
Understanding The
Linux Virtual Memory Manager

Mel Gorman

July 9, 2007

Preface

Linux is developed with a stronger practical emphasis than a theoretical one. When
new algorithms or changes to existing implementations are suggested, it is common
to request code to match the argument. Many of the algorithms used in the Virtual
Memory (VM) system were designed by theorists but the implementations have now
diverged from the theory considerably. In part, Linux does follow the traditional
development cycle of design to implementation but it is more common for changes
to be made in reaction to how the system behaved in the �real-world� and intuitive
decisions by developers.

This means that the VM performs well in practice but there is very little VM
speci�c documentation available except for a few incomplete overviews in a small
number of websites, except the web site containing an earlier draft of this book
of course! This has lead to the situation where the VM is fully understood only
by a small number of core developers. New developers looking for information on
how it functions are generally told to read the source and little or no information is
available on the theoretical basis for the implementation. This requires that even a
casual observer invest a large amount of time to read the code and study the �eld
of Memory Management.

This book, gives a detailed tour of the Linux VM as implemented in 2.4.22

and gives a solid introduction of what to expect in 2.6. As well as discussing the
implementation, the theory it is is based on will also be introduced. This is not
intended to be a memory management theory book but it is often much simpler to
understand why the VM is implemented in a particular fashion if the underlying
basis is known in advance.

To complement the description, the appendix includes a detailed code commen-
tary on a signi�cant percentage of the VM. This should drastically reduce the amount
of time a developer or researcher needs to invest in understanding what is happening
inside the Linux VM. As VM implementations tend to follow similar code patterns
even between major versions. This means that with a solid understanding of the 2.4
VM, the later 2.5 development VMs and the �nal 2.6 release will be decipherable in
a number of weeks.

The Intended Audience

Anyone interested in how the VM, a core kernel subsystem, works will �nd answers
to many of their questions in this book. The VM, more than any other subsystem,

i

Preface ii

a�ects the overall performance of the operating system. It is also one of the most
poorly understood and badly documented subsystem in Linux, partially because
there is, quite literally, so much of it. It is very di�cult to isolate and understand
individual parts of the code without �rst having a strong conceptual model of the
whole VM, so this book intends to give a detailed description of what to expect
without before going to the source.

This material should be of prime interest to new developers interested in adapting
the VM to their needs and to readers who simply would like to know how the VM
works. It also will bene�t other subsystem developers who want to get the most from
the VM when they interact with it and operating systems researchers looking for
details on how memory management is implemented in a modern operating system.
For others, who are just curious to learn more about a subsystem that is the focus of
so much discussion, they will �nd an easy to read description of the VM functionality
that covers all the details without the need to plough through source code.

However, it is assumed that the reader has read at least one general operating
system book or one general Linux kernel orientated book and has a general knowl-
edge of C before tackling this book. While every e�ort is made to make the material
approachable, some prior knowledge of general operating systems is assumed.

Book Overview

In chapter 1, we go into detail on how the source code may be managed and deci-
phered. Three tools will be introduced that are used for the analysis, easy browsing
and management of code. The main tools are the Linux Cross Referencing (LXR)
tool which allows source code to be browsed as a web page and CodeViz for gener-
ating call graphs which was developed while researching this book. The last tool,
PatchSet is for managing kernels and the application of patches. Applying patches
manually can be time consuming and the use of version control software such as
CVS (http://www.cvshome.org/) or BitKeeper (http://www.bitmover.com) are not
always an option. With this tool, a simple speci�cation �le determines what source
to use, what patches to apply and what kernel con�guration to use.

In the subsequent chapters, each part of the Linux VM implementation will be
discussed in detail, such as how memory is described in an architecture independent
manner, how processes manage their memory, how the speci�c allocators work and
so on. Each will refer to the papers that describe closest the behaviour of Linux
as well as covering in depth the implementation, the functions used and their call
graphs so the reader will have a clear view of how the code is structured. At the
end of each chapter, there will be a �What's New� section which introduces what to
expect in the 2.6 VM.

The appendices are a code commentary of a signi�cant percentage of the VM. It
gives a line by line description of some of the more complex aspects of the VM. The
style of the VM tends to be reasonably consistent, even between major releases of
the kernel so an in-depth understanding of the 2.4 VM will be an invaluable aid to
understanding the 2.6 kernel when it is released.

Preface iii

What's New in 2.6

At the time of writing, 2.6.0-test4 has just been released so 2.6.0-final is due
�any month now� which means December 2003 or early 2004. Fortunately the 2.6
VM, in most ways, is still quite recognisable in comparison to 2.4. However, there
is some new material and concepts in 2.6 and it would be pity to ignore them so
to address this, hence the �What's New in 2.6� sections. To some extent, these
sections presume you have read the rest of the book so only glance at them during
the �rst reading. If you decide to start reading 2.5 and 2.6 VM code, the basic
description of what to expect from the �Whats New� sections should greatly aid
your understanding. It is important to note that the sections are based on the
2.6.0-test4 kernel which should not change change signi�cantly before 2.6. As
they are still subject to change though, you should still treat the �What's New�
sections as guidelines rather than de�nite facts.

Companion CD

A companion CD is included with this book which is intended to be used on systems
with GNU/Linux installed. Mount the CD on /cdrom as followed;

root@joshua:/$ mount /dev/cdrom /cdrom -o exec

A copy of Apache 1.3.27 (http://www.apache.org/) has been built and con�g-
ured to run but it requires the CD be mounted on /cdrom/. To start it, run the
script /cdrom/start_server. If there are no errors, the output should look like:

mel@joshua:~$ /cdrom/start_server

Starting CodeViz Server: done

Starting Apache Server: done

The URL to access is http://localhost:10080/

If the server starts successfully, point your browser to http://localhost:10080 to
avail of the CDs web services. Some features included with the CD are:

• A web server started is available which is started by /cdrom/start_server.
After starting it, the URL to access is http://localhost:10080. It has been
tested with Red Hat 7.3 and Debian Woody;

• The whole book is included in HTML, PDF and plain text formats from
/cdrom/docs. It includes a searchable index for functions that have a commen-
tary available. If a function is searched for that does not have a commentary,
the browser will be automatically redirected to LXR;

• A web browsable copy of the Linux 2.4.22 source is available courtesy of LXR

Preface iv

• Generate call graphs with an online version of the CodeViz tool.

• The VM Regress, CodeViz and patchset packages which are discussed in
Chapter 1 are available in /cdrom/software. gcc-3.0.4 is also provided as it
is required for building CodeViz.

To shutdown the server, run the script /cdrom/stop_server and the CD may
then be unmounted.

Typographic Conventions

The conventions used in this document are simple. New concepts that are introduced
as well as URLs are in italicised font. Binaries and package names are are in bold.
Structures, �eld names, compile time de�nes and variables are in a constant-width
font. At times when talking about a �eld in a structure, both the structure and �eld
name will be included like page→list for example. Filenames are in a constant-
width font but include �les have angle brackets around them like <linux/mm.h>
and may be found in the include/ directory of the kernel source.

Acknowledgments

The compilation of this book was not a trivial task. This book was researched and
developed in the open and it would be remiss of me not to mention some of the
people who helped me at various intervals. If there is anyone I missed, I apologise
now.

First, I would like to thank John O'Gorman who tragically passed away while
the material for this book was being researched. It was his experience and guidance
that largely inspired the format and quality of this book.

Secondly, I would like to thank Mark L. Taub from Prentice Hall PTR for giving
me the opportunity to publish this book. It has being a rewarding experience and it
made trawling through all the code worthwhile. Massive thanks go to my reviewers
who provided clear and detailed feedback long after I thought I had �nished writing.
Finally, on the publishers front, I would like to thank Bruce Perens for allowing me to
publish under the Bruce Peren's Open Book Series (http://www.perens.com/Books).

With the technical research, a number of people provided invaluable insight.
Abhishek Nayani, was a source of encouragement and enthusiasm early in the re-
search. Ingo Oeser kindly provided invaluable assistance early on with a detailed
explanation on how data is copied from userspace to kernel space including some
valuable historical context. He also kindly o�ered to help me if I felt I ever got
lost in the twisty maze of kernel code. Scott Kaplan made numerous corrections to
a number of systems from non-contiguous memory allocation, to page replacement
policy. Jonathon Corbet provided the most detailed account of the history of the
kernel development with the kernel page he writes for Linux Weekly News. Zack
Brown, the chief behind Kernel Tra�c, is the sole reason I did not drown in kernel

Preface v

related mail. IBM, as part of the Equinox Project, provided an xSeries 350 which
was invaluable for running my own test kernels on machines larger than what I pre-
viously had access to. Finally, Patrick Healy was crucial to ensuring that this book
was consistent and approachable to people who are familiar, but not experts, on
Linux or memory management.

A number of people helped with smaller technical issues and general inconsisten-
cies where material was not covered in su�cient depth. They are Muli Ben-Yehuda,
Parag Sharma, Matthew Dobson, Roger Luethi, Brian Lowe and Scott Crosby. All of
them sent corrections and queries on di�ernet parts of the document which ensured
too much prior knowledge was assumed.

Carl Spalletta sent a number of queries and corrections to every aspect of the
book in its earlier online form. Steve Greenland sent a large number of grammar
corrections. Philipp Marek went above and beyond being helpful sending over 90
separate corrections and queries on various aspects. Long after I thought I was
�nished, Aris Sotiropoulos sent a large number of small corrections and suggestions.
The last person, whose name I cannot remember but is an editor for a magazine
sent me over 140 corrections against an early version to the document. You know
who you are, thanks.

Eleven people sent a few corrections, though small, were still missed by several
of my own checks. They are Marek Januszewski, Amit Shah, Adrian Stanciu, Andy
Isaacson, Jean Francois Martinez, Glen Kaukola, Wolfgang Oertl, Michael Babcock,
Kirk True, Chuck Luciano and David Wilson.

On the development of VM Regress, there were nine people who helped me keep
it together. Danny Faught and Paul Larson both sent me a number of bug reports
and helped ensure it worked with a variety of di�erent kernels. Cli� White, from
the OSDL labs ensured that VM Regress would have a wider application than my
own test box. Dave Olien, also associated with the OSDL labs was responsible
for updating VM Regress to work with 2.5.64 and later kernels. Albert Cahalan
sent all the information I needed to make it function against later proc utilities.
Finally, Andrew Morton, Rik van Riel and Scott Kaplan all provided insight on
what direction the tool should be developed to be both valid and useful.

The last long list are people who sent me encouragement and thanks at various
intervals. They are Martin Bligh, Paul Rolland, Mohamed Ghouse, Samuel Chess-
man, Ersin Er, Mark Hoy, Michael Martin, Martin Gallwey, Ravi Parimi, Daniel
Codt, Adnan Sha�, Xiong Quanren, Dave Airlie, Der Herr Hofrat, Ida Hallgren,
Manu Anand, Eugene Teo, Diego Calleja and Ed Cashin. Thanks, the encourage-
ment was heartening.

In conclusion, I would like to thank a few people without whom, I would not
have completed this. I would like to thank my parents who kept me going long
after I should have been earning enough money to support myself. I would like to
thank my girlfriend Karen, who patiently listened to rants, tech babble, angsting
over the book and made sure I was the person with the best toys. Kudos to friends
who dragged me away from the computer periodically and kept me relatively sane,
including Daren who is cooking me dinner as I write this. Finally, I would like to
thank the thousands of hackers that have contributed to GNU, the Linux kernel

Preface vi

and other Free Software projects over the years who without I would not have an
excellent system to write about. It was an inspiration to me to see such dedication
when I �rst started programming on my own PC 6 years ago after �nally �guring
out that Linux was not an application for Windows used for reading email.

Contents

List of Figures xiii

List of Tables xvi

1 Introduction 1
1.1 Getting Started . 2
1.2 Managing the Source . 4
1.3 Browsing the Code . 10
1.4 Reading the Code . 11
1.5 Submitting Patches . 12

2 Describing Physical Memory 14
2.1 Nodes . 15
2.2 Zones . 17
2.3 Zone Initialisation . 22
2.4 Pages . 23
2.5 High Memory . 26
2.6 What's New In 2.6 . 26

3 Page Table Management 32
3.1 Describing the Page Directory . 33
3.2 Describing a Page Table Entry . 35
3.3 Using Page Table Entries . 36
3.4 Translating and Setting Page Table Entries 38
3.5 Allocating and Freeing Page Tables 38
3.6 Kernel Page Tables . 39
3.7 Mapping addresses to a struct page 41
3.8 Translation Lookaside Bu�er (TLB) 42
3.9 Level 1 CPU Cache Management . 43
3.10 What's New In 2.6 . 45

4 Process Address Space 52
4.1 Linear Address Space . 53
4.2 Managing the Address Space . 54
4.3 Process Address Space Descriptor . 54

vii

CONTENTS viii

4.4 Memory Regions . 60
4.5 Exception Handling . 75
4.6 Page Faulting . 76
4.7 Copying To/From Userspace . 82
4.8 What's New in 2.6 . 84

5 Boot Memory Allocator 89
5.1 Representing the Boot Map . 90
5.2 Initialising the Boot Memory Allocator 92
5.3 Allocating Memory . 93
5.4 Freeing Memory . 94
5.5 Retiring the Boot Memory Allocator 95
5.6 What's New in 2.6 . 97

6 Physical Page Allocation 98
6.1 Managing Free Blocks . 98
6.2 Allocating Pages . 99
6.3 Free Pages . 102
6.4 Get Free Page (GFP) Flags . 103
6.5 Avoiding Fragmentation . 106
6.6 What's New In 2.6 . 106

7 Non-Contiguous Memory Allocation 110
7.1 Describing Virtual Memory Areas . 110
7.2 Allocating A Non-Contiguous Area 111
7.3 Freeing A Non-Contiguous Area . 113
7.4 Whats New in 2.6 . 114

8 Slab Allocator 115
8.1 Caches . 118
8.2 Slabs . 129
8.3 Objects . 135
8.4 Sizes Cache . 137
8.5 Per-CPU Object Cache . 138
8.6 Slab Allocator Initialisation . 141
8.7 Interfacing with the Buddy Allocator 142
8.8 Whats New in 2.6 . 142

9 High Memory Management 144
9.1 Managing the PKMap Address Space 144
9.2 Mapping High Memory Pages . 145
9.3 Mapping High Memory Pages Atomically 147
9.4 Bounce Bu�ers . 148
9.5 Emergency Pools . 150
9.6 What's New in 2.6 . 151

CONTENTS ix

10 Page Frame Reclamation 153
10.1 Page Replacement Policy . 154
10.2 Page Cache . 155
10.3 LRU Lists . 159
10.4 Shrinking all caches . 162
10.5 Swapping Out Process Pages . 163
10.6 Pageout Daemon (kswapd) . 164
10.7 What's New in 2.6 . 165

11 Swap Management 167
11.1 Describing the Swap Area . 168
11.2 Mapping Page Table Entries to Swap Entries 171
11.3 Allocating a swap slot . 172
11.4 Swap Cache . 173
11.5 Reading Pages from Backing Storage 176
11.6 Writing Pages to Backing Storage . 177
11.7 Reading/Writing Swap Area Blocks 178
11.8 Activating a Swap Area . 179
11.9 Deactivating a Swap Area . 180
11.10Whats New in 2.6 . 181

12 Shared Memory Virtual Filesystem 182
12.1 Initialising the Virtual Filesystem . 183
12.2 Using shmem Functions . 184
12.3 Creating Files in tmpfs . 187
12.4 Page Faulting within a Virtual File 188
12.5 File Operations in tmpfs . 190
12.6 Inode Operations in tmpfs . 190
12.7 Setting up Shared Regions . 191
12.8 System V IPC . 192
12.9 What's New in 2.6 . 192

13 Out Of Memory Management 194
13.1 Checking Available Memory . 194
13.2 Determining OOM Status . 195
13.3 Selecting a Process . 196
13.4 Killing the Selected Process . 196
13.5 Is That It? . 196
13.6 What's New in 2.6 . 197

14 The Final Word 198

A Introduction 200

CONTENTS x

B Describing Physical Memory 201
B.1 Initialising Zones . 202
B.2 Page Operations . 216

C Page Table Management 221
C.1 Page Table Initialisation . 222
C.2 Page Table Walking . 230

D Process Address Space 232
D.1 Process Memory Descriptors . 236
D.2 Creating Memory Regions . 243
D.3 Searching Memory Regions . 293
D.4 Locking and Unlocking Memory Regions 299
D.5 Page Faulting . 313
D.6 Page-Related Disk IO . 341

E Boot Memory Allocator 381
E.1 Initialising the Boot Memory Allocator 382
E.2 Allocating Memory . 385
E.3 Freeing Memory . 395
E.4 Retiring the Boot Memory Allocator 397

F Physical Page Allocation 404
F.1 Allocating Pages . 405
F.2 Allocation Helper Functions . 418
F.3 Free Pages . 420
F.4 Free Helper Functions . 425

G Non-Contiguous Memory Allocation 426
G.1 Allocating A Non-Contiguous Area 427
G.2 Freeing A Non-Contiguous Area . 437

H Slab Allocator 442
H.1 Cache Manipulation . 444
H.2 Slabs . 464
H.3 Objects . 472
H.4 Sizes Cache . 487
H.5 Per-CPU Object Cache . 490
H.6 Slab Allocator Initialisation . 498
H.7 Interfacing with the Buddy Allocator 499

I High Memory Mangement 500
I.1 Mapping High Memory Pages . 502
I.2 Mapping High Memory Pages Atomically 508
I.3 Unmapping Pages . 510
I.4 Unmapping High Memory Pages Atomically 512

CONTENTS xi

I.5 Bounce Bu�ers . 513
I.6 Emergency Pools . 521

J Page Frame Reclamation 523
J.1 Page Cache Operations . 525
J.2 LRU List Operations . 535
J.3 Re�lling inactive_list . 540
J.4 Reclaiming Pages from the LRU Lists 542
J.5 Shrinking all caches . 550
J.6 Swapping Out Process Pages . 554
J.7 Page Swap Daemon . 565

K Swap Management 570
K.1 Scanning for Free Entries . 572
K.2 Swap Cache . 577
K.3 Swap Area IO . 584
K.4 Activating a Swap Area . 594
K.5 Deactivating a Swap Area . 606

L Shared Memory Virtual Filesystem 620
L.1 Initialising shmfs . 622
L.2 Creating Files in tmpfs . 628
L.3 File Operations in tmpfs . 632
L.4 Inode Operations in tmpfs . 646
L.5 Page Faulting within a Virtual File 655
L.6 Swap Space Interaction . 667
L.7 Setting up Shared Regions . 674
L.8 System V IPC . 678

M Out of Memory Management 685
M.1 Determining Available Memory . 686
M.2 Detecting and Recovering from OOM 688

Reference 694
Bibliography . 694
Code Commentary Index . 698
Index . 703

Code Commentary Contents

xii

List of Figures

1.1 Example Patch . 7

2.1 Relationship Between Nodes, Zones and Pages 15
2.2 Zone Watermarks . 19
2.3 Call Graph: setup_memory() . 20
2.4 Sleeping On a Locked Page . 21
2.5 Call Graph: free_area_init() . 23

3.1 Page Table Layout . 33
3.2 Linear Address Bit Size Macros . 34
3.3 Linear Address Size and Mask Macros 34
3.4 Call Graph: paging_init() . 40

4.1 Kernel Address Space . 53
4.2 Data Structures related to the Address Space 55
4.3 Memory Region Flags . 63
4.4 Call Graph: sys_mmap2() . 67
4.5 Call Graph: get_unmapped_area() 68
4.6 Call Graph: insert_vm_struct() . 70
4.7 Call Graph: sys_mremap() . 72
4.8 Call Graph: move_vma() . 72
4.9 Call Graph: move_page_tables() . 73
4.10 Call Graph: sys_mlock() . 74
4.11 Call Graph: do_munmap() . 74
4.12 Call Graph: do_page_fault() . 78
4.13 do_page_fault() Flow Diagram . 79
4.14 Call Graph: handle_mm_fault() . 80
4.15 Call Graph: do_no_page() . 80
4.16 Call Graph: do_swap_page() . 81
4.17 Call Graph: do_wp_page() . 82

5.1 Call Graph: alloc_bootmem() . 93
5.2 Call Graph: mem_init() . 95
5.3 Initialising mem_map and the Main Physical Page Allocator 96

6.1 Free page block management . 99

xiii

LIST OF FIGURES xiv

6.2 Allocating physical pages . 101
6.3 Call Graph: alloc_pages() . 101
6.4 Call Graph: __free_pages() . 102

7.1 vmalloc Address Space . 111
7.2 Call Graph: vmalloc() . 112
7.3 Relationship between vmalloc(), alloc_page() and Page Faulting . 113
7.4 Call Graph: vfree() . 114

8.1 Layout of the Slab Allocator . 116
8.2 Slab page containing Objects Aligned to L1 CPU Cache 117
8.3 Call Graph: kmem_cache_create() 126
8.4 Call Graph: kmem_cache_reap() . 127
8.5 Call Graph: kmem_cache_shrink() 128
8.6 Call Graph: __kmem_cache_shrink() 128
8.7 Call Graph: kmem_cache_destroy() 129
8.8 Page to Cache and Slab Relationship 130
8.9 Slab With Descriptor On-Slab . 131
8.10 Slab With Descriptor O�-Slab . 132
8.11 Call Graph: kmem_cache_grow() . 132
8.12 Initialised kmem_bufctl_t Array . 133
8.13 Call Graph: kmem_slab_destroy() 135
8.14 Call Graph: kmem_cache_alloc() . 136
8.15 Call Graph: kmem_cache_free() . 136
8.16 Call Graph: kmalloc() . 138
8.17 Call Graph: kfree() . 138

9.1 Call Graph: kmap() . 146
9.2 Call Graph: kunmap() . 148
9.3 Call Graph: create_bounce() . 149
9.4 Call Graph: bounce_end_io_read/write() 150
9.5 Acquiring Pages from Emergency Pools 151

10.1 Page Cache LRU Lists . 155
10.2 Call Graph: generic_file_read() 158
10.3 Call Graph: add_to_page_cache() 159
10.4 Call Graph: shrink_caches() . 163
10.5 Call Graph: swap_out() . 163
10.6 Call Graph: kswapd() . 165

11.1 Storing Swap Entry Information in swp_entry_t 172
11.2 Call Graph: get_swap_page() . 173
11.3 Call Graph: add_to_swap_cache() 174
11.4 Adding a Page to the Swap Cache . 175
11.5 Call Graph: read_swap_cache_async() 177
11.6 Call Graph: sys_writepage() . 178

LIST OF FIGURES xv

12.1 Call Graph: init_tmpfs() . 183
12.2 Call Graph: shmem_create() . 187
12.3 Call Graph: shmem_nopage() . 188
12.4 Traversing Indirect Blocks in a Virtual File 189
12.5 Call Graph: shmem_zero_setup() . 191
12.6 Call Graph: sys_shmget() . 192

13.1 Call Graph: out_of_memory() . 195

14.1 Broad Overview on how VM Sub-Systems Interact 199

D.1 Call Graph: mmput() . 241

E.1 Call Graph: free_bootmem() . 395

H.1 Call Graph: enable_all_cpucaches() 490

List of Tables

1.1 Kernel size as an indicator of complexity 1

2.1 Flags Describing Page Status . 30
2.2 Macros For Testing, Setting and Clearing page→flags Status Bits . 31

3.1 Page Table Entry Protection and Status Bits 36
3.2 Translation Lookaside Bu�er Flush API 43
3.3 Translation Lookaside Bu�er Flush API (cont) 44
3.4 Cache and TLB Flush Ordering . 45
3.5 CPU Cache Flush API . 46
3.6 CPU D-Cache and I-Cache Flush API 47

4.1 System Calls Related to Memory Regions 56
4.2 Functions related to memory region descriptors 59
4.3 Memory Region VMA API . 69
4.4 Reasons For Page Faulting . 77
4.5 Accessing Process Address Space API 83

5.1 Boot Memory Allocator API for UMA Architectures 90
5.2 Boot Memory Allocator API for NUMA Architectures 91

6.1 Physical Pages Allocation API . 100
6.2 Physical Pages Free API . 102
6.3 Low Level GFP Flags A�ecting Zone Allocation 103
6.4 Low Level GFP Flags A�ecting Allocator behaviour 104
6.5 Low Level GFP Flag Combinations For High Level Use 104
6.6 High Level GFP Flags A�ecting Allocator Behaviour 105
6.7 Process Flags A�ecting Allocator behaviour 106

7.1 Non-Contiguous Memory Allocation API 112
7.2 Non-Contiguous Memory Free API 113

8.1 Slab Allocator API for caches . 118
8.2 Internal cache static �ags . 123
8.3 Cache static �ags set by caller . 123
8.4 Cache static debug �ags . 124
8.5 Cache Allocation Flags . 124

xvi

LIST OF TABLES xvii

8.6 Cache Constructor Flags . 125

9.1 High Memory Mapping API . 147
9.2 High Memory Unmapping API . 147

10.1 Page Cache API . 157
10.2 LRU List API . 160

11.1 Swap Cache API . 176

Chapter 1

Introduction

Linux is a relatively new operating system that has begun to enjoy a lot of attention
from the business, academic and free software worlds. As the operating system
matures, its feature set, capabilities and performance grow but so, out of necessity
does its size and complexity. The table in Figure 1.1 shows the size of the kernel
source code in bytes and lines of code of the mm/ part of the kernel tree. This does
not include the machine dependent code or any of the bu�er management code and
does not even pretend to be an accurate metric for complexity but still serves as a
small indicator.

Version Release Date Total Size Size of mm/ Line count
1.0 March 13th, 1992 5.9MiB 96KiB 3109
1.2.13 February 8th, 1995 11MiB 136KiB 4531
2.0.39 January 9th 2001 35MiB 204KiB 6792
2.2.22 September 16th, 2002 93MiB 292KiB 9554
2.4.22 August 25th, 2003 181MiB 436KiB 15724
2.6.0-test4 August 22nd, 2003 261MiB 604KiB 21714

Table 1.1: Kernel size as an indicator of complexity

As is the habit of open source developers in general, new developers ask-
ing questions are sometimes told to refer directly to the source with the �po-
lite� acronym RTFS1 or else are referred to the kernel newbies mailing list
(http://www.kernelnewbies.org). With the Linux Virtual Memory (VM) manager,
this used to be a suitable response as the time required to understand the VM could
be measured in weeks and the books available devoted enough time to the memory
management chapters to make the relatively small amount of code easy to navigate.

The books that describe the operating system such as Understanding the Linux
Kernel [BC00] [BC03], tend to cover the entire kernel rather than one topic with the
notable exception of device drivers [RC01]. These books, particularly Understanding

1Read The Flaming Source. It doesn't really stand for Flaming but there could be children
watching.

1

1.1 Getting Started 2

the Linux Kernel, provide invaluable insight into kernel internals but they miss the
details which are speci�c to the VM and not of general interest. For example, it
is detailed in this book why ZONE_NORMAL is exactly 896MiB and exactly how per-
cpu caches are implemented. Other aspects of the VM, such as the boot memory
allocator and the virtual memory �lesystem which are not of general kernel interest
are also covered by this book.

Increasingly, to get a comprehensive view on how the kernel functions, one is
required to read through the source code line by line. This book tackles the VM
speci�cally so that this investment of time to understand it will be measured in
weeks and not months. The details which are missed by the main part of the book
will be caught by the code commentary.

In this chapter, there will be in informal introduction to the basics of acquiring
information on an open source project and some methods for managing, browsing
and comprehending the code. If you do not intend to be reading the actual source,
you may skip to Chapter 2.

1.1 Getting Started

One of the largest initial obstacles to understanding code is deciding where to start
and how to easily manage, browse and get an overview of the overall code structure.
If requested on mailing lists, people will provide some suggestions on how to proceed
but a comprehensive methodology is rarely o�ered aside from suggestions to keep
reading the source until it makes sense. In the following sections, some useful rules
of thumb for open source code comprehension will be introduced and speci�cally on
how they may be applied to the kernel.

1.1.1 Con�guration and Building

With any open source project, the �rst step is to download the source and read
the installation documentation. By convention, the source will have a README or
INSTALL �le at the top-level of the source tree [FF02]. In fact, some automated
build tools such as automake require the install �le to exist. These �les will contain
instructions for con�guring and installing the package or will give a reference to
where more information may be found. Linux is no exception as it includes a README
which describes how the kernel may be con�gured and built.

The second step is to build the software. In earlier days, the requirement for
many projects was to edit the Makefile by hand but this is rarely the case now.
Free software usually uses at least autoconf2 to automate testing of the build
environment and automake3 to simplify the creation of Makefiles so building is
often as simple as:

mel@joshua: project $./configure && make

2http://www.gnu.org/software/autoconf/
3http://www.gnu.org/software/automake/

1.1.2 Sources of Information 3

Some older projects, such as the Linux kernel, use their own con�guration tools
and some large projects such as the Apache webserver have numerous con�guration
options but usually the con�gure script is the starting point. In the case of the
kernel, the con�guration is handled by the Makefiles and supporting tools. The
simplest means of con�guration is to:

mel@joshua: linux-2.4.22 $ make config

This asks a long series of questions on what type of kernel should be built. Once
all the questions have been answered, compiling the kernel is simply:

mel@joshua: linux-2.4.22 $ make bzImage && make modules

A comprehensive guide on con�guring and compiling a kernel is available with
the Kernel HOWTO4 and will not be covered in detail with this book. For now, we
will presume you have one fully built kernel and it is time to begin �guring out how
the new kernel actually works.

1.1.2 Sources of Information

Open Source projects will usually have a home page, especially since free project
hosting sites such as http://www.sourceforge.net are available. The home site will
contain links to available documentation and instructions on how to join the mailing
list, if one is available. Some sort of documentation will always exist, even if it is
as minimal as a simple README �le, so read whatever is available. If the project
is old and reasonably large, the web site will probably feature a Frequently Asked
Questions (FAQ).

Next, join the development mailing list and lurk, which means to subscribe to a
mailing list and read it without posting. Mailing lists are the preferred form of devel-
oper communication followed by, to a lesser extent, Internet Relay Chat (IRC) and
online newgroups, commonly referred to as UseNet . As mailing lists often contain
discussions on implementation details, it is important to read at least the previous
months archives to get a feel for the developer community and current activity. The
mailing list archives should be the �rst place to search if you have a question or
query on the implementation that is not covered by available documentation. If you
have a question to ask the developers, take time to research the questions and ask
it the �Right Way� [RM01]. While there are people who will answer �obvious� ques-
tions, it will not do your credibility any favours to be constantly asking questions
that were answered a week previously or are clearly documented.

Now, how does all this apply to Linux? First, the documentation. There is a
README at the top of the source tree and a wealth of information is available in the
Documentation/ directory. There also is a number of books on UNIX design [Vah96],
Linux speci�cally [BC00] and of course this book to explain what to expect in the
code.

4http://www.tldp.org/HOWTO/Kernel-HOWTO/index.html

1.2 Managing the Source 4

ne of the best online sources of information available on kernel development is
the �Kernel Page� in the weekly edition of Linux Weekly News (http://www.lwn.net).
It also reports on a wide range of Linux related topics and is worth a regular read.
The kernel does not have a home web site as such but the closest equivalent is
http://www.kernelnewbies.org which is a vast source of information on the kernel
that is invaluable to new and experienced people alike.

here is a FAQ available for the Linux Kernel Mailing List (LKML) at http://www.tux.org/lkml/
that covers questions, ranging from the kernel development process to how to join
the list itself. The list is archived at many sites but a common choice to reference
is http://marc.theaimsgroup.com/?l=linux-kernel. Be aware that the mailing list is
very high volume list which can be a very daunting read but a weekly summary is
provided by the Kernel Tra�c site at http://kt.zork.net/kernel-tra�c/.

The sites and sources mentioned so far contain general kernel information but
there are memory management speci�c sources. There is a Linux-MM web site
at http://www.linux-mm.org which contains links to memory management speci�c
documentation and a linux-mm mailing list. The list is relatively light in comparison
to the main list and is archived at http://mail.nl.linux.org/linux-mm/.

The last site that to consult is the Kernel Trap site at http://www.kerneltrap.org.
The site contains many useful articles on kernels in general. It is not speci�c to
Linux but it does contain many Linux related articles and interviews with kernel
developers.

As is clear, there is a vast amount of information that is available that may be
consulted before resorting to the code. With enough experience, it will eventually
be faster to consult the source directly but when getting started, check other sources
of information �rst.

1.2 Managing the Source

The mainline or stock kernel is principally distributed as a compressed tape archive
(.tar.bz) �le which is available from your nearest kernel source repository, in Ireland's
case ftp://ftp.ie.kernel.org/. The stock kernel is always considered to be the one
released by the tree maintainer. For example, at time of writing, the stock kernels
for 2.2.x are those released by Alan Cox5, for 2.4.x by Marcelo Tosatti and for 2.5.x by
Linus Torvalds. At each release, the full tar �le is available as well as a smaller patch
which contains the di�erences between the two releases. Patching is the preferred
method of upgrading because of bandwidth considerations. Contributions made to
the kernel are almost always in the form of patches which are uni�ed di�s generated
by the GNU tool di� .

Why patches Sending patches to the mailing list initially sounds clumsy but it is
remarkable e�cient in the kernel development environment. The principal advantage
of patches is that it is much easier to read what changes have been made than to

5Last minute update, Alan is just after announcing he was going on sabbatical and will no
longer maintain the 2.2.x tree. There is no maintainer at the moment.

1.2 Managing the Source 5

compare two full versions of a �le side by side. A developer familiar with the code
can easily see what impact the changes will have and if it should be merged. In
addition, it is very easy to quote the email that includes the patch and request more
information about it.

Subtrees At various intervals, individual in�uential developers may have their
own version of the kernel distributed as a large patch to the main tree. These
subtrees generally contain features or cleanups which have not been merged to the
mainstream yet or are still being tested. Two notable subtrees is the -rmap tree
maintained by Rik Van Riel, a long time in�uential VM developer and the -mm tree
maintained by Andrew Morton, the current maintainer of the stock development
VM. The -rmap tree contains a large set of features that for various reasons are not
available in the mainline. It is heavily in�uenced by the FreeBSD VM and has a
number of signi�cant di�erences to the stock VM. The -mm tree is quite di�erent to
-rmap in that it is a testing tree with patches that are being tested before merging
into the stock kernel.

BitKeeper In more recent times, some developers have started using a source code
control system called BitKeeper (http://www.bitmover.com), a proprietary version
control system that was designed with the Linux as the principal consideration.
BitKeeper allows developers to have their own distributed version of the tree and
other users may �pull� sets of patches called changesets from each others trees. This
distributed nature is a very important distinction from traditional version control
software which depends on a central server.

BitKeeper allows comments to be associated with each patch which is displayed
as part of the release information for each kernel. For Linux, this means that the
email that originally submitted the patch is preserved making the progress of kernel
development and the meaning of di�erent patches a lot more transparent. On release,
a list of the patch titles from each developer is announced as well as a detailed list
of all patches included.

As BitKeeper is a proprietary product, email and patches are still considered the
only method for generating discussion on code changes. In fact, some patches will
not be considered for acceptance unless there is �rst some discussion on the main
mailing list as code quality is considered to be directly related to the amount of peer
review [Ray02]. As the BitKeeper maintained source tree is exported in formats
accessible to open source tools like CVS, patches are still the preferred means of
discussion. It means that no developer is required to use BitKeeper for making
contributions to the kernel but the tool is still something that developers should be
aware of.

1.2.1 Di� and Patch 6

1.2.1 Di� and Patch

The two tools for creating and applying patches are di� and patch, both of which
are GNU utilities available from the GNU website6. di� is used to generate patches
and patch is used to apply them. While the tools have numerous options, there is
a �preferred usage�.

Patches generated with di� should always be uni�ed di�, include the C function
that the change a�ects and be generated from one directory above the kernel source
root. A uni�ed di� include more information that just the di�erences between two
lines. It begins with a two line header with the names and creation date of the two
�les that di� is comparing. After that, the �di�� will consist of one or more �hunks�.
The beginning of each hunk is marked with a line beginning with @@ which includes
the starting line in the source code and how many lines there is before and after
the hunk is applied. The hunk includes �context� lines which show lines above and
below the changes to aid a human reader. Each line begins with a +, - or blank. If
the mark is +, the line is added. If a -, the line is removed and a blank is to leave
the line alone as it is there just to provide context. The reasoning behind generating
from one directory above the kernel root is that it is easy to see quickly what version
the patch has been applied against and it makes the scripting of applying patches
easier if each patch is generated the same way.

Let us take for example, a very simple change has been made to mm/page_alloc.c
which adds a small piece of commentary. The patch is generated as follows. Note
that this command should be all one one line minus the backslashes.

mel@joshua: kernels/ $ diff -up \

linux-2.4.22-clean/mm/page_alloc.c \

linux-2.4.22-mel/mm/page_alloc.c > example.patch

This generates a uni�ed context di� (-u switch) between two �les and places the
patch in example.patch as shown in Figure 1.2.1. It also displays the name of the
a�ected C function.

From this patch, it is clear even at a casual glance what �les are a�ected
(page_alloc.c), what line it starts at (76) and the new lines added are clearly
marked with a + . In a patch, there may be several �hunks� which are marked
with a line starting with @@ . Each hunk will be treated separately during patch
application.

Broadly speaking, patches come in two varieties; plain text such as the one above
which are sent to the mailing list and compressed patches that are compressed
with either gzip (.gz extension) or bzip2 (.bz2 extension). It is usually safe to
assume that patches were generated one directory above the root of the kernel source
tree. This means that while the patch is generated one directory above, it may be
applied with the option -p1 while the current directory is the kernel source tree root.

6http://www.gnu.org

1.2.1 Di� and Patch 7

--- linux-2.4.22-clean/mm/page_alloc.c Thu Sep 4 03:53:15 2003

+++ linux-2.4.22-mel/mm/page_alloc.c Thu Sep 3 03:54:07 2003

@@ -76,8 +76,23 @@

* triggers coalescing into a block of larger size.

*

* -- wli

+ *

+ * There is a brief explanation of how a buddy algorithm works at

+ * http://www.memorymanagement.org/articles/alloc.html . A better idea

+ * is to read the explanation from a book like UNIX Internals by

+ * Uresh Vahalia

+ *

*/

+/**

+ *

+ * __free_pages_ok - Returns pages to the buddy allocator

+ * @page: The first page of the block to be freed

+ * @order: 2^order number of pages are freed

+ *

+ * This function returns the pages allocated by __alloc_pages and tries to

+ * merge buddies if possible. Do not call directly, use free_pages()

+ **/

static void FASTCALL(__free_pages_ok (struct page *page, unsigned int order));

static void __free_pages_ok (struct page *page, unsigned int order)

{

Figure 1.1: Example Patch

Broadly speaking, this means a plain text patch to a clean tree can be easily
applied as follows:

mel@joshua: kernels/ $ cd linux-2.4.22-clean/

mel@joshua: linux-2.4.22-clean/ $ patch -p1 < ../example.patch

patching file mm/page_alloc.c

mel@joshua: linux-2.4.22-clean/ $

To apply a compressed patch, it is a simple extension to just decompress the
patch to standard out (stdout) �rst.

mel@joshua: linux-2.4.22-mel/ $ gzip -dc ../example.patch.gz | patch -p1

If a hunk can be applied but the line numbers are di�erent, the hunk number
and the number of lines needed to o�set will be output. These are generally safe
warnings and may be ignored. If there are slight di�erences in the context, it will be

1.2.2 Basic Source Management with PatchSet 8

applied and the level of �fuzziness� will be printed which should be double checked.
If a hunk fails to apply, it will be saved to filename.c.rej and the original �le will
be saved to filename.c.orig and have to be applied manually.

1.2.2 Basic Source Management with PatchSet

The untarring of sources, management of patches and building of kernels is ini-
tially interesting but quickly palls. To cut down on the tedium of patch man-
agement, a simple tool was developed while writing this book called PatchSet
which is designed the easily manage the kernel source and patches eliminating
a large amount of the tedium. It is fully documented and freely available from
http://www.csn.ul.ie/∼mel/projects/patchset/ and on the companion CD.

Downloading Downloading kernels and patches in itself is quite tedious and
scripts are provided to make the task simpler. First, the con�guration �le
etc/patchset.conf should be edited and the KERNEL_MIRROR parameter updated
for your local http://www.kernel.org/ mirror. Once that is done, use the script
download to download patches and kernel sources. A simple use of the script is as
follows

mel@joshua: patchset/ $ download 2.4.18

Will download the 2.4.18 kernel source

mel@joshua: patchset/ $ download -p 2.4.19

Will download a patch for 2.4.19

mel@joshua: patchset/ $ download -p -b 2.4.20

Will download a bzip2 patch for 2.4.20

Once the relevant sources or patches have been downloaded, it is time to con�gure
a kernel build.

Con�guring Builds Files called set con�guration �les are used to specify what
kernel source tar to use, what patches to apply, what kernel con�guration (generated
by make con�g) to use and what the resulting kernel is to be called. A sample
speci�cation �le to build kernel 2.4.20-rmap15f is;

linux-2.4.18.tar.gz

2.4.20-rmap15f

config_generic

1 patch-2.4.19.gz

1 patch-2.4.20.bz2

1 2.4.20-rmap15f

1.2.2 Basic Source Management with PatchSet 9

This �rst line says to unpack a source tree starting with linux-2.4.18.tar.gz.
The second line speci�es that the kernel will be called 2.4.20-rmap15f. 2.4.20

was selected for this example as rmap patches against a later stable release were
not available at the time of writing. To check for updated rmap patches, see
http://surriel.com/patches/. The third line speci�es which kernel .config �le to
use for compiling the kernel. Each line after that has two parts. The �rst part says
what patch depth to use i.e. what number to use with the -p switch to patch. As
discussed earlier in Section 1.2.1, this is usually 1 for applying patches while in the
source directory. The second is the name of the patch stored in the patches direc-
tory. The above example will apply two patches to update the kernel from 2.4.18

to 2.4.20 before building the 2.4.20-rmap15f kernel tree.
If the kernel con�guration �le required is very simple, then use the createset

script to generate a set �le for you. It simply takes a kernel version as a parameter
and guesses how to build it based on available sources and patches.

mel@joshua: patchset/ $ createset 2.4.20

Building a Kernel The package comes with three scripts. The �rst script,
called make-kernel.sh, will unpack the kernel to the kernels/ directory and
build it if requested. If the target distribution is Debian, it can also create De-
bian packages for easy installation by specifying the -d switch. The second, called
make-gengraph.sh, will unpack the kernel but instead of building an installable
kernel, it will generate the �les required to use CodeViz, discussed in the next
section, for creating call graphs. The last, called make-lxr.sh, will install a kernel
for use with LXR.

Generating Di�s Ultimately, you will need to see the di�erence between �les in
two trees or generate a �di�� of changes you have made yourself. Three small scripts
are provided to make this task easier. The �rst is setclean which sets the source
tree to compare from. The second is setworking to set the path of the kernel tree
you are comparing against or working on. The third is di�tree which will generate
di�s against �les or directories in the two trees. To generate the di� shown in Figure
1.2.1, the following would have worked;

mel@joshua: patchset/ $ setclean linux-2.4.22-clean

mel@joshua: patchset/ $ setworking linux-2.4.22-mel

mel@joshua: patchset/ $ difftree mm/page_alloc.c

The generated di� is a uni�ed di� with the C function context included and
complies with the recommended usage of di� . Two additional scripts are available
which are very useful when tracking changes between two trees. They are di�struct
and di�func. These are for printing out the di�erences between individual struc-
tures and functions. When used �rst, the -f switch must be used to record what
source �le the structure or function is declared in but it is only needed the �rst time.

1.3 Browsing the Code 10

1.3 Browsing the Code

When code is small and manageable, it is not particularly di�cult to browse through
the code as operations are clustered together in the same �le and there is not much
coupling between modules. The kernel unfortunately does not always exhibit this
behaviour. Functions of interest may be spread across multiple �les or contained as
inline functions in headers. To complicate matters, �les of interest may be buried
beneath architecture speci�c directories making tracking them down time consum-
ing.

One solution for easy code browsing is ctags(http://ctags.sourceforge.net/)
which generates tag �les from a set of source �les. These tags can be used to
jump to the C �le and line where the identi�er is declared with editors such as
Vi and Emacs. In the event there is multiple instances of the same tag, such as
with multiple functions with the same name, the correct one may be selected from
a list. This method works best when one is editing the code as it allows very fast
navigation through the code to be con�ned to one terminal window.

A more friendly browsing method is available with the Linux Cross-Referencing
(LXR) tool hosted at http://lxr.linux.no/. This tool provides the ability to represent
source code as browsable web pages. Identi�ers such as global variables, macros
and functions become hyperlinks. When clicked, the location where it is de�ned is
displayed along with every �le and line referencing the de�nition. This makes code
navigation very convenient and is almost essential when reading the code for the
�rst time.

The tool is very simple to install and and browsable version of the kernel 2.4.22
source is available on the CD included with this book. All code extracts throughout
the book are based on the output of LXR so that the line numbers would be clearly
visible in excerpts.

1.3.1 Analysing Code Flow

As separate modules share code across multiple C �les, it can be di�cult to see
what functions are a�ected by a given code path without tracing through all the
code manually. For a large or deep code path, this can be extremely time consuming
to answer what should be a simple question.

One simple, but e�ective tool to use is CodeViz which is a call graph gen-
erator and is included with the CD. It uses a modi�ed compiler for either C or
C++ to collect information necessary to generate the graph. The tool is hosted at
http://www.csn.ul.ie/∼mel/projects/codeviz/.

During compilation with the modi�ed compiler, �les with a .cdep extension are
generated for each C �le. This .cdep �le contains all function declarations and
calls made in the C �le. These �les are distilled with a program called genfull to
generate a full call graph of the entire source code which can be rendered with dot,
part of the GraphViz project hosted at http://www.graphviz.org/.

In the kernel compiled for the computer this book was written on, there were a
total of 40,165 entries in the full.graph �le generated by genfull. This call graph

1.3.2 Simple Graph Generation 11

is essentially useless on its own because of its size so a second tool is provided called
gengraph. This program, at basic usage, takes the name of one or more functions
as an argument and generates postscript �le with the call graph of the requested
function as the root node. The postscript �le may be viewed with ghostview or
gv.

The generated graphs can be to unnecessary depth or show functions that the
user is not interested in, therefore there are three limiting options to graph genera-
tion. The �rst is limit by depth where functions that are greater than N levels deep
in a call chain are ignored. The second is to totally ignore a function so it will not
appear on the call graph or any of the functions they call. The last is to display
a function, but not traverse it which is convenient when the function is covered on
a separate call graph or is a known API whose implementation is not currently of
interest.

All call graphs shown in these documents are generated with the CodeViz tool
as it is often much easier to understand a subsystem at �rst glance when a call graph
is available. It has been tested with a number of other open source projects based
on C and has wider application than just the kernel.

1.3.2 Simple Graph Generation

If both PatchSet and CodeViz are installed, the �rst call graph in this book shown
in Figure 3.4 can be generated and viewed with the following set of commands. For
brevity, the output of the commands is omitted:

mel@joshua: patchset $ download 2.4.22

mel@joshua: patchset $ createset 2.4.22

mel@joshua: patchset $ make-gengraph.sh 2.4.22

mel@joshua: patchset $ cd kernels/linux-2.4.22

mel@joshua: linux-2.4.22 $ gengraph -t -s "alloc_bootmem_low_pages \

zone_sizes_init" -f paging_init

mel@joshua: linux-2.4.22 $ gv paging_init.ps

1.4 Reading the Code

When a new developer or researcher asks how to start reading the code, they are
often recommended to start with the initialisation code and work from there. This
may not be the best approach for everyone as initialisation is quite architecture
dependent and requires detailed hardware knowledge to decipher it. It also gives
very little information on how a subsystem like the VM works as it is during the late
stages of initialisation that memory is set up in the way the running system sees it.

The best starting point to understanding the VM is this book and the code
commentary. It describes a VM that is reasonably comprehensive without being
overly complicated. Later VMs are more complex but are essentially extensions of
the one described here.

1.5 Submitting Patches 12

For when the code has to be approached afresh with a later VM, it is always best
to start in an isolated region that has the minimum number of dependencies. In the
case of the VM, the best starting point is the Out Of Memory (OOM) manager in
mm/oom_kill.c. It is a very gentle introduction to one corner of the VM where a
process is selected to be killed in the event that memory in the system is low. It
is because it touches so many di�erent aspects of the VM that is covered last in
this book! The second subsystem to then examine is the non-contiguous memory
allocator located in mm/vmalloc.c and discussed in Chapter 7 as it is reasonably
contained within one �le. The third system should be physical page allocator located
in mm/page_alloc.c and discussed in Chapter 6 for similar reasons. The fourth
system of interest is the creation of VMAs and memory areas for processes discussed
in Chapter 4. Between these systems, they have the bulk of the code patterns that
are prevalent throughout the rest of the kernel code making the deciphering of more
complex systems such as the page replacement policy or the bu�er IO much easier
to comprehend.

The second recommendation that is given by experienced developers is to bench-
mark and test the VM. There are many benchmark programs available but com-
monly used ones areConTest(http://members.optusnet.com.au/ckolivas/contest/),
SPEC(http://www.specbench.org/), lmbench(http://www.bitmover.com/lmbench/
and dbench(http://freshmeat.net/projects/dbench/). For many purposes, these
benchmarks will �t the requirements.

Unfortunately it is di�cult to test just the VM accurately and benchmarking
it is frequently based on timing a task such as a kernel compile. A tool called
VM Regress is available at http://www.csn.ul.ie/∼mel/vmregress/ that lays the
foundation required to build a fully �edged testing, regression and benchmarking
tool for the VM. It uses a combination of kernel modules and userspace tools to
test small parts of the VM in a reproducible manner and has one benchmark for
testing the page replacement policy using a large reference string. It is intended
as a framework for the development of a testing utility and has a number of Perl
libraries and helper kernel modules to do much of the work but is still in the early
stages of development so use with care.

1.5 Submitting Patches

There are two �les, SubmittingPatches and CodingStyle, in the Documentation/
directory which cover the important basics. However, there is very little documenta-
tion describing how to get patches merged. This section will give a brief introduction
on how, broadly speaking, patches are managed.

First and foremost, the coding style of the kernel needs to be adhered to as
having a style inconsistent with the main kernel will be a barrier to getting merged
regardless of the technical merit. Once a patch has been developed, the �rst problem
is to decide where to send it. Kernel development has a de�nite, if non-apparent,
hierarchy of who handles patches and how to get them submitted. As an example,
we'll take the case of 2.5.x development.

1.5 Submitting Patches 13

The �rst check to make is if the patch is very small or trivial. If it is, post it
to the main kernel mailing list. If there is no bad reaction, it can be fed to what
is called the Trivial Patch Monkey7. The trivial patch monkey is exactly what it
sounds like, it takes small patches and feeds them en-masse to the correct people.
This is best suited for documentation, commentary or one-liner patches.

Patches are managed through what could be loosely called a set of rings with
Linus in the very middle having the �nal say on what gets accepted into the main
tree. Linus, with rare exceptions, accepts patches only from who he refers to as his
�lieutenants�, a group of around 10 people who he trusts to �feed� him correct code.
An example lieutenant is Andrew Morton, the VM maintainer at time of writing.
Any change to the VM has to be accepted by Andrew before it will get to Linus.
These people are generally maintainers of a particular system but sometimes will
�feed� him patches from another subsystem if they feel it is important enough.

Each of the lieutenants are active developers on di�erent subsystems. Just like
Linus, they have a small set of developers they trust to be knowledgeable about the
patch they are sending but will also pick up patches which a�ect their subsystem
more readily. Depending on the subsystem, the list of people they trust will be
heavily in�uenced by the list of maintainers in the MAINTAINERS �le. The second
major area of in�uence will be from the subsystem speci�c mailing list if there is
one. The VM does not have a list of maintainers but it does have a mailing list8.

The maintainers and lieutenants are crucial to the acceptance of patches. Linus,
broadly speaking, does not appear to wish to be convinced with argument alone on
the merit for a signi�cant patch but prefers to hear it from one of his lieutenants,
which is understandable considering the volume of patches that exists.

In summary, a new patch should be emailed to the subsystem mailing list cc'd
to the main list to generate discussion. If there is no reaction, it should be sent to
the maintainer for that area of code if there is one and to the lieutenant if there is
not. Once it has been picked up by a maintainer or lieutenant, chances are it will
be merged. The important key is that patches and ideas must be released early and
often so developers have a chance to look at it while it is still manageable. There
are notable cases where massive patches merging with the main tree because there
were long periods of silence with little or no discussion. A recent example of this
is the Linux Kernel Crash Dump project which still has not been merged into the
main stream because there has not enough favorable feedback from lieutenants or
strong support from vendors.

7http://www.kernel.org/pub/linux/kernel/people/rusty/trivial/
8http://www.linux-mm.org/mailinglists.shtml

Chapter 2

Describing Physical Memory

Linux is available for a wide range of architectures so there needs to be an
architecture-independent way of describing memory. This chapter describes the
structures used to keep account of memory banks, pages and the �ags that a�ect
VM behaviour.

The �rst principal concept prevalent in the VM is Non-Uniform Memory Access
(NUMA). With large scale machines, memory may be arranged into banks that
incur a di�erent cost to access depending on the �distance� from the processor. For
example, there might be a bank of memory assigned to each CPU or a bank of
memory very suitable for DMA near device cards.

Each bank is called a node and the concept is represented under Linux by a
struct pglist_data even if the architecture is UMA. This struct is always refer-
enced to by it's typedef pg_data_t. Every node in the system is kept on a NULL
terminated list called pgdat_list and each node is linked to the next with the �eld
pg_data_t→node_next. For UMA architectures like PC desktops, only one static
pg_data_t structure called contig_page_data is used. Nodes will be discussed
further in Section 2.1.

Each node is divided up into a number of blocks called zones which represent
ranges within memory. Zones should not be confused with zone based allocators as
they are unrelated. A zone is described by a struct zone_struct, typede�ed to
zone_t and each one is of type ZONE_DMA, ZONE_NORMAL or ZONE_HIGHMEM. Each zone
type suitable a di�erent type of usage. ZONE_DMA is memory in the lower physical
memory ranges which certain ISA devices require. Memory within ZONE_NORMAL

is directly mapped by the kernel into the upper region of the linear address space
which is discussed further in Section 4.1. ZONE_HIGHMEM is the remaining available
memory in the system and is not directly mapped by the kernel.

With the x86 the zones are:
ZONE_DMA First 16MiB of memory
ZONE_NORMAL 16MiB - 896MiB
ZONE_HIGHMEM 896 MiB - End

It is important to note that many kernel operations can only take place using
ZONE_NORMAL so it is the most performance critical zone. Zones are discussed further
in Section 2.2. Each physical page frame is represented by a struct page and all the

14

2.1 Nodes 15

structs are kept in a global mem_map array which is usually stored at the beginning
of ZONE_NORMAL or just after the area reserved for the loaded kernel image in low
memory machines. struct pages are discussed in detail in Section 2.4 and the
global mem_map array is discussed in detail in Section 3.7. The basic relationship
between all these structs is illustrated in Figure 2.1.

Figure 2.1: Relationship Between Nodes, Zones and Pages

As the amount of memory directly accessible by the kernel (ZONE_NORMAL) is
limited in size, Linux supports the concept of High Memory which is discussed
further in Section 2.5. This chapter will discuss how nodes, zones and pages are
represented before introducing high memory management.

2.1 Nodes

As we have mentioned, each node in memory is described by a pg_data_t which is a
typedef for a struct pglist_data. When allocating a page, Linux uses a node-local
allocation policy to allocate memory from the node closest to the running CPU. As
processes tend to run on the same CPU, it is likely the memory from the current
node will be used. The struct is declared as follows in <linux/mmzone.h>:

2.1 Nodes 16

129 typedef struct pglist_data {

130 zone_t node_zones[MAX_NR_ZONES];

131 zonelist_t node_zonelists[GFP_ZONEMASK+1];

132 int nr_zones;

133 struct page *node_mem_map;

134 unsigned long *valid_addr_bitmap;

135 struct bootmem_data *bdata;

136 unsigned long node_start_paddr;

137 unsigned long node_start_mapnr;

138 unsigned long node_size;

139 int node_id;

140 struct pglist_data *node_next;

141 } pg_data_t;

We now brie�y describe each of these �elds:

node_zones The zones for this node, ZONE_HIGHMEM, ZONE_NORMAL, ZONE_DMA;

node_zonelists This is the order of zones that allocations are preferred from.
build_zonelists() in mm/page_alloc.c sets up the order when called by
free_area_init_core(). A failed allocation in ZONE_HIGHMEM may fall back
to ZONE_NORMAL or back to ZONE_DMA;

nr_zones Number of zones in this node, between 1 and 3. Not all nodes will
have three. A CPU bank may not have ZONE_DMA for example;

node_mem_map This is the �rst page of the struct page array representing
each physical frame in the node. It will be placed somewhere within the global
mem_map array;

valid_addr_bitmap A bitmap which describes �holes� in the memory node that
no memory exists for. In reality, this is only used by the Sparc and Sparc64
architectures and ignored by all others;

bdata This is only of interest to the boot memory allocator discussed in Chapter 5;

node_start_paddr The starting physical address of the node. An unsigned
long does not work optimally as it breaks for ia32 with Physical Address
Extension (PAE) for example. PAE is discussed further in Section 2.5. A
more suitable solution would be to record this as a Page Frame Number
(PFN). A PFN is simply in index within physical memory that is counted
in page-sized units. PFN for a physical address could be trivially de�ned as
(page_phys_addr >> PAGE_SHIFT);

node_start_mapnr This gives the page o�set within the global mem_map. It
is calculated in free_area_init_core() by calculating the number of pages
between mem_map and the local mem_map for this node called lmem_map;

2.2 Zones 17

node_size The total number of pages in this zone;

node_id The Node ID (NID) of the node, starts at 0;

node_next Pointer to next node in a NULL terminated list.

All nodes in the system are maintained on a list called pgdat_list. The nodes
are placed on this list as they are initialised by the init_bootmem_core() function,
described later in Section 5.2.1. Up until late 2.4 kernels (> 2.4.18), blocks of code
that traversed the list looked something like:

pg_data_t * pgdat;

pgdat = pgdat_list;

do {

/* do something with pgdata_t */

...

} while ((pgdat = pgdat->node_next));

In more recent kernels, a macro for_each_pgdat(), which is trivially de�ned as
a for loop, is provided to improve code readability.

2.2 Zones

Zones are described by a struct zone_struct and is usually referred to by it's
typedef zone_t. It keeps track of information like page usage statistics, free area
information and locks. It is declared as follows in <linux/mmzone.h>:

37 typedef struct zone_struct {

41 spinlock_t lock;

42 unsigned long free_pages;

43 unsigned long pages_min, pages_low, pages_high;

44 int need_balance;

45

49 free_area_t free_area[MAX_ORDER];

50

76 wait_queue_head_t * wait_table;

77 unsigned long wait_table_size;

78 unsigned long wait_table_shift;

79

83 struct pglist_data *zone_pgdat;

84 struct page *zone_mem_map;

85 unsigned long zone_start_paddr;

86 unsigned long zone_start_mapnr;

87

91 char *name;

92 unsigned long size;

93 } zone_t;

2.2.1 Zone Watermarks 18

This is a brief explanation of each �eld in the struct.

lock Spinlock to protect the zone from concurrent accesses;

free_pages Total number of free pages in the zone;

pages_min, pages_low, pages_high These are zone watermarks which are
described in the next section;

need_balance This �ag that tells the pageout kswapd to balance the zone. A
zone is said to need balance when the number of available pages reaches one
of the zone watermarks. Watermarks is discussed in the next section;

free_area Free area bitmaps used by the buddy allocator;

wait_table A hash table of wait queues of processes waiting on a page to be
freed. This is of importance to wait_on_page() and unlock_page(). While
processes could all wait on one queue, this would cause all waiting processes
to race for pages still locked when woken up. A large group of processes
contending for a shared resource like this is sometimes called a thundering
herd. Wait tables are discussed further in Section 2.2.3;

wait_table_size Number of queues in the hash table which is a power of 2;

wait_table_shift De�ned as the number of bits in a long minus the binary
logarithm of the table size above;

zone_pgdat Points to the parent pg_data_t;

zone_mem_map The �rst page in the global mem_map this zone refers to;

zone_start_paddr Same principle as node_start_paddr;

zone_start_mapnr Same principle as node_start_mapnr;

name The string name of the zone, �DMA�, �Normal� or �HighMem�

size The size of the zone in pages.

2.2.1 Zone Watermarks

When available memory in the system is low, the pageout daemon kswapd is woken
up to start freeing pages (see Chapter 10). If the pressure is high, the process will
free up memory synchronously, sometimes referred to as the direct-reclaim path. The
parameters a�ecting pageout behaviour are similar to those by FreeBSD [McK96]
and Solaris [MM01].

Each zone has three watermarks called pages_low, pages_min and pages_high

which help track how much pressure a zone is under. The relationship between them
is illustrated in Figure 2.2. The number of pages for pages_min is calculated in the

2.2.1 Zone Watermarks 19

function free_area_init_core() during memory init and is based on a ratio to
the size of the zone in pages. It is calculated initially as ZoneSizeInPages/128. The
lowest value it will be is 20 pages (80K on a x86) and the highest possible value is
255 pages (1MiB on a x86).

Figure 2.2: Zone Watermarks

pages_low When pages_low number of free pages is reached, kswapd is woken
up by the buddy allocator to start freeing pages. This is equivalent to when
lotsfree is reached in Solaris and freemin in FreeBSD. The value is twice
the value of pages_min by default;

pages_min When pages_min is reached, the allocator will do the kswapd work
in a synchronous fashion, sometimes referred to as the direct-reclaim path.
There is no real equivalent in Solaris but the closest is the desfree or minfree
which determine how often the pageout scanner is woken up;

pages_high Once kswapd has been woken to start freeing pages it will not
consider the zone to be �balanced� when pages_high pages are free. Once

2.2.2 Calculating The Size of Zones 20

the watermark has been reached, kswapd will go back to sleep. In Solaris,
this is called lotsfree and in BSD, it is called free_target. The default for
pages_high is three times the value of pages_min.

Whatever the pageout parameters are called in each operating system, the mean-
ing is the same, it helps determine how hard the pageout daemon or processes work
to free up pages.

2.2.2 Calculating The Size of Zones

Figure 2.3: Call Graph: setup_memory()

The PFN is an o�set, counted in pages, within the physical memory map. The
�rst PFN usable by the system, min_low_pfn is located at the beginning of the �rst
page after _end which is the end of the loaded kernel image. The value is stored as
a �le scope variable in mm/bootmem.c for use with the boot memory allocator.

How the last page frame in the system, max_pfn, is calculated is quite archi-
tecture speci�c. In the x86 case, the function find_max_pfn() reads through the
whole e820 map for the highest page frame. The value is also stored as a �le scope
variable in mm/bootmem.c. The e820 is a table provided by the BIOS describing
what physical memory is available, reserved or non-existent.

The value of max_low_pfn is calculated on the x86 with find_max_low_pfn()

and it marks the end of ZONE_NORMAL. This is the physical memory directly ac-
cessible by the kernel and is related to the kernel/userspace split in the linear
address space marked by PAGE_OFFSET. The value, with the others, is stored in
mm/bootmem.c. Note that in low memory machines, the max_pfn will be the same
as the max_low_pfn.

2.2.3 Zone Wait Queue Table 21

With the three variables min_low_pfn, max_low_pfn and max_pfn, it is straight-
forward to calculate the start and end of high memory and place them as �le scope
variables in arch/i386/mm/init.c as highstart_pfn and highend_pfn. The val-
ues are used later to initialise the high memory pages for the physical page allocator
as we will much later in Section 5.5.

2.2.3 Zone Wait Queue Table

When IO is being performed on a page, such are during page-in or page-out, it
is locked to prevent accessing it with inconsistent data. Processes wishing to use
it have to join a wait queue before it can be accessed by calling wait_on_page().
When the IO is completed, the page will be unlocked with UnlockPage() and any
process waiting on the queue will be woken up. Each page could have a wait queue
but it would be very expensive in terms of memory to have so many separate queues
so instead, the wait queue is stored in the zone_t.

It is possible to have just one wait queue in the zone but that would mean that all
processes waiting on any page in a zone would be woken up when one was unlocked.
This would cause a serious thundering herd problem. Instead, a hash table of wait
queues is stored in zone_t→wait_table. In the event of a hash collision, processes
may still be woken unnecessarily but collisions are not expected to occur frequently.

Figure 2.4: Sleeping On a Locked Page

The table is allocated during free_area_init_core(). The size of the table
is calculated by wait_table_size() and stored in the zone_t→wait_table_size.
The maximum size it will be is 4096 wait queues. For smaller tables, the size of the
table is the minimum power of 2 required to store NoPages / PAGES_PER_WAITQUEUE

number of queues, where NoPages is the number of pages in the zone and
PAGE_PER_WAITQUEUE is de�ned to be 256. In other words, the size of the table
is calculated as the integer component of the following equation:

2.3 Zone Initialisation 22

wait_table_size = log2(
NoPages ∗ 2

PAGE_PER_WAITQUEUE
− 1)

The �eld zone_t→wait_table_shift is calculated as the number of bits a page
address must be shifted right to return an index within the table. The function
page_waitqueue() is responsible for returning which wait queue to use for a page
in a zone. It uses a simple multiplicative hashing algorithm based on the virtual
address of the struct page being hashed.

It works by simply multiplying the address by GOLDEN_RATIO_PRIME and shifting
the result zone_t→wait_table_shift bits right to index the result within the hash
table. GOLDEN_RATIO_PRIME[Lev00] is the largest prime that is closest to the golden
ratio[Knu68] of the largest integer that may be represented by the architecture.

2.3 Zone Initialisation

The zones are initialised after the kernel page tables have been fully setup by
paging_init(). Page table initialisation is covered in Section 3.6. Predictably,
each architecture performs this task di�erently but the objective is always the same,
to determine what parameters to send to either free_area_init() for UMA archi-
tectures or free_area_init_node() for NUMA. The only parameter required for
UMA is zones_size. The full list of parameters:

nid is the Node ID which is the logical identi�er of the node whose zones are being
initialised;

pgdat is the node's pg_data_t that is being initialised. In UMA, this will simply
be contig_page_data;

pmap is set later by free_area_init_core() to point to the beginning of the
local lmem_map array allocated for the node. In NUMA, this is ignored as
NUMA treats mem_map as a virtual array starting at PAGE_OFFSET. In UMA,
this pointer is the global mem_map variable which is now mem_map gets initialised
in UMA.

zones_sizes is an array containing the size of each zone in pages;

zone_start_paddr is the starting physical address for the �rst zone;

zone_holes is an array containing the total size of memory holes in the zones;

It is the core function free_area_init_core() which is responsible for �lling in
each zone_t with the relevant information and the allocation of the mem_map array
for the node. Note that information on what pages are free for the zones is not
determined at this point. That information is not known until the boot memory
allocator is being retired which will be discussed much later in Chapter 5.

2.3.1 Initialising mem_map 23

2.3.1 Initialising mem_map

The mem_map area is created during system startup in one of two fashions. On NUMA
systems, the global mem_map is treated as a virtual array starting at PAGE_OFFSET.
free_area_init_node() is called for each active node in the system which allo-
cates the portion of this array for the node being initialised. On UMA systems,
free_area_init() is uses contig_page_data as the node and the global mem_map
as the �local� mem_map for this node. The callgraph for both functions is shown in
Figure 2.5.

Figure 2.5: Call Graph: free_area_init()

The core function free_area_init_core() allocates a local lmem_map for the
node being initialised. The memory for the array is allocated from the boot memory
allocator with alloc_bootmem_node() (see Chapter 5). With UMA architectures,
this newly allocated memory becomes the global mem_map but it is slightly di�erent
for NUMA.

NUMA architectures allocate the memory for lmem_map within their own mem-
ory node. The global mem_map never gets explicitly allocated but instead is set to
PAGE_OFFSET where it is treated as a virtual array. The address of the local map
is stored in pg_data_t→node_mem_map which exists somewhere within the virtual
mem_map. For each zone that exists in the node, the address within the virtual
mem_map for the zone is stored in zone_t→zone_mem_map. All the rest of the code
then treats mem_map as a real array as only valid regions within it will be used by
nodes.

2.4 Pages

Every physical page frame in the system has an associated struct page which is
used to keep track of its status. In the 2.2 kernel [BC00], this structure resembled

2.4 Pages 24

it's equivalent in System V [GC94] but like the other UNIX variants, the structure
changed considerably. It is declared as follows in <linux/mm.h>:

152 typedef struct page {

153 struct list_head list;

154 struct address_space *mapping;

155 unsigned long index;

156 struct page *next_hash;

158 atomic_t count;

159 unsigned long flags;

161 struct list_head lru;

163 struct page **pprev_hash;

164 struct buffer_head * buffers;

175

176 #if defined(CONFIG_HIGHMEM) || defined(WANT_PAGE_VIRTUAL)

177 void *virtual;

179 #endif /* CONFIG_HIGMEM || WANT_PAGE_VIRTUAL */

180 } mem_map_t;

Here is a brief description of each of the �elds:

list Pages may belong to many lists and this �eld is used as the list head. For exam-
ple, pages in a mapping will be in one of three circular linked links kept by the
address_space. These are clean_pages, dirty_pages and locked_pages.
In the slab allocator, this �eld is used to store pointers to the slab and cache
the page belongs to. It is also used to link blocks of free pages together;

mapping When �les or devices are memory mapped, their inode has an associated
address_space. This �eld will point to this address space if the page belongs
to the �le. If the page is anonymous and mapping is set, the address_space
is swapper_space which manages the swap address space;

index This �eld has two uses and it depends on the state of the page what it means.
If the page is part of a �le mapping, it is the o�set within the �le. If the page is
part of the swap cache this will be the o�set within the address_space for the
swap address space (swapper_space). Secondly, if a block of pages is being
freed for a particular process, the order (power of two number of pages being
freed) of the block being freed is stored in index. This is set in the function
__free_pages_ok();

next_hash Pages that are part of a �le mapping are hashed on the inode and
o�set. This �eld links pages together that share the same hash bucket;

count The reference count to the page. If it drops to 0, it may be freed. Any
greater and it is in use by one or more processes or is in use by the kernel like
when waiting for IO;

2.4.1 Mapping Pages to Zones 25

�ags These are �ags which describe the status of the page. All of them are de-
clared in <linux/mm.h> and are listed in Table 2.1. There are a number of
macros de�ned for testing, clearing and setting the bits which are all listed in
Table 2.2. The only really interesting one is SetPageUptodate() which calls
an architecture speci�c function arch_set_page_uptodate() if it is de�ned
before setting the bit;

lru For the page replacement policy, pages that may be swapped out will exist
on either the active_list or the inactive_list declared in page_alloc.c.
This is the list head for these LRU lists. These two lists are discussed in detail
in Chapter 10;

pprev_hash This complement to next_hash so that the hash can work as a
doubly linked list;

bu�ers If a page has bu�ers for a block device associated with it, this �eld is used
to keep track of the buffer_head. An anonymous page mapped by a process
may also have an associated buffer_head if it is backed by a swap �le. This
is necessary as the page has to be synced with backing storage in block sized
chunks de�ned by the underlying �lesystem;

virtual Normally only pages from ZONE_NORMAL are directly mapped by the kernel.
To address pages in ZONE_HIGHMEM, kmap() is used to map the page for the
kernel which is described further in Chapter 9. There are only a �xed number
of pages that may be mapped. When it is mapped, this is its virtual address;

The type mem_map_t is a typedef for struct page so it can be easily referred to
within the mem_map array.

2.4.1 Mapping Pages to Zones

Up until as recently as kernel 2.4.18, a struct page stored a reference to its zone
with page→zone which was later considered wasteful, as even such a small pointer
consumes a lot of memory when thousands of struct pages exist. In more recent
kernels, the zone �eld has been removed and instead the top ZONE_SHIFT (8 in the
x86) bits of the page→flags are used to determine the zone a page belongs to.
First a zone_table of zones is set up. It is declared in mm/page_alloc.c as:

33 zone_t *zone_table[MAX_NR_ZONES*MAX_NR_NODES];

34 EXPORT_SYMBOL(zone_table);

MAX_NR_ZONES is the maximum number of zones that can be in a node, i.e.
3. MAX_NR_NODES is the maximum number of nodes that may exist. The function
EXPORT_SYMBOL() makes zone_table accessible to loadable modules. This table
is treated like a multi-dimensional array. During free_area_init_core(), all the
pages in a node are initialised. First it sets the value for the table

2.5 High Memory 26

733 zone_table[nid * MAX_NR_ZONES + j] = zone;

Where nid is the node ID, j is the zone index and zone is the zone_t struct. For
each page, the function set_page_zone() is called as

788 set_page_zone(page, nid * MAX_NR_ZONES + j);

The parameter, page, is the page whose zone is being set. So, clearly the index
in the zone_table is stored in the page.

2.5 High Memory

As the addresses space usable by the kernel (ZONE_NORMAL) is limited in size, the
kernel has support for the concept of High Memory. Two thresholds of high memory
exist on 32-bit x86 systems, one at 4GiB and a second at 64GiB. The 4GiB limit is
related to the amount of memory that may be addressed by a 32-bit physical address.
To access memory between the range of 1GiB and 4GiB, the kernel temporarily maps
pages from high memory into ZONE_NORMAL with kmap(). This is discussed further
in Chapter 9.

The second limit at 64GiB is related to Physical Address Extension (PAE) which
is an Intel invention to allow more RAM to be used with 32 bit systems. It makes 4
extra bits available for the addressing of memory, allowing up to 236 bytes (64GiB)
of memory to be addressed.

PAE allows a processor to address up to 64GiB in theory but, in practice, pro-
cesses in Linux still cannot access that much RAM as the virtual address space is
still only 4GiB. This has led to some disappointment from users who have tried to
malloc() all their RAM with one process.

Secondly, PAE does not allow the kernel itself to have this much RAM available.
The struct page used to describe each page frame still requires 44 bytes and this
uses kernel virtual address space in ZONE_NORMAL. That means that to describe 1GiB
of memory, approximately 11MiB of kernel memory is required. Thus, with 16GiB,
176MiB of memory is consumed, putting signi�cant pressure on ZONE_NORMAL. This
does not sound too bad until other structures are taken into account which use
ZONE_NORMAL. Even very small structures such as Page Table Entries (PTEs) require
about 16MiB in the worst case. This makes 16GiB about the practical limit for
available physical memory Linux on an x86. If more memory needs to be accessed,
the advice given is simple and straightforward, buy a 64 bit machine.

2.6 What's New In 2.6

Nodes At �rst glance, there has not been many changes made to how memory is
described but the seemingly minor changes are wide reaching. The node descriptor
pg_data_t has a few new �elds which are as follows:

2.6 What's New In 2.6 27

node_start_pfn replaces the node_start_paddr �eld. The only di�erence is
that the new �eld is a PFN instead of a physical address. This was changed
as PAE architectures can address more memory than 32 bits can address so
nodes starting over 4GiB would be unreachable with the old �eld;

kswapd_wait is a new wait queue for kswapd. In 2.4, there was a global wait
queue for the page swapper daemon. In 2.6, there is one kswapdN for each
node where N is the node identi�er and each kswapd has its own wait queue
with this �eld.

The node_size �eld has been removed and replaced instead with two �elds. The
change was introduced to recognise the fact that nodes may have �holes� in them
where there is no physical memory backing the address.

node_present_pages is the total number of physical pages that are present in
the node.

node_spanned_pages is the total area that is addressed by the node, including
any holes that may exist.

Zones Even at �rst glance, zones look very di�erent. They are no longer called
zone_t but instead referred to as simply struct zone. The second major di�erence
is the LRU lists. As we'll see in Chapter 10, kernel 2.4 has a global list of pages
that determine the order pages are freed or paged out. These lists are now stored
in the struct zone. The relevant �elds are:

lru_lock is the spinlock for the LRU lists in this zone. In 2.4, this is a global
lock called pagemap_lru_lock;

active_list is the active list for this zone. This list is the same as described in
Chapter 10 except it is now per-zone instead of global;

inactive_list is the inactive list for this zone. In 2.4, it is global;

re�ll_counter is the number of pages to remove from the active_list in one
pass. Only of interest during page replacement;

nr_active is the number of pages on the active_list;

nr_inactive is the number of pages on the inactive_list;

all_unreclaimable is set to 1 if the pageout daemon scans through all the pages
in the zone twice and still fails to free enough pages;

pages_scanned is the number of pages scanned since the last bulk amount of
pages has been reclaimed. In 2.6, lists of pages are freed at once rather than
freeing pages individually which is what 2.4 does;

2.6 What's New In 2.6 28

pressure measures the scanning intensity for this zone. It is a decaying average
which a�ects how hard a page scanner will work to reclaim pages.

Three other �elds are new but they are related to the dimensions of the zone.
They are:

zone_start_pfn is the starting PFN of the zone. It replaces the zone_start_paddr
and zone_start_mapnr �elds in 2.4;

spanned_pages is the number of pages this zone spans, including holes in mem-
ory which exist with some architectures;

present_pages is the number of real pages that exist in the zone. For many
architectures, this will be the same value as spanned_pages.

The next addition is struct per_cpu_pageset which is used to maintain lists
of pages for each CPU to reduce spinlock contention. The zone→pageset �eld is
a NR_CPU sized array of struct per_cpu_pageset where NR_CPU is the compiled
upper limit of number of CPUs in the system. The per-cpu struct is discussed
further at the end of the section.

The last addition to struct zone is the inclusion of padding of zeros in the
struct. Development of the 2.6 VM recognised that some spinlocks are very heavily
contended and are frequently acquired. As it is known that some locks are almost
always acquired in pairs, an e�ort should be made to ensure they use di�erent
cache lines which is a common cache programming trick [Sea00]. These padding
in the struct zone are marked with the ZONE_PADDING() macro and are used to
ensure the zone→lock, zone→lru_lock and zone→pageset �elds use di�erent
cache lines.

Pages The �rst noticeable change is that the ordering of �elds has been changed
so that related items are likely to be in the same cache line. The �elds are essentially
the same except for two additions. The �rst is a new union used to create a PTE
chain. PTE chains are are related to page table management so will be discussed
at the end of Chapter 3. The second addition is of page→private �eld which
contains private information speci�c to the mapping. For example, the �eld is used
to store a pointer to a buffer_head if the page is a bu�er page. This means that
the page→buffers �eld has also been removed. The last important change is that
page→virtual is no longer necessary for high memory support and will only exist
if the architecture speci�cally requests it. How high memory pages are supported is
discussed further in Chapter 9.

Per-CPU Page Lists In 2.4, only one subsystem actively tries to maintain per-
cpu lists for any object and that is the Slab Allocator, discussed in Chapter 8. In
2.6, the concept is much more wide-spread and there is a formalised concept of hot
and cold pages.

2.6 What's New In 2.6 29

The struct per_cpu_pageset, declared in <linux/mmzone.h> has one one
�eld which is an array with two elements of type per_cpu_pages. The zeroth
element of this array is for hot pages and the �rst element is for cold pages where
hot and cold determines how �active� the page is currently in the cache. When it
is known for a fact that the pages are not to be referenced soon, such as with IO
readahead, they will be allocated as cold pages.

The struct per_cpu_pages maintains a count of the number of pages currently
in the list, a high and low watermark which determine when the set should be
re�lled or pages freed in bulk, a variable which determines how many pages should
be allocated in one block and �nally, the actual list head of pages.

To build upon the per-cpu page lists, there is also a per-cpu page accounting
mechanism. There is a struct page_state that holds a number of accounting vari-
ables such as the pgalloc �eld which tracks the number of pages allocated to this
CPU and pswpin which tracks the number of swap readins. The struct is heavily
commented in <linux/page-flags.h>. A single function mod_page_state() is
provided for updating �elds in the page_state for the running CPU and three
helper macros are provided called inc_page_state(), dec_page_state() and
sub_page_state().

2.6 What's New In 2.6 30

Bit name Description
PG_active This bit is set if a page is on the active_list LRU

and cleared when it is removed. It marks a page as
being hot

PG_arch_1 Quoting directly from the code: PG_arch_1 is an archi-
tecture speci�c page state bit. The generic code guar-
antees that this bit is cleared for a page when it �rst is
entered into the page cache. This allows an architec-
ture to defer the �ushing of the D-Cache (See Section
3.9) until the page is mapped by a process

PG_checked Only used by the Ext2 �lesystem
PG_dirty This indicates if a page needs to be �ushed to disk.

When a page is written to that is backed by disk, it is
not �ushed immediately, this bit is needed to ensure a
dirty page is not freed before it is written out

PG_error If an error occurs during disk I/O, this bit is set
PG_fs_1 Bit reserved for a �lesystem to use for it's own pur-

poses. Currently, only NFS uses it to indicate if a page
is in sync with the remote server or not

PG_highmem Pages in high memory cannot be mapped permanently
by the kernel. Pages that are in high memory are
�agged with this bit during mem_init()

PG_launder This bit is important only to the page replacement
policy. When the VM wants to swap out a page, it
will set this bit and call the writepage() function.
When scanning, if it encounters a page with this bit
and PG_locked set, it will wait for the I/O to complete

PG_locked This bit is set when the page must be locked in mem-
ory for disk I/O. When I/O starts, this bit is set and
released when it completes

PG_lru If a page is on either the active_list or the
inactive_list, this bit will be set

PG_referenced If a page is mapped and it is referenced through the
mapping, index hash table, this bit is set. It is used
during page replacement for moving the page around
the LRU lists

PG_reserved This is set for pages that can never be swapped out.
It is set by the boot memory allocator (See Chapter 5)
for pages allocated during system startup. Later it is
used to �ag empty pages or ones that do not even exist

PG_slab This will �ag a page as being used by the slab allocator
PG_skip Used by some architectures to skip over parts of the

address space with no backing physical memory
PG_unused This bit is literally unused
PG_uptodate When a page is read from disk without error, this bit

will be set.

Table 2.1: Flags Describing Page Status

2.6 What's New In 2.6 31

Bit name Set Test Clear
PG_active SetPageActive() PageActive() ClearPageActive()

PG_arch_1 n/a n/a n/a
PG_checked SetPageChecked() PageChecked() n/a
PG_dirty SetPageDirty() PageDirty() ClearPageDirty()

PG_error SetPageError() PageError() ClearPageError()

PG_highmem n/a PageHighMem() n/a
PG_launder SetPageLaunder() PageLaunder() ClearPageLaunder()

PG_locked LockPage() PageLocked() UnlockPage()

PG_lru TestSetPageLRU() PageLRU() TestClearPageLRU()

PG_referenced SetPageReferenced() PageReferenced() ClearPageReferenced()

PG_reserved SetPageReserved() PageReserved() ClearPageReserved()

PG_skip n/a n/a n/a
PG_slab PageSetSlab() PageSlab() PageClearSlab()

PG_unused n/a n/a n/a
PG_uptodate SetPageUptodate() PageUptodate() ClearPageUptodate()

Table 2.2: Macros For Testing, Setting and Clearing page→flags Status Bits

Chapter 3

Page Table Management

Linux layers the machine independent/dependent layer in an unusual manner in
comparison to other operating systems [CP99]. Other operating systems have ob-
jects which manage the underlying physical pages such as the pmap object in BSD.
Linux instead maintains the concept of a three-level page table in the architecture
independent code even if the underlying architecture does not support it. While
this is conceptually easy to understand, it also means that the distinction between
di�erent types of pages is very blurry and page types are identi�ed by their �ags or
what lists they exist on rather than the objects they belong to.

Architectures that manage their Memory Management Unit (MMU) di�erently
are expected to emulate the three-level page tables. For example, on the x86 without
PAE enabled, only two page table levels are available. The Page Middle Directory
(PMD) is de�ned to be of size 1 and �folds back� directly onto the Page Global
Directory (PGD) which is optimised out at compile time. Unfortunately, for ar-
chitectures that do not manage their cache or Translation Lookaside Bu�er (TLB)
automatically, hooks for machine dependent have to be explicitly left in the code for
when the TLB and CPU caches need to be altered and �ushed even if they are null
operations on some architectures like the x86. These hooks are discussed further in
Section 3.8.

This chapter will begin by describing how the page table is arranged and what
types are used to describe the three separate levels of the page table followed by
how a virtual address is broken up into its component parts for navigating the table.
Once covered, it will be discussed how the lowest level entry, the Page Table Entry
(PTE) and what bits are used by the hardware. After that, the macros used for
navigating a page table, setting and checking attributes will be discussed before
talking about how the page table is populated and how pages are allocated and
freed for the use with page tables. The initialisation stage is then discussed which
shows how the page tables are initialised during boot strapping. Finally, we will
cover how the TLB and CPU caches are utilised.

32

3.1 Describing the Page Directory 33

3.1 Describing the Page Directory

Each process a pointer (mm_struct→pgd) to its own Page Global Directory (PGD)
which is a physical page frame. This frame contains an array of type pgd_t which is
an architecture speci�c type de�ned in <asm/page.h>. The page tables are loaded
di�erently depending on the architecture. On the x86, the process page table is
loaded by copying mm_struct→pgd into the cr3 register which has the side e�ect
of �ushing the TLB. In fact this is how the function __flush_tlb() is implemented
in the architecture dependent code.

Each active entry in the PGD table points to a page frame containing an array
of Page Middle Directory (PMD) entries of type pmd_t which in turn points to page
frames containing Page Table Entries (PTE) of type pte_t, which �nally points
to page frames containing the actual user data. In the event the page has been
swapped out to backing storage, the swap entry is stored in the PTE and used by
do_swap_page() during page fault to �nd the swap entry containing the page data.
The page table layout is illustrated in Figure 3.1.

Figure 3.1: Page Table Layout

Any given linear address may be broken up into parts to yield o�sets within
these three page table levels and an o�set within the actual page. To help break
up the linear address into its component parts, a number of macros are provided in
triplets for each page table level, namely a SHIFT, a SIZE and a MASK macro. The
SHIFT macros speci�es the length in bits that are mapped by each level of the page

3.1 Describing the Page Directory 34

tables as illustrated in Figure 3.2.

Figure 3.2: Linear Address Bit Size Macros

The MASK values can be ANDd with a linear address to mask out all the upper
bits and is frequently used to determine if a linear address is aligned to a given level
within the page table. The SIZE macros reveal how many bytes are addressed by
each entry at each level. The relationship between the SIZE and MASK macros is
illustrated in Figure 3.3.

Figure 3.3: Linear Address Size and Mask Macros

For the calculation of each of the triplets, only SHIFT is important as the other
two are calculated based on it. For example, the three macros for page level on the
x86 are:

5 #define PAGE_SHIFT 12

6 #define PAGE_SIZE (1UL << PAGE_SHIFT)

7 #define PAGE_MASK (~(PAGE_SIZE-1))

PAGE_SHIFT is the length in bits of the o�set part of the linear address space
which is 12 bits on the x86. The size of a page is easily calculated as 2PAGE_SHIFT

which is the equivalent of the code above. Finally the mask is calculated as the
negation of the bits which make up the PAGE_SIZE - 1. If a page needs to be aligned
on a page boundary, PAGE_ALIGN() is used. This macro adds PAGE_SIZE - 1 to

3.2 Describing a Page Table Entry 35

the address before simply ANDing it with the PAGE_MASK to zero out the page o�set
bits.

PMD_SHIFT is the number of bits in the linear address which are mapped by the
second level part of the table. The PMD_SIZE and PMD_MASK are calculated in a
similar way to the page level macros.

PGDIR_SHIFT is the number of bits which are mapped by the top, or �rst level,
of the page table. The PGDIR_SIZE and PGDIR_MASK are calculated in the same
manner as above.

The last three macros of importance are the PTRS_PER_x which determine the
number of entries in each level of the page table. PTRS_PER_PGD is the number of
pointers in the PGD, 1024 on an x86 without PAE. PTRS_PER_PMD is for the PMD,
1 on the x86 without PAE and PTRS_PER_PTE is for the lowest level, 1024 on the
x86.

3.2 Describing a Page Table Entry

As mentioned, each entry is described by the structs pte_t, pmd_t and pgd_t for
PTEs, PMDs and PGDs respectively. Even though these are often just unsigned
integers, they are de�ned as structs for two reasons. The �rst is for type protection
so that they will not be used inappropriately. The second is for features like PAE
on the x86 where an additional 4 bits is used for addressing more than 4GiB of
memory. To store the protection bits, pgprot_t is de�ned which holds the relevant
�ags and is usually stored in the lower bits of a page table entry.

For type casting, 4 macros are provided in asm/page.h, which takes the above
types and returns the relevant part of the structs. They are pte_val(), pmd_val(),
pgd_val() and pgprot_val(). To reverse the type casting, 4 more macros are
provided __pte(), __pmd(), __pgd() and __pgprot().

Where exactly the protection bits are stored is architecture dependent. For
illustration purposes, we will examine the case of an x86 architecture without PAE
enabled but the same principles apply across architectures. On an x86 with no PAE,
the pte_t is simply a 32 bit integer within a struct. Each pte_t points to an address
of a page frame and all the addresses pointed to are guaranteed to be page aligned.
Therefore, there are PAGE_SHIFT (12) bits in that 32 bit value that are free for status
bits of the page table entry. A number of the protection and status bits are listed
in Table 3.1 but what bits exist and what they mean varies between architectures.

These bits are self-explanatory except for the _PAGE_PROTNONE which we will
discuss further. On the x86 with Pentium III and higher, this bit is called the Page
Attribute Table (PAT) while earlier architectures such as the Pentium II had this bit
reserved. The PAT bit is used to indicate the size of the page the PTE is referencing.
In a PGD entry, this same bit is instead called the Page Size Exception (PSE) bit
so obviously these bits are meant to be used in conjunction.

As Linux does not use the PSE bit for user pages, the PAT bit is free in the
PTE for other purposes. There is a requirement for having a page resident in
memory but inaccessible to the userspace process such as when a region is protected

3.3 Using Page Table Entries 36

Bit Function
_PAGE_PRESENT Page is resident in memory and not swapped out
_PAGE_PROTNONE Page is resident but not accessable
_PAGE_RW Set if the page may be written to
_PAGE_USER Set if the page is accessible from user space
_PAGE_DIRTY Set if the page is written to
_PAGE_ACCESSED Set if the page is accessed

Table 3.1: Page Table Entry Protection and Status Bits

with mprotect() with the PROT_NONE �ag. When the region is to be protected,
the _PAGE_PRESENT bit is cleared and the _PAGE_PROTNONE bit is set. The macro
pte_present() checks if either of these bits are set and so the kernel itself knows
the PTE is present, just inaccessible to userspace which is a subtle, but important
point. As the hardware bit _PAGE_PRESENT is clear, a page fault will occur if the
page is accessed so Linux can enforce the protection while still knowing the page is
resident if it needs to swap it out or the process exits.

3.3 Using Page Table Entries

Macros are de�ned in <asm/pgtable.h> which are important for the navigation
and examination of page table entries. To navigate the page directories, three
macros are provided which break up a linear address space into its component parts.
pgd_offset() takes an address and the mm_struct for the process and returns the
PGD entry that covers the requested address. pmd_offset() takes a PGD entry
and an address and returns the relevant PMD. pte_offset() takes a PMD and
returns the relevant PTE. The remainder of the linear address provided is the o�set
within the page. The relationship between these �elds is illustrated in Figure 3.1.

The second round of macros determine if the page table entries are present or
may be used.

• pte_none(), pmd_none() and pgd_none() return 1 if the corresponding entry
does not exist;

• pte_present(), pmd_present() and pgd_present() return 1 if the corre-
sponding page table entries have the PRESENT bit set;

• pte_clear(), pmd_clear() and pgd_clear() will clear the corresponding
page table entry;

• pmd_bad() and pgd_bad() are used to check entries when passed as input
parameters to functions that may change the value of the entries. Whether it
returns 1 varies between the few architectures that de�ne these macros but for
those that actually de�ne it, making sure the page entry is marked as present
and accessed are the two most important checks.

3.3 Using Page Table Entries 37

There are many parts of the VM which are littered with page table walk code
and it is important to recognise it. A very simple example of a page table walk is
the function follow_page() in mm/memory.c. The following is an excerpt from that
function, the parts unrelated to the page table walk are omitted:

407 pgd_t *pgd;

408 pmd_t *pmd;

409 pte_t *ptep, pte;

410

411 pgd = pgd_offset(mm, address);

412 if (pgd_none(*pgd) || pgd_bad(*pgd))

413 goto out;

414

415 pmd = pmd_offset(pgd, address);

416 if (pmd_none(*pmd) || pmd_bad(*pmd))

417 goto out;

418

419 ptep = pte_offset(pmd, address);

420 if (!ptep)

421 goto out;

422

423 pte = *ptep;

It simply uses the three o�set macros to navigate the page tables and the _none()
and _bad() macros to make sure it is looking at a valid page table.

The third set of macros examine and set the permissions of an entry. The
permissions determine what a userspace process can and cannot do with a particular
page. For example, the kernel page table entries are never readable by a userspace
process.

• The read permissions for an entry are tested with pte_read(), set with
pte_mkread() and cleared with pte_rdprotect();

• The write permissions are tested with pte_write(), set with pte_mkwrite()

and cleared with pte_wrprotect();

• The execute permissions are tested with pte_exec(), set with pte_mkexec()

and cleared with pte_exprotect(). It is worth nothing that with the x86
architecture, there is no means of setting execute permissions on pages so
these three macros act the same way as the read macros;

• The permissions can be modi�ed to a new value with pte_modify() but its use
is almost non-existent. It is only used in the function change_pte_range()

in mm/mprotect.c.

3.4 Translating and Setting Page Table Entries 38

The fourth set of macros examine and set the state of an entry. There are only
two bits that are important in Linux, the dirty bit and the accessed bit. To check
these bits, the macros pte_dirty() and pte_young() macros are used. To set the
bits, the macros pte_mkdirty() and pte_mkyoung() are used. To clear them, the
macros pte_mkclean() and pte_old() are available.

3.4 Translating and Setting Page Table Entries

This set of functions and macros deal with the mapping of addresses and pages to
PTEs and the setting of the individual entries.

The macro mk_pte() takes a struct page and protection bits and combines
them together to form the pte_t that needs to be inserted into the page table.
A similar macro mk_pte_phys() exists which takes a physical page address as a
parameter.

The macro pte_page() returns the struct page which corresponds to the PTE
entry. pmd_page() returns the struct page containing the set of PTEs.

The macro set_pte() takes a pte_t such as that returned by mk_pte() and
places it within the processes page tables. pte_clear() is the reverse operation. An
additional function is provided called ptep_get_and_clear() which clears an entry
from the process page table and returns the pte_t. This is important when some
modi�cation needs to be made to either the PTE protection or the struct page

itself.

3.5 Allocating and Freeing Page Tables

The last set of functions deal with the allocation and freeing of page tables. Page
tables, as stated, are physical pages containing an array of entries and the allocation
and freeing of physical pages is a relatively expensive operation, both in terms of
time and the fact that interrupts are disabled during page allocation. The allocation
and deletion of page tables, at any of the three levels, is a very frequent operation
so it is important the operation is as quick as possible.

Hence the pages used for the page tables are cached in a number of di�erent
lists called quicklists . Each architecture implements these caches di�erently but the
principles used are the same. For example, not all architectures cache PGDs because
the allocation and freeing of them only happens during process creation and exit.
As both of these are very expensive operations, the allocation of another page is
negligible.

PGDs, PMDs and PTEs have two sets of functions each for the allocation and
freeing of page tables. The allocation functions are pgd_alloc(), pmd_alloc()
and pte_alloc() respectively and the free functions are, predictably enough, called
pgd_free(), pmd_free() and pte_free().

Broadly speaking, the three implement caching with the use of three caches
called pgd_quicklist, pmd_quicklist and pte_quicklist. Architectures imple-
ment these three lists in di�erent ways but one method is through the use of a

3.6 Kernel Page Tables 39

LIFO type structure. Ordinarily, a page table entry contains points to other pages
containing page tables or data. While cached, the �rst element of the list is used to
point to the next free page table. During allocation, one page is popped o� the list
and during free, one is placed as the new head of the list. A count is kept of how
many pages are used in the cache.

The quick allocation function from the pgd_quicklist is not externally de�ned
outside of the architecture although get_pgd_fast() is a common choice for the
function name. The cached allocation function for PMDs and PTEs are publicly
de�ned as pmd_alloc_one_fast() and pte_alloc_one_fast().

If a page is not available from the cache, a page will be allocated using the
physical page allocator (see Chapter 6). The functions for the three levels of page
tables are get_pgd_slow(), pmd_alloc_one() and pte_alloc_one().

Obviously a large number of pages may exist on these caches and so there is
a mechanism in place for pruning them. Each time the caches grow or shrink,
a counter is incremented or decremented and it has a high and low watermark.
check_pgt_cache() is called in two places to check these watermarks. When the
high watermark is reached, entries from the cache will be freed until the cache size
returns to the low watermark. The function is called after clear_page_tables()
when a large number of page tables are potentially reached and is also called by the
system idle task.

3.6 Kernel Page Tables

When the system �rst starts, paging is not enabled as page tables do not magically
initialise themselves. Each architecture implements this di�erently so only the x86
case will be discussed. The page table initialisation is divided into two phases. The
bootstrap phase sets up page tables for just 8MiB so the paging unit can be enabled.
The second phase initialises the rest of the page tables. We discuss both of these
phases below.

3.6.1 Bootstrapping

The assembler function startup_32() is responsible for enabling the paging unit in
arch/i386/kernel/head.S. While all normal kernel code in vmlinuz is compiled
with the base address at PAGE_OFFSET + 1MiB, the kernel is actually loaded begin-
ning at the �rst megabyte (0x00100000) of memory. The �rst megabyte is used by
some devices for communication with the BIOS and is skipped. The bootstrap code
in this �le treats 1MiB as its base address by subtracting __PAGE_OFFSET from any
address until the paging unit is enabled so before the paging unit is enabled, a page
table mapping has to be established which translates the 8MiB of physical memory
to the virtual address PAGE_OFFSET.

Initialisation begins with statically de�ning at compile time an array called
swapper_pg_dir which is placed using linker directives at 0x00101000. It then
establishes page table entries for 2 pages, pg0 and pg1. If the processor supports

3.6.2 Finalising 40

the Page Size Extension (PSE) bit, it will be set so that pages will be translated are
4MiB pages, not 4KiB as is the normal case. The �rst pointers to pg0 and pg1 are
placed to cover the region 1-9MiB the second pointers to pg0 and pg1 are placed at
PAGE_OFFSET+1MiB. This means that when paging is enabled, they will map to the
correct pages using either physical or virtual addressing for just the kernel image.
The rest of the kernel page tables will be initialised by paging_init().

Once this mapping has been established, the paging unit is turned on by setting a
bit in the cr0 register and a jump takes places immediately to ensure the Instruction
Pointer (EIP register) is correct.

3.6.2 Finalising

The function responsible for �nalising the page tables is called paging_init(). The
call graph for this function on the x86 can be seen on Figure 3.4.

Figure 3.4: Call Graph: paging_init()

The function �rst calls pagetable_init() to initialise the page tables necessary
to reference all physical memory in ZONE_DMA and ZONE_NORMAL. Remember that
high memory in ZONE_HIGHMEM cannot be directly referenced and mappings are set
up for it temporarily. For each pgd_t used by the kernel, the boot memory allocator
(see Chapter 5) is called to allocate a page for the PMDs and the PSE bit will
be set if available to use 4MiB TLB entries instead of 4KiB. If the PSE bit is not
supported, a page for PTEs will be allocated for each pmd_t. If the CPU supports
the PGE �ag, it also will be set so that the page table entry will be global and
visible to all processes.

Next, pagetable_init() calls fixrange_init() to setup the �xed address
space mappings at the end of the virtual address space starting at FIXADDR_START.
These mappings are used for purposes such as the local APIC and the atomic kmap-
pings between FIX_KMAP_BEGIN and FIX_KMAP_END required by kmap_atomic(). Fi-
nally, the function calls fixrange_init() to initialise the page table entries required
for normal high memory mappings with kmap().

3.7 Mapping addresses to a struct page 41

Once pagetable_init() returns, the page tables for kernel space are now full
initialised so the static PGD (swapper_pg_dir) is loaded into the CR3 register so
that the static table is now being used by the paging unit.

The next task of the paging_init() is responsible for calling kmap_init() to
initialise each of the PTEs with the PAGE_KERNEL protection �ags. The �nal task is
to call zone_sizes_init() which initialises all the zone structures used.

3.7 Mapping addresses to a struct page

There is a requirement for Linux to have a fast method of mapping virtual addresses
to physical addresses and for mapping struct pages to their physical address. Linux
achieves this by knowing where, in both virtual and physical memory, the global
mem_map array is as the global array has pointers to all struct pages representing
physical memory in the system. All architectures achieve this with very similar
mechanisms but for illustration purposes, we will only examine the x86 carefully.
This section will �rst discuss how physical addresses are mapped to kernel virtual
addresses and then what this means to the mem_map array.

3.7.1 Mapping Physical to Virtual Kernel Addresses

As we saw in Section 3.6, Linux sets up a direct mapping from the physical address 0
to the virtual address PAGE_OFFSET at 3GiB on the x86. This means that any virtual
address can be translated to the physical address by simply subtracting PAGE_OFFSET
which is essentially what the function virt_to_phys() with the macro __pa() does:

/* from <asm-i386/page.h> */

132 #define __pa(x) ((unsigned long)(x)-PAGE_OFFSET)

/* from <asm-i386/io.h> */

76 static inline unsigned long virt_to_phys(volatile void * address)

77 {

78 return __pa(address);

79 }

Obviously the reverse operation involves simply adding PAGE_OFFSET which is
carried out by the function phys_to_virt() with the macro __va(). Next we see
how this helps the mapping of struct pages to physical addresses.

3.7.2 Mapping struct pages to Physical Addresses

As we saw in Section 3.6.1, the kernel image is located at the physical address 1MiB,
which of course translates to the virtual address PAGE_OFFSET + 0x00100000 and a
virtual region totaling about 8MiB is reserved for the image which is the region that
can be addressed by two PGDs. This would imply that the �rst available memory to
use is located at 0xC0800000 but that is not the case. Linux tries to reserve the �rst

3.8 Translation Lookaside Bu�er (TLB) 42

16MiB of memory for ZONE_DMA so �rst virtual area used for kernel allocations is
actually 0xC1000000. This is where the global mem_map is usually located. ZONE_DMA
will be still get used, but only when absolutely necessary.

Physical addresses are translated to struct pages by treating them as an index
into the mem_map array. Shifting a physical address PAGE_SHIFT bits to the right will
treat it as a PFN from physical address 0 which is also an index within the mem_map
array. This is exactly what the macro virt_to_page() does which is declared as
follows in <asm-i386/page.h>:

#define virt_to_page(kaddr) (mem_map + (__pa(kaddr) >> PAGE_SHIFT))

The macro virt_to_page() takes the virtual address kaddr, converts it to the
physical address with __pa(), converts it into an array index by bit shifting it right
PAGE_SHIFT bits and indexing into the mem_map by simply adding them together.
No macro is available for converting struct pages to physical addresses but at this
stage, it should be obvious to see how it could be calculated.

3.8 Translation Lookaside Bu�er (TLB)

Initially, when the processor needs to map a virtual address to a physical address, it
must traverse the full page directory searching for the PTE of interest. This would
normally imply that each assembly instruction that references memory actually re-
quires several separate memory references for the page table traversal [Tan01]. To
avoid this considerable overhead, architectures take advantage of the fact that most
processes exhibit a locality of reference or, in other words, large numbers of memory
references tend to be for a small number of pages. They take advantage of this ref-
erence locality by providing a Translation Lookaside Bu�er (TLB) which is a small
associative memory that caches virtual to physical page table resolutions.

Linux assumes that the most architectures support some type of TLB although
the architecture independent code does not cares how it works. Instead, architecture
dependant hooks are dispersed throughout the VM code at points where it is known
that some hardware with a TLB would need to perform a TLB related operation.
For example, when the page tables have been updated, such as after a page fault has
completed, the processor may need to be update the TLB for that virtual address
mapping.

Not all architectures require these type of operations but because some do, the
hooks have to exist. If the architecture does not require the operation to be per-
formed, the function for that TLB operation will a null operation that is optimised
out at compile time.

A quite large list of TLB API hooks, most of which are declared in<asm/pgtable.h>,
are listed in Tables 3.2 and 3.3 and the APIs are quite well documented in the ker-
nel source by Documentation/cachetlb.txt [Mil00]. It is possible to have just one
TLB �ush function but as both TLB �ushes and TLB re�lls are very expensive op-
erations, unnecessary TLB �ushes should be avoided if at all possible. For example,

3.9 Level 1 CPU Cache Management 43

when context switching, Linux will avoid loading new page tables using Lazy TLB
Flushing, discussed further in Section 4.3.

void flush_tlb_all(void)

This �ushes the entire TLB on all processors running in the system making
it the most expensive TLB �ush operation. After it completes, all modi�cations
to the page tables will be visible globally. This is required after the kernel page
tables, which are global in nature, have been modi�ed such as after vfree() (See
Chapter 7) completes or after the PKMap is �ushed (See Chapter 9).

void flush_tlb_mm(struct mm_struct *mm)

This �ushes all TLB entries related to the userspace portion (i.e. below
PAGE_OFFSET) for the requested mm context. In some architectures, such as
MIPS, this will need to be performed for all processors but usually it is con�ned
to the local processor. This is only called when an operation has been performed
that a�ects the entire address space, such as after all the address mapping have
been duplicated with dup_mmap() for fork or after all memory mappings have
been deleted with exit_mmap().

void flush_tlb_range(struct mm_struct *mm, unsigned long start,

unsigned long end)

As the name indicates, this �ushes all entries within the requested userspace
range for the mm context. This is used after a new region has been moved
or changeh as during mremap() which moves regions or mprotect() which
changes the permissions. The function is also indirectly used during unmap-
ping a region with munmap() which calls tlb_finish_mmu() which tries to
use flush_tlb_range() intelligently. This API is provided for architectures
that can remove ranges of TLB entries quickly rather than iterating with
flush_tlb_page().

Table 3.2: Translation Lookaside Bu�er Flush API

3.9 Level 1 CPU Cache Management

As Linux manages the CPU Cache in a very similar fashion to the TLB, this sec-
tion covers how Linux utilises and manages the CPU cache. CPU caches, like TLB
caches, take advantage of the fact that programs tend to exhibit a locality of ref-
erence [Sea00] [CS98]. To avoid having to fetch data from main memory for each
reference, the CPU will instead cache very small amounts of data in the CPU cache.
Frequently, there is two levels called the Level 1 and Level 2 CPU caches. The Level
2 CPU caches are larger but slower than the L1 cache but Linux only concerns itself
with the Level 1 or L1 cache.

3.9 Level 1 CPU Cache Management 44

void flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)

Predictably, this API is responsible for �ushing a single page from the TLB.
The two most common usage of it is for �ushing the TLB after a page has been
faulted in or has been paged out.

void flush_tlb_pgtables(struct mm_struct *mm, unsigned long start,

unsigned long end)

This API is called with the page tables are being torn down and freed. Some
platforms cache the lowest level of the page table, i.e. the actual page frame
storing entries, which needs to be �ushed when the pages are being deleted. This
is called when a region is being unmapped and the page directory entries are
being reclaimed.

void update_mmu_cache(struct vm_area_struct *vma, unsigned long

addr, pte_t pte)

This API is only called after a page fault completes. It tells the architecture
dependant code that a new translation now exists at pte for the virtual address
addr. It is up to each architecture how this information should be used. For
example, Sparc64 uses the information to decide if the local CPU needs to �ush
it's data cache or does it need to send an IPI to a remote processor.

Table 3.3: Translation Lookaside Bu�er Flush API (cont)

CPU caches are organised into lines . Each line is typically quite small, usually
32 bytes and each line is aligned to it's boundary size. In other words, a cache line
of 32 bytes will be aligned on a 32 byte address. With Linux, the size of the line is
L1_CACHE_BYTES which is de�ned by each architecture.

How addresses are mapped to cache lines vary between architectures but the
mappings come under three headings, direct mapping , associative mapping and set
associative mapping . Direct mapping is the simpliest approach where each block
of memory maps to only one possible cache line. With associative mapping, any
block of memory can map to any cache line. Set associative mapping is a hybrid
approach where any block of memory can may to any line but only within a subset
of the available lines. Regardless of the mapping scheme, they each have one thing
in common, addresses that are close together and aligned to the cache size are likely
to use di�erent lines. Hence Linux employs simple tricks to try and maximise cache
usage

• Frequently accessed structure �elds are at the start of the structure to increase
the chance that only one line is needed to address the common �elds;

• Unrelated items in a structure should try to be at least cache size bytes apart
to avoid false sharing between CPUs;

• Objects in the general caches, such as the mm_struct cache, are aligned to the

3.10 What's New In 2.6 45

L1 CPU cache to avoid false sharing.

If the CPU references an address that is not in the cache, a cache missoccurs
and the data is fetched from main memory. The cost of cache misses is quite high as
a reference to cache can typically be performed in less than 10ns where a reference
to main memory typically will cost between 100ns and 200ns. The basic objective
is then to have as many cache hits and as few cache misses as possible.

Just as some architectures do not automatically manage their TLBs, some do not
automatically manage their CPU caches. The hooks are placed in locations where
the virtual to physical mapping changes, such as during a page table update. The
CPU cache �ushes should always take place �rst as some CPUs require a virtual to
physical mapping to exist when the virtual address is being �ushed from the cache.
The three operations that require proper ordering are important is listed in Table
3.4.

Flushing Full MM Flushing Range Flushing Page
flush_cache_mm() flush_cache_range() flush_cache_page()

Change all page tables Change page table range Change single PTE
flush_tlb_mm() flush_tlb_range() flush_tlb_page()

Table 3.4: Cache and TLB Flush Ordering

The API used for �ushing the caches are declared in <asm/pgtable.h> and are
listed in Tables 3.5. In many respects, it is very similar to the TLB �ushing API.

It does not end there though. A second set of interfaces is required to avoid
virtual aliasing problems. The problem is that some CPUs select lines based on the
virtual address meaning that one physical address can exist on multiple lines leading
to cache coherency problems. Architectures with this problem may try and ensure
that shared mappings will only use addresses as a stop-gap measure. However, a
proper API to address is problem is also supplied which is listed in Table 3.6.

3.10 What's New In 2.6

Most of the mechanics for page table management are essentially the same for 2.6
but the changes that have been introduced are quite wide reaching and the imple-
mentations in-depth.

MMU-less Architecture Support A new �le has been introduced called
mm/nommu.c. This source �le contains replacement code for functions that assume
the existence of a MMU like mmap() for example. This is to support architectures,
usually microcontrollers, that have no MMU. Much of the work in this area was
developed by the uCLinux Project (http://www.uclinux.org).

3.10 What's New In 2.6 46

void flush_cache_all(void)

This �ushes the entire CPU cache system making it the most severe �ush
operation to use. It is used when changes to the kernel page tables, which are
global in nature, are to be performed.

void flush_cache_mm(struct mm_struct mm)

This �ushes all entires related to the address space. On completion, no cache
lines will be associated with mm.

void flush_cache_range(struct mm_struct *mm, unsigned long start,

unsigned long end)

This �ushes lines related to a range of addresses in the address space. Like
it's TLB equivilant, it is provided in case the architecture has an e�cent way of
�ushing ranges instead of �ushing each individual page.

void flush_cache_page(struct vm_area_struct *vma, unsigned long

vmaddr)

This is for �ushing a single page sized region. The VMA is supplied as the
mm_struct is easily accessible via vma→vm_mm. Additionally, by testing for the
VM_EXEC �ag, the architecture will know if the region is executable for caches
that separate the instructions and data caches. VMAs are described further in
Chapter 4.

Table 3.5: CPU Cache Flush API

Reverse Mapping The most signi�cant and important change to page table man-
agement is the introduction of Reverse Mapping (rmap). Referring to it as �rmap�
is deliberate as it is the common usage of the �acronym� and should not be confused
with the -rmap tree developed by Rik van Riel which has many more alterations to
the stock VM than just the reverse mapping.

In a single sentence, rmap grants the ability to locate all PTEs which map a
particular page given just the struct page. In 2.4, the only way to �nd all PTEs
which map a shared page, such as a memory mapped shared library, is to linearaly
search all page tables belonging to all processes. This is far too expensive and Linux
tries to avoid the problem by using the swap cache (see Section 11.4). This means
that with many shared pages, Linux may have to swap out entire processes regardless
of the page age and usage patterns. 2.6 instead has a PTE chain associated with
every struct page which may be traversed to remove a page from all page tables
that reference it. This way, pages in the LRU can be swapped out in an intelligent
manner without resorting to swapping entire processes.

As might be imagined by the reader, the implementation of this simple con-
cept is a little involved. The �rst step in understanding the implementation is the
union pte that is a �eld in struct page. This has union has two �elds, a pointer
to a struct pte_chain called chain and a pte_addr_t called direct. The union

3.10 What's New In 2.6 47

void flush_page_to_ram(unsigned long address)

This is a deprecated API which should no longer be used and in fact will be
removed totally for 2.6. It is covered here for completeness and because it is still
used. The function is called when a new physical page is about to be placed in
the address space of a process. It is required to avoid writes from kernel space
being invisible to userspace after the mapping occurs.

void flush_dcache_page(struct page *page)

This function is called when the kernel writes to or copies from a page cache
page as these are likely to be mapped by multiple processes.

void flush_icache_range(unsigned long address, unsigned long

endaddr)

This is called when the kernel stores information in addresses that is likely to
be executed, such as when a kermel module has been loaded.

void flush_icache_user_range(struct vm_area_struct *vma, struct

page *page, unsigned long addr, int len)

This is similar to flush_icache_range() except it is called when a userspace
range is a�ected. Currently, this is only used for ptrace() (used when debugging)
when the address space is being accessed by access_process_vm().

void flush_icache_page(struct vm_area_struct *vma, struct page

*page)

This is called when a page-cache page is about to be mapped. It is up to the
architecture to use the VMA �ags to determine whether the I-Cache or D-Cache
should be �ushed.

Table 3.6: CPU D-Cache and I-Cache Flush API

is an optisation whereby direct is used to save memory if there is only one PTE
mapping the entry, otherwise a chain is used. The type pte_addr_t varies between
architectures but whatever its type, it can be used to locate a PTE, so we will treat
it as a pte_t for simplicity.

The struct pte_chain is a little more complex. The struct itself is very simple
but it is compact with overloaded �elds and a lot of development e�ort has been spent
on making it small and e�cient. Fortunately, this does not make it indecipherable.

First, it is the responsibility of the slab allocator to allocate and manage
struct pte_chains as it is this type of task the slab allocator is best at. Each
struct pte_chain can hold up to NRPTE pointers to PTE structures. Once that
many PTEs have been �lled, a struct pte_chain is allocated and added to the
chain.

The struct pte_chain has two �elds. The �rst is unsigned long next_and_idx

which has two purposes. When next_and_idx is ANDed with NRPTE, it returns the

3.10 What's New In 2.6 48

number of PTEs currently in this struct pte_chain indicating where the next free
slot is. When next_and_idx is ANDed with the negation of NRPTE (i.e. ∼NRPTE), a
pointer to the next struct pte_chain in the chain is returned1. This is basically
how a PTE chain is implemented.

To give a taste of the rmap intricacies, we'll give an example of what happens
when a new PTE needs to map a page. The basic process is to have the caller
allocate a new pte_chain with pte_chain_alloc(). This allocated chain is passed
with the struct page and the PTE to page_add_rmap(). If the existing PTE
chain associated with the page has slots available, it will be used and the pte_chain
allocated by the caller returned. If no slots were available, the allocated pte_chain

will be added to the chain and NULL returned.
There is a quite substantial API associated with rmap, for tasks such as creat-

ing chains and adding and removing PTEs to a chain, but a full listing is beyond
the scope of this section. Fortunately, the API is con�ned to mm/rmap.c and the
functions are heavily commented so their purpose is clear.

There are two main bene�ts, both related to pageout, with the introduction
of reverse mapping. The �rst is with the setup and tear-down of pagetables. As
will be seen in Section 11.4, pages being paged out are placed in a swap cache and
information is written into the PTE necessary to �nd the page again. This can lead
to multiple minor faults as pages are put into the swap cache and then faulted again
by a process. With rmap, the setup and removal of PTEs is atomic. The second
major bene�t is when pages need to paged out, �nding all PTEs referencing the
pages is a simple operation but impractical with 2.4, hence the swap cache.

Reverse mapping is not without its cost though. The �rst, and obvious one, is the
additional space requirements for the PTE chains. Arguably, the second is a CPU
cost associated with reverse mapping but it has not been proved to be signi�cant.
What is important to note though is that reverse mapping is only a bene�t when
pageouts are frequent. If the machines workload does not result in much pageout
or memory is ample, reverse mapping is all cost with little or no bene�t. At the
time of writing, the merits and downsides to rmap is still the subject of a number
of discussions.

Object-Based Reverse Mapping The reverse mapping required for each page
can have very expensive space requirements. To compound the problem, many
of the reverse mapped pages in a VMA will be essentially identical. One way of
addressing this is to reverse map based on the VMAs rather than individual pages.
That is, instead of having a reverse mapping for each page, all the VMAs which
map a particular page would be traversed and unmap the page from each. Note
that objects in this case refers to the VMAs, not an object in the object-orientated
sense of the word2. At the time of writing, this feature has not been merged yet
and was last seen in kernel 2.5.68-mm1 but there is a strong incentive to have it

1Told you it was compact
2Don't blame me, I didn't name it. In fact the original patch for this feature came with the

comment �From Dave. Crappy name�

3.10 What's New In 2.6 49

available if the problems with it can be resolved. For the very curious, the patch
for just �le/device backed objrmap at this release is available 3 but it is only for the
very very curious reader.

There are two tasks that require all PTEs that map a page to be traversed. The
�rst task is page_referenced() which checks all PTEs that map a page to see if
the page has been referenced recently. The second task is when a page needs to be
unmapped from all processes with try_to_unmap(). To complicate matters further,
there are two types of mappings that must be reverse mapped, those that are backed
by a �le or device and those that are anonymous. In both cases, the basic objective
is to traverse all VMAs which map a particular page and then walk the page table
for that VMA to get the PTE. The only di�erence is how it is implemented. The
case where it is backed by some sort of �le is the easiest case and was implemented
�rst so we'll deal with it �rst. For the purposes of illustrating the implementation,
we'll discuss how page_referenced() is implemented.

page_referenced() calls page_referenced_obj() which is the top level func-
tion for �nding all PTEs within VMAs that map the page. As the page is mapped for
a �le or device, page→mapping contains a pointer to a valid address_space. The
address_space has two linked lists which contain all VMAs which use the mapping
with the address_space→i_mmap and address_space→i_mmap_shared �elds. For
every VMA that is on these linked lists, page_referenced_obj_one() is called with
the VMA and the page as parameters. The function page_referenced_obj_one()

�rst checks if the page is in an address managed by this VMA and if so, traverses
the page tables of the mm_struct using the VMA (vma→vm_mm) until it �nds the
PTE mapping the page for that mm_struct.

Anonymous page tracking is a lot trickier and was implented in a number of
stages. It only made a very brief appearance and was removed again in 2.5.65-mm4
as it con�icted with a number of other changes. The �rst stage in the implementation
was to use page→mapping and page→index �elds to track mm_struct and address

pairs. These �elds previously had been used to store a pointer to swapper_space

and a pointer to the swp_entry_t (See Chapter 11). Exactly how it is addressed is
beyond the scope of this section but the summary is that swp_entry_t is stored in
page→private

try_to_unmap_obj() works in a similar fashion but obviously, all the PTEs that
reference a page with this method can do so without needing to reverse map the
individual pages. There is a serious search complexity problem that is preventing it
being merged. The scenario that describes the problem is as follows;

Take a case where 100 processes have 100 VMAs mapping a single �le. To
unmap a single page in this case with object-based reverse mapping would require
10,000 VMAs to be searched, most of which are totally unnecessary. With page
based reverse mapping, only 100 pte_chain slots need to be examined, one for each
process. An optimisation was introduced to order VMAs in the address_space

by virtual address but the search for a single page is still far too expensive for

3ftp://ftp.kernel.org/pub/linux/kernel/people/akpm/patches/2.5/2.5.68/2.5.68-
mm2/experimental

3.10 What's New In 2.6 50

object-based reverse mapping to be merged.

PTEs in High Memory In 2.4, page table entries exist in ZONE_NORMAL as the
kernel needs to be able to address them directly during a page table walk. This was
acceptable until it was found that, with high memory machines, ZONE_NORMAL was
being consumed by the third level page table PTEs. The obvious answer is to move
PTEs to high memory which is exactly what 2.6 does.

As we will see in Chapter 9, addressing information in high memory is far from
free, so moving PTEs to high memory is a compile time con�guration option. In
short, the problem is that the kernel must map pages from high memory into the
lower address space before it can be used but there is a very limited number of slots
available for these mappings introducing a troublesome bottleneck. However, for
applications with a large number of PTEs, there is little other option. At time of
writing, a proposal has been made for having a User Kernel Virtual Area (UKVA)
which would be a region in kernel space private to each process but it is unclear if
it will be merged for 2.6 or not.

To take the possibility of high memory mapping into account, the macro
pte_offset() from 2.4 has been replaced with pte_offset_map() in 2.6. If PTEs
are in low memory, this will behave the same as pte_offset() and return the ad-
dress of the PTE. If the PTE is in high memory, it will �rst be mapped into low
memory with kmap_atomic() so it can be used by the kernel. This PTE must be
unmapped as quickly as possible with pte_unmap().

In programming terms, this means that page table walk code looks slightly dif-
ferent. In particular, to �nd the PTE for a given address, the code now reads as
(taken from mm/memory.c);

640 ptep = pte_offset_map(pmd, address);

641 if (!ptep)

642 goto out;

643

644 pte = *ptep;

645 pte_unmap(ptep);

Additionally, the PTE allocation API has changed. Instead of pte_alloc(),
there is now a pte_alloc_kernel() for use with kernel PTE mappings and
pte_alloc_map() for userspace mapping. The principal di�erence between them
is that pte_alloc_kernel() will never use high memory for the PTE.

In memory management terms, the overhead of having to map the PTE from
high memory should not be ignored. Only one PTE may be mapped per CPU
at a time, although a second may be mapped with pte_offset_map_nested().
This introduces a penalty when all PTEs need to be examined, such as during
zap_page_range() when all PTEs in a given range need to be unmapped.

At time of writing, a patch has been submitted which places PMDs in high
memory using essentially the same mechanism and API changes. It is likely that it
will be merged.

3.10 What's New In 2.6 51

Huge TLB Filesystem Most modern architectures support more than one page
size. For example, on many x86 architectures, there is an option to use 4KiB pages
or 4MiB pages. Traditionally, Linux only used large pages for mapping the actual
kernel image and no where else. As TLB slots are a scarce resource, it is desirable
to be able to take advantages of the large pages especially on machines with large
amounts of physical memory.

In 2.6, Linux allows processes to use �huge pages�, the size of which is determined
by HPAGE_SIZE. The number of available huge pages is determined by the system
administrator by using the /proc/sys/vm/nr_hugepages proc interface which ulti-
matly uses the function set_hugetlb_mem_size(). As the success of the allocation
depends on the availability of physically contiguous memory, the allocation should
be made during system startup.

The root of the implementation is a Huge TLB Filesystem (hugetlbfs) which is
a pseudo-�lesystem implemented in fs/hugetlbfs/inode.c. Basically, each �le in
this �lesystem is backed by a huge page. During initialisation, init_hugetlbfs_fs()
registers the �le system and mounts it as an internal �lesystem with kern_mount().

There are two ways that huge pages may be accessed by a process. The �rst is
by using shmget() to setup a shared region backed by huge pages and the second
is the call mmap() on a �le opened in the huge page �lesystem.

When a shared memory region should be backed by huge pages, the process
should call shmget() and pass SHM_HUGETLB as one of the �ags. This results in
hugetlb_zero_setup() being called which creates a new �le in the root of the
internal hugetlb �lesystem. A �le is created in the root of the internal �lesystem.
The name of the �le is determined by an atomic counter called hugetlbfs_counter

which is incremented every time a shared region is setup.
To create a �le backed by huge pages, a �lesystem of type hugetlbfs must �rst be

mounted by the system administrator. Instructions on how to perform this task are
detailed in Documentation/vm/hugetlbpage.txt. Once the �lesystem is mounted,
�les can be created as normal with the system call open(). When mmap() is called
on the open �le, the file_operations struct hugetlbfs_file_operations ensures
that hugetlbfs_file_mmap() is called to setup the region properly.

Huge TLB pages have their own function for the management of page tables,
address space operations and �lesystem operations. The names of the functions for
page table management can all be seen in <linux/hugetlb.h> and they are named
very similar to their �normal� page equivalents. The implementation of the hugetlb
functions are located near their normal page equivalents so are easy to �nd.

Cache Flush Management The changes here are minimal. The API function
flush_page_to_ram() has being totally removed and a new API flush_dcache_range()
has been introduced.

Chapter 4

Process Address Space

One of the principal advantages of virtual memory is that each process has its own
virtual address space, which is mapped to physical memory by the operating system.
In this chapter we will discuss the process address space and how Linux manages it.

Zero pageThe kernel treats the userspace portion of the address space very dif-
ferently to the kernel portion. For example, allocations for the kernel are satis-
�ed immediately and are visible globally no matter what process is on the CPU.
vmalloc() is partially an exception as a minor page fault will occur to sync the
process page tables with the reference page tables, but the page will still be allo-
cated immediately upon request. With a process, space is simply reserved in the
linear address space by pointing a page table entry to a read-only globally visible
page �lled with zeros. On writing, a page fault is triggered which results in a new
page being allocated, �lled with zeros, placed in the page table entry and marked
writable. It is �lled with zeros so that the new page will appear exactly the same
as the global zero-�lled page.

The userspace portion is not trusted or presumed to be constant. After each
context switch, the userspace portion of the linear address space can potentially
change except when a Lazy TLB switch is used as discussed later in Section 4.3. As
a result of this, the kernel must be prepared to catch all exception and addressing
errors raised from userspace. This is discussed in Section 4.5.

This chapter begins with how the linear address space is broken up and what
the purpose of each section is. We then cover the structures maintained to describe
each process, how they are allocated, initialised and then destroyed. Next, we will
cover how individual regions within the process space are created and all the various
functions associated with them. That will bring us to exception handling related to
the process address space, page faulting and the various cases that occur to satisfy
a page fault. Finally, we will cover how the kernel safely copies information to and
from userspace.

52

4.1 Linear Address Space 53

4.1 Linear Address Space

From a user perspective, the address space is a �at linear address space but pre-
dictably, the kernel's perspective is very di�erent. The address space is split into
two parts, the userspace part which potentially changes with each full context switch
and the kernel address space which remains constant. The location of the split is
determined by the value of PAGE_OFFSET which is at 0xC0000000 on the x86. This
means that 3GiB is available for the process to use while the remaining 1GiB is
always mapped by the kernel. The linear virtual address space as the kernel sees it
is illustrated in Figure 4.1.

Figure 4.1: Kernel Address Space

8MiB (the amount of memory addressed by two PGDs) is reserved at PAGE_OFFSET
for loading the kernel image to run. 8MiB is simply a reasonable amount of space
to reserve for the purposes of loading the kernel image. The kernel image is placed
in this reserved space during kernel page tables initialisation as discussed in Section
3.6.1. Somewhere shortly after the image, the mem_map for UMA architectures, as
discussed in Chapter 2, is stored. The location of the array is usually at the 16MiB
mark to avoid using ZONE_DMA but not always. With NUMA architectures, portions
of the virtual mem_map will be scattered throughout this region and where they are
actually located is architecture dependent.

The region between PAGE_OFFSET and VMALLOC_START - VMALLOC_OFFSET is the
physical memory map and the size of the region depends on the amount of available
RAM. As we saw in Section 3.6, page table entries exist to map physical memory
to the virtual address range beginning at PAGE_OFFSET. Between the physical mem-
ory map and the vmalloc address space, there is a gap of space VMALLOC_OFFSET

in size, which on the x86 is 8MiB, to guard against out of bounds errors. For
illustration, on a x86 with 32MiB of RAM, VMALLOC_START will be located at
PAGE_OFFSET + 0x02000000 + 0x00800000.

In low memory systems, the remaining amount of the virtual address space,
minus a 2 page gap, is used by vmalloc() for representing non-contiguous mem-
ory allocations in a contiguous virtual address space. In high-memory systems,
the vmalloc area extends as far as PKMAP_BASE minus the two page gap and two
extra regions are introduced. The �rst, which begins at PKMAP_BASE, is an area

4.2 Managing the Address Space 54

reserved for the mapping of high memory pages into low memory with kmap() as
discussed in Chapter 9. The second is for �xed virtual address mappings which
extends from FIXADDR_START to FIXADDR_TOP. Fixed virtual addresses are needed
for subsystems that need to know the virtual address at compile time such as the
Advanced Programmable Interrupt Controller (APIC). FIXADDR_TOP is statically de-
�ned to be 0xFFFFE000 on the x86 which is one page before the end of the virtual
address space. The size of the �xed mapping region is calculated at compile time in
__FIXADDR_SIZE and used to index back from FIXADDR_TOP to give the start of the
region FIXADDR_START

The region required for vmalloc(), kmap() and the �xed virtual address mapping
is what limits the size of ZONE_NORMAL. As the running kernel needs these functions,
a region of at least VMALLOC_RESERVE will be reserved at the top of the address space.
VMALLOC_RESERVE is architecture speci�c but on the x86, it is de�ned as 128MiB.
This is why ZONE_NORMAL is generally referred to being only 896MiB in size; it is the
1GiB of the upper potion of the linear address space minus the minimum 128MiB
that is reserved for the vmalloc region.

4.2 Managing the Address Space

The address space usable by the process is managed by a high level mm_struct which
is roughly analogous to the vmspace struct in BSD [McK96].

Each address space consists of a number of page-aligned regions of memory that
are in use. They never overlap and represent a set of addresses which contain pages
that are related to each other in terms of protection and purpose. These regions
are represented by a struct vm_area_struct and are roughly analogous to the
vm_map_entry struct in BSD. For clarity, a region may represent the process heap
for use with malloc(), a memory mapped �le such as a shared library or a block
of anonymous memory allocated with mmap(). The pages for this region may still
have to be allocated, be active and resident or have been paged out.

If a region is backed by a �le, its vm_file �eld will be set. By traversing
vm_file→f_dentry→d_inode→i_mapping, the associated address_space for the
region may be obtained. The address_space has all the �lesystem speci�c infor-
mation required to perform page-based operations on disk.

The relationship between the di�erent address space related structures is illus-
traed in 4.2. A number of system calls are provided which a�ect the address space
and regions. These are listed in Table 4.1.

4.3 Process Address Space Descriptor

The process address space is described by the mm_struct struct meaning that only
one exists for each process and is shared between userspace threads. In fact, threads
are identi�ed in the task list by �nding all task_structs which have pointers to the
same mm_struct.

4.3 Process Address Space Descriptor 55

Figure 4.2: Data Structures related to the Address Space

A unique mm_struct is not needed for kernel threads as they will never page
fault or access the userspace portion. The only exception is page faulting within
the vmalloc space. The page fault handling code treats this as a special case and
updates the current page table with information in the the master page table. As
a mm_struct is not needed for kernel threads, the task_struct→mm �eld for kernel
threads is always NULL. For some tasks such as the boot idle task, the mm_struct
is never setup but for kernel threads, a call to daemonize() will call exit_mm() to
decrement the usage counter.

As TLB �ushes are extremely expensive, especially with architectures such as the
PPC, a technique called lazy TLB is employed which avoids unnecessary TLB �ushes
by processes which do not access the userspace page tables as the kernel portion of
the address space is always visible. The call to switch_mm(), which results in a TLB
�ush, is avoided by �borrowing� the mm_struct used by the previous task and placing
it in task_struct→active_mm. This technique has made large improvements to
context switches times.

When entering lazy TLB, the function enter_lazy_tlb() is called to ensure
that a mm_struct is not shared between processors in SMP machines, making it
a NULL operation on UP machines. The second time use of lazy TLB is during

4.3 Process Address Space Descriptor 56

System Call Description
fork() Creates a new process with a new address space. All the

pages are marked COW and are shared between the two
processes until a page fault occurs to make private copies

clone() clone() allows a new process to be created that shares
parts of its context with its parent and is how threading
is implemented in Linux. clone() without the CLONE_VM
set will create a new address space which is essentially
the same as fork()

mmap() mmap() creates a new region within the process linear
address space

mremap() Remaps or resizes a region of memory. If the virtual
address space is not available for the mapping, the region
may be moved unless the move is forbidden by the caller.

munmap() This destroys part or all of a region. If the region been
unmapped is in the middle of an existing region, the
existing region is split into two separate regions

shmat() This attaches a shared memory segment to a process ad-
dress space

shmdt() Removes a shared memory segment from an address
space

execve() This loads a new executable �le replacing the current
address space

exit() Destroys an address space and all regions

Table 4.1: System Calls Related to Memory Regions

process exit when start_lazy_tlb() is used brie�y while the process is waiting to
be reaped by the parent.

The struct has two reference counts called mm_users and mm_count for two types
of �users�. mm_users is a reference count of processes accessing the userspace portion
of for this mm_struct, such as the page tables and �le mappings. Threads and the
swap_out() code for instance will increment this count making sure a mm_struct is
not destroyed early. When it drops to 0, exit_mmap() will delete all mappings and
tear down the page tables before decrementing the mm_count.

mm_count is a reference count of the �anonymous users� for the mm_struct ini-
tialised at 1 for the �real� user. An anonymous user is one that does not necessarily
care about the userspace portion and is just borrowing the mm_struct. Example
users are kernel threads which use lazy TLB switching. When this count drops
to 0, the mm_struct can be safely destroyed. Both reference counts exist because
anonymous users need the mm_struct to exist even if the userspace mappings get
destroyed and there is no point delaying the teardown of the page tables.

The mm_struct is de�ned in <linux/sched.h> as follows:

4.3 Process Address Space Descriptor 57

206 struct mm_struct {

207 struct vm_area_struct * mmap;

208 rb_root_t mm_rb;

209 struct vm_area_struct * mmap_cache;

210 pgd_t * pgd;

211 atomic_t mm_users;

212 atomic_t mm_count;

213 int map_count;

214 struct rw_semaphore mmap_sem;

215 spinlock_t page_table_lock;

216

217 struct list_head mmlist;

221

222 unsigned long start_code, end_code, start_data, end_data;

223 unsigned long start_brk, brk, start_stack;

224 unsigned long arg_start, arg_end, env_start, env_end;

225 unsigned long rss, total_vm, locked_vm;

226 unsigned long def_flags;

227 unsigned long cpu_vm_mask;

228 unsigned long swap_address;

229

230 unsigned dumpable:1;

231

232 /* Architecture-specific MM context */

233 mm_context_t context;

234 };

The meaning of each of the �eld in this sizeable struct is as follows:

mmap The head of a linked list of all VMA regions in the address space;

mm_rb The VMAs are arranged in a linked list and in a red-black tree for fast
lookups. This is the root of the tree;

mmap_cache The VMA found during the last call to find_vma() is stored in
this �eld on the assumption that the area will be used again soon;

pgd The Page Global Directory for this process;

mm_users A reference count of users accessing the userspace portion of the ad-
dress space as explained at the beginning of the section;

mm_count A reference count of the anonymous users for the mm_struct starting
at 1 for the �real� user as explained at the beginning of this section;

map_count Number of VMAs in use;

4.3 Process Address Space Descriptor 58

mmap_sem This is a long lived lock which protects the VMA list for readers
and writers. As users of this lock require it for a long time and may need to
sleep, a spinlock is inappropriate. A reader of the list takes this semaphore
with down_read(). If they need to write, it is taken with down_write() and
the page_table_lock spinlock is later acquired while the VMA linked lists
are being updated;

page_table_lock This protects most �elds on the mm_struct. As well as the page
tables, it protects the RSS (see below) count and the VMA from modi�cation;

mmlist All mm_structs are linked together via this �eld;

start_code, end_code The start and end address of the code section;

start_data, end_data The start and end address of the data section;

start_brk, brk The start and end address of the heap;

start_stack Predictably enough, the start of the stack region;

arg_start, arg_end The start and end address of command line arguments;

env_start, env_end The start and end address of environment variables;

rss Resident Set Size (RSS) is the number of resident pages for this process. It
should be noted that the global zero page is not accounted for by RSS;

total_vm The total memory space occupied by all VMA regions in the process;

locked_vm The number of resident pages locked in memory;

def_�ags Only one possible value, VM_LOCKED. It is used to determine if all future
mappings are locked by default or not;

cpu_vm_mask A bitmask representing all possible CPUs in an SMP system.
The mask is used by an InterProcessor Interrupt (IPI) to determine if a pro-
cessor should execute a particular function or not. This is important during
TLB �ush for each CPU;

swap_address Used by the pageout daemon to record the last address that was
swapped from when swapping out entire processes;

dumpable Set by prctl(), this �ag is important only when tracing a process;

context Architecture speci�c MMU context.

There are a small number of functions for dealing with mm_structs. They are
described in Table 4.2.

4.3.1 Allocating a Descriptor 59

Function Description
mm_init() Initialises a mm_struct by setting starting values for

each �eld, allocating a PGD, initialising spinlocks etc.
allocate_mm() Allocates a mm_struct() from the slab allocator
mm_alloc() Allocates a mm_struct using allocate_mm() and calls

mm_init() to initialise it
exit_mmap() Walks through a mm_struct and unmaps all VMAs as-

sociated with it
copy_mm() Makes an exact copy of the current tasks mm_struct

for a new task. This is only used during fork
free_mm() Returns the mm_struct to the slab allocator

Table 4.2: Functions related to memory region descriptors

4.3.1 Allocating a Descriptor

Two functions are provided to allocate a mm_struct. To be slightly confusing, they
are essentially the same but with small important di�erences. allocate_mm() is
just a preprocessor macro which allocates a mm_struct from the slab allocator (see
Chapter 8). mm_alloc() allocates from slab and then calls mm_init() to initialise
it.

4.3.2 Initialising a Descriptor

The initial mm_struct in the system is called init_mm() and is statically initialised
at compile time using the macro INIT_MM().

238 #define INIT_MM(name) \

239 { \

240 mm_rb: RB_ROOT, \

241 pgd: swapper_pg_dir, \

242 mm_users: ATOMIC_INIT(2), \

243 mm_count: ATOMIC_INIT(1), \

244 mmap_sem: __RWSEM_INITIALIZER(name.mmap_sem), \

245 page_table_lock: SPIN_LOCK_UNLOCKED, \

246 mmlist: LIST_HEAD_INIT(name.mmlist), \

247 }

Once it is established, new mm_structs are created using their parent mm_struct
as a template. The function responsible for the copy operation is copy_mm() and it
uses init_mm() to initialise process speci�c �elds.

4.3.3 Destroying a Descriptor

While a new user increments the usage count with atomic_inc(&mm->mm_users),
it is decremented with a call to mmput(). If the mm_users count reaches zero, all

4.4 Memory Regions 60

the mapped regions are destroyed with exit_mmap() and the page tables destroyed
as there is no longer any users of the userspace portions. The mm_count count
is decremented with mmdrop() as all the users of the page tables and VMAs are
counted as one mm_struct user. When mm_count reaches zero, the mm_struct will
be destroyed.

4.4 Memory Regions

The full address space of a process is rarely used, only sparse regions are. Each
region is represented by a vm_area_struct which never overlap and represent a set
of addresses with the same protection and purpose. Examples of a region include
a read-only shared library loaded into the address space or the process heap. A
full list of mapped regions a process has may be viewed via the proc interface at
/proc/PID/maps where PID is the process ID of the process that is to be examined.

The region may have a number of di�erent structures associated with it as illus-
trated in Figure 4.2. At the top, there is the vm_area_struct which on its own is
enough to represent anonymous memory.

If the region is backed by a �le, the struct file is available through the
vm_file �eld which has a pointer to the struct inode. The inode is used to
get the struct address_space which has all the private information about the
�le including a set of pointers to �lesystem functions which perform the �lesystem
speci�c operations such as reading and writing pages to disk.

