The New Aged MAN

Dr. Jim Metzler Ashton, Metzler & Associates 617.969.8286 jim@ashtonmetzler.com www.ashtonmetzler.com

Goals and Non-Goals

Goals:

- Detail the various architectures being deployed by MAN Service Providers
- Describe the current generation of Service Provider MAN offerings
- Identify the management and SLAs associated with the current generation of Service Provider MAN offerings
- Provide some insight into the pricing of the current generation of Service Provider MAN offerings

Non-Goals

- To declare a winning approach to MAN offerings
- To read every bullet on every slide

Current Intra-LATA Services: Both for Connectivity and Access

- Expensive
- Highly subject to failure
- Difficult/time consuming to provision and configure

MANs – Been There, Didn't Do That

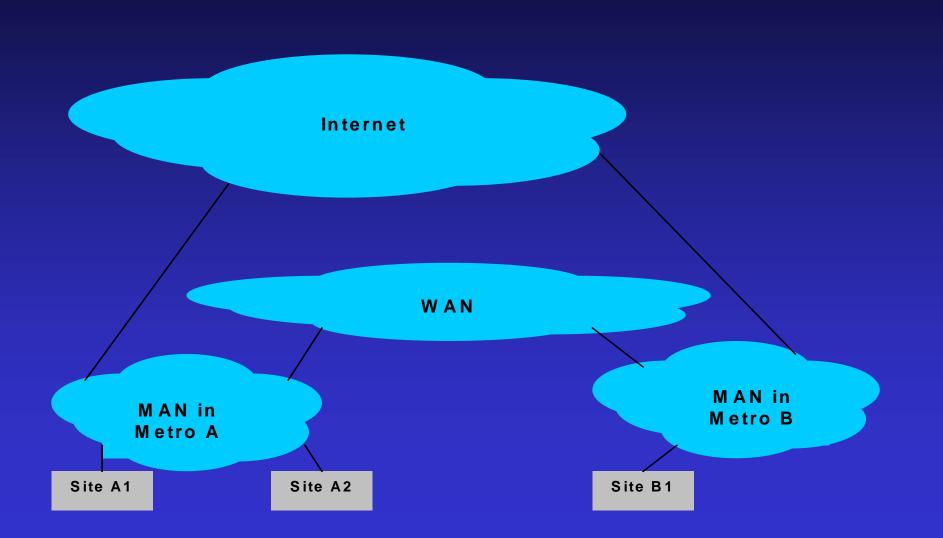
- The concept of a MAN is not new, it has been tried multiple times before, with little success
 - In the late 1980s, FDDI was <u>advocated</u> as a MAN technology
 - In the mid-1990s, 10 Mbps Ethernet was deployed as a Transparent LAN Service (TLS)

The New Age MAN – What's Different From a Few Years Ago?

- IP and Ethernet are notably more dominant technologies than existed even a few years ago
- There is much more fiber deployed today
- Native mode ATM is less of a viable alternative than it was
- There is more demand for high speed services than there was
- Enabling technologies are more fully developed. For example, CWDM & DWDM expand the capacity of each fiber with a lot more expansion to come

The New Age MAN – What's Different From a Few Years Ago?

- Intra-LATA services have not dropped in price as much as have LAN and Inter-LATA services
- There is a broad range of service providers, both incumbents and emerging service providers, currently offering MAN services
- There is a broad range of MAN services being offered
- There are a number of higher level services being deployed that utilize high speed MAN services as an access technology


