

Other Related Presentations

Multicast sessions

Session #	<u>Title</u>
303	Introduction to IP Multicast
306	PIM Protocol Concepts
314	Deploying IP Multicast
320	Advances in IP Multicast

MBGP related sessions

Session #	<u>Title</u>
309	Deploying BGP

317 **Advanced BGP and Troubleshooting**

Agenda

- Inter-Domain Multicast
 - MBGP
 - MSDP
- PGM (Pragmatic General Multicast)
- MRM (Multicast Route Monitor)
- UDLR (Unidirectional Link Routing)

Inter-Domain Multicast

- Past history
- In the future
- ISP requirements to deploy now
 - MBGP
 - MSDP

www.cisco.com

Past History

A long time ago, in a galaxy far, far away...

Past History

MBONE...

www.cisco.com

Past History

MBONE... vat, nv, wb, sd,...

warm eleco com

Past History

DVMRP MBONE

- Virtual network overlaid (tunneled) on the unicast Internet infrastructure
- DVMRP MBONE uses RIP-like routing
- Flood and Prune technology
- Initially instantiated by MROUTED, and later implemented by various router vendors
- Very successful in academic circles

www.cisco.com

Past History

Problem

- DVMRP can't scale to Internet sizes
 - Distance vector-based routing protocol
 - Periodic updates
 - Full table refresh every 60 seconds
 - Table sizes
 - Internet > 40,000 prefixes
 - Stability
 - Hold-down, count-to-infinity, etc.

In the Future

- BGMP (Border Gateway Multicast Protocol)
 - Shared tree of domains
 - Bidirectional trees
 - Explict join-model
 - Joins sent toward root domain
 - Single root domain per group
 - Multicast group prefixes assigned by domain
 - MASC proposed as assignment method
 - Requires BGP4+ (aka MBGP)
 - Must carry group prefixes in NLRI field
 - Needed to build bidirectional trees

In the Future

- MASC (Multicast Address Set-Claim)
 - Multicast address space is hierarchical
 - · Top of hierarchy is at an Internet exchange
 - · Children get address space from parent
 - Results in aggregateable multicast address space
 - Allocation has a lifetime
 - · Children must renew address allocation
 - · May not receive same space at renewal time
 - · Parent may reclaim space at renewal time
 - Permits reallocation of space
 - Complex "garbage collection" problem

In the Future

- BGMP and MASC are a long ways off
 - Both are quite complex to implement
 - Still only in draft proposal stages
- ISP's want to deploy multicast now
 - What are their minimum requirements?

www.cisco.com

ISP Requirements to Deploy Now

- Want an explicit join protocol for efficiency
 ✓ PIM-SM
- Use existing (unicast) operation model
 - Hmmm
- Will not share RP with competitors
 - Results in Third-party Resource Dependency
 - Hmmm
- Want flexibility regarding RP placement
 - Hmmm

- Use existing (unicast) operation model
 - Need same tool-set for multicast as unicast
 - Robust set of peering and policy controls
 - Ability to separate unicast and multicast topologies
 - Use familiar configuration, operation and terminology model
 - Something like BGP but for multicast
- Solution: Multiprotocol BGP

www.cisco.com

MBGP—Multiprotocol BGP

- MBGP overview
- MBGP capability negotiation
- MBGP NLRI exchange
- MBGP-DVMRP redistribution
- BGP-to-MBGP redistribution

MBGP Overview

- MBGP: Multiprotocol BGP (aka multicast BGP in multicast networks)
 - Defined in RFC 2283 (extensions to BGP)
 - Can carry different types of routes
 - Unicast
 - Multicast
 - Both routes carried in same BGP session
 - Does not propagate multicast state info
 - Same path selection and validation rules
 - AS-Path, LocalPref, MED, ...

www.cisco.com

MBGP Overview

- New multiprotocol attributes
 - MP_REACH_NLRI
 - MP_UNREACH_NLRI
- MP_REACH_NLRI and MP_UNREACH_NLRI
 - Address Family Information (AFI) = 1 (IPv4)
 - Sub-AFI = 1 (NLRI is used for unicast)
 - Sub-AFI = 2 (NLRI is used for multicast RPF check)
 - Sub-AFI = 3 (NLRI is used for both unicast and multicast RPF check)