The struct vm_area_struct is declared as follows in <linux/mm.h>:

4.4 Memory Regions 61

44 struct vm_area_struct {

45 struct mm_struct * vm_mm;

46 unsigned long vm_start;

47 unsigned long vm_end;

49

50 /* linked list of VM areas per task, sorted by address */

51 struct vm_area_struct *vm_next;

52

53 pgprot_t vm_page_prot;

54 unsigned long vm_flags;

55

56 rb_node_t vm_rb;

57

63 struct vm_area_struct *vm_next_share;

64 struct vm_area_struct **vm_pprev_share;

65

66 /* Function pointers to deal with this struct. */

67 struct vm_operations_struct * vm_ops;

68

69 /* Information about our backing store: */

70 unsigned long vm_pgoff;

72 struct file * vm_file;

73 unsigned long vm_raend;

74 void * vm_private_data;

75 };

vm_mm The mm_struct this VMA belongs to;

vm_start The starting address of the region;

vm_end The end address of the region;

vm_next All the VMAs in an address space are linked together in an address-
ordered singly linked list via this �eld It is interesting to note that the VMA
list is one of the very rare cases where a singly linked list is used in the kernel;

vm_page_prot The protection �ags that are set for each PTE in this VMA. The
di�erent bits are described in Table 3.1;

vm_�ags A set of �ags describing the protections and properties of the VMA.
They are all de�ned in <linux/mm.h> and are described in Table 4.3

vm_rb As well as being in a linked list, all the VMAs are stored on a red-black tree
for fast lookups. This is important for page fault handling when �nding the
correct region quickly is important, especially for a large number of mapped
regions;

4.4.1 Memory Region Operations 62

vm_next_share Shared VMA regions based on �le mappings (such as shared
libraries) linked together with this �eld;

vm_pprev_share The complement of vm_next_share;

vm_ops The vm_ops �eld contains functions pointers for open(), close() and
nopage(). These are needed for syncing with information from the disk;

vm_pgo� This is the page aligned o�set within a �le that is memory mapped;

vm_�le The struct file pointer to the �le being mapped;

vm_raend This is the end address of a read-ahead window. When a fault occurs,
a number of additional pages after the desired page will be paged in. This
�eld determines how many additional pages are faulted in;

vm_private_data Used by some device drivers to store private information. Not
of concern to the memory manager.

All the regions are linked together on a linked list ordered by address via the
vm_next �eld. When searching for a free area, it is a simple matter of traversing the
list but a frequent operation is to search for the VMA for a particular address such
as during page faulting for example. In this case, the red-black tree is traversed as
it has O(log N) search time on average. The tree is ordered so that lower addresses
than the current node are on the left leaf and higher addresses are on the right.

4.4.1 Memory Region Operations

There are three operations which a VMA may support called open(), close() and
nopage(). It supports these with a vm_operations_struct in the VMA called
vma→vm_ops. The struct contains three function pointers and is declared as follows
in <linux/mm.h>:

133 struct vm_operations_struct {

134 void (*open)(struct vm_area_struct * area);

135 void (*close)(struct vm_area_struct * area);

136 struct page * (*nopage)(struct vm_area_struct * area,

unsigned long address,

int unused);

137 };

The open() and close() functions are will be called every time a region is
created or deleted. These functions are only used by a small number of devices, one
�lesystem and System V shared regions which need to perform additional operations
when regions are opened or closed. For example, the System V open() callback will
increment the number of VMAs using a shared segment (shp→shm_nattch).

The main operation of interest is the nopage() callback. This callback is used
during a page-fault by do_no_page(). The callback is responsible for locating the

4.4.1 Memory Region Operations 63

Protection Flags
Flags Description
VM_READ Pages may be read
VM_WRITE Pages may be written
VM_EXEC Pages may be executed
VM_SHARED Pages may be shared
VM_DONTCOPY VMA will not be copied on fork
VM_DONTEXPAND Prevents a region being resized. Flag is unused

mmap Related Flags
VM_MAYREAD Allow the VM_READ �ag to be set
VM_MAYWRITE Allow the VM_WRITE �ag to be set
VM_MAYEXEC Allow the VM_EXEC �ag to be set
VM_MAYSHARE Allow the VM_SHARE �ag to be set
VM_GROWSDOWN Shared segment (probably stack) may grow down
VM_GROWSUP Shared segment (probably heap) may grow up
VM_SHM Pages are used by shared SHM memory segment
VM_DENYWRITE What MAP_DENYWRITE for mmap() translates to. Now

unused
VM_EXECUTABLE What MAP_EXECUTABLE for mmap() translates to. Now

unused
VM_STACK_FLAGS Flags used by setup_arg_flags() to setup the stack

Locking Flags
VM_LOCKED If set, the pages will not be swapped out. Set by mlock()
VM_IO Signals that the area is a mmaped region for IO to a

device. It will also prevent the region being core dumped
VM_RESERVED Do not swap out this region, used by device drivers

madvise() Flags
VM_SEQ_READ A hint that pages will be accessed sequentially
VM_RAND_READ A hint stating that readahead in the region is useless

Figure 4.3: Memory Region Flags

4.4.2 File/Device backed memory regions 64

page in the page cache or allocating a page and populating it with the required data
before returning it.

Most �les that are mapped will use a generic vm_operations_struct() called
generic_file_vm_ops. It registers only a nopage() function called filemap_nopage().
This nopage() function will either locating the page in the page cache or read the
information from disk. The struct is declared as follows in mm/filemap.c:

2243 static struct vm_operations_struct generic_file_vm_ops = {

2244 nopage: filemap_nopage,

2245 };

4.4.2 File/Device backed memory regions

In the event the region is backed by a �le, the vm_file leads to an associated
address_space as shown in Figure 4.2. The struct contains information of relevance
to the �lesystem such as the number of dirty pages which must be �ushed to disk.
It is declared as follows in <linux/fs.h>:

406 struct address_space {

407 struct list_head clean_pages;

408 struct list_head dirty_pages;

409 struct list_head locked_pages;

410 unsigned long nrpages;

411 struct address_space_operations *a_ops;

412 struct inode *host;

413 struct vm_area_struct *i_mmap;

414 struct vm_area_struct *i_mmap_shared;

415 spinlock_t i_shared_lock;

416 int gfp_mask;

417 };

A brief description of each �eld is as follows:

clean_pages List of clean pages that need no synchronisation with backing
stoarge;

dirty_pages List of dirty pages that need synchronisation with backing storage;

locked_pages List of pages that are locked in memory;

nrpages Number of resident pages in use by the address space;

a_ops A struct of function for manipulating the �lesystem. Each �lesystem
provides it's own address_space_operations although they sometimes use
generic functions;

host The host inode the �le belongs to;

4.4.2 File/Device backed memory regions 65

i_mmap A list of private mappings using this address_space;

i_mmap_shared A list of VMAs which share mappings in this address_space;

i_shared_lock A spinlock to protect this structure;

gfp_mask The mask to use when calling __alloc_pages() for new pages.

Periodically the memory manager will need to �ush information to disk. The
memory manager does not know and does not care how information is written to
disk, so the a_ops struct is used to call the relevant functions. It is declared as
follows in <linux/fs.h>:

385 struct address_space_operations {

386 int (*writepage)(struct page *);

387 int (*readpage)(struct file *, struct page *);

388 int (*sync_page)(struct page *);

389 /*

390 * ext3 requires that a successful prepare_write() call be

391 * followed by a commit_write() call - they must be balanced

392 */

393 int (*prepare_write)(struct file *, struct page *,

unsigned, unsigned);

394 int (*commit_write)(struct file *, struct page *,

unsigned, unsigned);

395 /* Unfortunately this kludge is needed for FIBMAP.

* Don't use it */

396 int (*bmap)(struct address_space *, long);

397 int (*flushpage) (struct page *, unsigned long);

398 int (*releasepage) (struct page *, int);

399 #define KERNEL_HAS_O_DIRECT

400 int (*direct_IO)(int, struct inode *, struct kiobuf *,

unsigned long, int);

401 #define KERNEL_HAS_DIRECT_FILEIO

402 int (*direct_fileIO)(int, struct file *, struct kiobuf *,

unsigned long, int);

403 void (*removepage)(struct page *);

404 };

These �elds are all function pointers which are described as follows;

writepage Write a page to disk. The o�set within the �le to write to is stored
within the page struct. It is up to the �lesystem speci�c code to �nd the block.
See buffer.c:block_write_full_page();

readpage Read a page from disk. See buffer.c:block_read_full_page();

4.4.3 Creating A Memory Region 66

sync_page Sync a dirty page with disk. See buffer.c:block_sync_page();

prepare_write This is called before data is copied from userspace into a page that
will be written to disk. With a journaled �lesystem, this ensures the �lesystem
log is up to date. With normal �lesystems, it makes sure the needed bu�er
pages are allocated. See buffer.c:block_prepare_write();

commit_write After the data has been copied from userspace, this function is
called to commit the information to disk. See buffer.c:block_commit_write();

bmap Maps a block so that raw IO can be performed. Mainly of concern to
�lesystem speci�c code although it is also when swapping out pages that are
backed by a swap �le instead of a swap partition;

�ushpage This makes sure there is no IO pending on a page before releasing it.
See buffer.c:discard_bh_page();

releasepage This tries to �ush all the bu�ers associated with a page before freeing
the page itself. See try_to_free_buffers().

direct_IO This function is used when performing direct IO to an inode. The
#define exists so that external modules can determine at compile-time if the
function is available as it was only introduced in 2.4.21

direct_�leIO Used to perform direct IO with a struct file. Again, the #define
exists for external modules as this API was only introduced in 2.4.22

removepage An optional callback that is used when a page is removed from the
page cache in remove_page_from_inode_queue()

4.4.3 Creating A Memory Region

The system call mmap() is provided for creating new memory regions within a pro-
cess. For the x86, the function calls sys_mmap2() which calls do_mmap2() directly
with the same parameters. do_mmap2() is responsible for acquiring the parameters
needed by do_mmap_pgoff(), which is the principle function for creating new areas
for all architectures.

do_mmap2() �rst clears the MAP_DENYWRITE and MAP_EXECUTABLE bits from
the flags parameter as they are ignored by Linux, which is con�rmed by the
mmap() manual page. If a �le is being mapped, do_mmap2() will look up the
struct file based on the �le descriptor passed as a parameter and acquire the
mm_struct→mmap_sem semaphore before calling do_mmap_pgoff().

do_mmap_pgoff() begins by performing some basic sanity checks. It �rst checks
the appropriate �lesystem or device functions are available if a �le or device is being
mapped. It then ensures the size of the mapping is page aligned and that it does
not attempt to create a mapping in the kernel portion of the address space. It then
makes sure the size of the mapping does not over�ow the range of pgoff and �nally
that the process does not have too many mapped regions already.

4.4.4 Finding a Mapped Memory Region 67

Figure 4.4: Call Graph: sys_mmap2()

This rest of the function is large but broadly speaking it takes the following
steps:

• Sanity check the parameters;

• Find a free linear address space large enough for the memory mapping. If
a �lesystem or device speci�c get_unmapped_area() function is provided, it
will be used otherwise arch_get_unmapped_area() is called;

• Calculate the VM �ags and check them against the �le access permissions;

• If an old area exists where the mapping is to take place, �x it up so that it is
suitable for the new mapping;

• Allocate a vm_area_struct from the slab allocator and �ll in its entries;

• Link in the new VMA;

• Call the �lesystem or device speci�c mmap function;

• Update statistics and exit.

4.4.4 Finding a Mapped Memory Region

A common operation is to �nd the VMA a particular address belongs to, such
as during operations like page faulting, and the function responsible for this is
find_vma(). The function find_vma() and other API functions a�ecting memory
regions are listed in Table 4.3.

It �rst checks the mmap_cache �eld which caches the result of the last call to
find_vma() as it is quite likely the same region will be needed a few times in
succession. If it is not the desired region, the red-black tree stored in the mm_rb �eld
is traversed. If the desired address is not contained within any VMA, the function
will return the VMA closest to the requested address so it is important callers double
check to ensure the returned VMA contains the desired address.

A second function called find_vma_prev() is provided which is functionally the
same as find_vma() except that it also returns a pointer to the VMA preceding the

4.4.5 Finding a Free Memory Region 68

desired VMA which is required as the list is a singly linked list. find_vma_prev() is
rarely used but notably, it is used when two VMAs are being compared to determine
if they may be merged. It is also used when removing a memory region so that the
singly linked list may be updated.

The last function of note for searching VMAs is find_vma_intersection()

which is used to �nd a VMA which overlaps a given address range. The most
notable use of this is during a call to do_brk() when a region is growing up. It is
important to ensure that the growing region will not overlap an old region.

4.4.5 Finding a Free Memory Region

When a new area is to be memory mapped, a free region has to be found that is
large enough to contain the new mapping. The function responsible for �nding a
free area is get_unmapped_area().

As the call graph in Figure 4.5 indicates, there is little work involved with �nding
an unmapped area. The function is passed a number of parameters. A struct file

is passed representing the �le or device to be mapped as well as pgoff which is the
o�set within the �le that is been mapped. The requested address for the mapping
is passed as well as its length. The last parameter is the protection flags for the
area.

Figure 4.5: Call Graph: get_unmapped_area()

If a device is being mapped, such as a video card, the associated
f_op→get_unmapped_area() is used. This is because devices or �les may have
additional requirements for mapping that generic code can not be aware of, such as
the address having to be aligned to a particular virtual address.

If there are no special requirements, the architecture speci�c function
arch_get_unmapped_area() is called. Not all architectures provide their own func-
tion. For those that don't, there is a generic version provided in mm/mmap.c.

4.4.6 Inserting a memory region 69

struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned

long addr)

Finds the VMA that covers a given address. If the region does not exist, it
returns the VMA closest to the requested address

struct vm_area_struct * find_vma_prev(struct mm_struct * mm,

unsigned long addr, struct vm_area_struct **pprev)

Same as find_vma() except it also also gives the VMA pointing to the returned
VMA. It is not often used, with sys_mprotect() being the notable exception, as
it is usually find_vma_prepare() that is required

struct vm_area_struct * find_vma_prepare(struct mm_struct * mm,

unsigned long addr, struct vm_area_struct ** pprev, rb_node_t ***

rb_link, rb_node_t ** rb_parent)

Same as find_vma() except that it will also the preceeding VMA in the linked
list as well as the red-black tree nodes needed to perform an insertion into the
tree

struct vm_area_struct * find_vma_intersection(struct mm_struct *

mm, unsigned long start_addr, unsigned long end_addr)

Returns the VMA which intersects a given address range. Useful when checking
if a linear address region is in use by any VMA

int vma_merge(struct mm_struct * mm, struct vm_area_struct * prev,

rb_node_t * rb_parent, unsigned long addr, unsigned long end,

unsigned long vm_flags)

Attempts to expand the supplied VMA to cover a new address range. If the
VMA can not be expanded forwards, the next VMA is checked to see if it may be
expanded backwards to cover the address range instead. Regions may be merged
if there is no �le/device mapping and the permissions match

unsigned long get_unmapped_area(struct file *file, unsigned long

addr, unsigned long len, unsigned long pgoff, unsigned long flags)

Returns the address of a free region of memory large enough to cover the
requested size of memory. Used principally when a new VMA is to be created

void insert_vm_struct(struct mm_struct *, struct vm_area_struct *)

Inserts a new VMA into a linear address space

Table 4.3: Memory Region VMA API

4.4.6 Inserting a memory region

The principal function for inserting a new memory region is insert_vm_struct()
whose call graph can be seen in Figure 4.6. It is a very simple function which

4.4.6 Inserting a memory region 70

�rst calls find_vma_prepare() to �nd the appropriate VMAs the new region is to
be inserted between and the correct nodes within the red-black tree. It then calls
__vma_link() to do the work of linking in the new VMA.

Figure 4.6: Call Graph: insert_vm_struct()

The function insert_vm_struct() is rarely used as it does not increase the
map_count �eld. Instead, the function commonly used is __insert_vm_struct()
which performs the same tasks except that it increments map_count.

Two varieties of linking functions are provided, vma_link() and __vma_link().
vma_link() is intended for use when no locks are held. It will acquire all the
necessary locks, including locking the �le if the VMA is a �le mapping before calling
__vma_link() which places the VMA in the relevant lists.

It is important to note that many functions do not use the insert_vm_struct()
functions but instead prefer to call find_vma_prepare() themselves followed by a
later vma_link() to avoid having to traverse the tree multiple times.

The linking in __vma_link() consists of three stages which are contained in
three separate functions. __vma_link_list() inserts the VMA into the linear,
singly linked list. If it is the �rst mapping in the address space (i.e. prev is NULL),
it will become the red-black tree root node. The second stage is linking the node
into the red-black tree with __vma_link_rb(). The �nal stage is �xing up the �le
share mapping with __vma_link_file() which basically inserts the VMA into the
linked list of VMAs via the vm_pprev_share and vm_next_share �elds.

4.4.7 Merging contiguous regions 71

4.4.7 Merging contiguous regions

Merging VMAs
Linux used to have a function called merge_segments() [Hac02] which was re-

sponsible for merging adjacent regions of memory together if the �le and permissions
matched. The objective was to remove the number of VMAs required, especially
as many operations resulted in a number of mappings been created such as calls
to sys_mprotect(). This was an expensive operation as it could result in large
portions of the mappings been traversed and was later removed as applications,
especially those with many mappings, spent a long time in merge_segments().

The equivalent function which exists now is called vma_merge() and it is only
used in two places. The �rst is user is sys_mmap() which calls it if an anonymous
region is being mapped, as anonymous regions are frequently mergable. The second
time is during do_brk() which is expanding one region into a newly allocated one
where the two regions should be merged. Rather than merging two regions, the
function vma_merge() checks if an existing region may be expanded to satisfy the
new allocation negating the need to create a new region. A region may be expanded
if there are no �le or device mappings and the permissions of the two areas are the
same.

Regions are merged elsewhere, although no function is explicitly called to perform
the merging. The �rst is during a call to sys_mprotect() during the �xup of areas
where the two regions will be merged if the two sets of permissions are the same
after the permissions in the a�ected region change. The second is during a call to
move_vma() when it is likely that similar regions will be located beside each other.

4.4.8 Remapping and moving a memory region

Moving VMAsRemapping VMAs
mremap() is a system call provided to grow or shrink an existing memory map-

ping. This is implemented by the function sys_mremap() which may move a memory
region if it is growing or it would overlap another region and MREMAP_FIXED is not
speci�ed in the �ags. The call graph is illustrated in Figure 4.7.

If a region is to be moved, do_mremap() �rst calls get_unmapped_area() to �nd
a region large enough to contain the new resized mapping and then calls move_vma()
to move the old VMA to the new location. See Figure 4.8 for the call graph to
move_vma().

First move_vma() checks if the new location may be merged with the VMAs
adjacent to the new location. If they can not be merged, a new VMA is allocated
literally one PTE at a time. Next move_page_tables() is called(see Figure 4.9 for
its call graph) which copies all the page table entries from the old mapping to the
new one. While there may be better ways to move the page tables, this method
makes error recovery trivial as backtracking is relatively straight forward.

The contents of the pages are not copied. Instead, zap_page_range() is called
to swap out or remove all the pages from the old mapping and the normal page fault
handling code will swap the pages back in from backing storage or from �les or will

4.4.9 Locking a Memory Region 72

Figure 4.7: Call Graph: sys_mremap()

Figure 4.8: Call Graph: move_vma()

call the device speci�c do_nopage() function.

4.4.9 Locking a Memory Region

Linux can lock pages from an address range into memory via the system call mlock()
which is implemented by sys_mlock() whose call graph is shown in Figure 4.10. At
a high level, the function is simple; it creates a VMA for the address range to
be locked, sets the VM_LOCKED �ag on it and forces all the pages to be present
with make_pages_present(). A second system call mlockall() which maps to
sys_mlockall() is also provided which is a simple extension to do the same work
as sys_mlock() except for every VMA on the calling process. Both functions rely
on the core function do_mlock() to perform the real work of �nding the a�ected
VMAs and deciding what function is needed to �x up the regions as described later.

There are some limitations to what memory may be locked. The address range
must be page aligned as VMAs are page aligned. This is addressed by simply
rounding the range up to the nearest page aligned range. The second proviso is
that the process limit RLIMIT_MLOCK imposed by the system administrator may not
be exceeded. The last proviso is that each process may only lock half of physical
memory at a time. This is a bit non-functional as there is nothing to stop a process
forking a number of times and each child locking a portion but as only root processes
are allowed to lock pages, it does not make much di�erence. It is safe to presume
that a root process is trusted and knows what it is doing. If it does not, the system
administrator with the resulting broken system probably deserves it and gets to keep

4.4.10 Unlocking the region 73

Figure 4.9: Call Graph: move_page_tables()

both parts of it.

4.4.10 Unlocking the region

Unlocking VMAs
The system calls munlock() and munlockall() provide the corollary for the

locking functions and map to sys_munlock() and sys_munlockall() respectively.
The functions are much simpler than the locking functions as they do not have to
make numerous checks. They both rely on the same do_mmap() function to �x up
the regions.

4.4.11 Fixing up regions after locking

When locking or unlocking, VMAs will be a�ected in one of four ways, each of
which must be �xed up by mlock_fixup(). The locking may a�ect the whole
VMA in which case mlock_fixup_all() is called. The second condition, handled
by mlock_fixup_start(), is where the start of the region is locked, requiring that
a new VMA be allocated to map the new area. The third condition, handled by
mlock_fixup_end(), is predictably enough where the end of the region is locked.
Finally, mlock_fixup_middle() handles the case where the middle of a region is
mapped requiring two new VMAs to be allocated.

It is interesting to note that VMAs created as a result of locking are never
merged, even when unlocked. It is presumed that processes which lock regions will
need to lock the same regions over and over again and it is not worth the processor
power to constantly merge and split regions.

4.4.12 Deleting a memory region 74

Figure 4.10: Call Graph: sys_mlock()

4.4.12 Deleting a memory region

The function responsible for deleting memory regions, or parts thereof, is do_munmap().
It is a relatively simple operation in comparison to the other memory region related
operations and is basically divided up into three parts. The �rst is to �x up the
red-black tree for the region that is about to be unmapped. The second is to release
the pages and PTEs related to the region to be unmapped and the third is to �x up
the regions if a hole has been generated.

Figure 4.11: Call Graph: do_munmap()

To ensure the red-black tree is ordered correctly, all VMAs to be a�ected by the
unmap are placed on a linked list called free and then deleted from the red-black
tree with rb_erase(). The regions if they still exist will be added with their new
addresses later during the �xup.

Next the linked list VMAs on free is walked through and checked to en-
sure it is not a partial unmapping. Even if a region is just to be partially un-

4.4.13 Deleting all memory regions 75

mapped, remove_shared_vm_struct() is still called to remove the shared �le map-
ping. Again, if this is a partial unmapping, it will be recreated during �xup.
zap_page_range() is called to remove all the pages associated with the region about
to be unmapped before unmap_fixup() is called to handle partial unmappings.

Lastly free_pgtables() is called to try and free up all the page table entries
associated with the unmapped region. It is important to note that the page table
entry freeing is not exhaustive. It will only unmap full PGD directories and their
entries so for example, if only half a PGD was used for the mapping, no page table
entries will be freed. This is because a �ner grained freeing of page table entries
would be too expensive to free up data structures that are both small and likely to
be used again.

4.4.13 Deleting all memory regions

During process exit, it is necessary to unmap all VMAs associated with a mm_struct.
The function responsible is exit_mmap(). It is a very simply function which �ushes
the CPU cache before walking through the linked list of VMAs, unmapping each
of them in turn and freeing up the associated pages before �ushing the TLB and
deleting the page table entries. It is covered in detail in the Code Commentary.

4.5 Exception Handling

A very important part of VM is how kernel address space exceptions that are not
bugs are caught1. This section does not cover the exceptions that are raised with
errors such as divide by zero, we are only concerned with the exception raised as
the result of a page fault. There are two situations where a bad reference may
occur. The �rst is where a process sends an invalid pointer to the kernel via a
system call which the kernel must be able to safely trap as the only check made
initially is that the address is below PAGE_OFFSET. The second is where the kernel
uses copy_from_user() or copy_to_user() to read or write data from userspace.

At compile time, the linker creates an exception table in the __ex_table sec-
tion of the kernel code segment which starts at __start___ex_table and ends at
__stop___ex_table. Each entry is of type exception_table_entry which is a pair
consisting of an execution point and a �xup routine. When an exception occurs that
the page fault handler cannot manage, it calls search_exception_table() to see if
a �xup routine has been provided for an error at the faulting instruction. If module
support is compiled, each modules exception table will also be searched.

If the address of the current exception is found in the table, the corresponding
location of the �xup code is returned and executed. We will see in Section 4.7 how
this is used to trap bad reads and writes to userspace.

1Many thanks go to Ingo Oeser for clearing up the details of how this is implemented.

4.6 Page Faulting 76

4.6 Page Faulting

Pages in the process linear address space are not necessarily resident in memory. For
example, allocations made on behalf of a process are not satis�ed immediately as the
space is just reserved within the vm_area_struct. Other examples of non-resident
pages include the page having been swapped out to backing storage or writing a
read-only page.

Linux, like most operating systems, has a Demand Fetch policy as its fetch
policy for dealing with pages that are not resident. This states that the page is only
fetched from backing storage when the hardware raises a page fault exception which
the operating system traps and allocates a page. The characteristics of backing
storage imply that some sort of page prefetching policy would result in less page
faults [MM87] but Linux is fairly primitive in this respect. When a page is paged
in from swap space, a number of pages after it, up to 2page_cluster are read in by
swapin_readahead() and placed in the swap cache. Unfortunately there is only a
chance that pages likely to be used soon will be adjacent in the swap area making
it a poor prepaging policy. Linux would likely bene�t from a prepaging policy that
adapts to program behaviour [KMC02].

There are two types of page fault, major and minor faults. Major page faults
occur when data has to be read from disk which is an expensive operation, else
the fault is referred to as a minor, or soft page fault. Linux maintains statistics
on the number of these types of page faults with the task_struct→maj_flt and
task_struct→min_flt �elds respectively.

The page fault handler in Linux is expected to recognise and act on a number
of di�erent types of page faults listed in Table 4.4 which will be discussed in detail
later in this chapter.

Each architecture registers an architecture-speci�c function for the handling of
page faults. While the name of this function is arbitrary, a common choice is
do_page_fault() whose call graph for the x86 is shown in Figure 4.12.

This function is provided with a wealth of information such as the address of
the fault, whether the page was simply not found or was a protection error, whether
it was a read or write fault and whether it is a fault from user or kernel space. It
is responsible for determining which type of fault has occurred and how it should
be handled by the architecture-independent code. The �ow chart, in Figure 4.13,
shows broadly speaking what this function does. In the �gure, identi�ers with a
colon after them corresponds to the label as shown in the code.

handle_mm_fault() is the architecture independent top level function for fault-
ing in a page from backing storage, performing COW and so on. If it returns 1, it
was a minor fault, 2 was a major fault, 0 sends a SIGBUS error and any other value
invokes the out of memory handler.

4.6.1 Handling a Page Fault

Once the exception handler has decided the fault is a valid page fault in a valid
memory region, the architecture-independent function handle_mm_fault(), whose

4.6.1 Handling a Page Fault 77

Exception Type Action
Region valid but page not allo-
cated

Minor Allocate a page frame from the
physical page allocator

Region not valid but is beside
an expandable region like the
stack

Minor Expand the region and allo-
cate a page

Page swapped out but present
in swap cache

Minor Re-establish the page in the
process page tables and drop a
reference to the swap cache

Page swapped out to backing
storage

Major Find where the page with infor-
mation stored in the PTE and
read it from disk

Page write when marked read-
only

Minor If the page is a COW page,
make a copy of it, mark it
writable and assign it to the
process. If it is in fact a bad
write, send a SIGSEGV signal

Region is invalid or process has
no permissions to access

Error Send a SEGSEGV signal to the
process

Fault occurred in the kernel
portion address space

Minor If the fault occurred in the
vmalloc area of the address
space, the current process page
tables are updated against the
master page table held by
init_mm. This is the only valid
kernel page fault that may oc-
cur

Fault occurred in the userspace
region while in kernel mode

Error If a fault occurs, it means a ker-
nel system did not copy from
userspace properly and caused
a page fault. This is a ker-
nel bug which is treated quite
severely.

Table 4.4: Reasons For Page Faulting

call graph is shown in Figure 4.14, takes over. It allocates the required page table
entries if they do not already exist and calls handle_pte_fault().

Based on the properties of the PTE, one of the handler functions shown in Figure
4.14 will be used. The �rst stage of the decision is to check if the PTE is marked
not present or if it has been allocated with which is checked by pte_present()

and pte_none(). If no PTE has been allocated (pte_none() returned true),
do_no_page() is called which handles Demand Allocation. Otherwise it is a page

4.6.2 Demand Allocation 78

Figure 4.12: Call Graph: do_page_fault()

that has been swapped out to disk and do_swap_page() performs Demand Paging .
There is a rare exception where swapped out pages belonging to a virtual �le are
handled by do_no_page(). This particular case is covered in Section 12.4.

The second option is if the page is being written to. If the PTE is write protected,
then do_wp_page() is called as the page is a Copy-On-Write (COW) page. A COW
page is one which is shared between multiple processes(usually a parent and child)
until a write occurs after which a private copy is made for the writing process. A
COW page is recognised because the VMA for the region is marked writable even
though the individual PTE is not. If it is not a COW page, the page is simply
marked dirty as it has been written to.

The last option is if the page has been read and is present but a fault still
occurred. This can occur with some architectures that do not have a three level
page table. In this case, the PTE is simply established and marked young.

4.6.2 Demand Allocation

When a process accesses a page for the very �rst time, the page has to be
allocated and possibly �lled with data by the do_no_page() function. If the
vm_operations_struct associated with the parent VMA (vma→vm_ops) provides
a nopage() function, it is called. This is of importance to a memory mapped device
such as a video card which needs to allocate the page and supply data on access or
to a mapped �le which must retrieve its data from backing storage. We will �rst
discuss the case where the faulting page is anonymous as this is the simpliest case.

Handling anonymous pages If vm_area_struct→vm_ops �eld is not �lled or
a nopage() function is not supplied, the function do_anonymous_page() is called
to handle an anonymous access. There are only two cases to handle, �rst time read

4.6.2 Demand Allocation 79

Figure 4.13: do_page_fault() Flow Diagram

and �rst time write. As it is an anonymous page, the �rst read is an easy case as no
data exists. In this case, the system-wide empty_zero_page, which is just a page of
zeros, is mapped for the PTE and the PTE is write protected. The write protection
is set so that another page fault will occur if the process writes to the page. On the
x86, the global zero-�lled page is zerod out in the function mem_init().

If this is the �rst write to the page alloc_page() is called to allocate a free page
(see Chapter 6) and is zero �lled by clear_user_highpage(). Assuming the page
was successfully allocated, the Resident Set Size (RSS) �eld in the mm_struct will
be incremented; flush_page_to_ram() is called as required when a page has been
inserted into a userspace process by some architectures to ensure cache coherency.
The page is then inserted on the LRU lists so it may be reclaimed later by the page
reclaiming code. Finally the page table entries for the process are updated for the
new mapping.

4.6.2 Demand Allocation 80

Figure 4.14: Call Graph: handle_mm_fault()

Figure 4.15: Call Graph: do_no_page()

Handling �le/device backed pages If backed by a �le or device, a nopage()

function will be provided within the VMAs vm_operations_struct. In the �le-
backed case, the function filemap_nopage() is frequently the nopage() function
for allocating a page and reading a page-sized amount of data from disk. Pages
backed by a virtual �le, such as those provided by shmfs, will use the function
shmem_nopage() (See Chapter 12). Each device driver provides a di�erent nopage()
whose internals are unimportant to us here as long as it returns a valid struct page

to use.
On return of the page, a check is made to ensure a page was successfully allocated

and appropriate errors returned if not. A check is then made to see if an early COW
break should take place. An early COW break will take place if the fault is a write
to the page and the VM_SHARED �ag is not included in the managing VMA. An early
break is a case of allocating a new page and copying the data across before reducing
the reference count to the page returned by the nopage() function.

4.6.3 Demand Paging 81

In either case, a check is then made with pte_none() to ensure there is not a
PTE already in the page table that is about to be used. It is possible with SMP
that two faults would occur for the same page at close to the same time and as the
spinlocks are not held for the full duration of the fault, this check has to be made at
the last instant. If there has been no race, the PTE is assigned, statistics updated
and the architecture hooks for cache coherency called.

4.6.3 Demand Paging

When a page is swapped out to backing storage, the function do_swap_page() is
responsible for reading the page back in, with the exception of virtual �les which
are covered in Section 12. The information needed to �nd it is stored within the
PTE itself. The information within the PTE is enough to �nd the page in swap. As
pages may be shared between multiple processes, they can not always be swapped
out immediately. Instead, when a page is swapped out, it is placed within the swap
cache.

Figure 4.16: Call Graph: do_swap_page()

A shared page can not be swapped out immediately because there is no way of
mapping a struct page to the PTEs of each process it is shared between. Searching
the page tables of all processes is simply far too expensive. It is worth noting that
the late 2.5.x kernels and 2.4.x with a custom patch have what is called Reverse
Mapping (RMAP) which is discussed at the end of the chapter.

With the swap cache existing, it is possible that when a fault occurs it still exists
in the swap cache. If it is, the reference count to the page is simply increased and it
is placed within the process page tables again and registers as a minor page fault.

If the page exists only on disk swapin_readahead() is called which reads in the
requested page and a number of pages after it. The number of pages read in is
determined by the variable page_cluster de�ned in mm/swap.c. On low memory
machines with less than 16MiB of RAM, it is initialised as 2 or 3 otherwise. The
number of pages read in is 2page_cluster unless a bad or empty swap entry is encoun-
tered. This works on the premise that a seek is the most expensive operation in
time so once the seek has completed, the succeeding pages should also be read in.

4.6.4 Copy On Write (COW) Pages 82

4.6.4 Copy On Write (COW) Pages

Once upon time, the full parent address space was duplicated for a child when
a process forked. This was an extremely expensive operation as it is possible a
signi�cant percentage of the process would have to be swapped in from backing
storage. To avoid this considerable overhead, a technique called Copy-On-Write
(COW) is employed.

Figure 4.17: Call Graph: do_wp_page()

During fork, the PTEs of the two processes are made read-only so that when
a write occurs there will be a page fault. Linux recognises a COW page because
even though the PTE is write protected, the controlling VMA shows the region is
writable. It uses the function do_wp_page() to handle it by making a copy of the
page and assigning it to the writing process. If necessary, a new swap slot will be
reserved for the page. With this method, only the page table entries have to be
copied during a fork.

4.7 Copying To/From Userspace

It is not safe to access memory in the process address space directly as there is no way
to quickly check if the page addressed is resident or not. Linux relies on the MMU
to raise exceptions when the address is invalid and have the Page Fault Exception
handler catch the exception and �x it up. In the x86 case, assembler is provided
by the __copy_user() to trap exceptions where the address is totally useless. The
location of the �xup code is found when the function search_exception_table()

is called. Linux provides an ample API (mainly macros) for copying data to and
from the user address space safely as shown in Table 4.5.

All the macros map on to assembler functions which all follow similar patterns of
implementation so for illustration purposes, we'll just trace how copy_from_user()

is implemented on the x86.
If the size of the copy is known at compile time, copy_from_user() calls

__constant_copy_from_user() else __generic_copy_from_user() is used. If the
size is known, there are di�erent assembler optimisations to copy data in 1, 2 or 4

4.7 Copying To/From Userspace 83

unsigned long copy_from_user(void *to, const void *from, unsigned

long n)

Copies n bytes from the user address(from) to the kernel address space(to)

unsigned long copy_to_user(void *to, const void *from, unsigned

long n)

Copies n bytes from the kernel address(from) to the user address space(to)

void copy_user_page(void *to, void *from, unsigned long address)

This copies data to an anonymous or COW page in userspace. Ports are
responsible for avoiding D-cache alises. It can do this by using a kernel virtual
address that would use the same cache lines as the virtual address.

void clear_user_page(void *page, unsigned long address)

Similar to copy_user_page() except it is for zeroing a page

void get_user(void *to, void *from)

Copies an integer value from userspace (from) to kernel space (to)

void put_user(void *from, void *to)

Copies an integer value from kernel space (from) to userspace (to)

long strncpy_from_user(char *dst, const char *src, long count)

Copies a null terminated string of at most count bytes long from userspace
(src) to kernel space (dst)

long strlen_user(const char *s, long n)

Returns the length, upper bound by n, of the userspace string including the
terminating NULL

int access_ok(int type, unsigned long addr, unsigned long size)

Returns non-zero if the userspace block of memory is valid and zero otherwise

Table 4.5: Accessing Process Address Space API

byte strides otherwise the distinction between the two copy functions is not impor-
tant.

The generic copy function eventually calls the function __copy_user_zeroing()

in <asm-i386/uaccess.h> which has three important parts. The �rst part is the
assembler for the actual copying of size number of bytes from userspace. If any
page is not resident, a page fault will occur and if the address is valid, it will get
swapped in as normal. The second part is ��xup� code and the third part is the
__ex_table mapping the instructions from the �rst part to the �xup code in the
second part.

These pairings, as described in Section 4.5, copy the location of the copy instruc-

4.8 What's New in 2.6 84

tions and the location of the �xup code the kernel exception handle table by the
linker. If an invalid address is read, the function do_page_fault() will fall through,
call search_exception_table() and �nd the EIP where the faulty read took place
and jump to the �xup code which copies zeros into the remaining kernel space, �xes
up registers and returns. In this manner, the kernel can safely access userspace with
no expensive checks and letting the MMU hardware handle the exceptions.

All the other functions that access userspace follow a similar pattern.

4.8 What's New in 2.6

Linear Address Space The linear address space remains essentially the same as
2.4 with no modi�cations that cannot be easily recognised. The main change is the
addition of a new page usable from userspace that has been entered into the �xed
address virtual mappings. On the x86, this page is located at 0xFFFFF000 and called
the vsyscall page. Code is located at this page which provides the optimal method
for entering kernel-space from userspace. A userspace program now should use call
0xFFFFF000 instead of the traditional int 0x80 when entering kernel space.

struct mm_struct This struct has not changed signi�cantly. The �rst change is
the addition of a free_area_cache �eld which is initialised as TASK_UNMAPPED_BASE.
This �eld is used to remember where the �rst hole is in the linear address space to
improve search times. A small number of �elds have been added at the end of the
struct which are related to core dumping and beyond the scope of this book.

struct vm_area_struct This struct also has not changed signi�cantly. The main
di�erences is that the vm_next_share and vm_pprev_share has been replaced
with a proper linked list with a new �eld called simply shared. The vm_raend

has been removed altogether as �le readahead is implemented very di�erently in
2.6. Readahead is mainly managed by a struct file_ra_state struct stored in
struct file→f_ra. How readahead is implemented is described in a lot of detail
in mm/readahead.c.

struct address_space The �rst change is relatively minor. The gfp_mask �eld
has been replaced with a flags �eld where the �rst __GFP_BITS_SHIFT bits are
used as the gfp_mask and accessed with mapping_gfp_mask(). The remaining bits
are used to store the status of asynchronous IO. The two �ags that may be set are
AS_EIO to indicate an IO error and AS_ENOSPC to indicate the �lesystem ran out of
space during an asynchronous write.

This struct has a number of signi�cant additions, mainly related to the page
cache and �le readahead. As the �elds are quite unique, we'll introduce them in
detail:

page_tree This is a radix tree of all pages in the page cache for this mapping
indexed by the block the data is located on the physical disk. In 2.4, searching

4.8 What's New in 2.6 85

the page cache involved traversing a linked list, in 2.6, it is a radix tree lookup
which considerably reduces search times. The radix tree is implemented in
lib/radix-tree.c;

page_lock Spinlock protecting page_tree;

io_pages When dirty pages are to be written out, they are added to this
list before do_writepages() is called. As explained in the comment above
mpage_writepages() in fs/mpage.c, pages to be written out are placed on
this list to avoid deadlocking by locking already locked by IO;

dirtied_when This �eld records, in ji�es, the �rst time an inode was dirtied.
This �eld determines where the inode is located on the super_block→s_dirty

list. This prevents a frequently dirtied inode remaining at the top of the list
and starving writeout on other inodes;

backing_dev_info This �eld records readahead related information. The struct
is declared in include/linux/backing-dev.h with comments explaining the
�elds;

private_list This is a private list available to the address_space. If the helper
functions mark_buffer_dirty_inode() and sync_mapping_buffers() are
used, this list links buffer_heads via the buffer_head→b_assoc_buffers

�eld;

private_lock This spinlock is available for the address_space. The use of
this lock is very convoluted but some of the uses are explained in the long
ChangeLog for 2.5.17 (http://lwn.net/2002/0523/a/2.5.17.php3). but it is
mainly related to protecting lists in other mappings which share bu�ers in
this mapping. The lock would not protect this private_list, but it would
protect the private_list of another address_space sharing bu�ers with this
mapping;

assoc_mapping This is the address_space which backs bu�ers contained in
this mappings private_list;

truncate_count is incremented when a region is being truncated by the function
invalidate_mmap_range(). The counter is examined during page fault by
do_no_page() to ensure that a page is not faulted in that was just invalidated.

struct address_space_operations Most of the changes to this struct initially
look quite simple but are actually quite involved. The changed �elds are:

writepage The writepage() callback has been changed to take an additional pa-
rameter struct writeback_control. This struct is responsible for recording
information about the writeback such as if it is congested or not, if the writer
is the page allocator for direct reclaim or kupdated and contains a handle to
the backing backing_dev_info to control readahead;

4.8 What's New in 2.6 86

writepages Moves all pages from dirty_pages to io_pages before writing them
all out;

set_page_dirty is an address_space speci�c method of dirtying a page. This
is mainly used by the backing storage address_space_operations and for
anonymous shared pages where there are no bu�ers associated with the page
to be dirtied;

readpages Used when reading in pages so that readahead can be accurately
controlled;

bmap This has been changed to deal with disk sectors rather than unsigned longs
for devices larger than 232 bytes.

invalidatepage This is a renaming change. block_flushpage() and the
callback flushpage() has been renamed to block_invalidatepage() and
invalidatepage();

direct_IO This has been changed to use the new IO mechanisms in 2.6. The
new mechanisms are beyond the scope of this book;

Memory Regions The operation of mmap() has two important changes. The
�rst is that it is possible for security modules to register a callback. This callback
is called security_file_mmap() which looks up a security_ops struct for the
relevant function. By default, this will be a NULL operation.

The second is that there is much stricter address space accounting code in place.
vm_area_structs which are to be accounted will have the VM_ACCOUNT �ag set,
which will be all userspace mappings. When userspace regions are created or de-
stroyed, the functions vm_acct_memory() and vm_unacct_memory() update the
variable vm_committed_space. This gives the kernel a much better view of how
much memory has been committed to userspace.

4GiB/4GiB User/Kernel Split One limitation that exists for the 2.4.x kernels
is that the kernel has only 1GiB of virtual address space available which is visible
to all processes. At time of writing, a patch has been developed by Ingo Molnar2

which allows the kernel to optionally have it's own full 4GiB address space. The
patches are available from http://redhat.com/ mingo/4g-patches/ and are included
in the -mm test trees but it is unclear if it will be merged into the mainstream or
not.

This feature is intended for 32 bit systems that have very large amounts (>
16GiB) of RAM. The traditional 3/1 split adequately supports up to 1GiB of RAM.
After that, high-memory support allows larger amounts to be supported by tem-
porarily mapping high-memory pages but with more RAM, this forms a signi�cant
bottleneck. For example, as the amount of physical RAM approached the 60GiB

2See http://lwn.net/Articles/39283/ for the �rst announcement of the patch.

4.8 What's New in 2.6 87

range, almost the entire of low memory is consumed by mem_map. By giving the
kernel it's own 4GiB virtual address space, it is much easier to support the memory
but the serious penalty is that there is a per-syscall TLB �ush which heavily impacts
performance.

With the patch, there is only a small 16MiB region of memory shared between
userspace and kernelspace which is used to store the GDT, IDT, TSS, LDT, vsyscall
page and the kernel stack. The code for doing the actual switch between the pageta-
bles is then contained in the trampoline code for entering/existing kernelspace.
There are a few changes made to the core core such as the removal of direct pointers
for accessing userspace bu�ers but, by and large, the core kernel is una�ected by
this patch.

Non-Linear VMA Population In 2.4, a VMA backed by a �le is populated in
a linear fashion. This can be optionally changed in 2.6 with the introduction of
the MAP_POPULATE �ag to mmap() and the new system call remap_file_pages(),
implemented by sys_remap_file_pages(). This system call allows arbitrary pages
in an existing VMA to be remapped to an arbitrary location on the backing �le by
manipulating the page tables.

On page-out, the non-linear address for the �le is encoded within the PTE so that
it can be installed again correctly on page fault. How it is encoded is architecture
speci�c so two macros are de�ned called pgoff_to_pte() and pte_to_pgoff() for
the task.

This feature is largely of bene�t to applications with a large number of mappings
such as database servers and virtualising applications such as emulators. It was
introduced for a number of reasons. First, VMAs are per-process and can have
considerable space requirements, especially for applications with a large number of
mappings. Second, the search get_unmapped_area() uses for �nding a free area
in the virtual address space is a linear search which is very expensive for large
numbers of mappings. Third, non-linear mappings will prefault most of the pages
into memory where as normal mappings may cause a major fault for each page
although can be avoided by using the new �ag MAP_POPULATE �ag with mmap() or
my using mlock(). The last reason is to avoid sparse mappings which, at worst
case, would require one VMA for every �le page mapped.

However, this feature is not without some serious drawbacks. The �rst is that
the system calls truncate() and mincore() are broken with respect to non-linear
mappings. Both system calls depend depend on vm_area_struct→vm_pgoff which
is meaningless for non-linear mappings. If a �le mapped by a non-linear mapping
is truncated, the pages that exists within the VMA will still remain. It has been
proposed that the proper solution is to leave the pages in memory but make them
anonymous but at the time of writing, no solution has been implemented.

The second major drawback is TLB invalidations. Each remapped page will re-
quire that the MMU be told the remapping took place with flush_icache_page()

but the more important penalty is with the call to flush_tlb_page(). Some pro-
cessors are able to invalidate just the TLB entries related to the page but other

4.8 What's New in 2.6 88

processors implement this by �ushing the entire TLB. If re-mappings are frequent,
the performance will degrade due to increased TLB misses and the overhead of con-
stantly entering kernel space. In some ways, these penalties are the worst as the
impact is heavily processor dependant.

It is currently unclear what the future of this feature, if it remains, will be. At
the time of writing, there is still on-going arguments on how the issues with the
feature will be �xed but it is likely that non-linear mappings are going to be treated
very di�erently to normal mappings with respect to pageout, truncation and the
reverse mapping of pages. As the main user of this feature is likely to be databases,
this special treatment is not likely to be a problem.

Page Faulting The changes to the page faulting routines are more cosmetic than
anything else other than the necessary changes to support reverse mapping and PTEs
in high memory. The main cosmetic change is that the page faulting routines return
self explanatory compile time de�nitions rather than magic numbers. The possi-
ble return values for handle_mm_fault() are VM_FAULT_MINOR, VM_FAULT_MAJOR,
VM_FAULT_SIGBUS and VM_FAULT_OOM.

Chapter 5

Boot Memory Allocator

It is impractical to statically initialise all the core kernel memory structures at com-
pile time as there are simply far too many permutations of hardware con�gurations.
Yet to set up even the basic structures requires memory as even the physical page
allocator, discussed in the next chapter, needs to allocate memory to initialise itself.
But how can the physical page allocator allocate memory to initialise itself?

To address this, a specialised allocator called the Boot Memory Allocator is used.
It is based on the most basic of allocators, a First Fit allocator which uses a bitmap
to represent memory [Tan01] instead of linked lists of free blocks. If a bit is 1, the
page is allocated and 0 if unallocated. To satisfy allocations of sizes smaller than
a page, the allocator records the Page Frame Number (PFN) of the last allocation
and the o�set the allocation ended at. Subsequent small allocations are �merged�
together and stored on the same page.

The reader may ask why this allocator is not used for the running system. One
compelling reason is that although the �rst �t allocator does not su�er badly from
fragmentation [JW98], memory frequently has to linearly searched to satisfy an
allocation. As this is examining bitmaps, it gets very expensive, especially as the
�rst �t algorithm tends to leave many small free blocks at the beginning of physical
memory which still get scanned for large allocations, thus making the process very
wasteful [WJNB95].

There are two very similar but distinct APIs for the allocator. One is for UMA
architectures, listed in Table 5.1 and the other is for NUMA, listed in Table 5.2. The
principle di�erence is that the NUMA API must be supplied with the node a�ected
by the operation but as the callers of these APIs exist in the architecture dependant
layer, it is not a signi�cant problem.

This chapter will begin with a description of the structure the allocator uses
to describe the physical memory available for each node. We will then illustrate
how the limits of physical memory and the sizes of each zone are discovered before
talking about how the information is used to initialised the boot memory allocator
structures. The allocation and free routines will then be discussed before �nally
talking about how the boot memory allocator is retired.

89

5.1 Representing the Boot Map 90

unsigned long init_bootmem(unsigned long start, unsigned long page)

This initialises the memory between 0 and the PFN page. The beginning of
usable memory is at the PFN start

void reserve_bootmem(unsigned long addr, unsigned long size)

Mark the pages between the address addr and addr+size reserved. Requests
to partially reserve a page will result in the full page being reserved

void free_bootmem(unsigned long addr, unsigned long size)

Mark the pages between the address addr and addr+size free

void * alloc_bootmem(unsigned long size)

Allocate size number of bytes from ZONE_NORMAL. The allocation will be
aligned to the L1 hardware cache to get the maximum bene�t from the hard-
ware cache

void * alloc_bootmem_low(unsigned long size)

Allocate size number of bytes from ZONE_DMA. The allocation will be aligned
to the L1 hardware cache

void * alloc_bootmem_pages(unsigned long size)

Allocate size number of bytes from ZONE_NORMAL aligned on a page size so
that full pages will be returned to the caller

void * alloc_bootmem_low_pages(unsigned long size)

Allocate size number of bytes from ZONE_NORMAL aligned on a page size so
that full pages will be returned to the caller

unsigned long bootmem_bootmap_pages(unsigned long pages)

Calculate the number of pages required to store a bitmap representing the
allocation state of pages number of pages

unsigned long free_all_bootmem()

Used at the boot allocator end of life. It cycles through all pages in the bitmap.
For each one that is free, the �ags are cleared and the page is freed to the physical
page allocator (See next chapter) so the runtime allocator can set up its free lists

Table 5.1: Boot Memory Allocator API for UMA Architectures

5.1 Representing the Boot Map

A bootmem_data struct exists for each node of memory in the system. It contains
the information needed for the boot memory allocator to allocate memory for a node
such as the bitmap representing allocated pages and where the memory is located.
It is declared as follows in <linux/bootmem.h>:

5.1 Representing the Boot Map 91

unsigned long init_bootmem_node(pg_data_t *pgdat, unsigned long

freepfn, unsigned long startpfn, unsigned long endpfn)

For use with NUMA architectures. It initialise the memory between PFNs
startpfn and endpfn with the �rst usable PFN at freepfn. Once initialised,
the pgdat node is inserted into the pgdat_list

void reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,

unsigned long size)

Mark the pages between the address addr and addr+size on the speci�ed node
pgdat reserved. Requests to partially reserve a page will result in the full page
being reserved

void free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,

unsigned long size)

Mark the pages between the address addr and addr+size on the speci�ed node
pgdat free

void * alloc_bootmem_node(pg_data_t *pgdat, unsigned long size)

Allocate size number of bytes from ZONE_NORMAL on the speci�ed node pgdat.
The allocation will be aligned to the L1 hardware cache to get the maximum
bene�t from the hardware cache

void * alloc_bootmem_pages_node(pg_data_t *pgdat, unsigned long

size)

Allocate size number of bytes from ZONE_NORMAL on the speci�ed node pgdat
aligned on a page size so that full pages will be returned to the caller

void * alloc_bootmem_low_pages_node(pg_data_t *pgdat, unsigned long

size)

Allocate size number of bytes from ZONE_NORMAL on the speci�ed node pgdat
aligned on a page size so that full pages will be returned to the caller

unsigned long free_all_bootmem_node(pg_data_t *pgdat)

Used at the boot allocator end of life. It cycles through all pages in the bitmap
for the speci�ed node. For each one that is free, the page �ags are cleared and
the page is freed to the physical page allocator (See next chapter) so the runtime
allocator can set up its free lists

Table 5.2: Boot Memory Allocator API for NUMA Architectures

25 typedef struct bootmem_data {

26 unsigned long node_boot_start;

27 unsigned long node_low_pfn;

28 void *node_bootmem_map;

29 unsigned long last_offset;

30 unsigned long last_pos;

31 } bootmem_data_t;

5.2 Initialising the Boot Memory Allocator 92

The �elds of this struct are as follows:

node_boot_start This is the starting physical address of the represented block;

node_low_pfn This is the end physical address, in other words, the end of the
ZONE_NORMAL this node represents;

node_bootmem_map This is the location of the bitmap representing allocated
or free pages with each bit;

last_o�set This is the o�set within the the page of the end of the last allocation.
If 0, the page used is full;

last_pos This is the the PFN of the page used with the last allocation. Using
this with the last_offset �eld, a test can be made to see if allocations can
be merged with the page used for the last allocation rather than using up a
full new page.

5.2 Initialising the Boot Memory Allocator

Each architecture is required to supply a setup_arch() function which, among
other tasks, is responsible for acquiring the necessary parameters to initialise the
boot memory allocator.

Each architecture has its own function to get the necessary parameters. On
the x86, it is called setup_memory(), as discussed in Section 2.2.2, but on other
architectures such as MIPS or Sparc, it is called bootmem_init() or the case of the
PPC, do_init_bootmem(). Regardless of the architecture, the tasks are essentially
the same. The parameters it calculates are:

min_low_pfn This is the lowest PFN that is available in the system;

max_low_pfn This is the highest PFN that may be addressed by low memory
(ZONE_NORMAL);

highstart_pfn This is the PFN of the beginning of high memory (ZONE_HIGHMEM);

highend_pfn This is the last PFN in high memory;

max_pfn Finally, this is the last PFN available to the system.

5.2.1 Initialising bootmem_data

Once the limits of usable physical memory are discovered by setup_memory(), one
of two boot memory initialisation functions is selected and provided with the start
and end PFN for the node to be initialised. init_bootmem(), which initialises
contig_page_data, is used by UMA architectures, while init_bootmem_node()

5.3 Allocating Memory 93

is for NUMA to initialise a speci�ed node. Both function are trivial and rely on
init_bootmem_core() to do the real work.

The �rst task of the core function is to insert this pgdat_data_t into the
pgdat_list as at the end of this function, the node is ready for use. It then
records the starting and end address for this node in its associated bootmem_data_t

and allocates the bitmap representing page allocations. The size in bytes, hence the
division by 8, of the bitmap required is calculated as:

mapsize =
(end_pfn− start_pfn) + 7

8

The bitmap in stored at the physical address pointed to by
bootmem_data_t→node_boot_start and the virtual address to the map is placed in
bootmem_data_t→node_bootmem_map. As there is no architecture independent way
to detect �holes� in memory, the entire bitmap is initialised to 1, e�ectively marking
all pages allocated. It is up to the architecture dependent code to set the bits of us-
able pages to 0 although, in reality, the Sparc architecture is the only one which uses
this bitmap. In the case of the x86, the function register_bootmem_low_pages()

reads through the e820 map and calls free_bootmem() for each usable page to set
the bit to 0 before using reserve_bootmem() to reserve the pages needed by the
actual bitmap.

5.3 Allocating Memory

The reserve_bootmem() function may be used to reserve pages for use by the
caller but is very cumbersome to use for general allocations. There are four func-
tions provided for easy allocations on UMA architectures called alloc_bootmem(),
alloc_bootmem_low(), alloc_bootmem_pages() and alloc_bootmem_low_pages()
which are fully described in Table 5.1. All of these macros call __alloc_bootmem()
with di�erent parameters. The call graph for these functions is shown in in Figure
5.1.

Figure 5.1: Call Graph: alloc_bootmem()

5.4 Freeing Memory 94

Similar functions exist for NUMA which take the node as an additional
parameter, as listed in Table 5.2. They are called alloc_bootmem_node(),
alloc_bootmem_pages_node() and alloc_bootmem_low_pages_node(). All of
these macros call __alloc_bootmem_node() with di�erent parameters.

The parameters to either __alloc_bootmem() and __alloc_bootmem_node()

are essentially the same. They are

pgdat This is the node to allocate from. It is omitted in the UMA case as it is
assumed to be contig_page_data;

size This is the size in bytes of the requested allocation;

align This is the number of bytes that the request should be aligned to. For small
allocations, they are aligned to SMP_CACHE_BYTES, which on the x86 will align
to the L1 hardware cache;

goal This is the preferred starting address to begin allocating from. The �low�
functions will start from physical address 0 where as the others will begin
from MAX_DMA_ADDRESS which is the maximum address DMA transfers may
be made from on this architecture.

The core function for all the allocation APIs is __alloc_bootmem_core(). It
is a large function but with simple steps that can be broken down. The function
linearly scans memory starting from the goal address for a block of memory large
enough to satisfy the allocation. With the API, this address will either be 0 for
DMA-friendly allocations or MAX_DMA_ADDRESS otherwise.

The clever part, and the main bulk of the function, deals with deciding if this new
allocation can be merged with the previous one. It may be merged if the following
conditions hold:

• The page used for the previous allocation (bootmem_data→pos) is adjacent
to the page found for this allocation;

• The previous page has some free space in it (bootmem_data→offset != 0);

• The alignment is less than PAGE_SIZE.

Regardless of whether the allocations may be merged or not, the pos and offset

�elds will be updated to show the last page used for allocating and how much of the
last page was used. If the last page was fully used, the o�set is 0.

5.4 Freeing Memory

In contrast to the allocation functions, only two free function are provided which
are free_bootmem() for UMA and free_bootmem_node() for NUMA. They both
call free_bootmem_core() with the only di�erence being that a pgdat is supplied
with NUMA.

5.5 Retiring the Boot Memory Allocator 95

The core function is relatively simple in comparison to the rest of the allocator.
For each full page a�ected by the free, the corresponding bit in the bitmap is set
to 0. If it already was 0, BUG() is called to show a double-free occured. BUG() is
used when an unrecoverable error due to a kernel bug occurs. It terminates the
running process and causes a kernel oops which shows a stack trace and debugging
information that a developer can use to �x the bug.

An important restriction with the free functions is that only full pages may be
freed. It is never recorded when a page is partially allocated so if only partially
freed, the full page remains reserved. This is not as major a problem as it appears
as the allocations always persist for the lifetime of the system; However, it is still
an important restriction for developers during boot time.

5.5 Retiring the Boot Memory Allocator

Late in the bootstrapping process, the function start_kernel() is called which
knows it is safe to remove the boot allocator and all its associated data structures.
Each architecture is required to provide a function mem_init() that is responsible
for destroying the boot memory allocator and its associated structures.

Figure 5.2: Call Graph: mem_init()

The purpose of the function is quite simple. It is responsible for calculating the
dimensions of low and high memory and printing out an informational message to
the user as well as performing �nal initialisations of the hardware if necessary. On
the x86, the principal function of concern for the VM is the free_pages_init().

5.5 Retiring the Boot Memory Allocator 96

This function �rst tells the boot memory allocator to retire itself by call-
ing free_all_bootmem() for UMA architectures or free_all_bootmem_node() for
NUMA. Both call the core function free_all_bootmem_core() with di�erent pa-
rameters. The core function is simple in principle and performs the following tasks:

• For all unallocated pages known to the allocator for this node;

� Clear the PG_reserved �ag in its struct page;

� Set the count to 1;

� Call __free_pages() so that the buddy allocator (discussed next chap-
ter) can build its free lists.

• Free all pages used for the bitmap and give them to the buddy allocator.

At this stage, the buddy allocator now has control of all the pages in low mem-
ory which leaves only the high memory pages. After free_all_bootmem() returns,
it �rst counts the number of reserved pages for accounting purposes. The remain-
der of the free_pages_init() function is responsible for the high memory pages.
However, at this point, it should be clear how the global mem_map array is allocated,
initialised and the pages given to the main allocator. The basic �ow used to initialise
pages in low memory in a single node system is shown in Figure 5.3.

Figure 5.3: Initialising mem_map and the Main Physical Page Allocator

Once free_all_bootmem() returns, all the pages in ZONE_NORMAL have been
given to the buddy allocator. To initialise the high memory pages, free_pages_init()
calls one_highpage_init() for every page between highstart_pfn and highend_pfn.

5.6 What's New in 2.6 97

one_highpage_init() simple clears the PG_reserved �ag, sets the PG_highmem

�ag, sets the count to 1 and calls __free_pages() to release it to the buddy allo-
cator in the same manner free_all_bootmem_core() did.

At this point, the boot memory allocator is no longer required and the buddy
allocator is the main physical page allocator for the system. An interesting feature
to note is that not only is the data for the boot allocator removed but also all code
that was used to bootstrap the system. All initilisation function that are required
only during system start-up are marked __init such as the following;

321 unsigned long __init free_all_bootmem (void)

All of these functions are placed together in the .init section by the linker. On
the x86, the function free_initmem() walks through all pages from __init_begin

to __init_end and frees up the pages to the buddy allocator. With this method,
Linux can free up a considerable amount of memory that is used by bootstrapping
code that is no longer required. For example, 27 pages were freed while booting the
kernel running on the machine this document is composed on.

5.6 What's New in 2.6

The boot memory allocator has not changed signi�cantly since 2.4 and is mainly
concerned with optimisations and some minor NUMA related modi�cations. The
�rst optimisation is the addition of a last_success �eld to the bootmem_data_t

struct. As the name suggests, it keeps track of the location of the last successful
allocation to reduce search times. If an address is freed before last_success, it will
be changed to the freed location.

The second optimisation is also related to the linear search. When searching
for a free page, 2.4 test every bit which is expensive. 2.6 instead tests if a block of
BITS_PER_LONG is all ones. If it's not, it will test each of the bits individually in
that block. To help the linear search, nodes are ordered in order of their physical
addresses by init_bootmem().

The last change is related to NUMA and contiguous architectures. Contiguous
architectures now de�ne their own init_bootmem() function and any architecture
can optionally de�ne their own reserve_bootmem() function.

Chapter 6

Physical Page Allocation

This chapter describes how physical pages are managed and allocated in Linux.
The principal algorithmm used is the Binary Buddy Allocator , devised by Knowl-
ton [Kno65] and further described by Knuth [Knu68]. It is has been shown to be
extremely fast in comparison to other allocators [KB85].

This is an allocation scheme which combines a normal power-of-two allocator
with free bu�er coalescing [Vah96] and the basic concept behind it is quite simple.
Memory is broken up into large blocks of pages where each block is a power of two
number of pages. If a block of the desired size is not available, a large block is
broken up in half and the two blocks are buddies to each other. One half is used for
the allocation and the other is free. The blocks are continuously halved as necessary
until a block of the desired size is available. When a block is later freed, the buddy
is examined and the two coalesced if it is free.

This chapter will begin with describing how Linux remembers what blocks of
memory are free. After that the methods for allocating and freeing pages will be
discussed in details. The subsequent section will cover the �ags which a�ect the
allocator behaviour and �nally the problem of fragmentation and how the allocator
handles it will be covered.

6.1 Managing Free Blocks

As stated, the allocator maintains blocks of free pages where each block is a power
of two number of pages. The exponent for the power of two sized block is referred to
as the order . An array of free_area_t structs are maintained for each order that
points to a linked list of blocks of pages that are free as indicated by Figure 6.1.

Hence, the 0th element of the array will point to a list of free page blocks of
size 20 or 1 page, the 1st element will be a list of 21 (2) pages up to 2MAX_ORDER−1

number of pages, where the MAX_ORDER is currently de�ned as 10. This eliminates
the chance that a larger block will be split to satisfy a request where a smaller
block would have su�ced. The page blocks are maintained on a linear linked list
via page→list.

Each zone has a free_area_t struct array called free_area[MAX_ORDER]. It is

98

6.2 Allocating Pages 99

Figure 6.1: Free page block management

declared in <linux/mm.h> as follows:

22 typedef struct free_area_struct {

23 struct list_head free_list;

24 unsigned long *map;

25 } free_area_t;

The �elds in this struct are simply:

free_list A linked list of free page blocks;

map A bitmap representing the state of a pair of buddies.

Linux saves memory by only using one bit instead of two to represent each pair
of buddies. Each time a buddy is allocated or freed, the bit representing the pair of
buddies is toggled so that the bit is zero if the pair of pages are both free or both full
and 1 if only one buddy is in use. To toggle the correct bit, the macro MARK_USED()

in page_alloc.c is used which is declared as follows:

164 #define MARK_USED(index, order, area) \

165 __change_bit((index) >> (1+(order)), (area)->map)

index is the index of the page within the global mem_map array. By shifting
it right by 1+order bits, the bit within map representing the pair of buddies is
revealed.

6.2 Allocating Pages

Linux provides a quite sizable API for the allocation of page frames. All of them take
a gfp_mask as a parameter which is a set of �ags that determine how the allocator
will behave. The �ags are discussed in Section 6.4.

The allocation API functions all use the core function __alloc_pages() but the
APIs exist so that the correct node and zone will be chosen. Di�erent users will

6.2 Allocating Pages 100

struct page * alloc_page(unsigned int gfp_mask)

Allocate a single page and return a struct address

struct page * alloc_pages(unsigned int gfp_mask, unsigned int

order)

Allocate 2order number of pages and returns a struct page

unsigned long get_free_page(unsigned int gfp_mask)

Allocate a single page, zero it and return a virtual address

unsigned long __get_free_page(unsigned int gfp_mask)

Allocate a single page and return a virtual address

unsigned long __get_free_pages(unsigned int gfp_mask, unsigned int

order)

Allocate 2order number of pages and return a virtual address

struct page * __get_dma_pages(unsigned int gfp_mask, unsigned int

order)

Allocate 2order number of pages from the DMA zone and return a struct page

Table 6.1: Physical Pages Allocation API

require di�erent zones such as ZONE_DMA for certain device drivers or ZONE_NORMAL
for disk bu�ers and callers should not have to be aware of what node is being used.
A full list of page allocation APIs are listed in Table 6.1.

Allocations are always for a speci�ed order, 0 in the case where a single page is
required. If a free block cannot be found of the requested order, a higher order block
is split into two buddies. One is allocated and the other is placed on the free list for
the lower order. Figure 6.2 shows where a 24 block is split and how the buddies are
added to the free lists until a block for the process is available.

When the block is later freed, the buddy will be checked. If both are free, they
are merged to form a higher order block and placed on the higher free list where its
buddy is checked and so on. If the buddy is not free, the freed block is added to the
free list at the current order. During these list manipulations, interrupts have to be
disabled to prevent an interrupt handler manipulating the lists while a process has
them in an inconsistent state. This is achieved by using an interrupt safe spinlock.

The second decision to make is which memory node or pg_data_t to use.
Linux uses a node-local allocation policy which aims to use the memory bank as-
sociated with the CPU running the page allocating process. Here, the function
_alloc_pages() is what is important as this function is di�erent depending on
whether the kernel is built for a UMA (function in mm/page_alloc.c) or NUMA
(function in mm/numa.c) machine.

Regardless of which API is used, __alloc_pages() in mm/page_alloc.c is the
heart of the allocator. This function, which is never called directly, examines the

6.2 Allocating Pages 101

Figure 6.2: Allocating physical pages

selected zone and checks if it is suitable to allocate from based on the number of
available pages. If the zone is not suitable, the allocator may fall back to other
zones. The order of zones to fall back on are decided at boot time by the function
build_zonelists() but generally ZONE_HIGHMEM will fall back to ZONE_NORMAL and
that in turn will fall back to ZONE_DMA. If number of free pages reaches the pages_low
watermark, it will wake kswapd to begin freeing up pages from zones and if memory
is extremely tight, the caller will do the work of kswapd itself.

Figure 6.3: Call Graph: alloc_pages()

Once the zone has �nally been decided on, the function rmqueue() is called to
allocate the block of pages or split higher level blocks if one of the appropriate size
is not available.

6.3 Free Pages 102

6.3 Free Pages

The API for the freeing of pages is a lot simpler and exists to help remember the
order of the block to free as one disadvantage of a buddy allocator is that the caller
has to remember the size of the original allocation. The API for freeing is listed in
Table 6.2.

void __free_pages(struct page *page, unsigned int order)

Free an order number of pages from the given page

void __free_page(struct page *page)

Free a single page

void free_page(void *addr)

Free a page from the given virtual address

Table 6.2: Physical Pages Free API

The principal function for freeing pages is __free_pages_ok() and it should not
be called directly. Instead the function __free_pages() is provided which performs
simple checks �rst as indicated in Figure 6.4.

Figure 6.4: Call Graph: __free_pages()

When a buddy is freed, Linux tries to coalesce the buddies together immediately
if possible. This is not optimal as the worst case scenario will have many coalitions
followed by the immediate splitting of the same blocks [Vah96].

To detect if the buddies can be merged or not, Linux checks the bit corresponding
to the a�ected pair of buddies in free_area→map. As one buddy has just been freed
by this function, it is obviously known that at least one buddy is free. If the bit in
the map is 0 after toggling, we know that the other buddy must also be free because

6.4 Get Free Page (GFP) Flags 103

if the bit is 0, it means both buddies are either both free or both allocated. If both
are free, they may be merged.

Calculating the address of the buddy is a well known concept [Knu68]. As the
allocations are always in blocks of size 2k, the address of the block, or at least its
o�set within zone_mem_map will also be a power of 2k. The end result is that there
will always be at least k number of zeros to the right of the address. To get the
address of the buddy, the kth bit from the right is examined. If it is 0, then the
buddy will have this bit �ipped. To get this bit, Linux creates a mask which is
calculated as

mask = (∼ 0 << k)

The mask we are interested in is

imask = 1+ ∼ mask

Linux takes a shortcut in calculating this by noting that

imask = −mask = 1+ ∼ mask

Once the buddy is merged, it is removed for the free list and the newly coalesced
pair moves to the next higher order to see if it may also be merged.

6.4 Get Free Page (GFP) Flags

A persistent concept through the whole VM is the Get Free Page (GFP) �ags. These
�ags determine how the allocator and kswapd will behave for the allocation and
freeing of pages. For example, an interrupt handler may not sleep so it will not have
the __GFP_WAIT �ag set as this �ag indicates the caller may sleep. There are three
sets of GFP �ags, all de�ned in <linux/mm.h>.

The �rst of the three is the set of zone modi�ers listed in Table 6.3. These �ags
indicate that the caller must try to allocate from a particular zone. The reader
will note there is not a zone modi�er for ZONE_NORMAL. This is because the zone
modi�er �ag is used as an o�set within an array and 0 implicitly means allocate
from ZONE_NORMAL.

Flag Description
__GFP_DMA Allocate from ZONE_DMA if possible
__GFP_HIGHMEM Allocate from ZONE_HIGHMEM if possible
GFP_DMA Alias for __GFP_DMA

Table 6.3: Low Level GFP Flags A�ecting Zone Allocation

The next �ags are action modi�ers listed in Table 6.4. They change the behaviour
of the VM and what the calling process may do. The low level �ags on their own
are too primitive to be easily used.

6.4 Get Free Page (GFP) Flags 104

Flag Description
__GFP_WAIT Indicates that the caller is not high priority and can

sleep or reschedule
__GFP_HIGH Used by a high priority or kernel process. Kernel 2.2.x

used it to determine if a process could access emergency
pools of memory. In 2.4.x kernels, it does not appear to
be used

__GFP_IO Indicates that the caller can perform low level IO.
In 2.4.x, the main a�ect this has is determining if
try_to_free_buffers() can �ush bu�ers or not. It
is used by at least one journaled �lesystem

__GFP_HIGHIO Determines that IO can be performed on pages mapped
in high memory. Only used in try_to_free_buffers()

__GFP_FS Indicates if the caller can make calls to the �lesystem
layer. This is used when the caller is �lesystem related,
the bu�er cache for instance, and wants to avoid recur-
sively calling itself

Table 6.4: Low Level GFP Flags A�ecting Allocator behaviour

It is di�cult to know what the correct combinations are for each instance so
a few high level combinations are de�ned and listed in Table 6.5. For clarity the
__GFP_ is removed from the table combinations so, the __GFP_HIGH �ag will read as
HIGH below. The combinations to form the high level �ags are listed in Table 6.6 To
help understand this, take GFP_ATOMIC as an example. It has only the __GFP_HIGH
�ag set. This means it is high priority, will use emergency pools (if they exist) but
will not sleep, perform IO or access the �lesystem. This �ag would be used by an
interrupt handler for example.

Flag Low Level Flag Combination
GFP_ATOMIC HIGH
GFP_NOIO HIGH | WAIT
GFP_NOHIGHIO HIGH | WAIT | IO
GFP_NOFS HIGH | WAIT | IO | HIGHIO
GFP_KERNEL HIGH | WAIT | IO | HIGHIO | FS
GFP_NFS HIGH | WAIT | IO | HIGHIO | FS
GFP_USER WAIT | IO | HIGHIO | FS
GFP_HIGHUSER WAIT | IO | HIGHIO | FS | HIGHMEM
GFP_KSWAPD WAIT | IO | HIGHIO | FS

Table 6.5: Low Level GFP Flag Combinations For High Level Use

6.4.1 Process Flags 105

Flag Description
GFP_ATOMIC This �ag is used whenever the caller cannot sleep and must

be serviced if at all possible. Any interrupt handler that re-
quires memory must use this �ag to avoid sleeping or perform-
ing IO. Many subsystems during init will use this system such
as buffer_init() and inode_init()

GFP_NOIO This is used by callers who are already performing an IO related
function. For example, when the loop back device is trying to
get a page for a bu�er head, it uses this �ag to make sure it will
not perform some action that would result in more IO. If fact, it
appears the �ag was introduced speci�cally to avoid a deadlock
in the loopback device.

GFP_NOHIGHIO This is only used in one place in alloc_bounce_page() during
the creating of a bounce bu�er for IO in high memory

GFP_NOFS This is only used by the bu�er cache and �lesystems to make
sure they do not recursively call themselves by accident

GFP_KERNEL The most liberal of the combined �ags. It indicates that the
caller is free to do whatever it pleases. Strictly speaking the
di�erence between this �ag and GFP_USER is that this could use
emergency pools of pages but that is a no-op on 2.4.x kernels

GFP_USER Another �ag of historical signi�cance. In the 2.2.x series, an
allocation was given a LOW, MEDIUM or HIGH priority. If
memory was tight, a request with GFP_USER (low) would fail
where as the others would keep trying. Now it has no signi�cance
and is not treated any di�erent to GFP_KERNEL

GFP_HIGHUSER This �ag indicates that the allocator should allocate from
ZONE_HIGHMEM if possible. It is used when the page is allocated
on behalf of a user process

GFP_NFS This �ag is defunct. In the 2.0.x series, this �ag determined
what the reserved page size was. Normally 20 free pages were
reserved. If this �ag was set, only 5 would be reserved. Now it
is not treated di�erently anywhere

GFP_KSWAPD More historical signi�cance. In reality this is not treated any
di�erent to GFP_KERNEL

Table 6.6: High Level GFP Flags A�ecting Allocator Behaviour

6.4.1 Process Flags

A process may also set �ags in the task_struct which a�ects allocator behaviour.
The full list of process �ags are de�ned in <linux/sched.h> but only the ones
a�ecting VM behaviour are listed in Table 6.7.

6.5 Avoiding Fragmentation 106

Flag Description
PF_MEMALLOC This �ags the process as a memory allocator. kswapd

sets this �ag and it is set for any process that is about
to be killed by the Out Of Memory (OOM) killer which
is discussed in Chapter 13. It tells the buddy allocator
to ignore zone watermarks and assign the pages if at
all possible

PF_MEMDIE This is set by the OOM killer and functions the same
as the PF_MEMALLOC �ag by telling the page allocator
to give pages if at all possible as the process is about
to die

PF_FREE_PAGES Set when the buddy allocator calls
try_to_free_pages() itself to indicate that free
pages should be reserved for the calling process in
__free_pages_ok() instead of returning to the free
lists

Table 6.7: Process Flags A�ecting Allocator behaviour

6.5 Avoiding Fragmentation

One important problem that must be addressed with any allocator is the problem
of internal and external fragmentation. External fragmentation is the inability to
service a request because the available memory exists only in small blocks. Inter-
nal fragmentation is de�ned as the wasted space where a large block had to be
assigned to service a small request. In Linux, external fragmentation is not a serious
problem as large requests for contiguous pages are rare and usually vmalloc() (see
Chapter 7) is su�cient to service the request. The lists of free blocks ensure that
large blocks do not have to be split unnecessarily.

Internal fragmentation is the single most serious failing of the binary buddy
system. While fragmentation is expected to be in the region of 28% [WJNB95],
it has been shown that it can be in the region of 60%, in comparison to just 1%
with the �rst �t allocator [JW98]. It has also been shown that using variations of
the buddy system will not help the situation signi�cantly [PN77]. To address this
problem, Linux uses a slab allocator [Bon94] to carve up pages into small blocks of
memory for allocation [Tan01] which is discussed further in Chapter 8. With this
combination of allocators, the kernel can ensure that the amount of memory wasted
due to internal fragmentation is kept to a minimum.

6.6 What's New In 2.6

Allocating Pages The �rst noticeable di�erence seems cosmetic at �rst. The
function alloc_pages() is now a macro and de�ned in <linux/gfp.h> instead of

6.6 What's New In 2.6 107

a function de�ned in <linux/mm.h>. The new layout is still very recognisable and
the main di�erence is a subtle but important one. In 2.4, there was speci�c code
dedicated to selecting the correct node to allocate from based on the running CPU
but 2.6 removes this distinction between NUMA and UMA architectures.

In 2.6, the function alloc_pages() calls numa_node_id() to return the logical
ID of the node associated with the current running CPU. This NID is passed to
_alloc_pages() which calls NODE_DATA() with the NID as a parameter. On UMA
architectures, this will unconditionally result in contig_page_data being returned
but NUMA architectures instead set up an array which NODE_DATA() uses NID as
an o�set into. In other words, architectures are responsible for setting up a CPU
ID to NUMA memory node mapping. This is e�ectively still a node-local allocation
policy as is used in 2.4 but it is a lot more clearly de�ned.

Per-CPU Page Lists The most important addition to the page allocation is the
addition of the per-cpu lists, �rst discussed in Section 2.6.

In 2.4, a page allocation requires an interrupt safe spinlock to be held while the
allocation takes place. In 2.6, pages are allocated from a struct per_cpu_pageset

by buffered_rmqueue(). If the low watermark (per_cpu_pageset→low) has not
been reached, the pages will be allocated from the pageset with no requirement for
a spinlock to be held. Once the low watermark is reached, a large number of pages
will be allocated in bulk with the interrupt safe spinlock held, added to the per-cpu
list and then one returned to the caller.

Higher order allocations, which are relatively rare, still require the interrupt safe
spinlock to be held and there will be no delay in the splits or coalescing. With 0
order allocations, splits will be delayed until the low watermark is reached in the
per-cpu set and coalescing will be delayed until the high watermark is reached.

However, strictly speaking, this is not a lazy buddy algorithm [BL89]. While
pagesets introduce a merging delay for order-0 allocations, it is a side-e�ect rather
than an intended feature and there is no method available to drain the pagesets and
merge the buddies. In other words, despite the per-cpu and new accounting code
which bulks up the amount of code in mm/page_alloc.c, the core of the buddy
algorithm remains the same as it was in 2.4.

The implication of this change is straight forward; the number of times the spin-
lock protecting the buddy lists must be acquired is reduced. Higher order allocations
are relatively rare in Linux so the optimisation is for the common case. This change
will be noticeable on large number of CPU machines but will make little di�erence
to single CPUs. There are a few issues with pagesets but they are not recognised as
a serious problem. The �rst issue is that high order allocations may fail if the page-
sets hold order-0 pages that would normally be merged into higher order contiguous
blocks. The second is that an order-0 allocation may fail if memory is low, the
current CPU pageset is empty and other CPU's pagesets are full, as no mechanism
exists for reclaiming pages from �remote� pagesets. The last potential problem is
that buddies of newly freed pages could exist in other pagesets leading to possible
fragmentation problems.

6.6 What's New In 2.6 108

Freeing Pages Two new API function have been introduced for the freeing of
pages called free_hot_page() and free_cold_page(). Predictably, the determine
if the freed pages are placed on the hot or cold lists in the per-cpu pagesets. However,
while the free_cold_page() is exported and available for use, it is actually never
called.

Order-0 page frees from __free_pages() and frees resuling from page cache re-
leases by __page_cache_release() are placed on the hot list where as higher order
allocations are freed immediately with __free_pages_ok(). Order-0 are usually re-
lated to userspace and are the most common type of allocation and free. By keeping
them local to the CPU lock contention will be reduced as most allocations will also
be of order-0.

Eventually, lists of pages must be passed to free_pages_bulk() or the pageset
lists would hold all free pages. This free_pages_bulk() function takes a list of
page block allocations, the order of each block and the count number of blocks
to free from the list. There are two principal cases where this is used. The �rst
is higher order frees passed to __free_pages_ok(). In this case, the page block is
placed on a linked list, of the speci�ed order and a count of 1. The second case is
where the high watermark is reached in the pageset for the running CPU. In this
case, the pageset is passed, with an order of 0 and a count of pageset→batch.

Once the core function __free_pages_bulk() is reached, the mechanisms for
freeing pages is to the buddy lists is very similar to 2.4.

GFP Flags There are still only three zones, so the zone modi�ers remain the
same but three new GFP �ags have been added that a�ect how hard the VM will
work, or not work, to satisfy a request. The �ags are:

__GFP_NOFAIL This �ag is used by a caller to indicate that the allocation
should never fail and the allocator should keep trying to allocate inde�nitely.

__GFP_REPEAT This �ag is used by a caller to indicate that the request
should try to repeat the allocation if it fails. In the current implementation,
it behaves the same as __GFP_NOFAIL but later the decision might be made to
fail after a while

__GFP_NORETRY This �ag is almost the opposite of __GFP_NOFAIL. It
indicates that if the allocation fails it should just return immediately.

At time of writing, they are not heavily used but they have just been introduced
and are likely to be used more over time. The __GFP_REPEAT �ag in particular is
likely to be heavily used as blocks of code which implement this �ags behaviour exist
throughout the kernel.

The next GFP �ag that has been introduced is an allocation modi�er called
__GFP_COLD which is used to ensure that cold pages are allocated from the per-cpu
lists. From the perspective of the VM, the only user of this �ag is the function
page_cache_alloc_cold() which is mainly used during IO readahead. Usually
page allocations will be taken from the hot pages list.

6.6 What's New In 2.6 109

The last new �ag is __GFP_NO_GROW. This is an internal �ag used only be the
slab allocator (discussed in Chapter 8) which aliases the �ag to SLAB_NO_GROW. It is
used to indicate when new slabs should never be allocated for a particular cache. In
reality, the GFP �ag has just been introduced to complement the old SLAB_NO_GROW

�ag which is currently unused in the main kernel.

Chapter 7

Non-Contiguous Memory Allocation

It is preferable when dealing with large amounts of memory to use physically con-
tiguous pages in memory both for cache related and memory access latency reasons.
Unfortunately, due to external fragmentation problems with the buddy allocator,
this is not always possible. Linux provides a mechanism via vmalloc() where non-
contiguous physically memory can be used that is contiguous in virtual memory.

An area is reserved in the virtual address space between VMALLOC_START and
VMALLOC_END. The location of VMALLOC_START depends on the amount of available
physical memory but the region will always be at least VMALLOC_RESERVE in size,
which on the x86 is 128MiB. The exact size of the region is discussed in Section 4.1.

The page tables in this region are adjusted as necessary to point to physical
pages which are allocated with the normal physical page allocator. This means that
allocation must be a multiple of the hardware page size. As allocations require
altering the kernel page tables, there is a limitation on how much memory can be
mapped with vmalloc() as only the virtual addresses space between VMALLOC_START
and VMALLOC_END is available. As a result, it is used sparingly in the core kernel. In
2.4.22, it is only used for storing the swap map information (see Chapter 11) and
for loading kernel modules into memory.

This small chapter begins with a description of how the kernel tracks which areas
in the vmalloc address space are used and how regions are allocated and freed.

7.1 Describing Virtual Memory Areas

The vmalloc address space is managed with a resource map allocator [Vah96]. The
struct vm_struct is responsible for storing the base,size pairs. It is de�ned in
<linux/vmalloc.h> as:

14 struct vm_struct {

15 unsigned long flags;

16 void * addr;

17 unsigned long size;

18 struct vm_struct * next;

19 };

110

7.2 Allocating A Non-Contiguous Area 111

A fully-�edged VMA could have been used but it contains extra information that
does not apply to vmalloc areas and would be wasteful. Here is a brief description
of the �elds in this small struct.

�ags These set either to VM_ALLOC, in the case of use with vmalloc() or
VM_IOREMAP when ioremap is used to map high memory into the kernel virtual
address space;

addr This is the starting address of the memory block;

size This is, predictably enough, the size in bytes;

next is a pointer to the next vm_struct. They are ordered by address and the
list is protected by the vmlist_lock lock.

As is clear, the areas are linked together via the next �eld and are ordered by
address for simple searches. Each area is separated by at least one page to protect
against overruns. This is illustrated by the gaps in Figure 7.1.

Figure 7.1: vmalloc Address Space

When the kernel wishes to allocate a new area, the vm_struct list is searched
linearly by the function get_vm_area(). Space for the struct is allocated with
kmalloc(). When the virtual area is used for remapping an area for IO (commonly
referred to as ioremapping), this function will be called directly to map the requested
area.

7.2 Allocating A Non-Contiguous Area

The functions vmalloc(), vmalloc_dma() and vmalloc_32() are provided to al-
locate a memory area that is contiguous in virtual address space. They all take a
single parameter size which is rounded up to the next page alignment. They all
return a linear address for the new allocated area.

As is clear from the call graph shown in Figure 7.2, there are two steps to
allocating the area. The �rst step taken by get_vm_area() is to �nd a region large
enough to store the request. It searches through a linear linked list of vm_structs
and returns a new struct describing the allocated region.

The second step is to allocate the necessary PGD entries with vmalloc_area_pages(),
PMD entries with alloc_area_pmd() and PTE entries with alloc_area_pte() be-
fore �nally allocating the page with alloc_page().

7.2 Allocating A Non-Contiguous Area 112

Figure 7.2: Call Graph: vmalloc()

void * vmalloc(unsigned long size)

Allocate a number of pages in vmalloc space that satisfy the requested size

void * vmalloc_dma(unsigned long size)

Allocate a number of pages from ZONE_DMA

void * vmalloc_32(unsigned long size)

Allocate memory that is suitable for 32 bit addressing. This ensures that the
physical page frames are in ZONE_NORMAL which 32 bit devices will require

Table 7.1: Non-Contiguous Memory Allocation API

The page table updated by vmalloc() is not the current process but the reference
page table stored at init_mm→pgd. This means that a process accessing the vmalloc
area will cause a page fault exception as its page tables are not pointing to the correct
area. There is a special case in the page fault handling code which knows that the
fault occured in the vmalloc area and updates the current process page tables using
information from the master page table. How the use of vmalloc() relates to the

7.3 Freeing A Non-Contiguous Area 113

buddy allocator and page faulting is illustrated in Figure 7.3.

Figure 7.3: Relationship between vmalloc(), alloc_page() and Page Faulting

7.3 Freeing A Non-Contiguous Area

The function vfree() is responsible for freeing a virtual area. It linearly searches the
list of vm_structs looking for the desired region and then calls vmfree_area_pages()
on the region of memory to be freed.

` vmfree_area_pages() is the exact opposite of vmalloc_area_pages(). It
walks the page tables freeing up the page table entries and associated pages for the
region.

void vfree(void *addr)

Free a region of memory allocated with vmalloc(), vmalloc_dma() or
vmalloc_32()

Table 7.2: Non-Contiguous Memory Free API

7.4 Whats New in 2.6 114

Figure 7.4: Call Graph: vfree()

7.4 Whats New in 2.6

Non-contiguous memory allocation remains essentially the same in 2.6. The main
di�erence is a slightly di�erent internal API which a�ects when the pages are al-
located. In 2.4, vmalloc_area_pages() is responsible for beginning a page ta-
ble walk and then allocating pages when the PTE is reached in the function
alloc_area_pte(). In 2.6, all the pages are allocated in advance by __vmalloc()

and placed in an array which is passed to map_vm_area() for insertion into the
kernel page tables.

The get_vm_area() API has changed very slightly. When called, it behaves the
same as previously as it searches the entire vmalloc virtual address space for a free
area. However, a caller can search just a subset of the vmalloc address space by
calling __get_vm_area() directly and specifying the range. This is only used by
the ARM architecture when loading modules.

The last signi�cant change is the introduction of a new interface vmap() for the
insertion of an array of pages in the vmalloc address space and is only used by
the sound subsystem core. This interface was backported to 2.4.22 but it is totally
unused. It is either the result of an accidental backport or was merged to ease the
application of vendor-speci�c patches that require vmap().

Chapter 8

Slab Allocator

In this chapter, the general-purpose allocator is described. It is a slab allocator
which is very similar in many respects to the general kernel allocator used in So-
laris [MM01]. Linux's implementation is heavily based on the �rst slab allocator
paper by Bonwick [Bon94] with many improvements that bear a close resemblance
to those described in his later paper [BA01]. We will begin with a quick overview of
the allocator followed by a description of the di�erent structures used before giving
an in-depth tour of each task the allocator is responsible for.

The basic idea behind the slab allocator is to have caches of commonly used
objects kept in an initialised state available for use by the kernel. Without an
object based allocator, the kernel will spend much of its time allocating, initialising
and freeing the same object. The slab allocator aims to to cache the freed object so
that the basic structure is preserved between uses [Bon94].

The slab allocator consists of a variable number of caches that are linked together
on a doubly linked circular list called a cache chain. A cache, in the context of the
slab allocator, is a manager for a number of objects of a particular type like the
mm_struct or fs_cache cache and is managed by a struct kmem_cache_s discussed
in detail later. The caches are linked via the next �eld in the cache struct.

Each cache maintains blocks of contiguous pages in memory called slabs which are
carved up into small chunks for the data structures and objects the cache manages.
The relationship between these di�erent structures is illustrated in Figure 8.1.

The slab allocator has three principle aims:

• The allocation of small blocks of memory to help eliminate internal fragmen-
tation that would be otherwise caused by the buddy system;

• The caching of commonly used objects so that the system does not waste
time allocating, initialising and destroying objects. Benchmarks on Solaris
showed excellent speed improvements for allocations with the slab allocator in
use [Bon94];

• The better utilisation of hardware cache by aligning objects to the L1 or L2
caches.

115

CHAPTER 8. SLAB ALLOCATOR 116

Figure 8.1: Layout of the Slab Allocator

To help eliminate internal fragmentation normally caused by a binary buddy
allocator, two sets of caches of small memory bu�ers ranging from 25 (32) bytes
to 217 (131072) bytes are maintained. One cache set is suitable for use with DMA
devices. These caches are called size-N and size-N(DMA) where N is the size of the
allocation, and a function kmalloc() (see Section 8.4.1) is provided for allocating
them. With this, the single greatest problem with the low level page allocator is
addressed. The sizes caches are discussed in further detail in Section 8.4.

The second task of the slab allocator is to maintain caches of commonly used
objects. For many structures used in the kernel, the time needed to initialise an
object is comparable to, or exceeds, the cost of allocating space for it. When a
new slab is created, a number of objects are packed into it and initialised using a
constructor if available. When an object is freed, it is left in its initialised state so
that object allocation will be quick.

The �nal task of the slab allocator is hardware cache utilization. If there is space
left over after objects are packed into a slab, the remaining space is used to color the
slab. Slab coloring is a scheme which attempts to have objects in di�erent slabs use
di�erent lines in the cache. By placing objects at a di�erent starting o�set within
the slab, it is likely that objects will use di�erent lines in the CPU cache helping
ensure that objects from the same slab cache will be unlikely to �ush each other.

CHAPTER 8. SLAB ALLOCATOR 117

With this scheme, space that would otherwise be wasted ful�lls a new function.
Figure 8.2 shows how a page allocated from the buddy allocator is used to store
objects that using coloring to align the objects to the L1 CPU cache.

Figure 8.2: Slab page containing Objects Aligned to L1 CPU Cache

Linux does not attempt to color page allocations based on their physical ad-
dress [Kes91], or order where objects are placed such as those described for
data [GAV95] or code segments [HK97] but the scheme used does help improve
cache line usage. Cache colouring is further discussed in Section 8.1.5. On an SMP
system, a further step is taken to help cache utilization where each cache has a small
array of objects reserved for each CPU. This is discussed further in Section 8.5.

The slab allocator provides the additional option of slab debugging if the option is
set at compile time with CONFIG_SLAB_DEBUG. Two debugging features are providing
called red zoning and object poisoning. With red zoning, a marker is placed at either
end of the object. If this mark is disturbed, the allocator knows the object where
a bu�er over�ow occured and reports it. Poisoning an object will �ll it with a
prede�ned bit pattern(de�ned 0x5A in mm/slab.c) at slab creation and after a free.
At allocation, this pattern is examined and if it is changed, the allocator knows that
the object was used before it was allocated and �ags it.

The small, but powerful, API which the allocator exports is listed in Table 8.1.

8.1 Caches 118

kmem_cache_t * kmem_cache_create(const char *name, size_t size,

size_t offset, unsigned long flags,

void (*ctor)(void*, kmem_cache_t *, unsigned long),

void (*dtor)(void*, kmem_cache_t *, unsigned long))

Creates a new cache and adds it to the cache chain

int kmem_cache_reap(int gfp_mask)

Scans at most REAP_SCANLEN caches and selects one for reaping all per-cpu
objects and free slabs from. Called when memory is tight

int kmem_cache_shrink(kmem_cache_t *cachep)

This function will delete all per-cpu objects associated with a cache and delete
all slabs in the slabs_free list. It returns the number of pages freed.

void * kmem_cache_alloc(kmem_cache_t *cachep, int flags)

Allocate a single object from the cache and return it to the caller

void kmem_cache_free(kmem_cache_t *cachep, void *objp)

Free an object and return it to the cache

void * kmalloc(size_t size, int flags)

Allocate a block of memory from one of the sizes cache

void kfree(const void *objp)

Free a block of memory allocated with kmalloc

int kmem_cache_destroy(kmem_cache_t * cachep)

Destroys all objects in all slabs and frees up all associated memory before
removing the cache from the chain

Table 8.1: Slab Allocator API for caches

8.1 Caches

One cache exists for each type of object that is to be cached. For a full list of caches
available on a running system, run cat /proc/slabinfo . This �le gives some basic
information on the caches. An excerpt from the output of this �le looks like;

8.1 Caches 119

slabinfo - version: 1.1 (SMP)

kmem_cache 80 80 248 5 5 1 : 252 126

urb_priv 0 0 64 0 0 1 : 252 126

tcp_bind_bucket 15 226 32 2 2 1 : 252 126

inode_cache 5714 5992 512 856 856 1 : 124 62

dentry_cache 5160 5160 128 172 172 1 : 252 126

mm_struct 240 240 160 10 10 1 : 252 126

vm_area_struct 3911 4480 96 112 112 1 : 252 126

size-64(DMA) 0 0 64 0 0 1 : 252 126

size-64 432 1357 64 23 23 1 : 252 126

size-32(DMA) 17 113 32 1 1 1 : 252 126

size-32 850 2712 32 24 24 1 : 252 126

Each of the column �elds correspond to a �eld in the struct kmem_cache_s

structure. The columns listed in the excerpt above are:

cache-name A human readable name such as �tcp_bind_bucket�;

num-active-objs Number of objects that are in use;

total-objs How many objects are available in total including unused;

obj-size The size of each object, typically quite small;

num-active-slabs Number of slabs containing objects that are active;

total-slabs How many slabs in total exist;

num-pages-per-slab The pages required to create one slab, typically 1.

If SMP is enabled like in the example excerpt, two more columns will be displayed
after a colon. They refer to the per CPU cache described in Section 8.5. The
columns are:

limit This is the number of free objects the pool can have before half of it is given
to the global free pool;

batchcount The number of objects allocated for the processor in a block when
no objects are free.

To speed allocation and freeing of objects and slabs they are arranged into three
lists; slabs_full, slabs_partial and slabs_free. slabs_full has all its objects
in use. slabs_partial has free objects in it and so is a prime candidate for allocation
of objects. slabs_free has no allocated objects and so is a prime candidate for slab
destruction.

8.1.1 Cache Descriptor 120

8.1.1 Cache Descriptor

All information describing a cache is stored in a struct kmem_cache_s declared in
mm/slab.c. This is an extremely large struct and so will be described in parts.

190 struct kmem_cache_s {

193 struct list_head slabs_full;

194 struct list_head slabs_partial;

195 struct list_head slabs_free;

196 unsigned int objsize;

197 unsigned int flags;

198 unsigned int num;

199 spinlock_t spinlock;

200 #ifdef CONFIG_SMP

201 unsigned int batchcount;

202 #endif

203

Most of these �elds are of interest when allocating or freeing objects.

slabs_* These are the three lists where the slabs are stored as described in the
previous section;

objsize This is the size of each object packed into the slab;

�ags These �ags determine how parts of the allocator will behave when dealing
with the cache. See Section 8.1.2;

num This is the number of objects contained in each slab;

spinlock A spinlock protecting the structure from concurrent accessses;

batchcount This is the number of objects that will be allocated in batch for the
per-cpu caches as described in the previous section.

206 unsigned int gfporder;

209 unsigned int gfpflags;

210

211 size_t colour;

212 unsigned int colour_off;

213 unsigned int colour_next;

214 kmem_cache_t *slabp_cache;

215 unsigned int growing;

216 unsigned int dflags;

217

219 void (*ctor)(void *, kmem_cache_t *, unsigned long);

222 void (*dtor)(void *, kmem_cache_t *, unsigned long);

8.1.1 Cache Descriptor 121

223

224 unsigned long failures;

225

This block deals with �elds of interest when allocating or freeing slabs from the
cache.

gfporder This indicates the size of the slab in pages. Each slab consumes 2gfporder

pages as these are the allocation sizes the buddy allocator provides;

gfp�ags The GFP �ags used when calling the buddy allocator to allocate pages
are stored here. See Section 6.4 for a full list;

colour Each slab stores objects in di�erent cache lines if possible. Cache colouring
will be further discussed in Section 8.1.5;

colour_o� This is the byte alignment to keep slabs at. For example, slabs for
the size-X caches are aligned on the L1 cache;

colour_next This is the next colour line to use. This value wraps back to 0 when
it reaches colour;

growing This �ag is set to indicate if the cache is growing or not. If it is, it is
much less likely this cache will be selected to reap free slabs under memory
pressure;

d�ags These are the dynamic �ags which change during the cache lifetime. See
Section 8.1.3;

ctor A complex object has the option of providing a constructor function to be
called to initialise each new object. This is a pointer to that function and may
be NULL;

dtor This is the complementing object destructor and may be NULL;

failures This �eld is not used anywhere in the code other than being initialised
to 0.

227 char name[CACHE_NAMELEN];

228 struct list_head next;

These are set during cache creation

name This is the human readable name of the cache;

next This is the next cache on the cache chain.

229 #ifdef CONFIG_SMP

231 cpucache_t *cpudata[NR_CPUS];

232 #endif

8.1.1 Cache Descriptor 122

cpudata This is the per-cpu data and is discussed further in Section 8.5.

233 #if STATS

234 unsigned long num_active;

235 unsigned long num_allocations;

236 unsigned long high_mark;

237 unsigned long grown;

238 unsigned long reaped;

239 unsigned long errors;

240 #ifdef CONFIG_SMP

241 atomic_t allochit;

242 atomic_t allocmiss;

243 atomic_t freehit;

244 atomic_t freemiss;

245 #endif

246 #endif

247 };

These �gures are only available if the CONFIG_SLAB_DEBUG option is set during
compile time. They are all beancounters and not of general interest. The statistics
for /proc/slabinfo are calculated when the proc entry is read by another process
by examining every slab used by each cache rather than relying on these �elds to be
available.

num_active The current number of active objects in the cache is stored here;

num_allocations A running total of the number of objects that have been allo-
cated on this cache is stored in this �eld;

high_mark This is the highest value num_active has had to date;

grown This is the number of times kmem_cache_grow() has been called;

reaped The number of times this cache has been reaped is kept here;

errors This �eld is never used;

allochit This is the total number of times an allocation has used the per-cpu
cache;

allocmiss To complement allochit, this is the number of times an allocation
has missed the per-cpu cache;

freehit This is the number of times a free was placed on a per-cpu cache;

freemiss This is the number of times an object was freed and placed on the global
pool.

8.1.2 Cache Static Flags 123

8.1.2 Cache Static Flags

A number of �ags are set at cache creation time that remain the same for the
lifetime of the cache. They a�ect how the slab is structured and how objects are
stored within it. All the �ags are stored in a bitmask in the flags �eld of the
cache descriptor. The full list of possible �ags that may be used are declared in
<linux/slab.h>.

There are three principle sets. The �rst set is internal �ags which are set only
by the slab allocator and are listed in Table 8.2. The only relevant �ag in the set is
the CFGS_OFF_SLAB �ag which determines where the slab descriptor is stored.

Flag Description
CFGS_OFF_SLAB Indicates that the slab managers for this cache are

kept o�-slab. This is discussed further in Section 8.2.1
CFLGS_OPTIMIZE This �ag is only ever set and never used

Table 8.2: Internal cache static �ags

The second set are set by the cache creator and they determine how the allocator
treats the slab and how objects are stored. They are listed in Table 8.3.

Flag Description
SLAB_HWCACHE_ALIGN Align the objects to the L1 CPU cache
SLAB_MUST_HWCACHE_ALIGN Force alignment to the L1 CPU cache even

if it is very wasteful or slab debugging is
enabled

SLAB_NO_REAP Never reap slabs in this cache
SLAB_CACHE_DMA Allocate slabs with memory from

ZONE_DMA

Table 8.3: Cache static �ags set by caller

The last �ags are only available if the compile option CONFIG_SLAB_DEBUG is set.
They determine what additional checks will be made to slabs and objects and are
primarily of interest only when new caches are being developed.

To prevent callers using the wrong �ags a CREATE_MASK is de�ned in mm/slab.c

consisting of all the allowable �ags. When a cache is being created, the requested
�ags are compared against the CREATE_MASK and reported as a bug if invalid �ags
are used.

8.1.3 Cache Dynamic Flags

The dflags �eld has only one �ag, DFLGS_GROWN, but it is important. The �ag is set
during kmem_cache_grow() so that kmem_cache_reap() will be unlikely to choose

8.1.4 Cache Allocation Flags 124

Flag Description
SLAB_DEBUG_FREE Perform expensive checks on free
SLAB_DEBUG_INITIAL On free, call the constructor as a veri�er to en-

sure the object is still initialised correctly
SLAB_RED_ZONE This places a marker at either end of objects to

trap over�ows
SLAB_POISON Poison objects with a known pattern for trap-

ping changes made to objects not allocated or
initialised

Table 8.4: Cache static debug �ags

the cache for reaping. When the function does �nd a cache with this �ag set, it
skips the cache and removes the �ag.

8.1.4 Cache Allocation Flags

These �ags correspond to the GFP page �ag options for allocating pages for slabs.
Callers sometimes call with either SLAB_* or GFP_* �ags, but they really should use
only SLAB_* �ags. They correspond directly to the �ags described in Section 6.4 so
will not be discussed in detail here. It is presumed the existence of these �ags are
for clarity and in case the slab allocator needed to behave di�erently in response to
a particular �ag but in reality, there is no di�erence.

Flag Description
SLAB_ATOMIC Equivalent to GFP_ATOMIC

SLAB_DMA Equivalent to GFP_DMA

SLAB_KERNEL Equivalent to GFP_KERNEL

SLAB_NFS Equivalent to GFP_NFS

SLAB_NOFS Equivalent to GFP_NOFS

SLAB_NOHIGHIO Equivalent to GFP_NOHIGHIO

SLAB_NOIO Equivalent to GFP_NOIO

SLAB_USER Equivalent to GFP_USER

Table 8.5: Cache Allocation Flags

A very small number of �ags may be passed to constructor and destructor func-
tions which are listed in Table 8.6.

8.1.5 Cache Colouring

To utilise hardware cache better, the slab allocator will o�set objects in di�erent
slabs by di�erent amounts depending on the amount of space left over in the slab.
The o�set is in units of BYTES_PER_WORD unless SLAB_HWCACHE_ALIGN is set in which

8.1.6 Cache Creation 125

Flag Description
SLAB_CTOR_CONSTRUCTOR Set if the function is being called as a constructor for

caches which use the same function as a constructor
and a destructor

SLAB_CTOR_ATOMIC Indicates that the constructor may not sleep
SLAB_CTOR_VERIFY Indicates that the constructor should just verify the

object is initialised correctly

Table 8.6: Cache Constructor Flags

case it is aligned to blocks of L1_CACHE_BYTES for alignment to the L1 hardware
cache.

During cache creation, it is calculated how many objects can �t on a slab (see
Section 8.2.7) and how many bytes would be wasted. Based on wastage, two �gures
are calculated for the cache descriptor

colour This is the number of di�erent o�sets that can be used;

colour_o� This is the multiple to o�set each objects by in the slab.

With the objects o�set, they will use di�erent lines on the associative hardware
cache. Therefore, objects from slabs are less likely to overwrite each other in memory.

The result of this is best explained by an example. Let us say that s_mem (the
address of the �rst object) on the slab is 0 for convenience, that 100 bytes are
wasted on the slab and alignment is to be at 32 bytes to the L1 Hardware Cache on
a Pentium II.

In this scenario, the �rst slab created will have its objects start at 0. The second
will start at 32, the third at 64, the fourth at 96 and the �fth will start back at 0.
With this, objects from each of the slabs will not hit the same hardware cache line
on the CPU. The value of colour is 3 and colour_off is 32.

8.1.6 Cache Creation

The function kmem_cache_create() is responsible for creating new caches and
adding them to the cache chain. The tasks that are taken to create a cache are

• Perform basic sanity checks for bad usage;

• Perform debugging checks if CONFIG_SLAB_DEBUG is set;

• Allocate a kmem_cache_t from the cache_cache slab cache ;

• Align the object size to the word size;

• Calculate how many objects will �t on a slab;

• Align the object size to the hardware cache;

8.1.7 Cache Reaping 126

• Calculate colour o�sets ;

• Initialise remaining �elds in cache descriptor;

• Add the new cache to the cache chain.

Figure 8.3 shows the call graph relevant to the creation of a cache; each function
is fully described in the Code Commentary.

Figure 8.3: Call Graph: kmem_cache_create()

8.1.7 Cache Reaping

When a slab is freed, it is placed on the slabs_free list for future use. Caches do
not automatically shrink themselves so when kswapd notices that memory is tight,
it calls kmem_cache_reap() to free some memory. This function is responsible for
selecting a cache that will be required to shrink its memory usage. It is worth noting
that cache reaping does not take into account what memory node or zone is under
pressure. This means that with a NUMA or high memory machine, it is possible
the kernel will spend a lot of time freeing memory from regions that are under no
memory pressure but this is not a problem for architectures like the x86 which has
only one bank of memory.

The call graph in Figure 8.4 is deceptively simple as the task of selecting the
proper cache to reap is quite long. In the event that there are numerous caches
in the system, only REAP_SCANLEN(currently de�ned as 10) caches are examined in
each call. The last cache to be scanned is stored in the variable clock_searchp so
as not to examine the same caches repeatedly. For each scanned cache, the reaper
does the following

• Check �ags for SLAB_NO_REAP and skip if set;

• If the cache is growing, skip it;

• if the cache has grown recently or is current growing, DFLGS_GROWN will be set.
If this �ag is set, the slab is skipped but the �ag is cleared so it will be a reap
canditate the next time;

8.1.8 Cache Shrinking 127

Figure 8.4: Call Graph: kmem_cache_reap()

• Count the number of free slabs in slabs_free and calculate how many pages
that would free in the variable pages;

• If the cache has constructors or large slabs, adjust pages to make it less likely
for the cache to be selected;

• If the number of pages that would be freed exceeds REAP_PERFECT, free half
of the slabs in slabs_free;

• Otherwise scan the rest of the caches and select the one that would free the
most pages for freeing half of its slabs in slabs_free.

8.1.8 Cache Shrinking

When a cache is selected to shrink itself, the steps it takes are simple and brutal

• Delete all objects in the per CPU caches;

• Delete all slabs from slabs_free unless the growing �ag gets set.

Linux is nothing, if not subtle.
Two varieties of shrink functions are provided with confusingly similar names.

kmem_cache_shrink() removes all slabs from slabs_free and returns the number
of pages freed as a result. This is the principal function exported for use by the slab
allocator users.

The second function __kmem_cache_shrink() frees all slabs from slabs_free

and then veri�es that slabs_partial and slabs_full are empty. This is for inter-
nal use only and is important during cache destruction when it doesn't matter how
many pages are freed, just that the cache is empty.

8.1.9 Cache Destroying 128

Figure 8.5: Call Graph: kmem_cache_shrink()

Figure 8.6: Call Graph: __kmem_cache_shrink()

8.1.9 Cache Destroying

When a module is unloaded, it is responsible for destroying any cache with the func-
tion kmem_cache_destroy(). It is important that the cache is properly destroyed as
two caches of the same human-readable name are not allowed to exist. Core kernel
code often does not bother to destroy its caches as their existence persists for the
life of the system. The steps taken to destroy a cache are

• Delete the cache from the cache chain;

• Shrink the cache to delete all slabs;

• Free any per CPU caches (kfree());

• Delete the cache descriptor from the cache_cache.

8.2 Slabs 129

Figure 8.7: Call Graph: kmem_cache_destroy()

8.2 Slabs

This section will describe how a slab is structured and managed. The struct which
describes it is much simpler than the cache descriptor, but how the slab is arranged
is considerably more complex. It is declared as follows:

typedef struct slab_s {

struct list_head list;

unsigned long colouroff;

void *s_mem;

unsigned int inuse;

kmem_bufctl_t free;

} slab_t;

The �elds in this simple struct are as follows:

list This is the linked list the slab belongs to. This will be one of slab_full,
slab_partial or slab_free from the cache manager;

colouro� This is the colour o�set from the base address of the �rst object within
the slab. The address of the �rst object is s_mem + colouroff;

s_mem This gives the starting address of the �rst object within the slab;

inuse This gives the number of active objects in the slab;

free This is an array of bufctls used for storing locations of free objects. See
Section 8.2.3 for further details.

The reader will note that given the slab manager or an object within the slab,
there does not appear to be an obvious way to determine what slab or cache they
belong to. This is addressed by using the list �eld in the struct page that makes
up the cache. SET_PAGE_CACHE() and SET_PAGE_SLAB() use the next and prev

�elds on the page→list to track what cache and slab an object belongs to. To get
the descriptors from the page, the macros GET_PAGE_CACHE() and GET_PAGE_SLAB()
are available. This set of relationships is illustrated in Figure 8.8.

The last issue is where the slab management struct is kept. Slab managers are
kept either on (CFLGS_OFF_SLAB set in the static �ags) or o�-slab. Where they

8.2.1 Storing the Slab Descriptor 130

Figure 8.8: Page to Cache and Slab Relationship

are placed are determined by the size of the object during cache creation. It is
important to note that in 8.8, the struct slab_t could be stored at the beginning
of the page frame although the �gure implies the struct slab_ is seperate from
the page frame.

8.2.1 Storing the Slab Descriptor

If the objects are larger than a threshold (512 bytes on x86), CFGS_OFF_SLAB is set
in the cache �ags and the slab descriptor is kept o�-slab in one of the sizes cache (see
Section 8.4). The selected sizes cache is large enough to contain the struct slab_t

and kmem_cache_slabmgmt() allocates from it as necessary. This limits the number
of objects that can be stored on the slab because there is limited space for the
bufctls but that is unimportant as the objects are large and so there should not be
many stored in a single slab.

Alternatively, the slab manager is reserved at the beginning of the slab. When
stored on-slab, enough space is kept at the beginning of the slab to store both the
slab_t and the kmem_bufctl_t which is an array of unsigned integers. The array
is responsible for tracking the index of the next free object that is available for use
which is discussed further in Section 8.2.3. The actual objects are stored after the
kmem_bufctl_t array.

Figure 8.9 should help clarify what a slab with the descriptor on-slab looks like
and Figure 8.10 illustrates how a cache uses a sizes cache to store the slab descriptor
when the descriptor is kept o�-slab.

8.2.2 Slab Creation 131

Figure 8.9: Slab With Descriptor On-Slab

8.2.2 Slab Creation

At this point, we have seen how the cache is created, but on creation, it is an
empty cache with empty lists for its slab_full, slab_partial and slabs_free.
New slabs are allocated to a cache by calling the function kmem_cache_grow().
This is frequently called �cache growing� and occurs when no objects are left in the
slabs_partial list and there are no slabs in slabs_free. The tasks it ful�lls are

• Perform basic sanity checks to guard against bad usage;

• Calculate colour o�set for objects in this slab;

• Allocate memory for slab and acquire a slab descriptor;

• Link the pages used for the slab to the slab and cache descriptors described in
Section 8.2;

• Initialise objects in the slab;

• Add the slab to the cache.

8.2.3 Tracking Free Objects

The slab allocator has got to have a quick and simple means of tracking where
free objects are on the partially �lled slabs. It achieves this by using an array of
unsigned integers called kmem_bufctl_t that is associated with each slab manager
as obviously it is up to the slab manager to know where its free objects are.

8.2.3 Tracking Free Objects 132

Figure 8.10: Slab With Descriptor O�-Slab

Figure 8.11: Call Graph: kmem_cache_grow()

Historically, and according to the paper describing the slab allocator [Bon94],
kmem_bufctl_t was a linked list of objects. In Linux 2.2.x, this struct was a union
of three items, a pointer to the next free object, a pointer to the slab manager and
a pointer to the object. Which it was depended on the state of the object.

Today, the slab and cache an object belongs to is determined by the struct page

and kmem_bufctl_t is simply an integer array of object indices. The number of
elements in the array is the same as the number of objects on the slab.

141 typedef unsigned int kmem_bufctl_t;

As the array is kept after the slab descriptor and there is no pointer to the �rst
element directly, a helper macro slab_bufctl() is provided.

163 #define slab_bufctl(slabp) \

8.2.4 Initialising the kmem_bufctl_t Array 133

164 ((kmem_bufctl_t *)(((slab_t*)slabp)+1))

This seemingly cryptic macro is quite simple when broken down. The parameter
slabp is a pointer to the slab manager. The expression ((slab_t*)slabp)+1 casts
slabp to a slab_t struct and adds 1 to it. This will give a pointer to a slab_t

which is actually the beginning of the kmem_bufctl_t array. (kmem_bufctl_t *)

casts the slab_t pointer to the required type. The results in blocks of code that
contain slab_bufctl(slabp)[i]. Translated, that says �take a pointer to a slab
descriptor, o�set it with slab_bufctl() to the beginning of the kmem_bufctl_t

array and return the ith element of the array�.
The index to the next free object in the slab is stored in slab_t→free elimi-

nating the need for a linked list to track free objects. When objects are allocated or
freed, this pointer is updated based on information in the kmem_bufctl_t array.

8.2.4 Initialising the kmem_bufctl_t Array

When a cache is grown, all the objects and the kmem_bufctl_t array on the slab
are initialised. The array is �lled with the index of each object beginning with 1
and ending with the marker BUFCTL_END. For a slab with 5 objects, the elements of
the array would look like Figure 8.12.

Figure 8.12: Initialised kmem_bufctl_t Array

The value 0 is stored in slab_t→free as the 0th object is the �rst free object to
be used. The idea is that for a given object n, the index of the next free object will
be stored in kmem_bufctl_t[n]. Looking at the array above, the next object free
after 0 is 1. After 1, there are two and so on. As the array is used, this arrangement
will make the array act as a LIFO for free objects.

8.2.5 Finding the Next Free Object

When allocating an object, kmem_cache_alloc() performs the �real� work of up-
dating the kmem_bufctl_t() array by calling kmem_cache_alloc_one_tail(). The
�eld slab_t→free has the index of the �rst free object. The index of the next free
object is at kmem_bufctl_t[slab_t→free]. In code terms, this looks like

1253 objp = slabp->s_mem + slabp->free*cachep->objsize;

1254 slabp->free=slab_bufctl(slabp)[slabp->free];

The �eld slabp→s_mem is a pointer to the �rst object on the slab. slabp→free

is the index of the object to allocate and it has to be multiplied by the size of an
object.

8.2.6 Updating kmem_bufctl_t 134

The index of the next free object is stored at kmem_bufctl_t[slabp→free].
There is no pointer directly to the array hence the helper macro slab_bufctl()

is used. Note that the kmem_bufctl_t array is not changed during allocations but
that the elements that are unallocated are unreachable. For example, after two
allocations, index 0 and 1 of the kmem_bufctl_t array are not pointed to by any
other element.

8.2.6 Updating kmem_bufctl_t

The kmem_bufctl_t list is only updated when an object is freed in the function
kmem_cache_free_one(). The array is updated with this block of code:

1451 unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;

1452

1453 slab_bufctl(slabp)[objnr] = slabp->free;

1454 slabp->free = objnr;

The pointer objp is the object about to be freed and objnr is its index.
kmem_bufctl_t[objnr] is updated to point to the current value of slabp→free,
e�ectively placing the object pointed to by free on the pseudo linked list.
slabp→free is updated to the object being freed so that it will be the next one
allocated.

8.2.7 Calculating the Number of Objects on a Slab

During cache creation, the function kmem_cache_estimate() is called to calculate
how many objects may be stored on a single slab taking into account whether the
slab descriptor must be stored on-slab or o�-slab and the size of each kmem_bufctl_t

needed to track if an object is free or not. It returns the number of objects that
may be stored and how many bytes are wasted. The number of wasted bytes is
important if cache colouring is to be used.

The calculation is quite basic and takes the following steps

• Initialise wastage to be the total size of the slab i.e. PAGE_SIZEgfp_order;

• Subtract the amount of space required to store the slab descriptor;

• Count up the number of objects that may be stored. Include the size of the
kmem_bufctl_t if the slab descriptor is stored on the slab. Keep increasing
the size of i until the slab is �lled;

• Return the number of objects and bytes wasted.

8.2.8 Slab Destroying 135

8.2.8 Slab Destroying

When a cache is being shrunk or destroyed, the slabs will be deleted. As the objects
may have destructors, these must be called, so the tasks of this function are:

• If available, call the destructor for every object in the slab;

• If debugging is enabled, check the red marking and poison pattern;

• Free the pages the slab uses.

The call graph at Figure 8.13 is very simple.

Figure 8.13: Call Graph: kmem_slab_destroy()

8.3 Objects

This section will cover how objects are managed. At this point, most of the really
hard work has been completed by either the cache or slab managers.

8.3.1 Initialising Objects in a Slab

When a slab is created, all the objects in it are put in an initialised state. If a
constructor is available, it is called for each object and it is expected that objects
are left in an initialised state upon free. Conceptually the initialisation is very simple,
cycle through all objects and call the constructor and initialise the kmem_bufctl for
it. The function kmem_cache_init_objs() is responsible for initialising the objects.

8.3.2 Object Allocation

The function kmem_cache_alloc() is responsible for allocating one object to the
caller which behaves slightly di�erent in the UP and SMP cases. Figure 8.14 shows
the basic call graph that is used to allocate an object in the SMP case.

There are four basic steps. The �rst step (kmem_cache_alloc_head()) covers
basic checking to make sure the allocation is allowable. The second step is to select
which slabs list to allocate from. This will be one of slabs_partial or slabs_free.
If there are no slabs in slabs_free, the cache is grown (see Section 8.2.2) to create

8.3.3 Object Freeing 136

Figure 8.14: Call Graph: kmem_cache_alloc()

a new slab in slabs_free. The �nal step is to allocate the object from the selected
slab.

The SMP case takes one further step. Before allocating one object, it will check
to see if there is one available from the per-CPU cache and will use it if there is. If
there is not, it will allocate batchcount number of objects in bulk and place them
in its per-cpu cache. See Section 8.5 for more information on the per-cpu caches.

8.3.3 Object Freeing

kmem_cache_free() is used to free objects and it has a relatively simple task. Just
like kmem_cache_alloc(), it behaves di�erently in the UP and SMP cases. The
principal di�erence between the two cases is that in the UP case, the object is
returned directly to the slab but with the SMP case, the object is returned to the
per-cpu cache. In both cases, the destructor for the object will be called if one is
available. The destructor is responsible for returning the object to the initialised
state.

Figure 8.15: Call Graph: kmem_cache_free()

8.4 Sizes Cache 137

8.4 Sizes Cache

Linux keeps two sets of caches for small memory allocations for which the physical
page allocator is unsuitable. One set is for use with DMA and the other is suitable
for normal use. The human readable names for these caches are size-N cache and
size-N(DMA) cache which are viewable from /proc/slabinfo. Information for each
sized cache is stored in a struct cache_sizes, typede�ed to cache_sizes_t, which
is de�ned in mm/slab.c as:

331 typedef struct cache_sizes {

332 size_t cs_size;

333 kmem_cache_t *cs_cachep;

334 kmem_cache_t *cs_dmacachep;

335 } cache_sizes_t;

The �elds in this struct are described as follows:

cs_size The size of the memory block;

cs_cachep The cache of blocks for normal memory use;

cs_dmacachep The cache of blocks for use with DMA.

As there are a limited number of these caches that exist, a static array called
cache_sizes is initialised at compile time beginning with 32 bytes on a 4KiB ma-
chine and 64 for greater page sizes.

337 static cache_sizes_t cache_sizes[] = {

338 #if PAGE_SIZE == 4096

339 { 32, NULL, NULL},

340 #endif

341 { 64, NULL, NULL},

342 { 128, NULL, NULL},

343 { 256, NULL, NULL},

344 { 512, NULL, NULL},

345 { 1024, NULL, NULL},

346 { 2048, NULL, NULL},

347 { 4096, NULL, NULL},

348 { 8192, NULL, NULL},

349 { 16384, NULL, NULL},

350 { 32768, NULL, NULL},

351 { 65536, NULL, NULL},

352 {131072, NULL, NULL},

353 { 0, NULL, NULL}

As is obvious, this is a static array that is zero terminated consisting of bu�ers
of succeeding powers of 2 from 25 to 217 . An array now exists that describes each
sized cache which must be initialised with caches at system startup.

8.4.1 kmalloc() 138

8.4.1 kmalloc()

With the existence of the sizes cache, the slab allocator is able to o�er a new allocator
function, kmalloc() for use when small memory bu�ers are required. When a
request is received, the appropriate sizes cache is selected and an object assigned
from it. The call graph on Figure 8.16 is therefore very simple as all the hard work
is in cache allocation.

Figure 8.16: Call Graph: kmalloc()

8.4.2 kfree()

Just as there is a kmalloc() function to allocate small memory objects for use, there
is a kfree() for freeing it. As with kmalloc(), the real work takes place during
object freeing (See Section 8.3.3) so the call graph in Figure 8.17 is very simple.

Figure 8.17: Call Graph: kfree()

8.5 Per-CPU Object Cache

One of the tasks the slab allocator is dedicated to is improved hardware cache
utilization. An aim of high performance computing [CS98] in general is to use
data on the same CPU for as long as possible. Linux achieves this by trying to
keep objects in the same CPU cache with a Per-CPU object cache, simply called a
cpucache for each CPU in the system.

8.5.1 Describing the Per-CPU Object Cache 139

When allocating or freeing objects, they are placed in the cpucache. When there
are no objects free, a batch of objects is placed into the pool. When the pool gets
too large, half of them are removed and placed in the global cache. This way the
hardware cache will be used for as long as possible on the same CPU.

The second major bene�t of this method is that spinlocks do not have to be held
when accessing the CPU pool as we are guaranteed another CPU won't access the
local data. This is important because without the caches, the spinlock would have
to be acquired for every allocation and free which is unnecessarily expensive.

8.5.1 Describing the Per-CPU Object Cache

Each cache descriptor has a pointer to an array of cpucaches, described in the cache
descriptor as

231 cpucache_t *cpudata[NR_CPUS];

This structure is very simple

173 typedef struct cpucache_s {

174 unsigned int avail;

175 unsigned int limit;

176 } cpucache_t;

The �elds are as follows:

avail This is the number of free objects available on this cpucache;

limit This is the total number of free objects that can exist.

A helper macro cc_data() is provided to give the cpucache for a given cache
and processor. It is de�ned as

180 #define cc_data(cachep) \

181 ((cachep)->cpudata[smp_processor_id()])

This will take a given cache descriptor (cachep) and return a pointer from the
cpucache array (cpudata). The index needed is the ID of the current processor,
smp_processor_id().

Pointers to objects on the cpucache are placed immediately after the cpucache_t
struct. This is very similar to how objects are stored after a slab descriptor.

8.5.2 Adding/Removing Objects from the Per-CPU Cache 140

8.5.2 Adding/Removing Objects from the Per-CPU Cache

To prevent fragmentation, objects are always added or removed from the end of the
array. To add an object (obj) to the CPU cache (cc), the following block of code is
used

cc_entry(cc)[cc->avail++] = obj;

To remove an object

obj = cc_entry(cc)[--cc->avail];

There is a helper macro called cc_entry() which gives a pointer to the �rst
object in the cpucache. It is de�ned as

178 #define cc_entry(cpucache) \

179 ((void **)(((cpucache_t*)(cpucache))+1))

This takes a pointer to a cpucache, increments the value by the size of the
cpucache_t descriptor giving the �rst object in the cache.

8.5.3 Enabling Per-CPU Caches

When a cache is created, its CPU cache has to be enabled and memory allocated for
it using kmalloc(). The function enable_cpucache() is responsible for deciding
what size to make the cache and calling kmem_tune_cpucache() to allocate memory
for it.

Obviously a CPU cache cannot exist until after the various sizes caches have
been enabled so a global variable g_cpucache_up is used to prevent CPU caches
being enabled prematurely. The function enable_all_cpucaches() cycles through
all caches in the cache chain and enables their cpucache.

Once the CPU cache has been setup, it can be accessed without locking as a
CPU will never access the wrong cpucache so it is guaranteed safe access to it.

8.5.4 Updating Per-CPU Information

When the per-cpu caches have been created or changed, each CPU is signalled via
an IPI. It is not su�cient to change all the values in the cache descriptor as that
would lead to cache coherency issues and spinlocks would have to used to protect
the CPU caches. Instead a ccupdate_t struct is populated with all the information
each CPU needs and each CPU swaps the new data with the old information in the
cache descriptor. The struct for storing the new cpucache information is de�ned as
follows

868 typedef struct ccupdate_struct_s

869 {

8.5.5 Draining a Per-CPU Cache 141

870 kmem_cache_t *cachep;

871 cpucache_t *new[NR_CPUS];

872 } ccupdate_struct_t;

cachep is the cache being updated and new is the array of the cpucache de-
scriptors for each CPU on the system. The function smp_function_all_cpus() is
used to get each CPU to call the do_ccupdate_local() function which swaps the
information from ccupdate_struct_t with the information in the cache descriptor.

Once the information has been swapped, the old data can be deleted.

8.5.5 Draining a Per-CPU Cache

When a cache is being shrunk, its �rst step is to drain the cpucaches of any objects
they might have by calling drain_cpu_caches(). This is so that the slab allocator
will have a clearer view of what slabs can be freed or not. This is important because
if just one object in a slab is placed in a per-cpu cache, that whole slab cannot be
freed. If the system is tight on memory, saving a few milliseconds on allocations has
a low priority.

8.6 Slab Allocator Initialisation

Here we will describe how the slab allocator initialises itself. When the slab allo-
cator creates a new cache, it allocates the kmem_cache_t from the cache_cache or
kmem_cache cache. This is an obvious chicken and egg problem so the cache_cache
has to be statically initialised as

357 static kmem_cache_t cache_cache = {

358 slabs_full: LIST_HEAD_INIT(cache_cache.slabs_full),

359 slabs_partial: LIST_HEAD_INIT(cache_cache.slabs_partial),

360 slabs_free: LIST_HEAD_INIT(cache_cache.slabs_free),

361 objsize: sizeof(kmem_cache_t),

362 flags: SLAB_NO_REAP,

363 spinlock: SPIN_LOCK_UNLOCKED,

364 colour_off: L1_CACHE_BYTES,

365 name: "kmem_cache",

366 };

This code statically initialised the kmem_cache_t struct as follows:

358-360 Initialise the three lists as empty lists;

361 The size of each object is the size of a cache descriptor;

362 The creation and deleting of caches is extremely rare so do not consider it for
reaping ever;

8.7 Interfacing with the Buddy Allocator 142

363 Initialise the spinlock unlocked;

364 Align the objects to the L1 cache;

365 Record the human readable name.

That statically de�nes all the �elds that can be calculated at compile time. To
initialise the rest of the struct, kmem_cache_init() is called from start_kernel().

8.7 Interfacing with the Buddy Allocator

The slab allocator does not come with pages attached, it must ask the physical page
allocator for its pages. Two APIs are provided for this task called kmem_getpages()

and kmem_freepages(). They are basically wrappers around the buddy allocators
API so that slab �ags will be taken into account for allocations. For allocations,
the default �ags are taken from cachep→gfpflags and the order is taken from
cachep→gfporder where cachep is the cache requesting the pages. When freeing
the pages, PageClearSlab() will be called for every page being freed before calling
free_pages().

8.8 Whats New in 2.6

The �rst obvious change is that the version of the /proc/slabinfo format has
changed from 1.1 to 2.0 and is a lot friendlier to read. The most helpful change is
that the �elds now have a header negating the need to memorise what each column
means.

The principal algorithms and ideas remain the same and there is no major al-
gorithm shakeups but the implementation is quite di�erent. Particularly, there is a
greater emphasis on the use of per-cpu objects and the avoidance of locking. Sec-
ondly, there is a lot more debugging code mixed in so keep an eye out for #ifdef
DEBUG blocks of code as they can be ignored when reading the code �rst. Lastly,
some changes are purely cosmetic with function name changes but very similar be-
havior. For example, kmem_cache_estimate() is now called cache_estimate()

even though they are identical in every other respect.

Cache descriptor The changes to the kmem_cache_s are minimal. First, the
elements are reordered to have commonly used elements, such as the per-cpu related
data, at the beginning of the struct (see Section 3.9 to for the reasoning). Secondly,
the slab lists (e.g. slabs_full) and statistics related to them have been moved to
a separate struct kmem_list3. Comments and the unusual use of macros indicate
that there is a plan to make the structure per-node.

8.8 Whats New in 2.6 143

Cache Static Flags The �ags in 2.4 still exist and their usage is the same.
CFLGS_OPTIMIZE no longer exists but its usage in 2.4 was non-existent. Two new
�ags have been introduced which are:

SLAB_STORE_USER This is a debugging only �ag for recording the function
that freed an object. If the object is used after it was freed, the poison bytes
will not match and a kernel error message will be displayed. As the last
function to use the object is known, it can simplify debugging.

SLAB_RECLAIM_ACCOUNT This �ag is set for caches with objects that
are easily reclaimable such as inode caches. A counter is maintained in a vari-
able called slab_reclaim_pages to record how many pages are used in slabs
allocated to these caches. This counter is later used in vm_enough_memory()

to help determine if the system is truly out of memory.

Cache Reaping This is one of the most interesting changes made to the slab
allocator. kmem_cache_reap() no longer exists as it is very indiscriminate in how
it shrinks caches when the cache user could have made a far superior selection.
Users of caches can now register a �shrink cache� callback with set_shrinker()

for the intelligent aging and shrinking of slabs. This simple function populates a
struct shrinker with a pointer to the callback and a �seeks� weight which indi-
cates how di�cult it is to recreate an object before placing it in a linked list called
shrinker_list.

During page reclaim, the function shrink_slab() is called which steps through
the full shrinker_list and calls each shrinker callback twice. The �rst call passes
0 as a parameter which indicates that the callback should return how many pages
it expects it could free if it was called properly. A basic heuristic is applied to
determine if it is worth the cost of using the callback. If it is, it is called a second
time with a parameter indicating how many objects to free.

How this mechanism accounts for the number of pages is a little tricky. Each
task struct has a �eld called reclaim_state. When the slab allocator frees
pages, this �eld is updated with the number of pages that is freed. Before call-
ing shrink_slab(), this �eld is set to 0 and then read again after shrink_cache
returns to determine how many pages were freed.

Other changes The rest of the changes are essentially cosmetic. For example, the
slab descriptor is now called struct slab instead of slab_t which is consistent with
the general trend of moving away from typedefs. Per-cpu caches remain essentially
the same except the structs and APIs have new names. The same type of points
applies to most of the rest of the 2.6 slab allocator implementation.

Chapter 9

High Memory Management

The kernel may only directly address memory for which it has set up a page table
entry. In the most common case, the user/kernel address space split of 3GiB/1GiB
implies that at best only 896MiB of memory may be directly accessed at any given
time on a 32-bit machine as explained in Section 4.1. On 64-bit hardware, this is
not really an issue as there is more than enough virtual address space. It is highly
unlikely there will be machines running 2.4 kernels with more than terabytes of
RAM.

There are many high end 32-bit machines that have more than 1GiB of memory
and the inconveniently located memory cannot be simply ignored. The solution
Linux uses is to temporarily map pages from high memory into the lower page
tables. This will be discussed in Section 9.2.

High memory and IO have a related problem which must be addressed, as not
all devices are able to address high memory or all the memory available to the CPU.
This may be the case if the CPU has PAE extensions enabled, the device is limited
to addresses the size of a signed 32-bit integer (2GiB) or a 32-bit device is being
used on a 64-bit architecture. Asking the device to write to memory will fail at best
and possibly disrupt the kernel at worst. The solution to this problem is to use a
bounce bu�er and this will be discussed in Section 9.4.

This chapter begins with a brief description of how the Persistent Kernel Map
(PKMap) address space is managed before talking about how pages are mapped and
unmapped from high memory. The subsequent section will deal with the case where
the mapping must be atomic before discussing bounce bu�ers in depth. Finally we
will talk about how emergency pools are used for when memory is very tight.

9.1 Managing the PKMap Address Space

Space is reserved at the top of the kernel page tables from PKMAP_BASE to
FIXADDR_START for a PKMap. The size of the space reserved varies slightly. On the
x86, PKMAP_BASE is at 0xFE000000 and the address of FIXADDR_START is a compile
time constant that varies with con�gure options but is typically only a few pages
located near the end of the linear address space. This means that there is slightly

144

9.2 Mapping High Memory Pages 145

below 32MiB of page table space for mapping pages from high memory into usable
space.

For mapping pages, a single page set of PTEs is stored at the beginning of the
PKMap area to allow 1024 high pages to be mapped into low memory for short
periods with the function kmap() and unmapped with kunmap(). The pool seems
very small but the page is only mapped by kmap() for a very short time. Comments
in the code indicate that there was a plan to allocate contiguous page table entries
to expand this area but it has remained just that, comments in the code, so a large
portion of the PKMap is unused.

The page table entry for use with kmap() is called pkmap_page_table which is
located at PKMAP_BASE and set up during system initialisation. On the x86, this
takes place at the end of the pagetable_init() function. The pages for the PGD
and PMD entries are allocated by the boot memory allocator to ensure they exist.

The current state of the page table entries is managed by a simple array called
called pkmap_count which has LAST_PKMAP entries in it. On an x86 system without
PAE, this is 1024 and with PAE, it is 512. More accurately, albeit not expressed in
code, the LAST_PKMAP variable is equivalent to PTRS_PER_PTE.

Each element is not exactly a reference count but it is very close. If the entry
is 0, the page is free and has not been used since the last TLB �ush. If it is 1, the
slot is unused but a page is still mapped there waiting for a TLB �ush. Flushes are
delayed until every slot has been used at least once as a global �ush is required for
all CPUs when the global page tables are modi�ed and is extremely expensive. Any
higher value is a reference count of n-1 users of the page.

9.2 Mapping High Memory Pages

The API for mapping pages from high memory is described in Table 9.1. The
main function for mapping a page is kmap(). For users that do not wish to block,
kmap_nonblock() is available and interrupt users have kmap_atomic(). The kmap
pool is quite small so it is important that users of kmap() call kunmap() as quickly
as possible because the pressure on this small window grows incrementally worse as
the size of high memory grows in comparison to low memory.

The kmap() function itself is fairly simple. It �rst checks to make sure an inter-
rupt is not calling this function(as it may sleep) and calls out_of_line_bug() if true.
An interrupt handler calling BUG() would panic the system so out_of_line_bug()

prints out bug information and exits cleanly. The second check is that the page is
below highmem_start_page as pages below this mark are already visible and do not
need to be mapped.

It then checks if the page is already in low memory and simply returns the address
if it is. This way, users that need kmap() may use it unconditionally knowing that
if it is already a low memory page, the function is still safe. If it is a high page to
be mapped, kmap_high() is called to begin the real work.

The kmap_high() function begins with checking the page→virtual �eld which
is set if the page is already mapped. If it is NULL, map_new_virtual() provides a

9.2.1 Unmapping Pages 146

Figure 9.1: Call Graph: kmap()

mapping for the page.
Creating a new virtual mapping with map_new_virtual() is a simple case of

linearly scanning pkmap_count. The scan starts at last_pkmap_nr instead of
0 to prevent searching over the same areas repeatedly between kmap()s. When
last_pkmap_nr wraps around to 0, flush_all_zero_pkmaps() is called to set all
entries from 1 to 0 before �ushing the TLB.

If, after another scan, an entry is still not found, the process sleeps on the
pkmap_map_wait wait queue until it is woken up after the next kunmap().

Once a mapping has been created, the corresponding entry in the pkmap_count
array is incremented and the virtual address in low memory returned.

9.2.1 Unmapping Pages

The API for unmapping pages from high memory is described in Table 9.2. The
kunmap() function, like its complement, performs two checks. The �rst is an iden-
tical check to kmap() for usage from interrupt context. The second is that the page
is below highmem_start_page. If it is, the page already exists in low memory and
needs no further handling. Once established that it is a page to be unmapped,
kunmap_high() is called to perform the unmapping.

9.3 Mapping High Memory Pages Atomically 147

void * kmap(struct page *page)

Takes a struct page from high memory and maps it into low memory. The
address returned is the virtual address of the mapping

void * kmap_nonblock(struct page *page)

This is the same as kmap() except it will not block if no slots are available and
will instead return NULL. This is not the same as kmap_atomic() which uses
specially reserved slots

void * kmap_atomic(struct page *page, enum km_type type)

There are slots maintained in the map for atomic use by interrupts (see Section
9.3). Their use is heavily discouraged and callers of this function may not sleep
or schedule. This function will map a page from high memory atomically for a
speci�c purpose

Table 9.1: High Memory Mapping API

The kunmap_high() is simple in principle. It decrements the corresponding ele-
ment for this page in pkmap_count. If it reaches 1 (remember this means no more
users but a TLB �ush is required), any process waiting on the pkmap_map_wait is
woken up as a slot is now available. The page is not unmapped from the page tables
then as that would require a TLB �ush. It is delayed until flush_all_zero_pkmaps()
is called.

void kunmap(struct page *page)

Unmaps a struct page from low memory and frees up the page table entry
mapping it

void kunmap_atomic(void *kvaddr, enum km_type type)

Unmap a page that was mapped atomically

Table 9.2: High Memory Unmapping API

9.3 Mapping High Memory Pages Atomically

The use of kmap_atomic() is discouraged but slots are reserved for each CPU for
when they are necessary, such as when bounce bu�ers, are used by devices from
interrupt. There are a varying number of di�erent requirements an architecture has
for atomic high memory mapping which are enumerated by km_type. The total
number of uses is KM_TYPE_NR. On the x86, there are a total of six di�erent uses for
atomic kmaps.

9.4 Bounce Bu�ers 148

Figure 9.2: Call Graph: kunmap()

There are KM_TYPE_NR entries per processor are reserved at boot time for atomic
mapping at the location FIX_KMAP_BEGIN and ending at FIX_KMAP_END. Obviously
a user of an atomic kmap may not sleep or exit before calling kunmap_atomic() as
the next process on the processor may try to use the same entry and fail.

The function kmap_atomic() has the very simple task of mapping the requested
page to the slot set aside in the page tables for the requested type of operation
and processor. The function kunmap_atomic() is interesting as it will only clear
the PTE with pte_clear() if debugging is enabled. It is considered unnecessary
to bother unmapping atomic pages as the next call to kmap_atomic() will simply
replace it making TLB �ushes unnecessary.

9.4 Bounce Bu�ers

Bounce bu�ers are required for devices that cannot access the full range of memory
available to the CPU. An obvious example of this is when a device does not address
with as many bits as the CPU, such as 32-bit devices on 64-bit architectures or
recent Intel processors with PAE enabled.

