혹시
MLCC 하나만을 배치했을 때보다 전해캡과 MLCC를 병렬로 배치했을 때가 링잉이 더 발생하지 않았다는 말씀이신가 요?
2023.06.23. 17:31 답글쓰기

## 브레인 미 작성자

초크사 Overshoot 발생 원리상 capacitor의 ESR 이 높으면 높을수록 발생하지 않습니다.
따라서 Overshoot 을 줄이려면 무조건 MLCC 는 사용하지 않는것이 좋습니다.
다만, 전원입력단의 ESR 이 너무 높아지면 곤란하기에,..
MLCC 의 낮은 ESR 이 주는 장점과, Overshoot 이 작은 전해 Capacitor의 장점 두가지 모두를 취하기 위해 보통 MLCC + MLCC에 비해 5 배 이상 용량을 가진 전해 Capacitor 를 사용하기도 합니다.
2023.06.23. 17:42 답글쓰기

## ค

초크사 1
브레인 이해 됐습니다 답변 감사합니다!
2023.06.23. 17:46 답글쓰기

## 화성 찬란한영혼 ${ }^{2}$

전류도 함께 스코프로 보여주셨시면 보다 유익할것 같습니다. 일거리 증정합니다.^^
2022.10.26. 09:33 답글쓰기

브레인 미 작성자

2022.10.26. 10:05 답글쓰기

## 명품소다 ${ }^{3}$

그동안 전원단에 마냥 좋다고 생각하고 습관적으로 bead를 사용했는데, 이 글을 보고서 남발하면 안되는걸 배웠네요. 감사합니다.
2022.10.26. 10:04 답글쓰기

## 브레인 ㅁ 작성자

뭐, 다른 전문분야도 마찬가지겠지만 회로설계도 곳곳에 함정들이 도사리고 있는지라.... 이래 저래 정신 바짝 차리는 수 밖에 없습니다.
2022.10.26. 10:28 답글쓰기

## 푸레 ${ }^{2}$

저항하나라도 역시 허투로 쓰이는 곳이 없네요.
2022.10.26. 14:56 답글쓰기
(I)

브레인 ㅁ 작성자
네.... 회로 개발은 너무 힘들어요.... TT
2022.10.26. 15:01 답글쓰기

## 초크사 [1

ESR을 높이는게 오버슈트를 잡아줄수있다고 이해했는데 이 부분에 대해서 간단하게 설명 부탁드려도 될까요??
2022.10.27. 09:57 답글쓰기

## 브레인 작성자

제시된 회로들처럼 Inductor 로 부터 capacitor 로 흐르는 전류량만 줄여주면 overshoot 는 줄어듭니다.
ESR 증가뿐만 아니라 제시된 자료처럼 전원 직렬 저항도 좋은 결과를 보여줍니다. 결국 두가지 모두 L과 C 입장에서 똑같은 손실회로(lossy circuit) 일 뿐이니까요.....

그런 현상에 대한 이론적인 설명을 원하시는것이라면,.... 댓글로 설명하기 부적절한 주제입니다.
L 과 C 의 특징과 동작을 설명하기 위해서는 전자기학과 전기회로를 강의해야 하는 수준의 분량이 되어 버리는데...
그래도 정확한 이론적인 설명이 궁금하시다면..... 아래 자료를 참조하시면 될 것 같습니다.
https://www.ee.nthu.edu.tw/sdyang/Courses/Circuits/Ch08_Std.pdf
동영상 : https://www.youtube.com/watch?v=B4TezoTORYA\&t=31s
2022.10.27. 10:33 답글쓰기

## (2)

초크사 1
브레인 친절한 답변 감사드립니다 !
2022.10.27. 11:13 답글쓰기

매드 ㅁ
우억! ESR이 작으면 좋은 줄 알았는데 상황에 따라 다른거였네요!
또 이렇게 배워 갑니다. (--)(_) 감사합니다.
2022.10.28. 11:34 답글쓰기

브레인 ㅁ 작성자
네. 불행히도.... 상황에 따라 다른 경우들이 많습니다.
출력 capacitor의 ESR이 너무 낮으면 발진하거나 발산하는 LDO들도 매우 많습니다.
2022.10.28. 11:36 답글쓰기

## 이정재 $\varphi$

만약 전원 입력 제일 첫 단으로 TVS다이오드 또는 바리스터를 추가하는 방법으로는 해결이 안되는 것일까요?
2022.11.09. 02:00 답글쓰기

