

- Networking Trends
- QoS Demystified
- QoS in Campus: Justifications
- QoS Model and Techniques
- Implementing QoS
- Summary
- Q & A

QoS—What Is It?

- A traditional network is best-effort
- All traffic get the same service, i.e., the forwarding behavior by a network device is FIFO
- QoS prioritizes traffic into different service levels and provides preferential, forwarding treatment to some data traffic at the expense of lower-priority traffic
- QoS = preferential treatment

www.cisco.com

QoS—Why Is It Needed? Motivation for QoS Is Manifold

- Integrated networks carry different traffic types from a variety of business-enabling applications
- Business drivers and policies dictate preferential treatment for some type of traffic over other(s)
- Convergence of voice and data networks force us to consider servicing two different types of traffic on a single wire

	Voice	Video	Data (Best-Effort)	Mission- Critical Data
Bandwidth	Low to Moderate	Moderate to High	Moderate to High	Low to Moderate
Random Drop Sensitivity	Low	Low	High	Moderate to High
Delay Sensitivity	High	High	Low	Moderate to High
Jitter Sensitivity	High	High	Low	Low to Moderate

- Networking Trends
- QoS Demystified
- QoS in Campus: Justifications
- QoS Model and Techniques
- Implementing QoS
- Summary
- Q & A

www.cisco.com

Why Not Just Increase the Link Speed? Throw More Bandwidth at the Problem!

Buffers Fill for Various Reasons

- Rate mismatch (1000M to 10M Ethernet)
- Many to one (multiple interfaces talking to the same interface all with the same rate)
- Aggregation points

What Happens When Multiple Packets Are Dropped Within the Same Window?

- Window size is reduced exponentially since it is halved for each failed ACK
- TCP window may be reduced to the minimum
- Transmitter of the sender tends to lock-up

Conclusions

- Buffers can congest in LANs
- QoS required when there is congestion in buffers
- Buffer Management can help reduce loss
- Buffering reduces loss but delay sensitive application could be negatively impacted

- Networking Trends
- QoS Demystified
- QoS in Campus: Justifications
- QoS Model and Techniques
- Implementing QoS
- Summary
- Q & A

Input Classification

- Priority can be based on ToS in a packet
- Priority could also be determined by the 3-bit user-priority field in the ISL/.1Q header

This field is commonly called Class of Service (CoS)

 Value of zero is for best effort and seven is for the highest priority traffic

www.cisco.com

CoS Assignment

- Untagged packets, i.e., packets without an ISL/.1Q tag such as those on an access port are assigned an initial label by the ingress port
- Tagged packets can carry a CoS assigned by say an end-station

Trusted vs. Untrusted

- Cisco's QoS model assumes that the CoS carried in a packet may or may not be trusted by the network device
- For example, some servers maybe reliable enough to correctly tag the packets
- End stations like user PCs can mostly not be trusted to tag a packet's priority correctly

www.cisco.com

CoS for Untrusted Ports

- "Incorrect Tag" means tag in a way different from what the administrative policy specifies
- Network Administrators can designate which ports can be "trusted" to tag packets correctly
- On untrusted ports, the ingress port assigns a default CoS to all packets tagged or not

CoS Assignment (Cont.)

- On trusted ports, ingress port assigns CoS only to untagged packets
- CoS assigned by an ingress port is independent of the VLAN, i.e., on an untrusted trunking port, packets of all VLANs get tagged by the same CoS

Random Early Detection Benefits

- Average delay reduced
- Reduced TCP slow start conditions
- Reduced global synchronization
- Reduces negative bias towards light users

Other Benefits of RED

 Beyond the higher link utilization other benefits that are not graphically shown include:

Small users are not negatively biased

Fewer retransmissions because there are fewer restarts

Policing Action

- Device (switch/router) has a contract with the Network, e.g., only allow 3M of HTTP traffic
- Rest is discarded (e.g., Token Bucket) or marked down from the current value
- A new label is assigned based on the configuration

Re-Classification

CoS can also be assigned by the Layer 2 forwarding engine

The user can configure mac addresses to be associated with a CoS

When packets arrive destined to such a mac address, their CoS is re-assigned to the value specified

 Assignment of CoS via dest-mac overrides trust and port-based CoS assignment

www.cisco.com

Output Scheduling

- On output, there are multiple queues, some high priority and some low priority
- Strict priority servicing of the queue would cause starvation of low priority traffic in the presence of high priority traffic
- However, delay requirements of high priority traffic must also be respected

Weighted Round Robin

- The Network Administrator specifies weights associated with each of the queues
 - The weight ranges from 1–255
- Link is shared in the proportion specified by the weights

Example with Dual Queues					
Two (Queues with	Four Drop	Thresholds		
	Service	Delay Insensitive	Delay Sensitive		
	Mission Critical	7	6		
Drop Priority	Premium Best Effort	5	4		
	Regular	3	2		
	Best Effort				

- Networking Trends
- QoS Demystified
- QoS in Campus: Justifications
- QoS Model and Techniques
- Implementing QoS
- Summary
- Q & A

- Networking Trends
- QoS Demystified
- QoS in Campus: Justifications
- QoS Model and Techniques
- Implementing QoS
- Summary
- Q & A

www.cisco.com

Conclusions

QoS in campus is:

Meaningful

Important

Needed

- Campus (LAN) QoS requirements are emerging
- Prerequisite to D/V/V deployment, is the need to prioritize mission-critical applications

- Networking Trends
- QoS Demystified
- QoS in Campus: Justifications
- QoS Model and Techniques
- Implementing QoS
- Summary
- Q & A