New Aged MAN Services

Current Transmission Services

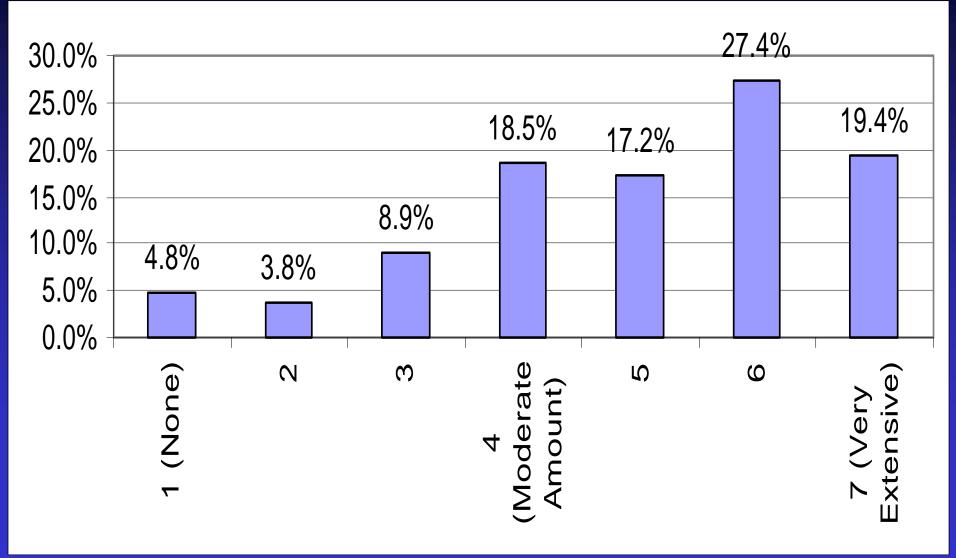
- Connectivity within a Metropolitan Area
- Internet Access
- WAN connectivity among Metropolitan Areas
- Potential Transmission Services
 - Access to VPNs
- Current or Potential Higher Level Services
 - Conferencing
 - Streaming Content
 - Storage Area Networks (SANs)
 - Hosted applications
 - Mainframe clustering and backup/restore

MAN Service Topology

Bandwidth

Bandwidth Capacity

- Today's Ethernet Based Services provide bandwidth from 10 Mbps to 1 Gbps, with 10 Gbps on the horizon
- Alternatively, some MAN service providers are offering Lambda services


Bandwidth Increments on Ethernet Based Services

As granular as 1 Mbps increments up to 1 Gbps

- or, on increments such as:

 1 Mbps up to a limit (i.e., 20 Mbps); then 10 Mbps increments up to a limit (i.e., 100 Mbps) and then 50 Mbps increments up to a limit (i.e., 700 Mbps)

Marketplace Interest in Scalable Bandwidth

Primary Enabling Technologies

- Long-haul Ethernet over dark fiber
- Coarse and Dense Wavelength Division Multiplexing (CWDM, DWDM)
- 1 and 10 Gbps Ethernet
- Optical Amplification
- IP Packet over SONET
- IP Packet over DWDM
- MPLS

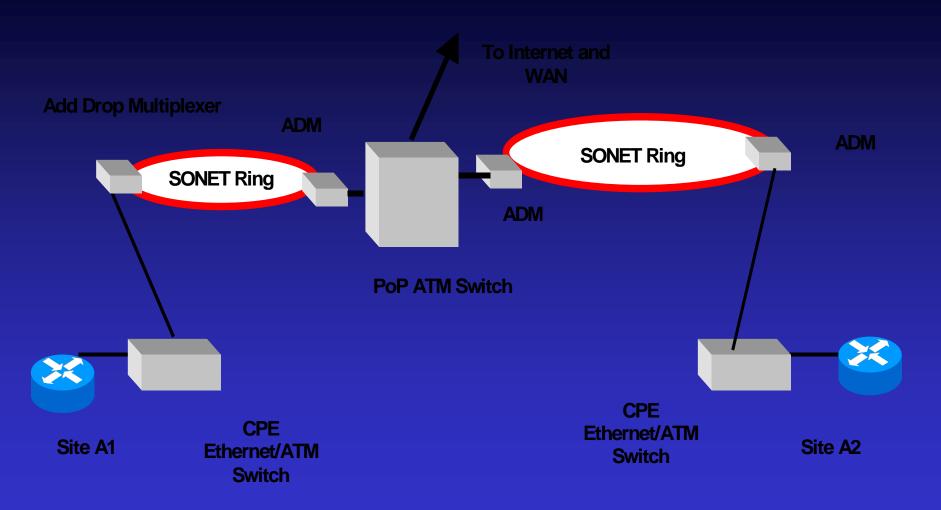
Background

- Hardware vendors are packaging the enabling technologies into Service Interface Units (SIUs). SIUs are the service provider managed CPE to which enterprise routers and switches connect for MAN services.
- MAN services at >100 Mbps require that an optical fiber exists between the enterprise site and the Service Provider's POP.

