

DPN-100 ISRB Engineering and Scalability Guidelines

Gary Palmer

Senior Network Engineer otglp01@nt.com

Agenda

ISRB Overview

- Engineering Constraints
- Broadcast Traffic Sources
- Network Topology Considerations
- LanCalc Tool
- Interworking with Routers

ISRB Overview

- Reduced broadcast overheads
- Exploit DPN intelligent routing
- WAN topology transparent to end users
- Supports source routing compatible applications

ISRB Broadcast Data Flows

Broadcast Traffic Distribution

Broadcast Server PE Utilization

MAC Header Compression

Significant savings, particularly for short frames such as keep alive frames

MAC Header Compression Tables

MAC Header Compression Benefit

		Opt	ions	Kbps	Kbps Traffic			tilizatio	on 98	Link l	Jtil %	Ι	
Transaction	Protocol			Specifi	Specific Route		ISRB	Bcast	Total	In	Out		
Description	ID	MHC	Proxy	In	Out		Access	Server	Acc +				
									Server				
20/50 bytes													
	TCP Interactive	N	N	2.9	2.5		0.6%	0.0%	0.6%	29.7%	25.6%		Approx 20%
											$\leq =$		Sovingo
	TCP Interactive	Y	N	2.3	1.9		0.5%	0.0%	0.5%	23.6%	19.4%		Savings
100/1000 by	tes]							
	TCP Interactive	N	N	3.5	1.1		0.3%	0.0%	0.3%	36.9%	11.9%		
													Approx 7%
	TCP Interactive	Y	N	3.3	0.9		0.3%	0.0%	0.3%	34.4%	9.4%		Savings
l					•••••								Cavings

Compression savings greatest for small frames such as LLC2 Keep Alive frames; approximately 83%

Proxy Broadcast Server

Proxy Eligible Frames

- Novell Netware RIP (Routing Information Protocol)
- Novell Netware SAP (Service Advertisement Protocol)
- IBM LanServer \MAILSLOT\NET\ NETLOGON
- IBM LanServer \MAILSLOT\LANMAN
- Netbios Name Query ***

Note: Other RIP frames such as IP RIP are NOT proxy eligible in current ISRB implementation

Proxy Synchronization Frames

utp	hdr	Frame correlators
18	22	n x 3

- UTP header of 18 bytes
- Proxy broadcast header is 22 bytes
- Each proxiable frame is represented by a 3 byte frame correlator
- Maximum size of frame (excluding utp header) is limited to packet size defined between ISRB and broadcast server
- Proxy Requestor limited to 30 frames in Inbound table
- Maximum frame size = 18 + 22 + (30 x 3) = 130 bytes

Proxy Broadcast Savings

	Opti	ions	Kbps	Traffic	Summa	ry	Cumulative Frame Counts				PE U	tilizatio	on 956	Link Util %		
Protocol			Specifi	c Route	Broa	Ideast	Proxied		MHC		ISRB	Bcast	Total	In	Out	
ID	MHC	Proxy	In	Out	In	Out	In	Out	Total	perVC	Access	Server	Acc +			
													Server			
Nove11 SAP	N	N	0.0	0.0	10.4	0.1	0	0	0	0	0.6%	11.8%	12.4%	18.6%	0.1%3	
										Ι						
Novell SAP	N	Υ	0.0	0.0	1.2	0.0	1	200	0	0	0.2%	9.4%	9.6%	2.2%	0.0%	
										Ι						
							Proxy	Serve	r savi	ngs	61.7%	20.3%	22.2%	88.2%	90.5%	
										Ī						

Significant savings from use of Proxy Server for example: Access PE 60% Server PE 20% Access Link 90%

Agenda

ISRB Overview

- Engineering Constraints
- Broadcast Traffic Sources
- Network Topology Considerations
- LanCalc Tool
- Interworking with Routers

