

Security in an E-Business World

Philip Cox Consultant Monday September 10, 2001 A discussion of the most common operational security problems organizations face

The characteristics of a securable architecture

A Hacker Primer

• A course to secure your enterprise

 A detailed treatment of systems, firewalls, or product configurations

• A survey of security products

Common Operational Security Problems

Architecture Characteristics

Hacking Primer

General Thoughts

The most common problems...

- Are not new
- They are not "sexy"
- Are just derivation of old problems
 - ...there is nothing new under the sun. Ecclesiastes 1:9
- A large part of security is due diligence
- Security is still mostly a reactionary model in most organizations
- Now, on with the show ...

Top 10 Most Common Operational Security Problems

- **10.** User passwords and data sent in the clear
- **9.** A single reusable username and password for internal and external access
- 8. Relying on switches to prevent network sniffing
- **7.** Thinking that the Firewall is the only point of entry
- **6.** Allowing too many services on individual systems or non-business critical services

Top 10 Most Common Operational Security Problems

- 5. No User education
- **4.** Block incoming traffic, but allow all outgoing traffic
- 3. No Intrusion detection
- 2. No configuration management
- 1. No time to do it right

What's the problem?

- User passwords sent in the clear
 - Telnet, FTP, HTTP BASIC Auth, POP, IMAP, NTLM
 - *CM: Encryption* {*SSL, SSH, Application*}
- A single username and password for internal and external access
 - Get a POP password
 - Then use a VPN to get in
 - Then access internal systems
 - CM: Strong Authentication, separate credentials for internal and external access

- Relying on switches to prevent network sniffing
 - Switches are designed for performance not security
 - Many programs to "corrupt" ARP tables
 - CM: Hardcode MAC addresses in switch, encrypt sensitive traffic
 - Thinking that the Firewall is the only point of entry
 - Partners, Modems, VPN's, Wireless, ASP's
 - CM: Routinely perform external testing for connectivity

- Allowing too many services on individual systems or non-business critical services
 - More targets likely to be exploited
 - More services to keep secure
 - CM: Only implement services that are required for the business to succeed. Use the one-server/oneservice rule
- No User education
 - They need to know how to defend themselves
 - They are a major focal point of new attacks
 - CM: Regular user training on current attacks and countermeasures

- Block incoming traffic, but allow all outgoing traffic
 - The hacker may be one of your employees
 - Many new attacks use this "feature" to download files
 - CM: Configure perimeter controls to only pass "allowed" traffic regardless of direction
- No Intrusion detection
 - How do you know if you have been hacked?
 - Liability issues, Insurance companies will require it
 - Implement an enterprise-wide Intrusion Detection System (IDS) {more later}

No configuration management

- You just can't do multi-system secure deployments without it
- CM: Implement a comprehensive Configuration Management process {more later}

No time to do it right

- It is just an excuse, time is coming where this will be a liability
- CM: Bite the bullet, and do the right thing!

More on Intrusion Detection: Recommendations

- How do you eat an Elephant? One bite at a time
- Start with the following, in order of preference
 - Network ID at the firewall/perimeter networks
 - Host and Application ID on most critical externally accessible systems
 - Host and Application on critical internal servers
 - Network ID on critical internal networks
 - Host and Application on secondary internal servers
 - Network ID on internal networks
 - Host ID on desktop/user systems
- Have a plan on how to respond to a security event

Configuration Management

- Having a process and procedure to...
 - Perform testing before rolling out updates
 - Apply critical security patches in a timely manner
 - Schedule upgrades and configuration validations
 - Backup and restore systems
 - Track and control software versions
 - Rollback if problems occur

Common Operational Security Problems

Architecture Characteristics

Hacking Primer

Top 5 Most Common Architectural Security Problems

- **5.** Confusing DMZ/Firewalls as a security architecture
 - outside & inside vs. appropriate access
- **4.** Overlooking one of the 3 A's: Authentication, Authorization, and Auditing
- **3.** Using product definitions to define the architecture instead of vice-versa
- 2. Adding security after the fact
- 1. Not understanding business requirements

- Lopsided focus on firewalls
- Growing interest in consistent authentication
- Growing interest in logging and intrusion detection
- Authorization is almost always left out
- Slow development of integrated security across applications and infrastructure Homespun systems tend to tie it all together (at a high long-term cost)

Architecture: What to do?

