
_ __ _______________________________________

11
_ __ _______________________________________

Operator Overloading

WhenI use a word it means just what
I choose it to mean– neither more nor less.

– Humpty Dumpty

Notation — operator functions— binary and unary operators— predefined meanings
for operators— user-defined meanings for operators— operators and namespaces— a
complex type— member and nonmember operators— mixed-mode arithmetic—
initialization — copying — conversions— literals — helper functions— conversion
operators— ambiguity resolution— friends— members and friends— large objects—
assignment and initialization— subscripting— function call— dereferencing— incre-
ment and decrement— a string class— advice— exercises.

11.1 Introduction [over.intro]

Every technical field– and most nontechnical fields– have developed conventional shorthand
notation to make convenient the presentation and discussion involving frequently-used concepts.
For example, because of long acquaintance

x x+y y* z z

is clearer to us than

m mu ul lt ti ip pl ly y y y b by y z z a an nd d a ad dd d t th he e r re es su ul lt t t to o x x

It is hard to overestimate the importance of concise notation for common operations.
Like most languages, C++ supports a set of operators for its built-in types. However, most con-

cepts for which operators are conventionally used are not built-in types in C++, so they must be rep-
resented as user-defined types. For example, if you need complex arithmetic, matrix algebra, logic
signals, or character strings in C++, you use classes to represent these notions. Defining operators

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

262 Operator Overloading Chapter 11

for such classes sometimes allows a programmer to provide a more conventional and convenient
notation for manipulating objects than could be achieved using only the basic functional notation.
For example,

c cl la as ss s c co om mp pl le ex x { / / very simplified complex
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(d do ou ub bl le e r r, d do ou ub bl le e i i) : r re e(r r) , i im m(i i) { }
c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x) ;
c co om mp pl le ex x o op pe er ra at to or r*(c co om mp pl le ex x) ;

};

defines a simple implementation of the concept of complex numbers. Ac co om mp pl le ex x is represented by
a pair of double-precision floating-point numbers manipulated by the operators+ and* . The pro-
grammer definesc co om mp pl le ex x: : o op pe er ra at to or r+() andc co om mp pl le ex x: : o op pe er ra at to or r*() to provide meanings for+
and * , respectively. For example, ifb b andc c are of typec co om mp pl le ex x, b b+c c meansb b. o op pe er ra at to or r+(c c) .
We can now approximate the conventional interpretation ofc co om mp pl le ex x expressions:

v vo oi id d f f()
{

c co om mp pl le ex x a a = c co om mp pl le ex x(1 1, 3 3. 1 1) ;
c co om mp pl le ex x b b = c co om mp pl le ex x(1 1. 2 2, 2 2) ;
c co om mp pl le ex x c c = b b;

a a = b b+c c;
b b = b b+c c* a a;
c c = a a* b b+c co om mp pl le ex x(1 1, 2 2) ;

}

The usual precedence rules hold, so the second statement meansb b=b b+(c c* a a) , notb b=(b b+c c)* a a.
Many of the most obvious uses of operator overloading are for concrete types (§10.3). How-

ever, the usefulness of user-defined operators is not restricted to concrete types. For example, the
design of general and abstract interfaces often leads to the use of operators such as-> , [] , and() .

11.2 Operator Functions[over.oper]

Functions defining meanings for the following operators (§6.2) can be declared:

+ - * / % ^ &
| ~ ! = < > +=
-= *= /= %= ^= &= |=
<< >> >>= <<= == != <=
>= && || ++ -- ->* ,
-> [] () n ne ew w n ne ew w[] d de el le et te e d de el le et te e[]

The following operators cannot be defined by a user:
:: (scope resolution; §4.9.4, §10.2.4),
. (member selection; §5.7), and
.* (member selection through pointer to function; §15.5).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.2 Operator Functions 263

They take a name, rather than a value, as their second operand and provide the primary means of
referring to members. Allowing them to be overloaded would lead to subtleties [Stroustrup,1994].

It is not possible to define new operator tokens, but you can use the function-call notation when
this set of operators is not adequate. For example, usep po ow w() , not ** . These restrictions may
seem Draconian, but more flexible rules can easily lead to ambiguities. For example, defining an
operator** to mean exponentiation may seem an obvious and easy task at first glance, but think
again. Should** bind to the left (as in Fortran) or to the right (as in Algol)? Should the expres-
siona a** p p be interpreted asa a*(* p p) or as(a a)**(p p) ?

The name of an operator function is the keywordo op pe er ra at to or r followed by the operator itself; for
example,o op pe er ra at to or r<<. An operator function is declared and can be called like any other function.
A use of the operator is only a shorthand for an explicit call of the operator function. For example:

v vo oi id d f f(c co om mp pl le ex x a a, c co om mp pl le ex x b b)
{

c co om mp pl le ex x c c = a a + b b; / / shorthand
c co om mp pl le ex x d d = a a. o op pe er ra at to or r+(b b) ; / / explicit call

}

Given the previous definition ofc co om mp pl le ex x, the two initializers are synonymous.

11.2.1 Binary and Unary Operators [over.binary]

A binary operator can be defined by either a nonstatic member function taking one argument or a
nonmember function taking two arguments. For any binary operator@, a aa a@b bb b can be interpreted as
eithera aa a. o op pe er ra at to or r@(b bb b) or o op pe er ra at to or r@(a aa a, b bb b) . If both are defined, overload resolution (§7.4)
determines which, if any, interpretation is used. For example:

c cl la as ss s X X {
p pu ub bl li ic c:

v vo oi id d o op pe er ra at to or r+(i in nt t) ;
X X(i in nt t) ;

};

v vo oi id d o op pe er ra at to or r+(X X, X X) ;
v vo oi id d o op pe er ra at to or r+(X X, d do ou ub bl le e) ;

v vo oi id d f f(X X a a)
{

a a+1 1; / / a.operator+(1)
1 1+a a; / / ::operator+(X(1),a)
a a+1 1. 0 0; / / ::operator+(a,1.0)

}

A unary operator, whether prefix or postfix, can be defined by either a nonstatic member function
taking no arguments or a nonmember function taking one argument. For any prefix unary operator
@, @a aa a can be interpreted as eithera aa a. o op pe er ra at to or r@() or o op pe er ra at to or r@(a aa a) . If both are defined, over-
load resolution (§7.4) determines which, if any, interpretation is used. For any postfix unary opera-
tor @, a aa a@can be interpreted as eithera aa a. o op pe er ra at to or r@(i in nt t) or o op pe er ra at to or r@(a aa a, i in nt t) . This is
explained further in §11.11. If both are defined, overload resolution (§7.4) determines which, if

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

264 Operator Overloading Chapter 11

any, interpretation is used. An operator can be declared only for the syntax defined for it in the
grammar (§A.5). For example, a user cannot define a unary%or a ternary+. Consider:

c cl la as ss s X X {
/ / members (with implicit ‘this’ pointer):

X X* o op pe er ra at to or r&() ; / / prefix unary & (address of)
X X o op pe er ra at to or r&(X X) ; / / binary & (and)
X X o op pe er ra at to or r++(i in nt t) ; / / postfix increment (see §11.11)
X X o op pe er ra at to or r&(X X, X X) ; / / error: ternary
X X o op pe er ra at to or r/() ; / / error: unary /

};

/ / nonmember functions :

X X o op pe er ra at to or r-(X X) ; / / prefix unary minus
X X o op pe er ra at to or r-(X X, X X) ; / / binary minus
X X o op pe er ra at to or r--(X X&, i in nt t) ; / / postfix decrement
X X o op pe er ra at to or r-() ; / / error: no operand
X X o op pe er ra at to or r-(X X, X X, X X) ; / / error: ternary
X X o op pe er ra at to or r%(X X) ; / / error: unary %

Operator[] is described in §11.8, operator() in §11.9, operator-> in §11.10, operators++ and
-- in §11.11, and the allocation and deallocation operators in §6.2.6.2, §10.4.11, and §15.6.

11.2.2 Predefined Meanings for Operators [over.predefined]

Only a few assumptions are made about the meaning of a user-defined operator. In particular,
o op pe er ra at to or r=, o op pe er ra at to or r[] , o op pe er ra at to or r() , ando op pe er ra at to or r-> must be nonstatic member functions; this
ensures that their first operands will be lvalues (§4.9.6).

The meanings of some built-in operators are defined to be equivalent to some combination of
other operators on the same arguments. For example, ifa a is an int,++a a meansa a+=1 1, which in turn
meansa a=a a+1 1. Such relations do not hold for user-defined operators unless the user happens to
define them that way. For example, a compiler will not generate a definition ofZ Z: : o op pe er ra at to or r+=()
from the definitions ofZ Z: : o op pe er ra at to or r+() andZ Z: : o op pe er ra at to or r=() .

Because of historical accident, the operators= (assignment),& (address-of), and, (sequencing;
§6.2.2) have predefined meanings when applied to class objects. These predefined meanings can
be made inaccessible to general users by making them private:

c cl la as ss s X X {
p pr ri iv va at te e:

v vo oi id d o op pe er ra at to or r=(c co on ns st t X X&) ;
v vo oi id d o op pe er ra at to or r&() ;
v vo oi id d o op pe er ra at to or r,(c co on ns st t X X&) ;
/ / ...

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.2.2 Predefined Meanings for Operators 265

v vo oi id d f f(X X a a, X X b b)
{

a a = b b; / / error: operator= private
&a a; / / error: operator& private
a a, b b; / / error: operator, private

}

Alternatively, they can be given new meanings by suitable definitions.

11.2.3 Operators and User-Defined Types [over.user]

An operator function must either be a member or take at least one argument of a user-defined type
(functions redefining then ne ew w andd de el le et te e operators need not). This rule ensures that a user cannot
change the meaning of an expression unless the expression contains an object of a user-defined
type. In particular, it is not possible to define an operator function that operates exclusively on
pointers. This ensures that C++ is extensible but not mutable (with the exception of operators=, &,
and, for class objects).

An operator function intended to accept a basic type as its first operand cannot be a member
function. For example, consider adding a complex variablea aa a to the integer2 2: a aa a+2 2 can, with a
suitably declared member function, be interpreted asa aa a. o op pe er ra at to or r+(2 2) , but 2 2+a aa a cannot because
there is no classi in nt t for which to define+ to mean2 2. o op pe er ra at to or r+(a aa a) . Even if there were, two dif-
ferent member functions would be needed to cope with2 2+a aa a anda aa a+2 2. Because the compiler does
not know the meaning of a user-defined+, it cannot assume that it is commutative and so interpret
2 2+a aa a asa aa a+2 2. This example is trivially handled using nonmember functions (§11.3.2, §11.5).

Enumerations are user-defined types so that we can define operators for them. For example:

e en nu um m D Da ay y { s su un n, m mo on n, t tu ue e, w we ed d, t th hu u, f fr ri i, s sa at t };

D Da ay y& o op pe er ra at to or r++(D Da ay y& d d)
{

r re et tu ur rn n d d = (s sa at t==d d) ? s su un n : D Da ay y(d d+1 1) ;
}

Every expression is checked for ambiguities. Where a user-defined operator provides a possible
interpretation, the expression is checked according to the rules in §7.4.

11.2.4 Operators in Namespaces [over.namespace]

An operator is either a member of a class or defined in some namespace (possibly the global name-
space). Consider this simplified version of string I/O from the standard library:

n na am me es sp pa ac ce e s st td d { / / simplified std

c cl la as ss s o os st tr re ea am m {
/ / ...
o os st tr re ea am m& o op pe er ra at to or r<<(c co on ns st t c ch ha ar r*) ;

};

e ex xt te er rn n o os st tr re ea am m c co ou ut t;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

266 Operator Overloading Chapter 11

c cl la as ss s s st tr ri in ng g {
/ / ...

};

o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m&, c co on ns st t s st tr ri in ng g&) ;
}

i in nt t m ma ai in n()
{

c ch ha ar r* p p = " H He el ll lo o";
s st td d: : s st tr ri in ng g s s = " w wo or rl ld d";
s st td d: : c co ou ut t << p p << ", " << s s << "! \ \n n";

}

Naturally, this writes outH He el ll lo o, w wo or rl ld d! But why? Note that I didn’t make everything froms st td d
accessible by writing:

u us si in ng g n na am me es sp pa ac ce e s st td d;

Instead, I used thes st td d: : prefix for s st tr ri in ng g andc co ou ut t. In other words, I was at my best behavior and
didn’t pollute the global namespace or in other ways introduce unnecessary dependencies.