Engineering Constraints

Multiple possible constraints

- network link bandwidth
- access PE utilization
- broadcast server PE utilization
- Proxy Table sizes
- MAC Header Compression Table sizes
- Weakest link determines scalability limit
- 1. Establish criteria for each potential constraint
- 2. Use LanCalc Tool to evaluate each resource
- 3. Determine scalability based on limiting constraint
- 4. Each network and application is unique

Network Link Utilization

- Function of network size, number of devices, application protocols, frame sizes, and ISRB options
- Separate criteria for broadcast traffic and specifically routed traffic
- Protocols such as TCP and SPX burst mode use all available bandwidth
- Slowest speed network link normally the limiting constraint

Need a methodology to establish maximum allowable broadcast traffic

Broadcast Traffic Limitation

- Constrain broadcast traffic to lowest priority of DPN 4 Q mechanism
- Determine percentage share of network link for each priority level
 - function of average frame size for each level
 - evaluate statistics to determine average frame sizes
 - use LanCalc tool to determine percentage share
- Determine percentage to allow for broadcast
- Consider other features sharing Broadcast Server – T2.1 Router; ITI, or X.25 Broadcast

Broadcast Traffic Limit Example

- Each network will be different
- Exploit DPN prioritization mechanism

PE Type and Broadcast Server

- Use of Broadcast Server on a MAS is a double edged sword
 - netlink utilization will be reduced
 - broadcast server must process all broadcast frames, and may consume too much of PE utilization, becoming the weakest link
- Only applies if there are multiple ISRB capable PIs on the MAS, or downstream MAS-based nodes in a cascaded configuration

LanCalc tool makes it easy to examine this tradeoff

Agenda

- ISRB Overview
- Engineering Constraints
- Broadcast Traffic Sources
- Network Topology Considerations
- LanCalc Tool
- Interworking with Routers

Novell Netware Broadcast Sources

- SAP (Service Advertising Protocol)

 broadcast every 60 seconds by every server
 frame size a function of number of services
- RIP (Routing Information Protocol) – broadcast every 60 seconds by every IPX router – frame size a function of topology of network
- Service query
 - broadcast by every Novell user station to locate nearest servers
 - use Sniffer to determine relevant frequency

Netware Frame sizes

SAP	utp 18	Hdr 22/18	IPX 30	Ser	vice 1 64		Service 7 64
RIP	utp 18	Hdr 22/18	IPX 30	Hdr 2	Ntwk 1 8	1	Ntwk 50 8

Nearest service:

Query	utp 18	Hdr 18	IPX 30	Request 4	
Resp	utp 18	MAC hdr 2/24	IPX 30	Resp 64	Response from ALL servers providing service
SPX	utp 18	MAC hdr 2/24	IPX 30	SPX NCI 42 Hd 6/8	P User Data Var

Netware SAP Detail

RIP Overview

IP Broadcast Sources

- RIP (Routing Information Protocol)
 - broadcast by every router every 30 seconds
 - frame size a function of network topology
- IP ARP (Address Resolution Protocol)
 - broadcast by individual stations to determine MAC address associated with a given IP addr
 - frequency a function of appl'n characteristics
 - use Sniffer to determine frequency
- IP RARP (Reverse Address Resolution Protocol)
 - used by diskless workstations to locate their server
 - potential source of broadcast storms

TCP/IP Frame Sizes

RIP	utp 18	Hdr 18	IP 20	Hdr 8	Ntwk 1 20		Ntwk 25 20
-----	-----------	-----------	----------	----------	--------------	--	---------------

ARP/	utp	Hdr	Hdr	Addr Info
RARP	18	22/18	8	20

ТСР	utp MAC hdr 18 2/24	IP 20	ТСР 20	User Data Var
-----	---------------------------	----------	-----------	------------------

ARP Overview

Telnet and Rlogin Overview

Character Mode: 1 byte packets Line Mode: Multi byte packets

Nagle Algorithm:

Buffers characters as a function of round trip time. Reduces negative impact of Character Mode operation. Use Sniffer to determine average

packet size

Telnet Character Mode

TCP and Novell File Transfer

Agenda

- ISRB Overview
- Engineering Constraints
- Broadcast Traffic Sources
- Network Topology Considerations
- LanCalc Tool
- Interworking with Routers

