

MPEG-2 over ATM

John Koiste Senior Engineer

Agenda

- Why digital video and video compression?
- Fundamentals of color video in five minutes
- Video compression tool kit for MPEG-2
- An overview of MPEG-2
- Fitting MPEG-2 on ATM
- NetCalc3 modeling of MPEG-2 and ATM

Why Digital Video?

- Digital format has evolved
 - from telephone network switching and transmission
 - -to high fidelity audio (compact disks)
 - -to video
- Attraction of digital video seems irresistible:
 - predictable and controllable quality
 - infinite life for motion picture recordings
 - -ability to interface with computers
 - unbounded future flexibility for computer-aided features (editing, splicing, combining, masking, filtering, recording,...)

Why Video Compression?

- Uncompressed digital video needs much more bandwidth and storage capacity than equivalent analog video
- Digital video requires compression, since:
 - -digital storage requirements are huge
 - affordable digital storage devices have low access bit rates
 - -transmission bit-rate requirements are high
 - high-definition TV (digital U.S. broadcast version) must fit into existing 6 MHz channels

High-bandwidth optical fiber does not reduce the need for compression

Agenda

- Why digital video and video compression?
- Fundamentals of color video in five minutes
- Video compression tool kit for MPEG-2
- An overview of MPEG-2
- Fitting MPEG-2 on ATM
- NetCalc3 modeling of MPEG-2 and ATM

Color Video Basics

- Screen image
 - created on a phosphor coating inside the viewing surface of the monitor's picture tube
 - composed of many small momentarily projected dots of light called picture elements (also called pixels or pels)
- Pixel color is achieved by mixing red, green and blue (RGB) lights using three projection guns

Grey Scale and Refresh Rates

- Equal levels of RGB produce familiar grey scale range (from black, dark to light shades of grey, to white)
- Pixels glow for only about 40 ms
- To prevent picture fading, all pixels must be refreshed by reprojection
 - at 25 to 30 times/second for TV screens
 - at over 70 times/second for computer monitor screens (which are used in bright rooms)
- This refresh requirement also enables a rapid change in images – i.e., simulation of motion

Color Video Camera and Monitor

- Video camera produces three analog video signals (RGB) to control the three guns in a color picture tube (i.e. in a TV set or computer monitor)
- RGB signals contain all the information necessary to create a color picture

Distribution of RGB Signals

- RGB signals cannot be widely distributed easily in exact synchronism and relationship
 - RGB is converted in the video camera to a composite format better suited to distribution
- Composite format:
 - is a linear matrix transformation of RGB
 - results in one luminance signal (called Y) and two chrominance or color difference signals (called either U and V or Cb and Cr)
 - the (composite) color formats are commonly collectively referred to as YUV or YCbCr

Composite Color Formats

Name	Maximum Pels/Line H	Max. Lines V	Picture Aspect Ratio H:V	Refresh Rate Pict. /s
NTSC*	711	483	4:3	30
PAL*	702	575	4:3	25
SECAM*	702	575	4:3	25
HDTV-1440	1440	1152	16:9	25/30
HDTV(max)	1920	1152	16:9	25/30

^{*} Per ITU-R-Rec. 601

Motion Picture Format

- Motion pictures are totally film-based (no pixels)
- Resolution of 35 mm movie frame is not as good as a 35 mm still-camera photo resolution, but better than HDTV
- Shape of movie screen is even slightly wider in proportion than HDTV
- Refresh rate is a rather low 24 frames/ second because the viewing environment is quite dark

Color Video Formats—Computers

• IBM PC

- -VGA produces 640x480 (HxV) pixels per frame
- Super VGA monitors and others with higher resolutions are common

Macintosh

- -832x560 is most common
- -1152x870 is increasingly used

Sun Sparc 10

-1152x900 is typical

• DEC

-1024x864 is typical

Agenda

- Why digital video and video compression?
- Fundamentals of color video in five minutes
- Video compression tool kit for MPEG-2
- An overview of MPEG-2
- Fitting MPEG-2 on ATM
- NetCalc3 modeling of MPEG-2 and ATM

Technical Toolkit (for MPEG-2)