The basic concept is very simple. A bounce bu�er resides in memory low enough
for a device to copy from and write data to. It is then copied to the desired user
page in high memory. This additional copy is undesirable, but unavoidable. Pages
are allocated in low memory which are used as bu�er pages for DMA to and from
the device. This is then copied by the kernel to the bu�er page in high memory
when IO completes so the bounce bu�er acts as a type of bridge. There is signi�cant
overhead to this operation as at the very least it involves copying a full page but it
is insigni�cant in comparison to swapping out pages in low memory.

9.4.1 Disk Bu�ering 149

9.4.1 Disk Bu�ering

Blocks, typically around 1KiB are packed into pages and managed by a struct

buffer_head allocated by the slab allocator. Users of bu�er heads have the option of
registering a callback function. This function is stored in buffer_head→b_end_io()

and called when IO completes. It is this mechanism that bounce bu�ers uses to
have data copied out of the bounce bu�ers. The callback registered is the function
bounce_end_io_write().

Any other feature of bu�er heads or how they are used by the block layer is
beyond the scope of this document and more the concern of the IO layer.

9.4.2 Creating Bounce Bu�ers

The creation of a bounce bu�er is a simple a�air which is started by the create_bounce()
function. The principle is very simple, create a new bu�er using a provided bu�er
head as a template. The function takes two parameters which are a read/write
parameter (rw) and the template bu�er head to use (bh_orig).

Figure 9.3: Call Graph: create_bounce()

A page is allocated for the bu�er itself with the function alloc_bounce_page()

which is a wrapper around alloc_page() with one important addition. If the
allocation is unsuccessful, there is an emergency pool of pages and bu�er heads
available for bounce bu�ers. This is discussed further in Section 9.5.

The bu�er head is, predictably enough, allocated with alloc_bounce_bh()

which, similar in principle to alloc_bounce_page(), calls the slab allocator for
a buffer_head and uses the emergency pool if one cannot be allocated. Addition-
ally, bd�ush is woken up to start �ushing dirty bu�ers out to disk so that bu�ers
are more likely to be freed soon.

Once the page and buffer_head have been allocated, information is copied
from the template buffer_head into the new one. Since part of this opera-
tion may use kmap_atomic(), bounce bu�ers are only created with the IRQ safe
io_request_lock held. The IO completion callbacks are changed to be either

9.4.3 Copying via bounce bu�ers 150

bounce_end_io_write() or bounce_end_io_read() depending on whether this is
a read or write bu�er so the data will be copied to and from high memory.

The most important aspect of the allocations to note is that the GFP �ags specify
that no IO operations involving high memory may be used. This is speci�ed with
SLAB_NOHIGHIO to the slab allocator and GFP_NOHIGHIO to the buddy allocator.
This is important as bounce bu�ers are used for IO operations with high memory. If
the allocator tries to perform high memory IO, it will recurse and eventually crash.

9.4.3 Copying via bounce bu�ers

Figure 9.4: Call Graph: bounce_end_io_read/write()

Data is copied via the bounce bu�er di�erently depending on whether it is a
read or write bu�er. If the bu�er is for writes to the device, the bu�er is populated
with the data from high memory during bounce bu�er creation with the function
copy_from_high_bh(). The callback function bounce_end_io_write() will com-
plete the IO later when the device is ready for the data.

If the bu�er is for reading from the device, no data transfer may take place
until the device is ready. When it is, the interrupt handler for the device calls the
callback function bounce_end_io_read() which copies the data to high memory
with copy_to_high_bh_irq().

In either case the bu�er head and page may be reclaimed by bounce_end_io()

once the IO has completed and the IO completion function for the template
buffer_head() is called. If the emergency pools are not full, the resources are
added to the pools otherwise they are freed back to the respective allocators.

9.5 Emergency Pools

Two emergency pools of buffer_heads and pages are maintained for the express
use by bounce bu�ers. If memory is too tight for allocations, failing to complete IO
requests is going to compound the situation as bu�ers from high memory cannot be

9.6 What's New in 2.6 151

freed until low memory is available. This leads to processes halting, thus preventing
the possibility of them freeing up their own memory.

The pools are initialised by init_emergency_pool() to contain POOL_SIZE en-
tries each which is currently de�ned as 32. The pages are linked via the page→list

�eld on a list headed by emergency_pages. Figure 9.5 illustrates how pages are
stored on emergency pools and acquired when necessary.

The buffer_heads are very similar as they linked via the buffer_head→inode_buffers

on a list headed by emergency_bhs. The number of entries left on the pages and
bu�er lists are recorded by two counters nr_emergency_pages and nr_emergency_bhs
respectively and the two lists are protected by the emergency_lock spinlock.

Figure 9.5: Acquiring Pages from Emergency Pools

9.6 What's New in 2.6

Memory Pools In 2.4, the high memory manager was the only subsystem that
maintained emergency pools of pages. In 2.6, memory pools are implemented as a
generic concept when a minimum amount of �stu�� needs to be reserved for when
memory is tight. �Stu�� in this case can be any type of object such as pages in
the case of the high memory manager or, more frequently, some object managed
by the slab allocator. Pools are initialised with mempool_create() which takes a
number of arguments. They are the minimum number of objects that should be
reserved (min_nr), an allocator function for the object type (alloc_fn()), a free
function (free_fn()) and optional private data that is passed to the allocate and
free functions.

9.6 What's New in 2.6 152

The memory pool API provides two generic allocate and free functions called
mempool_alloc_slab() and mempool_free_slab(). When the generic functions
are used, the private data is the slab cache that objects are to be allocated and
freed from.

In the case of the high memory manager, two pools of pages are created. On
page pool is for normal use and the second page pool is for use with ISA devices that
must allocate from ZONE_DMA. The allocate function is page_pool_alloc() and the
private data parameter passed indicates the GFP �ags to use. The free function is
page_pool_free(). The memory pools replace the emergency pool code that exists
in 2.4.

To allocate or free objects from the memory pool, the memory pool API functions
mempool_alloc() and mempool_free() are provided. Memory pools are destroyed
with mempool_destroy().

Mapping High Memory Pages In 2.4, the �eld page→virtual was used to
store the address of the page within the pkmap_count array. Due to the number of
struct pages that exist in a high memory system, this is a very large penalty to pay
for the relatively small number of pages that need to be mapped into ZONE_NORMAL.
2.6 still has this pkmap_count array but it is managed very di�erently.

In 2.6, a hash table called page_address_htable is created. This table is
hashed based on the address of the struct page and the list is used to locate
struct page_address_slot. This struct has two �elds of interest, a struct page

and a virtual address. When the kernel needs to �nd the virtual address used by a
mapped page, it is located by traversing through this hash bucket. How the page
is actually mapped into lower memory is essentially the same as 2.4 except now
page→virtual is no longer required.

Performing IO The last major change is that the struct bio is now used in-
stead of the struct buffer_head when performing IO. How bio structures work
is beyond the scope of this book. However, the principle reason that bio structures
were introduced is so that IO could be performed in blocks of whatever size the un-
derlying device supports. In 2.4, all IO had to be broken up into page sized chunks
regardless of the transfer rate of the underlying device.

Chapter 10

Page Frame Reclamation

A running system will eventually use all available page frames for purposes like disk
bu�ers, dentries, inode entries, process pages and so on. Linux needs to select old
pages which can be freed and invalidated for new uses before physical memory is
exhausted. This chapter will focus exclusively on how Linux implements its page
replacement policy and how di�erent types of pages are invalidated.

The methods Linux uses to select pages are rather empirical in nature and the
theory behind the approach is based on multiple di�erent ideas. It has been shown
to work well in practice and adjustments are made based on user feedback and
benchmarks. The basics of the page replacement policy is the �rst item of discussion
in this Chapter.

The second topic of discussion is the Page cache. All data that is read from disk
is stored in the page cache to reduce the amount of disk IO that must be performed.
Strictly speaking, this is not directly related to page frame reclamation, but the
LRU lists and page cache are closely related. The relevant section will focus on how
pages are added to the page cache and quickly located.

This will being us to the third topic, the LRU lists. With the exception of the
slab allocator, all pages in use by the system are stored on LRU lists and linked
together via page→lru so they can be easily scanned for replacement. The slab
pages are not stored on the LRU lists as it is considerably more di�cult to age a
page based on the objects used by the slab. The section will focus on how pages
move through the LRU lists before they are reclaimed.

From there, we'll cover how pages belonging to other caches, such as the dcache,
and the slab allocator are reclaimed before talking about how process-mapped pages
are removed. Process mapped pages are not easily swappable as there is no way to
map struct pages to PTEs except to search every page table which is far too
expensive. If the page cache has a large number of process-mapped pages in it, pro-
cess page tables will be walked and pages swapped out by swap_out() until enough
pages have been freed but this will still have trouble with shared pages. If a page is
shared, a swap entry is allocated, the PTE �lled with the necessary information to
�nd the page in swap again and the reference count decremented. Only when the
count reaches zero will the page be freed. Pages like this are considered to be in the
Swap cache.

153

10.1 Page Replacement Policy 154

Finally, this chaper will cover the page replacement daemon kswapd, how it is
implemented and what it's responsibilities are.

10.1 Page Replacement Policy

During discussions the page replacement policy is frequently said to be a Least
Recently Used (LRU)-based algorithm but this is not strictly speaking true as the
lists are not strictly maintained in LRU order. The LRU in Linux consists of two lists
called the active_list and inactive_list. The objective is for the active_list
to contain the working set [Den70] of all processes and the inactive_list to contain
reclaim canditates. As all reclaimable pages are contained in just two lists and pages
belonging to any process may be reclaimed, rather than just those belonging to a
faulting process, the replacement policy is a global one.

The lists resemble a simpli�ed LRU 2Q [JS94] where two lists called Am and
A1 are maintained. With LRU 2Q, pages when �rst allocated are placed on a
FIFO queue called A1. If they are referenced while on that queue, they are placed
in a normal LRU managed list called Am. This is roughly analogous to using
lru_cache_add() to place pages on a queue called inactive_list (A1) and us-
ing mark_page_accessed() to get moved to the active_list (Am). The algo-
rithm describes how the size of the two lists have to be tuned but Linux takes a
simpler approach by using refill_inactive() to move pages from the bottom of
active_list to inactive_list to keep active_list about two thirds the size of
the total page cache. Figure 10.1 illustrates how the two lists are structured, how
pages are added and how pages move between the lists with refill_inactive().

The lists described for 2Q presumes Am is an LRU list but the list in Linux
closer resembles a Clock algorithm [Car84] where the hand-spread is the size of the
active list. When pages reach the bottom of the list, the referenced �ag is checked,
if it is set, it is moved back to the top of the list and the next page checked. If it is
cleared, it is moved to the inactive_list.

The Move-To-Front heuristic means that the lists behave in an LRU-like manner
but there are too many di�erences between the Linux replacement policy and LRU
to consider it a stack algorithm [MM87]. Even if we ignore the problem of analysing
multi-programmed systems [CD80] and the fact the memory size for each process is
not �xed , the policy does not satisfy the inclusion property as the location of pages
in the lists depend heavily upon the size of the lists as opposed to the time of last
reference. Neither is the list priority ordered as that would require list updates with
every reference. As a �nal nail in the stack algorithm co�n, the lists are almost
ignored when paging out from processes as pageout decisions are related to their
location in the virtual address space of the process rather than the location within
the page lists.

In summary, the algorithm does exhibit LRU-like behaviour and it has been
shown by benchmarks to perform well in practice. There are only two cases where
the algorithm is likely to behave really badly. The �rst is if the candidates for recla-
mation are principally anonymous pages. In this case, Linux will keep examining

10.2 Page Cache 155

Figure 10.1: Page Cache LRU Lists

a large number of pages before linearly scanning process page tables searching for
pages to reclaim but this situation is fortunately rare.

The second situation is where there is a single process with many �le backed
resident pages in the inactive_list that are being written to frequently. Processes
and kswapd may go into a loop of constantly �laundering� these pages and placing
them at the top of the inactive_list without freeing anything. In this case, few
pages are moved from the active_list to inactive_list as the ratio between the
two lists sizes remains not change signi�cantly.

10.2 Page Cache

The page cache is a set of data structures which contain pages that are backed by
regular �les, block devices or swap. There are basically four types of pages that
exist in the cache:

• Pages that were faulted in as a result of reading a memory mapped �le;

• Blocks read from a block device or �lesystem are packed into special pages
called bu�er pages. The number of blocks that may �t depends on the size of
the block and the page size of the architecture;

10.2.1 Page Cache Hash Table 156

• Anonymous pages exist in a special aspect of the page cache called the swap
cache when slots are allocated in the backing storage for page-out, discussed
further in Chapter 11;

• Pages belonging to shared memory regions are treated in a similar fashion to
anonymous pages. The only di�erence is that shared pages are added to the
swap cache and space reserved in backing storage immediately after the �rst
write to the page.

The principal reason for the existance of this cache is to eliminate unnecessary
disk reads. Pages read from disk are stored in a page hash table which is hashed on
the struct address_space and the o�set which is always searched before the disk
is accessed. An API is provided that is responsible for manipulating the page cache
which is listed in Table 10.1.

10.2.1 Page Cache Hash Table

There is a requirement that pages in the page cache be quickly located. To
facilitate this, pages are inserted into a table page_hash_table and the �elds
page→next_hash and page→pprev_hash are used to handle collisions.

The table is declared as follows in mm/filemap.c:

45 atomic_t page_cache_size = ATOMIC_INIT(0);

46 unsigned int page_hash_bits;

47 struct page **page_hash_table;

The table is allocated during system initialisation by page_cache_init() which
takes the number of physical pages in the system as a parameter. The desired size
of the table (htable_size) is enough to hold pointers to every struct page in the
system and is calculated by

htable_size = num_physpages ∗ sizeof(struct page ∗)

To allocate a table, the system begins with an order allocation large enough to
contain the entire table. It calculates this value by starting at 0 and incrementing it
until 2order > htable_size. This may be roughly expressed as the integer component
of the following simple equation.

order = log2((htable_size ∗ 2)− 1))

An attempt is made to allocate this order of pages with __get_free_pages().
If the allocation fails, lower orders will be tried and if no allocation is satis�ed, the
system panics.

The value of page_hash_bits is based on the size of the table for use with the
hashing function _page_hashfn(). The value is calculated by successive divides by
two but in real terms, this is equivalent to:

10.2.2 Inode Queue 157

void add_to_page_cache(struct page * page, struct address_space *

mapping, unsigned long offset)

Adds a page to the LRU with lru_cache_add() in addition to adding it to
the inode queue and page hash tables

void add_to_page_cache_unique(struct page * page, struct

address_space *mapping, unsigned long offset, struct page **hash)

This is imilar to add_to_page_cache() except it checks that the page is not
already in the page cache. This is required when the caller does not hold the
pagecache_lock spinlock

void remove_inode_page(struct page *page)

This function removes a page from the inode and hash queues with
remove_page_from_inode_queue() and remove_page_from_hash_queue(), ef-
fectively removing the page from the page cache

struct page * page_cache_alloc(struct address_space *x)

This is a wrapper around alloc_pages() which uses x→gfp_mask as the GFP
mask

void page_cache_get(struct page *page)

Increases the reference count to a page already in the page cache

int page_cache_read(struct file * file, unsigned long offset)

This function adds a page corresponding to an offset with a file if it
is not already there. If necessary, the page will be read from disk using an
address_space_operations→readpage function

void page_cache_release(struct page *page)

An alias for __free_page(). The reference count is decremented and if it
drops to 0, the page will be freed

Table 10.1: Page Cache API

page_hash_bits = log2

∣∣∣∣∣PAGE_SIZE ∗ 2order

sizeof(struct page ∗)

∣∣∣∣∣
This makes the table a power-of-two hash table which negates the need to use a

modulus which is a common choice for hashing functions.

10.2.2 Inode Queue

The inode queue is part of the struct address_space introduced in Section 4.4.2.
The struct contains three lists: clean_pages is a list of clean pages associated

10.2.3 Adding Pages to the Page Cache 158

with the inode; dirty_pages which have been written to since the list sync to
disk; and locked_pages which are those currently locked. These three lists in
combination are considered to be the inode queue for a given mapping and the
page→list �eld is used to link pages on it. Pages are added to the inode queue
with add_page_to_inode_queue() which places pages on the clean_pages lists
and removed with remove_page_from_inode_queue().

10.2.3 Adding Pages to the Page Cache

Pages read from a �le or block device are generally added to the page cache to avoid
further disk IO. Most �lesystems use the high level function generic_file_read()

as their file_operations→read(). The shared memory �lesystem, which is cov-
ered in Chatper 12, is one noteworthy exception but, in general, �lesystems perform
their operations through the page cache. For the purposes of this section, we'll
illustrate how generic_file_read() operates and how it adds pages to the page
cache.

For normal IO1, generic_file_read() begins with a few basic checks be-
fore calling do_generic_file_read(). This searches the page cache, by calling
__find_page_nolock() with the pagecache_lock held, to see if the page already
exists in it. If it does not, a new page is allocated with page_cache_alloc(),
which is a simple wrapper around alloc_pages(), and added to the page cache
with __add_to_page_cache(). Once a page frame is present in the page cache,
generic_file_readahead() is called which uses page_cache_read() to read the
page from disk. It reads the page using mapping→a_ops→readpage(), where
mapping is the address_space managing the �le. readpage() is the �lesystem
speci�c function used to read a page on disk.

Figure 10.2: Call Graph: generic_file_read()

Anonymous pages are added to the swap cache when they are unmapped from a
process, which will be discussed further in Section 11.4. Until an attempt is made
to swap them out, they have no address_space acting as a mapping or any o�set

1Direct IO is handled di�erently with generic_file_direct_IO().

10.3 LRU Lists 159

within a �le leaving nothing to hash them into the page cache with. Note that these
pages still exist on the LRU lists however. Once in the swap cache, the only real
di�erence between anonymous pages and �le backed pages is that anonymous pages
will use swapper_space as their struct address_space.

Shared memory pages are added during one of two cases. The �rst is during
shmem_getpage_locked() which is called when a page has to be either fetched
from swap or allocated as it is the �rst reference. The second is when the swapout
code calls shmem_unuse(). This occurs when a swap area is being deactivated and a
page, backed by swap space, is found that does not appear to belong to any process.
The inodes related to shared memory are exhaustively searched until the correct
page is found. In both cases, the page is added with add_to_page_cache().

Figure 10.3: Call Graph: add_to_page_cache()

10.3 LRU Lists

As stated in Section 10.1, the LRU lists consist of two lists called active_list and
inactive_list. They are declared in mm/page_alloc.c and are protected by the
pagemap_lru_lock spinlock. They, broadly speaking, store the �hot� and �cold�
pages respectively, or in other words, the active_list contains all the working sets
in the system and inactive_list contains reclaim canditates. The API which deals
with the LRU lists that is listed in Table 10.2.

10.3.1 Re�lling inactive_list

When caches are being shrunk, pages are moved from the active_list to the
inactive_list by the function refill_inactive(). It takes as a parameter the
number of pages to move, which is calculated in shrink_caches() as a ratio de-
pending on nr_pages, the number of pages in active_list and the number of pages
in inactive_list. The number of pages to move is calculated as

pages = nr_pages ∗ nr_active_pages

2 ∗ (nr_inactive_pages + 1)

10.3.2 Reclaiming Pages from the LRU Lists 160

void lru_cache_add(struct page * page)

Add a cold page to the inactive_list. Will be moved to active_list with
a call to mark_page_accessed() if the page is known to be hot, such as when a
page is faulted in.

void lru_cache_del(struct page *page)

Removes a page from the LRU lists by calling either
del_page_from_active_list() or del_page_from_inactive_list(),
whichever is appropriate.

void mark_page_accessed(struct page *page)

Mark that the page has been accessed. If it was not recently referenced (in the
inactive_list and PG_referenced �ag not set), the referenced �ag is set. If
it is referenced a second time, activate_page() is called, which marks the page
hot, and the referenced �ag is cleared

void activate_page(struct page * page)

Removes a page from the inactive_list and places it on active_list. It is
very rarely called directly as the caller has to know the page is on inactive_list.
mark_page_accessed() should be used instead

Table 10.2: LRU List API

This keeps the active_list about two thirds the size of the inactive_list

and the number of pages to move is determined as a ratio based on how many pages
we desire to swap out (nr_pages).

Pages are taken from the end of the active_list. If the PG_referenced �ag is
set, it is cleared and the page is put back at top of the active_list as it has been
recently used and is still �hot�. This is sometimes referred to as rotating the list. If
the �ag is cleared, it is moved to the inactive_list and the PG_referenced �ag
set so that it will be quickly promoted to the active_list if necessary.

10.3.2 Reclaiming Pages from the LRU Lists

The function shrink_cache() is the part of the replacement algorithm which takes
pages from the inactive_list and decides how they should be swapped out. The
two starting parameters which determine how much work will be performed are
nr_pages and priority. nr_pages starts out as SWAP_CLUSTER_MAX, currently
de�ned as 32 in mm/vmscan.c. The variable priority starts as DEF_PRIORITY,
currently de�ned as 6 in mm/vmscan.c.

Two parameters, max_scan and max_mapped determine how much work the
function will do and are a�ected by the priority. Each time the function
shrink_caches() is called without enough pages being freed, the priority will be
decreased until the highest priority 1 is reached.

10.3.2 Reclaiming Pages from the LRU Lists 161

The variable max_scan is the maximum number of pages will be scanned by this
function and is simply calculated as

max_scan =
nr_inactive_pages

priority

where nr_inactive_pages is the number of pages in the inactive_list. This
means that at lowest priority 6, at most one sixth of the pages in the inactive_list
will be scanned and at highest priority, all of them will be.

The second parameter is max_mapped which determines how many process pages
are allowed to exist in the page cache before whole processes will be swapped out.
This is calculated as the minimum of either one tenth of max_scan or

max_mapped = nr_pages ∗ 2(10−priority)

In other words, at lowest priority, the maximum number of mapped pages al-
lowed is either one tenth of max_scan or 16 times the number of pages to swap out
(nr_pages) whichever is the lower number. At high priority, it is either one tenth
of max_scan or 512 times the number of pages to swap out.

From there, the function is basically a very large for-loop which scans at most
max_scan pages to free up nr_pages pages from the end of the inactive_list or
until the inactive_list is empty. After each page, it checks to see whether it
should reschedule itself so that the swapper does not monopolise the CPU.

For each type of page found on the list, it makes a di�erent decision on what to
do. The di�erent page types and actions taken are handled in this order:

Page is mapped by a process. This jumps to the page_mapped label which we
will meet again in a later case. The max_mapped count is decremented. If it reaches
0, the page tables of processes will be linearly searched and swapped out by the
function swap_out()

Page is locked and the PG_launder bit is set. The page is locked for IO so could
be skipped over. However, if the PG_launder bit is set, it means that this is the
second time the page has been found locked so it is better to wait until the IO com-
pletes and get rid of it. A reference to the page is taken with page_cache_get()

so that the page will not be freed prematurely and wait_on_page() is called which
sleeps until the IO is complete. Once it is completed, the reference count is decre-
mented with page_cache_release(). When the count reaches zero, the page will
be reclaimed.

Page is dirty, is unmapped by all processes, has no bu�ers and belongs to a
device or �le mapping. As the page belongs to a �le or device mapping, it has
a valid writepage() function available via page→mapping→a_ops→writepage.
The PG_dirty bit is cleared and the PG_launder bit is set as it is about to start
IO. A reference is taken for the page with page_cache_get() before calling the
writepage() function to synchronise the page with the backing �le before dropping
the reference with page_cache_release(). Be aware that this case will also syn-
chronise anonymous pages that are part of the swap cache with the backing storage
as swap cache pages use swapper_space as a page→mapping. The page remains on

10.4 Shrinking all caches 162

the LRU. When it is found again, it will be simply freed if the IO has completed
and the page will be reclaimed. If the IO has not completed, the kernel will wait for
the IO to complete as described in the previous case.

Page has bu�ers associated with data on disk. A reference is taken to the page
and an attempt is made to free the pages with try_to_release_page(). If it
succeeds and is an anonymous page (no page→mapping, the page is removed from
the LRU and page_cache_released() called to decrement the usage count. There
is only one case where an anonymous page has associated bu�ers and that is when
it is backed by a swap �le as the page needs to be written out in block-sized chunk.
If, on the other hand, it is backed by a �le or device, the reference is simply dropped
and the page will be freed as usual when the count reaches 0.

Page is anonymous and is mapped by more than one process. The LRU is un-
locked and the page is unlocked before dropping into the same page_mapped label
that was encountered in the �rst case. In other words, the max_mapped count is
decremented and swap_out called when, or if, it reaches 0.

Page has no process referencing it. This is the �nal case that is �fallen� into
rather than explicitly checked for. If the page is in the swap cache, it is removed
from it as the page is now sychronised with the backing storage and has no process
referencing it. If it was part of a �le, it is removed from the inode queue, deleted
from the page cache and freed.

10.4 Shrinking all caches

The function responsible for shrinking the various caches is shrink_caches() which
takes a few simple steps to free up some memory. The maximum number of pages
that will be written to disk in any given pass is nr_pages which is initialised by
try_to_free_pages_zone() to be SWAP_CLUSTER_MAX. The limitation is there so
that if kswapd schedules a large number of pages to be written to disk, it will
sleep occasionally to allow the IO to take place. As pages are freed, nr_pages is
decremented to keep count.

The amount of work that will be performed also depends on the priority ini-
tialised by try_to_free_pages_zone() to be DEF_PRIORITY. For each pass that
does not free up enough pages, the priority is decremented for the highest priority
been 1.

The function �rst calls kmem_cache_reap() (see Section 8.1.7) which selects a
slab cache to shrink. If nr_pages number of pages are freed, the work is complete
and the function returns otherwise it will try to free nr_pages from other caches.

If other caches are to be a�ected, refill_inactive() will move pages from the
active_list to the inactive_list before shrinking the page cache by reclaiming
pages at the end of the inactive_list with shrink_cache().

Finally, it shrinks three special caches, the dcache (shrink_dcache_memory()),
the icache (shrink_icache_memory()) and the dqcache (shrink_dqcache_memory()).
These objects are quite small in themselves but a cascading e�ect allows a lot more
pages to be freed in the form of bu�er and disk caches.

10.5 Swapping Out Process Pages 163

Figure 10.4: Call Graph: shrink_caches()

10.5 Swapping Out Process Pages

When max_mapped pages have been found in the page cache, swap_out() is called
to start swapping out process pages. Starting from the mm_struct pointed to by
swap_mm and the address mm→swap_address, the page tables are searched forward
until nr_pages have been freed.

Figure 10.5: Call Graph: swap_out()

All process mapped pages are examined regardless of where they are in the lists
or when they were last referenced but pages which are part of the active_list or
have been recently referenced will be skipped over. The examination of hot pages
is a bit costly but insigni�cant in comparison to linearly searching all processes for
the PTEs that reference a particular struct page.

Once it has been decided to swap out pages from a process, an attempt will be

10.6 Pageout Daemon (kswapd) 164

made to swap out at least SWAP_CLUSTER_MAX number of pages and the full list of
mm_structs will only be examined once to avoid constant looping when no pages
are available. Writing out the pages in bulk increases the chance that pages close
together in the process address space will be written out to adjacent slots on disk.

The marker swap_mm is initialised to point to init_mm and the swap_address

is initialised to 0 the �rst time it is used. A task has been fully searched when
the swap_address is equal to TASK_SIZE. Once a task has been selected to swap
pages from, the reference count to the mm_struct is incremented so that it will not be
freed early and swap_out_mm() is called with the selected mm_struct as a parameter.
This function walks each VMA the process holds and calls swap_out_vma() for it.
This is to avoid having to walk the entire page table which will be largely sparse.
swap_out_pgd() and swap_out_pmd() walk the page tables for given VMA until
�nally try_to_swap_out() is called on the actual page and PTE.

The function try_to_swap_out() �rst checks to make sure that the page is not
part of the active_list, has been recently referenced or belongs to a zone that we
are not interested in. Once it has been established this is a page to be swapped
out, it is removed from the process page tables. The newly removed PTE is then
checked to see if it is dirty. If it is, the struct page �ags will be updated to match
so that it will get synchronised with the backing storage. If the page is already a
part of the swap cache, the RSS is simply updated and the reference to the page is
dropped, otherwise the process is added to the swap cache. How pages are added to
the swap cache and synchronised with backing storage is discussed in Chapter 11.

10.6 Pageout Daemon (kswapd)

During system startup, a kernel thread called kswapd is started from kswapd_init()

which continuously executes the function kswapd() in mm/vmscan.c which usually
sleeps. This daemon is responsible for reclaiming pages when memory is running
low. Historically, kswapd used to wake up every 10 seconds but now it is only
woken by the physical page allocator when the pages_low number of free pages in
a zone is reached (see Section 2.2.1).

It is this daemon that performs most of the tasks needed to maintain the
page cache correctly, shrink slab caches and swap out processes if necessary. Un-
like swapout daemons such, as Solaris [MM01], which are woken up with in-
creasing frequency as there is memory pressure, kswapd keeps freeing pages un-
til the pages_high watermark is reached. Under extreme memory pressure, pro-
cesses will do the work of kswapd synchronously by calling balance_classzone()

which calls try_to_free_pages_zone(). As shown in Figure 10.6, it is at
try_to_free_pages_zone() where the physical page allocator synchonously per-
forms the same task as kswapd when the zone is under heavy pressure.

When kswapd is woken up, it performs the following:

• Calls kswapd_can_sleep() which cycles through all zones checking the
need_balance �eld in the struct zone_t. If any of them are set, it can
not sleep;

10.7 What's New in 2.6 165

Figure 10.6: Call Graph: kswapd()

• If it cannot sleep, it is removed from the kswapd_wait wait queue;

• Calls the functions kswapd_balance(), which cycles through all zones. It will
free pages in a zone with try_to_free_pages_zone() if need_balance is set
and will keep freeing until the pages_high watermark is reached;

• The task queue for tq_disk is run so that pages queued will be written out;

• Add kswapd back to the kswapd_wait queue and go back to the �rst step.

10.7 What's New in 2.6

kswapd As stated in Section 2.6, there is now a kswapd for every memory node
in the system. These daemons are still started from kswapd() and they all execute
the same code except their work is con�ned to their local node. The main changes
to the implementation of kswapd are related to the kswapd-per-node change.

The basic operation of kswapd remains the same. Once woken, it calls
balance_pgdat() for the pgdat it is responsible for. balance_pgdat() has two
modes of operation. When called with nr_pages == 0, it will continually try to
free pages from each zone in the local pgdat until pages_high is reached. When
nr_pages is speci�ed, it will try and free either nr_pages or MAX_CLUSTER_MAX * 8,
whichever is the smaller number of pages.

Balancing Zones The two main functions called by balance_pgdat() to free
pages are shrink_slab() and shrink_zone(). shrink_slab() was covered in Sec-
tion 8.8 so will not be repeated here. The function shrink_zone() is called to free
a number of pages based on how urgent it is to free pages. This function behaves

10.7 What's New in 2.6 166

very similar to how 2.4 works. refill_inactive_zone() will move a number of
pages from zone→active_list to zone→inactive_list. Remember as covered
in Section 2.6, that LRU lists are now per-zone and not global as they are in 2.4.
shrink_cache() is called to remove pages from the LRU and reclaim pages.

Pageout Pressure In 2.4, the pageout priority determined how many pages
would be scanned. In 2.6, there is a decaying average that is updated by
zone_adj_pressure(). This adjusts the zone→pressure �eld to indicate how
many pages should be scanned for replacement. When more pages are required, this
will be pushed up towards the highest value of DEF_PRIORITY � 10 and then decays
over time. The value of this average a�ects how many pages will be scanned in a
zone for replacement. The objective is to have page replacement start working and
slow gracefully rather than act in a bursty nature.

Manipulating LRU Lists In 2.4, a spinlock would be acquired when removing
pages from the LRU list. This made the lock very heavily contended so, to relieve
contention, operations involving the LRU lists take place via struct pagevec struc-
tures. This allows pages to be added or removed from the LRU lists in batches of
up to PAGEVEC_SIZE numbers of pages.

To illustrate, when refill_inactive_zone() and shrink_cache() are remov-
ing pages, they acquire the zone→lru_lock lock, remove large blocks of pages and
store them on a temporary list. Once the list of pages to remove is assembled,
shrink_list() is called to perform the actual freeing of pages which can now per-
form most of it's task without needing the zone→lru_lock spinlock.

When adding the pages back, a new page vector struct is initialised with
pagevec_init(). Pages are added to the vector with pagevec_add() and then
committed to being placed on the LRU list in bulk with pagevec_release().

There is a sizable API associated with pagevec structs which can be seen in
<linux/pagevec.h> with most of the implementation in mm/swap.c.

Chapter 11

Swap Management

Just as Linux uses free memory for purposes such as bu�ering data from disk, there
eventually is a need to free up private or anonymous pages used by a process. These
pages, unlike those backed by a �le on disk, cannot be simply discarded to be read
in later. Instead they have to be carefully copied to backing storage, sometimes
called the swap area. This chapter details how Linux uses and manages its backing
storage.

Strictly speaking, Linux does not swap as �swapping� refers to coping an entire
process address space to disk and �paging� to copying out individual pages. Linux
actually implements paging as modern hardware supports it, but traditionally has
called it swapping in discussions and documentation. To be consistent with the
Linux usage of the word, we too will refer to it as swapping.

There are two principle reasons that the existence of swap space is desirable.
First, it expands the amount of memory a process may use. Virtual memory and
swap space allows a large process to run even if the process is only partially resident.
As �old� pages may be swapped out, the amount of memory addressed may easily
exceed RAM as demand paging will ensure the pages are reloaded if necessary.

The casual reader1 may think that with a su�cient amount of memory, swap is
unnecessary but this brings us to the second reason. A signi�cant number of the
pages referenced by a process early in its life may only be used for initialisation and
then never used again. It is better to swap out those pages and create more disk
bu�ers than leave them resident and unused.

It is important to note that swap is not without its drawbacks and the most
important one is the most obvious one; Disk is slow, very very slow. If processes are
frequently addressing a large amount of memory, no amount of swap or expensive
high-performance disks will make it run within a reasonable time, only more RAM
will help. This is why it is very important that the correct page be swapped out
as discussed in Chapter 10, but also that related pages be stored close together in
the swap space so they are likely to be swapped in at the same time while reading
ahead. We will start with how Linux describes a swap area.

This chapter begins with describing the structures Linux maintains about each

1Not to mention the a�uent reader.

167

11.1 Describing the Swap Area 168

active swap area in the system and how the swap area information is organised on
disk. We then cover how Linux remembers how to �nd pages in the swap after they
have been paged out and how swap slots are allocated. After that the Swap Cache
is discussed which is important for shared pages. At that point, there is enough
information to begin understanding how swap areas are activated and deactivated,
how pages are paged in and paged out and �nally how the swap area is read and
written to.

11.1 Describing the Swap Area

Each active swap area, be it a �le or partition, has a struct swap_info_struct

describing the area. All the structs in the running system are stored in a statically
declared array called swap_info which holds MAX_SWAPFILES, which is statically
de�ned as 32, entries. This means that at most 32 swap areas can exist on a running
system. The swap_info_struct is declared as follows in <linux/swap.h>:

64 struct swap_info_struct {

65 unsigned int flags;

66 kdev_t swap_device;

67 spinlock_t sdev_lock;

68 struct dentry * swap_file;

69 struct vfsmount *swap_vfsmnt;

70 unsigned short * swap_map;

71 unsigned int lowest_bit;

72 unsigned int highest_bit;

73 unsigned int cluster_next;

74 unsigned int cluster_nr;

75 int prio;

76 int pages;

77 unsigned long max;

78 int next;

79 };

Here is a small description of each of the �elds in this quite sizable struct.

�ags This is a bit �eld with two possible values. SWP_USED is set if the swap area
is currently active. SWP_WRITEOK is de�ned as 3, the two lowest signi�cant
bits, including the SWP_USED bit. The �ags is set to SWP_WRITEOK when Linux
is ready to write to the area as it must be active to be written to;

swap_device The device corresponding to the partition used for this swap area
is stored here. If the swap area is a �le, this is NULL;

sdev_lock As with many structs in Linux, this one has to be protected too.
sdev_lock is a spinlock protecting the struct, principally the swap_map. It is
locked and unlocked with swap_device_lock() and swap_device_unlock();

11.1 Describing the Swap Area 169

swap_�le This is the dentry for the actual special �le that is mounted as a swap
area. This could be the dentry for a �le in the /dev/ directory for example
in the case a partition is mounted. This �eld is needed to identify the correct
swap_info_struct when deactiating a swap area;

vfs_mount This is the vfs_mount object corresponding to where the device or
�le for this swap area is stored;

swap_map This is a large array with one entry for every swap entry, or page
sized slot in the area. An entry is a reference count of the number of users of
this page slot. The swap cache counts as one user and every PTE that has
been paged out to the slot counts as a user. If it is equal to SWAP_MAP_MAX, the
slot is allocated permanently. If equal to SWAP_MAP_BAD, the slot will never be
used;

lowest_bit This is the lowest possible free slot available in the swap area and
is used to start from when linearly scanning to reduce the search space. It is
known that there are de�nitely no free slots below this mark;

highest_bit This is the highest possible free slot available in this swap area.
Similar to lowest_bit, there are de�nitely no free slots above this mark;

cluster_next This is the o�set of the next cluster of blocks to use. The swap area
tries to have pages allocated in cluster blocks to increase the chance related
pages will be stored together;

cluster_nr This the number of pages left to allocate in this cluster;

prio Each swap area has a priority which is stored in this �eld. Areas are arranged
in order of priority and determine how likely the area is to be used. By default
the priorities are arranged in order of activation but the system administrator
may also specify it using the -p �ag when using swapon;

pages As some slots on the swap �le may be unusable, this �eld stores the number
of usable pages in the swap area. This di�ers from max in that slots marked
SWAP_MAP_BAD are not counted;

max This is the total number of slots in this swap area;

next This is the index in the swap_info array of the next swap area in the system.

The areas, though stored in an array, are also kept in a pseudo list called
swap_list which is a very simple type declared as follows in <linux/swap.h>:

153 struct swap_list_t {

154 int head; /* head of priority-ordered swapfile list */

155 int next; /* swapfile to be used next */

156 };

11.1 Describing the Swap Area 170

The �eld swap_list_t→head is the swap area of the highest priority swap area
in use and swap_list_t→next is the next swap area that should be used. This is
so areas may be arranged in order of priority when searching for a suitable area but
still looked up quickly in the array when necessary.

Each swap area is divided up into a number of page sized slots on disk which
means that each slot is 4096 bytes on the x86 for example. The �rst slot is always
reserved as it contains information about the swap area that should not be overwrit-
ten. The �rst 1 KiB of the swap area is used to store a disk label for the partition
that can be picked up by userspace tools. The remaining space is used for infor-
mation about the swap area which is �lled when the swap area is created with the
system program mkswap. The information is used to �ll in a union swap_header

which is declared as follows in <linux/swap.h>:

25 union swap_header {

26 struct

27 {

28 char reserved[PAGE_SIZE - 10];

29 char magic[10];

30 } magic;

31 struct

32 {

33 char bootbits[1024];

34 unsigned int version;

35 unsigned int last_page;

36 unsigned int nr_badpages;

37 unsigned int padding[125];

38 unsigned int badpages[1];

39 } info;

40 };

A description of each of the �elds follows

magic The magic part of the union is used just for identifying the �magic� string.
The string exists to make sure there is no chance a partition that is not a
swap area will be used and to decide what version of swap area is is. If
the string is �SWAP-SPACE�, it is version 1 of the swap �le format. If it is
�SWAPSPACE2�, it is version 2. The large reserved array is just so that the
magic string will be read from the end of the page;

bootbits This is the reserved area containing information about the partition
such as the disk label;

version This is the version of the swap area layout;

last_page This is the last usable page in the area;

11.2 Mapping Page Table Entries to Swap Entries 171

nr_badpages The known number of bad pages that exist in the swap area are
stored in this �eld;

padding A disk section is usually about 512 bytes in size. The three �elds
version, last_page and nr_badpages make up 12 bytes and the padding

�lls up the remaining 500 bytes to cover one sector;

badpages The remainder of the page is used to store the indices of up to
MAX_SWAP_BADPAGES number of bad page slots. These slots are �lled in by
the mkswap system program if the -c switch is speci�ed to check the area.

MAX_SWAP_BADPAGES is a compile time constant which varies if the struct changes
but it is 637 entries in its current form as given by the simple equation;

MAX_SWAP_BADPAGES =
PAGE_SIZE− 1024− 512− 10

sizeof(long)

Where 1024 is the size of the bootblock, 512 is the size of the padding and 10 is
the size of the magic string identi�ng the format of the swap �le.

11.2 Mapping Page Table Entries to Swap Entries

When a page is swapped out, Linux uses the corresponding PTE to store enough
information to locate the page on disk again. Obviously a PTE is not large enough in
itself to store precisely where on disk the page is located, but it is more than enough
to store an index into the swap_info array and an o�set within the swap_map and
this is precisely what Linux does.

Each PTE, regardless of architecture, is large enough to store a swp_entry_t

which is declared as follows in <linux/shmem_fs.h>

16 typedef struct {

17 unsigned long val;

18 } swp_entry_t;

Two macros are provided for the translation of PTEs to swap entries and vice
versa. They are pte_to_swp_entry() and swp_entry_to_pte() respectively.

Each architecture has to be able to determine if a PTE is present or swapped
out. For illustration, we will show how this is implemented on the x86. In the
swp_entry_t, two bits are always kept free. On the x86, Bit 0 is reserved for the
_PAGE_PRESENT �ag and Bit 7 is reserved for _PAGE_PROTNONE. The requirement for
both bits is explained in Section 3.2. Bits 1-6 are for the type which is the index
within the swap_info array and are returned by the SWP_TYPE() macro.

Bits 8-31 are used are to store the o�set within the swap_map from the
swp_entry_t. On the x86, this means 24 bits are available, �limiting� the size
of the swap area to 64GiB. The macro SWP_OFFSET() is used to extract the o�set.

11.3 Allocating a swap slot 172

Figure 11.1: Storing Swap Entry Information in swp_entry_t

To encode a type and o�set into a swp_entry_t, the macro SWP_ENTRY() is avail-
able which simply performs the relevant bit shifting operations. The relationship
between all these macros is illustrated in Figure 11.1.

It should be noted that the six bits for �type� should allow up to 64 swap
areas to exist in a 32 bit architecture instead of the MAX_SWAPFILES restriction
of 32. The restriction is due to the consumption of the vmalloc address space.
If a swap area is the maximum possible size then 32MiB is required for the
swap_map (224 ∗ sizeof(short)); remember that each page uses one short for the ref-
erence count. For just MAX_SWAPFILES maximum number of swap areas to exist,
1GiB of virtual malloc space is required which is simply impossible because of the
user/kernel linear address space split.

This would imply supporting 64 swap areas is not worth the additional complex-
ity but there are cases where a large number of swap areas would be desirable even
if the overall swap available does not increase. Some modern machines2 have many
separate disks which between them can create a large number of separate block de-
vices. In this case, it is desirable to create a large number of small swap areas which
are evenly distributed across all disks. This would allow a high degree of parallelism
in the page swapping behaviour which is important for swap intensive applications.

11.3 Allocating a swap slot

All page sized slots are tracked by the array swap_info_struct→swap_map which
is of type unsigned short. Each entry is a reference count of the number of users
of the slot which happens in the case of a shared page and is 0 when free. If the

2A Sun E450 could have in the region of 20 disks in it for example.

11.4 Swap Cache 173

entry is SWAP_MAP_MAX, the page is permanently reserved for that slot. It is unlikely,
if not impossible, for this condition to occur but it exists to ensure the reference
count does not over�ow. If the entry is SWAP_MAP_BAD, the slot is unusable.

Figure 11.2: Call Graph: get_swap_page()

The task of �nding and allocating a swap entry is divided into two major tasks.
The �rst performed by the high level function get_swap_page(). Starting with
swap_list→next, it searches swap areas for a suitable slot. Once a slot has been
found, it records what the next swap area to be used will be and returns the allocated
entry.

The task of searching the map is the responsibility of scan_swap_map(). In
principle, it is very simple as it linearly scan the array for a free slot and return.
Predictably, the implementation is a bit more thorough.

Linux attempts to organise pages into clusters on disk of size SWAPFILE_CLUSTER.
It allocates SWAPFILE_CLUSTER number of pages sequentially in swap keeping count
of the number of sequentially allocated pages in swap_info_struct→cluster_nr

and records the current o�set in swap_info_struct→cluster_next. Once a se-
quential block has been allocated, it searches for a block of free entries of size
SWAPFILE_CLUSTER. If a block large enough can be found, it will be used as another
cluster sized sequence.

If no free clusters large enough can be found in the swap area, a simple �rst-free
search starting from swap_info_struct→lowest_bit is performed. The aim is to
have pages swapped out at the same time close together on the premise that pages
swapped out together are related. This premise, which seems strange at �rst glance,
is quite solid when it is considered that the page replacement algorithm will use swap
space most when linearly scanning the process address space swapping out pages.
Without scanning for large free blocks and using them, it is likely that the scanning
would degenerate to �rst-free searches and never improve. With it, processes exiting
are likely to free up large blocks of slots.

11.4 Swap Cache

Pages that are shared between many processes can not be easily swapped out be-
cause, as mentioned, there is no quick way to map a struct page to every PTE that

11.4 Swap Cache 174

references it. This leads to the race condition where a page is present for one PTE
and swapped out for another gets updated without being synced to disk thereby
losing the update.

To address this problem, shared pages that have a reserved slot in backing storage
are considered to be part of the swap cache. The swap cache is purely conceptual as
it is simply a specialisation of the page cache. The �rst principal di�erence between
pages in the swap cache rather than the page cache is that pages in the swap cache
always use swapper_space as their address_space in page→mapping. The second
di�erence is that pages are added to the swap cache with add_to_swap_cache()

instead of add_to_page_cache().

Figure 11.3: Call Graph: add_to_swap_cache()

Anonymous pages are not part of the swap cache until an attempt is made to
swap them out. The variable swapper_space is declared as follows in swap_state.c:

39 struct address_space swapper_space = {

40 LIST_HEAD_INIT(swapper_space.clean_pages),

41 LIST_HEAD_INIT(swapper_space.dirty_pages),

42 LIST_HEAD_INIT(swapper_space.locked_pages),

43 0,

44 &swap_aops,

45 };

A page is identi�ed as being part of the swap cache once the page→mapping �eld
has been set to swapper_space which is tested by the PageSwapCache() macro.
Linux uses the exact same code for keeping pages between swap and memory in
sync as it uses for keeping �le-backed pages and memory in sync as they both share
the page cache code, the di�erences are just in the functions used.

The address space for backing storage, swapper_space uses swap_ops for
it's address_space→a_ops. The page→index �eld is then used to store the
swp_entry_t structure instead of a �le o�set which is it's normal purpose. The
address_space_operations struct swap_aops is declared as follows in swap_state.c:

11.4 Swap Cache 175

34 static struct address_space_operations swap_aops = {

35 writepage: swap_writepage,

36 sync_page: block_sync_page,

37 };

When a page is being added to the swap cache, a slot is allocated with
get_swap_page(), added to the page cache with add_to_swap_cache() and then
marked dirty. When the page is next laundered, it will actually be written to backing
storage on disk as the normal page cache would operate. This process is illustrated
in Figure 11.4.

Figure 11.4: Adding a Page to the Swap Cache

Subsequent swapping of the page from shared PTEs results in a call to
swap_duplicate() which simply increments the reference to the slot in the
swap_map. If the PTE is marked dirty by the hardware as a result of a write,
the bit is cleared and the struct page is marked dirty with set_page_dirty() so
that the on-disk copy will be synced before the page is dropped. This ensures that
until all references to the page have been dropped, a check will be made to ensure
the data on disk matches the data in the page frame.

When the reference count to the page �nally reaches 0, the page is eligible to
be dropped from the page cache and the swap map count will have the count of
the number of PTEs the on-disk slot belongs to so that the slot will not be freed
prematurely. It is laundered and �nally dropped with the same LRU aging and logic
described in Chapter 10.

11.5 Reading Pages from Backing Storage 176

If, on the other hand, a page fault occurs for a page that is �swapped out�, the
logic in do_swap_page() will check to see if the page exists in the swap cache by
calling lookup_swap_cache(). If it does, the PTE is updated to point to the page
frame, the page reference count incremented and the swap slot decremented with
swap_free().

swp_entry_t get_swap_page()

This function allocates a slot in a swap_map by searching active swap areas.
This is covered in greater detail in Section 11.3 but included here as it is principally
used in conjunction with the swap cache

int add_to_swap_cache(struct page *page, swp_entry_t entry)

This function adds a page to the swap cache. It �rst checks if it already exists
by calling swap_duplicate() and if not, is adds it to the swap cache via the
normal page cache interface function add_to_page_cache_unique()

struct page * lookup_swap_cache(swp_entry_t entry)

This searches the swap cache and returns the struct page corresponding
to the supplied entry. It works by searching the normal page cache based on
swapper_space and the swap_map o�set

int swap_duplicate(swp_entry_t entry)

This function veri�es a swap entry is valid and if so, increments its swap map
count

void swap_free(swp_entry_t entry)

The complement function to swap_duplicate(). It decrements the relevant
counter in the swap_map. When the count reaches zero, the slot is e�ectively free

Table 11.1: Swap Cache API

11.5 Reading Pages from Backing Storage

The principal function used when reading in pages is read_swap_cache_async()

which is mainly called during page faulting. The function begins be searching
the swap cache with find_get_page(). Normally, swap cache searches are per-
formed by lookup_swap_cache() but that function updates statistics on the num-
ber of searches performed and as the cache may need to be searched multiple times,
find_get_page() is used instead.

The page can already exist in the swap cache if another process has the same
page mapped or multiple processes are faulting on the same page at the same time.
If the page does not exist in the swap cache, one must be allocated and �lled with
data from backing storage.

11.6 Writing Pages to Backing Storage 177

Figure 11.5: Call Graph: read_swap_cache_async()

Once the page is allocated with alloc_page(), it is added to the swap cache
with add_to_swap_cache() as swap cache operations may only be performed on
pages in the swap cache. If the page cannot be added to the swap cache, the swap
cache will be searched again to make sure another process has not put the data in
the swap cache already.

To read information from backing storage, rw_swap_page() is called which is
discussed in Section 11.7. Once the function completes, page_cache_release() is
called to drop the reference to the page taken by find_get_page().

11.6 Writing Pages to Backing Storage

When any page is being written to disk, the address_space→a_ops is con-
sulted to �nd the appropriate write-out function. In the case of backing storage,
the address_space is swapper_space and the swap operations are contained in
swap_aops. The struct swap_aops registers swap_writepage() as it's write-out
function.

The function swap_writepage() behaves di�erently depending on whether the
writing process is the last user of the swap cache page or not. It knows this by
calling remove_exclusive_swap_page() which checks if there is any other pro-
cesses using the page. This is a simple case of examining the page count with the
pagecache_lock held. If no other process is mapping the page, it is removed from
the swap cache and freed.

If remove_exclusive_swap_page() removed the page from the swap cache and
freed it swap_writepage() will unlock the page as it is no longer in use. If it still
exists in the swap cache, rw_swap_page() is called to write the data to the backing
storage.

11.7 Reading/Writing Swap Area Blocks 178

Figure 11.6: Call Graph: sys_writepage()

11.7 Reading/Writing Swap Area Blocks

The top-level function for reading and writing to the swap area is rw_swap_page().
This function ensures that all operations are performed through the swap cache to
prevent lost updates. rw_swap_page_base() is the core function which performs
the real work.

It begins by checking if the operation is a read. If it is, it clears the uptodate
�ag with ClearPageUptodate() as the page is obviously not up to date if IO is
required to �ll it with data. This �ag will be set again if the page is successfully
read from disk. It then calls get_swaphandle_info() to acquire the device for the
swap partition of the inode for the swap �le. These are required by the block layer
which will be performing the actual IO.

The core function can work with either swap partition or �les as it uses the block
layer function brw_page() to perform the actual disk IO. If the swap area is a �le,
bmap() is used to �ll a local array with a list of all blocks in the �lesystem which
contain the page data. Remember that �lesystems may have their own method of
storing �les and disk and it is not as simple as the swap partition where information
may be written directly to disk. If the backing storage is a partition, then only
one page-sized block requires IO and as there is no �lesystem involved, bmap() is
unnecessary.

Once it is known what blocks must be read or written, a normal block IO op-
eration takes place with brw_page(). All IO that is performed is asynchronous so
the function returns quickly. Once the IO is complete, the block layer will unlock
the page and any waiting process will wake up.

11.8 Activating a Swap Area 179

11.8 Activating a Swap Area

As it has now been covered what swap areas are, how they are represented and
how pages are tracked, it is time to see how they all tie together to activate an
area. Activating an area is conceptually quite simple; Open the �le, load the header
information from disk, populate a swap_info_struct and add it to the swap list.

The function responsible for the activation of a swap area is sys_swapon() and it
takes two parameters, the path to the special �le for the swap area and a set of �ags.
While swap is been activated, the Big Kernel Lock (BKL) is held which prevents
any application entering kernel space while this operation is been performed. The
function is quite large but can be broken down into the following simple steps;

• Find a free swap_info_struct in the swap_info array an initialise it with
default values

• Call user_path_walk() which traverses the directory tree for the supplied
specialfile and populates a namidata structure with the available data on
the �le, such as the dentry and the �lesystem information for where it is
stored (vfsmount)

• Populate swap_info_struct �elds pertaining to the dimensions of the swap
area and how to �nd it. If the swap area is a partition, the block size will
be con�gured to the PAGE_SIZE before calculating the size. If it is a �le, the
information is obtained directly from the inode

• Ensure the area is not already activated. If not, allocate a page from mem-
ory and read the �rst page sized slot from the swap area. This page con-
tains information such as the number of good slots and how to populate the
swap_info_struct→swap_map with the bad entries

• Allocate memory with vmalloc() for swap_info_struct→swap_map and ini-
tialise each entry with 0 for good slots and SWAP_MAP_BAD otherwise. Ideally
the header information will be a version 2 �le format as version 1 was limited
to swap areas of just under 128MiB for architectures with 4KiB page sizes like
the x863

• After ensuring the information indicated in the header matches the actual
swap area, �ll in the remaining information in the swap_info_struct such
as the maximum number of pages and the available good pages. Update the
global statistics for nr_swap_pages and total_swap_pages

• The swap area is now fully active and initialised and so it is inserted into the
swap list in the correct position based on priority of the newly activated area

At the end of the function, the BKL is released and the system now has a new
swap area available for paging to.

3See the Code Commentary for the comprehensive reason for this.

11.9 Deactivating a Swap Area 180

11.9 Deactivating a Swap Area

In comparison to activating a swap area, deactivation is incredibly expensive. The
principal problem is that the area cannot be simply removed, every page that is
swapped out must now be swapped back in again. Just as there is no quick way
of mapping a struct page to every PTE that references it, there is no quick way
to map a swap entry to a PTE either. This requires that all process page tables
be traversed to �nd PTEs which reference the swap area to be deactivated and
swap them in. This of course means that swap deactivation will fail if the physical
memory is not available.

The function responsible for deactivating an area is, predictably enough, called
sys_swapoff(). This function is mainly concerned with updating the swap_info_struct.
The major task of paging in each paged-out page is the responsibility of try_to_unuse()
which is extremely expensive. For each slot used in the swap_map, the page tables
for processes have to be traversed searching for it. In the worst case, all page tables
belonging to all mm_structs may have to be traversed. Therefore, the tasks taken
for deactivating an area are broadly speaking;

• Call user_path_walk() to acquire the information about the special �le to be
deactivated and then take the BKL

• Remove the swap_info_struct from the swap list and update the global
statistics on the number of swap pages available (nr_swap_pages) and the
total number of swap entries (total_swap_pages. Once this is acquired, the
BKL can be released again

• Call try_to_unuse() which will page in all pages from the swap area to be de-
activated. This function loops through the swap map using find_next_to_unuse()
to locate the next used swap slot. For each used slot it �nds, it performs the
following;

� Call read_swap_cache_async() to allocate a page for the slot saved on
disk. Ideally it exists in the swap cache already but the page allocator
will be called if it is not

� Wait on the page to be fully paged in and lock it. Once locked, call
unuse_process() for every process that has a PTE referencing the page.
This function traverses the page table searching for the relevant PTE
and then updates it to point to the struct page. If the page is a shared
memory page with no remaining reference, shmem_unuse() is called in-
stead

� Free all slots that were permanently mapped. It is believed that slots will
never become permanently reserved so the risk is taken.

� Delete the page from the swap cache to prevent try_to_swap_out()

referencing a page in the event it still somehow has a reference in swap
map

11.10 Whats New in 2.6 181

• If there was not enough available memory to page in all the entries, the swap
area is reinserted back into the running system as it cannot be simply dropped.
If it succeeded, the swap_info_struct is placed into an uninitialised state and
the swap_map memory freed with vfree()

11.10 Whats New in 2.6

The most important addition to the struct swap_info_struct is the addition of
a linked list called extent_list and a cache �eld called curr_swap_extent for the
implementation of extents.

Extents, which are represented by a struct swap_extent, map a contiguous
range of pages in the swap area into a contiguous range of disk blocks. These
extents are setup at swapon time by the function setup_swap_extents(). For block
devices, there will only be one swap extent and it will not improve performance but
the extent it setup so that swap areas backed by block devices or regular �les can
be treated the same.

It can make a large di�erence with swap �les which will have multiple extents rep-
resenting ranges of pages clustered together in blocks. When searching for the page
at a particular o�set, the extent list will be traversed. To improve search times, the
last extent that was searched will be cached in swap_extent→curr_swap_extent.

Chapter 12

Shared Memory Virtual Filesystem

Sharing a region region of memory backed by a �le or device is simply a case of
calling mmap() with the MAP_SHARED �ag. However, there are two important cases
where an anonymous region needs to be shared between processes. The �rst is when
mmap() with MAP_SHARED but no �le backing. These regions will be shared between
a parent and child process after a fork() is executed. The second is when a region is
explicitly setting them up with shmget() and attached to the virtual address space
with shmat().

When pages within a VMA are backed by a �le on disk, the interface used
is straight-forward. To read a page during a page fault, the required nopage()

function is found vm_area_struct→vm_ops. To write a page to backing storage,
the appropriate writepage() function is found in the address_space_operations
via inode→i_mapping→a_ops or alternatively via page→mapping→a_ops. When
normal �le operations are taking place such as mmap(), read() and write(), the
struct file_operations with the appropriate functions is found via inode→i_fop

and so on. These relationships were illustrated in Figure 4.2.
This is a very clean interface that is conceptually easy to understand but it

does not help anonymous pages as there is no �le backing. To keep this nice inter-
face, Linux creates an arti�cal �le-backing for anonymous pages using a RAM-based
�lesystem where each VMA is backed by a ��le� in this �lesystem. Every inode in
the �lesystem is placed on a linked list called shmem_inodes so that they may al-
ways be easily located. This allows the same �le-based interface to be used without
treating anonymous pages as a special case.

The �lesystem comes in two variations called shm and tmpfs . They both share
core functionality and mainly di�er in what they are used for. shm is for use by the
kernel for creating �le backings for anonymous pages and for backing regions created
by shmget(). This �lesystem is mounted by kern_mount() so that it is mounted
internally and not visible to users. tmpfs is a temporary �lesystem that may be
optionally mounted on /tmp/ to have a fast RAM-based temporary �lesystem. A
secondary use for tmpfs is to mount it on /dev/shm/. Processes that mmap() �les
in the tmpfs �lesystem will be able to share information between them as an alter-
native to System V IPC mechanisms. Regardless of the type of use, tmpfs must be
explicitly mounted by the system administrator.

182

12.1 Initialising the Virtual Filesystem 183

This chapter begins with a description of how the virtual �lesystem is imple-
mented. From there we will discuss how shared regions are setup and destroyed
before talking about how the tools are used to implement System V IPC mecha-
nisms.

12.1 Initialising the Virtual Filesystem

The virtual �lesystem is initialised by the function init_tmpfs() during either sys-
tem start or when the module is begin loaded. This function registers the two �lesys-
tems, tmpfs and shm, mounts shm as an internal �lesystem with kern_mount(). It
then calculates the maximum number of blocks and inodes that can exist in the
�lesystems. As part of the registration, the function shmem_read_super() is used
as a callback to populate a struct super_block with more information about the
�lesystems such as making the block size equal to the page size.

Figure 12.1: Call Graph: init_tmpfs()

Every inode created in the �lesystem will have a struct shmem_inode_info

associated with it which contains private information speci�c to the �lesystem. The
function SHMEM_I() takes an inode as a parameter and returns a pointer to a struct
of this type. It is declared as follows in <linux/shmem_fs.h>:

20 struct shmem_inode_info {

21 spinlock_t lock;

22 unsigned long next_index;

23 swp_entry_t i_direct[SHMEM_NR_DIRECT];

24 void **i_indirect;

25 unsigned long swapped;

26 unsigned long flags;

27 struct list_head list;

28 struct inode *inode;

29 };

The �elds are:

12.2 Using shmem Functions 184

lock is a spinlock protecting the inode information from concurrent accessses

next_index is an index of the last page being used in the �le. This will be
di�erent from inode→i_size while a �le is being trucated

i_direct is a direct block containing the �rst SHMEM_NR_DIRECT swap vectors in
use by the �le. See Section 12.4.1.

i_indirect is a pointer to the �rst indirect block. See Section 12.4.1.

swapped is a count of the number of pages belonging to the �le that are currently
swapped out

�ags is currently only used to remember if the �le belongs to a shared region setup
by shmget(). It is set by specifying SHM_LOCK with shmctl() and unlocked
by specifying SHM_UNLOCK

list is a list of all inodes used by the �lesystem

inode is a pointer to the parent inode

12.2 Using shmem Functions

Di�erent structs contain pointers for shmem speci�c functions. In all cases, tmpfs
and shm share the same structs.

For faulting in pages and writing them to backing storage, two structs called
shmem_aops and shmem_vm_ops of type struct address_space_operations and
struct vm_operations_struct respectively are declared.

The address space operations struct shmem_aops contains pointers to a small
number of functions of which the most important one is shmem_writepage()

which is called when a page is moved from the page cache to the swap cache.
shmem_removepage() is called when a page is removed from the page cache so
that the block can be reclaimed. shmem_readpage() is not used by tmpfs but
is provided so that the sendfile() system call my be used with tmpfs �les.
shmem_prepare_write() and shmem_commit_write() are also unused, but are pro-
vided so that tmpfs can be used with the loopback device. shmem_aops is declared
as follows in mm/shmem.c

1500 static struct address_space_operations shmem_aops = {

1501 removepage: shmem_removepage,

1502 writepage: shmem_writepage,

1503 #ifdef CONFIG_TMPFS

1504 readpage: shmem_readpage,

1505 prepare_write: shmem_prepare_write,

1506 commit_write: shmem_commit_write,

1507 #endif

1508 };

12.2 Using shmem Functions 185

Anonymous VMAs use shmem_vm_ops as it's vm_operations_struct so that
shmem_nopage() is called when a new page is being faulted in. It is declared as
follows:

1426 static struct vm_operations_struct shmem_vm_ops = {

1427 nopage: shmem_nopage,

1428 };

To perform operations on �les and inodes, two structs, file_operations and
inode_operations are required. The file_operations, called shmem_file_operations,
provides functions which implement mmap(), read(), write() and fsync(). It is
declared as follows:

1510 static struct file_operations shmem_file_operations = {

1511 mmap: shmem_mmap,

1512 #ifdef CONFIG_TMPFS

1513 read: shmem_file_read,

1514 write: shmem_file_write,

1515 fsync: shmem_sync_file,

1516 #endif

1517 };

Three sets of inode_operations are provided. The �rst is shmem_inode_operations
which is used for �le inodes. The second, called shmem_dir_inode_operations

is for directories. The last pair, called shmem_symlink_inline_operations and
shmem_symlink_inode_operations is for use with symbolic links.

The two �le operations supported are truncate() and setattr() which are
stored in a struct inode_operations called shmem_inode_operations. shmem_truncate()
is used to truncate a �le. shmem_notify_change() is called when the �le at-
tributes change. This allows, amoung other things, to allows a �le to be grown with
truncate() and use the global zero page as the data page. shmem_inode_operations
is declared as follows:

1519 static struct inode_operations shmem_inode_operations = {

1520 truncate: shmem_truncate,

1521 setattr: shmem_notify_change,

1522 };

The directory inode_operations provides functions such as create(), link()
and mkdir(). They are declared as follows:

12.2 Using shmem Functions 186

1524 static struct inode_operations shmem_dir_inode_operations = {

1525 #ifdef CONFIG_TMPFS

1526 create: shmem_create,

1527 lookup: shmem_lookup,

1528 link: shmem_link,

1529 unlink: shmem_unlink,

1530 symlink: shmem_symlink,

1531 mkdir: shmem_mkdir,

1532 rmdir: shmem_rmdir,

1533 mknod: shmem_mknod,

1534 rename: shmem_rename,

1535 #endif

1536 };

The last pair of operations are for use with symlinks. They are declared as:

1354 static struct inode_operations shmem_symlink_inline_operations = {

1355 readlink: shmem_readlink_inline,

1356 follow_link: shmem_follow_link_inline,

1357 };

1358

1359 static struct inode_operations shmem_symlink_inode_operations = {

1360 truncate: shmem_truncate,

1361 readlink: shmem_readlink,

1362 follow_link: shmem_follow_link,

1363 };

The di�erence between the two readlink() and follow_link() functions is
related to where the link information is stored. A symlink inode does not require the
private inode information struct shmem_inode_information. If the length of the
symbolic link name is smaller than this struct, the space in the inode is used to store
the name and shmem_symlink_inline_operations becomes the inode operations
struct. Otherwise a page is allocated with shmem_getpage(), the symbolic link is
copied to it and shmem_symlink_inode_operations is used. The second struct
includes a truncate() function so that the page will be reclaimed when the �le is
deleted.

These various structs ensure that the shmem equivalent of inode related opera-
tions will be used when regions are backed by virtual �les. When they are used, the
majority of the VM sees no di�erence between pages backed by a real �le and ones
backed by virtual �les.

12.3 Creating Files in tmpfs 187

12.3 Creating Files in tmpfs

As tmpfs is mounted as a proper �lesystem that is visible to the user, it must support
directory inode operations such as open(), mkdir() and link(). Pointers to func-
tions which implement these for tmpfs are provided in shmem_dir_inode_operations
which was shown in Section 12.2.

The implementations of most of these functions are quite small and, at some
level, they are all interconnected as can be seen from Figure 12.2. All of them
share the same basic principal of performing some work with inodes in the virtual
�lesystem and the majority of the inode �elds are �lled in by shmem_get_inode().

Figure 12.2: Call Graph: shmem_create()

When creating a new �le, the top-level function called is shmem_create().
This small function calls shmem_mknod() with the S_IFREG �ag added so that
a regular �le will be created. shmem_mknod() is little more than a wrapper

12.4 Page Faulting within a Virtual File 188

around the shmem_get_inode() which, predictably, creates a new inode and �lls
in the struct �elds. The three �elds of principal interest that are �lled are the
inode→i_mapping→a_ops, inode→i_op and inode→i_fop �elds. Once the in-
ode has been created, shmem_mknod() updates the directory inode size and mtime

statistics before instantiating the new inode.
Files are created di�erently in shm even though the �lesystems are essentially

identical in functionality. How these �les are created is covered later in Section 12.7.

12.4 Page Faulting within a Virtual File

When a page fault occurs, do_no_page() will call vma→vm_ops→nopage if it exists.
In the case of the virtual �lesystem, this means the function shmem_nopage(), whose
call graph is shown in Figure 12.3, will be called when a page fault occurs.

Figure 12.3: Call Graph: shmem_nopage()

The core function in this case is shmem_getpage() which is responsible for either
allocating a new page or �nding it in swap. This overloading of fault types is unusual
as do_swap_page() is normally responsible for locating pages that have been moved
to the swap cache or backing storage using information encoded within the PTE. In
this case, pages backed by virtual �les have their PTE set to 0 when they are moved
to the swap cache. The inode's private �lesystem data stores direct and indirect
block information which is used to locate the pages later. This operation is very
similar in many respects to normal page faulting.

12.4.1 Locating Swapped Pages

When a page has been swapped out, a swp_entry_t will contain information needed
to locate the page again. Instead of using the PTEs for this task, the information
is stored within the �lesystem-speci�c private information in the inode.

When faulting, the function called to locate the swap entry is shmem_alloc_entry().
It's basic task is to perform basic checks and ensure that shmem_inode_info→next_index

always points to the page index at the end of the virtual �le. It's principal task is
to call shmem_swp_entry() which searches for the swap vector within the inode
information with shmem_swp_entry() and allocate new pages as necessary to store
swap vectors.

The �rst SHMEM_NR_DIRECT entries are stored in inode→i_direct. This means
that for the x86, �les that are smaller than 64KiB (SHMEM_NR_DIRECT * PAGE_SIZE)

12.4.2 Writing Pages to Swap 189

will not need to use indirect blocks. Larger �les must use indirect blocks starting
with the one located at inode→i_indirect.

Figure 12.4: Traversing Indirect Blocks in a Virtual File

The initial indirect block (inode→i_indirect) is broken into two halves. The
�rst half contains pointers to doubly indirect blocks and the second half contains
pointers to triply indirect blocks. The doubly indirect blocks are pages containing
swap vectors (swp_entry_t). The triple indirect blocks contain pointers to pages
which in turn are �lled with swap vectors. The relationship between the di�erent
levels of indirect blocks is illustrated in Figure 12.4. The relationship means that
the maximum number of pages in a virtual �le (SHMEM_MAX_INDEX) is de�ned as
follows in mm/shmem.c:

44 #define SHMEM_MAX_INDEX (

SHMEM_NR_DIRECT +

(ENTRIES_PER_PAGEPAGE/2) *

(ENTRIES_PER_PAGE+1))

12.4.2 Writing Pages to Swap

The function shmem_writepage() is the registered function in the �lesystems
address_space_operations for writing pages to swap. The function is respon-
sible for simply moving the page from the page cache to the swap cache. This is
implemented with a few simple steps:

12.5 File Operations in tmpfs 190

• Record the current page→mapping and information about the inode

• Allocate a free slot in the backing storage with get_swap_page()

• Allocate a swp_entry_t with shmem_swp_entry()

• Remove the page from the page cache

• Add the page to the swap cache. If it fails, free the swap slot, add back to the
page cache and try again

12.5 File Operations in tmpfs

Four operations, mmap(), read(), write() and fsync() are supported with virtual
�les. Pointers to the functions are stored in shmem_file_operations which was
shown in Section 12.2.

There is little that is unusual in the implementation of these operations and
they are covered in detail in the Code Commentary. The mmap() operation is im-
plemented by shmem_mmap() and it simply updates the VMA that is managing the
mapped region. read(), implemented by shmem_read(), performs the operation
of copying bytes from the virtual �le to a userspace bu�er, faulting in pages as
necessary. write(), implemented by shmem_write() is essentially the same. The
fsync() operation is implemented by shmem_file_sync() but is essentially a NULL
operation as it performs no task and simply returns 0 for success. As the �les only
exist in RAM, they do not need to be synchronised with any disk.

12.6 Inode Operations in tmpfs

The most complex operation that is supported for inodes is truncation and involves
four distinct stages. The �rst, in shmem_truncate() will truncate the a partial page
at the end of the �le and continually calls shmem_truncate_indirect() until the
�le is truncated to the proper size. Each call to shmem_truncate_indirect() will
only process one indirect block at each pass which is why it may need to be called
multiple times.

The second stage, in shmem_truncate_indirect(), understands both doubly
and triply indirect blocks. It �nds the next indirect block that needs to be truncated.
This indirect block, which is passed to the third stage, will contain pointers to pages
which in turn contain swap vectors.

The third stage in shmem_truncate_direct() works with pages that con-
tain swap vectors. It selects a range that needs to be truncated and passes
the range to the last stage shmem_swp_free(). The last stage frees entries with
free_swap_and_cache() which frees both the swap entry and the page containing
data.

The linking and unlinking of �les is very simple as most of the work is performed
by the �lesystem layer. To link a �le, the directory inode size is incremented, the

12.7 Setting up Shared Regions 191

ctime and mtime of the a�ected inodes is updated and the number of links to the
inode being linked to is incremented. A reference to the new dentry is then taken
with dget() before instantiating the new dentry with d_instantiate(). Unlinking
updates the same inode statistics before decrementing the reference to the dentry

with dput(). dput() will also call iput() which will clear up the inode when it's
reference count hits zero.

Creating a directory will use shmem_mkdir() to perform the task. It simply
uses shmem_mknod() with the S_IFDIR �ag before incrementing the parent directory
inode's i_nlink counter. The function shmem_rmdir() will delete a directory by �rst
ensuring it is empty with shmem_empty(). If it is, the function then decrementing
the parent directory inode's i_nlink count and calls shmem_unlink() to remove
the requested directory.

12.7 Setting up Shared Regions

A shared region is backed by a �le created in shm. There are two cases where a new
�le will be created, during the setup of a shared region with shmget() and when an
anonymous region is setup with mmap() with the MAP_SHARED �ag. Both functions
use the core function shmem_file_setup() to create a �le.

Figure 12.5: Call Graph: shmem_zero_setup()

As the �lesystem is internal, the names of the �les created do not have
to be unique as the �les are always located by inode, not name. Therefore,
shmem_zero_setup() always says to create a �le called dev/zero which is how it
shows up in the �le /proc/pid/maps. Files created by shmget() are called SYSVNN

where the NN is the key that is passed as a parameter to shmget().
The core function shmem_file_setup() simply creates a new dentry and inode,

�lls in the relevant �elds and instantiates them.

12.8 System V IPC 192

12.8 System V IPC

The full internals of the IPC implementation is beyond the scope of this book.
This section will focus just on the implementations of shmget() and shmat() and
how they are a�ected by the VM. The system call shmget() is implemented by
sys_shmget(). It performs basic checks to the parameters and sets up the IPC
related data structures. To create the segment, it calls newseg(). This is the
function that creates the �le in shmfs with shmem_file_setup() as discussed in
the previous section.

Figure 12.6: Call Graph: sys_shmget()

The system call shmat() is implemented by sys_shmat(). There is little re-
markable about the function. It acquires the appropriate descriptor and makes sure
all the parameters are valid before calling do_mmap() to map the shared region into
the process address space. There are only two points of note in the function.

The �rst is that it is responsible for ensuring that VMAs will not overlap if the
caller speci�es the address. The second is that the shp→shm_nattch counter is
maintained by a vm_operations_struct() called shm_vm_ops. It registers open()
and close() callbacks called shm_open() and shm_close() respectively. The
shm_close() callback is also responsible for destroyed shared regions if the SHM_DEST
�ag is speci�ed and the shm_nattch counter reaches zero.

12.9 What's New in 2.6

The core concept and functionality of the �lesystem remains the same and the
changes are either optimisations or extensions to the �lesystem's functionality. If
the reader understands the 2.4 implementation well, the 2.6 implementation will not
present much trouble1.

A new �elds have been added to the shmem_inode_info called alloced. The
alloced �eld stores how many data pages are allocated to the �le which had to be
calculated on the �y in 2.4 based on inode→i_blocks. It both saves a few clock
cycles on a common operation as well as making the code a bit more readable.

1I �nd that saying �How hard could it possibly be� always helps.

12.9 What's New in 2.6 193

The flags �eld now uses the VM_ACCOUNT �ag as well as the VM_LOCKED �ag. The
VM_ACCOUNT, always set, means that the VM will carefully account for the amount
of memory used to make sure that allocations will not fail.

Extensions to the �le operations are the ability to seek with the system call
_llseek(), implemented by generic_file_llseek() and to use sendfile() with
virtual �les, implemented by shmem_file_sendfile(). An extension has been
added to the VMA operations to allow non-linear mappings, implemented by
shmem_populate().

The last major change is that the �lesystem is responsible for the allocation and
destruction of it's own inodes which are two new callbacks in struct super_operations.
It is simply implemented by the creation of a slab cache called shmem_inode_cache.
A constructor function init_once() is registered for the slab allocator to use for
initialising each new inode.

Chapter 13

Out Of Memory Management

The last aspect of the VM we are going to discuss is the Out Of Memory (OOM)
manager. This intentionally is a very short chapter as it has one simple task; check
if there is enough available memory to satisfy, verify that the system is truely out of
memory and if so, select a process to kill. This is a controversial part of the VM and
it has been suggested that it be removed on many occasions. Regardless of whether
it exists in the latest kernel, it still is a useful system to examine as it touches o� a
number of other subsystems.

13.1 Checking Available Memory

For certain operations, such as expaning the heap with brk() or remapping an
address space with mremap(), the system will check if there is enough available
memory to satisfy a request. Note that this is separate to the out_of_memory()

path that is covered in the next section. This path is used to avoid the system being
in a state of OOM if at all possible.

When checking available memory, the number of required pages is passed as a
parameter to vm_enough_memory(). Unless the system administrator has speci�ed
that the system should overcommit memory, the mount of available memory will be
checked. To determine how many pages are potentially available, Linux sums up
the following bits of data:

Total page cache as page cache is easily reclaimed

Total free pages because they are already available

Total free swap pages as userspace pages may be paged out

Total pages managed by swapper_space although this double-counts the free
swap pages. This is balanced by the fact that slots are sometimes reserved but
not used

Total pages used by the dentry cache as they are easily reclaimed

194

13.2 Determining OOM Status 195

Total pages used by the inode cache as they are easily reclaimed

If the total number of pages added here is su�cient for the request, vm_enough_memory()
returns true to the caller. If false is returned, the caller knows that the memory is
not available and usually decides to return -ENOMEM to userspace.

13.2 Determining OOM Status

When the machine is low on memory, old page frames will be reclaimed (see
Chapter 10) but despite reclaiming pages is may �nd that it was unable to free
enough pages to satisfy a request even when scanning at highest priority. If it does
fail to free page frames, out_of_memory() is called to see if the system is out of
memory and needs to kill a process.

Figure 13.1: Call Graph: out_of_memory()

Unfortunately, it is possible that the system is not out memory and simply needs
to wait for IO to complete or for pages to be swapped to backing storage. This is
unfortunate, not because the system has memory, but because the function is being
called unnecessarily opening the possibly of processes being unnecessarily killed.
Before deciding to kill a process, it goes through the following checklist.

• Is there enough swap space left (nr_swap_pages > 0) ? If yes, not OOM

13.3 Selecting a Process 196

• Has it been more than 5 seconds since the last failure? If yes, not OOM

• Have we failed within the last second? If no, not OOM

• If there hasn't been 10 failures at least in the last 5 seconds, we're not OOM

• Has a process been killed within the last 5 seconds? If yes, not OOM

It is only if the above tests are passed that oom_kill() is called to select a
process to kill.

13.3 Selecting a Process

The function select_bad_process() is responsible for choosing a process to kill.
It decides by stepping through each running task and calculating how suitable it is
for killing with the function badness(). The badness is calculated as follows, note
that the square roots are integer approximations calculated with int_sqrt();

badness_for_task =
total_vm_for_task√

(cpu_time_in_seconds) ∗ 4

√
(cpu_time_in_minutes)

This has been chosen to select a process that is using a large amount of memory
but is not that long lived. Processes which have been running a long time are
unlikely to be the cause of memory shortage so this calculation is likely to select a
process that uses a lot of memory but has not been running long. If the process
is a root process or has CAP_SYS_ADMIN capabilities, the points are divided by four
as it is assumed that root privilege processes are well behaved. Similarly, if it has
CAP_SYS_RAWIO capabilities (access to raw devices) privileges, the points are further
divided by 4 as it is undesirable to kill a process that has direct access to hardware.

13.4 Killing the Selected Process

Once a task is selected, the list is walked again and each process that shares the
same mm_struct as the selected process (i.e. they are threads) is sent a signal. If
the process has CAP_SYS_RAWIO capabilities, a SIGTERM is sent to give the process a
chance of exiting cleanly, otherwise a SIGKILL is sent.

13.5 Is That It?

Yes, thats it, out of memory management touches a lot of subsystems otherwise,
there is not much to it.

13.6 What's New in 2.6 197

13.6 What's New in 2.6

The majority of OOM management remains essentially the same for 2.6 except for
the introduction of VM accounted objects. These are VMAs that are �agged with
the VM_ACCOUNT �ag, �rst mentioned in Section 4.8. Additional checks will be made
to ensure there is memory available when performing operations on VMAs with this
�ag set. The principal incentive for this complexity is to avoid the need of an OOM
killer.

Some regions which always have the VM_ACCOUNT �ag set are the process stack,
the process heap, regions mmap()ed with MAP_SHARED, private regions that are
writable and regions set up shmget(). In other words, most userspace mappings
have the VM_ACCOUNT �ag set.

Linux accounts for the amount of memory that is committed to these VMAs with
vm_acct_memory() which increments a variable called committed_space. When the
VMA is freed, the committed space is decremented with vm_unacct_memory(). This
is a fairly simple mechanism, but it allows Linux to remember how much memory
it has already committed to userspace when deciding if it should commit more.

The checks are performed by calling security_vm_enough_memory() which in-
troduces us to another new feature. 2.6 has a feature available which allows se-
curity related kernel modules to override certain kernel functions. The full list of
hooks available is stored in a struct security_operations called security_ops.
There are a number of dummy, or default, functions that may be used which are
all listed in security/dummy.c but the majority do nothing except return. If there
are no security modules loaded, the security_operations struct used is called
dummy_security_ops which uses all the default function.

By default, security_vm_enough_memory() calls dummy_vm_enough_memory()
which is declared in security/dummy.c and is very similar to 2.4's vm_enough_memory()
function. The new version adds the following pieces of information together to de-
termine available memory:

Total page cache as page cache is easily reclaimed

Total free pages because they are already available

Total free swap pages as userspace pages may be paged out

Slab pages with SLAB_RECLAIM_ACCOUNT set as they are easily reclaimed

These pages, minus a 3% reserve for root processes, is the total amount of
memory that is available for the request. If the memory is available, it makes a
check to ensure the total amount of committed memory does not exceed the al-
lowed threshold. The allowed threshold is TotalRam * (OverCommitRatio/100) +

TotalSwapPage, where OverCommitRatio is set by the system administrator. If the
total amount of committed space is not too high, 1 will be returned so that the
allocation can proceed.

Chapter 14

The Final Word

Make no mistake, memory management is a large, complex and time consuming �eld
to research and di�cult to apply to practical implementations. As it is very di�cult
to model how systems behave in real multi-programmed systems [CD80], developers
often rely on intuition to guide them and examination of virtual memory algorithms
depends on simulations of speci�c workloads. Simulations are necessary as mod-
eling how scheduling, paging behaviour and multiple processes interact presents a
considerable challenge. Page replacement policies, a �eld that has been the focus
of considerable amounts of research, is a good example as it is only ever shown to
work well for speci�ed workloads. The problem of adjusting algorithms and policies
to di�erent workloads is addressed by having administrators tune systems as much
as by research and algorithms.

The Linux kernel is also large, complex and fully understood by a relatively small
core group of people. It's development is the result of contributions of thousands
of programmers with a varying range of specialties, backgrounds and spare time.
The �rst implementations are developed based on the all-important foundation that
theory provides. Contributors built upon this framework with changes based on real
world observations.

It has been asserted on the Linux Memory Management mailing list that the VM
is poorly documented and di�cult to pick up as �the implementation is a nightmare
to follow�1 and the lack of documentation on practical VMs is not just con�ned
to Linux. Matt Dillon, one of the principal developers of the FreeBSD VM2 and
considered a �VM Guru� stated in an interview3 that documentation can be �hard
to come by�. One of the principal di�culties with deciphering the implementation
is the fact the developer must have a background in memory management theory to
see why implementation decisions were made as a pure understanding of the code
is insu�cient for any purpose other than micro-optimisations.

This book attempted to bridge the gap between memory management theory
and the practical implementation in Linux and tie both �elds together in a single

1http://mail.nl.linux.org/linux-mm/2002-05/msg00035.html
2His past involvement with the Linux VM is evident from http://mail.nl.linux.org/linux-

mm/2000-05/msg00419.html
3http://kerneltrap.com/node.php?id=8

198

CHAPTER 14. THE FINAL WORD 199

place. It tried to describe what life is like in Linux as a memory manager in a
manner that was relatively independent of hardware architecture considerations. I
hope after reading this, and progressing onto the code commentary, that you, the
reader feels a lot more comfortable with tackling the VM subsystem. As a �nal
parting shot, Figure 14.1 broadly illustrates how of the sub-systems we discussed in
detail interact with each other.

On a �nal personal note, I hope that this book encourages other people to pro-
duce similar works for other areas of the kernel. I know I'll buy them!

Figure 14.1: Broad Overview on how VM Sub-Systems Interact

Appendix A

Introduction

Welcome to the code commentary section of the book. If you are reading this, you
are looking for a heavily detailed tour of the code. The commentary presumes you
have read the equivilant section in the main part of the book so if you just started
reading here, you're probably in the wrong place.

Each appendix section corresponds to the order and structure as the book. The
order the functions are presented is the same order as displayed in the call graphs
which are referenced throughout the commentary. At the beginning of each appendix
and subsection, there is a mini table of contents to help navigate your way through
the commentary. The code coverage is not 100% but all the principal code patterns
that are found throughout the VM may be found. If the function you are interested
in is not commented on, try and �nd a similar function to it.

Some of the code has been reformatted slightly for presentation but the actual
code is not changed. It is recommended you use the companion CD while reading
the code commentary. In particular use LXR to browse through the source code so
you get a �feel� for reading the code with and without the aid of the commentary.

Good Luck!

200

Appendix B

Describing Physical Memory

Contents
B.1 Initialising Zones . 202

B.1.1 Function: setup_memory() . 202

B.1.2 Function: zone_sizes_init() 205

B.1.3 Function: free_area_init() . 206

B.1.4 Function: free_area_init_node() 206

B.1.5 Function: free_area_init_core() 208

B.1.6 Function: build_zonelists() 214

B.2 Page Operations . 216

B.2.1 Locking Pages . 216

B.2.1.1 Function: lock_page() 216

B.2.1.2 Function: __lock_page() 216

B.2.1.3 Function: sync_page() 217

B.2.2 Unlocking Pages . 218

B.2.2.1 Function: unlock_page() 218

B.2.3 Waiting on Pages . 219

B.2.3.1 Function: wait_on_page() 219

B.2.3.2 Function: ___wait_on_page() 219

201

B.1 Initialising Zones 202

B.1 Initialising Zones

Contents

B.1 Initialising Zones 202
B.1.1 Function: setup_memory() 202
B.1.2 Function: zone_sizes_init() 205
B.1.3 Function: free_area_init() 206
B.1.4 Function: free_area_init_node() 206
B.1.5 Function: free_area_init_core() 208
B.1.6 Function: build_zonelists() 214

B.1.1 Function: setup_memory() (arch/i386/kernel/setup.c)
The call graph for this function is shown in Figure 2.3. This function gets the

necessary information to give to the boot memory allocator to initialise itself. It is
broken up into a number of di�erent tasks.

• Find the start and ending PFN for low memory (min_low_pfn, max_low_pfn),
the start and end PFN for high memory (highstart_pfn, highend_pfn) and
the PFN for the last page in the system (max_pfn).

• Initialise the bootmem_data structure and declare which pages may be used
by the boot memory allocator

• Mark all pages usable by the system as �free� and then reserve the pages used
by the bitmap representing the pages

• Reserve pages used by the SMP con�g or the initrd image if one exists

991 static unsigned long __init setup_memory(void)

992 {

993 unsigned long bootmap_size, start_pfn, max_low_pfn;

994

995 /*

996 * partially used pages are not usable - thus

997 * we are rounding upwards:

998 */

999 start_pfn = PFN_UP(__pa(&_end));

1000

1001 find_max_pfn();

1002

1003 max_low_pfn = find_max_low_pfn();

1004

1005 #ifdef CONFIG_HIGHMEM

1006 highstart_pfn = highend_pfn = max_pfn;

1007 if (max_pfn > max_low_pfn) {

1008 highstart_pfn = max_low_pfn;

B.1 Initialising Zones (setup_memory()) 203

1009 }

1010 printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",

1011 pages_to_mb(highend_pfn - highstart_pfn));

1012 #endif

1013 printk(KERN_NOTICE "%ldMB LOWMEM available.\n",

1014 pages_to_mb(max_low_pfn));

999 PFN_UP() takes a physical address, rounds it up to the next page and returns
the page frame number. _end is the address of the end of the loaded kernel
image so start_pfn is now the o�set of the �rst physical page frame that may
be used

1001 find_max_pfn() loops through the e820 map searching for the highest avail-
able pfn

1003 find_max_low_pfn() �nds the highest page frame addressable in ZONE_NORMAL

1005-1011 If high memory is enabled, start with a high memory region of 0. If it
turns out there is memory after max_low_pfn, put the start of high memory
(highstart_pfn) there and the end of high memory at max_pfn. Print out an
informational message on the availability of high memory

1013-1014 Print out an informational message on the amount of low memory

1018 bootmap_size = init_bootmem(start_pfn, max_low_pfn);

1019

1020 register_bootmem_low_pages(max_low_pfn);

1021

1028 reserve_bootmem(HIGH_MEMORY, (PFN_PHYS(start_pfn) +

1029 bootmap_size + PAGE_SIZE-1) - (HIGH_MEMORY));

1030

1035 reserve_bootmem(0, PAGE_SIZE);

1036

1037 #ifdef CONFIG_SMP

1043 reserve_bootmem(PAGE_SIZE, PAGE_SIZE);

1044 #endif

1045 #ifdef CONFIG_ACPI_SLEEP

1046 /*

1047 * Reserve low memory region for sleep support.

1048 */

1049 acpi_reserve_bootmem();

1050 #endif

1018 init_bootmem()(See Section E.1.1) initialises the bootmem_data struct for
the config_page_data node. It sets where physical memory begins and ends
for the node, allocates a bitmap representing the pages and sets all pages as
reserved initially

B.1 Initialising Zones (setup_memory()) 204

1020 register_bootmem_low_pages() reads the e820 map and calls free_bootmem()
(See Section E.3.1) for all usable pages in the running system. This is what
marks the pages marked as reserved during initialisation as free

1028-1029 Reserve the pages that are being used to store the bitmap representing
the pages

1035 Reserve page 0 as it is often a special page used by the bios

1043 Reserve an extra page which is required by the trampoline code. The tram-
poline code deals with how userspace enters kernel space

1045-1050 If sleep support is added, reserve memory required for it. This is only
of interest to laptops interested in suspending and beyond the scope of this
book

1051 #ifdef CONFIG_X86_LOCAL_APIC

1052 /*

1053 * Find and reserve possible boot-time SMP configuration:

1054 */

1055 find_smp_config();

1056 #endif

1057 #ifdef CONFIG_BLK_DEV_INITRD

1058 if (LOADER_TYPE && INITRD_START) {

1059 if (INITRD_START + INITRD_SIZE <=

(max_low_pfn << PAGE_SHIFT)) {

1060 reserve_bootmem(INITRD_START, INITRD_SIZE);

1061 initrd_start =

1062 INITRD_START ? INITRD_START + PAGE_OFFSET : 0;

1063 initrd_end = initrd_start+INITRD_SIZE;

1064 }

1065 else {

1066 printk(KERN_ERR

"initrd extends beyond end of memory "

1067 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",

1068 INITRD_START + INITRD_SIZE,

1069 max_low_pfn << PAGE_SHIFT);

1070 initrd_start = 0;

1071 }

1072 }

1073 #endif

1074

1075 return max_low_pfn;

1076 }

1055 This function reserves memory that stores con�g information about the SMP
setup

B.1 Initialising Zones (setup_memory()) 205

1057-1073 If initrd is enabled, the memory containing its image will be reserved.
initrd provides a tiny �lesystem image which is used to boot the system

1075 Return the upper limit of addressable memory in ZONE_NORMAL

B.1.2 Function: zone_sizes_init() (arch/i386/mm/init.c)
This is the top-level function which is used to initialise each of the zones. The size

of the zones in PFNs was discovered during setup_memory() (See Section B.1.1).
This function populates an array of zone sizes for passing to free_area_init().

323 static void __init zone_sizes_init(void)

324 {

325 unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};

326 unsigned int max_dma, high, low;

327

328 max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;

329 low = max_low_pfn;

330 high = highend_pfn;

331

332 if (low < max_dma)

333 zones_size[ZONE_DMA] = low;

334 else {

335 zones_size[ZONE_DMA] = max_dma;

336 zones_size[ZONE_NORMAL] = low - max_dma;

337 #ifdef CONFIG_HIGHMEM

338 zones_size[ZONE_HIGHMEM] = high - low;

339 #endif

340 }

341 free_area_init(zones_size);

342 }

325 Initialise the sizes to 0

328 Calculate the PFN for the maximum possible DMA address. This doubles up
as the largest number of pages that may exist in ZONE_DMA

329 max_low_pfn is the highest PFN available to ZONE_NORMAL

330 highend_pfn is the highest PFN available to ZONE_HIGHMEM

332-333 If the highest PFN in ZONE_NORMAL is below MAX_DMA_ADDRESS, then just
set the size of ZONE_DMA to it. The other zones remain at 0

335 Set the number of pages in ZONE_DMA

336 The size of ZONE_NORMAL is max_low_pfn minus the number of pages in
ZONE_DMA

B.1 Initialising Zones (zone_sizes_init()) 206

338 The size of ZONE_HIGHMEM is the highest possible PFN minus the highest
possible PFN in ZONE_NORMAL (max_low_pfn)

B.1.3 Function: free_area_init() (mm/page_alloc.c)
This is the architecture independant function for setting up a UMA architecture.

It simply calls the core function passing the static contig_page_data as the node.
NUMA architectures will use free_area_init_node() instead.

838 void __init free_area_init(unsigned long *zones_size)

839 {

840 free_area_init_core(0, &contig_page_data, &mem_map, zones_size,

0, 0, 0);

841 }

838 The parameters passed to free_area_init_core() are

0 is the Node Identi�er for the node, which is 0

contig_page_data is the static global pg_data_t

mem_map is the global mem_map used for tracking struct pages. The
function free_area_init_core() will allocate memory for this array

zones_sizes is the array of zone sizes �lled by zone_sizes_init()

0 This zero is the starting physical address

0 The second zero is an array of memory hole sizes which doesn't apply to
UMA architectures

0 The last 0 is a pointer to a local mem_map for this node which is used by
NUMA architectures

B.1.4 Function: free_area_init_node() (mm/numa.c)
There are two versions of this function. The �rst is almost identical to

free_area_init() except it uses a di�erent starting physical address. There is for
architectures that have only one node (so they use contig_page_data) but whose
physical address is not at 0.

This version of the function, called after the pagetable initialisation, if for ini-
tialisation each pgdat in the system. The caller has the option of allocating their
own local portion of the mem_map and passing it in as a parameter if they want to
optimise it's location for the architecture. If they choose not to, it will be allocated
later by free_area_init_core().

61 void __init free_area_init_node(int nid,

pg_data_t *pgdat, struct page *pmap,

62 unsigned long *zones_size, unsigned long zone_start_paddr,

63 unsigned long *zholes_size)

64 {

B.1 Initialising Zones (free_area_init_node()) 207

65 int i, size = 0;

66 struct page *discard;

67

68 if (mem_map == (mem_map_t *)NULL)

69 mem_map = (mem_map_t *)PAGE_OFFSET;

70

71 free_area_init_core(nid, pgdat, &discard, zones_size,

zone_start_paddr,

72 zholes_size, pmap);

73 pgdat->node_id = nid;

74

75 /*

76 * Get space for the valid bitmap.

77 */

78 for (i = 0; i < MAX_NR_ZONES; i++)

79 size += zones_size[i];

80 size = LONG_ALIGN((size + 7) >> 3);

81 pgdat->valid_addr_bitmap =

(unsigned long *)alloc_bootmem_node(pgdat, size);

82 memset(pgdat->valid_addr_bitmap, 0, size);

83 }

61 The parameters to the function are:

nid is the Node Identi�er (NID) of the pgdat passed in

pgdat is the node to be initialised

pmap is a pointer to the portion of the mem_map for this node to use,
frequently passed as NULL and allocated later

zones_size is an array of zone sizes in this node

zone_start_paddr is the starting physical addres for the node

zholes_size is an array of hole sizes in each zone

68-69 If the global mem_map has not been set, set it to the beginning of the kernel
portion of the linear address space. Remeber that with NUMA, mem_map is a
virtual array with portions �lled in by local maps used by each node

71 Call free_area_init_core(). Note that discard is passed in as the third
parameter as no global mem_map needs to be set for NUMA

73 Record the pgdats NID

78-79 Calculate the total size of the nide

80 Recalculate size as the number of bits requires to have one bit for every byte of
the size

B.1 Initialising Zones (free_area_init_node()) 208

81 Allocate a bitmap to represent where valid areas exist in the node. In reality,
this is only used by the sparc architecture so it is unfortunate to waste the
memory every other architecture

82 Initially, all areas are invalid. Valid regions are marked later in the mem_init()
functions for the sparc. Other architectures just ignore the bitmap

B.1.5 Function: free_area_init_core() (mm/page_alloc.c)
This function is responsible for initialising all zones and allocating their local

lmem_map within a node. In UMA architectures, this function is called in a way that
will initialise the global mem_map array. In NUMA architectures, the array is treated
as a virtual array that is sparsely populated.

684 void __init free_area_init_core(int nid,

pg_data_t *pgdat, struct page **gmap,

685 unsigned long *zones_size, unsigned long zone_start_paddr,

686 unsigned long *zholes_size, struct page *lmem_map)

687 {

688 unsigned long i, j;

689 unsigned long map_size;

690 unsigned long totalpages, offset, realtotalpages;

691 const unsigned long zone_required_alignment =

1UL << (MAX_ORDER-1);

692

693 if (zone_start_paddr & ~PAGE_MASK)

694 BUG();

695

696 totalpages = 0;

697 for (i = 0; i < MAX_NR_ZONES; i++) {

698 unsigned long size = zones_size[i];

699 totalpages += size;

700 }

701 realtotalpages = totalpages;

702 if (zholes_size)

703 for (i = 0; i < MAX_NR_ZONES; i++)

704 realtotalpages -= zholes_size[i];

705

706 printk("On node %d totalpages: %lu\n", nid, realtotalpages);

This block is mainly responsible for calculating the size of each zone.

691 The zone must be aligned against the maximum sized block that can be allo-
cated by the buddy allocator for bitwise operations to work

693-694 It is a bug if the physical address is not page aligned

B.1 Initialising Zones (free_area_init_core()) 209

696 Initialise the totalpages count for this node to 0

697-700 Calculate the total size of the node by iterating through zone_sizes

701-704 Calculate the real amount of memory by substracting the size of the holes
in zholes_size

706 Print an informational message for the user on how much memory is available
in this node

708 /*

709 * Some architectures (with lots of mem and discontinous memory

710 * maps) have to search for a good mem_map area:

711 * For discontigmem, the conceptual mem map array starts from

712 * PAGE_OFFSET, we need to align the actual array onto a mem map

713 * boundary, so that MAP_NR works.

714 */

715 map_size = (totalpages + 1)*sizeof(struct page);

716 if (lmem_map == (struct page *)0) {

717 lmem_map = (struct page *) alloc_bootmem_node(pgdat, map_size);

718 lmem_map = (struct page *)(PAGE_OFFSET +

719 MAP_ALIGN((unsigned long)lmem_map - PAGE_OFFSET));

720 }

721 *gmap = pgdat->node_mem_map = lmem_map;

722 pgdat->node_size = totalpages;

723 pgdat->node_start_paddr = zone_start_paddr;

724 pgdat->node_start_mapnr = (lmem_map - mem_map);

725 pgdat->nr_zones = 0;

726

727 offset = lmem_map - mem_map;

This block allocates the local lmem_map if necessary and sets the gmap. In UMA
architectures, gmap is actually mem_map and so this is where the memory for it is
allocated

715 Calculate the amount of memory required for the array. It is the total number
of pages multipled by the size of a struct page

716 If the map has not already been allocated, allocate it

717 Allocate the memory from the boot memory allocator

718 MAP_ALIGN() will align the array on a struct page sized boundary for cal-
culations that locate o�sets within the mem_map based on the physical address
with the MAP_NR() macro

721 Set the gmap and pgdat→node_mem_map variables to the allocated lmem_map.
In UMA architectures, this just set mem_map

B.1 Initialising Zones (free_area_init_core()) 210

722 Record the size of the node

723 Record the starting physical address

724 Record what the o�set within mem_map this node occupies

725 Initialise the zone count to 0. This will be set later in the function

727 offset is now the o�set within mem_map that the local portion lmem_map

begins at

728 for (j = 0; j < MAX_NR_ZONES; j++) {

729 zone_t *zone = pgdat->node_zones + j;

730 unsigned long mask;

731 unsigned long size, realsize;

732

733 zone_table[nid * MAX_NR_ZONES + j] = zone;

734 realsize = size = zones_size[j];

735 if (zholes_size)

736 realsize -= zholes_size[j];

737

738 printk("zone(%lu): %lu pages.\n", j, size);

739 zone->size = size;

740 zone->name = zone_names[j];

741 zone->lock = SPIN_LOCK_UNLOCKED;

742 zone->zone_pgdat = pgdat;

743 zone->free_pages = 0;

744 zone->need_balance = 0;

745 if (!size)

746 continue;

This block starts a loop which initialises every zone_t within the node. The
initialisation starts with the setting of the simplier �elds that values already exist
for.

728 Loop through all zones in the node

733 Record a pointer to this zone in the zone_table. See Section 2.4.1

734-736 Calculate the real size of the zone based on the full size in zones_size

minus the size of the holes in zholes_size

738 Print an informational message saying how many pages are in this zone

739 Record the size of the zone

740 zone_names is the string name of the zone for printing purposes

741-744 Initialise some other �elds for the zone such as it's parent pgdat

B.1 Initialising Zones (free_area_init_core()) 211

745-746 If the zone has no memory, continue to the next zone as nothing further
is required

752 zone->wait_table_size = wait_table_size(size);

753 zone->wait_table_shift =

754 BITS_PER_LONG - wait_table_bits(zone->wait_table_size);

755 zone->wait_table = (wait_queue_head_t *)

756 alloc_bootmem_node(pgdat, zone->wait_table_size

757 * sizeof(wait_queue_head_t));

758

759 for(i = 0; i < zone->wait_table_size; ++i)

760 init_waitqueue_head(zone->wait_table + i);

Initialise the waitqueue for this zone. Processes waiting on pages in the zone use
this hashed table to select a queue to wait on. This means that all processes waiting
in a zone will not have to be woken when a page is unlocked, just a smaller subset.

752 wait_table_size() calculates the size of the table to use based on the number
of pages in the zone and the desired ratio between the number of queues and
the number of pages. The table will never be larger than 4KiB

753-754 Calculate the shift for the hashing algorithm

755Allocate a table of wait_queue_head_t that can hold zone→wait_table_size

entries

759-760 Initialise all of the wait queues

762 pgdat->nr_zones = j+1;

763

764 mask = (realsize / zone_balance_ratio[j]);

765 if (mask < zone_balance_min[j])

766 mask = zone_balance_min[j];

767 else if (mask > zone_balance_max[j])

768 mask = zone_balance_max[j];

769 zone->pages_min = mask;

770 zone->pages_low = mask*2;

771 zone->pages_high = mask*3;

772

773 zone->zone_mem_map = mem_map + offset;

774 zone->zone_start_mapnr = offset;

775 zone->zone_start_paddr = zone_start_paddr;

776

777 if ((zone_start_paddr >> PAGE_SHIFT) &

(zone_required_alignment-1))

778 printk("BUG: wrong zone alignment, it will crash\n");

779

B.1 Initialising Zones (free_area_init_core()) 212

Calculate the watermarks for the zone and record the location of the zone. The
watermarks are calculated as ratios of the zone size.

762 First, as a new zone is active, update the number of zones in this node

764 Calculate the mask (which will be used as the pages_min watermark) as the
size of the zone divided by the balance ratio for this zone. The balance ratio
is 128 for all zones as declared at the top of mm/page_alloc.c

765-766 The zone_balance_min ratios are 20 for all zones so this means that
pages_min will never be below 20

767-768 Similarly, the zone_balance_max ratios are all 255 so pages_min will
never be over 255

769 pages_min is set to mask

770 pages_low is twice the number of pages as pages_min

771 pages_high is three times the number of pages as pages_min

773 Record where the �rst struct page for this zone is located within mem_map

774 Record the index within mem_map this zone begins at

775 Record the starting physical address

777-778 Ensure that the zone is correctly aligned for use with the buddy allocator
otherwise the bitwise operations used for the buddy allocator will break

780 /*

781 * Initially all pages are reserved - free ones are freed

782 * up by free_all_bootmem() once the early boot process is

783 * done. Non-atomic initialization, single-pass.

784 */

785 for (i = 0; i < size; i++) {

786 struct page *page = mem_map + offset + i;

787 set_page_zone(page, nid * MAX_NR_ZONES + j);

788 set_page_count(page, 0);

789 SetPageReserved(page);

790 INIT_LIST_HEAD(&page->list);

791 if (j != ZONE_HIGHMEM)

792 set_page_address(page, __va(zone_start_paddr));

793 zone_start_paddr += PAGE_SIZE;

794 }

795

B.1 Initialising Zones (free_area_init_core()) 213

785-794 Initially, all pages in the zone are marked as reserved as there is no way
to know which ones are in use by the boot memory allocator. When the boot
memory allocator is retiring in free_all_bootmem(), the unused pages will
have their PG_reserved bit cleared

786 Get the page for this o�set

787 The zone the page belongs to is encoded with the page �ags. See Section 2.4.1

788 Set the count to 0 as no one is using it

789 Set the reserved �ag. Later, the boot memory allocator will clear this bit if
the page is no longer in use

790 Initialise the list head for the page

791-792 Set the page→virtual �eld if it is available and the page is in low
memory

793 Increment zone_start_paddr by a page size as this variable will be used to
record the beginning of the next zone

796 offset += size;

797 for (i = 0; ; i++) {

798 unsigned long bitmap_size;

799

800 INIT_LIST_HEAD(&zone->free_area[i].free_list);

801 if (i == MAX_ORDER-1) {

802 zone->free_area[i].map = NULL;

803 break;

804 }

805

829 bitmap_size = (size-1) >> (i+4);

830 bitmap_size = LONG_ALIGN(bitmap_size+1);

831 zone->free_area[i].map =

832 (unsigned long *) alloc_bootmem_node(pgdat,

bitmap_size);

833 }

834 }

835 build_zonelists(pgdat);

836 }

This block initialises the free lists for the zone and allocates the bitmap used by
the buddy allocator to record the state of page buddies.

797 This will loop from 0 to MAX_ORDER-1

800 Initialise the linked list for the free_list of the current order i

B.1 Initialising Zones (free_area_init_core()) 214

801-804 If this is the last order, then set the free area map to NULL as this is
what marks the end of the free lists

829 Calculate the bitmap_size to be the number of bytes required to hold a
bitmap where each bit represents on pair of buddies that are 2i number of
pages

830 Align the size to a long with LONG_ALIGN() as all bitwise operations are on
longs

831-832 Allocate the memory for the map

834 This loops back to move to the next zone

835 Build the zone fallback lists for this node with build_zonelists()

B.1.6 Function: build_zonelists() (mm/page_alloc.c)
This builds the list of fallback zones for each zone in the requested node. This

is for when an allocation cannot be satisi�ed and another zone is consulted. When
this is �nished, allocatioons from ZONE_HIGHMEM will fallback to ZONE_NORMAL. Al-
locations from ZONE_NORMAL will fall back to ZONE_DMA which in turn has nothing
to fall back on.

589 static inline void build_zonelists(pg_data_t *pgdat)

590 {

591 int i, j, k;

592

593 for (i = 0; i <= GFP_ZONEMASK; i++) {

594 zonelist_t *zonelist;

595 zone_t *zone;

596

597 zonelist = pgdat->node_zonelists + i;

598 memset(zonelist, 0, sizeof(*zonelist));

599

600 j = 0;

601 k = ZONE_NORMAL;

602 if (i & __GFP_HIGHMEM)

603 k = ZONE_HIGHMEM;

604 if (i & __GFP_DMA)

605 k = ZONE_DMA;

606

607 switch (k) {

608 default:

609 BUG();

610 /*

611 * fallthrough:

B.1 Initialising Zones (build_zonelists()) 215

612 */

613 case ZONE_HIGHMEM:

614 zone = pgdat->node_zones + ZONE_HIGHMEM;

615 if (zone->size) {

616 #ifndef CONFIG_HIGHMEM

617 BUG();

618 #endif

619 zonelist->zones[j++] = zone;

620 }

621 case ZONE_NORMAL:

622 zone = pgdat->node_zones + ZONE_NORMAL;

623 if (zone->size)

624 zonelist->zones[j++] = zone;

625 case ZONE_DMA:

626 zone = pgdat->node_zones + ZONE_DMA;

627 if (zone->size)

628 zonelist->zones[j++] = zone;

629 }

630 zonelist->zones[j++] = NULL;

631 }

632 }

593 This looks through the maximum possible number of zones

597 Get the zonelist for this zone and zero it

600 Start j at 0 which corresponds to ZONE_DMA

601-605 Set k to be the type of zone currently being examined

614 Get the ZONE_HIGHMEM

615-620 If the zone has memory, then ZONE_HIGHMEM is the preferred zone to
allocate from for high memory allocations. If ZONE_HIGHMEM has no memory,
then ZONE_NORMAL will become the preferred zone when the next case is fallen
through to as j is not incremented for an empty zone

621-624 Set the next preferred zone to allocate from to be ZONE_NORMAL. Again,
do not use it if the zone has no memory

626-628 Set the �nal fallback zone to be ZONE_DMA. The check is still made for
ZONE_DMA having memory as in a NUMA architecture, not all nodes will have
a ZONE_DMA

B.2 Page Operations 216

B.2 Page Operations

Contents

B.2 Page Operations 216
B.2.1 Locking Pages 216
B.2.1.1 Function: lock_page() 216
B.2.1.2 Function: __lock_page() 216
B.2.1.3 Function: sync_page() 217

B.2.2 Unlocking Pages 218
B.2.2.1 Function: unlock_page() 218

B.2.3 Waiting on Pages 219
B.2.3.1 Function: wait_on_page() 219
B.2.3.2 Function: ___wait_on_page() 219

B.2.1 Locking Pages

B.2.1.1 Function: lock_page() (mm/�lemap.c)
This function tries to lock a page. If the page cannot be locked, it will cause the

process to sleep until the page is available.

921 void lock_page(struct page *page)

922 {

923 if (TryLockPage(page))

924 __lock_page(page);

925 }

923 TryLockPage() is just a wrapper around test_and_set_bit() for the
PG_locked bit in page→flags. If the bit was previously clear, the function
returns immediately as the page is now locked

924 Otherwise call __lock_page()(See Section B.2.1.2) to put the process to sleep

B.2.1.2 Function: __lock_page() (mm/�lemap.c)
This is called after a TryLockPage() failed. It will locate the waitqueue for this

page and sleep on it until the lock can be acquired.

897 static void __lock_page(struct page *page)

898 {

899 wait_queue_head_t *waitqueue = page_waitqueue(page);

900 struct task_struct *tsk = current;

901 DECLARE_WAITQUEUE(wait, tsk);

902

903 add_wait_queue_exclusive(waitqueue, &wait);

904 for (;;) {

905 set_task_state(tsk, TASK_UNINTERRUPTIBLE);

B.2.1 Locking Pages (__lock_page()) 217

906 if (PageLocked(page)) {

907 sync_page(page);

908 schedule();

909 }

910 if (!TryLockPage(page))

911 break;

912 }

913 __set_task_state(tsk, TASK_RUNNING);

914 remove_wait_queue(waitqueue, &wait);

915 }

899 page_waitqueue() is the implementation of the hash algorithm which deter-
mines which wait queue this page belongs to in the table zone→wait_table

900-901 Initialise the waitqueue for this task

903 Add this process to the waitqueue returned by page_waitqueue()

904-912 Loop here until the lock is acquired

905 Set the process states as being in uninterruptible sleep. When schedule() is
called, the process will be put to sleep and will not wake again until the queue
is explicitly woken up

906 If the page is still locked then call sync_page() function to schedule the page
to be synchronised with it's backing storage. Call schedule() to sleep until
the queue is woken up such as when IO on the page completes

910-1001 Try and lock the page again. If we succeed, exit the loop, otherwise
sleep on the queue again

913-914 The lock is now acquired so set the process state to TASK_RUNNING and
remove it from the wait queue. The function now returns with the lock ac-
quired

B.2.1.3 Function: sync_page() (mm/�lemap.c)
This calls the �lesystem-speci�c sync_page() to synchronsise the page with it's

backing storage.

140 static inline int sync_page(struct page *page)

141 {

142 struct address_space *mapping = page->mapping;

143

144 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)

145 return mapping->a_ops->sync_page(page);

146 return 0;

147 }

B.2.2 Unlocking Pages 218

142 Get the address_space for the page if it exists

144-145 If a backing exists, and it has an associated address_space_operations

which provides a sync_page() function, then call it

B.2.2 Unlocking Pages

B.2.2.1 Function: unlock_page() (mm/�lemap.c)
This function unlocks a page and wakes up any processes that may be waiting

on it.

874 void unlock_page(struct page *page)

875 {

876 wait_queue_head_t *waitqueue = page_waitqueue(page);

877 ClearPageLaunder(page);

878 smp_mb__before_clear_bit();

879 if (!test_and_clear_bit(PG_locked, &(page)->flags))

880 BUG();

881 smp_mb__after_clear_bit();

882

883 /*

884 * Although the default semantics of wake_up() are

885 * to wake all, here the specific function is used

886 * to make it even more explicit that a number of

887 * pages are being waited on here.

888 */

889 if (waitqueue_active(waitqueue))

890 wake_up_all(waitqueue);

891 }

876 page_waitqueue() is the implementation of the hash algorithm which deter-
mines which wait queue this page belongs to in the table zone→wait_table

877 Clear the launder bit as IO has now completed on the page

878 This is a memory block operations which must be called before performing bit
operations that may be seen by multiple processors

879-880 Clear the PG_locked bit. It is a BUG() if the bit was already cleared

881 Complete the SMP memory block operation

889-890 If there are processes waiting on the page queue for this page, wake them

B.2.3 Waiting on Pages 219

B.2.3 Waiting on Pages

B.2.3.1 Function: wait_on_page() (include/linux/pagemap.h)

94 static inline void wait_on_page(struct page * page)

95 {

96 if (PageLocked(page))

97 ___wait_on_page(page);

98 }

96-97 If the page is currently locked, then call ___wait_on_page() to sleep until
it is unlocked

B.2.3.2 Function: ___wait_on_page() (mm/�lemap.c)
This function is called after PageLocked() has been used to determine the page

is locked. The calling process will probably sleep until the page is unlocked.

849 void ___wait_on_page(struct page *page)

850 {

851 wait_queue_head_t *waitqueue = page_waitqueue(page);

852 struct task_struct *tsk = current;

853 DECLARE_WAITQUEUE(wait, tsk);

854

855 add_wait_queue(waitqueue, &wait);

856 do {

857 set_task_state(tsk, TASK_UNINTERRUPTIBLE);

858 if (!PageLocked(page))

859 break;

860 sync_page(page);

861 schedule();

862 } while (PageLocked(page));

863 __set_task_state(tsk, TASK_RUNNING);

864 remove_wait_queue(waitqueue, &wait);

865 }

851 page_waitqueue() is the implementation of the hash algorithm which deter-
mines which wait queue this page belongs to in the table zone→wait_table

852-853 Initialise the waitqueue for the current task

855 Add this task to the waitqueue returned by page_waitqueue()

857 Set the process state to be in uninterruptible sleep. When schedule() is
called, the process will sleep

858-859 Check to make sure the page was not unlocked since we last checked

B.2.3 Waiting on Pages (___wait_on_page()) 220

860 Call sync_page()(See Section B.2.1.3) to call the �lesystem-speci�c function
to synchronise the page with it's backing storage

861 Call schedule() to go to sleep. The process will be woken when the page is
unlocked

862 Check if the page is still locked. Remember that multiple pages could be using
this wait queue and there could be processes sleeping that wish to lock this
page

863-864 The page has been unlocked. Set the process to be in the TASK_RUNNING
state and remove the process from the waitqueue

Appendix C

Page Table Management

Contents
C.1 Page Table Initialisation . 222

C.1.1 Function: paging_init() . 222

C.1.2 Function: pagetable_init() . 223

C.1.3 Function: fixrange_init() . 227

C.1.4 Function: kmap_init() . 228

C.2 Page Table Walking . 230

C.2.1 Function: follow_page() . 230

221

C.1 Page Table Initialisation 222

C.1 Page Table Initialisation

Contents

C.1 Page Table Initialisation 222
C.1.1 Function: paging_init() 222
C.1.2 Function: pagetable_init() 223
C.1.3 Function: fixrange_init() 227
C.1.4 Function: kmap_init() 228

C.1.1 Function: paging_init() (arch/i386/mm/init.c)
This is the top-level function called from setup_arch(). When this function

returns, the page tables have been fully setup. Be aware that this is all x86 speci�c.

351 void __init paging_init(void)

352 {

353 pagetable_init();

354

355 load_cr3(swapper_pg_dir);

356

357 #if CONFIG_X86_PAE

362 if (cpu_has_pae)

363 set_in_cr4(X86_CR4_PAE);

364 #endif

365

366 __flush_tlb_all();

367

368 #ifdef CONFIG_HIGHMEM

369 kmap_init();

370 #endif

371 zone_sizes_init();

372 }

353 pagetable_init() is responsible for setting up a static page table using
swapper_pg_dir as the PGD

355 Load the initialised swapper_pg_dir into the CR3 register so that the CPU
will be able to use it

362-363 If PAE is enabled, set the appropriate bit in the CR4 register

366 Flush all TLBs, including the global kernel ones

369 kmap_init() initialises the region of pagetables reserved for use with kmap()

371 zone_sizes_init() (See Section B.1.2) records the size of each of the zones
before calling free_area_init() (See Section B.1.3) to initialise each zone

C.1.2 Function: pagetable_init() 223

C.1.2 Function: pagetable_init() (arch/i386/mm/init.c)
This function is responsible for statically inialising a pagetable starting with a

statically de�ned PGD called swapper_pg_dir. At the very least, a PTE will be
available that points to every page frame in ZONE_NORMAL.

205 static void __init pagetable_init (void)

206 {

207 unsigned long vaddr, end;

208 pgd_t *pgd, *pgd_base;

209 int i, j, k;

210 pmd_t *pmd;

211 pte_t *pte, *pte_base;

212

213 /*

214 * This can be zero as well - no problem, in that case we exit

215 * the loops anyway due to the PTRS_PER_* conditions.

216 */

217 end = (unsigned long)__va(max_low_pfn*PAGE_SIZE);

218

219 pgd_base = swapper_pg_dir;

220 #if CONFIG_X86_PAE

221 for (i = 0; i < PTRS_PER_PGD; i++)

222 set_pgd(pgd_base + i, __pgd(1 + __pa(empty_zero_page)));

223 #endif

224 i = __pgd_offset(PAGE_OFFSET);

225 pgd = pgd_base + i;

This �rst block initialises the PGD. It does this by pointing each entry to the
global zero page. Entries needed to reference available memory in ZONE_NORMAL will
be allocated later.

217 The variable end marks the end of physical memory in ZONE_NORMAL

219 pgd_base is set to the beginning of the statically declared PGD

220-223 If PAE is enabled, it is insu�cent to leave each entry as simply 0 (which
in e�ect points each entry to the global zero page) as each pgd_t is a struct.
Instead, set_pgd must be called for each pgd_t to point the entyr to the global
zero page

224 i is initialised as the o�set within the PGD that corresponds to PAGE_OFFSET.
In other words, this function will only be initialising the kernel portion of the
linear address space, the userspace portion is left alone

225 pgd is initialised to the pgd_t corresponding to the beginning of the kernel
portion of the linear address space

C.1 Page Table Initialisation (pagetable_init()) 224

227 for (; i < PTRS_PER_PGD; pgd++, i++) {

228 vaddr = i*PGDIR_SIZE;

229 if (end && (vaddr >= end))

230 break;

231 #if CONFIG_X86_PAE

232 pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);

233 set_pgd(pgd, __pgd(__pa(pmd) + 0x1));

234 #else

235 pmd = (pmd_t *)pgd;

236 #endif

237 if (pmd != pmd_offset(pgd, 0))

238 BUG();

This loop begins setting up valid PMD entries to point to. In the PAE case, pages
are allocated with alloc_bootmem_low_pages() and the PGD is set appropriately.
Without PAE, there is no middle directory, so it is just �folded� back onto the PGD
to preserve the illustion of a 3-level pagetable.

227 i is already initialised to the beginning of the kernel portion of the linear
address space so keep looping until the last pgd_t at PTRS_PER_PGD is reached

228 Calculate the virtual address for this PGD

229-230 If the end of ZONE_NORMAL is reached, exit the loop as further page table
entries are not needed

231-234 If PAE is enabled, allocate a page for the PMD and it with set_pgd()

235 If PAE is not available, just set pmd to the current pgd_t. This is the �folding
back� trick for emulating 3-level pagetables

237-238 Sanity check to make sure the PMD is valid

239 for (j = 0; j < PTRS_PER_PMD; pmd++, j++) {

240 vaddr = i*PGDIR_SIZE + j*PMD_SIZE;

241 if (end && (vaddr >= end))

242 break;

243 if (cpu_has_pse) {

244 unsigned long __pe;

245

246 set_in_cr4(X86_CR4_PSE);

247 boot_cpu_data.wp_works_ok = 1;

248 __pe = _KERNPG_TABLE + _PAGE_PSE + __pa(vaddr);

249 /* Make it "global" too if supported */

250 if (cpu_has_pge) {

251 set_in_cr4(X86_CR4_PGE);

252 __pe += _PAGE_GLOBAL;

C.1 Page Table Initialisation (pagetable_init()) 225

253 }

254 set_pmd(pmd, __pmd(__pe));

255 continue;

256 }

257

258 pte_base = pte =

(pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);

259

Initialise each entry in the PMD. This loop will only execute unless PAE is
enabled. Remember that without PAE, PTRS_PER_PMD is 1.

240 Calculate the virtual address for this PMD

241-242 If the end of ZONE_NORMAL is reached, �nish

243-248 If the CPU support PSE, then use large TLB entries. This means that
for kernel pages, a TLB entry will map 4MiB instead of the normal 4KiB and
the third level of PTEs is unnecessary

258 __pe is set as the �ags for a kernel pagetable (_KERNPG_TABLE), the �ag to
indicate that this is an entry mapping 4MiB (_PAGE_PSE) and then set to the
physical address for this virtual address with __pa(). Note that this means
that 4MiB of physical memory is not being mapped by the pagetables

250-253 If the CPU supports PGE, then set it for this page table entry. This
marks the entry as being �global� and visible to all processes

254-255 As the third level is not required because of PSE, set the PMD now with
set_pmd() and continue to the next PMD

258 Else, PSE is not support and PTEs are required so allocate a page for them

260 for (k = 0; k < PTRS_PER_PTE; pte++, k++) {

261 vaddr = i*PGDIR_SIZE + j*PMD_SIZE + k*PAGE_SIZE;

262 if (end && (vaddr >= end))

263 break;

264 *pte = mk_pte_phys(__pa(vaddr), PAGE_KERNEL);

265 }

266 set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte_base)));

267 if (pte_base != pte_offset(pmd, 0))

268 BUG();

269

270 }

271 }

Initialise the PTEs.

C.1 Page Table Initialisation (pagetable_init()) 226

260-265 For each pte_t, calculate the virtual address currently being examined
and create a PTE that points to the appropriate physical page frame

266 The PTEs have been initialised so set the PMD to point to it

267-268 Make sure that the entry was established correctly

273 /*

274 * Fixed mappings, only the page table structure has to be

275 * created - mappings will be set by set_fixmap():

276 */

277 vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;

278 fixrange_init(vaddr, 0, pgd_base);

279

280 #if CONFIG_HIGHMEM

281 /*

282 * Permanent kmaps:

283 */

284 vaddr = PKMAP_BASE;

285 fixrange_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);

286

287 pgd = swapper_pg_dir + __pgd_offset(vaddr);

288 pmd = pmd_offset(pgd, vaddr);

289 pte = pte_offset(pmd, vaddr);

290 pkmap_page_table = pte;

291 #endif

292

293 #if CONFIG_X86_PAE

294 /*

295 * Add low memory identity-mappings - SMP needs it when

296 * starting up on an AP from real-mode. In the non-PAE

297 * case we already have these mappings through head.S.

298 * All user-space mappings are explicitly cleared after

299 * SMP startup.

300 */

301 pgd_base[0] = pgd_base[USER_PTRS_PER_PGD];

302 #endif

303 }

At this point, page table entries have been setup which reference all parts of
ZONE_NORMAL. The remaining regions needed are those for �xed mappings and those
needed for mapping high memory pages with kmap().

277 The �xed address space is considered to start at FIXADDR_TOP and ��nish�
earlier in the address space. __fix_to_virt() takes an index as a parameter
and returns the index'th page frame backwards (starting from FIXADDR_TOP)

C.1 Page Table Initialisation (pagetable_init()) 227

within the the �xed virtual address space. __end_of_fixed_addresses is the
last index used by the �xed virtual address space. In other words, this line
returns the virtual address of the PMD that corresponds to the beginning of
the �xed virtual address space

278 By passing 0 as the �end� to fixrange_init(), the function will start at
vaddr and build valid PGDs and PMDs until the end of the virtual address
space. PTEs are not needed for these addresses

280-291 Set up page tables for use with kmap()

287-290 Get the PTE corresponding to the beginning of the region for use with
kmap()

301 This sets up a temporary identity mapping between the virtual address 0 and
the physical address 0

C.1.3 Function: fixrange_init() (arch/i386/mm/init.c)
This function creates valid PGDs and PMDs for �xed virtual address mappings.

167 static void __init fixrange_init (unsigned long start,

unsigned long end,

pgd_t *pgd_base)

168 {

169 pgd_t *pgd;

170 pmd_t *pmd;

171 pte_t *pte;

172 int i, j;

173 unsigned long vaddr;

174

175 vaddr = start;

176 i = __pgd_offset(vaddr);

177 j = __pmd_offset(vaddr);

178 pgd = pgd_base + i;

179

180 for (; (i < PTRS_PER_PGD) && (vaddr != end); pgd++, i++) {

181 #if CONFIG_X86_PAE

182 if (pgd_none(*pgd)) {

183 pmd = (pmd_t *) alloc_bootmem_low_pages(PAGE_SIZE);

184 set_pgd(pgd, __pgd(__pa(pmd) + 0x1));

185 if (pmd != pmd_offset(pgd, 0))

186 printk("PAE BUG #02!\n");

187 }

188 pmd = pmd_offset(pgd, vaddr);

189 #else

190 pmd = (pmd_t *)pgd;

C.1 Page Table Initialisation (fixrange_init()) 228

191 #endif

192 for (; (j < PTRS_PER_PMD) && (vaddr != end); pmd++, j++) {

193 if (pmd_none(*pmd)) {

194 pte = (pte_t *) alloc_bootmem_low_pages(PAGE_SIZE);

195 set_pmd(pmd, __pmd(_KERNPG_TABLE + __pa(pte)));

196 if (pte != pte_offset(pmd, 0))

197 BUG();

198 }

199 vaddr += PMD_SIZE;

200 }

201 j = 0;

202 }

203 }

175 Set the starting virtual address (vadd) to the requested starting address pro-
vided as the parameter

176 Get the index within the PGD corresponding to vaddr

177 Get the index within the PMD corresponding to vaddr

178 Get the starting pgd_t

180 Keep cycling until end is reached. When pagetable_init() passes in 0, this
loop will continue until the end of the PGD

182-187 In the case of PAE, allocate a page for the PMD if one has not already
been allocated

190 Without PAE, there is no PMD so treat the pgd_t as the pmd_t

192-200 For each entry in the PMD, allocate a page for the pte_t entries and set
it within the pagetables. Note that vaddr is incremented in PMD-sized strides

C.1.4 Function: kmap_init() (arch/i386/mm/init.c)
This function only exists if CONFIG_HIGHMEM is set during compile time. It is

responsible for caching where the beginning of the kmap region is, the PTE refer-
encing it and the protection for the page tables. This means the PGD will not have
to be checked every time kmap() is used.

74 #if CONFIG_HIGHMEM

75 pte_t *kmap_pte;

76 pgprot_t kmap_prot;

77

78 #define kmap_get_fixmap_pte(vaddr) \

79 pte_offset(pmd_offset(pgd_offset_k(vaddr), (vaddr)), (vaddr))

80

C.1 Page Table Initialisation (kmap_init()) 229

81 void __init kmap_init(void)

82 {

83 unsigned long kmap_vstart;

84

85 /* cache the first kmap pte */

86 kmap_vstart = __fix_to_virt(FIX_KMAP_BEGIN);

87 kmap_pte = kmap_get_fixmap_pte(kmap_vstart);

e8

89 kmap_prot = PAGE_KERNEL;

90 }

91 #endif /* CONFIG_HIGHMEM */

78-79 As fixrange_init() has already set up valid PGDs and PMDs, there is
no need to double check them so kmap_get_fixmap_pte() is responsible for
quickly traversing the page table

86 Cache the virtual address for the kmap region in kmap_vstart

87 Cache the PTE for the start of the kmap region in kmap_pte

89 Cache the protection for the page table entries with kmap_prot

C.2 Page Table Walking 230

C.2 Page Table Walking

Contents

C.2 Page Table Walking 230
C.2.1 Function: follow_page() 230

C.2.1 Function: follow_page() (mm/memory.c)
This function returns the struct page used by the PTE at address in mm's page

tables.

405 static struct page * follow_page(struct mm_struct *mm,

unsigned long address,

int write)

406 {

407 pgd_t *pgd;

408 pmd_t *pmd;

409 pte_t *ptep, pte;

410

411 pgd = pgd_offset(mm, address);

412 if (pgd_none(*pgd) || pgd_bad(*pgd))

413 goto out;

414

415 pmd = pmd_offset(pgd, address);

416 if (pmd_none(*pmd) || pmd_bad(*pmd))

417 goto out;

418

419 ptep = pte_offset(pmd, address);

420 if (!ptep)

421 goto out;

422

423 pte = *ptep;

424 if (pte_present(pte)) {

425 if (!write ||

426 (pte_write(pte) && pte_dirty(pte)))

427 return pte_page(pte);

428 }

429

430 out:

431 return 0;

432 }

405 The parameters are the mm whose page tables that is about to be walked, the
address whose struct page is of interest and write which indicates if the
page is about to be written to

411 Get the PGD for the address and make sure it is present and valid

C.2 Page Table Walking (follow_page()) 231

415-417 Get the PMD for the address and make sure it is present and valid

419 Get the PTE for the address and make sure it exists

424 If the PTE is currently present, then we have something to return

425-426 If the caller has indicated a write is about to take place, check to make
sure that the PTE has write permissions set and if so, make the PTE dirty

427 If the PTE is present and the permissions are �ne, return the struct page

mapped by the PTE

431 Return 0 indicating that the address has no associated struct page

Appendix D

Process Address Space

Contents
D.1 Process Memory Descriptors . 236

D.1.1 Initalising a Descriptor . 236

D.1.2 Copying a Descriptor . 236

D.1.2.1 Function: copy_mm() 236

D.1.2.2 Function: mm_init() 239

D.1.3 Allocating a Descriptor . 239

D.1.3.1 Function: allocate_mm() 239

D.1.3.2 Function: mm_alloc() 240

D.1.4 Destroying a Descriptor . 240

D.1.4.1 Function: mmput() . 240

D.1.4.2 Function: mmdrop() . 241

D.1.4.3 Function: __mmdrop() 242

D.2 Creating Memory Regions . 243

D.2.1 Creating A Memory Region . 243

D.2.1.1 Function: do_mmap() 243

D.2.1.2 Function: do_mmap_pgoff() 244

D.2.2 Inserting a Memory Region . 252

D.2.2.1 Function: __insert_vm_struct() 252

D.2.2.2 Function: find_vma_prepare() 253

D.2.2.3 Function: vma_link() 255

D.2.2.4 Function: __vma_link() 256

D.2.2.5 Function: __vma_link_list() 256

D.2.2.6 Function: __vma_link_rb() 257

D.2.2.7 Function: __vma_link_file() 257

232

APPENDIX D. PROCESS ADDRESS SPACE 233

D.2.3 Merging Contiguous Regions . 258

D.2.3.1 Function: vma_merge() 258

D.2.3.2 Function: can_vma_merge() 260

D.2.4 Remapping and Moving a Memory Region 261

D.2.4.1 Function: sys_mremap() 261

D.2.4.2 Function: do_mremap() 261

D.2.4.3 Function: move_vma() 267

D.2.4.4 Function: make_pages_present() 271

D.2.4.5 Function: get_user_pages() 272

D.2.4.6 Function: move_page_tables() 276

D.2.4.7 Function: move_one_page() 277

D.2.4.8 Function: get_one_pte() 277

D.2.4.9 Function: alloc_one_pte() 278

D.2.4.10 Function: copy_one_pte() 279

D.2.5 Deleting a memory region . 280

D.2.5.1 Function: do_munmap() 280

D.2.5.2 Function: unmap_fixup() 284

D.2.6 Deleting all memory regions . 287

D.2.6.1 Function: exit_mmap() 287

D.2.6.2 Function: clear_page_tables() 290

D.2.6.3 Function: free_one_pgd() 290

D.2.6.4 Function: free_one_pmd() 291

D.3 Searching Memory Regions . 293

D.3.1 Finding a Mapped Memory Region 293

D.3.1.1 Function: find_vma() 293

D.3.1.2 Function: find_vma_prev() 294

D.3.1.3 Function: find_vma_intersection() 296

D.3.2 Finding a Free Memory Region 296

D.3.2.1 Function: get_unmapped_area() 296

D.3.2.2 Function: arch_get_unmapped_area() 297

D.4 Locking and Unlocking Memory Regions 299

D.4.1 Locking a Memory Region . 299

D.4.1.1 Function: sys_mlock() 299

D.4.1.2 Function: sys_mlockall() 300

D.4.1.3 Function: do_mlockall() 302

D.4.1.4 Function: do_mlock() 303

APPENDIX D. PROCESS ADDRESS SPACE 234

D.4.2 Unlocking the region . 305

D.4.2.1 Function: sys_munlock() 305

D.4.2.2 Function: sys_munlockall() 306

D.4.3 Fixing up regions after locking/unlocking 306

D.4.3.1 Function: mlock_fixup() 306

D.4.3.2 Function: mlock_fixup_all() 308

D.4.3.3 Function: mlock_fixup_start() 308

D.4.3.4 Function: mlock_fixup_end() 309

D.4.3.5 Function: mlock_fixup_middle() 310

D.5 Page Faulting . 313

D.5.1 x86 Page Fault Handler . 313

D.5.1.1 Function: do_page_fault() 313

D.5.2 Expanding the Stack . 323

D.5.2.1 Function: expand_stack() 323

D.5.3 Architecture Independent Page Fault Handler 324

D.5.3.1 Function: handle_mm_fault() 324

D.5.3.2 Function: handle_pte_fault() 326

D.5.4 Demand Allocation . 327

D.5.4.1 Function: do_no_page() 327

D.5.4.2 Function: do_anonymous_page() 330

D.5.5 Demand Paging . 332

D.5.5.1 Function: do_swap_page() 332

D.5.5.2 Function: can_share_swap_page() 336

D.5.5.3 Function: exclusive_swap_page() 337

D.5.6 Copy On Write (COW) Pages . 338

D.5.6.1 Function: do_wp_page() 338

D.6 Page-Related Disk IO . 341

D.6.1 Generic File Reading . 341

D.6.1.1 Function: generic_file_read() 341

D.6.1.2 Function: do_generic_file_read() 344

D.6.1.3 Function: generic_file_readahead() 351

D.6.2 Generic File mmap() . 355

D.6.2.1 Function: generic_file_mmap() 355

D.6.3 Generic File Truncation . 356

D.6.3.1 Function: vmtruncate() 356

D.6.3.2 Function: vmtruncate_list() 358

APPENDIX D. PROCESS ADDRESS SPACE 235

D.6.3.3 Function: zap_page_range() 359

D.6.3.4 Function: zap_pmd_range() 361

D.6.3.5 Function: zap_pte_range() 362

D.6.3.6 Function: truncate_inode_pages() 364

D.6.3.7 Function: truncate_list_pages() 365

D.6.3.8 Function: truncate_complete_page() 367

D.6.3.9 Function: do_flushpage() 368

D.6.3.10 Function: truncate_partial_page() 368

D.6.4 Reading Pages for the Page Cache 369

D.6.4.1 Function: filemap_nopage() 369

D.6.4.2 Function: page_cache_read() 374

D.6.5 File Readahead for nopage() . 375

D.6.5.1 Function: nopage_sequential_readahead() 375

D.6.5.2 Function: read_cluster_nonblocking() 377

D.6.6 Swap Related Read-Ahead . 378

D.6.6.1 Function: swapin_readahead() 378

D.6.6.2 Function: valid_swaphandles() 379

D.1 Process Memory Descriptors 236

D.1 Process Memory Descriptors

Contents

D.1 Process Memory Descriptors 236
D.1.1 Initalising a Descriptor 236
D.1.2 Copying a Descriptor 236
D.1.2.1 Function: copy_mm() 236
D.1.2.2 Function: mm_init() 239

D.1.3 Allocating a Descriptor 239
D.1.3.1 Function: allocate_mm() 239
D.1.3.2 Function: mm_alloc() 240

D.1.4 Destroying a Descriptor 240
D.1.4.1 Function: mmput() 240
D.1.4.2 Function: mmdrop() 241
D.1.4.3 Function: __mmdrop() 242

This section covers the functions used to allocate, initialise, copy and destroy
memory descriptors.

D.1.1 Initalising a Descriptor

The initial mm_struct in the system is called init_mm and is statically initialised at
compile time using the macro INIT_MM().

238 #define INIT_MM(name) \

239 { \

240 mm_rb: RB_ROOT, \

241 pgd: swapper_pg_dir, \

242 mm_users: ATOMIC_INIT(2), \

243 mm_count: ATOMIC_INIT(1), \

244 mmap_sem: __RWSEM_INITIALIZER(name.mmap_sem),\

245 page_table_lock: SPIN_LOCK_UNLOCKED, \

246 mmlist: LIST_HEAD_INIT(name.mmlist), \

247 }

Once it is established, new mm_structs are copies of their parent mm_struct

and are copied using copy_mm() with the process speci�c �elds initialised with
init_mm().

D.1.2 Copying a Descriptor

D.1.2.1 Function: copy_mm() (kernel/fork.c)
This function makes a copy of the mm_struct for the given task. This is only

called from do_fork() after a new process has been created and needs its own
mm_struct.

D.1.2 Copying a Descriptor (copy_mm()) 237

315 static int copy_mm(unsigned long clone_flags,

struct task_struct * tsk)

316 {

317 struct mm_struct * mm, *oldmm;

318 int retval;

319

320 tsk->min_flt = tsk->maj_flt = 0;

321 tsk->cmin_flt = tsk->cmaj_flt = 0;

322 tsk->nswap = tsk->cnswap = 0;

323

324 tsk->mm = NULL;

325 tsk->active_mm = NULL;

326

327 /*

328 * Are we cloning a kernel thread?

330 * We need to steal a active VM for that..

331 */

332 oldmm = current->mm;

333 if (!oldmm)

334 return 0;

335

336 if (clone_flags & CLONE_VM) {

337 atomic_inc(&oldmm->mm_users);

338 mm = oldmm;

339 goto good_mm;

340 }

Reset �elds that are not inherited by a child mm_struct and �nd a mm to copy
from.

