

Agenda

- Introduction
- Fiber Optics Fundamentals
- Dense Wave Division Multiplexing
- Optical Internetworking

www.cisco.com

Network Providers evolving away from TDM centric infrastructure to support emerging data services Bandwidth capacity is exploding Emergence of IP as the common foundation for all services

IP Services Are Increasing Bandwidth Requirements Increase in number users Significant growth expected in number of access ports, particularly at high speeds—DS3, OC-3, OC-12 access ports Resulting backbone capacity Most inter-city links are 2 x 2.5 Gbps today with low average utilization Backbone bandwidth doubling every 6 to 9 months

Core IP Solution

- Deliver optical IP transport
- Direct connection to DWDM and/or fiber
- Streamline layers, simplify management
- New functions: optical integration and management, fast restoration

Optical Internet Core

Agenda

- Introduction
- Fiber Optics Fundamentals
- Dense Wave Division Multiplexing
- Optical Internetworking

Glass Purity Breakthrough Fiber Optics Requires Very High Purity Glass Window Glass 1 inch (~3 cm) Optical Quality Glass 10 feet (~3 m) Fiber Optics 9 miles (~14 km) Propagation Distance Need to Reduce the Transmitted Light Power by 50% (3 Db)

• Light can be described as: Particles (classical optics) Waves (electromagnetic theory) • Light is reflected/refracted at an interface $\theta_1 = \text{Angle of incidence}$ $\theta_{1r} = \text{Angle of reflection}$ $\theta_2 = \text{Angle of refraction}$ • Above $\theta_{critical} = \sin^{-1}(n_2/n_1)$, all light is totally internally $\theta_1 = \theta_{1r}$ $n_1 \sin \theta_1 = n_2 \sin \theta_2$

www.cisco.com

reflected

Types of Single-Mode Fiber

- SMF-28 (standard, 1310 nm optimized, unshifted)
 Most widely deployed by far
 Introduced in 1986
- SMF/DS (dispersion shifted)
 For single channel operation at 1550 nm
- SMF-LS (nonzero dispersion shifted)
 For WDM operation in the 1550 nm region
- LEAF and TrueWave
 Latest generation fiber developed in mid 90s
 For better performance with high-capacity DWDM systems

Combating Chromatic Dispersion

- Dispersion generally not an issue below OC-192
- New fiber types (NZ-DSF) greatly reduce effects

Dispersion mapping with NZ-DSF +/- segments (submarine systems)

Dispersion compensation techniques

Dispersion compensation fiber

Dispersion compensating optical filters

Available in some optical amplifiers

Polarization Mode Dispersion · "Fast" axis of Polarization "Dispersed" Mode 0 ptical propagation and a on the Signal "Fast" Axis "slow" axis Travel down the fiber is desynchronized Differential Group (out of phase) Delay PMD presents a greater Polarization Mode on the problem to system "Slow" Axis performance because it can vary with time www.cisco.com

Fiber Nonlinearity

- Nonlinear effects are the ultimate limits to transmission performance
- Today's systems have longer interaction lengths

Attenuation can be amplified
Dispersion can be compensated
Nonlinearities just accumulate

 High-capacity systems require high optical power which causes nonlinear effects

Physics of Higher Capacity

 High capacity requires high-optical powers it's basic physics

DWDM power scales with channel count **TDM** power scales with bitrate

- The same fundamental nonlinear limits apply to both
- The art is in the design trade-offs

www.cisco.com

Different Solutions for Different Fiber Types

 Good for TDM at 1310 nm **SMF-28**

Bad for TDM at 1550 nm

OK for WDM at 1550 nm

May have TDM limit due to PMD

 Good for TDM at 1550 nm **DSF**

Bad for WDM at 1550 nm

NZ-DSF Good for TDM and DWDM at 1550 nm

Next Gen Great for TDM and DWDM in

L and C bands

The Difference Is in the Dispersion Characteristics

Fiber Optics Summary

- Each single-mode optical fiber has over 25 THz of bandwidth
- 10 Tbps transmission systems are on the horizon

Faster TDMes!

Wider DWDMes!

Better OAs and fiberes!

www.cisco.com

Agenda

- Introduction
- Fiber Optics Fundamentals
- Dense Wave Division Multiplexing
- Optical Internetworking

Why DWDM? The Technical Argument

- DWDM provides enormous amounts of scaleable transmission capacity
 - Unconstrained by speed of available electronics
 - Subject to relaxed dispersion and nonlinearity tolerances
 - Capable of graceful capacity growth

DWDM History

- Early WDM (late 80s)
 - Two widely separated wavelengths (1310, 1550nm)
- "Second generation" WDM (early 90s)
 Two to eight channels in 1550 nm window
 400+ GHz spacing
- DWDM systems (mid 90s)
 16 to 40 channels in 1550 nm window
 100 to 200 GHz spacing
- Next generation DWDM systems (late 90s)
 64 to 160 channels in 1550 nm window
 50 and 25 GHz spacing