The output operator for C-style strings (c ch ha ar r*) is a member ofs st td d: : o os st tr re ea am m, so by definition

s st td d: : c co ou ut t << p p

means

s st td d: : c co ou ut t. o op pe er ra at to or r<<(p p)

However,s st td d: : o os st tr re ea am m doesn’t have a member function to output as st td d: : s st tr ri in ng g, so

s st td d: : c co ou ut t << s s

means

o op pe er ra at to or r<<(s st td d: : c co ou ut t, s s)

Operators defined in namespaces can be found based on their operand types just like functions can
be found based on their argument types (§8.2.6). In particular,c co ou ut t is in namespaces st td d, sos st td d is
considered when looking for a suitable definition of<<. In that way, the compiler finds and uses:

s st td d: : o op pe er ra at to or r<<(s st td d: : o os st tr re ea am m&, c co on ns st t s st td d: : s st tr ri in ng g&)

For a binary operator@, x x@y y wherex x is of typeX X andy y is of typeY Y is resolved like this:
[1] If X X is a class, determine whether classX X or a base ofX X defineso op pe er ra at to or r@as a member; if

so, that is the@to try to use.
[2] Otherwise,

– look for declarations of@in the context surroundingx x@y y; and
– if X X is defined in namespaceN N, look for declarations of@in N N; and
– if Y Y is defined in namespaceM M, look for declarations of@in M M.

If declarations ofo op pe er ra at to or r@are found in the surrounding context, inN N, or in M M, we try to use
those operators.

In either case, declarations for severalo op pe er ra at to or r@s may be found and overload resolution rules

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.2.4 Operators in Namespaces 267

(§7.4) are used to find the best match, if any. This lookup mechanism is applied only if the opera-
tor has at least one operand of a user-defined type. Therefore, user-defined conversions (§11.3.2,
§11.4) will be considered. Note that at ty yp pe ed de ef f name is just a synonym and not a user-defined type
(§4.9.7).

11.3 A Complex Number Type[over.complex]

The implementation of complex numbers presented in the introduction is too restrictive to please
anyone. For example, from looking at a math textbook we would expect this to work:

v vo oi id d f f()
{

c co om mp pl le ex x a a = c co om mp pl le ex x(1 1, 2 2) ;
c co om mp pl le ex x b b = 3 3;
c co om mp pl le ex x c c = a a+2 2. 3 3;
c co om mp pl le ex x d d = 2 2+b b;
c co om mp pl le ex x e e = - b b- c c;
b b = c c* 2 2* c c;

}

In addition, we would expect to be provided with a few additional operators, such as== for com-
parison and<< for output, and a suitable set of mathematical functions, such ass si in n() ands sq qr rt t() .

Classc co om mp pl le ex x is a concrete type, so its design follows the guidelines from §10.3. In addition,
users of complex arithmetic rely so heavily on operators that the definition ofc co om mp pl le ex x brings into
play most of the basic rules for operator overloading.

11.3.1 Member and Nonmember Operators [over.member]

I prefer to minimize the number of functions that directly manipulate the representation of an
object. This can be achieved by defining only operators that inherently modify the value of their
first argument, such as+=, in the class itself. Operators that simply produce a new value based on
the values of its arguments, such as+, are then defined outside the class and use the essential opera-
tors in their implementation:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x& o op pe er ra at to or r+=(c co om mp pl le ex x a a) ; / / needs access to representation
/ / ...

};

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x a a, c co om mp pl le ex x b b)
{

c co om mp pl le ex x r r = a a;
r re et tu ur rn n r r += b b; / / access representation through +=

}

Given these declarations, we can write:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

268 Operator Overloading Chapter 11

v vo oi id d f f(c co om mp pl le ex x x x, c co om mp pl le ex x y y, c co om mp pl le ex x z z)
{

c co om mp pl le ex x r r1 1 = x x+y y+z z; / / r1 = operator+(x,operator+(y,z))
c co om mp pl le ex x r r2 2 = x x; / / r2 = x
r r2 2 += y y; / / r2.operator+=(y)
r r2 2 += z z; / / r2.operator+=(z)

}

Except for possible efficiency differences, the computations ofr r1 1 andr r2 2 are equivalent.
Composite assignment operators such as+= and *= tend to be simpler to define than their

‘‘simple’’ counterparts+ and* . This surprises most people at first, but it follows from the fact that
three objects are involved in a+ operation (the two operands and the result), whereas only two
objects are involved in a+= operation. In the latter case, run-time efficiency is improved by elimi-
nating the need for temporary variables. For example:

i in nl li in ne e c co om mp pl le ex x& c co om mp pl le ex x: : o op pe er ra at to or r+=(c co om mp pl le ex x a a)
{

r re e += a a. r re e;
i im m += a a. i im m;
r re et tu ur rn n * t th hi is s;

}

does not require a temporary variable to hold the result of the addition and is simple for a compiler
to inline perfectly.

A good optimizer will generate close to optimal code for uses of the plain+ operator also.
However, we don’t always have a good optimizer and not all types are as simple asc co om mp pl le ex x, so
§11.5 discusses ways of defining operators with direct access to the representation of classes.

11.3.2 Mixed-Mode Arithmetic [over.mixed]

To cope with

c co om mp pl le ex x d d = 2 2+b b;

we need to define operator+ to accept operands of different types. In Fortran terminology, we
needmixed-mode arithmetic. We can achieve that simply by adding appropriate versions of the
operators:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x& o op pe er ra at to or r+=(c co om mp pl le ex x a a) {

r re e += a a. r re e;
i im m += a a. i im m;
r re et tu ur rn n * t th hi is s;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.3.2 Mixed-Mode Arithmetic 269

c co om mp pl le ex x& o op pe er ra at to or r+=(d do ou ub bl le e a a) {
r re e += a a;
r re et tu ur rn n * t th hi is s;

}

/ / ...
};

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x a a, c co om mp pl le ex x b b)
{

c co om mp pl le ex x r r = a a;
r re et tu ur rn n r r += b b; / / calls complex::operator+=(complex)

}

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x a a, d do ou ub bl le e b b)
{

c co om mp pl le ex x r r = a a;
r re et tu ur rn n r r += b b; / / calls complex::operator+=(double)

}

c co om mp pl le ex x o op pe er ra at to or r+(d do ou ub bl le e a a, c co om mp pl le ex x b b)
{

c co om mp pl le ex x r r = b b;
r re et tu ur rn n r r += a a; / / calls complex::operator+=(double)

}

Adding a d do ou ub bl le e to a complex number is a simpler operation than adding ac co om mp pl le ex x. This is
reflected in these definitions. The operations takingd do ou ub bl le e operands do not touch the imaginary
part of a complex number and thus will be more efficient.

Given these declarations, we can write:

v vo oi id d f f(c co om mp pl le ex x x x, c co om mp pl le ex x y y)
{

c co om mp pl le ex x r r1 1 = x x+y y; / / calls operator+(complex,complex)
c co om mp pl le ex x r r2 2 = x x+2 2; / / calls operator+(complex,double)
c co om mp pl le ex x r r3 3 = 2 2+x x; / / calls operator+(double,complex)

}

11.3.3 Initialization [over.ctor]

To cope with assignments and initialization ofc co om mp pl le ex x variables with scalars, we need a conver-
sion of a scalar (integer or floating-point number) to ac co om mp pl le ex x. For example:

c co om mp pl le ex x b b = 3 3; / / should mean b.re=3, b.im=0

A constructor taking a single argument specifies a conversion from its argument type to the
constructor’s type. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

270 Operator Overloading Chapter 11

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(d do ou ub bl le e r r) : r re e(r r) , i im m(0 0) { }
/ / ...

};

The constructor specifies the traditional embedding of the real line in the complex plane.
A constructor is a prescription for creating a value of a given type. The constructor is used

when a value of a type is expected and when such a value can be created by a constructor from the
value supplied as an initializer or assigned value. Thus, a constructor requiring a single argument
need not be called explicitly. For example,

c co om mp pl le ex x b b = 3 3;

means

c co om mp pl le ex x b b = c co om mp pl le ex x(3 3) ;

A user-defined conversion is implicitly applied only if it is unique (§7.4). See §11.7.1 for a way of
specifying constructors that can only be explicitly invoked.

Naturally, we still need the constructor that takes two doubles, and a default constructor initial-
izing ac co om mp pl le ex x to (0 0, 0 0) is also useful:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x() : r re e(0 0) , i im m(0 0) { }
c co om mp pl le ex x(d do ou ub bl le e r r) : r re e(r r) , i im m(0 0) { }
c co om mp pl le ex x(d do ou ub bl le e r r, d do ou ub bl le e i i) : r re e(r r) , i im m(i i) { }
/ / ...

};

Using default arguments, we can abbreviate:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(d do ou ub bl le e r r =0 0, d do ou ub bl le e i i =0 0) : r re e(r r) , i im m(i i) { }
/ / ...

};

When a constructor is explicitly declared for a type, it is not possible to use an initializer list (§5.7,
§4.9.5) as the initializer. For example:

c co om mp pl le ex x z z1 1 = { 3 3 }; / / error: complex has a constructor
c co om mp pl le ex x z z2 2 = { 3 3, 4 4 }; / / error: complex has a constructor

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.3.4 Copying 271

11.3.4 Copying [over.copy]

In addition to the explicitly declared constructors,c co om mp pl le ex x by default gets a copy constructor
defined (§10.2.5). A default copy constructor simply copies all members. To be explicit, we could
equivalently have written:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(c co on ns st t c co om mp pl le ex x& c c) : r re e(c c. r re e) , i im m(c c. i im m) { }
/ / ...

};

However, for types where the default copy constructor has the right semantics, I prefer to rely on
that default. It is less verbose than anything I can write, and people should understand the default.
Also, compilers know about the default and its possible optimization opportunities. Furthermore,
writing out the memberwise copy by hand is tedious and error-prone for classes with many data
members (§10.4.6.3).

I use a reference argument for the copy constructor because I must. The copy constructor
defines what copying means– including what copying an argument means– so writing

c co om mp pl le ex x: : c co om mp pl le ex x(c co om mp pl le ex x c c) : r re e(c c. r re e) , i im m(c c. i im m) { } / / error

is an error because any call would have involved an infinite recursion.
For other functions takingc co om mp pl le ex x arguments, I use value arguments rather than reference

arguments. Here, the designer has a choice. From a user’s point of view, there is little difference
between a function that takes ac co om mp pl le ex x argument and one that takes ac co on ns st t c co om mp pl le ex x& argument.
This issue is discussed further in §11.6.

In principle, copy constructors are used in simple initializations such as

c co om mp pl le ex x x x = 2 2; / / create complex(2); then initialize x with it
c co om mp pl le ex x y y = c co om mp pl le ex x(2 2, 0 0) ; / / create complex(2,0); then initialize y with it

However, the calls to the copy constructor are trivially optimized away. We could equivalently
have written:

c co om mp pl le ex x x x(2 2) ; / / initialize x by 2
c co om mp pl le ex x y y(2 2, 0 0) ; / / initialize x by (2,0)

For arithmetic types, such asc co om mp pl le ex x, I like the look of the version using= better. It is possible to
restrict the set of values accepted by the= style of initialization compared to the() style by making
the copy constructor private (§11.2.2) or by declaring a constructore ex xp pl li ic ci it t (§11.7.1).

Similar to initialization, assignment of two objects of the same class is by default defined as
memberwise assignment (§10.2.5). We could explicitly definec co om mp pl le ex x: : o op pe er ra at to or r= to do that.
However, for a simple type likec co om mp pl le ex x there is no reason to do so. The default is just right.

The copy constructor– whether user-defined or compiler-generated– is used not only for the
initialization of variables, but also for argument passing, value return, and exception handling (see
§11.7). The semantics of these operations is defined to be the semantics of initialization (§7.1,
§7.3, §14.2.1).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

272 Operator Overloading Chapter 11

11.3.5 Constructors and Conversions [over.conv]

We defined three versions of each of the four standard arithmetic operators:

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x, c co om mp pl le ex x) ;
c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x, d do ou ub bl le e) ;
c co om mp pl le ex x o op pe er ra at to or r+(d do ou ub bl le e, c co om mp pl le ex x) ;
/ / ...

This can get tedious, and what is tedious easily becomes error-prone. What if we had three alterna-
tives for the type of each argument for each function? We would need three versions of each
single-argument function, nine versions of each two-argument function, twenty-seven versions of
each three-argument function, etc. Often these variants are very similar. In fact, almost all variants
involve a simple conversion of arguments to a common type followed by a standard algorithm.

The alternative to providing different versions of a function for each combination of arguments
is to rely on conversions. For example, ourc co om mp pl le ex x class provides a constructor that converts a
d do ou ub bl le e to a c co om mp pl le ex x. Consequently, we could simply declare only one version of the equality
operator forc co om mp pl le ex x:

b bo oo ol l o op pe er ra at to or r==(c co om mp pl le ex x, c co om mp pl le ex x) ;

v vo oi id d f f(c co om mp pl le ex x x x, c co om mp pl le ex x y y)
{

x x==y y; / / means operator==(x,y)
x x==3 3; / / means operator==(x,complex(3))
3 3==y y; / / means operator==(complex(3),y)

}

There can be reasons for preferring to define separate functions. For example, in some cases the
conversion can impose overheads, and in other cases, a simpler algorithm can be used for specific
argument types. Where such issues are not significant, relying on conversions and providing only
the most general variant of a function– plus possibly a few critical variants– contains the combi-
natorial explosion of variants that can arise from mixed-mode arithmetic.

Where several variants of a function or an operator exist, the compiler must pick ‘‘the right’’
variant based on the argument types and the available (standard and user-defined) conversions.
Unless a best match exists, an expression is ambiguous and is an error (see §7.4).

An object constructed by explicit or implicit use of a constructor is automatic and will be
destroyed at the first opportunity (see §10.4.10).

No implicit user-defined conversions are applied to the left-hand side of a. (or a->). This is
the case even when the. is implicit. For example:

v vo oi id d g g(c co om mp pl le ex x z z)
{

3 3+z z; / / ok: complex(3)+z
3 3. o op pe er ra at to or r+=(z z) ; / / error: 3 is not a class object
3 3+=z z; / / error: 3 is not a class object

}

Thus, you can express the notion that an operator requires an lvalue as their left-hand operand by
making that operator a member.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.3.6 Literals 273

11.3.6 Literals [over.literals]

It is not possible to define literals of a class type in the sense that1 1. 2 2 and1 12 2e e3 3 are literals of type
d do ou ub bl le e. However, literals of the basic types can often be used instead if class member functions are
used to provide an interpretation for them. Constructors taking a single argument provide a general
mechanism for this. When constructors are simple and inline, it is quite reasonable to think of con-
structor invocations with literal arguments as literals. For example, I think ofc co om mp pl le ex x(3 3) as a lit-
eral of typec co om mp pl le ex x, even though technically it isn’t.

11.3.7 Additional Member Functions [over.additional]

So far, we have provided classc co om mp pl le ex x with constructors and arithmetic operators only. That is
not quite sufficient for real use. In particular, we often need to be able to examine the value of the
real and imaginary parts:

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
d do ou ub bl le e r re ea al l() c co on ns st t { r re et tu ur rn n r re e; }
d do ou ub bl le e i im ma ag g() c co on ns st t { r re et tu ur rn n i im m; }
/ / ...

};

Unlike the other members ofc co om mp pl le ex x, r re ea al l() andi im ma ag g() do not modify the value of ac co om mp pl le ex x,
so they can be declaredc co on ns st t.

Given r re ea al l() and i im ma ag g() , we can define all kinds of useful operations without granting them
direct access to the representation ofc co om mp pl le ex x. For example:

i in nl li in ne e b bo oo ol l o op pe er ra at to or r==(c co om mp pl le ex x a a, c co om mp pl le ex x b b)
{

r re et tu ur rn n a a. r re ea al l()== b b. r re ea al l() && a a. i im ma ag g()== b b. i im ma ag g() ;
}

Note that we need only to be able to read the real and imaginary parts; writing them is less often
needed. If we must do a ‘‘partial update,’’ we can:

v vo oi id d f f(c co om mp pl le ex x& z z, d do ou ub bl le e d d)
{

/ / ...
z z = c co om mp pl le ex x(z z. r re ea al l() , d d) ; / / assign d to z.im

}

A good optimizer generates a single assignment for that statement.

11.3.8 Helper Functions [over.helpers]

If we put all the bits and pieces together, thec co om mp pl le ex x class becomes:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

274 Operator Overloading Chapter 11

c cl la as ss s c co om mp pl le ex x {
d do ou ub bl le e r re e, i im m;

p pu ub bl li ic c:
c co om mp pl le ex x(d do ou ub bl le e r r =0 0, d do ou ub bl le e i i =0 0) : r re e(r r) , i im m(i i) { }

d do ou ub bl le e r re ea al l() c co on ns st t { r re et tu ur rn n r re e; }
d do ou ub bl le e i im ma ag g() c co on ns st t { r re et tu ur rn n i im m; }

c co om mp pl le ex x& o op pe er ra at to or r+=(c co om mp pl le ex x) ;
c co om mp pl le ex x& o op pe er ra at to or r+=(d do ou ub bl le e) ;
/ / – =, *=, and /=

};

In addition, we must provide a number of helper functions:

c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x, c co om mp pl le ex x) ;
c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x, d do ou ub bl le e) ;
c co om mp pl le ex x o op pe er ra at to or r+(d do ou ub bl le e, c co om mp pl le ex x) ;

/ / – , *, and /

c co om mp pl le ex x o op pe er ra at to or r-(c co om mp pl le ex x) ; / / unary minus
c co om mp pl le ex x o op pe er ra at to or r+(c co om mp pl le ex x) ; / / unary plus

b bo oo ol l o op pe er ra at to or r==(c co om mp pl le ex x, c co om mp pl le ex x) ;
b bo oo ol l o op pe er ra at to or r!=(c co om mp pl le ex x, c co om mp pl le ex x) ;

i is st tr re ea am m& o op pe er ra at to or r>>(i is st tr re ea am m&, c co om mp pl le ex x&) ; / / input
o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m&, c co om mp pl le ex x) ; / / output

Note that the membersr re ea al l() andi im ma ag g() are essential for defining the comparisons. The defini-
tion of most of the following helper functions similarly relies onr re ea al l() andi im ma ag g() .

We might provide functions to allow users to think in terms of polar coordinates:

c co om mp pl le ex x p po ol la ar r(d do ou ub bl le e r rh ho o, d do ou ub bl le e t th he et ta a) ;
c co om mp pl le ex x c co on nj j(c co om mp pl le ex x) ;

d do ou ub bl le e a ab bs s(c co om mp pl le ex x) ;
d do ou ub bl le e a ar rg g(c co om mp pl le ex x) ;
d do ou ub bl le e n no or rm m(c co om mp pl le ex x) ;

d do ou ub bl le e r re ea al l(c co om mp pl le ex x) ; / / for notational convenience
d do ou ub bl le e i im ma ag g(c co om mp pl le ex x) ; / / for notational convenience

Finally, we must provide an appropriate set of standard mathematical functions:

c co om mp pl le ex x a ac co os s(c co om mp pl le ex x) ;
c co om mp pl le ex x a as si in n(c co om mp pl le ex x) ;
c co om mp pl le ex x a at ta an n(c co om mp pl le ex x) ;
/ / ...

From a user’s point of view, the complex type presented here is almost identical to the
c co om mp pl le ex x<d do ou ub bl le e> found in<c co om mp pl le ex x> in the standard library (§22.5).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.4 Conversion Operators 275

11.4 Conversion Operators[over.conversion]

Using a constructor to specify type conversion is convenient but has implications that can be unde-
sirable. A constructor cannot specify

[1] an implicit conversion from a user-defined type to a basic type (because the basic types are
not classes), or

[2] a conversion from a new class to a previously defined class (without modifying the decla-
ration for the old class).

These problems can be handled by defining aconversion operatorfor the source type. A member
functionX X: : o op pe er ra at to or r T T() , whereT T is a type name, defines a conversion fromX X to T T. For exam-
ple, one could define a 6-bit non-negative integer,T Ti in ny y, that can mix freely with integers in arith-
metic operations:

c cl la as ss s T Ti in ny y {
c ch ha ar r v v;
v vo oi id d a as ss si ig gn n(i in nt t i i) { i if f (i i&~0 07 77 7) t th hr ro ow w B Ba ad d_ _r ra an ng ge e() ; v v=i i; }

p pu ub bl li ic c:
c cl la as ss s B Ba ad d_ _r ra an ng ge e { };

T Ti in ny y(i in nt t i i) { a as ss si ig gn n(i i) ; }
T Ti in ny y& o op pe er ra at to or r=(i in nt t i i) { a as ss si ig gn n(i i) ; r re et tu ur rn n * t th hi is s; }

o op pe er ra at to or r i in nt t() c co on ns st t { r re et tu ur rn n v v; } / / conversion to int function
};

The range is checked whenever aT Ti in ny y is initialized by ani in nt t and whenever ani in nt t is assigned to
one. No range check is needed when we copy aT Ti in ny y, so the default copy constructor and assign-
ment are just right.

To enable the usual integer operations onT Ti in ny y variables, we define the implicit conversion from
T Ti in ny y to i in nt t, T Ti in ny y: : o op pe er ra at to or r i in nt t() . Note that the type being converted to is part of the name of the
operator and cannot be repeated as the return value of the conversion function:

T Ti in ny y: : o op pe er ra at to or r i in nt t() c co on ns st t { r re et tu ur rn n v v; } / / right
i in nt t T Ti in ny y: : o op pe er ra at to or r i in nt t() c co on ns st t { r re et tu ur rn n v v; } / / error

In this respect also, a conversion operator resembles a constructor.
Whenever aT Ti in ny y appears where ani in nt t is needed, the appropriatei in nt t is used. For example:

i in nt t m ma ai in n()
{

T Ti in ny y c c1 1 = 2 2;
T Ti in ny y c c2 2 = 6 62 2;
T Ti in ny y c c3 3 = c c2 2- c c1 1; / / c3 = 60
T Ti in ny y c c4 4 = c c3 3; / / no range check (not necessary)
i in nt t i i = c c1 1+c c2 2; / / i = 64

c c1 1 = c c1 1+c c2 2; / / range error: c1 can’t be 64
i i = c c3 3- 6 64 4; / / i = – 4
c c2 2 = c c3 3- 6 64 4; / / range error: c2 can’t be– 4
c c3 3 = c c4 4; / / no range check (not necessary)

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

276 Operator Overloading Chapter 11

Conversion functions appear to be particularly useful for handling data structures when reading
(implemented by a conversion operator) is trivial, while assignment and initialization are distinctly
less trivial.

The i is st tr re ea am m ando os st tr re ea am m types rely on a conversion function to enable statements such as

w wh hi il le e (c ci in n>>x x) c co ou ut t<<x x;

The input operationc ci in n>>x x returns ani is st tr re ea am m&. That value is implicitly converted to a value indi-
cating the state ofc ci in n. This value can then be tested by thew wh hi il le e (see §21.3.3). However, it is typ-
ically not a good idea to define an implicit conversion from one type to another in such a way that
information is lost in the conversion.

In general, it is wise to be sparing in the introduction of conversion operators. When used in
excess, they lead to ambiguities. Such ambiguities are caught by the compiler, but they can be a
nuisance to resolve. Probably the best idea is initially to do conversions by named functions, such
asX X: : m ma ak ke e_ _i in nt t() . If such a function becomes popular enough to make explicit use inelegant, it
can be replaced by a conversion operatorX X: : o op pe er ra at to or r i in nt t() .

If both user-defined conversions and user-defined operators are defined, it is possible to get
ambiguities between the user-defined operators and the built-in operators. For example:

i in nt t o op pe er ra at to or r+(T Ti in ny y, T Ti in ny y) ;

v vo oi id d f f(T Ti in ny y t t, i in nt t i i)
{

t t+i i; / / error, ambiguous: operator+(t,Tiny(i)) or int(t)+i ?
}

It is therefore often best to rely on user-defined conversions or user-defined operators for a given
type, but not both.

11.4.1 Ambiguities [over.ambig]

An assignment of a value of typeV V to an object of classX X is legal if there is an assignment operator
X X: : o op pe er ra at to or r=(Z Z) so thatV V is Z Z or there is a unique conversion ofV V to Z Z. Initialization is treated
equivalently.

In some cases, a value of the desired type can be constructed by repeated use of constructors or
conversion operators. This must be handled by explicit conversions; only one level of user-defined
implicit conversion is legal. In some cases, a value of the desired type can be constructed in more
than one way; such cases are illegal. For example:

c cl la as ss s X X { /* ... */ X X(i in nt t) ; X X(c ch ha ar r*) ; };
c cl la as ss s Y Y { /* ... */ Y Y(i in nt t) ; };
c cl la as ss s Z Z { /* ... */ Z Z(X X) ; };

X X f f(X X) ;
Y Y f f(Y Y) ;

Z Z g g(Z Z) ;

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.4.1 Ambiguities 277

v vo oi id d k k1 1()
{

f f(1 1) ; / / error: ambiguous f(X(1)) or f(Y(1))?
f f(X X(1 1)) ; / / ok
f f(Y Y(1 1)) ; / / ok

g g(" M Ma ac ck k") ; / / error: two user-defined conversions needed; g(Z(X("Mack"))) not tried
g g(X X(" D Do oc c")) ; / / ok: g(Z(X("Doc")))
g g(Z Z(" S Su uz zy y")) ; / / ok: g(Z(X("Suzy")))

}

User-defined conversions are considered only if they are necessary to resolve a call. For example:

c cl la as ss s X XX X { /* ... */ X XX X(i in nt t) ; };

v vo oi id d h h(d do ou ub bl le e) ;
v vo oi id d h h(X XX X) ;

v vo oi id d k k2 2()
{

h h(1 1) ; / / h(double(1)) or h(XX(1))? h(double(1))!
}

The call h h(1 1) meansh h(d do ou ub bl le e(1 1)) because that alternative uses only a standard conversion
rather than a user-defined conversion (§7.4).

The rules for conversion are neither the simplest to implement, the simplest to document, nor
the most general that could be devised. They are, however, considerably safer, and the resulting
resolutions are less surprising. It is far easier to manually resolve an ambiguity than to find an error
caused by an unsuspected conversion.

The insistence on strict bottom-up analysis implies that the return type is not used in overload-
ing resolution. For example:

c cl la as ss s Q Qu ua ad d {
p pu ub bl li ic c:

Q Qu ua ad d(d do ou ub bl le e) ;
/ / ...

};

Q Qu ua ad d o op pe er ra at to or r+(Q Qu ua ad d, Q Qu ua ad d) ;

v vo oi id d f f(d do ou ub bl le e a a1 1, d do ou ub bl le e a a2 2)
{

Q Qu ua ad d r r1 1 = a a1 1+a a2 2; / / double-precision add
Q Qu ua ad d r r2 2 = Q Qu ua ad d(a a1 1)+ a a2 2; / / force quad arithmetic

}

The reason for this design choice is partly that strict bottom-up analysis is more comprehensible
and partly that it is not considered the compiler’s job to decide which precision the programmer
might want for the addition.

Once the types of both sides of an initialization or assignment have been determined, both types
are used to resolve the initialization or assignment. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

278 Operator Overloading Chapter 11

c cl la as ss s R Re ea al l {
p pu ub bl li ic c:

o op pe er ra at to or r d do ou ub bl le e() ;
o op pe er ra at to or r i in nt t() ;
/ / ...

};

v vo oi id d g g(R Re ea al l a a)
{

d do ou ub bl le e d d = a a; / / d = a.double();
i in nt t i i = a a; / / i = a.int();

d d = a a; / / d = a.double();
i i = a a; / / i = a.int();

}

In these cases, the type analysis is still bottom-up, with only a single operator and its argument
types considered at any one time.

11.5 Friends[over.friends]

An ordinary member function declaration specifies three logically distinct things:
[1] The function can access the private part of the class declaration, and
[2] the function is in the scope of the class, and
[3] the function must be invoked on an object (has at th hi is s pointer).

By declaring a member functions st ta at ti ic c (§10.2.4), we can give it the first two properties only. By
declaring a function af fr ri ie en nd d, we can give it the first property only.

For example, we could define an operator that multiplies aM Ma at tr ri ix x by a V Ve ec ct to or r. Naturally,
V Ve ec ct to or r and M Ma at tr ri ix x each hide their representation and provide a complete set of operations for
manipulating objects of their type. However, our multiplication routine cannot be a member of
both. Also, we don’t really want to provide low-level access functions to allow every user to both
read and write the complete representation of bothM Ma at tr ri ix x andV Ve ec ct to or r. To avoid this, we declare
theo op pe er ra at to or r* a friend of both:

c cl la as ss s M Ma at tr ri ix x;

c cl la as ss s V Ve ec ct to or r {
f fl lo oa at t v v[4 4] ;
/ / ...
f fr ri ie en nd d V Ve ec ct to or r o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x&, c co on ns st t V Ve ec ct to or r&) ;

};

c cl la as ss s M Ma at tr ri ix x {
V Ve ec ct to or r v v[4 4] ;
/ / ...
f fr ri ie en nd d V Ve ec ct to or r o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x&, c co on ns st t V Ve ec ct to or r&) ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.5 Friends 279

V Ve ec ct to or r o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x& m m, c co on ns st t V Ve ec ct to or r& v v)
{

V Ve ec ct to or r r r;
f fo or r (i in nt t i i = 0 0; i i<4 4; i i++) { / / r[i] = m[i] * v;

r r. v v[i i] = 0 0;
f fo or r (i in nt t j j = 0 0; j j<4 4; j j++) r r. v v[i i] += m m. v v[i i]. v v[j j] * v v. v v[j j] ;

}
r re et tu ur rn n r r;

}

A f fr ri ie en nd d declaration can be placed in either the private or the public part of a class declaration; it
does not matter where. Like a member function, a friend function is explicitly declared in the
declaration of the class of which it is a friend. It is therefore as much a part of that interface as is a
member function.

A member function of one class can be the friend of another. For example:

c cl la as ss s L Li is st t_ _i it te er ra at to or r {
/ / ...
i in nt t* n ne ex xt t() ;

};

c cl la as ss s L Li is st t {
f fr ri ie en nd d i in nt t* L Li is st t_ _i it te er ra at to or r: : n ne ex xt t() ;
/ / ...

};

It is not unusual for all functions of one class to be friends of another. There is a shorthand for this:

c cl la as ss s L Li is st t {
f fr ri ie en nd d c cl la as ss s L Li is st t_ _i it te er ra at to or r;
/ / ...

};

This friend declaration makes all ofL Li is st t_ _i it te er ra at to or r’s member functions friends ofL Li is st t.
Clearly,f fr ri ie en nd d classes should be used only to express closely connected concepts. Often, there

is a choice between making a class a member (a nested class) or a friend (§24.4).

11.5.1 Finding Friends [over.lookup]

Like a member declaration, af fr ri ie en nd d declaration does not introduce a name into an enclosing scope.
For example:

c cl la as ss s M Ma at tr ri ix x {
f fr ri ie en nd d c cl la as ss s X Xf fo or rm m;
f fr ri ie en nd d M Ma at tr ri ix x i in nv ve er rt t(c co on ns st t M Ma at tr ri ix x&) ;
/ / ...

};

X Xf fo or rm m x x; / / error: no Xform in scope
M Ma at tr ri ix x (* p p)(c co on ns st t M Ma at tr ri ix x&) = &i in nv ve er rt t; / / error: no invert() in scope

For large programs and large classes, it is nice that a class doesn’t ‘‘quietly’’ add names to its

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

280 Operator Overloading Chapter 11

enclosing scope. For a template class that can be instantiated in many different contexts (Chapter
13), this is very important.

A friend class must be previously declared in an enclosing scope or defined in the non-class
scope immediately enclosing the class that is declaring it a friend. For example:

c cl la as ss s X X { /* ... */ }; / / Y’s friend

n na am me es sp pa ac ce e N N {
c cl la as ss s Y Y {

f fr ri ie en nd d c cl la as ss s X X;
f fr ri ie en nd d c cl la as ss s Z Z;
f fr ri ie en nd d c cl la as ss s A AE E;

};
c cl la as ss s Z Z { /* ... */ }; / / Y’s friend

}

c cl la as ss s A AE E { /* ... */ }; / / not a friend of Y

A friend function can be explicitly declared just like friend classes, or it can be found through its
argument types (§8.2.6) as if it was declared in the non-class scope immediately enclosing its class.
For example:

v vo oi id d f f(M Ma at tr ri ix x& m m)
{

i in nv ve er rt t(m m) ; / / Matrix’s friend invert()
}

It follows that a friend function should either be explicitly declared in an enclosing scope or take an
argument of its class. If not, the friend cannot be called. For example:

/ / no f() here

v vo oi id d g g() ; / / X’s friend

c cl la as ss s X X {
f fr ri ie en nd d v vo oi id d f f() ; / / useless
f fr ri ie en nd d v vo oi id d g g() ;
f fr ri ie en nd d v vo oi id d h h(c co on ns st t X X&) ; / / can be found through its argument

};

v vo oi id d f f() { /* ... */ } / / not a friend of X

11.5.2 Friends and Members [over.friends.members]

When should we use a friend function, and when is a member function the better choice for specify-
ing an operation? First, we try to minimize the number of functions that access the representation
of a class and try to make the set of access functions as appropriate as possible. Therefore, the first
question is not, ‘‘Should it be a member, a static member, or a friend?’’ but rather, ‘‘Does it really
need access?’’ Typically, the set of functions that need access is smaller than we are willing to
believe at first.

Some operations must be members– for example, constructors, destructors, and virtual

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.5.2 Friends and Members 281

functions (§12.2.6)– but typically there is a choice. Because member names are local to the class,
a function should be a member unless there is a specific reason for it to be a nonmember.

Consider a classX X presenting alternative ways of presenting an operation:

c cl la as ss s X X {
/ / ...
X X(i in nt t) ;

i in nt t m m1 1() ;
i in nt t m m2 2() c co on ns st t;

f fr ri ie en nd d i in nt t f f1 1(X X&) ;
f fr ri ie en nd d i in nt t f f2 2(c co on ns st t X X&) ;
f fr ri ie en nd d i in nt t f f3 3(X X) ;

};

Member functions can be invoked for objects of their class only; no user-defined conversions are
applied. For example:

v vo oi id d g g()
{

9 99 9. m m1 1() ; / / error: X(99).m1() not tried
9 99 9. m m2 2() ; / / error: X(99).m2() not tried

}

The conversionX X(i in nt t) is not applied to make anX X out of9 99 9.
The global functionf f1 1() has a similar property because implicit conversions are not used for

non-c co on ns st t reference arguments (§5.5, §11.3.5). However, conversions may be applied to the argu-
ments off f2 2() andf f3 3() :

v vo oi id d h h()
{

f f1 1(9 99 9) ; / / error: f1(X(99)) not tried
f f2 2(9 99 9) ; / / ok: f2(X(99));
f f3 3(9 99 9) ; / / ok: f3(X(99));

}

An operation modifying the state of a class object should therefore be a member or a global func-
tion taking a non-c co on ns st t reference argument (or a non-c co on ns st t pointer argument). Operators that
require lvalue operands for the fundamental types (=, *= , ++, etc.) are most naturally defined as
members for user-defined types.

Conversely, if implicit type conversion is desired for all operands of an operation, the function
implementing it must be a nonmember function taking ac co on ns st t reference argument or a non-
reference argument. This is often the case for the functions implementing operators that do not
require lvalue operands when applied to fundamental types (+, - , || , etc.). Such operators often
need access to the representations of their operand class. Consequently, binary operators are the
most common source off fr ri ie en nd d functions.

If no type conversions are defined, there appears to be no compelling reason to choose a mem-
ber over a friend taking a reference argument, or vice versa. In some cases, the programmer may
have a preference for one call syntax over another. For example, most people seem to prefer the

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

282 Operator Overloading Chapter 11

notationi in nv v(m m) for inverting aM Ma at tr ri ix x m m to the alternativem m. i in nv v() . Naturally, if i in nv v() really
does invertm m itself, rather than return a newM Ma at tr ri ix x that is the inverse ofm m, it should be a member.

All other things considered equal, choose a member. It is not possible to know if someone
someday will define a conversion operator. It is not always possible to predict if a future change
may require changes to the state of the object involved. The member function call syntax makes it
clear to the user that the object may be modified; a reference argument is far less obvious. Further-
more, expressions in the body of a member can be noticeably shorter than the equivalent expres-
sions in a global function; a nonmember function must use an explicit argument, whereas the mem-
ber can uset th hi is s implicitly. Also, because member names are local to the class they tend to be
shorter than the names of nonmember functions.

11.6 Large Objects[over.large]

We defined thec co om mp pl le ex x operators to take arguments of typec co om mp pl le ex x. This implies that for each
use of ac co om mp pl le ex x operator, each operand is copied. The overhead of copying twod do ou ub bl le es s can be
noticeable but often less than what a pair of pointers impose. Unfortunately, not all classes have a
conveniently small representation. To avoid excessive copying, one can declare functions to take
reference arguments. For example:

c cl la as ss s M Ma at tr ri ix x {
d do ou ub bl le e m m[4 4][4 4] ;

p pu ub bl li ic c:
M Ma at tr ri ix x() ;
f fr ri ie en nd d M Ma at tr ri ix x o op pe er ra at to or r+(c co on ns st t M Ma at tr ri ix x&, c co on ns st t M Ma at tr ri ix x&) ;
f fr ri ie en nd d M Ma at tr ri ix x o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x&, c co on ns st t M Ma at tr ri ix x&) ;

};

References allow the use of expressions involving the usual arithmetic operators for large objects
without excessive copying. Pointers cannot be used because it is not possible to redefine the mean-
ing of an operator applied to a pointer. Addition could be defined like this:

M Ma at tr ri ix x o op pe er ra at to or r+(c co on ns st t M Ma at tr ri ix x& a ar rg g1 1, c co on ns st t M Ma at tr ri ix x& a ar rg g2 2)
{

M Ma at tr ri ix x s su um m;
f fo or r (i in nt t i i=0 0; i i<4 4; i i++)

f fo or r (i in nt t j j=0 0; j j<4 4; j j++)
s su um m. m m[i i][j j] = a ar rg g1 1. m m[i i][j j] + a ar rg g2 2. m m[i i][j j] ;

r re et tu ur rn n s su um m;
}

This o op pe er ra at to or r+() accesses the operands of+ through references but returns an object value.
Returning a reference would appear to be more efficient:

c cl la as ss s M Ma at tr ri ix x {
/ / ...
f fr ri ie en nd d M Ma at tr ri ix x& o op pe er ra at to or r+(c co on ns st t M Ma at tr ri ix x&, c co on ns st t M Ma at tr ri ix x&) ;
f fr ri ie en nd d M Ma at tr ri ix x& o op pe er ra at to or r*(c co on ns st t M Ma at tr ri ix x&, c co on ns st t M Ma at tr ri ix x&) ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.6 Large Objects 283

This is legal, but it causes a memory allocation problem. Because a reference to the result will be
passed out of the function as a reference to the return value, the return value cannot be an automatic
variable (§7.3). Since an operator is often used more than once in an expression, the result cannot
be as st ta at ti ic c local variable. The result would typically be allocated on the free store. Copying the
return value is often cheaper (in execution time, code space, and data space) than allocating and
(eventually) deallocating an object on the free store. It is also much simpler to program.

There are techniques you can use to avoid copying the result. The simplest is to use a buffer of
static objects. For example:

c co on ns st t m ma ax x_ _m ma at tr ri ix x_ _t te em mp p = 7 7;

M Ma at tr ri ix x& g ge et t_ _m ma at tr ri ix x_ _t te em mp p()
{

s st ta at ti ic c i in nt t n nb bu uf f = 0 0;
s st ta at ti ic c M Ma at tr ri ix x b bu uf f[m ma ax x_ _m ma at tr ri ix x_ _t te em mp p] ;

i if f (n nb bu uf f == m ma ax x_ _m ma at tr ri ix x_ _t te em mp p) n nb bu uf f = 0 0;
r re et tu ur rn n b bu uf f[n nb bu uf f++] ;

}

M Ma at tr ri ix x& o op pe er ra at to or r+(c co on ns st t M Ma at tr ri ix x& a ar rg g1 1, c co on ns st t M Ma at tr ri ix x& a ar rg g2 2)
{

M Ma at tr ri ix x& r re es s = g ge et t_ _m ma at tr ri ix x_ _t te em mp p() ;
/ / ...
r re et tu ur rn n r re es s;

}

Now aM Ma at tr ri ix x is copied only when the result of an expression is assigned. However, heaven help
you if you write an expression that involves more thanm ma ax x_ _m ma at tr ri ix x_ _t te em mp p temporaries!

A less error-prone technique involves defining the matrix type as a handle (§25.7) to a represen-
tation type that really holds the data. In that way, the matrix handles can manage the representation
objects in such a way that allocation and copying are minimized (see §11.12 and §11.14[18]).
However, that strategy relies on operators returning objects rather than references or pointers.
Another technique is to define ternary operations and have them automatically invoked for expres-
sions such asa a=b b+c c anda a+b b* i i (§21.4.6.3, §22.4.7).

11.7 Essential Operators[over.essential]

In general, for a typeX X, the copy constructorX X(c co on ns st t X X&) takes care of initialization by an object
of the same typeX X. It cannot be overemphasized thatassignment and initialization are different
operations(§10.4.4.1). This is especially important when a destructor is declared. If a classX X has
a destructor that performs a nontrivial task, such as free-store deallocation, the class is likely to
need the full complement of functions that control construction, destruction, and copying:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

284 Operator Overloading Chapter 11

c cl la as ss s X X {
/ / ...
X X(S So om me et ty yp pe e) ; / / constructor: create objects
X X(c co on ns st t X X&) ; / / copy constructor
X X& o op pe er ra at to or r=(c co on ns st t X X&) ; / / copy assignment: cleanup and copy
~X X() ; / / destructor: cleanup

};

There are three more cases in which an object is copied: as a function argument, as a function
return value, and as an exception. When an argument is passed, a hitherto uninitialized variable–
the formal parameter– is initialized. The semantics are identical to those of other initializations.
The same is the case for function return values and exceptions, although that is less obvious. In
such cases, the copy constructor will be applied. For example:

s st tr ri in ng g g g(s st tr ri in ng g a ar rg g)
{

r re et tu ur rn n a ar rg g;
}

i in nt t m ma ai in n ()
{

s st tr ri in ng g s s = " N Ne ew wt to on n";
s s = g g(s s) ;

}

Clearly, the value ofs s ought to be" "N Ne ew wt to on n" " after the call ofg g() . Getting a copy of the value ofs s
into the argumenta ar rg g is not difficult; a call ofs st tr ri in ng g’s copy constructor does that. Getting a copy
of that value out ofg g() takes another call ofs st tr ri in ng g(c co on ns st t s st tr ri in ng g&) ; this time, the variable initial-
ized is a temporary one, which is then assigned tos s. Often one, but not both, of these copy opera-
tions can be optimized away. Such temporary variables are, of course, destroyed properly using
s st tr ri in ng g: :~ s st tr ri in ng g() (see §10.4.10).

For a classX X for which the assignment operatorX X: : o op pe er ra at to or r=(c co on ns st t X X&) and the copy con-
structorX X: : X X(c co on ns st t X X&) are not explicitly declared by the programmer, the missing operation or
operations will be generated by the compiler (§10.2.5).

11.7.1 Explicit Constructors [over.explicit]

By default, a single argument constructor also defines an implicit conversion. For some types, that
is ideal. For example:

c co om mp pl le ex x z z = 2 2; / / initialize z with complex(2)

In other cases, the implicit conversion is undesirable and error-prone. For example:

s st tr ri in ng g s s = ´ a a´; / / make s a string with int(’a’) elements

It is quite unlikely that this was what the person definings s meant.
Implicit conversion can be suppressed by declaring a constructore ex xp pl li ic ci it t. That is, ane ex xp pl li ic ci it t

constructor will be invoked only explicitly. In particular, where a copy constructor is in principle
needed (§11.3.4), ane ex xp pl li ic ci it t constructor will not be implicitly invoked. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.7.1 Explicit Constructors 285

c cl la as ss s S St tr ri in ng g {
/ / ...
e ex xp pl li ic ci it t S St tr ri in ng g(i in nt t n n) ; / / preallocate n bytes
S St tr ri in ng g(c co on ns st t c ch ha ar r* p p) ; / / initial value is the C-style string p

};

S St tr ri in ng g s s1 1 = ´ a a´; / / error: no implicit char– >String conversion
S St tr ri in ng g s s2 2(1 10 0) ; / / ok: String with space for 10 characters
S St tr ri in ng g s s3 3 = S St tr ri in ng g(1 10 0) ; / / ok: String with space for 10 characters
S St tr ri in ng g s s4 4 = " B Br ri ia an n"; / / ok: s4 = String("Brian")
S St tr ri in ng g s s5 5(" F Fa aw wl lt ty y") ;

v vo oi id d f f(S St tr ri in ng g) ;

S St tr ri in ng g g g()
{

f f(1 10 0) ; / / error: no implicit int– >String conversion
f f(S St tr ri in ng g(1 10 0)) ;
f f(" A Ar rt th hu ur r") ; / / ok: f(String("Arthur"))
f f(s s1 1) ;

S St tr ri in ng g* p p1 1 = n ne ew w S St tr ri in ng g(" E Er ri ic c") ;
S St tr ri in ng g* p p2 2 = n ne ew w S St tr ri in ng g(1 10 0) ;

r re et tu ur rn n 1 10 0; / / error: no implicit int– >String conversion
}

The distinction between

S St tr ri in ng g s s1 1 = ´ a a´; / / error: no implicit char– >String conversion

and

S St tr ri in ng g s s2 2(1 10 0) ; / / ok: string with space for 10 characters

may seem subtle, but it is less so in real code than in contrived examples.
In D Da at te e, we used a plaini in nt t to represent a year (§10.3). HadD Da at te e been critical in our design,

we might have introduced aY Ye ea ar r type to allow stronger compile-time checking. For example:

c cl la as ss s Y Ye ea ar r {
i in nt t y y;

p pu ub bl li ic c:
e ex xp pl li ic ci it t Y Ye ea ar r(i in nt t i i) : y y(i i) { } / / construct Year from int
o op pe er ra at to or r i in nt t() c co on ns st t { r re et tu ur rn n y y; } / / conversion: Year to int

};

c cl la as ss s D Da at te e {
p pu ub bl li ic c:

D Da at te e(i in nt t d d, M Mo on nt th h m m, Y Ye ea ar r y y) ;
/ / ...

};

D Da at te e d d3 3(1 19 97 78 8, f fe eb b, 2 21 1) ; / / error: 21 is not a Year
D Da at te e d d4 4(2 21 1, f fe eb b, Y Ye ea ar r(1 19 97 78 8)) ; / / ok

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

286 Operator Overloading Chapter 11

The Y Ye ea ar r class is a simple ‘‘wrapper’’ around ani in nt t. Thanks to theo op pe er ra at to or r i in nt t() , a Y Ye ea ar r is
implicitly converted into ani in nt t wherever needed. By declaring the constructore ex xp pl li ic ci it t, we make
sure that thei in nt t to Y Ye ea ar r happens only when we ask for it and that ‘‘accidental’’ assignments are
caught at compile time. BecauseY Ye ea ar r’s member functions are easily inlined, no run-time or space
costs are added.

A similar technique can be used to define range types (§25.6.1).

11.8 Subscripting[over.subscript]

An o op pe er ra at to or r[] function can be used to give subscripts a meaning for class objects. The second
argument (the subscript) of ano op pe er ra at to or r[] function may be of any type. This makes it possible to
definev ve ec ct to or rs, associative arrays, etc.

As an example, let us recode the example from §5.5 in which an associative array is used to
write a small program for counting the number of occurrences of words in a file. There, a function
is used. Here, an associative array type is defined:

c cl la as ss s A As ss so oc c {
s st tr ru uc ct t P Pa ai ir r {

s st tr ri in ng g n na am me e;
d do ou ub bl le e v va al l;
P Pa ai ir r(s st tr ri in ng g n n ="", d do ou ub bl le e v v =0 0) : n na am me e(n n) , v va al l(v v) { }

};
v ve ec ct to or r<P Pa ai ir r> v ve ec c;

A As ss so oc c(c co on ns st t A As ss so oc c&) ; / / private to prevent copying
A As ss so oc c& o op pe er ra at to or r=(c co on ns st t A As ss so oc c&) ; / / private to prevent copying

p pu ub bl li ic c:
A As ss so oc c() {}
d do ou ub bl le e& o op pe er ra at to or r[](c co on ns st t s st tr ri in ng g&) ;
v vo oi id d p pr ri in nt t_ _a al ll l() c co on ns st t;

};

An A As ss so oc c keeps a vector ofP Pa ai ir rs. The implementation uses the same trivial and inefficient search
method as in §5.5:

d do ou ub bl le e& A As ss so oc c: : o op pe er ra at to or r[](c co on ns st t s st tr ri in ng g& s s)
/ / search for s; return its value if found; otherwise, make a new Pair and return the default value 0

{
f fo or r (v ve ec ct to or r<P Pa ai ir r>: : c co on ns st t_ _i it te er ra at to or r p p = v ve ec c. b be eg gi in n() ; p p!= v ve ec c. e en nd d() ; ++p p)

i if f (s s == p p-> n na am me e) r re et tu ur rn n p p-> v va al l;

v ve ec c. p pu us sh h_ _b ba ac ck k(P Pa ai ir r(s s, 0 0)) ; / / initial value: 0

r re et tu ur rn n v ve ec c. b ba ac ck k(). v va al l; / / return last element (§16.3.3)
}

Because the representation of anA As ss so oc c is hidden, we need a way of printing it:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.8 Subscripting 287

v vo oi id d A As ss so oc c: : p pr ri in nt t_ _a al ll l() c co on ns st t
{

f fo or r (v ve ec ct to or r<P Pa ai ir r>: : c co on ns st t_ _i it te er ra at to or r p p = v ve ec c. b be eg gi in n() ; p p!= v ve ec c. e en nd d() ; ++p p)
c co ou ut t << p p-> n na am me e << ": " << p p-> v va al l << ´ \ \n n´;

}

Finally, we can write the trivial main program:

i in nt t m ma ai in n() / / count the occurrences of each word on input
{

s st tr ri in ng g b bu uf f;
A As ss so oc c v ve ec c;
w wh hi il le e (c ci in n>>b bu uf f) v ve ec c[b bu uf f]++;
v ve ec c. p pr ri in nt t_ _a al ll l() ;

}

A further development of the idea of an associative array can be found in §17.4.1.
An o op pe er ra at to or r[]() must be a member function.

11.9 Function Call[over.call]

Function call, that is, the notationexpression(expression-list),can be interpreted as a binary opera-
tion with theexpressionas the left-hand operand and theexpression-listas the right-hand operand.
The call operator() can be overloaded in the same way as other operators can. An argument list
for an o op pe er ra at to or r()() is evaluated and checked according to the usual argument-passing rules.
Overloading function call seems to be useful primarily for defining types that have only a single
operation and for types for which one operation is predominant.

The most obvious, and probably also the most important, use of the() operator is to provide
the usual function call syntax for objects that in some way behave like functions. An object that
acts like a function is often called afunction-like objector simply afunction object(§18.4). Such
function objects are important because they allow us to write code that takes nontrivial operations
as parameters. For example, the standard library provides many algorithms that invoke a function
for each element of a container. Consider:

v vo oi id d n ne eg ga at te e(c co om mp pl le ex x& c c) { c c = - c c; }

v vo oi id d f f(v ve ec ct to or r<c co om mp pl le ex x>& a aa a, l li is st t<c co om mp pl le ex x>& l ll l)
{

f fo or r_ _e ea ac ch h(a aa a. b be eg gi in n() , a aa a. e en nd d() , n ne eg ga at te e) ; / / negate all vector elements
f fo or r_ _e ea ac ch h(l ll l. b be eg gi in n() , l ll l. e en nd d() , n ne eg ga at te e) ; / / negate all list elements

}

This negates every element in the vector and the list.
What if we wanted to addc co om mp pl le ex x(2 2, 3 3) to every element? That is easily done like this:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

288 Operator Overloading Chapter 11

v vo oi id d a ad dd d2 23 3(c co om mp pl le ex x& c c)
{

c c += c co om mp pl le ex x(2 2, 3 3) ;
}

v vo oi id d g g(v ve ec ct to or r<c co om mp pl le ex x>& a aa a, l li is st t<c co om mp pl le ex x>& l ll l)
{

f fo or r_ _e ea ac ch h(a aa a. b be eg gi in n() , a aa a. e en nd d() , a ad dd d2 23 3) ;
f fo or r_ _e ea ac ch h(l ll l. b be eg gi in n() , l ll l. e en nd d() , a ad dd d2 23 3) ;

}

How would we write a function to repeatedly add an arbitrary complex value? We need something
to which we can pass that arbitrary value and which can then use that value each time it is called.
That does not come naturally for functions. Typically, we end up ‘‘passing’’ the arbitrary value by
leaving it in the function’s surrounding context. That’s messy. However, we can write a class that
behaves in the desired way:

c cl la as ss s A Ad dd d {
c co om mp pl le ex x v va al l;

p pu ub bl li ic c:
A Ad dd d(c co om mp pl le ex x c c) { v va al l = c c; } / / save value
A Ad dd d(d do ou ub bl le e r r, d do ou ub bl le e i i) { v va al l = c co om mp pl le ex x(r r, i i) ; }

v vo oi id d o op pe er ra at to or r()(c co om mp pl le ex x& c c) c co on ns st t { c c += v va al l; } / / add value to argument
};

An object of classA Ad dd d is initialized with a complex number, and when invoked using() , it adds
that number to its argument. For example:

v vo oi id d h h(v ve ec ct to or r<c co om mp pl le ex x>& a aa a, l li is st t<c co om mp pl le ex x>& l ll l, c co om mp pl le ex x z z)
{

f fo or r_ _e ea ac ch h(a aa a. b be eg gi in n() , a aa a. e en nd d() , A Ad dd d(2 2, 3 3)) ;
f fo or r_ _e ea ac ch h(l ll l. b be eg gi in n() , l ll l. e en nd d() , A Ad dd d(z z)) ;

}

This will addc co om mp pl le ex x(2 2, 3 3) to every element of the array andz z to every element on the list. Note
thatA Ad dd d(z z) constructs an object that is used repeatedly byf fo or r_ _e ea ac ch h() . It is not simply a function
that is called once or even called repeatedly. The function that is called repeatedly isA Ad dd d(z z) ’s
o op pe er ra at to or r()().

This all works becausef fo or r_ _e ea ac ch h is a template that applies() to its third argument without car-
ing exactly what that third argument really is:

t te em mp pl la at te e<c cl la as ss s I It te er r, c cl la as ss s F Fc ct t> I It te er r f fo or r_ _e ea ac ch h(I It te er r b b, I It te er r e e, F Fc ct t f f)
{

w wh hi il le e (b b != e e) f f(* b b++) ;
r re et tu ur rn n b b;

}

At first glance, this technique may look esoteric, but it is simple, efficient, and extremely useful
(see §3.8.5, §18.4).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.9 Function Call 289

Other popular uses ofo op pe er ra at to or r()() are as a substring operator and as a subscripting operator
for multidimensional arrays (§22.4.5).

An o op pe er ra at to or r()() must be a member function.

11.10 Dereferencing[over.deref]

The dereferencing operator-> can be defined as a unary postfix operator. That is, given a class

c cl la as ss s P Pt tr r {
/ / ...
X X* o op pe er ra at to or r->() ;

};

objects of classP Pt tr r can be used to access members of classX X in a very similar manner to the way
pointers are used. For example:

v vo oi id d f f(P Pt tr r p p)
{

p p-> m m = 7 7; / / (p.operator– >())– >m = 7
}

The transformation of the objectp p into the pointerp p. o op pe er ra at to or r->() does not depend on the mem-
berm m pointed to. That is the sense in whicho op pe er ra at to or r->() is a unary postfix operator. However,
there is no new syntax introduced, so a member name is still required after the-> . For example:

v vo oi id d g g(P Pt tr r p p)
{

X X* q q1 1 = p p->; / / syntax error
X X* q q2 2 = p p. o op pe er ra at to or r->() ; / / ok

}

Overloading-> is primarily useful for creating ‘‘smart pointers,’’ that is, objects that act like point-
ers and in addition perform some action whenever an object is accessed through them. For exam-
ple, one could define a classR Re ec c_ _p pt tr r for accessing objects of classR Re ec c stored on disk.R Re ec c_ _p pt tr r’s
constructor takes a name that can be used to find the object on disk,R Re ec c_ _p pt tr r: : o op pe er ra at to or r->()
brings the object into main memory when accessed through itsR Re ec c_ _p pt tr r, andR Re ec c_ _p pt tr r’s destructor
eventually writes the updated object back out to disk:

c cl la as ss s R Re ec c_ _p pt tr r {
R Re ec c* i in n_ _c co or re e_ _a ad dd dr re es ss s;
c co on ns st t c ch ha ar r* i id de en nt ti if fi ie er r;
/ / ...

p pu ub bl li ic c:
R Re ec c_ _p pt tr r(c co on ns st t c ch ha ar r* p p) : i id de en nt ti if fi ie er r(p p) , i in n_ _c co or re e_ _a ad dd dr re es ss s(0 0) { }
~R Re ec c_ _p pt tr r() { w wr ri it te e_ _t to o_ _d di is sk k(i in n_ _c co or re e_ _a ad dd dr re es ss s, i id de en nt ti if fi ie er r) ; }
R Re ec c* o op pe er ra at to or r->() ;

};

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

290 Operator Overloading Chapter 11

R Re ec c* R Re ec c_ _p pt tr r: : o op pe er ra at to or r->()
{

i if f (i in n_ _c co or re e_ _a ad dd dr re es ss s == 0 0) i in n_ _c co or re e_ _a ad dd dr re es ss s = r re ea ad d_ _f fr ro om m_ _d di is sk k(i id de en nt ti if fi ie er r) ;
r re et tu ur rn n i in n_ _c co or re e_ _a ad dd dr re es ss s;

}

R Re ec c_ _p pt tr r might be used like this:

s st tr ru uc ct t R Re ec c { / / the Rec that a Rec_ptr points to
s st tr ri in ng g n na am me e;
/ / ...

};

v vo oi id d u up pd da at te e(c co on ns st t c ch ha ar r* s s)
{

R Re ec c_ _p pt tr r p p(s s) ; / / get Rec_ptr for s

p p-> n na am me e = " R Ro os sc co oe e"; / / update s; if necessary, first retrieve from disk
/ / ...

}

Naturally, a realR Re ec c_ _p pt tr r would be a template so that theR Re ec c type is a parameter. Also, a realistic
program would contain error-handling code and use a less naive way of interacting with the disk.

For ordinary pointers, use of-> is synonymous with some uses of unary* and[] . Given

Y Y* p p;

it holds that

p p-> m m == (* p p). m m == p p[0 0]. m m

As usual, no such guarantee is provided for user-defined operators. The equivalence can be pro-
vided where desired:

c cl la as ss s P Pt tr r_ _t to o_ _Y Y {
Y Y* p p;

p pu ub bl li ic c:
Y Y* o op pe er ra at to or r->() { r re et tu ur rn n p p; }
Y Y& o op pe er ra at to or r*() { r re et tu ur rn n * p p; }
Y Y& o op pe er ra at to or r[](i in nt t i i) { r re et tu ur rn n p p[i i] ; }

};

If you provide more than one of these operators, it might be wise to provide the equivalence, just as
it is wise to ensure that++x x andx x+=1 1 have the same effect asx x=x x+1 1 for a simple variablex x of
some class if++, +=, =, and+ are provided.

The overloading of-> is important to a class of interesting programs and not just a minor
curiosity. The reason is thatindirection is a key concept and that overloading-> provides a clean,
direct, and efficient way of representing indirection in a program. Iterators (Chapter 19) provide an
important example of this. Another way of looking at operator-> is to consider it as a way of pro-
viding C++ with a limited, but useful, form ofdelegation(§24.2.4).

Operator-> must be a member function. If used, its return type must be a pointer or an object
of a class to which you can apply-> . When declared for a template class,o op pe er ra at to or r->() is

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.10 Dereferencing 291

frequently unused, so it makes sense to postpone checking the constraint on the return type until
actual use.

11.11 Increment and Decrement[over.incr]

Once people invent ‘‘smart pointers,’’ they often decide to provide the increment operator++ and
the decrement operator-- to mirror these operators’ use for built-in types. This is especially obvi-
ous and necessary where the aim is to replace an ordinary pointer type with a ‘‘smart pointer’’ type
that has the same semantics, except that it adds a bit of run-time error checking. For example, con-
sider a troublesome traditional program:

v vo oi id d f f1 1(T T a a) / / traditional use
{

T T v v[2 20 00 0] ;
T T* p p = &v v[0 0] ;
p p--;
* p p = a a; / / Oops: ‘p’ out of range, uncaught
++p p;
* p p = a a; / / ok

}

We might want to replace the pointerp p with an object of a classP Pt tr r_ _t to o_ _T T that can be dereferenced
only provided it actually points to an object. We would also like to ensure thatp p can be incre-
mented and decremented, only provided it points to an object within an array and the increment and
decrement operations yield an object within the array. That is we would like something like this:

c cl la as ss s P Pt tr r_ _t to o_ _T T {
/ / ...

};

v vo oi id d f f2 2(T T a a) / / checked
{

T T v v[2 20 00 0] ;
P Pt tr r_ _t to o_ _T T p p(& v v[0 0] , v v, 2 20 00 0) ;
p p--;
* p p = a a; / / run-time error: ‘p’ out of range
++p p;
* p p = a a; / / ok

}

The increment and decrement operators are unique among C++ operators in that they can be used as
both prefix and postfix operators. Consequently, we must define prefix and postfix increment and
decrementP Pt tr r_ _t to o_ _T T. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

292 Operator Overloading Chapter 11

c cl la as ss s P Pt tr r_ _t to o_ _T T {
T T* p p;
T T* a ar rr ra ay y;
i in nt t s si iz ze e;

p pu ub bl li ic c:

P Pt tr r_ _t to o_ _T T(T T* p p, T T* v v, i in nt t s s) ; / / bind to array v of size s, initial value p
P Pt tr r_ _t to o_ _T T(T T* p p) ; / / bind to single object, initial value p

P Pt tr r_ _t to o_ _T T& o op pe er ra at to or r++() ; / / prefix
P Pt tr r_ _t to o_ _T T o op pe er ra at to or r++(i in nt t) ; / / postfix

P Pt tr r_ _t to o_ _T T& o op pe er ra at to or r--() ; / / prefix
P Pt tr r_ _t to o_ _T T o op pe er ra at to or r--(i in nt t) ; / / postfix

T T& o op pe er ra at to or r*() ; / / prefix
};

The i in nt t argument is used to indicate that the function is to be invoked for postfix application of++.
This i in nt t is never used; the argument is simply a dummy used to distinguish between prefix and
postfix application. The way to remember which version of ano op pe er ra at to or r++ is prefix is to note that
the version without the dummy argument is prefix, exactly like all the other unary arithmetic and
logical operators. The dummy argument is used only for the ‘‘odd’’ postfix++ and-- .

UsingP Pt tr r_ _t to o_ _T T, the example is equivalent to:

v vo oi id d f f3 3(T T a a) / / checked
{

T T v v[2 20 00 0] ;
P Pt tr r_ _t to o_ _T T p p(& v v[0 0] , v v, 2 20 00 0) ;
p p. o op pe er ra at to or r--(0 0) ;
p p. o op pe er ra at to or r*() = a a; / / run-time error: ‘p’ out of range
p p. o op pe er ra at to or r++() ;
p p. o op pe er ra at to or r*() = a a; / / ok

}

Completing classP Pt tr r_ _t to o_ _T T is left as an exercise (§11.14[19]). Its elaboration into a template using
exceptions to report the run-time errors is another exercise (§14.12[2]). An example of operators
++ and -- for iteration can be found in §19.3. A pointer template that behaves correctly with
respect to inheritance is presented in (§13.6.3).

11.12 A String Class[over.string]

Here is a more realistic version of classS St tr ri in ng g. I designed it as the minimal string that served my
needs. This string provides value semantics, character read and write operations, checked and
unchecked access, stream I/O, literal strings as literals, and equality and concatenation operators. It
represents strings as C-style, zero-terminated arrays of characters and uses reference counts to mini-
mize copying. Writing a better string class and/or one that provides more facilities is a good exer-
cise (§11.14[7-12]). That done, we can throw away our exercises and use the standard library
string (Chapter 20).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.12 A String Class 293

My almost-realS St tr ri in ng g employs three auxiliary classes:S Sr re ep p, to allow an actual representation
to be shared between severalS St tr ri in ng gs with the same value;R Ra an ng ge e, to be thrown in case of range
errors, andC Cr re ef f, to help implement a subscript operator that distinguishes between reading and
writing:

c cl la as ss s S St tr ri in ng g {
s st tr ru uc ct t S Sr re ep p; / / representation
S Sr re ep p * r re ep p;

p pu ub bl li ic c:
c cl la as ss s C Cr re ef f; / / reference to char

c cl la as ss s R Ra an ng ge e { }; / / for exceptions

/ / ...
};

Like other members, amember class(often called anested class) can be declared in the class itself
and defined later:

s st tr ru uc ct t S St tr ri in ng g: : S Sr re ep p {
c ch ha ar r* s s; / / pointer to elements
i in nt t s sz z; / / number of characters
i in nt t n n; / / reference count

S Sr re ep p(i in nt t n ns sz z, c co on ns st t c ch ha ar r* p p)
{

n n = 1 1;
s sz z = n ns sz z;
s s = n ne ew w c ch ha ar r[s sz z+1 1] ; / / add space for terminator
s st tr rc cp py y(s s, p p) ;

}

~S Sr re ep p() { d de el le et te e[] s s; }

S Sr re ep p* g ge et t_ _o ow wn n_ _c co op py y() / / clone if necessary
{

i if f (n n==1 1) r re et tu ur rn n t th hi is s;
n n--;
r re et tu ur rn n n ne ew w S Sr re ep p(s sz z, s s) ;

}

v vo oi id d a as ss si ig gn n(i in nt t n ns sz z, c co on ns st t c ch ha ar r* p p)
{

i if f (s sz z != n ns sz z) {
d de el le et te e[] s s;
s sz z = n ns sz z;
s s = n ne ew w c ch ha ar r[s sz z+1 1] ;

}
s st tr rc cp py y(s s, p p) ;

}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

294 Operator Overloading Chapter 11

p pr ri iv va at te e: / / prevent copying:
S Sr re ep p(c co on ns st t S Sr re ep p&) ;
S Sr re ep p& o op pe er ra at to or r=(c co on ns st t S Sr re ep p&) ;

};

ClassS St tr ri in ng g provides the usual set of constructors, destructor, and assignment operations:

c cl la as ss s S St tr ri in ng g {
/ / ...

S St tr ri in ng g() ; / / x = ""
S St tr ri in ng g(c co on ns st t c ch ha ar r*) ; / / x = "abc"
S St tr ri in ng g(c co on ns st t S St tr ri in ng g&) ; / / x = other_string
S St tr ri in ng g& o op pe er ra at to or r=(c co on ns st t c ch ha ar r *) ;
S St tr ri in ng g& o op pe er ra at to or r=(c co on ns st t S St tr ri in ng g&) ;
~S St tr ri in ng g() ;

/ / ...
};

This S St tr ri in ng g has value semantics. That is, after an assignments s1 1=s s2 2, the two stringss s1 1 ands s2 2 are
fully distinct and subsequent changes to the one have no effect on the other. The alternative would
be to giveS St tr ri in ng g pointer semantics. That would be to let changes tos s2 2 afters s1 1=s s2 2 also affect the
value ofs s1 1. For types with conventional arithmetic operations, such as complex, vector, matrix,
and string, I prefer value semantics. However, for the value semantics to be affordable, aS St tr ri in ng g is
implemented as a handle to its representation and the representation is copied only when necessary:

S St tr ri in ng g: : S St tr ri in ng g() / / the empty string is the default value
{

r re ep p = n ne ew w S Sr re ep p(0 0,"") ;
}

S St tr ri in ng g: : S St tr ri in ng g(c co on ns st t S St tr ri in ng g& x x) / / copy constructor
{

x x. r re ep p-> n n++;
r re ep p = x x. r re ep p; / / share representation

}

S St tr ri in ng g: :~ S St tr ri in ng g()
{

i if f (-- r re ep p-> n n == 0 0) d de el le et te e r re ep p;
}

S St tr ri in ng g& S St tr ri in ng g: : o op pe er ra at to or r=(c co on ns st t S St tr ri in ng g& x x) / / copy assignment
{

x x. r re ep p-> n n++; / / protects against ‘‘st = st’’
i if f (-- r re ep p-> n n == 0 0) d de el le et te e r re ep p;
r re ep p = x x. r re ep p; / / share representation
r re et tu ur rn n * t th hi is s;

}

Pseudo-copy operations takingc co on ns st t c ch ha ar r* arguments are provided to allow string literals:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.12 A String Class 295

S St tr ri in ng g: : S St tr ri in ng g(c co on ns st t c ch ha ar r* s s)
{

r re ep p = n ne ew w S Sr re ep p(s st tr rl le en n(s s) , s s) ;
}

S St tr ri in ng g& S St tr ri in ng g: : o op pe er ra at to or r=(c co on ns st t c ch ha ar r* s s)
{

i if f (r re ep p-> n n == 1 1) / / recycle Srep
r re ep p-> a as ss si ig gn n(s st tr rl le en n(s s) , s s) ;

e el ls se e { / / use new Srep
r re ep p-> n n--;
r re ep p = n ne ew w S Sr re ep p(s st tr rl le en n(s s) , s s) ;

}
r re et tu ur rn n * t th hi is s;

}

The design of access operators for a string is a difficult topic because ideally access is by conven-
tional notation (that is, using[]), maximally efficient, and range checked. Unfortunately, you can-
not have all of these properties simultaneously. My choice here has been to provide efficient
unchecked operations with a slightly inconvenient notation plus slightly less efficient checked oper-
ators with the conventional notation:

c cl la as ss s S St tr ri in ng g {
/ / ...

v vo oi id d c ch he ec ck k(i in nt t i i) c co on ns st t { i if f (i i<0 0 || r re ep p-> s sz z<=i i) t th hr ro ow w R Ra an ng ge e() ; }

c ch ha ar r r re ea ad d(i in nt t i i) c co on ns st t { r re et tu ur rn n r re ep p-> s s[i i] ; }
v vo oi id d w wr ri it te e(i in nt t i i, c ch ha ar r c c) { r re ep p=r re ep p-> g ge et t_ _o ow wn n_ _c co op py y() ; r re ep p-> s s[i i]= c c; }

C Cr re ef f o op pe er ra at to or r[](i in nt t i i) { c ch he ec ck k(i i) ; r re et tu ur rn n C Cr re ef f(* t th hi is s, i i) ; }
c ch ha ar r o op pe er ra at to or r[](i in nt t i i) c co on ns st t { c ch he ec ck k(i i) ; r re et tu ur rn n r re ep p-> s s[i i] ; }

i in nt t s si iz ze e() c co on ns st t { r re et tu ur rn n r re ep p-> s sz z; }

/ / ...
};

The idea is to use[] to get checked access for ordinary use, but to allow the user to optimize by
checking the range once for a set of accesses. For example:

i in nt t h ha as sh h(c co on ns st t S St tr ri in ng g& s s)
{

i in nt t h h = s s. r re ea ad d(0 0) ;
c co on ns st t i in nt t m ma ax x = s s. s si iz ze e() ;
f fo or r (i in nt t i i = 1 1; i i<m ma ax x; i i++) h h ^= s s. r re ea ad d(i i)>> 1 1; / / unchecked access to s
r re et tu ur rn n h h;

}

Defining an operator, such as[] , to be used for both reading and writing is difficult where it is not
acceptable simply to return a reference and let the user decide what to do with it. Here, that is not a
reasonable alternative because I have definedS St tr ri in ng g so that the representation is shared between
S St tr ri in ng gs that have been assigned, passed as value arguments, etc., until someone actually writes to a

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

296 Operator Overloading Chapter 11

S St tr ri in ng g. Then, and only then, is the representation copied. This technique is usually calledcopy-
on-write. The actual copy is done byS St tr ri in ng g: : S Sr re ep p: : g ge et t_ _o ow wn n_ _c co op py y() .

To get these access functions inlined, their definitions must be placed so that the definition of
S Sr re ep p is in scope. This implies that eitherS Sr re ep p is defined withinS St tr ri in ng g or the access functions are
definedi in nl li in ne eoutsideS St tr ri in ng g and afterS St tr ri in ng g: : S Sr re ep p (§11.14[2]).

