
1(88)

1992-04-27

Document Name

DESCRIPTION
Page

Date Rev.

C
Document No.

M 90 0118 Uen

FN/Erik Nyquist & Mats Henricson

Author

FN/Mats Henricson and Erik Nyquist
Approved by

Title

Programming in C++, Rules and Recommendations

Belongs to

Programming in C++

Rules
and

Recommendations

Copyright (C) 1990-1992 by
Ellemtel Telecommunication Systems Laboratories

Box 1505
125 25 Älvsjö

Sweden
Tel: int + 46 8 727 30 00

Permission is granted to any individual or institution to use, copy, modify, and distribute this
document, provided that this complete copyright and permission notice is maintained intact in all
copies.

Ellemtel Telecommunication Systems Laboratories makes no representations about the suitability of
this document or the examples described herein for any purpose. It is provided “as is” without any
expressed or implied warranty.

Original translation from Swedish by Joseph Supanich

2(88)

1992-02-25

Document Name

DESCRIPTION
Page

Date Rev.

C
Document No.

M 90 0118 Uen

3(88)

1992-04-27

Document Name

DESCRIPTION
Page

Date Rev.

C
Document No.

M 90 0118 Uen

Table of Contents

1 Introduction...5

2 Terminology ..7

3 General Recommendations ...9

4 Source Code in Files ..10

4.1 Structure of Code ...10

4.2 Naming Files...11

4.3 Comments ..12

4.4 Include Files ...14

5 Assigning Names ...17

6 Style ...21

6.1 Classes...21

6.2 Functions ..23

6.3 Compound Statements...24

6.4 Flow Control Statements ..24

6.5 Pointers and References ..25

6.6 Miscellaneous...26

7 Classes ..27

7.1 Considerations Regarding Access Rights ..27

7.2 Inline Functions ..29

7.3 Friends..29

7.4 const Member Functions ..30

7.5 Constructors and Destructors...32

7.6 Assignment Operators..39

7.7 Operator Overloading ...41

7.8 Member Function Return Types ...41

7.9 Inheritance..42

8 Class Templates ...43

9 Functions ..44

9.1 Function Arguments ...44

9.2 Function Overloading ...46

9.3 Formal Arguments ..46

9.4 Return Types and Values ...47

9.5 Inline Functions ..48

9.6 Temporary Objects ...49

9.7 General ...50

10 Constants ..51

4(88)

1992-02-25

Document Name

DESCRIPTION
Page

Date Rev.

C
Document No.

M 90 0118 Uen

11 Variables ...52

12 Pointers and References ...54

13 Type Conversions ..57

14 Flow Control Structures ..65

15 Expressions ..69

16 Memory Allocation ...70

17 Fault Handling ..72

18 Portable Code ...74

18.1 Data Abstraction...74

18.2 Sizes of Types..75

18.3 Type Conversions ..75

18.4 Data Representation ..75

18.5 Underflow/Overflow ..76

18.6 Order of Execution ...76

18.7 Temporary Objects...79

18.8 Pointer Arithmetic ...79

19 References ..81

20 Summary of Rules..83

21 Summary of Recommendations ...85

22 Summary of Portability Recommendations.......................................87

Appendix Form for Rule Change Request ...88

5(88)

1992-04-27

Document Name

DESCRIPTION
Page

Date Rev.

C
Document No.

M 90 0118 Uen

1 Introduction

The purpose of this document is to defineone style of programming in C++. The rules and
recommendations presented here are not final, but should serve as a basis for continued work with
C++. This collection of rules should be seen as a dynamic document; suggestions for improvements
are encouraged. A form for requesting new rules or changes to rules has been included as an appendix
to this document. Suggestions can also be made via e-mail to one of the following addresses:
erik.nyquist@eua.ericsson.se
mats.henricson@eua.ericsson.se

Programs that are developed according to these rules and recommendations should be:

- correct
- easy to maintain.

In order to reach these goals, the programs should:

- have a consistent style,
- be easy to read and understand,
- be portable to other architectures,
- be free of common types of errors,
- be maintainable by different programmers.

Questions of design, such as how to design a class or a class hierarchy, are beyond the scope of this
document. Recommended books on these subjects are indicated in the chapter entitled “References”.

In order to obtain insight into how to effectively deal with the most difficult aspects of C++, the
examples of code which are provided should be carefully studied. C++ is a difficult language in which
there may be a very fine line between a feature and a bug. This places a large responsibility upon the
programmer. In the same way as for C, C++ allows a programmer to write compact and, in some
sense, unreadable code.

Code written inbold type is meant to serve as a warning. The examples often include class
definitions having the format "class <name> {};". These are included so that the examples may
be compiled; it is not recommended that class definitions be written in this way. In order to make the
code more compact, the examples provided do not always follow the rules. In such cases, the rule
which is broken is indicated.