315 The parameters are the �ags passed for clone and the task that is creating a
copy of the mm_struct

320-325 Initialise the task_struct �elds related to memory management

332 Borrow the mm of the current running process to copy from

333 A kernel thread has no mm so it can return immediately

336-341 If the CLONE_VM �ag is set, the child process is to share the mm with the
parent process. This is required by users like pthreads. The mm_users �eld is
incremented so the mm is not destroyed prematurely later. The good_mm label
sets tsk→mm and tsk→active_mm and returns success

342 retval = -ENOMEM;

343 mm = allocate_mm();

344 if (!mm)

D.1.2 Copying a Descriptor (copy_mm()) 238

345 goto fail_nomem;

346

347 /* Copy the current MM stuff.. */

348 memcpy(mm, oldmm, sizeof(*mm));

349 if (!mm_init(mm))

350 goto fail_nomem;

351

352 if (init_new_context(tsk,mm))

353 goto free_pt;

354

355 down_write(&oldmm->mmap_sem);

356 retval = dup_mmap(mm);

357 up_write(&oldmm->mmap_sem);

358

343 Allocate a new mm

348-350 Copy the parent mm and initialise the process speci�c mm �elds with
init_mm()

352-353 Initialise the MMU context for architectures that do not automatically
manage their MMU

355-357 Call dup_mmap() which is responsible for copying all the VMAs regions
in use by the parent process

359 if (retval)

360 goto free_pt;

361

362 /*

363 * child gets a private LDT (if there was an LDT in the parent)

364 */

365 copy_segments(tsk, mm);

366

367 good_mm:

368 tsk->mm = mm;

369 tsk->active_mm = mm;

370 return 0;

371

372 free_pt:

373 mmput(mm);

374 fail_nomem:

375 return retval;

376 }

359 dup_mmap() returns 0 on success. If it failed, the label free_pt will call
mmput() which decrements the use count of the mm

D.1.2 Copying a Descriptor (copy_mm()) 239

365 This copies the LDT for the new process based on the parent process

368-370 Set the new mm, active_mm and return success

D.1.2.2 Function: mm_init() (kernel/fork.c)
This function initialises process speci�c mm �elds.

230 static struct mm_struct * mm_init(struct mm_struct * mm)

231 {

232 atomic_set(&mm->mm_users, 1);

233 atomic_set(&mm->mm_count, 1);

234 init_rwsem(&mm->mmap_sem);

235 mm->page_table_lock = SPIN_LOCK_UNLOCKED;

236 mm->pgd = pgd_alloc(mm);

237 mm->def_flags = 0;

238 if (mm->pgd)

239 return mm;

240 free_mm(mm);

241 return NULL;

242 }

232 Set the number of users to 1

233 Set the reference count of the mm to 1

234 Initialise the semaphore protecting the VMA list

235 Initialise the spinlock protecting write access to it

236 Allocate a new PGD for the struct

237 By default, pages used by the process are not locked in memory

238 If a PGD exists, return the initialised struct

240 Initialisation failed, delete the mm_struct and return

D.1.3 Allocating a Descriptor

Two functions are provided allocating a mm_struct. To be slightly confusing, they
are essentially the name. allocate_mm() will allocate a mm_struct from the slab
allocator. mm_alloc() will allocate the struct and then call the function mm_init()

to initialise it.

D.1.3.1 Function: allocate_mm() (kernel/fork.c)

227 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))

226 Allocate a mm_struct from the slab allocator

D.1.3.2 Function: mm_alloc() 240

D.1.3.2 Function: mm_alloc() (kernel/fork.c)

248 struct mm_struct * mm_alloc(void)

249 {

250 struct mm_struct * mm;

251

252 mm = allocate_mm();

253 if (mm) {

254 memset(mm, 0, sizeof(*mm));

255 return mm_init(mm);

256 }

257 return NULL;

258 }

252 Allocate a mm_struct from the slab allocator

254 Zero out all contents of the struct

255 Perform basic initialisation

D.1.4 Destroying a Descriptor

A new user to an mm increments the usage count with a simple call,

atomic_inc(&mm->mm_users};

It is decremented with a call to mmput(). If the mm_users count reaches zero,
all the mapped regions are deleted with exit_mmap() and the page tables destroyed
as there is no longer any users of the userspace portions. The mm_count count
is decremented with mmdrop() as all the users of the page tables and VMAs are
counted as one mm_struct user. When mm_count reaches zero, the mm_struct will
be destroyed.

D.1.4.1 Function: mmput() (kernel/fork.c)

276 void mmput(struct mm_struct *mm)

277 {

278 if (atomic_dec_and_lock(&mm->mm_users, &mmlist_lock)) {

279 extern struct mm_struct *swap_mm;

280 if (swap_mm == mm)

281 swap_mm = list_entry(mm->mmlist.next,

struct mm_struct, mmlist);

282 list_del(&mm->mmlist);

283 mmlist_nr--;

284 spin_unlock(&mmlist_lock);

285 exit_mmap(mm);

286 mmdrop(mm);

287 }

288 }

D.1.4 Destroying a Descriptor (mmput()) 241

Figure D.1: Call Graph: mmput()

278 Atomically decrement the mm_users �eld while holding the mmlist_lock lock.
Return with the lock held if the count reaches zero

279-286 If the usage count reaches zero, the mm and associated structures need
to be removed

279-281 The swap_mm is the last mm that was swapped out by the vmscan code.
If the current process was the last mm swapped, move to the next entry in the
list

282 Remove this mm from the list

283-284 Reduce the count of mms in the list and release the mmlist lock

285 Remove all associated mappings

286 Delete the mm

D.1.4.2 Function: mmdrop() (include/linux/sched.h)

765 static inline void mmdrop(struct mm_struct * mm)

766 {

767 if (atomic_dec_and_test(&mm->mm_count))

768 __mmdrop(mm);

769 }

767 Atomically decrement the reference count. The reference count could be higher
if the mm was been used by lazy tlb switching tasks

768 If the reference count reaches zero, call __mmdrop()

D.1.4.3 Function: __mmdrop() 242

D.1.4.3 Function: __mmdrop() (kernel/fork.c)

265 inline void __mmdrop(struct mm_struct *mm)

266 {

267 BUG_ON(mm == &init_mm);

268 pgd_free(mm->pgd);

269 destroy_context(mm);

270 free_mm(mm);

271 }

267 Make sure the init_mm is not destroyed

268 Delete the PGD entry

269 Delete the LDT

270 Call kmem_cache_free() for the mm freeing it with the slab allocator

D.2 Creating Memory Regions 243

D.2 Creating Memory Regions

Contents

D.2 Creating Memory Regions 243
D.2.1 Creating A Memory Region 243
D.2.1.1 Function: do_mmap() 243
D.2.1.2 Function: do_mmap_pgoff() 244

D.2.2 Inserting a Memory Region 252
D.2.2.1 Function: __insert_vm_struct() 252
D.2.2.2 Function: find_vma_prepare() 253
D.2.2.3 Function: vma_link() 255
D.2.2.4 Function: __vma_link() 256
D.2.2.5 Function: __vma_link_list() 256
D.2.2.6 Function: __vma_link_rb() 257
D.2.2.7 Function: __vma_link_file() 257

D.2.3 Merging Contiguous Regions 258
D.2.3.1 Function: vma_merge() 258
D.2.3.2 Function: can_vma_merge() 260

D.2.4 Remapping and Moving a Memory Region 261
D.2.4.1 Function: sys_mremap() 261
D.2.4.2 Function: do_mremap() 261
D.2.4.3 Function: move_vma() 267
D.2.4.4 Function: make_pages_present() 271
D.2.4.5 Function: get_user_pages() 272
D.2.4.6 Function: move_page_tables() 276
D.2.4.7 Function: move_one_page() 277
D.2.4.8 Function: get_one_pte() 277
D.2.4.9 Function: alloc_one_pte() 278
D.2.4.10 Function: copy_one_pte() 279

D.2.5 Deleting a memory region 280
D.2.5.1 Function: do_munmap() 280
D.2.5.2 Function: unmap_fixup() 284

D.2.6 Deleting all memory regions 287
D.2.6.1 Function: exit_mmap() 287
D.2.6.2 Function: clear_page_tables() 290
D.2.6.3 Function: free_one_pgd() 290
D.2.6.4 Function: free_one_pmd() 291

This large section deals with the creation, deletion and manipulation of memory
regions.

D.2.1 Creating A Memory Region

The main call graph for creating a memory region is shown in Figure 4.4.

D.2.1.1 Function: do_mmap() (include/linux/mm.h)
This is a very simply wrapper function around do_mmap_pgoff() which performs

most of the work.

D.2.1 Creating A Memory Region (do_mmap()) 244

557 static inline unsigned long do_mmap(struct file *file,

unsigned long addr,

558 unsigned long len, unsigned long prot,

559 unsigned long flag, unsigned long offset)

560 {

561 unsigned long ret = -EINVAL;

562 if ((offset + PAGE_ALIGN(len)) < offset)

563 goto out;

564 if (!(offset & ~PAGE_MASK))

565 ret = do_mmap_pgoff(file, addr, len, prot, flag,

offset >> PAGE_SHIFT);

566 out:

567 return ret;

568 }

561 By default, return -EINVAL

562-563 Make sure that the size of the region will not over�ow the total size of
the address space

564-565 Page align the offset and call do_mmap_pgoff() to map the region

D.2.1.2 Function: do_mmap_pgoff() (mm/mmap.c)
This function is very large and so is broken up into a number of sections. Broadly

speaking the sections are

• Sanity check the parameters

• Find a free linear address space large enough for the memory mapping. If
a �lesystem or device speci�c get_unmapped_area() function is provided, it
will be used otherwise arch_get_unmapped_area() is called

• Calculate the VM �ags and check them against the �le access permissions

• If an old area exists where the mapping is to take place, �x it up so it is
suitable for the new mapping

• Allocate a vm_area_struct from the slab allocator and �ll in its entries

• Link in the new VMA

• Call the �lesystem or device speci�c mmap() function

• Update statistics and exit

D.2.1 Creating A Memory Region (do_mmap_pgoff()) 245

393 unsigned long do_mmap_pgoff(struct file * file,

unsigned long addr,

unsigned long len, unsigned long prot,

394 unsigned long flags, unsigned long pgoff)

395 {

396 struct mm_struct * mm = current->mm;

397 struct vm_area_struct * vma, * prev;

398 unsigned int vm_flags;

399 int correct_wcount = 0;

400 int error;

401 rb_node_t ** rb_link, * rb_parent;

402

403 if (file && (!file->f_op || !file->f_op->mmap))

404 return -ENODEV;

405

406 if (!len)

407 return addr;

408

409 len = PAGE_ALIGN(len);

410

if (len > TASK_SIZE || len == 0)

return -EINVAL;

413

414 /* offset overflow? */

415 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)

416 return -EINVAL;

417

418 /* Too many mappings? */

419 if (mm->map_count > max_map_count)

420 return -ENOMEM;

421

393 The parameters which correspond directly to the parameters to the mmap
system call are

�le the struct �le to mmap if this is a �le backed mapping

addr the requested address to map

len the length in bytes to mmap

prot is the permissions on the area

�ags are the �ags for the mapping

pgo� is the o�set within the �le to begin the mmap at

D.2.1 Creating A Memory Region (do_mmap_pgoff()) 246

403-404 If a �le or device is been mapped, make sure a �lesystem or device
speci�c mmap function is provided. For most �lesystems, this will call
generic_file_mmap()(See Section D.6.2.1)

406-407 Make sure a zero length mmap() is not requested

409 Ensure that the mapping is con�ned to the userspace portion of hte address
space. On the x86, kernel space begins at PAGE_OFFSET(3GiB)

415-416 Ensure the mapping will not over�ow the end of the largest possible �le
size

419-490 Only max_map_count number of mappings are allowed. By default this
value is DEFAULT_MAX_MAP_COUNT or 65536 mappings

422 /* Obtain the address to map to. we verify (or select) it and

423 * ensure that it represents a valid section of the address space.

424 */

425 addr = get_unmapped_area(file, addr, len, pgoff, flags);

426 if (addr & ~PAGE_MASK)

427 return addr;

428

425 After basic sanity checks, this function will call the device or �le spe-
ci�c get_unmapped_area() function. If a device speci�c one is unavailable,
arch_get_unmapped_area() is called. This function is discussed in Section
D.3.2.2

429 /* Do simple checking here so the lower-level routines won't have

430 * to. we assume access permissions have been handled by the open

431 * of the memory object, so we don't do any here.

432 */

433 vm_flags = calc_vm_flags(prot,flags) | mm->def_flags

| VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;

434

435 /* mlock MCL_FUTURE? */

436 if (vm_flags & VM_LOCKED) {

437 unsigned long locked = mm->locked_vm << PAGE_SHIFT;

438 locked += len;

439 if (locked > current->rlim[RLIMIT_MEMLOCK].rlim_cur)

440 return -EAGAIN;

441 }

442

D.2.1 Creating A Memory Region (do_mmap_pgoff()) 247

433 calc_vm_flags() translates the prot and flags from userspace and translates
them to their VM_ equivalents

436-440 Check if it has been requested that all future mappings be locked in
memory. If yes, make sure the process isn't locking more memory than it is
allowed to. If it is, return -EAGAIN

443 if (file) {

444 switch (flags & MAP_TYPE) {

445 case MAP_SHARED:

446 if ((prot & PROT_WRITE) &&

!(file->f_mode & FMODE_WRITE))

447 return -EACCES;

448

449 /* Make sure we don't allow writing to

an append-only file.. */

450 if (IS_APPEND(file->f_dentry->d_inode) &&

(file->f_mode & FMODE_WRITE))

451 return -EACCES;

452

453 /* make sure there are no mandatory

locks on the file. */

454 if (locks_verify_locked(file->f_dentry->d_inode))

455 return -EAGAIN;

456

457 vm_flags |= VM_SHARED | VM_MAYSHARE;

458 if (!(file->f_mode & FMODE_WRITE))

459 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);

460

461 /* fall through */

462 case MAP_PRIVATE:

463 if (!(file->f_mode & FMODE_READ))

464 return -EACCES;

465 break;

466

467 default:

468 return -EINVAL;

469 }

443-470 If a �le is been memory mapped, check the �les access permissions

446-447 If write access is requested, make sure the �le is opened for write

450-451 Similarly, if the �le is opened for append, make sure it cannot be written
to. The prot �eld is not checked because the prot �eld applies only to the
mapping where as we need to check the opened �le

D.2.1 Creating A Memory Region (do_mmap_pgoff()) 248

453 If the �le is mandatory locked, return -EAGAIN so the caller will try a second
type

457-459 Fix up the �ags to be consistent with the �le �ags

463-464 Make sure the �le can be read before mmapping it

470 } else {

471 vm_flags |= VM_SHARED | VM_MAYSHARE;

472 switch (flags & MAP_TYPE) {

473 default:

474 return -EINVAL;

475 case MAP_PRIVATE:

476 vm_flags &= ~(VM_SHARED | VM_MAYSHARE);

477 /* fall through */

478 case MAP_SHARED:

479 break;

480 }

481 }

471-481 If the �le is been mapped for anonymous use, �x up the �ags if the
requested mapping is MAP_PRIVATE to make sure the �ags are consistent

483 /* Clear old maps */

484 munmap_back:

485 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);

486 if (vma && vma->vm_start < addr + len) {

487 if (do_munmap(mm, addr, len))

488 return -ENOMEM;

489 goto munmap_back;

490 }

485 find_vma_prepare()(See Section D.2.2.2) steps through the RB tree for the
VMA corresponding to a given address

486-488 If a VMA was found and it is part of the new mmaping, remove the old
mapping as the new one will cover both

D.2.1 Creating A Memory Region (do_mmap_pgoff()) 249

491

492 /* Check against address space limit. */

493 if ((mm->total_vm << PAGE_SHIFT) + len

494 > current->rlim[RLIMIT_AS].rlim_cur)

495 return -ENOMEM;

496

497 /* Private writable mapping? Check memory availability.. */

498 if ((vm_flags & (VM_SHARED | VM_WRITE)) == VM_WRITE &&

499 !(flags & MAP_NORESERVE) &&

500 !vm_enough_memory(len >> PAGE_SHIFT))

501 return -ENOMEM;

502

503 /* Can we just expand an old anonymous mapping? */

504 if (!file && !(vm_flags & VM_SHARED) && rb_parent)

505 if (vma_merge(mm, prev, rb_parent,

addr, addr + len, vm_flags))

506 goto out;

507

493-495 Make sure the new mapping will not will not exceed the total VM a
process is allowed to have. It is unclear why this check is not made earlier

498-501 If the caller does not speci�cally request that free space is not checked
with MAP_NORESERVE and it is a private mapping, make sure enough memory
is available to satisfy the mapping under current conditions

504-506 If two adjacent memory mappings are anonymous and can be treated as
one, expand the old mapping rather than creating a new one

508 /* Determine the object being mapped and call the appropriate

509 * specific mapper. the address has already been validated, but

510 * not unmapped, but the maps are removed from the list.

511 */

512 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

513 if (!vma)

514 return -ENOMEM;

515

516 vma->vm_mm = mm;

517 vma->vm_start = addr;

518 vma->vm_end = addr + len;

519 vma->vm_flags = vm_flags;

520 vma->vm_page_prot = protection_map[vm_flags & 0x0f];

521 vma->vm_ops = NULL;

522 vma->vm_pgoff = pgoff;

D.2.1 Creating A Memory Region (do_mmap_pgoff()) 250

523 vma->vm_file = NULL;

524 vma->vm_private_data = NULL;

525 vma->vm_raend = 0;

512 Allocate a vm_area_struct from the slab allocator

516-525 Fill in the basic vm_area_struct �elds

527 if (file) {

528 error = -EINVAL;

529 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))

530 goto free_vma;

531 if (vm_flags & VM_DENYWRITE) {

532 error = deny_write_access(file);

533 if (error)

534 goto free_vma;

535 correct_wcount = 1;

536 }

537 vma->vm_file = file;

538 get_file(file);

539 error = file->f_op->mmap(file, vma);

540 if (error)

541 goto unmap_and_free_vma;

527-542 Fill in the �le related �elds if this is a �le been mapped

529-530 These are both invalid �ags for a �le mapping so free the vm_area_struct
and return

531-536 This �ag is cleared by the system call mmap() but is still cleared for kernel
modules that call this function directly. Historically, -ETXTBUSY was returned
to the calling process if the underlying �le was been written to

537 Fill in the vm_file �eld

538 This increments the �le usage count

539 Call the �lesystem or device speci�c mmap() function. In many �lesystem
cases, this will call generic_file_mmap()(See Section D.6.2.1)

540-541 If an error called, goto unmap_and_free_vma to clean up and return the
error

542 } else if (flags & MAP_SHARED) {

543 error = shmem_zero_setup(vma);

544 if (error)

545 goto free_vma;

546 }

547

D.2.1 Creating A Memory Region (do_mmap_pgoff()) 251

543 If this is an anonymous shared mapping, the region is created and setup
by shmem_zero_setup()(See Section L.7.1). Anonymous shared pages are
backed by a virtual tmpfs �lesystem so that they can be synchronised properly
with swap. The writeback function is shmem_writepage()(See Section L.6.1)

548 /* Can addr have changed??

549 *

550 * Answer: Yes, several device drivers can do it in their

551 * f_op->mmap method. -DaveM

552 */

553 if (addr != vma->vm_start) {

554 /*

555 * It is a bit too late to pretend changing the virtual

556 * area of the mapping, we just corrupted userspace

557 * in the do_munmap, so FIXME (not in 2.4 to avoid

558 * breaking the driver API).

559 */

560 struct vm_area_struct * stale_vma;

561 /* Since addr changed, we rely on the mmap op to prevent

562 * collisions with existing vmas and just use

563 * find_vma_prepare to update the tree pointers.

564 */

565 addr = vma->vm_start;

566 stale_vma = find_vma_prepare(mm, addr, &prev,

567 &rb_link, &rb_parent);

568 /*

569 * Make sure the lowlevel driver did its job right.

570 */

571 if (unlikely(stale_vma && stale_vma->vm_start <

vma->vm_end)) {

572 printk(KERN_ERR "buggy mmap operation: [<%p>]\n",

573 file ? file->f_op->mmap : NULL);

574 BUG();

575 }

576 }

577

578 vma_link(mm, vma, prev, rb_link, rb_parent);

579 if (correct_wcount)

580 atomic_inc(&file->f_dentry->d_inode->i_writecount);

581

553-576 If the address has changed, it means the device speci�c mmap operation
moved the VMA address to somewhere else. The function find_vma_prepare()
(See Section D.2.2.2) is used to �nd where the VMA was moved to

D.2.2 Inserting a Memory Region 252

578 Link in the new vm_area_struct

579-580 Update the �le write count

582 out:

583 mm->total_vm += len >> PAGE_SHIFT;

584 if (vm_flags & VM_LOCKED) {

585 mm->locked_vm += len >> PAGE_SHIFT;

586 make_pages_present(addr, addr + len);

587 }

588 return addr;

589

590 unmap_and_free_vma:

591 if (correct_wcount)

592 atomic_inc(&file->f_dentry->d_inode->i_writecount);

593 vma->vm_file = NULL;

594 fput(file);

595

596 /* Undo any partial mapping done by a device driver. */

597 zap_page_range(mm, vma->vm_start, vma->vm_end - vma->vm_start);

598 free_vma:

599 kmem_cache_free(vm_area_cachep, vma);

600 return error;

601 }

583-588 Update statistics for the process mm_struct and return the new address

590-597 This is reached if the �le has been partially mapped before failing.
The write statistics are updated and then all user pages are removed with
zap_page_range()

598-600 This goto is used if the mapping failed immediately after the vm_area_struct
is created. It is freed back to the slab allocator before the error is returned

D.2.2 Inserting a Memory Region

The call graph for insert_vm_struct() is shown in Figure 4.6.

D.2.2.1 Function: __insert_vm_struct() (mm/mmap.c)
This is the top level function for inserting a new vma into an address space.

There is a second function like it called simply insert_vm_struct() that is not
described in detail here as the only di�erence is the one line of code increasing the
map_count.

D.2.2 Inserting a Memory Region (__insert_vm_struct()) 253

1174 void __insert_vm_struct(struct mm_struct * mm,

struct vm_area_struct * vma)

1175 {

1176 struct vm_area_struct * __vma, * prev;

1177 rb_node_t ** rb_link, * rb_parent;

1178

1179 __vma = find_vma_prepare(mm, vma->vm_start, &prev,

&rb_link, &rb_parent);

1180 if (__vma && __vma->vm_start < vma->vm_end)

1181 BUG();

1182 __vma_link(mm, vma, prev, rb_link, rb_parent);

1183 mm->map_count++;

1184 validate_mm(mm);

1185 }

1174 The arguments are the mm_struct that represents the linear address space
and the vm_area_struct that is to be inserted

1179 find_vma_prepare()(See Section D.2.2.2) locates where the new VMA can
be inserted. It will be inserted between prev and __vma and the required
nodes for the red-black tree are also returned

1180-1181 This is a check to make sure the returned VMA is invalid. It is virtually
impossible for this condition to occur without manually inserting bogus VMAs
into the address space

1182 This function does the actual work of linking the vma struct into the linear
linked list and the red-black tree

1183 Increase the map_count to show a new mapping has been added. This line
is not present in insert_vm_struct()

1184 validate_mm() is a debugging macro for red-black trees. If DEBUG_MM_RB is
set, the linear list of VMAs and the tree will be traversed to make sure it is
valid. The tree traversal is a recursive function so it is very important that
that it is used only if really necessary as a large number of mappings could
cause a stack over�ow. If it is not set, validate_mm() does nothing at all

D.2.2.2 Function: find_vma_prepare() (mm/mmap.c)
This is responsible for �nding the correct places to insert a VMA at the supplied

address. It returns a number of pieces of information via the actual return and the
function arguments. The forward VMA to link to is returned with return. pprev is
the previous node which is required because the list is a singly linked list. rb_link
and rb_parent are the parent and leaf node the new VMA will be inserted between.

D.2.2 Inserting a Memory Region (find_vma_prepare()) 254

246 static struct vm_area_struct * find_vma_prepare(

struct mm_struct * mm,

unsigned long addr,

247 struct vm_area_struct ** pprev,

248 rb_node_t *** rb_link,

rb_node_t ** rb_parent)

249 {

250 struct vm_area_struct * vma;

251 rb_node_t ** __rb_link, * __rb_parent, * rb_prev;

252

253 __rb_link = &mm->mm_rb.rb_node;

254 rb_prev = __rb_parent = NULL;

255 vma = NULL;

256

257 while (*__rb_link) {

258 struct vm_area_struct *vma_tmp;

259

260 __rb_parent = *__rb_link;

261 vma_tmp = rb_entry(__rb_parent,

struct vm_area_struct, vm_rb);

262

263 if (vma_tmp->vm_end > addr) {

264 vma = vma_tmp;

265 if (vma_tmp->vm_start <= addr)

266 return vma;

267 __rb_link = &__rb_parent->rb_left;

268 } else {

269 rb_prev = __rb_parent;

270 __rb_link = &__rb_parent->rb_right;

271 }

272 }

273

274 *pprev = NULL;

275 if (rb_prev)

276 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);

277 *rb_link = __rb_link;

278 *rb_parent = __rb_parent;

279 return vma;

280 }

246 The function arguments are described above

253-255 Initialise the search

D.2.2 Inserting a Memory Region (find_vma_prepare()) 255

263-272 This is a similar tree walk to what was described for find_vma(). The
only real di�erence is the nodes last traversed are remembered with the
__rb_link and __rb_parent variables

275-276 Get the back linking VMA via the red-black tree

279 Return the forward linking VMA

D.2.2.3 Function: vma_link() (mm/mmap.c)
This is the top-level function for linking a VMA into the proper lists. It is

responsible for acquiring the necessary locks to make a safe insertion

337 static inline void vma_link(struct mm_struct * mm,

struct vm_area_struct * vma,

struct vm_area_struct * prev,

338 rb_node_t ** rb_link, rb_node_t * rb_parent)

339 {

340 lock_vma_mappings(vma);

341 spin_lock(&mm->page_table_lock);

342 __vma_link(mm, vma, prev, rb_link, rb_parent);

343 spin_unlock(&mm->page_table_lock);

344 unlock_vma_mappings(vma);

345

346 mm->map_count++;

347 validate_mm(mm);

348 }

337 mm is the address space the VMA is to be inserted into. prev is the backwards
linked VMA for the linear linked list of VMAs. rb_link and rb_parent are
the nodes required to make the rb insertion

340 This function acquires the spinlock protecting the address_space representing
the �le that is been memory mapped.

341 Acquire the page table lock which protects the whole mm_struct

342 Insert the VMA

343 Free the lock protecting the mm_struct

345 Unlock the address_space for the �le

346 Increase the number of mappings in this mm

347 If DEBUG_MM_RB is set, the RB trees and linked lists will be checked to make
sure they are still valid

D.2.2.4 Function: __vma_link() 256

D.2.2.4 Function: __vma_link() (mm/mmap.c)
This simply calls three helper functions which are responsible for linking the

VMA into the three linked lists that link VMAs together.

329 static void __vma_link(struct mm_struct * mm,

struct vm_area_struct * vma,

struct vm_area_struct * prev,

330 rb_node_t ** rb_link, rb_node_t * rb_parent)

331 {

332 __vma_link_list(mm, vma, prev, rb_parent);

333 __vma_link_rb(mm, vma, rb_link, rb_parent);

334 __vma_link_file(vma);

335 }

332 This links the VMA into the linear linked lists of VMAs in this mm via the
vm_next field

333 This links the VMA into the red-black tree of VMAs in this mm whose root
is stored in the vm_rb �eld

334 This links the VMA into the shared mapping VMA links. Memory mapped
�les are linked together over potentially many mms by this function via the
vm_next_share and vm_pprev_share �elds

D.2.2.5 Function: __vma_link_list() (mm/mmap.c)

282 static inline void __vma_link_list(struct mm_struct * mm,

struct vm_area_struct * vma,

struct vm_area_struct * prev,

283 rb_node_t * rb_parent)

284 {

285 if (prev) {

286 vma->vm_next = prev->vm_next;

287 prev->vm_next = vma;

288 } else {

289 mm->mmap = vma;

290 if (rb_parent)

291 vma->vm_next = rb_entry(rb_parent,

struct vm_area_struct,

vm_rb);

292 else

293 vma->vm_next = NULL;

294 }

295 }

285 If prev is not null, the vma is simply inserted into the list

D.2.2 Inserting a Memory Region (__vma_link_list()) 257

289 Else this is the �rst mapping and the �rst element of the list has to be stored
in the mm_struct

290 The VMA is stored as the parent node

D.2.2.6 Function: __vma_link_rb() (mm/mmap.c)
The principal workings of this function are stored within <linux/rbtree.h>

and will not be discussed in detail in this book.

297 static inline void __vma_link_rb(struct mm_struct * mm,

struct vm_area_struct * vma,

298 rb_node_t ** rb_link,

rb_node_t * rb_parent)

299 {

300 rb_link_node(&vma->vm_rb, rb_parent, rb_link);

301 rb_insert_color(&vma->vm_rb, &mm->mm_rb);

302 }

D.2.2.7 Function: __vma_link_file() (mm/mmap.c)
This function links the VMA into a linked list of shared �le mappings.

304 static inline void __vma_link_file(struct vm_area_struct * vma)

305 {

306 struct file * file;

307

308 file = vma->vm_file;

309 if (file) {

310 struct inode * inode = file->f_dentry->d_inode;

311 struct address_space *mapping = inode->i_mapping;

312 struct vm_area_struct **head;

313

314 if (vma->vm_flags & VM_DENYWRITE)

315 atomic_dec(&inode->i_writecount);

316

317 head = &mapping->i_mmap;

318 if (vma->vm_flags & VM_SHARED)

319 head = &mapping->i_mmap_shared;

320

321 /* insert vma into inode's share list */

322 if((vma->vm_next_share = *head) != NULL)

323 (*head)->vm_pprev_share = &vma->vm_next_share;

324 *head = vma;

325 vma->vm_pprev_share = head;

326 }

327 }

D.2.3 Merging Contiguous Regions 258

309 Check to see if this VMA has a shared �le mapping. If it does not, this function
has nothing more to do

310-312 Extract the relevant information about the mapping from the VMA

314-315 If this mapping is not allowed to write even if the permissions are ok
for writing, decrement the i_writecount �eld. A negative value to this �eld
indicates that the �le is memory mapped and may not be written to. E�orts
to open the �le for writing will now fail

317-319 Check to make sure this is a shared mapping

322-325 Insert the VMA into the shared mapping linked list

D.2.3 Merging Contiguous Regions

D.2.3.1 Function: vma_merge() (mm/mmap.c)
This function checks to see if a region pointed to be prev may be expanded

forwards to cover the area from addr to end instead of allocating a new VMA. If it
cannot, the VMA ahead is checked to see can it be expanded backwards instead.

350 static int vma_merge(struct mm_struct * mm,

struct vm_area_struct * prev,

351 rb_node_t * rb_parent,

unsigned long addr, unsigned long end,

unsigned long vm_flags)

352 {

353 spinlock_t * lock = &mm->page_table_lock;

354 if (!prev) {

355 prev = rb_entry(rb_parent, struct vm_area_struct, vm_rb);

356 goto merge_next;

357 }

350 The parameters are as follows;

mm The mm the VMAs belong to

prev The VMA before the address we are interested in

rb_parent The parent RB node as returned by find_vma_prepare()

addr The starting address of the region to be merged

end The end of the region to be merged

vm_�ags The permission �ags of the region to be merged

353 This is the lock to the mm

D.2.3 Merging Contiguous Regions (vma_merge()) 259

354-357 If prev is not passed it, it is taken to mean that the VMA being tested
for merging is in front of the region from addr to end. The entry for that
VMA is extracted from the rb_parent

358 if (prev->vm_end == addr && can_vma_merge(prev, vm_flags)) {

359 struct vm_area_struct * next;

360

361 spin_lock(lock);

362 prev->vm_end = end;

363 next = prev->vm_next;

364 if (next && prev->vm_end == next->vm_start &&

can_vma_merge(next, vm_flags)) {

365 prev->vm_end = next->vm_end;

366 __vma_unlink(mm, next, prev);

367 spin_unlock(lock);

368

369 mm->map_count--;

370 kmem_cache_free(vm_area_cachep, next);

371 return 1;

372 }

373 spin_unlock(lock);

374 return 1;

375 }

376

377 prev = prev->vm_next;

378 if (prev) {

379 merge_next:

380 if (!can_vma_merge(prev, vm_flags))

381 return 0;

382 if (end == prev->vm_start) {

383 spin_lock(lock);

384 prev->vm_start = addr;

385 spin_unlock(lock);

386 return 1;

387 }

388 }

389

390 return 0;

391 }

358-375 Check to see can the region pointed to by prev may be expanded to cover
the current region

358 The function can_vma_merge() checks the permissions of prev with those in
vm_flags and that the VMA has no �le mappings (i.e. it is anonymous). If
it is true, the area at prev may be expanded

D.2.3 Merging Contiguous Regions (vma_merge()) 260

361 Lock the mm

362 Expand the end of the VMA region (vm_end) to the end of the new mapping
(end)

363 next is now the VMA in front of the newly expanded VMA

364 Check if the expanded region can be merged with the VMA in front of it

365 If it can, continue to expand the region to cover the next VMA

366 As a VMA has been merged, one region is now defunct and may be unlinked

367 No further adjustments are made to the mm struct so the lock is released

369 There is one less mapped region to reduce the map_count

370 Delete the struct describing the merged VMA

371 Return success

377 If this line is reached it means the region pointed to by prev could not be
expanded forward so a check is made to see if the region ahead can be merged
backwards instead

382-388 Same idea as the above block except instead of adjusted vm_end to cover
end, vm_start is expanded to cover addr

D.2.3.2 Function: can_vma_merge() (include/linux/mm.h)
This trivial function checks to see if the permissions of the supplied VMA match

the permissions in vm_flags

582 static inline int can_vma_merge(struct vm_area_struct * vma,

unsigned long vm_flags)

583 {

584 if (!vma->vm_file && vma->vm_flags == vm_flags)

585 return 1;

586 else

587 return 0;

588 }

584 Self explanatory. Return true if there is no �le/device mapping (i.e. it is
anonymous) and the VMA �ags for both regions match

D.2.4 Remapping and Moving a Memory Region 261

D.2.4 Remapping and Moving a Memory Region

D.2.4.1 Function: sys_mremap() (mm/mremap.c)
The call graph for this function is shown in Figure 4.7. This is the system service

call to remap a memory region

347 asmlinkage unsigned long sys_mremap(unsigned long addr,

348 unsigned long old_len, unsigned long new_len,

349 unsigned long flags, unsigned long new_addr)

350 {

351 unsigned long ret;

352

353 down_write(¤t->mm->mmap_sem);

354 ret = do_mremap(addr, old_len, new_len, flags, new_addr);

355 up_write(¤t->mm->mmap_sem);

356 return ret;

357 }

347-349 The parameters are the same as those described in the mremap() man
page

353 Acquire the mm semaphore

354 do_mremap()(See Section D.2.4.2) is the top level function for remapping a
region

355 Release the mm semaphore

356 Return the status of the remapping

D.2.4.2 Function: do_mremap() (mm/mremap.c)
This function does most of the actual �work� required to remap, resize and move

a memory region. It is quite long but can be broken up into distinct parts which
will be dealt with separately here. The tasks are broadly speaking

• Check usage �ags and page align lengths

• Handle the condition where MAP_FIXED is set and the region is been moved to
a new location.

• If a region is shrinking, allow it to happen unconditionally

• If the region is growing or moving, perform a number of checks in advance to
make sure the move is allowed and safe

• Handle the case where the region is been expanded and cannot be moved

• Finally handle the case where the region has to be resized and moved

D.2.4 Remapping and Moving a Memory Region (do_mremap()) 262

219 unsigned long do_mremap(unsigned long addr,

220 unsigned long old_len, unsigned long new_len,

221 unsigned long flags, unsigned long new_addr)

222 {

223 struct vm_area_struct *vma;

224 unsigned long ret = -EINVAL;

225

226 if (flags & ~(MREMAP_FIXED | MREMAP_MAYMOVE))

227 goto out;

228

229 if (addr & ~PAGE_MASK)

230 goto out;

231

232 old_len = PAGE_ALIGN(old_len);

233 new_len = PAGE_ALIGN(new_len);

234

219 The parameters of the function are

addr is the old starting address

old_len is the old region length

new_len is the new region length

�ags is the option �ags passed. If MREMAP_MAYMOVE is speci�ed, it means that
the region is allowed to move if there is not enough linear address space
at the current space. If MREMAP_FIXED is speci�ed, it means that the
whole region is to move to the speci�ed new_addr with the new length.
The area from new_addr to new_addr+new_len will be unmapped with
do_munmap().

new_addr is the address of the new region if it is moved

224 At this point, the default return is -EINVAL for invalid arguments

226-227 Make sure �ags other than the two allowed �ags are not used

229-230 The address passed in must be page aligned

232-233 Page align the passed region lengths

236 if (flags & MREMAP_FIXED) {

237 if (new_addr & ~PAGE_MASK)

238 goto out;

239 if (!(flags & MREMAP_MAYMOVE))

240 goto out;

241

D.2.4 Remapping and Moving a Memory Region (do_mremap()) 263

242 if (new_len > TASK_SIZE || new_addr > TASK_SIZE - new_len)

243 goto out;

244

245 /* Check if the location we're moving into overlaps the

246 * old location at all, and fail if it does.

247 */

248 if ((new_addr <= addr) && (new_addr+new_len) > addr)

249 goto out;

250

251 if ((addr <= new_addr) && (addr+old_len) > new_addr)

252 goto out;

253

254 do_munmap(current->mm, new_addr, new_len);

255 }

This block handles the condition where the region location is �xed and must be
fully moved. It ensures the area been moved to is safe and de�nitely unmapped.

236 MREMAP_FIXED is the �ag which indicates the location is �xed

237-238 The speci�ed new_addr must be be page aligned

239-240 If MREMAP_FIXED is speci�ed, then the MAYMOVE �ag must be used as well

242-243 Make sure the resized region does not exceed TASK_SIZE

248-249 Just as the comments indicate, the two regions been used for the move
may not overlap

254 Unmap the region that is about to be used. It is presumed the caller ensures
that the region is not in use for anything important

261 ret = addr;

262 if (old_len >= new_len) {

263 do_munmap(current->mm, addr+new_len, old_len - new_len);

264 if (!(flags & MREMAP_FIXED) || (new_addr == addr))

265 goto out;

266 }

261 At this point, the address of the resized region is the return value

262 If the old length is larger than the new length, then the region is shrinking

263 Unmap the unused region

264-235 If the region is not to be moved, either because MREMAP_FIXED is not used
or the new address matches the old address, goto out which will return the
address

D.2.4 Remapping and Moving a Memory Region (do_mremap()) 264

271 ret = -EFAULT;

272 vma = find_vma(current->mm, addr);

273 if (!vma || vma->vm_start > addr)

274 goto out;

275 /* We can't remap across vm area boundaries */

276 if (old_len > vma->vm_end - addr)

277 goto out;

278 if (vma->vm_flags & VM_DONTEXPAND) {

279 if (new_len > old_len)

280 goto out;

281 }

282 if (vma->vm_flags & VM_LOCKED) {

283 unsigned long locked = current->mm->locked_vm << PAGE_SHIFT;

284 locked += new_len - old_len;

285 ret = -EAGAIN;

286 if (locked > current->rlim[RLIMIT_MEMLOCK].rlim_cur)

287 goto out;

288 }

289 ret = -ENOMEM;

290 if ((current->mm->total_vm << PAGE_SHIFT) + (new_len - old_len)

291 > current->rlim[RLIMIT_AS].rlim_cur)

292 goto out;

293 /* Private writable mapping? Check memory availability.. */

294 if ((vma->vm_flags & (VM_SHARED | VM_WRITE)) == VM_WRITE &&

295 !(flags & MAP_NORESERVE) &&

296 !vm_enough_memory((new_len - old_len) >> PAGE_SHIFT))

297 goto out;

Do a number of checks to make sure it is safe to grow or move the region

271 At this point, the default action is to return -EFAULT causing a segmentation
fault as the ranges of memory been used are invalid

272 Find the VMA responsible for the requested address

273 If the returned VMA is not responsible for this address, then an invalid address
was used so return a fault

276-277 If the old_len passed in exceeds the length of the VMA, it means the
user is trying to remap multiple regions which is not allowed

278-281 If the VMA has been explicitly marked as non-resizable, raise a fault

282-283 If the pages for this VMA must be locked in memory, recalculate the
number of locked pages that will be kept in memory. If the number of pages
exceed the ulimit set for this resource, return EAGAIN indicating to the caller
that the region is locked and cannot be resized

D.2.4 Remapping and Moving a Memory Region (do_mremap()) 265

289 The default return at this point is to indicate there is not enough memory

290-292 Ensure that the user will not exist their allowed allocation of memory

294-297 Ensure that there is enough memory to satisfy the request after the
resizing with vm_enough_memory()(See Section M.1.1)

302 if (old_len == vma->vm_end - addr &&

303 !((flags & MREMAP_FIXED) && (addr != new_addr)) &&

304 (old_len != new_len || !(flags & MREMAP_MAYMOVE))) {

305 unsigned long max_addr = TASK_SIZE;

306 if (vma->vm_next)

307 max_addr = vma->vm_next->vm_start;

308 /* can we just expand the current mapping? */

309 if (max_addr - addr >= new_len) {

310 int pages = (new_len - old_len) >> PAGE_SHIFT;

311 spin_lock(&vma->vm_mm->page_table_lock);

312 vma->vm_end = addr + new_len;

313 spin_unlock(&vma->vm_mm->page_table_lock);

314 current->mm->total_vm += pages;

315 if (vma->vm_flags & VM_LOCKED) {

316 current->mm->locked_vm += pages;

317 make_pages_present(addr + old_len,

318 addr + new_len);

319 }

320 ret = addr;

321 goto out;

322 }

323 }

Handle the case where the region is been expanded and cannot be moved

302 If it is the full region that is been remapped and ...

303 The region is de�nitely not been moved and ...

304 The region is been expanded and cannot be moved then ...

305 Set the maximum address that can be used to TASK_SIZE, 3GiB on an x86

306-307 If there is another region, set the max address to be the start of the next
region

309-322 Only allow the expansion if the newly sized region does not overlap with
the next VMA

310 Calculate the number of extra pages that will be required

D.2.4 Remapping and Moving a Memory Region (do_mremap()) 266

311 Lock the mm spinlock

312 Expand the VMA

313 Free the mm spinlock

314 Update the statistics for the mm

315-319 If the pages for this region are locked in memory, make them present now

320-321 Return the address of the resized region

329 ret = -ENOMEM;

330 if (flags & MREMAP_MAYMOVE) {

331 if (!(flags & MREMAP_FIXED)) {

332 unsigned long map_flags = 0;

333 if (vma->vm_flags & VM_SHARED)

334 map_flags |= MAP_SHARED;

335

336 new_addr = get_unmapped_area(vma->vm_file, 0,

new_len, vma->vm_pgoff, map_flags);

337 ret = new_addr;

338 if (new_addr & ~PAGE_MASK)

339 goto out;

340 }

341 ret = move_vma(vma, addr, old_len, new_len, new_addr);

342 }

343 out:

344 return ret;

345 }

To expand the region, a new one has to be allocated and the old one moved to it

329 The default action is to return saying no memory is available

330 Check to make sure the region is allowed to move

331 If MREMAP_FIXED is not speci�ed, it means the new location was not supplied
so one must be found

333-334 Preserve the MAP_SHARED option

336 Find an unmapped region of memory large enough for the expansion

337 The return value is the address of the new region

338-339 For the returned address to be not page aligned, get_unmapped_area()
would need to be broken. This could possibly be the case with a buggy device
driver implementing get_unmapped_area() incorrectly

D.2.4 Remapping and Moving a Memory Region (do_mremap()) 267

341 Call move_vma to move the region

343-344 Return the address if successful and the error code otherwise

D.2.4.3 Function: move_vma() (mm/mremap.c)
The call graph for this function is shown in Figure 4.8. This function is re-

sponsible for moving all the page table entries from one VMA to another region.
If necessary a new VMA will be allocated for the region being moved to. Just like
the function above, it is very long but may be broken up into the following distinct
parts.

• Function preamble, �nd the VMA preceding the area about to be moved to
and the VMA in front of the region to be mapped

• Handle the case where the new location is between two existing VMAs. See
if the preceding region can be expanded forward or the next region expanded
backwards to cover the new mapped region

• Handle the case where the new location is going to be the last VMA on the
list. See if the preceding region can be expanded forward

• If a region could not be expanded, allocate a new VMA from the slab allocator

• Call move_page_tables(), �ll in the new VMA details if a new one was allo-
cated and update statistics before returning

125 static inline unsigned long move_vma(struct vm_area_struct * vma,

126 unsigned long addr, unsigned long old_len, unsigned long new_len,

127 unsigned long new_addr)

128 {

129 struct mm_struct * mm = vma->vm_mm;

130 struct vm_area_struct * new_vma, * next, * prev;

131 int allocated_vma;

132

133 new_vma = NULL;

134 next = find_vma_prev(mm, new_addr, &prev);

125-127 The parameters are

vma The VMA that the address been moved belongs to

addr The starting address of the moving region

old_len The old length of the region to move

new_len The new length of the region moved

new_addr The new address to relocate to

D.2.4 Remapping and Moving a Memory Region (move_vma()) 268

134 Find the VMA preceding the address been moved to indicated by prev and
return the region after the new mapping as next

135 if (next) {

136 if (prev && prev->vm_end == new_addr &&

137 can_vma_merge(prev, vma->vm_flags) &&

!vma->vm_file && !(vma->vm_flags & VM_SHARED)) {

138 spin_lock(&mm->page_table_lock);

139 prev->vm_end = new_addr + new_len;

140 spin_unlock(&mm->page_table_lock);

141 new_vma = prev;

142 if (next != prev->vm_next)

143 BUG();

144 if (prev->vm_end == next->vm_start &&

can_vma_merge(next, prev->vm_flags)) {

145 spin_lock(&mm->page_table_lock);

146 prev->vm_end = next->vm_end;

147 __vma_unlink(mm, next, prev);

148 spin_unlock(&mm->page_table_lock);

149

150 mm->map_count--;

151 kmem_cache_free(vm_area_cachep, next);

152 }

153 } else if (next->vm_start == new_addr + new_len &&

154 can_vma_merge(next, vma->vm_flags) &&

!vma->vm_file && !(vma->vm_flags & VM_SHARED)) {

155 spin_lock(&mm->page_table_lock);

156 next->vm_start = new_addr;

157 spin_unlock(&mm->page_table_lock);

158 new_vma = next;

159 }

160 } else {

In this block, the new location is between two existing VMAs. Checks are made
to see can be preceding region be expanded to cover the new mapping and then if
it can be expanded to cover the next VMA as well. If it cannot be expanded, the
next region is checked to see if it can be expanded backwards.

136-137 If the preceding region touches the address to be mapped to and may be
merged then enter this block which will attempt to expand regions

138 Lock the mm

139 Expand the preceding region to cover the new location

140 Unlock the mm

D.2.4 Remapping and Moving a Memory Region (move_vma()) 269

141 The new VMA is now the preceding VMA which was just expanded

142-143 Make sure the VMA linked list is intact. It would require a device driver
with severe brain damage to cause this situation to occur

144 Check if the region can be expanded forward to encompass the next region

145 If it can, then lock the mm

146 Expand the VMA further to cover the next VMA

147 There is now an extra VMA so unlink it

148 Unlock the mm

150 There is one less mapping now so update the map_count

151 Free the memory used by the memory mapping

153 Else the prev region could not be expanded forward so check if the region
pointed to be next may be expanded backwards to cover the new mapping
instead

155 If it can, lock the mm

156 Expand the mapping backwards

157 Unlock the mm

158 The VMA representing the new mapping is now next

161 prev = find_vma(mm, new_addr-1);

162 if (prev && prev->vm_end == new_addr &&

163 can_vma_merge(prev, vma->vm_flags) && !vma->vm_file &&

!(vma->vm_flags & VM_SHARED)) {

164 spin_lock(&mm->page_table_lock);

165 prev->vm_end = new_addr + new_len;

166 spin_unlock(&mm->page_table_lock);

167 new_vma = prev;

168 }

169 }

This block is for the case where the newly mapped region is the last VMA (next
is NULL) so a check is made to see can the preceding region be expanded.

161 Get the previously mapped region

162-163 Check if the regions may be mapped

164 Lock the mm

D.2.4 Remapping and Moving a Memory Region (move_vma()) 270

165 Expand the preceding region to cover the new mapping

166 Lock the mm

167 The VMA representing the new mapping is now prev

170

171 allocated_vma = 0;

172 if (!new_vma) {

173 new_vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

174 if (!new_vma)

175 goto out;

176 allocated_vma = 1;

177 }

178

171 Set a �ag indicating if a new VMA was not allocated

172 If a VMA has not been expanded to cover the new mapping then...

173 Allocate a new VMA from the slab allocator

174-175 If it could not be allocated, goto out to return failure

176 Set the �ag indicated a new VMA was allocated

179 if (!move_page_tables(current->mm, new_addr, addr, old_len)) {

180 unsigned long vm_locked = vma->vm_flags & VM_LOCKED;

181

182 if (allocated_vma) {

183 *new_vma = *vma;

184 new_vma->vm_start = new_addr;

185 new_vma->vm_end = new_addr+new_len;

186 new_vma->vm_pgoff +=

(addr-vma->vm_start) >> PAGE_SHIFT;

187 new_vma->vm_raend = 0;

188 if (new_vma->vm_file)

189 get_file(new_vma->vm_file);

190 if (new_vma->vm_ops && new_vma->vm_ops->open)

191 new_vma->vm_ops->open(new_vma);

192 insert_vm_struct(current->mm, new_vma);

193 }

do_munmap(current->mm, addr, old_len);

197 current->mm->total_vm += new_len >> PAGE_SHIFT;

198 if (new_vma->vm_flags & VM_LOCKED) {

D.2.4 Remapping and Moving a Memory Region (move_vma()) 271

199 current->mm->locked_vm += new_len >> PAGE_SHIFT;

200 make_pages_present(new_vma->vm_start,

201 new_vma->vm_end);

202 }

203 return new_addr;

204 }

205 if (allocated_vma)

206 kmem_cache_free(vm_area_cachep, new_vma);

207 out:

208 return -ENOMEM;

209 }

179 move_page_tables()(See Section D.2.4.6) is responsible for copying all the
page table entries. It returns 0 on success

182-193 If a new VMA was allocated, �ll in all the relevant details, including
the �le/device entries and insert it into the various VMA linked lists with
insert_vm_struct()(See Section D.2.2.1)

194 Unmap the old region as it is no longer required

197 Update the total_vm size for this process. The size of the old region is not
important as it is handled within do_munmap()

198-202 If the VMA has the VM_LOCKED �ag, all the pages within the region are
made present with mark_pages_present()

203 Return the address of the new region

205-206 This is the error path. If a VMA was allocated, delete it

208 Return an out of memory error

D.2.4.4 Function: make_pages_present() (mm/memory.c)
This function makes all pages between addr and end present. It assumes that

the two addresses are within the one VMA.

1460 int make_pages_present(unsigned long addr, unsigned long end)

1461 {

1462 int ret, len, write;

1463 struct vm_area_struct * vma;

1464

1465 vma = find_vma(current->mm, addr);

1466 write = (vma->vm_flags & VM_WRITE) != 0;

1467 if (addr >= end)

1468 BUG();

1469 if (end > vma->vm_end)

D.2.4 Remapping and Moving a Memory Region (make_pages_present()) 272

1470 BUG();

1471 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;

1472 ret = get_user_pages(current, current->mm, addr,

1473 len, write, 0, NULL, NULL);

1474 return ret == len ? 0 : -1;

1475 }

1465 Find the VMA with find_vma()(See Section D.3.1.1) that contains the start-
ing address

1466 Record if write-access is allowed in write

1467-1468 If the starting address is after the end address, then BUG()

1469-1470 If the range spans more than one VMA its a bug

1471 Calculate the length of the region to fault in

1472 Call get_user_pages() to fault in all the pages in the requested region. It
returns the number of pages that were faulted in

1474 Return true if all the requested pages were successfully faulted in

D.2.4.5 Function: get_user_pages() (mm/memory.c)
This function is used to fault in user pages and may be used to fault in pages

belonging to another process, which is required by ptrace() for example.

454 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,

unsigned long start,

455 int len, int write, int force, struct page **pages,

struct vm_area_struct **vmas)

456 {

457 int i;

458 unsigned int flags;

459

460 /*

461 * Require read or write permissions.

462 * If 'force' is set, we only require the "MAY" flags.

463 */

464 flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);

465 flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);

466 i = 0;

467

454 The parameters are:

tsk is the process that pages are been faulted for

D.2.4 Remapping and Moving a Memory Region (get_user_pages()) 273

mm is the mm_struct managing the address space being faulted

start is where to start faulting

len is the length of the region, in pages, to fault

write indicates if the pages are being faulted for writing

force indicates that the pages should be faulted even if the region only has
the VM_MAYREAD or VM_MAYWRITE �ags

pages is an array of struct pages which may be NULL. If supplied, the array
will be �lled with struct pages that were faulted in

vmas is similar to the pages array. If supplied, it will be �lled with VMAs
that were a�ected by the faults

464 Set the required �ags to VM_WRITE and VM_MAYWRITE �ags if the parameter
write is set to 1. Otherwise use the read equivilants

465 If force is speci�ed, only require the MAY �ags

468 do {

469 struct vm_area_struct * vma;

470

471 vma = find_extend_vma(mm, start);

472

473 if (!vma ||

(pages && vma->vm_flags & VM_IO) ||

!(flags & vma->vm_flags))

474 return i ? : -EFAULT;

475

476 spin_lock(&mm->page_table_lock);

477 do {

478 struct page *map;

479 while (!(map = follow_page(mm, start, write))) {

480 spin_unlock(&mm->page_table_lock);

481 switch (handle_mm_fault(mm, vma, start, write)) {

482 case 1:

483 tsk->min_flt++;

484 break;

485 case 2:

486 tsk->maj_flt++;

487 break;

488 case 0:

489 if (i) return i;

490 return -EFAULT;

491 default:

492 if (i) return i;

493 return -ENOMEM;

D.2.4 Remapping and Moving a Memory Region (get_user_pages()) 274

494 }

495 spin_lock(&mm->page_table_lock);

496 }

497 if (pages) {

498 pages[i] = get_page_map(map);

499 /* FIXME: call the correct function,

500 * depending on the type of the found page

501 */

502 if (!pages[i])

503 goto bad_page;

504 page_cache_get(pages[i]);

505 }

506 if (vmas)

507 vmas[i] = vma;

508 i++;

509 start += PAGE_SIZE;

510 len--;

511 } while(len && start < vma->vm_end);

512 spin_unlock(&mm->page_table_lock);

513 } while(len);

514 out:

515 return i;

468-513 This outer loop will move through every VMA a�ected by the faults

471 Find the VMA a�ected by the current value of start. This variable is incre-
mented in PAGE_SIZEd strides

473 If a VMA does not exist for the address, or the caller has requested
struct pages for a region that is IO mapped (and therefore not backed by
physical memory) or that the VMA does not have the required �ags, then
return -EFAULT

476 Lock the page table spinlock

479-496 follow_page()(See Section C.2.1) walks the page tables and returns the
struct page representing the frame mapped at start. This loop will only
be entered if the PTE is not present and will keep looping until the PTE is
known to be present with the page table spinlock held

480 Unlock the page table spinlock as handle_mm_fault() is likely to sleep

481 If the page is not present, fault it in with handle_mm_fault()(See Section D.5.3.1)

482-487 Update the task_struct statistics indicating if a major or minor fault
occured

488-490 If the faulting address is invalid, return

D.2.4 Remapping and Moving a Memory Region (get_user_pages()) 275

491-493 If the system is out of memory, return -ENOMEM

495 Relock the page tables. The loop will check to make sure the page is actually
present

597-505 If the caller requested it, populate the pages array with struct pages
a�ected by this function. Each struct will have a reference to it taken with
page_cache_get()

506-507 Similarly, record VMAs a�ected

508 Increment i which is a counter for the number of pages present in the requested
region

509 Increment start in a page-sized stride

510 Decrement the number of pages that must be faulted in

511 Keep moving through the VMAs until the requested pages have been faulted
in

512 Release the page table spinlock

515 Return the number of pages known to be present in the region

516

517 /*

518 * We found an invalid page in the VMA. Release all we have

519 * so far and fail.

520 */

521 bad_page:

522 spin_unlock(&mm->page_table_lock);

523 while (i--)

524 page_cache_release(pages[i]);

525 i = -EFAULT;

526 goto out;

527 }

521 This will only be reached if a struct page is found which represents a non-
existant page frame

523-524 If one if found, release references to all pages stored in the pages array

525-526 Return -EFAULT

D.2.4.6 Function: move_page_tables() 276

D.2.4.6 Function: move_page_tables() (mm/mremap.c)
The call graph for this function is shown in Figure 4.9. This function is respon-

sible copying all the page table entries from the region pointed to be old_addr to
new_addr. It works by literally copying page table entries one at a time. When it
is �nished, it deletes all the entries from the old area. This is not the most e�cient
way to perform the operation, but it is very easy to error recover.

90 static int move_page_tables(struct mm_struct * mm,

91 unsigned long new_addr, unsigned long old_addr,

unsigned long len)

92 {

93 unsigned long offset = len;

94

95 flush_cache_range(mm, old_addr, old_addr + len);

96

102 while (offset) {

103 offset -= PAGE_SIZE;

104 if (move_one_page(mm, old_addr + offset, new_addr +

offset))

105 goto oops_we_failed;

106 }

107 flush_tlb_range(mm, old_addr, old_addr + len);

108 return 0;

109

117 oops_we_failed:

118 flush_cache_range(mm, new_addr, new_addr + len);

119 while ((offset += PAGE_SIZE) < len)

120 move_one_page(mm, new_addr + offset, old_addr + offset);

121 zap_page_range(mm, new_addr, len);

122 return -1;

123 }

90 The parameters are the mm for the process, the new location, the old location
and the length of the region to move entries for

95 flush_cache_range() will �ush all CPU caches for this range. It must be
called �rst as some architectures, notably Sparc's require that a virtual to
physical mapping exist before �ushing the TLB

102-106 This loops through each page in the region and moves the PTE with
move_one_pte()(See Section D.2.4.7). This translates to a lot of page table
walking and could be performed much better but it is a rare operation

107 Flush the TLB for the old region

108 Return success

D.2.4 Remapping and Moving a Memory Region (move_page_tables()) 277

118-120 This block moves all the PTEs back. A flush_tlb_range() is not neces-
sary as there is no way the region could have been used yet so no TLB entries
should exist

121 Zap any pages that were allocated for the move

122 Return failure

D.2.4.7 Function: move_one_page() (mm/mremap.c)
This function is responsible for acquiring the spinlock before �nding the correct

PTE with get_one_pte() and copying it with copy_one_pte()

77 static int move_one_page(struct mm_struct *mm,

unsigned long old_addr, unsigned long new_addr)

78 {

79 int error = 0;

80 pte_t * src;

81

82 spin_lock(&mm->page_table_lock);

83 src = get_one_pte(mm, old_addr);

84 if (src)

85 error = copy_one_pte(mm, src, alloc_one_pte(mm, new_addr));

86 spin_unlock(&mm->page_table_lock);

87 return error;

88 }

82 Acquire the mm lock

83 Call get_one_pte()(See Section D.2.4.8) which walks the page tables to get
the correct PTE

84-85 If the PTE exists, allocate a PTE for the destination and copy the PTEs
with copy_one_pte()(See Section D.2.4.10)

86 Release the lock

87 Return whatever copy_one_pte() returned. It will only return an error if
alloc_one_pte()(See Section D.2.4.9) failed on line 85

D.2.4.8 Function: get_one_pte() (mm/mremap.c)
This is a very simple page table walk.

18 static inline pte_t *get_one_pte(struct mm_struct *mm,

unsigned long addr)

19 {

20 pgd_t * pgd;

21 pmd_t * pmd;

D.2.4 Remapping and Moving a Memory Region (get_one_pte()) 278

22 pte_t * pte = NULL;

23

24 pgd = pgd_offset(mm, addr);

25 if (pgd_none(*pgd))

26 goto end;

27 if (pgd_bad(*pgd)) {

28 pgd_ERROR(*pgd);

29 pgd_clear(pgd);

30 goto end;

31 }

32

33 pmd = pmd_offset(pgd, addr);

34 if (pmd_none(*pmd))

35 goto end;

36 if (pmd_bad(*pmd)) {

37 pmd_ERROR(*pmd);

38 pmd_clear(pmd);

39 goto end;

40 }

41

42 pte = pte_offset(pmd, addr);

43 if (pte_none(*pte))

44 pte = NULL;

45 end:

46 return pte;

47 }

24 Get the PGD for this address

25-26 If no PGD exists, return NULL as no PTE will exist either

27-31 If the PGD is bad, mark that an error occurred in the region, clear its
contents and return NULL

33-40 Acquire the correct PMD in the same fashion as for the PGD

42 Acquire the PTE so it may be returned if it exists

D.2.4.9 Function: alloc_one_pte() (mm/mremap.c)
Trivial function to allocate what is necessary for one PTE in a region.

49 static inline pte_t *alloc_one_pte(struct mm_struct *mm,

unsigned long addr)

50 {

51 pmd_t * pmd;

52 pte_t * pte = NULL;

D.2.4 Remapping and Moving a Memory Region (alloc_one_pte()) 279

53

54 pmd = pmd_alloc(mm, pgd_offset(mm, addr), addr);

55 if (pmd)

56 pte = pte_alloc(mm, pmd, addr);

57 return pte;

58 }

54 If a PMD entry does not exist, allocate it

55-56 If the PMD exists, allocate a PTE entry. The check to make sure it succeeded
is performed later in the function copy_one_pte()

D.2.4.10 Function: copy_one_pte() (mm/mremap.c)
Copies the contents of one PTE to another.

60 static inline int copy_one_pte(struct mm_struct *mm,

pte_t * src, pte_t * dst)

61 {

62 int error = 0;

63 pte_t pte;

64

65 if (!pte_none(*src)) {

66 pte = ptep_get_and_clear(src);

67 if (!dst) {

68 /* No dest? We must put it back. */

69 dst = src;

70 error++;

71 }

72 set_pte(dst, pte);

73 }

74 return error;

75 }

65 If the source PTE does not exist, just return 0 to say the copy was successful

66 Get the PTE and remove it from its old location

67-71 If the dst does not exist, it means the call to alloc_one_pte() failed and
the copy operation has failed and must be aborted

72 Move the PTE to its new location

74 Return an error if one occurred

D.2.5 Deleting a memory region 280

D.2.5 Deleting a memory region

D.2.5.1 Function: do_munmap() (mm/mmap.c)
The call graph for this function is shown in Figure 4.11. This function is respon-

sible for unmapping a region. If necessary, the unmapping can span multiple VMAs
and it can partially unmap one if necessary. Hence the full unmapping operation
is divided into two major operations. This function is responsible for �nding what
VMAs are a�ected and unmap_fixup() is responsible for �xing up the remaining
VMAs.

This function is divided up in a number of small sections will be dealt with in
turn. The are broadly speaking;

• Function preamble and �nd the VMA to start working from

• Take all VMAs a�ected by the unmapping out of the mm and place them on
a linked list headed by the variable free

• Cycle through the list headed by free, unmap all the pages in the region to
be unmapped and call unmap_fixup() to �x up the mappings

• Validate the mm and free memory associated with the unmapping

924 int do_munmap(struct mm_struct *mm, unsigned long addr,

size_t len)

925 {

926 struct vm_area_struct *mpnt, *prev, **npp, *free, *extra;

927

928 if ((addr & ~PAGE_MASK) || addr > TASK_SIZE ||

len > TASK_SIZE-addr)

929 return -EINVAL;

930

931 if ((len = PAGE_ALIGN(len)) == 0)

932 return -EINVAL;

933

939 mpnt = find_vma_prev(mm, addr, &prev);

940 if (!mpnt)

941 return 0;

942 /* we have addr < mpnt->vm_end */

943

944 if (mpnt->vm_start >= addr+len)

945 return 0;

946

948 if ((mpnt->vm_start < addr && mpnt->vm_end > addr+len)

949 && mm->map_count >= max_map_count)

950 return -ENOMEM;

951

956 extra = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

D.2.5 Deleting a memory region (do_munmap()) 281

957 if (!extra)

958 return -ENOMEM;

924 The parameters are as follows;

mm The mm for the processes performing the unmap operation

addr The starting address of the region to unmap

len The length of the region

928-929 Ensure the address is page aligned and that the area to be unmapped is
not in the kernel virtual address space

931-932 Make sure the region size to unmap is page aligned

939 Find the VMA that contains the starting address and the preceding VMA so
it can be easily unlinked later

940-941 If no mpnt was returned, it means the address must be past the last used
VMA so the address space is unused, just return

944-945 If the returned VMA starts past the region we are trying to unmap, then
the region in unused, just return

948-950 The �rst part of the check sees if the VMA is just been partially un-
mapped, if it is, another VMA will be created later to deal with a region being
broken into so to the map_count has to be checked to make sure it is not too
large

956-958 In case a new mapping is required, it is allocated now as later it will be
much more di�cult to back out in event of an error

960 npp = (prev ? &prev->vm_next : &mm->mmap);

961 free = NULL;

962 spin_lock(&mm->page_table_lock);

963 for (; mpnt && mpnt->vm_start < addr+len; mpnt = *npp) {

964 *npp = mpnt->vm_next;

965 mpnt->vm_next = free;

966 free = mpnt;

967 rb_erase(&mpnt->vm_rb, &mm->mm_rb);

968 }

969 mm->mmap_cache = NULL; /* Kill the cache. */

970 spin_unlock(&mm->page_table_lock);

This section takes all the VMAs a�ected by the unmapping and places them on
a separate linked list headed by a variable called free. This makes the �xup of the
regions much easier.

D.2.5 Deleting a memory region (do_munmap()) 282

960 npp becomes the next VMA in the list during the for loop following below. To
initialise it, it is either the current VMA (mpnt) or else it becomes the �rst
VMA in the list

961 free is the head of a linked list of VMAs that are a�ected by the unmapping

962 Lock the mm

963 Cycle through the list until the start of the current VMA is past the end of
the region to be unmapped

964 npp becomes the next VMA in the list

965-966 Remove the current VMA from the linear linked list within the mm and
place it on a linked list headed by free. The current mpnt becomes the head
of the free linked list

967 Delete mpnt from the red-black tree

969 Remove the cached result in case the last looked up result is one of the regions
to be unmapped

970 Free the mm

971

972 /* Ok - we have the memory areas we should free on the

973 * 'free' list, so release them, and unmap the page range..

974 * If the one of the segments is only being partially unmapped,

975 * it will put new vm_area_struct(s) into the address space.

976 * In that case we have to be careful with VM_DENYWRITE.

977 */

978 while ((mpnt = free) != NULL) {

979 unsigned long st, end, size;

980 struct file *file = NULL;

981

982 free = free->vm_next;

983

984 st = addr < mpnt->vm_start ? mpnt->vm_start : addr;

985 end = addr+len;

986 end = end > mpnt->vm_end ? mpnt->vm_end : end;

987 size = end - st;

988

989 if (mpnt->vm_flags & VM_DENYWRITE &&

990 (st != mpnt->vm_start || end != mpnt->vm_end) &&

991 (file = mpnt->vm_file) != NULL) {

992 atomic_dec(&file->f_dentry->d_inode->i_writecount);

993 }

994 remove_shared_vm_struct(mpnt);

D.2.5 Deleting a memory region (do_munmap()) 283

995 mm->map_count--;

996

997 zap_page_range(mm, st, size);

998

999 /*

1000 * Fix the mapping, and free the old area

* if it wasn't reused.

1001 */

1002 extra = unmap_fixup(mm, mpnt, st, size, extra);

1003 if (file)

1004 atomic_inc(&file->f_dentry->d_inode->i_writecount);

1005 }

978 Keep stepping through the list until no VMAs are left

982 Move free to the next element in the list leaving mpnt as the head about to
be removed

984 st is the start of the region to be unmapped. If the addr is before the start of
the VMA, the starting point is mpnt→vm_start, otherwise it is the supplied
address

985-986 Calculate the end of the region to map in a similar fashion

987 Calculate the size of the region to be unmapped in this pass

989-993 If the VM_DENYWRITE �ag is speci�ed, a hole will be created by this un-
mapping and a �le is mapped then the i_writecount is decremented. When
this �eld is negative, it counts how many users there is protecting this �le from
being opened for writing

994 Remove the �le mapping. If the �le is still partially mapped, it will be acquired
again during unmap_fixup()(See Section D.2.5.2)

995 Reduce the map count

997 Remove all pages within this region

1002 Call unmap_fixup()(See Section D.2.5.2) to �x up the regions after this one
is deleted

1003-1004 Increment the writecount to the �le as the region has been unmapped.
If it was just partially unmapped, this call will simply balance out the decre-
ment at line 987

1006 validate_mm(mm);

1007

1008 /* Release the extra vma struct if it wasn't used */

D.2.5 Deleting a memory region (do_munmap()) 284

1009 if (extra)

1010 kmem_cache_free(vm_area_cachep, extra);

1011

1012 free_pgtables(mm, prev, addr, addr+len);

1013

1014 return 0;

1015 }

1006 validate_mm() is a debugging function. If enabled, it will ensure the VMA
tree for this mm is still valid

1009-1010 If extra VMA was not required, delete it

1012 Free all the page tables that were used for the unmapped region

1014 Return success

D.2.5.2 Function: unmap_fixup() (mm/mmap.c)
This function �xes up the regions after a block has been unmapped. It is passed

a list of VMAs that are a�ected by the unmapping, the region and length to be
unmapped and a spare VMA that may be required to �x up the region if a whole
is created. There is four principle cases it handles; The unmapping of a region,
partial unmapping from the start to somewhere in the middle, partial unmapping
from somewhere in the middle to the end and the creation of a hole in the middle
of the region. Each case will be taken in turn.

787 static struct vm_area_struct * unmap_fixup(struct mm_struct *mm,

788 struct vm_area_struct *area, unsigned long addr, size_t len,

789 struct vm_area_struct *extra)

790 {

791 struct vm_area_struct *mpnt;

792 unsigned long end = addr + len;

793

794 area->vm_mm->total_vm -= len >> PAGE_SHIFT;

795 if (area->vm_flags & VM_LOCKED)

796 area->vm_mm->locked_vm -= len >> PAGE_SHIFT;

797

Function preamble.

787 The parameters to the function are;

mm is the mm the unmapped region belongs to

area is the head of the linked list of VMAs a�ected by the unmapping

addr is the starting address of the unmapping

len is the length of the region to be unmapped

D.2.5 Deleting a memory region (unmap_fixup()) 285

extra is a spare VMA passed in for when a hole in the middle is created

792 Calculate the end address of the region being unmapped

794 Reduce the count of the number of pages used by the process

795-796 If the pages were locked in memory, reduce the locked page count

798 /* Unmapping the whole area. */

799 if (addr == area->vm_start && end == area->vm_end) {

800 if (area->vm_ops && area->vm_ops->close)

801 area->vm_ops->close(area);

802 if (area->vm_file)

803 fput(area->vm_file);

804 kmem_cache_free(vm_area_cachep, area);

805 return extra;

806 }

The �rst, and easiest, case is where the full region is being unmapped

799 The full region is unmapped if the addr is the start of the VMA and the end is
the end of the VMA. This is interesting because if the unmapping is spanning
regions, it is possible the end is beyond the end of the VMA but the full of
this VMA is still being unmapped

800-801 If a close operation is supplied by the VMA, call it

802-803 If a �le or device is mapped, call fput() which decrements the usage
count and releases it if the count falls to 0

804 Free the memory for the VMA back to the slab allocator

805 Return the extra VMA as it was unused

809 if (end == area->vm_end) {

810 /*

811 * here area isn't visible to the semaphore-less readers

812 * so we don't need to update it under the spinlock.

813 */

814 area->vm_end = addr;

815 lock_vma_mappings(area);

816 spin_lock(&mm->page_table_lock);

817 }

Handle the case where the middle of the region to the end is been unmapped

814 Truncate the VMA back to addr. At this point, the pages for the region have
already freed and the page table entries will be freed later so no further work
is required

D.2.5 Deleting a memory region (unmap_fixup()) 286

815 If a �le/device is being mapped, the lock protecting shared access to it is taken
in the function lock_vm_mappings()

816 Lock the mm. Later in the function, the remaining VMA will be reinserted
into the mm

817 else if (addr == area->vm_start) {

818 area->vm_pgoff += (end - area->vm_start) >> PAGE_SHIFT;

819 /* same locking considerations of the above case */

820 area->vm_start = end;

821 lock_vma_mappings(area);

822 spin_lock(&mm->page_table_lock);

823 } else {

Handle the case where the VMA is been unmapped from the start to some part
in the middle

818 Increase the o�set within the �le/device mapped by the number of pages this
unmapping represents

820 Move the start of the VMA to the end of the region being unmapped

821-822 Lock the �le/device and mm as above

823 } else {

825 /* Add end mapping -- leave beginning for below */

826 mpnt = extra;

827 extra = NULL;

828

829 mpnt->vm_mm = area->vm_mm;

830 mpnt->vm_start = end;

831 mpnt->vm_end = area->vm_end;

832 mpnt->vm_page_prot = area->vm_page_prot;

833 mpnt->vm_flags = area->vm_flags;

834 mpnt->vm_raend = 0;

835 mpnt->vm_ops = area->vm_ops;

836 mpnt->vm_pgoff = area->vm_pgoff +

((end - area->vm_start) >> PAGE_SHIFT);

837 mpnt->vm_file = area->vm_file;

838 mpnt->vm_private_data = area->vm_private_data;

839 if (mpnt->vm_file)

840 get_file(mpnt->vm_file);

841 if (mpnt->vm_ops && mpnt->vm_ops->open)

842 mpnt->vm_ops->open(mpnt);

843 area->vm_end = addr; /* Truncate area */

844

D.2.6 Deleting all memory regions 287

845 /* Because mpnt->vm_file == area->vm_file this locks

846 * things correctly.

847 */

848 lock_vma_mappings(area);

849 spin_lock(&mm->page_table_lock);

850 __insert_vm_struct(mm, mpnt);

851 }

Handle the case where a hole is being created by a partial unmapping. In this
case, the extra VMA is required to create a new mapping from the end of the
unmapped region to the end of the old VMA

826-827 Take the extra VMA and make VMA NULL so that the calling function
will know it is in use and cannot be freed

828-838 Copy in all the VMA information

839 If a �le/device is mapped, get a reference to it with get_file()

841-842 If an open function is provided, call it

843 Truncate the VMA so that it ends at the start of the region to be unmapped

848-849 Lock the �les and mm as with the two previous cases

850 Insert the extra VMA into the mm

852

853 __insert_vm_struct(mm, area);

854 spin_unlock(&mm->page_table_lock);

855 unlock_vma_mappings(area);

856 return extra;

857 }

853 Reinsert the VMA into the mm

854 Unlock the page tables

855 Unlock the spinlock to the shared mapping

856 Return the extra VMA if it was not used and NULL if it was

D.2.6 Deleting all memory regions

D.2.6.1 Function: exit_mmap() (mm/mmap.c)
This function simply steps through all VMAs associated with the supplied mm

and unmaps them.

D.2.6 Deleting all memory regions (exit_mmap()) 288

1127 void exit_mmap(struct mm_struct * mm)

1128 {

1129 struct vm_area_struct * mpnt;

1130

1131 release_segments(mm);

1132 spin_lock(&mm->page_table_lock);

1133 mpnt = mm->mmap;

1134 mm->mmap = mm->mmap_cache = NULL;

1135 mm->mm_rb = RB_ROOT;

1136 mm->rss = 0;

1137 spin_unlock(&mm->page_table_lock);

1138 mm->total_vm = 0;

1139 mm->locked_vm = 0;

1140

1141 flush_cache_mm(mm);

1142 while (mpnt) {

1143 struct vm_area_struct * next = mpnt->vm_next;

1144 unsigned long start = mpnt->vm_start;

1145 unsigned long end = mpnt->vm_end;

1146 unsigned long size = end - start;

1147

1148 if (mpnt->vm_ops) {

1149 if (mpnt->vm_ops->close)

1150 mpnt->vm_ops->close(mpnt);

1151 }

1152 mm->map_count--;

1153 remove_shared_vm_struct(mpnt);

1154 zap_page_range(mm, start, size);

1155 if (mpnt->vm_file)

1156 fput(mpnt->vm_file);

1157 kmem_cache_free(vm_area_cachep, mpnt);

1158 mpnt = next;

1159 }

1160 flush_tlb_mm(mm);

1161

1162 /* This is just debugging */

1163 if (mm->map_count)

1164 BUG();

1165

1166 clear_page_tables(mm, FIRST_USER_PGD_NR, USER_PTRS_PER_PGD);

1167 }

1131 release_segments() will release memory segments associated with the pro-
cess on its Local Descriptor Table (LDT) if the architecture supports segments
and the process was using them. Some applications, notably WINE use this

D.2.6 Deleting all memory regions (exit_mmap()) 289

feature

1132 Lock the mm

1133 mpnt becomes the �rst VMA on the list

1134 Clear VMA related information from the mm so it may be unlocked

1137 Unlock the mm

1138-1139 Clear the mm statistics

1141 Flush the CPU for the address range

1142-1159 Step through every VMA that was associated with the mm

1143 Record what the next VMA to clear will be so this one may be deleted

1144-1146 Record the start, end and size of the region to be deleted

1148-1151 If there is a close operation associated with this VMA, call it

1152 Reduce the map count

1153 Remove the �le/device mapping from the shared mappings list

1154 Free all pages associated with this region

1155-1156 If a �le/device was mapped in this region, free it

1157 Free the VMA struct

1158 Move to the next VMA

1160 Flush the TLB for this whole mm as it is about to be unmapped

1163-1164 If the map_count is positive, it means the map count was not accounted
for properly so call BUG() to mark it

1166 Clear the page tables associated with this region with clear_page_tables()

(See Section D.2.6.2)

D.2.6.2 Function: clear_page_tables() 290

D.2.6.2 Function: clear_page_tables() (mm/memory.c)
This is the top-level function used to unmap all PTEs and free pages within a

region. It is used when pagetables needs to be torn down such as when the process
exits or a region is unmapped.

146 void clear_page_tables(struct mm_struct *mm,

unsigned long first, int nr)

147 {

148 pgd_t * page_dir = mm->pgd;

149

150 spin_lock(&mm->page_table_lock);

151 page_dir += first;

152 do {

153 free_one_pgd(page_dir);

154 page_dir++;

155 } while (--nr);

156 spin_unlock(&mm->page_table_lock);

157

158 /* keep the page table cache within bounds */

159 check_pgt_cache();

160 }

148 Get the PGD for the mm being unmapped

150 Lock the pagetables

151-155 Step through all PGDs in the requested range. For each PGD found, call
free_one_pgd() (See Section D.2.6.3)

156 Unlock the pagetables

159 Check the cache of available PGD structures. If there are too many PGDs in
the PGD quicklist, some of them will be reclaimed

D.2.6.3 Function: free_one_pgd() (mm/memory.c)
This function tears down one PGD. For each PMD in this PGD, free_one_pmd()

will be called.

109 static inline void free_one_pgd(pgd_t * dir)

110 {

111 int j;

112 pmd_t * pmd;

113

114 if (pgd_none(*dir))

115 return;

116 if (pgd_bad(*dir)) {

D.2.6 Deleting all memory regions (free_one_pgd()) 291

117 pgd_ERROR(*dir);

118 pgd_clear(dir);

119 return;

120 }

121 pmd = pmd_offset(dir, 0);

122 pgd_clear(dir);

123 for (j = 0; j < PTRS_PER_PMD ; j++) {

124 prefetchw(pmd+j+(PREFETCH_STRIDE/16));

125 free_one_pmd(pmd+j);

126 }

127 pmd_free(pmd);

128 }

114-115 If no PGD exists here, return

116-120 If the PGD is bad, �ag the error and return

1121 Get the �rst PMD in the PGD

122 Clear the PGD entry

123-126 For each PMD in this PGD, call free_one_pmd() (See Section D.2.6.4)

127 Free the PMD page to the PMD quicklist. Later, check_pgt_cache() will be
called and if the cache has too many PMD pages in it, they will be reclaimed

D.2.6.4 Function: free_one_pmd() (mm/memory.c)

93 static inline void free_one_pmd(pmd_t * dir)

94 {

95 pte_t * pte;

96

97 if (pmd_none(*dir))

98 return;

99 if (pmd_bad(*dir)) {

100 pmd_ERROR(*dir);

101 pmd_clear(dir);

102 return;

103 }

104 pte = pte_offset(dir, 0);

105 pmd_clear(dir);

106 pte_free(pte);

107 }

97-98 If no PMD exists here, return

99-103 If the PMD is bad, �ag the error and return

D.2.6 Deleting all memory regions (free_one_pmd()) 292

104 Get the �rst PTE in the PMD

105 Clear the PMD from the pagetable

106 Free the PTE page to the PTE quicklist cache with pte_free(). Later,
check_pgt_cache() will be called and if the cache has too many PTE pages
in it, they will be reclaimed

D.3 Searching Memory Regions 293

D.3 Searching Memory Regions

Contents

D.3 Searching Memory Regions 293
D.3.1 Finding a Mapped Memory Region 293
D.3.1.1 Function: find_vma() 293
D.3.1.2 Function: find_vma_prev() 294
D.3.1.3 Function: find_vma_intersection() 296

D.3.2 Finding a Free Memory Region 296
D.3.2.1 Function: get_unmapped_area() 296
D.3.2.2 Function: arch_get_unmapped_area() 297

The functions in this section deal with searching the virtual address space for
mapped and free regions.

D.3.1 Finding a Mapped Memory Region

D.3.1.1 Function: find_vma() (mm/mmap.c)

661 struct vm_area_struct * find_vma(struct mm_struct * mm,

unsigned long addr)

662 {

663 struct vm_area_struct *vma = NULL;

664

665 if (mm) {

666 /* Check the cache first. */

667 /* (Cache hit rate is typically around 35%.) */

668 vma = mm->mmap_cache;

669 if (!(vma && vma->vm_end > addr &&

vma->vm_start <= addr)) {

670 rb_node_t * rb_node;

671

672 rb_node = mm->mm_rb.rb_node;

673 vma = NULL;

674

675 while (rb_node) {

676 struct vm_area_struct * vma_tmp;

677

678 vma_tmp = rb_entry(rb_node,

struct vm_area_struct, vm_rb);

679

680 if (vma_tmp->vm_end > addr) {

681 vma = vma_tmp;

682 if (vma_tmp->vm_start <= addr)

683 break;

684 rb_node = rb_node->rb_left;

D.3.1 Finding a Mapped Memory Region (find_vma()) 294

685 } else

686 rb_node = rb_node->rb_right;

687 }

688 if (vma)

689 mm->mmap_cache = vma;

690 }

691 }

692 return vma;

693 }

661 The two parameters are the top level mm_struct that is to be searched and
the address the caller is interested in

663 Default to returning NULL for address not found

665 Make sure the caller does not try and search a bogus mm

668 mmap_cache has the result of the last call to find_vma(). This has a chance
of not having to search at all through the red-black tree

669 If it is a valid VMA that is being examined, check to see if the address being
searched is contained within it. If it is, the VMA was the mmap_cache one so
it can be returned, otherwise the tree is searched

670-674 Start at the root of the tree

675-687 This block is the tree walk

678 The macro, as the name suggests, returns the VMA this tree node points to

680 Check if the next node traversed by the left or right leaf

682 If the current VMA is what is required, exit the while loop

689 If the VMA is valid, set the mmap_cache for the next call to find_vma()

692 Return the VMA that contains the address or as a side e�ect of the tree walk,
return the VMA that is closest to the requested address

D.3.1.2 Function: find_vma_prev() (mm/mmap.c)

696 struct vm_area_struct * find_vma_prev(struct mm_struct * mm,

unsigned long addr,

697 struct vm_area_struct **pprev)

698 {

699 if (mm) {

700 /* Go through the RB tree quickly. */

701 struct vm_area_struct * vma;

D.3.1 Finding a Mapped Memory Region (find_vma_prev()) 295

702 rb_node_t * rb_node, * rb_last_right, * rb_prev;

703

704 rb_node = mm->mm_rb.rb_node;

705 rb_last_right = rb_prev = NULL;

706 vma = NULL;

707

708 while (rb_node) {

709 struct vm_area_struct * vma_tmp;

710

711 vma_tmp = rb_entry(rb_node,

struct vm_area_struct, vm_rb);

712

713 if (vma_tmp->vm_end > addr) {

714 vma = vma_tmp;

715 rb_prev = rb_last_right;

716 if (vma_tmp->vm_start <= addr)

717 break;

718 rb_node = rb_node->rb_left;

719 } else {

720 rb_last_right = rb_node;

721 rb_node = rb_node->rb_right;

722 }

723 }

724 if (vma) {

725 if (vma->vm_rb.rb_left) {

726 rb_prev = vma->vm_rb.rb_left;

727 while (rb_prev->rb_right)

728 rb_prev = rb_prev->rb_right;

729 }

730 *pprev = NULL;

731 if (rb_prev)

732 *pprev = rb_entry(rb_prev, struct

vm_area_struct, vm_rb);

733 if ((rb_prev ? (*pprev)->vm_next : mm->mmap) !=

vma)

734 BUG();

735 return vma;

736 }

737 }

738 *pprev = NULL;

739 return NULL;

740 }

696-723 This is essentially the same as the find_vma() function already described.
The only di�erence is that the last right node accesses is remembered as this

D.3.1 Finding a Mapped Memory Region (find_vma_prev()) 296

will represent the vma previous to the requested vma.

725-729 If the returned VMA has a left node, it means that it has to be traversed.
It �rst takes the left leaf and then follows each right leaf until the bottom of
the tree is found.

731-732 Extract the VMA from the red-black tree node

733-734 A debugging check, if this is the previous node, then its next �eld should
point to the VMA being returned. If it is not, it is a bug

D.3.1.3 Function: find_vma_intersection() (include/linux/mm.h)

673 static inline struct vm_area_struct * find_vma_intersection(

struct mm_struct * mm,

unsigned long start_addr, unsigned long end_addr)

674 {

675 struct vm_area_struct * vma = find_vma(mm,start_addr);

676

677 if (vma && end_addr <= vma->vm_start)

678 vma = NULL;

679 return vma;

680 }

675 Return the VMA closest to the starting address

677 If a VMA is returned and the end address is still less than the beginning of
the returned VMA, the VMA does not intersect

679 Return the VMA if it does intersect

D.3.2 Finding a Free Memory Region

D.3.2.1 Function: get_unmapped_area() (mm/mmap.c)
The call graph for this function is shown at Figure 4.5.

644 unsigned long get_unmapped_area(struct file *file,

unsigned long addr,

unsigned long len,

unsigned long pgoff,

unsigned long flags)

645 {

646 if (flags & MAP_FIXED) {

647 if (addr > TASK_SIZE - len)

648 return -ENOMEM;

649 if (addr & ~PAGE_MASK)

650 return -EINVAL;

D.3.2 Finding a Free Memory Region (get_unmapped_area()) 297

651 return addr;

652 }

653

654 if (file && file->f_op && file->f_op->get_unmapped_area)

655 return file->f_op->get_unmapped_area(file, addr,

len, pgoff, flags);

656

657 return arch_get_unmapped_area(file, addr, len, pgoff, flags);

658 }

644 The parameters passed are

�le The �le or device being mapped

addr The requested address to map to

len The length of the mapping

pgo� The o�set within the �le being mapped

�ags Protection �ags

646-652 Sanity checked. If it is required that the mapping be placed at the
speci�ed address, make sure it will not over�ow the address space and that it
is page aligned

654 If the struct file provides a get_unmapped_area() function, use it

657 Else use arch_get_unmapped_area()(See Section D.3.2.2) as an anonymous
version of the get_unmapped_area() function

D.3.2.2 Function: arch_get_unmapped_area() (mm/mmap.c)
Architectures have the option of specifying this function for themselves by de�n-

ing HAVE_ARCH_UNMAPPED_AREA. If the architectures does not supply one, this version
is used.

614 #ifndef HAVE_ARCH_UNMAPPED_AREA

615 static inline unsigned long arch_get_unmapped_area(

struct file *filp,

unsigned long addr, unsigned long len,

unsigned long pgoff, unsigned long flags)

616 {

617 struct vm_area_struct *vma;

618

619 if (len > TASK_SIZE)

620 return -ENOMEM;

621

622 if (addr) {

623 addr = PAGE_ALIGN(addr);

D.3.2 Finding a Free Memory Region (arch_get_unmapped_area()) 298

624 vma = find_vma(current->mm, addr);

625 if (TASK_SIZE - len >= addr &&

626 (!vma || addr + len <= vma->vm_start))

627 return addr;

628 }

629 addr = PAGE_ALIGN(TASK_UNMAPPED_BASE);

630

631 for (vma = find_vma(current->mm, addr); ; vma = vma->vm_next) {

632 /* At this point: (!vma || addr < vma->vm_end). */

633 if (TASK_SIZE - len < addr)

634 return -ENOMEM;

635 if (!vma || addr + len <= vma->vm_start)

636 return addr;

637 addr = vma->vm_end;

638 }

639 }

640 #else

641 extern unsigned long arch_get_unmapped_area(struct file *,

unsigned long, unsigned long,

unsigned long, unsigned long);

642 #endif

614 If this is not de�ned, it means that the architecture does not provide its own
arch_get_unmapped_area() so this one is used instead

615 The parameters are the same as those for get_unmapped_area()(See Section D.3.2.1)

619-620 Sanity check, make sure the required map length is not too long

622-628 If an address is provided, use it for the mapping

623 Make sure the address is page aligned

624 find_vma()(See Section D.3.1.1) will return the region closest to the requested
address

625-627 Make sure the mapping will not overlap with another region. If it does
not, return it as it is safe to use. Otherwise it gets ignored

629 TASK_UNMAPPED_BASE is the starting point for searching for a free region to
use

631-638 Starting from TASK_UNMAPPED_BASE, linearly search the VMAs until a
large enough region between them is found to store the new mapping. This is
essentially a �rst �t search

641 If an external function is provided, it still needs to be declared here

D.4 Locking and Unlocking Memory Regions 299

D.4 Locking and Unlocking Memory Regions

Contents

D.4 Locking and Unlocking Memory Regions 299
D.4.1 Locking a Memory Region 299
D.4.1.1 Function: sys_mlock() 299
D.4.1.2 Function: sys_mlockall() 300
D.4.1.3 Function: do_mlockall() 302
D.4.1.4 Function: do_mlock() 303

D.4.2 Unlocking the region 305
D.4.2.1 Function: sys_munlock() 305
D.4.2.2 Function: sys_munlockall() 306

D.4.3 Fixing up regions after locking/unlocking 306
D.4.3.1 Function: mlock_fixup() 306
D.4.3.2 Function: mlock_fixup_all() 308
D.4.3.3 Function: mlock_fixup_start() 308
D.4.3.4 Function: mlock_fixup_end() 309
D.4.3.5 Function: mlock_fixup_middle() 310

This section contains the functions related to locking and unlocking a region. The
main complexity in them is how the regions need to be �xed up after the operation
takes place.

D.4.1 Locking a Memory Region

D.4.1.1 Function: sys_mlock() (mm/mlock.c)
The call graph for this function is shown in Figure 4.10. This is the system call

mlock() for locking a region of memory into physical memory. This function simply
checks to make sure that process and user limits are not exceeeded and that the
region to lock is page aligned.

195 asmlinkage long sys_mlock(unsigned long start, size_t len)

196 {

197 unsigned long locked;

198 unsigned long lock_limit;

199 int error = -ENOMEM;

200

201 down_write(¤t->mm->mmap_sem);

202 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));

203 start &= PAGE_MASK;

204

205 locked = len >> PAGE_SHIFT;

206 locked += current->mm->locked_vm;

207

208 lock_limit = current->rlim[RLIMIT_MEMLOCK].rlim_cur;

209 lock_limit >>= PAGE_SHIFT;

D.4.1 Locking a Memory Region (sys_mlock()) 300

210

211 /* check against resource limits */

212 if (locked > lock_limit)

213 goto out;

214

215 /* we may lock at most half of physical memory... */

216 /* (this check is pretty bogus, but doesn't hurt) */

217 if (locked > num_physpages/2)

218 goto out;

219

220 error = do_mlock(start, len, 1);

221 out:

222 up_write(¤t->mm->mmap_sem);

223 return error;

224 }

201 Take the semaphore, we are likely to sleep during this so a spinlock can not
be used

202 Round the length up to the page boundary

203 Round the start address down to the page boundary

205 Calculate how many pages will be locked

206 Calculate how many pages will be locked in total by this process

208-209 Calculate what the limit is to the number of locked pages

212-213 Do not allow the process to lock more than it should

217-218 Do not allow the process to map more than half of physical memory

220 Call do_mlock()(See Section D.4.1.4) which starts the �real� work by �nd the
VMA clostest to the area to lock before calling mlock_fixup()(See Section D.4.3.1)

222 Free the semaphore

223 Return the error or success code from do_mlock()

D.4.1.2 Function: sys_mlockall() (mm/mlock.c)
This is the system call mlockall() which attempts to lock all pages in the calling

process in memory. If MCL_CURRENT is speci�ed, all current pages will be locked. If
MCL_FUTURE is speci�ed, all future mappings will be locked. The �ags may be or-ed
together. This function makes sure that the �ags and process limits are ok before
calling do_mlockall().

D.4.1 Locking a Memory Region (sys_mlockall()) 301

266 asmlinkage long sys_mlockall(int flags)

267 {

268 unsigned long lock_limit;

269 int ret = -EINVAL;

270

271 down_write(¤t->mm->mmap_sem);

272 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))

273 goto out;

274

275 lock_limit = current->rlim[RLIMIT_MEMLOCK].rlim_cur;

276 lock_limit >>= PAGE_SHIFT;

277

278 ret = -ENOMEM;

279 if (current->mm->total_vm > lock_limit)

280 goto out;

281

282 /* we may lock at most half of physical memory... */

283 /* (this check is pretty bogus, but doesn't hurt) */

284 if (current->mm->total_vm > num_physpages/2)

285 goto out;

286

287 ret = do_mlockall(flags);

288 out:

289 up_write(¤t->mm->mmap_sem);

290 return ret;

291 }

269 By default, return -EINVAL to indicate invalid parameters

271 Acquire the current mm_struct semaphore

272-273 Make sure that some valid �ag has been speci�ed. If not, goto out to
unlock the semaphore and return -EINVAL

275-276 Check the process limits to see how many pages may be locked

278 From here on, the default error is -ENOMEM

279-280 If the size of the locking would exceed set limits, then goto out

284-285 Do not allow this process to lock more than half of physical memory. This
is a bogus check because four processes locking a quarter of physical memory
each will bypass this. It is acceptable though as only root proceses are allowed
to lock memory and are unlikely to make this type of mistake

287 Call the core function do_mlockall()(See Section D.4.1.3)

289-290 Unlock the semaphore and return

D.4.1.3 Function: do_mlockall() 302

D.4.1.3 Function: do_mlockall() (mm/mlock.c)

238 static int do_mlockall(int flags)

239 {

240 int error;

241 unsigned int def_flags;

242 struct vm_area_struct * vma;

243

244 if (!capable(CAP_IPC_LOCK))

245 return -EPERM;

246

247 def_flags = 0;

248 if (flags & MCL_FUTURE)

249 def_flags = VM_LOCKED;

250 current->mm->def_flags = def_flags;

251

252 error = 0;

253 for (vma = current->mm->mmap; vma ; vma = vma->vm_next) {

254 unsigned int newflags;

255

256 newflags = vma->vm_flags | VM_LOCKED;

257 if (!(flags & MCL_CURRENT))

258 newflags &= ~VM_LOCKED;

259 error = mlock_fixup(vma, vma->vm_start, vma->vm_end,

newflags);

260 if (error)

261 break;

262 }

263 return error;

264 }

244-245 The calling process must be either root or have CAP_IPC_LOCK capabilities

248-250 The MCL_FUTURE �ag says that all future pages should be locked so if set,
the def_flags for VMAs should be VM_LOCKED

253-262 Cycle through all VMAs

256 Set the VM_LOCKED �ag in the current VMA �ags

257-258 If the MCL_CURRENT �ag has not been set requesting that all current pages
be locked, then clear the VM_LOCKED �ag. The logic is arranged like this so
that the unlock code can use this same function just with no �ags

259 Call mlock_fixup()(See Section D.4.3.1) which will adjust the regions to
match the locking as necessary

D.4.1 Locking a Memory Region (do_mlockall()) 303

260-261 If a non-zero value is returned at any point, stop locking. It is interesting
to note that VMAs already locked will not be unlocked

263 Return the success or error value

D.4.1.4 Function: do_mlock() (mm/mlock.c)
This function is is responsible for starting the work needed to either lock or

unlock a region depending on the value of the on parameter. It is broken up into
two sections. The �rst makes sure the region is page aligned (despite the fact the
only two callers of this function do the same thing) before �nding the VMA that
is to be adjusted. The second part then sets the appropriate �ags before calling
mlock_fixup() for each VMA that is a�ected by this locking.

148 static int do_mlock(unsigned long start, size_t len, int on)

149 {

150 unsigned long nstart, end, tmp;

151 struct vm_area_struct * vma, * next;

152 int error;

153

154 if (on && !capable(CAP_IPC_LOCK))

155 return -EPERM;

156 len = PAGE_ALIGN(len);

157 end = start + len;

158 if (end < start)

159 return -EINVAL;

160 if (end == start)

161 return 0;

162 vma = find_vma(current->mm, start);

163 if (!vma || vma->vm_start > start)

164 return -ENOMEM;

Page align the request and �nd the VMA

154 Only root processes can lock pages

156 Page align the length. This is redundent as the length is page aligned in the
parent functions

157-159 Calculate the end of the locking and make sure it is a valid region. Return
-EINVAL if it is not

160-161 if locking a region of size 0, just return

162 Find the VMA that will be a�ected by this locking

163-164 If the VMA for this address range does not exist, return -ENOMEM

D.4.1 Locking a Memory Region (do_mlock()) 304

166 for (nstart = start ; ;) {

167 unsigned int newflags;

168

170

171 newflags = vma->vm_flags | VM_LOCKED;

172 if (!on)

173 newflags &= ~VM_LOCKED;

174

175 if (vma->vm_end >= end) {

176 error = mlock_fixup(vma, nstart, end, newflags);

177 break;

178 }

179

180 tmp = vma->vm_end;

181 next = vma->vm_next;

182 error = mlock_fixup(vma, nstart, tmp, newflags);

183 if (error)

184 break;

185 nstart = tmp;

186 vma = next;

187 if (!vma || vma->vm_start != nstart) {

188 error = -ENOMEM;

189 break;

190 }

191 }

192 return error;

193 }

Walk through the VMAs a�ected by this locking and call mlock_fixup() for
each of them.

166-192 Cycle through as many VMAs as necessary to lock the pages

171 Set the VM_LOCKED �ag on the VMA

172-173 Unless this is an unlock in which case, remove the �ag

175-177 If this VMA is the last VMA to be a�ected by the unlocking, call
mlock_fixup() with the end address for the locking and exit

180-190 Else this is whole VMA needs to be locked. To lock it, the end of this
VMA is pass as a parameter to mlock_fixup()(See Section D.4.3.1) instead
of the end of the actual locking

180 tmp is the end of the mapping on this VMA

181 next is the next VMA that will be a�ected by the locking

D.4.2 Unlocking the region 305

182 Call mlock_fixup()(See Section D.4.3.1) for this VMA

183-184 If an error occurs, back out. Note that the VMAs already locked are not
�xed up right

185 The next start address is the start of the next VMA

186 Move to the next VMA

187-190 If there is no VMA , return -ENOMEM. The next condition though would re-
quire the regions to be extremly broken as a result of a broken implementation
of mlock_fixup() or have VMAs that overlap

192 Return the error or success value

D.4.2 Unlocking the region

D.4.2.1 Function: sys_munlock() (mm/mlock.c)
Page align the request before calling do_mlock() which begins the real work of

�xing up the regions.

226 asmlinkage long sys_munlock(unsigned long start, size_t len)

227 {

228 int ret;

229

230 down_write(¤t->mm->mmap_sem);

231 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));

232 start &= PAGE_MASK;

233 ret = do_mlock(start, len, 0);

234 up_write(¤t->mm->mmap_sem);

235 return ret;

236 }

230 Acquire the semaphore protecting the mm_struct

231 Round the length of the region up to the nearest page boundary

232 Round the start of the region down to the nearest page boundary

233 Call do_mlock()(See Section D.4.1.4) with 0 as the third parameter to unlock
the region

234 Release the semaphore

235 Return the success or failure code

D.4.2.2 Function: sys_munlockall() 306

D.4.2.2 Function: sys_munlockall() (mm/mlock.c)
Trivial function. If the �ags to mlockall() are 0 it gets translated as none of

the current pages must be present and no future mappings should be locked either
which means the VM_LOCKED �ag will be removed on all VMAs.

293 asmlinkage long sys_munlockall(void)

294 {

295 int ret;

296

297 down_write(¤t->mm->mmap_sem);

298 ret = do_mlockall(0);

299 up_write(¤t->mm->mmap_sem);

300 return ret;

301 }

297 Acquire the semaphore protecting the mm_struct

298 Call do_mlockall()(See Section D.4.1.3) with 0 as �ags which will remove
the VM_LOCKED from all VMAs

299 Release the semaphore

300 Return the error or success code

D.4.3 Fixing up regions after locking/unlocking

D.4.3.1 Function: mlock_fixup() (mm/mlock.c)
This function identi�es four separate types of locking that must be addressed.

There �rst is where the full VMA is to be locked where it calls mlock_fixup_all().
The second is where only the beginning portion of the VMA is a�ected, handled by
mlock_fixup_start(). The third is the locking of a region at the end handled by
mlock_fixup_end() and the last is locking a region in the middle of the VMA with
mlock_fixup_middle().

117 static int mlock_fixup(struct vm_area_struct * vma,

118 unsigned long start, unsigned long end, unsigned int newflags)

119 {

120 int pages, retval;

121

122 if (newflags == vma->vm_flags)

123 return 0;

124

125 if (start == vma->vm_start) {

126 if (end == vma->vm_end)

127 retval = mlock_fixup_all(vma, newflags);

128 else

D.4.3 Fixing up regions after locking/unlocking (mlock_fixup()) 307

129 retval = mlock_fixup_start(vma, end, newflags);

130 } else {

131 if (end == vma->vm_end)

132 retval = mlock_fixup_end(vma, start, newflags);

133 else

134 retval = mlock_fixup_middle(vma, start,

end, newflags);

135 }

136 if (!retval) {

137 /* keep track of amount of locked VM */

138 pages = (end - start) >> PAGE_SHIFT;

139 if (newflags & VM_LOCKED) {

140 pages = -pages;

141 make_pages_present(start, end);

142 }

143 vma->vm_mm->locked_vm -= pages;

144 }

145 return retval;

146 }

122-123 If no change is to be made, just return

125 If the start of the locking is at the start of the VMA, it means that either the
full region is to the locked or only a portion at the beginning

126-127 The full VMA is being locked, call mlock_fixup_all() (See Section D.4.3.2)

128-129 Part of the VMA is being locked with the start of the VMA matching the
start of the locking, call mlock_fixup_start() (See Section D.4.3.3)

130 Else either the a region at the end is to be locked or a region in the middle

131-132 The end of the locking matches the end of the VMA, call mlock_fixup_end()
(See Section D.4.3.4)

133-134A region in the middle of the VMA is to be locked, call mlock_fixup_middle()
(See Section D.4.3.5)

136-144 The �xup functions return 0 on success. If the �xup of the regions succeed
and the regions are now marked as locked, call make_pages_present() which
makes some basic checks before calling get_user_pages() which faults in all
the pages in the same way the page fault handler does

D.4.3.2 Function: mlock_fixup_all() 308

D.4.3.2 Function: mlock_fixup_all() (mm/mlock.c)

15 static inline int mlock_fixup_all(struct vm_area_struct * vma,

int newflags)

16 {

17 spin_lock(&vma->vm_mm->page_table_lock);

18 vma->vm_flags = newflags;

19 spin_unlock(&vma->vm_mm->page_table_lock);

20 return 0;

21 }

17-19 Trivial, lock the VMA with the spinlock, set the new �ags, release the lock
and return success

D.4.3.3 Function: mlock_fixup_start() (mm/mlock.c)
Slightly more compilcated. A new VMA is required to represent the a�ected

region. The start of the old VMA is moved forward

23 static inline int mlock_fixup_start(struct vm_area_struct * vma,

24 unsigned long end, int newflags)

25 {

26 struct vm_area_struct * n;

27

28 n = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

29 if (!n)

30 return -EAGAIN;

31 *n = *vma;

32 n->vm_end = end;

33 n->vm_flags = newflags;

34 n->vm_raend = 0;

35 if (n->vm_file)

36 get_file(n->vm_file);

37 if (n->vm_ops && n->vm_ops->open)

38 n->vm_ops->open(n);

39 vma->vm_pgoff += (end - vma->vm_start) >> PAGE_SHIFT;

40 lock_vma_mappings(vma);

41 spin_lock(&vma->vm_mm->page_table_lock);

42 vma->vm_start = end;

43 __insert_vm_struct(current->mm, n);

44 spin_unlock(&vma->vm_mm->page_table_lock);

45 unlock_vma_mappings(vma);

46 return 0;

47 }

28 Allocate a VMA from the slab allocator for the a�ected region

D.4.3 Fixing up regions after locking/unlocking (mlock_fixup_start()) 309

31-34 Copy in the necessary information

35-36 If the VMA has a �le or device mapping, get_file() will increment the
reference count

37-38 If an open() function is provided, call it

39 Update the o�set within the �le or device mapping for the old VMA to be the
end of the locked region

40 lock_vma_mappings() will lock any �les if this VMA is a shared region

41-44 Lock the parent mm_struct, update its start to be the end of the a�ected
region, insert the new VMA into the processes linked lists (See Section D.2.2.1)
and release the lock

45 Unlock the �le mappings with unlock_vma_mappings()

46 Return success

D.4.3.4 Function: mlock_fixup_end() (mm/mlock.c)
Essentially the same as mlock_fixup_start() except the a�ected region is at

the end of the VMA.

49 static inline int mlock_fixup_end(struct vm_area_struct * vma,

50 unsigned long start, int newflags)

51 {

52 struct vm_area_struct * n;

53

54 n = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

55 if (!n)

56 return -EAGAIN;

57 *n = *vma;

58 n->vm_start = start;

59 n->vm_pgoff += (n->vm_start - vma->vm_start) >> PAGE_SHIFT;

60 n->vm_flags = newflags;

61 n->vm_raend = 0;

62 if (n->vm_file)

63 get_file(n->vm_file);

64 if (n->vm_ops && n->vm_ops->open)

65 n->vm_ops->open(n);

66 lock_vma_mappings(vma);

67 spin_lock(&vma->vm_mm->page_table_lock);

68 vma->vm_end = start;

69 __insert_vm_struct(current->mm, n);

70 spin_unlock(&vma->vm_mm->page_table_lock);

71 unlock_vma_mappings(vma);

D.4.3 Fixing up regions after locking/unlocking (mlock_fixup_end()) 310

72 return 0;

73 }

54 Alloc a VMA from the slab allocator for the a�ected region

57-61 Copy in the necessary information and update the o�set within the �le or
device mapping

62-63 If the VMA has a �le or device mapping, get_file() will increment the
reference count

64-65 If an open() function is provided, call it

66 lock_vma_mappings() will lock any �les if this VMA is a shared region

67-70 Lock the parent mm_struct, update its start to be the end of the a�ected
region, insert the new VMA into the processes linked lists (See Section D.2.2.1)
and release the lock

71 Unlock the �le mappings with unlock_vma_mappings()

72 Return success

D.4.3.5 Function: mlock_fixup_middle() (mm/mlock.c)
Similar to the previous two �xup functions except that 2 new regions are required

to �x up the mapping.

75 static inline int mlock_fixup_middle(struct vm_area_struct * vma,

76 unsigned long start, unsigned long end, int newflags)

77 {

78 struct vm_area_struct * left, * right;

79

80 left = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

81 if (!left)

82 return -EAGAIN;

83 right = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);

84 if (!right) {

85 kmem_cache_free(vm_area_cachep, left);

86 return -EAGAIN;

87 }

88 *left = *vma;

89 *right = *vma;

90 left->vm_end = start;

91 right->vm_start = end;

92 right->vm_pgoff += (right->vm_start - left->vm_start) >>

PAGE_SHIFT;

93 vma->vm_flags = newflags;

D.4.3 Fixing up regions after locking/unlocking (mlock_fixup_middle()) 311

94 left->vm_raend = 0;

95 right->vm_raend = 0;

96 if (vma->vm_file)

97 atomic_add(2, &vma->vm_file->f_count);

98

99 if (vma->vm_ops && vma->vm_ops->open) {

100 vma->vm_ops->open(left);

101 vma->vm_ops->open(right);

102 }

103 vma->vm_raend = 0;

104 vma->vm_pgoff += (start - vma->vm_start) >> PAGE_SHIFT;

105 lock_vma_mappings(vma);

106 spin_lock(&vma->vm_mm->page_table_lock);

107 vma->vm_start = start;

108 vma->vm_end = end;

109 vma->vm_flags = newflags;

110 __insert_vm_struct(current->mm, left);

111 __insert_vm_struct(current->mm, right);

112 spin_unlock(&vma->vm_mm->page_table_lock);

113 unlock_vma_mappings(vma);

114 return 0;

115 }

80-87 Allocate the two new VMAs from the slab allocator

88-89 Copy in the information from the old VMA into them

90 The end of the left region is the start of the region to be a�ected

91 The start of the right region is the end of the a�ected region

92 Update the �le o�set

93 The old VMA is now the a�ected region so update its �ags

94-95Make the readahead window 0 to ensure pages not belonging to their regions
are not accidently read ahead

96-97 Increment the reference count to the �le/device mapping if there is one

99-102 Call the open() function for the two new mappings

103-104 Cancel the readahead window and update the o�set within the �le to be
the beginning of the locked region

105 Lock the shared �le/device mappings

106-112 Lock the parent mm_struct, update the VMA and insert the two new
regions into the process before releasing the lock again

D.4.3 Fixing up regions after locking/unlocking (mlock_fixup_middle()) 312

113 Unlock the shared mappings

114 Return success

D.5 Page Faulting 313

D.5 Page Faulting

Contents

D.5 Page Faulting 313
D.5.1 x86 Page Fault Handler 313
D.5.1.1 Function: do_page_fault() 313

D.5.2 Expanding the Stack 323
D.5.2.1 Function: expand_stack() 323

D.5.3 Architecture Independent Page Fault Handler 324
D.5.3.1 Function: handle_mm_fault() 324
D.5.3.2 Function: handle_pte_fault() 326

D.5.4 Demand Allocation 327
D.5.4.1 Function: do_no_page() 327
D.5.4.2 Function: do_anonymous_page() 330

D.5.5 Demand Paging 332
D.5.5.1 Function: do_swap_page() 332
D.5.5.2 Function: can_share_swap_page() 336
D.5.5.3 Function: exclusive_swap_page() 337

D.5.6 Copy On Write (COW) Pages 338
D.5.6.1 Function: do_wp_page() 338

This section deals with the page fault handler. It begins with the architecture
speci�c function for the x86 and then moves to the architecture independent layer.
The architecture speci�c functions all have the same responsibilities.

D.5.1 x86 Page Fault Handler

D.5.1.1 Function: do_page_fault() (arch/i386/mm/fault.c)
The call graph for this function is shown in Figure 4.12. This function is the x86

architecture dependent function for the handling of page fault exception handlers.
Each architecture registers their own but all of them have similar responsibilities.

140 asmlinkage void do_page_fault(struct pt_regs *regs,

unsigned long error_code)

141 {

142 struct task_struct *tsk;

143 struct mm_struct *mm;

144 struct vm_area_struct * vma;

145 unsigned long address;

146 unsigned long page;

147 unsigned long fixup;

148 int write;

149 siginfo_t info;

150

151 /* get the address */

152 __asm__("movl %%cr2,%0":"=r" (address));

D.5.1 x86 Page Fault Handler (do_page_fault()) 314

153

154 /* It's safe to allow irq's after cr2 has been saved */

155 if (regs->eflags & X86_EFLAGS_IF)

156 local_irq_enable();

157

158 tsk = current;

159

Function preamble. Get the fault address and enable interrupts

140 The parameters are

regs is a struct containing what all the registers at fault time

error_code indicates what sort of fault occurred

152 As the comment indicates, the cr2 register holds the fault address

155-156 If the fault is from within an interrupt, enable them

158 Set the current task

173 if (address >= TASK_SIZE && !(error_code & 5))

174 goto vmalloc_fault;

175

176 mm = tsk->mm;

177 info.si_code = SEGV_MAPERR;

178

183 if (in_interrupt() || !mm)

184 goto no_context;

185

Check for exceptional faults, kernel faults, fault in interrupt and fault with no
memory context

173 If the fault address is over TASK_SIZE, it is within the kernel address space.
If the error code is 5, then it means it happened while in kernel mode and is
not a protection error so handle a vmalloc fault

176 Record the working mm

183 If this is an interrupt, or there is no memory context (such as with a kernel
thread), there is no way to safely handle the fault so goto no_context

186 down_read(&mm->mmap_sem);

187

188 vma = find_vma(mm, address);

189 if (!vma)

D.5.1 x86 Page Fault Handler (do_page_fault()) 315

190 goto bad_area;

191 if (vma->vm_start <= address)

192 goto good_area;

193 if (!(vma->vm_flags & VM_GROWSDOWN))

194 goto bad_area;

195 if (error_code & 4) {

196 /*

197 * accessing the stack below %esp is always a bug.

198 * The "+ 32" is there due to some instructions (like

199 * pusha) doing post-decrement on the stack and that

200 * doesn't show up until later..

201 */

202 if (address + 32 < regs->esp)

203 goto bad_area;

204 }

205 if (expand_stack(vma, address))

206 goto bad_area;

If a fault in userspace, �nd the VMA for the faulting address and determine if it
is a good area, a bad area or if the fault occurred near a region that can be expanded
such as the stack

186 Take the long lived mm semaphore

188 Find the VMA that is responsible or is closest to the faulting address

189-190 If a VMA does not exist at all, goto bad_area

191-192 If the start of the region is before the address, it means this VMA is the
correct VMA for the fault so goto good_area which will check the permissions

193-194 For the region that is closest, check if it can gown down (VM_GROWSDOWN).
If it does, it means the stack can probably be expanded. If not, goto bad_area

195-204 Check to make sure it isn't an access below the stack. if the error_code
is 4, it means it is running in userspace

205-206 The stack is the only region with VM_GROWSDOWN set so if we reach here,
the stack is expaneded with with expand_stack()(See Section D.5.2.1), if it
fails, goto bad_area

211 good_area:

212 info.si_code = SEGV_ACCERR;

213 write = 0;

214 switch (error_code & 3) {

215 default: /* 3: write, present */

216 #ifdef TEST_VERIFY_AREA

D.5.1 x86 Page Fault Handler (do_page_fault()) 316

217 if (regs->cs == KERNEL_CS)

218 printk("WP fault at %08lx\n", regs->eip);

219 #endif

220 /* fall through */

221 case 2: /* write, not present */

222 if (!(vma->vm_flags & VM_WRITE))

223 goto bad_area;

224 write++;

225 break;

226 case 1: /* read, present */

227 goto bad_area;

228 case 0: /* read, not present */

229 if (!(vma->vm_flags & (VM_READ | VM_EXEC)))

230 goto bad_area;

231 }

There is the �rst part of a good area is handled. The permissions need to be
checked in case this is a protection fault.

212 By default return an error

214 Check the error code against bits 0 and 1 of the error code. Bit 0 at 0 means
page was not present. At 1, it means a protection fault like a write to a
read-only area. Bit 1 is 0 if it was a read fault and 1 if a write

215 If it is 3, both bits are 1 so it is a write protection fault

221 Bit 1 is a 1 so it is a write fault

222-223 If the region can not be written to, it is a bad write to goto bad_area.
If the region can be written to, this is a page that is marked Copy On Write
(COW)

224 Flag that a write has occurred

226-227 This is a read and the page is present. There is no reason for the fault
so must be some other type of exception like a divide by zero, goto bad_area

where it is handled

228-230 A read occurred on a missing page. Make sure it is ok to read or exec
this page. If not, goto bad_area. The check for exec is made because the x86
can not exec protect a page and instead uses the read protect �ag. This is
why both have to be checked

233 survive:

239 switch (handle_mm_fault(mm, vma, address, write)) {

240 case 1:

D.5.1 x86 Page Fault Handler (do_page_fault()) 317

241 tsk->min_flt++;

242 break;

243 case 2:

244 tsk->maj_flt++;

245 break;

246 case 0:

247 goto do_sigbus;

248 default:

249 goto out_of_memory;

250 }

251

252 /*

253 * Did it hit the DOS screen memory VA from vm86 mode?

254 */

255 if (regs->eflags & VM_MASK) {

256 unsigned long bit = (address - 0xA0000) >> PAGE_SHIFT;

257 if (bit < 32)

258 tsk->thread.screen_bitmap |= 1 << bit;

259 }

260 up_read(&mm->mmap_sem);

261 return;

At this point, an attempt is going to be made to handle the fault gracefully with
handle_mm_fault().

239 Call handle_mm_fault() with the relevant information about the fault. This
is the architecture independent part of the handler

240-242 A return of 1 means it was a minor fault. Update statistics

243-245 A return of 2 means it was a major fault. Update statistics

246-247 A return of 0 means some IO error happened during the fault so go to
the do_sigbus handler

248-249 Any other return means memory could not be allocated for the fault
so we are out of memory. In reality this does not happen as another func-
tion out_of_memory() is invoked in mm/oom_kill.c before this could happen
which is a lot more graceful about who it kills

260 Release the lock to the mm

261 Return as the fault has been successfully handled

267 bad_area:

268 up_read(&mm->mmap_sem);

269

D.5.1 x86 Page Fault Handler (do_page_fault()) 318

270 /* User mode accesses just cause a SIGSEGV */

271 if (error_code & 4) {

272 tsk->thread.cr2 = address;

273 tsk->thread.error_code = error_code;

274 tsk->thread.trap_no = 14;

275 info.si_signo = SIGSEGV;

276 info.si_errno = 0;

277 /* info.si_code has been set above */

278 info.si_addr = (void *)address;

279 force_sig_info(SIGSEGV, &info, tsk);

280 return;

281 }

282

283 /*

284 * Pentium F0 0F C7 C8 bug workaround.

285 */

286 if (boot_cpu_data.f00f_bug) {

287 unsigned long nr;

288

289 nr = (address - idt) >> 3;

290

291 if (nr == 6) {

292 do_invalid_op(regs, 0);

293 return;

294 }

295 }

This is the bad area handler such as using memory with no vm_area_struct

managing it. If the fault is not by a user process or the f00f bug, the no_context
label is fallen through to.

271 An error code of 4 implies userspace so it is a simple case of sending a SIGSEGV
to kill the process

272-274 Set thread information about what happened which can be read by a
debugger later

275 Record that a SIGSEGV signal was sent

276 clear errno

278 Record the address

279 Send the SIGSEGV signal. The process will exit and dump all the relevant
information

280 Return as the fault has been successfully handled

D.5.1 x86 Page Fault Handler (do_page_fault()) 319

286-295 An bug in the �rst Pentiums was called the f00f bug which caused the
processor to constantly page fault. It was used as a local DoS attack on a
running Linux system. This bug was trapped within a few hours and a patch
released. Now it results in a harmless termination of the process rather than
a rebooting system

296

297 no_context:

298 /* Are we prepared to handle this kernel fault? */

299 if ((fixup = search_exception_table(regs->eip)) != 0) {

300 regs->eip = fixup;

301 return;

302 }

299-302 Search the exception table with search_exception_table() to see if this
exception be handled and if so, call the proper exception handler after return-
ing. This is really important during copy_from_user() and copy_to_user()

when an exception handler is especially installed to trap reads and writes to in-
valid regions in userspace without having to make expensive checks. It means
that a small �xup block of code can be called rather than falling through to
the next block which causes an oops

304 /*

305 * Oops. The kernel tried to access some bad page. We'll have to

306 * terminate things with extreme prejudice.

307 */

308

309 bust_spinlocks(1);

310

311 if (address < PAGE_SIZE)

312 printk(KERN_ALERT "Unable to handle kernel NULL pointer

dereference");

313 else

314 printk(KERN_ALERT "Unable to handle kernel paging

request");

315 printk(" at virtual address %08lx\n",address);

316 printk(" printing eip:\n");

317 printk("%08lx\n", regs->eip);

318 asm("movl %%cr3,%0":"=r" (page));

319 page = ((unsigned long *) __va(page))[address >> 22];

320 printk(KERN_ALERT "*pde = %08lx\n", page);

321 if (page & 1) {

322 page &= PAGE_MASK;

323 address &= 0x003ff000;

324 page = ((unsigned long *)

D.5.1 x86 Page Fault Handler (do_page_fault()) 320

__va(page))[address >> PAGE_SHIFT];

325 printk(KERN_ALERT "*pte = %08lx\n", page);

326 }

327 die("Oops", regs, error_code);

328 bust_spinlocks(0);

329 do_exit(SIGKILL);

This is the no_context handler. Some bad exception occurred which is going to
end up in the process been terminated in all likeliness. Otherwise the kernel faulted
when it de�nitely should have and an OOPS report is generated.

309-329 Otherwise the kernel faulted when it really shouldn't have and it is a
kernel bug. This block generates an oops report

309 Forcibly free spinlocks which might prevent a message getting to console

311-312 If the address is < PAGE_SIZE, it means that a null pointer was used.
Linux deliberately has page 0 unassigned to trap this type of fault which is a
common programming error

313-314 Otherwise it is just some bad kernel error such as a driver trying to access
userspace incorrectly

315-320 Print out information about the fault

321-326 Print out information about the page been faulted

327 Die and generate an oops report which can be used later to get a stack trace
so a developer can see more accurately where and how the fault occurred

329 Forcibly kill the faulting process

335 out_of_memory:

336 if (tsk->pid == 1) {

337 yield();

338 goto survive;

339 }

340 up_read(&mm->mmap_sem);

341 printk("VM: killing process %s\n", tsk->comm);

342 if (error_code & 4)

343 do_exit(SIGKILL);

344 goto no_context;

The out of memory handler. Usually ends with the faulting process getting killed
unless it is init

336-339 If the process is init, just yield and goto survive which will try to handle
the fault gracefully. init should never be killed

D.5.1 x86 Page Fault Handler (do_page_fault()) 321

340 Free the mm semaphore

341 Print out a helpful �You are Dead� message

342 If from userspace, just kill the process

344 If in kernel space, go to the no_context handler which in this case will probably
result in a kernel oops

345

346 do_sigbus:

347 up_read(&mm->mmap_sem);

348

353 tsk->thread.cr2 = address;

354 tsk->thread.error_code = error_code;

355 tsk->thread.trap_no = 14;

356 info.si_signo = SIGBUS;

357 info.si_errno = 0;

358 info.si_code = BUS_ADRERR;

359 info.si_addr = (void *)address;

360 force_sig_info(SIGBUS, &info, tsk);

361

362 /* Kernel mode? Handle exceptions or die */

363 if (!(error_code & 4))

364 goto no_context;

365 return;

347 Free the mm lock

353-359 Fill in information to show a SIGBUS occurred at the faulting address so
that a debugger can trap it later

360 Send the signal

363-364 If in kernel mode, try and handle the exception during no_context

365 If in userspace, just return and the process will die in due course

D.5.1 x86 Page Fault Handler (do_page_fault()) 322

367 vmalloc_fault:

368 {

376 int offset = __pgd_offset(address);

377 pgd_t *pgd, *pgd_k;

378 pmd_t *pmd, *pmd_k;

379 pte_t *pte_k;

380

381 asm("movl %%cr3,%0":"=r" (pgd));

382 pgd = offset + (pgd_t *)__va(pgd);

383 pgd_k = init_mm.pgd + offset;

384

385 if (!pgd_present(*pgd_k))

386 goto no_context;

387 set_pgd(pgd, *pgd_k);

388

389 pmd = pmd_offset(pgd, address);

390 pmd_k = pmd_offset(pgd_k, address);

391 if (!pmd_present(*pmd_k))

392 goto no_context;

393 set_pmd(pmd, *pmd_k);

394

395 pte_k = pte_offset(pmd_k, address);

396 if (!pte_present(*pte_k))

397 goto no_context;

398 return;

399 }

400 }

This is the vmalloc fault handler. When pages are mapped in the vmalloc space,
only the refernce page table is updated. As each process references this area, a fault
will be trapped and the process page tables will be synchronised with the reference
page table here.

376 Get the o�set within a PGD

381 Copy the address of the PGD for the process from the cr3 register to pgd

382 Calculate the pgd pointer from the process PGD

383 Calculate for the kernel reference PGD

385-386 If the pgd entry is invalid for the kernel page table, goto no_context

386 Set the page table entry in the process page table with a copy from the kernel
reference page table

D.5.2 Expanding the Stack 323

389-393 Same idea for the PMD. Copy the page table entry from the kernel ref-
erence page table to the process page tables

395 Check the PTE

396-397 If it is not present, it means the page was not valid even in the kernel
reference page table so goto no_context to handle what is probably a kernel
bug, probably a reference to a random part of unused kernel space

398 Otherwise return knowing the process page tables have been updated and are
in sync with the kernel page tables

D.5.2 Expanding the Stack

D.5.2.1 Function: expand_stack() (include/linux/mm.h)
This function is called by the architecture dependant page fault handler. The

VMA supplied is guarenteed to be one that can grow to cover the address.

640 static inline int expand_stack(struct vm_area_struct * vma,

unsigned long address)

641 {

642 unsigned long grow;

643

644 /*

645 * vma->vm_start/vm_end cannot change under us because

* the caller is required

646 * to hold the mmap_sem in write mode. We need to get the

647 * spinlock only before relocating the vma range ourself.

648 */

649 address &= PAGE_MASK;

650 spin_lock(&vma->vm_mm->page_table_lock);

651 grow = (vma->vm_start - address) >> PAGE_SHIFT;

652 if (vma->vm_end - address > current->rlim[RLIMIT_STACK].rlim_cur ||

653 ((vma->vm_mm->total_vm + grow) << PAGE_SHIFT) >

current->rlim[RLIMIT_AS].rlim_cur) {

654 spin_unlock(&vma->vm_mm->page_table_lock);

655 return -ENOMEM;

656 }

657 vma->vm_start = address;

658 vma->vm_pgoff -= grow;

659 vma->vm_mm->total_vm += grow;

660 if (vma->vm_flags & VM_LOCKED)

661 vma->vm_mm->locked_vm += grow;

662 spin_unlock(&vma->vm_mm->page_table_lock);

663 return 0;

664 }

D.5.3 Architecture Independent Page Fault Handler 324

649 Round the address down to the nearest page boundary

650 Lock the page tables spinlock

651 Calculate how many pages the stack needs to grow by

652 Check to make sure that the size of the stack does not exceed the process
limits

653 Check to make sure that the size of the addres space will not exceed process
limits after the stack is grown

654-655 If either of the limits are reached, return -ENOMEM which will cause the
faulting process to segfault

657-658 Grow the VMA down

659 Update the amount of address space used by the process

660-661 If the region is locked, update the number of locked pages used by the
process

662-663 Unlock the process page tables and return success

D.5.3 Architecture Independent Page Fault Handler

This is the top level pair of functions for the architecture independent page fault
handler.

D.5.3.1 Function: handle_mm_fault() (mm/memory.c)
The call graph for this function is shown in Figure 4.14. This function allocates

the PMD and PTE necessary for this new PTE hat is about to be allocated. It takes
the necessary locks to protect the page tables before calling handle_pte_fault()

to fault in the page itself.

1364 int handle_mm_fault(struct mm_struct *mm,

struct vm_area_struct * vma,

1365 unsigned long address, int write_access)

1366 {

1367 pgd_t *pgd;

1368 pmd_t *pmd;

1369

1370 current->state = TASK_RUNNING;

1371 pgd = pgd_offset(mm, address);

1372

1373 /*

1374 * We need the page table lock to synchronize with kswapd

1375 * and the SMP-safe atomic PTE updates.

D.5.3 Architecture Independent Page Fault Handler (handle_mm_fault()) 325

1376 */

1377 spin_lock(&mm->page_table_lock);

1378 pmd = pmd_alloc(mm, pgd, address);

1379

1380 if (pmd) {

1381 pte_t * pte = pte_alloc(mm, pmd, address);

1382 if (pte)

1383 return handle_pte_fault(mm, vma, address,

write_access, pte);

1384 }

1385 spin_unlock(&mm->page_table_lock);

1386 return -1;

1387 }

1364 The parameters of the function are;

mm is the mm_struct for the faulting process

vma is the vm_area_struct managing the region the fault occurred in

address is the faulting address

write_access is 1 if the fault is a write fault

1370 Set the current state of the process

1371 Get the pgd entry from the top level page table

1377 Lock the mm_struct as the page tables will change

1378 pmd_alloc() will allocate a pmd_t if one does not already exist

1380 If the pmd has been successfully allocated then...

1381 Allocate a PTE for this address if one does not already exist

1382-1383 Handle the page fault with handle_pte_fault() (See Section D.5.3.2)
and return the status code

1385 Failure path, unlock the mm_struct

1386 Return -1 which will be interpreted as an out of memory condition which is
correct as this line is only reached if a PMD or PTE could not be allocated

D.5.3.2 Function: handle_pte_fault() 326

D.5.3.2 Function: handle_pte_fault() (mm/memory.c)
This function decides what type of fault this is and which function should han-

dle it. do_no_page() is called if this is the �rst time a page is to be allocated.
do_swap_page() handles the case where the page was swapped out to disk with the
exception of pages swapped out from tmpfs. do_wp_page() breaks COW pages. If
none of them are appropriate, the PTE entry is simply updated. If it was written
to, it is marked dirty and it is marked accessed to show it is a young page.

1331 static inline int handle_pte_fault(struct mm_struct *mm,

1332 struct vm_area_struct * vma, unsigned long address,

1333 int write_access, pte_t * pte)

1334 {

1335 pte_t entry;

1336

1337 entry = *pte;

1338 if (!pte_present(entry)) {

1339 /*

1340 * If it truly wasn't present, we know that kswapd

1341 * and the PTE updates will not touch it later. So

1342 * drop the lock.

1343 */

1344 if (pte_none(entry))

1345 return do_no_page(mm, vma, address,

write_access, pte);

1346 return do_swap_page(mm, vma, address, pte, entry,

write_access);

1347 }

1348

1349 if (write_access) {

1350 if (!pte_write(entry))

1351 return do_wp_page(mm, vma, address, pte, entry);

1352

1353 entry = pte_mkdirty(entry);

1354 }

1355 entry = pte_mkyoung(entry);

1356 establish_pte(vma, address, pte, entry);

1357 spin_unlock(&mm->page_table_lock);

1358 return 1;

1359 }

1331 The parameters of the function are the same as those for handle_mm_fault()
except the PTE for the fault is included

1337 Record the PTE

1338 Handle the case where the PTE is not present

D.5.4 Demand Allocation 327

1344 If the PTE has never been �lled, handle the allocation of the PTE with
do_no_page()(See Section D.5.4.1)

1346 If the page has been swapped out to backing storage, handle it with
do_swap_page()(See Section D.5.5.1)

1349-1354 Handle the case where the page is been written to

1350-1351 If the PTE is marked write-only, it is a COW page so handle it with
do_wp_page()(See Section D.5.6.1)

1353 Otherwise just simply mark the page as dirty

1355 Mark the page as accessed

1356 establish_pte() copies the PTE and then updates the TLB and MMU
cache. This does not copy in a new PTE but some architectures require the
TLB and MMU update

1357 Unlock the mm_struct and return that a minor fault occurred

D.5.4 Demand Allocation

D.5.4.1 Function: do_no_page() (mm/memory.c)
The call graph for this function is shown in Figure 4.15. This function is called

the �rst time a page is referenced so that it may be allocated and �lled with data if
necessary. If it is an anonymous page, determined by the lack of a vm_ops available
to the VMA or the lack of a nopage() function, then do_anonymous_page() is
called. Otherwise the supplied nopage() function is called to allocate a page and it
is inserted into the page tables here. The function has the following tasks;

• Check if do_anonymous_page() should be used and if so, call it and return
the page it allocates. If not, call the supplied nopage() function and ensure
it allocates a page successfully.

• Break COW early if appropriate

• Add the page to the page table entries and call the appropriate architecture
dependent hooks

1245 static int do_no_page(struct mm_struct * mm,

struct vm_area_struct * vma,

1246 unsigned long address, int write_access, pte_t *page_table)

1247 {

1248 struct page * new_page;

1249 pte_t entry;

1250

1251 if (!vma->vm_ops || !vma->vm_ops->nopage)

D.5.4 Demand Allocation (do_no_page()) 328

1252 return do_anonymous_page(mm, vma, page_table,

write_access, address);

1253 spin_unlock(&mm->page_table_lock);

1254

1255 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, 0);

1256

1257 if (new_page == NULL) /* no page was available -- SIGBUS */

1258 return 0;

1259 if (new_page == NOPAGE_OOM)

1260 return -1;

1245 The parameters supplied are the same as those for handle_pte_fault()

1251-1252 If no vm_ops is supplied or no nopage() function is supplied, then call
do_anonymous_page()(See Section D.5.4.2) to allocate a page and return it

1253 Otherwise free the page table lock as the nopage() function can not be called
with spinlocks held

1255 Call the supplied nopage function, in the case of �lesystems, this is frequently
filemap_nopage()(See Section D.6.4.1) but will be di�erent for each device
driver

1257-1258 If NULL is returned, it means some error occurred in the nopage func-
tion such as an IO error while reading from disk. In this case, 0 is returned
which results in a SIGBUS been sent to the faulting process

1259-1260 If NOPAGE_OOM is returned, the physical page allocator failed to allocate
a page and -1 is returned which will forcibly kill the process

1265 if (write_access && !(vma->vm_flags & VM_SHARED)) {

1266 struct page * page = alloc_page(GFP_HIGHUSER);

1267 if (!page) {

1268 page_cache_release(new_page);

1269 return -1;

1270 }

1271 copy_user_highpage(page, new_page, address);

1272 page_cache_release(new_page);

1273 lru_cache_add(page);

1274 new_page = page;

1275 }

Break COW early in this block if appropriate. COW is broken if the fault is a
write fault and the region is not shared with VM_SHARED. If COW was not broken in
this case, a second fault would occur immediately upon return.

1265 Check if COW should be broken early

D.5.4 Demand Allocation (do_no_page()) 329

1266 If so, allocate a new page for the process

1267-1270 If the page could not be allocated, reduce the reference count to the
page returned by the nopage() function and return -1 for out of memory

1271 Otherwise copy the contents

1272 Reduce the reference count to the returned page which may still be in use
by another process

1273 Add the new page to the LRU lists so it may be reclaimed by kswapd later

1277 spin_lock(&mm->page_table_lock);

1288 /* Only go through if we didn't race with anybody else... */

1289 if (pte_none(*page_table)) {

1290 ++mm->rss;

1291 flush_page_to_ram(new_page);

1292 flush_icache_page(vma, new_page);

1293 entry = mk_pte(new_page, vma->vm_page_prot);

1294 if (write_access)

1295 entry = pte_mkwrite(pte_mkdirty(entry));

1296 set_pte(page_table, entry);

1297 } else {

1298 /* One of our sibling threads was faster, back out. */

1299 page_cache_release(new_page);

1300 spin_unlock(&mm->page_table_lock);

1301 return 1;

1302 }

1303

1304 /* no need to invalidate: a not-present page shouldn't

* be cached

*/

1305 update_mmu_cache(vma, address, entry);

1306 spin_unlock(&mm->page_table_lock);

1307 return 2; /* Major fault */

1308 }

1277 Lock the page tables again as the allocations have �nished and the page
tables are about to be updated

1289 Check if there is still no PTE in the entry we are about to use. If two
faults hit here at the same time, it is possible another processor has already
completed the page fault and this one should be backed out

1290-1297 If there is no PTE entered, complete the fault

D.5.4 Demand Allocation (do_no_page()) 330

1290 Increase the RSS count as the process is now using another page. A check
really should be made here to make sure it isn't the global zero page as the
RSS count could be misleading

1291 As the page is about to be mapped to the process space, it is possible for
some architectures that writes to the page in kernel space will not be visible to
the process. flush_page_to_ram() ensures the CPU cache will be coherent

1292 flush_icache_page() is similar in principle except it ensures the icache and
dcache's are coherent

1293 Create a pte_t with the appropriate permissions

1294-1295 If this is a write, then make sure the PTE has write permissions

1296 Place the new PTE in the process page tables

1297-1302 If the PTE is already �lled, the page acquired from the nopage()

function must be released

1299 Decrement the reference count to the page. If it drops to 0, it will be freed

1300-1301 Release the mm_struct lock and return 1 to signal this is a minor page
fault as no major work had to be done for this fault as it was all done by the
winner of the race

1305 Update the MMU cache for architectures that require it

1306-1307 Release the mm_struct lock and return 2 to signal this is a major page
fault

D.5.4.2 Function: do_anonymous_page() (mm/memory.c)
This function allocates a new page for a process accessing a page for the �rst

time. If it is a read access, a system wide page containing only zeros is mapped into
the process. If it is write, a zero �lled page is allocated and placed within the page
tables

1190 static int do_anonymous_page(struct mm_struct * mm,

struct vm_area_struct * vma,

pte_t *page_table, int write_access,

unsigned long addr)

1191 {

1192 pte_t entry;

1193

1194 /* Read-only mapping of ZERO_PAGE. */

1195 entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr),

vma->vm_page_prot));

1196

D.5.4 Demand Allocation (do_anonymous_page()) 331

1197 /* ..except if it's a write access */

1198 if (write_access) {

1199 struct page *page;

1200

1201 /* Allocate our own private page. */

1202 spin_unlock(&mm->page_table_lock);

1203

1204 page = alloc_page(GFP_HIGHUSER);

1205 if (!page)

1206 goto no_mem;

1207 clear_user_highpage(page, addr);

1208

1209 spin_lock(&mm->page_table_lock);

1210 if (!pte_none(*page_table)) {

1211 page_cache_release(page);

1212 spin_unlock(&mm->page_table_lock);

1213 return 1;

1214 }

1215 mm->rss++;

1216 flush_page_to_ram(page);

1217 entry = pte_mkwrite(

pte_mkdirty(mk_pte(page, vma->vm_page_prot)));

1218 lru_cache_add(page);

1219 mark_page_accessed(page);

1220 }

1221

1222 set_pte(page_table, entry);

1223

1224 /* No need to invalidate - it was non-present before */

1225 update_mmu_cache(vma, addr, entry);

1226 spin_unlock(&mm->page_table_lock);

1227 return 1; /* Minor fault */

1228

1229 no_mem:

1230 return -1;

1231 }

1190 The parameters are the same as those passed to handle_pte_fault()

(See Section D.5.3.2)

1195 For read accesses, simply map the system wide empty_zero_page which the
ZERO_PAGE() macro returns with the given permissions. The page is write
protected so that a write to the page will result in a page fault

1198-1220 If this is a write fault, then allocate a new page and zero �ll it

D.5.5 Demand Paging 332

1202 Unlock the mm_struct as the allocation of a new page could sleep

1204 Allocate a new page

1205 If a page could not be allocated, return -1 to handle the OOM situation

1207 Zero �ll the page

1209 Reacquire the lock as the page tables are to be updated

1215 Update the RSS for the process. Note that the RSS is not updated if it is
the global zero page being mapped as is the case with the read-only fault at
line 1195

1216 Ensure the cache is coherent

1217 Mark the PTE writable and dirty as it has been written to

1218 Add the page to the LRU list so it may be reclaimed by the swapper later

1219 Mark the page accessed which ensures the page is marked hot and on the top
of the active list

1222 Fix the PTE in the page tables for this process

1225 Update the MMU cache if the architecture needs it

1226 Free the page table lock

1227 Return as a minor fault as even though it is possible the page allocator spent
time writing out pages, data did not have to be read from disk to �ll this page

D.5.5 Demand Paging

D.5.5.1 Function: do_swap_page() (mm/memory.c)
The call graph for this function is shown in Figure 4.16. This function handles

the case where a page has been swapped out. A swapped out page may exist in
the swap cache if it is shared between a number of processes or recently swapped in
during readahead. This function is broken up into three parts

• Search for the page in swap cache

• If it does not exist, call swapin_readahead() to read in the page

• Insert the page into the process page tables

D.5.5 Demand Paging (do_swap_page()) 333

1117 static int do_swap_page(struct mm_struct * mm,

1118 struct vm_area_struct * vma, unsigned long address,

1119 pte_t * page_table, pte_t orig_pte, int write_access)

1120 {

1121 struct page *page;

1122 swp_entry_t entry = pte_to_swp_entry(orig_pte);

1123 pte_t pte;

1124 int ret = 1;

1125

1126 spin_unlock(&mm->page_table_lock);

1127 page = lookup_swap_cache(entry);

Function preamble, check for the page in the swap cache

1117-1119 The parameters are the same as those supplied to handle_pte_fault()
(See Section D.5.3.2)

1122 Get the swap entry information from the PTE

1126 Free the mm_struct spinlock

1127 Lookup the page in the swap cache

1128 if (!page) {

1129 swapin_readahead(entry);

1130 page = read_swap_cache_async(entry);

1131 if (!page) {

1136 int retval;

1137 spin_lock(&mm->page_table_lock);

1138 retval = pte_same(*page_table, orig_pte) ? -1 : 1;

1139 spin_unlock(&mm->page_table_lock);

1140 return retval;

1141 }

1142

1143 /* Had to read the page from swap area: Major fault */

1144 ret = 2;

1145 }

If the page did not exist in the swap cache, then read it from backing storage
with swapin_readhead() which reads in the requested pages and a number of pages
after it. Once it completes, read_swap_cache_async() should be able to return the
page.