MBGP Overview

MP_UNREACH_NLRI Attribute

Address Family Identifier (2 Octets)

Subsequent Address Family Identifier (1 Octet)

Withdrawn Routes (Variable)

Length (I Octet)
Prefix (Variable)

www.cisco.com

MBGP Overview

- Separate BGP tables maintained
 - Unicast Routing Information Base (RIB)
 - Multicast Routing Information Base (MRIB)
- RIB
 - Contains unicast prefixes for unicast forwarding
 - Populated with BGP unicast NLRI
 - AFI = 1, Sub-AFI = 1 or 3
- MRIB
 - Contains unicast prefixes for RPF checking
 - Populated with BGP multicast NLRI
 - AFI = 1, Sub-AFI = 2

MBGP Overview

- MBGP allows different unicast and multicast topologies and different policies
 - Same IP address may have different signification
 - Unicast routing information
 - Multicast RPF information
 - For same IPv4 address two different NLRI with different next-hops
 - Can use existing or new BGP peering topology for multicast

www.cisco.com

MBGP Overview

- What is in the Cisco IOS® implementation?
 - All the familiar BGP configuration knobs
 - Carries multicast routes in MP_REACH_NLRI
 - NLRI capability negotiation
 - Redistribution between MBGP and DVMRP
 - Redistribution of BGP stubs into MBGP

MBGP—Capability Negotiation

- BGP routers establish BGP sessions through the OPEN message
- OPEN message contains optional parameters
- BGP session is terminated if OPEN parameters are not recognised
- New parameter: CAPABILITIES
 - Multiprotocol extension
 - Multiple routes for same destination

www.cisco.com

MBGP—Capability Negotiation

New keyword on neighbor command

neighbor <foo> remote-as <asn> nlri multicast unicast

- Configures router to negotiate either or both NLRI
- If neighbor configures both or subset, common NRLI is used in both directions
- If there is no match, notification is sent and peering doesn't come up

MBGP—Capability Negotiation

- If neighbor doesn't include the capability parameters in open, Cisco backs off and reopens with no capability parameters
- Peering comes up in unicast-only mode
- Hidden command

neighbor <foo> dont-capability-negotiate

MBGP NLRI Exchange

- BGP/MBGP configuration allows you to:
 - Define which NLRI type are exchanged (unicast, multicast, both)
 - Set NLRI type through route-maps (redistribution)
 - Define policies through standard BGP attributes (for unicast and/or multicast NLRI)
- No redistribution allowed between MBGP and BGP tables
 - NLRI type can be set with set nlri route-map command

www.cisco.com

MBGP NLRI Exchange

- MRIB is populated by:
 - Receiving AFI/SAFI 1/2
 MP_REACH_NLRI from neighbors
 - Configured/stored locally by:

network <foo> <foo-mask> [nlri multicast unicast]
redistribute <unicast> route-map <map>
aggregate-address <foo> <foo-mask> [nlri multicast unicast]
neighbor <foo> default-originate [nlri multicast unicast]

DVMRP <-> MBGP Redistribution

 You can also put routes in the MRIB that are currently in the DVMRP routing table

router bgp <asn>
redistribute dvmrp route-map <map>

- You can do your typical set operations
- Used when connecting DVMRP access points into the MBGP backbone
- Used at strategic interconnect points with the old DVMRP MBONE

DVMRP <-> MBGP Redistribution

- MBGP routes can be sent into DVMRP
 - However, we recommend tail sites using DVMRP access to accept DVMRP default route

interface tunnel0
ip dvmrp metric 1 route-map <map> mbgp

Can use typical match operations

www.cisco.com

BGP to MBGP Redistribution

- BGP stubs that don't have MBGP support need to get their routes into the MBGP backbone
- They get external routes via MBGP default or static default
- Use command

neighbor <foo> translate-update [nlri unicast multicast]

BGP to MBGP Redistribution

- BGP Update received by translating router is translated into an MP_REACH_NLRI attribute
 - As if the neighbor sent AFI 1/SAFI 2 routes

MBGP—Summary

- Solves part of inter-domain problem
 - Can exchange multicast routing information
 - Uses standard BGP configuration knobs
 - Permits separate unicast and multicast topologies if desired
- Still must use PIM to:
 - Build distribution trees
 - Actually forward multicast traffic
 - PIM-SM recommended
 - But there's still a problem using PIM-SM here... (more on that later)

www.cisco.com.