- Discrete cosine transform, forward and inverse (FDCT and IDCT)
- Quantization of numbers
- Zig-zag ordering and entropy encoding
- Motion estimation by block matching
 - predicting from past frames
 - -interpolating between past and future frames
- Timing recovery from received data

Forward DCT Applied to 8x8 Pixels

```
3 2
              4 2
                   5 4
    2 5
         3 5
              4 5
                   5 7
    28
              4 8
                   60
    3 1
              5 1
                   6 3
                       7 5
                            8 7
              5 4
                   6 6
                       7 8
                           9 0
              6 0
                       87102
3 0
    4 0
                  7 2
3 3
    43 53
              63 75
                      90105
```

0.2

-0.8

- Transforms data from image to frequency domain
- Transformed data makes compression techniques feasible

0.0

0.0

0.6 - 0.4

Quantization of Transformed Data

```
394.25-282.5
               16.0-33.6
                             1.1 -7.8
                                         0.7 - 3.0
 -81.4
          3.8 - 3.0
                       2.0 - 1.0
                                   0.2
                                         0.2 - 0.2
   2.9
         -2.7
                2.2 -1.4
                             0.7 - 0.1 - 0.2
          1.3 -1.1
                       0.7 - 0.3
  -9.5
                                  0.10
                                        0.10 - 0.10
          0.0
                       0.0
   0.0
                0.0
                             0.0
                                   0.0
                                         0.0
                                               0.0
  -1.5
         -0.9
                0.7 - 0.5
                                   0.0 - 0.10 0.10
                             0.2
  -1.2
                       0.6 - 0.3
                                  0.10 \quad 0.10 - 0.10
   0.2
         -0.8
                0.6 - 0.4
                             0.2
                                   0.0
                                         0.0
                                                0.0
```

- Eliminates visually insignificant data
- Improves coding efficiency of data that is left

Zig-Zag Ordering and Entropy Encoding (Zero Run-Length and Huffman Coding)

- Values near upper left are encoded most precisely because they are most important visually
- Zeroes are most likely to be bunched up toward end of string and are not important visually
- Consecutive zero runs are coded very compactly
- Only 10 numbers instead of 64 need to be stored or transmitted in this example of one 8x8 pixel block

Intraframe Coding: "I-Picture" Summary

- Previous pages have described a coding method for any picture without relying on other pictures
 - pictures coded this way are called Intraframes or I-pictures in MPEG-2
- The coding method typically yields a compression of about 15:1 for video frames
 - pictures without much detail compress more while detailed ones compress less
- The still-picture coding called JPEG and its video compression variant (Motion JPEG) just use intraframe coding
- But MPEG-2 goes further as described next

Motion Estimation by Block Matching

FDCT of YUV Differences

Previously stored YUV numbers for the most similar old block, which are the estimate for the current block's YUV

- The motion vector points to the best old block for <u>estimating</u> the luminance and chrominance (YUV) numbers for current block
- The video encoder can also calculate the <u>actual</u> YUV numbers for the current block
- It then calculates the difference between the old block and actual current block YUV numbers
- It finally calculates the FDCT of the differences

Effectiveness of Motion Estimation

- Effective because
 - -motion vector (sent once for the search area) plus
 - FDCT of <u>difference</u> between estimated and actual current block YUV numbers
 - usually requires significantly fewer bytes than full FDCT of current blocks
- The decoder recreates "actual" current block YUVs from the motion vector and FDCT of the differences
- If YUV estimate is perfect for a current block, only the vector needs to be sent or stored for the search area

What if the Estimated YUVs Turn Out to be Totally Unsimilar to the Actual YUVs?

- This will happen many times in any long video sequence because of scene changes and camera panning
 - but the frequency of occurrence is a tiny % of all blocks
- Here the FDCT of the YUV differences is of the same complexity as the actual current block FDCT (a minor penalty at worst)
- And the motion vector representation will add a few percent to the transmission and storage requirements (another minor penalty)
- The main penalty is because of the encoder processing in creating the motion vector and YUV differences—and that processing resulting in slightly worse compression
 - but those functions in the encoder could not be used for other tasks anyway
- Estimation backfires for some blocks
- But pays dividends overall