DWDM Enabling Technologies

- Stable and narrow line-width lasers
 Low-chirp and high-extinction ratio
- High-selectivity wave-length filters
 Low-insertion loss and crosstalk
- High-power optical amplifiers
 Low noise
 Wide, flat passband

www.cisco.com

DWDM Laser Sources

- Direct modulation of laser diode
 Nonlinearity leads to chirping
 Complicates dispersion management
- Use of an external modulator (preferred) Separates λ generation and signal modulation Low chirp or negative chirp possible

- ITU-T λ grid is based on 191.7 THz + 100 GHz
- Its purpose is to standardize lasers not DWDM systems
- There is no standard for DWDM systems $\text{Number and spacing of λs are design variables}$

www.cisco.com

DWDM Receiver Requirements

SNR _{elec} =
$$\frac{(\text{Signal})^2}{(N_{\text{sig-ase}})^2 + (N_{\text{ase-ase}})^2 + (N_{\text{thermal}})^2 + (N_{\text{shot}})^2}$$

- Optical detectors obey the square law
- In systems with OAs, SNR is determined by Signal • ASE beat noise for "ones"
 ASE • ASE beat or thermal noise for "zeros"
- DWDM receivers use dynamic thresholds

DWDM Interface Evolution

 Early WDM systems used ITU transmitters, but had no internal receivers

WDM vendor's Tx, SONET vendor's Rx

No visibility into signal

- Most DWDM systems use transponders
 - Allows performance monitoring
 - **Provides 3R regeneration function**
- Emerging option for direct optical interface

Potential cost savings

Potential technical risk

Direct Optical Interfaces to DWDM

- Transponder becomes a passive interface
- ITU laser in router/switch drives long-haul link

Pros	Cons
Low Cost	No clear point of demarcation
Transparency	Stocking of spares
	Stringent technical requests
	Potential interactions

 Might make sense in metro, but not long-haul networks

Performance Monitoring

- SONET/SDH performance monitoring performed on a per wavelength basis through transponder
- Computation of B1 and monitor J0 at each channel input and output

B1 = section bit error rate

J0 = section path trace

No modification of SONET/SDH overhead
 Data transparency is preserved

www.cisco.com

Element Management System

- EMS is available on most DWDM systems
- EMS used to correlate alarms

Fault isolation/PM information

Configuration mismatches

Communicate with NMS

 Optical Supervisory Channel (OSC) extends EMS capability to remote OAs

Dedicated out-of-band wavelength used

Bit Rates and Wavelengths

- SNR: For fixed OAs, WDM and TDM same
- Dispersion is less of an issue at lower speed
- Fiber nonlinearities generally favor more lower speeds
- Economics and manageability favor higher speeds

Common Design Approach Is to Use Highest Possible Bit Rate, then Maximize Wavelengths

WWW.disco.com

Designing for Distance L = Fiber Loss in a Span G = Gain of Amplifier Amplifier Spacing D = Link Distance • Link distance (D) is limited by the minimum acceptable electrical SNR at the receiver Dispersion, Jitter, or optical SNR can be limit • Amplifier spacing (S) is set by span loss (L) Closer spacing maximizes link distance (D) Economics dictates maximum hut spacing

DWDM Benefits

 DWDM provides hundreds of Gbps of scalable transmission capacity today

Provides capacity beyond TDM's capability

Supports incremental, modular growth

Transport foundation for next generation networks

www.cisco.com

But That's Not Why it Sells

- It's the economics, not the technology, that service providers buy into
- Long-haul DWDM market is driven by the high cost of new fiber
 Fiber exhaust of the mid 90s
 Today's new builds are fiber rich
- DWDM is being commoditized

Metro DWDM

- Metro DWDM is an emerging market for next generation DWDM equipment
- The value proposition is very different from the long haul

Rapid-service provisioning

Protocol/bitrate transparency

Data-centric protected transport

Metro DWDM is not yet widely deployed

www.cisco.com

Pirelli WaveMux Platform Scalable DWDM platform Flexible deployment options Economical platform WWW.CESCO.COM

Optical Networks

- Enter the optical cross connect
- DWDM moves beyond simply transport

Wavelength provisioning Mesh-based restoration

Intelligence in the optical layer
 Light-weight routing protocols

www.cisco.com

Agenda

- Introduction
- Fiber Optics Fundamentals
- Dense Wave Division Multiplexing
- Optical Internetworking

Benefits of Optical Internetworking

- Increased capacity to switch huge volumes of packet-based information
- Lowers cost by eliminating unnecessary layers of equipment
- Maintain and enhance reliability to handle most demanding requirements
- Improved flexibility to support yet unimagined IP-based applications and services

www.cisco.com

Cisco 12000 GSR IP Backbone Leadership

- WW Internet proven deployment
- Carrier-class architecture
- Premier IP-routing software
- Leading interface breadth
- Technology innovation