ISP Requirements to Deploy Now

- Interim solution: MBGP + PIM-SM
 - Environment
 - ISPs run MBGP and PIM-SM (internally)
 - ISPs multicast peer at a public interconnect
 - Deployment
 - Each ISP puts their own administered RP attached to the interconnect
 - That RP as well as all border routers run MBGP
 - The interconnect runs dense-mode PIM

- Interim solution: MBGP + PIM-SM
 - Too restrictive regarding RP placement
 - Need multiple interconnect points between ISP's
 - Using multiple interconnect points
 - Fine if all ISP RP's at same interconnect
 - Can degenerate into large PIM-DM cloud
 - Back to the "requirements list"

- Want an explicit join protocol for efficiency
 ✓ PIM-SM
- Use existing (unicast) operation model

 ✓ MBGP
- Will not share RP with competitors
 - Results in third-party resource dependency
 - Hmmm
- Want flexibility regarding RP placement
 - Hmmm

www.cisco.com

ISP Requirements to Deploy Now

- Will not share RP with competitors
 - Firm requirement
 - Third-party resource dependency
 - "If my customers are multicasting on group G whose RP is in my competitor's network and that RP goes down, my customers lose connectivity."
- Want flexibility re: RP placement
 - May need to place RP(s) someplace other than a single interconnect point

- Must interconnect PIM-SM domains
 - Inter-domain rendezvous mechanism?
 - Requires dynamic DNS (or something similar)
 - Still results in third-party RP problem
 - Interconnect using shared trees
 - That's BGMP! Can't wait
 - Interconnect using source trees
 - Need a way to discover all multicast sources
 - Hmmm. Interesting idea!
- Solution: MSDP
 - Multicast Source Discovery Protocol

www.cisco.com

MSDP—Multicast Source Discovery Protocol

- MSDP concepts
- MSDP design points
- MSDP example
- Cisco MSDP implementation
- MSDP configuration
- MSDP application—logical RP

MSDP Concept

- Simple but elegant
 - Abandon inter-domain shared trees;
 just use inter-domain source trees
 - Reduces to problem to locating active sources
 - RP or receiver last-hop can join inter-domain source tree

www.cisco.com

MSDP Concepts

- Works with PIM-SM only
 - RP's knows about all sources in a domain
 - Sources cause a "PIM Register" to the RP
 - Can tell RP's in other domains of its sources
 Via MSDP SA (Source Active) messages
 - RP's know about receivers in a domain
 - Receivers cause a "(*, G) Join" to the RP
 - RP can join the source tree in the peer domain
 Via normal PIM (S, G) joins
 Only necessary if there are receivers for the group

MSDP Design Points

- MSDP peers talk via TCP connections
 - UDP encapsulation option
- Source Active (SA) messages
 - Peer-RPF forwarded to prevent loops
 - RPF check on AS-PATH back to the peer RP
 - If successful, flood SA message to other peers
 - Stub sites accept all SA messages
 - Since they have only one exit (e.g., default peer)
 - MSDP speaker may cache SA messages
 - · Reduces join latency

Cisco MSDP Implementation

- Cisco implementation current with ID:
 - draft-ietf-msdp-spec-02.txt
- Multiple peer support
 - Peer with BGP, MBGP, or static peers
- SA caching (off by default)
- Sending and receiving SA-requests
- Sending and receiving SA-responses

www.cisco.com

Cisco MSDP Implementation

- SA input and output filtering
- SA-request input filtering
- Default peer support
 - So a tail site can MSDP with a backbone provider without requiring the two to BGP peer
- Triggered join support when creating an (S,G) learned by MSDP
- Mesh groups
 - Reduces RPF-flooding of SA messages between fully meshed MSDP peers

MSDP Configuration

Configure peers

ip msdp peer <ip-address> [connect-source <i/f>]

Configure default peer

ip msdp default-peer <ip-address> [prefix-list acl]

SA caching

ip msdp cache-sa-state [list <acl>]

Mesh groups

ip msdp mesh-group <name> <ip-address>

www.cisco.com

MSDP Configuration (Cont.)