Forward Predictive Motion Estimation: "P-Picture" Summary

- Previous pages have described a method for <u>more</u> <u>compactly coding</u> the YUV numbers for blocks in a current frame based on
 - finding the most similar earlier nearby block
 - derivation of a motion vector
 - having the YUV numbers for the earlier block
 - using those YUVs as predicted numbers for the current block
 - information in the encoder of the actual new block YUVs
 - calculating the FDCT of the differences in YUVs
- The resulting predicted frames are called P-pictures
- P-pictures can be predicted to advantage several frames into the "future" (i.e. 4 or 7)
- Decoded P-pictures are just as accurate as I-pictures if there is no total scene change in between

Bidirectional Motion Estimation: "B-Picture" Summary

- Frames between I and P-pictures (or between two P-pictures) can be bidirectionally predicted
 - such interpolated frames are called B-pictures
 - result is even greater savings in the coded bytes required for storage or transmission of B-pictures compared to P-pictures

Timing Recovery from Received Data

- The decoder video output must be kept essentially perfectly synchronized with
 - the encoder video input
 - the associated audio
- This becomes an issue when sending video/audio streams over jitter-inducing networks such as ATM
- A solution is offered by at least three approaches
 - for ATM CBR service, using network-specific encoders and decoders with FIFO buffers for jitter smoothing
 - for CBR and VBR service, using ATM adaptation layer assistance in the form of time stamps
 - for CBR and VBR, using a common network clock, if available end-to-end

Agenda

- Why digital video and video compression?
- Fundamentals of color video in five minutes
- Video compression tool kit for MPEG-2
- An overview of MPEG-2
- Fitting MPEG-2 on ATM
- NetCalc3 modeling of MPEG-2 and ATM

MPEG-2 (ISO/IEC DIS 13818)

- A coding and compression method for moving pictures and associated audio for digital storage media, television broadcasting and communication
 - MPEG-2 is a specification from the Moving Pictures Expert Group (MPEG) of ISO/IEC
 - MPEG-2 was created by MPEG and the Experts Group for ATM Video Coding in the ITU-T SG15
 - the specification is currently a draft international standard, formally called ISO/IEC 13818
 - MPEG-2 essentially replaces MPEG-1 (ISO/IEC 11172) for new applications

MPEG-2 versus MPEG-1

- MPEG-1 focused heavily on storage media
- MPEG-2 is a much broader standard which is compatible with MPEG-1
- MPEG-2 includes additions in several areas:
 - harmonization with HDTV, NTSC, PAL, SECAM
 - two coding structures: field and frame
 - multiple profiles and levels (picture formats, resolutions, scalability of picture quality)
 - more general color handling
 - multi-channel audio
 - ability to include private data
 - two data stream formats, including one suitable for ATM VBR: the transport stream

Basics of MPEG-2

- I, P and B-pictures may be used in a group
 - typical picture group sequence is IBBPBBPBB
 - block matching is done for 16x16 "macroblocks"
- The encoding process is as described in the previous section
 - encoder outputs must comply with 13818
 - significant flexibility is given for encoder design
- The decoding process, defined in 13818 in detail, follows encoding steps in reverse order and with inverse functions
- Timing recovery may use any of the three approaches covered earlier, or others

MPEG-2 Profile and Level Structure

Profile	Simple	Main	SNR	Spatial	High	
_	1 101110	No B-pict	With B-pict	2-Layer	3-Layer	3-Layer
•		NS 4:2:0	NS 4:2:0	S 4:2:0	S 4:2:0	S 4:2:0/4:2:2
	High High 1440		1920*1152 60 fps 62.7 Msamp/s Up to 80 Mbps 1440*1152		1440*1152	1920*1152 60 fps 62.7/83.7 Msamp/s Up to 100 Mbps 1440*1152
			60 fps 47 Msamp/s Up to 60 Mbps		60 fps 47 Msamp/s Up to 60 Mbps	60 fps 47.0/62.7 Msamp/s Up to 80 Mbps
†	Main	720*576 30 fps 10.4 Msamp/s Up to 15 Mbps	720*576 30 fps 10.4 Msamp/s Up to 15 Mbps	720*576 30 fps 10.4 Msamp/s Up to 15 Mbps		720*576 30 fps 11/14.7 Msamp/s Up to 20 Mbps
Level	Low		352*288 30 fps 3.04 Msamp/s Up to 4 Mbps	352*288 30 fps 3.04 Msamp/s Up to 4 Mbps		