Many different C++ implementations are in use today. Most are based on the C++ Language System
by AT&T. The component of this product which translates C++ code to C is called Cfront. The
different versions of Cfront (2.0, 2.1 & 3.0 are currently in use) are referred to in order to point out
the differences between different implementations.

Rule 0 Every time a rule is broken, this must be clearly documented.

6(88)

1992-02-25

Document Name

DESCRIPTION
Page

Date Rev.

C
Document No.

M 90 0118 Uen

7(88)

1992-04-27

Document Name

DESCRIPTION
Page

Date Rev.

C
Document No.

M 90 0118 Uen

2 Terminology

1 An identifier is a name which is used to refer to a variable, constant, function or type in C++.
When necessary, an identifier may have an internal structure which consists of a prefix, a
name, and a suffix (in that order).

2 A class is a user-defined data type which consists of data elements and functions which
operate on that data. In C++, this may be declared as aclass; it may also be declared as a
struct or aunion. Data defined in a class is calledmember data and functions defined
in a class are calledmember functions.

3 A class/struct/union is said to be anabstract data type if it does not have any public
or protected member data.

4 A structure is a user-defined type for which only public data is specified.

5 Public members of a class are member data and member functions which are everywhere
accessible by specifying an instance of the class and the name.

6 Protected members of a class are member data and member functions which are accessible
by specifying the name within member functions of derived classes.

7 A class template defines a family of classes. A new class may be created from a class
template by providing values for a number of arguments. These values may be names of
types or constant expressions.

8 A function template defines a family of functions. A new function may be created from a
function template by providing values for a number of arguments. These values may be
names of types or constant expressions.

9 An enumeration type is an explicitly declared set of symbolic integral constants. In C++ it
is declared as anenum.

10 A typedef is another name for a data type, specified in C++ using atypedef declaration.

11 A reference is another name for a given variable. In C++, the ‘address of’ (&) operator is
used immediately after the data type to indicate that the declared variable, constant, or
function argument is a reference.

12 A macro is a name for a text string which is defined in a#define statement. When this
name appears in source code, the compiler replaces it with the defined text string.

13 A constructor is a function which initializes an object.

14 A copy constructor is a constructor in which the first argument is a reference to an object
that has the same type as the object to be initialized.

8(88)

1992-02-25

Document Name

DESCRIPTION
Page

Date Rev.

C
Document No.

M 90 0118 Uen

15 A default constructor is a constructor which needs no arguments.

16 An overloaded function name is a name which is used for two or more functions or member

functions having different types1.

17 An overridden member function is a member function in a base class which is re-defined in
a derived class. Such a member function is declaredvirtual.

18 A pre-defined data type is a type which is defined in the language itself, such asint.

19 A user-defined data type is a type which is defined by a programmer in aclass, struct,
union, enum, ortypedef definition or as an instantiation of a class template.

20 A pure virtual function is a member function for which no definition is provided. Pure
virtual functions are specified inabstract base classes and must be defined (overridden) in
derived classes.

21 An accessor is a function which returns the value of a data member.

22 A forwarding function is a function which does nothing more than call another function.

23 A constant member function is a function which may not modify data members.

24 An exception is a run-time program anomaly that is detected in a function or member
function. Exception handling provides for the uniform management of exceptions. When an
exception is detected, it isthrown (using athrow expression) to the exception handler.

25 A catch clause is code that is executed when an exception of a given type is raised. The
definition of an exception handler begins with the keywordcatch.

26 An abstract base class is a class from which no objects may be created; it is only used as a
base class for the derivation of other classes. A class is abstract if it includes at least one
member function that is declared aspure virtual.

27 An iterator is an object which, when invoked, returns thenext object from a collection of
objects.

28 Thescope of a name refers to the context2 in which it is visible.

29 A compilation unit is the source code (after preprocessing) that is submitted to a compiler
for compilation (including syntax checking).

1. The type of a function is given by its return type and the type of its arguments.
2. Context, here, means the functions or blocks in which a given variable name can be used.

9(88)

1992-04-27

Document Name

DESCRIPTION
Page

Date Rev.

C
Document No.

M 90 0118 Uen

3 General Recommendations

Rec. 1 Optimize code only if youknow that you have a performance problem. Think twice
before you begin.

Rec. 2 If you use a C++ compiler that is based on Cfront, always compile with the +w flag set
to eliminate as many warnings as possible.

Various tests are said to have demonstrated that programmers generally spend a lot of time optimizing
code that is never executed. If your program is too slow, usegprof++ or an equivalent tool to
determine the exact nature of the problem before beginning to optimize.

Code that is accepted by a compiler is not always correct (in accordance with the definition of the C++
language). Two reasons for this are that changes are made in the language and that compilers may
contain bugs. In the short term, very little can be done about the latter. In order to reduce the amount
of code that must be rewritten for each new compiler release, it is common to let the compiler provide
warnings instead of reporting errors for such code until the next major release. Cfront provides the
+w flag to direct the compiler to give warnings for these types of language changes.