- Filtering
 - Can filter SA in/out, groups, with acls or route-maps
- TTL Scoping

ip msdp ttl-threshold <ip-address> <ttl>

- For more configuration commands see:
 - ftp://ftpeng.cisco.com/ipmulticast/ msdp-commands

- Want an explicit join protocol for efficiency
 ✓ PIM-SM
- Use existing (unicast) operation model

 ✓ MBGP
- Will not share RP with competitors
 ✓ MSDP
- Want flexibility regarding RP placement

 ✓ MSDP

www.cisco.com

MSDP Application—Logical RP

- draft-ietf-mboned-logical-rp-00.txt
- Within a domain, deploy more than one RP for the same group range
- Give each RP the same IP address assignment
- Sources and receivers use closest RP
- May be used intra-domain (enterprise) to provide redundancy and RP load sharing

MSDP Application—Logical RP

- Sources from one RP are known to other RPs using MSDP
- When an RP goes down, sources and receivers are taken to new RP via unicast routing
 - Fast convergence

Agenda

- Inter-Domain Multicast
 - MBGP
 - MSDP
- PGM (Pragmatic General Multicast)
- MRM (Multicast Route Monitor)
- UDLR (Unidirectional Link Routing)

Pragmatic General Multicast (PGM)

- IETF draft
 - draft-speakman-pgm-spec-02.txt
- Routers assist the retransmit process
 - NAK suppression mechanism
 - Retransmission constraint mechanism
 - Maintain NAK/retransmission state only
- Important point:
 - Routers don't do the retransmitting

www.cisco.com

PGM—Pragmatic General Multicast

- Source multicasts packets (ODATA)
 - Identified by Transport Session Id (TSI)
 - Sequenced by Sequence Number (SQ)
- Receivers detect drops via TSI/SQ
 - Waits random delay before sending NAK
 - NAK's are unicast to upstream PGM router
- Routers send NAK Confirmations (NCF)
 - NCF's are multicast back to receivers
 - Other receivers suppress NAK's upon hearing NCF

Agenda

- Inter-Domain Multicast
 - MBGP
 - MSDP
- PGM (Pragmatic General Multicast)
- MRM (Multicast Route Monitor)
- UDLR (Unidirectional Link Routing)

www.cisco.com

Multicast Route Monitor (MRM)

- What/who is MRM designed for
- Detection of faults in multicast routing
- Isolation of faults
- Reliability
- Security

MRM—Motivation and Goals

- Detection and alarm of network problems in close to real-time
- Good coverage of faults
- Good extensibility
- Low overhead (scale)

www.cisco.com

MRM—Partitioning the Tasks

- Fault detection:
 - Identification
 - Classification
 - May involve a large number of systems
- Fault isolation:
 - Find system/LAN/region with trouble
 - Ideally involving as few systems as possible

MRM—Fault Detection

- Topological disconnectivity (physical/logical)
- Blackholes in forwarding path
- Excessive/persistent packet losses
- Excessive duplicates

www.cisco.com

MRM—Fault Isolation

- mtrace
- rsh, snmp based tools, etc
- traceroute
- A combination of tools

MRM—Protocol Components

- MRM monitor
 - Activates diagnostic tests, collects, summarizes, presents diagnostic output
- Test Sender (TS)
 - A system that originates traffic for testing purposes
- Test Receiver (TR)
 - Collects data and reports to the MRM monitor

www.cisco.com

MRM—Protocol Messages

- Beacon messages
 - Originated by the MRM monitor
 - Addressed to a well-known multicast address
 - Signals the liveness of the MRM monitor
 - Medium to carry periodically refreshed requests
- MRM monitor requests
 - Source specification requests
 - Statistics collection requests
- Statistics reports