1128-1145 This block is executed if the page was not in the swap cache

D.5.5 Demand Paging (do_swap_page()) 334

1129 swapin_readahead()(See Section D.6.6.1) reads in the requested page and
a number of pages after it. The number of pages read in is determined by
the page_cluster variable in mm/swap.c which is initialised to 2 on machines
with less than 16MiB of memory and 3 otherwise. 2page_cluster pages are read
in after the requested page unless a bad or empty page entry is encountered

1130 read_swap_cache_async() (See Section K.3.1.1) will look up the requested
page and read it from disk if necessary

1131-1141 If the page does not exist, there was another fault which swapped in
this page and removed it from the cache while spinlocks were dropped

1137 Lock the mm_struct

1138 Compare the two PTEs. If they do not match, -1 is returned to signal an IO
error, else 1 is returned to mark a minor page fault as a disk access was not
required for this particular page.

1139-1140 Free the mm_struct and return the status

1144 The disk had to be accessed to mark that this is a major page fault

1147 mark_page_accessed(page);

1148

1149 lock_page(page);

1150

1151 /*

1152 * Back out if somebody else faulted in this pte while we

1153 * released the page table lock.

1154 */

1155 spin_lock(&mm->page_table_lock);

1156 if (!pte_same(*page_table, orig_pte)) {

1157 spin_unlock(&mm->page_table_lock);

1158 unlock_page(page);

1159 page_cache_release(page);

1160 return 1;

1161 }

1162

1163 /* The page isn't present yet, go ahead with the fault. */

1164

1165 swap_free(entry);

1166 if (vm_swap_full())

1167 remove_exclusive_swap_page(page);

1168

1169 mm->rss++;

1170 pte = mk_pte(page, vma->vm_page_prot);

1171 if (write_access && can_share_swap_page(page))

D.5.5 Demand Paging (do_swap_page()) 335

1172 pte = pte_mkdirty(pte_mkwrite(pte));

1173 unlock_page(page);

1174

1175 flush_page_to_ram(page);

1176 flush_icache_page(vma, page);

1177 set_pte(page_table, pte);

1178

1179 /* No need to invalidate - it was non-present before */

1180 update_mmu_cache(vma, address, pte);

1181 spin_unlock(&mm->page_table_lock);

1182 return ret;

1183 }

Place the page in the process page tables

1147 mark_page_accessed()(See Section J.2.3.1) will mark the page as active so
it will be moved to the top of the active LRU list

1149 Lock the page which has the side e�ect of waiting for the IO swapping in the
page to complete

1155-1161 If someone else faulted in the page before we could, the reference to
the page is dropped, the lock freed and return that this was a minor fault

1165 The function swap_free()(See Section K.2.2.1) reduces the reference to a
swap entry. If it drops to 0, it is actually freed

1166-1167 Page slots in swap space are reserved for the same page once they have
been swapped out to avoid having to search for a free slot each time. If the
swap space is full though, the reservation is broken and the slot freed up for
another page

1169 The page is now going to be used so increment the mm_structs RSS count

1170 Make a PTE for this page

1171 If the page is been written to and is not shared between more than one
process, mark it dirty so that it will be kept in sync with the backing storage
and swap cache for other processes

1173 Unlock the page

1175 As the page is about to be mapped to the process space, it is possible for
some architectures that writes to the page in kernel space will not be visible
to the process. flush_page_to_ram() ensures the cache will be coherent

1176 flush_icache_page() is similar in principle except it ensures the icache and
dcache's are coherent

D.5.5 Demand Paging (do_swap_page()) 336

1177 Set the PTE in the process page tables

1180 Update the MMU cache if the architecture requires it

1181-1182 Unlock the mm_struct and return whether it was a minor or major
page fault

D.5.5.2 Function: can_share_swap_page() (mm/swap�le.c)
This function determines if the swap cache entry for this page may be used or not.

It may be used if there is no other references to it. Most of the work is performed by
exclusive_swap_page() but this function �rst makes a few basic checks to avoid
having to acquire too many locks.

259 int can_share_swap_page(struct page *page)

260 {

261 int retval = 0;

262

263 if (!PageLocked(page))

264 BUG();

265 switch (page_count(page)) {

266 case 3:

267 if (!page->buffers)

268 break;

269 /* Fallthrough */

270 case 2:

271 if (!PageSwapCache(page))

272 break;

273 retval = exclusive_swap_page(page);

274 break;

275 case 1:

276 if (PageReserved(page))

277 break;

278 retval = 1;

279 }

280 return retval;

281 }

263-264 This function is called from the fault path and the page must be locked

265 Switch based on the number of references

266-268 If the count is 3, but there is no bu�ers associated with it, there is more
than one process using the page. Bu�ers may be associated for just one process
if the page is backed by a swap �le instead of a partition

270-273 If the count is only two, but it is not a member of the swap cache, then
it has no slot which may be shared so return false. Otherwise perform a full
check with exclusive_swap_page() (See Section D.5.5.3)

D.5.5 Demand Paging (can_share_swap_page()) 337

276-277 If the page is reserved, it is the global ZERO_PAGE so it cannot be shared
otherwise this page is de�nitely the only one

D.5.5.3 Function: exclusive_swap_page() (mm/swap�le.c)
This function checks if the process is the only user of a locked swap page.

229 static int exclusive_swap_page(struct page *page)

230 {

231 int retval = 0;

232 struct swap_info_struct * p;

233 swp_entry_t entry;

234

235 entry.val = page->index;

236 p = swap_info_get(entry);

237 if (p) {

238 /* Is the only swap cache user the cache itself? */

239 if (p->swap_map[SWP_OFFSET(entry)] == 1) {

240 /* Recheck the page count with the pagecache

* lock held.. */

241 spin_lock(&pagecache_lock);

242 if (page_count(page) - !!page->buffers == 2)

243 retval = 1;

244 spin_unlock(&pagecache_lock);

245 }

246 swap_info_put(p);

247 }

248 return retval;

249 }

231 By default, return false

235 The swp_entry_t for the page is stored in page→index as explained in Section
2.4

236 Get the swap_info_struct with swap_info_get()(See Section K.2.3.1)

237-247 If a slot exists, check if we are the exclusive user and return true if we are

239 Check if the slot is only being used by the cache itself. If it is, the page count
needs to be checked again with the pagecache_lock held

242-243 !!page→buffers will evaluate to 1 if there is bu�ers are present so this
block e�ectively checks if the process is the only user of the page. If it is,
retval is set to 1 so that true will be returned

246 Drop the reference to the slot that was taken with swap_info_get()

(See Section K.2.3.1)

D.5.6 Copy On Write (COW) Pages 338

D.5.6 Copy On Write (COW) Pages

D.5.6.1 Function: do_wp_page() (mm/memory.c)
The call graph for this function is shown in Figure 4.17. This function handles

the case where a user tries to write to a private page shared amoung processes, such
as what happens after fork(). Basically what happens is a page is allocated, the
contents copied to the new page and the shared count decremented in the old page.

948 static int do_wp_page(struct mm_struct *mm,

struct vm_area_struct * vma,

949 unsigned long address, pte_t *page_table, pte_t pte)

950 {

951 struct page *old_page, *new_page;

952

953 old_page = pte_page(pte);

954 if (!VALID_PAGE(old_page))

955 goto bad_wp_page;

956

948-950 The parameters are the same as those supplied to handle_pte_fault()

953-955 Get a reference to the current page in the PTE and make sure it is valid

957 if (!TryLockPage(old_page)) {

958 int reuse = can_share_swap_page(old_page);

959 unlock_page(old_page);

960 if (reuse) {

961 flush_cache_page(vma, address);

962 establish_pte(vma, address, page_table,

pte_mkyoung(pte_mkdirty(pte_mkwrite(pte))));

963 spin_unlock(&mm->page_table_lock);

964 return 1; /* Minor fault */

965 }

966 }

957 First try to lock the page. If 0 is returned, it means the page was previously
unlocked

958 If we managed to lock it, call can_share_swap_page() (See Section D.5.5.2)
to see are we the exclusive user of the swap slot for this page. If we are, it
means that we are the last process to break COW and we can simply use this
page rather than allocating a new one

960-965 If we are the only users of the swap slot, then it means we are the only
user of this page and the last process to break COW so the PTE is simply
re-established and we return a minor fault

D.5.6 Copy On Write (COW) Pages (do_wp_page()) 339

968 /*

969 * Ok, we need to copy. Oh, well..

970 */

971 page_cache_get(old_page);

972 spin_unlock(&mm->page_table_lock);

973

974 new_page = alloc_page(GFP_HIGHUSER);

975 if (!new_page)

976 goto no_mem;

977 copy_cow_page(old_page,new_page,address);

978

971 We need to copy this page so �rst get a reference to the old page so it doesn't
disappear before we are �nished with it

972 Unlock the spinlock as we are about to call alloc_page() (See Section F.2.1)
which may sleep

974-976 Allocate a page and make sure one was returned

977 No prizes what this function does. If the page being broken is the global zero
page, clear_user_highpage() will be used to zero out the contents of the
page, otherwise copy_user_highpage() copies the actual contents

982 spin_lock(&mm->page_table_lock);

983 if (pte_same(*page_table, pte)) {

984 if (PageReserved(old_page))

985 ++mm->rss;

986 break_cow(vma, new_page, address, page_table);

987 lru_cache_add(new_page);

988

989 /* Free the old page.. */

990 new_page = old_page;

991 }

992 spin_unlock(&mm->page_table_lock);

993 page_cache_release(new_page);

994 page_cache_release(old_page);

995 return 1; /* Minor fault */

982 The page table lock was released for alloc_page()(See Section F.2.1) so reac-
quire it

983 Make sure the PTE hasn't changed in the meantime which could have hap-
pened if another fault occured while the spinlock is released

984-985 The RSS is only updated if PageReserved() is true which will only hap-
pen if the page being faulted is the global ZERO_PAGE which is not accounted

D.5.6 Copy On Write (COW) Pages (do_wp_page()) 340

for in the RSS. If this was a normal page, the process would be using the same
number of physical frames after the fault as it was before but against the zero
page, it'll be using a new frame so rss++

986 break_cow() is responsible for calling the architecture hooks to ensure the
CPU cache and TLBs are up to date and then establish the new page into
the PTE. It �rst calls flush_page_to_ram() which must be called when a
struct page is about to be placed in userspace. Next is flush_cache_page()
which �ushes the page from the CPU cache. Lastly is establish_pte() which
establishes the new page into the PTE

987 Add the page to the LRU lists

992 Release the spinlock

993-994 Drop the references to the pages

995 Return a minor fault

996

997 bad_wp_page:

998 spin_unlock(&mm->page_table_lock);

999 printk("do_wp_page: bogus page at address %08lx (page 0x%lx)\n",

address,(unsigned long)old_page);

1000 return -1;

1001 no_mem:

1002 page_cache_release(old_page);

1003 return -1;

1004 }

997-1000 This is a false COW break which will only happen with a buggy kernel.
Print out an informational message and return

1001-1003 The page allocation failed so release the reference to the old page and
return -1

D.6 Page-Related Disk IO 341

D.6 Page-Related Disk IO

Contents

D.6 Page-Related Disk IO 341
D.6.1 Generic File Reading 341
D.6.1.1 Function: generic_file_read() 341
D.6.1.2 Function: do_generic_file_read() 344
D.6.1.3 Function: generic_file_readahead() 351

D.6.2 Generic File mmap() 355
D.6.2.1 Function: generic_file_mmap() 355

D.6.3 Generic File Truncation 356
D.6.3.1 Function: vmtruncate() 356
D.6.3.2 Function: vmtruncate_list() 358
D.6.3.3 Function: zap_page_range() 359
D.6.3.4 Function: zap_pmd_range() 361
D.6.3.5 Function: zap_pte_range() 362
D.6.3.6 Function: truncate_inode_pages() 364
D.6.3.7 Function: truncate_list_pages() 365
D.6.3.8 Function: truncate_complete_page() 367
D.6.3.9 Function: do_flushpage() 368
D.6.3.10 Function: truncate_partial_page() 368

D.6.4 Reading Pages for the Page Cache 369
D.6.4.1 Function: filemap_nopage() 369
D.6.4.2 Function: page_cache_read() 374

D.6.5 File Readahead for nopage() 375
D.6.5.1 Function: nopage_sequential_readahead() 375
D.6.5.2 Function: read_cluster_nonblocking() 377

D.6.6 Swap Related Read-Ahead 378
D.6.6.1 Function: swapin_readahead() 378
D.6.6.2 Function: valid_swaphandles() 379

D.6.1 Generic File Reading

This is more the domain of the IO manager than the VM but because it per-
forms the operations via the page cache, we will cover it brie�y. The operation
of generic_file_write() is essentially the same although it is not covered by this
book. However, if you understand how the read takes place, the write function will
pose no problem to you.

D.6.1.1 Function: generic_file_read() (mm/�lemap.c)
This is the generic �le read function used by any �lesystem that reads pages

through the page cache. For normal IO, it is responsible for building a read_descriptor_t
for use with do_generic_file_read() and file_read_actor(). For direct IO, this
function is basically a wrapper around generic_file_direct_IO().

1695 ssize_t generic_file_read(struct file * filp,

char * buf, size_t count,

D.6.1 Generic File Reading (generic_file_read()) 342

loff_t *ppos)

1696 {

1697 ssize_t retval;

1698

1699 if ((ssize_t) count < 0)

1700 return -EINVAL;

1701

1702 if (filp->f_flags & O_DIRECT)

1703 goto o_direct;

1704

1705 retval = -EFAULT;

1706 if (access_ok(VERIFY_WRITE, buf, count)) {

1707 retval = 0;

1708

1709 if (count) {

1710 read_descriptor_t desc;

1711

1712 desc.written = 0;

1713 desc.count = count;

1714 desc.buf = buf;

1715 desc.error = 0;

1716 do_generic_file_read(filp, ppos, &desc,

file_read_actor);

1717

1718 retval = desc.written;

1719 if (!retval)

1720 retval = desc.error;

1721 }

1722 }

1723 out:

1724 return retval;

This block is concern with normal �le IO.

1702-1703 If this is direct IO, jump to the o_direct label

1706 If the access permissions to write to a userspace page are ok, then proceed

1709 If count is 0, there is no IO to perform

1712-1715 Populate a read_descriptor_t structure which will be used by
file_read_actor()(See Section L.3.2.3)

1716 Perform the �le read

1718 Extract the number of bytes written from the read descriptor struct

D.6.1 Generic File Reading (generic_file_read()) 343

1282-1683 If an error occured, extract what the error was

1724 Return either the number of bytes read or the error that occured

1725

1726 o_direct:

1727 {

1728 loff_t pos = *ppos, size;

1729 struct address_space *mapping =

filp->f_dentry->d_inode->i_mapping;

1730 struct inode *inode = mapping->host;

1731

1732 retval = 0;

1733 if (!count)

1734 goto out; /* skip atime */

1735 down_read(&inode->i_alloc_sem);

1736 down(&inode->i_sem);

1737 size = inode->i_size;

1738 if (pos < size) {

1739 retval = generic_file_direct_IO(READ, filp, buf,

count, pos);

1740 if (retval > 0)

1741 *ppos = pos + retval;

1742 }

1743 UPDATE_ATIME(filp->f_dentry->d_inode);

1744 goto out;

1745 }

1746 }

This block is concerned with direct IO. It is largely responsible for extracting
the parameters required for generic_file_direct_IO().

1729 Get the address_space used by this struct file

1733-1734 If no IO has been requested, jump to out to avoid updating the inodes
access time

1737 Get the size of the �le

1299-1700 If the current position is before the end of the �le, the read is safe so
call generic_file_direct_IO()

1740-1741 If the read was successful, update the current position in the �le for
the reader

1743 Update the access time

1744 Goto out which just returns retval

D.6.1.2 Function: do_generic_file_read() 344

D.6.1.2 Function: do_generic_file_read() (mm/�lemap.c)
This is the core part of the generic �le read operation. It is responsible for

allocating a page if it doesn't already exist in the page cache. If it does, it must
make sure the page is up-to-date and �nally, it is responsible for making sure that
the appropriate readahead window is set.

1349 void do_generic_file_read(struct file * filp,

loff_t *ppos,

read_descriptor_t * desc,

read_actor_t actor)

1350 {

1351 struct address_space *mapping =

filp->f_dentry->d_inode->i_mapping;

1352 struct inode *inode = mapping->host;

1353 unsigned long index, offset;

1354 struct page *cached_page;

1355 int reada_ok;

1356 int error;

1357 int max_readahead = get_max_readahead(inode);

1358

1359 cached_page = NULL;

1360 index = *ppos >> PAGE_CACHE_SHIFT;

1361 offset = *ppos & ~PAGE_CACHE_MASK;

1362

1357 Get the maximum readahead window size for this block device

1360 Calculate the page index which holds the current �le position pointer

1361 Calculate the o�set within the page that holds the current �le position pointer

1363 /*

1364 * If the current position is outside the previous read-ahead

1365 * window, we reset the current read-ahead context and set read

1366 * ahead max to zero (will be set to just needed value later),

1367 * otherwise, we assume that the file accesses are sequential

1368 * enough to continue read-ahead.

1369 */

1370 if (index > filp->f_raend ||

index + filp->f_rawin < filp->f_raend) {

1371 reada_ok = 0;

1372 filp->f_raend = 0;

1373 filp->f_ralen = 0;

1374 filp->f_ramax = 0;

1375 filp->f_rawin = 0;

1376 } else {

D.6.1 Generic File Reading (do_generic_file_read()) 345

1377 reada_ok = 1;

1378 }

1379 /*

1380 * Adjust the current value of read-ahead max.

1381 * If the read operation stay in the first half page, force no

1382 * readahead. Otherwise try to increase read ahead max just

* enough to do the read request.

1383 * Then, at least MIN_READAHEAD if read ahead is ok,

1384 * and at most MAX_READAHEAD in all cases.

1385 */

1386 if (!index && offset + desc->count <= (PAGE_CACHE_SIZE >> 1)) {

1387 filp->f_ramax = 0;

1388 } else {

1389 unsigned long needed;

1390

1391 needed = ((offset + desc->count) >> PAGE_CACHE_SHIFT) + 1;

1392

1393 if (filp->f_ramax < needed)

1394 filp->f_ramax = needed;

1395

1396 if (reada_ok && filp->f_ramax < vm_min_readahead)

1397 filp->f_ramax = vm_min_readahead;

1398 if (filp->f_ramax > max_readahead)

1399 filp->f_ramax = max_readahead;

1400 }

1370-1378 As the comment suggests, the readahead window gets reset if the cur-
rent �le position is outside the current readahead window. It gets reset to
0 here and adjusted by generic_file_readahead()(See Section D.6.1.3) as
necessary

1386-1400 As the comment states, the readahead window gets adjusted slightly
if we are in the second-half of the current page

1402 for (;;) {

1403 struct page *page, **hash;

1404 unsigned long end_index, nr, ret;

1405

1406 end_index = inode->i_size >> PAGE_CACHE_SHIFT;

1407

1408 if (index > end_index)

1409 break;

1410 nr = PAGE_CACHE_SIZE;

1411 if (index == end_index) {

1412 nr = inode->i_size & ~PAGE_CACHE_MASK;

1413 if (nr <= offset)

D.6.1 Generic File Reading (do_generic_file_read()) 346

1414 break;

1415 }

1416

1417 nr = nr - offset;

1418

1419 /*

1420 * Try to find the data in the page cache..

1421 */

1422 hash = page_hash(mapping, index);

1423

1424 spin_lock(&pagecache_lock);

1425 page = __find_page_nolock(mapping, index, *hash);

1426 if (!page)

1427 goto no_cached_page;

1402 This loop goes through each of the pages necessary to satisfy the read request

1406 Calculate where the end of the �le is in pages

1408-1409 If the current index is beyond the end, then break out as we are trying
to read beyond the end of the �le

1410-1417 Calculate nr to be the number of bytes remaining to be read in the
current page. The block takes into account that this might be the last page
used by the �le and where the current �le position is within the page

1422-1425 Search for the page in the page cache

1426-1427 If the page is not in the page cache, goto no_cached_page where it
will be allocated

1428 found_page:

1429 page_cache_get(page);

1430 spin_unlock(&pagecache_lock);

1431

1432 if (!Page_Uptodate(page))

1433 goto page_not_up_to_date;

1434 generic_file_readahead(reada_ok, filp, inode, page);

In this block, the page was found in the page cache.

1429 Take a reference to the page in the page cache so it does not get freed
prematurly

1432-1433 If the page is not up-to-date, goto page_not_up_to_date to update
the page with information on the disk

1434 Perform �le readahead with generic_file_readahead()(See Section D.6.1.3)

D.6.1 Generic File Reading (do_generic_file_read()) 347

1435 page_ok:

1436 /* If users can be writing to this page using arbitrary

1437 * virtual addresses, take care about potential aliasing

1438 * before reading the page on the kernel side.

1439 */

1440 if (mapping->i_mmap_shared != NULL)

1441 flush_dcache_page(page);

1442

1443 /*

1444 * Mark the page accessed if we read the

1445 * beginning or we just did an lseek.

1446 */

1447 if (!offset || !filp->f_reada)

1448 mark_page_accessed(page);

1449

1450 /*

1451 * Ok, we have the page, and it's up-to-date, so

1452 * now we can copy it to user space...

1453 *

1454 * The actor routine returns how many bytes were actually used..

1455 * NOTE! This may not be the same as how much of a user buffer

1456 * we filled up (we may be padding etc), so we can only update

1457 * "pos" here (the actor routine has to update the user buffer

1458 * pointers and the remaining count).

1459 */

1460 ret = actor(desc, page, offset, nr);

1461 offset += ret;

1462 index += offset >> PAGE_CACHE_SHIFT;

1463 offset &= ~PAGE_CACHE_MASK;

1464

1465 page_cache_release(page);

1466 if (ret == nr && desc->count)

1467 continue;

1468 break;

In this block, the page is present in the page cache and ready to be read by the
�le read actor function.

1440-1441 As other users could be writing this page, call flush_dcache_page()
to make sure the changes are visible

1447-1448 As the page has just been accessed, call mark_page_accessed()

(See Section J.2.3.1) to move it to the active_list

1460 Call the actor function. In this case, the actor function is file_read_actor()
(See Section L.3.2.3) which is responsible for copying the bytes from the page
to userspace

D.6.1 Generic File Reading (do_generic_file_read()) 348

1461 Update the current o�set within the �le

1462 Move to the next page if necessary

1463 Update the o�set within the page we are currently reading. Remember that
we could have just crossed into the next page in the �le

1465 Release our reference to this page

1466-1468 If there is still data to be read, loop again to read the next page.
Otherwise break as the read operation is complete

1470 /*

1471 * Ok, the page was not immediately readable, so let's try to read

* ahead while we're at it..

1472 */

1473 page_not_up_to_date:

1474 generic_file_readahead(reada_ok, filp, inode, page);

1475

1476 if (Page_Uptodate(page))

1477 goto page_ok;

1478

1479 /* Get exclusive access to the page ... */

1480 lock_page(page);

1481

1482 /* Did it get unhashed before we got the lock? */

1483 if (!page->mapping) {

1484 UnlockPage(page);

1485 page_cache_release(page);

1486 continue;

1487 }

1488

1489 /* Did somebody else fill it already? */

1490 if (Page_Uptodate(page)) {

1491 UnlockPage(page);

1492 goto page_ok;

1493 }

In this block, the page being read was not up-to-date with information on the
disk. generic_file_readahead() is called to update the current page and reada-
head as IO is required anyway.

1474 Call generic_file_readahead()(See Section D.6.1.3) to sync the current
page and readahead if necessary

1476-1477 If the page is now up-to-date, goto page_ok to start copying the bytes
to userspace

D.6.1 Generic File Reading (do_generic_file_read()) 349

1480 Otherwise something happened with readahead so lock the page for exclusive
access

1483-1487 If the page was somehow removed from the page cache while spinlocks
were not held, then release the reference to the page and start all over again.
The second time around, the page will get allocated and inserted into the page
cache all over again

1490-1493 If someone updated the page while we did not have a lock on the page
then unlock it again and goto page_ok to copy the bytes to userspace

1495 readpage:

1496 /* ... and start the actual read. The read will

* unlock the page. */

1497 error = mapping->a_ops->readpage(filp, page);

1498

1499 if (!error) {

1500 if (Page_Uptodate(page))

1501 goto page_ok;

1502

1503 /* Again, try some read-ahead while waiting for

* the page to finish.. */

1504 generic_file_readahead(reada_ok, filp, inode, page);

1505 wait_on_page(page);

1506 if (Page_Uptodate(page))

1507 goto page_ok;

1508 error = -EIO;

1509 }

1510

1511 /* UHHUH! A synchronous read error occurred. Report it */

1512 desc->error = error;

1513 page_cache_release(page);

1514 break;

At this block, readahead failed to we synchronously read the page with the
address_space supplied readpage() function.

1497 Call the address_space �lesystem-speci�c readpage() function. In many
cases this will ultimatly call the function block_read_full_page() declared
in fs/buffer.c()

1499-1501 If no error occurred and the page is now up-to-date, goto page_ok to
begin copying the bytes to userspace

1504 Otherwise, schedule some readahead to occur as we are forced to wait on IO
anyway

D.6.1 Generic File Reading (do_generic_file_read()) 350

1505-1507 Wait for IO on the requested page to complete. If it �nished success-
fully, then goto page_ok

1508 Otherwise an error occured so set -EIO to be returned to userspace

1512-1514 An IO error occured so record it and release the reference to the current
page. This error will be picked up from the read_descriptor_t struct by
generic_file_read() (See Section D.6.1.1)

1516 no_cached_page:

1517 /*

1518 * Ok, it wasn't cached, so we need to create a new

1519 * page..

1520 *

1521 * We get here with the page cache lock held.

1522 */

1523 if (!cached_page) {

1524 spin_unlock(&pagecache_lock);

1525 cached_page = page_cache_alloc(mapping);

1526 if (!cached_page) {

1527 desc->error = -ENOMEM;

1528 break;

1529 }

1530

1531 /*

1532 * Somebody may have added the page while we

1533 * dropped the page cache lock. Check for that.

1534 */

1535 spin_lock(&pagecache_lock);

1536 page = __find_page_nolock(mapping, index, *hash);

1537 if (page)

1538 goto found_page;

1539 }

1540

1541 /*

1542 * Ok, add the new page to the hash-queues...

1543 */

1544 page = cached_page;

1545 __add_to_page_cache(page, mapping, index, hash);

1546 spin_unlock(&pagecache_lock);

1547 lru_cache_add(page);

1548 cached_page = NULL;

1549

1550 goto readpage;

1551 }

D.6.1 Generic File Reading (do_generic_file_read()) 351

In this block, the page does not exist in the page cache so allocate one and add
it.

1523-1539 If a cache page has not already been allocated then allocate one and
make sure that someone else did not insert one into the page cache while we
were sleeping

1524 Release pagecache_lock as page_cache_alloc() may sleep

1525-1529 Allocate a page and set -ENOMEM to be returned if the allocation failed

1535-1536 Acquire pagecache_lock again and search the page cache to make sure
another process has not inserted it while the lock was dropped

1537 If another process added a suitable page to the cache already, jump to
found_page as the one we just allocated is no longer necessary

1544-1545 Otherwise, add the page we just allocated to the page cache

1547 Add the page to the LRU lists

1548 Set cached_page to NULL as it is now in use

1550 Goto readpage to schedule the page to be read from disk

1552

1553 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;

1554 filp->f_reada = 1;

1555 if (cached_page)

1556 page_cache_release(cached_page);

1557 UPDATE_ATIME(inode);

1558 }

1553 Update our position within the �le

1555-1556 If a page was allocated for addition to the page cache and then found
to be unneeded, release it here

1557 Update the access time to the �le

D.6.1.3 Function: generic_file_readahead() (mm/�lemap.c)
This function performs generic �le read-ahead. Readahead is one of the few areas

that is very heavily commented upon in the code. It is highly recommended that
you read the comments in mm/filemap.c marked with �Read-ahead context�.

D.6.1 Generic File Reading (generic_file_readahead()) 352

1222 static void generic_file_readahead(int reada_ok,

1223 struct file * filp, struct inode * inode,

1224 struct page * page)

1225 {

1226 unsigned long end_index;

1227 unsigned long index = page->index;

1228 unsigned long max_ahead, ahead;

1229 unsigned long raend;

1230 int max_readahead = get_max_readahead(inode);

1231

1232 end_index = inode->i_size >> PAGE_CACHE_SHIFT;

1233

1234 raend = filp->f_raend;

1235 max_ahead = 0;

1227 Get the index to start from based on the supplied page

1230 Get the maximum sized readahead for this block device

1232 Get the index, in pages, of the end of the �le

1234 Get the end of the readahead window from the struct file

1236

1237 /*

1238 * The current page is locked.

1239 * If the current position is inside the previous read IO request,

1240 * do not try to reread previously read ahead pages.

1241 * Otherwise decide or not to read ahead some pages synchronously.

1242 * If we are not going to read ahead, set the read ahead context

1243 * for this page only.

1244 */

1245 if (PageLocked(page)) {

1246 if (!filp->f_ralen ||

index >= raend ||

index + filp->f_rawin < raend) {

1247 raend = index;

1248 if (raend < end_index)

1249 max_ahead = filp->f_ramax;

1250 filp->f_rawin = 0;

1251 filp->f_ralen = 1;

1252 if (!max_ahead) {

1253 filp->f_raend = index + filp->f_ralen;

1254 filp->f_rawin += filp->f_ralen;

1255 }

1256 }

1257 }

D.6.1 Generic File Reading (generic_file_readahead()) 353

This block has encountered a page that is locked so it must decide whether to
temporarily disable readahead.

1245 If the current page is locked for IO, then check if the current page is within
the last readahead window. If it is, there is no point trying to readahead
again. If it is not, or readahead has not been performed previously, update
the readahead context

1246 The �rst check is if readahead has been performed previously. The second
is to see if the current locked page is after where the the previous readahead
�nished. The third check is if the current locked page is within the current
readahead window

1247 Update the end of the readahead window

1248-1249 If the end of the readahead window is not after the end of the �le, set
max_ahead to be the maximum amount of readahead that should be used with
this struct file(filp→f_ramax)

1250-1255 Set readahead to only occur with the current page, e�ectively disabling
readahead

1258 /*

1259 * The current page is not locked.

1260 * If we were reading ahead and,

1261 * if the current max read ahead size is not zero and,

1262 * if the current position is inside the last read-ahead IO

1263 * request, it is the moment to try to read ahead asynchronously.

1264 * We will later force unplug device in order to force

* asynchronous read IO.

1265 */

1266 else if (reada_ok && filp->f_ramax && raend >= 1 &&

1267 index <= raend && index + filp->f_ralen >= raend) {

1268 /*

1269 * Add ONE page to max_ahead in order to try to have about the

1270 * same IO maxsize as synchronous read-ahead

* (MAX_READAHEAD + 1)*PAGE_CACHE_SIZE.

1271 * Compute the position of the last page we have tried to read

1272 * in order to begin to read ahead just at the next page.

1273 */

1274 raend -= 1;

1275 if (raend < end_index)

1276 max_ahead = filp->f_ramax + 1;

1277

1278 if (max_ahead) {

1279 filp->f_rawin = filp->f_ralen;

D.6.1 Generic File Reading (generic_file_readahead()) 354

1280 filp->f_ralen = 0;

1281 reada_ok = 2;

1282 }

1283 }

This is one of the rare cases where the in-code commentary makes the code
as clear as it possibly could be. Basically, it is saying that if the current page is
not locked for IO, then extend the readahead window slight and remember that
readahead is currently going well.

1284 /*

1285 * Try to read ahead pages.

1286 * We hope that ll_rw_blk() plug/unplug, coalescence, requests

1287 * sort and the scheduler, will work enough for us to avoid too

* bad actuals IO requests.

1288 */

1289 ahead = 0;

1290 while (ahead < max_ahead) {

1291 ahead ++;

1292 if ((raend + ahead) >= end_index)

1293 break;

1294 if (page_cache_read(filp, raend + ahead) < 0)

1295 break;

1296 }

This block performs the actual readahead by calling page_cache_read() for
each of the pages in the readahead window. Note here how ahead is incremented
for each page that is readahead.

1297 /*

1298 * If we tried to read ahead some pages,

1299 * If we tried to read ahead asynchronously,

1300 * Try to force unplug of the device in order to start an

1301 * asynchronous read IO request.

1302 * Update the read-ahead context.

1303 * Store the length of the current read-ahead window.

1304 * Double the current max read ahead size.

1305 * That heuristic avoid to do some large IO for files that are

1306 * not really accessed sequentially.

1307 */

1308 if (ahead) {

1309 filp->f_ralen += ahead;

1310 filp->f_rawin += filp->f_ralen;

1311 filp->f_raend = raend + ahead + 1;

1312

D.6.2 Generic File mmap() 355

1313 filp->f_ramax += filp->f_ramax;

1314

1315 if (filp->f_ramax > max_readahead)

1316 filp->f_ramax = max_readahead;

1317

1318 #ifdef PROFILE_READAHEAD

1319 profile_readahead((reada_ok == 2), filp);

1320 #endif

1321 }

1322

1323 return;

1324 }

If readahead was successful, then update the readahead �elds in the struct file

to mark the progress. This is basically growing the readahead context but can
be reset by do_generic_file_readahead() if it is found that the readahead is
ine�ective.

1309 Update the f_ralen with the number of pages that were readahead in this
pass

1310 Update the size of the readahead window

1311 Mark the end of hte readahead

1313 Double the current maximum-sized readahead

1315-1316 Do not let the maximum sized readahead get larger than the maximum
readahead de�ned for this block device

D.6.2 Generic File mmap()

D.6.2.1 Function: generic_file_mmap() (mm/�lemap.c)
This is the generic mmap() function used by many struct files as their

struct file_operations. It is mainly responsible for ensuring the appropriate
address_space functions exist and setting what VMA operations to use.

2249 int generic_file_mmap(struct file * file,

struct vm_area_struct * vma)

2250 {

2251 struct address_space *mapping =

file->f_dentry->d_inode->i_mapping;

2252 struct inode *inode = mapping->host;

2253

2254 if ((vma->vm_flags & VM_SHARED) &&

(vma->vm_flags & VM_MAYWRITE)) {

2255 if (!mapping->a_ops->writepage)

D.6.3 Generic File Truncation 356

2256 return -EINVAL;

2257 }

2258 if (!mapping->a_ops->readpage)

2259 return -ENOEXEC;

2260 UPDATE_ATIME(inode);

2261 vma->vm_ops = &generic_file_vm_ops;

2262 return 0;

2263 }

2251 Get the address_space that is managing the �le being mapped

2252 Get the struct inode for this address_space

2254-2257 If the VMA is to be shared and writable, make sure an a_ops→writepage()

function exists. Return -EINVAL if it does not

2258-2259 Make sure a a_ops→readpage() function exists

2260 Update the access time for the inode

2261 Use generic_file_vm_ops for the �le operations. The generic VM oper-
ations structure, de�ned in mm/filemap.c, only supplies filemap_nopage()
(See Section D.6.4.1) as it's nopage() function. No other callback is de�ned

D.6.3 Generic File Truncation

This section covers the path where a �le is being truncated. The actual system call
truncate() is implemented by sys_truncate() in fs/open.c. By the time the
top-level function in the VM is called (vmtruncate()), the dentry information for
the �le has been updated and the inode's semaphore has been acquired.

D.6.3.1 Function: vmtruncate() (mm/memory.c)
This is the top-level VM function responsible for truncating a �le. When it

completes, all page table entries mapping pages that have been truncated have been
unmapped and reclaimed if possible.

1042 int vmtruncate(struct inode * inode, loff_t offset)

1043 {

1044 unsigned long pgoff;

1045 struct address_space *mapping = inode->i_mapping;

1046 unsigned long limit;

1047

1048 if (inode->i_size < offset)

1049 goto do_expand;

1050 inode->i_size = offset;

1051 spin_lock(&mapping->i_shared_lock);

1052 if (!mapping->i_mmap && !mapping->i_mmap_shared)

D.6.3 Generic File Truncation (vmtruncate()) 357

1053 goto out_unlock;

1054

1055 pgoff = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;

1056 if (mapping->i_mmap != NULL)

1057 vmtruncate_list(mapping->i_mmap, pgoff);

1058 if (mapping->i_mmap_shared != NULL)

1059 vmtruncate_list(mapping->i_mmap_shared, pgoff);

1060

1061 out_unlock:

1062 spin_unlock(&mapping->i_shared_lock);

1063 truncate_inode_pages(mapping, offset);

1064 goto out_truncate;

1065

1066 do_expand:

1067 limit = current->rlim[RLIMIT_FSIZE].rlim_cur;

1068 if (limit != RLIM_INFINITY && offset > limit)

1069 goto out_sig;

1070 if (offset > inode->i_sb->s_maxbytes)

1071 goto out;

1072 inode->i_size = offset;

1073

1074 out_truncate:

1075 if (inode->i_op && inode->i_op->truncate) {

1076 lock_kernel();

1077 inode->i_op->truncate(inode);

1078 unlock_kernel();

1079 }

1080 return 0;

1081 out_sig:

1082 send_sig(SIGXFSZ, current, 0);

1083 out:

1084 return -EFBIG;

1085 }

1042 The parameters passed are the inode being truncated and the new offset

marking the new end of the �le. The old length of the �le is stored in
inode→i_size

1045 Get the address_space responsible for the inode

1048-1049 If the new �le size is larger than the old size, then goto do_expand

where the ulimits for the process will be checked before the �le is grown

1050 Here, the �le is being shrunk so update inode→i_size to match

1051 Lock the spinlock protecting the two lists of VMAs using this inode

D.6.3 Generic File Truncation (vmtruncate()) 358

1052-1053 If no VMAs are mapping the inode, goto out_unlock where the pages
used by the �le will be reclaimed by truncate_inode_pages() (See Section D.6.3.6)

1055 Calculate pgoff as the o�set within the �le in pages where the truncation
will begin

1056-1057 Truncate pages from all private mappings with vmtruncate_list()

(See Section D.6.3.2)

1058-1059 Truncate pages from all shared mappings

1062 Unlock the spinlock protecting the VMA lists

1063 Call truncate_inode_pages() (See Section D.6.3.6) to reclaim the pages if
they exist in the page cache for the �le

1064 Goto out_truncate to call the �lesystem speci�c truncate() function so
the blocks used on disk will be freed

1066-1071 If the �le is being expanded, make sure that the process limits for
maximum �le size are not being exceeded and the hosting �lesystem is able to
support the new �lesize

1072 If the limits are �ne, then update the inodes size and fall through to call the
�lesystem-speci�c truncate function which will �ll the expanded �lesize with
zeros

1075-1079 If the �lesystem provides a truncate() function, then lock the kernel,
call it and unlock the kernel again. Filesystems do not acquire the proper locks
to prevent races between �le truncation and �le expansion due to writing or
faulting so the big kernel lock is needed

1080 Return success

1082-1084 If the �le size would grow to being too big, send the SIGXFSZ signal to
the calling process and return -EFBIG

D.6.3.2 Function: vmtruncate_list() (mm/memory.c)
This function cycles through all VMAs in an address_spaces list and calls

zap_page_range() for the range of addresses which map a �le that is being trun-
cated.

1006 static void vmtruncate_list(struct vm_area_struct *mpnt,

unsigned long pgoff)

1007 {

1008 do {

1009 struct mm_struct *mm = mpnt->vm_mm;

1010 unsigned long start = mpnt->vm_start;

D.6.3 Generic File Truncation (vmtruncate_list()) 359

1011 unsigned long end = mpnt->vm_end;

1012 unsigned long len = end - start;

1013 unsigned long diff;

1014

1015 /* mapping wholly truncated? */

1016 if (mpnt->vm_pgoff >= pgoff) {

1017 zap_page_range(mm, start, len);

1018 continue;

1019 }

1020

1021 /* mapping wholly unaffected? */

1022 len = len >> PAGE_SHIFT;

1023 diff = pgoff - mpnt->vm_pgoff;

1024 if (diff >= len)

1025 continue;

1026

1027 /* Ok, partially affected.. */

1028 start += diff << PAGE_SHIFT;

1029 len = (len - diff) << PAGE_SHIFT;

1030 zap_page_range(mm, start, len);

1031 } while ((mpnt = mpnt->vm_next_share) != NULL);

1032 }

1008-1031 Loop through all VMAs in the list

1009 Get the mm_struct that hosts this VMA

1010-1012 Calculate the start, end and length of the VMA

1016-1019 If the whole VMA is being truncated, call the function zap_page_range()
(See Section D.6.3.3) with the start and length of the full VMA

1022 Calculate the length of the VMA in pages

1023-1025 Check if the VMA maps any of the region being truncated. If the VMA
in una�ected, continue to the next VMA

1028-1029 Else the VMA is being partially truncated so calculate where the start
and length of the region to truncate is in pages

1030 Call zap_page_range() (See Section D.6.3.3) to unmap the a�ected region

D.6.3.3 Function: zap_page_range() (mm/memory.c)
This function is the top-level pagetable-walk function which unmaps userpages

in the speci�ed range from a mm_struct.

D.6.3 Generic File Truncation (zap_page_range()) 360

360 void zap_page_range(struct mm_struct *mm,

unsigned long address, unsigned long size)

361 {

362 mmu_gather_t *tlb;

363 pgd_t * dir;

364 unsigned long start = address, end = address + size;

365 int freed = 0;

366

367 dir = pgd_offset(mm, address);

368

369 /*

370 * This is a long-lived spinlock. That's fine.

371 * There's no contention, because the page table

372 * lock only protects against kswapd anyway, and

373 * even if kswapd happened to be looking at this

374 * process we _want_ it to get stuck.

375 */

376 if (address >= end)

377 BUG();

378 spin_lock(&mm->page_table_lock);

379 flush_cache_range(mm, address, end);

380 tlb = tlb_gather_mmu(mm);

381

382 do {

383 freed += zap_pmd_range(tlb, dir, address, end - address);

384 address = (address + PGDIR_SIZE) & PGDIR_MASK;

385 dir++;

386 } while (address && (address < end));

387

388 /* this will flush any remaining tlb entries */

389 tlb_finish_mmu(tlb, start, end);

390

391 /*

392 * Update rss for the mm_struct (not necessarily current->mm)

393 * Notice that rss is an unsigned long.

394 */

395 if (mm->rss > freed)

396 mm->rss -= freed;

397 else

398 mm->rss = 0;

399 spin_unlock(&mm->page_table_lock);

400 }

364 Calculate the start and end address for zapping

367 Calculate the PGD (dir) that contains the starting address

D.6.3 Generic File Truncation (zap_page_range()) 361

376-377 Make sure the start address is not after the end address

378 Acquire the spinlock protecting the page tables. This is a very long-held lock
and would normally be considered a bad idea but the comment above the block
explains why it is ok in this case

379 Flush the CPU cache for this range

380 tlb_gather_mmu() records the MM that is being altered. Later, tlb_remove_page()
will be called to unmap the PTE which stores the PTEs in a struct free_pte_ctx

until the zapping is �nished. This is to avoid having to constantly �ush the
TLB as PTEs are freed

382-386 For each PMD a�ected by the zapping, call zap_pmd_range() until
the end address has been reached. Note that tlb is passed as well for
tlb_remove_page() to use later

389 tlb_finish_mmu() frees all the PTEs that were unmapped by tlb_remove_page()
and then �ushes the TLBs. Doing the �ushing this way avoids a storm of TLB
�ushing that would be otherwise required for each PTE unmapped

395-398 Update RSS count

399 Release the pagetable lock

D.6.3.4 Function: zap_pmd_range() (mm/memory.c)
This function is unremarkable. It steps through the PMDs that are a�ected by

the requested range and calls zap_pte_range() for each one.

331 static inline int zap_pmd_range(mmu_gather_t *tlb, pgd_t * dir,

unsigned long address,

unsigned long size)

332 {

333 pmd_t * pmd;

334 unsigned long end;

335 int freed;

336

337 if (pgd_none(*dir))

338 return 0;

339 if (pgd_bad(*dir)) {

340 pgd_ERROR(*dir);

341 pgd_clear(dir);

342 return 0;

343 }

344 pmd = pmd_offset(dir, address);

345 end = address + size;

346 if (end > ((address + PGDIR_SIZE) & PGDIR_MASK))

D.6.3 Generic File Truncation (zap_pmd_range()) 362

347 end = ((address + PGDIR_SIZE) & PGDIR_MASK);

348 freed = 0;

349 do {

350 freed += zap_pte_range(tlb, pmd, address, end - address);

351 address = (address + PMD_SIZE) & PMD_MASK;

352 pmd++;

353 } while (address < end);

354 return freed;

355 }

337-338 If no PGD exists, return

339-343 If the PGD is bad, �ag the error and return

344 Get the starting pmd

345-347 Calculate the end address of the zapping. If it is beyond the end of this
PGD, then set end to the end of the PGD

349-353 Step through all PMDs in this PGD. For each PMD, call zap_pte_range()
(See Section D.6.3.5) to unmap the PTEs

354 Return how many pages were freed

D.6.3.5 Function: zap_pte_range() (mm/memory.c)
This function calls tlb_remove_page() for each PTE in the requested pmd within

the requested address range.

294 static inline int zap_pte_range(mmu_gather_t *tlb, pmd_t * pmd,

unsigned long address,

unsigned long size)

295 {

296 unsigned long offset;

297 pte_t * ptep;

298 int freed = 0;

299

300 if (pmd_none(*pmd))

301 return 0;

302 if (pmd_bad(*pmd)) {

303 pmd_ERROR(*pmd);

304 pmd_clear(pmd);

305 return 0;

306 }

307 ptep = pte_offset(pmd, address);

308 offset = address & ~PMD_MASK;

309 if (offset + size > PMD_SIZE)

D.6.3 Generic File Truncation (zap_pte_range()) 363

310 size = PMD_SIZE - offset;

311 size &= PAGE_MASK;

312 for (offset=0; offset < size; ptep++, offset += PAGE_SIZE) {

313 pte_t pte = *ptep;

314 if (pte_none(pte))

315 continue;

316 if (pte_present(pte)) {

317 struct page *page = pte_page(pte);

318 if (VALID_PAGE(page) && !PageReserved(page))

319 freed ++;

320 /* This will eventually call __free_pte on the pte. */

321 tlb_remove_page(tlb, ptep, address + offset);

322 } else {

323 free_swap_and_cache(pte_to_swp_entry(pte));

324 pte_clear(ptep);

325 }

326 }

327

328 return freed;

329 }

300-301 If the PMD does not exist, return

302-306 If the PMD is bad, �ag the error and return

307 Get the starting PTE o�set

308 Align hte o�set to a PMD boundary

309 If the size of the region to unmap is past the PMD boundary, �x the size so
that only this PMD will be a�ected

311 Align size to a page boundary

312-326 Step through all PTEs in the region

314-315 If no PTE exists, continue to the next one

316-322 If the PTE is present, then call tlb_remove_page() to unmap the page.
If the page is reclaimable, increment the freed count

322-325 If the PTE is in use but the page is paged out or in the swap
cache, then free the swap slot and page page with free_swap_and_cache()

(See Section K.3.2.3). It is possible that a page is reclaimed if it was in the
swap cache that is unaccounted for here but it is not of paramount importance

328 Return the number of pages that were freed

D.6.3.6 Function: truncate_inode_pages() 364

D.6.3.6 Function: truncate_inode_pages() (mm/�lemap.c)
This is the top-level function responsible for truncating all pages from the page

cache that occur after lstart in a mapping.

327 void truncate_inode_pages(struct address_space * mapping,

loff_t lstart)

328 {

329 unsigned long start = (lstart + PAGE_CACHE_SIZE - 1) >>

PAGE_CACHE_SHIFT;

330 unsigned partial = lstart & (PAGE_CACHE_SIZE - 1);

331 int unlocked;

332

333 spin_lock(&pagecache_lock);

334 do {

335 unlocked = truncate_list_pages(&mapping->clean_pages,

start, &partial);

336 unlocked |= truncate_list_pages(&mapping->dirty_pages,

start, &partial);

337 unlocked |= truncate_list_pages(&mapping->locked_pages,

start, &partial);

338 } while (unlocked);

339 /* Traversed all three lists without dropping the lock */

340 spin_unlock(&pagecache_lock);

341 }

329 Calculate where to start the truncation as an index in pages

330 Calculate partial as an o�set within the last page if it is being partially
truncated

333 Lock the page cache

334 This will loop until none of the calls to truncate_list_pages() return that
a page was found that should have been reclaimed

335 Use truncate_list_pages() (See Section D.6.3.7) to truncate all pages in
the clean_pages list

336 Similarly, truncate pages in the dirty_pages list

337 Similarly, truncate pages in the locked_pages list

340 Unlock the page cache

D.6.3.7 Function: truncate_list_pages() 365

D.6.3.7 Function: truncate_list_pages() (mm/�lemap.c)
This function searches the requested list (head) which is part of an address_space.

If pages are found after start, they will be truncated.

259 static int truncate_list_pages(struct list_head *head,

unsigned long start,

unsigned *partial)

260 {

261 struct list_head *curr;

262 struct page * page;

263 int unlocked = 0;

264

265 restart:

266 curr = head->prev;

267 while (curr != head) {

268 unsigned long offset;

269

270 page = list_entry(curr, struct page, list);

271 offset = page->index;

272

273 /* Is one of the pages to truncate? */

274 if ((offset >= start) ||

(*partial && (offset + 1) == start)) {

275 int failed;

276

277 page_cache_get(page);

278 failed = TryLockPage(page);

279

280 list_del(head);

281 if (!failed)

282 /* Restart after this page */

283 list_add_tail(head, curr);

284 else

285 /* Restart on this page */

286 list_add(head, curr);

287

288 spin_unlock(&pagecache_lock);

289 unlocked = 1;

290

291 if (!failed) {

292 if (*partial && (offset + 1) == start) {

293 truncate_partial_page(page, *partial);

294 *partial = 0;

295 } else

296 truncate_complete_page(page);

D.6.3 Generic File Truncation (truncate_list_pages()) 366

297

298 UnlockPage(page);

299 } else

300 wait_on_page(page);

301

302 page_cache_release(page);

303

304 if (current->need_resched) {

305 __set_current_state(TASK_RUNNING);

306 schedule();

307 }

308

309 spin_lock(&pagecache_lock);

310 goto restart;

311 }

312 curr = curr->prev;

313 }

314 return unlocked;

315 }

266-267 Record the start of the list and loop until the full list has been scanned

270-271 Get the page for this entry and what offset within the �le it represents

274 If the current page is after start or is a page that is to be partially truncated,
then truncate this page, else move to the next one

277-278 Take a reference to the page and try to lock it

280 Remove the page from the list

281-283 If we locked the page, add it back to the list where it will be skipped over
on the next iteration of the loop

284-286 Else add it back where it will be found again immediately. Later in the
function, wait_on_page() is called until the page is unlocked

288 Release the pagecache lock

299 Set locked to 1 to indicate a page was found that had to be truncated. This
will force truncate_inode_pages() to call this function again to make sure
there are no pages left behind. This looks like an oversight and was intended
to have the functions recalled only if a locked page was found but the way it
is implemented means that it will called whether the page was locked or not

291-299 If we locked the page, then truncate it

D.6.3 Generic File Truncation (truncate_list_pages()) 367

292-294 If the page is to be partially truncated, call truncate_partial_page()
(See Section D.6.3.10) with the o�set within the page where the truncation
beings (partial)

296 Else call truncate_complete_page() (See Section D.6.3.8) to truncate the
whole page

298 Unlock the page

300 If the page locking failed, call wait_on_page() to wait until the page can be
locked

302 Release the reference to the page. If there are no more mappings for the page,
it will be reclaimed

304-307 Check if the process should call schedule() before continuing. This is
to prevent a truncating process from hogging the CPU

309 Reacquire the spinlock and restart the scanning for pages to reclaim

312 The current page should not be reclaimed so move to the next page

314 Return 1 if a page was found in the list that had to be truncated

D.6.3.8 Function: truncate_complete_page() (mm/�lemap.c)

239 static void truncate_complete_page(struct page *page)

240 {

241 /* Leave it on the LRU if it gets converted into

* anonymous buffers */

242 if (!page->buffers || do_flushpage(page, 0))

243 lru_cache_del(page);

244

245 /*

246 * We remove the page from the page cache _after_ we have

247 * destroyed all buffer-cache references to it. Otherwise some

248 * other process might think this inode page is not in the

249 * page cache and creates a buffer-cache alias to it causing

250 * all sorts of fun problems ...

251 */

252 ClearPageDirty(page);

253 ClearPageUptodate(page);

254 remove_inode_page(page);

255 page_cache_release(page);

256 }

242 If the page has bu�ers, call do_flushpage() (See Section D.6.3.9) to �ush all
bu�ers associated with the page. The comments in the following lines describe
the problem concisely

D.6.3 Generic File Truncation (truncate_complete_page()) 368

243 Delete the page from the LRU

252-253 Clear the dirty and uptodate �ags for the page

254 Call remove_inode_page() (See Section J.1.2.1) to delete the page from the
page cache

255 Drop the reference to the page. The page will be later reclaimed when
truncate_list_pages() drops it's own private refernece to it

D.6.3.9 Function: do_flushpage() (mm/�lemap.c)
This function is responsible for �ushing all bu�ers associated with a page.

223 static int do_flushpage(struct page *page, unsigned long offset)

224 {

225 int (*flushpage) (struct page *, unsigned long);

226 flushpage = page->mapping->a_ops->flushpage;

227 if (flushpage)

228 return (*flushpage)(page, offset);

229 return block_flushpage(page, offset);

230 }

226-228 If the page→mapping provides a flushpage() function, call it

229 Else call block_flushpage() which is the generic function for �ushing bu�ers
associated with a page

D.6.3.10 Function: truncate_partial_page() (mm/�lemap.c)
This function partially truncates a page by zeroing out the higher bytes no longer

in use and �ushing any associated bu�ers.

232 static inline void truncate_partial_page(struct page *page,

unsigned partial)

233 {

234 memclear_highpage_flush(page, partial, PAGE_CACHE_SIZE-partial);

235 if (page->buffers)

236 do_flushpage(page, partial);

237 }

234 memclear_highpage_flush() �lls an address range with zeros. In this case,
it will zero from partial to the end of the page

235-236 If the page has any associated bu�ers, �ush any bu�ers containing data
in the truncated region

D.6.4 Reading Pages for the Page Cache 369

D.6.4 Reading Pages for the Page Cache

D.6.4.1 Function: filemap_nopage() (mm/�lemap.c)
This is the generic nopage() function used by many VMAs. This loops around

itself with a large number of goto's which can be di�cult to trace but there is
nothing novel here. It is principally responsible for fetching the faulting page from
either the pgae cache or reading it from disk. If appropriate it will also perform �le
read-ahead.

1994 struct page * filemap_nopage(struct vm_area_struct * area,

unsigned long address,

int unused)

1995 {

1996 int error;

1997 struct file *file = area->vm_file;

1998 struct address_space *mapping =

file->f_dentry->d_inode->i_mapping;

1999 struct inode *inode = mapping->host;

2000 struct page *page, **hash;

2001 unsigned long size, pgoff, endoff;

2002

2003 pgoff = ((address - area->vm_start) >> PAGE_CACHE_SHIFT) +

area->vm_pgoff;

2004 endoff = ((area->vm_end - area->vm_start) >> PAGE_CACHE_SHIFT) +

area->vm_pgoff;

2005

This block acquires the struct file, addres_space and inode important for
this page fault. It then acquires the starting o�set within the �le needed for this
fault and the o�set that corresponds to the end of this VMA. The o�set is the end
of the VMA instead of the end of the page in case �le read-ahead is performed.

1997-1999 Acquire the struct file, address_space and inode required for this
fault

2003 Calculate pgoff which is the o�set within the �le corresponding to the be-
ginning of the fault

2004 Calculate the o�set within the �le corresponding to the end of the VMA

2006 retry_all:

2007 /*

2008 * An external ptracer can access pages that normally aren't

2009 * accessible..

2010 */

2011 size = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;

2012 if ((pgoff >= size) && (area->vm_mm == current->mm))

D.6.4 Reading Pages for the Page Cache (filemap_nopage()) 370

2013 return NULL;

2014

2015 /* The "size" of the file, as far as mmap is concerned, isn't

bigger than the mapping */

2016 if (size > endoff)

2017 size = endoff;

2018

2019 /*

2020 * Do we have something in the page cache already?

2021 */

2022 hash = page_hash(mapping, pgoff);

2023 retry_find:

2024 page = __find_get_page(mapping, pgoff, hash);

2025 if (!page)

2026 goto no_cached_page;

2027

2028 /*

2029 * Ok, found a page in the page cache, now we need to check

2030 * that it's up-to-date.

2031 */

2032 if (!Page_Uptodate(page))

2033 goto page_not_uptodate;

2011 Calculate the size of the �le in pages

2012 If the faulting pgoff is beyond the end of the �le and this is not a tracing
process, return NULL

2016-2017 If the VMA maps beyond the end of the �le, then set the size of the
�le to be the end of the mapping

2022-2024 Search for the page in the page cache

2025-2026 If it does not exist, goto no_cached_page where page_cache_read()
will be called to read the page from backing storage

2032-2033 If the page is not up-to-date, goto page_not_uptodate where the page
will either be declared invalid or else the data in the page updated

2035 success:

2036 /*

2037 * Try read-ahead for sequential areas.

2038 */

2039 if (VM_SequentialReadHint(area))

2040 nopage_sequential_readahead(area, pgoff, size);

2041

2042 /*

D.6.4 Reading Pages for the Page Cache (filemap_nopage()) 371

2043 * Found the page and have a reference on it, need to check sharing

2044 * and possibly copy it over to another page..

2045 */

2046 mark_page_accessed(page);

2047 flush_page_to_ram(page);

2048 return page;

2049

2039-2040 If this mapping speci�ed the VM_SEQ_READ hint, then the pages are the
current fault will be pre-faulted with nopage_sequential_readahead()

2046 Mark the faulted-in page as accessed so it will be moved to the active_list

2047 As the page is about to be installed into a process page table, call
flush_page_to_ram() so that recent stores by the kernel to the page will
de�nitly be visible to userspace

2048 Return the faulted-in page

2050 no_cached_page:

2051 /*

2052 * If the requested offset is within our file, try to read

2053 * a whole cluster of pages at once.

2054 *

2055 * Otherwise, we're off the end of a privately mapped file,

2056 * so we need to map a zero page.

2057 */

2058 if ((pgoff < size) && !VM_RandomReadHint(area))

2059 error = read_cluster_nonblocking(file, pgoff, size);

2060 else

2061 error = page_cache_read(file, pgoff);

2062

2063 /*

2064 * The page we want has now been added to the page cache.

2065 * In the unlikely event that someone removed it in the

2066 * meantime, we'll just come back here and read it again.

2067 */

2068 if (error >= 0)

2069 goto retry_find;

2070

2071 /*

2072 * An error return from page_cache_read can result if the

2073 * system is low on memory, or a problem occurs while trying

2074 * to schedule I/O.

2075 */

2076 if (error == -ENOMEM)

D.6.4 Reading Pages for the Page Cache (filemap_nopage()) 372

2077 return NOPAGE_OOM;

2078 return NULL;

2058-2059 If the end of the �le has not been reached and the random-read hint
has not been speci�ed, call read_cluster_nonblocking() to pre-fault in just
a few pages near ths faulting page

2061 Else, the �le is being accessed randomly, so just call page_cache_read()
(See Section D.6.4.2) to read in just the faulting page

2068-2069 If no error occurred, goto retry_find at line 1958 which will check to
make sure the page is in the page cache before returning

2076-2077 If the error was due to being out of memory, return that so the fault
handler can act accordingly

2078 Else return NULL to indicate that a non-existant page was faulted resulting
in a SIGBUS signal being sent to the faulting process

2080 page_not_uptodate:

2081 lock_page(page);

2082

2083 /* Did it get unhashed while we waited for it? */

2084 if (!page->mapping) {

2085 UnlockPage(page);

2086 page_cache_release(page);

2087 goto retry_all;

2088 }

2089

2090 /* Did somebody else get it up-to-date? */

2091 if (Page_Uptodate(page)) {

2092 UnlockPage(page);

2093 goto success;

2094 }

2095

2096 if (!mapping->a_ops->readpage(file, page)) {

2097 wait_on_page(page);

2098 if (Page_Uptodate(page))

2099 goto success;

2100 }

In this block, the page was found but it was not up-to-date so the reasons for the
page not being up to date are checked. If it looks ok, the appropriate readpage()

function is called to resync the page.

2081 Lock the page for IO

D.6.4 Reading Pages for the Page Cache (filemap_nopage()) 373

2084-2088 If the page was removed from the mapping (possible because of a �le
truncation) and is now anonymous, then goto retry_all which will try and
fault in the page again

2090-2094 Check again if the Uptodate �ag in case the page was updated just
before we locked the page for IO

2096 Call the address_space→readpage() function to schedule the data to be
read from disk

2097 Wait for the IO to complete and if it is now up-to-date, goto success to
return the page. If the readpage() function failed, fall through to the error
recovery path

2101

2102 /*

2103 * Umm, take care of errors if the page isn't up-to-date.

2104 * Try to re-read it _once_. We do this synchronously,

2105 * because there really aren't any performance issues here

2106 * and we need to check for errors.

2107 */

2108 lock_page(page);

2109

2110 /* Somebody truncated the page on us? */

2111 if (!page->mapping) {

2112 UnlockPage(page);

2113 page_cache_release(page);

2114 goto retry_all;

2115 }

2116

2117 /* Somebody else successfully read it in? */

2118 if (Page_Uptodate(page)) {

2119 UnlockPage(page);

2120 goto success;

2121 }

2122 ClearPageError(page);

2123 if (!mapping->a_ops->readpage(file, page)) {

2124 wait_on_page(page);

2125 if (Page_Uptodate(page))

2126 goto success;

2127 }

2128

2129 /*

2130 * Things didn't work out. Return zero to tell the

2131 * mm layer so, possibly freeing the page cache page first.

2132 */

D.6.4 Reading Pages for the Page Cache (filemap_nopage()) 374

2133 page_cache_release(page);

2134 return NULL;

2135 }

In this path, the page is not up-to-date due to some IO error. A second attempt
is made to read the page data and if it fails, return.

2110-2127 This is almost identical to the previous block. The only di�erence is
that ClearPageError() is called to clear the error caused by the previous IO

2133 If it still failed, release the reference to the page because it is useless

2134 Return NULL because the fault failed

D.6.4.2 Function: page_cache_read() (mm/�lemap.c)
This function adds the page corresponding to the offset within the file to the

page cache if it does not exist there already.

702 static int page_cache_read(struct file * file,

unsigned long offset)

703 {

704 struct address_space *mapping =

file->f_dentry->d_inode->i_mapping;

705 struct page **hash = page_hash(mapping, offset);

706 struct page *page;

707

708 spin_lock(&pagecache_lock);

709 page = __find_page_nolock(mapping, offset, *hash);

710 spin_unlock(&pagecache_lock);

711 if (page)

712 return 0;

713

714 page = page_cache_alloc(mapping);

715 if (!page)

716 return -ENOMEM;

717

718 if (!add_to_page_cache_unique(page, mapping, offset, hash)) {

719 int error = mapping->a_ops->readpage(file, page);

720 page_cache_release(page);

721 return error;

722 }

723 /*

724 * We arrive here in the unlikely event that someone

725 * raced with us and added our page to the cache first.

726 */

727 page_cache_release(page);

D.6.5 File Readahead for nopage() 375

728 return 0;

729 }

704 Acquire the address_space mapping managing the �le

705 The page cache is a hash table and page_hash() returns the �rst page in the
bucket for this mapping and offset

708-709 Search the page cache with __find_page_nolock() (See Section J.1.4.3).
This basically will traverse the list starting at hash to see if the requested page
can be found

711-712 If the page is already in the page cache, return

714 Allocate a new page for insertion into the page cache. page_cache_alloc()

will allocate a page from the buddy allocator using GFP mask information
contained in mapping

718 Insert the page into the page cache with add_to_page_cache_unique()

(See Section J.1.1.2). This function is used because a second check needs to
be made to make sure the page was not inserted into the page cache while the
pagecache_lock spinlock was not acquired

719 If the allocated page was inserted into the page cache, it needs to be populated
with data so the readpage() function for the mapping is called. This schedules
the IO to take place and the page will be unlocked when the IO completes

720 The path in add_to_page_cache_unique() (See Section J.1.1.2) takes an ex-
tra reference to the page being added to the page cache which is dropped here.
The page will not be freed

727 If another process added the page to the page cache, it is released here by
page_cache_release() as there will be no users of the page

D.6.5 File Readahead for nopage()

D.6.5.1 Function: nopage_sequential_readahead() (mm/�lemap.c)
This function is only called by filemap_nopage() when the VM_SEQ_READ �ag

has been speci�ed in the VMA. When half of the current readahead-window has
been faulted in, the next readahead window is scheduled for IO and pages from the
previous window are freed.

1936 static void nopage_sequential_readahead(

struct vm_area_struct * vma,

1937 unsigned long pgoff, unsigned long filesize)

1938 {

1939 unsigned long ra_window;

1940

D.6.5 File Readahead for nopage() (nopage_sequential_readahead()) 376

1941 ra_window = get_max_readahead(vma->vm_file->f_dentry->d_inode);

1942 ra_window = CLUSTER_OFFSET(ra_window + CLUSTER_PAGES - 1);

1943

1944 /* vm_raend is zero if we haven't read ahead

* in this area yet. */

1945 if (vma->vm_raend == 0)

1946 vma->vm_raend = vma->vm_pgoff + ra_window;

1947

1941 get_max_readahead() returns the maximum sized readahead window for the
block device the speci�ed inode resides on

1942 CLUSTER_PAGES is the number of pages that are paged-in or paged-out in
bulk. The macro CLUSTER_OFFSET() will align the readahead window to a
cluster boundary

1180-1181 If read-ahead has not occurred yet, set the end of the read-ahead
window (vm_reend)

1948 /*

1949 * If we've just faulted the page half-way through our window,

1950 * then schedule reads for the next window, and release the

1951 * pages in the previous window.

1952 */

1953 if ((pgoff + (ra_window >> 1)) == vma->vm_raend) {

1954 unsigned long start = vma->vm_pgoff + vma->vm_raend;

1955 unsigned long end = start + ra_window;

1956

1957 if (end > ((vma->vm_end >> PAGE_SHIFT) + vma->vm_pgoff))

1958 end = (vma->vm_end >> PAGE_SHIFT) + vma->vm_pgoff;

1959 if (start > end)

1960 return;

1961

1962 while ((start < end) && (start < filesize)) {

1963 if (read_cluster_nonblocking(vma->vm_file,

1964 start, filesize) < 0)

1965 break;

1966 start += CLUSTER_PAGES;

1967 }

1968 run_task_queue(&tq_disk);

1969

1970 /* if we're far enough past the beginning of this area,

1971 recycle pages that are in the previous window. */

1972 if (vma->vm_raend >

(vma->vm_pgoff + ra_window + ra_window)) {

1973 unsigned long window = ra_window << PAGE_SHIFT;

D.6.5 File Readahead for nopage() (nopage_sequential_readahead()) 377

1974

1975 end = vma->vm_start + (vma->vm_raend << PAGE_SHIFT);

1976 end -= window + window;

1977 filemap_sync(vma, end - window, window, MS_INVALIDATE);

1978 }

1979

1980 vma->vm_raend += ra_window;

1981 }

1982

1983 return;

1984 }

1953 If the fault has occurred half-way through the read-ahead window then sched-
ule the next readahead window to be read in from disk and free the pages for
the �rst half of the current window as they are presumably not required any
more

1954-1955 Calculate the start and end of the next readahead window as we are
about to schedule it for IO

1957 If the end of the readahead window is after the end of the VMA, then set
end to the end of the VMA

1959-1960 If we are at the end of the mapping, just return as there is no more
readahead to perform

1962-1967 Schedule the next readahead window to be paged in by calling
read_cluster_nonblocking()(See Section D.6.5.2)

1968 Call run_task_queue() to start the IO

1972-1978 Recycle the pages in the previous read-ahead window with filemap_sync()
as they are no longer required

1980 Update where the end of the readahead window is

D.6.5.2 Function: read_cluster_nonblocking() (mm/�lemap.c)

737 static int read_cluster_nonblocking(struct file * file,

unsigned long offset,

738 unsigned long filesize)

739 {

740 unsigned long pages = CLUSTER_PAGES;

741

742 offset = CLUSTER_OFFSET(offset);

743 while ((pages-- > 0) && (offset < filesize)) {

744 int error = page_cache_read(file, offset);

D.6.6 Swap Related Read-Ahead 378

745 if (error < 0)

746 return error;

747 offset ++;

748 }

749

750 return 0;

751 }

740 CLUSTER_PAGES will be 4 pages in low memory systems and 8 pages in larger
ones. This means that on an x86 with ample memory, 32KiB will be read in
one cluster

742 CLUSTER_OFFSET() will align the o�set to a cluster-sized alignment

743-748 Read the full cluster into the page cache by calling page_cache_read()

(See Section D.6.4.2) for each page in the cluster

745-746 If an error occurs during read-ahead, return the error

750 Return success

D.6.6 Swap Related Read-Ahead

D.6.6.1 Function: swapin_readahead() (mm/memory.c)
This function will fault in a number of pages after the current entry. It will stop

with either CLUSTER_PAGES have been swapped in or an unused swap entry is found.

1093 void swapin_readahead(swp_entry_t entry)

1094 {

1095 int i, num;

1096 struct page *new_page;

1097 unsigned long offset;

1098

1099 /*

1100 * Get the number of handles we should do readahead io to.

1101 */

1102 num = valid_swaphandles(entry, &offset);

1103 for (i = 0; i < num; offset++, i++) {

1104 /* Ok, do the async read-ahead now */

1105 new_page = read_swap_cache_async(SWP_ENTRY(SWP_TYPE(entry),

offset));

1106 if (!new_page)

1107 break;

1108 page_cache_release(new_page);

1109 }

1110 return;

1111 }

D.6.6 Swap Related Read-Ahead (swapin_readahead()) 379

1102 valid_swaphandles() is what determines how many pages should be
swapped in. It will stop at the �rst empty entry or when CLUSTER_PAGES

is reached

1103-1109 Swap in the pages

1105Attempt to swap the page into the swap cache with read_swap_cache_async()
(See Section K.3.1.1)

1106-1107 If the page could not be paged in, break and return

1108 Drop the reference to the page that read_swap_cache_async() takes

1110 Return

D.6.6.2 Function: valid_swaphandles() (mm/swap�le.c)
This function determines how many pages should be readahead from swap start-

ing from offset. It will readahead to the next unused swap slot but at most, it will
return CLUSTER_PAGES.

1238 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)

1239 {

1240 int ret = 0, i = 1 << page_cluster;

1241 unsigned long toff;

1242 struct swap_info_struct *swapdev = SWP_TYPE(entry) + swap_info;

1243

1244 if (!page_cluster) /* no readahead */

1245 return 0;

1246 toff = (SWP_OFFSET(entry) >> page_cluster) << page_cluster;

1247 if (!toff) /* first page is swap header */

1248 toff++, i--;

1249 *offset = toff;

1250

1251 swap_device_lock(swapdev);

1252 do {

1253 /* Don't read-ahead past the end of the swap area */

1254 if (toff >= swapdev->max)

1255 break;

1256 /* Don't read in free or bad pages */

1257 if (!swapdev->swap_map[toff])

1258 break;

1259 if (swapdev->swap_map[toff] == SWAP_MAP_BAD)

1260 break;

1261 toff++;

1262 ret++;

1263 } while (--i);

D.6.6 Swap Related Read-Ahead (valid_swaphandles()) 380

1264 swap_device_unlock(swapdev);

1265 return ret;

1266 }

1240 i is set to CLUSTER_PAGES which is the equivalent of the bitshift shown here

1242 Get the swap_info_struct that contains this entry

1244-1245 If readahead has been disabled, return

1246 Calculate toff to be entry rounded down to the nearest CLUSTER_PAGES-
sized boundary

1247-1248 If toff is 0, move it to 1 as the �rst page contains information about
the swap area

1251 Lock the swap device as we are about to scan it

1252-1263 Loop at most i, which is initialised to CLUSTER_PAGES, times

1254-1255 If the end of the swap area is reached, then that is as far as can be
readahead

1257-1258 If an unused entry is reached, just return as it is as far as we want to
readahead

1259-1260 Likewise, return if a bad entry is discovered

1261 Move to the next slot

1262 Increment the number of pages to be readahead

1264 Unlock the swap device

1265 Return the number of pages which should be readahead

Appendix E

Boot Memory Allocator

Contents
E.1 Initialising the Boot Memory Allocator 382

E.1.1 Function: init_bootmem() . 382

E.1.2 Function: init_bootmem_node() 382

E.1.3 Function: init_bootmem_core() 383

E.2 Allocating Memory . 385

E.2.1 Reserving Large Regions of Memory 385

E.2.1.1 Function: reserve_bootmem() 385

E.2.1.2 Function: reserve_bootmem_node() 385

E.2.1.3 Function: reserve_bootmem_core() 386

E.2.2 Allocating Memory at Boot Time 387

E.2.2.1 Function: alloc_bootmem() 387

E.2.2.2 Function: __alloc_bootmem() 387

E.2.2.3 Function: alloc_bootmem_node() 388

E.2.2.4 Function: __alloc_bootmem_node() 389

E.2.2.5 Function: __alloc_bootmem_core() 389

E.3 Freeing Memory . 395

E.3.1 Function: free_bootmem() . 395

E.3.2 Function: free_bootmem_core() 395

E.4 Retiring the Boot Memory Allocator 397

E.4.1 Function: mem_init() . 397

E.4.2 Function: free_pages_init() 399

E.4.3 Function: one_highpage_init() 400

E.4.4 Function: free_all_bootmem() 401

E.4.5 Function: free_all_bootmem_core() 401

381

E.1 Initialising the Boot Memory Allocator 382

E.1 Initialising the Boot Memory Allocator

Contents

E.1 Initialising the Boot Memory Allocator 382
E.1.1 Function: init_bootmem() 382
E.1.2 Function: init_bootmem_node() 382
E.1.3 Function: init_bootmem_core() 383

The functions in this section are responsible for bootstrapping the boot mem-
ory allocator. It starts with the architecture speci�c function setup_memory()

(See Section B.1.1) but all architectures cover the same basic tasks in the ar-
chitecture speci�c function before calling the architectur independant function
init_bootmem().

E.1.1 Function: init_bootmem() (mm/bootmem.c)
This is called by UMA architectures to initialise their boot memory allocator

structures.

304 unsigned long __init init_bootmem (unsigned long start,

unsigned long pages)

305 {

306 max_low_pfn = pages;

307 min_low_pfn = start;

308 return(init_bootmem_core(&contig_page_data, start, 0, pages));

309 }

304 Confusingly, the pages parameter is actually the end PFN of the memory
addressable by this node, not the number of pages as the name impies

306 Set the max PFN addressable by this node in case the architecture dependent
code did not

307 Set the min PFN addressable by this node in case the architecture dependent
code did not

308 Call init_bootmem_core()(See Section E.1.3) which does the real work of
initialising the bootmem_data

E.1.2 Function: init_bootmem_node() (mm/bootmem.c)
This is called by NUMA architectures to initialise boot memory allocator data

for a given node.

284 unsigned long __init init_bootmem_node (pg_data_t *pgdat,

unsigned long freepfn,

unsigned long startpfn,

unsigned long endpfn)

285 {

286 return(init_bootmem_core(pgdat, freepfn, startpfn, endpfn));

287 }

E.1 Initialising the Boot Memory Allocator (init_bootmem_node()) 383

286 Just call init_bootmem_core()(See Section E.1.3) directly

E.1.3 Function: init_bootmem_core() (mm/bootmem.c)
Initialises the appropriate struct bootmem_data_t and inserts the node into

the linked list of nodes pgdat_list.

46 static unsigned long __init init_bootmem_core (pg_data_t *pgdat,

47 unsigned long mapstart, unsigned long start, unsigned long end)

48 {

49 bootmem_data_t *bdata = pgdat->bdata;

50 unsigned long mapsize = ((end - start)+7)/8;

51

52 pgdat->node_next = pgdat_list;

53 pgdat_list = pgdat;

54

55 mapsize = (mapsize + (sizeof(long) - 1UL)) &

~(sizeof(long) - 1UL);

56 bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT);

57 bdata->node_boot_start = (start << PAGE_SHIFT);

58 bdata->node_low_pfn = end;

59

60 /*

61 * Initially all pages are reserved - setup_arch() has to

62 * register free RAM areas explicitly.

63 */

64 memset(bdata->node_bootmem_map, 0xff, mapsize);

65

66 return mapsize;

67 }

46 The parameters are;

pgdat is the node descriptor been initialised

mapstart is the beginning of the memory that will be usable

start is the beginning PFN of the node

end is the end PFN of the node

50 Each page requires one bit to represent it so the size of the map required is the
number of pages in this node rounded up to the nearest multiple of 8 and then
divided by 8 to give the number of bytes required

52-53 As the node will be shortly considered initialised, insert it into the global
pgdat_list

55 Round the mapsize up to the closest word boundary

E.1 Initialising the Boot Memory Allocator (init_bootmem_core()) 384

56 Convert the mapstart to a virtual address and store it in bdata→node_bootmem_map

57 Convert the starting PFN to a physical address and store it on node_boot_start

58 Store the end PFN of ZONE_NORMAL in node_low_pfn

64 Fill the full map with 1's marking all pages as allocated. It is up to the
architecture dependent code to mark the usable pages

E.2 Allocating Memory 385

E.2 Allocating Memory

Contents

E.2 Allocating Memory 385
E.2.1 Reserving Large Regions of Memory 385
E.2.1.1 Function: reserve_bootmem() 385
E.2.1.2 Function: reserve_bootmem_node() 385
E.2.1.3 Function: reserve_bootmem_core() 386

E.2.2 Allocating Memory at Boot Time 387
E.2.2.1 Function: alloc_bootmem() 387
E.2.2.2 Function: __alloc_bootmem() 387
E.2.2.3 Function: alloc_bootmem_node() 388
E.2.2.4 Function: __alloc_bootmem_node() 389
E.2.2.5 Function: __alloc_bootmem_core() 389

E.2.1 Reserving Large Regions of Memory

E.2.1.1 Function: reserve_bootmem() (mm/bootmem.c)

311 void __init reserve_bootmem (unsigned long addr, unsigned long size)

312 {

313 reserve_bootmem_core(contig_page_data.bdata, addr, size);

314 }

313 Just call reserve_bootmem_core()(See Section E.2.1.3). As this is for a non-
NUMA architecture, the node to allocate from is the static contig_page_data
node.

E.2.1.2 Function: reserve_bootmem_node() (mm/bootmem.c)

289 void __init reserve_bootmem_node (pg_data_t *pgdat,

unsigned long physaddr,

unsigned long size)

290 {

291 reserve_bootmem_core(pgdat->bdata, physaddr, size);

292 }

291 Just call reserve_bootmem_core()(See Section E.2.1.3) passing it the boot-
mem data of the requested node

E.2.1.3 Function: reserve_bootmem_core() 386

E.2.1.3 Function: reserve_bootmem_core() (mm/bootmem.c)

74 static void __init reserve_bootmem_core(bootmem_data_t *bdata,

unsigned long addr,

unsigned long size)

75 {

76 unsigned long i;

77 /*

78 * round up, partially reserved pages are considered

79 * fully reserved.

80 */

81 unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE;

82 unsigned long eidx = (addr + size - bdata->node_boot_start +

83 PAGE_SIZE-1)/PAGE_SIZE;

84 unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE;

85

86 if (!size) BUG();

87

88 if (sidx < 0)

89 BUG();

90 if (eidx < 0)

91 BUG();

92 if (sidx >= eidx)

93 BUG();

94 if ((addr >> PAGE_SHIFT) >= bdata->node_low_pfn)

95 BUG();

96 if (end > bdata->node_low_pfn)

97 BUG();

98 for (i = sidx; i < eidx; i++)

99 if (test_and_set_bit(i, bdata->node_bootmem_map))

100 printk("hm, page %08lx reserved twice.\n",

i*PAGE_SIZE);

101 }

81 The sidx is the starting index to serve pages from. The value is obtained by
subtracting the starting address from the requested address and dividing by
the size of a page

82 A similar calculation is made for the ending index eidx except that the alloca-
tion is rounded up to the nearest page. This means that requests to partially
reserve a page will result in the full page being reserved

84 end is the last PFN that is a�ected by this reservation

86 Check that a non-zero value has been given

88-89 Check the starting index is not before the start of the node

E.2.2 Allocating Memory at Boot Time 387

90-91 Check the end index is not before the start of the node

92-93 Check the starting index is not after the end index

94-95 Check the starting address is not beyond the memory this bootmem node
represents

96-97 Check the ending address is not beyond the memory this bootmem node
represents

88-100 Starting with sidx and �nishing with eidx, test and set the bit in the
bootmem map that represents the page marking it as allocated. If the bit was
already set to 1, print out a message saying it was reserved twice

E.2.2 Allocating Memory at Boot Time

E.2.2.1 Function: alloc_bootmem() (mm/bootmem.c)
The callgraph for these macros is shown in Figure 5.1.

38 #define alloc_bootmem(x) \

39 __alloc_bootmem((x), SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS))

40 #define alloc_bootmem_low(x) \

41 __alloc_bootmem((x), SMP_CACHE_BYTES, 0)

42 #define alloc_bootmem_pages(x) \

43 __alloc_bootmem((x), PAGE_SIZE, __pa(MAX_DMA_ADDRESS))

44 #define alloc_bootmem_low_pages(x) \

45 __alloc_bootmem((x), PAGE_SIZE, 0)

39 alloc_bootmem() will align to the L1 hardware cache and start searching for
a page after the maximum address usable for DMA

40 alloc_bootmem_low() will align to the L1 hardware cache and start searching
from page 0

42 alloc_bootmem_pages() will align the allocation to a page size so that full
pages will be allocated starting from the maximum address usable for DMA

44 alloc_bootmem_pages() will align the allocation to a page size so that full
pages will be allocated starting from physical address 0

E.2.2.2 Function: __alloc_bootmem() (mm/bootmem.c)

326 void * __init __alloc_bootmem (unsigned long size,

unsigned long align, unsigned long goal)

327 {

328 pg_data_t *pgdat;

329 void *ptr;

E.2.2 Allocating Memory at Boot Time (__alloc_bootmem()) 388

330

331 for_each_pgdat(pgdat)

332 if ((ptr = __alloc_bootmem_core(pgdat->bdata, size,

333 align, goal)))

334 return(ptr);

335

336 /*

337 * Whoops, we cannot satisfy the allocation request.

338 */

339 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);

340 panic("Out of memory");

341 return NULL;

342 }

326 The parameters are;

size is the size of the requested allocation

align is the desired alignment and must be a power of 2. Currently either
SMP_CACHE_BYTES or PAGE_SIZE

goal is the starting address to begin searching from

331-334 Cycle through all available nodes and try allocating from each in turn.
In the UMA case, this will just allocate from the contig_page_data node

349-340 If the allocation fails, the system is not going to be able to boot so the
kernel panics

E.2.2.3 Function: alloc_bootmem_node() (mm/bootmem.c)

53 #define alloc_bootmem_node(pgdat, x) \

54 __alloc_bootmem_node((pgdat), (x), SMP_CACHE_BYTES,

__pa(MAX_DMA_ADDRESS))

55 #define alloc_bootmem_pages_node(pgdat, x) \

56 __alloc_bootmem_node((pgdat), (x), PAGE_SIZE,

__pa(MAX_DMA_ADDRESS))

57 #define alloc_bootmem_low_pages_node(pgdat, x) \

58 __alloc_bootmem_node((pgdat), (x), PAGE_SIZE, 0)

53-54 alloc_bootmem_node() will allocate from the requested node and align
to the L1 hardware cache and start searching for a page beginning with
ZONE_NORMAL (i.e. at the end of ZONE_DMA which is at MAX_DMA_ADDRESS)

55-56 alloc_bootmem_pages() will allocate from the requested node and align
the allocation to a page size so that full pages will be allocated starting from
the ZONE_NORMAL

E.2.2 Allocating Memory at Boot Time (alloc_bootmem_node()) 389

57-58 alloc_bootmem_pages() will allocate from the requested node and align
the allocation to a page size so that full pages will be allocated starting from
physical address 0 so that ZONE_DMA will be used

E.2.2.4 Function: __alloc_bootmem_node() (mm/bootmem.c)

344 void * __init __alloc_bootmem_node (pg_data_t *pgdat,

unsigned long size,

unsigned long align,

unsigned long goal)

345 {

346 void *ptr;

347

348 ptr = __alloc_bootmem_core(pgdat->bdata, size, align, goal);

349 if (ptr)

350 return (ptr);

351

352 /*

353 * Whoops, we cannot satisfy the allocation request.

354 */

355 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);

356 panic("Out of memory");

357 return NULL;

358 }

344 The parameters are the same as for __alloc_bootmem_node() (See Section E.2.2.4)
except the node to allocate from is speci�ed

348 Call the core function __alloc_bootmem_core() (See Section E.2.2.5) to per-
form the allocation

349-350 Return a pointer if it was successful

355-356 Otherwise print out a message and panic the kernel as the system will
not boot if memory can not be allocated even now

E.2.2.5 Function: __alloc_bootmem_core() (mm/bootmem.c)
This is the core function for allocating memory from a speci�ed node with the

boot memory allocator. It is quite large and broken up into the following tasks;

• Function preamble. Make sure the parameters are sane

• Calculate the starting address to scan from based on the goal parameter

• Check to see if this allocation may be merged with the page used for the
previous allocation to save memory.

E.2.2 Allocating Memory at Boot Time (__alloc_bootmem_core()) 390

• Mark the pages allocated as 1 in the bitmap and zero out the contents of the
pages

144 static void * __init __alloc_bootmem_core (bootmem_data_t *bdata,

145 unsigned long size, unsigned long align, unsigned long goal)

146 {

147 unsigned long i, start = 0;

148 void *ret;

149 unsigned long offset, remaining_size;

150 unsigned long areasize, preferred, incr;

151 unsigned long eidx = bdata->node_low_pfn -

152 (bdata->node_boot_start >> PAGE_SHIFT);

153

154 if (!size) BUG();

155

156 if (align & (align-1))

157 BUG();

158

159 offset = 0;

160 if (align &&

161 (bdata->node_boot_start & (align - 1UL)) != 0)

162 offset = (align - (bdata->node_boot_start &

(align - 1UL)));

163 offset >>= PAGE_SHIFT;

Function preamble, make sure the parameters are sane

144 The parameters are;

bdata is the bootmem for the struct being allocated from

size is the size of the requested allocation

align is the desired alignment for the allocation. Must be a power of 2

goal is the preferred address to allocate above if possible

151 Calculate the ending bit index eidx which returns the highest page index that
may be used for the allocation

154 Call BUG() if a request size of 0 is speci�ed

156-156 If the alignment is not a power of 2, call BUG()

159 The default o�set for alignments is 0

160 If an alignment has been speci�ed and...

161 And the requested alignment is the same alignment as the start of the node
then calculate the o�set to use

E.2.2 Allocating Memory at Boot Time (__alloc_bootmem_core()) 391

162 The o�set to use is the requested alignment masked against the lower bits of
the starting address. In reality, this offset will likely be identical to align

for the prevalent values of align

169 if (goal && (goal >= bdata->node_boot_start) &&

170 ((goal >> PAGE_SHIFT) < bdata->node_low_pfn)) {

171 preferred = goal - bdata->node_boot_start;

172 } else

173 preferred = 0;

174

175 preferred = ((preferred + align - 1) & ~(align - 1))

>> PAGE_SHIFT;

176 preferred += offset;

177 areasize = (size+PAGE_SIZE-1)/PAGE_SIZE;

178 incr = align >> PAGE_SHIFT ? : 1;

Calculate the starting PFN to start scanning from based on the goal parameter.

169 If a goal has been speci�ed and the goal is after the starting address for this
node and the PFN of the goal is less than the last PFN adressable by this
node then

170 The preferred o�set to start from is the goal minus the beginning of the memory
addressable by this node

173 Else the preferred o�set is 0

175-176 Adjust the preferred address to take the o�set into account so that the
address will be correctly aligned

177 The number of pages that will be a�ected by this allocation is stored in
areasize

178 incr is the number of pages that have to be skipped to satisify alignment
requirements if they are over one page

179

180 restart_scan:

181 for (i = preferred; i < eidx; i += incr) {

182 unsigned long j;

183 if (test_bit(i, bdata->node_bootmem_map))

184 continue;

185 for (j = i + 1; j < i + areasize; ++j) {

186 if (j >= eidx)

187 goto fail_block;

188 if (test_bit (j, bdata->node_bootmem_map))

189 goto fail_block;

E.2.2 Allocating Memory at Boot Time (__alloc_bootmem_core()) 392

190 }

191 start = i;

192 goto found;

193 fail_block:;

194 }

195 if (preferred) {

196 preferred = offset;

197 goto restart_scan;

198 }

199 return NULL;

Scan through memory looking for a block large enough to satisfy this request

180 If the allocation could not be satisifed starting from goal, this label is jumped
to so that the map will be rescanned

181-194 Starting from preferred, scan lineraly searching for a free block large
enough to satisfy the request. Walk the address space in incr steps to satisfy
alignments greater than one page. If the alignment is less than a page, incr
will just be 1

183-184 Test the bit, if it is already 1, it is not free so move to the next page

185-190 Scan the next areasize number of pages and see if they are also free. It
fails if the end of the addressable space is reached (eidx) or one of the pages
is already in use

191-192 A free block is found so record the start and jump to the found block

195-198 The allocation failed so start again from the beginning

199 If that also failed, return NULL which will result in a kernel panic

200 found:

201 if (start >= eidx)

202 BUG();

203

209 if (align <= PAGE_SIZE

210 && bdata->last_offset && bdata->last_pos+1 == start) {

211 offset = (bdata->last_offset+align-1) & ~(align-1);

212 if (offset > PAGE_SIZE)

213 BUG();

214 remaining_size = PAGE_SIZE-offset;

215 if (size < remaining_size) {

216 areasize = 0;

217 // last_pos unchanged

218 bdata->last_offset = offset+size;

E.2.2 Allocating Memory at Boot Time (__alloc_bootmem_core()) 393

219 ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset +

220 bdata->node_boot_start);

221 } else {

222 remaining_size = size - remaining_size;

223 areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE;

224 ret = phys_to_virt(bdata->last_pos*PAGE_SIZE +

225 offset +

bdata->node_boot_start);

226 bdata->last_pos = start+areasize-1;

227 bdata->last_offset = remaining_size;

228 }

229 bdata->last_offset &= ~PAGE_MASK;

230 } else {

231 bdata->last_pos = start + areasize - 1;

232 bdata->last_offset = size & ~PAGE_MASK;

233 ret = phys_to_virt(start * PAGE_SIZE +

bdata->node_boot_start);

234 }

Test to see if this allocation may be merged with the previous allocation.

201-202 Check that the start of the allocation is not after the addressable memory.
This check was just made so it is redundent

209-230 Try and merge with the previous allocation if the alignment is less than a
PAGE_SIZE, the previously page has space in it (last_offset != 0) and that
the previously used page is adjactent to the page found for this allocation

231-234 Else record the pages and o�set used for this allocation to be used for
merging with the next allocation

211 Update the o�set to use to be aligned correctly for the requested align

212-213 If the o�set now goes over the edge of a page, BUG() is called. This
condition would require a very poor choice of alignment to be used. As the
only alignment commonly used is a factor of PAGE_SIZE, it is impossible for
normal usage

214 remaining_size is the remaining free space in the previously used page

215-221 If there is enough space left in the old page then use the old page totally
and update the bootmem_data struct to re�ect it

221-228 Else calculate how many pages in addition to this one will be required
and update the bootmem_data

216 The number of pages used by this allocation is now 0

E.2.2 Allocating Memory at Boot Time (__alloc_bootmem_core()) 394

218 Update the last_offset to be the end of this allocation

219 Calculate the virtual address to return for the successful allocation

222 remaining_size is how space will be used in the last page used to satisfy the
allocation

223 Calculate how many more pages are needed to satisfy the allocation

224 Record the address the allocation starts from

226 The last page used is the start page plus the number of additional pages
required to satisfy this allocation areasize

227 The end of the allocation has already been calculated

229 If the o�set is at the end of the page, make it 0

231 No merging took place so record the last page used to satisfy this allocation

232 Record how much of the last page was used

233 Record the starting virtual address of the allocation

238 for (i = start; i < start+areasize; i++)

239 if (test_and_set_bit(i, bdata->node_bootmem_map))

240 BUG();

241 memset(ret, 0, size);

242 return ret;

243 }

Mark the pages allocated as 1 in the bitmap and zero out the contents of the
pages

238-240 Cycle through all pages used for this allocation and set the bit to 1 in the
bitmap. If any of them are already 1, then a double allocation took place so
call BUG()

241 Zero �ll the pages

242 Return the address of the allocation

E.3 Freeing Memory 395

E.3 Freeing Memory

Contents

E.3 Freeing Memory 395
E.3.1 Function: free_bootmem() 395
E.3.2 Function: free_bootmem_core() 395

E.3.1 Function: free_bootmem() (mm/bootmem.c)

Figure E.1: Call Graph: free_bootmem()

294 void __init free_bootmem_node (pg_data_t *pgdat,

unsigned long physaddr, unsigned long size)

295 {

296 return(free_bootmem_core(pgdat->bdata, physaddr, size));

297 }

316 void __init free_bootmem (unsigned long addr, unsigned long size)

317 {

318 return(free_bootmem_core(contig_page_data.bdata, addr, size));

319 }

296 Call the core function with the corresponding bootmem data for the requested
node

318 Call the core function with the bootmem data for contig_page_data

E.3.2 Function: free_bootmem_core() (mm/bootmem.c)

103 static void __init free_bootmem_core(bootmem_data_t *bdata,

unsigned long addr,

unsigned long size)

104 {

105 unsigned long i;

106 unsigned long start;

E.3 Freeing Memory (free_bootmem_core()) 396

111 unsigned long sidx;

112 unsigned long eidx = (addr + size -

bdata->node_boot_start)/PAGE_SIZE;

113 unsigned long end = (addr + size)/PAGE_SIZE;

114

115 if (!size) BUG();

116 if (end > bdata->node_low_pfn)

117 BUG();

118

119 /*

120 * Round up the beginning of the address.

121 */

122 start = (addr + PAGE_SIZE-1) / PAGE_SIZE;

123 sidx = start - (bdata->node_boot_start/PAGE_SIZE);

124

125 for (i = sidx; i < eidx; i++) {

126 if (!test_and_clear_bit(i, bdata->node_bootmem_map))

127 BUG();

128 }

129 }

112 Calculate the end index a�ected as eidx

113 The end address is the end of the a�ected area rounded down to the nearest
page if it is not already page aligned

115 If a size of 0 is freed, call BUG

116-117 If the end PFN is after the memory addressable by this node, call BUG

122 Round the starting address up to the nearest page if it is not already page
aligned

123 Calculate the starting index to free

125-127 For all full pages that are freed by this action, clear the bit in the boot
bitmap. If it is already 0, it is a double free or is memory that was never used
so call BUG

E.4 Retiring the Boot Memory Allocator 397

E.4 Retiring the Boot Memory Allocator

Contents

E.4 Retiring the Boot Memory Allocator 397
E.4.1 Function: mem_init() 397
E.4.2 Function: free_pages_init() 399
E.4.3 Function: one_highpage_init() 400
E.4.4 Function: free_all_bootmem() 401
E.4.5 Function: free_all_bootmem_core() 401

Once the system is started, the boot memory allocator is no longer needed so
these functions are responsible for removing unnecessary boot memory allocator
structures and passing the remaining pages to the normal physical page allocator.

E.4.1 Function: mem_init() (arch/i386/mm/init.c)
The call graph for this function is shown in Figure 5.2. The important part of this

function for the boot memory allocator is that it calls free_pages_init()(See Section E.4.2).
The function is broken up into the following tasks

• Function preamble, set the PFN within the global mem_map for the location of
high memory and zero out the system wide zero page

• Call free_pages_init()(See Section E.4.2)

• Print out an informational message on the availability of memory in the system

• Check the CPU supports PAE if the con�g option is enabled and test the
WP bit on the CPU. This is important as without the WP bit, the function
verify_write() has to be called for every write to userspace from the kernel.
This only applies to old processors like the 386

• Fill in entries for the userspace portion of the PGD for swapper_pg_dir, the
kernel page tables. The zero page is mapped for all entries

507 void __init mem_init(void)

508 {

509 int codesize, reservedpages, datasize, initsize;

510

511 if (!mem_map)

512 BUG();

513

514 set_max_mapnr_init();

515

516 high_memory = (void *) __va(max_low_pfn * PAGE_SIZE);

517

518 /* clear the zero-page */

519 memset(empty_zero_page, 0, PAGE_SIZE);

E.4 Retiring the Boot Memory Allocator (mem_init()) 398

514 This function records the PFN high memory starts in mem_map (highmem_start_page),
the maximum number of pages in the system (max_mapnr and num_physpages)
and �nally the maximum number of pages that may be mapped by the kernel
(num_mappedpages)

516 high_memory is the virtual address where high memory begins

519 Zero out the system wide zero page

520

521 reservedpages = free_pages_init();

522

512 Call free_pages_init()(See Section E.4.2) which tells the boot memory al-
locator to retire itself as well as initialising all pages in high memory for use
with the buddy allocator

523 codesize = (unsigned long) &_etext - (unsigned long) &_text;

524 datasize = (unsigned long) &_edata - (unsigned long) &_etext;

525 initsize = (unsigned long) &__init_end - (unsigned long)

&__init_begin;

526

527 printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code,

%dk reserved, %dk data, %dk init, %ldk highmem)\n",

528 (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),

529 max_mapnr << (PAGE_SHIFT-10),

530 codesize >> 10,

531 reservedpages << (PAGE_SHIFT-10),

532 datasize >> 10,

533 initsize >> 10,

534 (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))

535);

Print out an informational message

523 Calculate the size of the code segment, data segment and memory used by ini-
tialisation code and data (all functions marked __init will be in this section)

527-535 Print out a nice message on how the availability of memory and the
amount of memory consumed by the kernel

536

537 #if CONFIG_X86_PAE

538 if (!cpu_has_pae)

539 panic("cannot execute a PAE-enabled kernel on a PAE-less

CPU!");

540 #endif

E.4 Retiring the Boot Memory Allocator (mem_init()) 399

541 if (boot_cpu_data.wp_works_ok < 0)

542 test_wp_bit();

543

538-539 If PAE is enabled but the processor does not support it, panic

541-542 Test for the availability of the WP bit

550 #ifndef CONFIG_SMP

551 zap_low_mappings();

552 #endif

553

554 }

551 Cycle through each PGD used by the userspace portion of swapper_pg_dir
and map the zero page to it

E.4.2 Function: free_pages_init() (arch/i386/mm/init.c)
This function has two important functions, to call free_all_bootmem() (See Section E.4.4)

to retire the boot memory allocator and to free all high memory pages to the buddy
allocator.

481 static int __init free_pages_init(void)

482 {

483 extern int ppro_with_ram_bug(void);

484 int bad_ppro, reservedpages, pfn;

485

486 bad_ppro = ppro_with_ram_bug();

487

488 /* this will put all low memory onto the freelists */

489 totalram_pages += free_all_bootmem();

490

491 reservedpages = 0;

492 for (pfn = 0; pfn < max_low_pfn; pfn++) {

493 /*

494 * Only count reserved RAM pages

495 */

496 if (page_is_ram(pfn) && PageReserved(mem_map+pfn))

497 reservedpages++;

498 }

499 #ifdef CONFIG_HIGHMEM

500 for (pfn = highend_pfn-1; pfn >= highstart_pfn; pfn--)

501 one_highpage_init((struct page *) (mem_map + pfn), pfn,

bad_ppro);

502 totalram_pages += totalhigh_pages;

503 #endif

E.4 Retiring the Boot Memory Allocator (free_pages_init()) 400

504 return reservedpages;

505 }

486 There is a bug in the Pentium Pros that prevent certain pages in high memory
being used. The function ppro_with_ram_bug() checks for its existance

489 Call free_all_bootmem() to retire the boot memory allocator

491-498 Cycle through all of memory and count the number of reserved pages that
were left over by the boot memory allocator

500-501 For each page in high memory, call one_highpage_init() (See Section E.4.3).
This function clears the PG_reserved bit, sets the PG_high bit, sets the count
to 1, calls __free_pages() to give the page to the buddy allocator and in-
crements the totalhigh_pages count. Pages which kill buggy Pentium Pro's
are skipped

E.4.3 Function: one_highpage_init() (arch/i386/mm/init.c)
This function initialises the information for one page in high memory and checks

to make sure that the page will not trigger a bug with some Pentium Pros. It only
exists if CONFIG_HIGHMEM is speci�ed at compile time.

449 #ifdef CONFIG_HIGHMEM

450 void __init one_highpage_init(struct page *page, int pfn,

int bad_ppro)

451 {

452 if (!page_is_ram(pfn)) {

453 SetPageReserved(page);

454 return;

455 }

456

457 if (bad_ppro && page_kills_ppro(pfn)) {

458 SetPageReserved(page);

459 return;

460 }

461

462 ClearPageReserved(page);

463 set_bit(PG_highmem, &page->flags);

464 atomic_set(&page->count, 1);

465 __free_page(page);

466 totalhigh_pages++;

467 }

468 #endif /* CONFIG_HIGHMEM */

452-455 If a page does not exist at the PFN, then mark the struct page as
reserved so it will not be used

E.4 Retiring the Boot Memory Allocator (one_highpage_init()) 401

457-460 If the running CPU is susceptible to the Pentium Pro bug and this page
is a page that would cause a crash (page_kills_ppro() performs the check),
then mark the page as reserved so it will never be allocated

462 From here on, the page is a high memory page that should be used so �rst
clear the reserved bit so it will be given to the buddy allocator later

463 Set the PG_highmem bit to show it is a high memory page

464 Initialise the usage count of the page to 1 which will be set to 0 by the buddy
allocator

465 Free the page with __free_page()(See Section F.4.2) so that the buddy allo-
cator will add the high memory page to it's free lists

466 Increment the total number of available high memory pages (totalhigh_pages)

E.4.4 Function: free_all_bootmem() (mm/bootmem.c)

299 unsigned long __init free_all_bootmem_node (pg_data_t *pgdat)

300 {

301 return(free_all_bootmem_core(pgdat));

302 }

321 unsigned long __init free_all_bootmem (void)

322 {

323 return(free_all_bootmem_core(&contig_page_data));

324 }

299-302 For NUMA, simply call the core function with the speci�ed pgdat

321-324 For UMA, call the core function with the only node contig_page_data

E.4.5 Function: free_all_bootmem_core() (mm/bootmem.c)
This is the core function which �retires� the boot memory allocator. It is divided

into two major tasks

• For all unallocated pages known to the allocator for this node;

� Clear the PG_reserved �ag in its struct page

� Set the count to 1

� Call __free_pages() so that the buddy allocator can build its free lists

• Free all pages used for the bitmap and free to them to the buddy allocator

E.4 Retiring the Boot Memory Allocator (free_all_bootmem_core()) 402

245 static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)

246 {

247 struct page *page = pgdat->node_mem_map;

248 bootmem_data_t *bdata = pgdat->bdata;

249 unsigned long i, count, total = 0;

250 unsigned long idx;

251

252 if (!bdata->node_bootmem_map) BUG();

253

254 count = 0;

255 idx = bdata->node_low_pfn -

(bdata->node_boot_start >> PAGE_SHIFT);

256 for (i = 0; i < idx; i++, page++) {

257 if (!test_bit(i, bdata->node_bootmem_map)) {

258 count++;

259 ClearPageReserved(page);

260 set_page_count(page, 1);

261 __free_page(page);

262 }

263 }

264 total += count;

252 If no map is available, it means that this node has already been freed and
something woeful is wrong with the architecture dependent code so call BUG()

254 A running count of the number of pages given to the buddy allocator

255 idx is the last index that is addressable by this node

256-263 Cycle through all pages addressable by this node

257 If the page is marked free then...

258 Increase the running count of pages given to the buddy allocator

259 Clear the PG_reserved �ag

260 Set the count to 1 so that the buddy allocator will think this is the last user
of the page and place it in its free lists

261 Call the buddy allocator free function so the page will be added to it's free
lists

264 total will come the total number of pages given over by this function

270 page = virt_to_page(bdata->node_bootmem_map);

271 count = 0;

272 for (i = 0;

E.4 Retiring the Boot Memory Allocator (free_all_bootmem_core()) 403

i < ((bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT)

)/8 + PAGE_SIZE-1)/PAGE_SIZE;

i++,page++) {

273 count++;

274 ClearPageReserved(page);

275 set_page_count(page, 1);

276 __free_page(page);

277 }

278 total += count;

279 bdata->node_bootmem_map = NULL;

280

281 return total;

282 }

Free the allocator bitmap and return

270 Get the struct page that is at the beginning of the bootmem map

271 Count of pages freed by the bitmap

272-277 For all pages used by the bitmap, free them to the buddy allocator the
same way the previous block of code did

279 Set the bootmem map to NULL to prevent it been freed a second time by
accident

281 Return the total number of pages freed by this function, or in other words,
return the number of pages that were added to the buddy allocator's free lists

Appendix F

Physical Page Allocation

Contents
F.1 Allocating Pages . 405

F.1.1 Function: alloc_pages() . 405

F.1.2 Function: _alloc_pages() . 405

F.1.3 Function: __alloc_pages() . 406

F.1.4 Function: rmqueue() . 410

F.1.5 Function: expand() . 412

F.1.6 Function: balance_classzone() 414

F.2 Allocation Helper Functions . 418

F.2.1 Function: alloc_page() . 418

F.2.2 Function: __get_free_page() 418

F.2.3 Function: __get_free_pages() 418

F.2.4 Function: __get_dma_pages() 419

F.2.5 Function: get_zeroed_page() 419

F.3 Free Pages . 420

F.3.1 Function: __free_pages() . 420

F.3.2 Function: __free_pages_ok() 420

F.4 Free Helper Functions . 425

F.4.1 Function: free_pages() . 425

F.4.2 Function: __free_page() . 425

F.4.3 Function: free_page() . 425

404

F.1 Allocating Pages 405

F.1 Allocating Pages

Contents

F.1 Allocating Pages 405
F.1.1 Function: alloc_pages() 405
F.1.2 Function: _alloc_pages() 405
F.1.3 Function: __alloc_pages() 406
F.1.4 Function: rmqueue() 410
F.1.5 Function: expand() 412
F.1.6 Function: balance_classzone() 414

F.1.1 Function: alloc_pages() (include/linux/mm.h)
The call graph for this function is shown at 6.3. It is declared as follows;

439 static inline struct page * alloc_pages(unsigned int gfp_mask,

unsigned int order)

440 {

444 if (order >= MAX_ORDER)

445 return NULL;

446 return _alloc_pages(gfp_mask, order);

447 }

439 The gfp_mask (Get Free Pages) �ags tells the allocator how it may behave. For
example GFP_WAIT is not set, the allocator will not block and instead return
NULL if memory is tight. The order is the power of two number of pages to
allocate

444-445 A simple debugging check optimized away at compile time

446 This function is described next

F.1.2 Function: _alloc_pages() (mm/page_alloc.c)
The function _alloc_pages() comes in two varieties. The �rst is designed to

only work with UMA architectures such as the x86 and is in mm/page_alloc.c.
It only refers to the static node contig_page_data. The second is in mm/numa.c

and is a simple extension. It uses a node-local allocation policy which means that
memory will be allocated from the bank closest to the processor. For the purposes
of this book, only the mm/page_alloc.c version will be examined but developers on
NUMA architectures should read _alloc_pages() and _alloc_pages_pgdat() as
well in mm/numa.c

244 #ifndef CONFIG_DISCONTIGMEM

245 struct page *_alloc_pages(unsigned int gfp_mask,

unsigned int order)

246 {

F.1 Allocating Pages (_alloc_pages()) 406

247 return __alloc_pages(gfp_mask, order,

248 contig_page_data.node_zonelists+(gfp_mask & GFP_ZONEMASK));

249 }

250 #endif

244 The ifndef is for UMA architectures like the x86. NUMA architectures used
the _alloc_pages() function in mm/numa.c which employs a node local policy
for allocations

245 The gfp_mask �ags tell the allocator how it may behave. The order is the
power of two number of pages to allocate

247 node_zonelists is an array of preferred fallback zones to allocate from. It
is initialised in build_zonelists()(See Section B.1.6) The lower 16 bits of
gfp_mask indicate what zone is preferable to allocate from. Applying the
bitmask gfp_mask & GFP_ZONEMASK will give the index in node_zonelists

we prefer to allocate from.

F.1.3 Function: __alloc_pages() (mm/page_alloc.c)
At this stage, we've reached what is described as the �heart of the zoned buddy

allocator�, the __alloc_pages() function. It is responsible for cycling through the
fallback zones and selecting one suitable for the allocation. If memory is tight, it
will take some steps to address the problem. It will wake kswapd and if necessary
it will do the work of kswapd manually.

327 struct page * __alloc_pages(unsigned int gfp_mask,

unsigned int order,

zonelist_t *zonelist)

328 {

329 unsigned long min;

330 zone_t **zone, * classzone;

331 struct page * page;

332 int freed;

333

334 zone = zonelist->zones;

335 classzone = *zone;

336 if (classzone == NULL)

337 return NULL;

338 min = 1UL << order;

339 for (;;) {

340 zone_t *z = *(zone++);

341 if (!z)

342 break;

343

344 min += z->pages_low;

345 if (z->free_pages > min) {

F.1 Allocating Pages (__alloc_pages()) 407

346 page = rmqueue(z, order);

347 if (page)

348 return page;

349 }

350 }

334 Set zone to be the preferred zone to allocate from

335 The preferred zone is recorded as the classzone. If one of the pages low
watermarks is reached later, the classzone is marked as needing balance

336-337 An unnecessary sanity check. build_zonelists() would need to be
seriously broken for this to happen

338-350 This style of block appears a number of times in this function. It reads
as �cycle through all zones in this fallback list and see can the allocation be
satis�ed without violating watermarks�. Note that the pages_low for each
fallback zone is added together. This is deliberate to reduce the probability a
fallback zone will be used.

340 z is the zone currently been examined. The zone variable is moved to the next
fallback zone

341-342 If this is the last zone in the fallback list, break

344 Increment the number of pages to be allocated by the watermark for easy
comparisons. This happens for each zone in the fallback zones. While this
appears �rst to be a bug, this behavior is actually intended to reduce the
probability a fallback zone is used.

345-349 Allocate the page block if it can be assigned without reaching the
pages_min watermark. rmqueue()(See Section F.1.4) is responsible from re-
moving the block of pages from the zone

347-348 If the pages could be allocated, return a pointer to them

352 classzone->need_balance = 1;

353 mb();

354 if (waitqueue_active(&kswapd_wait))

355 wake_up_interruptible(&kswapd_wait);

356

357 zone = zonelist->zones;

358 min = 1UL << order;

359 for (;;) {

360 unsigned long local_min;

361 zone_t *z = *(zone++);

362 if (!z)

363 break;

F.1 Allocating Pages (__alloc_pages()) 408

364

365 local_min = z->pages_min;

366 if (!(gfp_mask & __GFP_WAIT))

367 local_min >>= 2;

368 min += local_min;

369 if (z->free_pages > min) {

370 page = rmqueue(z, order);

371 if (page)

372 return page;

373 }

374 }

375

352 Mark the preferred zone as needing balance. This �ag will be read later by
kswapd

353 This is a memory barrier. It ensures that all CPU's will see any changes made
to variables before this line of code. This is important because kswapd could
be running on a di�erent processor to the memory allocator.

354-355 Wake up kswapd if it is asleep

357-358 Begin again with the �rst preferred zone and min value

360-374 Cycle through all the zones. This time, allocate the pages if they can be
allocated without hitting the pages_min watermark

365 local_min how low a number of free pages this zone can have

366-367 If the process can not wait or reschedule (__GFP_WAIT is clear), then allow
the zone to be put in further memory pressure than the watermark normally
allows

376 /* here we're in the low on memory slow path */

377

378 rebalance:

379 if (current->flags & (PF_MEMALLOC | PF_MEMDIE)) {

380 zone = zonelist->zones;

381 for (;;) {

382 zone_t *z = *(zone++);

383 if (!z)

384 break;

385

386 page = rmqueue(z, order);

387 if (page)

388 return page;

389 }

F.1 Allocating Pages (__alloc_pages()) 409

390 return NULL;

391 }

378 This label is returned to after an attempt is made to synchronusly free pages.
From this line on, the low on memory path has been reached. It is likely the
process will sleep

379-391 These two �ags are only set by the OOM killer. As the process is trying
to kill itself cleanly, allocate the pages if at all possible as it is known they will
be freed very soon

393 /* Atomic allocations - we can't balance anything */

394 if (!(gfp_mask & __GFP_WAIT))

395 return NULL;

396

397 page = balance_classzone(classzone, gfp_mask, order, &freed);

398 if (page)

399 return page;

400

401 zone = zonelist->zones;

402 min = 1UL << order;

403 for (;;) {

404 zone_t *z = *(zone++);

405 if (!z)

406 break;

407

408 min += z->pages_min;

409 if (z->free_pages > min) {

410 page = rmqueue(z, order);

411 if (page)

412 return page;

413 }

414 }

415

416 /* Don't let big-order allocations loop */

417 if (order > 3)

418 return NULL;

419

420 /* Yield for kswapd, and try again */

421 yield();

422 goto rebalance;

423 }

394-395 If the calling process can not sleep, return NULL as the only way to
allocate the pages from here involves sleeping

F.1 Allocating Pages (__alloc_pages()) 410

397 balance_classzone()(See Section F.1.6) performs the work of kswapd in
a synchronous fashion. The principal di�erence is that instead of free-
ing the memory into a global pool, it is kept for the process using the
current→local_pages linked list

398-399 If a page block of the right order has been freed, return it. Just because
this is NULL does not mean an allocation will fail as it could be a higher order
of pages that was released

403-414 This is identical to the block above. Allocate the page blocks if it can be
done without hitting the pages_min watermark

417-418 Satisi�ng a large allocation like 24 number of pages is di�cult. If it has
not been satis�ed by now, it is better to simply return NULL

421 Yield the processor to give kswapd a chance to work

422 Attempt to balance the zones again and allocate

F.1.4 Function: rmqueue() (mm/page_alloc.c)
This function is called from __alloc_pages(). It is responsible for �nding a

block of memory large enough to be used for the allocation. If a block of memory of
the requested size is not available, it will look for a larger order that may be split into
two buddies. The actual splitting is performed by the expand() (See Section F.1.5)
function.

198 static FASTCALL(struct page *rmqueue(zone_t *zone,

unsigned int order));

199 static struct page * rmqueue(zone_t *zone, unsigned int order)

200 {

201 free_area_t * area = zone->free_area + order;

202 unsigned int curr_order = order;

203 struct list_head *head, *curr;

204 unsigned long flags;

205 struct page *page;

206

207 spin_lock_irqsave(&zone->lock, flags);

208 do {

209 head = &area->free_list;

210 curr = head->next;

211

212 if (curr != head) {

213 unsigned int index;

214

215 page = list_entry(curr, struct page, list);

216 if (BAD_RANGE(zone,page))

F.1 Allocating Pages (rmqueue()) 411

217 BUG();

218 list_del(curr);

219 index = page - zone->zone_mem_map;

220 if (curr_order != MAX_ORDER-1)

221 MARK_USED(index, curr_order, area);

222 zone->free_pages -= 1UL << order;

223

224 page = expand(zone, page, index, order,

curr_order, area);

225 spin_unlock_irqrestore(&zone->lock, flags);

226

227 set_page_count(page, 1);

228 if (BAD_RANGE(zone,page))

229 BUG();

230 if (PageLRU(page))

231 BUG();

232 if (PageActive(page))

233 BUG();

234 return page;

235 }

236 curr_order++;

237 area++;

238 } while (curr_order < MAX_ORDER);

239 spin_unlock_irqrestore(&zone->lock, flags);

240

241 return NULL;

242 }

199 The parameters are the zone to allocate from and what order of pages are
required

201 Because the free_area is an array of linked lists, the order may be used an
an index within the array

207 Acquire the zone lock

208-238 This while block is responsible for �nding what order of pages we will
need to allocate from. If there isn't a free block at the order we are interested
in, check the higher blocks until a suitable one is found

209 head is the list of free page blocks for this order

210 curr is the �rst block of pages

212-235 If there is a free page block at this order, then allocate it

F.1 Allocating Pages (rmqueue()) 412

215 page is set to be a pointer to the �rst page in the free block

216-217 Sanity check that checks to make sure the page this page belongs to this
zone and is within the zone_mem_map. It is unclear how this could possibly
happen without severe bugs in the allocator itself that would place blocks in
the wrong zones

218 As the block is going to be allocated, remove it from the free list

219 index treats the zone_mem_map as an array of pages so that index will be the
o�set within the array

220-221 Toggle the bit that represents this pair of buddies. MARK_USED() is a
macro which calculates which bit to toggle

222 Update the statistics for this zone. 1UL<<order is the number of pages been
allocated

224 expand()(See Section F.1.5) is the function responsible for splitting page
blocks of higher orders

225 No other updates to the zone need to take place so release the lock

227 Show that the page is in use

228-233 Sanity checks

234 Page block has been successfully allocated so return it

236-237 If a page block was not free of the correct order, move to a higher order
of page blocks and see what can be found there

239 No other updates to the zone need to take place so release the lock

241 No page blocks of the requested or higher order are available so return failure

F.1.5 Function: expand() (mm/page_alloc.c)
This function splits page blocks of higher orders until a page block of the needed

order is available.

177 static inline struct page * expand (zone_t *zone,

struct page *page,

unsigned long index,

int low,

int high,

free_area_t * area)

179 {

180 unsigned long size = 1 << high;

181

F.1 Allocating Pages (expand()) 413

182 while (high > low) {

183 if (BAD_RANGE(zone,page))

184 BUG();

185 area--;

186 high--;

187 size >>= 1;

188 list_add(&(page)->list, &(area)->free_list);

189 MARK_USED(index, high, area);

190 index += size;

191 page += size;

192 }

193 if (BAD_RANGE(zone,page))

194 BUG();

195 return page;

196 }

177 The parameters are

zone is where the allocation is coming from

page is the �rst page of the block been split

index is the index of page within mem_map

low is the order of pages needed for the allocation

high is the order of pages that is been split for the allocation

area is the free_area_t representing the high order block of pages

180 size is the number of pages in the block that is to be split

182-192 Keep splitting until a block of the needed page order is found

183-184 Sanity check that checks to make sure the page this page belongs to this
zone and is within the zone_mem_map

185 area is now the next free_area_t representing the lower order of page blocks

186 high is the next order of page blocks to be split

187 The size of the block been split is now half as big

188 Of the pair of buddies, the one lower in the mem_map is added to the free list
for the lower order

189 Toggle the bit representing the pair of buddies

190 index now the index of the second buddy of the newly created pair

191 page now points to the second buddy of the newly created paid

F.1 Allocating Pages (expand()) 414

193-194 Sanity check

195 The blocks have been successfully split so return the page

F.1.6 Function: balance_classzone() (mm/page_alloc.c)
This function is part of the direct-reclaim path. Allocators which can sleep will

call this function to start performing the work of kswapd in a synchronous fashion.
As the process is performing the work itself, the pages it frees of the desired order are
reserved in a linked list in current→local_pages and the number of page blocks
in the list is stored in current→nr_local_pages. Note that page blocks is not the
same as number of pages. A page block could be of any order.

253 static struct page * balance_classzone(zone_t * classzone,

unsigned int gfp_mask,

unsigned int order,

int * freed)

254 {

255 struct page * page = NULL;

256 int __freed = 0;

257

258 if (!(gfp_mask & __GFP_WAIT))

259 goto out;

260 if (in_interrupt())

261 BUG();

262

263 current->allocation_order = order;

264 current->flags |= PF_MEMALLOC | PF_FREE_PAGES;

265

266 __freed = try_to_free_pages_zone(classzone, gfp_mask);

267

268 current->flags &= ~(PF_MEMALLOC | PF_FREE_PAGES);

269

258-259 If the caller is not allowed to sleep, then goto out to exit the func-
tion. For this to occur, the function would have to be called directly or
__alloc_pages() would need to be deliberately broken

260-261 This function may not be used by interrupts. Again, deliberate damage
would have to be introduced for this condition to occur

263 Record the desired size of the allocation in current→allocation_order.
This is actually unused although it could have been used to only add pages of
the desired order to the local_pages list. As it is, the order of pages in the
list is stored in page→index

264 Set the �ags which will the free functions to add the pages to the local_list

F.1 Allocating Pages (balance_classzone()) 415

266 Free pages directly from the desired zone with try_to_free_pages_zone()

(See Section J.5.3). This is where the direct-reclaim path intersects with
kswapd

268 Clear the �ags again so that the free functions do not continue to add pages
to the local_pages list

270 if (current->nr_local_pages) {

271 struct list_head * entry, * local_pages;

272 struct page * tmp;

273 int nr_pages;

274

275 local_pages = ¤t->local_pages;

276

277 if (likely(__freed)) {

278 /* pick from the last inserted so we're lifo */

279 entry = local_pages->next;

280 do {

281 tmp = list_entry(entry, struct page, list);

282 if (tmp->index == order &&

memclass(page_zone(tmp), classzone)) {

283 list_del(entry);

284 current->nr_local_pages--;

285 set_page_count(tmp, 1);

286 page = tmp;

287

288 if (page->buffers)

289 BUG();

290 if (page->mapping)

291 BUG();

292 if (!VALID_PAGE(page))

293 BUG();

294 if (PageLocked(page))

295 BUG();

296 if (PageLRU(page))

297 BUG();

298 if (PageActive(page))

299 BUG();

300 if (PageDirty(page))

301 BUG();

302

303 break;

304 }

305 } while ((entry = entry->next) != local_pages);

306 }

F.1 Allocating Pages (balance_classzone()) 416

Presuming that pages exist in the local_pages list, this function will cycle
through the list looking for a page block belonging to the desired zone and order.

270 Only enter this block if pages are stored in the local list

275 Start at the beginning of the list

277 If pages were freed with try_to_free_pages_zone() then...

279 The last one inserted is chosen �rst as it is likely to be cache hot and it is
desirable to use pages that have been recently referenced

280-305 Cycle through the pages in the list until we �nd one of the desired order
and zone

281 Get the page from this list entry

282 The order of the page block is stored in page→index so check if the order
matches the desired order and that it belongs to the right zone. It is unlikely
that pages from another zone are on this list but it could occur if swap_out()
is called to free pages directly from process page tables

283 This is a page of the right order and zone so remove it from the list

284 Decrement the number of page blocks in the list

285 Set the page count to 1 as it is about to be freed

286 Set page as it will be returned. tmp is needed for the next block for freeing
the remaining pages in the local list

288-301 Perform the same checks that are performed in __free_pages_ok() to
ensure it is safe to free this page

305 Move to the next page in the list if the current one was not of the desired
order and zone

308 nr_pages = current->nr_local_pages;

309 /* free in reverse order so that the global

* order will be lifo */

310 while ((entry = local_pages->prev) != local_pages) {

311 list_del(entry);

312 tmp = list_entry(entry, struct page, list);

313 __free_pages_ok(tmp, tmp->index);

314 if (!nr_pages--)

315 BUG();

316 }

317 current->nr_local_pages = 0;

318 }

F.1 Allocating Pages (balance_classzone()) 417

319 out:

320 *freed = __freed;

321 return page;

322 }

This block frees the remaining pages in the list.

308 Get the number of page blocks that are to be freed

310 Loop until the local_pages list is empty

311 Remove this page block from the list

312 Get the struct page for the entry

313 Free the page with __free_pages_ok() (See Section F.3.2)

314-315 If the count of page blocks reaches zero and there is still pages in the list,
it means that the accounting is seriously broken somewhere or that someone
added pages to the local_pages list manually so call BUG()

317 Set the number of page blocks to 0 as they have all been freed

320 Update the freed parameter to tell the caller how many pages were freed in
total

321 Return the page block of the requested order and zone. If the freeing failed,
this will be returning NULL

F.2 Allocation Helper Functions 418

F.2 Allocation Helper Functions

Contents

F.2 Allocation Helper Functions 418
F.2.1 Function: alloc_page() 418
F.2.2 Function: __get_free_page() 418
F.2.3 Function: __get_free_pages() 418
F.2.4 Function: __get_dma_pages() 419
F.2.5 Function: get_zeroed_page() 419

This section will cover miscellaneous helper functions and macros the Buddy Allo-
cator uses to allocate pages. Very few of them do �real� work and are available just
for the convenience of the programmer.

F.2.1 Function: alloc_page() (include/linux/mm.h)
This trivial macro just calls alloc_pages() with an order of 0 to return 1 page.

It is declared as follows

449 #define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)

F.2.2 Function: __get_free_page() (include/linux/mm.h)
This trivial function calls __get_free_pages() with an order of 0 to return 1

page. It is declared as follows

454 #define __get_free_page(gfp_mask) \

455 __get_free_pages((gfp_mask),0)

F.2.3 Function: __get_free_pages() (mm/page_alloc.c)
This function is for callers who do not want to worry about pages and only get

back an address it can use. It is declared as follows

428 unsigned long __get_free_pages(unsigned int gfp_mask,

unsigned int order)

428 {

430 struct page * page;

431

432 page = alloc_pages(gfp_mask, order);

433 if (!page)

434 return 0;

435 return (unsigned long) page_address(page);

436 }

431 alloc_pages() does the work of allocating the page block. See Section F.1.1

433-434 Make sure the page is valid

435 page_address() returns the physical address of the page

F.2.4 Function: __get_dma_pages() 419

F.2.4 Function: __get_dma_pages() (include/linux/mm.h)
This is of principle interest to device drivers. It will return memory from

ZONE_DMA suitable for use with DMA devices. It is declared as follows

457 #define __get_dma_pages(gfp_mask, order) \

458 __get_free_pages((gfp_mask) | GFP_DMA,(order))

458 The gfp_mask is or-ed with GFP_DMA to tell the allocator to allocate from
ZONE_DMA

F.2.5 Function: get_zeroed_page() (mm/page_alloc.c)
This function will allocate one page and then zero out the contents of it. It is

declared as follows

438 unsigned long get_zeroed_page(unsigned int gfp_mask)

439 {

440 struct page * page;

441

442 page = alloc_pages(gfp_mask, 0);

443 if (page) {

444 void *address = page_address(page);

445 clear_page(address);

446 return (unsigned long) address;

447 }

448 return 0;

449 }

438 gfp_mask are the �ags which a�ect allocator behaviour.

442 alloc_pages() does the work of allocating the page block. See Section F.1.1

444 page_address() returns the physical address of the page

445 clear_page() will �ll the contents of a page with zero

446 Return the address of the zeroed page

F.3 Free Pages 420

F.3 Free Pages

Contents

F.3 Free Pages 420
F.3.1 Function: __free_pages() 420
F.3.2 Function: __free_pages_ok() 420

F.3.1 Function: __free_pages() (mm/page_alloc.c)
The call graph for this function is shown in Figure 6.4. Just to be confus-

ing, the opposite to alloc_pages() is not free_pages(), it is __free_pages().
free_pages() is a helper function which takes an address as a parameter, it will be
discussed in a later section.

451 void __free_pages(struct page *page, unsigned int order)

452 {

453 if (!PageReserved(page) && put_page_testzero(page))

454 __free_pages_ok(page, order);

455 }

451 The parameters are the page we wish to free and what order block it is

453 Sanity checked. PageReserved() indicates that the page is reserved by
the boot memory allocator. put_page_testzero() is just a macro wrapper
around atomic_dec_and_test() decrements the usage count and makes sure
it is zero

454 Call the function that does all the hard work

F.3.2 Function: __free_pages_ok() (mm/page_alloc.c)
This function will do the actual freeing of the page and coalesce the buddies if

possible.

81 static void FASTCALL(__free_pages_ok (struct page *page,

unsigned int order));

82 static void __free_pages_ok (struct page *page, unsigned int order)

83 {

84 unsigned long index, page_idx, mask, flags;

85 free_area_t *area;

86 struct page *base;

87 zone_t *zone;

88

93 if (PageLRU(page)) {

94 if (unlikely(in_interrupt()))

95 BUG();

96 lru_cache_del(page);

97 }

F.3 Free Pages (__free_pages_ok()) 421

98

99 if (page->buffers)

100 BUG();

101 if (page->mapping)

102 BUG();

103 if (!VALID_PAGE(page))

104 BUG();

105 if (PageLocked(page))

106 BUG();

107 if (PageActive(page))

108 BUG();

109 page->flags &= ~((1<<PG_referenced) | (1<<PG_dirty));

82 The parameters are the beginning of the page block to free and what order
number of pages are to be freed.

93-97 A dirty page on the LRU will still have the LRU bit set when pinned for IO.
On IO completion, it is freed so it must now be removed from the LRU list

99-108 Sanity checks

109 The �ags showing a page has being referenced and is dirty have to be cleared
because the page is now free and not in use

110

111 if (current->flags & PF_FREE_PAGES)

112 goto local_freelist;

113 back_local_freelist:

114

115 zone = page_zone(page);

116

117 mask = (~0UL) << order;

118 base = zone->zone_mem_map;

119 page_idx = page - base;

120 if (page_idx & ~mask)

121 BUG();

122 index = page_idx >> (1 + order);

123

124 area = zone->free_area + order;

125

111-112 If this �ag is set, the pages freed are to be kept for the process doing
the freeing. This is set by balance_classzone()(See Section F.1.6) during
page allocation if the caller is freeing the pages itself rather than waiting for
kswapd to do the work

F.3 Free Pages (__free_pages_ok()) 422

115 The zone the page belongs to is encoded within the page �ags. The
page_zone() macro returns the zone

117 The calculation of mask is discussed in companion document. It is basically
related to the address calculation of the buddy

118 base is the beginning of this zone_mem_map. For the buddy calculation to
work, it was to be relative to an address 0 so that the addresses will be a
power of two

119 page_idx treats the zone_mem_map as an array of pages. This is the index
page within the map

120-121 If the index is not the proper power of two, things are severely broken
and calculation of the buddy will not work

122 This index is the bit index within free_area→map

124 area is the area storing the free lists and map for the order block the pages
are been freed from.

126 spin_lock_irqsave(&zone->lock, flags);

127

128 zone->free_pages -= mask;

129

130 while (mask + (1 << (MAX_ORDER-1))) {

131 struct page *buddy1, *buddy2;

132

133 if (area >= zone->free_area + MAX_ORDER)

134 BUG();

135 if (!__test_and_change_bit(index, area->map))

136 /*

137 * the buddy page is still allocated.

138 */

139 break;

140 /*

141 * Move the buddy up one level.

142 * This code is taking advantage of the identity:

143 * -mask = 1+~mask

144 */

145 buddy1 = base + (page_idx ^ -mask);

146 buddy2 = base + page_idx;

147 if (BAD_RANGE(zone,buddy1))

148 BUG();

149 if (BAD_RANGE(zone,buddy2))

150 BUG();

151

F.3 Free Pages (__free_pages_ok()) 423

152 list_del(&buddy1->list);

153 mask <<= 1;

154 area++;

155 index >>= 1;

156 page_idx &= mask;

157 }

126 The zone is about to be altered so take out the lock. The lock is an interrupt
safe lock as it is possible for interrupt handlers to allocate a page in this path

128 Another side e�ect of the calculation of mask is that -mask is the number of
pages that are to be freed

130-157 The allocator will keep trying to coalesce blocks together until it either
cannot merge or reaches the highest order that can be merged. mask will be
adjusted for each order block that is merged. When the highest order that can
be merged is reached, this while loop will evaluate to 0 and exit.

133-134 If by some miracle, mask is corrupt, this check will make sure the
free_area array will not not be read beyond the end

135 Toggle the bit representing this pair of buddies. If the bit was previously zero,
both buddies were in use. As this buddy is been freed, one is still in use and
cannot be merged

145-146 The calculation of the two addresses is discussed in Chapter 6

147-150 Sanity check to make sure the pages are within the correct zone_mem_map
and actually belong to this zone

152 The buddy has been freed so remove it from any list it was part of

153-156 Prepare to examine the higher order buddy for merging

153 Move the mask one bit to the left for order 2k+1

154 area is a pointer within an array so area++ moves to the next index

155 The index in the bitmap of the higher order

156 The page index within the zone_mem_map for the buddy to merge

158 list_add(&(base + page_idx)->list, &area->free_list);

159

160 spin_unlock_irqrestore(&zone->lock, flags);

161 return;

162

163 local_freelist:

164 if (current->nr_local_pages)

F.3 Free Pages (__free_pages_ok()) 424

165 goto back_local_freelist;

166 if (in_interrupt())

167 goto back_local_freelist;

168

169 list_add(&page->list, ¤t->local_pages);

170 page->index = order;

171 current->nr_local_pages++;

172 }

158 As much merging as possible as completed and a new page block is free so add
it to the free_list for this order

160-161 Changes to the zone is complete so free the lock and return

163 This is the code path taken when the pages are not freed to the main pool but
instaed are reserved for the process doing the freeing.

164-165 If the process already has reserved pages, it is not allowed to reserve any
more so return back. This is unusual as balance_classzone() assumes that
more than one page block may be returned on this list. It is likely to be an
oversight but may still work if the �rst page block freed is the same order and
zone as required by balance_classzone()

166-167 An interrupt does not have process context so it has to free in the normal
fashion. It is unclear how an interrupt could end up here at all. This check is
likely to be bogus and impossible to be true

169 Add the page block to the list for the processes local_pages

170 Record what order allocation it was for freeing later

171 Increase the use count for nr_local_pages

F.4 Free Helper Functions 425

F.4 Free Helper Functions

Contents

F.4 Free Helper Functions 425
F.4.1 Function: free_pages() 425
F.4.2 Function: __free_page() 425
F.4.3 Function: free_page() 425

These functions are very similar to the page allocation helper functions in that
they do no �real� work themselves and depend on the __free_pages() function to
perform the actual free.

F.4.1 Function: free_pages() (mm/page_alloc.c)
This function takes an address instead of a page as a parameter to free. It is

declared as follows

457 void free_pages(unsigned long addr, unsigned int order)

458 {

459 if (addr != 0)

460 __free_pages(virt_to_page(addr), order);

461 }

460 The function is discussed in Section F.3.1. The macro virt_to_page()

returns the struct page for the addr

F.4.2 Function: __free_page() (include/linux/mm.h)
This trivial macro just calls the function __free_pages() (See Section F.3.1)

with an order 0 for 1 page. It is declared as follows

472 #define __free_page(page) __free_pages((page), 0)

F.4.3 Function: free_page() (include/linux/mm.h)
This trivial macro just calls the function free_pages(). The essential di�erence

between this macro and __free_page() is that this function takes a virtual address
as a parameter and __free_page() takes a struct page.

472 #define free_page(addr) free_pages((addr),0)

Appendix G

Non-Contiguous Memory Allocation

Contents
G.1 Allocating A Non-Contiguous Area 427

G.1.1 Function: vmalloc() . 427

G.1.2 Function: __vmalloc() . 427

G.1.3 Function: get_vm_area() . 428

G.1.4 Function: vmalloc_area_pages() 430

G.1.5 Function: __vmalloc_area_pages() 431

G.1.6 Function: alloc_area_pmd() . 432

G.1.7 Function: alloc_area_pte() . 434

G.1.8 Function: vmap() . 435

G.2 Freeing A Non-Contiguous Area 437

G.2.1 Function: vfree() . 437

G.2.2 Function: vmfree_area_pages() 438

G.2.3 Function: free_area_pmd() . 439

G.2.4 Function: free_area_pte() . 440

426

G.1 Allocating A Non-Contiguous Area 427

G.1 Allocating A Non-Contiguous Area

Contents

G.1 Allocating A Non-Contiguous Area 427
G.1.1 Function: vmalloc() 427
G.1.2 Function: __vmalloc() 427
G.1.3 Function: get_vm_area() 428
G.1.4 Function: vmalloc_area_pages() 430
G.1.5 Function: __vmalloc_area_pages() 431
G.1.6 Function: alloc_area_pmd() 432
G.1.7 Function: alloc_area_pte() 434
G.1.8 Function: vmap() 435

G.1.1 Function: vmalloc() (include/linux/vmalloc.h)
The call graph for this function is shown in Figure 7.2. The following macros

only by their GFP_ �ags (See Section 6.4). The size parameter is page aligned by
__vmalloc()(See Section G.1.2).

37 static inline void * vmalloc (unsigned long size)

38 {

39 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);

40 }

45

46 static inline void * vmalloc_dma (unsigned long size)

47 {

48 return __vmalloc(size, GFP_KERNEL|GFP_DMA, PAGE_KERNEL);

49 }

54

55 static inline void * vmalloc_32(unsigned long size)

56 {

57 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);

58 }

37 The �ags indicate that to use either ZONE_NORMAL or ZONE_HIGHMEM as necessary

46 The �ag indicates to only allocate from ZONE_DMA

55 Only physical pages from ZONE_NORMAL will be allocated

G.1.2 Function: __vmalloc() (mm/vmalloc.c)
This function has three tasks. It page aligns the size request, asks get_vm_area()

to �nd an area for the request and uses vmalloc_area_pages() to allocate the PTEs
for the pages.

261 void * __vmalloc (unsigned long size, int gfp_mask, pgprot_t prot)

262 {

G.1 Allocating A Non-Contiguous Area (__vmalloc()) 428

263 void * addr;

264 struct vm_struct *area;

265

266 size = PAGE_ALIGN(size);

267 if (!size || (size >> PAGE_SHIFT) > num_physpages)

268 return NULL;

269 area = get_vm_area(size, VM_ALLOC);

270 if (!area)

271 return NULL;

272 addr = area->addr;

273 if (__vmalloc_area_pages(VMALLOC_VMADDR(addr), size, gfp_mask,

274 prot, NULL)) {

275 vfree(addr);

276 return NULL;

277 }

278 return addr;

279 }

261 The parameters are the size to allocate, the GFP_ �ags to use for allocation
and what protection to give the PTE

266 Align the size to a page size

267 Sanity check. Make sure the size is not 0 and that the size requested is not
larger than the number of physical pages has been requested

269 Find an area of virtual address space to store the allocation with get_vm_area()
(See Section G.1.3)

272 The addr �eld has been �lled by get_vm_area()

273Allocate the PTE entries needed for the allocation with __vmalloc_area_pages()
(See Section G.1.5). If it fails, a non-zero value -ENOMEM is returned

275-276 If the allocation fails, free any PTEs, pages and descriptions of the area

278 Return the address of the allocated area

G.1.3 Function: get_vm_area() (mm/vmalloc.c)
To allocate an area for the vm_struct, the slab allocator is asked to provide

the necessary memory via kmalloc(). It then searches the vm_struct list linearaly
looking for a region large enough to satisfy a request, including a page pad at the
end of the area.