결코 작지않은 에너지라... in-rush current 가 증가하긴 하겠지만, 충분한 용량의 TVS 나 Varistor라면 막아낼수 있을것

## 같기는 하네요...

2022.11.09. 11:25 답글쓰기

(2)

## 장미꽃여우 미

좋은 자료 감사합니다.
2022.11.22. 08:57 답글쓰기

ค
얼미
잘읽었습니다. 감사합니다!
2022.11.28. 08:09 답글쓰기


## 뽀구

잘뵸습니다 감사드립니다
2022.12.15. 21:04 답글쓰기

## 뉴데미안 미

정리가 잘 된 글이네요. 고맙습니다.
2023.01.18. 16:26 답글쓰기

## 탱탱22 1

배우고 갑니다^^
2023.02.20. 18:16 답글쓰기

## 손의모험 박영준 ${ }^{2}$

감사합니다! ^^
2023.02.22. 08:38 답글쓰기

## 우주로비행 미

감사합니다
2023.05.22. 09:49 답글쓰기

## 누구보다 초보자 ㅁ

정말 간단하지만 유익한 글이네요. 혹시 DCDC 12 V to 5 V 출력단에 $100 \mathrm{uF} / 16 \mathrm{~V}$ 탄탈을 사용해도 괜찮을까요? 탄탈은 불량이 나면 쇼트라고 알고 있어서 약간 두렵네요.
2023.05.30. 20:22 답글쓰기

브레인 ㅁ 작성자)
당연히 괜찮습니다.
다만, 딱히 특별한 이유가 있는것이 아니라면 MLCC도 좋은 선택이 될 수 있습니다.

```
2023.05.30. 22:01 답글쓰기
```


## 누구보다 초보자 미

브레인 DCDC Output 쪽에 47uF Cap 이 있는 데도, 8 Khz Ripple과 가청 노이즈가 발생하네요... 높이 제한이 있어서 탄 탈을 추가했는데 개선 효과를 보아서 넣고자 합니다. 댓글이긴 하지만 질문을 몇가지 드려도 될까요.. -9 V 출력에는 25 V 가 적당할까요?
-9 V 에 사용할 만한 MLCC은 내압을 얼만큼 가져가야할까요? 용량 감소 글을 본적이 있어서요

- Tantal은 신뢰성이 높은 제품을 쓰고 싶은데 Samsung, KEMET, Murata 정도 고려하면 될까요?
2023.05.31. 11:11 답글쓰기


## 브레인 ㅁ 작성자

누구보다 초보자 네, 그정도면 괜찮다고 생각합니다.
2023.05.31. 11:10 답글쓰기

곰돌2 ${ }^{11}$
안녕하세요, 브레인님. 이 글을 보고 걱정이되어 테스트를 해봤는데 overshoot이 발생하지 않더군요. 그래서 회로를 다시보니 전원 입력 단에 역전압 방지용 다이오드 1 n 4001 을 하나 달아두었는데.. 이놈이 overshoot 발생을 막아준걸까요?
2023.06.11. 09:43 답글쓰기

## 브레인 ㅁ 작성자

그렇지 않습니다.
overshoot 은 다이오드를 직렬로 달아도, 병렬로 달아도 없어지지 않습니다.
직렬로 달면 overshoot + ringing 이 발생하던것이 그냥 overshoot 으로 바뀔 뿐이고 병렬로 달면 아무런 영향도 없습

니다.
경험상,... 측정을 잘 못한 것이 아닐까 싶습니다.
2023.06.11. 10:58 답글쓰기

## (5)

곰돌2 1
브레인 그렇군요, 다이오드 $\mathrm{dl} / \mathrm{dV}$ 가 limit이 있으니까 상기 Rs 역할을 한게 아닐까 추측해봤는데.. 나중에 측정을 다시 해보겠습니다. 감사합니다!
2023.06.11. 11:17 답글쓰기

브레인 ㅁ 작성자
곰돌2 적어도 지금까지는,.... 오버슛 발생하지 않는다고 하던 지인분들 회로를 제가 측정해 보면 다 발생하고 있었습니 다. ^^;
2023.06.11. 11:19 답글쓰기

일반바이오
감사합니다
2023.08.17. 01:29 답글쓰기까강 1
좋은내용 감사합니다~
2023.08.23. 10:44 답글쓰기

## pldworld

댓글을 남겨보세요
(6)