Classifying SIUs

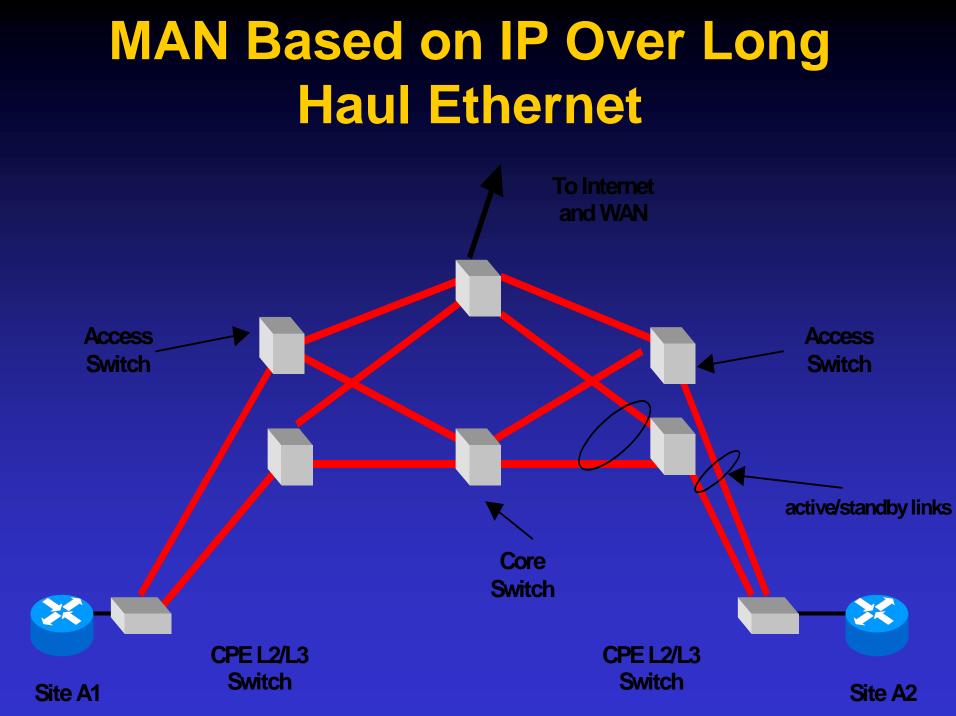
SIUs fall into two broad categories:

- Ethernet MAN Switches Typically a Layer 2/Layer 3 switch that has been adapted for the MAN by the incorporation of Long Haul Ethernet and/or CWDM
- DWDM shelves with Optical Add Drop Multiplexer (OADM) functionality and varying degrees of TDM, IP Switching, and SONET


The Underlying MAN Architecture Impacts:

- Flexibility to support new applications
- Bandwidth scalability
- Cost
- Reliability
- Security
- Manageability
- Quality of Service