195 struct vm_struct * get_vm_area(unsigned long size,

unsigned long flags)

196 {

G.1 Allocating A Non-Contiguous Area (get_vm_area()) 429

197 unsigned long addr, next;

198 struct vm_struct **p, *tmp, *area;

199

200 area = (struct vm_struct *) kmalloc(sizeof(*area), GFP_KERNEL);

201 if (!area)

202 return NULL;

203

204 size += PAGE_SIZE;

205 if(!size) {

206 kfree (area);

207 return NULL;

208 }

209

210 addr = VMALLOC_START;

211 write_lock(&vmlist_lock);

212 for (p = &vmlist; (tmp = *p) ; p = &tmp->next) {

213 if ((size + addr) < addr)

214 goto out;

215 if (size + addr <= (unsigned long) tmp->addr)

216 break;

217 next = tmp->size + (unsigned long) tmp->addr;

218 if (next > addr)

219 addr = next;

220 if (addr > VMALLOC_END-size)

221 goto out;

222 }

223 area->flags = flags;

224 area->addr = (void *)addr;

225 area->size = size;

226 area->next = *p;

227 *p = area;

228 write_unlock(&vmlist_lock);

229 return area;

230

231 out:

232 write_unlock(&vmlist_lock);

233 kfree(area);

234 return NULL;

235 }

195 The parameters is the size of the requested region which should be a multiple
of the page size and the area �ags, either VM_ALLOC or VM_IOREMAP

200-202 Allocate space for the vm_struct description struct

204 Pad the request so there is a page gap between areas. This is to guard against

G.1 Allocating A Non-Contiguous Area (get_vm_area()) 430

overwrites

205-206 This is to ensure the size is not 0 after the padding due to an over�ow.
If something does go wrong, free the area just allocated and return NULL

210 Start the search at the beginning of the vmalloc address space

211 Lock the list

212-222 Walk through the list searching for an area large enough for the request

213-214 Check to make sure the end of the addressable range has not been reached

215-216 If the requested area would �t between the current address and the next
area, the search is complete

217 Make sure the address would not go over the end of the vmalloc address space

223-225 Copy in the area information

226-227 Link the new area into the list

228-229 Unlock the list and return

231 This label is reached if the request could not be satis�ed

232 Unlock the list

233-234 Free the memory used for the area descriptor and return

G.1.4 Function: vmalloc_area_pages() (mm/vmalloc.c)
This is just a wrapper around __vmalloc_area_pages(). This function exists

for compatibility with older kernels. The name change was made to re�ect that the
new function __vmalloc_area_pages() is able to take an array of pages to use for
insertion into the pagetables.

189 int vmalloc_area_pages(unsigned long address, unsigned long size,

190 int gfp_mask, pgprot_t prot)

191 {

192 return __vmalloc_area_pages(address, size, gfp_mask, prot, NULL);

193 }

192 Call __vmalloc_area_pages() with the same parameters. The pages array
is passed as NULL as the pages will be allocated as necessary

G.1.5 Function: __vmalloc_area_pages() 431

G.1.5 Function: __vmalloc_area_pages() (mm/vmalloc.c)
This is the beginning of a standard page table walk function. This top level

function will step through all PGDs within an address range. For each PGD, it will
call pmd_alloc() to allocate a PMD directory and call alloc_area_pmd() for the
directory.

155 static inline int __vmalloc_area_pages (unsigned long address,

156 unsigned long size,

157 int gfp_mask,

158 pgprot_t prot,

159 struct page ***pages)

160 {

161 pgd_t * dir;

162 unsigned long end = address + size;

163 int ret;

164

165 dir = pgd_offset_k(address);

166 spin_lock(&init_mm.page_table_lock);

167 do {

168 pmd_t *pmd;

169

170 pmd = pmd_alloc(&init_mm, dir, address);

171 ret = -ENOMEM;

172 if (!pmd)

173 break;

174

175 ret = -ENOMEM;

176 if (alloc_area_pmd(pmd, address, end - address,

gfp_mask, prot, pages))

177 break;

178

179 address = (address + PGDIR_SIZE) & PGDIR_MASK;

180 dir++;

181

182 ret = 0;

183 } while (address && (address < end));

184 spin_unlock(&init_mm.page_table_lock);

185 flush_cache_all();

186 return ret;

187 }

155 The parameters are;

address is the starting address to allocate PMDs for

size is the size of the region

G.1 Allocating A Non-Contiguous Area (__vmalloc_area_pages()) 432

gfp_mask is the GFP_ �ags for alloc_pages() (See Section F.1.1)

prot is the protection to give the PTE entry

pages is an array of pages to use for insertion instead of having alloc_area_pte()
allocate them one at a time. Only the vmap() interface passes in an array

162 The end address is the starting address plus the size

165 Get the PGD entry for the starting address

166 Lock the kernel reference page table

167-183 For every PGD within this address range, allocate a PMD directory and
call alloc_area_pmd() (See Section G.1.6)

170 Allocate a PMD directory

176 Call alloc_area_pmd() (See Section G.1.6) which will allocate a PTE for each
PTE slot in the PMD

179 address becomes the base address of the next PGD entry

180 Move dir to the next PGD entry

184 Release the lock to the kernel page table

185 flush_cache_all() will �ush all CPU caches. This is necessary because the
kernel page tables have changed

186 Return success

G.1.6 Function: alloc_area_pmd() (mm/vmalloc.c)
This is the second stage of the standard page table walk to allocate PTE entries

for an address range. For every PMD within a given address range on a PGD,
pte_alloc() will creates a PTE directory and then alloc_area_pte() will be
called to allocate the physical pages

132 static inline int alloc_area_pmd(pmd_t * pmd, unsigned long address,

133 unsigned long size, int gfp_mask,

134 pgprot_t prot, struct page ***pages)

135 {

136 unsigned long end;

137

138 address &= ~PGDIR_MASK;

139 end = address + size;

140 if (end > PGDIR_SIZE)

141 end = PGDIR_SIZE;

142 do {

G.1 Allocating A Non-Contiguous Area (alloc_area_pmd()) 433

143 pte_t * pte = pte_alloc(&init_mm, pmd, address);

144 if (!pte)

145 return -ENOMEM;

146 if (alloc_area_pte(pte, address, end - address,

147 gfp_mask, prot, pages))

148 return -ENOMEM;

149 address = (address + PMD_SIZE) & PMD_MASK;

150 pmd++;

151 } while (address < end);

152 return 0;

152 }

132 The parameters are;

pmd is the PMD that needs the allocations

address is the starting address to start from

size is the size of the region within the PMD to allocate for

gfp_mask is the GFP_ �ags for alloc_pages() (See Section F.1.1)

prot is the protection to give the PTE entry

pages is an optional array of pages to use instead of allocating each page
individually

138 Align the starting address to the PGD

139-141 Calculate end to be the end of the allocation or the end of the PGD,
whichever occurs �rst

142-151 For every PMD within the given address range, allocate a PTE directory
and call alloc_area_pte()(See Section G.1.7)

143 Allocate the PTE directory

146-147 Call alloc_area_pte() which will allocate the physical pages if an array
of pages is not already supplied with pages

149 address becomes the base address of the next PMD entry

150 Move pmd to the next PMD entry

152 Return success

G.1.7 Function: alloc_area_pte() 434

G.1.7 Function: alloc_area_pte() (mm/vmalloc.c)
This is the last stage of the page table walk. For every PTE in the given PTE

directory and address range, a page will be allocated and associated with the PTE.

95 static inline int alloc_area_pte (pte_t * pte, unsigned long address,

96 unsigned long size, int gfp_mask,

97 pgprot_t prot, struct page ***pages)

98 {

99 unsigned long end;

100

101 address &= ~PMD_MASK;

102 end = address + size;

103 if (end > PMD_SIZE)

104 end = PMD_SIZE;

105 do {

106 struct page * page;

107

108 if (!pages) {

109 spin_unlock(&init_mm.page_table_lock);

110 page = alloc_page(gfp_mask);

111 spin_lock(&init_mm.page_table_lock);

112 } else {

113 page = (**pages);

114 (*pages)++;

115

116 /* Add a reference to the page so we can free later */

117 if (page)

118 atomic_inc(&page->count);

119

120 }

121 if (!pte_none(*pte))

122 printk(KERN_ERR "alloc_area_pte: page already exists\n");

123 if (!page)

124 return -ENOMEM;

125 set_pte(pte, mk_pte(page, prot));

126 address += PAGE_SIZE;

127 pte++;

128 } while (address < end);

129 return 0;

130 }

101 Align the address to a PMD directory

103-104 The end address is the end of the request or the end of the directory,
whichever occurs �rst

G.1 Allocating A Non-Contiguous Area (alloc_area_pte()) 435

105-128 Loop through every PTE in this page. If a pages array is supplied, use
pages from it to populate the table, otherwise allocate each one individually

108-111 If an array of pages is not supplied, unlock the kernel reference pagetable,
allocate a page with alloc_page() and reacquire the spinlock

112-120 Else, take one page from the array and increment it's usage count as it is
about to be inserted into the reference page table

121-122 If the PTE is already in use, it means that the areas in the vmalloc region
are overlapping somehow

123-124 Return failure if physical pages are not available

125 Set the page with the desired protection bits (prot) into the PTE

126 address becomes the address of the next PTE

127 Move to the next PTE

129 Return success

G.1.8 Function: vmap() (mm/vmalloc.c)
This function allows a caller-supplied array of pages to be inserted into the

vmalloc address space. This is unused in 2.4.22 and I suspect it is an accidental
backport from 2.6.x where it is used by the sound subsystem core.

281 void * vmap(struct page **pages, int count,

282 unsigned long flags, pgprot_t prot)

283 {

284 void * addr;

285 struct vm_struct *area;

286 unsigned long size = count << PAGE_SHIFT;

287

288 if (!size || size > (max_mapnr << PAGE_SHIFT))

289 return NULL;

290 area = get_vm_area(size, flags);

291 if (!area) {

292 return NULL;

293 }

294 addr = area->addr;

295 if (__vmalloc_area_pages(VMALLOC_VMADDR(addr), size, 0,

296 prot, &pages)) {

297 vfree(addr);

298 return NULL;

299 }

300 return addr;

301 }

G.1 Allocating A Non-Contiguous Area (vmap()) 436

281 The parameters are;

pages is the caller-supplied array of pages to insert

count is the number of pages in the array

�ags is the �ags to use for the vm_struct

prot is the protection bits to set the PTE with

286 Calculate the size in bytes of the region to create based on the size of the array

288-289 Make sure the size of the region does not exceed limits

290-293 Use get_vm_area() to �nd a region large enough for the mapping. If one
is not found, return NULL

294 Get the virtual address of the area

295 Insert the array into the pagetable with __vmalloc_area_pages() (See Section G.1.4)

297 If the insertion fails, free the region and return NULL

298 Return the virtual address of the newly mapped region

G.2 Freeing A Non-Contiguous Area 437

G.2 Freeing A Non-Contiguous Area

Contents

G.2 Freeing A Non-Contiguous Area 437
G.2.1 Function: vfree() 437
G.2.2 Function: vmfree_area_pages() 438
G.2.3 Function: free_area_pmd() 439
G.2.4 Function: free_area_pte() 440

G.2.1 Function: vfree() (mm/vmalloc.c)
The call graph for this function is shown in Figure 7.4. This is the top level

function responsible for freeing a non-contiguous area of memory. It performs basic
sanity checks before �nding the vm_struct for the requested addr. Once found, it
calls vmfree_area_pages().

237 void vfree(void * addr)

238 {

239 struct vm_struct **p, *tmp;

240

241 if (!addr)

242 return;

243 if ((PAGE_SIZE-1) & (unsigned long) addr) {

244 printk(KERN_ERR

"Trying to vfree() bad address (%p)\n", addr);

245 return;

246 }

247 write_lock(&vmlist_lock);

248 for (p = &vmlist ; (tmp = *p) ; p = &tmp->next) {

249 if (tmp->addr == addr) {

250 *p = tmp->next;

251 vmfree_area_pages(VMALLOC_VMADDR(tmp->addr),

tmp->size);

252 write_unlock(&vmlist_lock);

253 kfree(tmp);

254 return;

255 }

256 }

257 write_unlock(&vmlist_lock);

258 printk(KERN_ERR

"Trying to vfree() nonexistent vm area (%p)\n", addr);

259 }

237 The parameter is the address returned by get_vm_area() (See Section G.1.3)
to either vmalloc() or ioremap()

241-243 Ignore NULL addresses

G.2 Freeing A Non-Contiguous Area (vfree()) 438

243-246 This checks the address is page aligned and is a reasonable quick guess
to see if the area is valid or not

247 Acquire a write lock to the vmlist

248 Cycle through the vmlist looking for the correct vm_struct for addr

249 If this it the correct address then ...

250 Remove this area from the vmlist linked list

251 Free all pages associated with the address range

252 Release the vmlist lock

253 Free the memory used for the vm_struct and return

257-258 The vm_struct was not found. Release the lock and print a message
about the failed free

G.2.2 Function: vmfree_area_pages() (mm/vmalloc.c)
This is the �rst stage of the page table walk to free all pages and PTEs associated

with an address range. It is responsible for stepping through the relevant PGDs and
for �ushing the TLB.

80 void vmfree_area_pages(unsigned long address, unsigned long size)

81 {

82 pgd_t * dir;

83 unsigned long end = address + size;

84

85 dir = pgd_offset_k(address);

86 flush_cache_all();

87 do {

88 free_area_pmd(dir, address, end - address);

89 address = (address + PGDIR_SIZE) & PGDIR_MASK;

90 dir++;

91 } while (address && (address < end));

92 flush_tlb_all();

93 }

80 The parameters are the starting address and the size of the region

82 The address space end is the starting address plus its size

85 Get the �rst PGD for the address range

86 Flush the cache CPU so cache hits will not occur on pages that are to be deleted.
This is a null operation on many architectures including the x86

G.2 Freeing A Non-Contiguous Area (vmfree_area_pages()) 439

87 Call free_area_pmd()(See Section G.2.3) to perform the second stage of the
page table walk

89 address becomes the starting address of the next PGD

90 Move to the next PGD

92 Flush the TLB as the page tables have now changed

G.2.3 Function: free_area_pmd() (mm/vmalloc.c)
This is the second stage of the page table walk. For every PMD in this directory,

call free_area_pte() to free up the pages and PTEs.

56 static inline void free_area_pmd(pgd_t * dir,

unsigned long address,

unsigned long size)

57 {

58 pmd_t * pmd;

59 unsigned long end;

60

61 if (pgd_none(*dir))

62 return;

63 if (pgd_bad(*dir)) {

64 pgd_ERROR(*dir);

65 pgd_clear(dir);

66 return;

67 }

68 pmd = pmd_offset(dir, address);

69 address &= ~PGDIR_MASK;

70 end = address + size;

71 if (end > PGDIR_SIZE)

72 end = PGDIR_SIZE;

73 do {

74 free_area_pte(pmd, address, end - address);

75 address = (address + PMD_SIZE) & PMD_MASK;

76 pmd++;

77 } while (address < end);

78 }

56 The parameters are the PGD been stepped through, the starting address and
the length of the region

61-62 If there is no PGD, return. This can occur after vfree() (See Section G.2.1)
is called during a failed allocation

63-67 A PGD can be bad if the entry is not present, it is marked read-only or it
is marked accessed or dirty

G.2 Freeing A Non-Contiguous Area (free_area_pmd()) 440

68 Get the �rst PMD for the address range

69 Make the address PGD aligned

70-72 end is either the end of the space to free or the end of this PGD, whichever
is �rst

73-77 For every PMD, call free_area_pte() (See Section G.2.4) to free the PTE
entries

75 address is the base address of the next PMD

76 Move to the next PMD

G.2.4 Function: free_area_pte() (mm/vmalloc.c)
This is the �nal stage of the page table walk. For every PTE in the given PMD

within the address range, it will free the PTE and the associated page

22 static inline void free_area_pte(pmd_t * pmd, unsigned long address,

unsigned long size)

23 {

24 pte_t * pte;

25 unsigned long end;

26

27 if (pmd_none(*pmd))

28 return;

29 if (pmd_bad(*pmd)) {

30 pmd_ERROR(*pmd);

31 pmd_clear(pmd);

32 return;

33 }

34 pte = pte_offset(pmd, address);

35 address &= ~PMD_MASK;

36 end = address + size;

37 if (end > PMD_SIZE)

38 end = PMD_SIZE;

39 do {

40 pte_t page;

41 page = ptep_get_and_clear(pte);

42 address += PAGE_SIZE;

43 pte++;

44 if (pte_none(page))

45 continue;

46 if (pte_present(page)) {

47 struct page *ptpage = pte_page(page);

48 if (VALID_PAGE(ptpage) &&

G.2 Freeing A Non-Contiguous Area (free_area_pte()) 441

(!PageReserved(ptpage)))

49 __free_page(ptpage);

50 continue;

51 }

52 printk(KERN_CRIT

"Whee.. Swapped out page in kernel page table\n");

53 } while (address < end);

54 }

22 The parameters are the PMD that PTEs are been freed from, the starting
address and the size of the region to free

27-28 The PMD could be absent if this region is from a failed vmalloc()

29-33 A PMD can be bad if it's not in main memory, it's read only or it's marked
dirty or accessed

34 pte is the �rst PTE in the address range

35 Align the address to the PMD

36-38 The end is either the end of the requested region or the end of the PMD,
whichever occurs �rst

38-53 Step through all PTEs, perform checks and free the PTE with its associated
page

41 ptep_get_and_clear() will remove a PTE from a page table and return it to
the caller

42 address will be the base address of the next PTE

43 Move to the next PTE

44 If there was no PTE, simply continue

46-51 If the page is present, perform basic checks and then free it

47 pte_page() uses the global mem_map to �nd the struct page for the PTE

48-49 Make sure the page is a valid page and it is not reserved before calling
__free_page() to free the physical page

50 Continue to the next PTE

52 If this line is reached, a PTE within the kernel address space was somehow
swapped out. Kernel memory is not swappable and so is a critical error

Appendix H

Slab Allocator

Contents
H.1 Cache Manipulation . 444

H.1.1 Cache Creation . 444

H.1.1.1 Function: kmem_cache_create() 444

H.1.2 Calculating the Number of Objects on a Slab 453

H.1.2.1 Function: kmem_cache_estimate() 453

H.1.3 Cache Shrinking . 454

H.1.3.1 Function: kmem_cache_shrink() 455

H.1.3.2 Function: __kmem_cache_shrink() 455

H.1.3.3 Function: __kmem_cache_shrink_locked() 456

H.1.4 Cache Destroying . 457

H.1.4.1 Function: kmem_cache_destroy() 458

H.1.5 Cache Reaping . 459

H.1.5.1 Function: kmem_cache_reap() 459

H.2 Slabs . 464

H.2.1 Storing the Slab Descriptor . 464

H.2.1.1 Function: kmem_cache_slabmgmt() 464

H.2.1.2 Function: kmem_find_general_cachep() 465

H.2.2 Slab Creation . 466

H.2.2.1 Function: kmem_cache_grow() 466

H.2.3 Slab Destroying . 470

H.2.3.1 Function: kmem_slab_destroy() 470

H.3 Objects . 472

H.3.1 Initialising Objects in a Slab . 472

H.3.1.1 Function: kmem_cache_init_objs() 472

H.3.2 Object Allocation . 474

442

APPENDIX H. SLAB ALLOCATOR 443

H.3.2.1 Function: kmem_cache_alloc() 474

H.3.2.2 Function: __kmem_cache_alloc (UP Case)() 475

H.3.2.3 Function: __kmem_cache_alloc (SMP Case)() 476

H.3.2.4 Function: kmem_cache_alloc_head() 477

H.3.2.5 Function: kmem_cache_alloc_one() 478

H.3.2.6 Function: kmem_cache_alloc_one_tail() 479

H.3.2.7 Function: kmem_cache_alloc_batch() 480

H.3.3 Object Freeing . 482

H.3.3.1 Function: kmem_cache_free() 482

H.3.3.2 Function: __kmem_cache_free (UP Case)() 482

H.3.3.3 Function: __kmem_cache_free (SMP Case)() 483

H.3.3.4 Function: kmem_cache_free_one() 484

H.3.3.5 Function: free_block() 485

H.3.3.6 Function: __free_block() 486

H.4 Sizes Cache . 487

H.4.1 Initialising the Sizes Cache . 487

H.4.1.1 Function: kmem_cache_sizes_init() 487

H.4.2 kmalloc() . 488

H.4.2.1 Function: kmalloc() 488

H.4.3 kfree() . 489

H.4.3.1 Function: kfree() . 489

H.5 Per-CPU Object Cache . 490

H.5.1 Enabling Per-CPU Caches . 490

H.5.1.1 Function: enable_all_cpucaches() 490

H.5.1.2 Function: enable_cpucache() 491

H.5.1.3 Function: kmem_tune_cpucache() 492

H.5.2 Updating Per-CPU Information 495

H.5.2.1 Function: smp_call_function_all_cpus() 495

H.5.2.2 Function: do_ccupdate_local() 495

H.5.3 Draining a Per-CPU Cache . 496

H.5.3.1 Function: drain_cpu_caches() 496

H.6 Slab Allocator Initialisation . 498

H.6.0.2 Function: kmem_cache_init() 498

H.7 Interfacing with the Buddy Allocator 499

H.7.0.3 Function: kmem_getpages() 499

H.7.0.4 Function: kmem_freepages() 499

H.1 Cache Manipulation 444

H.1 Cache Manipulation

Contents

H.1 Cache Manipulation 444
H.1.1 Cache Creation 444
H.1.1.1 Function: kmem_cache_create() 444

H.1.2 Calculating the Number of Objects on a Slab 453
H.1.2.1 Function: kmem_cache_estimate() 453

H.1.3 Cache Shrinking 454
H.1.3.1 Function: kmem_cache_shrink() 455
H.1.3.2 Function: __kmem_cache_shrink() 455
H.1.3.3 Function: __kmem_cache_shrink_locked() 456

H.1.4 Cache Destroying 457
H.1.4.1 Function: kmem_cache_destroy() 458

H.1.5 Cache Reaping 459
H.1.5.1 Function: kmem_cache_reap() 459

H.1.1 Cache Creation

H.1.1.1 Function: kmem_cache_create() (mm/slab.c)
The call graph for this function is shown in 8.3. This function is responsible for

the creation of a new cache and will be dealt with in chunks due to its size. The
chunks roughly are;

• Perform basic sanity checks for bad usage

• Perform debugging checks if CONFIG_SLAB_DEBUG is set

• Allocate a kmem_cache_t from the cache_cache slab cache

• Align the object size to the word size

• Calculate how many objects will �t on a slab

• Align the slab size to the hardware cache

• Calculate colour o�sets

• Initialise remaining �elds in cache descriptor

• Add the new cache to the cache chain

H.1.1 Cache Creation (kmem_cache_create()) 445

621 kmem_cache_t *

622 kmem_cache_create (const char *name, size_t size,

623 size_t offset, unsigned long flags,

void (*ctor)(void*, kmem_cache_t *, unsigned long),

624 void (*dtor)(void*, kmem_cache_t *, unsigned long))

625 {

626 const char *func_nm = KERN_ERR "kmem_create: ";

627 size_t left_over, align, slab_size;

628 kmem_cache_t *cachep = NULL;

629

633 if ((!name) ||

634 ((strlen(name) >= CACHE_NAMELEN - 1)) ||

635 in_interrupt() ||

636 (size < BYTES_PER_WORD) ||

637 (size > (1<<MAX_OBJ_ORDER)*PAGE_SIZE) ||

638 (dtor && !ctor) ||

639 (offset < 0 || offset > size))

640 BUG();

641

Perform basic sanity checks for bad usage

622 The parameters of the function are

name The human readable name of the cache

size The size of an object

o�set This is used to specify a speci�c alignment for objects in the cache
but it usually left as 0

�ags Static cache �ags

ctor A constructor function to call for each object during slab creation

dtor The corresponding destructor function. It is expected the destructor
function leaves an object in an initialised state

633-640 These are all serious usage bugs that prevent the cache even attempting
to create

634 If the human readable name is greater than the maximum size for a cache
name (CACHE_NAMELEN)

635 An interrupt handler cannot create a cache as access to interrupt-safe spinlocks
and semaphores are needed

636 The object size must be at least a word in size. The slab allocator is not
suitable for objects whose size is measured in individual bytes

H.1.1 Cache Creation (kmem_cache_create()) 446

637 The largest possible slab that can be created is 2MAX_OBJ_ORDER number of
pages which provides 32 pages

638 A destructor cannot be used if no constructor is available

639 The o�set cannot be before the slab or beyond the boundary of the �rst page

640 Call BUG() to exit

642 #if DEBUG

643 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {

645 printk("%sNo con, but init state check

requested - %s\n", func_nm, name);

646 flags &= ~SLAB_DEBUG_INITIAL;

647 }

648

649 if ((flags & SLAB_POISON) && ctor) {

651 printk("%sPoisoning requested, but con given - %s\n",

func_nm, name);

652 flags &= ~SLAB_POISON;

653 }

654 #if FORCED_DEBUG

655 if ((size < (PAGE_SIZE>>3)) &&

!(flags & SLAB_MUST_HWCACHE_ALIGN))

660 flags |= SLAB_RED_ZONE;

661 if (!ctor)

662 flags |= SLAB_POISON;

663 #endif

664 #endif

670 BUG_ON(flags & ~CREATE_MASK);

This block performs debugging checks if CONFIG_SLAB_DEBUG is set

643-646 The �ag SLAB_DEBUG_INITIAL requests that the constructor check the
objects to make sure they are in an initialised state. For this, a constructor
must exist. If it does not, the �ag is cleared

649-653 A slab can be poisoned with a known pattern to make sure an object
wasn't used before it was allocated but a constructor would ruin this pattern
falsely reporting a bug. If a constructor exists, remove the SLAB_POISON �ag
if set

655-660 Only small objects will be red zoned for debugging. Red zoning large
objects would cause severe fragmentation

661-662 If there is no constructor, set the poison bit

H.1.1 Cache Creation (kmem_cache_create()) 447

670 The CREATE_MASK is set with all the allowable �ags kmem_cache_create()

(See Section H.1.1.1) can be called with. This prevents callers using debugging
�ags when they are not available and BUG()s it instead

673 cachep =

(kmem_cache_t *) kmem_cache_alloc(&cache_cache,

SLAB_KERNEL);

674 if (!cachep)

675 goto opps;

676 memset(cachep, 0, sizeof(kmem_cache_t));

Allocate a kmem_cache_t from the cache_cache slab cache.

673Allocate a cache descriptor object from the cache_cache with kmem_cache_alloc()
(See Section H.3.2.1)

674-675 If out of memory goto opps which handles the oom situation

676 Zero �ll the object to prevent surprises with uninitialised data

682 if (size & (BYTES_PER_WORD-1)) {

683 size += (BYTES_PER_WORD-1);

684 size &= ~(BYTES_PER_WORD-1);

685 printk("%sForcing size word alignment

- %s\n", func_nm, name);

686 }

687

688 #if DEBUG

689 if (flags & SLAB_RED_ZONE) {

694 flags &= ~SLAB_HWCACHE_ALIGN;

695 size += 2*BYTES_PER_WORD;

696 }

697 #endif

698 align = BYTES_PER_WORD;

699 if (flags & SLAB_HWCACHE_ALIGN)

700 align = L1_CACHE_BYTES;

701

703 if (size >= (PAGE_SIZE>>3))

708 flags |= CFLGS_OFF_SLAB;

709

710 if (flags & SLAB_HWCACHE_ALIGN) {

714 while (size < align/2)

715 align /= 2;

716 size = (size+align-1)&(~(align-1));

717 }

Align the object size to some word-sized boundary.

H.1.1 Cache Creation (kmem_cache_create()) 448

682 If the size is not aligned to the size of a word then...

683-684 Increase the object by the size of a word then mask out the lower bits,
this will e�ectively round the object size up to the next word boundary

685 Print out an informational message for debugging purposes

688-697 If debugging is enabled then the alignments have to change slightly

694 Do not bother trying to align things to the hardware cache if the slab will be
red zoned. The red zoning of the object is going to o�set it by moving the
object one word away from the cache boundary

695 The size of the object increases by two BYTES_PER_WORD to store the red zone
mark at either end of the object

698 Initialise the alignment to be to a word boundary. This will change if the
caller has requested a CPU cache alignment

699-700 If requested, align the objects to the L1 CPU cache

703 If the objects are large, store the slab descriptors o�-slab. This will allow
better packing of objects into the slab

710 If hardware cache alignment is requested, the size of the objects must be
adjusted to align themselves to the hardware cache

714-715 Try and pack objects into one cache line if they �t while still keeping
the alignment. This is important to arches (e.g. Alpha or Pentium 4) with
large L1 cache bytes. align will be adjusted to be the smallest that will give
hardware cache alignment. For machines with large L1 cache lines, two or
more small objects may �t into each line. For example, two objects from the
size-32 cache will �t on one cache line from a Pentium 4

716 Round the cache size up to the hardware cache alignment

724 do {

725 unsigned int break_flag = 0;

726 cal_wastage:

727 kmem_cache_estimate(cachep->gfporder,

size, flags,

728 &left_over,

&cachep->num);

729 if (break_flag)

730 break;

731 if (cachep->gfporder >= MAX_GFP_ORDER)

732 break;

733 if (!cachep->num)

H.1.1 Cache Creation (kmem_cache_create()) 449

734 goto next;

735 if (flags & CFLGS_OFF_SLAB &&

cachep->num > offslab_limit) {

737 cachep->gfporder--;

738 break_flag++;

739 goto cal_wastage;

740 }

741

746 if (cachep->gfporder >= slab_break_gfp_order)

747 break;

748

749 if ((left_over*8) <= (PAGE_SIZE<<cachep->gfporder))

750 break;

751 next:

752 cachep->gfporder++;

753 } while (1);

754

755 if (!cachep->num) {

756 printk("kmem_cache_create: couldn't

create cache %s.\n", name);

757 kmem_cache_free(&cache_cache, cachep);

758 cachep = NULL;

759 goto opps;

760 }

Calculate how many objects will �t on a slab and adjust the slab size as necessary

727-728 kmem_cache_estimate() (see Section H.1.2.1) calculates the number of
objects that can �t on a slab at the current gfp order and what the amount of
leftover bytes will be

729-730 The break_flag is set if the number of objects �tting on the slab exceeds
the number that can be kept when o�slab slab descriptors are used

731-732 The order number of pages used must not exceed MAX_GFP_ORDER (5)

733-734 If even one object didn't �ll, goto next: which will increase the gfporder
used for the cache

735 If the slab descriptor is kept o�-cache but the number of objects exceeds the
number that can be tracked with bufctl's o�-slab then ...

737 Reduce the order number of pages used

738 Set the break_flag so the loop will exit

739 Calculate the new wastage �gures

H.1.1 Cache Creation (kmem_cache_create()) 450

746-747 The slab_break_gfp_order is the order to not exceed unless 0 objects
�t on the slab. This check ensures the order is not exceeded

749-759 This is a rough check for internal fragmentation. If the wastage as a
fraction of the total size of the cache is less than one eight, it is acceptable

752 If the fragmentation is too high, increase the gfp order and recalculate the
number of objects that can be stored and the wastage

755 If after adjustments, objects still do not �t in the cache, it cannot be created

757-758 Free the cache descriptor and set the pointer to NULL

758 Goto opps which simply returns the NULL pointer

761 slab_size = L1_CACHE_ALIGN(

cachep->num*sizeof(kmem_bufctl_t) +

sizeof(slab_t));

762

767 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {

768 flags &= ~CFLGS_OFF_SLAB;

769 left_over -= slab_size;

770 }

Align the slab size to the hardware cache

761 slab_size is the total size of the slab descriptor not the size of the slab itself.
It is the size slab_t struct and the number of objects * size of the bufctl

767-769 If there is enough left over space for the slab descriptor and it was speci�ed
to place the descriptor o�-slab, remove the �ag and update the amount of
left_over bytes there is. This will impact the cache colouring but with the
large objects associated with o�-slab descriptors, this is not a problem

773 offset += (align-1);

774 offset &= ~(align-1);

775 if (!offset)

776 offset = L1_CACHE_BYTES;

777 cachep->colour_off = offset;

778 cachep->colour = left_over/offset;

Calculate colour o�sets.

773-774 offset is the o�set within the page the caller requested. This will make
sure the o�set requested is at the correct alignment for cache usage

775-776 If somehow the o�set is 0, then set it to be aligned for the CPU cache

H.1.1 Cache Creation (kmem_cache_create()) 451

777 This is the o�set to use to keep objects on di�erent cache lines. Each slab
created will be given a di�erent colour o�set

778 This is the number of di�erent o�sets that can be used

781 if (!cachep->gfporder && !(flags & CFLGS_OFF_SLAB))

782 flags |= CFLGS_OPTIMIZE;

783

784 cachep->flags = flags;

785 cachep->gfpflags = 0;

786 if (flags & SLAB_CACHE_DMA)

787 cachep->gfpflags |= GFP_DMA;

788 spin_lock_init(&cachep->spinlock);

789 cachep->objsize = size;

790 INIT_LIST_HEAD(&cachep->slabs_full);

791 INIT_LIST_HEAD(&cachep->slabs_partial);

792 INIT_LIST_HEAD(&cachep->slabs_free);

793

794 if (flags & CFLGS_OFF_SLAB)

795 cachep->slabp_cache =

kmem_find_general_cachep(slab_size,0);

796 cachep->ctor = ctor;

797 cachep->dtor = dtor;

799 strcpy(cachep->name, name);

800

801 #ifdef CONFIG_SMP

802 if (g_cpucache_up)

803 enable_cpucache(cachep);

804 #endif

Initialise remaining �elds in cache descriptor

781-782 For caches with slabs of only 1 page, the CFLGS_OPTIMIZE �ag is set. In
reality it makes no di�erence as the �ag is unused

784 Set the cache static �ags

785 Zero out the gfp�ags. Defunct operation as memset() after the cache descriptor
was allocated would do this

786-787 If the slab is for DMA use, set the GFP_DMA �ag so the buddy allocator
will use ZONE_DMA

788 Initialise the spinlock for access the cache

789 Copy in the object size, which now takes hardware cache alignment if necessary

790-792 Initialise the slab lists

H.1.1 Cache Creation (kmem_cache_create()) 452

794-795 If the descriptor is kept o�-slab, allocate a slab manager and place it for
use in slabp_cache. See Section H.2.1.2

796-797 Set the pointers to the constructor and destructor functions

799 Copy in the human readable name

802-803 If per-cpu caches are enabled, create a set for this cache. See Section 8.5

806 down(&cache_chain_sem);

807 {

808 struct list_head *p;

809

810 list_for_each(p, &cache_chain) {

811 kmem_cache_t *pc = list_entry(p,

kmem_cache_t, next);

812

814 if (!strcmp(pc->name, name))

815 BUG();

816 }

817 }

818

822 list_add(&cachep->next, &cache_chain);

823 up(&cache_chain_sem);

824 opps:

825 return cachep;

826 }

Add the new cache to the cache chain

806 Acquire the semaphore used to synchronise access to the cache chain

810-816 Check every cache on the cache chain and make sure there is no other
cache with the same name. If there is, it means two caches of the same type
are been created which is a serious bug

811 Get the cache from the list

814-815 Compare the names and if they match, BUG(). It is worth noting that the
new cache is not deleted, but this error is the result of sloppy programming
during development and not a normal scenario

822 Link the cache into the chain.

823 Release the cache chain semaphore.

825 Return the new cache pointer

H.1.2 Calculating the Number of Objects on a Slab 453

H.1.2 Calculating the Number of Objects on a Slab

H.1.2.1 Function: kmem_cache_estimate() (mm/slab.c)
During cache creation, it is determined how many objects can be stored in a slab

and how much waste-age there will be. The following function calculates how many
objects may be stored, taking into account if the slab and bufctl's must be stored
on-slab.

388 static void kmem_cache_estimate (unsigned long gfporder,

size_t size,

389 int flags, size_t *left_over, unsigned int *num)

390 {

391 int i;

392 size_t wastage = PAGE_SIZE<<gfporder;

393 size_t extra = 0;

394 size_t base = 0;

395

396 if (!(flags & CFLGS_OFF_SLAB)) {

397 base = sizeof(slab_t);

398 extra = sizeof(kmem_bufctl_t);

399 }

400 i = 0;

401 while (i*size + L1_CACHE_ALIGN(base+i*extra) <= wastage)

402 i++;

403 if (i > 0)

404 i--;

405

406 if (i > SLAB_LIMIT)

407 i = SLAB_LIMIT;

408

409 *num = i;

410 wastage -= i*size;

411 wastage -= L1_CACHE_ALIGN(base+i*extra);

412 *left_over = wastage;

413 }

388 The parameters of the function are as follows

gfporder The 2gfporder number of pages to allocate for each slab

size The size of each object

�ags The cache �ags

left_over The number of bytes left over in the slab. Returned to caller

num The number of objects that will �t in a slab. Returned to caller

H.1.3 Cache Shrinking 454

392 wastage is decremented through the function. It starts with the maximum
possible amount of wastage.

393 extra is the number of bytes needed to store kmem_bufctl_t

394 base is where usable memory in the slab starts

396 If the slab descriptor is kept on cache, the base begins at the end of the
slab_t struct and the number of bytes needed to store the bufctl is the size
of kmem_bufctl_t

400 i becomes the number of objects the slab can hold

401-402 This counts up the number of objects that the cache can store. i*size is
the the size of the object itself. L1_CACHE_ALIGN(base+i*extra) is slightly
trickier. This is calculating the amount of memory needed to store the
kmem_bufctl_t needed for every object in the slab. As it is at the begin-
ning of the slab, it is L1 cache aligned so that the �rst object in the slab will
be aligned to hardware cache. i*extra will calculate the amount of space
needed to hold a kmem_bufctl_t for this object. As wast-age starts out as the
size of the slab, its use is overloaded here.

403-404 Because the previous loop counts until the slab over�ows, the number of
objects that can be stored is i-1.

406-407 SLAB_LIMIT is the absolute largest number of objects a slab can store. Is
is de�ned as 0x��FFFE as this the largest number kmem_bufctl_t(), which
is an unsigned integer, can hold

409 num is now the number of objects a slab can hold

410 Take away the space taken up by all the objects from wastage

411 Take away the space taken up by the kmem_bufctl_t

412 Wast-age has now been calculated as the left over space in the slab

H.1.3 Cache Shrinking

The call graph for kmem_cache_shrink() is shown in Figure 8.5. Two varieties
of shrink functions are provided. kmem_cache_shrink() removes all slabs from
slabs_free and returns the number of pages freed as a result. __kmem_cache_shrink()
frees all slabs from slabs_free and then veri�es that slabs_partial and slabs_full

are empty. This is important during cache destruction when it doesn't matter how
many pages are freed, just that the cache is empty.

H.1.3.1 Function: kmem_cache_shrink() 455

H.1.3.1 Function: kmem_cache_shrink() (mm/slab.c)
This function performs basic debugging checks and then acquires the cache de-

scriptor lock before freeing slabs. At one time, it also used to call drain_cpu_caches()
to free up objects on the per-cpu cache. It is curious that this was removed as it
is possible slabs could not be freed due to an object been allocation on a per-cpu
cache but not in use.

966 int kmem_cache_shrink(kmem_cache_t *cachep)

967 {

968 int ret;

969

970 if (!cachep || in_interrupt() ||

!is_chained_kmem_cache(cachep))

971 BUG();

972

973 spin_lock_irq(&cachep->spinlock);

974 ret = __kmem_cache_shrink_locked(cachep);

975 spin_unlock_irq(&cachep->spinlock);

976

977 return ret << cachep->gfporder;

978 }

966 The parameter is the cache been shrunk

970 Check that

• The cache pointer is not NULL

• That an interrupt is not the caller

• That the cache is on the cache chain and not a bad pointer

973 Acquire the cache descriptor lock and disable interrupts

974 Shrink the cache

975 Release the cache lock and enable interrupts

976 This returns the number of pages freed but does not take into account the
objects freed by draining the CPU.

H.1.3.2 Function: __kmem_cache_shrink() (mm/slab.c)
This function is identical to kmem_cache_shrink() except it returns if the cache

is empty or not. This is important during cache destruction when it is not important
how much memory was freed, just that it is safe to delete the cache and not leak
memory.

H.1.3 Cache Shrinking (__kmem_cache_shrink()) 456

945 static int __kmem_cache_shrink(kmem_cache_t *cachep)

946 {

947 int ret;

948

949 drain_cpu_caches(cachep);

950

951 spin_lock_irq(&cachep->spinlock);

952 __kmem_cache_shrink_locked(cachep);

953 ret = !list_empty(&cachep->slabs_full) ||

954 !list_empty(&cachep->slabs_partial);

955 spin_unlock_irq(&cachep->spinlock);

956 return ret;

957 }

949 Remove all objects from the per-CPU objects cache

951 Acquire the cache descriptor lock and disable interrupts

952 Free all slabs in the slabs_free list

954-954 Check the slabs_partial and slabs_full lists are empty

955 Release the cache descriptor lock and re-enable interrupts

956 Return if the cache has all its slabs free or not

H.1.3.3 Function: __kmem_cache_shrink_locked() (mm/slab.c)
This does the dirty work of freeing slabs. It will keep destroying them until the

growing �ag gets set, indicating the cache is in use or until there is no more slabs
in slabs_free.

917 static int __kmem_cache_shrink_locked(kmem_cache_t *cachep)

918 {

919 slab_t *slabp;

920 int ret = 0;

921

923 while (!cachep->growing) {

924 struct list_head *p;

925

926 p = cachep->slabs_free.prev;

927 if (p == &cachep->slabs_free)

928 break;

929

930 slabp = list_entry(cachep->slabs_free.prev,

slab_t, list);

H.1.4 Cache Destroying 457

931 #if DEBUG

932 if (slabp->inuse)

933 BUG();

934 #endif

935 list_del(&slabp->list);

936

937 spin_unlock_irq(&cachep->spinlock);

938 kmem_slab_destroy(cachep, slabp);

939 ret++;

940 spin_lock_irq(&cachep->spinlock);

941 }

942 return ret;

943 }

923 While the cache is not growing, free slabs

926-930 Get the last slab on the slabs_free list

932-933 If debugging is available, make sure it is not in use. If it is not in use, it
should not be on the slabs_free list in the �rst place

935 Remove the slab from the list

937 Re-enable interrupts. This function is called with interrupts disabled and this
is to free the interrupt as quickly as possible.

938 Delete the slab with kmem_slab_destroy() (See Section H.2.3.1)

939 Record the number of slabs freed

940 Acquire the cache descriptor lock and disable interrupts

H.1.4 Cache Destroying

When a module is unloaded, it is responsible for destroying any cache is has created
as during module loading, it is ensured there is not two caches of the same name.
Core kernel code often does not destroy its caches as their existence persists for the
life of the system. The steps taken to destroy a cache are

• Delete the cache from the cache chain

• Shrink the cache to delete all slabs (see Section 8.1.8)

• Free any per CPU caches (kfree())

• Delete the cache descriptor from the cache_cache (see Section: 8.3.3)

H.1.4.1 Function: kmem_cache_destroy() 458

H.1.4.1 Function: kmem_cache_destroy() (mm/slab.c)
The call graph for this function is shown in Figure 8.7.

997 int kmem_cache_destroy (kmem_cache_t * cachep)

998 {

999 if (!cachep || in_interrupt() || cachep->growing)

1000 BUG();

1001

1002 /* Find the cache in the chain of caches. */

1003 down(&cache_chain_sem);

1004 /* the chain is never empty, cache_cache is never destroyed */

1005 if (clock_searchp == cachep)

1006 clock_searchp = list_entry(cachep->next.next,

1007 kmem_cache_t, next);

1008 list_del(&cachep->next);

1009 up(&cache_chain_sem);

1010

1011 if (__kmem_cache_shrink(cachep)) {

1012 printk(KERN_ERR

"kmem_cache_destroy: Can't free all objects %p\n",

1013 cachep);

1014 down(&cache_chain_sem);

1015 list_add(&cachep->next,&cache_chain);

1016 up(&cache_chain_sem);

1017 return 1;

1018 }

1019 #ifdef CONFIG_SMP

1020 {

1021 int i;

1022 for (i = 0; i < NR_CPUS; i++)

1023 kfree(cachep->cpudata[i]);

1024 }

1025 #endif

1026 kmem_cache_free(&cache_cache, cachep);

1027

1028 return 0;

1029 }

999-1000 Sanity check. Make sure the cachep is not null, that an interrupt is
not trying to do this and that the cache has not been marked as growing,
indicating it is in use

1003 Acquire the semaphore for accessing the cache chain

1005-1007 Acquire the list entry from the cache chain

H.1.5 Cache Reaping 459

1008 Delete this cache from the cache chain

1009 Release the cache chain semaphore

1011 Shrink the cache to free all slabs with __kmem_cache_shrink() (See Section H.1.3.2)

1012-1017 The shrink function returns true if there is still slabs in the cache. If
there is, the cache cannot be destroyed so it is added back into the cache chain
and the error reported

1022-1023 If SMP is enabled, the per-cpu data structures are deleted with kfree()
(See Section H.4.3.1)

1026 Delete the cache descriptor from the cache_cache with kmem_cache_free()

(See Section H.3.3.1)

H.1.5 Cache Reaping

H.1.5.1 Function: kmem_cache_reap() (mm/slab.c)
The call graph for this function is shown in Figure 8.4. Because of the size of

this function, it will be broken up into three separate sections. The �rst is simple
function preamble. The second is the selection of a cache to reap and the third is
the freeing of the slabs. The basic tasks were described in Section 8.1.7.

1738 int kmem_cache_reap (int gfp_mask)

1739 {

1740 slab_t *slabp;

1741 kmem_cache_t *searchp;

1742 kmem_cache_t *best_cachep;

1743 unsigned int best_pages;

1744 unsigned int best_len;

1745 unsigned int scan;

1746 int ret = 0;

1747

1748 if (gfp_mask & __GFP_WAIT)

1749 down(&cache_chain_sem);

1750 else

1751 if (down_trylock(&cache_chain_sem))

1752 return 0;

1753

1754 scan = REAP_SCANLEN;

1755 best_len = 0;

1756 best_pages = 0;

1757 best_cachep = NULL;

1758 searchp = clock_searchp;

H.1.5 Cache Reaping (kmem_cache_reap()) 460

1738 The only parameter is the GFP �ag. The only check made is against the
__GFP_WAIT �ag. As the only caller, kswapd, can sleep, this parameter is
virtually worthless

1748-1749 Can the caller sleep? If yes, then acquire the semaphore

1751-1752 Else, try and acquire the semaphore and if not available, return

1754 REAP_SCANLEN (10) is the number of caches to examine.

1758 Set searchp to be the last cache that was examined at the last reap

1759 do {

1760 unsigned int pages;

1761 struct list_head* p;

1762 unsigned int full_free;

1763

1765 if (searchp->flags & SLAB_NO_REAP)

1766 goto next;

1767 spin_lock_irq(&searchp->spinlock);

1768 if (searchp->growing)

1769 goto next_unlock;

1770 if (searchp->dflags & DFLGS_GROWN) {

1771 searchp->dflags &= ~DFLGS_GROWN;

1772 goto next_unlock;

1773 }

1774 #ifdef CONFIG_SMP

1775 {

1776 cpucache_t *cc = cc_data(searchp);

1777 if (cc && cc->avail) {

1778 __free_block(searchp, cc_entry(cc),

cc->avail);

1779 cc->avail = 0;

1780 }

1781 }

1782 #endif

1783

1784 full_free = 0;

1785 p = searchp->slabs_free.next;

1786 while (p != &searchp->slabs_free) {

1787 slabp = list_entry(p, slab_t, list);

1788 #if DEBUG

1789 if (slabp->inuse)

1790 BUG();

1791 #endif

1792 full_free++;

H.1.5 Cache Reaping (kmem_cache_reap()) 461

1793 p = p->next;

1794 }

1795

1801 pages = full_free * (1<<searchp->gfporder);

1802 if (searchp->ctor)

1803 pages = (pages*4+1)/5;

1804 if (searchp->gfporder)

1805 pages = (pages*4+1)/5;

1806 if (pages > best_pages) {

1807 best_cachep = searchp;

1808 best_len = full_free;

1809 best_pages = pages;

1810 if (pages >= REAP_PERFECT) {

1811 clock_searchp =

list_entry(searchp->next.next,

1812 kmem_cache_t,next);

1813 goto perfect;

1814 }

1815 }

1816 next_unlock:

1817 spin_unlock_irq(&searchp->spinlock);

1818 next:

1819 searchp =

list_entry(searchp->next.next,kmem_cache_t,next);

1820 } while (--scan && searchp != clock_searchp);

This block examines REAP_SCANLEN number of caches to select one to free

1767 Acquire an interrupt safe lock to the cache descriptor

1768-1769 If the cache is growing, skip it

1770-1773 If the cache has grown recently, skip it and clear the �ag

1775-1781 Free any per CPU objects to the global pool

1786-1794 Count the number of slabs in the slabs_free list

1801 Calculate the number of pages all the slabs hold

1802-1803 If the objects have constructors, reduce the page count by one �fth to
make it less likely to be selected for reaping

1804-1805 If the slabs consist of more than one page, reduce the page count by
one �fth. This is because high order pages are hard to acquire

1806 If this is the best candidate found for reaping so far, check if it is perfect for
reaping

H.1.5 Cache Reaping (kmem_cache_reap()) 462

1807-1809 Record the new maximums

1808 best_len is recorded so that it is easy to know how many slabs is half of the
slabs in the free list

1810 If this cache is perfect for reaping then

1811 Update clock_searchp

1812 Goto perfect where half the slabs will be freed

1816 This label is reached if it was found the cache was growing after acquiring
the lock

1817 Release the cache descriptor lock

1818 Move to the next entry in the cache chain

1820 Scan while REAP_SCANLEN has not been reached and we have not cycled
around the whole cache chain

1822 clock_searchp = searchp;

1823

1824 if (!best_cachep)

1826 goto out;

1827

1828 spin_lock_irq(&best_cachep->spinlock);

1829 perfect:

1830 /* free only 50% of the free slabs */

1831 best_len = (best_len + 1)/2;

1832 for (scan = 0; scan < best_len; scan++) {

1833 struct list_head *p;

1834

1835 if (best_cachep->growing)

1836 break;

1837 p = best_cachep->slabs_free.prev;

1838 if (p == &best_cachep->slabs_free)

1839 break;

1840 slabp = list_entry(p,slab_t,list);

1841 #if DEBUG

1842 if (slabp->inuse)

1843 BUG();

1844 #endif

1845 list_del(&slabp->list);

1846 STATS_INC_REAPED(best_cachep);

1847

1848 /* Safe to drop the lock. The slab is no longer

1849 * lined to the cache.

H.1.5 Cache Reaping (kmem_cache_reap()) 463

1850 */

1851 spin_unlock_irq(&best_cachep->spinlock);

1852 kmem_slab_destroy(best_cachep, slabp);

1853 spin_lock_irq(&best_cachep->spinlock);

1854 }

1855 spin_unlock_irq(&best_cachep->spinlock);

1856 ret = scan * (1 << best_cachep->gfporder);

1857 out:

1858 up(&cache_chain_sem);

1859 return ret;

1860 }

This block will free half of the slabs from the selected cache

1822 Update clock_searchp for the next cache reap

1824-1826 If a cache was not found, goto out to free the cache chain and exit

1828 Acquire the cache chain spinlock and disable interrupts. The cachep de-
scriptor has to be held by an interrupt safe lock as some caches may be used
from interrupt context. The slab allocator has no way to di�erentiate between
interrupt safe and unsafe caches

1831 Adjust best_len to be the number of slabs to free

1832-1854 Free best_len number of slabs

1835-1847 If the cache is growing, exit

1837 Get a slab from the list

1838-1839 If there is no slabs left in the list, exit

1840 Get the slab pointer

1842-1843 If debugging is enabled, make sure there is no active objects in the slab

1845 Remove the slab from the slabs_free list

1846 Update statistics if enabled

1851 Free the cache descriptor and enable interrupts

1852 Destroy the slab. See Section 8.2.8

1851 Re-acquire the cache descriptor spinlock and disable interrupts

1855 Free the cache descriptor and enable interrupts

1856 ret is the number of pages that was freed

1858-1859 Free the cache semaphore and return the number of pages freed

H.2 Slabs 464

H.2 Slabs

Contents

H.2 Slabs 464
H.2.1 Storing the Slab Descriptor 464
H.2.1.1 Function: kmem_cache_slabmgmt() 464
H.2.1.2 Function: kmem_find_general_cachep() 465

H.2.2 Slab Creation 466
H.2.2.1 Function: kmem_cache_grow() 466

H.2.3 Slab Destroying 470
H.2.3.1 Function: kmem_slab_destroy() 470

H.2.1 Storing the Slab Descriptor

H.2.1.1 Function: kmem_cache_slabmgmt() (mm/slab.c)
This function will either allocate allocate space to keep the slab descriptor o�

cache or reserve enough space at the beginning of the slab for the descriptor and
the bufctls.

1032 static inline slab_t * kmem_cache_slabmgmt (

kmem_cache_t *cachep,

1033 void *objp,

int colour_off,

int local_flags)

1034 {

1035 slab_t *slabp;

1036

1037 if (OFF_SLAB(cachep)) {

1039 slabp = kmem_cache_alloc(cachep->slabp_cache,

local_flags);

1040 if (!slabp)

1041 return NULL;

1042 } else {

1047 slabp = objp+colour_off;

1048 colour_off += L1_CACHE_ALIGN(cachep->num *

1049 sizeof(kmem_bufctl_t) +

sizeof(slab_t));

1050 }

1051 slabp->inuse = 0;

1052 slabp->colouroff = colour_off;

1053 slabp->s_mem = objp+colour_off;

1054

1055 return slabp;

1056 }

H.2.1 Storing the Slab Descriptor (kmem_cache_slabmgmt()) 465

1032 The parameters of the function are

cachep The cache the slab is to be allocated to

objp When the function is called, this points to the beginning of the slab

colour_o� The colour o�set for this slab

local_�ags These are the �ags for the cache

1037-1042 If the slab descriptor is kept o� cache....

1039 Allocate memory from the sizes cache. During cache creation, slabp_cache
is set to the appropriate size cache to allocate from.

1040 If the allocation failed, return

1042-1050 Reserve space at the beginning of the slab

1047 The address of the slab will be the beginning of the slab (objp) plus the
colour o�set

1048 colour_off is calculated to be the o�set where the �rst object will be placed.
The address is L1 cache aligned. cachep->num * sizeof(kmem_bufctl_t) is
the amount of space needed to hold the bufctls for each object in the slab and
sizeof(slab_t) is the size of the slab descriptor. This e�ectively has reserved
the space at the beginning of the slab

1051 The number of objects in use on the slab is 0

1052 The colouroff is updated for placement of the new object

1053 The address of the �rst object is calculated as the address of the beginning
of the slab plus the o�set

H.2.1.2 Function: kmem_find_general_cachep() (mm/slab.c)
If the slab descriptor is to be kept o�-slab, this function, called during cache

creation will �nd the appropriate sizes cache to use and will be stored within the
cache descriptor in the �eld slabp_cache.

1620 kmem_cache_t * kmem_find_general_cachep (size_t size,

int gfpflags)

1621 {

1622 cache_sizes_t *csizep = cache_sizes;

1623

1628 for (; csizep->cs_size; csizep++) {

1629 if (size > csizep->cs_size)

1630 continue;

1631 break;

1632 }

H.2.2 Slab Creation 466

1633 return (gfpflags & GFP_DMA) ? csizep->cs_dmacachep :

csizep->cs_cachep;

1634 }

1620 size is the size of the slab descriptor. gfpflags is always 0 as DMA memory
is not needed for a slab descriptor

1628-1632 Starting with the smallest size, keep increasing the size until a cache
is found with bu�ers large enough to store the slab descriptor

1633 Return either a normal or DMA sized cache depending on the gfpflags

passed in. In reality, only the cs_cachep is ever passed back

H.2.2 Slab Creation

H.2.2.1 Function: kmem_cache_grow() (mm/slab.c)
The call graph for this function is shown in 8.11. The basic tasks for this function

are;

• Perform basic sanity checks to guard against bad usage

• Calculate colour o�set for objects in this slab

• Allocate memory for slab and acquire a slab descriptor

• Link the pages used for the slab to the slab and cache descriptors

• Initialise objects in the slab

• Add the slab to the cache

1105 static int kmem_cache_grow (kmem_cache_t * cachep, int flags)

1106 {

1107 slab_t *slabp;

1108 struct page *page;

1109 void *objp;

1110 size_t offset;

1111 unsigned int i, local_flags;

1112 unsigned long ctor_flags;

1113 unsigned long save_flags;

Basic declarations. The parameters of the function are

cachep The cache to allocate a new slab to

�ags The �ags for a slab creation

H.2.2 Slab Creation (kmem_cache_grow()) 467

1118 if (flags & ~(SLAB_DMA|SLAB_LEVEL_MASK|SLAB_NO_GROW))

1119 BUG();

1120 if (flags & SLAB_NO_GROW)

1121 return 0;

1122

1129 if (in_interrupt() &&

(flags & SLAB_LEVEL_MASK) != SLAB_ATOMIC)

1130 BUG();

1131

1132 ctor_flags = SLAB_CTOR_CONSTRUCTOR;

1133 local_flags = (flags & SLAB_LEVEL_MASK);

1134 if (local_flags == SLAB_ATOMIC)

1139 ctor_flags |= SLAB_CTOR_ATOMIC;

Perform basic sanity checks to guard against bad usage. The checks are made
here rather than kmem_cache_alloc() to protect the speed-critical path. There is
no point checking the �ags every time an object needs to be allocated.

1118-1119 Make sure only allowable �ags are used for allocation

1120-1121 Do not grow the cache if this is set. In reality, it is never set

1129-1130 If this called within interrupt context, make sure the ATOMIC �ag is set
so we don't sleep when kmem_getpages()(See Section H.7.0.3) is called

1132 This �ag tells the constructor it is to init the object

1133 The local_�ags are just those relevant to the page allocator

1134-1139 If the SLAB_ATOMIC �ag is set, the constructor needs to know about it
in case it wants to make new allocations

1142 spin_lock_irqsave(&cachep->spinlock, save_flags);

1143

1145 offset = cachep->colour_next;

1146 cachep->colour_next++;

1147 if (cachep->colour_next >= cachep->colour)

1148 cachep->colour_next = 0;

1149 offset *= cachep->colour_off;

1150 cachep->dflags |= DFLGS_GROWN;

1151

1152 cachep->growing++;

1153 spin_unlock_irqrestore(&cachep->spinlock, save_flags);

Calculate colour o�set for objects in this slab

1142 Acquire an interrupt safe lock for accessing the cache descriptor

H.2.2 Slab Creation (kmem_cache_grow()) 468

1145 Get the o�set for objects in this slab

1146 Move to the next colour o�set

1147-1148 If colour has been reached, there is no more o�sets available, so reset
colour_next to 0

1149 colour_off is the size of each o�set, so offset * colour_off will give how
many bytes to o�set the objects to

1150Mark the cache that it is growing so that kmem_cache_reap() (See Section H.1.5.1)
will ignore this cache

1152 Increase the count for callers growing this cache

1153 Free the spinlock and re-enable interrupts

1165 if (!(objp = kmem_getpages(cachep, flags)))

1166 goto failed;

1167

1169 if (!(slabp = kmem_cache_slabmgmt(cachep,

objp, offset,

local_flags)))

1160 goto opps1;

Allocate memory for slab and acquire a slab descriptor

1165-1166Allocate pages from the page allocator for the slab with kmem_getpages()
(See Section H.7.0.3)

1169Acquire a slab descriptor with kmem_cache_slabmgmt() (See Section H.2.1.1)

1173 i = 1 << cachep->gfporder;

1174 page = virt_to_page(objp);

1175 do {

1176 SET_PAGE_CACHE(page, cachep);

1177 SET_PAGE_SLAB(page, slabp);

1178 PageSetSlab(page);

1179 page++;

1180 } while (--i);

Link the pages for the slab used to the slab and cache descriptors

1173 i is the number of pages used for the slab. Each page has to be linked to the
slab and cache descriptors.

1174 objp is a pointer to the beginning of the slab. The macro virt_to_page()

will give the struct page for that address

H.2.2 Slab Creation (kmem_cache_grow()) 469

1175-1180 Link each pages list �eld to the slab and cache descriptors

1176 SET_PAGE_CACHE() links the page to the cache descriptor using the page→list.next

�eld

1178 SET_PAGE_SLAB() links the page to the slab descriptor using the page→list.prev

�eld

1178 Set the PG_slab page �ag. The full set of PG_ �ags is listed in Table 2.1

1179 Move to the next page for this slab to be linked

1182 kmem_cache_init_objs(cachep, slabp, ctor_flags);

1182 Initialise all objects (See Section H.3.1.1)

1184 spin_lock_irqsave(&cachep->spinlock, save_flags);

1185 cachep->growing--;

1186

1188 list_add_tail(&slabp->list, &cachep->slabs_free);

1189 STATS_INC_GROWN(cachep);

1190 cachep->failures = 0;

1191

1192 spin_unlock_irqrestore(&cachep->spinlock, save_flags);

1193 return 1;

Add the slab to the cache

1184 Acquire the cache descriptor spinlock in an interrupt safe fashion

1185 Decrease the growing count

1188 Add the slab to the end of the slabs_free list

1189 If STATS is set, increase the cachep→grown �eld STATS_INC_GROWN()

1190 Set failures to 0. This �eld is never used elsewhere

1192 Unlock the spinlock in an interrupt safe fashion

1193 Return success

1194 opps1:

1195 kmem_freepages(cachep, objp);

1196 failed:

1197 spin_lock_irqsave(&cachep->spinlock, save_flags);

1198 cachep->growing--;

1199 spin_unlock_irqrestore(&cachep->spinlock, save_flags);

1300 return 0;

1301 }

H.2.3 Slab Destroying 470

Error handling

1194-1195 opps1 is reached if the pages for the slab were allocated. They must
be freed

1197 Acquire the spinlock for accessing the cache descriptor

1198 Reduce the growing count

1199 Release the spinlock

1300 Return failure

H.2.3 Slab Destroying

H.2.3.1 Function: kmem_slab_destroy() (mm/slab.c)
The call graph for this function is shown at Figure 8.13. For reability, the

debugging sections has been omitted from this function but they are almost identical
to the debugging section during object allocation. See Section H.3.1.1 for how the
markers and poison pattern are checked.

555 static void kmem_slab_destroy (kmem_cache_t *cachep, slab_t *slabp)

556 {

557 if (cachep->dtor

561) {

562 int i;

563 for (i = 0; i < cachep->num; i++) {

564 void* objp = slabp->s_mem+cachep->objsize*i;

565-574 DEBUG: Check red zone markers

575 if (cachep->dtor)

576 (cachep->dtor)(objp, cachep, 0);

577-584 DEBUG: Check poison pattern

585 }

586 }

587

588 kmem_freepages(cachep, slabp->s_mem-slabp->colouroff);

589 if (OFF_SLAB(cachep))

590 kmem_cache_free(cachep->slabp_cache, slabp);

591 }

557-586 If a destructor is available, call it for each object in the slab

563-585 Cycle through each object in the slab

H.2.3 Slab Destroying (kmem_slab_destroy()) 471

564 Calculate the address of the object to destroy

575-576 Call the destructor

588 Free the pages been used for the slab

589 If the slab descriptor is been kept o�-slab, then free the memory been used
for it

H.3 Objects 472

H.3 Objects

Contents

H.3 Objects 472
H.3.1 Initialising Objects in a Slab 472
H.3.1.1 Function: kmem_cache_init_objs() 472

H.3.2 Object Allocation 474
H.3.2.1 Function: kmem_cache_alloc() 474
H.3.2.2 Function: __kmem_cache_alloc (UP Case)() 475
H.3.2.3 Function: __kmem_cache_alloc (SMP Case)() 476
H.3.2.4 Function: kmem_cache_alloc_head() 477
H.3.2.5 Function: kmem_cache_alloc_one() 478
H.3.2.6 Function: kmem_cache_alloc_one_tail() 479
H.3.2.7 Function: kmem_cache_alloc_batch() 480

H.3.3 Object Freeing 482
H.3.3.1 Function: kmem_cache_free() 482
H.3.3.2 Function: __kmem_cache_free (UP Case)() 482
H.3.3.3 Function: __kmem_cache_free (SMP Case)() 483
H.3.3.4 Function: kmem_cache_free_one() 484
H.3.3.5 Function: free_block() 485
H.3.3.6 Function: __free_block() 486

This section will cover how objects are managed. At this point, most of the real
hard work has been completed by either the cache or slab managers.

H.3.1 Initialising Objects in a Slab

H.3.1.1 Function: kmem_cache_init_objs() (mm/slab.c)
The vast part of this function is involved with debugging so we will start with

the function without the debugging and explain that in detail before handling the
debugging part. The two sections that are debugging are marked in the code excerpt
below as Part 1 and Part 2.

1058 static inline void kmem_cache_init_objs (kmem_cache_t * cachep,

1059 slab_t * slabp, unsigned long ctor_flags)

1060 {

1061 int i;

1062

1063 for (i = 0; i < cachep->num; i++) {

1064 void* objp = slabp->s_mem+cachep->objsize*i;

1065-1072 /* Debugging Part 1 */

1079 if (cachep->ctor)

1080 cachep->ctor(objp, cachep, ctor_flags);

H.3.1 Initialising Objects in a Slab (kmem_cache_init_objs()) 473

1081-1094 /* Debugging Part 2 */

1095 slab_bufctl(slabp)[i] = i+1;

1096 }

1097 slab_bufctl(slabp)[i-1] = BUFCTL_END;

1098 slabp->free = 0;

1099 }

1058 The parameters of the function are

cachep The cache the objects are been initialised for

slabp The slab the objects are in

ctor_�ags Flags the constructor needs whether this is an atomic allocation
or not

1063 Initialise cache→num number of objects

1064 The base address for objects in the slab is s_mem. The address of the object
to allocate is then i * (size of a single object)

1079-1080 If a constructor is available, call it

1095 The macro slab_bufctl() casts slabp to a slab_t slab descriptor and adds
one to it. This brings the pointer to the end of the slab descriptor and then
casts it back to a kmem_bufctl_t e�ectively giving the beginning of the bufctl
array.

1098 The index of the �rst free object is 0 in the bufctl array

That covers the core of initialising objects. Next the �rst debugging part will be
covered

1065 #if DEBUG

1066 if (cachep->flags & SLAB_RED_ZONE) {

1067 *((unsigned long*)(objp)) = RED_MAGIC1;

1068 *((unsigned long*)(objp + cachep->objsize -

1069 BYTES_PER_WORD)) = RED_MAGIC1;

1070 objp += BYTES_PER_WORD;

1071 }

1072 #endif

1066 If the cache is to be red zones then place a marker at either end of the object

1067 Place the marker at the beginning of the object

1068 Place the marker at the end of the object. Remember that the size of the
object takes into account the size of the red markers when red zoning is enabled

H.3.2 Object Allocation 474

1070 Increase the objp pointer by the size of the marker for the bene�t of the
constructor which is called after this debugging block

1081 #if DEBUG

1082 if (cachep->flags & SLAB_RED_ZONE)

1083 objp -= BYTES_PER_WORD;

1084 if (cachep->flags & SLAB_POISON)

1086 kmem_poison_obj(cachep, objp);

1087 if (cachep->flags & SLAB_RED_ZONE) {

1088 if (*((unsigned long*)(objp)) != RED_MAGIC1)

1089 BUG();

1090 if (*((unsigned long*)(objp + cachep->objsize -

1091 BYTES_PER_WORD)) != RED_MAGIC1)

1092 BUG();

1093 }

1094 #endif

This is the debugging block that takes place after the constructor, if it exists,
has been called.

1082-1083 The objp pointer was increased by the size of the red marker in the
previous debugging block so move it back again

1084-1086 If there was no constructor, poison the object with a known pattern
that can be examined later to trap uninitialised writes

1088 Check to make sure the red marker at the beginning of the object was pre-
served to trap writes before the object

1090-1091 Check to make sure writes didn't take place past the end of the object

H.3.2 Object Allocation

H.3.2.1 Function: kmem_cache_alloc() (mm/slab.c)
The call graph for this function is shown in Figure 8.14. This trivial function

simply calls __kmem_cache_alloc().

1529 void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)

1531 {

1532 return __kmem_cache_alloc(cachep, flags);

1533 }

H.3.2.2 Function: __kmem_cache_alloc (UP Case)() 475

H.3.2.2 Function: __kmem_cache_alloc (UP Case)() (mm/slab.c)
This will take the parts of the function speci�c to the UP case. The SMP case

will be dealt with in the next section.

1338 static inline void * __kmem_cache_alloc (kmem_cache_t *cachep,

int flags)

1339 {

1340 unsigned long save_flags;

1341 void* objp;

1342

1343 kmem_cache_alloc_head(cachep, flags);

1344 try_again:

1345 local_irq_save(save_flags);

1367 objp = kmem_cache_alloc_one(cachep);

1369 local_irq_restore(save_flags);

1370 return objp;

1371 alloc_new_slab:

1376 local_irq_restore(save_flags);

1377 if (kmem_cache_grow(cachep, flags))

1381 goto try_again;

1382 return NULL;

1383 }

1338 The parameters are the cache to allocate from and allocation speci�c �ags

1343 This function makes sure the appropriate combination of DMA �ags are in
use

1345 Disable interrupts and save the �ags. This function is used by interrupts so
this is the only way to provide synchronisation in the UP case

1367 kmem_cache_alloc_one() (see Section H.3.2.5) allocates an object from one
of the lists and returns it. If no objects are free, this macro (note it isn't a
function) will goto alloc_new_slab at the end of this function

1369-1370 Restore interrupts and return

1376 At this label, no objects were free in slabs_partial and slabs_free is
empty so a new slab is needed

1377 Allocate a new slab (see Section 8.2.2)

1379 A new slab is available so try again

1382 No slabs could be allocated so return failure

H.3.2.3 Function: __kmem_cache_alloc (SMP Case)() 476

H.3.2.3 Function: __kmem_cache_alloc (SMP Case)() (mm/slab.c)
This is what the function looks like in the SMP case

1338 static inline void * __kmem_cache_alloc (kmem_cache_t *cachep,

int flags)

1339 {

1340 unsigned long save_flags;

1341 void* objp;

1342

1343 kmem_cache_alloc_head(cachep, flags);

1344 try_again:

1345 local_irq_save(save_flags);

1347 {

1348 cpucache_t *cc = cc_data(cachep);

1349

1350 if (cc) {

1351 if (cc->avail) {

1352 STATS_INC_ALLOCHIT(cachep);

1353 objp = cc_entry(cc)[--cc->avail];

1354 } else {

1355 STATS_INC_ALLOCMISS(cachep);

1356 objp =

kmem_cache_alloc_batch(cachep,cc,flags);

1357 if (!objp)

1358 goto alloc_new_slab_nolock;

1359 }

1360 } else {

1361 spin_lock(&cachep->spinlock);

1362 objp = kmem_cache_alloc_one(cachep);

1363 spin_unlock(&cachep->spinlock);

1364 }

1365 }

1366 local_irq_restore(save_flags);

1370 return objp;

1371 alloc_new_slab:

1373 spin_unlock(&cachep->spinlock);

1374 alloc_new_slab_nolock:

1375 local_irq_restore(save_flags);

1377 if (kmem_cache_grow(cachep, flags))

1381 goto try_again;

1382 return NULL;

1383 }

1338-1347 Same as UP case

1349 Obtain the per CPU data for this cpu

H.3.2 Object Allocation (__kmem_cache_alloc (SMP Case)()) 477

1350-1360 If a per CPU cache is available then

1351 If there is an object available then

1352 Update statistics for this cache if enabled

1353 Get an object and update the avail �gure

1354 Else an object is not available so

1355 Update statistics for this cache if enabled

1356 Allocate batchcount number of objects, place all but one of them in the per
CPU cache and return the last one to objp

1357-1358 The allocation failed, so goto alloc_new_slab_nolock to grow the
cache and allocate a new slab

1360-1364 If a per CPU cache is not available, take out the cache spinlock and
allocate one object in the same way the UP case does. This is the case during
the initialisation for the cache_cache for example

1363 Object was successfully assigned, release cache spinlock

1366-1370 Re-enable interrupts and return the allocated object

1371-1372 If kmem_cache_alloc_one() failed to allocate an object, it will goto
here with the spinlock still held so it must be released

1375-1383 Same as the UP case

H.3.2.4 Function: kmem_cache_alloc_head() (mm/slab.c)
This simple function ensures the right combination of slab and GFP �ags are

used for allocation from a slab. If a cache is for DMA use, this function will make
sure the caller does not accidently request normal memory and vice versa

1231 static inline void kmem_cache_alloc_head(kmem_cache_t *cachep,

int flags)

1232 {

1233 if (flags & SLAB_DMA) {

1234 if (!(cachep->gfpflags & GFP_DMA))

1235 BUG();

1236 } else {

1237 if (cachep->gfpflags & GFP_DMA)

1238 BUG();

1239 }

1240 }

H.3.2 Object Allocation (kmem_cache_alloc_head()) 478

1231 The parameters are the cache we are allocating from and the �ags requested
for the allocation

1233 If the caller has requested memory for DMA use and

1234 The cache is not using DMA memory then BUG()

1237 Else if the caller has not requested DMA memory and this cache is for DMA
use, BUG()

H.3.2.5 Function: kmem_cache_alloc_one() (mm/slab.c)
This is a preprocessor macro. It may seem strange to not make this an inline func-

tion but it is a preprocessor macro for a goto optimisation in __kmem_cache_alloc()
(see Section H.3.2.2)

1283 #define kmem_cache_alloc_one(cachep) \

1284 ({ \

1285 struct list_head * slabs_partial, * entry; \

1286 slab_t *slabp; \

1287 \

1288 slabs_partial = &(cachep)->slabs_partial; \

1289 entry = slabs_partial->next; \

1290 if (unlikely(entry == slabs_partial)) { \

1291 struct list_head * slabs_free; \

1292 slabs_free = &(cachep)->slabs_free; \

1293 entry = slabs_free->next; \

1294 if (unlikely(entry == slabs_free)) \

1295 goto alloc_new_slab; \

1296 list_del(entry); \

1297 list_add(entry, slabs_partial); \

1298 } \

1299 \

1300 slabp = list_entry(entry, slab_t, list); \

1301 kmem_cache_alloc_one_tail(cachep, slabp); \

1302 })

1288-1289 Get the �rst slab from the slabs_partial list

1290-1298 If a slab is not available from this list, execute this block

1291-1293 Get the �rst slab from the slabs_free list

1294-1295 If there is no slabs on slabs_free, then goto alloc_new_slab(). This
goto label is in __kmem_cache_alloc() and it is will grow the cache by one
slab

1296-1297 Else remove the slab from the free list and place it on the slabs_partial
list because an object is about to be removed from it

H.3.2 Object Allocation (kmem_cache_alloc_one()) 479

1300 Obtain the slab from the list

1301 Allocate one object from the slab

H.3.2.6 Function: kmem_cache_alloc_one_tail() (mm/slab.c)
This function is responsible for the allocation of one object from a slab. Much

of it is debugging code.

1242 static inline void * kmem_cache_alloc_one_tail (

kmem_cache_t *cachep,

1243 slab_t *slabp)

1244 {

1245 void *objp;

1246

1247 STATS_INC_ALLOCED(cachep);

1248 STATS_INC_ACTIVE(cachep);

1249 STATS_SET_HIGH(cachep);

1250

1252 slabp->inuse++;

1253 objp = slabp->s_mem + slabp->free*cachep->objsize;

1254 slabp->free=slab_bufctl(slabp)[slabp->free];

1255

1256 if (unlikely(slabp->free == BUFCTL_END)) {

1257 list_del(&slabp->list);

1258 list_add(&slabp->list, &cachep->slabs_full);

1259 }

1260 #if DEBUG

1261 if (cachep->flags & SLAB_POISON)

1262 if (kmem_check_poison_obj(cachep, objp))

1263 BUG();

1264 if (cachep->flags & SLAB_RED_ZONE) {

1266 if (xchg((unsigned long *)objp, RED_MAGIC2) !=

1267 RED_MAGIC1)

1268 BUG();

1269 if (xchg((unsigned long *)(objp+cachep->objsize -

1270 BYTES_PER_WORD), RED_MAGIC2) != RED_MAGIC1)

1271 BUG();

1272 objp += BYTES_PER_WORD;

1273 }

1274 #endif

1275 return objp;

1276 }

1230 The parameters are the cache and slab been allocated from

H.3.2 Object Allocation (kmem_cache_alloc_one_tail()) 480

1247-1249 If stats are enabled, this will set three statistics. ALLOCED is the total
number of objects that have been allocated. ACTIVE is the number of active
objects in the cache. HIGH is the maximum number of objects that were active
as a single time

1252 inuse is the number of objects active on this slab

1253 Get a pointer to a free object. s_mem is a pointer to the �rst object on the
slab. free is an index of a free object in the slab. index * object size

gives an o�set within the slab

1254 This updates the free pointer to be an index of the next free object

1256-1259 If the slab is full, remove it from the slabs_partial list and place it
on the slabs_full.

1260-1274 Debugging code

1275 Without debugging, the object is returned to the caller

1261-1263 If the object was poisoned with a known pattern, check it to guard
against uninitialised access

1266-1267 If red zoning was enabled, check the marker at the beginning of the
object and con�rm it is safe. Change the red marker to check for writes before
the object later

1269-1271 Check the marker at the end of the object and change it to check for
writes after the object later

1272 Update the object pointer to point to after the red marker

1275 Return the object

H.3.2.7 Function: kmem_cache_alloc_batch() (mm/slab.c)
This function allocate a batch of objects to a CPU cache of objects. It is only used

in the SMP case. In many ways it is very similar kmem_cache_alloc_one()(See Section H.3.2.5).

1305 void* kmem_cache_alloc_batch(kmem_cache_t* cachep,

cpucache_t* cc, int flags)

1306 {

1307 int batchcount = cachep->batchcount;

1308

1309 spin_lock(&cachep->spinlock);

1310 while (batchcount--) {

1311 struct list_head * slabs_partial, * entry;

1312 slab_t *slabp;

1313 /* Get slab alloc is to come from. */

H.3.2 Object Allocation (kmem_cache_alloc_batch()) 481

1314 slabs_partial = &(cachep)->slabs_partial;

1315 entry = slabs_partial->next;

1316 if (unlikely(entry == slabs_partial)) {

1317 struct list_head * slabs_free;

1318 slabs_free = &(cachep)->slabs_free;

1319 entry = slabs_free->next;

1320 if (unlikely(entry == slabs_free))

1321 break;

1322 list_del(entry);

1323 list_add(entry, slabs_partial);

1324 }

1325

1326 slabp = list_entry(entry, slab_t, list);

1327 cc_entry(cc)[cc->avail++] =

1328 kmem_cache_alloc_one_tail(cachep, slabp);

1329 }

1330 spin_unlock(&cachep->spinlock);

1331

1332 if (cc->avail)

1333 return cc_entry(cc)[--cc->avail];

1334 return NULL;

1335 }

1305 The parameters are the cache to allocate from, the per CPU cache to �ll and
allocation �ags

1307 batchcount is the number of objects to allocate

1309 Obtain the spinlock for access to the cache descriptor

1310-1329 Loop batchcount times

1311-1324 This is example the same as kmem_cache_alloc_one()(See Section H.3.2.5).
It selects a slab from either slabs_partial or slabs_free to allocate from.
If none are available, break out of the loop

1326-1327 Call kmem_cache_alloc_one_tail() (See Section H.3.2.6) and place
it in the per CPU cache

1330 Release the cache descriptor lock

1332-1333 Take one of the objects allocated in this batch and return it

1334 If no object was allocated, return. __kmem_cache_alloc() (See Section H.3.2.2)
will grow the cache by one slab and try again

H.3.3 Object Freeing 482

H.3.3 Object Freeing

H.3.3.1 Function: kmem_cache_free() (mm/slab.c)
The call graph for this function is shown in Figure 8.15.

1576 void kmem_cache_free (kmem_cache_t *cachep, void *objp)

1577 {

1578 unsigned long flags;

1579 #if DEBUG

1580 CHECK_PAGE(virt_to_page(objp));

1581 if (cachep != GET_PAGE_CACHE(virt_to_page(objp)))

1582 BUG();

1583 #endif

1584

1585 local_irq_save(flags);

1586 __kmem_cache_free(cachep, objp);

1587 local_irq_restore(flags);

1588 }

1576 The parameter is the cache the object is been freed from and the object itself

1579-1583 If debugging is enabled, the page will �rst be checked with CHECK_PAGE()
to make sure it is a slab page. Secondly the page list will be examined to make
sure it belongs to this cache (See Figure 8.8)

1585 Interrupts are disabled to protect the path

1586 __kmem_cache_free() (See Section H.3.3.2) will free the object to the per-
CPU cache for the SMP case and to the global pool in the normal case

1587 Re-enable interrupts

H.3.3.2 Function: __kmem_cache_free (UP Case)() (mm/slab.c)
This covers what the function looks like in the UP case. Clearly, it simply releases

the object to the slab.

1493 static inline void __kmem_cache_free (kmem_cache_t *cachep,

void* objp)

1494 {

1517 kmem_cache_free_one(cachep, objp);

1519 }

H.3.3.3 Function: __kmem_cache_free (SMP Case)() 483

H.3.3.3 Function: __kmem_cache_free (SMP Case)() (mm/slab.c)
This case is slightly more interesting. In this case, the object is released to the

per-cpu cache if it is available.

1493 static inline void __kmem_cache_free (kmem_cache_t *cachep,

void* objp)

1494 {

1496 cpucache_t *cc = cc_data(cachep);

1497

1498 CHECK_PAGE(virt_to_page(objp));

1499 if (cc) {

1500 int batchcount;

1501 if (cc->avail < cc->limit) {

1502 STATS_INC_FREEHIT(cachep);

1503 cc_entry(cc)[cc->avail++] = objp;

1504 return;

1505 }

1506 STATS_INC_FREEMISS(cachep);

1507 batchcount = cachep->batchcount;

1508 cc->avail -= batchcount;

1509 free_block(cachep,

1510 &cc_entry(cc)[cc->avail],batchcount);

1511 cc_entry(cc)[cc->avail++] = objp;

1512 return;

1513 } else {

1514 free_block(cachep, &objp, 1);

1515 }

1519 }

1496 Get the data for this per CPU cache (See Section 8.5.1)

1498 Make sure the page is a slab page

1499-1513 If a per-CPU cache is available, try to use it. This is not always
available. During cache destruction for instance, the per CPU caches are
already gone

1501-1505 If the number of available in the per CPU cache is below limit, then
add the object to the free list and return

1506 Update statistics if enabled

1507 The pool has over�owed so batchcount number of objects is going to be freed
to the global pool

1508 Update the number of available (avail) objects

1509-1510 Free a block of objects to the global cache

H.3.3 Object Freeing (__kmem_cache_free (SMP Case)()) 484

1511 Free the requested object and place it on the per CPU pool

1513 If the per-CPU cache is not available, then free this object to the global pool

H.3.3.4 Function: kmem_cache_free_one() (mm/slab.c)

1414 static inline void kmem_cache_free_one(kmem_cache_t *cachep,

void *objp)

1415 {

1416 slab_t* slabp;

1417

1418 CHECK_PAGE(virt_to_page(objp));

1425 slabp = GET_PAGE_SLAB(virt_to_page(objp));

1426

1427 #if DEBUG

1428 if (cachep->flags & SLAB_DEBUG_INITIAL)

1433 cachep->ctor(objp, cachep,

SLAB_CTOR_CONSTRUCTOR|SLAB_CTOR_VERIFY);

1434

1435 if (cachep->flags & SLAB_RED_ZONE) {

1436 objp -= BYTES_PER_WORD;

1437 if (xchg((unsigned long *)objp, RED_MAGIC1) !=

RED_MAGIC2)

1438 BUG();

1440 if (xchg((unsigned long *)(objp+cachep->objsize -

1441 BYTES_PER_WORD), RED_MAGIC1) !=

RED_MAGIC2)

1443 BUG();

1444 }

1445 if (cachep->flags & SLAB_POISON)

1446 kmem_poison_obj(cachep, objp);

1447 if (kmem_extra_free_checks(cachep, slabp, objp))

1448 return;

1449 #endif

1450 {

1451 unsigned int objnr = (objp-slabp->s_mem)/cachep->objsize;

1452

1453 slab_bufctl(slabp)[objnr] = slabp->free;

1454 slabp->free = objnr;

1455 }

1456 STATS_DEC_ACTIVE(cachep);

1457

1459 {

1460 int inuse = slabp->inuse;

1461 if (unlikely(!--slabp->inuse)) {

H.3.3 Object Freeing (kmem_cache_free_one()) 485

1462 /* Was partial or full, now empty. */

1463 list_del(&slabp->list);

1464 list_add(&slabp->list, &cachep->slabs_free);

1465 } else if (unlikely(inuse == cachep->num)) {

1466 /* Was full. */

1467 list_del(&slabp->list);

1468 list_add(&slabp->list, &cachep->slabs_partial);

1469 }

1470 }

1471 }

1418 Make sure the page is a slab page

1425 Get the slab descriptor for the page

1427-1449 Debugging material. Discussed at end of section

1451 Calculate the index for the object been freed

1454 As this object is now free, update the bufctl to re�ect that

1456 If statistics are enabled, disable the number of active objects in the slab

1461-1464 If inuse reaches 0, the slab is free and is moved to the slabs_free list

1465-1468 If the number in use equals the number of objects in a slab, it is full
so move it to the slabs_full list

1471 End of function

1428-1433 If SLAB_DEBUG_INITIAL is set, the constructor is called to verify the
object is in an initialised state

1435-1444 Verify the red marks at either end of the object are still there. This
will check for writes beyond the boundaries of the object and for double frees

1445-1446 Poison the freed object with a known pattern

1447-1448 This function will con�rm the object is a part of this slab and cache.
It will then check the free list (bufctl) to make sure this is not a double free

H.3.3.5 Function: free_block() (mm/slab.c)
This function is only used in the SMP case when the per CPU cache gets too

full. It is used to free a batch of objects in bulk

1481 static void free_block (kmem_cache_t* cachep, void** objpp,

int len)

1482 {

1483 spin_lock(&cachep->spinlock);

H.3.3 Object Freeing (free_block()) 486

1484 __free_block(cachep, objpp, len);

1485 spin_unlock(&cachep->spinlock);

1486 }

1481 The parameters are;

cachep The cache that objects are been freed from

objpp Pointer to the �rst object to free

len The number of objects to free

1483 Acquire a lock to the cache descriptor

1486 __free_block()(See Section H.3.3.6) performs the actual task of freeing up
each of the pages

1487 Release the lock

H.3.3.6 Function: __free_block() (mm/slab.c)
This function is responsible for freeing each of the objects in the per-CPU array

objpp.

1474 static inline void __free_block (kmem_cache_t* cachep,

1475 void** objpp, int len)

1476 {

1477 for (; len > 0; len--, objpp++)

1478 kmem_cache_free_one(cachep, *objpp);

1479 }

1474 The parameters are the cachep the objects belong to, the list of objects(objpp)
and the number of objects to free (len)

1477 Loop len number of times

1478 Free an object from the array

H.4 Sizes Cache 487

H.4 Sizes Cache

Contents

H.4 Sizes Cache 487
H.4.1 Initialising the Sizes Cache 487
H.4.1.1 Function: kmem_cache_sizes_init() 487

H.4.2 kmalloc() 488
H.4.2.1 Function: kmalloc() 488

H.4.3 kfree() 489
H.4.3.1 Function: kfree() 489

H.4.1 Initialising the Sizes Cache

H.4.1.1 Function: kmem_cache_sizes_init() (mm/slab.c)
This function is responsible for creating pairs of caches for small memory bu�ers

suitable for either normal or DMA memory.

436 void __init kmem_cache_sizes_init(void)

437 {

438 cache_sizes_t *sizes = cache_sizes;

439 char name[20];

440

444 if (num_physpages > (32 << 20) >> PAGE_SHIFT)

445 slab_break_gfp_order = BREAK_GFP_ORDER_HI;

446 do {

452 snprintf(name, sizeof(name), "size-%Zd",

sizes->cs_size);

453 if (!(sizes->cs_cachep =

454 kmem_cache_create(name, sizes->cs_size,

455 0, SLAB_HWCACHE_ALIGN, NULL, NULL))) {

456 BUG();

457 }

458

460 if (!(OFF_SLAB(sizes->cs_cachep))) {

461 offslab_limit = sizes->cs_size-sizeof(slab_t);

462 offslab_limit /= 2;

463 }

464 snprintf(name, sizeof(name), "size-%Zd(DMA)",

sizes->cs_size);

465 sizes->cs_dmacachep = kmem_cache_create(name,

sizes->cs_size, 0,

466 SLAB_CACHE_DMA|SLAB_HWCACHE_ALIGN,

NULL, NULL);

467 if (!sizes->cs_dmacachep)

468 BUG();

H.4.2 kmalloc() 488

469 sizes++;

470 } while (sizes->cs_size);

471 }

438 Get a pointer to the cache_sizes array

439 The human readable name of the cache . Should be sized CACHE_NAMELEN

which is de�ned to be 20 bytes long

444-445 slab_break_gfp_order determines how many pages a slab may use un-
less 0 objects �t into the slab. It is statically initialised to BREAK_GFP_ORDER_LO
(1). This check sees if more than 32MiB of memory is available and if it is,
allow BREAK_GFP_ORDER_HI number of pages to be used because internal frag-
mentation is more acceptable when more memory is available.

446-470 Create two caches for each size of memory allocation needed

452 Store the human readable cache name in name

453-454 Create the cache, aligned to the L1 cache

460-463 Calculate the o�-slab bufctl limit which determines the number of objects
that can be stored in a cache when the slab descriptor is kept o�-cache.

464 The human readable name for the cache for DMA use

465-466 Create the cache, aligned to the L1 cache and suitable for DMA user

467 if the cache failed to allocate, it is a bug. If memory is unavailable this early,
the machine will not boot

469 Move to the next element in the cache_sizes array

470 The array is terminated with a 0 as the last element

H.4.2 kmalloc()

H.4.2.1 Function: kmalloc() (mm/slab.c)
Ths call graph for this function is shown in Figure 8.16.

1555 void * kmalloc (size_t size, int flags)

1556 {

1557 cache_sizes_t *csizep = cache_sizes;

1558

1559 for (; csizep->cs_size; csizep++) {

1560 if (size > csizep->cs_size)

1561 continue;

1562 return __kmem_cache_alloc(flags & GFP_DMA ?

1563 csizep->cs_dmacachep :

H.4.3 kfree() 489

csizep->cs_cachep, flags);

1564 }

1565 return NULL;

1566 }

1557 cache_sizes is the array of caches for each size (See Section 8.4)

1559-1564 Starting with the smallest cache, examine the size of each cache until
one large enough to satisfy the request is found

1562 If the allocation is for use with DMA, allocate an object from cs_dmacachep

else use the cs_cachep

1565 If a sizes cache of su�cient size was not available or an object could not be
allocated, return failure

H.4.3 kfree()

H.4.3.1 Function: kfree() (mm/slab.c)
The call graph for this function is shown in Figure 8.17. It is worth noting that

the work this function does is almost identical to the function kmem_cache_free()

with debugging enabled (See Section H.3.3.1).

1597 void kfree (const void *objp)

1598 {

1599 kmem_cache_t *c;

1600 unsigned long flags;

1601

1602 if (!objp)

1603 return;

1604 local_irq_save(flags);

1605 CHECK_PAGE(virt_to_page(objp));

1606 c = GET_PAGE_CACHE(virt_to_page(objp));

1607 __kmem_cache_free(c, (void*)objp);

1608 local_irq_restore(flags);

1609 }

1602 Return if the pointer is NULL. This is possible if a caller used kmalloc()

and had a catch-all failure routine which called kfree() immediately

1604 Disable interrupts

1605 Make sure the page this object is in is a slab page

1606 Get the cache this pointer belongs to (See Section 8.2)

1607 Free the memory object

1608 Re-enable interrupts

H.5 Per-CPU Object Cache 490

H.5 Per-CPU Object Cache

Contents

H.5 Per-CPU Object Cache 490
H.5.1 Enabling Per-CPU Caches 490
H.5.1.1 Function: enable_all_cpucaches() 490
H.5.1.2 Function: enable_cpucache() 491
H.5.1.3 Function: kmem_tune_cpucache() 492

H.5.2 Updating Per-CPU Information 495
H.5.2.1 Function: smp_call_function_all_cpus() 495
H.5.2.2 Function: do_ccupdate_local() 495

H.5.3 Draining a Per-CPU Cache 496
H.5.3.1 Function: drain_cpu_caches() 496

The structure of the Per-CPU object cache and how objects are added or removed
from them is covered in detail in Sections 8.5.1 and 8.5.2.

H.5.1 Enabling Per-CPU Caches

H.5.1.1 Function: enable_all_cpucaches() (mm/slab.c)

Figure H.1: Call Graph: enable_all_cpucaches()

This function locks the cache chain and enables the cpucache for every cache.
This is important after the cache_cache and sizes cache have been enabled.

1714 static void enable_all_cpucaches (void)

H.5.1 Enabling Per-CPU Caches (enable_all_cpucaches()) 491

1715 {

1716 struct list_head* p;

1717

1718 down(&cache_chain_sem);

1719

1720 p = &cache_cache.next;

1721 do {

1722 kmem_cache_t* cachep = list_entry(p, kmem_cache_t, next);

1723

1724 enable_cpucache(cachep);

1725 p = cachep->next.next;

1726 } while (p != &cache_cache.next);

1727

1728 up(&cache_chain_sem);

1729 }

1718 Obtain the semaphore to the cache chain

1719 Get the �rst cache on the chain

1721-1726 Cycle through the whole chain

1722 Get a cache from the chain. This code will skip the �rst cache on the chain
but cache_cache doesn't need a cpucache as it is so rarely used

1724 Enable the cpucache

1725 Move to the next cache on the chain

1726 Release the cache chain semaphore

H.5.1.2 Function: enable_cpucache() (mm/slab.c)
This function calculates what the size of a cpucache should be based on the size

of the objects the cache contains before calling kmem_tune_cpucache() which does
the actual allocation.

1693 static void enable_cpucache (kmem_cache_t *cachep)

1694 {

1695 int err;

1696 int limit;

1697

1699 if (cachep->objsize > PAGE_SIZE)

1700 return;

1701 if (cachep->objsize > 1024)

1702 limit = 60;

1703 else if (cachep->objsize > 256)

1704 limit = 124;

H.5.1 Enabling Per-CPU Caches (enable_cpucache()) 492

1705 else

1706 limit = 252;

1707

1708 err = kmem_tune_cpucache(cachep, limit, limit/2);

1709 if (err)

1710 printk(KERN_ERR

"enable_cpucache failed for %s, error %d.\n",

1711 cachep->name, -err);

1712 }

1699-1700 If an object is larger than a page, do not create a per-CPU cache as
they are too expensive

1701-1702 If an object is larger than 1KiB, keep the cpu cache below 3MiB in
size. The limit is set to 124 objects to take the size of the cpucache descriptors
into account

1703-1704 For smaller objects, just make sure the cache doesn't go above 3MiB
in size

1708 Allocate the memory for the cpucache

1710-1711 Print out an error message if the allocation failed

H.5.1.3 Function: kmem_tune_cpucache() (mm/slab.c)
This function is responsible for allocating memory for the cpucaches. For each

CPU on the system, kmalloc gives a block of memory large enough for one cpu cache
and �lls a ccupdate_struct_t struct. The function smp_call_function_all_cpus()
then calls do_ccupdate_local() which swaps the new information with the old in-
formation in the cache descriptor.

1639 static int kmem_tune_cpucache (kmem_cache_t* cachep,

int limit, int batchcount)

1640 {

1641 ccupdate_struct_t new;

1642 int i;

1643

1644 /*

1645 * These are admin-provided, so we are more graceful.

1646 */

1647 if (limit < 0)

1648 return -EINVAL;

1649 if (batchcount < 0)

1650 return -EINVAL;

1651 if (batchcount > limit)

1652 return -EINVAL;

H.5.1 Enabling Per-CPU Caches (kmem_tune_cpucache()) 493

1653 if (limit != 0 && !batchcount)

1654 return -EINVAL;

1655

1656 memset(&new.new,0,sizeof(new.new));

1657 if (limit) {

1658 for (i = 0; i< smp_num_cpus; i++) {

1659 cpucache_t* ccnew;

1660

1661 ccnew = kmalloc(sizeof(void*)*limit+

1662 sizeof(cpucache_t),

GFP_KERNEL);

1663 if (!ccnew)

1664 goto oom;

1665 ccnew->limit = limit;

1666 ccnew->avail = 0;

1667 new.new[cpu_logical_map(i)] = ccnew;

1668 }

1669 }

1670 new.cachep = cachep;

1671 spin_lock_irq(&cachep->spinlock);

1672 cachep->batchcount = batchcount;

1673 spin_unlock_irq(&cachep->spinlock);

1674

1675 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);

1676

1677 for (i = 0; i < smp_num_cpus; i++) {

1678 cpucache_t* ccold = new.new[cpu_logical_map(i)];

1679 if (!ccold)

1680 continue;

1681 local_irq_disable();

1682 free_block(cachep, cc_entry(ccold), ccold->avail);

1683 local_irq_enable();

1684 kfree(ccold);

1685 }

1686 return 0;

1687 oom:

1688 for (i--; i >= 0; i--)

1689 kfree(new.new[cpu_logical_map(i)]);

1690 return -ENOMEM;

1691 }

1639 The parameters of the function are

cachep The cache this cpucache is been allocated for

limit The total number of objects that can exist in the cpucache

H.5.1 Enabling Per-CPU Caches (kmem_tune_cpucache()) 494

batchcount The number of objects to allocate in one batch when the
cpucache is empty

1647 The number of objects in the cache cannot be negative

1649 A negative number of objects cannot be allocated in batch

1651 A batch of objects greater than the limit cannot be allocated

1653 A batchcount must be provided if the limit is positive

1656 Zero �ll the update struct

1657 If a limit is provided, allocate memory for the cpucache

1658-1668 For every CPU, allocate a cpucache

1661 The amount of memory needed is limit number of pointers and the size of
the cpucache descriptor

1663 If out of memory, clean up and exit

1665-1666 Fill in the �elds for the cpucache descriptor

1667 Fill in the information for ccupdate_update_t struct

1670 Tell the ccupdate_update_t struct what cache is been updated

1671-1673 Acquire an interrupt safe lock to the cache descriptor and set its batch-
count

1675 Get each CPU to update its cpucache information for itself. This swaps
the old cpucaches in the cache descriptor with the new ones in new using
do_ccupdate_local() (See Section H.5.2.2)

1677-1685 After smp_call_function_all_cpus() (See Section H.5.2.1), the old
cpucaches are in new. This block of code cycles through them all, frees any
objects in them and deletes the old cpucache

1686 Return success

1688 In the event there is no memory, delete all cpucaches that have been allocated
up until this point and return failure

H.5.2 Updating Per-CPU Information 495

H.5.2 Updating Per-CPU Information

H.5.2.1 Function: smp_call_function_all_cpus() (mm/slab.c)
This calls the function func() for all CPU's. In the context of the slab allocator,

the function is do_ccupdate_local() and the argument is ccupdate_struct_t.

859 static void smp_call_function_all_cpus(void (*func) (void *arg),

void *arg)

860 {

861 local_irq_disable();

862 func(arg);

863 local_irq_enable();

864

865 if (smp_call_function(func, arg, 1, 1))

866 BUG();

867 }

861-863 Disable interrupts locally and call the function for this CPU

865 For all other CPU's, call the function. smp_call_function() is an architec-
ture speci�c function and will not be discussed further here

H.5.2.2 Function: do_ccupdate_local() (mm/slab.c)
This function swaps the cpucache information in the cache descriptor with the

information in info for this CPU.

874 static void do_ccupdate_local(void *info)

875 {

876 ccupdate_struct_t *new = (ccupdate_struct_t *)info;

877 cpucache_t *old = cc_data(new->cachep);

878

879 cc_data(new->cachep) = new->new[smp_processor_id()];

880 new->new[smp_processor_id()] = old;

881 }

876 info is a pointer to the ccupdate_struct_t which is then passed to
smp_call_function_all_cpus()(See Section H.5.2.1)

877 Part of the ccupdate_struct_t is a pointer to the cache this cpucache belongs
to. cc_data() returns the cpucache_t for this processor

879 Place the new cpucache in cache descriptor. cc_data() returns the pointer to
the cpucache for this CPU.

880 Replace the pointer in new with the old cpucache so it can be deleted later by
the caller of smp_call_function_call_cpus(), kmem_tune_cpucache() for
example

H.5.3 Draining a Per-CPU Cache 496

H.5.3 Draining a Per-CPU Cache

This function is called to drain all objects in a per-cpu cache. It is called when a
cache needs to be shrunk for the freeing up of slabs. A slab would not be freeable if
an object was in the per-cpu cache even though it is not in use.

H.5.3.1 Function: drain_cpu_caches() (mm/slab.c)

885 static void drain_cpu_caches(kmem_cache_t *cachep)

886 {

887 ccupdate_struct_t new;

888 int i;

889

890 memset(&new.new,0,sizeof(new.new));

891

892 new.cachep = cachep;

893

894 down(&cache_chain_sem);

895 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);

896

897 for (i = 0; i < smp_num_cpus; i++) {

898 cpucache_t* ccold = new.new[cpu_logical_map(i)];

899 if (!ccold || (ccold->avail == 0))

900 continue;

901 local_irq_disable();

902 free_block(cachep, cc_entry(ccold), ccold->avail);

903 local_irq_enable();

904 ccold->avail = 0;

905 }

906 smp_call_function_all_cpus(do_ccupdate_local, (void *)&new);

907 up(&cache_chain_sem);

908 }

890 Blank the update structure as it is going to be clearing all data

892 Set new.cachep to cachep so that smp_call_function_all_cpus() knows
what cache it is a�ecting

894 Acquire the cache descriptor semaphore

895 do_ccupdate_local()(See Section H.5.2.2) swaps the cpucache_t informa-
tion in the cache descriptor with the ones in new so they can be altered here

897-905 For each CPU in the system

898 Get the cpucache descriptor for this CPU

899 If the structure does not exist for some reason or there is no objects available
in it, move to the next CPU

H.5.3 Draining a Per-CPU Cache (drain_cpu_caches()) 497

901 Disable interrupts on this processor. It is possible an allocation from an
interrupt handler elsewhere would try to access the per CPU cache

902 Free the block of objects with free_block() (See Section H.3.3.5)

903 Re-enable interrupts

904 Show that no objects are available

906 The information for each CPU has been updated so call do_ccupdate_local()
(See Section H.5.2.2) for each CPU to put the information back into the cache
descriptor

907 Release the semaphore for the cache chain

H.6 Slab Allocator Initialisation 498

H.6 Slab Allocator Initialisation

Contents

H.6 Slab Allocator Initialisation 498
H.6.0.2 Function: kmem_cache_init() 498

H.6.0.2 Function: kmem_cache_init() (mm/slab.c)
This function will

• Initialise the cache chain linked list

• Initialise a mutex for accessing the cache chain

• Calculate the cache_cache colour

416 void __init kmem_cache_init(void)

417 {

418 size_t left_over;

419

420 init_MUTEX(&cache_chain_sem);

421 INIT_LIST_HEAD(&cache_chain);

422

423 kmem_cache_estimate(0, cache_cache.objsize, 0,

424 &left_over, &cache_cache.num);

425 if (!cache_cache.num)

426 BUG();

427

428 cache_cache.colour = left_over/cache_cache.colour_off;

429 cache_cache.colour_next = 0;

430 }

420 Initialise the semaphore for access the cache chain

421 Initialise the cache chain linked list

423 kmem_cache_estimate()(See Section H.1.2.1) calculates the number of ob-
jects and amount of bytes wasted

425 If even one kmem_cache_t cannot be stored in a page, there is something
seriously wrong

428 colour is the number of di�erent cache lines that can be used while still
keeping L1 cache alignment

429 colour_next indicates which line to use next. Start at 0

H.7 Interfacing with the Buddy Allocator 499

H.7 Interfacing with the Buddy Allocator

Contents

H.7 Interfacing with the Buddy Allocator 499
H.7.0.3 Function: kmem_getpages() 499
H.7.0.4 Function: kmem_freepages() 499

H.7.0.3 Function: kmem_getpages() (mm/slab.c)
This allocates pages for the slab allocator

486 static inline void * kmem_getpages (kmem_cache_t *cachep,

unsigned long flags)

487 {

488 void *addr;

495 flags |= cachep->gfpflags;

496 addr = (void*) __get_free_pages(flags, cachep->gfporder);

503 return addr;

504 }

495 Whatever �ags were requested for the allocation, append the cache �ags to it.
The only �ag it may append is ZONE_DMA if the cache requires DMA memory

496Allocate from the buddy allocator with __get_free_pages() (See Section F.2.3)

503 Return the pages or NULL if it failed

H.7.0.4 Function: kmem_freepages() (mm/slab.c)
This frees pages for the slab allocator. Before it calls the buddy allocator API,

it will remove the PG_slab bit from the page �ags.

507 static inline void kmem_freepages (kmem_cache_t *cachep, void *addr)

508 {

509 unsigned long i = (1<<cachep->gfporder);

510 struct page *page = virt_to_page(addr);

511

517 while (i--) {

518 PageClearSlab(page);

519 page++;

520 }

521 free_pages((unsigned long)addr, cachep->gfporder);

522 }

509 Retrieve the order used for the original allocation

510 Get the struct page for the address

517-520 Clear the PG_slab bit on each page

521 Free the pages to the buddy allocator with free_pages() (See Section F.4.1)

Appendix I

High Memory Mangement

Contents
I.1 Mapping High Memory Pages . 502

I.1.0.5 Function: kmap() . 502

I.1.0.6 Function: kmap_nonblock() 502

I.1.1 Function: __kmap() . 502

I.1.2 Function: kmap_high() . 503

I.1.3 Function: map_new_virtual() 503

I.1.4 Function: flush_all_zero_pkmaps() 506

I.2 Mapping High Memory Pages Atomically 508

I.2.1 Function: kmap_atomic() . 508

I.3 Unmapping Pages . 510

I.3.1 Function: kunmap() . 510

I.3.2 Function: kunmap_high() . 510

I.4 Unmapping High Memory Pages Atomically 512

I.4.1 Function: kunmap_atomic() . 512

I.5 Bounce Bu�ers . 513

I.5.1 Creating Bounce Bu�ers . 513

I.5.1.1 Function: create_bounce() 513

I.5.1.2 Function: alloc_bounce_bh() 515

I.5.1.3 Function: alloc_bounce_page() 516

I.5.2 Copying via Bounce Bu�ers . 517

I.5.2.1 Function: bounce_end_io_write() 517

I.5.2.2 Function: bounce_end_io_read() 518

I.5.2.3 Function: copy_from_high_bh() 518

I.5.2.4 Function: copy_to_high_bh_irq() 519

500

APPENDIX I. HIGH MEMORY MANGEMENT 501

I.5.2.5 Function: bounce_end_io() 519

I.6 Emergency Pools . 521

I.6.1 Function: init_emergency_pool() 521

I.1 Mapping High Memory Pages 502

I.1 Mapping High Memory Pages

Contents

I.1 Mapping High Memory Pages 502
I.1.0.5 Function: kmap() 502
I.1.0.6 Function: kmap_nonblock() 502

I.1.1 Function: __kmap() 502
I.1.2 Function: kmap_high() 503
I.1.3 Function: map_new_virtual() 503
I.1.4 Function: flush_all_zero_pkmaps() 506

I.1.0.5 Function: kmap() (include/asm-i386/highmem.c)
This API is used by callers willing to block.

62 #define kmap(page) __kmap(page, 0)

62 The core function __kmap() is called with the second parameter indicating that
the caller is willing to block

I.1.0.6 Function: kmap_nonblock() (include/asm-i386/highmem.c)

63 #define kmap_nonblock(page) __kmap(page, 1)

62 The core function __kmap() is called with the second parameter indicating that
the caller is not willing to block

I.1.1 Function: __kmap() (include/asm-i386/highmem.h)
The call graph for this function is shown in Figure 9.1.

65 static inline void *kmap(struct page *page, int nonblocking)

66 {

67 if (in_interrupt())

68 out_of_line_bug();

69 if (page < highmem_start_page)

70 return page_address(page);

71 return kmap_high(page);

72 }

67-68 This function may not be used from interrupt as it may sleep. Instead of
BUG(), out_of_line_bug() calls do_exit() and returns an error code. BUG()
is not used because BUG() kills the process with extreme prejudice which would
result in the fabled �Aiee, killing interrupt handler!� kernel panic

69-70 If the page is already in low memory, return a direct mapping

71 Call kmap_high()(See Section I.1.2) for the beginning of the architecture inde-
pendent work

I.1.2 Function: kmap_high() 503

I.1.2 Function: kmap_high() (mm/highmem.c)

132 void *kmap_high(struct page *page, int nonblocking)

133 {

134 unsigned long vaddr;

135

142 spin_lock(&kmap_lock);

143 vaddr = (unsigned long) page->virtual;

144 if (!vaddr) {

145 vaddr = map_new_virtual(page, nonblocking);

146 if (!vaddr)

147 goto out;

148 }

149 pkmap_count[PKMAP_NR(vaddr)]++;

150 if (pkmap_count[PKMAP_NR(vaddr)] < 2)

151 BUG();

152 out:

153 spin_unlock(&kmap_lock);

154 return (void*) vaddr;

155 }

142 The kmap_lock protects the virtual �eld of a page and the pkmap_count

array

143 Get the virtual address of the page

144-148 If it is not already mapped, call map_new_virtual() which will map the
page and return the virtual address. If it fails, goto out to free the spinlock
and return NULL

149 Increase the reference count for this page mapping

150-151 If the count is currently less than 2, it is a serious bug. In reality, severe
breakage would have to be introduced to cause this to happen

153 Free the kmap_lock

I.1.3 Function: map_new_virtual() (mm/highmem.c)
This function is divided into three principle parts. The scanning for a free slot,

waiting on a queue if none is avaialble and mapping the page.

80 static inline unsigned long map_new_virtual(struct page *page)

81 {

82 unsigned long vaddr;

83 int count;

84

85 start:

I.1 Mapping High Memory Pages (map_new_virtual()) 504

86 count = LAST_PKMAP;

87 /* Find an empty entry */

88 for (;;) {

89 last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;

90 if (!last_pkmap_nr) {

91 flush_all_zero_pkmaps();

92 count = LAST_PKMAP;

93 }

94 if (!pkmap_count[last_pkmap_nr])

95 break; /* Found a usable entry */

96 if (--count)

97 continue;

98

99 if (nonblocking)

100 return 0;

86 Start scanning at the last possible slot

88-119 This look keeps scanning and waiting until a slot becomes free. This allows
the possibility of an in�nite loop for some processes if they were unlucky

89 last_pkmap_nr is the last pkmap that was scanned. To prevent searching over
the same pages, this value is recorded so the list is searched circularly. When
it reaches LAST_PKMAP, it wraps around to 0

90-93When last_pkmap_nr wraps around, call flush_all_zero_pkmaps() (See Section I.1.4)
which will set all entries from 1 to 0 in the pkmap_count array before �ushing
the TLB. Count is set back to LAST_PKMAP to restart scanning

94-95 If this element is 0, a usable slot has been found for the page

96-96 Move to the next index to scan

99-100 The next block of code is going to sleep waiting for a slot to be free. If the
caller requested that the function not block, return now

105 {

106 DECLARE_WAITQUEUE(wait, current);

107

108 current->state = TASK_UNINTERRUPTIBLE;

109 add_wait_queue(&pkmap_map_wait, &wait);

110 spin_unlock(&kmap_lock);

111 schedule();

112 remove_wait_queue(&pkmap_map_wait, &wait);

113 spin_lock(&kmap_lock);

114

115 /* Somebody else might have mapped it while we

I.1 Mapping High Memory Pages (map_new_virtual()) 505

slept */

116 if (page->virtual)

117 return (unsigned long) page->virtual;

118

119 /* Re-start */

120 goto start;

121 }

122 }

If there is no available slot after scanning all the pages once, we sleep on the
pkmap_map_wait queue until we are woken up after an unmap

106 Declare the wait queue

108 Set the task as interruptible because we are sleeping in kernel space

109 Add ourselves to the pkmap_map_wait queue

110 Free the kmap_lock spinlock

111 Call schedule() which will put us to sleep. We are woken up after a slot
becomes free after an unmap

112 Remove ourselves from the wait queue

113 Re-acquire kmap_lock

116-117 If someone else mapped the page while we slept, just return the address
and the reference count will be incremented by kmap_high()

120 Restart the scanning

123 vaddr = PKMAP_ADDR(last_pkmap_nr);

124 set_pte(&(pkmap_page_table[last_pkmap_nr]), mk_pte(page,

kmap_prot));

125

126 pkmap_count[last_pkmap_nr] = 1;

127 page->virtual = (void *) vaddr;

128

129 return vaddr;

130 }

A slot has been found, map the page

123 Get the virtual address for the slot found

124 Make the PTE entry with the page and required protection and place it in the
page tables at the found slot

I.1 Mapping High Memory Pages (map_new_virtual()) 506

126 Initialise the value in the pkmap_count array to 1. The count is incremented
in the parent function and we are sure this is the �rst mapping if we are in
this function in the �rst place

127 Set the virtual �eld for the page

129 Return the virtual address

I.1.4 Function: flush_all_zero_pkmaps() (mm/highmem.c)
This function cycles through the pkmap_count array and sets all entries from 1

to 0 before �ushing the TLB.

42 static void flush_all_zero_pkmaps(void)

43 {

44 int i;

45

46 flush_cache_all();

47

48 for (i = 0; i < LAST_PKMAP; i++) {

49 struct page *page;

50

57 if (pkmap_count[i] != 1)

58 continue;

59 pkmap_count[i] = 0;

60

61 /* sanity check */

62 if (pte_none(pkmap_page_table[i]))

63 BUG();

64

72 page = pte_page(pkmap_page_table[i]);

73 pte_clear(&pkmap_page_table[i]);

74

75 page->virtual = NULL;

76 }

77 flush_tlb_all();

78 }

46 As the global page tables are about to change, the CPU caches of all processors
have to be �ushed

48-76 Cycle through the entire pkmap_count array

57-58 If the element is not 1, move to the next element

59 Set from 1 to 0

62-63 Make sure the PTE is not somehow mapped

I.1 Mapping High Memory Pages (flush_all_zero_pkmaps()) 507

72-73 Unmap the page from the PTE and clear the PTE

75 Update the virtual �eld as the page is unmapped

77 Flush the TLB

I.2 Mapping High Memory Pages Atomically 508

I.2 Mapping High Memory Pages Atomically

Contents

I.2 Mapping High Memory Pages Atomically 508
I.2.1 Function: kmap_atomic() 508

The following is an example km_type enumeration for the x86. It lists the di�erent
uses interrupts have for atomically calling kmap. Note how KM_TYPE_NR is the last
element so it doubles up as a count of the number of elements.

4 enum km_type {

5 KM_BOUNCE_READ,

6 KM_SKB_SUNRPC_DATA,

7 KM_SKB_DATA_SOFTIRQ,

8 KM_USER0,

9 KM_USER1,

10 KM_BH_IRQ,

11 KM_TYPE_NR

12 };

I.2.1 Function: kmap_atomic() (include/asm-i386/highmem.h)
This is the atomic version of kmap(). Note that at no point is a spinlock held

or does it sleep. A spinlock is not required as every processor has its own reserved
space.

89 static inline void *kmap_atomic(struct page *page,

enum km_type type)

90 {

91 enum fixed_addresses idx;

92 unsigned long vaddr;

93

94 if (page < highmem_start_page)

95 return page_address(page);

96

97 idx = type + KM_TYPE_NR*smp_processor_id();

98 vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);

99 #if HIGHMEM_DEBUG

100 if (!pte_none(*(kmap_pte-idx)))

101 out_of_line_bug();

102 #endif

103 set_pte(kmap_pte-idx, mk_pte(page, kmap_prot));

104 __flush_tlb_one(vaddr);

105

106 return (void*) vaddr;

107 }

I.2 Mapping High Memory Pages Atomically (kmap_atomic()) 509

89 The parameters are the page to map and the type of usage required. One slot
per usage per processor is maintained

94-95 If the page is in low memory, return a direct mapping

97 type gives which slot to use. KM_TYPE_NR * smp_processor_id() gives the
set of slots reserved for this processor

98 Get the virtual address

100-101 Debugging code. In reality a PTE will always exist

103 Set the PTE into the reserved slot

104 Flush the TLB for this slot

106 Return the virtual address

I.3 Unmapping Pages 510

I.3 Unmapping Pages

Contents

I.3 Unmapping Pages 510
I.3.1 Function: kunmap() 510
I.3.2 Function: kunmap_high() 510

I.3.1 Function: kunmap() (include/asm-i386/highmem.h)

74 static inline void kunmap(struct page *page)

75 {

76 if (in_interrupt())

77 out_of_line_bug();

78 if (page < highmem_start_page)

79 return;

80 kunmap_high(page);

81 }

76-77 kunmap() cannot be called from interrupt so exit gracefully

78-79 If the page already is in low memory, there is no need to unmap

80 Call the architecture independent function kunmap_high()

I.3.2 Function: kunmap_high() (mm/highmem.c)
This is the architecture independent part of the kunmap() operation.

157 void kunmap_high(struct page *page)

158 {

159 unsigned long vaddr;

160 unsigned long nr;

161 int need_wakeup;

162

163 spin_lock(&kmap_lock);

164 vaddr = (unsigned long) page->virtual;

165 if (!vaddr)

166 BUG();

167 nr = PKMAP_NR(vaddr);

168

173 need_wakeup = 0;

174 switch (--pkmap_count[nr]) {

175 case 0:

176 BUG();

177 case 1:

188 need_wakeup = waitqueue_active(&pkmap_map_wait);

189 }

I.3 Unmapping Pages (kunmap_high()) 511

190 spin_unlock(&kmap_lock);

191

192 /* do wake-up, if needed, race-free outside of the spin lock */

193 if (need_wakeup)

194 wake_up(&pkmap_map_wait);

195 }

163 Acquire kmap_lock protecting the virtual �eld and the pkmap_count array

164 Get the virtual page

165-166 If the virtual �eld is not set, it is a double unmapping or unmapping of
a non-mapped page so BUG()

167 Get the index within the pkmap_count array

173 By default, a wakeup call to processes calling kmap() is not needed

174 Check the value of the index after decrement

175-176 Falling to 0 is a bug as the TLB needs to be �ushed to make 0 a valid
entry

177-188 If it has dropped to 1 (the entry is now free but needs a TLB �ush), check
to see if there is anyone sleeping on the pkmap_map_wait queue. If necessary,
the queue will be woken up after the spinlock is freed

190 Free kmap_lock

193-194 If there are waiters on the queue and a slot has been freed, wake them up

I.4 Unmapping High Memory Pages Atomically 512

I.4 Unmapping High Memory Pages Atomically

Contents

I.4 Unmapping High Memory Pages Atomically 512
I.4.1 Function: kunmap_atomic() 512

I.4.1 Function: kunmap_atomic() (include/asm-i386/highmem.h)
This entire function is debug code. The reason is that as pages are only mapped

here atomically, they will only be used in a tiny place for a short time before being
unmapped. It is safe to leave the page there as it will not be referenced after
unmapping and another mapping to the same slot will simply replce it.

109 static inline void kunmap_atomic(void *kvaddr, enum km_type type)

110 {

111 #if HIGHMEM_DEBUG

112 unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK;

113 enum fixed_addresses idx = type + KM_TYPE_NR*smp_processor_id();

114

115 if (vaddr < FIXADDR_START) // FIXME

116 return;

117

118 if (vaddr != __fix_to_virt(FIX_KMAP_BEGIN+idx))

119 out_of_line_bug();

120

121 /*

122 * force other mappings to Oops if they'll try to access

123 * this pte without first remap it

124 */

125 pte_clear(kmap_pte-idx);

126 __flush_tlb_one(vaddr);

127 #endif

128 }

112 Get the virtual address and ensure it is aligned to a page boundary

115-116 If the address supplied is not in the �xed area, return

118-119 If the address does not correspond to the reserved slot for this type of
usage and processor, declare it

125-126 Unmap the page now so that if it is referenced again, it will cause an
Oops

I.5 Bounce Bu�ers 513

I.5 Bounce Bu�ers

Contents

I.5 Bounce Bu�ers 513
I.5.1 Creating Bounce Bu�ers 513
I.5.1.1 Function: create_bounce() 513
I.5.1.2 Function: alloc_bounce_bh() 515
I.5.1.3 Function: alloc_bounce_page() 516

I.5.2 Copying via Bounce Bu�ers 517
I.5.2.1 Function: bounce_end_io_write() 517
I.5.2.2 Function: bounce_end_io_read() 518
I.5.2.3 Function: copy_from_high_bh() 518
I.5.2.4 Function: copy_to_high_bh_irq() 519
I.5.2.5 Function: bounce_end_io() 519

I.5.1 Creating Bounce Bu�ers

I.5.1.1 Function: create_bounce() (mm/highmem.c)
The call graph for this function is shown in Figure 9.3. High level function for

the creation of bounce bu�ers. It is broken into two major parts, the allocation of
the necessary resources, and the copying of data from the template.

405 struct buffer_head * create_bounce(int rw,

struct buffer_head * bh_orig)

406 {

407 struct page *page;

408 struct buffer_head *bh;

409

410 if (!PageHighMem(bh_orig->b_page))

411 return bh_orig;

412

413 bh = alloc_bounce_bh();

420 page = alloc_bounce_page();

421

422 set_bh_page(bh, page, 0);

423

405 The parameters of the function are

rw is set to 1 if this is a write bu�er

bh_orig is the template bu�er head to copy from

410-411 If the template bu�er head is already in low memory, simply return it

413 Allocate a bu�er head from the slab allocator or from the emergency pool if
it fails

I.5.1 Creating Bounce Bu�ers (create_bounce()) 514

420 Allocate a page from the buddy allocator or the emergency pool if it fails

422 Associate the allocated page with the allocated buffer_head

424 bh->b_next = NULL;

425 bh->b_blocknr = bh_orig->b_blocknr;

426 bh->b_size = bh_orig->b_size;

427 bh->b_list = -1;

428 bh->b_dev = bh_orig->b_dev;

429 bh->b_count = bh_orig->b_count;

430 bh->b_rdev = bh_orig->b_rdev;

431 bh->b_state = bh_orig->b_state;

432 #ifdef HIGHMEM_DEBUG

433 bh->b_flushtime = jiffies;

434 bh->b_next_free = NULL;

435 bh->b_prev_free = NULL;

436 /* bh->b_this_page */

437 bh->b_reqnext = NULL;

438 bh->b_pprev = NULL;

439 #endif

440 /* bh->b_page */

441 if (rw == WRITE) {

442 bh->b_end_io = bounce_end_io_write;

443 copy_from_high_bh(bh, bh_orig);

444 } else

445 bh->b_end_io = bounce_end_io_read;

446 bh->b_private = (void *)bh_orig;

447 bh->b_rsector = bh_orig->b_rsector;

448 #ifdef HIGHMEM_DEBUG

449 memset(&bh->b_wait, -1, sizeof(bh->b_wait));

450 #endif

451

452 return bh;

453 }

Populate the newly created buffer_head

431 Copy in information essentially verbatim except for the b_list �eld as this
bu�er is not directly connected to the others on the list

433-438 Debugging only information

441-444 If this is a bu�er that is to be written to then the callback function to end
the IO is bounce_end_io_write()(See Section I.5.2.1) which is called when
the device has received all the information. As the data exists in high memory,
it is copied �down� with copy_from_high_bh() (See Section I.5.2.3)

I.5.1 Creating Bounce Bu�ers (create_bounce()) 515

437-438 If we are waiting for a device to write data into the bu�er, then the
callback function bounce_end_io_read()(See Section I.5.2.2) is used

446-447 Copy the remaining information from the template buffer_head

452 Return the new bounce bu�er

I.5.1.2 Function: alloc_bounce_bh() (mm/highmem.c)
This function �rst tries to allocate a buffer_head from the slab allocator and if

that fails, an emergency pool will be used.

369 struct buffer_head *alloc_bounce_bh (void)

370 {

371 struct list_head *tmp;

372 struct buffer_head *bh;

373

374 bh = kmem_cache_alloc(bh_cachep, SLAB_NOHIGHIO);

375 if (bh)

376 return bh;

380

381 wakeup_bdflush();

374 Try to allocate a new buffer_head from the slab allocator. Note how the
request is made to not use IO operations that involve high IO to avoid recursion

375-376 If the allocation was successful, return

381 If it was not, wake up bd�ush to launder pages

383 repeat_alloc:

387 tmp = &emergency_bhs;

388 spin_lock_irq(&emergency_lock);

389 if (!list_empty(tmp)) {

390 bh = list_entry(tmp->next, struct buffer_head,

b_inode_buffers);

391 list_del(tmp->next);

392 nr_emergency_bhs--;

393 }

394 spin_unlock_irq(&emergency_lock);

395 if (bh)

396 return bh;

397

398 /* we need to wait I/O completion */

399 run_task_queue(&tq_disk);

400

401 yield();

402 goto repeat_alloc;

403 }

I.5.1 Creating Bounce Bu�ers (alloc_bounce_bh()) 516

The allocation from the slab failed so allocate from the emergency pool.

387 Get the end of the emergency bu�er head list

388 Acquire the lock protecting the pools

389-393 If the pool is not empty, take a buffer_head from the list and decrement
the nr_emergency_bhs counter

394 Release the lock

395-396 If the allocation was successful, return it

399 If not, we are seriously short of memory and the only way the pool will replenish
is if high memory IO completes. Therefore, requests on tq_disk are started
so the data will be written to disk, probably freeing up pages in the process

401 Yield the processor

402 Attempt to allocate from the emergency pools again

I.5.1.3 Function: alloc_bounce_page() (mm/highmem.c)
This function is essentially identical to alloc_bounce_bh(). It �rst tries to

allocate a page from the buddy allocator and if that fails, an emergency pool will
be used.

333 struct page *alloc_bounce_page (void)

334 {

335 struct list_head *tmp;

336 struct page *page;

337

338 page = alloc_page(GFP_NOHIGHIO);

339 if (page)

340 return page;

344

345 wakeup_bdflush();

338-340 Allocate from the buddy allocator and return the page if successful

345 Wake bd�ush to launder pages

347 repeat_alloc:

351 tmp = &emergency_pages;

352 spin_lock_irq(&emergency_lock);

353 if (!list_empty(tmp)) {

354 page = list_entry(tmp->next, struct page, list);

355 list_del(tmp->next);

356 nr_emergency_pages--;

I.5.2 Copying via Bounce Bu�ers 517

357 }

358 spin_unlock_irq(&emergency_lock);

359 if (page)

360 return page;

361

362 /* we need to wait I/O completion */

363 run_task_queue(&tq_disk);

364

365 yield();

366 goto repeat_alloc;

367 }

351 Get the end of the emergency bu�er head list

352 Acquire the lock protecting the pools

353-357 If the pool is not empty, take a page from the list and decrement the
number of available nr_emergency_pages

358 Release the lock

359-360 If the allocation was successful, return it

363 Run the IO task queue to try and replenish the emergency pool

365 Yield the processor

366 Attempt to allocate from the emergency pools again

I.5.2 Copying via Bounce Bu�ers

I.5.2.1 Function: bounce_end_io_write() (mm/highmem.c)
This function is called when a bounce bu�er used for writing to a device completes

IO. As the bu�er is copied from high memory and to the device, there is nothing
left to do except reclaim the resources

319 static void bounce_end_io_write (struct buffer_head *bh,

int uptodate)

320 {

321 bounce_end_io(bh, uptodate);

322 }

I.5.2.2 Function: bounce_end_io_read() 518

I.5.2.2 Function: bounce_end_io_read() (mm/highmem.c)
This is called when data has been read from the device and needs to be copied

to high memory. It is called from interrupt so has to be more careful

324 static void bounce_end_io_read (struct buffer_head *bh,

int uptodate)

325 {

326 struct buffer_head *bh_orig =

(struct buffer_head *)(bh->b_private);

327

328 if (uptodate)

329 copy_to_high_bh_irq(bh_orig, bh);

330 bounce_end_io(bh, uptodate);

331 }

328-329 The data is just copied to the bounce bu�er to needs to be moved to high
memory with copy_to_high_bh_irq() (See Section I.5.2.4)

330 Reclaim the resources

I.5.2.3 Function: copy_from_high_bh() (mm/highmem.c)
This function copies data from a high memory buffer_head to a bounce bu�er.

215 static inline void copy_from_high_bh (struct buffer_head *to,

216 struct buffer_head *from)

217 {

218 struct page *p_from;

219 char *vfrom;

220

221 p_from = from->b_page;

222

223 vfrom = kmap_atomic(p_from, KM_USER0);

224 memcpy(to->b_data, vfrom + bh_offset(from), to->b_size);

225 kunmap_atomic(vfrom, KM_USER0);

226 }

223 Map the high memory page into low memory. This path is protected by
the IRQ safe lock io_request_lock so it is safe to call kmap_atomic()

(See Section I.2.1)

224 Copy the data

225 Unmap the page

I.5.2.4 Function: copy_to_high_bh_irq() 519

I.5.2.4 Function: copy_to_high_bh_irq() (mm/highmem.c)
Called from interrupt after the device has �nished writing data to the bounce

bu�er. This function copies data to high memory

228 static inline void copy_to_high_bh_irq (struct buffer_head *to,

229 struct buffer_head *from)

230 {

231 struct page *p_to;

232 char *vto;

233 unsigned long flags;

234

235 p_to = to->b_page;

236 __save_flags(flags);

237 __cli();

238 vto = kmap_atomic(p_to, KM_BOUNCE_READ);

239 memcpy(vto + bh_offset(to), from->b_data, to->b_size);

240 kunmap_atomic(vto, KM_BOUNCE_READ);

241 __restore_flags(flags);

242 }

236-237 Save the �ags and disable interrupts

238 Map the high memory page into low memory

239 Copy the data

240 Unmap the page

241 Restore the interrupt �ags

I.5.2.5 Function: bounce_end_io() (mm/highmem.c)
Reclaims the resources used by the bounce bu�ers. If emergency pools are de-

pleted, the resources are added to it.

244 static inline void bounce_end_io (struct buffer_head *bh,

int uptodate)

245 {

246 struct page *page;

247 struct buffer_head *bh_orig =

(struct buffer_head *)(bh->b_private);

248 unsigned long flags;

249

250 bh_orig->b_end_io(bh_orig, uptodate);

251

252 page = bh->b_page;

253

I.5.2 Copying via Bounce Bu�ers (bounce_end_io()) 520

254 spin_lock_irqsave(&emergency_lock, flags);

255 if (nr_emergency_pages >= POOL_SIZE)

256 __free_page(page);

257 else {

258 /*

259 * We are abusing page->list to manage

260 * the highmem emergency pool:

261 */

262 list_add(&page->list, &emergency_pages);

263 nr_emergency_pages++;

264 }

265

266 if (nr_emergency_bhs >= POOL_SIZE) {

267 #ifdef HIGHMEM_DEBUG

268 /* Don't clobber the constructed slab cache */

269 init_waitqueue_head(&bh->b_wait);

270 #endif

271 kmem_cache_free(bh_cachep, bh);

272 } else {

273 /*

274 * Ditto in the bh case, here we abuse b_inode_buffers:

275 */

276 list_add(&bh->b_inode_buffers, &emergency_bhs);

277 nr_emergency_bhs++;

278 }

279 spin_unlock_irqrestore(&emergency_lock, flags);

280 }

250 Call the IO completion callback for the original buffer_head

252 Get the pointer to the bu�er page to free

254 Acquire the lock to the emergency pool

255-256 If the page pool is full, just return the page to the buddy allocator

257-264 Otherwise add this page to the emergency pool

266-272 If the buffer_head pool is full, just return it to the slab allocator

272-278 Otherwise add this buffer_head to the pool

279 Release the lock

I.6 Emergency Pools 521

I.6 Emergency Pools

Contents

I.6 Emergency Pools 521
I.6.1 Function: init_emergency_pool() 521

There is only one function of relevance to the emergency pools and that is the init
function. It is called during system startup and then the code is deleted as it is
never needed again

I.6.1 Function: init_emergency_pool() (mm/highmem.c)
Create a pool for emergency pages and for emergency buffer_heads

282 static __init int init_emergency_pool(void)

283 {

284 struct sysinfo i;

285 si_meminfo(&i);

286 si_swapinfo(&i);

287

288 if (!i.totalhigh)

289 return 0;

290

291 spin_lock_irq(&emergency_lock);

292 while (nr_emergency_pages < POOL_SIZE) {

293 struct page * page = alloc_page(GFP_ATOMIC);

294 if (!page) {

295 printk("couldn't refill highmem emergency pages");

296 break;

297 }

298 list_add(&page->list, &emergency_pages);

299 nr_emergency_pages++;

300 }

288-289 If there is no high memory available, do not bother

291 Acquire the lock protecting the pools

292-300 Allocate POOL_SIZE pages from the buddy allocator and add them
to a linked list. Keep a count of the number of pages in the pool with
nr_emergency_pages

301 while (nr_emergency_bhs < POOL_SIZE) {

302 struct buffer_head * bh =

kmem_cache_alloc(bh_cachep, SLAB_ATOMIC);

303 if (!bh) {

304 printk("couldn't refill highmem emergency bhs");

305 break;

I.6 Emergency Pools (init_emergency_pool()) 522

306 }

307 list_add(&bh->b_inode_buffers, &emergency_bhs);

308 nr_emergency_bhs++;

309 }

310 spin_unlock_irq(&emergency_lock);

311 printk("allocated %d pages and %d bhs reserved for the

highmem bounces\n",

312 nr_emergency_pages, nr_emergency_bhs);

313

314 return 0;

315 }

301-309 Allocate POOL_SIZE buffer_heads from the slab allocator and add them
to a linked list linked by b_inode_buffers. Keep track of how many heads
are in the pool with nr_emergency_bhs

310 Release the lock protecting the pools

314 Return success

Appendix J

Page Frame Reclamation

Contents
J.1 Page Cache Operations . 525

J.1.1 Adding Pages to the Page Cache 525

J.1.1.1 Function: add_to_page_cache() 525

J.1.1.2 Function: add_to_page_cache_unique() 526

J.1.1.3 Function: __add_to_page_cache() 527

J.1.1.4 Function: add_page_to_inode_queue() 528

J.1.1.5 Function: add_page_to_hash_queue() 528

J.1.2 Deleting Pages from the Page Cache 529

J.1.2.1 Function: remove_inode_page() 529

J.1.2.2 Function: __remove_inode_page() 529

J.1.2.3 Function: remove_page_from_inode_queue() 530

J.1.2.4 Function: remove_page_from_hash_queue() 530

J.1.3 Acquiring/Releasing Page Cache Pages 531

J.1.3.1 Function: page_cache_get() 531

J.1.3.2 Function: page_cache_release() 531

J.1.4 Searching the Page Cache . 531

J.1.4.1 Function: find_get_page() 531

J.1.4.2 Function: __find_get_page() 531

J.1.4.3 Function: __find_page_nolock() 532

J.1.4.4 Function: find_lock_page() 533

J.1.4.5 Function: __find_lock_page() 533

J.1.4.6 Function: __find_lock_page_helper() 533

J.2 LRU List Operations . 535

J.2.1 Adding Pages to the LRU Lists 535

523

APPENDIX J. PAGE FRAME RECLAMATION 524

J.2.1.1 Function: lru_cache_add() 535

J.2.1.2 Function: add_page_to_active_list() 535

J.2.1.3 Function: add_page_to_inactive_list() 536

J.2.2 Deleting Pages from the LRU Lists 536

J.2.2.1 Function: lru_cache_del() 536

J.2.2.2 Function: __lru_cache_del() 537

J.2.2.3 Function: del_page_from_active_list() 537

J.2.2.4 Function: del_page_from_inactive_list() 537

J.2.3 Activating Pages . 538

J.2.3.1 Function: mark_page_accessed() 538

J.2.3.2 Function: activate_lock() 538

J.2.3.3 Function: activate_page_nolock() 538

J.3 Re�lling inactive_list . 540

J.3.1 Function: refill_inactive() 540

J.4 Reclaiming Pages from the LRU Lists 542

J.4.1 Function: shrink_cache() . 542

J.5 Shrinking all caches . 550

J.5.1 Function: shrink_caches() . 550

J.5.2 Function: try_to_free_pages() 551

J.5.3 Function: try_to_free_pages_zone() 552

J.6 Swapping Out Process Pages . 554

J.6.1 Function: swap_out() . 554

J.6.2 Function: swap_out_mm() . 556

J.6.3 Function: swap_out_vma() . 557

J.6.4 Function: swap_out_pgd() . 558

J.6.5 Function: swap_out_pmd() . 559

J.6.6 Function: try_to_swap_out() 561

J.7 Page Swap Daemon . 565

J.7.1 Initialising kswapd . 565

J.7.1.1 Function: kswapd_init() 565

J.7.2 kswapd Daemon . 565

J.7.2.1 Function: kswapd() . 565

J.7.2.2 Function: kswapd_can_sleep() 567

J.7.2.3 Function: kswapd_can_sleep_pgdat() 567

J.7.2.4 Function: kswapd_balance() 568

J.7.2.5 Function: kswapd_balance_pgdat() 568

J.1 Page Cache Operations 525

J.1 Page Cache Operations

Contents

J.1 Page Cache Operations 525
J.1.1 Adding Pages to the Page Cache 525
J.1.1.1 Function: add_to_page_cache() 525
J.1.1.2 Function: add_to_page_cache_unique() 526
J.1.1.3 Function: __add_to_page_cache() 527
J.1.1.4 Function: add_page_to_inode_queue() 528
J.1.1.5 Function: add_page_to_hash_queue() 528

J.1.2 Deleting Pages from the Page Cache 529
J.1.2.1 Function: remove_inode_page() 529
J.1.2.2 Function: __remove_inode_page() 529
J.1.2.3 Function: remove_page_from_inode_queue() 530
J.1.2.4 Function: remove_page_from_hash_queue() 530

J.1.3 Acquiring/Releasing Page Cache Pages 531
J.1.3.1 Function: page_cache_get() 531
J.1.3.2 Function: page_cache_release() 531

J.1.4 Searching the Page Cache 531
J.1.4.1 Function: find_get_page() 531
J.1.4.2 Function: __find_get_page() 531
J.1.4.3 Function: __find_page_nolock() 532
J.1.4.4 Function: find_lock_page() 533
J.1.4.5 Function: __find_lock_page() 533
J.1.4.6 Function: __find_lock_page_helper() 533

This section addresses how pages are added and removed from the page cache
and LRU lists, both of which are heavily intertwined.

J.1.1 Adding Pages to the Page Cache

J.1.1.1 Function: add_to_page_cache() (mm/�lemap.c)
Acquire the lock protecting the page cache before calling __add_to_page_cache()

which will add the page to the page hash table and inode queue which allows the
pages belonging to �les to be found quickly.

667 void add_to_page_cache(struct page * page,

struct address_space * mapping,

unsigned long offset)

668 {

669 spin_lock(&pagecache_lock);

670 __add_to_page_cache(page, mapping,

offset, page_hash(mapping, offset));

671 spin_unlock(&pagecache_lock);

672 lru_cache_add(page);

673 }

J.1.1 Adding Pages to the Page Cache (add_to_page_cache()) 526

669 Acquire the lock protecting the page hash and inode queues

670 Call the function which performs the �real� work

671 Release the lock protecting the hash and inode queue

672 Add the page to the page cache. page_hash() hashes into the page hash
table based on the mapping and the offset within the �le. If a page is
returned, there was a collision and the colliding pages are chained with the
page→next_hash and page→pprev_hash �elds

J.1.1.2 Function: add_to_page_cache_unique() (mm/�lemap.c)
In many respects, this function is very similar to add_to_page_cache(). The

principal di�erence is that this function will check the page cache with the
pagecache_lock spinlock held before adding the page to the cache. It is for
callers may race with another process for inserting a page in the cache such as
add_to_swap_cache()(See Section K.2.1.1).