Broadcast Server Topologies 1

Broadcast Server Topologies 2

Broadcast Server Topologies 3

Hierarchical multi-server broken ring

Tandem Server Considerations

Agenda

- ISRB Overview
- Engineering Constraints
- Broadcast Traffic Sources
- Network Topology Considerations
- LanCalc Tool
- Interworking with Routers

LanCalc Overview

- Wingz spreadsheet-based tool available for PC, MAC, and Unix platforms
- Dialog boxes for all data entry
- Context sensitive help
- Table driven to make extensions easy and permit key parameters to be changed
- Detailed error log for parameters and inputs out of range
- All logic coded in Hyperscript to prevent inadvertent change and speed execution

Wingz available from IISC worldwide

LanCalc Main Page

Global parameter dialog boxes (3)

	Global Access	; Yaria	bles		Global	Broadc	ast Yar	iables		Link l	.imits		Frmsz	Util	Kbps		
12-Feb-96	РЕ Туре	MAS H	PPE ; SEL	; UTP NL	РЕ Туре		MAS 386	5		High ,De	lay 1		100	17.6%	11.3		
	Link Speed Kbps	64.0			Max # Sr	rvn VCs	10			High, T	nruput 2		200	23.5%	15.0		
	Subnet Pktsz	512			ProxyKe	epAlive	1	min.		Normal	,Delay 3		300	35.3%	22.6		
	Avg. # LWVCs	4			MTU (Fra	ime Size)	512			Normal	,Thrupu	t4	400	23.5%	15.0		
										Limitin	, Broado	ast Util%	5	5.0%	3.2		
		Opti	ions	Kbps	Traffic	Summa	ry	Cumula	ative F	rame (Counts	PE U	tilizatio	on 98	Link U	ltil 98	Erra
Transaction	Protocol			Specifi	c Route	Broa	dcast	Pros	cied	1	IHC	ISRB	Bcast	Total	In	Out	Msg
Description	ID	MHC	Proxy	In	Out	In	Out	In	Out	Total	perYC	Access	Server	Acc +			
														Server			
Case1																	
	Novell SAP	N	N	0.0	0.0	10.4	0.1	0	0	<u> </u>	0	0.6%	16.0%	16.6%	16.3%	0.1%	1 err
	Novell SAP	N	Ļ Y	0.0	0.0	1.2	0.0	1	200	<u> </u>	0	0.2%3	12.2%	12.4%	1.9%	0.0%	
			ļ														
	Nove11 RIP	N	<u>. ү</u>	0.0	0.0	0.6	0.0	1	100	<u> </u>	0	0.1%3	6.1%	6.2%	0.9%	0.0%	

Input parameters via dialog box

Summary output results area

LanCalc Input Parameters Page

			nput	Parameter Na	mes a	& Values						1
Trans'n	Protocol	Parm 1		Parm 2		Parm 3		Parm 4		Parm 5		
ID	ID	Name	Yal	Name	Yal	Name	Yal	Name	Yal	Name	Yal	
Case1												
	Novell SAP	# Local Servers	1	# Local Services	6	# Rmt Servers	100	# Rmt Services	10			
	Novell SAP	# Local Servers	1	# Local Services	6	# Rmt Servers	100	# Rmt Services	10			
	Novell RIP	# Remote Rtrs	100	RmtNetsPerRtr	10	# Local Rtrs	1	LocNetsPerRtr	10			
	Novell RIP	# Remote Rtrs	100	RmtNetsPerRtr	10	# Local Rtrs	1	LocNetsPerRtr	10			
	IP RIP	# Remote Rtrs	10	RmtNetsPerRtr	100	# Local Rtrs	1	LocNetsPerRtr	25			
		L 1 Chattion .		Describe Obstices	100	0						
		Local Stations	10	Remote Stations	100	Sessions/Station	10	Frequency in min	1			
	TCP Interactive	Local Stations	10	Sessions/Station	1	Msg Size Outbour	100 n	Msg Size Inbound	100	Interval in min.	1	