MRM—Reliability

- Positive acknowledgement for unicast request messages, or single packet reports
- Periodic refresh of requests for multicast addressed requests
- Use TCP for large reports
- Critical TSs and TRs send low-frequency periodic liveness reports to the MRM monitor

www.cisco.com

MRM—Security

- All MRM messages carry monotonically increasing sequence numbers
- Use MD5 as the standard authentication mechanism

MRM—More Information

- ftp://ftpeng.cisco.com/ipmulticast/mrm
- mrm.guide
- Images

www.cisco.com

Agenda

- Inter-Domain Multicast
 - MBGP
 - MSDP
- PGM (Pragmatic General Multicast)
- MRM (Multicast Route Monitor)
- UDLR (Unidirectional Link Routing)

UDLR

- Applicable environments
- The problem
- Cisco solutions
 - UDLR-Tunnels
 - IGMP-UDLR

www.cisco.com

Applicable Environments

- Satellite systems
- ADSL connections
 - Where bandwidths are asymmetric
- Cable systems
 - Where bandwidths and link-type are asymmetric
- ATM partially meshed SVCs

The Fundamental Problem

- Both unicast and multicast routing protocols forward data on interfaces in which they have received routing control information
- The model can only work on bi-directional links

www.cisco.com

The Problem (In More Detail)

- Unicast routing
 - If I received an update on interface serial0 for prefix P, then I will forward data for destinations that match prefix P out serial0 (distance vector)
- Multicast routing
 - If I receive a Join on interface serial0 for group G, then I will forward data for traffic destined for group G out serial0 (sparse-mode)

Cisco Solutions

- UDLR-Tunnels for unicast and multicast routing
- IGMP-UDLR for large-scale multicast routing

www.cisco.com

UDLR-Tunnels

- Extend GRE tunnels to be configured as one-way
- Associate the one-way tunnel with a one-way interface (which goes in the opposite direction)
- ULPs don't see tunnel as an interface
- Mapping performed at the link-layer so real one-way interface looks bi-directional

UDLR-Tunnels

How to configure (upstream router)

interface tunnel0
tunnel udlr receive-only serial0

 How to configure (downstream router)

interface tunnel1
tunnel udlr send-only serial1

UDLR-Tunnels

- Features
 - All IP unicast routing protocols supported
 - IS-IS (via CLNS) is supported
 - All IP multicast routing protocols supported
 - HDLC keepalives
 - PPP Link Quality Monitoring (LQM)

www.cisco.com

UDLR-Tunnels

- Caution!
- This is not a general purpose scalable solution for UDLR routing
- You have to limit the number of tunnels that fan-into the upstream router
- Useful for small transit clouds

IGMP-UDLR

- Used for large scale multicast routing over widespread unidirectional links
- Design goals
 - Eliminate static multicast routes and static group membership
 - Reduce the number of control messages sent
 - Built-in fault tolerance

IGMP-UDLR—Basic Idea

- Downstream routers listen for IGMP queries
- They select a querier
- Host sends IGMP report to join group
- Downstream router forwards IGMP report to querier
- Querier (upstream router) populates olist for data forwarding
- Querier echos IGMP report back out one-way link to suppress other downstream reports

www.cisco.com

IGMP-UDLR—Basic Idea (Cont.)

- Other downstream routers remember reporter for group and monitor it's reporting status for the group
- When the reporter goes down or leaves the group, a new reporter forwards IGMP reports
- Leaves work the same way

IGMP-UDLR Scalability

- Groups are dynamic so only joined group traffic traverses UDLR link
- Report suppression allows one report per group per UDLR link (irrespective of the number of members and member subnets)

UDLR Documentation

- URLs
 - ftp://ftpeng.cisco.com/dino/udlr
 - udlr-tunnel-commands
 - udlr-commands (IGMP-UDLR)
 - udlr.txt
- Mailing lists
 - udlr-beta@cisco.com

Documentation and Contact Info

- EFT/Beta Site Web Page:
 - ftp://ftpeng.cisco.com/ipmulticast.html
- EFT/Beta Mailing List:
 - multicast-support@cisco.com
- Customer Support Mailing List:
 - cs-ipmulticast@cisco.com