675 int add_to_page_cache_unique(struct page * page,

676 struct address_space *mapping, unsigned long offset,

677 struct page **hash)

678 {

679 int err;

680 struct page *alias;

681

682 spin_lock(&pagecache_lock);

683 alias = __find_page_nolock(mapping, offset, *hash);

684

685 err = 1;

686 if (!alias) {

687 __add_to_page_cache(page,mapping,offset,hash);

688 err = 0;

689 }

690

691 spin_unlock(&pagecache_lock);

692 if (!err)

693 lru_cache_add(page);

694 return err;

695 }

682 Acquire the pagecache_lock for examining the cache

683 Check if the page already exists in the cache with __find_page_nolock()

(See Section J.1.4.3)

686-689 If the page does not exist in the cache, add it with __add_to_page_cache()
(See Section J.1.1.3)

J.1.1 Adding Pages to the Page Cache (add_to_page_cache_unique()) 527

691 Release the pagecache_lock

692-693 If the page did not already exist in the page cache, add it to the LRU
lists with lru_cache_add()(See Section J.2.1.1)

694 Return 0 if this call entered the page into the page cache and 1 if it already
existed

J.1.1.3 Function: __add_to_page_cache() (mm/�lemap.c)
Clear all page �ags, lock it, take a reference and add it to the inode and hash

queues.

653 static inline void __add_to_page_cache(struct page * page,

654 struct address_space *mapping, unsigned long offset,

655 struct page **hash)

656 {

657 unsigned long flags;

658

659 flags = page->flags & ~(1 << PG_uptodate |

1 << PG_error | 1 << PG_dirty |

1 << PG_referenced | 1 << PG_arch_1 |

1 << PG_checked);

660 page->flags = flags | (1 << PG_locked);

661 page_cache_get(page);

662 page->index = offset;

663 add_page_to_inode_queue(mapping, page);

664 add_page_to_hash_queue(page, hash);

665 }

659 Clear all page �ags

660 Lock the page

661 Take a reference to the page in case it gets freed prematurely

662 Update the index so it is known what �le o�set this page represents

663Add the page to the inode queue with add_page_to_inode_queue() (See Section J.1.1.4).
This links the page via the page→list to the clean_pages list in the
address_space and points the page→mapping to the same address_space

664Add it to the page hash with add_page_to_hash_queue() (See Section J.1.1.5).
The hash page was returned by page_hash() in the parent function. The page
hash allows page cache pages without having to lineraly search the inode queue

J.1.1.4 Function: add_page_to_inode_queue() 528

J.1.1.4 Function: add_page_to_inode_queue() (mm/�lemap.c)

85 static inline void add_page_to_inode_queue(

struct address_space *mapping, struct page * page)

86 {

87 struct list_head *head = &mapping->clean_pages;

88

89 mapping->nrpages++;

90 list_add(&page->list, head);

91 page->mapping = mapping;

92 }

87 When this function is called, the page is clean, so mapping→clean_pages is
the list of interest

89 Increment the number of pages that belong to this mapping

90 Add the page to the clean list

91 Set the page→mapping �eld

J.1.1.5 Function: add_page_to_hash_queue() (mm/�lemap.c)
This adds page to the top of hash bucket headed by p. Bear in mind that p is

an element of the array page_hash_table.

71 static void add_page_to_hash_queue(struct page * page,

struct page **p)

72 {

73 struct page *next = *p;

74

75 *p = page;

76 page->next_hash = next;

77 page->pprev_hash = p;

78 if (next)

79 next->pprev_hash = &page->next_hash;

80 if (page->buffers)

81 PAGE_BUG(page);

82 atomic_inc(&page_cache_size);

83 }

73 Record the current head of the hash bucket in next

75 Update the head of the hash bucket to be page

76 Point page→next_hash to the old head of the hash bucket

77 Point page→pprev_hash to point to the array element in page_hash_table

J.1.2 Deleting Pages from the Page Cache 529

78-79 This will point the pprev_hash �eld to the head of the hash bucket com-
pleting the insertion of the page into the linked list

80-81 Check that the page entered has no associated bu�ers

82 Increment page_cache_size which is the size of the page cache

J.1.2 Deleting Pages from the Page Cache

J.1.2.1 Function: remove_inode_page() (mm/�lemap.c)

130 void remove_inode_page(struct page *page)

131 {

132 if (!PageLocked(page))

133 PAGE_BUG(page);

134

135 spin_lock(&pagecache_lock);

136 __remove_inode_page(page);

137 spin_unlock(&pagecache_lock);

138 }

132-133 If the page is not locked, it is a bug

135 Acquire the lock protecting the page cache

136 __remove_inode_page() (See Section J.1.2.2) is the top-level function for
when the pagecache lock is held

137 Release the pagecache lock

J.1.2.2 Function: __remove_inode_page() (mm/�lemap.c)
This is the top-level function for removing a page from the page cache for callers

with the pagecache_lock spinlock held. Callers that do not have this lock acquired
should call remove_inode_page().

124 void __remove_inode_page(struct page *page)

125 {

126 remove_page_from_inode_queue(page);

127 remove_page_from_hash_queue(page);

128

126 remove_page_from_inode_queue() (See Section J.1.2.3) remove the page
from it's address_space at page→mapping

127 remove_page_from_hash_queue() removes the page from the hash table in
page_hash_table

J.1.2.3 Function: remove_page_from_inode_queue() 530

J.1.2.3 Function: remove_page_from_inode_queue() (mm/�lemap.c)

94 static inline void remove_page_from_inode_queue(struct page * page)

95 {

96 struct address_space * mapping = page->mapping;

97

98 if (mapping->a_ops->removepage)

99 mapping->a_ops->removepage(page);

100 list_del(&page->list);

101 page->mapping = NULL;

102 wmb();

103 mapping->nr_pages--;

104 }

96 Get the associated address_space for this page

98-99 Call the �lesystem speci�c removepage() function if one is available

100 Delete the page from whatever list it belongs to in the mapping such as the
clean_pages list in most cases or the dirty_pages in rarer cases

101 Set the page→mapping to NULL as it is no longer backed by any address_space

103 Decrement the number of pages in the mapping

J.1.2.4 Function: remove_page_from_hash_queue() (mm/�lemap.c)

107 static inline void remove_page_from_hash_queue(struct page * page)

108 {

109 struct page *next = page->next_hash;

110 struct page **pprev = page->pprev_hash;

111

112 if (next)

113 next->pprev_hash = pprev;

114 *pprev = next;

115 page->pprev_hash = NULL;

116 atomic_dec(&page_cache_size);

117 }

109 Get the next page after the page being removed

110 Get the pprev page before the page being removed. When the function com-
pletes, pprev will be linked to next

112 If this is not the end of the list, update next→pprev_hash to point to pprev

114 Similarly, point pprev forward to next. page is now unlinked

116 Decrement the size of the page cache

J.1.3 Acquiring/Releasing Page Cache Pages 531

J.1.3 Acquiring/Releasing Page Cache Pages

J.1.3.1 Function: page_cache_get() (include/linux/pagemap.h)

31 #define page_cache_get(x) get_page(x)

31 Simple call get_page() which simply uses atomic_inc() to increment the page
reference count

J.1.3.2 Function: page_cache_release() (include/linux/pagemap.h)

32 #define page_cache_release(x) __free_page(x)

32 Call __free_page() which decrements the page count. If the count reaches 0,
the page will be freed

J.1.4 Searching the Page Cache

J.1.4.1 Function: find_get_page() (include/linux/pagemap.h)
Top level macro for �nding a page in the page cache. It simply looks up the page

hash

75 #define find_get_page(mapping, index) \

76 __find_get_page(mapping, index, page_hash(mapping, index))

76 page_hash() locates an entry in the page_hash_table based on the address_space
and o�set

J.1.4.2 Function: __find_get_page() (mm/�lemap.c)
This function is responsible for �nding a struct page given an entry in page_hash_table

as a starting point.

931 struct page * __find_get_page(struct address_space *mapping,

932 unsigned long offset, struct page **hash)

933 {

934 struct page *page;

935

936 /*

937 * We scan the hash list read-only. Addition to and removal from

938 * the hash-list needs a held write-lock.

939 */

940 spin_lock(&pagecache_lock);

941 page = __find_page_nolock(mapping, offset, *hash);

942 if (page)

943 page_cache_get(page);

944 spin_unlock(&pagecache_lock);

945 return page;

946 }

J.1.4 Searching the Page Cache (__find_get_page()) 532

940 Acquire the read-only page cache lock

941 Call the page cache traversal function which presumes a lock is held

942-943 If the page was found, obtain a reference to it with page_cache_get()

(See Section J.1.3.1) so it is not freed prematurely

944 Release the page cache lock

945 Return the page or NULL if not found

J.1.4.3 Function: __find_page_nolock() (mm/�lemap.c)
This function traverses the hash collision list looking for the page speci�ed by

the address_space and offset.

443 static inline struct page * __find_page_nolock(

struct address_space *mapping,

unsigned long offset,

struct page *page)

444 {

445 goto inside;

446

447 for (;;) {

448 page = page->next_hash;

449 inside:

450 if (!page)

451 goto not_found;

452 if (page->mapping != mapping)

453 continue;

454 if (page->index == offset)

455 break;

456 }

457

458 not_found:

459 return page;

460 }

445 Begin by examining the �rst page in the list

450-451 If the page is NULL, the right one could not be found so return NULL

452 If the address_space does not match, move to the next page on the collision
list

454 If the offset matchs, return it, else move on

448 Move to the next page on the hash list

459 Return the found page or NULL if not

J.1.4.4 Function: find_lock_page() 533

J.1.4.4 Function: find_lock_page() (include/linux/pagemap.h)
This is the top level function for searching the page cache for a page and having

it returned in a locked state.

84 #define find_lock_page(mapping, index) \

85 __find_lock_page(mapping, index, page_hash(mapping, index))

85 Call the core function __find_lock_page() after looking up what hash bucket
this page is using with page_hash()

J.1.4.5 Function: __find_lock_page() (mm/�lemap.c)
This function acquires the pagecache_lock spinlock before calling the core func-

tion __find_lock_page_helper() to locate the page and lock it.

1005 struct page * __find_lock_page (struct address_space *mapping,

1006 unsigned long offset, struct page **hash)

1007 {

1008 struct page *page;

1009

1010 spin_lock(&pagecache_lock);

1011 page = __find_lock_page_helper(mapping, offset, *hash);

1012 spin_unlock(&pagecache_lock);

1013 return page;

1014 }

1010 Acquire the pagecache_lock spinlock

1011 Call __find_lock_page_helper() which will search the page cache and lock
the page if it is found

1012 Release the pagecache_lock spinlock

1013 If the page was found, return it in a locked state, otherwise return NULL

J.1.4.6 Function: __find_lock_page_helper() (mm/�lemap.c)
This function uses __find_page_nolock() to locate a page within the page

cache. If it is found, the page will be locked for returning to the caller.

972 static struct page * __find_lock_page_helper(

struct address_space *mapping,

973 unsigned long offset, struct page *hash)

974 {

975 struct page *page;

976

977 /*

978 * We scan the hash list read-only. Addition to and removal from

J.1.4 Searching the Page Cache (__find_lock_page_helper()) 534

979 * the hash-list needs a held write-lock.

980 */

981 repeat:

982 page = __find_page_nolock(mapping, offset, hash);

983 if (page) {

984 page_cache_get(page);

985 if (TryLockPage(page)) {

986 spin_unlock(&pagecache_lock);

987 lock_page(page);

988 spin_lock(&pagecache_lock);

989

990 /* Has the page been re-allocated while we slept? */

991 if (page->mapping != mapping || page->index != offset) {

992 UnlockPage(page);

993 page_cache_release(page);

994 goto repeat;

995 }

996 }

997 }

998 return page;

999 }

982Use __find_page_nolock()(See Section J.1.4.3) to locate the page in the page
cache

983-984 If the page was found, take a reference to it

985 Try and lock the page with TryLockPage(). This macro is just a wrapper
around test_and_set_bit() which attempts to set the PG_locked bit in the
page→flags

986-988 If the lock failed, release the pagecache_lock spinlock and call lock_page()
(See Section B.2.1.1) to lock the page. It is likely this function will sleep
until the page lock is acquired. When the page is locked, acquire the
pagecache_lock spinlock again

991 If the mapping and index no longer match, it means that this page was re-
claimed while we were asleep. The page is unlocked and the reference dropped
before searching the page cache again

998 Return the page in a locked state, or NULL if it was not in the page cache

J.2 LRU List Operations 535

J.2 LRU List Operations

Contents

J.2 LRU List Operations 535
J.2.1 Adding Pages to the LRU Lists 535
J.2.1.1 Function: lru_cache_add() 535
J.2.1.2 Function: add_page_to_active_list() 535
J.2.1.3 Function: add_page_to_inactive_list() 536

J.2.2 Deleting Pages from the LRU Lists 536
J.2.2.1 Function: lru_cache_del() 536
J.2.2.2 Function: __lru_cache_del() 537
J.2.2.3 Function: del_page_from_active_list() 537
J.2.2.4 Function: del_page_from_inactive_list() 537

J.2.3 Activating Pages 538
J.2.3.1 Function: mark_page_accessed() 538
J.2.3.2 Function: activate_lock() 538
J.2.3.3 Function: activate_page_nolock() 538

J.2.1 Adding Pages to the LRU Lists

J.2.1.1 Function: lru_cache_add() (mm/swap.c)
Adds a page to the LRU inactive_list.

58 void lru_cache_add(struct page * page)

59 {

60 if (!PageLRU(page)) {

61 spin_lock(&pagemap_lru_lock);

62 if (!TestSetPageLRU(page))

63 add_page_to_inactive_list(page);

64 spin_unlock(&pagemap_lru_lock);

65 }

66 }

60 If the page is not already part of the LRU lists, add it

61 Acquire the LRU lock

62-63 Test and set the LRU bit. If it was clear, call add_page_to_inactive_list()

64 Release the LRU lock

J.2.1.2 Function: add_page_to_active_list() (include/linux/swap.h)
Adds the page to the active_list

178 #define add_page_to_active_list(page) \

179 do { \

J.2.1 Adding Pages to the LRU Lists (add_page_to_active_list()) 536

180 DEBUG_LRU_PAGE(page); \

181 SetPageActive(page); \

182 list_add(&(page)->lru, &active_list); \

183 nr_active_pages++; \

184 } while (0)

180 The DEBUG_LRU_PAGE() macro will call BUG() if the page is already on the
LRU list or is marked been active

181 Update the �ags of the page to show it is active

182 Add the page to the active_list

183 Update the count of the number of pages in the active_list

J.2.1.3 Function: add_page_to_inactive_list() (include/linux/swap.h)

Adds the page to the inactive_list

186 #define add_page_to_inactive_list(page) \

187 do { \

188 DEBUG_LRU_PAGE(page); \

189 list_add(&(page)->lru, &inactive_list); \

190 nr_inactive_pages++; \

191 } while (0)

188 The DEBUG_LRU_PAGE() macro will call BUG() if the page is already on the
LRU list or is marked been active

189 Add the page to the inactive_list

190 Update the count of the number of inactive pages on the list

J.2.2 Deleting Pages from the LRU Lists

J.2.2.1 Function: lru_cache_del() (mm/swap.c)
Acquire the lock protecting the LRU lists before calling __lru_cache_del().

90 void lru_cache_del(struct page * page)

91 {

92 spin_lock(&pagemap_lru_lock);

93 __lru_cache_del(page);

94 spin_unlock(&pagemap_lru_lock);

95 }

92 Acquire the LRU lock

93 __lru_cache_del() does the �real� work of removing the page from the LRU
lists

94 Release the LRU lock

J.2.2.2 Function: __lru_cache_del() 537

J.2.2.2 Function: __lru_cache_del() (mm/swap.c)
Select which function is needed to remove the page from the LRU list.

75 void __lru_cache_del(struct page * page)

76 {

77 if (TestClearPageLRU(page)) {

78 if (PageActive(page)) {

79 del_page_from_active_list(page);

80 } else {

81 del_page_from_inactive_list(page);

82 }

83 }

84 }

77 Test and clear the �ag indicating the page is in the LRU

78-82 If the page is on the LRU, select the appropriate removal function

78-79 If the page is active, then call del_page_from_active_list() else delete
from the inactive list with del_page_from_inactive_list()

J.2.2.3 Function: del_page_from_active_list() (include/linux/swap.h)

Remove the page from the active_list

193 #define del_page_from_active_list(page) \

194 do { \

195 list_del(&(page)->lru); \

196 ClearPageActive(page); \

197 nr_active_pages--; \

198 } while (0)

195 Delete the page from the list

196 Clear the �ag indicating it is part of active_list. The �ag indicating it is
part of the LRU list has already been cleared by __lru_cache_del()

197 Update the count of the number of pages in the active_list

J.2.2.4 Function: del_page_from_inactive_list() (include/linux/swap.h)

200 #define del_page_from_inactive_list(page) \

201 do { \

202 list_del(&(page)->lru); \

203 nr_inactive_pages--; \

204 } while (0)

202 Remove the page from the LRU list

203 Update the count of the number of pages in the inactive_list

J.2.3 Activating Pages 538

J.2.3 Activating Pages

J.2.3.1 Function: mark_page_accessed() (mm/�lemap.c)
This marks that a page has been referenced. If the page is already on the

active_list or the referenced �ag is clear, the referenced �ag will be simply set. If
it is in the inactive_list and the referenced �ag has been set, activate_page()
will be called to move the page to the top of the active_list.

1332 void mark_page_accessed(struct page *page)

1333 {

1334 if (!PageActive(page) && PageReferenced(page)) {

1335 activate_page(page);

1336 ClearPageReferenced(page);

1337 } else

1338 SetPageReferenced(page);

1339 }

1334-1337 If the page is on the inactive_list (!PageActive()) and has been
referenced recently (PageReferenced()), activate_page() is called to move
it to the active_list

1338 Otherwise, mark the page as been referenced

J.2.3.2 Function: activate_lock() (mm/swap.c)
Acquire the LRU lock before calling activate_page_nolock() which moves the

page from the inactive_list to the active_list.

47 void activate_page(struct page * page)

48 {

49 spin_lock(&pagemap_lru_lock);

50 activate_page_nolock(page);

51 spin_unlock(&pagemap_lru_lock);

52 }

49 Acquire the LRU lock

50 Call the main work function

51 Release the LRU lock

J.2.3.3 Function: activate_page_nolock() (mm/swap.c)
Move the page from the inactive_list to the active_list

39 static inline void activate_page_nolock(struct page * page)

40 {

41 if (PageLRU(page) && !PageActive(page)) {

42 del_page_from_inactive_list(page);

J.2.3 Activating Pages (activate_page_nolock()) 539

43 add_page_to_active_list(page);

44 }

45 }

41 Make sure the page is on the LRU and not already on the active_list

42-43 Delete the page from the inactive_list and add to the active_list

J.3 Re�lling inactive_list 540

J.3 Re�lling inactive_list

Contents

J.3 Re�lling inactive_list 540
J.3.1 Function: refill_inactive() 540

This section covers how pages are moved from the active lists to the inactive
lists.

J.3.1 Function: refill_inactive() (mm/vmscan.c)
Move nr_pages from the active_list to the inactive_list. The parameter

nr_pages is calculated by shrink_caches() and is a number which tries to keep
the active list two thirds the size of the page cache.

533 static void refill_inactive(int nr_pages)

534 {

535 struct list_head * entry;

536

537 spin_lock(&pagemap_lru_lock);

538 entry = active_list.prev;

539 while (nr_pages && entry != &active_list) {

540 struct page * page;

541

542 page = list_entry(entry, struct page, lru);

543 entry = entry->prev;

544 if (PageTestandClearReferenced(page)) {

545 list_del(&page->lru);

546 list_add(&page->lru, &active_list);

547 continue;

548 }

549

550 nr_pages--;

551

552 del_page_from_active_list(page);

553 add_page_to_inactive_list(page);

554 SetPageReferenced(page);

555 }

556 spin_unlock(&pagemap_lru_lock);

557 }

537 Acquire the lock protecting the LRU list

538 Take the last entry in the active_list

539-555 Move nr_pages or until the active_list is empty

542 Get the struct page for this entry

J.3 Re�lling inactive_list (refill_inactive()) 541

544-548 Test and clear the referenced �ag. If it has been referenced, then it is
moved back to the top of the active_list

550-553 Move one page from the active_list to the inactive_list

554 Mark it referenced so that if it is referenced again soon, it will be promoted
back to the active_list without requiring a second reference

556 Release the lock protecting the LRU list

J.4 Reclaiming Pages from the LRU Lists 542

J.4 Reclaiming Pages from the LRU Lists

Contents

J.4 Reclaiming Pages from the LRU Lists 542
J.4.1 Function: shrink_cache() 542

This section covers how a page is reclaimed once it has been selected for pageout.

J.4.1 Function: shrink_cache() (mm/vmscan.c)

338 static int shrink_cache(int nr_pages, zone_t * classzone,

unsigned int gfp_mask, int priority)

339 {

340 struct list_head * entry;

341 int max_scan = nr_inactive_pages / priority;

342 int max_mapped = min((nr_pages << (10 - priority)),

max_scan / 10);

343

344 spin_lock(&pagemap_lru_lock);

345 while (--max_scan >= 0 &&

(entry = inactive_list.prev) != &inactive_list) {

338 The parameters are as follows;

nr_pages The number of pages to swap out

classzone The zone we are interested in swapping pages out for. Pages not
belonging to this zone are skipped

gfp_mask The gfp mask determining what actions may be taken such as if
�lesystem operations may be performed

priority The priority of the function, starts at DEF_PRIORITY (6) and de-
creases to the highest priority of 1

341 The maximum number of pages to scan is the number of pages in the
active_list divided by the priority. At lowest priority, 1/6th of the list
may scanned. At highest priority, the full list may be scanned

342 The maximum amount of process mapped pages allowed is either one tenth
of the max_scan value or nr_pages ∗ 210−priority. If this number of pages are
found, whole processes will be swapped out

344 Lock the LRU list

345 Keep scanning until max_scan pages have been scanned or the inactive_list
is empty

J.4 Reclaiming Pages from the LRU Lists (shrink_cache()) 543

346 struct page * page;

347

348 if (unlikely(current->need_resched)) {

349 spin_unlock(&pagemap_lru_lock);

350 __set_current_state(TASK_RUNNING);

351 schedule();

352 spin_lock(&pagemap_lru_lock);

353 continue;

354 }

355

348-354 Reschedule if the quanta has been used up

349 Free the LRU lock as we are about to sleep

350 Show we are still running

351 Call schedule() so another process can be context switched in

352 Re-acquire the LRU lock

353 Reiterate through the loop and take an entry inactive_list again. As we
slept, another process could have changed what entries are on the list which
is why another entry has to be taken with the spinlock held

356 page = list_entry(entry, struct page, lru);

357

358 BUG_ON(!PageLRU(page));

359 BUG_ON(PageActive(page));

360

361 list_del(entry);

362 list_add(entry, &inactive_list);

363

364 /*

365 * Zero page counts can happen because we unlink the pages

366 * _after_ decrementing the usage count..

367 */

368 if (unlikely(!page_count(page)))

369 continue;

370

371 if (!memclass(page_zone(page), classzone))

372 continue;

373

374 /* Racy check to avoid trylocking when not worthwhile */

375 if (!page->buffers && (page_count(page) != 1 || !page->mapping))

376 goto page_mapped;

J.4 Reclaiming Pages from the LRU Lists (shrink_cache()) 544

356 Get the struct page for this entry in the LRU

358-359 It is a bug if the page either belongs to the active_list or is currently
marked as active

361-362 Move the page to the top of the inactive_list so that if the page is not
freed, we can just continue knowing that it will be simply examined later

368-369 If the page count has already reached 0, skip over it. In __free_pages(),
the page count is dropped with put_page_testzero() before __free_pages_ok()
is called to free it. This leaves a window where a page with a zero count is
left on the LRU before it is freed. There is a special case to trap this at the
beginning of __free_pages_ok()

371-372 Skip over this page if it belongs to a zone we are not currently interested
in

375-376 If the page is mapped by a process, then goto page_mapped where the
max_mapped is decremented and next page examined. If max_mapped reaches
0, process pages will be swapped out

382 if (unlikely(TryLockPage(page))) {

383 if (PageLaunder(page) && (gfp_mask & __GFP_FS)) {

384 page_cache_get(page);

385 spin_unlock(&pagemap_lru_lock);

386 wait_on_page(page);

387 page_cache_release(page);

388 spin_lock(&pagemap_lru_lock);

389 }

390 continue;

391 }

Page is locked and the launder bit is set. In this case, it is the second time this
page has been found dirty. The �rst time it was scheduled for IO and placed back
on the list. This time we wait until the IO is complete and then try to free the page.

382-383 If we could not lock the page, the PG_launder bit is set and the GFP
�ags allow the caller to perform FS operations, then...

384 Take a reference to the page so it does not disappear while we sleep

385 Free the LRU lock

386 Wait until the IO is complete

387 Release the reference to the page. If it reaches 0, the page will be freed

388 Re-acquire the LRU lock

J.4 Reclaiming Pages from the LRU Lists (shrink_cache()) 545

390 Move to the next page

392

393 if (PageDirty(page) &&

is_page_cache_freeable(page) &&

page->mapping) {

394 /*

395 * It is not critical here to write it only if

396 * the page is unmapped beause any direct writer

397 * like O_DIRECT would set the PG_dirty bitflag

398 * on the phisical page after having successfully

399 * pinned it and after the I/O to the page is finished,

400 * so the direct writes to the page cannot get lost.

401 */

402 int (*writepage)(struct page *);

403

404 writepage = page->mapping->a_ops->writepage;

405 if ((gfp_mask & __GFP_FS) && writepage) {

406 ClearPageDirty(page);

407 SetPageLaunder(page);

408 page_cache_get(page);

409 spin_unlock(&pagemap_lru_lock);

410

411 writepage(page);

412 page_cache_release(page);

413

414 spin_lock(&pagemap_lru_lock);

415 continue;

416 }

417 }

This handles the case where a page is dirty, is not mapped by any process, has
no bu�ers and is backed by a �le or device mapping. The page is cleaned and will
be reclaimed by the previous block of code when the IO is complete.

393 PageDirty() checks the PG_dirty bit, is_page_cache_freeable() will re-
turn true if it is not mapped by any process and has no bu�ers

404 Get a pointer to the necessary writepage() function for this mapping or
device

405-416 This block of code can only be executed if a writepage() function is
available and the GFP �ags allow �le operations

406-407 Clear the dirty bit and mark that the page is being laundered

408 Take a reference to the page so it will not be freed unexpectedly

J.4 Reclaiming Pages from the LRU Lists (shrink_cache()) 546

409 Unlock the LRU list

411 Call the �lesystem-speci�c writepage() function which is taken from the
address_space_operations belonging to page→mapping

412 Release the reference to the page

414-415 Re-acquire the LRU list lock and move to the next page

424 if (page->buffers) {

425 spin_unlock(&pagemap_lru_lock);

426

427 /* avoid to free a locked page */

428 page_cache_get(page);

429

430 if (try_to_release_page(page, gfp_mask)) {

431 if (!page->mapping) {

438 spin_lock(&pagemap_lru_lock);

439 UnlockPage(page);

440 __lru_cache_del(page);

441

442 /* effectively free the page here */

443 page_cache_release(page);

444

445 if (--nr_pages)

446 continue;

447 break;

448 } else {

454 page_cache_release(page);

455

456 spin_lock(&pagemap_lru_lock);

457 }

458 } else {

459 /* failed to drop the buffers so stop here */

460 UnlockPage(page);

461 page_cache_release(page);

462

463 spin_lock(&pagemap_lru_lock);

464 continue;

465 }

466 }

Page has bu�ers associated with it that must be freed.

425 Release the LRU lock as we may sleep

428 Take a reference to the page

J.4 Reclaiming Pages from the LRU Lists (shrink_cache()) 547

430 Call try_to_release_page() which will attempt to release the bu�ers asso-
ciated with the page. Returns 1 if it succeeds

431-447 This is a case where an anonymous page that was in the swap cache
has now had it's bu�ers cleared and removed. As it was on the swap cache,
it was placed on the LRU by add_to_swap_cache() so remove it now frmo
the LRU and drop the reference to the page. In swap_writepage(), it calls
remove_exclusive_swap_page() which will delete the page from the swap
cache when there are no more processes mapping the page. This block will
free the page after the bu�ers have been written out if it was backed by a swap
�le

438-440 Take the LRU list lock, unlock the page, delete it from the page cache
and free it

445-446 Update nr_pages to show a page has been freed and move to the next
page

447 If nr_pages drops to 0, then exit the loop as the work is completed

449-456 If the page does have an associated mapping then simply drop the refer-
ence to the page and re-acquire the LRU lock. More work will be performed
later to remove the page from the page cache at line 499

459-464 If the bu�ers could not be freed, then unlock the page, drop the reference
to it, re-acquire the LRU lock and move to the next page

468 spin_lock(&pagecache_lock);

469

470 /*

471 * this is the non-racy check for busy page.

472 */

473 if (!page->mapping || !is_page_cache_freeable(page)) {

474 spin_unlock(&pagecache_lock);

475 UnlockPage(page);

476 page_mapped:

477 if (--max_mapped >= 0)

478 continue;

479

484 spin_unlock(&pagemap_lru_lock);

485 swap_out(priority, gfp_mask, classzone);

486 return nr_pages;

487 }

468 From this point on, pages in the swap cache are likely to be examined which
is protected by the pagecache_lock which must be now held

473-487 An anonymous page with no bu�ers is mapped by a process

J.4 Reclaiming Pages from the LRU Lists (shrink_cache()) 548

474-475 Release the page cache lock and the page

477-478 Decrement max_mapped. If it has not reached 0, move to the next page

484-485 Too many mapped pages have been found in the page cache. The LRU
lock is released and swap_out() is called to begin swapping out whole processes

493 if (PageDirty(page)) {

494 spin_unlock(&pagecache_lock);

495 UnlockPage(page);

496 continue;

497 }

493-497 The page has no references but could have been dirtied by the last process
to free it if the dirty bit was set in the PTE. It is left in the page cache and
will get laundered later. Once it has been cleaned, it can be safely deleted

498

499 /* point of no return */

500 if (likely(!PageSwapCache(page))) {

501 __remove_inode_page(page);

502 spin_unlock(&pagecache_lock);

503 } else {

504 swp_entry_t swap;

505 swap.val = page->index;

506 __delete_from_swap_cache(page);

507 spin_unlock(&pagecache_lock);

508 swap_free(swap);

509 }

510

511 __lru_cache_del(page);

512 UnlockPage(page);

513

514 /* effectively free the page here */

515 page_cache_release(page);

516

517 if (--nr_pages)

518 continue;

519 break;

520 }

500-503 If the page does not belong to the swap cache, it is part of the inode
queue so it is removed

504-508 Remove it from the swap cache as there is no more references to it

511 Delete it from the page cache

J.4 Reclaiming Pages from the LRU Lists (shrink_cache()) 549

512 Unlock the page

515 Free the page

517-518 Decrement nr_page and move to the next page if it is not 0

519 If it reaches 0, the work of the function is complete

521 spin_unlock(&pagemap_lru_lock);

522

523 return nr_pages;

524 }

521-524 Function exit. Free the LRU lock and return the number of pages left to
free

J.5 Shrinking all caches 550

J.5 Shrinking all caches

Contents

J.5 Shrinking all caches 550
J.5.1 Function: shrink_caches() 550
J.5.2 Function: try_to_free_pages() 551
J.5.3 Function: try_to_free_pages_zone() 552

J.5.1 Function: shrink_caches() (mm/vmscan.c)
The call graph for this function is shown in Figure 10.4.

560 static int shrink_caches(zone_t * classzone, int priority,

unsigned int gfp_mask, int nr_pages)

561 {

562 int chunk_size = nr_pages;

563 unsigned long ratio;

564

565 nr_pages -= kmem_cache_reap(gfp_mask);

566 if (nr_pages <= 0)

567 return 0;

568

569 nr_pages = chunk_size;

570 /* try to keep the active list 2/3 of the size of the cache */

571 ratio = (unsigned long) nr_pages *

nr_active_pages / ((nr_inactive_pages + 1) * 2);

572 refill_inactive(ratio);

573

574 nr_pages = shrink_cache(nr_pages, classzone, gfp_mask, priority);

575 if (nr_pages <= 0)

576 return 0;

577

578 shrink_dcache_memory(priority, gfp_mask);

579 shrink_icache_memory(priority, gfp_mask);

580 #ifdef CONFIG_QUOTA

581 shrink_dqcache_memory(DEF_PRIORITY, gfp_mask);

582 #endif

583

584 return nr_pages;

585 }

560 The parameters are as follows;

classzone is the zone that pages should be freed from

priority determines how much work will be done to free pages

gfp_mask determines what sort of actions may be taken

J.5 Shrinking all caches (shrink_caches()) 551

nr_pages is the number of pages remaining to be freed

565-567 Ask the slab allocator to free up some pages with kmem_cache_reap()

(See Section H.1.5.1). If enough are freed, the function returns otherwise
nr_pages will be freed from other caches

571-572 Move pages from the active_list to the inactive_list by calling
refill_inactive() (See Section J.3.1). The number of pages moved depends
on how many pages need to be freed and to have active_list about two thirds
the size of the page cache

574-575 Shrink the page cache, if enough pages are freed, return

578-582 Shrink the dcache, icache and dqcache. These are small objects in them-
selves but the cascading e�ect frees up a lot of disk bu�ers

584 Return the number of pages remaining to be freed

J.5.2 Function: try_to_free_pages() (mm/vmscan.c)
This function cycles through all pgdats and tries to balance the preferred alloca-

tion zone (usually ZONE_NORMAL) for each of them. This function is only called from
one place, buffer.c:free_more_memory() when the bu�er manager fails to create
new bu�ers or grow existing ones. It calls try_to_free_pages() with GFP_NOIO as
the gfp_mask.

This results in the �rst zone in pg_data_t→node_zonelists having pages freed
so that bu�ers can grow. This array is the preferred order of zones to allocate from
and usually will begin with ZONE_NORMAL which is required by the bu�er manager.
On NUMA architectures, some nodes may have ZONE_DMA as the preferred zone if
the memory bank is dedicated to IO devices and UML also uses only this zone. As
the bu�er manager is restricted in the zones is uses, there is no point balancing other
zones.

607 int try_to_free_pages(unsigned int gfp_mask)

608 {

609 pg_data_t *pgdat;

610 zonelist_t *zonelist;

611 unsigned long pf_free_pages;

612 int error = 0;

613

614 pf_free_pages = current->flags & PF_FREE_PAGES;

615 current->flags &= ~PF_FREE_PAGES;

616

617 for_each_pgdat(pgdat) {

618 zonelist = pgdat->node_zonelists +

(gfp_mask & GFP_ZONEMASK);

619 error |= try_to_free_pages_zone(

J.5 Shrinking all caches (try_to_free_pages()) 552

zonelist->zones[0], gfp_mask);

620 }

621

622 current->flags |= pf_free_pages;

623 return error;

624 }

614-615 This clears the PF_FREE_PAGES �ag if it is set so that pages freed by the
process will be returned to the global pool rather than reserved for the process
itself

617-620 Cycle through all nodes and call try_to_free_pages() for the preferred
zone in each node

618 This function is only called with GFP_NOIO as a parameter. When ANDed
with GFP_ZONEMASK, it will always result in 0

622-623 Restore the process �ags and return the result

J.5.3 Function: try_to_free_pages_zone() (mm/vmscan.c)
Try to free SWAP_CLUSTER_MAX pages from the requested zone. As will as being

used by kswapd, this function is the entry for the buddy allocator's direct-reclaim
path.

587 int try_to_free_pages_zone(zone_t *classzone,

unsigned int gfp_mask)

588 {

589 int priority = DEF_PRIORITY;

590 int nr_pages = SWAP_CLUSTER_MAX;

591

592 gfp_mask = pf_gfp_mask(gfp_mask);

593 do {

594 nr_pages = shrink_caches(classzone, priority,

gfp_mask, nr_pages);

595 if (nr_pages <= 0)

596 return 1;

597 } while (--priority);

598

599 /*

600 * Hmm.. Cache shrink failed - time to kill something?

601 * Mhwahahhaha! This is the part I really like. Giggle.

602 */

603 out_of_memory();

604 return 0;

605 }

J.5 Shrinking all caches (try_to_free_pages_zone()) 553

589 Start with the lowest priority. Statically de�ned to be 6

590 Try and free SWAP_CLUSTER_MAX pages. Statically de�ned to be 32

592 pf_gfp_mask() checks the PF_NOIO �ag in the current process �ags. If no IO
can be performed, it ensures there is no incompatible �ags in the GFP mask

593-597 Starting with the lowest priority and increasing with each pass, call
shrink_caches() until nr_pages has been freed

595-596 If enough pages were freed, return indicating that the work is complete

603 If enough pages could not be freed even at highest priority (where at worst
the full inactive_list is scanned) then check to see if we are out of memory.
If we are, then a process will be selected to be killed

604 Return indicating that we failed to free enough pages

J.6 Swapping Out Process Pages 554

J.6 Swapping Out Process Pages

Contents

J.6 Swapping Out Process Pages 554
J.6.1 Function: swap_out() 554
J.6.2 Function: swap_out_mm() 556
J.6.3 Function: swap_out_vma() 557
J.6.4 Function: swap_out_pgd() 558
J.6.5 Function: swap_out_pmd() 559
J.6.6 Function: try_to_swap_out() 561

This section covers the path where too many process mapped pages have been
found in the LRU lists. This path will start scanning whole processes and reclaiming
the mapped pages.

J.6.1 Function: swap_out() (mm/vmscan.c)
The call graph for this function is shown in Figure 10.5. This function linearaly

searches through every processes page tables trying to swap out SWAP_CLUSTER_MAX
number of pages. The process it starts with is the swap_mm and the starting address
is mm→swap_address

296 static int swap_out(unsigned int priority, unsigned int gfp_mask,

zone_t * classzone)

297 {

298 int counter, nr_pages = SWAP_CLUSTER_MAX;

299 struct mm_struct *mm;

300

301 counter = mmlist_nr;

302 do {

303 if (unlikely(current->need_resched)) {

304 __set_current_state(TASK_RUNNING);

305 schedule();

306 }

307

308 spin_lock(&mmlist_lock);

309 mm = swap_mm;

310 while (mm->swap_address == TASK_SIZE || mm == &init_mm) {

311 mm->swap_address = 0;

312 mm = list_entry(mm->mmlist.next,

struct mm_struct, mmlist);

313 if (mm == swap_mm)

314 goto empty;

315 swap_mm = mm;

316 }

317

318 /* Make sure the mm doesn't disappear

J.6 Swapping Out Process Pages (swap_out()) 555

when we drop the lock.. */

319 atomic_inc(&mm->mm_users);

320 spin_unlock(&mmlist_lock);

321

322 nr_pages = swap_out_mm(mm, nr_pages, &counter, classzone);

323

324 mmput(mm);

325

326 if (!nr_pages)

327 return 1;

328 } while (--counter >= 0);

329

330 return 0;

331

332 empty:

333 spin_unlock(&mmlist_lock);

334 return 0;

335 }

301 Set the counter so the process list is only scanned once

303-306 Reschedule if the quanta has been used up to prevent CPU hogging

308 Acquire the lock protecting the mm list

309 Start with the swap_mm. It is interesting this is never checked to make sure it
is valid. It is possible, albeit unlikely that the process with the mm has exited
since the last scan and the slab holding the mm_struct has been reclaimed
during a cache shrink making the pointer totally invalid. The lack of bug
reports might be because the slab rarely gets reclaimed and would be di�cult
to trigger in reality

310-316Move to the next process if the swap_address has reached the TASK_SIZE
or if the mm is the init_mm

311 Start at the beginning of the process space

312 Get the mm for this process

313-314 If it is the same, there is no running processes that can be examined

315 Record the swap_mm for the next pass

319 Increase the reference count so that the mm does not get freed while we are
scanning

320 Release the mm lock

322 Begin scanning the mm with swap_out_mm()(See Section J.6.2)

J.6 Swapping Out Process Pages (swap_out()) 556

324 Drop the reference to the mm

326-327 If the required number of pages has been freed, return success

328 If we failed on this pass, increase the priority so more processes will be scanned

330 Return failure

J.6.2 Function: swap_out_mm() (mm/vmscan.c)
Walk through each VMA and call swap_out_mm() for each one.

256 static inline int swap_out_mm(struct mm_struct * mm, int count,

int * mmcounter, zone_t * classzone)

257 {

258 unsigned long address;

259 struct vm_area_struct* vma;

260

265 spin_lock(&mm->page_table_lock);

266 address = mm->swap_address;

267 if (address == TASK_SIZE || swap_mm != mm) {

268 /* We raced: don't count this mm but try again */

269 ++*mmcounter;

270 goto out_unlock;

271 }

272 vma = find_vma(mm, address);

273 if (vma) {

274 if (address < vma->vm_start)

275 address = vma->vm_start;

276

277 for (;;) {

278 count = swap_out_vma(mm, vma, address,

count, classzone);

279 vma = vma->vm_next;

280 if (!vma)

281 break;

282 if (!count)

283 goto out_unlock;

284 address = vma->vm_start;

285 }

286 }

287 /* Indicate that we reached the end of address space */

288 mm->swap_address = TASK_SIZE;

289

290 out_unlock:

291 spin_unlock(&mm->page_table_lock);

292 return count;

293 }

J.6 Swapping Out Process Pages (swap_out_mm()) 557

265 Acquire the page table lock for this mm

266 Start with the address contained in swap_address

267-271 If the address is TASK_SIZE, it means that a thread raced and scanned
this process already. Increase mmcounter so that swap_out_mm() knows to go
to another process

272 Find the VMA for this address

273 Presuming a VMA was found then

274-275 Start at the beginning of the VMA

277-285 Scan through this and each subsequent VMA calling swap_out_vma()

(See Section J.6.3) for each one. If the requisite number of pages (count) is
freed, then �nish scanning and return

288 Once the last VMA has been scanned, set swap_address to TASK_SIZE so
that this process will be skipped over by swap_out_mm() next time

J.6.3 Function: swap_out_vma() (mm/vmscan.c)
Walk through this VMA and for each PGD in it, call swap_out_pgd().

227 static inline int swap_out_vma(struct mm_struct * mm,

struct vm_area_struct * vma,

unsigned long address, int count,

zone_t * classzone)

228 {

229 pgd_t *pgdir;

230 unsigned long end;

231

232 /* Don't swap out areas which are reserved */

233 if (vma->vm_flags & VM_RESERVED)

234 return count;

235

236 pgdir = pgd_offset(mm, address);

237

238 end = vma->vm_end;

239 BUG_ON(address >= end);

240 do {

241 count = swap_out_pgd(mm, vma, pgdir,

address, end, count, classzone);

242 if (!count)

243 break;

244 address = (address + PGDIR_SIZE) & PGDIR_MASK;

245 pgdir++;

J.6 Swapping Out Process Pages (swap_out_vma()) 558

246 } while (address && (address < end));

247 return count;

248 }

233-234 Skip over this VMA if the VM_RESERVED �ag is set. This is used by some
device drivers such as the SCSI generic driver

236 Get the starting PGD for the address

238 Mark where the end is and BUG() it if the starting address is somehow past
the end

240 Cycle through PGDs until the end address is reached

241 Call swap_out_pgd()(See Section J.6.4) keeping count of how many more
pages need to be freed

242-243 If enough pages have been freed, break and return

244-245 Move to the next PGD and move the address to the next PGD aligned
address

247 Return the remaining number of pages to be freed

J.6.4 Function: swap_out_pgd() (mm/vmscan.c)
Step through all PMD's in the supplied PGD and call swap_out_pmd()

197 static inline int swap_out_pgd(struct mm_struct * mm,

struct vm_area_struct * vma, pgd_t *dir,

unsigned long address, unsigned long end,

int count, zone_t * classzone)

198 {

199 pmd_t * pmd;

200 unsigned long pgd_end;

201

202 if (pgd_none(*dir))

203 return count;

204 if (pgd_bad(*dir)) {

205 pgd_ERROR(*dir);

206 pgd_clear(dir);

207 return count;

208 }

209

210 pmd = pmd_offset(dir, address);

211

212 pgd_end = (address + PGDIR_SIZE) & PGDIR_MASK;

213 if (pgd_end && (end > pgd_end))

J.6 Swapping Out Process Pages (swap_out_pgd()) 559

214 end = pgd_end;

215

216 do {

217 count = swap_out_pmd(mm, vma, pmd,

address, end, count, classzone);

218 if (!count)

219 break;

220 address = (address + PMD_SIZE) & PMD_MASK;

221 pmd++;

222 } while (address && (address < end));

223 return count;

224 }

202-203 If there is no PGD, return

204-208 If the PGD is bad, �ag it as such and return

210 Get the starting PMD

212-214 Calculate the end to be the end of this PGD or the end of the VMA been
scanned, whichever is closer

216-222 For each PMD in this PGD, call swap_out_pmd() (See Section J.6.5). If
enough pages get freed, break and return

223 Return the number of pages remaining to be freed

J.6.5 Function: swap_out_pmd() (mm/vmscan.c)
For each PTE in this PMD, call try_to_swap_out(). On completion, mm→swap_address

is updated to show where we �nished to prevent the same page been examined soon
after this scan.

158 static inline int swap_out_pmd(struct mm_struct * mm,

struct vm_area_struct * vma, pmd_t *dir,

unsigned long address, unsigned long end,

int count, zone_t * classzone)

159 {

160 pte_t * pte;

161 unsigned long pmd_end;

162

163 if (pmd_none(*dir))

164 return count;

165 if (pmd_bad(*dir)) {

166 pmd_ERROR(*dir);

167 pmd_clear(dir);

168 return count;

J.6 Swapping Out Process Pages (swap_out_pmd()) 560

169 }

170

171 pte = pte_offset(dir, address);

172

173 pmd_end = (address + PMD_SIZE) & PMD_MASK;

174 if (end > pmd_end)

175 end = pmd_end;

176

177 do {

178 if (pte_present(*pte)) {

179 struct page *page = pte_page(*pte);

180

181 if (VALID_PAGE(page) && !PageReserved(page)) {

182 count -= try_to_swap_out(mm, vma,

address, pte,

page, classzone);

183 if (!count) {

184 address += PAGE_SIZE;

185 break;

186 }

187 }

188 }

189 address += PAGE_SIZE;

190 pte++;

191 } while (address && (address < end));

192 mm->swap_address = address;

193 return count;

194 }

163-164 Return if there is no PMD

165-169 If the PMD is bad, �ag it as such and return

171 Get the starting PTE

173-175 Calculate the end to be the end of the PMD or the end of the VMA,
whichever is closer

177-191 Cycle through each PTE

178 Make sure the PTE is marked present

179 Get the struct page for this PTE

181 If it is a valid page and it is not reserved then ...

182 Call try_to_swap_out()

J.6 Swapping Out Process Pages (swap_out_pmd()) 561

183-186 If enough pages have been swapped out, move the address to the next
page and break to return

189-190 Move to the next page and PTE

192 Update the swap_address to show where we last �nished o�

193 Return the number of pages remaining to be freed

J.6.6 Function: try_to_swap_out() (mm/vmscan.c)
This function tries to swap out a page from a process. It is quite a large function

so will be dealt with in parts. Broadly speaking they are

• Function preamble, ensure this is a page that should be swapped out

• Remove the page and PTE from the page tables

• Handle the case where the page is already in the swap cache

• Handle the case where the page is dirty or has associated bu�ers

• Handle the case where the page is been added to the swap cache

47 static inline int try_to_swap_out(struct mm_struct * mm,

struct vm_area_struct* vma,

unsigned long address,

pte_t * page_table,

struct page *page,

zone_t * classzone)

48 {

49 pte_t pte;

50 swp_entry_t entry;

51

52 /* Don't look at this pte if it's been accessed recently. */

53 if ((vma->vm_flags & VM_LOCKED) ||

ptep_test_and_clear_young(page_table)) {

54 mark_page_accessed(page);

55 return 0;

56 }

57

58 /* Don't bother unmapping pages that are active */

59 if (PageActive(page))

60 return 0;

61

62 /* Don't bother replenishing zones not under pressure.. */

63 if (!memclass(page_zone(page), classzone))

64 return 0;

J.6 Swapping Out Process Pages (try_to_swap_out()) 562

65

66 if (TryLockPage(page))

67 return 0;

53-56 If the page is locked (for tasks like IO) or the PTE shows the page has been
accessed recently then clear the referenced bit and call mark_page_accessed()
(See Section J.2.3.1) to make the struct page re�ect the age. Return 0 to show
it was not swapped out

59-60 If the page is on the active_list, do not swap it out

63-64 If the page belongs to a zone we are not interested in, do not swap it out

66-67 If the page is already locked for IO, skip it

74 flush_cache_page(vma, address);

75 pte = ptep_get_and_clear(page_table);

76 flush_tlb_page(vma, address);

77

78 if (pte_dirty(pte))

79 set_page_dirty(page);

80

74 Call the architecture hook to �ush this page from all CPUs

75 Get the PTE from the page tables and clear it

76 Call the architecture hook to �ush the TLB

78-79 If the PTE was marked dirty, mark the struct page dirty so it will be
laundered correctly

86 if (PageSwapCache(page)) {

87 entry.val = page->index;

88 swap_duplicate(entry);

89 set_swap_pte:

90 set_pte(page_table, swp_entry_to_pte(entry));

91 drop_pte:

92 mm->rss--;

93 UnlockPage(page);

94 {

95 int freeable =

page_count(page) - !!page->buffers <= 2;

96 page_cache_release(page);

97 return freeable;

98 }

99 }

J.6 Swapping Out Process Pages (try_to_swap_out()) 563

Handle the case where the page is already in the swap cache

86 Enter this block only if the page is already in the swap cache. Note that it can
also be entered by calling goto to the set_swap_pte and drop_pte labels

87-88 Fill in the index value for the swap entry. swap_duplicate() veri�es the
swap identi�er is valid and increases the counter in the swap_map if it is

90 Fill the PTE with information needed to get the page from swap

92 Update RSS to show there is one less page being mapped by the process

93 Unlock the page

95 The page is free-able if the count is currently 2 or less and has no bu�ers. If the
count is higher, it is either being mapped by other processes or is a �le-backed
page and the �user� is the page cache

96 Decrement the reference count and free the page if it reaches 0. Note that if this
is a �le-backed page, it will not reach 0 even if there are no processes mapping
it. The page will be later reclaimed from the page cache by shrink_cache()

(See Section J.4.1)

97 Return if the page was freed or not

115 if (page->mapping)

116 goto drop_pte;

117 if (!PageDirty(page))

118 goto drop_pte;

124 if (page->buffers)

125 goto preserve;

115-116 If the page has an associated mapping, simply drop it from the page
tables. When no processes are mapping it, it will be reclaimed from the page
cache by shrink_cache()

117-118 If the page is clean, it is safe to simply drop it

124-125 If it has associated bu�ers due to a truncate followed by a page fault,
then re-attach the page and PTE to the page tables as it cannot be handled
yet

126

127 /*

128 * This is a dirty, swappable page. First of all,

129 * get a suitable swap entry for it, and make sure

130 * we have the swap cache set up to associate the

131 * page with that swap entry.

J.6 Swapping Out Process Pages (try_to_swap_out()) 564

132 */

133 for (;;) {

134 entry = get_swap_page();

135 if (!entry.val)

136 break;

137 /* Add it to the swap cache and mark it dirty

138 * (adding to the page cache will clear the dirty

139 * and uptodate bits, so we need to do it again)

140 */

141 if (add_to_swap_cache(page, entry) == 0) {

142 SetPageUptodate(page);

143 set_page_dirty(page);

144 goto set_swap_pte;

145 }

146 /* Raced with "speculative" read_swap_cache_async */

147 swap_free(entry);

148 }

149

150 /* No swap space left */

151 preserve:

152 set_pte(page_table, pte);

153 UnlockPage(page);

154 return 0;

155 }

134 Allocate a swap entry for this page

135-136 If one could not be allocated, break out where the PTE and page will be
re-attached to the process page tables

141 Add the page to the swap cache

142 Mark the page as up to date in memory

143 Mark the page dirty so that it will be written out to swap soon

144 Goto set_swap_pte which will update the PTE with information needed to
get the page from swap later

147 If the add to swap cache failed, it means that the page was placed in the swap
cache already by a readahead so drop the work done here

152 Reattach the PTE to the page tables

153 Unlock the page

154 Return that no page was freed

J.7 Page Swap Daemon 565

J.7 Page Swap Daemon

Contents

J.7 Page Swap Daemon 565
J.7.1 Initialising kswapd 565
J.7.1.1 Function: kswapd_init() 565

J.7.2 kswapd Daemon 565
J.7.2.1 Function: kswapd() 565
J.7.2.2 Function: kswapd_can_sleep() 567
J.7.2.3 Function: kswapd_can_sleep_pgdat() 567
J.7.2.4 Function: kswapd_balance() 568
J.7.2.5 Function: kswapd_balance_pgdat() 568

This section details the main loops used by the kswapd daemon which is woken-
up when memory is low. The main functions covered are the ones that determine if
kswapd can sleep and how it determines which nodes need balancing.

J.7.1 Initialising kswapd

J.7.1.1 Function: kswapd_init() (mm/vmscan.c)
Start the kswapd kernel thread

767 static int __init kswapd_init(void)

768 {

769 printk("Starting kswapd\n");

770 swap_setup();

771 kernel_thread(kswapd, NULL, CLONE_FS

| CLONE_FILES

| CLONE_SIGNAL);

772 return 0;

773 }

770 swap_setup()(See Section K.4.2) setups up how many pages will be prefetched
when reading from backing storage based on the amount of physical memory

771 Start the kswapd kernel thread

J.7.2 kswapd Daemon

J.7.2.1 Function: kswapd() (mm/vmscan.c)
The main function of the kswapd kernel thread.

720 int kswapd(void *unused)

721 {

722 struct task_struct *tsk = current;

723 DECLARE_WAITQUEUE(wait, tsk);

J.7.2 kswapd Daemon (kswapd()) 566

724

725 daemonize();

726 strcpy(tsk->comm, "kswapd");

727 sigfillset(&tsk->blocked);

728

741 tsk->flags |= PF_MEMALLOC;

742

746 for (;;) {

747 __set_current_state(TASK_INTERRUPTIBLE);

748 add_wait_queue(&kswapd_wait, &wait);

749

750 mb();

751 if (kswapd_can_sleep())

752 schedule();

753

754 __set_current_state(TASK_RUNNING);

755 remove_wait_queue(&kswapd_wait, &wait);

756

762 kswapd_balance();

763 run_task_queue(&tq_disk);

764 }

765 }

725 Call daemonize() which will make this a kernel thread, remove the mm con-
text, close all �les and re-parent the process

726 Set the name of the process

727 Ignore all signals

741 By setting this �ag, the physical page allocator will always try to satisfy
requests for pages. As this process will always be trying to free pages, it is
worth satisfying requests

746-764 Endlessly loop

747-748 This adds kswapd to the wait queue in preparation to sleep

750 The Memory Block function (mb()) ensures that all reads and writes that
occurred before this line will be visible to all CPU's

751 kswapd_can_sleep()(See Section J.7.2.2) cycles through all nodes and zones
checking the need_balance �eld. If any of them are set to 1, kswapd can not
sleep

752 By calling schedule(), kswapd will now sleep until woken again by the
physical page allocator in __alloc_pages() (See Section F.1.3)

J.7.2 kswapd Daemon (kswapd()) 567

754-755 Once woken up, kswapd is removed from the wait queue as it is now
running

762 kswapd_balance()(See Section J.7.2.4) cycles through all zones and calls
try_to_free_pages_zone()(See Section J.5.3) for each zone that requires
balance

763 Run the IO task queue to start writing data out to disk

J.7.2.2 Function: kswapd_can_sleep() (mm/vmscan.c)
Simple function to cycle through all pgdats to call kswapd_can_sleep_pgdat()

on each.

695 static int kswapd_can_sleep(void)

696 {

697 pg_data_t * pgdat;

698

699 for_each_pgdat(pgdat) {

700 if (!kswapd_can_sleep_pgdat(pgdat))

701 return 0;

702 }

703

704 return 1;

705 }

699-702 for_each_pgdat() does exactly as the name implies. It cycles through all
available pgdat's and in this case calls kswapd_can_sleep_pgdat() (See Section J.7.2.3)
for each. On the x86, there will only be one pgdat

J.7.2.3 Function: kswapd_can_sleep_pgdat() (mm/vmscan.c)
Cycles through all zones to make sure none of them need balance. The

zone→need_balanace �ag is set by __alloc_pages() when the number of free
pages in the zone reaches the pages_low watermark.

680 static int kswapd_can_sleep_pgdat(pg_data_t * pgdat)

681 {

682 zone_t * zone;

683 int i;

684

685 for (i = pgdat->nr_zones-1; i >= 0; i--) {

686 zone = pgdat->node_zones + i;

687 if (!zone->need_balance)

688 continue;

689 return 0;

690 }

J.7.2 kswapd Daemon (kswapd_can_sleep_pgdat()) 568

691

692 return 1;

693 }

685-689 Simple for loop to cycle through all zones

686 The node_zones �eld is an array of all available zones so adding i gives the
index

687-688 If the zone does not need balance, continue

689 0 is returned if any needs balance indicating kswapd can not sleep

692 Return indicating kswapd can sleep if the for loop completes

J.7.2.4 Function: kswapd_balance() (mm/vmscan.c)
Continuously cycle through each pgdat until none require balancing

667 static void kswapd_balance(void)

668 {

669 int need_more_balance;

670 pg_data_t * pgdat;

671

672 do {

673 need_more_balance = 0;

674

675 for_each_pgdat(pgdat)

676 need_more_balance |= kswapd_balance_pgdat(pgdat);

677 } while (need_more_balance);

678 }

672-677 Cycle through all pgdats until none of them report that they need bal-
ancing

675 For each pgdat, call kswapd_balance_pgdat() to check if the node requires
balancing. If any node required balancing, need_more_balance will be set to
1

J.7.2.5 Function: kswapd_balance_pgdat() (mm/vmscan.c)
This function will check if a node requires balance by examining each of the

nodes in it. If any zone requires balancing, try_to_free_pages_zone() will be
called.

641 static int kswapd_balance_pgdat(pg_data_t * pgdat)

642 {

643 int need_more_balance = 0, i;

644 zone_t * zone;

J.7.2 kswapd Daemon (kswapd_balance_pgdat()) 569

645

646 for (i = pgdat->nr_zones-1; i >= 0; i--) {

647 zone = pgdat->node_zones + i;

648 if (unlikely(current->need_resched))

649 schedule();

650 if (!zone->need_balance)

651 continue;

652 if (!try_to_free_pages_zone(zone, GFP_KSWAPD)) {

653 zone->need_balance = 0;

654 __set_current_state(TASK_INTERRUPTIBLE);

655 schedule_timeout(HZ);

656 continue;

657 }

658 if (check_classzone_need_balance(zone))

659 need_more_balance = 1;

660 else

661 zone->need_balance = 0;

662 }

663

664 return need_more_balance;

665 }

646-662 Cycle through each zone and call try_to_free_pages_zone() (See Section J.5.3)
if it needs re-balancing

647 node_zones is an array and i is an index within it

648-649 Call schedule() if the quanta is expired to prevent kswapd hogging the
CPU

650-651 If the zone does not require balance, move to the next one

652-657 If the function returns 0, it means the out_of_memory() function was
called because a su�cient number of pages could not be freed. kswapd sleeps
for 1 second to give the system a chance to reclaim the killed processes pages
and perform IO. The zone is marked as balanced so kswapd will ignore this
zone until the the allocator function __alloc_pages() complains again

658-661 If is was successful, check_classzone_need_balance() is called to see
if the zone requires further balancing or not

664 Return 1 if one zone requires further balancing

Appendix K

Swap Management

Contents
K.1 Scanning for Free Entries . 572

K.1.1 Function: get_swap_page() . 572

K.1.2 Function: scan_swap_map() . 574

K.2 Swap Cache . 577

K.2.1 Adding Pages to the Swap Cache 577

K.2.1.1 Function: add_to_swap_cache() 577

K.2.1.2 Function: swap_duplicate() 578

K.2.2 Deleting Pages from the Swap Cache 580

K.2.2.1 Function: swap_free() 580

K.2.2.2 Function: swap_entry_free() 580

K.2.3 Acquiring/Releasing Swap Cache Pages 581

K.2.3.1 Function: swap_info_get() 581

K.2.3.2 Function: swap_info_put() 582

K.2.4 Searching the Swap Cache . 583

K.2.4.1 Function: lookup_swap_cache() 583

K.3 Swap Area IO . 584

K.3.1 Reading Backing Storage . 584

K.3.1.1 Function: read_swap_cache_async() 584

K.3.2 Writing Backing Storage . 586

K.3.2.1 Function: swap_writepage() 586

K.3.2.2 Function: remove_exclusive_swap_page() 586

K.3.2.3 Function: free_swap_and_cache() 588

K.3.3 Block IO . 589

K.3.3.1 Function: rw_swap_page() 589

570

APPENDIX K. SWAP MANAGEMENT 571

K.3.3.2 Function: rw_swap_page_base() 590

K.3.3.3 Function: get_swaphandle_info() 592

K.4 Activating a Swap Area . 594

K.4.1 Function: sys_swapon() . 594

K.4.2 Function: swap_setup() . 605

K.5 Deactivating a Swap Area . 606

K.5.1 Function: sys_swapoff() . 606

K.5.2 Function: try_to_unuse() . 610

K.5.3 Function: unuse_process() . 615

K.5.4 Function: unuse_vma() . 616

K.5.5 Function: unuse_pgd() . 616

K.5.6 Function: unuse_pmd() . 618

K.5.7 Function: unuse_pte() . 619

K.1 Scanning for Free Entries 572

K.1 Scanning for Free Entries

Contents

K.1 Scanning for Free Entries 572
K.1.1 Function: get_swap_page() 572
K.1.2 Function: scan_swap_map() 574

K.1.1 Function: get_swap_page() (mm/swap�le.c)
The call graph for this function is shown in Figure 11.2. This is the high level

API function for searching the swap areas for a free swap lot and returning the
resulting swp_entry_t.

99 swp_entry_t get_swap_page(void)

100 {

101 struct swap_info_struct * p;

102 unsigned long offset;

103 swp_entry_t entry;

104 int type, wrapped = 0;

105

106 entry.val = 0; /* Out of memory */

107 swap_list_lock();

108 type = swap_list.next;

109 if (type < 0)

110 goto out;

111 if (nr_swap_pages <= 0)

112 goto out;

113

114 while (1) {

115 p = &swap_info[type];

116 if ((p->flags & SWP_WRITEOK) == SWP_WRITEOK) {

117 swap_device_lock(p);

118 offset = scan_swap_map(p);

119 swap_device_unlock(p);

120 if (offset) {

121 entry = SWP_ENTRY(type,offset);

122 type = swap_info[type].next;

123 if (type < 0 ||

124 p->prio != swap_info[type].prio) {

125 swap_list.next = swap_list.head;

126 } else {

127 swap_list.next = type;

128 }

129 goto out;

130 }

131 }

K.1 Scanning for Free Entries (get_swap_page()) 573

132 type = p->next;

133 if (!wrapped) {

134 if (type < 0 || p->prio != swap_info[type].prio) {

135 type = swap_list.head;

136 wrapped = 1;

137 }

138 } else

139 if (type < 0)

140 goto out; /* out of swap space */

141 }

142 out:

143 swap_list_unlock();

144 return entry;

145 }

107 Lock the list of swap areas

108 Get the next swap area that is to be used for allocating from. This list will
be ordered depending on the priority of the swap areas

109-110 If there are no swap areas, return NULL

111-112 If the accounting says there are no available swap slots, return NULL

114-141 Cycle through all swap areas

115 Get the current swap info struct from the swap_info array

116 If this swap area is available for writing to and is active...

117 Lock the swap area

118 Call scan_swap_map()(See Section K.1.2) which searches the requested swap
map for a free slot

119 Unlock the swap device

120-130 If a slot was free...

121 Encode an identi�er for the entry with SWP_ENTRY()

122 Record the next swap area to use

123-126 If the next area is the end of the list or the priority of the next swap area
does not match the current one, move back to the head

126-128 Otherwise move to the next area

129 Goto out

K.1 Scanning for Free Entries (get_swap_page()) 574

132 Move to the next swap area

133-138 Check for wrapaound. Set wrapped to 1 if we get to the end of the list of
swap areas

139-140 If there was no available swap areas, goto out

142 The exit to this function

143 Unlock the swap area list

144 Return the entry if one was found and NULL otherwise

K.1.2 Function: scan_swap_map() (mm/swap�le.c)
This function tries to allocate SWAPFILE_CLUSTER number of pages sequentially

in swap. When it has allocated that many, it searches for another block of free slots
of size SWAPFILE_CLUSTER. If it fails to �nd one, it resorts to allocating the �rst free
slot. This clustering attempts to make sure that slots are allocated and freed in
SWAPFILE_CLUSTER sized chunks.

36 static inline int scan_swap_map(struct swap_info_struct *si)

37 {

38 unsigned long offset;

47 if (si->cluster_nr) {

48 while (si->cluster_next <= si->highest_bit) {

49 offset = si->cluster_next++;

50 if (si->swap_map[offset])

51 continue;

52 si->cluster_nr--;

53 goto got_page;

54 }

55 }

Allocate SWAPFILE_CLUSTER pages sequentially. cluster_nr is initialised to
SWAPFILE_CLUTER and decrements with each allocation

47 If cluster_nr is still postive, allocate the next available sequential slot

48 While the current o�set to use (cluster_next) is less then the highest known
free slot (highest_bit) then ...

49 Record the o�set and update cluster_next to the next free slot

50-51 If the slot is not actually free, move to the next one

52 Slot has been found, decrement the cluster_nr �eld

53 Goto the out path

K.1 Scanning for Free Entries (scan_swap_map()) 575

56 si->cluster_nr = SWAPFILE_CLUSTER;

57

58 /* try to find an empty (even not aligned) cluster. */

59 offset = si->lowest_bit;

60 check_next_cluster:

61 if (offset+SWAPFILE_CLUSTER-1 <= si->highest_bit)

62 {

63 int nr;

64 for (nr = offset; nr < offset+SWAPFILE_CLUSTER; nr++)

65 if (si->swap_map[nr])

66 {

67 offset = nr+1;

68 goto check_next_cluster;

69 }

70 /* We found a completly empty cluster, so start

71 * using it.

72 */

73 goto got_page;

74 }

At this stage, SWAPFILE_CLUSTER pages have been allocated sequentially so �nd
the next free block of SWAPFILE_CLUSTER pages.

56 Re-initialise the count of sequential pages to allocate to SWAPFILE_CLUSTER

59 Starting searching at the lowest known free slot

61 If the o�set plus the cluster size is less than the known last free slot, then
examine all the pages to see if this is a large free block

64 Scan from offset to offset + SWAPFILE_CLUSTER

65-69 If this slot is used, then start searching again for a free slot beginning after
this known alloated one

73 A large cluster was found so use it

75 /* No luck, so now go finegrined as usual. -Andrea */

76 for (offset = si->lowest_bit; offset <= si->highest_bit ;

offset++) {

77 if (si->swap_map[offset])

78 continue;

79 si->lowest_bit = offset+1;

This unusual for loop extract starts scanning for a free page starting from
lowest_bit

77-78 If the slot is in use, move to the next one

K.1 Scanning for Free Entries (scan_swap_map()) 576

79 Update the lowest_bit known probable free slot to the succeeding one

80 got_page:

81 if (offset == si->lowest_bit)

82 si->lowest_bit++;

83 if (offset == si->highest_bit)

84 si->highest_bit--;

85 if (si->lowest_bit > si->highest_bit) {

86 si->lowest_bit = si->max;

87 si->highest_bit = 0;

88 }

89 si->swap_map[offset] = 1;

90 nr_swap_pages--;

91 si->cluster_next = offset+1;

92 return offset;

93 }

94 si->lowest_bit = si->max;

95 si->highest_bit = 0;

96 return 0;

97 }

A slot has been found, do some housekeeping and return it

81-82 If this o�set is the known lowest free slot(lowest_bit), increment it

83-84 If this o�set is the highest known likely free slot, decrement it

85-88 If the low and high mark meet, the swap area is not worth searching any
more because these marks represent the lowest and highest known free slots.
Set the low slot to be the highest possible slot and the high mark to 0 to cut
down on search time later. This will be �xed up the next time a slot is freed

89 Set the reference count for the slot

90 Update the accounting for the number of available swap pages (nr_swap_pages)

91 Set cluster_next to the adjacent slot so the next search will start here

92 Return the free slot

94-96 No free slot available, mark the area unsearchable and return 0

K.2 Swap Cache 577

K.2 Swap Cache

Contents

K.2 Swap Cache 577
K.2.1 Adding Pages to the Swap Cache 577
K.2.1.1 Function: add_to_swap_cache() 577
K.2.1.2 Function: swap_duplicate() 578

K.2.2 Deleting Pages from the Swap Cache 580
K.2.2.1 Function: swap_free() 580
K.2.2.2 Function: swap_entry_free() 580

K.2.3 Acquiring/Releasing Swap Cache Pages 581
K.2.3.1 Function: swap_info_get() 581
K.2.3.2 Function: swap_info_put() 582

K.2.4 Searching the Swap Cache 583
K.2.4.1 Function: lookup_swap_cache() 583

K.2.1 Adding Pages to the Swap Cache

K.2.1.1 Function: add_to_swap_cache() (mm/swap_state.c)
The call graph for this function is shown in Figure 11.3. This function

wraps around the normal page cache handler. It �rst checks if the page is al-
ready in the swap cache with swap_duplicate() and if it does not, it calls
add_to_page_cache_unique() instead.

70 int add_to_swap_cache(struct page *page, swp_entry_t entry)

71 {

72 if (page->mapping)

73 BUG();

74 if (!swap_duplicate(entry)) {

75 INC_CACHE_INFO(noent_race);

76 return -ENOENT;

77 }

78 if (add_to_page_cache_unique(page, &swapper_space, entry.val,

79 page_hash(&swapper_space, entry.val)) != 0) {

80 swap_free(entry);

81 INC_CACHE_INFO(exist_race);

82 return -EEXIST;

83 }

84 if (!PageLocked(page))

85 BUG();

86 if (!PageSwapCache(page))

87 BUG();

88 INC_CACHE_INFO(add_total);

89 return 0;

90 }

K.2.1 Adding Pages to the Swap Cache (add_to_swap_cache()) 578

72-73 A check is made with PageSwapCache() before this function is called to
make sure the page is not already in the swap cache. This check here ensures
the page has no other existing mapping in case the caller was careless and did
not make the check

74-77 Use swap_duplicate() (See Section K.2.1.2) to try an increment the count
for this entry. If a slot already exists in the swap_map, increment the statistic
recording the number of races involving adding pages to the swap cache and
return -ENOENT

78 Try and add the page to the page cache with add_to_page_cache_unique()

(See Section J.1.1.2). This function is similar to add_to_page_cache()

(See Section J.1.1.1) except it searches the page cache for a duplicate entry
with __find_page_nolock(). The managing address space is swapper_space.
The �o�set within the �le� in this case is the o�set within swap_map, hence
entry.val and �nally the page is hashed based on address_space and o�set
within swap_map

80-83 If it already existed in the page cache, we raced so increment the statistic
recording the number of races to insert an existing page into the swap cache
and return EEXIST

84-85 If the page is locked for IO, it is a bug

86-87 If it is not now in the swap cache, something went seriously wrong

88 Increment the statistic recording the total number of pages in the swap cache

89 Return success

K.2.1.2 Function: swap_duplicate() (mm/swap�le.c)
This function veri�es a swap entry is valid and if so, increments its swap map

count.

1161 int swap_duplicate(swp_entry_t entry)

1162 {

1163 struct swap_info_struct * p;

1164 unsigned long offset, type;

1165 int result = 0;

1166

1167 type = SWP_TYPE(entry);

1168 if (type >= nr_swapfiles)

1169 goto bad_file;

1170 p = type + swap_info;

1171 offset = SWP_OFFSET(entry);

1172

1173 swap_device_lock(p);

K.2.1 Adding Pages to the Swap Cache (swap_duplicate()) 579

1174 if (offset < p->max && p->swap_map[offset]) {

1175 if (p->swap_map[offset] < SWAP_MAP_MAX - 1) {

1176 p->swap_map[offset]++;

1177 result = 1;

1178 } else if (p->swap_map[offset] <= SWAP_MAP_MAX) {

1179 if (swap_overflow++ < 5)

1180 printk(KERN_WARNING "swap_dup: swap entry

overflow\n");

1181 p->swap_map[offset] = SWAP_MAP_MAX;

1182 result = 1;

1183 }

1184 }

1185 swap_device_unlock(p);

1186 out:

1187 return result;

1188

1189 bad_file:

1190 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);

1191 goto out;

1192 }

1161 The parameter is the swap entry to increase the swap_map count for

1167-1169 Get the o�set within the swap_info for the swap_info_struct con-
taining this entry. If it is greater than the number of swap areas, goto bad_file

1170-1171 Get the relevant swap_info_struct and get the o�set within its
swap_map

1173 Lock the swap device

1174 Make a quick sanity check to ensure the o�set is within the swap_map and
that the slot indicated has a positive count. A 0 count would mean the slot is
not free and this is a bogus swp_entry_t

1175-1177 If the count is not SWAP_MAP_MAX, simply increment it and return 1 for
success

1178-1183 Else the count would over�ow so set it to SWAP_MAP_MAX and reserve
the slot permanently. In reality this condition is virtually impossible

1185-1187 Unlock the swap device and return

1190-1191 If a bad device was used, print out the error message and return failure

K.2.2 Deleting Pages from the Swap Cache 580

K.2.2 Deleting Pages from the Swap Cache

K.2.2.1 Function: swap_free() (mm/swap�le.c)
Decrements the corresponding swap_map entry for the swp_entry_t

214 void swap_free(swp_entry_t entry)

215 {

216 struct swap_info_struct * p;

217

218 p = swap_info_get(entry);

219 if (p) {

220 swap_entry_free(p, SWP_OFFSET(entry));

221 swap_info_put(p);

222 }

223 }

218 swap_info_get() (See Section K.2.3.1) fetches the correct swap_info_struct
and performs a number of debugging checks to ensure it is a valid area and a
valid swap_map entry. If all is sane, it will lock the swap device

219-222 If it is valid, the corresponding swap_map entry is decremented with
swap_entry_free() (See Section K.2.2.2) and swap_info_put() (See Section K.2.3.2)
called to free the device

K.2.2.2 Function: swap_entry_free() (mm/swap�le.c)

192 static int swap_entry_free(struct swap_info_struct *p,

unsigned long offset)

193 {

194 int count = p->swap_map[offset];

195

196 if (count < SWAP_MAP_MAX) {

197 count--;

198 p->swap_map[offset] = count;

199 if (!count) {

200 if (offset < p->lowest_bit)

201 p->lowest_bit = offset;

202 if (offset > p->highest_bit)

203 p->highest_bit = offset;

204 nr_swap_pages++;

205 }

206 }

207 return count;

208 }

194 Get the current count

K.2.3 Acquiring/Releasing Swap Cache Pages 581

196 If the count indicates the slot is not permanently reserved then..

197-198 Decrement the count and store it in the swap_map

199 If the count reaches 0, the slot is free so update some information

200-201 If this freed slot is below lowest_bit, update lowest_bit which indicates
the lowest known free slot

202-203 Similarly, update the highest_bit if this newly freed slot is above it

204 Increment the count indicating the number of free swap slots

207 Return the current count

K.2.3 Acquiring/Releasing Swap Cache Pages

K.2.3.1 Function: swap_info_get() (mm/swap�le.c)
This function �nds the swap_info_struct for the given entry, performs some

basic checking and then locks the device.

147 static struct swap_info_struct * swap_info_get(swp_entry_t entry)

148 {

149 struct swap_info_struct * p;

150 unsigned long offset, type;

151

152 if (!entry.val)

153 goto out;

154 type = SWP_TYPE(entry);

155 if (type >= nr_swapfiles)

156 goto bad_nofile;

157 p = & swap_info[type];

158 if (!(p->flags & SWP_USED))

159 goto bad_device;

160 offset = SWP_OFFSET(entry);

161 if (offset >= p->max)

162 goto bad_offset;

163 if (!p->swap_map[offset])

164 goto bad_free;

165 swap_list_lock();

166 if (p->prio > swap_info[swap_list.next].prio)

167 swap_list.next = type;

168 swap_device_lock(p);

169 return p;

170

171 bad_free:

172 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset,

K.2.3 Acquiring/Releasing Swap Cache Pages (swap_info_get()) 582

entry.val);

173 goto out;

174 bad_offset:

175 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset,

entry.val);

176 goto out;

177 bad_device:

178 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file,

entry.val);

179 goto out;

180 bad_nofile:

181 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file,

entry.val);

182 out:

183 return NULL;

184 }

152-153 If the supplied entry is NULL, return

154 Get the o�set within the swap_info array

155-156 Ensure it is a valid area

157 Get the address of the area

158-159 If the area is not active yet, print a bad device error and return

160 Get the o�set within the swap_map

161-162 Make sure the o�set is not after the end of the map

163-164 Make sure the slot is currently in use

165 Lock the swap area list

166-167 If this area is of higher priority than the area that would be next, ensure
the current area is used

168-169 Lock the swap device and return the swap area descriptor

K.2.3.2 Function: swap_info_put() (mm/swap�le.c)
This function simply unlocks the area and list

186 static void swap_info_put(struct swap_info_struct * p)

187 {

188 swap_device_unlock(p);

189 swap_list_unlock();

190 }

188 Unlock the device

189 Unlock the swap area list

K.2.4 Searching the Swap Cache 583

K.2.4 Searching the Swap Cache

K.2.4.1 Function: lookup_swap_cache() (mm/swap_state.c)
Top level function for �nding a page in the swap cache

161 struct page * lookup_swap_cache(swp_entry_t entry)

162 {

163 struct page *found;

164

165 found = find_get_page(&swapper_space, entry.val);

166 /*

167 * Unsafe to assert PageSwapCache and mapping on page found:

168 * if SMP nothing prevents swapoff from deleting this page from

169 * the swap cache at this moment. find_lock_page would prevent

170 * that, but no need to change: we _have_ got the right page.

171 */

172 INC_CACHE_INFO(find_total);

173 if (found)

174 INC_CACHE_INFO(find_success);

175 return found;

176 }

165 find_get_page()(See Section J.1.4.1) is the principle function for returning
the struct page. It uses the normal page hashing and cache functions for
quickly �nding it

172 Increase the statistic recording the number of times a page was searched for
in the cache

173-174 If one was found, increment the successful �nd count

175 Return the struct page or NULL if it did not exist

K.3 Swap Area IO 584

K.3 Swap Area IO

Contents

K.3 Swap Area IO 584
K.3.1 Reading Backing Storage 584
K.3.1.1 Function: read_swap_cache_async() 584

K.3.2 Writing Backing Storage 586
K.3.2.1 Function: swap_writepage() 586
K.3.2.2 Function: remove_exclusive_swap_page() 586
K.3.2.3 Function: free_swap_and_cache() 588

K.3.3 Block IO 589
K.3.3.1 Function: rw_swap_page() 589
K.3.3.2 Function: rw_swap_page_base() 590
K.3.3.3 Function: get_swaphandle_info() 592

K.3.1 Reading Backing Storage

K.3.1.1 Function: read_swap_cache_async() (mm/swap_state.c)
This function will either return the requsted page from the swap cache. If it

does not exist, a page will be allocated, placed in the swap cache and the data is
scheduled to be read from disk with rw_swap_page().

184 struct page * read_swap_cache_async(swp_entry_t entry)

185 {

186 struct page *found_page, *new_page = NULL;

187 int err;

188

189 do {

196 found_page = find_get_page(&swapper_space, entry.val);

197 if (found_page)

198 break;

199

200 /*

201 * Get a new page to read into from swap.

202 */

203 if (!new_page) {

204 new_page = alloc_page(GFP_HIGHUSER);

205 if (!new_page)

206 break; /* Out of memory */

207 }

208

209 /*

210 * Associate the page with swap entry in the swap cache.

211 * May fail (-ENOENT) if swap entry has been freed since

212 * our caller observed it. May fail (-EEXIST) if there

K.3.1 Reading Backing Storage (read_swap_cache_async()) 585

213 * is already a page associated with this entry in the

214 * swap cache: added by a racing read_swap_cache_async,

215 * or by try_to_swap_out (or shmem_writepage) re-using

216 * the just freed swap entry for an existing page.

217 */

218 err = add_to_swap_cache(new_page, entry);

219 if (!err) {

220 /*

221 * Initiate read into locked page and return.

222 */

223 rw_swap_page(READ, new_page);

224 return new_page;

225 }

226 } while (err != -ENOENT);

227

228 if (new_page)

229 page_cache_release(new_page);

230 return found_page;

231 }

189 Loop in case add_to_swap_cache() fails to add a page to the swap cache

196 First search the swap cache with find_get_page()(See Section J.1.4.1) to
see if the page is already avaialble. Ordinarily, lookup_swap_cache()

(See Section K.2.4.1) would be called but it updates statistics (such as the
number of cache searches) so find_get_page() (See Section J.1.4.1) is called
directly

203-207 If the page is not in the swap cache and we have not allocated one yet,
allocate one with alloc_page()

218 Add the newly allocated page to the swap cache with add_to_swap_cache()

(See Section K.2.1.1)

223 Schedule the data to be read with rw_swap_page()(See Section K.3.3.1). The
page will be returned locked and will be unlocked when IO completes

224 Return the new page

226 Loop until add_to_swap_cache() succeeds or another process successfully
inserts the page into the swap cache

228-229 This is either the error path or another process added the page to the swap
cache for us. If a new page was allocated, free it with page_cache_release()

(See Section J.1.3.2)

230 Return either the page found in the swap cache or an error

K.3.2 Writing Backing Storage 586

K.3.2 Writing Backing Storage

K.3.2.1 Function: swap_writepage() (mm/swap_state.c)
This is the function registered in swap_aops for writing out pages. It's function

is pretty simple. First it calls remove_exclusive_swap_page() to try and free the
page. If the page was freed, then the page will be unlocked here before returning as
there is no IO pending on the page. Otherwise rw_swap_page() is called to sync
the page with backing storage.

24 static int swap_writepage(struct page *page)

25 {

26 if (remove_exclusive_swap_page(page)) {

27 UnlockPage(page);

28 return 0;

29 }

30 rw_swap_page(WRITE, page);

31 return 0;

32 }

26-29 remove_exclusive_swap_page()(See Section K.3.2.2) will reclaim the page
from the swap cache if possible. If the page is reclaimed, unlock it before
returning

30 Otherwise the page is still in the swap cache so synchronise it with backing
storage by calling rw_swap_page() (See Section K.3.3.1)

K.3.2.2 Function: remove_exclusive_swap_page() (mm/swap�le.c)
This function will tries to work out if there is other processes sharing this page

or not. If possible the page will be removed from the swap cache and freed. Once
removed from the swap cache, swap_free() is decremented to indicate that the
swap cache is no longer using the slot. The count will instead re�ect the number of
PTEs that contain a swp_entry_t for this slot.

287 int remove_exclusive_swap_page(struct page *page)

288 {

289 int retval;

290 struct swap_info_struct * p;

291 swp_entry_t entry;

292

293 if (!PageLocked(page))

294 BUG();

295 if (!PageSwapCache(page))

296 return 0;

297 if (page_count(page) - !!page->buffers != 2) /* 2: us + cache */

298 return 0;

299

K.3.2 Writing Backing Storage (remove_exclusive_swap_page()) 587

300 entry.val = page->index;

301 p = swap_info_get(entry);

302 if (!p)

303 return 0;

304

305 /* Is the only swap cache user the cache itself? */

306 retval = 0;

307 if (p->swap_map[SWP_OFFSET(entry)] == 1) {

308 /* Recheck the page count with the pagecache lock held.. */

309 spin_lock(&pagecache_lock);

310 if (page_count(page) - !!page->buffers == 2) {

311 __delete_from_swap_cache(page);

312 SetPageDirty(page);

313 retval = 1;

314 }

315 spin_unlock(&pagecache_lock);

316 }

317 swap_info_put(p);

318

319 if (retval) {

320 block_flushpage(page, 0);

321 swap_free(entry);

322 page_cache_release(page);

323 }

324

325 return retval;

326 }

293-294 This operation should only be made with the page locked

295-296 If the page is not in the swap cache, then there is nothing to do

297-298 If there are other users of the page, then it cannot be reclaimed so return

300 The swp_entry_t for the page is stored in page→index as explained in
Section 2.4

301 Get the swap_info_struct with swap_info_get() (See Section K.2.3.1)

307 If the only user of the swap slot is the swap cache itself (i.e. no process is
mapping it), then delete this page from the swap cache to free the slot. Later
the swap slot usage count will be decremented as the swap cache is no longer
using it

310 If the current user is the only user of this page, then it is safe to remove from
the swap cache. If another process is sharing it, it must remain here

K.3.2 Writing Backing Storage (remove_exclusive_swap_page()) 588

311 Delete from the swap cache

313 Set retval to 1 so that the caller knows the page was freed and so that
swap_free() (See Section K.2.2.1) will be called to decrement the usage count
in the swap_map

317 Drop the reference to the swap slot that was taken with swap_info_get()

(See Section K.2.3.1)

320 The slot is being freed to call block_flushpage() so that all IO will complete
and any bu�ers associated with the page will be freed

321 Free the swap slot with swap_free()

322 Drop the reference to the page

K.3.2.3 Function: free_swap_and_cache() (mm/swap�le.c)
This function frees an entry from the swap cache and tries to reclaims the page.

Note that this function only applies to the swap cache.

332 void free_swap_and_cache(swp_entry_t entry)

333 {

334 struct swap_info_struct * p;

335 struct page *page = NULL;

336

337 p = swap_info_get(entry);

338 if (p) {

339 if (swap_entry_free(p, SWP_OFFSET(entry)) == 1)

340 page = find_trylock_page(&swapper_space, entry.val);

341 swap_info_put(p);

342 }

343 if (page) {

344 page_cache_get(page);

345 /* Only cache user (+us), or swap space full? Free it! */

346 if (page_count(page) - !!page->buffers == 2 || vm_swap_full()) {

347 delete_from_swap_cache(page);

348 SetPageDirty(page);

349 }

350 UnlockPage(page);

351 page_cache_release(page);

352 }

353 }

337 Get the swap_info struct for the requsted entry

338-342 Presuming the swap area information struct exists, call swap_entry_free()
to free the swap entry. The page for the entry is then located in the swap
cache using find_trylock_page(). Note that the page is returned locked

K.3.3 Block IO 589

341 Drop the reference taken to the swap info struct at line 337

343-352 If the page was located then we try to reclaim it

344 Take a reference to the page so it will not be freed prematurly

346-349 The page is deleted from the swap cache if there are no processes
mapping the page or if the swap area is more than 50% full (Checked by
vm_swap_full())

350 Unlock the page again

351 Drop the local reference to the page taken at line 344

K.3.3 Block IO

K.3.3.1 Function: rw_swap_page() (mm/page_io.c)
This is the main function used for reading data from backing storage into a

page or writing data from a page to backing storage. Which operation is performs
depends on the �rst parameter rw. It is basically a wrapper function around the
core function rw_swap_page_base(). This simply enforces that the operations are
only performed on pages in the swap cache.

85 void rw_swap_page(int rw, struct page *page)

86 {

87 swp_entry_t entry;

88

89 entry.val = page->index;

90

91 if (!PageLocked(page))

92 PAGE_BUG(page);

93 if (!PageSwapCache(page))

94 PAGE_BUG(page);

95 if (!rw_swap_page_base(rw, entry, page))

96 UnlockPage(page);

97 }

85 rw indicates whether a read or write is taking place

89 Get the swp_entry_t from the index �eld

91-92 If the page is not locked for IO, it is a bug

93-94 If the page is not in the swap cache, it is a bug

95 Call the core function rw_swap_page_base(). If it returns failure, the page is
unlocked with UnlockPage() so it can be freed

K.3.3.2 Function: rw_swap_page_base() 590

K.3.3.2 Function: rw_swap_page_base() (mm/page_io.c)
This is the core function for reading or writing data to the backing storage.

Whether it is writing to a partition or a �le, the block layer brw_page() function is
used to perform the actual IO. This function sets up the necessary bu�er information
for the block layer to do it's job. The brw_page() performs asynchronous IO so it
is likely it will return with the page locked which will be unlocked when the IO
completes.

36 static int rw_swap_page_base(int rw, swp_entry_t entry,

struct page *page)

37 {

38 unsigned long offset;

39 int zones[PAGE_SIZE/512];

40 int zones_used;

41 kdev_t dev = 0;

42 int block_size;

43 struct inode *swapf = 0;

44

45 if (rw == READ) {

46 ClearPageUptodate(page);

47 kstat.pswpin++;

48 } else

49 kstat.pswpout++;

50

36 The parameters are:

rw indicates whether the operation is a read or a write

entry is the swap entry for locating the data in backing storage

page is the page that is been read or written to

39 zones is a parameter required by the block layer for brw_page(). It is expected
to contain an array of block numbers that are to be written to. This is primarily
of important when the backing storage is a �le rather than a partition

45-47 If the page is to be read from disk, clear the Uptodate �ag as the page is
obviously not up to date if we are reading information from the disk. Increment
the pages swapped in (pswpin) statistic

49 Else just update the pages swapped out (pswpout) statistic

51 get_swaphandle_info(entry, &offset, &dev, &swapf);

52 if (dev) {

53 zones[0] = offset;

54 zones_used = 1;

55 block_size = PAGE_SIZE;

K.3.3 Block IO (rw_swap_page_base()) 591

56 } else if (swapf) {

57 int i, j;

58 unsigned int block =

59 offset << (PAGE_SHIFT - swapf->i_sb->s_blocksize_bits);

60

61 block_size = swapf->i_sb->s_blocksize;

62 for (i=0, j=0; j< PAGE_SIZE ; i++, j += block_size)

63 if (!(zones[i] = bmap(swapf,block++))) {

64 printk("rw_swap_page: bad swap file\n");

65 return 0;

66 }

67 zones_used = i;

68 dev = swapf->i_dev;

69 } else {

70 return 0;

71 }

72

73 /* block_size == PAGE_SIZE/zones_used */

74 brw_page(rw, page, dev, zones, block_size);

75 return 1;

76 }

51 get_swaphandle_info()(See Section K.3.3.3) returns either the kdev_t or
struct inode that represents the swap area, whichever is appropriate

52-55 If the storage area is a partition, then there is only one block to be written
which is the size of a page. Hence, zones only has one entry which is the o�set
within the partition to be written and the block_size is PAGE_SIZE

56 Else it is a swap �le so each of the blocks in the �le that make up the page has
to be mapped with bmap() before calling brw_page()

58-59 Calculate what the starting block is

61 The size of individual block is stored in the superblock information for the
�lesystem the �le resides on

62-66 Call bmap() for every block that makes up the full page. Each block is
stored in the zones array for passing to brw_page(). If any block fails to be
mapped, 0 is returned

67 Record how many blocks make up the page in zones_used

68 Record which device is being written to

74 Call brw_page() from the block layer to schedule the IO to occur. This function
returns immediately as the IO is asychronous. When the IO is completed, a

K.3.3 Block IO (rw_swap_page_base()) 592

callback function (end_buffer_io_async()) is called which unlocks the page.
Any process waiting on the page will be woken up at that point

75 Return success

K.3.3.3 Function: get_swaphandle_info() (mm/swap�le.c)
This function is responsible for returning either the kdev_t or struct inode

that is managing the swap area that entry belongs to.

1197 void get_swaphandle_info(swp_entry_t entry, unsigned long *offset,

1198 kdev_t *dev, struct inode **swapf)

1199 {

1200 unsigned long type;

1201 struct swap_info_struct *p;

1202

1203 type = SWP_TYPE(entry);

1204 if (type >= nr_swapfiles) {

1205 printk(KERN_ERR "rw_swap_page: %s%08lx\n", Bad_file,

entry.val);

1206 return;

1207 }

1208

1209 p = &swap_info[type];

1210 *offset = SWP_OFFSET(entry);

1211 if (*offset >= p->max && *offset != 0) {

1212 printk(KERN_ERR "rw_swap_page: %s%08lx\n", Bad_offset,

entry.val);

1213 return;

1214 }

1215 if (p->swap_map && !p->swap_map[*offset]) {

1216 printk(KERN_ERR "rw_swap_page: %s%08lx\n", Unused_offset,

entry.val);

1217 return;

1218 }

1219 if (!(p->flags & SWP_USED)) {

1220 printk(KERN_ERR "rw_swap_page: %s%08lx\n", Unused_file,

entry.val);

1221 return;

1222 }

1223

1224 if (p->swap_device) {

1225 *dev = p->swap_device;

1226 } else if (p->swap_file) {

1227 *swapf = p->swap_file->d_inode;

1228 } else {

K.3.3 Block IO (get_swaphandle_info()) 593

1229 printk(KERN_ERR "rw_swap_page: no swap file or device\n");

1230 }

1231 return;

1232 }

1203 Extract which area within swap_info this entry belongs to

1204-1206 If the index is for an area that does not exist, then print out an infor-
mation message and return. Bad_file is a static array declared near the top
of mm/swapfile.c that says �Bad swap �le entry�

1209 Get the swap_info_struct from swap_info

1210 Extrac the o�set within the swap area for this entry

1211-1214 Make sure the o�set is not after the end of the �le. Print out the
message in Bad_offset if it is

1215-1218 If the o�set is currently not being used, it means that entry is a stale
entry so print out the error message in Unused_offset

1219-1222 If the swap area is currently not active, print out the error message in
Unused_file

1224 If the swap area is a device, return the kdev_t in swap_info_struct→swap_device

1226-1227 If it is a swap �le, return the struct inode which is available via
swap_info_struct→swap_file→d_inode

1229 Else there is no swap �le or device for this entry so print out the error
message and return

K.4 Activating a Swap Area 594

K.4 Activating a Swap Area

Contents

K.4 Activating a Swap Area 594
K.4.1 Function: sys_swapon() 594
K.4.2 Function: swap_setup() 605

K.4.1 Function: sys_swapon() (mm/swap�le.c)
This, quite large, function is responsible for the activating of swap space. Broadly

speaking the tasks is takes are as follows;

• Find a free swap_info_struct in the swap_info array an initialise it with
default values

• Call user_path_walk() which traverses the directory tree for the supplied
specialfile and populates a namidata structure with the available data on
the �le, such as the dentry and the �lesystem information for where it is
stored (vfsmount)

• Populate swap_info_struct �elds pertaining to the dimensions of the swap
area and how to �nd it. If the swap area is a partition, the block size will
be con�gured to the PAGE_SIZE before calculating the size. If it is a �le, the
information is obtained directly from the inode

• Ensure the area is not already activated. If not, allocate a page from mem-
ory and read the �rst page sized slot from the swap area. This page con-
tains information such as the number of good slots and how to populate the
swap_info_struct→swap_map with the bad entries

• Allocate memory with vmalloc() for swap_info_struct→swap_map and ini-
tialise each entry with 0 for good slots and SWAP_MAP_BAD otherwise. Ideally
the header information will be a version 2 �le format as version 1 was limited
to swap areas of just under 128MiB for architectures with 4KiB page sizes like
the x86

• After ensuring the information indicated in the header matches the actual
swap area, �ll in the remaining information in the swap_info_struct such
as the maximum number of pages and the available good pages. Update the
global statistics for nr_swap_pages and total_swap_pages

• The swap area is now fully active and initialised and so it is inserted into the
swap list in the correct position based on priority of the newly activated area

855 asmlinkage long sys_swapon(const char * specialfile,

int swap_flags)

856 {

857 struct swap_info_struct * p;

K.4 Activating a Swap Area (sys_swapon()) 595

858 struct nameidata nd;

859 struct inode * swap_inode;

860 unsigned int type;

861 int i, j, prev;

862 int error;

863 static int least_priority = 0;

864 union swap_header *swap_header = 0;

865 int swap_header_version;

866 int nr_good_pages = 0;

867 unsigned long maxpages = 1;

868 int swapfilesize;

869 struct block_device *bdev = NULL;

870 unsigned short *swap_map;

871

872 if (!capable(CAP_SYS_ADMIN))

873 return -EPERM;

874 lock_kernel();

875 swap_list_lock();

876 p = swap_info;

855 The two parameters are the path to the swap area and the �ags for activation

872-873 The activating process must have the CAP_SYS_ADMIN capability or be
the superuser to activate a swap area

874 Acquire the Big Kernel Lock

875 Lock the list of swap areas

876 Get the �rst swap area in the swap_info array

877 for (type = 0 ; type < nr_swapfiles ; type++,p++)

878 if (!(p->flags & SWP_USED))

879 break;

880 error = -EPERM;

881 if (type >= MAX_SWAPFILES) {

882 swap_list_unlock();

883 goto out;

884 }

885 if (type >= nr_swapfiles)

886 nr_swapfiles = type+1;

887 p->flags = SWP_USED;

888 p->swap_file = NULL;

889 p->swap_vfsmnt = NULL;

890 p->swap_device = 0;

891 p->swap_map = NULL;

K.4 Activating a Swap Area (sys_swapon()) 596

892 p->lowest_bit = 0;

893 p->highest_bit = 0;

894 p->cluster_nr = 0;

895 p->sdev_lock = SPIN_LOCK_UNLOCKED;

896 p->next = -1;

897 if (swap_flags & SWAP_FLAG_PREFER) {

898 p->prio =

899 (swap_flags & SWAP_FLAG_PRIO_MASK)>>SWAP_FLAG_PRIO_SHIFT;

900 } else {

901 p->prio = --least_priority;

902 }

903 swap_list_unlock();

Find a free swap_info_struct and initialise it with default values

877-879 Cycle through the swap_info until a struct is found that is not in use

880 By default the error returned is Permission Denied which indicates the caller
did not have the proper permissions or too many swap areas are already in use

881 If no struct was free, MAX_SWAPFILE areas have already been activated so
unlock the swap list and return

885-886 If the selected swap area is after the last known active area (nr_swapfiles),
then update nr_swapfiles

887 Set the �ag indicating the area is in use

888-896 Initialise �elds to default values

897-902 If the caller has speci�ed a priority, use it else set it to least_priority

and decrement it. This way, the swap areas will be prioritised in order of
activation

903 Release the swap list lock

904 error = user_path_walk(specialfile, &nd);

905 if (error)

906 goto bad_swap_2;

907

908 p->swap_file = nd.dentry;

909 p->swap_vfsmnt = nd.mnt;

910 swap_inode = nd.dentry->d_inode;

911 error = -EINVAL;

912

Traverse the VFS and get some information about the special �le

K.4 Activating a Swap Area (sys_swapon()) 597

904 user_path_walk() traverses the directory structure to obtain a nameidata

structure describing the specialfile

905-906 If it failed, return failure

908 Fill in the swap_file �eld with the returned dentry

909 Similarily, �ll in the swap_vfsmnt

910 Record the inode of the special �le

911 Now the default error is -EINVAL indicating that the special �le was found but
it was not a block device or a regular �le

913 if (S_ISBLK(swap_inode->i_mode)) {

914 kdev_t dev = swap_inode->i_rdev;

915 struct block_device_operations *bdops;

916 devfs_handle_t de;

917

918 p->swap_device = dev;

919 set_blocksize(dev, PAGE_SIZE);

920

921 bd_acquire(swap_inode);

922 bdev = swap_inode->i_bdev;

923 de = devfs_get_handle_from_inode(swap_inode);

924 bdops = devfs_get_ops(de);

925 if (bdops) bdev->bd_op = bdops;

926

927 error = blkdev_get(bdev, FMODE_READ|FMODE_WRITE, 0,

BDEV_SWAP);

928 devfs_put_ops(de);/* Decrement module use count

* now we're safe*/

929 if (error)

930 goto bad_swap_2;

931 set_blocksize(dev, PAGE_SIZE);

932 error = -ENODEV;

933 if (!dev || (blk_size[MAJOR(dev)] &&

934 !blk_size[MAJOR(dev)][MINOR(dev)]))

935 goto bad_swap;

936 swapfilesize = 0;

937 if (blk_size[MAJOR(dev)])

938 swapfilesize = blk_size[MAJOR(dev)][MINOR(dev)]

939 >> (PAGE_SHIFT - 10);

940 } else if (S_ISREG(swap_inode->i_mode))

941 swapfilesize = swap_inode->i_size >> PAGE_SHIFT;

942 else

943 goto bad_swap;

K.4 Activating a Swap Area (sys_swapon()) 598

If a partition, con�gure the block device before calculating the size of the area,
else obtain it from the inode for the �le.

913 Check if the special �le is a block device

914-939 This code segment handles the case where the swap area is a partition

914 Record a pointer to the device structure for the block device

918 Store a pointer to the device structure describing the special �le which will be
needed for block IO operations

919 Set the block size on the device to be PAGE_SIZE as it will be page sized chunks
swap is interested in

921 The bd_acquire() function increments the usage count for this block device

922 Get a pointer to the block_device structure which is a descriptor for the
device �le which is needed to open it

923 Get a devfs handle if it is enabled. devfs is beyond the scope of this book

924-925 Increment the usage count of this device entry

927 Open the block device in read/write mode and set the BDEV_SWAP �ag which
is an enumerated type but is ignored when do_open() is called

928 Decrement the use count of the devfs entry

929-930 If an error occured on open, return failure

931 Set the block size again

932 After this point, the default error is to indicate no device could be found

933-935 Ensure the returned device is ok

937-939 Calculate the size of the swap �le as the number of page sized chunks
that exist in the block device as indicated by blk_size. The size of the swap
area is calculated to make sure the information in the swap area is sane

941 If the swap area is a regular �le, obtain the size directly from the inode and
calculate how many page sized chunks exist

943 If the �le is not a block device or regular �le, return error

945 error = -EBUSY;

946 for (i = 0 ; i < nr_swapfiles ; i++) {

947 struct swap_info_struct *q = &swap_info[i];

948 if (i == type || !q->swap_file)

949 continue;

K.4 Activating a Swap Area (sys_swapon()) 599

950 if (swap_inode->i_mapping ==

q->swap_file->d_inode->i_mapping)

951 goto bad_swap;

952 }

953

954 swap_header = (void *) __get_free_page(GFP_USER);

955 if (!swap_header) {

956 printk("Unable to start swapping: out of memory :-)\n");

957 error = -ENOMEM;

958 goto bad_swap;

959 }

960

961 lock_page(virt_to_page(swap_header));

962 rw_swap_page_nolock(READ, SWP_ENTRY(type,0),

(char *) swap_header);

963

964 if (!memcmp("SWAP-SPACE",swap_header->magic.magic,10))

965 swap_header_version = 1;

966 else if (!memcmp("SWAPSPACE2",swap_header->magic.magic,10))

967 swap_header_version = 2;

968 else {

969 printk("Unable to find swap-space signature\n");

970 error = -EINVAL;

971 goto bad_swap;

972 }

945 The next check makes sure the area is not already active. If it is, the error
-EBUSY will be returned

946-962 Read through the while swap_info struct and ensure the area to be
activated is not already active

954-959 Allocate a page for reading the swap area information from disk

961 The function lock_page() locks a page and makes sure it is synced with disk
if it is �le backed. In this case, it'll just mark the page as locked which is
required for the rw_swap_page_nolock() function

962 Read the �rst page slot in the swap area into swap_header

964-672 Check the version based on the swap area information is and set
swap_header_version variable with it. If the swap area could not be identi-
�ed, return -EINVAL

974 switch (swap_header_version) {

975 case 1:

976 memset(((char *) swap_header)+PAGE_SIZE-10,0,10);

K.4 Activating a Swap Area (sys_swapon()) 600

977 j = 0;

978 p->lowest_bit = 0;

979 p->highest_bit = 0;

980 for (i = 1 ; i < 8*PAGE_SIZE ; i++) {

981 if (test_bit(i,(char *) swap_header)) {

982 if (!p->lowest_bit)

983 p->lowest_bit = i;

984 p->highest_bit = i;

985 maxpages = i+1;

986 j++;

987 }

988 }

989 nr_good_pages = j;

990 p->swap_map = vmalloc(maxpages * sizeof(short));

991 if (!p->swap_map) {

992 error = -ENOMEM;

993 goto bad_swap;

994 }

995 for (i = 1 ; i < maxpages ; i++) {

996 if (test_bit(i,(char *) swap_header))

997 p->swap_map[i] = 0;

998 else

999 p->swap_map[i] = SWAP_MAP_BAD;

1000 }

1001 break;

1002

Read in the information needed to populate the swap_map when the swap area
is version 1.

976 Zero out the magic string identi�ng the version of the swap area

978-979 Initialise �elds in swap_info_struct to 0

980-988 A bitmap with 8*PAGE_SIZE entries is stored in the swap area. The full
page, minus 10 bits for the magic string, is used to describe the swap map
limiting swap areas to just under 128MiB in size. If the bit is set to 1, there is
a slot on disk available. This pass will calculate how many slots are available
so a swap_map may be allocated

981 Test if the bit for this slot is set

982-983 If the lowest_bit �eld is not yet set, set it to this slot. In most cases,
lowest_bit will be initialised to 1

984 As long as new slots are found, keep updating the highest_bit

K.4 Activating a Swap Area (sys_swapon()) 601

985 Count the number of pages

986 j is the count of good pages in the area

990 Allocate memory for the swap_map with vmalloc()

991-994 If memory could not be allocated, return ENOMEM

995-1000 For each slot, check if the slot is �good�. If yes, initialise the slot count
to 0, else set it to SWAP_MAP_BAD so it will not be used

1001 Exit the switch statement

1003 case 2:

1006 if (swap_header->info.version != 1) {

1007 printk(KERN_WARNING

1008 "Unable to handle swap header version %d\n",

1009 swap_header->info.version);

1010 error = -EINVAL;

1011 goto bad_swap;

1012 }

1013

1014 p->lowest_bit = 1;

1015 maxpages = SWP_OFFSET(SWP_ENTRY(0,~0UL)) - 1;

1016 if (maxpages > swap_header->info.last_page)

1017 maxpages = swap_header->info.last_page;

1018 p->highest_bit = maxpages - 1;

1019

1020 error = -EINVAL;

1021 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)

1022 goto bad_swap;

1023

1025 if (!(p->swap_map = vmalloc(maxpages * sizeof(short)))) {

1026 error = -ENOMEM;

1027 goto bad_swap;

1028 }

1029

1030 error = 0;

1031 memset(p->swap_map, 0, maxpages * sizeof(short));

1032 for (i=0; i<swap_header->info.nr_badpages; i++) {

1033 int page = swap_header->info.badpages[i];

1034 if (page <= 0 ||

page >= swap_header->info.last_page)

1035 error = -EINVAL;

1036 else

1037 p->swap_map[page] = SWAP_MAP_BAD;

1038 }

K.4 Activating a Swap Area (sys_swapon()) 602

1039 nr_good_pages = swap_header->info.last_page -

1040 swap_header->info.nr_badpages -

1041 1 /* header page */;

1042 if (error)

1043 goto bad_swap;

1044 }

Read the header information when the �le format is version 2

1006-1012 Make absolutly sure we can handle this swap �le format and return
-EINVAL if we cannot. Remember that with this version, the swap_header

struct is placed nicely on disk

1014 Initialise lowest_bit to the known lowest available slot

1015-1017 Calculate the maxpages initially as the maximum possible size of a
swap_map and then set it to the size indicated by the information on disk.
This ensures the swap_map array is not accidently overloaded

1018 Initialise highest_bit

1020-1022 Make sure the number of bad pages that exist does not exceed
MAX_SWAP_BADPAGES

1025-1028 Allocate memory for the swap_map with vmalloc()

1031 Initialise the full swap_map to 0 indicating all slots are available

1032-1038 Using the information loaded from disk, set each slot that is unusuable
to SWAP_MAP_BAD

1039-1041 Calculate the number of available good pages

1042-1043 Return if an error occured

1045

1046 if (swapfilesize && maxpages > swapfilesize) {

1047 printk(KERN_WARNING

1048 "Swap area shorter than signature indicates\n");

1049 error = -EINVAL;

1050 goto bad_swap;

1051 }

1052 if (!nr_good_pages) {

1053 printk(KERN_WARNING "Empty swap-file\n");

1054 error = -EINVAL;

1055 goto bad_swap;

1056 }

1057 p->swap_map[0] = SWAP_MAP_BAD;

K.4 Activating a Swap Area (sys_swapon()) 603

1058 swap_list_lock();

1059 swap_device_lock(p);

1060 p->max = maxpages;

1061 p->flags = SWP_WRITEOK;

1062 p->pages = nr_good_pages;

1063 nr_swap_pages += nr_good_pages;

1064 total_swap_pages += nr_good_pages;

1065 printk(KERN_INFO "Adding Swap:

%dk swap-space (priority %d)\n",

1066 nr_good_pages<<(PAGE_SHIFT-10), p->prio);

1046-1051 Ensure the information loaded from disk matches the actual dimensions
of the swap area. If they do not match, print a warning and return an error

1052-1056 If no good pages were available, return an error

1057 Make sure the �rst page in the map containing the swap header information
is not used. If it was, the header information would be overwritten the �rst
time this area was used

1058-1059 Lock the swap list and the swap device

1060-1062 Fill in the remaining �elds in the swap_info_struct

1063-1064 Update global statistics for the number of available swap pages
(nr_swap_pages) and the total number of swap pages (total_swap_pages)

1065-1066 Print an informational message about the swap activation

1068 /* insert swap space into swap_list: */

1069 prev = -1;

1070 for (i = swap_list.head; i >= 0; i = swap_info[i].next) {

1071 if (p->prio >= swap_info[i].prio) {

1072 break;

1073 }

1074 prev = i;

1075 }

1076 p->next = i;

1077 if (prev < 0) {

1078 swap_list.head = swap_list.next = p - swap_info;

1079 } else {

1080 swap_info[prev].next = p - swap_info;

1081 }

1082 swap_device_unlock(p);

1083 swap_list_unlock();

1084 error = 0;

1085 goto out;

K.4 Activating a Swap Area (sys_swapon()) 604

1070-1080 Insert the new swap area into the correct slot in the swap list based
on priority

1082 Unlock the swap device

1083 Unlock the swap list

1084-1085 Return success

1086 bad_swap:

1087 if (bdev)

1088 blkdev_put(bdev, BDEV_SWAP);

1089 bad_swap_2:

1090 swap_list_lock();

1091 swap_map = p->swap_map;

1092 nd.mnt = p->swap_vfsmnt;

1093 nd.dentry = p->swap_file;

1094 p->swap_device = 0;

1095 p->swap_file = NULL;

1096 p->swap_vfsmnt = NULL;

1097 p->swap_map = NULL;

1098 p->flags = 0;

1099 if (!(swap_flags & SWAP_FLAG_PREFER))

1100 ++least_priority;

1101 swap_list_unlock();

1102 if (swap_map)

1103 vfree(swap_map);

1104 path_release(&nd);

1105 out:

1106 if (swap_header)

1107 free_page((long) swap_header);

1108 unlock_kernel();

1109 return error;

1110 }

1087-1088 Drop the reference to the block device

1090-1104 This is the error path where the swap list need to be unlocked, the slot
in swap_info reset to being unused and the memory allocated for swap_map
freed if it was assigned

1104 Drop the reference to the special �le

1106-1107 Release the page containing the swap header information as it is no
longer needed

1108 Drop the Big Kernel Lock

1109 Return the error or success value

K.4.2 Function: swap_setup() 605

K.4.2 Function: swap_setup() (mm/swap.c)
This function is called during the initialisation of kswapd to set the size of

page_cluster. This variable determines how many pages readahead from �les and
from backing storage when paging in data.

100 void __init swap_setup(void)

101 {

102 unsigned long megs = num_physpages >> (20 - PAGE_SHIFT);

103

104 /* Use a smaller cluster for small-memory machines */

105 if (megs < 16)

106 page_cluster = 2;

107 else

108 page_cluster = 3;

109 /*

110 * Right now other parts of the system means that we

111 * _really_ don't want to cluster much more

112 */

113 }

102 Calculate how much memory the system has in megabytes

105 In low memory systems, set page_cluster to 2 which means that, at most, 4
pages will be paged in from disk during readahead

108 Else readahead 8 pages

K.5 Deactivating a Swap Area 606

K.5 Deactivating a Swap Area

Contents

K.5 Deactivating a Swap Area 606
K.5.1 Function: sys_swapoff() 606
K.5.2 Function: try_to_unuse() 610
K.5.3 Function: unuse_process() 615
K.5.4 Function: unuse_vma() 616
K.5.5 Function: unuse_pgd() 616
K.5.6 Function: unuse_pmd() 618
K.5.7 Function: unuse_pte() 619

K.5.1 Function: sys_swapoff() (mm/swap�le.c)
This function is principally concerned with updating the swap_info_struct and

the swap lists. The main task of paging in all pages in the area is the responsibility
of try_to_unuse(). The function tasks are broadly

• Call user_path_walk() to acquire the information about the special �le to be
deactivated and then take the BKL

• Remove the swap_info_struct from the swap list and update the global
statistics on the number of swap pages available (nr_swap_pages) and the
total number of swap entries (total_swap_pages. Once this is acquired, the
BKL can be released again

• Call try_to_unuse() which will page in all pages from the swap area to be
deactivated.

• If there was not enough available memory to page in all the entries, the swap
area is reinserted back into the running system as it cannot be simply dropped.
If it succeeded, the swap_info_struct is placed into an uninitialised state and
the swap_map memory freed with vfree()

720 asmlinkage long sys_swapoff(const char * specialfile)

721 {

722 struct swap_info_struct * p = NULL;

723 unsigned short *swap_map;

724 struct nameidata nd;

725 int i, type, prev;

726 int err;

727

728 if (!capable(CAP_SYS_ADMIN))

729 return -EPERM;

730

731 err = user_path_walk(specialfile, &nd);

732 if (err)

K.5 Deactivating a Swap Area (sys_swapoff()) 607

733 goto out;

734

728-729 Only the superuser or a process with CAP_SYS_ADMIN capabilities may
deactivate an area

731-732 Acquire information about the special �le representing the swap area with
user_path_walk(). Goto out if an error occured

735 lock_kernel();

736 prev = -1;

737 swap_list_lock();

738 for (type = swap_list.head; type >= 0;

type = swap_info[type].next) {

739 p = swap_info + type;

740 if ((p->flags & SWP_WRITEOK) == SWP_WRITEOK) {

741 if (p->swap_file == nd.dentry)

742 break;

743 }

744 prev = type;

745 }

746 err = -EINVAL;

747 if (type < 0) {

748 swap_list_unlock();

749 goto out_dput;

750 }

751

752 if (prev < 0) {

753 swap_list.head = p->next;

754 } else {

755 swap_info[prev].next = p->next;

756 }

757 if (type == swap_list.next) {

758 /* just pick something that's safe... */

759 swap_list.next = swap_list.head;

760 }

761 nr_swap_pages -= p->pages;

762 total_swap_pages -= p->pages;

763 p->flags = SWP_USED;

Acquire the BKL, �nd the swap_info_struct for the area to be deactivated and
remove it from the swap list.

735 Acquire the BKL

737 Lock the swap list

K.5 Deactivating a Swap Area (sys_swapoff()) 608

738-745 Traverse the swap list and �nd the swap_info_struct for the requested
area. Use the dentry to identify the area

747-750 If the struct could not be found, return

752-760 Remove from the swap list making sure that this is not the head

761 Update the total number of free swap slots

762 Update the total number of existing swap slots

763 Mark the area as active but may not be written to

764 swap_list_unlock();

765 unlock_kernel();

766 err = try_to_unuse(type);

764 Unlock the swap list

765 Release the BKL

766 Page in all pages from this swap area

767 lock_kernel();

768 if (err) {

769 /* re-insert swap space back into swap_list */

770 swap_list_lock();

771 for (prev = -1, i = swap_list.head;

i >= 0;

prev = i, i = swap_info[i].next)

772 if (p->prio >= swap_info[i].prio)

773 break;

774 p->next = i;

775 if (prev < 0)

776 swap_list.head = swap_list.next = p - swap_info;

777 else

778 swap_info[prev].next = p - swap_info;

779 nr_swap_pages += p->pages;

780 total_swap_pages += p->pages;

781 p->flags = SWP_WRITEOK;

782 swap_list_unlock();

783 goto out_dput;

784 }

Acquire the BKL. If we failed to page in all pages, then reinsert the area into
the swap list

767 Acquire the BKL

K.5 Deactivating a Swap Area (sys_swapoff()) 609

770 Lock the swap list

771-778 Reinsert the area into the swap list. The position it is inserted at depends
on the swap area priority

779-780 Update the global statistics

781 Mark the area as safe to write to again

782-783 Unlock the swap list and return

785 if (p->swap_device)

786 blkdev_put(p->swap_file->d_inode->i_bdev, BDEV_SWAP);

787 path_release(&nd);

788

789 swap_list_lock();

790 swap_device_lock(p);

791 nd.mnt = p->swap_vfsmnt;

792 nd.dentry = p->swap_file;

793 p->swap_vfsmnt = NULL;

794 p->swap_file = NULL;

795 p->swap_device = 0;

796 p->max = 0;

797 swap_map = p->swap_map;

798 p->swap_map = NULL;

799 p->flags = 0;

800 swap_device_unlock(p);

801 swap_list_unlock();

802 vfree(swap_map);

803 err = 0;

804

805 out_dput:

806 unlock_kernel();

807 path_release(&nd);

808 out:

809 return err;

810 }

Else the swap area was successfully deactivated to close the block device and
mark the swap_info_struct free

785-786 Close the block device

787 Release the path information

789-790 Acquire the swap list and swap device lock

791-799 Reset the �elds in swap_info_struct to default values

K.5 Deactivating a Swap Area (sys_swapoff()) 610

800-801 Release the swap list and swap device

801 Free the memory used for the swap_map

806 Release the BKL

807 Release the path information in the event we reached here via the error path

809 Return success or failure

K.5.2 Function: try_to_unuse() (mm/swap�le.c)
This function is heavily commented in the source code albeit it consists of specu-

lation or is slightly inaccurate at parts. The comments are omitted here for brevity.

513 static int try_to_unuse(unsigned int type)

514 {

515 struct swap_info_struct * si = &swap_info[type];

516 struct mm_struct *start_mm;

517 unsigned short *swap_map;

518 unsigned short swcount;

519 struct page *page;

520 swp_entry_t entry;

521 int i = 0;

522 int retval = 0;

523 int reset_overflow = 0;

525

540 start_mm = &init_mm;

541 atomic_inc(&init_mm.mm_users);

542

540-541 The starting mm_struct to page in pages for is init_mm. The count is
incremented even though this particular struct will not disappear to prevent
having to write special cases in the remainder of the function

556 while ((i = find_next_to_unuse(si, i))) {

557 /*

558 * Get a page for the entry, using the existing swap

559 * cache page if there is one. Otherwise, get a clean

560 * page and read the swap into it.

561 */

562 swap_map = &si->swap_map[i];

563 entry = SWP_ENTRY(type, i);

564 page = read_swap_cache_async(entry);

565 if (!page) {

572 if (!*swap_map)

573 continue;

K.5 Deactivating a Swap Area (try_to_unuse()) 611

574 retval = -ENOMEM;

575 break;

576 }

577

578 /*

579 * Don't hold on to start_mm if it looks like exiting.

580 */

581 if (atomic_read(&start_mm->mm_users) == 1) {

582 mmput(start_mm);

583 start_mm = &init_mm;

584 atomic_inc(&init_mm.mm_users);

585 }

556 This is the beginning of the major loop in this function. Starting from the
beginning of the swap_map, it searches for the next entry to be freed with
find_next_to_unuse() until all swap map entries have been paged in

562-564Get the swp_entry_t and call read_swap_cache_async() (See Section K.3.1.1)
to �nd the page in the swap cache or have a new page allocated for reading in
from the disk

565-576 If we failed to get the page, it means the slot has already been freed in-
dependently by another process or thread (process could be exiting elsewhere)
or we are out of memory. If independently freed, we continue to the next map,
else we return -ENOMEM

581 Check to make sure this mm is not exiting. If it is, decrement its count and
go back to init_mm

587 /*

588 * Wait for and lock page. When do_swap_page races with

589 * try_to_unuse, do_swap_page can handle the fault much

590 * faster than try_to_unuse can locate the entry. This

591 * apparently redundant "wait_on_page" lets try_to_unuse

592 * defer to do_swap_page in such a case - in some tests,

593 * do_swap_page and try_to_unuse repeatedly compete.

594 */

595 wait_on_page(page);

596 lock_page(page);

597

598 /*

599 * Remove all references to entry, without blocking.

600 * Whenever we reach init_mm, there's no address space

601 * to search, but use it as a reminder to search shmem.

602 */

603 shmem = 0;

K.5 Deactivating a Swap Area (try_to_unuse()) 612

604 swcount = *swap_map;

605 if (swcount > 1) {

606 flush_page_to_ram(page);

607 if (start_mm == &init_mm)

608 shmem = shmem_unuse(entry, page);

609 else

610 unuse_process(start_mm, entry, page);

611 }

595Wait on the page to complete IO. Once it returns, we know for a fact the page
exists in memory with the same information as that on disk

596 Lock the page

604 Get the swap map reference count

605 If the count is positive then...

606 As the page is about to be inserted into proces page tables, it must be freed
from the D-Cache or the process may not �see� changes made to the page by
the kernel

607-608 If we are using the init_mm, call shmem_unuse() (See Section L.6.2)
which will free the page from any shared memory regions that are in use

610 Else update the PTE in the current mm which references this page

612 if (*swap_map > 1) {

613 int set_start_mm = (*swap_map >= swcount);

614 struct list_head *p = &start_mm->mmlist;

615 struct mm_struct *new_start_mm = start_mm;

616 struct mm_struct *mm;

617

618 spin_lock(&mmlist_lock);

619 while (*swap_map > 1 &&

620 (p = p->next) != &start_mm->mmlist) {

621 mm = list_entry(p, struct mm_struct,

mmlist);

622 swcount = *swap_map;

623 if (mm == &init_mm) {

624 set_start_mm = 1;

625 spin_unlock(&mmlist_lock);

626 shmem = shmem_unuse(entry, page);

627 spin_lock(&mmlist_lock);

628 } else

629 unuse_process(mm, entry, page);

630 if (set_start_mm && *swap_map < swcount) {

K.5 Deactivating a Swap Area (try_to_unuse()) 613

631 new_start_mm = mm;

632 set_start_mm = 0;

633 }

634 }

635 atomic_inc(&new_start_mm->mm_users);

636 spin_unlock(&mmlist_lock);

637 mmput(start_mm);

638 start_mm = new_start_mm;

639 }

612-637 If an entry still exists, begin traversing through all mm_structs �nding
references to this page and update the respective PTE

618 Lock the mm list

619-632 Keep searching until all mm_structs have been found. Do not traverse
the full list more than once

621 Get the mm_struct for this list entry

623-627 Call shmem_unuse()(See Section L.6.2) if the mm is init_mm as that
indicates that is a page from the virtual �lesystem. Else call unuse_process()
(See Section K.5.3) to traverse the current process's page tables searching for
the swap entry. If found, the entry will be freed and the page reinstantiated
in the PTE

630-633 Record if we need to start searching mm_structs starting from init_mm

again

654 if (*swap_map == SWAP_MAP_MAX) {

655 swap_list_lock();

656 swap_device_lock(si);

657 nr_swap_pages++;

658 *swap_map = 1;

659 swap_device_unlock(si);

660 swap_list_unlock();

661 reset_overflow = 1;

662 }

654 If the swap map entry is permanently mapped, we have to hope that all
processes have their PTEs updated to point to the page and in reality the swap
map entry is free. In reality, it is highly unlikely a slot would be permanetly
reserved in the �rst place

645-661 Lock the list and swap device, set the swap map entry to 1, unlock them
again and record that a reset over�ow occured

K.5 Deactivating a Swap Area (try_to_unuse()) 614

683 if ((*swap_map > 1) && PageDirty(page) &&

PageSwapCache(page)) {

684 rw_swap_page(WRITE, page);

685 lock_page(page);

686 }

687 if (PageSwapCache(page)) {

688 if (shmem)

689 swap_duplicate(entry);

690 else

691 delete_from_swap_cache(page);

692 }

683-686 In the very rare event a reference still exists to the page, write the page
back to disk so at least if another process really has a reference to it, it'll copy
the page back in from disk correctly

687-689 If the page is in the swap cache and belongs to the shared memory �lesys-
tem, a new reference is taken to it wieh swap_duplicate() so we can try and
remove it again later with shmem_unuse()

691 Else, for normal pages, just delete them from the swap cache

699 SetPageDirty(page);

700 UnlockPage(page);

701 page_cache_release(page);

699 Mark the page dirty so that the swap out code will preserve the page and if it
needs to remove it again, it'll write it correctly to a new swap area

700 Unlock the page

701 Release our reference to it in the page cache

708 if (current->need_resched)

714 schedule();

715 }

716

717 mmput(start_mm);

718 if (reset_overflow) {

714 printk(KERN_WARNING "swapoff: cleared swap entry

overflow\n");

715 swap_overflow = 0;

716 }

717 return retval;

718 }

708-709 Call schedule() if necessary so the deactivation of swap does not hog
the entire CPU

K.5 Deactivating a Swap Area (try_to_unuse()) 615

717 Drop our reference to the mm

718-721 If a permanently mapped page had to be removed, then print out a
warning so that in the very unlikely event an error occurs later, there will be
a hint to what might have happend

717 Return success or failure

K.5.3 Function: unuse_process() (mm/swap�le.c)
This function begins the page table walk required to remove the requested page

and entry from the process page tables managed by mm. This is only required when
a swap area is being deactivated so, while expensive, it is a very rare operation. This
set of functions should be instantly recognisable as a standard page-table walk.

454 static void unuse_process(struct mm_struct * mm,

455 swp_entry_t entry, struct page* page)

456 {

457 struct vm_area_struct* vma;

458

459 /*

460 * Go through process' page directory.

461 */

462 spin_lock(&mm->page_table_lock);

463 for (vma = mm->mmap; vma; vma = vma->vm_next) {

464 pgd_t * pgd = pgd_offset(mm, vma->vm_start);

465 unuse_vma(vma, pgd, entry, page);

466 }

467 spin_unlock(&mm->page_table_lock);

468 return;

469 }

462 Lock the process page tables

463 Move through every VMA managed by this mm. Remember that one page
frame could be mapped in multiple locations

462 Get the PGD managing the beginning of this VMA

465 Call unuse_vma()(See Section K.5.4) to search the VMA for the page

467-468 The full mm has been searched so unlock the process page tables and return

K.5.4 Function: unuse_vma() 616

K.5.4 Function: unuse_vma() (mm/swap�le.c)
This function searches the requested VMA for page table entries mapping the

page and using the given swap entry. It calls unuse_pgd() for every PGD this
VMA maps.

440 static void unuse_vma(struct vm_area_struct * vma, pgd_t *pgdir,

441 swp_entry_t entry, struct page* page)

442 {

443 unsigned long start = vma->vm_start, end = vma->vm_end;

444

445 if (start >= end)

446 BUG();

447 do {

448 unuse_pgd(vma, pgdir, start, end - start, entry, page);

449 start = (start + PGDIR_SIZE) & PGDIR_MASK;

450 pgdir++;

451 } while (start && (start < end));

452 }

443 Get the virtual addresses for ther start and end of the VMA

445-446 Check that the start is not after the end. There would need to be serious
braindamage in the kernel for this to occur

447-451 Walk through the VMA in PGDIR_SIZE-sized strides until the end of the
VMA is reached. This e�ectively walks through every PGD that maps portions
of this VMA

448 Call unuse_pgd()(See Section K.5.5) to walk through just this PGD to unmap
page

449 Move the virtual address start to the beginning of the next PGD

450 Move pgdir to the next PGD in the VMA

K.5.5 Function: unuse_pgd() (mm/swap�le.c)
This function searches the requested PGD for page table entries mapping the

page and using the given swap entry. It calls unuse_pmd() for every PMD this
PGD maps.

409 static inline void unuse_pgd(struct vm_area_struct * vma, pgd_t *dir,

410 unsigned long address, unsigned long size,

411 swp_entry_t entry, struct page* page)

412 {

413 pmd_t * pmd;

414 unsigned long offset, end;

415

K.5 Deactivating a Swap Area (unuse_pgd()) 617

416 if (pgd_none(*dir))

417 return;

418 if (pgd_bad(*dir)) {

419 pgd_ERROR(*dir);

420 pgd_clear(dir);

421 return;

422 }

423 pmd = pmd_offset(dir, address);

424 offset = address & PGDIR_MASK;

425 address &= ~PGDIR_MASK;

426 end = address + size;

427 if (end > PGDIR_SIZE)

428 end = PGDIR_SIZE;

429 if (address >= end)

430 BUG();

431 do {

432 unuse_pmd(vma, pmd, address, end - address, offset, entry,

433 page);

434 address = (address + PMD_SIZE) & PMD_MASK;

435 pmd++;

436 } while (address && (address < end));

437 }

416-417 If there is no PGD here, return

418-422 If the PGD is bad, then set the appropriate error, clear the PGD and
return. There are very few architectures where this condition can occur

423 Get the address of the �rst PMD in this PGD

424 Calculate offset as the o�set within the PGD the address is for. Remember
that the �rst time this function is called, it might be searching a partial PGD

425 Align the address to the PGD

426 Calculate the end address of the search

427-428 If the end is beyond this PGD, set the end just to the end of this PGD

429-430 If the starting address is after the end address, something is very seriously
wrong

431-436 Step through the PGD in PMD_SIZE-sized strides and call unuse_pmd()
(See Section K.5.6) for every PMD in this PGD

K.5.6 Function: unuse_pmd() 618

K.5.6 Function: unuse_pmd() (mm/swap�le.c)
This function searches the requested PMD for page table entries mapping the

page and using the given swap entry. It calls unuse_pte() for every PTE this
PMD maps.

381 static inline void unuse_pmd(struct vm_area_struct * vma, pmd_t *dir,

382 unsigned long address, unsigned long size, unsigned long offset,

383 swp_entry_t entry, struct page* page)

384 {

385 pte_t * pte;

386 unsigned long end;

387

388 if (pmd_none(*dir))

389 return;

390 if (pmd_bad(*dir)) {

391 pmd_ERROR(*dir);

392 pmd_clear(dir);

393 return;

394 }

395 pte = pte_offset(dir, address);

396 offset += address & PMD_MASK;

397 address &= ~PMD_MASK;

398 end = address + size;

399 if (end > PMD_SIZE)

400 end = PMD_SIZE;

401 do {

402 unuse_pte(vma, offset+address-vma->vm_start, pte, entry, page);

403 address += PAGE_SIZE;

404 pte++;

405 } while (address && (address < end));

406 }

388-389 Return if no PMD exists

390-394 Set the appropriate error and clear the PMD if it is bad. There are very
few architectures where this condition can occur

395 Calculate the starting PTE for this address

396 Set offset to be the o�set within the PMD we are starting at

397 Align address to the PMD

398-400 Calculate the end address. If it is beyond the end of this PMD, set it to
the end of this PMD

401-405 Step through this PMD in PAGE_SIZE-sized chunks and call unuse_pte()
(See Section K.5.7) for each PTE

K.5.7 Function: unuse_pte() 619

K.5.7 Function: unuse_pte() (mm/swap�le.c)
This function checks if the PTE at dir matches the entry we are searching for.

If it does, the swap entry is freed and a reference is taken to the page representing
the PTE that will be updated to map it.

365 static inline void unuse_pte(struct vm_area_struct * vma,

unsigned long address,

366 pte_t *dir, swp_entry_t entry, struct page* page)

367 {

368 pte_t pte = *dir;

369

370 if (likely(pte_to_swp_entry(pte).val != entry.val))

371 return;

372 if (unlikely(pte_none(pte) || pte_present(pte)))

373 return;

374 get_page(page);

375 set_pte(dir, pte_mkold(mk_pte(page, vma->vm_page_prot)));

376 swap_free(entry);

377 ++vma->vm_mm->rss;

378 }

370-371 If the entry does not match the PTE, return

372-373 If there is no PTE or it is already present (meaning there is no way this
entry is mapped here), then return

374 Otherwise we have found the entry we are looking for so take a reference to
the page as a new PTE is about to map it

375 Update the PTE to map page

376 Free the swap entry

377 Increment the RSS count for this process

Appendix L

Shared Memory Virtual Filesystem

Contents
L.1 Initialising shmfs . 622

L.1.1 Function: init_tmpfs() . 622

L.1.2 Function: shmem_read_super() 624

L.1.3 Function: shmem_set_size() . 626

L.2 Creating Files in tmpfs . 628

L.2.1 Function: shmem_create() . 628

L.2.2 Function: shmem_mknod() . 628

L.2.3 Function: shmem_get_inode() 629

L.3 File Operations in tmpfs . 632

L.3.1 Memory Mapping . 632

L.3.1.1 Function: shmem_mmap() 632

L.3.2 Reading Files . 633

L.3.2.1 Function: shmem_file_read() 633

L.3.2.2 Function: do_shmem_file_read() 634

L.3.2.3 Function: file_read_actor() 637

L.3.3 Writing . 638

L.3.3.1 Function: shmem_file_write() 638

L.3.4 Symbolic Linking . 641

L.3.4.1 Function: shmem_symlink() 641

L.3.4.2 Function: shmem_readlink_inline() 644

L.3.4.3 Function: shmem_follow_link_inline() 644

L.3.4.4 Function: shmem_readlink() 644

L.3.5 Synchronising . 645

L.3.5.1 Function: shmem_sync_file() 645

620

APPENDIX L. SHARED MEMORY VIRTUAL FILESYSTEM 621

L.4 Inode Operations in tmpfs . 646

L.4.1 Truncating . 646

L.4.1.1 Function: shmem_truncate() 646

L.4.1.2 Function: shmem_truncate_indirect() 647

L.4.1.3 Function: shmem_truncate_direct() 649

L.4.1.4 Function: shmem_free_swp() 650

L.4.2 Linking . 651

L.4.2.1 Function: shmem_link() 651

L.4.3 Unlinking . 652

L.4.3.1 Function: shmem_unlink() 652

L.4.4 Making Directories . 652

L.4.4.1 Function: shmem_mkdir() 652

L.4.5 Removing Directories . 653

L.4.5.1 Function: shmem_rmdir() 653

L.4.5.2 Function: shmem_empty() 653

L.4.5.3 Function: shmem_positive() 654

L.5 Page Faulting within a Virtual File 655

L.5.1 Reading Pages during Page Fault 655

L.5.1.1 Function: shmem_nopage() 655

L.5.1.2 Function: shmem_getpage() 656

L.5.2 Locating Swapped Pages . 663

L.5.2.1 Function: shmem_alloc_entry() 663

L.5.2.2 Function: shmem_swp_entry() 664

L.6 Swap Space Interaction . 667

L.6.1 Function: shmem_writepage() 667

L.6.2 Function: shmem_unuse() . 669

L.6.3 Function: shmem_unuse_inode() 670

L.6.4 Function: shmem_find_swp() . 673

L.7 Setting up Shared Regions . 674

L.7.1 Function: shmem_zero_setup() 674

L.7.2 Function: shmem_file_setup() 675

L.8 System V IPC . 678

L.8.1 Creating a SYSV shared region 678

L.8.1.1 Function: sys_shmget() 678

L.8.1.2 Function: newseg() . 679

L.8.2 Attaching a SYSV Shared Region 681

L.8.2.1 Function: sys_shmat() 681

L.1 Initialising shmfs 622

L.1 Initialising shmfs

Contents

L.1 Initialising shmfs 622
L.1.1 Function: init_tmpfs() 622
L.1.2 Function: shmem_read_super() 624
L.1.3 Function: shmem_set_size() 626

L.1.1 Function: init_tmpfs() (mm/shmem.c)
This function is responsible for registering and mounting the tmpfs and shmemfs

�lesystems.

1451 #ifdef CONFIG_TMPFS

1453 static DECLARE_FSTYPE(shmem_fs_type, "shm",

shmem_read_super, FS_LITTER);

1454 static DECLARE_FSTYPE(tmpfs_fs_type, "tmpfs",

shmem_read_super, FS_LITTER);

1455 #else

1456 static DECLARE_FSTYPE(tmpfs_fs_type, "tmpfs",

shmem_read_super, FS_LITTER|FS_NOMOUNT);

1457 #endif

1560 static int __init init_tmpfs(void)

1561 {

1562 int error;

1563

1564 error = register_filesystem(&tmpfs_fs_type);

1565 if (error) {

1566 printk(KERN_ERR "Could not register tmpfs\n");

1567 goto out3;

1568 }

1569 #ifdef CONFIG_TMPFS

1570 error = register_filesystem(&shmem_fs_type);

1571 if (error) {

1572 printk(KERN_ERR "Could not register shm fs\n");

1573 goto out2;

1574 }

1575 devfs_mk_dir(NULL, "shm", NULL);

1576 #endif

1577 shm_mnt = kern_mount(&tmpfs_fs_type);

1578 if (IS_ERR(shm_mnt)) {

1579 error = PTR_ERR(shm_mnt);

1580 printk(KERN_ERR "Could not kern_mount tmpfs\n");

1581 goto out1;

1582 }

L.1 Initialising shmfs (init_tmpfs()) 623

1583

1584 /* The internal instance should not do size checking */

1585 shmem_set_size(SHMEM_SB(shm_mnt->mnt_sb), ULONG_MAX, ULONG_MAX);

1586 return 0;

1587

1588 out1:

1589 #ifdef CONFIG_TMPFS

1590 unregister_filesystem(&shmem_fs_type);

1591 out2:

1592 #endif

1593 unregister_filesystem(&tmpfs_fs_type);

1594 out3:

1595 shm_mnt = ERR_PTR(error);

1596 return error;

1597 }

1598 module_init(init_tmpfs)

1551 The shm �lesystem is only mountable if CONFIG_TMPFS is de�ned at compile
time. Even if it is not speci�ed, a tmpfs will still be setup for anonymous
shared memory resulting from a fork()

1553 DECLARE_FSTYPE(), declared in <linux/fs.h>, declares tmpfs_fs_type as
type struct file_system_type and �lls in four �elds. �tmpfs� is it's human
readable name. shmem_read_super() is the function which is used to read the
superblock for the �lesystem (a detailed description of superblocks and how
they pertain to �lesystems is beyond the scope of this book). FS_LITTER is
a �ag that indicates the �lesystem tree should be maintained in the dcache.
Finally, the macro sets the module owner of the �lesystem to be the module
loading the �lesystem

1560 __init places this function in the init section. This means that after the
kernel has �nished bootstrapping, the code for the function will be removed

1564-1568 Register the �lesystem tmpfs_fs_type which was declared in line 1433.
If it fails, goto out3 where the appropriate error will be returned

1569-1474 If tmpfs is speci�ed at con�gure time, register the shmem �lesystem. If
it fails, goto out2 where tmpfs_fs_type will be unregistered before returning
the error

1575 If /dev/ is being managed by the device �lesystem (devfs), then create a new
shm directory. If the kernel does not use devfs, then the system administrator
must manually create the directory

1577 kern_mount() mounts a �lesystem internally. In other words, the �lesystem
is mounted and active but it is not visible to the user anywhere in the VFS.
The mount point in shm_mnt which is local to the shmem.c �le and of type

L.1 Initialising shmfs (init_tmpfs()) 624

struct vfsmount. This variable is needed for searching the �lesystem and for
unmounting it later

1578-1582 Ensure the �lesystem mounted correctly but if it didn't, goto out1

where the �lesystems will be unregistered before returning the error

1585 The function shmem_set_size() (See Section L.1.3) is responsible for set-
ting the maximum number of blocks and inodes that may be created in this
�lesystem

1598 module_init() in this instance indicates that init_shmem_fs() should be
called when the module is loaded. If it is compiled directly into the kernel,
the function will be called on system startup

L.1.2 Function: shmem_read_super() (mm/shmem.c)
This is the callback function provided for the �lesystem which �reads� the su-

perblock. With an ordinary �lesystem, this would entail reading the informa-
tion from the disk but as this is a RAM-based �lesystem, it instead populates a
struct super_block.