MAN Based on ATM/SONET

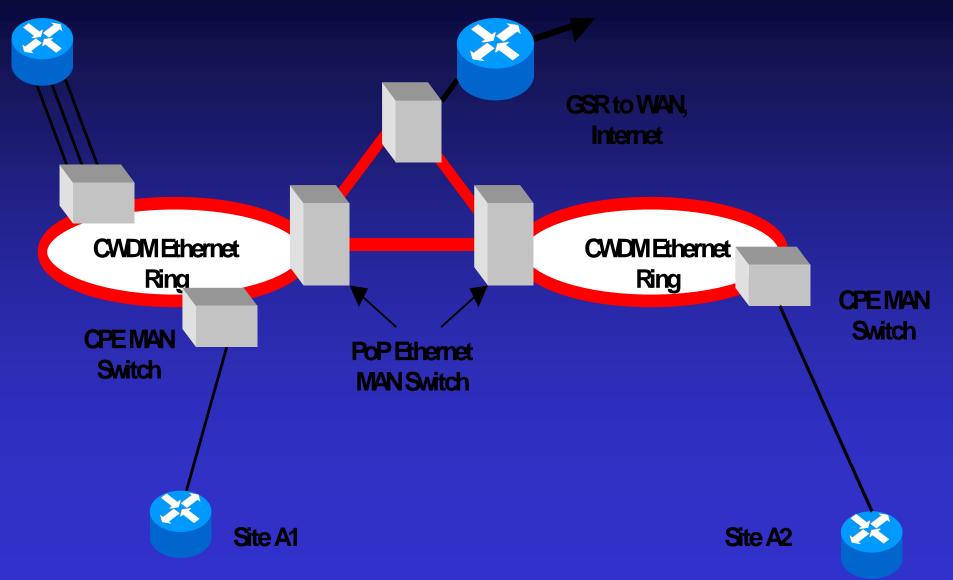

TLS MAN Service Based on ATM/SONET

- Transparent LAN Services (TLS) is a traditional MAN service, available primarily from ILECs, such as SBC.
- The Ethernet traffic at site A1 is encapsulated as per RFC 1483 and bridged over the ATM network to site A2.
- A PVC would be configured for each pair of sites in the MAN

TLS MAN Service Based on ATM/SONET

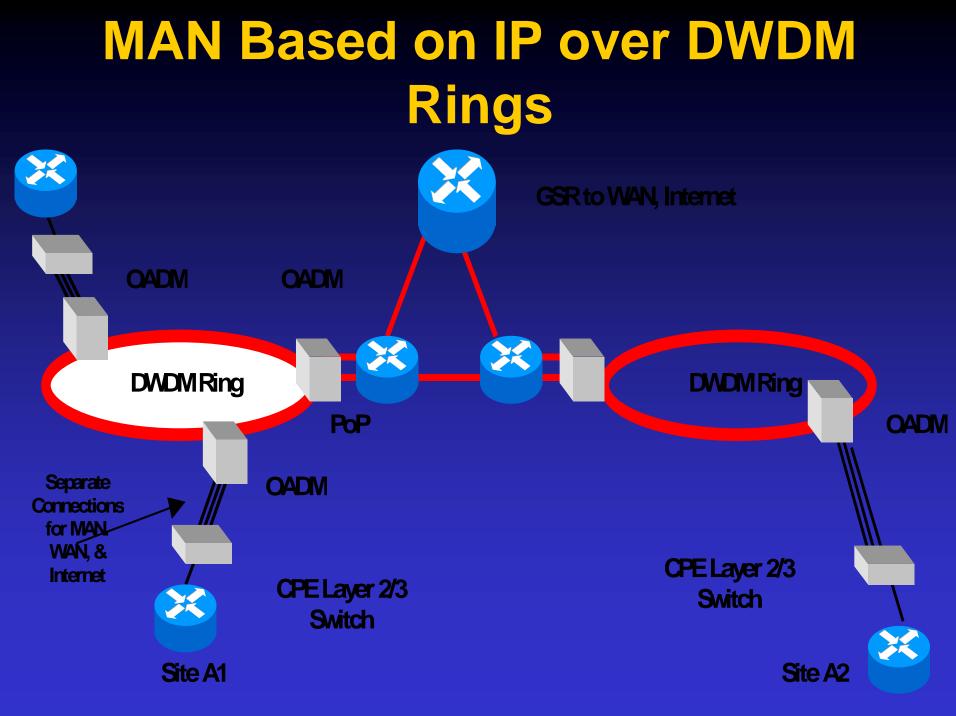
- The scalability and cost of this solution are determined by the ATM/SONET equipment
- SONET protection plus (potential) redundancy in the POP eliminate Single Points Of Failure (SPOFs) in the MAN
- With a dedicated SIU and PVC per site, security is equivalent to that of an ATM network
- For Internet and WAN connectivity, additional routed ports would have to be configured on the site switch/router, and additional PVCs established to the ISP or the provider of routed IP backbone services.