MPEG-2 Systems Specification

- Systems specification, 13818-1, defines
 - coding, video/audio synchronization, multiplexing, clock recovery, buffer behavior, program time identification, and the two data stream types (PS and TS)
- Program Stream (PS)
 - carries a single program
 - one MPEG-2 "program" is a set of audio-visual streams (i.e. a set of TV programs) with a common time base
 - uses variable length packets typically 1 or 2 kbytes in size with a maximum of 64 kbytes
- Transport Stream (TS)
 - may carry multiple programs (with different time bases)
 - uses fixed length 188-byte packets
 - more suitable for ATM than PS

Transport Stream Packet Structure

Agenda

- Why digital video and video compression?
- Fundamentals of color video in five minutes
- Video compression tool kit for MPEG-2
- An overview of MPEG-2
- Fitting MPEG-2 on ATM
- NetCalc3 modeling of MPEG-2 and ATM

TS Packets to ATM for CBR (AAL-1)

AAL-1 protocol data unit (PDU) structure

SN-SNP
Payload (47 bytes)
(1 byte)

- TS packets are 188 bytes long
- Four AAL-1 cells (payloads 4x47 bytes) can carry one TS packet
- SN-SNP provide clock rate recovery
 - SN is cell sequence number
 - SNP provides sequence number protection

TS Packets to ATM for VBR (AAL-5)

AAL-5 PDU structure suitable for MPEG-2 TS

Header
Payload (8x47 or 376 bytes)
(8 bytes)

- TS packets are 188 bytes long
- One AAL-5 PDU (payload 376 bytes) can carry two TS packets
- The AAL-5 PDU is carried by eight ATM cells

Where to do Adaptation to ATM?

- At the network interface
 - this implies MPEG-2 packet format transmission to the network
 - not a problem with private networks
 - for public networks, requires access rates in an inconvenient speed range (4 Mbit/s to 45 Mbit/s)
- Using customer equipment
 - requires a local MPEG-2/ATM access device
 - network access is ATM UNI
- Using mixture, for example:
 - a local MPEG-2/ATM access device for coder end
 - 4 Mbit/s to 9 Mbit/s access at decoder end

Network traffic calculations are the same for all above cases

Agenda

- Why digital video and video compression?
- Fundamentals of color video in five minutes
- Video compression tool kit for MPEG-2
- An overview of MPEG-2
- Fitting MPEG-2 on ATM
- NetCalc3 modeling of MPEG-2 and ATM

Overview of NetCalc3 (for PC, Mac, Sun)

- A program used for "production" wide-area network design for data, voice and video
- Primarily used inside Nortel but will be available to Magellan customers at no charge under non-disclosure
- Finds best routes through any topology
- Does call-level voice engineering, calculates trunk delays and utilizations, path delays, delay variations and trunk costs
 - delay calculations include propagation, nodal, transmission and queuing for each of n(n-1) paths in a n-node network
 - does tariff calculations for several countries
- New in NetCalc3: MPEG-2 video offered traffic preprocessing and a few other features

NetCalc3 Modeling of MPEG-2 on ATM

User selects

- MPEG-2 video profile and level
- CBR or VBR service
 - If CBR, the data rate in Mbit/s

NetCalc3

- provides video quality advice on CBR data rate choice
- calculates CBR or VBR offered traffic estimate
- incorporates the resulting cell rates into the entire network traffic calculation (along with voice and data)
- produces a network performance and cost file for voice, data, and MPEG-2 video

Closing Comments

- Nortel's Magellan portfolio is designed to carry data, voice and video traffic, including MPEG-2
- Nortel has the experience and tools to assist customers in designing networks that carry MPEG-2 and other traffic
 - demonstration of NetCalc3 and MPEG-2 traffic entry and network design will be given in whiteboard clinics
 - a precalculated example will be handed out to interested attendees

Appendix A: Presentation References

References are listed in the notes

Appendix B: MPEG-2 and ATM Terminology

 Commonly used terms or acronyms are explained in the notes