1452 static struct super_block *shmem_read_super(struct super_block *sb,

void* data, int silent)

1453 {

1454 struct inode *inode;

1455 struct dentry *root;

1456 unsigned long blocks, inodes;

1457 int mode = S_IRWXUGO | S_ISVTX;

1458 uid_t uid = current->fsuid;

1459 gid_t gid = current->fsgid;

1460 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);

1461 struct sysinfo si;

1462

1463 /*

1464 * Per default we only allow half of the physical ram per

1465 * tmpfs instance

1466 */

1467 si_meminfo(&si);

1468 blocks = inodes = si.totalram / 2;

1469

1470 #ifdef CONFIG_TMPFS

1471 if (shmem_parse_options(data, &mode, &uid,

&gid, &blocks, &inodes))

1472 return NULL;

1473 #endif

1474

1475 spin_lock_init(&sbinfo->stat_lock);

L.1 Initialising shmfs (shmem_read_super()) 625

1476 sbinfo->max_blocks = blocks;

1477 sbinfo->free_blocks = blocks;

1478 sbinfo->max_inodes = inodes;

1479 sbinfo->free_inodes = inodes;

1480 sb->s_maxbytes = SHMEM_MAX_BYTES;

1481 sb->s_blocksize = PAGE_CACHE_SIZE;

1482 sb->s_blocksize_bits = PAGE_CACHE_SHIFT;

1483 sb->s_magic = TMPFS_MAGIC;

1484 sb->s_op = &shmem_ops;

1485 inode = shmem_get_inode(sb, S_IFDIR | mode, 0);

1486 if (!inode)

1487 return NULL;

1488

1489 inode->i_uid = uid;

1490 inode->i_gid = gid;

1491 root = d_alloc_root(inode);

1492 if (!root) {

1493 iput(inode);

1494 return NULL;

1495 }

1496 sb->s_root = root;

1497 return sb;

1498 }

1471 The parameters are;

sb is the super_block to populate

data contains the mount arguments

silent is unused in this function

1457-1459 Set the default mode, uid and gid. These may be overridden with the
parameters passed as mount options

1460 Each super_block is allowed to have a �lesystem speci�c struct that is
contained within a union called super_block→u. The macro SHMEM_SB()

returns the struct shmem_sb_info contained within this union

1467 si_meminfo() populates struct sysinfo with total memory, available
memory and usage statistics. The function is de�ned in arch/i386/mm/init.c
and is architecture dependant

1468 By default, only allow the �lesystem to consume half of total available phys-
ical memory

1471-1472 If tmpfs is available, parse the mount options allowing them to override
the defaults

L.1 Initialising shmfs (shmem_read_super()) 626

1475 Acquire the lock protecting sbinfo which is the struct shmem_sb_info in
the super_block

1483 Populate the sb and sbinfo �elds

1484 The shmem_ops is a struct of function pointers for super block operations
such as remounting the �lesystem and deleting an inode

1485-1487 This block allocates a special inode which represents the root of the
�lesystem

1489-1490 Set the uid and gid of the root of the new �lesystem

1496 Set the root inode into the super_block

1497 Return the populated superblock

L.1.3 Function: shmem_set_size() (mm/shmem.c)
This function updates the number of available blocks and inodes in the �lesystem.

It is set while the �lesystem is being mounted or remounted.

861 static int shmem_set_size(struct shmem_sb_info *info,

862 unsigned long max_blocks,

unsigned long max_inodes)

863 {

864 int error;

865 unsigned long blocks, inodes;

866

867 spin_lock(&info->stat_lock);

868 blocks = info->max_blocks - info->free_blocks;

869 inodes = info->max_inodes - info->free_inodes;

870 error = -EINVAL;

871 if (max_blocks < blocks)

872 goto out;

873 if (max_inodes < inodes)

874 goto out;

875 error = 0;

876 info->max_blocks = max_blocks;

877 info->free_blocks = max_blocks - blocks;

878 info->max_inodes = max_inodes;

879 info->free_inodes = max_inodes - inodes;

880 out:

881 spin_unlock(&info->stat_lock);

882 return error;

883 }

L.1 Initialising shmfs (shmem_set_size()) 627

861 The parameters are the info representing the �lesystem superblock, the max-
imum number of blocks (max_blocks) and the maximum number of inodes
(max_inodes)

867 Lock the superblock info spinlock

868 Calculate the number of blocks current in use by the �lesystem. On initial
mount, this is unimportant, but if the �lesystem is being remounted, the
function must make sure that the new �lesystem is not too small

869 Calculate the number of inodes currently in use

871-872 If the remounted �lesystem would have too few blocks to store the current
information, goto out to return -EINVAL

873-874 Similarly, make sure there are enough available inodes or return -EINVAL

875 It is safe to mount the �lesystem so set error to 0 indicating that this operation
will be successful

876-877 Set the maximum number of blocks and number of available blocks in the
�lesystems superblock info struct

878-879 Set the maximum and available number of inodes

881 Unlock the �lesystems superblock info struct

882 Return 0 if successful or -EINVAL if not

L.2 Creating Files in tmpfs 628

L.2 Creating Files in tmpfs

Contents

L.2 Creating Files in tmpfs 628
L.2.1 Function: shmem_create() 628
L.2.2 Function: shmem_mknod() 628
L.2.3 Function: shmem_get_inode() 629

L.2.1 Function: shmem_create() (mm/shmem.c)
This is the top-level function called when creating a new �le.

1164 static int shmem_create(struct inode *dir,

struct dentry *dentry,

int mode)

1165 {

1166 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);

1167 }

1164 The parameters are:

dir is the inode of the directory the new �le is being created in

dentry is the dentry of the new �le being created

mode is the �ags passed to the open system call

1166 Call shmem_mknod()(See Section L.2.2) adding the S_IFREG �ag to the mode
�ags so a regular �le will be created

L.2.2 Function: shmem_mknod() (mm/shmem.c)

1139 static int shmem_mknod(struct inode *dir,

struct dentry *dentry,

int mode, int dev)

1140 {

1141 struct inode *inode = shmem_get_inode(dir->i_sb, mode, dev);

1142 int error = -ENOSPC;

1143

1144 if (inode) {

1145 dir->i_size += BOGO_DIRENT_SIZE;

1146 dir->i_ctime = dir->i_mtime = CURRENT_TIME;

1147 d_instantiate(dentry, inode);

1148 dget(dentry); /* Extra count - pin the dentry in core */

1149 error = 0;

1150 }

1151 return error;

1152 }

L.2 Creating Files in tmpfs (shmem_mknod()) 629

1141 Call shmem_get_inode() (See Section L.2.3) to create a new inode

1144 If the inode was successfully created, update the directory statistics and
instantiate the new �le

1145 Update the size of the directory

1146 Update the ctime and mtime �elds

1147 Instantiate the inode

1148 Take a reference to the dentry so that it will be pinned and not accidentally
reclaimed during pageout. Unlike normal �les, there is no automatic way of
recreating dentries once they are deleted

1149 Indicate the call ended successfully

1151 Return success or -ENOSPC on error

L.2.3 Function: shmem_get_inode() (mm/shmem.c)

809 struct inode *shmem_get_inode(struct super_block *sb,

int mode,

int dev)

810 {

811 struct inode *inode;

812 struct shmem_inode_info *info;

813 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);

814

815 spin_lock(&sbinfo->stat_lock);

816 if (!sbinfo->free_inodes) {

817 spin_unlock(&sbinfo->stat_lock);

818 return NULL;

819 }

820 sbinfo->free_inodes--;

821 spin_unlock(&sbinfo->stat_lock);

822

823 inode = new_inode(sb);

This preamble section is responsible for updating the free inode count and allo-
cating an inode with new_inode().

815 Acquire the sbinfo spinlock as it is about to be updated

816-819 Make sure there are free inodes and if not, return NULL

820-821 Update the free inode count and free the lock

L.2 Creating Files in tmpfs (shmem_get_inode()) 630

823 new_inode() is part of the �lesystem layer and declared in <linux/fs.h>.
Exactly how it works is beyond the scope of this document but the summary
is simple. It allocates an inode from the slab allocator, zeros most �elds
and populates inode→i_sb, inode→i_dev and inode→i_blkbits based on
information in the super block

824 if (inode) {

825 inode->i_mode = mode;

826 inode->i_uid = current->fsuid;

827 inode->i_gid = current->fsgid;

828 inode->i_blksize = PAGE_CACHE_SIZE;

829 inode->i_blocks = 0;

830 inode->i_rdev = NODEV;

831 inode->i_mapping->a_ops = &shmem_aops;

832 inode->i_atime = inode->i_mtime

= inode->i_ctime

= CURRENT_TIME;

833 info = SHMEM_I(inode);

834 info->inode = inode;

835 spin_lock_init(&info->lock);

836 switch (mode & S_IFMT) {

837 default:

838 init_special_inode(inode, mode, dev);

839 break;

840 case S_IFREG:

841 inode->i_op = &shmem_inode_operations;

842 inode->i_fop = &shmem_file_operations;

843 spin_lock(&shmem_ilock);

844 list_add_tail(&info->list, &shmem_inodes);

845 spin_unlock(&shmem_ilock);

846 break;

847 case S_IFDIR:

848 inode->i_nlink++;

849 /* Some things misbehave if size == 0 on a directory */

850 inode->i_size = 2 * BOGO_DIRENT_SIZE;

851 inode->i_op = &shmem_dir_inode_operations;

852 inode->i_fop = &dcache_dir_ops;

853 break;

854 case S_IFLNK:

855 break;

856 }

857 }

858 return inode;

859 }

824-858 Fill in the inode �elds if created successfully

L.2 Creating Files in tmpfs (shmem_get_inode()) 631

825-830 Fill in the basic inode information

831 Set the address_space_operations to use shmem_aops which sets up the
function shmem_writepage()(See Section L.6.1) to be used as a page write-
back callback for the address_space

832-834 Fill in more basic information

835-836 Initialise the inodes semaphore and spinlock

836-856 Determine how to �ll the remaining �elds based on the mode �ags passed
in

838 In this case, a special inode is being created. Speci�cally, this is while the
�lesystem is being mounted and the root inode is being created

840-846 Create an inode for a regular �le. The main point to note here is that the
inode→i_op and inode→i_fop �elds are set to shmem_inode_operations

and shmem_file_operations respectively

847-852 Create an inode for a new directory. The i_nlink and i_size �elds are
updated to show the increased number of �les and the size of the directory.
The main point to note here is that the inode→i_op and inode→i_fop �elds
are set to shmem_dir_inode_operations and dcach_dir_ops respectively

854-855 If linking a �le, do nothing for now as it is handled by the parent function
shmem_link()

858 Return the new inode or NULL if it could not be created

L.3 File Operations in tmpfs 632

L.3 File Operations in tmpfs

Contents

L.3 File Operations in tmpfs 632
L.3.1 Memory Mapping 632
L.3.1.1 Function: shmem_mmap() 632

L.3.2 Reading Files 633
L.3.2.1 Function: shmem_file_read() 633
L.3.2.2 Function: do_shmem_file_read() 634
L.3.2.3 Function: file_read_actor() 637

L.3.3 Writing 638
L.3.3.1 Function: shmem_file_write() 638

L.3.4 Symbolic Linking 641
L.3.4.1 Function: shmem_symlink() 641
L.3.4.2 Function: shmem_readlink_inline() 644
L.3.4.3 Function: shmem_follow_link_inline() 644
L.3.4.4 Function: shmem_readlink() 644

L.3.5 Synchronising 645
L.3.5.1 Function: shmem_sync_file() 645

L.3.1 Memory Mapping

The tasks for memory mapping a virtual �le are simple. The only changes that need
to be made is to update the VMAs vm_operations_struct �eld (vma→vm_ops) to
use the shmfs equivilants for faulting.

L.3.1.1 Function: shmem_mmap() (mm/shmem.c)

796 static int shmem_mmap(struct file * file, struct vm_area_struct * vma)

797 {

798 struct vm_operations_struct *ops;

799 struct inode *inode = file->f_dentry->d_inode;

800

801 ops = &shmem_vm_ops;

802 if (!S_ISREG(inode->i_mode))

803 return -EACCES;

804 UPDATE_ATIME(inode);

805 vma->vm_ops = ops;

806 return 0;

807 }

801 ops is now the vm_operations_struct to be used for the virtual �lesystem

802 Make sure that the inode being mapped is a regular �le. If not, return
-EACCESS

804 Update the atime for the inode to show it was accessed

L.3.2 Reading Files 633

805 Update vma→vm_ops so that shmem_nopage() (See Section L.5.1.1) will be
used to handle page faults within the mapping

L.3.2 Reading Files

L.3.2.1 Function: shmem_file_read() (mm/shmem.c)
This is the top-level function called for read()ing a tmpfs �le.

1088 static ssize_t shmem_file_read(struct file *filp, char *buf,

size_t count, loff_t *ppos)

1089 {

1090 read_descriptor_t desc;

1091

1092 if ((ssize_t) count < 0)

1093 return -EINVAL;

1094 if (!access_ok(VERIFY_WRITE, buf, count))

1095 return -EFAULT;

1096 if (!count)

1097 return 0;

1098

1099 desc.written = 0;

1100 desc.count = count;

1101 desc.buf = buf;

1102 desc.error = 0;

1103

1104 do_shmem_file_read(filp, ppos, &desc);

1105 if (desc.written)

1106 return desc.written;

1107 return desc.error;

1108 }

1088 The parameters are:

�lp is a pointer to the struct file being read

buf is the bu�er that should be �lled

count is the number of bytes that should be read

ppos is the current position

1092-1093 count cannot be negative

1094-1095 access_ok() ensures that it is safe to write count number of bytes to
the userspace bu�er. If it can't, -EFAULT will be returned

1099-1102 Initialise a read_descriptor_t struct which will eventually be passed
to file_read_actor()(See Section L.3.2.3)

L.3.2 Reading Files (shmem_file_read()) 634

1104 Call do_shmem_file_read() to start performing the actual read

1105-1106 Return the number of bytes that were written to the userspace bu�er

1107 If none were written, return the error

L.3.2.2 Function: do_shmem_file_read() (mm/shmem.c)
This function retrieves the pages needed for the �le read with shmem_getpage()

and calls file_read_actor() to copy the data to userspace.

1003 static void do_shmem_file_read(struct file *filp,

loff_t *ppos,

read_descriptor_t *desc)

1004 {

1005 struct inode *inode = filp->f_dentry->d_inode;

1006 struct address_space *mapping = inode->i_mapping;

1007 unsigned long index, offset;

1008

1009 index = *ppos >> PAGE_CACHE_SHIFT;

1010 offset = *ppos & ~PAGE_CACHE_MASK;

1011

1012 for (;;) {

1013 struct page *page = NULL;

1014 unsigned long end_index, nr, ret;

1015

1016 end_index = inode->i_size >> PAGE_CACHE_SHIFT;

1017 if (index > end_index)

1018 break;

1019 if (index == end_index) {

1020 nr = inode->i_size & ~PAGE_CACHE_MASK;

1021 if (nr <= offset)

1022 break;

1023 }

1024

1025 desc->error = shmem_getpage(inode, index, &page, SGP_READ);

1026 if (desc->error) {

1027 if (desc->error == -EINVAL)

1028 desc->error = 0;

1029 break;

1030 }

1031

1036 nr = PAGE_CACHE_SIZE;

1037 end_index = inode->i_size >> PAGE_CACHE_SHIFT;

1038 if (index == end_index) {

1039 nr = inode->i_size & ~PAGE_CACHE_MASK;

L.3.2 Reading Files (do_shmem_file_read()) 635

1040 if (nr <= offset) {

1041 page_cache_release(page);

1042 break;

1043 }

1044 }

1045 nr -= offset;

1046

1047 if (page != ZERO_PAGE(0)) {

1053 if (mapping->i_mmap_shared != NULL)

1054 flush_dcache_page(page);

1055 /*

1056 * Mark the page accessed if we read the

1057 * beginning or we just did an lseek.

1058 */

1059 if (!offset || !filp->f_reada)

1060 mark_page_accessed(page);

1061 }

1062

1073 ret = file_read_actor(desc, page, offset, nr);

1074 offset += ret;

1075 index += offset >> PAGE_CACHE_SHIFT;

1076 offset &= ~PAGE_CACHE_MASK;

1077

1078 page_cache_release(page);

1079 if (ret != nr || !desc->count)

1080 break;

1081 }

1082

1083 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;

1084 filp->f_reada = 1;

1085 UPDATE_ATIME(inode);

1086 }

1005-1006 Retrieve the inode and mapping using the struct file

1009 index is the page index within the �le that contains the data

1010 offset is the o�set within the page that is currently being read

1012-1081 Loop until the requested number of bytes has been read. nr is
the number of bytes that are still to be read within the current page.
desc→count starts as the number of bytes to read and is decremented by
file_read_actor() (See Section L.3.2.3)

1016-1018 end_index is the index of the last page in the �le. Break when the
end of the �le is reached

L.3.2 Reading Files (do_shmem_file_read()) 636

1019-1023 When the last page is reached, set nr to be the number of bytes to be
read within this page. If the �le pointer is after nr, break as there is no more
data to be read. This could happen after the �le was truncated

1025-1030 shmem_getpage()(See Section L.5.1.2) will locate the requested page
in the page cache, swap cache or page it in. If an error occurs, record it in
desc→error and return

1036 nr is the number of pages that must be read from the page so initialise it to
the size of a page as this full page is being read

1037 Initialise end_index which is index of the page at the end of the �le

1038-1044 If this is the last page in the �le, update nr to be the number of bytes
in the page. If nr is currently after the end of the �le (could happen after
truncate), then release the reference to the page (taken by shmem_getpage())
and exit the loop

1045 Update the number of bytes to be read. Remember that offset is where the
�le reader is currently within the page

1047-1061 If the page being read is not the global zero page, take care of potential
aliasing problems by calling flush_dcache_page(). If the page is being read
the �rst time or an lseek() just occured (f_reada is zero), then mark the
page accessed with mark_page_accesssed()

1073 Call file_read_actor()(See Section L.3.2.3) to copy the data to userspace.
It returns the number of bytes that were copied and updates the user bu�er
pointers and remaining count

1074 Update the o�set within the page being read

1075 Move the index to the next page if necessary

1076 Ensure that offset is an o�set within a page

1078 Release the reference to the page being copied. The reference was taken by
shmem_getpage()

1079-1080 If the requested bytes have been read, return

1083 Update the �le pointer

1084 Enable �le readahead

1085 Update the access time for the inode as it has just been read from

L.3.2.3 Function: file_read_actor() 637

L.3.2.3 Function: file_read_actor() (mm/�lemap.c)
This function is responsible for copying data from a page to a userspace bu�er.

It is ultimatly called by a number of functions including generic_file_read(),
generic_file_write() and shmem_file_read().

1669 int file_read_actor(read_descriptor_t * desc,

struct page *page,

unsigned long offset,

unsigned long size)

1670 {

1671 char *kaddr;

1672 unsigned long left, count = desc->count;

1673

1674 if (size > count)

1675 size = count;

1676

1677 kaddr = kmap(page);

1678 left = __copy_to_user(desc->buf, kaddr + offset, size);

1679 kunmap(page);

1680

1681 if (left) {

1682 size -= left;

1683 desc->error = -EFAULT;

1684 }

1685 desc->count = count - size;

1686 desc->written += size;

1687 desc->buf += size;

1688 return size;

1689 }

1669 The parameters are:

desc is a structure containing information about the read, including the
bu�er and the total number of bytes that are to be read from this �le

page is the page containing �le data that is to be copied to userspace

o�set is the o�set within the page that is being copied

size is the number of bytes to be read from page

1672 count is now the number of bytes that are to be read from the �le

1674-1675 Make sure to not read more bytes than are requested

1677 Map the page into low memory with kmap(). See Section I.1.0.5

1678 Copy the data from the kernel page to the userspace bu�er

L.3.3 Writing 638

1679 Unmap the page. See Section I.3.1

1644-1647 If all the bytes were not copied, it must be because the bu�er was
not accessible. Update size so that desc→count will re�ect how many bytes
are still to be copied by the read. -EFAULT will be returned to the process
performing the read

1685-1687 Update the desc struct to show the current status of the read

1688 Return the number of bytes that were written to the userspace bu�er

L.3.3 Writing

L.3.3.1 Function: shmem_file_write() (mm/shmem.c)

925 shmem_file_write(struct file *file, const char *buf,

size_t count, loff_t *ppos)

926 {

927 struct inode *inode = file->f_dentry->d_inode;

928 loff_t pos;

929 unsigned long written;

930 int err;

931

932 if ((ssize_t) count < 0)

933 return -EINVAL;

934

935 if (!access_ok(VERIFY_READ, buf, count))

936 return -EFAULT;

937

938 down(&inode->i_sem);

939

940 pos = *ppos;

941 written = 0;

942

943 err = precheck_file_write(file, inode, &count, &pos);

944 if (err || !count)

945 goto out;

946

947 remove_suid(inode);

948 inode->i_ctime = inode->i_mtime = CURRENT_TIME;

949

Function preamble.

927 Get the inode that represents the �le being written

932-933 Return -EINVAL if the user tries to write a negative number of bytes

L.3.3 Writing (shmem_file_write()) 639

935-936 Return -EFAULT if the userspace bu�er is inaccessible

938 Acquire the semaphore protecting the inode

940 Record the beginning of where the write is taking place

941 Initialise the written number of bytes to 0

943 precheck_file_write() performs a number of checks to make sure the write
is ok to proceed. This includes updating pos to be the end of the �le if opened
in append mode and checking that the process limits wil not be exceeded

944-945 If the write cannot proceed, goto out

947 Clear the SUID bit if it is set

948 Update the inodes ctime and mtime

950 do {

951 struct page *page = NULL;

952 unsigned long bytes, index, offset;

953 char *kaddr;

954 int left;

955

956 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */

957 index = pos >> PAGE_CACHE_SHIFT;

958 bytes = PAGE_CACHE_SIZE - offset;

959 if (bytes > count)

960 bytes = count;

961

962 /*

963 * We don't hold page lock across copy from user -

964 * what would it guard against? - so no deadlock here.

965 */

966

967 err = shmem_getpage(inode, index, &page, SGP_WRITE);

968 if (err)

969 break;

970

971 kaddr = kmap(page);

972 left = __copy_from_user(kaddr + offset, buf, bytes);

973 kunmap(page);

974

975 written += bytes;

976 count -= bytes;

977 pos += bytes;

978 buf += bytes;

L.3.3 Writing (shmem_file_write()) 640

979 if (pos > inode->i_size)

980 inode->i_size = pos;

981

982 flush_dcache_page(page);

983 SetPageDirty(page);

984 SetPageReferenced(page);

985 page_cache_release(page);

986

987 if (left) {

988 pos -= left;

989 written -= left;

990 err = -EFAULT;

991 break;

992 }

993 } while (count);

994

995 *ppos = pos;

996 if (written)

997 err = written;

998 out:

999 up(&inode->i_sem);

1000 return err;

1001 }

950-993 Loop until all the requested bytes have been written

956 Set offset to be the o�set within the current page being written

957 index is the page index within the �le current being written

958 bytes is the number of bytes within the current page remaining to be written

959-960 If bytes indicates that more bytes should be written than was requested
(count), set bytes to count

967-969 Locate the page to be written to. The SGP_WRITE �ag indicates that a
page should be allocated if one does not already exist. If the page could not
be found or allocated, break out of the loop

971-973 Map the page to be written to and copy the bytes from the userspace
bu�er before unmapping the page again

975 Update the number of bytes written

976 Update the number of bytes remaining to write

977 Update the position within the �le

L.3.4 Symbolic Linking 641

978 Update the pointer within the userspace bu�er

979-980 If the �le is now bigger, update inode→i_size

982 Flush the dcache to avoid aliasing problems

983-984 Set the page dirty and referenced

985 Release the reference to the page taken by shmem_getpage()

987-992 If all the requested bytes were not read from the userspace bu�er, update
the written statistics and the postition within the �le and bu�er

995 Update the �le pointer

996-997 If all the requested bytes were not written, set the error return variable

999 Release the inodes semaphore

1000 Return success or else return the number of bytes remaining to be written

L.3.4 Symbolic Linking

L.3.4.1 Function: shmem_symlink() (mm/shmem.c)
This function is responsible for creating a symbolic link symname and deciding

where to store the information. The name of the link will be stored in the inode if
the name is small enough and in a page frame otherwise.

1272 static int shmem_symlink(struct inode * dir,

struct dentry *dentry,

const char * symname)

1273 {

1274 int error;

1275 int len;

1276 struct inode *inode;

1277 struct page *page = NULL;

1278 char *kaddr;

1279 struct shmem_inode_info *info;

1280

1281 len = strlen(symname) + 1;

1282 if (len > PAGE_CACHE_SIZE)

1283 return -ENAMETOOLONG;

1284

1285 inode = shmem_get_inode(dir->i_sb, S_IFLNK|S_IRWXUGO, 0);

1286 if (!inode)

1287 return -ENOSPC;

1288

1289 info = SHMEM_I(inode);

1290 inode->i_size = len-1;

L.3.4 Symbolic Linking (shmem_symlink()) 642

This block performs basic sanity checks and creating a new inode for the symbolic
link.

1272 The parameter symname is the name of the link to create

1281 Calculate the length (len) of the link

1282-1283 If the name is larger than a page, return -ENAMETOOLONG

1285-1287 Allocate a new inode. Return -ENOSPC if it fails

1289 Get the private information struct

1290 The size of the inode is the length of the link

1291 if (len <= sizeof(struct shmem_inode_info)) {

1292 /* do it inline */

1293 memcpy(info, symname, len);

1294 inode->i_op = &shmem_symlink_inline_operations;

1295 } else {

1296 error = shmem_getpage(inode, 0, &page, SGP_WRITE);

1297 if (error) {

1298 iput(inode);

1299 return error;

1300 }

1301 inode->i_op = &shmem_symlink_inode_operations;

1302 spin_lock(&shmem_ilock);

1303 list_add_tail(&info->list, &shmem_inodes);

1304 spin_unlock(&shmem_ilock);

1305 kaddr = kmap(page);

1306 memcpy(kaddr, symname, len);

1307 kunmap(page);

1308 SetPageDirty(page);

1309 page_cache_release(page);

1310 }

This block is responsible for storing the link information.

1291-1295 If the length of the name is smaller than the space used for the
shmem_inode_info, then copy the name into the space reserved for the private
struct

1294 Set the inode→i_op to shmem_symlink_inline_operations which has
functions which know the link name is in the inode

1295-1314 Allocate a page to store the the link in

1296 Acquire the private information semaphore

L.3.4 Symbolic Linking (shmem_symlink()) 643

1297 Allocate a page with shmem_getpage_locked

1298-1302 If an error occured, drop the reference to the inode and return the error

1301 Use shmem_symlink_inode_operations which understands that the link
information is contained within a page

1302 shmem_ilock is a global spinlock which protects a global linked list of inodes
which are linked via the private information structs info→list �eld

1303 Add the new inode to the global list

1304 Release shmem_ilock

1305 Map the page

1306 Copy in the link information

1307 Unmap the page

1308-1309 Set the page dirty and unlock it

1310 Release our reference to it

1311 Release the private information semaphore

1311 dir->i_size += BOGO_DIRENT_SIZE;

1312 dir->i_ctime = dir->i_mtime = CURRENT_TIME;

1313 d_instantiate(dentry, inode);

1314 dget(dentry);

1315 return 0;

1316 }

1311 Increment the size of the directory as a new inode has been added.
BOGO_DIRENT_SIZE is just a pseudo size of inodes so that ls output looks
nice

1312 Update the i_ctime and i_mtime

1313-1314 Instantiate the inode

1315 Return successs

L.3.4.2 Function: shmem_readlink_inline() 644

L.3.4.2 Function: shmem_readlink_inline() (mm/shmem.c)

1318 static int shmem_readlink_inline(struct dentry *dentry,

char *buffer, int buflen)

1319 {

1320 return vfs_readlink(dentry, buffer, buflen,

(const char *)SHMEM_I(dentry->d_inode));

1321 }

1320 The link name is contained within the inode so pass it as a parameter to the
VFS layer with vfs_readlink()

L.3.4.3 Function: shmem_follow_link_inline() (mm/shmem.c)

1323 static int shmem_follow_link_inline(struct dentry *dentry,

struct nameidata *nd)

1324 {

1325 return vfs_follow_link(nd,

(const char *)SHMEM_I(dentry->d_inode));

1326 }

1209 The link name is contained within the inode so pass it as a parameter to the
VFS layer with vfs_followlink()

L.3.4.4 Function: shmem_readlink() (mm/shmem.c)

1328 static int shmem_readlink(struct dentry *dentry,

char *buffer, int buflen)

1329 {

1330 struct page *page - NULL;

1331 int res = shmem_getpage(dentry->d_inode, 0, &page, SGP_READ);

1332 if (res)

1333 return res;

1334 res = vfs_readlink(dentry,buffer,buflen, kmap(page));

1335 kunmap(page);

1336 mark_page_accessed(page);

1337 page_cache_release(page);

1338 return res;

1339 }

1331 The link name is contained in a page associated with the symlink so call
shmem_getpage()(See Section L.5.1.2) to get a pointer to it

1332-1333 If an error occured, return NULL

1334 Map the page with kmap() (See Section I.1.0.5) and pass it as a pointer to
vfs_readlink(). The link is at the beginning of the page

L.3.5 Synchronising 645

1335 Unmap the page

1336 Mark the page accessed

1338 Drop our reference to the page taken by shmem_getpage()

1338 Return the link

1231 static int shmem_follow_link(struct dentry *dentry,

struct nameidata *nd)

1232 {

1233 struct page * page;

1234 int res = shmem_getpage(dentry->d_inode, 0, &page);

1235 if (res)

1236 return res;

1237

1238 res = vfs_follow_link(nd, kmap(page));

1239 kunmap(page);

1240 page_cache_release(page);

1241 return res;

1242 }

1234 The link name is within a page so get the page with shmem_getpage()

1235-1236 Return the error if one occured

1238 Map the page and pass it as a pointer to vfs_follow_link()

1239 Unmap the page

1240 Drop our reference to the page

1241 Return success

L.3.5 Synchronising

L.3.5.1 Function: shmem_sync_file() (mm/shmem.c)
This function simply returns 0 as the �le exists only in memory and does not

need to be synchronised with a �le on disk.

1446 static int shmem_sync_file(struct file * file,

struct dentry *dentry,

int datasync)

1447 {

1448 return 0;

1449 }

L.4 Inode Operations in tmpfs 646

L.4 Inode Operations in tmpfs

Contents

L.4 Inode Operations in tmpfs 646
L.4.1 Truncating 646
L.4.1.1 Function: shmem_truncate() 646
L.4.1.2 Function: shmem_truncate_indirect() 647
L.4.1.3 Function: shmem_truncate_direct() 649
L.4.1.4 Function: shmem_free_swp() 650

L.4.2 Linking 651
L.4.2.1 Function: shmem_link() 651

L.4.3 Unlinking 652
L.4.3.1 Function: shmem_unlink() 652

L.4.4 Making Directories 652
L.4.4.1 Function: shmem_mkdir() 652

L.4.5 Removing Directories 653
L.4.5.1 Function: shmem_rmdir() 653
L.4.5.2 Function: shmem_empty() 653
L.4.5.3 Function: shmem_positive() 654

L.4.1 Truncating

L.4.1.1 Function: shmem_truncate() (mm/shmem.c)
By the time this function has been called, the inode→i_size has been set to

the new size by vmtruncate(). It is the job of this function to either create or
remove pages as necessary to set the size of the �le.

351 static void shmem_truncate(struct inode *inode)

352 {

353 struct shmem_inode_info *info = SHMEM_I(inode);

354 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);

355 unsigned long freed = 0;

356 unsigned long index;

357

358 inode->i_ctime = inode->i_mtime = CURRENT_TIME;

359 index = (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;

360 if (index >= info->next_index)

361 return;

362

363 spin_lock(&info->lock);

364 while (index < info->next_index)

365 freed += shmem_truncate_indirect(info, index);

366 BUG_ON(info->swapped > info->next_index);

367 spin_unlock(&info->lock);

368

L.4.1 Truncating (shmem_truncate()) 647

369 spin_lock(&sbinfo->stat_lock);

370 sbinfo->free_blocks += freed;

371 inode->i_blocks -= freed*BLOCKS_PER_PAGE;

372 spin_unlock(&sbinfo->stat_lock);

373 }

353 Get the private �lesystem information for this inode with SHMEM_I()

354 Get the superblock private information

358 Update the ctime and mtime for the inode

359 Get the index of the page that is the new end of the �le. The old size is stored
in info→next_index

360-361 If the �le is being expanded, just return as the global zero page will be
used to represent the expanded region

363 Acquire the private info spinlock

364-365 Continually call shmem_truncate_indirect() until the �le is truncated
to the desired size

366 It is a bug if the shmem_info_info struct indicates that there are more pages
swapped out than there are pages in the �le

367 release the private info spinlock

369 Acquire the superblock private info spinlock

370 Update the number of free blocks available

371 Update the number of blocks being used by this inode

372 Release the superblock private info spinlock

L.4.1.2 Function: shmem_truncate_indirect() (mm/shmem.c)
This function locates the last doubly-indirect block in the inode and calls

shmem_truncate_direct() to truncate it.

308 static inline unsigned long

309 shmem_truncate_indirect(struct shmem_inode_info *info,

unsigned long index)

310 {

311 swp_entry_t ***base;

312 unsigned long baseidx, start;

313 unsigned long len = info->next_index;

314 unsigned long freed;

315

L.4.1 Truncating (shmem_truncate_indirect()) 648

316 if (len <= SHMEM_NR_DIRECT) {

317 info->next_index = index;

318 if (!info->swapped)

319 return 0;

320 freed = shmem_free_swp(info->i_direct + index,

321 info->i_direct + len);

322 info->swapped -= freed;

323 return freed;

324 }

325

326 if (len <= ENTRIES_PER_PAGEPAGE/2 + SHMEM_NR_DIRECT) {

327 len -= SHMEM_NR_DIRECT;

328 base = (swp_entry_t ***) &info->i_indirect;

329 baseidx = SHMEM_NR_DIRECT;

330 } else {

331 len -= ENTRIES_PER_PAGEPAGE/2 + SHMEM_NR_DIRECT;

332 BUG_ON(len > ENTRIES_PER_PAGEPAGE*ENTRIES_PER_PAGE/2);

333 baseidx = len - 1;

334 baseidx -= baseidx % ENTRIES_PER_PAGEPAGE;

335 base = (swp_entry_t ***) info->i_indirect +

336 ENTRIES_PER_PAGE/2 + baseidx/ENTRIES_PER_PAGEPAGE;

337 len -= baseidx;

338 baseidx += ENTRIES_PER_PAGEPAGE/2 + SHMEM_NR_DIRECT;

339 }

340

341 if (index > baseidx) {

342 info->next_index = index;

343 start = index - baseidx;

344 } else {

345 info->next_index = baseidx;

346 start = 0;

347 }

348 return *base? shmem_truncate_direct(info, base, start, len): 0;

349 }

313 len is the second last page that is currently in use by the �le

316-324 If the �le is small and all entries are stored in the direct block in-
formation, simply call shmem_free_swp() passing it the �rst swap entry in
info→i_direct and the number of entries to truncate

326-339 The pages to be truncated are in the indirect blocks somewhere. This
section of code is dedicated to calculating three variables, base, baseidx and
len. base is the beginning of the page that contains pointers to swap entries to
be truncated. baseidx is the page index of the �rst entry within the indirect

L.4.1 Truncating (shmem_truncate_indirect()) 649

block being used and len is the number of entries to be truncated from in this
pass

326-330 This calculates the variables for a doubly indirect block. The base

is then set to the swap entry at the beginnning of info→i_indirect.
baseidx is SHMEM_NR_DIRECT which is the page index at the beginning of
info→i_indirect. At this point, len is the number of pages in the �le so
the number of direct blocks is subtracted to leave the remaining number of
pages

330-339 Else this is a triply indexed block so the next level must be traversed
before the base, baseidx and len are calculated

341-344 If the �le is going to be bigger after the truncation, update next_index
to the new end of �le and make start the beginning of the indirect block

344-347 If the �le is been made smaller, move the current end of the �le to the
beginning of this indirect block that is about to be truncated

348 If there is a block at base, call shmem_truncate_direct() to truncate pages
in it

L.4.1.3 Function: shmem_truncate_direct() (mm/shmem.c)
This function is responsible for cycling through an indirect block and calling

shmem_free_swp for each page that contains swap vectors which are to be truncated.

264 static inline unsigned long

265 shmem_truncate_direct(struct shmem_inode_info *info,

swp_entry_t ***dir,

unsigned long start, unsigned long len)

266 {

267 swp_entry_t **last, **ptr;

268 unsigned long off, freed_swp, freed = 0;

269

270 last = *dir + (len + ENTRIES_PER_PAGE - 1) / ENTRIES_PER_PAGE;

271 off = start % ENTRIES_PER_PAGE;

272

273 for (ptr = *dir + start/ENTRIES_PER_PAGE; ptr < last; ptr++, off = 0) {

274 if (!*ptr)

275 continue;

276

277 if (info->swapped) {

278 freed_swp = shmem_free_swp(*ptr + off,

279 *ptr + ENTRIES_PER_PAGE);

280 info->swapped -= freed_swp;

281 freed += freed_swp;

L.4.1 Truncating (shmem_truncate_direct()) 650

282 }

283

284 if (!off) {

285 freed++;

286 free_page((unsigned long) *ptr);

287 *ptr = 0;

288 }

289 }

290

291 if (!start) {

292 freed++;

293 free_page((unsigned long) *dir);

294 *dir = 0;

295 }

296 return freed;

297 }

270 last is the last page within the indirect block that is to be truncated

271 off is the o�set within the page that the truncation is to if this is a partial
truncation rather than a full page truncation

273-289 Beginning with the startth block in dir, truncate pages until last is
reached

274-275 If no page is here, continue to the next one

277-282 If the info struct indicates that there are pages swapped out belonging
to this inode, call shmem_free_swp() to free any swap slot associated with
this page. If one was freed, update infoswapped and increment the count of
the freed number of pages

284-288 If this is not a partial truncate, free the page

291-295 If this whole indirect block is now free, reclaim the page

296 Return the number of pages freed

L.4.1.4 Function: shmem_free_swp() (mm/shmem.c)
This frees count number of swap entries starting with the entry at dir.

240 static int shmem_free_swp(swp_entry_t *dir, swp_entry_t *edir)

241 {

242 swp_entry_t *ptr;

243 int freed = 0;

244

245 for (ptr = dir; ptr < edir; ptr++) {

L.4.2 Linking 651

246 if (ptr->val) {

247 free_swap_and_cache(*ptr);

248 *ptr = (swp_entry_t){0};

249 freed++;

250 }

251 }

252 return freed;

254 }

245-251 Loop through each of the swap entries to be freed

246-250 If a swap entry exists, free it with free_swap_and_cache() and set the
swap entry to 0. Increment the number of pages freed

252 Return the total number of pages freed

L.4.2 Linking

L.4.2.1 Function: shmem_link() (mm/shmem.c)
This function creates a hard link with dentry to old_dentry.

1172 static int shmem_link(struct dentry *old_dentry,

struct inode *dir,

struct dentry *dentry)

1173 {

1174 struct inode *inode = old_dentry->d_inode;

1175

1176 if (S_ISDIR(inode->i_mode))

1177 return -EPERM;

1178

1179 dir->i_size += BOGO_DIRENT_SIZE;

1180 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;

1181 inode->i_nlink++;

1182 atomic_inc(&inode->i_count);

1183 dget(dentry);

1184 d_instantiate(dentry, inode);

1185 return 0;

1186 }

1174 Get the inode corresponding to old_dentry

1176-1177 If it is linking to a directory, return -EPERM. Strictly speaking, root
should be allowed to hard-link directories although it is not recommended
because of the possibility of creating a loop within the �lesystem which utilities
like �nd get lost in. tmpfs simply does not allow the hard-linking of directories

1179 Increment the size of the directory with the new link

L.4.3 Unlinking 652

1180 Update the directories mtime and ctime. Update the inodes ctime

1181 Increment the number of links leading to inode

1183 Get an extra reference to the new dentry with dget()

1184 Instantiate the new dentry

1185 Return success

L.4.3 Unlinking

L.4.3.1 Function: shmem_unlink() (mm/shmem.c)

1221 static int shmem_unlink(struct inode* dir,

struct dentry *dentry)

1222 {

1223 struct inode *inode = dentry->d_inode;

1224

1225 dir->i_size -= BOGO_DIRENT_SIZE;

1226 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;

1227 inode->i_nlink--;

1228 dput(dentry);

1229 return 0;

1230 }

1223 Get the inode for the dentry being unlinked

1225 Update the directory inodes size

1226 Update the various ctime and mtime variables

1227 Decrement the number of links to the inode

1228 Call dput() to decrement the reference to the dentry. This function will
also call iput() to clear up the inode if it's reference count reaches zero

L.4.4 Making Directories

L.4.4.1 Function: shmem_mkdir() (mm/shmem.c)

1154 static int shmem_mkdir(struct inode *dir,

struct dentry *dentry,

int mode)

1155 {

1156 int error;

1157

1158 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))

L.4.5 Removing Directories 653

1159 return error;

1160 dir->i_nlink++;

1161 return 0;

1162 }

1158 Call shmem_mknod()(See Section L.2.2) to create a special �le. By speci�ing
the S_IFDIR �ag, a directory will be created

1160 Increment the parent directory's i_nlink �eld

L.4.5 Removing Directories

L.4.5.1 Function: shmem_rmdir() (mm/shmem.c)

1232 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)

1233 {

1234 if (!shmem_empty(dentry))

1235 return -ENOTEMPTY;

1236

1237 dir->i_nlink--;

1238 return shmem_unlink(dir, dentry);

1239 }

1234-1235 Check to see if the directory is empty with shmem_empty() (See Section L.4.5.2).
If it is not, return -ENOTEMPTY

1237 Decrement the parent directory's i_nlink �eld

1238 Return the result of shmem_unlink()(See Section L.4.3.1) which should
delete the directory

L.4.5.2 Function: shmem_empty() (mm/shmem.c)
This function checks to see if a directory is empty or not.

1201 static int shmem_empty(struct dentry *dentry)

1202 {

1203 struct list_head *list;

1204

1205 spin_lock(&dcache_lock);

1206 list = dentry->d_subdirs.next;

1207

1208 while (list != &dentry->d_subdirs) {

1209 struct dentry *de = list_entry(list,

struct dentry, d_child);

1210

1211 if (shmem_positive(de)) {

L.4.5 Removing Directories (shmem_empty()) 654

1212 spin_unlock(&dcache_lock);

1213 return 0;

1214 }

1215 list = list->next;

1216 }

1217 spin_unlock(&dcache_lock);

1218 return 1;

1219 }

1205 The dcache_lock protect many things but it mainly protects dcache lookups
which is what will be required for this function so acquire it

1208 Cycle through the subdirs list, which contains all children dentries , and
see can one active dentry be found. If it is, 0 will be returned indicating the
directory is not empty

1209 Get the dentry for this child

1211 shmem_positive()(See Section L.4.5.3) returns if the dentry has a valid in-
ode associated with it and is currently hashed. If it's hashed, it means that
the dentry is active and the directory is not empty

1212-1213 If the directory is not empty, free the spinlock and return

1215 Move to the next child

1217-1218 The directory is empty. Free the spinlock and return

L.4.5.3 Function: shmem_positive() (mm/shmem.c)

1188 static inline int shmem_positive(struct dentry *dentry)

1189 {

1190 return dentry->d_inode && !d_unhashed(dentry);

1191 }

1190 Return true if the dentry has a valid inode and is currently hashed

L.5 Page Faulting within a Virtual File 655

L.5 Page Faulting within a Virtual File

Contents

L.5 Page Faulting within a Virtual File 655
L.5.1 Reading Pages during Page Fault 655
L.5.1.1 Function: shmem_nopage() 655
L.5.1.2 Function: shmem_getpage() 656

L.5.2 Locating Swapped Pages 663
L.5.2.1 Function: shmem_alloc_entry() 663
L.5.2.2 Function: shmem_swp_entry() 664

L.5.1 Reading Pages during Page Fault

L.5.1.1 Function: shmem_nopage() (mm/shmem.c)
This is the toplevel nopage() function that is called by do_no_page() when

faulting in a page. This is called regardless of the fault being the �rst fault or if it
is being faulted in from backing storage.

763 struct page * shmem_nopage(struct vm_area_struct *vma,

unsigned long address,

int unused)

764 {

765 struct inode *inode = vma->vm_file->f_dentry->d_inode;

766 struct page *page = NULL;

767 unsigned long idx;

768 int error;

769

770 idx = (address - vma->vm_start) >> PAGE_SHIFT;

771 idx += vma->vm_pgoff;

772 idx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;

773

774 error = shmem_getpage(inode, idx, &page, SGP_CACHE);

775 if (error)

776 return (error == -ENOMEM)? NOPAGE_OOM: NOPAGE_SIGBUS;

777

778 mark_page_accessed(page);

779 flush_page_to_ram(page);

780 return page;

781 }

763 The two parameters of relevance are the VMA the fault occured in and the
faulting address

765 Record the inode the fault occured in

L.5.1 Reading Pages during Page Fault (shmem_nopage()) 656

770-772 Calculate the idx as the o�set in counts of PAGE_SIZE within the virtual
�le

772 This adjustment takes into account the possibility that an entry in the page
cache is a di�erent size to a page. At the moment, there is no di�erence

774-775 shmem_getpage()(See Section L.5.1.2) is responsible for locating the page
at idx

775-776 If an error occured, decide whether to return an OOM error or an invalid
faulting address error

778 Mark the page accessed so it will be moved to the top of the LRU lists

779 flush_page_to_ram() is responsible for avoiding d-cache aliasing problems

780 Return the faulted-in page

L.5.1.2 Function: shmem_getpage() (mm/shmem.c)

583 static int shmem_getpage(struct inode *inode,

unsigned long idx,

struct page **pagep,

enum sgp_type sgp)

584 {

585 struct address_space *mapping = inode->i_mapping;

586 struct shmem_inode_info *info = SHMEM_I(inode);

587 struct shmem_sb_info *sbinfo;

588 struct page *filepage = *pagep;

589 struct page *swappage;

590 swp_entry_t *entry;

591 swp_entry_t swap;

592 int error = 0;

593

594 if (idx >= SHMEM_MAX_INDEX)

595 return -EFBIG;

596 /*

597 * Normally, filepage is NULL on entry, and either found

598 * uptodate immediately, or allocated and zeroed, or read

599 * in under swappage, which is then assigned to filepage.

600 * But shmem_readpage and shmem_prepare_write pass in a locked

601 * filepage, which may be found not uptodate by other callers

602 * too, and may need to be copied from the swappage read in.

603 */

604 repeat:

605 if (!filepage)

606 filepage = find_lock_page(mapping, idx);

L.5.1 Reading Pages during Page Fault (shmem_getpage()) 657

607 if (filepage && Page_Uptodate(filepage))

608 goto done;

609

610 spin_lock(&info->lock);

611 entry = shmem_swp_alloc(info, idx, sgp);

612 if (IS_ERR(entry)) {

613 spin_unlock(&info->lock);

614 error = PTR_ERR(entry);

615 goto failed;

616 }

617 swap = *entry;

583 The parameters are:

inode is the inode that the fault is occuring in

idx is the index of the page within the �le that is being faulted

pagep if NULL will become the faulted page if successful. If a valid page is
passed in, this function will make sure it is uptodate

sgp indicates what type of access this is which determines how a page will
be located and returned

586 SHMEM_I() returns the shmem_inode_info contained with the �lesystem-
speci�c information within the superblock information

594-595 Make sure the index is not beyond the end of the �le

605-606 If no page was passed in with the pagep parameter, then try and locate
the page and lock it with find_lock_page() (See Section J.1.4.4)

607-608 If the page was found and is up to date, then goto done as this function
has nothing more to do

610 Lock the inode private information struct

611 Search for the swap entry for this idx with shmem_swp_alloc(). If one did
not previously exist, it will be allocated

612-616 If an error occured, release the spinlock and return the error

619 if (swap.val) {

620 /* Look it up and read it in.. */

621 swappage = lookup_swap_cache(swap);

622 if (!swappage) {

623 spin_unlock(&info->lock);

624 swapin_readahead(swap);

625 swappage = read_swap_cache_async(swap);

L.5.1 Reading Pages during Page Fault (shmem_getpage()) 658

626 if (!swappage) {

627 spin_lock(&info->lock);

628 entry = shmem_swp_alloc(info, idx, sgp);

629 if (IS_ERR(entry))

630 error = PTR_ERR(entry);

631 else if (entry->val == swap.val)

632 error = -ENOMEM;

633 spin_unlock(&info->lock);

634 if (error)

635 goto failed;

636 goto repeat;

637 }

638 wait_on_page(swappage);

639 page_cache_release(swappage);

640 goto repeat;

641 }

642

643 /* We have to do this with page locked to prevent races */

644 if (TryLockPage(swappage)) {

645 spin_unlock(&info->lock);

646 wait_on_page(swappage);

647 page_cache_release(swappage);

648 goto repeat;

649 }

650 if (!Page_Uptodate(swappage)) {

651 spin_unlock(&info->lock);

652 UnlockPage(swappage);

653 page_cache_release(swappage);

654 error = -EIO;

655 goto failed;

656 }

In this block, a valid swap entry exists for the page. The page will be �rst
searched for in the swap cache and if it does not exist there, it will be read in from
backing storage.

619-690 This block of lines deal with the case where a valid swap entry exists

612 Search for swappage in the swap cache with lookup_swap_cache() (See Section K.2.4.1)

622-641 If the page does not exist in the swap cache, read it in from backing storage
with read_swap_cache_async(). Note that in line 638, wait_on_page() is
called to wait until the IO completes. Once the IO completes, the reference to
the page is released and the repeat label is jumped to reacquire the spinlocks
and try again

L.5.1 Reading Pages during Page Fault (shmem_getpage()) 659

644-649 Try and lock the page. If it fails, wait until it can be locked and jump to
repeat to try again

650-656 If the page is not up-to-date, the IO failed for some reason so return the
error

658 delete_from_swap_cache(swappage);

659 if (filepage) {

660 entry->val = 0;

661 info->swapped--;

662 spin_unlock(&info->lock);

663 flush_page_to_ram(swappage);

664 copy_highpage(filepage, swappage);

665 UnlockPage(swappage);

666 page_cache_release(swappage);

667 flush_dcache_page(filepage);

668 SetPageUptodate(filepage);

669 SetPageDirty(filepage);

670 swap_free(swap);

671 } else if (add_to_page_cache_unique(swappage,

672 mapping, idx, page_hash(mapping, idx)) == 0) {

673 entry->val = 0;

674 info->swapped--;

675 spin_unlock(&info->lock);

676 filepage = swappage;

677 SetPageUptodate(filepage);

678 SetPageDirty(filepage);

679 swap_free(swap);

680 } else {

681 if (add_to_swap_cache(swappage, swap) != 0)

682 BUG();

683 spin_unlock(&info->lock);

684 SetPageUptodate(swappage);

685 SetPageDirty(swappage);

686 UnlockPage(swappage);

687 page_cache_release(swappage);

688 goto repeat;

689 }

At this point, the page exists in the swap cache

658 Delete the page from the swap cache so we can attempt to add it to the page
cache

659-670 If the caller supplied a page with the pagep parameter, then update pagep
with the data in swappage

L.5.1 Reading Pages during Page Fault (shmem_getpage()) 660

671-680 Else try and add swappage to the page cache. Note that info→swapped

is updated and the page is marked uptodate before the swap entry is freed
with swap_free()

681-689 If we failed to add the page to the page cache, add it back to the swap
cache with add_to_swap_cache(). The page is marked uptodate before being
unlocked and goto repeat to try again

690 } else if (sgp == SGP_READ && !filepage) {

691 filepage = find_get_page(mapping, idx);

692 if (filepage &&

693 (!Page_Uptodate(filepage) || TryLockPage(filepage))) {

694 spin_unlock(&info->lock);

695 wait_on_page(filepage);

696 page_cache_release(filepage);

697 filepage = NULL;

698 goto repeat;

699 }

700 spin_unlock(&info->lock);

In this block, a valid swap entry does not exist for the idx. If the page is being
read and the pagep is NULL, then locate the page in the page cache.

691 Call find_get_page() (See Section J.1.4.1) to �nd the page in the page cache

692-699 If the page was found but was not up to date or could not be locked,
release the spinlock and wait until the page is unlocked. Then goto repeat to
reacquire the spinlock and try again

700 Release the spinlock

701 } else {

702 sbinfo = SHMEM_SB(inode->i_sb);

703 spin_lock(&sbinfo->stat_lock);

704 if (sbinfo->free_blocks == 0) {

705 spin_unlock(&sbinfo->stat_lock);

706 spin_unlock(&info->lock);

707 error = -ENOSPC;

708 goto failed;

709 }

710 sbinfo->free_blocks--;

711 inode->i_blocks += BLOCKS_PER_PAGE;

712 spin_unlock(&sbinfo->stat_lock);

713

714 if (!filepage) {

715 spin_unlock(&info->lock);

L.5.1 Reading Pages during Page Fault (shmem_getpage()) 661

716 filepage = page_cache_alloc(mapping);

717 if (!filepage) {

718 shmem_free_block(inode);

719 error = -ENOMEM;

720 goto failed;

721 }

722

723 spin_lock(&info->lock);

724 entry = shmem_swp_alloc(info, idx, sgp);

725 if (IS_ERR(entry))

726 error = PTR_ERR(entry);

727 if (error || entry->val ||

728 add_to_page_cache_unique(filepage,

729 mapping, idx, page_hash(mapping, idx)) != 0) {

730 spin_unlock(&info->lock);

731 page_cache_release(filepage);

732 shmem_free_block(inode);

733 filepage = NULL;

734 if (error)

735 goto failed;

736 goto repeat;

737 }

738 }

739

740 spin_unlock(&info->lock);

741 clear_highpage(filepage);

742 flush_dcache_page(filepage);

743 SetPageUptodate(filepage);

744 }

Else a page that is not in the page cache is being written to. It will need to be
allocated.

702 Get the superblock info with SHMEM_SB()

703 Acquire the superblock info spinlock

704-709 If there are no free blocks left in the �lesystem, release the spinlocks, set
the return error to -ENOSPC and goto failed;

710 Decrement the number of available blocks

711 Increment the block usage count for the inode

712 Release the superblock private information spinlock

714-715 If a page was not supplied via pagep, then allocate a page and swap entry
for the new page

L.5.1 Reading Pages during Page Fault (shmem_getpage()) 662

715 Release the info spinlock as page_cache_alloc() may sleep

716 Allocate a new page

717-721 If the allocation failed, free the block with shmem_free_block() and set
the return error to -ENOMEM before gotoing failed

723 Reacquire the info spinlock

724 shmem_swp_entry() locates a swap entry for the page. If one does not already
exist (which is likely will not for this page), one will be allocated and returned

725-726 If no swap entry was found or allocated, set the return error

728-729 If no error occured, add the page to the page cache

730-732 If the page was not added to the page cache (because we raced and another
process inserted the page while we had the spinlock released for example), then
drop the reference to the new page and free the block

734-735 If an error occured, goto failed to report the error

736 Otherwise, goto repeat where the desired page will be searched for within the
page cache again

740 Release the info spinlock

741 Zero-�ll the new page

742 Flush the dcache to avoid possible CPU dcache aliasing

743 Mark the page as being uptodate

745 done:

746 if (!*pagep) {

747 if (filepage) {

748 UnlockPage(filepage);

749 *pagep = filepage;

750 } else

751 *pagep = ZERO_PAGE(0);

752 }

753 return 0;

754

755 failed:

756 if (*pagep != filepage) {

757 UnlockPage(filepage);

758 page_cache_release(filepage);

759 }

760 return error;

761 }

L.5.2 Locating Swapped Pages 663

746-752 If a page was not passed in via pagep, decide what to return. If a page
was allocated for writing, unlock and return filepage. Otherwise, the caller
is just a reader, so return the global zero-�lleed page

753 Return success

755 This is the failure path

756 If a page was allocated by this function and stored in filepage, unlock it and
drop the reference to it which will free it

760 Return the error code

L.5.2 Locating Swapped Pages

L.5.2.1 Function: shmem_alloc_entry() (mm/shmem.c)
This function is a top-level function that returns the swap entry corresponding

to a particular page index within a �le. If the swap entry does not exist, one will
be allocated.

183 static inline swp_entry_t * shmem_alloc_entry (

struct shmem_inode_info *info,

unsigned long index)

184 {

185 unsigned long page = 0;

186 swp_entry_t * res;

187

188 if (index >= SHMEM_MAX_INDEX)

189 return ERR_PTR(-EFBIG);

190

191 if (info->next_index <= index)

192 info->next_index = index + 1;

193

194 while ((res = shmem_swp_entry(info,index,page)) ==

ERR_PTR(-ENOMEM)) {

195 page = get_zeroed_page(GFP_USER);

196 if (!page)

197 break;

198 }

199 return res;

200 }

188-189 SHMEM_MAX_INDEX is calculated at compile-time and it indicates the
largest possible virtual �le in pages. If the var is greater than the maximum
possible sized �le, return -EFBIG

L.5.2 Locating Swapped Pages (shmem_alloc_entry()) 664

191-192 next_index records the index of the page at the end of the �le.
inode→i_size alone is insu�cent as the next_index �eld is needed for �le
truncation

194-198 Call shmem_swp_entry() to locate the swp_entry_t for the requested
index. While searching, shmem_swp_entry() may need a number of pages. If
it does, it returns -ENOMEM which indicates that get_zeroed_page() should
be called before trying again

199 Return the swp_entry_t

L.5.2.2 Function: shmem_swp_entry() (mm/shmem.c)
This function uses information within the inode to locate the swp_entry_t for a

given index. The inode itself is able to store SHMEM_NR_DIRECT swap vectors. After
that indirect blocks are used.

127 static swp_entry_t *shmem_swp_entry (struct shmem_inode_info *info,

unsigned long index,

unsigned long page)

128 {

129 unsigned long offset;

130 void **dir;

131

132 if (index < SHMEM_NR_DIRECT)

133 return info->i_direct+index;

134 if (!info->i_indirect) {

135 if (page) {

136 info->i_indirect = (void **) *page;

137 *page = 0;

138 }

139 return NULL;

140 }

141

142 index -= SHMEM_NR_DIRECT;

143 offset = index % ENTRIES_PER_PAGE;

144 index /= ENTRIES_PER_PAGE;

145 dir = info->i_indirect;

146

147 if (index >= ENTRIES_PER_PAGE/2) {

148 index -= ENTRIES_PER_PAGE/2;

149 dir += ENTRIES_PER_PAGE/2 + index/ENTRIES_PER_PAGE;

150 index %= ENTRIES_PER_PAGE;

151 if (!*dir) {

152 if (page) {

153 *dir = (void *) *page;

L.5.2 Locating Swapped Pages (shmem_swp_entry()) 665

154 *page = 0;

155 }

156 return NULL;

157 }

158 dir = ((void **)*dir);

159 }

160

161 dir += index;

162 if (!*dir) {

163 if (!page || !*page)

164 return NULL;

165 *dir = (void *) *page;

166 *page = 0;

167 }

168 return (swp_entry_t *) *dir + offset;

169 }

132-133 If the index is below SHMEM_NR_DIRECT, then the swap vector is contained
within the direct block so return it

134-140 If a page does not exist at this indirect block, install the page that was
passed in with the page parameter and return NULL. This tells the called to
allocate a new page and call the function again

142 Treat the indirect blocks as starting from index 0

143 ENTRIES_PER_PAGE is the number of swap vectors contained within each page
in the indirect block. offset is now the index of the desired swap vector
within the indirect block page when it is found

144 index is now the directory number within the indirect block list that must be
found

145 Get a pointer to the �rst indirect block we are interested in

147-159 If the required directory (index) is greater than ENTRIES_PER_PAGE/2,
then it is a triple indirect block so the next block must be traversed

148 Pointers to the next set of directory blocks is in the second half of the current
block so calculate index as an o�set within the second half of the current block

149 Calculate dir as a pointer to the next directory block

150 index is now a pointer within dir to a page containing the swap vectors we
are interested in

151-156 If dir has not been allocated, install the page supplied with the page

parameter and return NULL so the caller will allocate a new page and call the
function again

L.5.2 Locating Swapped Pages (shmem_swp_entry()) 666

158 dir is now the base of the page of swap vectors containing the one we are
interested in

161 Move dir forward to the entry we want

162-167 If an entry does not exist, install the page supplied as a parameter if
available. If not, return NULL so that one will be allocated and the function
called again

168 Return the found swap vector

L.6 Swap Space Interaction 667

L.6 Swap Space Interaction

Contents

L.6 Swap Space Interaction 667
L.6.1 Function: shmem_writepage() 667
L.6.2 Function: shmem_unuse() 669
L.6.3 Function: shmem_unuse_inode() 670
L.6.4 Function: shmem_find_swp() 673

L.6.1 Function: shmem_writepage() (mm/shmem.c)
This function is responsible for moving a page from the page cache to the swap

cache.

522 static int shmem_writepage(struct page *page)

523 {

524 struct shmem_inode_info *info;

525 swp_entry_t *entry, swap;

526 struct address_space *mapping;

527 unsigned long index;

528 struct inode *inode;

529

530 BUG_ON(!PageLocked(page));

531 if (!PageLaunder(page))

532 return fail_writepage(page);

533

534 mapping = page->mapping;

535 index = page->index;

536 inode = mapping->host;

537 info = SHMEM_I(inode);

538 if (info->flags & VM_LOCKED)

539 return fail_writepage(page);

This block is function preamble to make sure the operation is possible.

522 The parameter is the page to move to the swap cache

530 It is a bug if the page is already locked for IO

531-532 If the launder bit has not been set, call fail_writepage(). fail_writepage()
is used by in-memory �lesystems to mark the page dirty and re-activate it so
that the page reclaimer does not repeatadly attempt to write the same page

534-537 Records variables that are needed as parameters later in the function

538-539 If the inode �lesystem information is locked, fail

L.6 Swap Space Interaction (shmem_writepage()) 668

540 getswap:

541 swap = get_swap_page();

542 if (!swap.val)

543 return fail_writepage(page);

544

545 spin_lock(&info->lock);

546 BUG_ON(index >= info->next_index);

547 entry = shmem_swp_entry(info, index, NULL);

548 BUG_ON(!entry);

549 BUG_ON(entry->val);

550

This block is responsible for allocating a swap slot from the backing storage and
a swp_entry_t within the inode.

541-543 Locate a free swap slot with get_swap_page() (See Section K.1.1). It
fails, call fail_writepage()

545 Lock the inode information

547 Get a free swp_entry_t from the �lesystem-speci�c private inode information
with shmem_swp_entry()

551 /* Remove it from the page cache */

552 remove_inode_page(page);

553 page_cache_release(page);

554

555 /* Add it to the swap cache */

556 if (add_to_swap_cache(page, swap) != 0) {

557 /*

558 * Raced with "speculative" read_swap_cache_async.

559 * Add page back to page cache, unref swap, try again.

560 */

561 add_to_page_cache_locked(page, mapping, index);

562 spin_unlock(&info->lock);

563 swap_free(swap);

564 goto getswap;

565 }

566

567 *entry = swap;

568 info->swapped++;

569 spin_unlock(&info->lock);

570 SetPageUptodate(page);

571 set_page_dirty(page);

572 UnlockPage(page);

573 return 0;

574 }

L.6 Swap Space Interaction (shmem_writepage()) 669

Move from the page cache to the swap cache and update statistics.

552 remove_inode_page()(See Section J.1.2.1) removes the page from the inode
and hash lists the page is a member of

553 page_cache_release() drops the local reference to the page taken for the
writepage() operation

556 Add the page to the swap cache. After this returns, the page→mapping will
now be swapper_space

561 The operation failed so add the page back to the page cache

562 Unlock the private information

563-564 free the swap slot and try again

567 Here, the page has successfully become part of the swap cache. Update the
inode information to point to the swap slot in backing storage

568 Increment the counter recording the number of pages belonging to this inode
that are in swap

569 Free the private inode information

570-571 Move the page to the address_space dirty pages list so that it will be
written to backing storage

573 Return success

L.6.2 Function: shmem_unuse() (mm/shmem.c)
This function will search the shmem_inodes list for the inode that holds the

information for the requsted entry and page. It is a very expensive operation but it
is only called when a swap area is being deactivated so it is not a signi�cant problem.
On return, the swap entry will be freed and the page will be moved from the swap
cache to the page cache.

498 int shmem_unuse(swp_entry_t entry, struct page *page)

499 {

500 struct list_head *p;

501 struct shmem_inode_info * nfo;

502

503 spin_lock(&shmem_ilock);

504 list_for_each(p, &shmem_inodes) {

505 info = list_entry(p, struct shmem_inode_info, list);

506

507 if (info->swapped && shmem_unuse_inode(info, entry, page)) {

508 /* move head to start search for next from here */

L.6 Swap Space Interaction (shmem_unuse()) 670

509 list_move_tail(&shmem_inodes, &info->list);

510 found = 1;

511 break;

512 }

513 }

514 spin_unlock(&shmem_ilock);

515 return found;

516 }

503 Acquire the shmem_ilock spinlock protecting the inode list

504 Cycle through each entry in the shmem_inodes list searching for the inode
holding the requested entry and page

509 Move the inode to the top of the list. In the event that we are reclaiming
many pages, the next search will �nd the inode of interest at the top of the
list

510 Indicate that the page was found

511 This page and entry have been found to break out of the loop

514 Release the shmem_ilock spinlock

515 Return if the page was found or not by shmem_unuse_inode()

L.6.3 Function: shmem_unuse_inode() (mm/shmem.c)
This function searches the inode information in info to determine if the entry

and page belong to it. If they do, the entry will be cleared and the page will be
removed from the swap cache and moved to the page cache instead.

436 static int shmem_unuse_inode(struct shmem_inode_info *info,

swp_entry_t entry,

struct page *page)

437 {

438 struct inode *inode;

439 struct address_space *mapping;

440 swp_entry_t *ptr;

441 unsigned long idx;

442 int offset;

443

444 idx = 0;

445 ptr = info->i_direct;

446 spin_lock(&info->lock);

447 offset = info->next_index;

448 if (offset > SHMEM_NR_DIRECT)

449 offset = SHMEM_NR_DIRECT;

L.6 Swap Space Interaction (shmem_unuse_inode()) 671

450 offset = shmem_find_swp(entry, ptr, ptr + offset);

451 if (offset >= 0)

452 goto found;

453

454 for (idx = SHMEM_NR_DIRECT; idx < info->next_index;

455 idx += ENTRIES_PER_PAGE) {

456 ptr = shmem_swp_entry(info, idx, NULL);

457 if (!ptr)

458 continue;

459 offset = info->next_index - idx;

460 if (offset > ENTRIES_PER_PAGE)

461 offset = ENTRIES_PER_PAGE;

462 offset = shmem_find_swp(entry, ptr, ptr + offset);

463 if (offset >= 0)

464 goto found;

465 }

466 spin_unlock(&info->lock);

467 return 0;

468 found:

470 idx += offset;

471 inode = info->inode;

472 mapping = inode->i_mapping;

473 delete_from_swap_cache(page);

474

475 /* Racing against delete or truncate?

* Must leave out of page cache */

476 limit = (inode->i_state & I_FREEING)? 0:

477 (inode->i_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;

478

479 if (idx >= limit || add_to_page_cache_unique(page,

480 mapping, idx, page_hash(mapping, idx)) == 0) {

481 ptr[offset].val = 0;

482 info->swapped--;

483 } else if (add_to_swap_cache(page, entry) != 0)

484 BUG();

485 spin_unlock(&info->lock);

486 SetPageUptodate(page);

487 /*

488 * Decrement swap count even when the entry is left behind:

489 * try_to_unuse will skip over mms, then reincrement count.

490 */

491 swap_free(entry);

492 return 1;

493 }

L.6 Swap Space Interaction (shmem_unuse_inode()) 672

445 Initialise ptr to start at the beginning of the direct block for the inode being
searched

446 Lock the inode private information

447 Initialise offset to be the last page index in the �le

448-449 If offset is beyond the end of the direct block, set it to the end of the
direct block for the moment

450 Use shmem_find_swap()(See Section L.6.4) to search the direct block for the
entry

451-452 If the entry was in the direct block, goto found, otherwise we have to
search the indirect blocks

454-465 Search each of the indirect blocks for the entry

456 shmem_swp_entry()(See Section L.5.2.2) returns the swap vector at the cur-
rent idx within the inode. As idx is incremented in ENTRIES_PER_PAGE sized
strides, this will return the beginning of the next indirect block being searched

457-458 If an error occured, the indirect block does not exist so continue, which
probably will exit the loop

459 Calculate how many pages are left in the end of the �le to see if we only have
to search a partially �lled indirect block

460-461 If offset is greater than the size of an indirect block, set o�set to
ENTRIES_PER_PAGE so this full indirect block will be searched by shmem_find_swp()

462 Search the entire of the current indirect block for entry with shmem_find_swp()(See Section L.6.4)

463-467 If the entry was found, goto found, otherwise the next indirect block will
be searched. If the entyr is never found, the info struct will be unlocked and
0 returned indicating that this inode did not contain the entry and page

469 The entry was found, so free it with swap_free()

470 Move idx to the location of the swap vector within the block

471-472 Get the inode and mapping

473 Delete the page from the swap cache

476-477 Check if the inode is currently being deleted or truncated by examining
inode→i_state. If it is, set limit to the index of the last page in the adjusted
�le size

L.6 Swap Space Interaction (shmem_unuse_inode()) 673

479-482 If the page is not being truncated or deleted, add it to the page cache
with add_to_page_cache_unique(). If successful, clear the swap entry and
decrement info→swapped

483-484 Else add the page back to the swap cache where it will be reclaimed later

485 Release the info spinlock

486 Mark the page uptodate

491 Decrement the swap count

492 Return success

L.6.4 Function: shmem_find_swp() (mm/shmem.c)
This function searches an indirect block between the two pointers ptr and eptr

for the requested entry. Note that the two pointers must be in the same indirect
block.

425 static inline int shmem_find_swp(swp_entry_t entry,

swp_entry_t *dir,

swp_entry_t *edir)

426 {

427 swp_entry_t *ptr;

428

429 for (ptr = dir; ptr < edir; ptr++) {

430 if (ptr->val == entry.val)

431 return ptr - dir;

432 }

433 return -1;

434 }

429 Loop between the dir and edir pointers

430 If the current ptr entry matches the requested entry then return the o�set
from dir. As shmem_unuse_inode() is the only user of this function, this will
result in the o�set within the indirect block being returned

433 Return indicating that the entry was not found

L.7 Setting up Shared Regions 674

L.7 Setting up Shared Regions

Contents

L.7 Setting up Shared Regions 674
L.7.1 Function: shmem_zero_setup() 674
L.7.2 Function: shmem_file_setup() 675

L.7.1 Function: shmem_zero_setup() (mm/shmem.c)
This function is called to setup a VMA that is a shared region backed by anony-

mous pages. The call graph which shows this function is in Figure 12.5. This occurs
when mmap() creates an anonymous region with the MAP_SHARED �ag.

1664 int shmem_zero_setup(struct vm_area_struct *vma)

1665 {

1666 struct file *file;

1667 loff_t size = vma->vm_end - vma->vm_start;

1668

1669 file = shmem_file_setup("dev/zero", size);

1670 if (IS_ERR(file))

1671 return PTR_ERR(file);

1672

1673 if (vma->vm_file)

1674 fput(vma->vm_file);

1675 vma->vm_file = file;

1676 vma->vm_ops = &shmem_vm_ops;

1677 return 0;

1678 }

1667 Calculate the size

1669 Call shmem_file_setup()(See Section L.7.2) to create a �le called dev/zero

and of the calculated size. We will see in the functions code commentary why
the name does not have to be unique

1673-1674 If a �le already exists for this virtual area, call fput() to drop it's
reference

1675 Record the new �le pointer

1675 Set the vm_ops so that shmem_nopage() (See Section L.5.1.1) will be called
when a page needs to be faulted in for this VMA

L.7.2 Function: shmem_file_setup() 675

L.7.2 Function: shmem_file_setup() (mm/shmem.c)
This function is called to create a new �le in shmfs, the internal �lesystem. As

the �lesystem is internal, the supplied name does not have to be unique within
each directory. Hence, every �le that is created by an anonymous region with
shmem_zero_setup() will simple be called �dev/zero� and regions created with
shmget() will be called �SYSVNN� where NN is the key that is passed as the �rst
arguement to shmget().

1607 struct file *shmem_file_setup(char *name, loff_tsize)

1608 {

1609 int error;

1610 struct file *file;

1611 struct inode *inode;

1612 struct dentry *dentry, *root;

1613 struct qstr this;

1614 int vm_enough_memory(long pages);

1615

1616 if (IS_ERR(shm_mnt))

1617 return (void *)shm_mnt;

1618

1619 if (size > SHMEM_MAX_BYTES)

1620 return ERR_PTR(-EINVAL);

1621

1622 if (!vm_enough_memory(VM_ACCT(size)))

1623 return ERR_PTR(-ENOMEM);

1624

1625 this.name = name;

1626 this.len = strlen(name);

1627 this.hash = 0; /* will go */

1607 The parameters are the name of the �le to create and it's expected size

1614 vm_enough_memory()(See Section M.1.1) checks to make sure there is enough
memory to satisify the mapping

1616-1617 If there is an error with the mount point, return the error

1619-1620 Do not create a �le greater than SHMEM_MAX_BYTES which is calculated
at top of mm/shmem.c

1622-1623 Make sure there is enough memory to satisify the mapping

1625-1627 Populate the struct qstr which is the string type used for dnodes

1628 root = shm_mnt->mnt_root;

1629 dentry = d_alloc(root, &this);

1630 if (!dentry)

L.7 Setting up Shared Regions (shmem_file_setup()) 676

1631 return ERR_PTR(-ENOMEM);

1632

1633 error = -ENFILE;

1634 file = get_empty_filp();

1635 if (!file)

1636 goto put_dentry;

1637

1638 error = -ENOSPC;

1639 inode = shmem_get_inode(root->d_sb, S_IFREG | S_IRWXUGO, 0);

1640 if (!inode)

1641 goto close_file;

1642

1643 d_instantiate(dentry, inode);

1644 inode->i_size = size;

1645 inode->i_nlink = 0; /* It is unlinked */

1646 file->f_vfsmnt = mntget(shm_mnt);

1647 file->f_dentry = dentry;

1648 file->f_op = &shmem_file_operations;

1649 file->f_mode = FMODE_WRITE | FMODE_READ;

1650 return file;

1651

1652 close_file:

1653 put_filp(file);

1654 put_dentry:

1655 dput(dentry);

1656 return ERR_PTR(error);

1657 }

1628 root is assigned to be the dnode representing the root of shmfs

1629 Allocate a new dentry with d_alloc()

1630-1631 Return -ENOMEM if one could not be allocated

1634 Get an empty struct file from the �le table. If one couldn't be found,
-ENFILE will be returned indicating a �le table over�ow

1639-1641 Create a new inode which is a regular �le (S_IFREG) and globally
readable, writable and executable. If it fails, return -ENOSPC indicating no
space is left in the �lesystem

1643 d_instantiate() �lls in the inode information for a dentry. It is de�ned in
fs/dcache.c

1644-1649 Fill in the remaining inode and �le information

1650 Return the newly created struct file

L.7 Setting up Shared Regions (shmem_file_setup()) 677

1653 Error path when an inode could not be created. put_filp() �ll free up the
struct file entry in the �le table

1655 dput() will drop the reference to the dentry, destroying it

1656 Return the error code

L.8 System V IPC 678

L.8 System V IPC

L.8.1 Creating a SYSV shared region

L.8.1.1 Function: sys_shmget() (ipc/shm.c)

229 asmlinkage long sys_shmget (key_t key, size_t size, int shmflg)

230 {

231 struct shmid_kernel *shp;

232 int err, id = 0;

233

234 down(&shm_ids.sem);

235 if (key == IPC_PRIVATE) {

236 err = newseg(key, shmflg, size);

237 } else if ((id = ipc_findkey(&shm_ids, key)) == -1) {

238 if (!(shmflg & IPC_CREAT))

239 err = -ENOENT;

240 else

241 err = newseg(key, shmflg, size);

242 } else if ((shmflg & IPC_CREAT) && (shmflg & IPC_EXCL)) {

243 err = -EEXIST;

244 } else {

245 shp = shm_lock(id);

246 if(shp==NULL)

247 BUG();

248 if (shp->shm_segsz < size)

249 err = -EINVAL;

250 else if (ipcperms(&shp->shm_perm, shmflg))

251 err = -EACCES;

252 else

253 err = shm_buildid(id, shp->shm_perm.seq);

254 shm_unlock(id);

255 }

256 up(&shm_ids.sem);

257 return err;

258 }

234 Acquire the semaphore protecting shared memory IDs

235-236 If IPC_PRIVATE is speci�ed, most of the �ags are ignored and the region
is created with newseg(). This �ag is intended to provide exclusive access to
a shared region but Linux does not guarentee exclusive access

237 Else search to see if the key already exists with ipc_findkey()

238-239 If it does not and IPC_CREAT was not speci�ed, then return -ENOENT

L.8.1 Creating a SYSV shared region (sys_shmget()) 679

241 Else, create a new region with newseg()

243-243 If the region already exists and the process requested a new region that
did not previously exist to be created, return -EEXIST

244-255 Else we are accessing an existing region, so lock it, make sure we have the
required permissions, build a segment identi�er with shm_buildid() and un-
lock the region again. The segment identi�er will be returned back to userspace

256 Release the semaphore protecting IDs

257 Return either the error or the segment identifer

L.8.1.2 Function: newseg() (ipc/shm.c)
This function creates a new shared segment.

178 static int newseg (key_t key, int shmflg, size_t size)

179 {

180 int error;

181 struct shmid_kernel *shp;

182 int numpages = (size + PAGE_SIZE -1) >> PAGE_SHIFT;

183 struct file * file;

184 char name[13];

185 int id;

186

187 if (size < SHMMIN || size > shm_ctlmax)

188 return -EINVAL;

189

190 if (shm_tot + numpages >= shm_ctlall)

191 return -ENOSPC;

192

193 shp = (struct shmid_kernel *) kmalloc (sizeof (*shp), GFP_USER);

194 if (!shp)

195 return -ENOMEM;

196 sprintf (name, "SYSV%08x", key);

This block allocates the segment descriptor.

182 Calculate the number of pages the region will occupy

188-188 Ensure the size of the region does not break limits

190-191 Make sure the total number of pages required for the segment will not
break limits

193 Allocate the descriptor with kmalloc()(See Section H.4.2.1)

L.8.1 Creating a SYSV shared region (newseg()) 680

196 Print the name of the �le to be created in shmfs. The name is SYSVNN where
NN is the key identi�er of the region

197 file = shmem_file_setup(name, size);

198 error = PTR_ERR(file);

199 if (IS_ERR(file))

200 goto no_file;

201

202 error = -ENOSPC;

203 id = shm_addid(shp);

204 if(id == -1)

205 goto no_id;

206 shp->shm_perm.key = key;

207 shp->shm_flags = (shmflg & S_IRWXUGO);

208 shp->shm_cprid = current->pid;

209 shp->shm_lprid = 0;

210 shp->shm_atim = shp->shm_dtim = 0;

211 shp->shm_ctim = CURRENT_TIME;

212 shp->shm_segsz = size;

213 shp->shm_nattch = 0;

214 shp->id = shm_buildid(id,shp->shm_perm.seq);

215 shp->shm_file = file;

216 file->f_dentry->d_inode->i_ino = shp->id;

217 file->f_op = &shm_file_operations;

218 shm_tot += numpages;

219 shm_unlock (id);

220 return shp->id;

221

222 no_id:

223 fput(file);

224 no_file:

225 kfree(shp);

226 return error;

227 }

197 Create a new �le in shmfs with shmem_file_setup()(See Section L.7.2)

198-200 Make sure no error occured with the �le creation

202 By default, the error to return indicates that there is no shared memory
identi�ers available or that the size of the request is too large

206-213 Fill in �elds in the segment descriptor

214 Build a segment identi�er which is what is returned to the caller of shmget()

215-217 Set the �le pointers and �le operations structure

L.8.2 Attaching a SYSV Shared Region 681

218 Update shm_tot to the total number of pages used by shared segments

220 Return the identi�er

L.8.2 Attaching a SYSV Shared Region

L.8.2.1 Function: sys_shmat() (ipc/shm.c)

568 asmlinkage long sys_shmat (int shmid, char *shmaddr,

int shmflg, ulong *raddr)

569 {

570 struct shmid_kernel *shp;

571 unsigned long addr;

572 unsigned long size;

573 struct file * file;

574 int err;

575 unsigned long flags;

576 unsigned long prot;

577 unsigned long o_flags;

578 int acc_mode;

579 void *user_addr;

580

581 if (shmid < 0)

582 return -EINVAL;

583

584 if ((addr = (ulong)shmaddr)) {

585 if (addr & (SHMLBA-1)) {

586 if (shmflg & SHM_RND)

587 addr &= ~(SHMLBA-1); /* round down */

588 else

589 return -EINVAL;

590 }

591 flags = MAP_SHARED | MAP_FIXED;

592 } else {

593 if ((shmflg & SHM_REMAP))

594 return -EINVAL;

595

596 flags = MAP_SHARED;

597 }

598

599 if (shmflg & SHM_RDONLY) {

600 prot = PROT_READ;

601 o_flags = O_RDONLY;

602 acc_mode = S_IRUGO;

603 } else {

L.8.2 Attaching a SYSV Shared Region (sys_shmat()) 682

604 prot = PROT_READ | PROT_WRITE;

605 o_flags = O_RDWR;

606 acc_mode = S_IRUGO | S_IWUGO;

607 }

This section ensures the parameters to shmat() are valid.

581-582 Negative identi�ers are not allowed so return -EINVAL is one is supplied

584-591 If the caller supplied an address, make sure it is ok

585 SHMLBA is the segment boundary address multiple. In Linux, this is always
PAGE_SIZE. If the address is not page aligned, then check if the caller speci-
�ed SHM_RND which allows the address to be changed. If speci�ed, round the
address down to the nearest page boundary, otherwise return -EINVAL

591 Set the �ags to use with the VMA to create a shared region (MAP_SHARED)
with a �xed address (MAP_FIXED)

593-596 If an address was not supplied, make sure the SHM_REMAP was speci�ed
and only use the MAP_SHARED �ag with the VMA. This means that do_mmap()
(See Section D.2.1.1) will �nd a suitable address to attach the shared region

613 shp = shm_lock(shmid);

614 if(shp == NULL)

615 return -EINVAL;

616 err = shm_checkid(shp,shmid);

617 if (err) {

618 shm_unlock(shmid);

619 return err;

620 }

621 if (ipcperms(&shp->shm_perm, acc_mode)) {

622 shm_unlock(shmid);

623 return -EACCES;

624 }

625 file = shp->shm_file;

626 size = file->f_dentry->d_inode->i_size;

627 shp->shm_nattch++;

628 shm_unlock(shmid);

This block ensures the IPC permissions are valid

613 shm_lock() locks the descriptor corresponding to shmid and returns a pointer
to the descriptor

614-615 Make sure the descriptor exists

616-620 Make sure the ID matches the descriptor

L.8.2 Attaching a SYSV Shared Region (sys_shmat()) 683

612-624 Make sure the caller has the correct permissions

625 Get a pointer to the struct file which do_mmap() requires

626 Get the size of the shared region so do_mmap() knows what size of VMA to
create

627 Temporarily increment shm_nattach() which normally indicates how many
VMAs are using the segment. This is to prevent the segment been freed
prematurely. The real counter will be incremented by shm_open() which is the
open() callback used by the vm_operations_struct used for shared regions

628 Release the descriptor

630 down_write(¤t->mm->mmap_sem);

631 if (addr && !(shmflg & SHM_REMAP)) {

632 user_addr = ERR_PTR(-EINVAL);

633 if (find_vma_intersection(current->mm, addr, addr + size))

634 goto invalid;

635 /*

636 * If shm segment goes below stack, make sure there is some

637 * space left for the stack to grow (at least 4 pages).

638 */

639 if (addr < current->mm->start_stack &&

640 addr > current->mm->start_stack - size - PAGE_SIZE * 5)

641 goto invalid;

642 }

643

644 user_addr = (void*) do_mmap (file, addr, size, prot, flags, 0);

This block is where do_mmap() will be called to attach the region to the calling
process.

630 Acquire the semaphore protecting the mm_struct

632-634 If an address was speci�ed, call find_vma_intersection() (See Section D.3.1.3)
to ensure no VMA overlaps the region we are trying to use

639-641 Make sure there is at least a 4 page gap between the end of the shared
region and the stack

644 Call do_mmap()(See Section D.2.1.1) which will allocate the VMA and map it
into the process address space

646 invalid:

647 up_write(¤t->mm->mmap_sem);

648

649 down (&shm_ids.sem);

L.8.2 Attaching a SYSV Shared Region (sys_shmat()) 684

650 if(!(shp = shm_lock(shmid)))

651 BUG();

652 shp->shm_nattch--;

653 if(shp->shm_nattch == 0 &&

654 shp->shm_flags & SHM_DEST)

655 shm_destroy (shp);

656 else

657 shm_unlock(shmid);

658 up (&shm_ids.sem);

659

660 *raddr = (unsigned long) user_addr;

661 err = 0;

662 if (IS_ERR(user_addr))

663 err = PTR_ERR(user_addr);

664 return err;

665

666 }

647 Release the mm_struct semaphore

649 Release the region IDs semaphore

650-651 Lock the segment descriptor

652 Decrement the temporary shm_nattch counter. This will have been properly
incremented by the vm_ops→open callback

653-655 If the users reach 0 and the SHM_DEST �ag has been speci�ed, the region
is destroyed as it is no longer required

657 Otherwise, just unlock the segment

660 Set the address to return to the caller

661-663 If an error occured, set the error to return to the caller

664 Return

Appendix M

Out of Memory Management

Contents
M.1 Determining Available Memory 686

M.1.1 Function: vm_enough_memory() 686

M.2 Detecting and Recovering from OOM 688

M.2.1 Function: out_of_memory() . 688

M.2.2 Function: oom_kill() . 689

M.2.3 Function: select_bad_process() 690

M.2.4 Function: badness() . 691

M.2.5 Function: oom_kill_task() . 692

685

M.1 Determining Available Memory 686

M.1 Determining Available Memory

Contents

M.1 Determining Available Memory 686
M.1.1 Function: vm_enough_memory() 686

M.1.1 Function: vm_enough_memory() (mm/mmap.c)

53 int vm_enough_memory(long pages)

54 {

65 unsigned long free;

66

67 /* Sometimes we want to use more memory than we have. */

68 if (sysctl_overcommit_memory)

69 return 1;

70

71 /* The page cache contains buffer pages these days.. */

72 free = atomic_read(&page_cache_size);

73 free += nr_free_pages();

74 free += nr_swap_pages;

75

76 /*

77 * This double-counts: the nrpages are both in the page-cache

78 * and in the swapper space. At the same time, this compensates

79 * for the swap-space over-allocation (ie "nr_swap_pages" being

80 * too small.

81 */

82 free += swapper_space.nrpages;

83

84 /*

85 * The code below doesn't account for free space in the inode

86 * and dentry slab cache, slab cache fragmentation, inodes and

87 * dentries which will become freeable under VM load, etc.

88 * Lets just hope all these (complex) factors balance out...

89 */

90 free += (dentry_stat.nr_unused * sizeof(struct dentry)) >> PAGE_SHIFT;

91 free += (inodes_stat.nr_unused * sizeof(struct inode)) >> PAGE_SHIFT;

92

93 return free > pages;

94 }

68-69 If the system administrator has speci�ed via the proc interface that over-
commit is allowed, return immediately saying that the memory is available

72 Start the free pages count with the size of the page cache as these pages may
be easily reclaimed

M.1 Determining Available Memory (vm_enough_memory()) 687

73 Add the total number of free pages in the system

74 Add the total number of available swap slots

82 Add the number of pages managed by swapper_space. This double counts free
slots in swaps but is balanced by the fact that some slots are reserved for pages
but are not being currently used

90 Add the number of unused pages in the dentry cache

91 Add the number of unused pages in the inode cache

93 Return if there are more free pages available than the request

M.2 Detecting and Recovering from OOM 688

M.2 Detecting and Recovering from OOM

Contents

M.2 Detecting and Recovering from OOM 688
M.2.1 Function: out_of_memory() 688
M.2.2 Function: oom_kill() 689
M.2.3 Function: select_bad_process() 690
M.2.4 Function: badness() 691
M.2.5 Function: oom_kill_task() 692

M.2.1 Function: out_of_memory() (mm/oom_kill.c)

202 void out_of_memory(void)

203 {

204 static unsigned long first, last, count, lastkill;

205 unsigned long now, since;

206

210 if (nr_swap_pages > 0)

211 return;

212

213 now = jiffies;

214 since = now - last;

215 last = now;

216

221 last = now;

222 if (since > 5*HZ)

223 goto reset;

224

229 since = now - first;

230 if (since < HZ)

231 return;

232

237 if (++count < 10)

238 return;

239

245 since = now - lastkill;

246 if (since < HZ*5)

247 return;

248

252 lastkill = now;

253 oom_kill();

254

255 reset:

256 first = now;

257 count = 0;

M.2 Detecting and Recovering from OOM (out_of_memory()) 689

258 }

210-211 If there are available swap slots, the system is no OOM

213-215 Record what time it is now in ji�es and determine how long it has been
since this function was last called

222-223 If it has been more than 5 seconds since this function was last called,
then reset the timer and exit the function

229-231 If it has been longer than a second since this function was last called,
then exit the function. It is possible that IO is in progress which will complete
soon

237-238 If the function has not been called 10 times within the last short interval,
then the system is not yet OOM

245-247 If a process has been killed within the last 5 seconds, then exit the function
as the dying process is likely to free memory

253 Ok, the system really is OOM so call oom_kill() (See Section M.2.2) to select
a process to kill

M.2.2 Function: oom_kill() (mm/oom_kill.c)
This function �rst calls select_bad_process() to �nd a suitable process to

kill. Once found, the task list is traversed and the oom_kill_task() is called for
the selected process and all it's threads.

172 static void oom_kill(void)

173 {

174 struct task_struct *p, *q;

175

176 read_lock(&tasklist_lock);

177 p = select_bad_process();

178

179 /* Found nothing?!?! Either we hang forever, or we panic. */

180 if (p == NULL)

181 panic("Out of memory and no killable processes...\n");

182

183 /* kill all processes that share the ->mm (i.e. all threads) */

184 for_each_task(q) {

185 if (q->mm == p->mm)

186 oom_kill_task(q);

187 }

188 read_unlock(&tasklist_lock);

189

190 /*

M.2 Detecting and Recovering from OOM (oom_kill()) 690

191 * Make kswapd go out of the way, so "p" has a good chance of

192 * killing itself before someone else gets the chance to ask

193 * for more memory.

194 */

195 yield();

196 return;

197 }

176 Acquire the read-only semaphore to the task list

177 Call select_bad_process()(See Section M.2.3) to �nd a suitable process to
kill

180-170 If one could not be found, panic the system because otherwise the system
will deadlock. In this case, it is better to deadlock and have a developer solve
the bug than have a mysterious hang

184-187 Cycle through the task list and call oom_kill_task() (See Section M.2.5)
for the selected process and all it's threads. Remember that threads will all
share the same mm_struct

188 Release the semaphore

195 Call yield() to allow the signals to be delivered and the processes to die. The
comments indicate that kswapd will be the sleeper but it is possible that a
process in the direct-reclaim path will be executing this function too

M.2.3 Function: select_bad_process() (mm/oom_kill.c)
This function is responsible for cycling through the entire task list and returning

the process that scored highest with the badness() function.

121 static struct task_struct * select_bad_process(void)

122 {

123 int maxpoints = 0;

124 struct task_struct *p = NULL;

125 struct task_struct *chosen = NULL;

126

127 for_each_task(p) {

128 if (p->pid) {

129 int points = badness(p);

130 if (points > maxpoints) {

131 chosen = p;

132 maxpoints = points;

133 }

134 }

135 }

136 return chosen;

137 }

M.2 Detecting and Recovering from OOM (select_bad_process()) 691

127 Cycle through all tasks in the task list

128 If the process is the system idle task, then skip over it

129 Call badness()(See Section M.2.4) to score the process

130-133 If this is the highest score so far, record it

136 Return the task_struct which scored highest with badness()

M.2.4 Function: badness() (mm/oom_kill.c)
This calculates a score that determines how suitable the process is for killing.

The scoring mechanism is explained in detail in Chapter 13.

58 static int badness(struct task_struct *p)

59 {

60 int points, cpu_time, run_time;

61

62 if (!p->mm)

63 return 0;

64

65 if (p->flags & PF_MEMDIE)

66 return 0;

67

71 points = p->mm->total_vm;

72

79 cpu_time = (p->times.tms_utime + p->times.tms_stime)

>> (SHIFT_HZ + 3);

80 run_time = (jiffies - p->start_time) >> (SHIFT_HZ + 10);

81

82 points /= int_sqrt(cpu_time);

83 points /= int_sqrt(int_sqrt(run_time));

84

89 if (p->nice > 0)

90 points *= 2;

91

96 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||

97 p->uid == 0 || p->euid == 0)

98 points /= 4;

99

106 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))

107 points /= 4;

108 #ifdef DEBUG

109 printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",

110 p->pid, p->comm, points);

111 #endif

M.2 Detecting and Recovering from OOM (badness()) 692

112 return points;

113 }

62-63 If there is no mm, return 0 as this is a kernel thread

65-66 If the process has already been marked by the OOM killer as exiting, return
0 as there is no point trying to kill it multiple times

71 The total VM used by the process is the base starting point

79-80 cpu_time is calculated as the total runtime of the process in seconds.
run_time is the total runtime of the process in minutes. Comments indicate
that there is no basis for this other than it works well in practice

82 Divide the points by the integer square root of cpu_time

83 Divide the points by the cube root of run_time

89-90 If the process has been niced to be of lower priority, double it's points as it
is likely to be an unimportant process

96-98 On the other hand, if the process has superuser privileges or has the
CAP_SYS_ADMIN capability, it is likely to be a system process so divide the
points by 4

106-107 If the process has direct access to hardware then divide the process by
4. Killing these processes forceably could potentially leave hardware in an
inconsistent state. For example, forcibly killing X is never a good idea

112 Return the score

M.2.5 Function: oom_kill_task() (mm/oom_kill.c)
This function is responsible for sending the appropriate kill signals to the selected

task.

144 void oom_kill_task(struct task_struct *p)

145 {

146 printk(KERN_ERR "Out of Memory: Killed process %d (%s).\n",

p->pid, p->comm);

147

148 /*

149 * We give our sacrificial lamb high priority and access to

150 * all the memory it needs. That way it should be able to

151 * exit() and clear out its resources quickly...

152 */

153 p->counter = 5 * HZ;

154 p->flags |= PF_MEMALLOC | PF_MEMDIE;

155

M.2 Detecting and Recovering from OOM (oom_kill_task()) 693

156 /* This process has hardware access, be more careful. */

157 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO)) {

158 force_sig(SIGTERM, p);

159 } else {

160 force_sig(SIGKILL, p);

161 }

162 }

146 Print an informational message on the process being killed

153 This gives the dying process lots of time on the CPU so it can kill itself o�
quickly

154 These �ags will tell the allocator to give favourably treatment to the process
if it requires more pages before cleaning itself up

157-158 If the process can directly access hardware, send it the SIGTERM signal to
give it a chance to exit cleanly

160 Otherwise send it the SIGKILL signal to force the process to be killed

Bibliography

[AST97] Andrew S. Woodhull Andrew S. Tanenbaum. Operating Systems Design
and Implementation, 2nd Edition. Prentice-Hall, 1997.

[BA01] Je� Bonwick and Jonathan Adams. Magazines and vmem: Extending
the slab allocator to many CPUs and arbitrary resources. In Proceedings
of the 2001 USENIX Annual Technical Conference (USENIX-01), pages
15�34, Berkeley, CA, June 25�30 2001. The USENIX Association.

[BBD+98] Michael Beck, Harold Bohme, Mirko Dzladzka, Ulrich Kunitz, Robert
Magnus, and Dirk Verworner. Linux Kernel Internals. Addison-Wesley,
1998.

[BC00] D. (Daniele) Bovet and Marco Cesati. Understanding the Linux kernel.
O'Reilly, 2000.

[BC03] D. (Daniele) Bovet and Marco Cesati. Understanding the Linux kernel
(2nd Edition). O'Reilly, 2003.

[BL89] R. Barkley and T. Lee. A lazy buddy system bounded by two coalesc-
ing delays. In Proceedings of the twelfth ACM symposium on Operating
Systems principles. ACM Press, 1989.

[Bon94] Je� Bonwick. The slab allocator: An object-caching kernel memory
allocator. In USENIX Summer, pages 87�98, 1994.

[Car84] Rickard W. Carr. Virtual Memory Management. UMI Research Press,
1984.

[CD80] E. G. Co�man and P. J. Denning. Operating Systems Theory. Prentice-
Hall Inc., 1980.

[CH81] R. W. Carr and J. L. Hennessy. WSClock - A simple and e�ective
algorithm for virtual memory management. In Proceedings of the ACM
Symposium on Operating System Principles, pages 87�95, Paci�c Grove,
CA, December 1981. Association for Computing Machinery.

[CP99] Charles D. Cranor and Gurudatta M. Parulkar. The UVM virtual mem-
ory system. In Proceedings of the 1999 USENIX Annual Technical Con-
ference (USENIX-99), pages 117�130, Berkeley, CA, 1999. USENIX As-
sociation.

694

BIBLIOGRAPHY 695

[CS98] Kevin Dowd Charles Severance. High Performance Computing, 2nd Edi-
tion. O'Reilly, 1998.

[Den70] Peter J. Denning. Virtual memory. ACM Computing Surveys (CSUR),
2(3):153�189, 1970.

[FF02] Joseph Feller and Brian Fitzgerald. Understanding Open Source Software
Development. Pearson Education Ltd., 2002.

[GAV95] A. Gonzalez, C. Aliagas, and M. Valero. A data cache with multiple
caching strategies tuned to di�erent types of locality. In ACM, editor,
Conference proceedings of the 1995 International Conference on Super-
computing, Barcelona, Spain, July 3�7, 1995, pages 338�347, New York,
NY 10036, USA, 1995. ACM Press.

[GC94] Berny Goodheart and James Cox. The Magic Garden Explained: The
Internals of UNIX System V Release 4, an Open Systems Design. Pren-
tice-Hall, 1994.

[Hac] Various Kernel Hackers. Kernel 2.4.18 Source Code.
ftp://ftp.kernel.org/pub/linux/kernel/v2.4/linux-2.4.18.tar.gz.

[Hac00] Random Kernel Hacker. How to get your change into the linux kernel.
Kernel Source Documentation Tree (SubmittingPatches), 2000.

[Hac02] Various Kernel Hackers. Kernel 2.2.22 Source Code.
ftp://ftp.kernel.org/pub/linux/kernel/v2.2/linux-2.2.22.tar.gz, 2002.

[HK97] Amir H. Hashemi and David R. Kaeli. E�cient procedure mapping using
cache line coloring. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI-97), volume
32, 5 of ACM SIGPLAN Notices, pages 171�182, New York, June 15�18
1997. ACM Press.

[JS94] Theodore Johnson and Dennis Shasha. 2q: a low overhead high per-
formance bu�er management replacement algorithm. In Proceedings of
the Twentieth International Conference on Very Large Databases, pages
439�450, Santiago, Chile, 1994.

[JW98] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation
problem: solved? In Proceedings of the �rst international symposium on
Memory management. ACM Press, 1998.

[KB85] David G. Korn and Kiem-Phong Bo. In search of a better malloc. In
Proceedings of the Summer 1985 USENIX Conference, pages 489�506,
1985.

BIBLIOGRAPHY 696

[Kes91] Richard E. Kessler. Analysis of multi-megabyte secondary CPU cache
memories. Technical Report CS-TR-1991-1032, University of Wisconsin,
Madison, July 1991.

[KMC02] Scott Kaplan, Lyle McGeoch, and Megan Cole. Adaptive caching for de-
mand prepaging. In David Detlefs, editor, ISMM'02 Proceedings of the
Third International Symposium on Memory Management, ACM SIG-
PLAN Notices, pages 114�126, Berlin, June 2002. ACM Press.

[Kno65] Kenneth C. Knowlton. A fast storage allocator. Communications of the
ACM, 8(10):623�624, 1965.

[Knu68] D. Knuth. The Art of Computer Programming, Fundamental Algorithms,
Volume 1. Addison-Wesley, Reading, Mass., 1968.

[Lev00] Check Lever. Linux Kernel Hash Table Behavior: Analysis and Improve-
ments.
http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf, 2000.

[McK96] Marshall Kirk McKusick. The design and implementation of the 4.4BSD
operating system. Addison-Wesley, 1996.

[Mil00] David S. Miller. Cache and TLB Flushing Under Linux. Kernel Source
Documentation Tree, 2000.

[MM87] Rodney R. Oldehoeft Maekawa Mamoru, Arthur E. Oldehoeft. Operating
Systems, Advanced Concepts. Benjamin/Cummings Publishing, 1987.

[MM01] Richard McDougall and Jim Maura. Solaris Internals. Rachael Borden,
2001.

[Ous90] J. K. Ousterhout. Why Aren't Operating Systems Getting Faster As
Fast as Hardware? In Usenix 1990 Summer Conference, pages 247�256,
jun 1990.

[PN77] James L. Peterson and Theodore A. Norman. Buddy systems. Commu-
nications of the ACM, 20(6):421�431, 1977.

[Ray02] Eric S. Raymond. The Cathedral and The Bazaar (Revised Edition).
O'Reilly, 2002.

[RC01] Alessandro Rubini and Jonathan Corbet. Linux Device Drivers, 2nd
Edition. O'Reilly, 2001.

[RM01] Eric S. Raymond and Rick Moen. How to Ask Questions The Smart
Way. http://www.catb.org/∼esr/faqs/smart-questions.html, 2001.

[Rus00] Paul Rusty Russell. Unreliable guide to locking. Kernel Source Docu-
mentation Tree, 2000.

BIBLIOGRAPHY 697

[Sea00] Chris B. Sears. The elements of cache programming style. In Proceedings
of the 4th Annual Showcase and Conference, pages 283�298, Berkeley,
CA, October 2000. The USENIX Association.

[Sho75] John E. Shore. On the external storage fragmentation produced by
�rst-�t and best-�t allocation strategies. Communications of the ACM,
18(8):433�440, 1975.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems, 2nd Edition.
Prentice-Hall, 2001.

[Vah96] Uresh Vahalia. UNIX Internals. Prentice-Hall, Upper Saddle River, NJ
07458, USA, 1996.

[WJNB95] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles. Dynamic storage
allocation: A survey and critical review. Lecture Notes in Computer
Science, 986, 1995.

CODE COMMENTARY INDEX 698

Code Commentary Index

activate_lock(), 538
activate_page_nolock(), 538
add_page_to_active_list(), 535
add_page_to_hash_queue(), 528
add_page_to_inactive_list(), 536
add_page_to_inode_queue(), 528
add_to_page_cache_unique(), 526
add_to_page_cache(), 525
__add_to_page_cache(), 527
add_to_swap_cache(), 577
allocate_mm(), 239
alloc_area_pmd(), 432
alloc_area_pte(), 434
__alloc_bootmem_core(), 389
alloc_bootmem_node(), 388
__alloc_bootmem_node(), 389
__alloc_bootmem(), 387
alloc_bootmem(), 387
alloc_bounce_bh(), 515
alloc_bounce_page(), 516
alloc_one_pte(), 278
_alloc_pages(), 405
alloc_pages(), 405
__alloc_pages(), 406
alloc_page(), 418
arch_get_unmapped_area(), 246, 297

badness(), 691
balance_classzone(), 414
block_flushpage(), 368
block_read_full_page(), 349
bounce_end_io_read(), 518
bounce_end_io_write(), 517
bounce_end_io(), 519
break_cow(), 340
BREAK_GFP_ORDER_HI, 488
BREAK_GFP_ORDER_LO, 488
brw_page(), 590
build_zonelists(), 214

CACHE_NAMELEN, 488
calc_vm_flags(), 247

can_share_swap_page(), 336
can_vma_merge(), 260
CHECK_PAGE(), 482
clear_page_tables(), 290
clear_user_highpage(), 339
CLUSTER_OFFSET(), 376, 378
CLUSTER_PAGES, 376, 378
contig_page_data, 405
copy_from_high_bh(), 518
copy_mm(), 236
copy_one_pte(), 279
copy_to_high_bh_irq(), 519
copy_user_highpage(), 339
create_bounce(), 513

DECLARE_FSTYPE(), 623
DEFAULT_MAX_MAP_COUNT, 246
del_page_from_active_list(), 537
del_page_from_inactive_list(), 537
do_anonymous_page(), 330
do_ccupdate_local(), 495
do_flushpage(), 368
do_generic_file_read(), 344
do_mlockall(), 302
do_mlock(), 303
do_mmap_pgoff(), 244
do_mmap(), 243
do_mremap(), 261
do_munmap(), 280
do_no_page(), 327
do_page_fault(), 313
do_shmem_file_read(), 634
do_swap_page(), 332
do_wp_page(), 338
drain_cpu_caches(), 496

enable_all_cpucaches(), 490
enable_cpucache(), 491
_end, 203
end_buffer_io_async(), 592
__end_of_fixed_addresses, 227
exclusive_swap_page(), 337

CODE COMMENTARY INDEX 699

exit_mmap(), 240, 287
expand_stack(), 315, 323
expand(), 410, 412

fail_writepage(), 667
filemap_nopage(), 369
file_read_actor(), 637
__find_get_page(), 531
find_get_page(), 531
__find_lock_page_helper(), 533
__find_lock_page(), 533
find_lock_page(), 533
find_max_low_pfn(), 203
find_max_pfn(), 203
__find_page_nolock(), 532
find_vma_intersection(), 296
find_vma_prepare(), 253
find_vma_prev(), 294
find_vma(), 293
FIXADDR_TOP, 226
fixrange_init(), 227
__fix_to_virt(), 226
flush_all_zero_pkmaps(), 506
follow_page(), 230
free_all_bootmem_core(), 401
free_all_bootmem(), 401
free_area_init_core(), 208
free_area_init_node(), 206
free_area_init(), 206
free_area_pmd(), 439
free_area_pte(), 440
free_block(), 485
__free_block(), 486
free_bootmem_core(), 395
free_bootmem(), 395
free_one_pgd(), 290
free_one_pmd(), 291
free_pages_init(), 399
__free_pages_ok(), 420
__free_pages(), 420
free_pages(), 420, 425
__free_page(), 425
free_page(), 425
free_swap_and_cache(), 588

generic_file_mmap(), 355

generic_file_readahead(), 351
generic_file_read(), 341
generic_file_vm_ops, 356
__get_dma_pages(), 419
__get_free_pages(), 418
__get_free_page(), 418
get_max_readahead(), 376
get_one_pte(), 277
get_swaphandle_info(), 592
get_swap_page(), 572
get_unmapped_area(), 296
get_user_pages(), 272
get_vm_area(), 428
get_zeroed_page(), 419
gfp_mask, 405

handle_mm_fault(), 324
handle_pte_fault(), 326
highstart_pfn, 203

__init, 398
init_bootmem_core(), 383
init_bootmem_node(), 382
init_bootmem(), 382
init_emergency_pool(), 521
init_mm, 236
INIT_MM(), 236
init_tmpfs(), 622
__insert_vm_struct(), 252
insert_vm_struct(), 252, 253
ipc_findkey(), 678

_KERNPG_TABLE, 225
kfree(), 489
kmalloc(), 488
kmap_atomic(), 508
kmap_get_fixmap_pte(), 229
kmap_high(), 503
kmap_init(), 222, 228
kmap_nonblock(), 502
kmap_prot, 229
kmap_pte, 229
kmap_vstart, 229
__kmap(), 502
kmap(), 502
__kmem_cache_alloc (SMP Case)(), 476

CODE COMMENTARY INDEX 700

__kmem_cache_alloc (UP Case)(), 475
kmem_cache_alloc_batch(), 480
kmem_cache_alloc_head(), 477
kmem_cache_alloc_one_tail(), 479
kmem_cache_alloc_one(), 478
kmem_cache_alloc(), 474
kmem_cache_create(), 444
kmem_cache_destroy(), 458
kmem_cache_estimate(), 453
__kmem_cache_free (SMP Case)(), 483
__kmem_cache_free (UP Case)(), 482
kmem_cache_free_one(), 484
kmem_cache_free(), 482
kmem_cache_grow(), 466
kmem_cache_init_objs(), 472
kmem_cache_init(), 498
kmem_cache_reap(), 459
__kmem_cache_shrink_locked(), 456
__kmem_cache_shrink(), 455
kmem_cache_shrink(), 455
kmem_cache_sizes_init(), 487
kmem_cache_slabmgmt(), 464
kmem_find_general_cachep(), 465
kmem_freepages(), 499
kmem_getpages(), 499
kmem_slab_destroy(), 470
kmem_tune_cpucache(), 492
km_type, 508
kswapd_balance_pgdat(), 568
kswapd_balance(), 568
kswapd_can_sleep_pgdat(), 567
kswapd_can_sleep(), 567
kswapd_init(), 565
kswapd(), 565
kunmap_atomic(), 512
kunmap_high(), 510
kunmap(), 510

__lock_page(), 216
lock_page(), 216, 599
lookup_swap_cache(), 583
lru_cache_add(), 535
lru_cache_del(), 536
__lru_cache_del(), 537

make_pages_present(), 271

MAP_ALIGN(), 209
map_new_virtual(), 503
mark_page_accessed(), 538
max_low_pfn, 203
max_map_count, 246
max_pfn, 203
memclear_highpage_flush(), 368
mem_init(), 397
mlock_fixup_all(), 308
mlock_fixup_end(), 309
mlock_fixup_middle(), 310
mlock_fixup_start(), 308
mlock_fixup(), 306
mmdrop(), 240, 241
__mmdrop(), 242
mmput(), 240
mm_alloc(), 239, 240
mm_init(), 239
move_one_page(), 277
move_page_tables(), 276
move_vma(), 267

newseg(), 679
nopage_sequential_readahead(), 375

one_highpage_init(), 400
oom_kill_task(), 692
oom_kill(), 689
out_of_memory(), 688

pagetable_init(), 222, 223
page_cache_get(), 531
page_cache_read(), 374
page_cache_release(), 531
page_cache_size, 529
page_cluster, 605
page_hash_table, 528
page_hash(), 375, 526
page_waitqueue(), 217�219
paging_init(), 222
PFN_UP(), 203
ppro_with_ram_bug(), 400
precheck_file_write(), 639
pswpin, 590
pswpout, 590
ptep_get_and_clear(), 441

CODE COMMENTARY INDEX 701

put_page_testzero(), 420

readpage(), 349
read_cluster_nonblocking(), 377
read_swap_cache_async(), 584
refill_inactive(), 540
register_bootmem_low_pages(), 204
remove_exclusive_swap_page(), 586
__remove_inode_page(), 529
remove_inode_page(), 529, 669
remove_page_from_hash_queue(), 530
remove_page_from_inode_queue(), 530
reserve_bootmem_core(), 386
reserve_bootmem_node(), 385
reserve_bootmem(), 385
rmqueue(), 410
run_task_queue(), 377
rw_swap_page_base(), 590
rw_swap_page(), 589

scan_swap_map(), 574
search_exception_table(), 319
select_bad_process(), 690
setup_memory(), 202
SET_PAGE_CACHE(), 469
SET_PAGE_SLAB(), 469
SGP_WRITE, 640
shmem_alloc_entry(), 663
shmem_create(), 628
shmem_empty(), 653
shmem_file_read(), 633
shmem_file_setup(), 675
shmem_file_write(), 638
shmem_find_swp(), 673
shmem_follow_link_inline(), 644
shmem_free_swp(), 650
shmem_getpage(), 656
shmem_get_inode(), 629
shmem_ilock, 643
SHMEM_I(), 647, 657
shmem_link(), 651
SHMEM_MAX_INDEX, 663
shmem_mkdir(), 652
shmem_mknod(), 628
shmem_mmap(), 632

shmem_nopage(), 655
SHMEM_NR_DIRECT, 664
shmem_positive(), 654
shmem_readlink_inline(), 644
shmem_readlink(), 644
shmem_read_super(), 624
shmem_rmdir(), 653
SHMEM_SB(), 625
shmem_set_size(), 626
shmem_swp_entry(), 662, 664
shmem_symlink(), 641
shmem_sync_file(), 645
shmem_truncate_direct(), 649
shmem_truncate_indirect(), 647
shmem_truncate(), 646
shmem_unlink(), 652
shmem_unuse_inode(), 670
shmem_unuse(), 669
shmem_writepage(), 667
shmem_zero_setup(), 674
SHMLBA, 682
shm_lock(), 682
SHM_RND, 682
shm_tot, 681
shrink_caches(), 550
shrink_cache(), 542
slab_break_gfp_order, 488
smp_call_function_all_cpus(), 495
start_pfn, 203
STATS_INC_GROWN(), 469
swapin_readahead(), 378
swapper_pg_dir, 222
swap_duplicate(), 578
swap_entry_free(), 580
swap_free(), 580
swap_info_get(), 581
swap_info_put(), 582
swap_out_mm(), 556
swap_out_pgd(), 558
swap_out_pmd(), 559
swap_out_vma(), 557
swap_out(), 554
swap_setup(), 605
swap_writepage(), 586
SWP_ENTRY(), 573

CODE COMMENTARY INDEX 702

sync_page(), 217
sys_mlockall(), 300
sys_mlock(), 299
sys_mremap(), 261
sys_munlockall(), 306
sys_munlock(), 305
sys_shmat(), 681
sys_shmget(), 678
sys_swapoff(), 606
sys_swapon(), 594

tlb_finish_mmu(), 361
tlb_gather_mmu(), 361
tlb_remove_page(), 361, 362
totalhigh_pages, 401
truncate_complete_page(), 367
truncate_inode_pages(), 364
truncate_list_pages(), 365
truncate_partial_page(), 368
truncate(), 356
TryLockPage(), 216, 534
try_to_free_pages(), 551
try_to_free_pages_zone(), 552
try_to_swap_out(), 561
try_to_unuse(), 610

unlock_page(), 218
unmap_fixup(), 284
unuse_pgd(), 616
unuse_pmd(), 618
unuse_process(), 615
unuse_pte(), 619
unuse_vma(), 616

valid_swaphandles(), 379
vfree(), 437
vmalloc_area_pages(), 430
__vmalloc_area_pages(), 431
__vmalloc(), 427
vmalloc(), 427
vmap(), 435
__vma_link_file(), 257
__vma_link_list(), 256
__vma_link_rb(), 257
vma_link(), 255
__vma_link(), 256

vma_merge(), 258
vmfree_area_pages(), 438
vmtruncate_list(), 358
vmtruncate(), 356, 646
vm_enough_memory(), 686
vm_reend, 376
VM_SEQ_READ, 371
vm_swap_full(), 589

___wait_on_page(), 219
wait_on_page(), 219

zap_page_range(), 359
zap_pmd_range(), 361
zap_pte_range(), 362
zone_sizes_init(), 205

INDEX 703

Index

3GiB/1GiB Split, 53, 144

896MiB limit of ZONE_NORMAL, 54

Accessing userspace, 82
access_ok(), 83
activate_page(), 160
active_list, 25, 154, 159
Address mapping to pages, 41
Address space management, 54
Address space regions, 60
Address space, 52
address_space, 24, 54, 64
add_to_page_cache_unique(), 157
add_to_page_cache(), 157
add_to_swap_cache(), 175, 176
Advanced Programmable Interrupt Con-

troller (APIC), 54
allocate_mm(), 59
__alloc_bootmem_core(), 94
alloc_bootmem_low_pages_node(), 91,

94
alloc_bootmem_low_pages(), 90, 93
alloc_bootmem_low(), 90, 93
alloc_bootmem_node(), 91, 94
__alloc_bootmem_node(), 94
alloc_bootmem_pages_node(), 91, 94
alloc_bootmem_pages(), 90, 93
alloc_bootmem(), 90, 93
__alloc_bootmem(), 93
alloc_bounce_bh(), 149
alloc_bounce_page(), 149
alloc_pages(), 100
alloc_page(), 100
Anonymous pages, 78
Anonymous pages, backing, 182
arch_get_unmapped_area(), 68
arch_set_page_uptodate(), 25
associative mapping, 44
AS_EIO, 84
AS_ENOSPC, 84
autoconf, 2

automake, 2

Backing storage, 167
Benchmarking kernsls, 12
Big Kernel Lock (BKL), 179
Binary Buddy Allocator, 98
BitKeeper, 5
bmap(), 178
Boot allocator initialisation, 92
Boot map representation, 90
Boot Memory Allocator, 89
bootmem_bootmap_pages(), 90
bootmem_data, 90
Bootstrap �nialisation, 95
Bounce bu�ers, 144, 148
bounce_end_io_write(), 149
bounce_end_io(), 150
Browsing Code, 10
brw_page(), 178
Buddies, 98
Buddy coalescing, 98, 102
buffer_head, 149
BUG(), 95

Cache chain, 115
Cache colouring, 117
Cache creation (Slab), 125
Caches (slab allocator), 118
cache_cache, 141
cache_sizes, 137
cache_sizes_t, 137
Call graph generation, 11
ccupdate_t, 140
cc_data(), 139
cc_entry(), 140
CFGS_OFF_SLAB, 123, 130
CFLGS_OPTIMIZE, 123
check_pgt_cache(), 39
ClearPageActive(), 31
ClearPageDirty(), 31
ClearPageError(), 31
ClearPageLaunder(), 31

INDEX 704

ClearPageReferenced(), 31
ClearPageReserved(), 31
ClearPageUptodate(), 31
clear_user_highpage(), 79
clear_user_page(), 83
clock_searchp, 126
Code Comprehension, 11
CodeViz, 10
Coloring, 116, 117
committed_space, 197
Companion CD, iii
CONFIG_SLAB_DEBUG, 117, 122
ConTest, 12
contig_page_data, 14
Copy On Write(COW), 316
Copy-On-Write (COW), 78, 82
Copying to/from userspace, 82
copy_from_high_bh(), 150
copy_from_user(), 83
copy_mm(), 59
copy_to_user(), 83
copy_user_page(), 83
CPU cache hit, 45
CPU cache line, 44
CPU Cache Management, 43
CPU cache miss, 45
cpucache, 138
cpu_vm_mask, 58
create_bounce(), 149
CREATE_MASK, 123
Creating �les in tmpfs, 187
Creating VMAs, 66
ctags, 10

dbench, 12
Deactivating swap area, 180
def_flags, 58
DEF_PRIORITY, 162
Deleting a VMA, 75
Demand Allocation, 77
Demand allocation, 78
Demand Fetch, 76
Demand Paging, 78
Demand paging, 81
Device backed regions, 64

DFLGS_GROWN, 123
di�, 4, 6
di�func, 9
di�struct, 9
direct mapping, 44
direct-reclaim, 18, 19
do_anonymous_page(), 78
do_ccupdate_local(), 141
do_mmap2(), 66
do_mmap_pgoff(), 66
do_no_page(), 77, 78
do_page_fault(), 76
do_swap_page(), 33, 78, 81
do_wp_page(), 78, 82
dummy_security_ops, 197

Eliminating fragmentation (internal),
116

empty_zero_page, 79
enable_all_cpucaches(), 140
enable_cpucache(), 140
_end, 20
Exception handling, 75
Exception table, 319
exception_table_entry, 75
exit_mmap(), 59, 60
Expanding the stack, 77
EXPORT_SYMBOL(), 25
External fragmentation, 106
__ex_table, 75

File backed regions, 64
File/device backed pages, 80
filemap_nopage(), 64, 80
Filesystem, shared memory, 182
file_operations, 185
Finalising memory bootstrapping, 95
find_max_low_pfn(), 20
find_max_pfn(), 20
__find_page_nolock(), 158
find_vma_intersection(), 68, 69
find_vma_prepare(), 69, 70
find_vma_prev(), 67, 69
find_vma(), 67, 69
First Fit, 89

INDEX 705

__FIXADDR_SIZE, 54
FIXADDR_START, 54, 144
FIXADDR_TOP, 54
fixrange_init(), 40
FIX_KMAP_BEGIN, 40, 148
FIX_KMAP_END, 40, 148
flush_cache_all(), 46
flush_cache_mm(), 46
flush_cache_page(), 46
flush_cache_range(), 46
flush_dcache_page(), 47
flush_icache_page(), 47
flush_icache_range(), 47
flush_icache_user_range(), 47
flush_page_to_ram(), 47, 79
flush_tlb_all(), 43
flush_tlb_mm(), 43
flush_tlb_page(), 44
flush_tlb_pgtables(), 44
flush_tlb_range(), 43
for_each_pgdat(), 17
Fragmentation elimination (external),

110
Fragmentation, 106
Free lists, 98
free_all_bootmem_core(), 96
free_all_bootmem_node(), 91, 96
free_all_bootmem(), 90, 96
free_area_init_node(), 22, 23
free_area_init(), 23
free_area_t, 98
free_bootmem_node(), 91, 94
free_bootmem(), 90, 94
free_initmem(), 97
free_mm(), 59
free_pages_init(), 95
__free_pages(), 102
__free_page(), 102
free_page(), 102
free_pgtables(), 75
free_swap_and_cache(), 190
Frequently Asked Questions (FAQ), 3

generic_file_vm_ops, 64
Get Free Page (GFP), 103

Get Free Pages (GFP) �ags, 103
__get_dma_pages(), 100
__get_free_pages(), 100
__get_free_page(), 100
get_free_page(), 100
GET_PAGE_CACHE(), 129
GET_PAGE_SLAB(), 129
get_pgd_fast(), 39
get_pgd_slow(), 39
get_swaphandle_info(), 178
get_swap_page(), 173, 176
get_unmapped_area(), 68, 69
get_user(), 83
get_vm_area(), 111
GFP �ags, 103
GFP_ATOMIC, 104, 105
__GFP_DMA, 103
GFP_DMA, 103
__GFP_FS, 104
__GFP_HIGH, 104
__GFP_HIGHIO, 104
__GFP_HIGHMEM, 103
GFP_HIGHUSER, 104, 105
__GFP_IO, 104
GFP_KERNEL, 104, 105
GFP_KSWAPD, 104, 105
gfp_mask, 99
GFP_NFS, 104, 105
__GFP_NOFAIL, 108
GFP_NOFS, 104, 105
GFP_NOHIGHIO, 104, 105
GFP_NOIO, 104, 105
__GFP_NORETRY, 108
__GFP_REPEAT, 108
GFP_USER, 104, 105
__GFP_WAIT, 104
Global zero page, 52
golden ratio, 22
GOLDEN_RATIO_PRIME, 22
GraphViz, 10
g_cpucache_up, 140

handle_mm_fault()

, 76
handle_pte_fault(), 77

INDEX 706

High memory atomic mappings, 147
High Memory IO, 148
High memory mapping, 145
High Memory, 26, 144
highend_pfn, 92
highstart_pfn, 92
Huge TLB Filesystem (hugetlbfs), 51
Huge TLB Filesystem, 51

inactive_list, 25, 154, 159
inclusion property, 154
__init, 97
Initialising buddy allocator, 97
Initialising kmem_bufctl_t, 133
Initialising mm_struct, 59
Initialising Objects, 135
Initialising page hash table, 156
Initialising shared regions, 191
Initialising Slab Allocator, 141
Initialising swap areas, 179
Initialising the boot memory allocator,

92
Initialising virtual �lesystem, 183
Initialisinig page tables, 39
__init_begin, 97
init_bootmem_core(), 17
init_bootmem_node(), 91
init_bootmem(), 90
init_emergency_pool(), 151
__init_end, 97
INIT_MM(), 59
init_mm(), 59
Inode queue, 157
inode_operations, 185
Inserting a memory region, 69
insert_vm_struct(), 69
Internal fragmentation, 106
Internet Relay Chat (IRC), 3
InterProcessor Interrupt (IPI), 58
IPC, 192

Kernel Address Space, 53
Kernel Benchmarking, 12
Kernel Con�guration, 2
Kernel Documentation, 3

Kernel image location, 39
Kernel Patching, 4
Kernel Subtrees, 5
Kernel Tra�c, 4
Kernel Trap, 4
kern_mount(), 182
kfree(), 118, 138
kmalloc(), 118, 138
kmap_atomic(), 40, 145, 147, 148
kmap_high(), 145
kmap_nonblock(), 145, 147
kmap(), 54, 145, 147
kmem_bufctl_t, 130, 131
kmem_bufctl_t types, 130
kmem_cache, 141
kmem_cache_alloc(), 118, 133
kmem_cache_create(), 118
kmem_cache_destroy(), 118
kmem_cache_free(), 118
kmem_cache_init(), 142
kmem_cache_reap(), 118
kmem_cache_shrink(), 118
kmem_cache_slabmgmt(), 130
kmem_freepages(), 142
kmem_getpages(), 142
kmem_tune_cpucache(), 140
km_type, 147
KM_TYPE_NR, 147
kswapd, 18, 101, 154
kswapd_balance(), 165
kswapd_can_sleep(), 164
kswapd_init(), 164
kswapd_wait, 165
kswapd(), 164
kunmap_atomic(), 147, 148
kunmap_high(), 146, 147
kunmap(), 145�147

LAST_PKMAP, 145
last_pkmap_nr, 146
Lazy buddy, 107
lazy TLB, 55
Least Recently Used (LRU), 154
Level 1 CPU, 43
Linear address macros, 34

INDEX 707

Linear Address Space, 53
Linux Cross-Referencing (LXR), 10
Linux Kernel Mailing List (LKML), 4
Linux Kernel Newbies, 4
Linux Weekly News (LWN), 4
Linux-MM Website, 4
lmbench, 12
local_pages, 410
locked_vm, 58
Locking regions, 72
LockPage(), 31
lookup_swap_cache(), 176
LRU 2Q, 154
LRU list page reclaim, 160
LRU lists, 153, 159
LRU rotation, 160
lru_cache_add(), 160
lru_cache_del(), 160

Major page faults, 76
mapping_gfp_mask(), 84
map_new_virtual(), 145
MAP_POPULATE, 87
mark_page_accessed(), 160
MARK_USED(), 99
MAX_DMA_ADDRESS, 94
max_low_pfn, 92
max_mapped, 160
MAX_NR_ZONES, 25
MAX_ORDER, 98
max_pfn, 92
max_scan, 160
MAX_SWAPFILES, 168
MAX_SWAP_BADPAGES, 171
Memory Management Unit (MMU),

32
Memory pools, 151
Memory pressure, 18
Memory regions, 60
mem_init(), 95
mem_map, 15
mem_map initialisation, 23
mem_map_t, 25
merge_segments(), 71
Minor page faults, 76

min_low_pfn, 92
mkswap, 170
mk_pte_phys(), 38
mk_pte(), 38
mlockall(), 72
mlock_fixup_all(), 73
mlock_fixup_end(), 73
mlock_fixup_middle(), 73
mlock_fixup_start(), 73
mlock_fixup(), 73
mlock(), 72
mmap_sem, 58
mmdrop(), 60
mmlist, 58
mmput(), 59
MMU, 32
mm_alloc(), 59
mm_count, 56
mm_init(), 59
mm_struct, 54
mm_users, 56
Move-To-Front heuristic, 154
move_page_tables(), 71
move_vma(), 71

munmap()

, 74

newseg(), 192
Node ID (NID), 17
Node structure, 15
Node-Local Allocation, 15, 100
Nodes, 14
Non-UniformMemory Access (NUMA),

14
NRPTE, 47
nr_pages, 160
NUMA, 14

Object allocation, 115, 135
Object coloring, 116
Object freeing, 136
Object initialisation, 135
Objects, 135
one_highpage_init(), 96
OOM Detectioon, 195

INDEX 708

OOM Killing, 196
OOM Management, 194
OOM Prevention, 194
oom_kill(), 196
Order allocation, 98
out_of_memory(), 195

Page allocation, 98
Page cache, 153, 155, 158
Page colour, 117
Page directory describing, 33
Page fault exception handler, 82
Page faulting (shmem), 188
Page faults, 76
Page �ags, 25, 30
Page Fragmentation, 106
Page Frame Number (PFN), 16, 89
Page Global Directory (PGD), 32, 33
Page hash table, 156
page hash, 156
Page index, 24
Page lists, 24
Page Middle Directory (PMD), 32
Page reclaimation, 153
Page replacement policy, 154
Page Size Extension (PSE), 40
page struct, 23
Page structure, 23
Page Table Entry (PTE), 32
Page table initialisation, 39
Page table layout, 33
Page table management, 32
Page table protection, 35
Page to zone mapping, 25
Page wait queues, 21
PageActive(), 31
PageChecked(), 31
PageClearSlab(), 31
PageDirty(), 31
PageError(), 31
PageHighMem(), 31
PageLaunder(), 31
PageLocked(), 31
PageLRU(), 31
Pageout Daemon, 164

Pageout of process pages, 163
PageReferenced(), 31
PageReserved(), 31
PageSetSlab(), 31
PageSlab(), 31
PageSwapCache(), 174
pages_high, 19
pages_low, 19
pages_min, 19
pagetable_init(), 40
PageUptodate(), 31
pagevec, 166
_PAGE_ACCESSED, 36
PAGE_ALIGN(), 34
page_cache_alloc(), 157
page_cache_get(), 157
page_cache_init(), 156
page_cache_read(), 157, 158
page_cache_release(), 157
page_cluster, 81
_PAGE_DIRTY, 36
_page_hashfn(), 156
page_hash_bits, 156
page_hash_table, 156
PAGE_OFFSET, 53
PAGE_PER_WAITQUEUE, 21
_PAGE_PRESENT, 36
_PAGE_PROTNONE, 36
_PAGE_RW, 36
PAGE_SHIFT, 34
page_state, 29
_PAGE_USER, 36
page_waitqueue(), 22
Paging out, 164
Paging, 167
paging_init(), 40
Patch Generation, 6
Patch submission, 12
Patch usage, 4
patch, 6
PatchSet, 8
__pa(), 41
Per-CPU cache, 138
Persistent Kernel Map (PKMap), 144
per_cpu_pages, 29

INDEX 709

per_cpu_pageset, 28
PFN, 16
PF_FREE_PAGES, 106
PF_MEMALLOC, 106
PF_MEMDIE, 106
pg0, 39
pg1, 39
PGD, 32
pgdat_list, 14, 17
PGDIR_SHIFT, 35
pgd_alloc(), 38
pgd_free(), 38
pgd_offset(), 36
pgd_quicklist, 38
pgd_t, 33
pgd_val(), 35
__pgd(), 35
pglist_data, 14, 15
pgprot_t, 35
pgprot_val(), 35
__pgprot(), 35
PG_active, 30
PG_arch_1, 30
PG_checked, 30
pg_data_t, 14, 15
PG_dirty, 30
PG_error, 30
PG_fs_1, 30
PG_highmem, 30
PG_launder, 30
PG_locked, 30
PG_lru, 30
PG_referenced, 30
PG_reserved, 30
PG_skip, 30
PG_slab, 30
PG_unused, 30
PG_uptodate, 30
Physical Address Extension (PAE), 26
Physical to virtual address mapping,

41
phys_to_virt(), 41
PKMap address space, 144
PKMAP_BASE, 53, 144
pkmap_count, 145

pkmap_map_wait, 146
pkmap_page_table, 145
pmap, 22
PMD, 32
pmd_alloc_one_fast(), 39
pmd_alloc_one(), 39
pmd_alloc(), 38
pmd_free(), 38
pmd_offset(), 36
pmd_page(), 38
pmd_quicklist, 38
PMD_SHIFT, 35
pmd_t, 33
pmd_val(), 35
__pmd(), 35
Process address space, 52
Process descriptor allocation, 59
Process �ags, 105
Process killing, 196
Process pageout, 163
Process space descriptor, 54
PTE allocation, 38
PTE chain, 46
PTE chains, 28
PTE freeing, 38
PTE instantiation, 38
PTE macros, 36
PTE Protection Bits, 35
PTE to Swap Entry Mapping, 171
PTE, 32
ptep_get_and_clear(), 38
PTEs in High Memory, 50
pte_alloc_one_fast(), 39
pte_alloc_one(), 39
pte_alloc(), 38
pte_clear(), 38
pte_dirty(), 38
pte_exec(), 37
pte_exprotect(), 37
pte_free(), 38
pte_mkclean(), 38
pte_mkdirty(), 38
pte_mkexec(), 37
pte_mkread(), 37
pte_mkwrite(), 37

INDEX 710

pte_mkyoung(), 38
pte_modify(), 37
pte_offset_map(), 50
pte_offset(), 36
pte_old(), 38
pte_page(), 38
pte_quicklist, 38
pte_rdprotect(), 37
pte_read(), 37
pte_t, 33
pte_to_swp_entry(), 171
pte_val(), 35
pte_write(), 37
pte_wrprotect(), 37
pte_young(), 38
__pte(), 35
PTRS_PER_PGD, 35
PTRS_PER_PMD, 35
PTRS_PER_PTE, 35
put_user(), 83

quicklists, 38

RAM based �lesystem, 182
read_swap_cache_async(), 176
REAP_SCANLEN, 126
Re�lling inactive_list, 159
refill_inactive(), 154, 159
remap_file_pages(), 87
remove_exclusive_swap_page(), 177
remove_inode_page(), 157
remove_page_from_hash_queue(), 157
remove_page_from_inode_queue(), 157
reserve_bootmem_node(), 91
reserve_bootmem(), 90
Resident Set Size (RSS), 58
Retiring boot memory, 95
Reverse Mapping (rmap), 46
Reverse Mapping (RMAP), 81
Reverse mapping objects, 48
Reverse mapping pages, 46
rss, 58
rw_swap_page_base(), 178
rw_swap_page(), 177, 178

scan_swap_map(), 173

search_exception_table(), 75
security_operations, 197
security_ops, 197
security_vm_enough_memory(), 197
set associative mapping, 44
SetPageActive(), 31
SetPageChecked(), 31
SetPageDirty(), 31
SetPageError(), 31
SetPageLaunder(), 31
SetPageReferenced(), 31
SetPageReserved(), 31
SetPageUptodate(), 25, 31
setup_arch(), 92
setup_arg_flags(), 63
setup_memory(), 92
SET_PAGE_CACHE(), 129
SET_PAGE_SLAB(), 129
set_page_zone(), 26
set_pte(), 38
set_shrinker(), 143
Shared Regions, 191
shm, 182
shmat(), 192
Shmem �le creation, 187
Shmem functions, 184
shmem_commit_write(), 184
shmem_dir_inode_operations, 185
shmem_file_operations, 185
shmem_getpage(), 186
shmem_inodes, 182
shmem_inode_cache, 193
shmem_inode_info, 183
shmem_inode_operations, 185
SHMEM_I(), 183
SHMEM_MAX_INDEX, 189
shmem_prepare_write(), 184
shmem_readpage(), 184
shmem_symlink_inline_operations, 185
shmem_symlink_inode_operations, 185
shmem_writepage(), 184
shmget(), 192
SHM_DEST, 192
SHM_HUGETLB, 51
SHM_LOCK, 184

INDEX 711

SHM_UNLOCK, 184
shm_vm_ops, 192
shrink_caches(), 162
shrink_cache(), 160
size-N cache, 137
size-N(DMA) cache, 137
Slab allocator, 115
Slab cache allocation �ags, 124
Slab cache chain, 115
Slab cache colouring, 124
Slab cache creation, 125
Slab cache deletion, 128
Slab cache dynamic �ags, 123
Slab cache reap, 126
Slab cache shrinking, 127
Slab cache static �ags, 123
Slab cache, 115
Slab caches, per-CPU, 138
Slab creation, 131
Slab debugging, 117
Slab deletion, 135
slab descriptor, 130
Slab descriptors, 130
Slab free object tracking, 131
Slab initialisation, 141
Slab object allocation, 135, 136
Slab objects, see Objects, 135
slabinfo, 118
Slabs, 115, 129
Slabs, buddy interaction, 142
Slabs, �nding free objects, 133
Slabs, number of objects, 134
slabs_free, 119
slabs_full, 119
slabs_partial, 119
SLAB_ATOMIC, 124
slab_bufctl(), 132
SLAB_CACHE_DMA, 123
SLAB_CTOR_ATOMIC, 125
SLAB_CTOR_CONSTRUCTOR, 125
SLAB_CTOR_VERIFY, 125
SLAB_DEBUG_FREE, 124
SLAB_DEBUG_INITIAL, 124
SLAB_DMA, 124
SLAB_HWCACHE_ALIGN, 123

SLAB_KERNEL, 124
SLAB_MUST_HWCACHE_ALIGN, 123
SLAB_NFS, 124
SLAB_NOFS, 124
SLAB_NOHIGHIO, 124
SLAB_NOIO, 124
SLAB_NO_REAP, 123
SLAB_POISON , 124
SLAB_RED_ZONE, 124
SLAB_USER, 124
Small allocation caches, 116, 137
Sourceforge.net, 3
SPEC, 12
Stack algorithm, 154
Stack Expansion, 77
startup_32(), 39
strlen_user(), 83
strncpy_from_user(), 83
struct kmem_cache_s, 120
Swap area deactivating, 180
Swap area initialising, 179
Swap area, 167
Swap area, describing, 168
Swap cache, 153, 173
Swap entries, 171
Swap management, 167
Swap reading, 176, 178
Swap writing, 177
SWAPFILE_CLUSTER, 173
swapin_readahead(), 76, 81
swapper_pg_dir, 39
Swapping, 167
SWAP_CLUSTER_MAX, 162
swap_duplicate(), 175, 176
swap_free(), 176
swap_header, 170
swap_info, 168, 171
swap_info_struct, 168
swap_list, 169
SWAP_MAP_BAD, 169
SWAP_MAP_MAX, 169
swap_mm, 163
swap_ops, 174
swap_out_mm(), 164
swap_out_vma(), 164

INDEX 712

swap_out(), 153, 163
swp_entry_t, 171
swp_entry_to_pte(), 171
SWP_ENTRY(), 172
SWP_OFFSET(), 171
SWP_TYPE(), 171
SWP_USED, 168
SWP_WRITEOK, 168
System V IPC, 192
sys_mmap2(), 66
sys_mprotect(), 71
sys_mremap(), 71
sys_munlockall(), 73
sys_munlock(), 73
sys_swapoff(), 180
sys_swapon(), 179

TestClearPageLRU(), 31
TestSetPageLRU(), 31
Thread identi�cation, 54
thundering herd, 21
TLB API, 43
TLB �ushing, 55
TLB, 32, 42
tmpfs, 182
total_vm, 58
tq_disk, 165
Translation Lookaside Bu�er (TLB),

32, 42
Trivial Patch Monkey, 13
try_to_free_buffers(), 104
try_to_swap_out(), 164
try_to_unuse(), 180

Understanding the Linux Kernel, 1
uni�ed di�s, 4
UnlockPage(), 21, 31
unmap_fixup(), 75
update_mmu_cache(), 44
UseNet, 3
Userspace accessing, 82

__va(), 41
vfree(), 113
Virtual Memory Area, 60
virt_to_page(), 42

VM Regress, 12
VMA Creation, 66
VMA deletion, 75
VMA insertion, 69
VMA locking, 72
VMA merging, 71
VMA operations, 62
VMA remapping, 71
VMA searching, 67
VMA unlocking, 73
VMA, 60
vmalloc address space, 111
vmalloc areas, 110
vmalloc_32(), 111, 112
vmalloc_dma(), 111, 112
VMALLOC_END, 110
VMALLOC_OFFSET, 53
VMALLOC_RESERVE, 54
VMALLOC_START, 110
vmalloc(), 106, 110, 112
vmap(), 114
__vma_link(), 70
vma_link(), 70
vma_merge(), 69, 71
vmlist_lock, 111
vmspace, 54
VM_ACCOUNT, 86, 197
vm_acct_memory(), 197
VM_ALLOC, 111
vm_area_struct, 54, 60
VM_DENYWRITE, 63
vm_enough_memory(), 194
VM_EXECUTABLE, 63
VM_GROWSDOWN, 63
VM_GROWSUP, 63
VM_IO, 63
VM_IOREMAP, 111
VM_LOCKED, 63
VM_MAYEXEC, 63
VM_MAYREAD, 63
VM_MAYSHARE, 63
VM_MAYWRITE, 63
vm_operations_struct, 62
VM_RAND_READ, 63
VM_RESERVED, 63

INDEX 713

VM_SEQ_READ, 63
VM_SHM, 63
VM_STACK_FLAGS, 63
vm_struct, 110
vm_unacct_memory(), 197
vsyscall page, 84

Waiting on pages, 21
wait_on_page(), 21
wait_table_size(), 21
working set, 154

Zone balance, 19
Zone dimensions, 14
Zone fallbacks, 16
Zone initialisation, 22
Zone modi�ers, 103
Zone pressure, 18
Zone size calculation, 20
Zone structure, 17
Zone watermarks, 18
Zones, 14
zones_sizes, 22
ZONE_DMA, 14
ZONE_HIGHMEM, 14
zone_holes, 22
ZONE_NORMAL, 14
ZONE_NORMAL at 896MiB, 54
ZONE_PADDING(), 28
zone_sizes_init(), 41
zone_start_paddr, 22
zone_struct, 14, 17
zone_t, 14, 17
zone_table, 25