Protocol ID Parameter name and value up to six parameters

LanCalc Intermediate Results

	Specific	(Non Br	roadcast) Trat	ffic In	termedia	ate Calo	ulation	s							
		0.	rtbound [.]	from l	. AN					Inb	ound to					
Protocol	frms	pkts	Kbytes	Fram	e Size	Kbits	Link	PE	frms	pkts	Kbytes	Fram	e Size	Kbits	Link	PE
ID	/sec	/sec	/sec	User	Total	/sec	Util	Util	/sec	/sec	/sec	User	Total	/sec	Util	Uti1
	fps	pps	Kbps	Bytes	Bytes	LKbps	98	98	fps	pps	Kbps	Bytes	Bytes	LKbps	98	98
				_												
Novell SAP	0.02	0.02	0.007	436	454	0.00	0.0%	0.0%	3.33	3.33	1.240	372	390	0.00	0.0%	0.6%
				_												
Novell SAP	0.02	0.02	0.000	25	43	0.00	0.0%	0.0%	3.33	3.33	0.093	28	46	0.00	0.0%	0.2%
				_												
Nove11 RIP	0.02	0.02	0.000	25	43	0.00	0.0%	0.0%	1.67	1.67	0.042	25	43	0.00	0.0%	0.1%3
				[
Nove11 RIP	0.02	0.02	0.002	132	150	0.00	0.0%	0.0%	1.67	1.67	0.220	132	150	0.00	0.0%	0.2%
				_												
IP RIP	0.07	0.07	0.019	278	296	0.00	0.0%	0.0%	1.67	1.67	0.713	428	446	0.00	0.0%	0.3%
IP ARP	1.67	1.67	0.047	28	46	0.00	0.0%	0.1%	18.33	18.33	0.513	52	70	0.93	1.5%	1.2%

Protocol ID

- Intermediate calculation values
- Same format for broadcast traffic

Inbound

- Incremental, not cumulative
- Context-sensitive help

Outbound -

LanCalc Menu Dialogs

The Custom Menu item is used to:

- 1 Initiate calculations;
- 2 Navigate around the sheet (go to); or
- **3 Print selected reports.**

LanCalc Global Access Dialog Box

LanCalc Global Server Dialog Box

Define Server Glob	al Variables 📃 👘
PE Type AM HPPE AM 386 MAS 386 MAS HPPE ↔	OK Cancel Help
Max # server VCs Prosu Freg (min)	10
MTU Frame Size	512
MTU (Maximum Transfer Un used by LAN devices includi and individual stations. Sho Subnet Packet size for opti	it) is the frame size ing routers, servers, ould be equal to mal efficiency

LanCalc Global Link Dialog Box

DPN priority levels; These will be used to calculate the minimum guaranteed share of link bandwidth based on the DPN quota priority mechanism.

LanCalc Protocol Dialog Box

Agenda

- ISRB Overview
- Engineering Constraints
- Broadcast Traffic Sources
- Network Topology Considerations
- LanCalc Tool
- Interworking with Routers

Interworking with Routers

- Familiar maxim: "Bridge when you must, route when you can", still applies
- ISRB extends the application of bridging
- Magellan native LAN Routing can be exploited to extend overall solution
 - Passport interLAN switching
 - IP
 - Novell IPX
 - DPN-100 embedded router
 - IP, IPX, XNS, Decnet, AppleTalk, etc.
- External token ring gateway
 - can be stub ring
 - consider hop count constraints

Passport DPN-100 ISRB Interworking

Summary

- Knowledge is the key
 - LAN protocol suites
 - application characteristics
- Use LanCalc to quantitatively assess alternative network designs
- Exploit native Magellan Passport routing
 - upward migration path
 - reduces impact of broadcast storms
- References:
 - TCP/IP Illustrated
 - Netware LAN Analysis
 - LAN Protocol Handbook
 - ISRB Specification and Guide

Stevens

- Chappell
- Miller
- Magellan