MAN Based on IP Over Long Haul Ethernet


- This is an architecture deployed by MAN CLECs, such as Telseon using switches from RiverStone (Yago)
- The SIU at site A1 could be dedicated to a single subscriber, or shared by a number of subscribers in a multi-tenant building
- The traffic of each subscriber is encapsulated with a unique 802.1Q VLAN header and bridged over the MAN
- As was the case with the TLS, additional routed ports would have to be configured for Internet access and WAN services

MAN Based on IP Over Long Haul Ethernet

- Scalability is provided by long haul versions of Fast Ethernet and Gigabit Ethernet
- Reliability is provided by a combination meshing (with excess capacity) and fast spanning tree
- Security is provided by VLAN tagging
- Note that additional security can be provided by implementing firewalls or MPLS



MAN Based on IP Over Long Haul Ethernet and CDWM Rings

MAN Based on IP Over Long Haul Ethernet and CDWM Rings

- Offered by Service Providers such as Yipes using switches from Extreme Networks
- CWDM provides either 4 or 8 wave lengths over each fiber strand
- A dual, self-healing Ethernet ring is used to daisychain among the customer sites with the CPE MAN switch providing added add/drop functionality
- Very similar characteristics as the preceding architecture
- There are a number of proprietary packet ring implementations. The IEEE is working on a Resilient Packet Ring (RPR) standard, called IEEE 802.17

MAN Based on IP over DWDM Rings

- This architecture is implemented by a variety of MAN service providers, including Verizon, Giant Loop, and XO Communications
- This is a variation of the previous architecture, using DWDM to link Optical Add/Drop Multiplexers (OADMs)--Lots of vendors here!
- One distinction among OADMs how much support for SONET is provided:
 - Framing
 - Protection/Restoration
 - TDM

MAN Based on IP over DWDM Rings

- Another primary characteristic of OADMs is whether or not they allow multiple uses to share a given Lambda
- One key aspect of the DWDM physical layer is that it is indifferent to the upper layer protocols. As such, OADM implementations can support:
 - SONET/ATM
 - Ethernet
 - Fibre Channel
 - ESCON

Manageability

- Most Service Providers (SPs) currently give the customer read access to the SP's trouble tracking system
- Few SPs allow customers to directly enter trouble tickets into their system
- Few SPs allow customers to request bandwidth changes online

Manageability Functionality Almost Always Missing Includes:

- Automated alerts of customer's fault or performance issues
- Real time SLA status
- Customer access to Fault Management and Service Assurance tools
- Online access to billing information

MAN Service Pricing

- A lot of Individual Case Basis pricing
- Rule of Thumb for connectivity within a MAN or to the Internet:
 - \$2K/month for 10 Mbps service
 - \$3K/month for 100 Mbps service
 - \$8K/month for 1 Gbps service
- Service pricing may or may not have a distance sensitive component to it

Additional Functionality

- Based on the Service Provider, the following may be part of the basic service, an add-on, on not even available:
 - Managed CPE
 - Managed Firewall
 - Managed Encryption Server
 - Digital Certificate Service
 - IP Filtering
 - NAT
 - Redundant Access

SLA Parameters

- Bandwidth CIR
- Ability to Burst
- Packet Loss Ratio
- Latency
- Jitter
- Mean time to install
- Mean time to increase bandwidth
- Mean time to restore
- Availability

SLA Credits

- Generally, the credits associated with MAN SLAs are only slightly stronger than those for legacy services.
- For example, it is typical to have the MAN SP pro-rate the Monthly Recurring Charge (MRC) for failure to meet the SLA.
- However, one MAN SP offers a credit of 30% of the MRC in the event that the monthly availability falls below 96%.

Summary

- Many of the MAN services are essentially offered on an Individual Case Basis (ICB), so it is difficult to get information on pricing or service level agreements.
- New MAN services are evolving rapidly. Because of this, it is not wise to make a long term commitment to a MAN service provider, nor make a major investment in CPE
- The New Aged MAN does appear to be a step forward by providing a breakthrough in cost for WAN access, Internet Access, and MAN services