- Determine what you want to do from a business standpoint
 - Business requirements drive security needs, not vice versa!
- Design an architecture that can meet those needs
 - You may have to develop a migration plan if you are too far off the mark

Securable Architecture's

- Have well articulated key risks (3-7 of them) to defend against
- Have well defined and documented key organizational policies (a manageable number)
- Have well articulated, concise, and documented requirements to support key business goals (5-10 of them)
- Define a model of what is to be secured, not a product list of how to secure things
- Are understandable

Authorization Requirements: An Example

- What needs to be protected?
- Are there multiple levels of service?
 - Distinction between groups
 - Employees
 - Customers
 - Partners
 - Distinction among value of service
 - Membership
 - Group accounts
 - Individual accounts

Common Operational Security Problems

Architecture Characteristics

Hacking Primer

- Intrusions are easier than we would like...why?
 - poor detection and escalation
 - Imited use of real authentication and authorization
 - Internet readiness degrades over time
 - many organizations think in terms of inside and outside
 - OS/application upgrades are a pain
 - there are no business risk/cost analysis tools
 - hard to quantify demands
 - integrating disparate layered technologies on multiple OS environments is time consuming

Hacker Methodology

- Reconnaissance
- Identification of opportunities
- Research
- Exploitation
- Eliminate tracks

Profiling

- Rudimentary data
 - InterNIC data
 - all IP addresses
 - SNMP agents
- Expanded data gathering
 - TCP/IP, UDP services
 - SNMP MIBs
 - DNS names and conventions
 - ISP routes
 - OS types
 - External : mail, DNS
 - Web server exploits

Research data

- known service exposure opportunities
- OS vendors
- related hacker successes
- related hacker tools
- recent exploits
- detection and prevention tools and techniques

• NO detection!

- main Web server fine...let's look around
- staging server not so fine
- exploit well known Web server bug to initiate interactive login session
- exploit trust relationship between staging server and main Web server
- change main Web pages!

 Typical big exploit is a combination of lower level problems

Intrusion Example, cont.

- Vulnerabilities to achieve critical access
 - ICMP echo allowed in (low)
 - Non default but easily guessed SNMP community string (low/medium)
 - Non production quality HTTP server configuration on non production system (low)
 - trust relationship between 2 systems within a close IP address space (low/medium)
 - xterm from DMZ address allowed out through firewall (medium)

 Many intrusions and tools require little actual networking knowledge

There are a lot of tools, techniques, sites, and initiatives that you can use and should be aware of New Network Paradigms to be aware of

- What you need to do
- Security Rules of Thumb
- Contact Information

New Network Paradigms to be aware of

- Increased use of VPN technology
- Use of XML is on the Rise
 - Simple Object Access Protocol (SOAP)
 - Microsoft's .NET
- Use of switched media
- Voice and Data on the same network
- Wireless Networks

What You Need To Do

- Analyze your own requirements
- Analyze your own architecture
 - Too complex?
 - Too many connections?
 - Too many mechanisms?
- Look for consistency from the outside and the inside

- Test your configuration
 - Internet exposure tests
 - Content review application walkthrough
 - Use the same methodology hackers do!
 - Profiling yourself is a big part of being prepared for an intrusion

Security Rules of Thumb

- 90% of all vulnerabilities have fixes
- If it is architected right, it CAN be secured technically
 - If not, you may get lucky ⁽²⁾

Philip Cox Consultant

Phil.Cox@SystemExperts.com 530-887-9251 direct 530-887-9253 fax 978-440-9388 main http://www.SystemExperts.com/