To distinguish between a read and a write,S St tr ri in ng g: : o op pe er ra at to or r[]() returns aC Cr re ef f when called
for a non-c co on ns st t object. A C Cr re ef f behaves like a c ch ha ar r&, except that it calls
S St tr ri in ng g: : S Sr re ep p: : g ge et t_ _o ow wn n_ _c co op py y() when written to:

c cl la as ss s S St tr ri in ng g: : C Cr re ef f { / / reference to s[i]
f fr ri ie en nd d c cl la as ss s S St tr ri in ng g;

S St tr ri in ng g& s s;
i in nt t i i;
C Cr re ef f(S St tr ri in ng g& s ss s, i in nt t i ii i) : s s(s ss s) , i i(i ii i) { }

p pu ub bl li ic c:
o op pe er ra at to or r c ch ha ar r() { r re et tu ur rn n s s. r re ea ad d(i i) ; } / / yield value
v vo oi id d o op pe er ra at to or r=(c ch ha ar r c c) { s s. w wr ri it te e(i i, c c) ; } / / change value

};

For example:

v vo oi id d f f(S St tr ri in ng g s s, c co on ns st t S St tr ri in ng g& r r)
{

i in nt t c c1 1 = s s[1 1] ; / / c1 = s.operator[](1).operator char()
s s[1 1] = ´ c c´; / / s.operator[](1).operator=(’c’)

i in nt t c c2 2 = r r[1 1] ; / / c2 = r.operator[](1)
r r[1 1] = ´ d d´; / / error: assignment to char, r.operator[](1) = ’d’

}

Note that for a non-c co on ns st t objects s. o op pe er ra at to or r[](1 1) is C Cr re ef f(s s, 1 1) .
To complete classS St tr ri in ng g, I provide a set of useful functions:

c cl la as ss s S St tr ri in ng g {
/ / ...

S St tr ri in ng g& o op pe er ra at to or r+=(c co on ns st t S St tr ri in ng g&) ;
S St tr ri in ng g& o op pe er ra at to or r+=(c co on ns st t c ch ha ar r*) ;

f fr ri ie en nd d o os st tr re ea am m& o op pe er ra at to or r<<(o os st tr re ea am m&, c co on ns st t S St tr ri in ng g&) ;
f fr ri ie en nd d i is st tr re ea am m& o op pe er ra at to or r>>(i is st tr re ea am m&, S St tr ri in ng g&) ;

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r==(c co on ns st t S St tr ri in ng g& x x, c co on ns st t c ch ha ar r* s s)
{ r re et tu ur rn n s st tr rc cm mp p(x x. r re ep p-> s s, s s) == 0 0; }

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r==(c co on ns st t S St tr ri in ng g& x x, c co on ns st t S St tr ri in ng g& y y)
{ r re et tu ur rn n s st tr rc cm mp p(x x. r re ep p-> s s, y y. r re ep p-> s s) == 0 0; }

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r!=(c co on ns st t S St tr ri in ng g& x x, c co on ns st t c ch ha ar r* s s)
{ r re et tu ur rn n s st tr rc cm mp p(x x. r re ep p-> s s, s s) != 0 0; }

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.12 A String Class 297

f fr ri ie en nd d b bo oo ol l o op pe er ra at to or r!=(c co on ns st t S St tr ri in ng g& x x, c co on ns st t S St tr ri in ng g& y y)
{ r re et tu ur rn n s st tr rc cm mp p(x x. r re ep p-> s s, y y. r re ep p-> s s) != 0 0; }

};

S St tr ri in ng g o op pe er ra at to or r+(c co on ns st t S St tr ri in ng g&, c co on ns st t S St tr ri in ng g&) ;
S St tr ri in ng g o op pe er ra at to or r+(c co on ns st t S St tr ri in ng g&, c co on ns st t c ch ha ar r*) ;

To save space, I have left the I/O and concatenation operations as exercises.
The main program simply exercises theS St tr ri in ng g operators a bit:

S St tr ri in ng g f f(S St tr ri in ng g a a, S St tr ri in ng g b b)
{

a a[2 2] = ´ x x´;
c ch ha ar r c c = b b[3 3] ;
c co ou ut t << " i in n f f: " << a a << ´ ´ << b b << ´ ´ << c c << ´ \ \n n´;
r re et tu ur rn n b b;

}

i in nt t m ma ai in n()
{

S St tr ri in ng g x x, y y;
c co ou ut t << " P Pl le ea as se e e en nt te er r t tw wo o s st tr ri in ng gs s\ \n n";
c ci in n >> x x >> y y;
c co ou ut t << " i in np pu ut t: " << x x << ´ ´ << y y << ´ \ \n n´;
S St tr ri in ng g z z = x x;
y y = f f(x x, y y) ;
i if f (x x != z z) c co ou ut t << " x x c co or rr ru up pt te ed d! \ \n n";
x x[0 0] = ´!´;
i if f (x x == z z) c co ou ut t << " w wr ri it te e f fa ai il le ed d! \ \n n";
c co ou ut t << " e ex xi it t: " << x x << ´ ´ << y y << ´ ´ << z z << ´ \ \n n´;

}

This S St tr ri in ng g lacks many features that you might consider important or even essential. For example,
it offers no operation of producing a C-string representation of its value (§11.14[10], Chapter 20).

11.13 Advice[class.advice]

[1] Define operators primarily to mimic conventional usage; §11.1.
[2] For large operands, usec co on ns st t reference argument types; §11.6.
[3] For large results, consider optimizing the return; §11.6.
[4] Prefer the default copy operations if appropriate for a class; §11.3.4.
[5] Redefine or prohibit copying if the default is not appropriate for a type; §11.2.2.
[6] Prefer member functions over nonmembers for operations that need access to the representa-

tion; §11.5.2.
[7] Prefer nonmember functions over members for operations that do not need access to the repre-

sentation; §11.5.2.
[8] Use namespaces to associate helper functions with ‘‘their’’ class; §11.2.4.
[9] Use nonmember functions for symmetric operators; §11.3.2.
[10] Use() for subscripting multidimensional arrays; §11.9.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

298 Operator Overloading Chapter 11

[11] Make constructors that take a single ‘‘size argument’’e ex xp pl li ic ci it t; §11.7.1.
[12] For non-specialized uses, prefer the standards st tr ri in ng g (Chapter 20) to the result of your own

exercises; §11.12.
[13] Be cautious about introducing implicit conversions; §11.4.
[14] Use member functions to express operators that require an lvalue as its left-hand operand;

§11.3.5.

11.14 Exercises[over.exercises]

1. (∗2) In the following program, which conversions are used in each expression?

s st tr ru uc ct t X X {
i in nt t i i;
X X(i in nt t) ;
o op pe er ra at to or r+(i in nt t) ;

};

s st tr ru uc ct t Y Y {
i in nt t i i;
Y Y(X X) ;
o op pe er ra at to or r+(X X) ;
o op pe er ra at to or r i in nt t() ;

};

e ex xt te er rn n X X o op pe er ra at to or r*(X X, Y Y) ;
e ex xt te er rn n i in nt t f f(X X) ;

X X x x = 1 1;
Y Y y y = x x;
i in nt t i i = 2 2;

i in nt t m ma ai in n()
{

i i + 1 10 0; y y + 1 10 0; y y + 1 10 0 * y y;
x x + y y + i i; x x * x x + i i; f f(7 7) ;
f f(y y) ; y y + y y; 1 10 06 6 + y y;

}

Modify the program so that it will run and print the values of each legal expression.
2. (∗2) Complete and test classS St tr ri in ng g from §11.12.
3. (∗2) Define a classI IN NT T that behaves exactly like ani in nt t. Hint: DefineI IN NT T: : o op pe er ra at to or r i in nt t() .
4. (∗1) Define a classR RI IN NT T that behaves like ani in nt t except that the only operations allowed are+

(unary and binary),- (unary and binary),* , / , and%. Hint: Do not defineR RI IN NT T: : o op pe er ra at to or r
i in nt t() .

5. (∗3) Define a classL LI IN NT T that behaves like aR RI IN NT T, except that it has at least 64 bits of preci-
sion.

6. (∗4) Define a class implementing arbitrary precision arithmetic. Test it by calculating the facto-
rial of 1 10 00 00 0. Hint: You will need to manage storage in a way similar to what was done for class
S St tr ri in ng g.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 11.14 Exercises 299

7. (∗2) Define an external iterator for classS St tr ri in ng g:

c cl la as ss s S St tr ri in ng g_ _i it te er r {
/ / refer to string and string element

p pu ub bl li ic c:
S St tr ri in ng g_ _i it te er r(S St tr ri in ng g& s s) ; / / iterator for s
c ch ha ar r& n ne ex xt t() ; / / reference to next element

/ / more operations of your choice
};

Compare this in utility, programming style, and efficiency to having an internal iterator for
S St tr ri in ng g (that is, a notion of a current element for theS St tr ri in ng g and operations relating to that ele-
ment).

8. (∗1.5) Provide a substring operator for a string class by overloading() . What other operations
would you like to be able to do on a string?

9. (∗3) Design classS St tr ri in ng g so that the substring operator can be used on the left-hand side of an
assignment. First, write a version in which a string can be assigned to a substring of the same
length. Then, write a version in which the lengths may differ.

10. (∗2) Define an operation forS St tr ri in ng g that produces a C-string representation of its value. Discuss
the pros and cons of having that operation as a conversion operator. Discuss alternatives for
allocating the memory for that C-string representation.

11. (∗2.5) Define and implement a simple regular expression pattern match facility for classS St tr ri in ng g.
12. (∗1.5) Modify the pattern match facility from §11.14[11] to work on the standard librarys st tr ri in ng g.

Note that you cannot modify the definition ofs st tr ri in ng g.
13. (∗2) Write a program that has been rendered unreadable through use of operator overloading

and macros. An idea: Define+ to mean- and vice versa forI IN NT Ts s. Then, use a macro to define
i in nt t to meanI IN NT T. Redefine popular functions using reference type arguments. Writing a few
misleading comments can also create great confusion.

14. (∗3) Swap the result of §11.14[13] with a friend. Without running it, figure out what your
friend’s program does. When you have completed this exercise, you’ll know what to avoid.

15. (∗2) Define a typeV Ve ec c4 4 as a vector of fourf fl lo oa at ts. Defineo op pe er ra at to or r[] for V Ve ec c4 4. Define opera-
tors+, - , * , / , =, +=, -= , *= , and/= for combinations of vectors and floating-point numbers.

16. (∗3) Define a classM Ma at t4 4 as a vector of fourV Ve ec c4 4s. Defineo op pe er ra at to or r[] to return aV Ve ec c4 4 for
M Ma at t4 4. Define the usual matrix operations for this type. Define a function doing Gaussian elim-
ination for aM Ma at t4 4.

17. (∗2) Define a classV Ve ec ct to or r similar toV Ve ec c4 4 but with the size given as an argument to the con-
structorV Ve ec ct to or r: : V Ve ec ct to or r(i in nt t) .

18. (∗3) Define a classM Ma at tr ri ix x similar toM Ma at t4 4 but with the dimensions given as arguments to the
constructorM Ma at tr ri ix x: : M Ma at tr ri ix x(i in nt t, i in nt t) .

19. (∗2) Complete classP Pt tr r_ _t to o_ _T T from §11.11 and test it. To be complete,P Pt tr r_ _t to o_ _T T must have at
least the operators* , -> , =, ++, and-- defined. Do not cause a run-time error until a wild
pointer is actually dereferenced.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

300 Operator Overloading Chapter 11

20. (∗1) Given two structures:

s st tr ru uc ct t S S { i in nt t x x, y y; };
s st tr ru uc ct t T T { c ch ha ar r* p p; c ch ha ar r* q q; };

write a classC C that allows the use ofx x andp p from someS SandT T, much as ifx x andp p had been
members ofC C.

21. (∗1.5) Define a class I In nd de ex x to hold the index for an exponentiation function
m my yp po ow w(d do ou ub bl le e, I In nd de ex x) . Find a way to have2 2** I I call m my yp po ow w(2 2, I I) .

22. (∗2) Define a classI Im ma ag gi in na ar ry y to represent imaginary numbers. Define classC Co om mp pl le ex x based on
that. Implement the fundamental arithmetic operators.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	11.1 Introduction
	11.2 Operator Functions
	11.3 A Complex Number Type
	11.4 Conversion Operators
	11.5 Friends
	11.6 Large Objects
	11.7 Essential Operators
	11.8 Subscripting
	11.9 Function Call
	11.10 Dereferencing
	11.11 Increment and Decrement
	11.12 A String Class
	11.13 Advice
	11.14 Exercises

	buy now:

