
_ __ _______________________________________

5
_ __ _______________________________________

Pointers, Arrays, and Structures

The sublime and the ridiculous
are often so nearly related that

it is difficult to class them separately.
– Tom Paine

Pointers— zero— arrays— string literals— pointers into arrays— constants— point-
ers and constants— references— v vo oi id d* — data structures— advice— exercises.

5.1 Pointers[ptr.ptr]

For a typeT T, T T* is the type ‘‘pointer toT T.’’ That is, a variable of typeT T* can hold the address of
an object of typeT T. For example:

c ch ha ar r c c = ´ a a´;
c ch ha ar r* p p = &c c; / / p holds the address of c

or graphically:

&c c . .
’ a a’

p p:
c c:

Unfortunately, pointers to arrays and pointers to functions need a more complicated notation:

i in nt t* p pi i; / / pointer to int
c ch ha ar r** p pp pc c; / / pointer to pointer to char
i in nt t* a ap p[1 15 5] ; / / array of 15 pointers to ints
i in nt t (* f fp p)(c ch ha ar r*) ; / / pointer to function taking a char* argument; returns an int
i in nt t* f f(c ch ha ar r*) ; / / function taking a char* argument; returns a pointer to int

See §4.9.1 for an explanation of the declaration syntax and Appendix A for the complete grammar.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

http://store.awl.com/catalog/cepub_detail.mhtml?isbn=0-201-88954-4

88 Pointers, Arrays, and Structures Chapter 5

The fundamental operation on a pointer isdereferencing, that is, referring to the object pointed
to by the pointer. This operation is also calledindirection. The dereferencing operator is (prefix)
unary* . For example:

c ch ha ar r c c = ´ a a´;
c ch ha ar r* p p = &c c; / / p holds the address of c
c ch ha ar r c c2 2 = * p p; / / c2 == ’a’

The variable pointed to byp p is c c, and the value stored inc c is ´ a a´ , so the value of* p p assigned toc c2 2
is ´ a a´ .

It is possible to perform some arithmetic operations on pointers to array elements (§5.3). Point-
ers to functions can be extremely useful; they are discussed in §7.7.

The implementation of pointers is intended to map directly to the addressing mechanisms of the
machine on which the program runs. Most machines can address a byte. Those that can’t tend to
have hardware to extract bytes from words. On the other hand, few machines can directly address
an individual bit. Consequently, the smallest object that can be independently allocated and
pointed to using a built-in pointer type is ac ch ha ar r. Note that ab bo oo ol l occupies at least as much space
as ac ch ha ar r (§4.6). To store smaller values more compactly, you can use logical operations (§6.2.4)
or bit fields in structures (§C.8.1).

5.1.1 Zero [ptr.zero]

Zero (0 0) is ani in nt t. Because of standard conversions (§C.6.2.3),0 0 can be used as a constant of any
integral (§4.1.1), floating-point, pointer, or pointer-to-member type. The type of zero will be deter-
mined by context. Zero will typically (but not necessarily) be represented by the bit patternall-
zerosof the appropriate size.

No object is allocated with the address0 0. Consequently,0 0 acts as a pointer literal, indicating
that a pointer doesn’t refer to an object.

In C, it has been popular to define a macroN NU UL LL L to represent the zero pointer. Because of
C++’s tighter type checking, the use of plain0 0, rather than any suggestedN NU UL LL L macro, leads to
fewer problems. If you feel you must defineN NU UL LL L, use

c co on ns st t i in nt t N NU UL LL L = 0 0;

Thec co on ns st t qualifier (§5.4) prevents accidental redefinition ofN NU UL LL L and ensures thatN NU UL LL L can be
used where a constant is required.

5.2 Arrays [ptr.array]

For a typeT T, T T[s si iz ze e] is the type ‘‘array ofs si iz ze e elements of typeT T.’’ The elements are indexed
from 0 0 to s si iz ze e- 1 1. For example:

f fl lo oa at t v v[3 3] ; / / an array of three floats: v[0], v[1], v[2]
c ch ha ar r* a a[3 32 2] ; / / an array of 32 pointers to char: a[0] .. a[31]

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.2 Arrays 89

The number of elements of the array, the array bound, must be a constant expression (§C.5). If you
need variable bounds, use av ve ec ct to or r (§3.7.1, §16.3). For example:

v vo oi id d f f(i in nt t i i)
{

i in nt t v v1 1[i i] ; / / error: array size not a constant expression
v ve ec ct to or r<i in nt t> v v2 2(i i) ; / / ok

}

Multidimensional arrays are represented as arrays of arrays. For example:

i in nt t d d2 2[1 10 0][2 20 0] ; / / d2 is an array of 10 arrays of 20 integers

Using comma notation as used for array bounds in some other languages gives compile-time errors
because comma (,) is a sequencing operator (§6.2.2) and is not allowed in constant expressions
(§C.5). For example, try this:

i in nt t b ba ad d[5 5, 2 2] ; / / error: comma not allowed in a constant expression

Multidimensional arrays are described in §C.7. They are best avoided outside low-level code.

5.2.1 Array Initializers [ptr.array.init]

An array can be initialized by a list of values. For example:

i in nt t v v1 1[] = { 1 1, 2 2, 3 3, 4 4 };
c ch ha ar r v v2 2[] = { ´ a a´, ´ b b´, ´ c c´, 0 0 };

When an array is declared without a specific size, but with an initializer list, the size is calculated
by counting the elements of the initializer list. Consequently,v v1 1 and v v2 2 are of typei in nt t[4 4] and
c ch ha ar r[4 4] , respectively. If a size is explicitly specified, it is an error to give surplus elements in an
initializer list. For example:

c ch ha ar r v v3 3[2 2] = { ´ a a´, ´ b b´, 0 0 }; / / error: too many initializers
c ch ha ar r v v4 4[3 3] = { ´ a a´, ´ b b´, 0 0 }; / / ok

If the initializer supplies too few elements,0 0 is assumed for the remaining array elements. For
example:

i in nt t v v5 5[8 8] = { 1 1, 2 2, 3 3, 4 4 };

is equivalent to

i in nt t v v5 5[] = { 1 1, 2 2, 3 3, 4 4 , 0 0, 0 0, 0 0, 0 0 };

Note that there is no array assignment to match the initialization:

v vo oi id d f f()
{

v v4 4 = { ´ c c´, ´ d d´, 0 0 }; / / error: no array assignment
}

When you need such assignments, use av ve ec ct to or r (§16.3) or av va al la ar rr ra ay y (§22.4) instead.
An array of characters can be conveniently initialized by a string literal (§5.2.2).

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

90 Pointers, Arrays, and Structures Chapter 5

5.2.2 String Literals [ptr.string.literal]

A string literal is a character sequence enclosed within double quotes:

" t th hi is s i is s a a s st tr ri in ng g"

A string literal contains one more character than it appears to have; it is terminated by the null char-
acter´ \ \0 0´ , with the value0 0. For example:

s si iz ze eo of f(" B Bo oh hr r")== 5 5

The type of a string literal is ‘‘array of the appropriate number ofc co on ns st t characters,’’ so" "B Bo oh hr r" " is
of typec co on ns st t c ch ha ar r[5 5] .

A string literal can be assigned to ac ch ha ar r* . This is allowed because in previous definitions of C
and C++ , the type of a string literal wasc ch ha ar r* . Allowing the assignment of a string literal to a
c ch ha ar r* ensures that millions of lines of C and C++ remain valid. It is, however, an error to try to
modify a string literal through such a pointer:

v vo oi id d f f()
{

c ch ha ar r* p p = " P Pl la at to o";
p p[4 4] = ´ e é ; / / error: assignment to const; result is undefined

}

This kind of error cannot in general be caught until run-time, and implementations differ in their
enforcement of this rule. Having string literals constant not only is obvious, but also allows imple-
mentations to do significant optimizations in the way string literals are stored and accessed.

If we want a string that we are guaranteed to be able to modify, we must copy the characters
into an array:

v vo oi id d f f()
{

c ch ha ar r p p[] = " Z Ze en no o"; / / p is an array of 5 char
p p[0 0] = ´ R Ŕ ; / / ok

}

A string literal is statically allocated so that it is safe to return one from a function. For example:

c co on ns st t c ch ha ar r* e er rr ro or r_ _m me es ss sa ag ge e(i in nt t i i)
{

/ / ...
r re et tu ur rn n " r ra an ng ge e e er rr ro or r";

}

The memory holdingr ra an ng ge e e er rr ro or r will not go away after a call ofe er rr ro or r_ _m me es ss sa ag ge e() .
Whether two identical character literals are allocated as one is implementation-defined (§C.1).

For example:

c co on ns st t c ch ha ar r* p p = " H He er ra ac cl li it tu us s";
c co on ns st t c ch ha ar r* q q = " H He er ra ac cl li it tu us s";

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.2.2 String Literals 91

v vo oi id d g g()
{

i if f (p p == q q) c co ou ut t << " o on ne e! \ \n n"; / / result is implementation-defined
/ / ...

}

Note that== compares addresses (pointer values) when applied to pointers, and not the values
pointed to.

The empty string is written as a pair of adjacent double quotes,"" , (and has the typec co on ns st t
c ch ha ar r[1 1]).

The backslash convention for representing nongraphic characters (§C.3.2) can also be used
within a string. This makes it possible to represent the double quote (") and the escape character
backslash (\ \) within a string. The most common such character by far is the newline character,
´ \ \n n´ . For example:

c co ou ut t<<" b be ee ep p a at t e en nd d o of f m me es ss sa ag ge e\ \a a\ \n n";

The escape character´ \ \a a´ is the ASCII characterB BE EL L (also known asalert), which causes some
kind of sound to be emitted.

It is not possible to have a ‘‘real’’ newline in a string:

" t th hi is s i is s n no ot t a a s st tr ri in ng g
b bu ut t a a s sy yn nt ta ax x e er rr ro or r"

Long strings can be broken by whitespace to make the program text neater. For example:

c ch ha ar r a al lp ph ha a[] = " a ab bc cd de ef fg gh hi ij jk kl lm mn no op pq qr rs st tu uv vw wx xy yz z"
" A AB BC CD DE EF FG GH HI IJ JK KL LM MN NO OP PQ QR RS ST TU UV VW WX XY YZ Z";

The compiler will concatenate adjacent strings, soa al lp ph ha a could equivalently have been initialized
by the single string:

" a ab bc cd de ef fg gh hi ij jk kl lm mn no op pq qr rs st tu uv vw wx xy yz zA AB BC CD DE EF FG GH HI IJ JK KL LM MN NO OP PQ QR RS ST TU UV VW WX XY YZ Z";

It is possible to have the null character in a string, but most programs will not suspect that there
are characters after it. For example, the string" "J Je en ns s\ \0 00 00 0M Mu un nk k" " will be treated as" "J Je en ns s" " by stan-
dard library functions such ass st tr rc cp py y() ands st tr rl le en n() ; see §20.4.1.

A string with the prefixL L, such asL L" a an ng gs st t" , is a string of wide characters (§4.3, §C.3.3). Its
type isc co on ns st t w wc ch ha ar r_ _t t[] .

5.3 Pointers into Arrays[ptr.into]

In C++, pointers and arrays are closely related. The name of an array can be used as a pointer to its
initial element. For example:

i in nt t v v[] = { 1 1, 2 2, 3 3, 4 4 };
i in nt t* p p1 1 = v v; / / pointer to initial element (implicit conversion)
i in nt t* p p2 2 = &v v[0 0] ; / / pointer to initial element
i in nt t* p p3 3 = &v v[4 4] ; / / pointer to one beyond last element

or graphically:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

92 Pointers, Arrays, and Structures Chapter 5

p p1 1 p p2 2 p p3 3

. .
1 1

. .
2 2

. .
3 3

. .
4 4 . .v v:

Taking a pointer to the element one beyond the end of an array is guaranteed to work. This is
important for many algorithms (§2.7.2, §18.3). However, since such a pointer does not in fact point
to an element of the array, it may not be used for reading or writing. The result of taking the
address of the element before the initial element is undefined and should be avoided. On some
machine architectures, arrays are often allocated on machine addressing boundaries, so ‘‘one before
the initial element’’ simply doesn’t make sense.

The implicit conversion of an array name to a pointer to the initial element of the array is exten-
sively used in function calls in C-style code. For example:

e ex xt te er rn n " C C" i in nt t s st tr rl le en n(c co on ns st t c ch ha ar r*) ; / / from <string.h>

v vo oi id d f f()
{

c ch ha ar r v v[] = " A An nn ne em ma ar ri ie e";
c ch ha ar r* p p = v v; / / implicit conversion of char[] to char*
s st tr rl le en n(p p) ;
s st tr rl le en n(v v) ; / / implicit conversion of char[] to char*
v v = p p; / / error: cannot assign to array

}

The same value is passed to the standard library functions st tr rl le en n() in both calls. The snag is that it
is impossible to avoid the implicit conversion. In other words, there is no way of declaring a func-
tion so that the arrayv v is copied when the function is called. Fortunately, there is no implicit or
explicit conversion from a pointer to an array.

The implicit conversion of the array argument to a pointer means that the size of the array is lost
to the called function. However, the called function must somehow determine the size to perform a
meaningful operation. Like other C standard library functions taking pointers to characters,
s st tr rl le en n() relies on zero to indicate end-of-string;s st tr rl le en n(p p) returns the number of characters up to
and not including the terminating0 0. This is all pretty low-level. The standard libraryv ve ec ct to or r
(§16.3) ands st tr ri in ng g (Chapter 20) don’t suffer from this problem.

5.3.1 Navigating Arrays [ptr.navigate]

Efficient and elegant access to arrays (and similar data structures) is the key to many algorithms
(see §3.8, Chapter 18). Access can be achieved either through a pointer to an array plus an index or
through a pointer to an element. For example, traversing a character string using an index,

v vo oi id d f fi i(c ch ha ar r v v[])
{

f fo or r (i in nt t i i = 0 0; v v[i i]!= 0 0; i i++) u us se e(v v[i i]) ;
}

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.3.1 Navigating Arrays 93

is equivalent to a traversal using a pointer:

v vo oi id d f fp p(c ch ha ar r v v[])
{

f fo or r (c ch ha ar r* p p = v v; * p p!= 0 0; p p++) u us se e(* p p) ;
}

The prefix* operator dereferences a pointer so that* p p is the character pointed to byp p, and ++
increments the pointer so that it refers to the next element of the array.

There is no inherent reason why one version should be faster than the other. With modern com-
pilers, identical code should be generated for both examples (see §5.9[8]). Programmers can
choose between the versions on logical and aesthetic grounds.

The result of applying the arithmetic operators+, - , ++, or -- to pointers depends on the type
of the object pointed to. When an arithmetic operator is applied to a pointerp p of type T T* , p p is
assumed to point to an element of an array of objects of typeT T; p p+1 1 points to the next element of
that array, andp p- 1 1 points to the previous element. This implies that the integer value ofp p+1 1 will
bes si iz ze eo of f(T T) larger than the integer value ofp p. For example, executing

#i in nc cl lu ud de e <i io os st tr re ea am m>

i in nt t m ma ai in n ()
{

i in nt t v vi i[1 10 0] ;
s sh ho or rt t v vs s[1 10 0] ;

s st td d: : c co ou ut t << &v vi i[0 0] << ´ ´ << &v vi i[1 1] << ´ \ \n n´;
s st td d: : c co ou ut t << &v vs s[0 0] << ´ ´ << &v vs s[1 1] << ´ \ \n n´;

}

produced

0 0x x7 7f ff ff fa ae ef f0 0 0 0x x7 7f ff ff fa ae ef f4 4
0 0x x7 7f ff ff fa ae ed dc c 0 0x x7 7f ff ff fa ae ed de e

using a default hexadecimal notation for pointer values. This shows that on my implementation,
s si iz ze eo of f(s sh ho or rt t) is 2 2 ands si iz ze eo of f(i in nt t) is 4 4.

Subtraction of pointers is defined only when both pointers point to elements of the same array
(although the language has no fast way of ensuring that is the case). When subtracting one pointer
from another, the result is the number of array elements between the two pointers (an integer). One
can add an integer to a pointer or subtract an integer from a pointer; in both cases, the result is a
pointer value. If that value does not point to an element of the same array as the original pointer or
one beyond, the result of using that value is undefined. For example:

v vo oi id d f f()
{

i in nt t v v1 1[1 10 0] ;
i in nt t v v2 2[1 10 0] ;

i in nt t i i1 1 = &v v1 1[5 5]-& v v1 1[3 3] ; / / i1 = 2
i in nt t i i2 2 = &v v1 1[5 5]-& v v2 2[3 3] ; / / result undefined

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

94 Pointers, Arrays, and Structures Chapter 5

i in nt t* p p1 1 = v v2 2+2 2; / / p1 = &v2[2]
i in nt t* p p2 2 = v v2 2- 2 2; / / *p2 undefined

}

Complicated pointer arithmetic is usually unnecessary and often best avoided. Addition of pointers
makes no sense and is not allowed.

Arrays are not self-describing because the number of elements of an array is not guaranteed to
be stored with the array. This implies that to traverse an array that does not contain a terminator the
way character strings do, we must somehow supply the number of elements. For example:

v vo oi id d f fp p(c ch ha ar r v v[] , u un ns si ig gn ne ed d i in nt t s si iz ze e)
{

f fo or r (i in nt t i i=0 0; i i<s si iz ze e; i i++) u us se e(v v[i i]) ;

c co on ns st t i in nt t N N = 7 7;
c ch ha ar r v v2 2[N N] ;
f fo or r (i in nt t i i=0 0; i i<N N; i i++) u us se e(v v2 2[i i]) ;

}

Note that most C++ implementations offer no range checking for arrays. This array concept is
inherently low-level. A more advanced notion of arrays can be provided through the use of classes;
see §3.7.1.

5.4 Constants[ptr.const]

C++ offers the concept of a user-defined constant, ac co on ns st t, to express the notion that a value doesn’t
change directly. This is useful in several contexts. For example, many objects don’t actually have
their values changed after initialization, symbolic constants lead to more maintainable code than do
literals embedded directly in code, pointers are often read through but never written through, and
most function parameters are read but not written to.

The keywordc co on ns st t can be added to the declaration of an object to make the object declared a
constant. Because it cannot be assigned to, a constant must be initialized. For example:

c co on ns st t i in nt t m mo od de el l = 9 90 0; / / model is a const
c co on ns st t i in nt t v v[] = { 1 1, 2 2, 3 3, 4 4 }; / / v[i] is a const
c co on ns st t i in nt t x x; / / error: no initializer

Declaring somethingc co on ns st t ensures that its value will not change within its scope:

v vo oi id d f f()
{

m mo od de el l = 2 20 00 0; / / error
v v[2 2]++; / / error

}

Note thatc co on ns st t modifies a type; that is, it restricts the ways in which an object can be used, rather
than specifying how the constant is to be allocated. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.4 Constants 95

v vo oi id d g g(c co on ns st t X X* p p)
{

/ / can’t modify *p here
}

v vo oi id d h h()
{

X X v va al l; / / val can be modified
g g(& v va al l) ;
/ / ...

}

Depending on how smart it is, a compiler can take advantage of an object being a constant in sev-
eral ways. For example, the initializer for a constant is often (but not always) a constant expression
(§C.5); if it is, it can be evaluated at compile time. Further, if the compiler knows every use of the
c co on ns st t, it need not allocate space to hold it. For example:

c co on ns st t i in nt t c c1 1 = 1 1;
c co on ns st t i in nt t c c2 2 = 2 2;
c co on ns st t i in nt t c c3 3 = m my y_ _f f(3 3) ; / / don’t know the value of c3 at compile time
e ex xt te er rn n c co on ns st t i in nt t c c4 4; / / don’t know the value of c4 at compile time
c co on ns st t i in nt t* p p = &c c2 2; / / need to allocate space for c2

Given this, the compiler knows the values ofc c1 1 andc c2 2 so that they can be used in constant expres-
sions. Because the values ofc c3 3 andc c4 4 are not known at compile time (using only the information
available in this compilation unit; see §9.1), storage must be allocated forc c3 3 andc c4 4. Because the
address ofc c2 2 is taken (and presumably used somewhere), storage must be allocated forc c2 2. The
simple and common case is the one in which the value of the constant is known at compile time and
no storage needs to be allocated;c c1 1 is an example of that. The keyworde ex xt te er rn n indicates thatc c4 4 is
defined elsewhere (§9.2).

It is typically necessary to allocate store for an array of constants because the compiler cannot,
in general, figure out which elements of the array are referred to in expressions. On many
machines, however, efficiency improvements can be achieved even in this case by placing arrays of
constants in read-only storage.

Common uses forc co on ns st ts are as array bounds and case labels. For example:

c co on ns st t i in nt t a a = 4 42 2;
c co on ns st t i in nt t b b = 9 99 9;
c co on ns st t i in nt t m ma ax x = 1 12 28 8;

i in nt t v v[m ma ax x] ;

v vo oi id d f f(i in nt t i i)
{

s sw wi it tc ch h (i i) {
c ca as se e a a:

/ / ...

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

96 Pointers, Arrays, and Structures Chapter 5

c ca as se e b b:
/ / ...

}
}

Enumerators (§4.8) are often an alternative toc co on ns st ts in such cases.
The wayc co on ns st t can be used with class member functions is discussed in §10.2.6 and §10.2.7.
Symbolic constants should be used systematically to avoid ‘‘magic numbers’’ in code. If a

numeric constant, such as an array bound, is repeated in code, it becomes hard to revise that code
because every occurrence of that constant must be changed to make a correct update. Using a sym-
bolic constant instead localizes information. Usually, a numeric constant represents an assumption
about the program. For example,4 4 may represent the number of bytes in an integer,1 12 28 8 the num-
ber of characters needed to buffer input, and6 6. 2 24 4 the exchange factor between Danish kroner and
U.S. dollars. Left as numeric constants in the code, these values are hard for a maintainer to spot
and understand. Often, such numeric values go unnoticed and become errors when a program is
ported or when some other change violates the assumptions they represent. Representing assump-
tions as well-commented symbolic constants minimizes such maintenance problems.

5.4.1 Pointers and Constants [ptr.pc]

When using a pointer, two objects are involved: the pointer itself and the object pointed to. ‘‘Pre-
fixing’’ a declaration of a pointer withc co on ns st t makes the object, but not the pointer, a constant. To
declare a pointer itself, rather than the object pointed to, to be a constant, we use the declarator
operator* c co on ns st t instead of plain*. For example:

v vo oi id d f f1 1(c ch ha ar r* p p)
{

c ch ha ar r s s[] = " G Go or rm m";

c co on ns st t c ch ha ar r* p pc c = s s; / / pointer to constant
p pc c[3 3] = ´ g g´; / / error: pc points to constant
p pc c = p p; / / ok

c ch ha ar r * c co on ns st t c cp p = s s; / / constant pointer
c cp p[3 3] = ´ a a´; / / ok
c cp p = p p; / / error: cp is constant

c co on ns st t c ch ha ar r * c co on ns st t c cp pc c = s s; / / const pointer to const
c cp pc c[3 3] = ´ a a´; / / error: cpc points to constant
c cp pc c = p p; / / error: cpc is constant

}

The declarator operator that makes a pointer constant is* c co on ns st t. There is noc co on ns st t* declarator
operator, so ac co on ns st t appearing before the* is taken to be part of the base type. For example:

c ch ha ar r * c co on ns st t c cp p; / / const pointer to char
c ch ha ar r c co on ns st t* p pc c; / / pointer to const char
c co on ns st t c ch ha ar r* p pc c2 2; / / pointer to const char

Some people find it helpful to read such declarations right-to-left. For example, ‘‘c cp p is a c co on ns st t
pointer to ac ch ha ar r’’ and ‘‘ p pc c2 2 is a pointer to ac ch ha ar r c co on ns st t.’’

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.4.1 Pointers and Constants 97

An object that is a constant when accessed through one pointer may be variable when accessed
in other ways. This is particularly useful for function arguments. By declaring a pointer argument
c co on ns st t, the function is prohibited from modifying the object pointed to. For example:

c ch ha ar r* s st tr rc cp py y(c ch ha ar r* p p, c co on ns st t c ch ha ar r* q q) ; / / cannot modify *q

You can assign the address of a variable to a pointer to constant because no harm can come from
that. However, the address of a constant cannot be assigned to an unrestricted pointer because this
would allow the object’s value to be changed. For example:

v vo oi id d f f4 4()
{

i in nt t a a = 1 1;
c co on ns st t i in nt t c c = 2 2;
c co on ns st t i in nt t* p p1 1 = &c c; / / ok
c co on ns st t i in nt t* p p2 2 = &a a; / / ok
i in nt t* p p3 3 = &c c; / / error: initialization of int* with const int*
* p p3 3 = 7 7; / / try to change the value of c

}

It is possible to explicitly remove the restrictions on a pointer toc co on ns st t by explicit type conversion
(§10.2.7.1 and §15.4.2.1).

5.5 References[ptr.ref]

A referenceis an alternative name for an object. The main use of references is for specifying argu-
ments and return values for functions in general and for overloaded operators (Chapter 11) in par-
ticular. The notationX X& meansreference to X X. For example:

v vo oi id d f f()
{

i in nt t i i = 1 1;
i in nt t& r r = i i; / / r and i now refer to the same int
i in nt t x x = r r; / / x = 1

r r = 2 2; / / i = 2
}

To ensure that a reference is a name for something (that is, bound to an object), we must initialize
the reference. For example:

i in nt t i i = 1 1;
i in nt t& r r1 1 = i i; / / ok: r1 initialized
i in nt t& r r2 2; / / error: initializer missing
e ex xt te er rn n i in nt t& r r3 3; / / ok: r3 initialized elsewhere

Initialization of a reference is something quite different from assignment to it. Despite appear-
ances, no operator operates on a reference. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

98 Pointers, Arrays, and Structures Chapter 5

v vo oi id d g g()
{

i in nt t i ii i = 0 0;
i in nt t& r rr r = i ii i;
r rr r++; / / ii is incremented to 1
i in nt t* p pp p = &r rr r; / / pp points to ii

}

This is legal, butr rr r++ does not increment the referencer rr r; rather,++ is applied to ani in nt t that hap-
pens to bei ii i. Consequently, the value of a reference cannot be changed after initialization; it
always refers to the object it was initialized to denote. To get a pointer to the object denoted by a
referencer rr r, we can write&r rr r.

The obvious implementation of a reference is as a (constant) pointer that is dereferenced each
time it is used. It doesn’t do much harm thinking about references that way, as long as one remem-
bers that a reference isn’t an object that can be manipulated the way a pointer is:

1 1 i ii i:

&i ii i p pp p:

r rr r:

In some cases, the compiler can optimize away a reference so that there is no object representing
that reference at run-time.

Initialization of a reference is trivial when the initializer is an lvalue (an object whose address
you can take; see §4.9.6). The initializer for a ‘‘plain’’T T& must be an lvalue of typeT T.

The initializer for ac co on ns st t T T& need not be an lvalue or even of typeT T. In such cases,
[1] first, implicit type conversion toT T is applied if necessary (see §C.6);
[2] then, the resulting value is placed in a temporary variable of typeT T; and
[3] finally, this temporary variable is used as the value of the initializer.

Consider:

d do ou ub bl le e& d dr r = 1 1; / / error: lvalue needed
c co on ns st t d do ou ub bl le e& c cd dr r = 1 1; / / ok

The interpretation of this last initialization might be:

d do ou ub bl le e t te em mp p = d do ou ub bl le e(1 1) ; / / first create a temporary with the right value
c co on ns st t d do ou ub bl le e& c cd dr r = t te em mp p; / / then use the temporary as the initializer for cdr

A temporary created to hold a reference initializer persists until the end of its reference’s scope.
References to variables and references to constants are distinguished because the introduction of

a temporary in the case of the variable is highly error-prone; an assignment to the variable would
become an assignment to the– soon to disappear– temporary. No such problem exists for refer-
ences to constants, and references to constants are often important as function arguments (§11.6).

A reference can be used to specify a function argument so that the function can change the
value of an object passed to it. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.5 References 99

v vo oi id d i in nc cr re em me en nt t(i in nt t& a aa a) { a aa a++; }

v vo oi id d f f()
{

i in nt t x x = 1 1;
i in nc cr re em me en nt t(x x) ; / / x = 2

}

The semantics of argument passing are defined to be those of initialization, so when called,
i in nc cr re em me en nt t’s argumenta aa a became another name forx x. To keep a program readable, it is often best
to avoid functions that modify their arguments. Instead, you can return a value from the function
explicitly or require a pointer argument:

i in nt t n ne ex xt t(i in nt t p p) { r re et tu ur rn n p p+1 1; }

v vo oi id d i in nc cr r(i in nt t* p p) { (* p p)++; }

v vo oi id d g g()
{

i in nt t x x = 1 1;
i in nc cr re em me en nt t(x x) ; / / x = 2
x x = n ne ex xt t(x x) ; / / x = 3
i in nc cr r(& x x) ; / / x = 4

}

The i in nc cr re em me en nt t(x x) notation doesn’t give a clue to the reader thatx x’s value is being modified, the
way x x=n ne ex xt t(x x) and i in nc cr r(& x x) does. Consequently ‘‘plain’’ reference arguments should be used
only where the name of the function gives a strong hint that the reference argument is modified.

References can also be used to define functions that can be used on both the left-hand and
right-hand sides of an assignment. Again, many of the most interesting uses of this are found in the
design of nontrivial user-defined types. As an example, let us define a simple associative array.
First, we define structP Pa ai ir r like this:

s st tr ru uc ct t P Pa ai ir r {
s st tr ri in ng g n na am me e;
d do ou ub bl le e v va al l;

};

The basic idea is that as st tr ri in ng g has a floating-point value associated with it. It is easy to define a
function, v va al lu ue e() , that maintains a data structure consisting of oneP Pa ai ir r for each different string
that has been presented to it. To shorten the presentation, a very simple (and inefficient) implemen-
tation is used:

v ve ec ct to or r<P Pa ai ir r> p pa ai ir rs s;

d do ou ub bl le e& v va al lu ue e(c co on ns st t s st tr ri in ng g& s s)
/*

maintain a set of Pairs:
search for s, return its value if found; otherwise make a new Pair and return the default value 0

*/
{

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

100 Pointers, Arrays, and Structures Chapter 5

f fo or r (i in nt t i i = 0 0; i i < p pa ai ir rs s. s si iz ze e() ; i i++)
i if f (s s == p pa ai ir rs s[i i]. n na am me e) r re et tu ur rn n p pa ai ir rs s[i i]. v va al l;

P Pa ai ir r p p = { s s, 0 0 };
p pa ai ir rs s. p pu us sh h_ _b ba ac ck k(p p) ; / / add Pair at end (§3.7.3)

r re et tu ur rn n p pa ai ir rs s[p pa ai ir rs s. s si iz ze e()- 1 1]. v va al l;
}

This function can be understood as an array of floating-point values indexed by character strings.
For a given argument string,v va al lu ue e() finds the corresponding floating-point object (not the value
of the corresponding floating-point object); it then returns a reference to it. For example:

i in nt t m ma ai in n() / / count the number of occurrences of each word on input
{

s st tr ri in ng g b bu uf f;

w wh hi il le e (c ci in n>>b bu uf f) v va al lu ue e(b bu uf f)++;

f fo or r (v ve ec ct to or r<P Pa ai ir r>: : c co on ns st t_ _i it te er ra at to or r p p = p pa ai ir rs s. b be eg gi in n() ; p p!= p pa ai ir rs s. e en nd d() ; ++p p)
c co ou ut t << p p-> n na am me e << ": " << p p-> v va al l << ´ \ \n n´;

}

Each time around, thew wh hi il le e-loop reads one word from the standard input streamc ci in n into the string
b bu uf f (§3.6) and then updates the counter associated with it. Finally, the resulting table of different
words in the input, each with its number of occurrences, is printed. For example, given the input

a aa a b bb b b bb b a aa a a aa a b bb b a aa a a aa a

this program will produce:

a aa a: 5 5
b bb b: 3 3

It is easy to refine this into a proper associative array type by using a template class with the selec-
tion operator[] overloaded (§11.8). It is even easier just to use the standard librarym ma ap p (§17.4.1).

5.6 Pointer to Void[ptr.ptrtovoid]

A pointer of any type of object can be assigned to a variable of typev vo oi id d* , av vo oi id d* can be assigned
to anotherv vo oi id d* , v vo oi id d* s can be compared for equality and inequality, and av vo oi id d* can be explicitly
converted to another type. Other operations would be unsafe because the compiler cannot know
what kind of object is really pointed to. Consequently, other operations result in compile-time
errors. To use av vo oi id d* , we must explicitly convert it to a pointer to a specific type. For example:

v vo oi id d f f(i in nt t* p pi i)
{

v vo oi id d* p pv v = p pi i; / / ok: implicit conversion of int* to void*
* p pv v; / / error: can’t dereference void*
p pv v++; / / error: can’t increment void* (the size of the object pointed to is unknown)

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.6 Pointer to Void 101

i in nt t* p pi i2 2 = s st ta at ti ic c_ _c ca as st t<i in nt t*>(p pv v) ; / / explicit conversion back to int*

d do ou ub bl le e* p pd d1 1 = p pv v; / / error
d do ou ub bl le e* p pd d2 2 = p pi i; / / error
d do ou ub bl le e* p pd d3 3 = s st ta at ti ic c_ _c ca as st t<d do ou ub bl le e*>(p pv v) ; / / unsafe

}

In general, it is not safe to use a pointer that has been converted (‘‘cast’’) to a type that differs from
the type the object pointed to. For example, a machine may assume that everyd do ou ub bl le e is allocated
on an 8-byte boundary. If so, strange behavior could arise ifp pi i pointed to ani in nt t that wasn’t allo-
cated that way. This form of explicit type conversion is inherently unsafe and ugly. Consequently,
the notation used,s st ta at ti ic c_ _c ca as st t, was designed to be ugly.

The primary use forv vo oi id d* is for passing pointers to functions that are not allowed to make
assumptions about the type of the object and for returning untyped objects from functions. To use
such an object, we must use explicit type conversion.

Functions usingv vo oi id d* pointers typically exist at the very lowest level of the system, where real
hardware resources are manipulated. For example:

v vo oi id d* m my y_ _a al ll lo oc c(s si iz ze e_ _t t n n) ; / / allocate n bytes from my special heap

Occurrences ofv vo oi id d* s at higher levels of the system should be viewed with suspicion because they
are likely indicators of design errors. Where used for optimization,v vo oi id d* can be hidden behind a
type-safe interface (§13.5, §24.4.2).

Pointers to functions (§7.7) and pointers to members (§15.5) cannot be assigned tov vo oi id d* s.

5.7 Structures[ptr.struct]

An array is an aggregate of elements of the same type. As st tr ru uc ct t is an aggregate of elements of
(nearly) arbitrary types. For example:

s st tr ru uc ct t a ad dd dr re es ss s {
c ch ha ar r* n na am me e; / / "Jim Dandy"
l lo on ng g i in nt t n nu um mb be er r; / / 61
c ch ha ar r* s st tr re ee et t; / / "South St"
c ch ha ar r* t to ow wn n; / / "New Providence"
c ch ha ar r s st ta at te e[2 2] ; / / ’N’ ’J’
l lo on ng g z zi ip p; / / 7974

};

This defines a new type calleda ad dd dr re es ss s consisting of the items you need in order to send mail to
someone. Note the semicolon at the end. This is one of very few places in C++ where it is neces-
sary to have a semicolon after a curly brace, so people are prone to forget it.

Variables of typea ad dd dr re es ss s can be declared exactly as other variables, and the individual
memberscan be accessed using the. (dot) operator. For example:

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

102 Pointers, Arrays, and Structures Chapter 5

v vo oi id d f f()
{

a ad dd dr re es ss s j jd d;
j jd d. n na am me e = " J Ji im m D Da an nd dy y";
j jd d. n nu um mb be er r = 6 61 1;

}

The notation used for initializing arrays can also be used for initializing variables of structure types.
For example:

a ad dd dr re es ss s j jd d = {
" J Ji im m D Da an nd dy y",
6 61 1, " S So ou ut th h S St t",
" N Ne ew w P Pr ro ov vi id de en nc ce e", {´ N N´,´ J J´}, 7 79 97 74 4

};

Using a constructor (§10.2.3) is usually better, however. Note thatj jd d. s st ta at te e could not be initialized
by the string" "N NJ J" ". Strings are terminated by the character´ \ \0 0´ . Hence," "N NJ J" " has three characters
– one more than will fit intoj jd d. s st ta at te e.

Structure objects are often accessed through pointers using the-> (structure pointer derefer-
ence) operator. For example:

v vo oi id d p pr ri in nt t_ _a ad dd dr r(a ad dd dr re es ss s* p p)
{

c co ou ut t << p p-> n na am me e << ´ \ \n n´
<< p p-> n nu um mb be er r << ´ ´ << p p-> s st tr re ee et t << ´ \ \n n´
<< p p-> t to ow wn n << ´ \ \n n´
<< p p-> s st ta at te e[0 0] << p p-> s st ta at te e[1 1] << ´ ´ << p p-> z zi ip p << ´ \ \n n´;

}

Whenp p is a pointer,p p-> m m is equivalent to(* p p). m m.
Objects of structure types can be assigned, passed as function arguments, and returned as the

result from a function. For example:

a ad dd dr re es ss s c cu ur rr re en nt t;

a ad dd dr re es ss s s se et t_ _c cu ur rr re en nt t(a ad dd dr re es ss s n ne ex xt t)
{

a ad dd dr re es ss s p pr re ev v = c cu ur rr re en nt t;
c cu ur rr re en nt t = n ne ex xt t;
r re et tu ur rn n p pr re ev v;

}

Other plausible operations, such as comparison (== and !=), are not defined. However, the user
can define such operators (Chapter 11).

The size of an object of a structure type is not necessarily the sum of the sizes of its members.
This is because many machines require objects of certain types to be allocated on architecture-
dependent boundaries or handle such objects much more efficiently if they are. For example, inte-
gers are often allocated on word boundaries. On such machines, objects are said to have to be
aligned properly. This leads to ‘‘holes’’ in the structures. For example, on many machines,

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.7 Structures 103

s si iz ze eo of f(a ad dd dr re es ss s) is 2 24 4, and not2 22 2 as might be expected. You can minimize wasted space by sim-
ply ordering members by size (largest member first). However, it is usually best to order members
for readability and sort them by size only if there is a demonstrated need to optimize.

The name of a type becomes available for use immediately after it has been encountered and not
just after the complete declaration has been seen. For example:

s st tr ru uc ct t L Li in nk k {
L Li in nk k* p pr re ev vi io ou us s;
L Li in nk k* s su uc cc ce es ss so or r;

};

It is not possible to declare new objects of a structure type until the complete declaration has been
seen. For example:

s st tr ru uc ct t N No o_ _g go oo od d {
N No o_ _g go oo od d m me em mb be er r; / / error: recursive definition

};

This is an error because the compiler is not able to determine the size ofN No o_ _g go oo od d. To allow two
(or more) structure types to refer to each other, we can declare a name to be the name of a structure
type. For example:

s st tr ru uc ct t L Li is st t; / / to be defined later

s st tr ru uc ct t L Li in nk k {
L Li in nk k* p pr re e;
L Li in nk k* s su uc c;
L Li is st t* m me em mb be er r_ _o of f;

};

s st tr ru uc ct t L Li is st t {
L Li in nk k* h he ea ad d;

};

Without the first declaration ofL Li is st t, use ofL Li is st t in the declaration ofL Li in nk k would have caused a syn-
tax error.

The name of a structure type can be used before the type is defined as long as that use does not
require the name of a member or the size of the structure to be known. For example:

c cl la as ss s S S; / / ‘S’ is the name of some type

e ex xt te er rn n S S a a;
S S f f() ;
v vo oi id d g g(S S) ;
S S* h h(S S*) ;

However, many such declarations cannot be used unless the typeS S is defined:

v vo oi id d k k(S S* p p)
{

S S a a; / / error: S not defined; size needed to allocate

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

104 Pointers, Arrays, and Structures Chapter 5

f f() ; / / error: S not defined; size needed to return value
g g(a a) ; / / error: S not defined; size needed to pass argument
p p-> m m = 7 7; / / error: S not defined; member name not known

S S* q q = h h(p p) ; / / ok: pointers can be allocated and passed
q q-> m m = 7 7; / / error: S not defined; member name not known

}

A s st tr ru uc ct t is a simple form of ac cl la as ss s (Chapter 10).
For reasons that reach into the pre-history of C, it is possible to declare as st tr ru uc ct t and a non-

structure with the same name in the same scope. For example:

s st tr ru uc ct t s st ta at t { /* ... */ };
i in nt t s st ta at t(c ch ha ar r* n na am me e, s st tr ru uc ct t s st ta at t* b bu uf f) ;

In that case, the plain name (s st ta at t) is the name of the non-structure, and the structure must be
referred to with the prefixs st tr ru uc ct t. Similarly, the keywordsc cl la as ss s, u un ni io on n (§C.8.2), ande en nu um m (§4.8)
can be used as prefixes for disambiguation. However, it is best not to overload names to make that
necessary.

5.7.1 Type Equivalence [ptr.equiv]

Two structures are different types even when they have the same members. For example,

s st tr ru uc ct t S S1 1 { i in nt t a a; };
s st tr ru uc ct t S S2 2 { i in nt t a a; };

are two different types, so

S S1 1 x x;
S S2 2 y y = x x; / / error: type mismatch

Structure types are also different from fundamental types, so

S S1 1 x x;
i in nt t i i = x x; / / error: type mismatch

Everys st tr ru uc ct t must have a unique definition in a program (§9.2.3).

5.8 Advice[ptr.advice]

[1] Avoid nontrivial pointer arithmetic; §5.3.
[2] Take care not to write beyond the bounds of an array; §5.3.1.
[3] Use0 0 rather thanN NU UL LL L; §5.1.1.
[4] Usev ve ec ct to or r andv va al la ar rr ra ay y rather than built-in (C-style) arrays; §5.3.1.
[5] Uses st tr ri in ng g rather than zero-terminated arrays ofc ch ha ar r; §5.3.
[6] Minimize use of plain reference arguments; §5.5.
[7] Avoid v vo oi id d* except in low-level code; §5.6.
[8] Avoid nontrivial literals (‘‘magic numbers’’) in code. Instead, define and use symbolic con-

stants; §4.8, §5.4.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.9 Exercises 105

5.9 Exercises [ptr.exercises]

1. (∗1) Write declarations for the following: a pointer to a character, an array of 10 integers, a ref-
erence to an array of 10 integers, a pointer to an array of character strings, a pointer to a pointer
to a character, a constant integer, a pointer to a constant integer, and a constant pointer to an
integer. Initialize each one.

2. (∗1.5) What, on your system, are the restrictions on the pointer typesc ch ha ar r* , i in nt t* , andv vo oi id d* ?
For example, may ani in nt t* have an odd value? Hint: alignment.

3. (∗1) Uset ty yp pe ed de ef f to define the typesu un ns si ig gn ne ed d c ch ha ar r, c co on ns st t u un ns si ig gn ne ed d c ch ha ar r, pointer to integer,
pointer to pointer toc ch ha ar r, pointer to arrays ofc ch ha ar r, array of 7 pointers toi in nt t, pointer to an array
of 7 pointers toi in nt t, and array of 8 arrays of 7 pointers toi in nt t.

4. (∗1) Write a function that swaps (exchanges the values of) two integers. Usei in nt t* as the argu-
ment type. Write another swap function usingi in nt t& as the argument type.

5. (∗1.5) What is the size of the arrays st tr r in the following example:

c ch ha ar r s st tr r[] = " a a s sh ho or rt t s st tr ri in ng g";

What is the length of the string" "a a s sh ho or rt t s st tr ri in ng g" "?
6. (∗1) Define functionsf f(c ch ha ar r) , g g(c ch ha ar r&) , andh h(c co on ns st t c ch ha ar r&) . Call them with the arguments

´ a a´ , 4 49 9, 3 33 30 00 0, c c, u uc c, ands sc c, wherec c is a c ch ha ar r, u uc c is anu un ns si ig gn ne ed d c ch ha ar r, ands sc c is a s si ig gn ne ed d
c ch ha ar r. Which calls are legal? Which calls cause the compiler to introduce a temporary variable?

7. (∗1.5) Define a table of the names of months of the year and the number of days in each month.
Write out that table. Do this twice; once using an array ofc ch ha ar r for the names and an array for
the number of days and once using an array of structures, with each structure holding the name
of a month and the number of days in it.

8. (∗2) Run some tests to see if your compiler really generates equivalent code for iteration using
pointers and iteration using indexing (§5.3.1). If different degrees of optimization can be
requested, see if and how that affects the quality of the generated code.

9. (∗1.5) Find an example where it would make sense to use a name in its own initializer.
10. (∗1) Define an array of strings in which the strings contain the names of the months. Print those

strings. Pass the array to a function that prints those strings.
11. (∗2) Read a sequence of words from input. UseQ Qu ui it t as a word that terminates the input. Print

the words in the order they were entered. Don’t print a word twice. Modify the program to sort
the words before printing them.

12. (∗2) Write a function that counts the number of occurrences of a pair of letters in as st tr ri in ng g and
another that does the same in a zero-terminated array ofc ch ha ar r (a C-style string). For example,
the pair "ab" appears twice in "xabaacbaxabb".

13. (∗1.5) Define as st tr ru uc ct t D Da at te e to keep track of dates. Provide functions that readD Da at te es from
input, writeD Da at te es to output, and initialize aD Da at te ewith a date.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

106 Pointers, Arrays, and Structures Chapter 5

.

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

Section 5.9 Exercises 107

The C++ Programming Language, Third Editionby Bjarne Stroustrup. Copyright ©1997 by AT&T.
Published by Addison Wesley Longman, Inc. ISBN 0-201-88954-4. All rights reserved.

	Return to Contents
	5.1 Pointers
	5.2 Arrays
	5.3 Pointers into Arrays
	5.4 Constants
	5.5 References
	5.6 Pointer to Void
	5.7 Structures
	5.8 Advice

	buy now:

