
Digital Predictive Current Control of
Induction Machines

Soren John Henriksen, BE(Hons 1)

March 2001

A thesis submitted to embody the research carried
out to fulfil the requirements for the degree of:

Master Of Engineering

in Electrical Engineering

at The University of Newcastle

New South Wales, Australia

ii

Declaration

I hereby certify that the work embodied in this thesis is the
result of original research and has not been submitted for a
higher degree to any other University or Institution.

Soren John Henriksen, BE(Hons 1)

March 2001

iii

Acknowledgements

There are a number of people I would like to thank for their contribution to the progress
of this project. Dr. Robert Betz and Dr Brian Cook offered the original concept, and
supervised the course of the research.

This project required considerable hardware construction and modification. Peter
McLauchlan and Tim Wylie were a great help in this regard.

Professor Graham Goodwin, and the Centre for Integrated Dynamics and Control
(CIDAC) was a great help in terms of resources and expertise. My fellow postgraduates
and workers at CIDAC have also been of assistance, both technically, and in the less
technical aspects of postgraduate life.

Finally, I must thank my family for their perseverance through the duration of this
project.

Contents

Abstract viii

1 Introduction 1
1.1 Induction Machine Control . 1
1.2 Overview . 2
1.3 Key Contributions . 2
1.4 Publications . 3

2 Survey of Prior Work 5
2.1 Introduction . 5
2.2 Machine Control Overview . 5

2.2.1 Scalar Control . 5
2.2.2 Vector Control . 6
2.2.3 Direct Torque Control . 9
2.2.4 Power Converter Topology . 13

2.3 Current Control Issues . 14
2.3.1 Performance Metrics . 14
2.3.2 Modulation Methods . 16
2.3.3 Inverter Dead Time . 19

2.4 Existing Control Schemes . 20
2.4.1 Stationary Frame PI Control . 20
2.4.2 Rotating Frame PI Control . 22
2.4.3 State Feedback . 25
2.4.4 Hysteresis Controllers . 27
2.4.5 Predictive Controllers . 33
2.4.6 Artificial Intelligence Approaches 40

2.5 Conclusions . 42

3 Current Control 43
3.1 Introduction . 43
3.2 The Predictive Controller . 43

3.2.1 The Model . 43
3.2.2 Output Switching Pattern . 49
3.2.3 Back-emf Estimation . 51
3.2.4 The Controller . 51

3.3 Output Considerations . 53
3.3.1 PWM Generation . 54
3.3.2 Voltage Limiting . 58

3.4 Inductance Estimation . 62

v

3.4.1 Quarter-Cycle Method . 62
3.4.2 Estimation Sampling Alternatives 67
3.4.3 Full-Cycle Inductance Estimator 68

3.5 Conclusions . 73

4 Controller Analysis 75
4.1 Introduction . 75
4.2 Standard Controller Performance . 75

4.2.1 System Transfer Function . 77
4.2.2 Stability Analysis . 77
4.2.3 Tracking Performance . 81

4.3 Time-Variations in Back-emf . 85
4.3.1 Back-emf Extrapolation . 88
4.3.2 Rotation Feed-forward . 91
4.3.3 Observer Based Rotational Adjustment 97

4.4 Inclusion of Winding Resistance . 110
4.4.1 Under-modelling Errors . 110
4.4.2 Compensation for Resistance Effects 113

4.5 Conclusions . 115

5 Controller Implementation 117
5.1 Introduction . 117
5.2 System Architecture . 117
5.3 Data Acquisition . 119

5.3.1 Connection Scheme . 119
5.3.2 Communications Protocol . 120
5.3.3 Sample Timing and Acquisition . 123

5.4 PWM Generation . 124
5.4.1 Switching Generator Structure . 125
5.4.2 Dead Time Issues . 126

5.5 Controller Design . 129
5.5.1 The DSPs . 129
5.5.2 EPLD Interface . 131

5.6 The Controller Software . 132
5.6.1 Controller Variables . 132
5.6.2 The Main Loop . 133
5.6.3 Torque Controller . 134
5.6.4 Current Control . 134
5.6.5 Space-Vector Modulation . 135

5.7 Controller Performance . 136
5.7.1 Back-Emf prediction . 137
5.7.2 Current Tracking . 138
5.7.3 Inductance Estimation . 140

5.8 Conclusions . 141

6 Hardware Implementation 145
6.1 Introduction . 145
6.2 Physical Structure . 145
6.3 Hardware Implementation issues . 146

vi

6.3.1 Duty Cycle . 146
6.3.2 Switching times . 148
6.3.3 Inductance estimation . 149

6.4 Computational Architecture . 149
6.4.1 Computational Structure . 150
6.4.2 ALU Structure . 152
6.4.3 ALU Control . 155
6.4.4 ALU Operation . 158

6.5 Sequencing Architecture . 160
6.5.1 State Machine Implementation Issues 160
6.5.2 The Microcoded State Machine . 161
6.5.3 Microcode Assembler . 165

6.6 Additional Calculation Hardware . 174
6.6.1 Loop Counter . 174
6.6.2 Multiplication . 174
6.6.3 Division . 176
6.6.4 Inductance Estimator . 176

6.7 The Current Controller . 179
6.7.1 Sample Acquisition . 179
6.7.2 Updating Equation . 180
6.7.3 Sector Determination . 180
6.7.4 Switching Times . 181

6.8 Controller Performance . 182
6.9 Conclusions . 184

7 Conclusions & Further Work 185
7.1 Conclusions . 185
7.2 Suggestions for Further Work . 186

A DSP Implementation Code 187
A.1 Introduction . 187
A.2 Software Description . 187

A.2.1 cc1.c . 187
A.2.2 c iface.c . 192
A.2.3 hwdefs.h . 195
A.2.4 iface.h . 195
A.2.5 iface.c . 195
A.2.6 m serial.h . 196
A.2.7 m serial.c . 196
A.2.8 p iface.h . 196
A.2.9 p iface.c . 197

A.3 Data Acquisition Firmware . 199
A.3.1 inp8k.gdf . 201
A.3.2 if c31.gdf . 202
A.3.3 inp stg.gdf . 204
A.3.4 da ctrl.tdf . 205
A.3.5 gr2bin.tdf . 205
A.3.6 if dec12.tdf . 205
A.3.7 lim mux.tdf . 206

vii

A.3.8 linktrip.tdf . 206
A.3.9 p div.tdf . 206
A.3.10 rx seq.tdf . 206
A.3.11 scompare.tdf . 207
A.3.12 ser in.tdf . 207

A.4 Modulation Firmware . 210
A.4.1 out stg.gdf . 210
A.4.2 dead.tdf . 211
A.4.3 dead cmp.tdf . 211
A.4.4 dead tme.tdf . 211
A.4.5 out ltch.tdf . 212
A.4.6 pwmst.tdf . 212
A.4.7 swgen.tdf . 213

B Hardware Implementation Details 215
B.1 Introduction . 215
B.2 Altera Design Files . 215

B.2.1 if vsd.gdf . 217
B.2.2 if186.gdf . 218
B.2.3 inp stg.gdf . 219
B.2.4 pwm.gdf . 220
B.2.5 vsd1.gdf . 221
B.2.6 vsdtop.gdf . 222
B.2.7 aalu.tdf . 223
B.2.8 extmux.tdf . 224
B.2.9 if dec.tdf . 224
B.2.10 lest.tdf . 225
B.2.11 mcon.tdf . 225
B.2.12 pulselen.tdf . 226
B.2.13 pwmlatch.tdf . 227

B.3 Microcode Source Code . 227
B.3.1 ccprog.vmc . 227

B.4 The Microcode Compiler . 230
B.4.1 vsdc.cpp . 230

Bibliography 239

viii

Abstract

This thesis presents the design of an induction machine current controller that may be
implemented entirely in digital hardware. In the past, machine controllers have either
been limited to the use of analogue circuitry, or require some form of microprocessor
device. The design described in this thesis has been implemented in a single EPLD
(Erasable-Programmable Logic Device), and would be suitable for implementation in an
ASIC (Application Specific Integrated Circuit). The hardware current controller allows
high switching frequencies with only modest external processing power.

In order to build a controller in hardware, a suitable algorithm must first be found.
This thesis surveys a number of methods, and details a constant-switching frequency
predictive control algorithm. Using a stationary reference frame, the control equations
are sufficiently simple computationally that a hardware approach is feasible. In order to
validate the performance of the controller equations, a theoretical analysis, simulation
and experimental results are presented.

Although the basic controller algorithm is not new, this thesis presents a number of
extensions to improve its performance and stability. This includes an effective leakage
inductance estimator, and a back-emf predictor that does not incur stability penalties.
This overcomes a traditional shortcoming of stationary-frame controllers. The result is
a controller that does not require any machine parameters to be supplied.

Along with a DSP-based version of the controller, a design architecture is shown for
a completely hardware implementation. This uses a microcoded state-machine approach
to construct the controller in an efficient and flexible manner. The final controller is
capable of control rates of up to 20kHz using a commonly-available logic device.

As part of the thesis, simulation and experimental results are presented to demon-
strate the performance of the algorithm. These results demonstrate that the controller
operates effectively in a practical environment.

1

Chapter 1

Introduction

1.1 Induction Machine Control

Induction motors offer a number of advantages over the alternate types of electrical
machines. They have found widespread use in a wide variety of applications because
of their mechanical durability and relatively low cost. Most industrial fans, pumps and
compressors use this type of machine.

In the past, despite their higher cost and lower reliability, DC machines have been
favoured for applications where good control over the machine is required. This is because
it has been easier to control the output torque of that type of machine. In most induction
machine applications, little effort has been taken to accurately control the operation of
the machine. For example, fans or pumps may be operated continuously at the rated
voltage.

However, the development of vector control of induction machines through the 1970s
led to a new range of applications for this type of machine. By decoupling the control
of the machine flux and torque, vector control provides induction machines with similar
control properties to DC machines.

There is now a great interest in induction machines for servo-type applications where
precise control is required. Many examples are found in robotics and manufacturing. As
the price of power electronics and control equipment decreases, the benefits of improved
control may also be passed onto the areas where it was previously not seen as sufficiently
important.

A variety of methods have been proposed for the control of induction machines. These
generally fall into one of two categories:

• Direct torque control, where torque control of the machine is provided in a single
control loop.

• Cascaded control, where a torque controller is designed using a stator current con-
trol loop.

2 CHAPTER 1. INTRODUCTION

These methods each have their advantages, as described in the following chapter. The
focus of this thesis is the current control loop of the cascaded control architecture.

1.2 Overview

The body of this thesis is composed of five chapters. The contents of these are:

• Chapter two is a discussion of prior work in the area of induction machine control.
This includes a brief overview of torque control methods, followed by analysis of a
number of proposed current control schemes.

• In chapter three, a constant switching frequency predictive current controller is
described. This includes the development of the model, along with parameter
estimation.

• Following the presentation of the controller, it’s performance is analysed from a
theoretical viewpoint. Stability analysis is performed, along with sensitivity to pa-
rameter and model error. In addition, modifications are proposed to the controller
in the light of the analysis.

• Chapter five includes additional details about the implementation of the predictive
controller. A significant portion of this involves the development of hardware for
data acquisition and pulse-width modulation.

• The final chapter presents an alternate implementation of the controller. This ver-
sion is designed to fit in a single EPLD (Erasable-Programmable Logic Device). The
result is a digital predictive current controller implemented completely in hardware.

1.3 Key Contributions

The algorithm presented in this thesis was developed out of the work of Betz and Cook[3].
Beyond this, the project has involved new work in a number of different aspects. These
include:

• Additional analysis of the validity of the machine model.

• Development of a numerically efficient predictive current controller and PWM gen-
erator.

• Development of a new inductance estimator.

• Theoretical analysis of the controller.

• Analysis of resistance effects.

• Back-emf prediction schemes to overcome controller limitations.

1.4. Publications 3

• Development of the sampling system and pulse-width modulation firmware.

• Implementation of the current, torque, speed and position controllers in software.

• Altering the control algorithm for computational efficiency.

• Design and implementation of an EPLD version of the controller.

1.4 Publications

The following publications are a direct result of the research leading to this thesis:

• R.E. Betz, B.J. Cook, and S.J. Henriksen. Digital current controller for three
phase voltage source inverters. In Proceedings of the IEEE IAS Annual Meeting,
New Orleans, October 1997.

• Soren J. Henriksen, Robert E. Betz, and Brian J. Cook. Digital hardware imple-
mentation of a current controller for im variable-speed drives. In Proceedings of the
IEEE IAS Annual Meeting, St. Louis, October 1998.

• Soren J. Henriksen, Robert E. Betz, and Brian J. Cook. Digital hardware imple-
mentation of a current controller for im variable-speed drives. IEEE Transactions
on Industry Applications, Vol. 35(No. 5):pp. 1021–1029, Sep 1999.

• Soren J. Henriksen, Robert E. Betz, and Brian J. Cook. Induction machine current
control in digital hardware. In Proceedings of the Australasian Universities Power
Engineering Conference, pages 557–562, Darwin, Septemper 1999.

5

Chapter 2

Survey of Prior Work

2.1 Introduction

This chapter investigates existing work in the area of machine control and, in particular,
machine current control. There are many different types of machines, applications and
controllers, but the focus of this thesis is on the medium to high performance control
of induction machines using conventional three phase inverters. In order to place the
review of current control in context, a brief review of the main induction machine control
techniques and architectures are presented.

In this chapter, a basic overview is given of machine control architectures. This
includes a brief description of some scalar and vector torque control methods. While the
content of the thesis is based around the current control loop, this is typically in the
context of torque control.

The focus then narrows to the current control loop, and known issues concerning this
aspect are presented. Following this, a selection of popular current control methods from
the literature are presented and reviewed.

2.2 Machine Control Overview

2.2.1 Scalar Control

In terms of control, a very popular approach for induction machines is the simple open-
loop V/f control. Although this performs poorly from a control point of view, it is quite
adequate for the majority of existing applications[8]. Its great advantage is in simplicity
and robustness.

The name V/f , or volts/frequency (also known as volts/hertz) is derived from the
linear relationship between the rectifier output voltage and frequency. There is no need
for a current control loop, or even the use of current measurements. Instead, the voltage
and frequency are specified in open-loop based on the required speed of operation.

In an induction machine, the air-gap flux is approximately equal to the integral of

6 CHAPTER 2. SURVEY OF PRIOR WORK

the voltage over time. For a constant flux magnitude, an increase in the voltage must be
compensated by a reduction in the period of the voltage sinusoid. As a result, the V/f
rule provides approximately constant machine flux over a range of operating points.

The controller is not suited to torque control, but rather an approximate speed con-
trol. The electrical rotation speed is set by the controller, and the mechanical rotation
speed is governed by the amount of slip. As the load increases, the slip increases, result-
ing in greater torque. This is an inherent proportional feedback loop, which is stable,
but suffers from poor regulation.

There are many shortcomings of this method. Apart from the variations in output
shaft speed with load, the flux regulation is also only approximate. As a result, there
have been many schemes[7] to address the shortcomings. However, these are not of great
interest in a modern context.

Prior to the widespread adoption of vector control, a number of other scalar control
methods were introduced. These controllers calculated set-points for the supply frequency
and either the voltage or current. This approach generally suffered from poor transient
performance on account of coupling between the control variables. For example, an
attempted variation in torque would also result in a change in the machine flux. Poor
modelling of this coupling necessarily leads to a sluggish controller.

2.2.2 Vector Control

The fundamental quantity to be controlled in an induction machine drive is the electrical
torque. This quantity is closely related to the mechanical dynamics, which are ultimately
to be controlled. In the case of a DC machine, the torque is proportional to the product
of the field and armature currents. The force is produced when the current of the ar-
mature flows through the magnetic flux generated by the field winding. During normal
operation, the field current is maintained as a constant, for a constant machine flux, and
the armature current is varied according to the required torque. This allows the torque
to be freely controlled without any associated additional dynamics.

Vector controllers provide a decoupling mechanism for induction machines that allow
the torque and flux to be independently manipulated in the same manner as a DC
machine. Conceptually, this can be achieved by placing the controller in a two-phase
reference frame that is rotating at a particular speed. In this reference frame, one axis
controls the flux, and the other the torque. The difficulty in vector control is correctly
aligning the reference frame over time.

A diagram, showing the state of a vector controller, is shown in Figure 2.1. This
diagram represents the state of the machine at an instant in time. The vectors indicate
the directions and magnitudes of the currents and fluxes within the machine at that time.
In Figure 2.1, two sets of axes are shown. One is the stationary d−q axis, and the other is
one rotating at the electrical rotation speed, and aligned with the rotor flux. The vector
controller operates in this rotating axis, and controls the stator current components ids

2.2. Machine Control Overview 7

qr

si

qs

iqs

ids
rψ

ds

dr

Figure 2.1: Machine flux and current vectors.

and iqs

The torque equation for an induction machine may be expressed as,

Te =
3
2
Ppψ̄m × īr (2.1)

In the rotating coordinates, this cross-product is equal to the scalar product of ψmiqs.
Because of the alignment of the axes, the the flux is proportional to the other component
of the stator current, ids. For normal operation, ids is kept constant, to maintain the
machine magnetising flux, and iqs is varied to control the torque.

In order to operate the controller, it is necessary to convert the rotating coordinate
values into the stationary frame. The remainder of the problem is then one of current
control. This is the area to be addressed in this thesis. To perform the coordinate
transformation, it is necessary to know the angle of the machine rotor flux. There are
two basic methods for achieving the transformation, the direct method, and the indirect
method.

Direct Method

The direct method of vector control attempts to directly measure or estimate the machine
flux, and use this to determine the transformation angle. While direct flux measurements
are difficult physically, an estimate may instead be derived from the stator voltages and
currents. At the higher speed ranges, the flux estimate may be reliably estimated from
the integral of the stator voltage. However, this is subject to errors from harmonics, and
is not useful at lower speeds.

Due to the difficulty in reliably obtaining an estimate of the rotor flux direction, the
direct method of vector control is not commonly used. Instead, the indirect method has
gained popularity.

Indirect Method

Instead of attempting to directly estimate the angle of the rotor flux, the indirect method
of vector control relates the flux rotation to the slip frequency. This may be found by
considering the machine equivalent circuit, as shown in Figure 2.2.

8 CHAPTER 2. SURVEY OF PRIOR WORK

v

R RL L

L

+

-

ls lr

m
r dr

s ri i

i

qs

qs qr

dm

ω ψ

Figure 2.2: Induction machine equivalent d-q equivalent circuit. All values are referenced
to the stator.

This circuit is used to find expressions for the rotor flux as a function of the stator
currents. For both axes, the flux is given by,

ψr = Lmim + Llrir (2.2)

= Lmis + Lrir, (2.3)

where Lr = Llr + Lm is the rotor self-inductance. The voltages around the rotor loop
also provide the equations,

dψdr
dt

+Rridr + ωslψqr = 0 (2.4)

dψqr
dt

+Rriqr − ωslψdr = 0 (2.5)

where ωsl is the slip frequency. However, for the case of vector control, ψqr = 0, and ψdr
is a constant. These equations then simplify to,

Rridr = 0 (2.6)

Rriqr − ωslψdr = 0 (2.7)

Equation (2.3) may then be used to obtain results relating to the stator currents,

ids =
ψdr
Lm

(2.8)

ωsl =
(
Rr
Lm

)
Lmiqs
ψdr

=
(
Rr
Lm

)
iqs
ids

(2.9)

In addition, the torque equation from (2.1) may be expressed as,

Te =
3
2
Pp
L2
m

Lr
idsiqs (2.10)

The field oriented controller consists of these three final equations. Equations (2.8)
and (2.10) are used to determine the set-point current in the rotating frame, while equa-

2.2. Machine Control Overview 9

tion (2.9) is used to calculate the rotation of the frame with respect to the mechanical
shaft speed. The use of the slip equation is the essential difference from the direct method
of vector control. This estimate is used in conjunction with the shaft speed to provide
the correct axis transformation into stationary coordinates.

The indirect field oriented controller has a number of requirements. These are,

• Knowledge of the shaft rotation speed. Unfortunately, this requires additional
measurement hardware, and is typically provided by an incremental encoder on
the shaft. As an alternative, a number of schemes have been proposed to obtain
estimates of this from a soft-sensor[41], however this is still an open problem in the
low speed range[28].

• The magnetising flux, ψm. This value is essentially a set-point, and depends on
the design of the machine. For normal operation, the rated value may be used, but
it may be reduced in order to gain efficiency at low torque, or to exceed the rated
speed.

• The machine magnetising inductance, Lm, and rotor resistance, Lr, are required.
These parameters may be estimated from tests on the machine, but they do vary
according to the machine operating point. The inductance varies with the level of
flux, particularly when saturation is reached, while the resistance is temperature
dependent. In terms of correct operation, the ratio of the two terms, as used in
the slip equation is of particular importance. If this is in error, coupling occurs
between the torque and the level of magnetising flux.

This vector controller represents only a section of the machine control requirements.
Outer control loops are required for the target speed or position control, and an inner
loop is needed to achieve the set-point currents. The subject of this thesis is a controller
for this inner loop.

2.2.3 Direct Torque Control

Direct torque control(DTC) is a strategy that was developed to remove the need for sep-
arate torque and current controllers. Instead, the cascaded control structure is replaced
by a single torque controller. DTC controllers have been developed based on a number
of widely differing methods This section contains an overview of three basic approaches.

Direct Self-Control

Direct Self-Control (DSC) is a direct torque control method developed by Depenbrock[14]
in the mid 1980s. This method was specifically designed for high-power applications
where the switching frequency had to be minimised, with a maximum rate of about
300Hz.

10 CHAPTER 2. SURVEY OF PRIOR WORK

The basic idea of DSC is to regulate the machine flux with a feedback mechanism.
The air-gap flux is estimated through the integral of the machine line-to-line voltages,
on each of the three phases. Hysteresis comparators are then used to switch the output
devices based on the set-point flux. A diagram of the switching scheme is shown in
Figure 2.3. This figure shows the integration and switching for one phase of the inverter.

+
-

+V

-V

DC

DC

x3

ψ
ref

Figure 2.3: Direct self-control structure.

This is repeated for the other phases. For improved accuracy, the machine losses may
be modelled. This involves subtracting the voltage across the resistance term from the
terminal voltages. In particular, the low speed operation is improved by the additional
modelling.

This is a very simple scheme to implement in analogue electronics. It is less suited
to a digital implementation due to the added delays that would be necessary. The line
voltages and fluxes over time are shown in Figure 2.4. The resulting current is not

V

ψ

bc

bc

Figure 2.4: Voltage and flux waveforms for DSC.

sinusoidal, but Depenbrock claims that the harmonics are small, and unlikely to have a
significant effect on the machine performance.

In this form, the controller does not control the torque or speed, but rather just the
flux magnitude. Further control is added by superimposing pulse-width modulation of
a zero output voltage to reduce the average voltage magnitude. For torque control, the
present output torque is continuously monitored. The torque expression using the units

2.2. Machine Control Overview 11

from [14] is,

Tq =
3
2

(ψαaiβa − ψβaiαa). (2.11)

This may also be implemented in analogue hardware. Torque control is achieved by
switching in the zero voltage vector when the torque exceeds the set-point by a specified
hysteresis band, and then removing the zero vector when it is below the set-point.

A number of additional compensation features have been proposed to address the
limitations of this controller. These include compensation for flux estimation error at
lower frequencies and in the field weakening region. Overall, this design is similar in
concept to the hysteresis current controllers described in Section 2.4.4. As such, it shares
many of the benefits and drawbacks.

Table-Based

One of the early direct torque control strategies was proposed by Takahashi and Noguchi[44].
This approach uses a lookup table to determine the switching state. It is quite simple to
implement, requiring only analogue electronics and a ROM look-up table. A diagram of
the controller structure is shown in Figure 2.5.

v i

R

+

+

-

-
ψ

ROM Table

Cross Product

T
est

est

Tref

Figure 2.5: Direct torque controller.

The controller operates in a stationary 2-phase frame, with the conversions from the
three-phase measurements performed by analogue adders. The machine stator flux is
estimated by,

ψ =
∫
v dt−Rsi (2.12)

For lower speed operation, knowledge of the winding resistance is important, as this
contributes significantly to the terminal voltage.

The flux measurement is used in two ways. The angle of the flux is resolved into one
of six sectors by comparison between the direct and quadrature axis flux estimates. In

12 CHAPTER 2. SURVEY OF PRIOR WORK

addition, the flux magnitude is calculated, and compared against the desired flux in a
hysteresis block. The output of this hysteresis block changes sign when the flux exceeds
the normal operation bounds.

The machine torque is estimated from the cross product of the stator flux and stator
current. In this case, a three level hysteresis block is used to discretise the comparison
with the set-point torque. The third level allows better use of the inverter zero output
voltage vector.

A number of improvements have been proposed to address the limitations of this
method[24]. These provide better control of the switching frequency and ripple current.
This is achieved through adding an additional controller to provide greater use of zero
voltage vector. This vector is chosen subject to prediction of the rate of change of the
torque. These modifications are analogous to those that have been made to hysteresis
current controllers, as described in Section 2.4.4.

Constant Switching Frequency

A number of direct torque control methods have been developed that offer a constant
switching frequency[17, 24, 28]. These controllers have the basic operational behaviour
of a combined field-oriented controller and current controller. An early approach was
described by Habetler et al.[17].

This method is essentially a predictive controller, where the changes in flux and torque
are predicted ahead one cycle. The flux is estimated based on the integral of the terminal
voltage, with optional compensation for the stator resistance voltage drop. The torque
estimate is then derived from the flux and the measured current. The voltage vector for
the next cycle is then calculated by solving a quadratic equation to obtain the correct
flux and torque. When the inverter is incapable of supplying sufficient voltage to meet
the torque demand, the basic equations have no solution. When this occurs, a table
based approach is used to attempt to find the best feasible trajectory.

This type of direct torque control offers a number of advantages and disadvantages
over a cascaded torque and current controller. In terms of the architecture, the main
advantage is that it is possible to better handle the actuator saturation case. This is
when the inverter has insufficient capacity to track the reference. However, even in the
direct torque control case this involves significant complexity.

The cascaded architecture also has a number of advantages. The basic control vari-
ables, flux and torque, are closely related to the machine currents, so the control of
current is a natural objective. The advantage of a separate current loop is that good
current control performance may be achieved with very little knowledge of the machine
parameters. This means that a fast, robust linearising loop may be achieved with current
control. With the fast current tracking, the torque controller may have slower dynamics
to allow for the greater parameter dependence necessary for the torque control.

A further advantage of constructing a current control loop is that the machine currents

2.2. Machine Control Overview 13

are inherently limited by a parameter insensitive controller, reducing the possibility of
an over-current condition. Both the direct torque control and cascaded approaches offer
advantages, but this thesis focuses on the cascaded approach.

2.2.4 Power Converter Topology

The design of a conventional three-phase voltage source bridge converter is shown in
Figure 2.6. This consists of six switching devices and associated circuitry. They are

+V

-V

DC

DC

v

v

v

a

b

c

Figure 2.6: Bridge converter topology.

likely to be IGBT(Insulated Gate Bipolar Transistor) switches with free-wheeling diodes.

Although there are six switches, they are arranged in complementary pairs. At all
times, there can be at most one device on in each of the three legs, otherwise a short
circuit current will appear across the DC link. Normally one device is turned on, except
during a switching action. While switching, it is necessary to insert a “dead-time” where
neither device is turned on. This is to ensure that the first device stops conducting before
the other one starts.

With three legs, there are 23 = 8 possible switching states. Of these, two result in all
of the outputs being at the same potential. These are the zero voltage states. The other
six states provide unique non-zero output voltages.

The DC link voltage my be provided via a number of methods. The simplest is basic
diode rectification of the AC power supply. The disadvantage of this approach is the
distortion of the supply AC current. It also offers no return path for energy back to the
supply. These shortcomings may be overcome through the use of a second bridge circuit
as an active rectifier[8]. Such a rectifier may also be controlled using methods similar to
the current control presented in this thesis[33].

Alternatives

An alternative to the voltage source inverter is the current source inverter. These have
been less popular because of the asymmetric blocking characteristic of high frequency
power devices. The advantage of a current-fed inverter is that control is easier, and
regeneration possible in the popular topologies. However, it does have significant dis-
advantages. These include the necessity for a large inductance on the DC link, and

14 CHAPTER 2. SURVEY OF PRIOR WORK

capacitance on both the input and output AC sides. In terms of harmonic smoothing,
the inductive nature of the induction machine makes it more amenable to a voltage source
inverter.

Another class of switching strategies is formed by the soft-switched converters. This
style of converter is popular in switch-mode power supplies. In these converters, the
switching occurs while there is zero device current, thereby reducing the switching losses.
The basic approach is to use a resonant DC link (RDCL) which provides a pulsed DC link
voltage and current. The zero-crossing points may then be used for switching actions, as
shown in Figure 2.7.

VDC

Switching points

Figure 2.7: Resonant link DC voltage.

The great advantage of the resonant link converter is the reduced switching losses.
This reduction improves efficiency, and reduces heat-sinking problems. The reduction of
transients also improves device reliability and electromagnetic interference (EMI) prop-
erties. These attributes offer the resonant link converters a promising future[8].

The principal disadvantages of resonant link topologies are a higher harmonic content
in the load, and higher peak to average ratios for the voltages and currents. The higher
peaks force the devices to have higher ratings. There are also greater control restrictions,
as switching events can only occur at particular times. Despite some possible advan-
tages of resonant link approaches, this thesis concentrates on conventional voltage source
converters.

2.3 Current Control Issues

2.3.1 Performance Metrics

There is a great variety of current controllers that have been developed, and each have
different strengths[25]. As in most design decisions, there are trade-offs between different
aspects of the performance. Some of the desirable attributes are listed here.

• Good reference tracking. The current controller should be able to control the
machine current to a value that is very close to the reference specified. This may
be measured in terms of steady-state amplitude and phase, as well as transient
situations. Some defects, such as a linear phase error (time delay) are tolerable, as
they may be overcome through prediction in the outer-loop controller.

2.3. Current Control Issues 15

• Good dynamics over a wide frequency and amplitude range. The purpose of adding
the controller to the induction machine is likely to allow variable speed and torque
operation. As such, the controller must perform well over the full range of operation.

• Well defined switching frequency. The switching devices generate thermal losses on
each switching action, and must be rated for the maximum frequency of operation.
A constant switching frequency is desirable, as this means that the capacity of the
switching devices is well utilised across the range of operation.

• Well defined ripple current. The desired output current is typically sinusoidal,
with no ripple current. However, the ripple current is a necessary consequence of
a switched inverter. In most controller designs, there is a direct trade-off between
the switching frequency and the current ripple. A constant switching frequency
implies a varying ripple current, and a constant ripple current a varying switching
frequency.

• DC link utilisation. For a given available DC link voltage, a high maximum output
voltage should be achieved. This is to give the machine the widest possible range
of operation within the infrastructure available.

• Machine parameter independence. Good control of the machine will require a
knowledge of the dynamic parameters of the machine, such as its inductance and
resistance characteristics. However, these parameters are often not well known,
or are time varying. Because of this, it is desirable that these values are either
estimated, or not required for operation.

• Minimal outer-loop coupling. There are benefits that may be obtained by util-
ising information available from the outer control loop, particularly in terms of
behaviour in the saturation region. However extra coupling adds dependence on
the outer controller, and propagates any errors from that loop. One example is the
dependence on knowledge of the electrical rotation speed.

• Noise immunity. Inverters operate in an electrically noisy environment, and the
measurements are subject to errors as a result. The controller should minimise the
impact of these errors on the final output current.

• Suitability of implementation scheme. Controllers may be implemented either in
analogue electronics, digital electronics, or with microprocessors. The suitability of
the controller architectures varies according to the final implementation scheme. In
recent times, digital schemes have become more popular due to decreasing costs, and
better noise immunity. As a result, controllers suitable for digital implementation
are becoming more popular.

16 CHAPTER 2. SURVEY OF PRIOR WORK

2.3.2 Modulation Methods

In order to prevent very large converter losses, inverters can only generate a very restricted
set of output voltages. The continuous range of average voltages can only be obtained
by switching between the available voltage set.

The types of switching schemes may be classified as either open-loop, or closed-
loop[23]. The open-loop modulation schemes provide an approximation to the desired
average voltage without making use of any measurements. These typically operate with
a constant switching frequency. In contrast, the closed-loop schemes typically integrate
the switching strategy into the current controller. In this case, the switching events are
triggered by the measured values of machine current.

An number of closed-loop schemes are described in reference to current control in
Section 2.4, but this section gives a very brief overview of two popular open-loop methods.

Suboscillation Method

The suboscillation method uses a high frequency triangular carrier signal to determine
the PWM switching pattern. This carrier is shared by the three phases, but apart from
the common carrier, each phase is modulated separately.

The switching signal is supplied by a comparison between the carrier voltage, and the
reference voltage. If the reference voltage is greater than the ramp voltage, the associated
output leg is switched high, while if it is lower, the leg is switched low. This switching
involves controlling both devices in the leg, and inserting appropriate dead-time between
the two “on” states. The formation of the pattern is shown in Figure 2.8.

Reference Voltage

Triangular Carrier

Output Pattern

Figure 2.8: Suboscillation Method Output

This switching method was very convenient for use in analogue circuits, because it is
easily implemented with analogue ramp generators and comparators. Digital techniques
may also be used, but the complexity is greater. For a digital implementation, the
switching times are pre-computed, and loaded into timers.

The suboscillation generates an output voltage that is linearly proportional to the
reference. This may be confirmed by considering the geometry shown in Figure 2.9.

2.3. Current Control Issues 17

Reference Voltage

Output Pattern

t
T

V

V

V
-V

-V

r

s

dc

s

dc

s

Figure 2.9: Ramp-comparison output voltage calculation.

By the triangle geometry, the switching time will be defined as,

ts
T

=
Vr − (−Vs)
Vs − (−Vs)

=
Vr + Vs

2Vs
(2.13)

The average output voltage, Vav for one cycle is:

Vav =
1
T

(tsVdc − (T − ts)Vdc) (2.14)

=
(

2ts
T
− 1
)
Vdc (2.15)

= Vr
Vdc
Vs

(2.16)

Thus the average output PWM voltage is proportional to the reference voltage. In
practice, there is some error in the linearity, due to switching delays, time variation
in the reference, and other non-ideal phenomena. In particular, care must be taken to
prevent the slope of the reference exceeding the slope of the carrier, as this can result in
more switching events than expected.

One disadvantage of this approach is that it is limited to lower modulation indices.
The maximum modulation index is reached when the amplitude of the reference reaches
the amplitude of the carrier. This occurs at the relatively low modulation index of
π
4 = 0.79. In steady state, this problem may be overcome by adding a zero sequence
voltage to distort the reference signal. This effectively moves the zero voltage point
around to increase the maximum available peak voltage. However, this approach is
difficult to implement in situations apart from steady-state.

Space Vector PWM

The modulation index limitation of the suboscillation method arises because each of the
phases is modulated independently. The space-vector approach overcomes this through
calculating the switching values of the phases as a set. This allows it to increase the
maximum modulation index by optimally locating the neutral voltage with respect to
the DC link potential.

18 CHAPTER 2. SURVEY OF PRIOR WORK

The space-vector modulation technique is based on the concept of space vectors.
These are single voltage or current vectors that describe the magnitudes of all of the
phases. In the operation of an induction machine, these vectors will normally rotate with
time, at the synchronous frequency. The construction of a voltage space vector from
phase voltages is shown in Figure 2.10.

V

VV

V

V

V

V

a

a
b

b

c

c

av

Figure 2.10: Construction of a voltage space vector.

The aim of space vector modulation is to construct the reference average voltage, v̄av
by switching between the available voltage vectors from the inverter. For the case of the
standard bridge inverter, a total of seven unique voltage vectors are possible, including
the zero voltage vector, as shown in Figure 2.11.

V

V

V

V

V

V V

1

2

0

3

4

5 6

Vav

Figure 2.11: Space vectors available from the inverter.

Space vector modulation is performed across a sequence of fixed duration switching
intervals. During each of these intervals, a sequence of vectors are generated such that the
average voltage vector across the interval is equal to the reference. To obtain minimum
current ripple, the three vectors that are adjacent to the reference are chosen to be used
for the interval. This includes a zero vector, and two non-zero voltage vectors.

For the example illustrated, two possible switching sequences are shown in Figure 2.12.
The specific times t0, t1, and t2 are determined algebraically to obtain the correct average
voltage. The patterns shown provide the same average voltage across the cycle, but the
resulting ripple current will have different properties. Generally the modified pattern will
have a lower current ripple for a high modulation index, while the original method will
perform better for the lower indices. For the current controller that is to be presented,
the standard method has the added advantage that the zero voltage vector is applied at
the centre of the switching pattern. For maximum efficiency, the specific pattern can be

2.3. Current Control Issues 19

V

V

t t

t

t

2t

t

t

tt

tt

t
2 2

0

0

0 0

1

1

2

0

1

12

00

2

V7

V

V

0

0

V3

V3 V2

V2

V2

V3

V3

T

Space Vector Modulation

Modified Space Vector Modulation

Figure 2.12: Standard and modified space vector modulation.

chosen adaptively using the reference modulation index.

For a digital implementation, the space vector modulation method has a strong advan-
tage over the subcycle method in terms of the maximum attainable modulation index.
It well utilises the inverter capacity without the added complications of the subcycle
methods.

2.3.3 Inverter Dead Time

Semiconductor switching devices suffer from a range of non-ideal properties. One of
these is the the turn-off delay caused by the storage effect. This is a delay that occurs
between the signal to turn a device off, and the time when the device current stops
flowing. This value varies according to the device itself, the current being switched and
the temperature.

Under no circumstances may two devices on the same inverter leg be conducting at
once, so a lock-out time is introduced between the switch-off time of one device in a
leg, and the switch-on time of the other. If this delay could be exactly matched to the
device’s real switch-off time, there would be no impact on the performance of the inverter.
However, it is not practical to estimate the delay to sufficient accuracy, so usually the
worst-case plus a safety factor is allowed in the lock-out time.

The presence of a lock-out time with a safety factor means that during each switching
event there will be a period where neither device in the leg will be conducting. Effectively,
the output voltage is undetermined during that time, resulting in an error in the average
voltage across a switching cycle.

For an inductive load, some insight can be gained into the intermediate voltage level.
This may be done by considering the load to act as a current source, which will cause
a current to flow through one of the free-wheeling diodes in the half-bridge. The two
possible cases are shown in Figure 2.13. When the current is flowing into the inverter,

20 CHAPTER 2. SURVEY OF PRIOR WORK

+V

-V

+V

-V

(a) (b)

Figure 2.13: Current paths during lock-out period.

it must flow through the upper diode into the positive connection of the DC supply.
Conversely, for an outward current, the other diode conducts. This means that once the
active device has stopped conducting, the voltage during the lock-out time is determined
by the direction of the phase current.

This knowledge may be utilised to construct a compensater for the effects of the
lock-out time[23]. A significant problem is the estimation of the real turn-on and turn-off
delays, particularly as they are a function of the operating point. Methods have been
developed to address this[13], with the expected increase in modulator complexity.

However, the compensation schemes have problems when a switching event occurs
near a zero-crossing of the current in that phase. In this case, the compensation can act
in the incorrect direction, and even drive the current toward zero for a sustained period.
In this situation, the worst-case error is greater with the compensation enabled than
without it. This effect is evident in the results from the compensated modulators[13].

2.4 Existing Control Schemes

Many different current control schemes have been developed. These have been categorised
in various ways, such as linear and non-linear[25], and optimal/non-optimal[23]. Due to
the variants on each scheme, however, categorisation is difficult. In the following sections,
a critique of the most important published current control techniques will be presented.

2.4.1 Stationary Frame PI Control

A basic form of induction machine current control may be obtained by applying the
concepts used for DC machines. This uses a PI (Proportional-Integral) controller and
a PWM modulator. The principal advantages of this method were its simplicity of
implementation in analogue hardware, and the fixed switching-frequency of the switching
waveforms.

The basic implementation of this method is shown in Figure 2.14. This is essentially
the type of controller used on DC machines, except that in this case it is applied to

2.4. Existing Control Schemes 21

PI Controller

K
1
Ts

+ +
+

+

-

-

Ramp Modulator

Inverter

i a

Figure 2.14: A Stationary PI Controller.

each of the three phases. It can conveniently be divided into two sections; control error
calculation, and modulation of the output voltage.

To calculate the control error, the reference current is compared to the measured line
current on the inverter output. This error signal is used as the input to a conventional PI
regulator. The output of the PI regulator is the set-point for the average voltage to be
supplied by the inverter. The PI tuning parameters may be derived by ad-hoc methods
or by modelling the machine parameters.

In this controller, the ramp-comparison modulator as shown in Figure 2.15, has tradi-
tionally been used[32]. This forms the PWM switching output by an analogue comparison
between the reference voltage and a generated triangular ramp waveform, as described
in Section 2.3.2. This switching method is very convenient for use in analogue circuits,
because it is easily implemented with analogue ramp generators and comparators.

Reference Voltage

Output Pattern

Figure 2.15: Ramp-comparison modulation.

The design of PI induction machine controllers is well known[32, 9], and quite old. The
original advantage of this architecture was that it was simple to implement in analogue
hardware. However, with the advent of computationally powerful and low cost digital
systems, this is no longer as relevant. Analogue circuits suffered from a number of
problems, such as susceptibility to noise coupling and component drift. While the static
PI controller can be implemented digitally, as a digital implementation it does not have
a great advantage over its competitors in simplicity.

Another problem with this scheme is that it uses three controllers when there are
really only two independent current states, as ia + ib + ic = 0. Three solutions have
been used to overcome this[32]. One is to simply ignore one phase measurement, and
derive the third voltage set-point from the two controlled ones. As an alternative, the

22 CHAPTER 2. SURVEY OF PRIOR WORK

three-phase system can be transformed into an equivalent two-phase system, allowing
independent control. The final option, in the case of a delta connected machine, is to
synthesize a zero sequence current to decouple the three PI regulators.

These corrections detract from the simplicity of the original design, meaning that a
practical system requires additional complexity. A further implementation detail would
be the inclusion of anti-windup[16] on the PI regulators to prevent undesirable behaviour
when control saturation is encountered.

The principal failing of stationary PI regulators for induction machine control is
in performance. It has been known for some time that it inherently suffers from both
amplitude and phase tracking problems[42, 40]. Performance is only acceptable when the
modulation frequency is significantly higher than the harmonics present in the current
and current reference signals. A value of nine times the highest significant harmonic has
been suggested[46].

In addition to this, the PI controller gains need to be calculated on each machine
installation. Although optimal tuning methods are available, a typical ad-hoc approach
will leave the machine operating at sub-optimal performance. Performance and stability
problems also occur as a result of time-variations in machine parameter values.

2.4.2 Rotating Frame PI Control

The limitations of the stationary frame PI control led to the development of PI control
in rotating frames of reference[42]. The principal reason for adopting this approach was
to reduce the steady-state errors inherent in the stationary frame controllers. Prior to
this, the errors in the controllers had been handled using various approaches[40]. In
some cases, the compensation for the behaviour of the current control was built into
the torque controller. This involved significantly more complex modelling and a greater
dependency on the machine and load parameters. An alternative approach was to use
conventional phase lead compensation[16] in the controller. Again, this is difficult to
tune when parameters are uncertain.

Inverter

ii a,b,cα,β

Coordinate
Transform

3- φ

2- φ
to

2- φ

φ
3- φ
toPI

s

+

-

iref

Figure 2.16: PI Regulator operating in a synchronous frame.

The basic principle is to map the measured currents from the physical stationary
domain into a a synchronously rotating frame. In steady state, the reference currents

2.4. Existing Control Schemes 23

in this frame are DC quantities. Typically, the currents would also be converted to a
two-phase equivalent in the frame transformation. In this case, the two phase conversion
reduces complexity and avoids the problem of coupling between the phases. Once the
control signal is calculated, this is transformed back into the stationary co-ordinates
for PWM modulation. For an equivalent controller, the reference also requires a frame
transformation, but it may instead be convenient to supply the current references in the
rotating frame.

The measured currents may first be converted into a two-phase stationary frame, with
the standard transformation[37]:

[
id

iq

]
=

[
1 −1

2 −1
2

0
√

3
2 −

√
3

2

] ia

ib

ic

 (2.17)

The stationary to synchronous translation may then be performed:[
iα

iβ

]
=

[
cos θe − sin θe
sin θe cos θe

][
id

iq

]
, (2.18)

where θe represents the current angular displacement of the synchronous frame,

θe =
∫
wet dt (2.19)

The inverse transformations may then be used to convert the voltage back to the 3-phase
quantities.

In terms of an analogue implementation, the conversion between rotating and sta-
tionary reference frames imposed significant additional complexity. Unlike the 3-phase
to 2-phase conversion, multiplication was necessary, and the sin and cos unit vectors had
to be generated. Although the benefits of control in the rotating frame were known in
the early 1980’s, the additional complexity of the transformations restricted its adoption.

Another disadvantage of this scheme over the prior stationary frame controllers was
that it was more dependent on information from other controllers. It required knowledge
of the current angle of the electrical rotation frame. However, this is only a small com-
plexity problem as this information is generally available from the outer loop controllers.

Rotating Frame Control Mapped to the Stationary Frame

Following the work of Schauder and Caddy[42], Rowan and Kerkman[40] analysed the
comparative performance of control in the stationary and synchronous frames. They
showed that both stationary frame PI, and hysteresis controllers(§2.4.4) suffered from
load dependence and steady-state error problems.

In that paper, synchronous frame regulators were proposed as the solution, and to
offer superior performance over the older style regulators. The complexity issues were

24 CHAPTER 2. SURVEY OF PRIOR WORK

also addressed by offering an alternate implementation. In this case, the rotating frame
controller was re-mapped to operate in the stationary frame. This offered the performance
benefits of the rotating frame without the added cost of coordinate transformations.

The resulting transformed PI controller was expressed as:

vs = xs + kτ
(
irefs − is

)
(2.20)

d

dt
xs = k

(
irefs − is

)
+ jωexs. (2.21)

The only change from the standard PI controller is the inclusion of the jωexs term.
This amounts to a compensation adjustment for the rotation of the state variable xs over
time. The resulting controller is shown in Figure 2.17.

K

K

T

T

1

1

s

s

+

+

+

+
+

+

+

+

+

-

-

-
Inverter

i d

i q

i a,b,c

3- φ

2- φ
to

2- φ

3- φ
to

ωe

ref

ref

Figure 2.17: Synchronous PI controller mapped to stationary coordinates.

The advantage of performing the transformation on the controller is that rotating
frame transformations are not required on the voltages and currents. Instead, only the
3-phase to 2-phase conversions are required, which are much simpler.

However, the complexity is still higher than for the simple stationary PI regulator.
An additional two multipliers are required, and modified PI controllers must be used.
With the minor cost in complexity comes improved steady-state regulation and load
independence.

Lorenz[31] commented that the various forms of PI controller inherently use a can-
cellation technique. This paper states that the zero created by the controller is designed
to cancel the electrical time constant of the armature. While such a cancellation works
well when the parameters are exactly matched, there is a high sensitivity to parameter
variations. Later work[11] shows how the pole-zero cancellation degrades as the electrical
frequency increases. This degradation occurs regardless of the tuning if the synchronous
frequency approaches the regulator bandwidth. The consequence of this is that there are
both upper and lower bounds on the designed bandwidth.

2.4. Existing Control Schemes 25

Briz et al.[11] developed a modified scheme using complex vector methods to address
these additional shortcomings. However, this adds a further layer of complexity to the
basic PI design, and the method proposed is required to operate in the synchronous
frame.

2.4.3 State Feedback

As an improvement over PI control, in either a stationary frame or synchronous frame,
state-variable feedback may be implemented[25]. Lee et al.[29] demonstrated a state-
feedback implementation in the synchronous frame. They analysed the effect of both
the type of current regulator and the PWM strategy. The conclusion from their tests
was that the type of error compensation had a greater impact than the choice of PWM
method.

The state feedback approach involves modelling the motor in the synchronous frame
as a multivariable system,

ẋ = Ax+Bu+ Ed (2.22)

y = Cx, (2.23)

where

x =

ids

iqs

λdr

λqr

 , u =

[
vds

vqs

]
. (2.24)

A is a 4× 4 matrix of machine parameters, including resistance, inductance and angular
velocity components. Note that the inclusion of the velocity parameters in A renders
this a non-linear model. This is unlike the constant-coefficients typically associated with
state-space models. The rotor flux is considered a measurable disturbance, and included
in the d term.

Within the paper, a multivariable controller was developed using pole placement.
This involved developing an augmented state variable xn including an output error state,

xn =
[
i̇ds i̇qs ỹd ỹq

]T (2.25)

where ỹ represents the output error ỹ = y − yref . These additional states allow inte-
gral action in the controller, and the augmented reference will attempt to drive these
additional states to zero. The state feedback is then

un = Kxn (2.26)

26 CHAPTER 2. SURVEY OF PRIOR WORK

for the augmented system

ẋn = Âxn + B̂un. (2.27)

Using pole placement, a gain controller gain matrix K = [K1 K2] is found, where
K1 relates to the machine current states, and K2 to the augmented error states. These
matrices are each 2 × 2 in size, and depend on the machine parameters and rotational
speed. As such, they are time-varying quantities.

To improve performance, additional feed-forward action is added from the reference
and rotor flux disturbance. A diagram of the resulting controller is shown in Figure 2.18,

K

K

K K

1
s

+

+

+
+

+
+

-

i ref

ff2
ff1

2

1

Transforms

Inverter

Machine

Figure 2.18: State Variable Controller.

In addition to this control action, however, the rotor flux must be estimated. In this
case, a reduced order observer is used to estimate the flux based on measurements and
the machine parameters.

The performance comparison presented in[29] shows that the output ripple and track-
ing is indeed superior to the synchronous PI controller. However, some of this gain is
attributed to the use of space-vector modulation instead of the ramp-comparison method.

Overall, however, the results presented in this paper do not appear to show great
improvements over the synchronous PI design. The caveat on the results are:

1. The specific results are highly dependent on the specific machine and tuning pa-
rameters used.

2. The principal advantage of the state feedback approach over the synchronous PI
design is that the machine is better modelled in the controller design. However, this
is only of benefit if the parameters used are well known and stable. In practice,
there is no advantage in more precisely tuning a controller based on parameter
values if there is substantial error in the parameter estimates.

3. In the comparison presented in [29], the greatest improvement over the PI design
was in the transient response performance. In this case, the PI controller exhibited
oscillation after the transient. This behaviour is consistent with the effect of wind-

2.4. Existing Control Schemes 27

up in the PI integrator, and a standard anti-windup strategy[16] should remove
this defect.

4. The complexity of the state-feedback controller is much greater than that of the PI
regulator.

It would appear that unless the machine parameters are very well known, that the
additional complexity of the state-variable feedback approach, over the synchronous PI
regulator, is difficult to justify.

2.4.4 Hysteresis Controllers

The description of hysteresis controllers in the literature dates back to the 1970’s[39].
It has offered the advantage of being a very simple, robust design with good dynamic
performance.

In its simplest form, each of the three phases are controlled independently. A single
phase of this design in shown in Figure 2.19.

+

-

Inverter

i a

Figure 2.19: The simple hysteresis controller.

In continuous time, the measured current is compared to the reference current. The
inverter is then driven in the direction that will drive the current error in that phase
down in magnitude. This is really a very high gain proportional control. A hysteresis
block is added to force switching instead of operating the inverter in the analogue region.
The inverter also controls both devices in the leg, ensuring only one device is conducting
at a time, and that appropriate dead-time is inserted.

The size of the hysteresis band controls the output current ripple and, to some extent,
the switching frequency. An example of the type of output to be expected per phase is
shown in Figure 2.20. This shows the regulation in one phase, ignoring the effect of the
switching in the other phases.

In order to consider the combined effect of the switching in each phase, it is convenient
to view a switching diagram of the current vectors[12]. The measured currents and
inverter voltages are considered as vectors in a complex plane. Figure 2.21 shows an
example of a reference current, i∗, a measured current i, and the error vector ∆i = i∗− i.

Switching occurs when the magnitude of one of the phase currents reaches the hys-
teresis bounds. These bounds can be placed onto the diagram as lines perpendicular to
the axis they operate in. Figure 2.22(a) shows the limits for the a-phase.

28 CHAPTER 2. SURVEY OF PRIOR WORK

Reference Voltage

Output Pattern

Figure 2.20: Hysteresis controlled signal

Re

Im

a

b

c

i

i * i∆

Figure 2.21: Complex current vectors for the hysteresis controller.

Re

Im

a

i*

h h

A-A+

Re

Im

i

A-

C-

B-
A+

C+
B+

(b)(a)

Figure 2.22: Controller switching limits.

Figure 2.22(b) includes the switching points for all three phases. The aim of the
hysteresis control is to limit the output current to intersection of the regions for each
phase. This corresponds to the interior of the inner hexagon.

During operation, as the current reaches a limit line, that leg of the inverter changes
state. For example, if the current vector moves too far to the right in Figure 2.22(b), the
“A” leg of the inverter is switched to the negative state. During normal operation, a limit
cycle is reached, where the output current cycles around the interior of the hexagon.

Hysteresis Controller Behaviour

As an old control style there are many descriptions of the operating features of the
hysteresis controller[12, 9, 23, 38, 35]. Holtz[23] identified four main drawbacks:

2.4. Existing Control Schemes 29

1. Because of the independent design between phases, there is no coordination to make
use of the zero vectors. This causes unnecessary switching for low power outputs.

2. The tendency toward limit cycles also unnecessarily increases the switching fre-
quency.

3. Under some conditions, the current error reaches twice the limit value before cor-
rection.

4. Sub-harmonics are generated.

The twice-limit current error occurs for a particular set of output states and current
trajectories. The situation can occur when the current crosses the A− boundary as shown
in Figure 2.23.

Re

Im

i

A-

C-

A+

C+

Figure 2.23: Controller error state.

If the output prior to the transition is (A+, B-, C-), the output will switch to (A-,
B-, C-) as the limit is reached. However, this is the zero voltage, and in the presence
of a back-emf may not be sufficient to bring the current back inside the hexagon. The
current must then cross another boundary before voltage is applied.

Overall, the greatest problem with the hysteresis current controller is the unpre-
dictability of the switching frequency. In particular, for a given implementation, the
switching frequency may vary greatly depending on the load and the modulation index.
Generally high and low modulation indices offer the lowest switching frequency[23]. De-
spite this, the hysteresis bands of the controller must be designed for the worst case
switching frequency. This means that the inverter is generally not well utilised for other
modulation indices.

Adjusted Switching Frequency

The primary shortcoming of the hysteresis controller may be addressed by attempting to
adaptively adjust the switching frequency[6]. This is done by changing the hysteresis band
limits in real time. Under normal uncontrolled operation, the frequency as a function of
modulation approximately follows a curve similar to that in Figure 2.24[23].

The aim of the controllers that regulate the switching frequency is to invert this
function. By suitable ripple adjustment, the output frequency may be controlled. These

30 CHAPTER 2. SURVEY OF PRIOR WORK

f s

Modulation Index
10

Figure 2.24: Approximate variation in switching frequency as a function of modulation
index.

schemes, however, remove the primary benefits of the hysteresis controller, which are
simplicity and parameter-independence.

The two basic approaches are to use either feed-forward or feedback methods. The
feed-forward methods involve modelling the machine and load to calculate the size of the
hysteresis band required for a particular switching frequency. As a result, the parameter
dependence and calculation complexity make this approach unattractive.

The alternative is to measure the past switching frequency, and alter the hysteresis
band to compensate future switching actions. This can be implemented digitally, but it
is more suited to an analogue feedback loop with integration. The time constant of the
update must be carefully designed. If it is too short, there will be a deterioration in the
reference tracking ability of the controller. If it is too slow, it cannot perform adequate
regulation. An implementation of this regulation is likely to require complex analogue
hardware.

Hysteresis Control in Synchronous Coordinates

Hysteresis control has also been implemented in rotating synchronous coordinates[23].
The aim in doing this is to allow the limiting region to be rectangular in shape, as shown
in Figure 2.25.

i

α

β

a

b

c

Limit Area

Figure 2.25: Hysteresis limits in 2-phase synchronous co-ordinates

When a synchronous frame is used in conjunction with a field-oriented torque con-
troller, the edges of the rectangle are aligned with the rotor flux vector. This means that

2.4. Existing Control Schemes 31

greater ripple can be allowed in the flux current than in the torque current. Due to the
large time constant on the rotor flux, there will not be a significant increase in the torque
ripple on the machine output. Due to the larger available switching region, the switching
frequency will be reduced.

In torque vector control applications, this method has advantages over the traditional
hysteresis controller, but the basic hysteresis controller limitations are still present.

Coupled Hysteresis Controllers

The basic hysteresis controller has no coupling in the controller between the three con-
trolled phases. This is the main cause of two failings of the simple method:

1. Failure to properly utilise the zero vector.

2. Excursions of up to two times the desired current ripple.

Controller schemes have been developed to address these drawbacks using coupling be-
tween the controller phases[38, 12]. Pfaff et al. provides a good description of the
approach.

In this case, the limit detection is separated from the current error direction sensing.
Comparators without hysteresis are used to determine which one of six sectors the current
error is in, as shown in Figure 2.26(a). In Figure 2.26, both the star and the hexagon are
centred on the reference current. The hexagon represents the maximum deviation from
the reference before a switch occurs.

Re

Im

Re

Im

i

i

(b)(a)

1

2
3

4
5

6

Figure 2.26: Detection functions for the coupled hysteresis controller.

The detection of the current falling outside the hexagon is the standard procedure for
a hysteresis controller, but in this case, it only triggers a decision to switch, rather than
a particular switching action. When the hexagon limit is exceeded alternate information
is used to determine what the new output voltage should be. The sector number from
Figure 2.26(a) is determined from simple comparators in each phase. This number is
used in conjunction with a back-emf estimate to determine the next switching state.

When the back-emf is predicted to bring the current back into the hexagon, the zero
vector is chosen. In the described implementation, a ROM lookup table was used to

32 CHAPTER 2. SURVEY OF PRIOR WORK

determine the switching state. Additional comparators were used to detect when the
edge of the hexagon, in Figure 2.26(b), was reached. When this occurred. the new
switching state was applied.

This method succeeded in reducing the switching frequency of the inverter for a
given current ripple[38], but significant additional estimation and prediction hardware
was required to perform this. The application was also to a synchronous machine, and
used control information not available in an induction machine context. Some of the
more modern variants on this scheme (§ 2.4.5) achieve similar results in a more general
context.

Delta Modulator

While not strictly a hysteresis controller, the Delta Modulator is closely derived from
it. It could be considered to be a hysteresis controller where the output changes are
forced to only occur at a periodic interval. When the controlled variable is current, these
controllers are known as Current Regulated Delta Modulators, or CR∆M .

As in the case of the hysteresis controller, the CR∆M controller may be implemented
independently on each phase. A diagram of the regulator for one phase is shown in
Figure 2.27.

+

-

Inverter

i a

D

Figure 2.27: The CR∆M Controller.

The same high-gain amplifier approach is taken as the hysteresis controller, but in this
case, the switching frequency is controlled by the system clock, rather than the control
error bounds. This means that maximum switching frequency is better controlled, but
the current ripple varies.

In order to bound the current ripple, a CR∆M controller typically needs to be de-
signed with a relatively high clocking frequency to accommodate the largest expected
di
dt . A subsequent problem is that this allows limit cycles to develop at smaller di

dt levels.
A solution to this is to retain the hysteresis block on the current error, and add the
sampling to that. At low modulation indices this will increase the ripple and decrease
the average switching frequency.

Overall, the delta modulator shares many of its operational characteristics with the
hysteresis controller. It is simple to construct and the only tuning parameters are the
clock frequency and perhaps a hysteresis band. If variations in the ripple current can be
accommodated, it is quite robust to load variations[9]. Apart from current ripple, the

2.4. Existing Control Schemes 33

CR∆M scheme also suffers from strong harmonic content.

Due to the regular switching times, CR∆M ideas are suitable for soft switching in
resonant link converters[8]. In this case, the switching must be synchronised with the
link voltage period, and so CR∆M is well suited.

2.4.5 Predictive Controllers

A number of predictive algorithms have been proposed to combat the limitations of
various control schemes. In these algorithms, a model is used to predict the behaviour
of the system over a specified control horizon. Some form of optimisation is then used to
select the control action. Some of the predictive schemes are basic extensions to hysteresis
controllers, but the others typically involve numerical calculations based on a model of
the machine. These latter controllers are suitable for digital implementation and are
typically microprocessor based.

A number of authors have used predictive methods to attempt an improvement on the
performance of hysteresis controllers. In this case, significant performance improvements
could be expected because the hysteresis controller itself utilises little information about
the system being controlled.

The main drawback is that predictive control typically carries with it a cost in con-
troller complexity and dependence on machine parameters. So long as custom hardware
and tuning is required for the implementation, there will be many applications where the
limited performance requirements do not justify the additional complexity.

Predictive Hysteresis Control

The control scheme presented in Section 2.4.4 showed some elements of optimisation.
This has been extended to a more general predictive scheme. Lorenz et al. in [32],
present the architecture for this scheme.

In the same manner as the hysteresis controllers, an error boundary is constructed
around the current set-point. When the measured currents cross this boundary, a new
control vector is calculated. This new control vector is typically chosen to maximise the
length of time before another switching action is required.

Re

Im

i *

1

23

4

5

6

0

Figure 2.28: Predictive control limit boundary and estimated trajectories.

34 CHAPTER 2. SURVEY OF PRIOR WORK

The optimisation process involves evaluating the estimated current trajectory for each
of the seven possible switching states. The seven states comprise the six “on” states,
together with the zero vector. According to the underlying model, an expected current
vector can be calculated for each state, as shown in Figure 2.28.

An Example

A number of related methods have been used to calculate, and then select the vectors,
but the method described by Nabae et al.[35] will now be discussed. The authors of this
paper consider this to be a feedback controller, rather than a predictive controller, but
this style of method is generally given the name “predictive” in the literature.

The basic control method is derived from the hysteresis controller, and uses the limit
boundary depicted in Figure 2.28. When this limit is reached, the new switching state is
calculated from an optimisation and prediction algorithm. The basic aim of the control
is to minimise the switching frequency.

The controller derivation assumes an RLC load with equation:

v(k) = L
di

dt
+Ri+ e0. (2.28)

These are vector quantities in the complex plane, with i the current, and e0 the induced
voltage. When the current error is expressed as,

∆i = i∗ − i, (2.29)

an approximation can be made to determine the change in the error current over time,

L
d∆i
dt
≈ e− v(k). (2.30)

Thus, the aim of the control is to choose a suitable v(k) to drive the error in the correct
direction. Effectively, the hysteresis controller already does this, but the predictive con-
troller attempts to minimise d∆i

dt , subject to the constraint that it ∆i will be decreasing.

1

23

4

5 6

0

eo

Figure 2.29: di
dt vectors according to the switching pattern chosen.

Due to the limitations of the standard inverter, only the seven switching voltages
are possible. These are shown in Figure 2.29 as the dotted vectors. This diagram also

2.4. Existing Control Schemes 35

shows a predicted back-emf e0. The solid vectors from the back-emf to the other vertices
indicate the available Ldi

dt vector for each of available switching states.

Under normal operation, Nabae et al. restrict the choice of new vectors to the three
immediately surrounding the estimated back-emf. These consist of the zero vector, and
the two closest active vectors, which in this case are V1 and V2. This is done to minimise
the resulting d∆i

dt vector, hence on average increasing the time until the next switching
instant.

The controller does not need to fully estimate the value of the back-emf, but instead
only which of the six regions it belongs to. To aid in the detection of the region, it is
assumed that the back-emf vector will lie in one of the regions adjacent to the previous
switching vector. This is a reasonable assumption, as;

1. In the previous selection the vector was chosen from one of the vertices of the region
containing the back-emf.

2. Given the load model, the back-emf will generally follow the direction of the applied
voltage.

With a 30◦ coordinate transformation of the 3-phase currents, and given the above
assumption, the back-emf direction may be determined via a simple comparison. The
transformation used is, x

y

z

 =
1√
3

 1 0 −1
−1 1 0

0 −1 1

 u

v

w

 , (2.31)

The 30◦ transformation provides a new set of coordinate axes which are perpendicular to
the possible applied voltage vectors. Being a perpendicular set, the applied voltage will
be mapped to 0 in one of the three new axes. This axis is used to determine the location
of the back-emf vector.

An example switching decision will now be considered. The switching decision after
a Vk = 3 interval is depicted in Figure 2.30.

1

23

4

5 6

0
u

v

w

x
y

z

II

III

Vk

Figure 2.30: Back-emf region detection example.

36 CHAPTER 2. SURVEY OF PRIOR WORK

By the adjacency assumption, the back-emf must be in either region II, or region III.
To determine the correct region, the current in the x axis of the transformed frame is
used. The component of back-emf in the x-direction may be determined by the voltage
equation across the load inductance,

L
d∆ix
dt
≈ ex − vx(k) = ex. (2.32)

The final equality is true because the x axis was chosen specifically because the
previous voltage vector had a zero component in that direction. Thus, if dix

dt > 0 across
the previous switching interval, ek is in region II, otherwise it is in region III. The same
method may be applied to determine the region for other values of V k.

When the previous applied voltage vector was the zero vector (V k = 0), no prior
information is known about the back-emf direction. This is not a problem, as if there is
no applied voltage, the direction of ek is easily determined by investigating the direction
of di

dt . Simple sign comparisons in the rotated x, y and z phases will reveal the region.

Once the region of the back-emf is established, one of the surrounding three voltage
vectors is chosen for the next switching state. This is done by selecting the one whose
direction will minimise the ∆i error.

In order to maximise transient performance, a second mode of operation is selected
when the current error ∆i is outside a second, larger error bound. In this case, no
restriction is made on the vector choice, and the behaviour is more equivalent to conven-
tional hysteresis control. The addition of this second mode provides the fast transient
performance of the hysteresis controller, but with a more efficient switching behaviour in
steady-state.

This controller was designed to be implemented in analogue hardware, together with
a ROM for table look-up. Although at the expense of complexity, it showed a significant
improvement over the standard hysteresis controller. The emphasis on using compara-
tors in the design, however, is a short-coming. This places all of the controller gain
in localised regions, causing sensitivity near the region boundaries. In particular, the
back-emf estimate is chosen based on the sign of the derivative of current measurements.
Measurement noise is consequently a significant threat.

The authors also addressed the switching-time variation problems of the hysteresis
controller by using an adaptive feedback scheme. This integrates the deviation in past
switching frequency from the desired value. The integrated value is used to adjust the
current error boundaries. Although this will generally reduce the variation in switch-
ing frequency, the improvement is difficult to quantify. The harmonic spectrum is also
unpredictable.

2.4. Existing Control Schemes 37

Other Hysteresis-Based Predictive Controllers

The method of Nabae et al. is typical of the type of extensions that have been made to
hysteresis controllers. An alternative scheme[32] ignores the back-emf detection stage,
and instead restricts output voltage vectors based on adjacency. After an error boundary
is reached, the new vector is chosen out of either the zero vector, or one of the two vectors
adjacent in angle to the previous applied one. This restriction prevents the worst-case
limit cycles of the hysteresis controller and thus improves the overall performance.

An alternate approach was proposed by Malesani el al.[34]. The central idea of this
approach is to remove interference between phases by only allowing modulation on two
phases at one time, while the third is connected to one potential of the DC supply. The
added advantage is that a higher modulation index is possible.

The hysteresis style predictive methods are generally best suited to analogue hard-
ware. They have the particular advantage that the calculations are relatively straight-
forward to implement with analogue components. The penalty is that in the hostile
environment of a drive system, analogue systems are susceptible to noise.

With the advent of wide-scale use of digital electronics in drives, the computation
structure advantage of these hysteresis style current controllers is lost. Microprocessor
based controllers are more suited to a short number of serial calculations, rather than the
parallel structure of the hysteresis methods. The very nature of the control requires a
very fast response after an error boundary is reached, so fast digital hardware is required
in order to obtain equivalent performance.

For digital implementations, the double prediction method may be used. In this case,
not only is prediction used once the error boundary is reached, but a prediction algorithm
is used to estimate when the crossing will occur. This enables the optimal switch state
to be calculated in advance.

Constant Switching Frequency Predictive Control

In the same way that predictive methods have been applied to hysteresis controllers,
another class of controllers use prediction in the PI regulator style architecture(§ 2.4.1).
These consist of an error regulator in conjunction with an open-loop PWM scheme.

An early description of this type of controller was proposed by Brod and Novotny[12].
This involved relatively complex modelling of the load, and the resulting controller was
considered too complex to be useful. This would have been partly due to the preference
for analogue electronic implementations at the time. In the same era, the same ideas were
expressed by Pfaff et al.[38] in reference to the control of a permanent magnet machine.
The early predictive controllers presented were generally complex to implement, and
depended strongly on the load modelling.

In 1996, Holmes and Martin[22] described a predictive controller which is relatively
simple to implement, and load independent. The strategy is similar to the one simulated
by Kruker[27] in the same era. The basis of the controller is the simplified Thevenin

38 CHAPTER 2. SURVEY OF PRIOR WORK

equivalent circuit for an induction machine. As shown in Figure 2.31, this consists of just
three elements.

v

R L

V
+

-

th

th

thi

Figure 2.31: Thevenin equivalent circuit of an induction machine.

In the analysis of Holmes and Martin, the resistance term is also neglected. The
analysis of this model in Section 3.2.1, and Section 4.4.2 of this thesis justifies this
assumption, showing that the presence of the stator resistance has little effect on the
current control.

This model was used to describe each of the three phases of the machine, but due
to the interdependence of the currents, it was found only necessary to implement the
controller on two out of the three phases. The alternative is to use orthogonal d-q axes,
but this was dismissed as unnecessarily adding computation.

The control process consists of two stages. Firstly, the back-emf component (Vth) is
estimated. This may be achieved by using the differential equation related to the model,

v = iR+ Ll
di

dt
+ eb, (2.33)

where Ll is the machine leakage inductance, and eb the back-emf. By integrating across
one control cycle of duration T , and ignoring the winding resistance, the back-emf esti-
mate is found,

e[k] = vav[k]− Ll
T

(i[k]− i[k − 1]). (2.34)

Once the back-emf is found, the same equation is used to determine the voltage
that must be applied to reach a current set-point. Due to the time delays incurred in
calculating the control algorithm, extrapolation is used to predict-ahead the changes in
the back-emf and currents. The result obtained in [22] is a more complex control update
equation,

V av[i] = −V av[i− 1] + 5V av[i− 2]− 3V av[i− 3]

+
L

∆T

(
3Iref [i− 1]− 2Iref [i− 2]− 6Imeas[i− 1] + 8Imeas[i− 2]− 3Imeas[i− 3]

)
(2.35)

The derivation of a similar controller is shown in Chapter 3 of this thesis. The con-
troller shown in (2.35) was trialled both in simulation and in an experimental context[22].

2.4. Existing Control Schemes 39

These showed good current tracking properties, but a real machine was not used. Instead
an R-C circuit with known parameters was used for the experimental results..

Using the principles explained in Chapter 4, analysis may be performed on this control
strategy. This results in the following discrete-time transfer functions for the controller
and machine.

0 =
(
−z3 − z2 + 5z − 3

)
v +

Lest

T

(
3z2 − 2z

)
u+

Lest

T

(
−6z2 + 8z − 3

)
i (2.36)

v =
Lmach

T
(z − 1)i+ e. (2.37)

For the purposes of analysis, define,

∆L =
Lest

Lmach
(2.38)

as the inductance estimate error. Solving the equations to remove the voltage terms
yields,

0 =
T

Lmach
(
−z3 − z2 + 5z − 3

)
e

+
(
−∆Lz4 + (1−∆L)(−6z2 + 8z − 3)

)
i+ ∆L(3z2 − 2z)u. (2.39)

The principles of stability analysis are discussed in Chapter 4, but it is sufficient for now
to consider the magnitude of the roots of the characteristic equation. For a discrete-time
transfer function system, the system is stable if all of the roots lie within the unit circle.
Figure 2.32 shows the magnitude of the root locations for the controller proposed by
Holmes and Martin.

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
0

0.5

1

1.5

2

2.5

Inductance Error ∆L

M
ax

im
um

 r
oo

t m
ag

ni
tu

de

Holmes+Martin
Proposed

Figure 2.32: Magnitude of the transfer function poles.

The solid line indicates that an error of only 6% in the inductance estimate is sufficient
to cause controller instability. The broken line describes the performance of a modified

40 CHAPTER 2. SURVEY OF PRIOR WORK

controller, which is presented later in this thesis. The figure shows that the modifications
can greatly increase the stable region.

This control technique has also successfully been applied to permanent magnet mach-
ines[43]. In this case, the stability properties were improved through using angular rota-
tion measurements, and dead-time compensation schemes.

Stability analysis of this type of controller has been carried out as part of this
project[21], and also by Malesani et al.[33]. The latter work was carried out in the
context of an active rectifier, but reveals similar performance issues. Malesani et al.
utilise the constant frequency nature of the PWM rectifier application to implement a
filter on the back-emf estimation. An alternate approach, which is compatible with a
variable-frequency operation, is presented in this thesis.

The following two chapters expand the treatment of this type of predictive controller.
Some of this work has been published in the literature[4, 19, 20, 21]. A particular focus
of this thesis is the suitability of this controller for implementation in direct digital
hardware.

2.4.6 Artificial Intelligence Approaches

In recent years, a number of artificial intelligence techniques have become prominent. In
particular, neural networks and fuzzy logic have been applied to a wide range of problems.
Machine current control is not an exception, as a number of current controllers have been
developed using these techniques[10, 25].

Fuzzy Logic

The origin of fuzzy logic is attributed to Lofty Zadeh in 1965[47]. The basic idea is to
supplement the crisp boolean logic with a concept that is more like human thinking.
Instead of numerical values, a fuzzy variable takes on values that may be expressed in
natural language, such as “fast”, or “very fast”. These values are mapped to real world
quantities through a membership function.

Membership functions consist of envelopes for overlapping sets. An example mem-
bership function for speed is shown in Figure 2.33. For the value noted in this figure, the

V.Slow Slow Normal Fast V.Fast

Speed

Figure 2.33: An example fuzzy membership function

2.4. Existing Control Schemes 41

two active sets are highlighted. In this case the speed is a member of both the “slow”
and “normal” sets. The degree of membership of “slow” is about 0.3, and the degree of
membership of “normal” is about 0.7.

Once the membership functions are evaluated for the inputs, a rule base is used to
determine what response should be made. The rules are in the form of an “if-then”
statement, listing the responses for various input sets. The aim of the rules is to capture
the intuition of a human operator or designer.

Once the rule base has been evaluated, the response sets are transformed to output
values through an inverse mapping procedure. The result is a conventional scalar quan-
tity. Dedicated hardware exists for the evaluation of fuzzy controllers, but these actions
may also be implemented in microprocessors or DSPs.

The main strength of fuzzy logic is in capturing human intuition in a problem that is
difficult to model mathematically. As such, it is most suited in an outer loop supervisory
capacity. Most of the successful applications of fuzzy logic have been in this role. In terms
of current control, the main use has been in using fuzzy logic to tune PI controllers[25].
In this application, they have demonstrated performance improvements, but at a great
expense in complexity. In the example shown in Kazmierkowski and Malesani[25], the
improvement over the PI controller was restricted to a reduction in overshoot after output
saturation. In this case, a conventional anti-windup strategy should perform a similar,
or perhaps better role.

The performance of fuzzy controller is highly subject to the design of the fuzzy sets
and membership functions, which are designed through intuition. Consequently, fuzzy
logic is only a good option when conventional modelling techniques are unsuitable or
difficult to apply. In the case of the current-control loop, the arithmetic model is quite
well known, and the application of fuzzy logic is better suited, if at all, to the outer
control loops.

Neural Networks

Neural networks are considered the most generic form of emulating human thinking[10],
by attempting to simulate the function of the human brain. The normal mode of oper-
ation is as a form of fuzzy map or look-up table. The net is first trained by applying a
large number of known input-to-output relationships. After training, the net may then
be used to lookup the appropriate output for a supplied input.

The artificial neural network itself consists of layers of interconnected nodes, called
neurons. A small example is shown in Figure 2.34. These nodes form a link of associations
between the inputs and the outputs. In the simplest case, there is just input and output
layers, and there must be a direct relationship between input and output. With the
addition of internal “hidden” layers, more complex association patterns can be learnt.

The training of the neural network may occur entirely before the start of operation,
but there are methods available for training them on-line. On-line training allows the

42 CHAPTER 2. SURVEY OF PRIOR WORK

Input Layer Output Layer

Figure 2.34: Example neural network structure.

network to adapt to changes, but suffers from the same stability problems as conventional
adaptive control.

Neural networks are quite complex architectures, for both the operation itself, and
the training methods. Fortunately they are produced as hardware devices, and these
devices are designed to exploit the parallelism of the network architecture.

Neural networks have been used to generate PWM switching patterns in AC machine
current controllers[10]. These use the current error measurements, and generate the
switching times as an output. The neural network solutions appear to offer potential,
but there is no evidence to suggest that they are capable of better control in this context
than is achievable with algorithmic methods. The other significant problem with neural
networks, which is in common with many AI techniques, is that it is very difficult to
formulate any level of performance guarantee.

2.5 Conclusions

In this chapter, a number of aspects of induction machine control from the literature have
been considered. There are a wide range of control strategies that have been implemented,
each with their own advantages. In terms of controllers, many of the architectures were
designed with a focus on an analogue implementation. With the increasing power to
performance ratio of digital electronics and processors, the methods that favour digital
implementation are likely to become more suitable in the future. In particular, this
favours the class of predictive controllers.

The Artificial Intelligence approaches have shown to offer potential in a number of
areas, although these are typically in more supervisory control roles. Due to the great
difference in the philosophy behind these tools, they will not generally be considered for
the remainder of the thesis.

43

Chapter 3

Current Control

3.1 Introduction

The basis of this thesis is the development and implementation of a predictive current con-
troller. This chapter describes the development of controller algorithm, from modelling
through to some implementation issues. The machine model is first presented, including
justification for a number of simplifications in the basic model structure, comparing the
tradeoffs between model complexity and accuracy.

Following this, the natural progression to a predictive control structure is made. This
results in a simple control strategy, which is easy to implement, but does suffer from
some limitations due to the under-modelling. In the remainder of the chapter, the extent
of these limitations is investigated, together with modifications to reduce their effect.

3.2 The Predictive Controller

3.2.1 The Model

In order to design the controller, an appropriate model of the machine must be chosen.
The choice of model has implications both on the performance of the controller and on
the controller complexity. The full dynamic model of the induction machine, including
saturation effects, would provide the most accurate representation, but the calculation
complexity within the controller would be prohibitive. In particular, for low-inductance
machines, and at high switching frequencies, there is only a short time available for
control calculation. At a 20kHz switching rate, if half of a switching interval is allowed
for the control calculation, there is only 25µs available. Unless powerful hardware is used,
this is adequate for a simple control structure only.

In the following sections, the full machine model is presented, followed by a simplified
representation.

44 CHAPTER 3. CURRENT CONTROL

The Full Dynamic Model

The full dynamic model for an induction machine consists of a set of high-order non-linear
differential equations[37, 7]. The stationary frame model is expressed in Equation (3.1).

vds

vqs

vdr

vqr

Rs + pLs 0 pM 0
0 Rs + pLs 0 pM

pM −ωrM Rr + pLr −ωrLr
ωrM pM ωrLr Rr + pLr

ids

iqs

idr

iqr

 (3.1)

where:

Rs : stator resistance Rr : rotor resistance,
Ls : stator inductance Lr : rotor inductance
M : mutual inductance
ωr : rotor speed, in electrical rad/s
p : differential operator d

dt

The angular rotational speed ωr is determined by the torque developed by the ma-
chine, in conjunction with the load parameters,

pωr =
(
Te − Tm
Jm

)
, (3.2)

where Tm is the external mechanical torque, and Jm the moment of inertia of the me-
chanical system. The electrical torque Te is a function of the machine fluxes and currents,

Te =
3
2

(
P

2

)
M (iqsidr − idsiqr) , (3.3)

where P
2 is the number of pole pairs in the machine.

Model Reduction

In recent control strategies, this full model is rarely used for controller synthesis. Far-
rer and Misken proposed a simplified model in 1973[15]. This consisted of a lumped-
parameter back-emf and a series leakage inductance and resistance term. The original
justification for this model was under steady-state assumptions using Fourier theory.

Although commonly used in dynamic situations, little analysis of this model under
transient situations appears in the open literature. The following description, based on
[30], justifies model reduction in a dynamic context.

The original model in Equation (3.1) may be split into a proportional and derivative

3.2. The Predictive Controller 45

term:

ṽ = (pA1 +A2) ĩ (3.4)

where

ṽ = [vds vqs vdr vqr]
T , ĩ = [ids iqs idr iqr]

T , (3.5)

and

A1 =

Ls 0 M 0
0 Ls 0 M

M 0 Lr 0
0 M 0 Lr

 , A2 =

Rs 0 0 0
0 Rs 0 0
0 −ωrM Rr −ωrLr

ωrM 0 ωrLr Rr

 . (3.6)

Note that machines with squirrel cage rotors, which are the subject of consideration, will
have vdr = vqr = 0. Equation 3.4 may be re-arranged into a state-space form;

p̃i = −A−1
1 A2ĩ+A−1

1 ṽ. (3.7)

Inspection of the A1 matrix reveals that the direct and quadrature axis terms are de-
coupled, forming a block-diagonal structure in an alternate parameterisation. Thus, the
matrix may be easily inverted.

A−1
1 =

1
LsLr −M2

Lr 0 −M 0
0 Lr 0 −M
−M 0 Ls 0

0 −M 0 Ls

 . (3.8)

From the top row of Equation (3.4), a differential equation for the d-axis current may
be found; (

Ls −
M2

Lr

)
dids
dt

= Vds −Rsids +Rr
M

Lr
idr − ωr

(
Miqr +

M2

Lr
iqs

)
. (3.9)

The equivalent equation for the quadrature axis is.(
Ls −

M2

Lr

)
dsqs
dt

= Vqs −Rsiqs +Rr
M

Lr
iqr + ωr

(
Miqr +

M2

Lr
ids

)
. (3.10)

These equations may easily be matched to a Thevenin equivalent circuit. This circuit,
as shown in Figure 3.1, has behaviour modelled by,

v = Vth +Rthi+ Lth
di

dt
. (3.11)

46 CHAPTER 3. CURRENT CONTROL

v

R L

V
+

-

th

th

thi

Figure 3.1: Thevenin induction machine model.

By matching the terms from (3.9) into (3.11), the following model parameters may
be found for the direct axis:

Lth = Ls −
M2

Lr
(3.12)

Rth = Rs +Rr

(
M

Lr

)(
idr
ids

)
(3.13)

Vth = ωr

(
Miqr +

M2

Lr
iqs

)
. (3.14)

The value of Lth is a constant composed of a function of the inductances within the full
model. A simplified approximation for the value of Lth may be found by parameterising
with the values of leakage inductance, Lr = Llr +M , Ls = Lls +M , where for a normal
induction machine, it is also reasonable to assume that Lr � Llr and Ls � Lls.

Lth = Lls +M − M2

Llr +M
(3.15)

= Lls +
MLlr

M +MLR
. (3.16)

This represents an equivalent circuit with Lls in series with the parallel combination of
M and Llr. As M � Llr, the effect of M in this configuration is negligible, so the
Thevenin equivalent inductance is approximately the sum of the rotor and stator leakage
inductances;

Lth ≈ Lls + Llr. (3.17)

This approximation is very accurate, and the practical limitation will not be the under-
modelling, but rather the estimation of this quantity. As the inductance varies over the
operating range of the machine, the exact value of this parameter of the model is subject
to uncertainty.

The value of Rth, as expressed in (3.13) is not a constant. Instead, it varies with the
ratio of rotor and stator currents as well as with temperature. As an approximation, the
range of values may be established. Firstly, it may be observed that

M

Lr
=

M

M + Llr
≈ 1. (3.18)

3.2. The Predictive Controller 47

Furthermore, the ratio of currents varies between 0 and −1, depending on the load
conditions. Under light load, most of the current passes though the magnetising leg,
resulting in ir/is ≈ 0 Under a blocked-rotor condition, most current flows through the
rotor, resulting in ir/is ≈ −1. So in practice,

Rs < Rth < Rs +Rr. (3.19)

As in the case of the inductance, the resistances Rs and Rr also vary with the operating
point of the machine. The total variation in the Rth parameter is a limitation of the
model, but in current control applications, the effect of the variation is not great on the
behaviour of the model. This allows Rth ≈ Rs +Rr to be an adequate approximation for
all useful operating ranges[30]. While the estimation of the rotor resistance is important
in controlling the rotor current, as in vector control, it is not so significant in describing
the stator terminal conditions.

For the d-axis, the Llr � M assumption may be used to find an approximation for
the Thevenin voltage;

Vth ≈ ωrM (iqr + iqs) = ωrψq. (3.20)

This product of the rotational speed and the quadrature axis flux represents the motor’s
back-emf. Under normal conditions, as the machine rotates the vector describing the
back-emf will rotate at synchronous speed. So in steady-state, this will be a sinewave of
known period in each of the d and q axes.

The nature of the transient behaviour may be investigated by considering the varia-
tion in each of the components. Because of the relatively high value of the magnetising
inductance, the magnetising current iqr + iqs can only change slowly. Similarly, the shaft
angular velocity is constrained to slow variations due to the long mechanical time con-
stants. As the current controller response time is concerned with the dynamics associated
with the leakage inductance of the machine, it is a reasonable approximation to assume
that the back-emf will change slowly compared to the controller bandwidth.

The following is a summary of the simplified model parameters;

Lth ≈ Lls + Llr (3.21)

Rth ≈ Rs +Rr (3.22)

Vthd ≈ ωrM (iqr + iqs) Vthq ≈ −ωrM (idr + ids) . (3.23)

Model Selection

As the desired objective is current control, the machine model need only be accurate
in describing the machine phase currents. This is in contrast to a torque controller,
for example, where the model must include a set of parameters defining the torque
generation, such as the rotor currents.

48 CHAPTER 3. CURRENT CONTROL

The simplest model that provides an accurate representation of the machine currents
is shown in Figure 3.2. This model consists of the leakage-inductance Ll in series with a
back-emf ex in each phase.

ea

ec eb

L

LL

Figure 3.2: The three-phase induction machine model

While the back-emf is time-varying, for the purposes of control, it is reasonable to
consider it a constant over a short time period. In the previous analysis, the back-emf
was shown to be the product of the machine flux and rotational velocity, which are both
slowly-changing.

The rotor and stator winding resistances are also incorporated into the lumped back-
emf quantity. Better performance could be obtained by adding the extra parameters,
but this also introduces significant additional complexity. Apart from the calculations
involved, effective estimation of the parameters is difficult. Unless the estimation is
sufficiently good, little benefit is likely to be gained by accounting for the parameters.

For the purposes of control, it is convenient to convert the three phase model in
figure 3.2 to the two phase model, shown in figure 3.3. The two phase model has the
advantage of having decoupled axes, allowing independent scalar calculations in each of
the two dimensions. Throughout this thesis, the power-variant transformation is used
between the two coordinate systems. This transformation has the advantage of main-
taining the same voltage, current and impedance values across the transformation. The
torque and power expressions require a 3

2 scaling factor.

eq

ed

L

L

Figure 3.3: The two-phase equivalent induction machine model

Provided that there is no neutral current (ia + ib + ic = 0), the machine can always

3.2. The Predictive Controller 49

be represented using the two-phase model. The translation between the two coordinate
systems is achieved through the expressions:

3id = 2ia − ib − ic
√

3iq = ib − ic. (3.24)

The reverse transformations are:

ia = id

2ib = −id +
√

3iq (3.25)

2ic = −id −
√

3iq.

It is convenient to use a scaled parameterisation of iq, where îq =
√

3iq throughout
the current control algorithm. In the final equations for the q axis, all of the current
measurements are accompanied by a

√
3 multiplier. This means that the controller may

be implemented without any multiplications by
√

3, except for the reference current.

The two-phase machine model, as depicted in Figure 3.3, may be described by a pair
of two simple differential equations:

vd − ed = Ll
did
dt

(3.26)

vq − eq = Ll
diq
dt
. (3.27)

For a constant v and e, di
dt is a constant, so the current will be a linear segment. For the

case of PWM switching, the applied voltage will consist of step changes between constant
fractions of the DC link voltage. If e is assumed to be constant, the current waveform
will be made up of piecewise linear segments.

The result of a current trajectory made up of linear segments is very useful because
it provides an opportunity for simple control calculations. It is not necessary to evaluate
any transcendental functions in order to predict the path of the current over a control
cycle.

3.2.2 Output Switching Pattern

Due to the switched nature of the inverter outputs, a knowledge of the inverter switching
pattern is necessary in order to effectively utilise the current measurements. Space-vector
modulation is used for the PWM output in order to maximise the utilisation of the DC
link, and for the simplicity of calculation in a digital implementation.

Using space-vector modulation with a double-edged switching pattern, each output is
made up of three different output vectors in sequence, arranged in a symmetric pattern.
One of these vectors is the zero voltage vector, which physically corresponds to all of the
outputs being switched to the same DC link potential. This potential may either be the

50 CHAPTER 3. CURRENT CONTROL

positive or the negative rail of the DC link. The zero vector appears at the start, end
and centre of the switching pattern. The two non-zero vectors appear for a calculated
time between these points. An example trace of two-phase voltages and currents appear
in Figure 3.4.

t t1 2

T

V

d

d

I

t0
2

t0
2

Figure 3.4: The two-phase machine voltage and current.

Measurements of the current taken at the beginning, centre, and end of the switching
pattern are all easily predictable as they are equal to the currents achieved if a constant
voltage, of the same average, is applied. This is because the flux, and hence the current,
through the inductor is the integral over time of the voltage applied across its terminals.

Current values at other points in the cycle are heavily dependent on knowledge of
the precise switching pattern. As a consequence, a complex model is needed if any
instantaneous current samples, apart from those at the centre and ends, are to be used.
Instantaneous measurements at these other points are also susceptible to short-term
effects on the current caused by switching. Capacitive effects are likely to cause spikes
in the current, resulting in noisy measurements.

For a digital controller there is a design tradeoff in the number of measurement
samples to use per control interval. In this case the easiest approach is to use only
two measurements in each control cycle, one at the start, and the other at the centre.
The alternative is to also use current measurements made at intermediate points. The
intermediate points incur the cost of a more complex model along with less reliable
measurements. The measurements are less reliable as they may coincide with the instants
when devices switch, whereas the PWM generator may be designed to never switch at
the centre and end points.

The advantage is that reliance on only two measurements per cycle renders the con-
troller more susceptible to noise on those particular measurements. The use of more
measurements, along with filtering methods, reduces the sensitivity of the controller to
each measurement.

The approach behind the controller presented in this thesis is to use a simple model
and only use a small number of samples. The samples used, however, are those made
during the zero voltage vectors, which are the most reliable. The exception to this is
in inductance estimation, where intermediate values are also used. In this case, heavy
filtering is used, so the level of noise on the measurements is less relevant.

3.2. The Predictive Controller 51

3.2.3 Back-emf Estimation

In order to use the two-phase model shown in Figure 3.3 to determine control voltages,
it is necessary to know the model back-emf. On each control interval, the back-emf must
be estimated from the past behaviour of the model. The previously applied voltage and
measured currents may be used to generate an estimate for ed and eq. The voltage-
current relationship for a single phase may be found by considering the average voltage
across the leakage inductance,

vL(t) = Ll
di

dt
(3.28)

i(tk) = i(tk−1) +
∫ tk

tk−1

1
L l

(v(t)− e(t)) dt (3.29)

= i(tk−1) +
T

Ll

(
1
T

∫ tk

tk−1

v(t) dt− e

)
when e is constant. (3.30)

The integral involving v is simply the average voltage across the interval, and is denoted
vk. This results in the following simplified equation relating the estimated back-emf to
the measured quantities,

vk − ek =
Ll
T

(ik − ik−1) (3.31)

ek = vk −
Ll
T

(ik − ik−1) . (3.32)

Equation (3.32) is an estimate of the back-emf across the time period between the mea-
surements ik−1 and ik. T is the length of this time interval. This measurement inherently
involves differentiation, and so it is sensitive to noise on the measurements. The sensi-
tivity is reduced with increased values for T , but this introduces a greater time delay in
the measurement.

3.2.4 The Controller

The aim of the controller is to determine the inverter voltage vk+1 required to achieve
the setpoint current uk+1 on each cycle. For constant frequency PWM, it is necessary
to know the voltage at the start of the switching cycle. This is because the output
must switch immediately from the zero vector at the start of the cycle if the maximum
voltage is required. As the current measurement at the end of the previous cycle (ik) is
not available until after the next has started, this measurement cannot be used in the
control calculation. Instead this value is estimated from the previous measurements of
the current. Because of the symmetric switching pattern, the average applied voltage is
the same over the second half of the switching cycle as over the first half. For a constant
back-emf, the change in current over each of the halves of control interval is the same
according to the e−l model. Figure 3.5 shows this extrapolation by using a broken line

52 CHAPTER 3. CURRENT CONTROL

to denote the estimated idealised current trajectory for the second half of the control
cycle.

i
i

i
u

ve

k
k
*

k-1
k+1

kk

Time

C
ur

re
nt

ρ=1

ρ=2

Calculation time

vk+1

vk+1

Figure 3.5: The variables used in the controller..

As some time is required to evaluate the control algorithm, only measurements up
to and including the midpoint current, i∗k, are used for calculating the inverter voltage
vk + 1. This leaves half of one switching cycle to perform the control calculations. If
the measurement ik+1 were to be used, there would be no time available from the mea-
surement to when the control has to be implemented. Due to the delay in obtaining
the measurement through the data acquisition communications channels, and the control
calculation time, a significant delay is necessary between the last measurement taken,
and the first possible application of the control.

The current at the start of the interval is estimated by the equation,

iestk − i∗k = i∗k − ik−1

iestk = 2i∗k − ik−1. (3.33)

The back-emf may be estimated from the ik−1 and i∗k measurements using (3.32) to give,

eestk = vk −
2Ll
T

(i∗k − ik−1) . (3.34)

The model equation (3.31) may be re-arranged to determine the voltage required for
a given setpoint current of ik+1,

vk+1 = eestk+1 +
Ll
T

(
ik+1 − iestk

)
= eestk+1 +

Ll
T

(ik+1 − 2i∗k + ik−1) . (3.35)

The value used for ik+1 does not always equal the input current setpoint. This is only the
desired current at the end of the cycle. In order to obtain better steady-state accuracy, it
could be desirable to instead try to achieve the correct average current across the cycle.
In this case, the setpoint current should equal the average of the current measurements
at the start and the end of the switching cycle.

Average current control may be achieved by setting i∗k+1 = uk+1 where uk is the

3.3. Output Considerations 53

current setpoint. The choice between average and endpoint control may be parameterised.
For this purpose, ρ is defined as:

T ∗ =
T

ρ
, (3.36)

where T ∗ is the length of time from the start of the interval to when the output current is
projected to match the setpoint. By appropriate choice of ρ, either average or endpoint
control may be achieved,

ρ = 1: Endpoint control
ρ = 2: Average current control .

Alternate values for ρ are also valid. Values between 1 and 2 result in controllers
that have behaviour between average and endpoint control. By substituting (3.36) into
(3.35), with T ∗ in place of T , a parameterised controller equation is achieved,

vk+1 = eestk+1 +
ρLl
T

(uk+1 − 2i∗k + ik−1) . (3.37)

Equations (3.34) and (3.37) together comprise the current controller. These may be
combined to form a single control equation,

vk+1 = vk −
2Ll
T

(i∗k − ik−1) +
ρLl
T

(uk+1 − 2i∗k + ik−1) (3.38)

= vk +
Ll
T

(ρuk+1 − 2(ρ+ 1)i∗k + (ρ+ 2)ik−1) . (3.39)

Substitution may be performed for ρ to obtain the final control update equation. For
endpoint control, this is:

vk+1 = vk +
Ll
T

(uk+1 − 4i∗k + 3ik−1) , (3.40)

while for average current control, it is

vk+1 = vk +
2Ll
T

(uk+1 − 3i∗k + 2ik−1) . (3.41)

These equations are computationally simple and quite suitable for implementation in a
digital system.

3.3 Output Considerations

The control algorithm as presented calculates an average voltage to be applied over the
next control cycle. This section describes the calculation of inverter switching times
from the desired two-phase voltages. This involves both the two-phase to three phase
transformation, along with obtaining the parameters for the space-vector modulation.

54 CHAPTER 3. CURRENT CONTROL

3.3.1 PWM Generation

Figure 3.6 shows the inverter topology and the voltage vectors it will generate. Each
leg may be in one of two states. In the low state, the output voltage vx is equal to the
negative side of the DC input, while in the high state it is equal to the positive side. For
the high state, the top device is turned on and the bottom device is turned off, and the
converse is true for the low state. As each of the three legs may be in one of two states,
there are 23 = 8 possible vectors. The switching states required for each of the vectors is

v
v
v

a
b
c

Vdc

A B C

Voltage Vector

V

V V

V

VV

1

23

65

4

2

1

6

5

4

3

Sector

Figure 3.6: The inverter configuration and output voltage vectors achievable.

shown in Table 3.1. For each of the legs (A,B and C), a zero indicates that the bottom
device is on, while a one indicates that the top device is on.

Vector Devices (ABC) 2-Phase Model Voltage
vd vq

V0 000 0 0
V1 100 V 0
V2 110 1

2V
√

3
2 V

V3 010 −1
2V

√
3

2 V
V4 011 −V 0
V5 001 −1

2V −
√

3
2 V

V6 101 1
2V −

√
3

2 V
V7 111 0 0

Table 3.1: Switching states required for each vector.

For each of the vectors, the equivalent two-phase applied voltage may be calculated
by taking the d and q axis components. The results for this are shown in table 3.1.
There are two zero vectors, 000 and 111. These correspond to when all of the legs of the
inverter are switched to the same state. For 000, this is to the negative DC link potential,
while with 111 the output is connected to the positive side. The other six unique vectors
represent the voltages shown in figure 3.6, that may be applied to the machine.

Inverter voltages, apart from the six fundamentally available, may be achieved via
Pulse Width Modulation. Using this method, time is divided up into periods of time
equal to the switching period (T). During each interval a number of vectors are applied

3.3. Output Considerations 55

to the inverter in a such a way that the average voltage vector across the interval is equal
to the desired voltage.

In this implementation, a double edge modulation firing pattern was chosen, as this
minimises the harmonics generated by the inverter.

The average voltage produced by the inverter across a cycle is equal to the expression,

Vav =
1
T

∫
v(t) dt (3.42)

=
2t0
T
v0 +

2t1
T
v1 +

2t2
T
v2 (3.43)

under the constraint,

2 (t0 + t1 + t2) = T. (3.44)

The vector v0 is the zero vector, which may be implemented with either V0 or V7. The
other two vectors, v1 and v2 are the vectors closest to the desired average output vector.
For vectors with a phase between 0 and π

3 , these are the vectors V1 and V2. This region is
called sector 1. More generally, the vector V ejφ is in sector n, where π

3 (n− 1) < φ < π
3n.

In each sector, the required switching times may be calculated by solving equations
(3.43), (3.44) and the two-phase decomposition expressions in table 3.1. For sector 1
with V1 applied for time t1, and V2 for time t2, we have the the equations,

Vd =
2t1
T

(V) +
2t2
T

(
1
2
V

)
(3.45)

Vq =
2t1
T

(0) +
2t2
T

(√
3

2
V

)
(3.46)

T = 2 (t0 + t1 + t2) . (3.47)

These may be solved to determine the required switching times from the d and q axis
setpoints,

t1 =
T

2V

(
Vd −

Vq√
3

)
(3.48)

t2 =
T

2V

(
2
Vq√

3

)
(3.49)

t0 =
T

2
− t1 − t2. (3.50)

The bounds for the valid inputs (Vd, Vq) may be determined by checking for valid values
for t0,t1 and t2. Negative values for any of these are not feasible as it is obviously not
possible to implement such an interval. There is also an upper limit on the length of an
interval, which is essentially t1 + t2 <

T
2 . This limit is implicitly enforced if (3.44) and

the non-negativity constraints are met.

56 CHAPTER 3. CURRENT CONTROL

If the bound on T0 is not met, the cause is that the magnitude of the vector is too
great. This means that a voltage vector has been requested that cannot be achieved with
the given supply voltage. The solution to this is to re-scale the vector, as described in
section 3.3.2. If the non-negativity constraints for t1 or t2 are not met, the cause is that
the wrong sector was chosen for the calculations. This result may be used to develop a
set of rules which determine the correct sector from the Vd and Vq values.

By solving equations (3.48) and (3.49) for t1 > 0 and t2 > 0, the following relation-
ships for sector 1 are obtained,

Vq > 0 (3.51)

Vd >
1√
3
Vq. (3.52)

For sector 2, the two adjacent vectors are V2 and V3. For greatest smoothness across
the sector transitions, V2 may be applied for the t2 period, just as it was for sector 1.
This leaves V3 to be applied over t1. For this allocation, the voltage equations for sector 2
are:

Vd =
2t1
T

(
−1

2
V

)
+

2t2
T

(
1
2
V

)
(3.53)

Vq =
2t1
T

(√
3

2
V

)
+

2t2
T

(√
3

2
V

)
(3.54)

T = 2 (t0 + t1 + t2) . (3.55)

The switching time solutions derived from these equations are,

t1 =
T

2V

(
−Vd +

Vq√
3

)
(3.56)

t2 =
T

2V

(
Vd +

Vq√
3

)
(3.57)

t0 =
T

2
− t1 − t2. (3.58)

By solving (3.56) and (3.57) for t1 > 0 and t2 > 0, the sector 2 conditions are obtained,

1√
3
Vq > Vd (3.59)

1√
3
Vq > −Vd.

The determination of switching times may also be achieved through vector addition.
Over each interval, the overall applied average voltage is a weighted sum of the three
vectors that are applied over the vector, as shown in equation (3.43). As the zero vector
makes no contribution to the sum, the average is made up of the sum of the two non-zero
vectors. The direction of these vectors is fixed, but the magnitude may be scaled by

3.3. Output Considerations 57

altering the switching times. The switching times may be chosen by selecting the lengths
necessary to achieve the correct vector sum. The geometry behind this, for sector 1, is
shown in figure 3.7.

V

V

2

1

2

1

Desired Vector

V

V

d

q

2t

2t

T

T

q-axis

d-axis

Figure 3.7: Switching times determined through vector addition.

V1 and V2 represent the two non-zero output voltage vectors used in sector 1. The
vectors vd and vq are fixed, as are the directions of V1 and V2. The scalars t1 and t2 are
set so that the vector sums from the two coordinate systems are equal,

2t1
T
V1 +

2t2
T
V2 = Vd + Vq. (3.60)

This may be achieved graphically in sector 1 by first setting t2 to obtain the correct q-axis
voltage, and then t1 to obtain the correct d-axis voltage. The result is the same as that
calculated above, (3.59). The switching times and conditions for each sector are given
in table 3.2. These values depend on the choice of vector order so an example choice
of ordering is given in the table. An order of 01277210 means that vector V0 is applied
initially for time t0

2 , followed by V1 for t1 and then V2 for time t2.

Sector Firing Order 2V
T t1

2V
T t2 Conditions

1 01277210 Vd − Vq√
3

2 Vq√
3

Vd >
Vq√

3
;Vq > 0

2 03277230 −Vd + Vq√
3

Vd + Vq√
3

Vd <
Vq√

3
; Vq√

3
> −Vd

3 03477430 2 Vq√
3
−Vd − Vq√

3
Vd < − Vq√

3
;Vq > 0

4 05477450 −2 Vq√
3
−Vd + Vq√

3
Vd < − Vq√

3
;Vq < 0

5 05677650 −Vd − Vq√
3

Vd − Vq√
3

Vd < − Vq√
3
; Vq√

3
< Vd

6 01677610 Vd + Vq√
3

−2 Vq√
3

Vd > − Vq√
3
;Vq < 0

Table 3.2: PWM switching times and sector conditions.

58 CHAPTER 3. CURRENT CONTROL

As vectors may not be applied for a negative time, all of the quantities t0, t1 and
t2 must be positive. In the theroetical analysis, zero-duration times are feasible, but
may not be practical for the PWM hardware. In the implementation described in the
next chapter, a constraint that t0 ≥ 2Ts is applied, where Ts is the system clock period
(0.2µs for the reference implementation).

3.3.2 Voltage Limiting

The above switching time calculations do not take into account the situations when the
desired average voltage cannot be achieved by the inverter. In particular, voltages greater
than the DC supply voltage cannot be applied to the inverter output. When the setpoint
voltage is too large, it must be adjusted to a feasible value in order to generate the correct
switching times. This adjustment may be made at a number of places. These include:

1. The torque controller,

2. Current controller,

3. PWM generation.

The earlier the correction is made, the harder it is to make. In the case of the torque
controller it would be necessary to know what the maximum possible torque setpoint
is without saturation. This means solving the torque and current control equations,
together with the output switching equations, at the boundary of saturation. The ad-
vantage of this, however, is that the effect of the saturation will be minimised.

As computational complexity is to be minimised, the following section presents the
case where the saturation is implemented at the output of the current control. Even when
a more sophisticated scheme is implemented, this level may also be desirable to overcome
problems due to round-off errors. If the torque controller compensates for the output
limitations, subsequent round-off may cause the corrected output to still lie marginally
outside the feasible region. Additional saturation at the output will have little effect on
the vectors generated, but will prevent any switching logic errors.

Generation
PWMTorque

Control
Current
Control

Vi t

VLast

Figure 3.8: Saturation at the output of the current controller.

Figure 3.8 shows the location of the saturation in the controller. The voltage vectors
produced by the current controller are subjected to saturation after the current control
calculation. A feedback path also exists back into the current controller. This is needed
so that the current controller knows what voltage was applied over the previous control

3.3. Output Considerations 59

intervals. This is particularly important for the back-emf estimation, as this directly
requires knowledge of past applied voltages.

In a single-dimensional case, saturation may be achieved by a limiter, which may be
expressed as:

vout =

vsat; v > vsat

v; −vsat 6 v 6 vsat
−vsat; v < −vsat

(3.61)

At the output of the current controller, however, there is a two-dimensional voltage
setpoint. The two voltages Vd and Vq represent the the x and y components respectively
of a two-dimensional voltage vector. Limiting each of these independently can result in
an output vector with quite a different direction to the originally specified vector.

Limiting to Inverter Capability

The limit of the output range may be established by determining the boundary conditions
for valid switching times. As the t1 and t2 values have been assured non-negativity
through the appropriate choice of sectors, only the value of t0 remains. So to calculate
the range of valid voltages for a given sector, the sector switching equations are solved
for t0 > 0. For the case of sector 1, equation (3.48) is used,

t1 =
T

2V

(
Vd −

Vq√
3

)
(3.62)

t2 =
T

2V

(
2
Vq√

3

)
(3.63)

T

2
− t1 − t2 > 0. (3.64)

By combining these equations a simple expression for the maximum allowable voltages
may be found,

T

2V

(
Vd −

Vq√
3

)
+

T

2V

(
2
Vq√

3

)
<
T

2
(3.65)

Vd +
Vq√

3
< V. (3.66)

This result is only valid for sector 1, and so the the equations defining that sector,
equations (3.59), must also be met. Similar results may also be derived for the other
possible output sectors.

The result of the voltage-limit calculations is that the voltages achievable by the
inverter consist of a hexagonal area on the d−q plane. This is illustrated in figure 3.8.
If the voltage calculated by the current controller falls outside this region, it must be
transformed back into the region before the start of the PWM cycle. A straightforward
approach to this is to retain the angle of the vector, but scale the magnitude down so

60 CHAPTER 3. CURRENT CONTROL

Maximum available voltage

Largest circular trajectory

Figure 3.9: The hexagonal voltage limit for the inverter output.

that it lies on the perimeter of the valid region. This represents a vector with the same
angle as the desired vector, but with the maximum available amplitude.

The required transformation is V ′d = γVd, and V ′q = γVq, for some γ. For sector 1, γ
is derived directly from equation (3.66),

γ =
V

Vd + 1√
3
Vq
. (3.67)

In practice, it is more efficient to work directly with the calculated switching times. After
calculating t0, t1 and t2, the feasibility of the times may be directly assessed from the
sign of t0. If t0 is positive, the values are correct, otherwise γ needs to be calculated. As
there is a linear function from voltage to the switching times t1 and t2 in each sector, γ
may be determined from the calculated t1 and t2,

γ =
T

2 (t1 + t2)
. (3.68)

This equation holds true for all sectors, so the transformed switching times are:

t′0 = 0, (3.69)

t′1 = t1
T

2 (t1 + t2)
, (3.70)

t′2 = t2
T

2 (t1 + t2)
. (3.71)

The complexity is further reduced to one multiplication and one division by observing
that t′1 + t′2 = T

2 .

Circular Path Limiting

The disadvantage of limiting the voltage to the feasible hexagon is that it is likely to
result in amplitude pulsations. Under saturation conditions, an induction machine is
likely to be driven by a voltage vector that is rotating with time with the maximum
available amplitude. If the vector is limited to stay within the hexagon, the voltage
magnitude will not only be less than desired, but have an amplitude peaking at six times

3.3. Output Considerations 61

per electrical revolution. In order to prevent this, the limit must be placed at a constant
magnitude. Figure 3.9 shows the largest circular path that may be achieved within the
inverter limits. By limiting to this path, a constant magnitude is achieved at the expense
of a small decrease in the maximum power available from the inverter.

A further difficulty involved in limiting to a circular trajectory is the level of com-
putation involved in calculating the limit. This calculation will require square-root or
trigonometric operations and so will take longer to calculate the limited value. The ra-
dius of the circle may be determined by finding the points along the hexagonal limit set
whose distance from zero is the smallest. In the case of sector 1, equation (3.66) is taken
as the limit path. To find the point closest to the origin, V 2

d +V 2
q is minimised for a fixed

V. For sector 1, this requires,

d2
min = min

Vq

{
V 2
q +

(
V − Vq√

3

)2
}

(3.72)

dmin =
√

3
2
V. (3.73)

The limiting may be performed by first finding the magnitude of the desired voltage
vector,

|Vs| =
√
V 2
d + V 2

q . (3.74)

If |Vs| <
√

3
2 V then no limiting is required. Otherwise, both Vd and Vq are scaled to fit

within the circle,

V ′d = Vd

√
3

2
V

|Vs|
(3.75)

V ′q = Vq

√
3

2
V

|Vs|
. (3.76)

As the maximum voltage magnitude under this method is always
√

3
2 V , as opposed to a

value varying between
√

3
2 V and V with the hexagonal limiting case, the average voltage

available is approximately 7% lower.

Constant Direction Approach

More complex approaches may be applied to the limiting, to aviod torque set-point
changes affecting the flux. A constant angle active voltage vector approach can be used.
This technique has the advantage that it does not introduce the dq axis cross coupling
present with the scaled limiting when it used in a vector controlled drive. However, the
price paid for the better performance is additional computation. This can be seen from

62 CHAPTER 3. CURRENT CONTROL

the following expressions for the limited α’s using this constraint [3]:

K∗ =
αqV − eq
αdV − ed

(3.77)

αdlim [k + 1] =
√

3V +K∗ed[k]− eq[k]
√

3V
(

1 + K∗√
3

) (3.78)

αqlim [k + 1] =
K∗(V − ed[k]) + eq[k]

V
(

1 + K∗√
3

) . (3.79)

While this alternate algorithm will offer better torque transient behaviour, it has not been
implemented because of the computational complexity it would add to the controller.

3.4 Inductance Estimation

In the machine model utilised, the parameters of the machine are all bound up in one
inductance quantity. This characterises the properties of the rotor and stator combined.
This section describes how the value of this lumped parameter may be estimated.

The machine inductance changes slowly compared to the electrical time constant,
and so for the purposes of control it may be considered a constant. However it does
change with the operating point of the machine, and so there is a benefit to be gained in
attempting to track these parameter variations. The provision of inductance estimation
also allows the controller to be machine-independent, with no parameters required for
the commissioning of the current controller.

The process of inductance estimation requires comparing the voltage across the leak-
age inductance to the change in current through it. The change in current may be readily
determined from the machine terminal quantities, but the voltage is more difficult to ob-
tain. The basic system equation is,

v(t) = Ll
di

dt
+ eb(t). (3.80)

In this equation, the voltages and currents can both be measured, but the leakage
inductance(Ll) and back emf(eb) are unknown. Because there are two unknowns, this
equation in itself is not sufficient to perform the estimation. An approximated difference
version of this equation is used to estimate the back emf of the machine on each control
cycle. As the back-emf varies relatively quickly with time, the available data is required
for this purpose. Consequently alternate datasets are required to obtain estimates for
the back-emf.

3.4.1 Quarter-Cycle Method

One approach[4], uses additional independent current measurements for the inductance
estimator. The basic controller uses measurements at the start, and mid-point of a control

3.4. Inductance Estimation 63

interval, but an inductance estimator may be designed to use a current measurement
taken one quarter of the way through the control cycle.

T T

V

d

d

I

i[k] i[k+1]i[k+0.5]i[k+0.25]

4 4

Figure 3.10: Quarter-cycle current measurement.

The quarter-cycle measurement offers an additional measurement that is independent
of the values used for the calculation of the back-emf. It is also attractive for this
application because the voltage applied across the first quarter of the cycle is likely to be
quite different to the voltage across the second quarter. This greater variation is useful
in estimating the inductance as it amounts to a greater excitation signal.

For the PWM scheme presented, a set of two-phase voltage waveforms may be found.
The voltage waveform will vary according to the sector, and the resulting values are
shown in Figure 3.11.

V

-V

0

0

1 2 35 46, , ,

V
3

+-

t t

T
2

1 2 t t1 2 t t1 2

Sector

d-
ax

is
q-

ax
is

Figure 3.11: Two-phase voltage waveforms for each sector.

The upper set of traces represent the voltage pattern in the direct axis for the case
t1 < t2. In the direct axis, there are five possible output voltages, −V , −V

2 , 0, V
2 and V .

On the q-axis, there are only three possible voltages, − 1√
3
V , 0 and 1√

3
V . The waveforms

for sectors 1,2 and 3 are shown, while for sectors 4,5 and 6, the output is the negative
of that for sectors 3,2 and 1 respectively. The switching voltage vectors were shown in
Figure 3.6.

For the case of the direct axis in Sector 1, the voltage component is shown in Fig-

64 CHAPTER 3. CURRENT CONTROL

ure 3.12. For the purposes of using these measurements for inductance estimation, the

V

0

t t

T T

V

4 4

2

1 2

Figure 3.12: Two-phase voltage waveforms for each sector.

important quantities are the average voltage across each of the T
4 periods. In particular,

the difference between these two will be used. Let Vd1 and Vd2 represent the average
voltages across the first and second quarter of the control cycle respectively. When
t2 > t1,

Vd2 − Vd1 = −V
2

(
4
T
t1

)
= − 2

T
V t1 (3.81)

For the case of t1 > t2, the result is instead,

Vd2 − Vd1 = − 2
T
V t2. (3.82)

By assuming that the back-emf is constant across this period, an estimate for the
inductance may be obtained. Taking a first-order approximation to Equation (3.80),

v(t) ≈ Ll
i(t+ ∆T)− i(t)

∆T
+ eb(t). (3.83)

This equation is then applied across both of the first two quarter cycles and the difference
in the average terminal voltage taken,

Vd2 − Vd1 ≈
4Ll
T

(i[k + 0.5]− 2i[k + 0.25] + i[k]). (3.84)

By combining with the previous expressions, the estimate for Ll from the d-axis quantities
is formed,

Ll1,3,4,6 ≈
−min{t1, t2}

2(i[k + 0.5]− 2i[k + 0.25] + i[k])
. (3.85)

This expression is not valid for Sector 2 and Sector 5. In this case, the change in the
d-axis voltage component between the t1 and t2 intervals is double that of the other

3.4. Inductance Estimation 65

sectors. As a result, for these sectors the estimate is,

Ll2,5 ≈
−min{t1, t2}

i[k + 0.5]− 2i[k + 0.25] + i[k]
. (3.86)

On the q-axis, this method cannot be used for Sector 1 and Sector 5, as the voltage
waveform is symmetric across the half-cycle, leaving a zero voltage differential.

Performance of the Quarter-Cycle Method

This inductance estimator has been implemented in simulation, as well as in practical
implementations. Both digital hardware and software implementations were made, but
with limited success. A simulation of this inductance estimator is shown in Figure 3.13.
With greater filtering, the result would be close to the true value of 10mH. For a noiseless

Inductance Estimate

 (
-)

0.0

0.01

0.02

0.03

 t(s)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

(-) : t(s)

ld_est

Figure 3.13: Filtered quarter-cycle inductance estimator estimate.

model, and the errors are quite high, and are mainly due to inverter dead time and
quantisation errors. Under ideal conditions, this estimator performs well, as expected
by the theory. Under practical conditions, there are a number of issues that reduce the
effectiveness of the estimate.

Noise The most obvious problem with the estimator is that effectively a double deriva-
tive of the current measurements is needed. Differentiation increases the amplitude of
noise, and differentiating a signal with noise twice greatly increases the level of noise.
Provided bias is not introduced, this may be overcome by filtering the estimated value.

The division by the differentiated currents does pose the problem of bias. If the
denominator of the expression is corrupted with zero-mean noise, pmeas from the current
measurement error, the estimated value will be of the form,

Ll + pest =
K

x+ pmeas
. (3.87)

66 CHAPTER 3. CURRENT CONTROL

Due to the non-linear division operation, pest does not have a zero mean, and so the
estimate is biased. If |emeas| � |x|, the bias is small, but this cannot be assumed in this
case. The situation is particularly poor if the noise can cause the denominator to change
sign. In this case, estimates of extremely large magnitude can be generated, due to the
near-zero denominator.

An alternative is to instead filter the estimate of 1
Ll

. If the error in the voltage
generation is less than on the current, this will represent an improvement. This approach
also has the advantage that measurements can be ignored if the denominator is small,
without creating additional bias.

A greater improvement can be achieved through using a least-squares estimator, but
at the cost of additional complexity. Such an estimator, along with a more detailed
treatment of the filtering issues, is described below in reference to the alternate estima-
tor(§3.4.3).

Measurement Location In the current controller design, the endpoint and midpoint
currents were particularly chosen as this is in the centre of a period where the zero-vector
is applied. As the devices can be prevented from switching at this time, the noise from
switching need not affect the current measurements. This is not true for the quarter-
cycle measurement, where it is difficult to prevent the measurement coinciding with a
device switching instant. This increases the overall level of noise on the estimates. The
coincidence of sampling and switching could be detected from the t0 and t1 values, but
again this adds to the complexity of the estimator.

Inverter Dead-Time The presence of inverter dead-time is a significant problem for
the inductance estimator. There are two reasons for this:

• Dead-time causes a delay in the entire output pattern. This causes a mis-alignment
between the sampling and the true end of the interval. While the measurement
times can be skewed to compensate, the uncertainty in the delay will still cause
some error.

• Due to inaccuracy in the switching time there will be an error in the average voltage
that is achieved.

In both of these cases, this inductance estimator is far more susceptible than the
current controller itself. In the case of skew in the entire output pattern, the current
controller is largely unaffected, as the difference between the measurements is still the
same, unless the delay is greater than t0. The reason for this can be seen in Figure 3.10.
The derivative of the current at both of the endpoints, and the midpoint is the same.
This means that a time delay will affect all of the measurements in the same way. As
the current uses only the differences, it is unaffected by the skew.

3.4. Inductance Estimation 67

The derivative at the i[k+0.25] measurement is different to the endpoint, and so there
will be an error in the difference. In fact, because the estimator is using the difference
between the changes in the first and second quarters, the error is even greater.

The current controller may also compensate to some extent for the voltage variation
due to inverter dead time. This is because of the symmetric switching pattern over the
full cycle. When an error occurs on one half cycle, some compensation occurs in the
other half because the switching pattern is reversed. This inductance estimator cannot
benefit from this.

3.4.2 Estimation Sampling Alternatives

The deficiencies of the original inductance estimator prompted the development of an
alternate estimator. In order to avoid the problems associated with the quarter-cycle
measurement, two alternatives are available,

• Use a large number of measurements spread through the interval.

• Use only the end-point data.

The option of using a large number of measurements, as illustrated in Figure 3.14, was
considered at length because of the suitability of digital hardware for such an imple-
mentation. While measurements will still be corrupted with noise from switching, the
individual effect of the erroneous sample will be less. It would be difficult to use this

V

d

d

I

Figure 3.14: Using multiple measurements per cycle.

approach using a microprocessor shared with the controller because of the high data and
interrupt rate. A parallel implementation in hardware would be very appropriate, but a
suitable simple algorithm was not found for this architecture.

The alternative is to use only the measurements available from the current controller,
these being the endpoint and midpoint currents. The disadvantage with this approach is
that there is not as much information available, and care must be taken to ensure that
the back-emf estimation and the inductance estimation are independent.

As the back-emf estimation depends on the inductance value, it is dangerous to also
make the inductance estimate a function of the back-emf estimate, unless the stability of
such an iterative algorithm could be proven.

68 CHAPTER 3. CURRENT CONTROL

3.4.3 Full-Cycle Inductance Estimator

An inductance estimation method has been developed that uses only the endpoint cur-
rent measurements. The endpoint currents were chosen for convenience and so that the
error due to the inverter dead-time could be minimised. Additionally, unlike the current
controller, calculation delays are not of great importance because the inductance is only
slowly varying.

The basic assumption for this estimator is that the derivative of the back emf only
changes slowly across one cycle. This is a more accurate assumption than that of simply
a slowly changing back-emf. For one axis in the two axis model, this may be written,

ek − ek−1 ≈ ek−1 − ek−2 (3.88)

ek − 2ek−1 + ek−2 ≈ 0. (3.89)

This may be related to the model currents and inductance by Equation (3.80). In this
case, an Euler approximation is made for the derivative across one controller period,

vk = ek +
Ll
T

(ii − ik−1) . (3.90)

By substituting (3.80) into (3.89), the estimator is formed,

vk − 2vk−1 + vk−2 =
Lestl
T

(ik − 3ik−1 + 3ik−2 − ik−3) . (3.91)

This equation may be solved directly for a point estimate of the leakage inductance, but
this does require a division by what is effectively a triple derivative of the current. In
the presence of noise, it may not be possible to reconstruct an unbiased estimate through
subsequent filtering.

Instead of point estimation, a recursive least-squares algorithm is proposed to estimate
the parameter. This was noted as involving complexity in the case of the quarter-cycle
method, but in this context, that is offset by the reduced complexity in not requiring the
additional current samples.

Recursive Least-Squares Estimate

To apply a least-squares estimate, the model is expressed as,

y = Cx+ v. (3.92)

The column vectors y and x represent the measurements, and the parameter vector to
be evaluated respectively. The measurement vector, y, must be larger than the number
of parameters to estimate. C is a matrix, and v a noise vector that model the expected
relationship between x and y.

For the inductance parameter estimation, x is a scalar, and C is a vector the same

3.4. Inductance Estimation 69

size as y. The principle aim is to choose a parameter value for Ll, which will minimise
the error in the machine current. It is therefore appropriate to estimate the reciprocal of
the inductance, 1

Ll
. The error in y is then equal to the error in ik if these equations are

used as a predictor for current.

The least-squares variables are then,

y =

ik − 3ik−1 + 3ik−2 − ik−3

ik−1 − 3ik−2 + 3ik−3 − ik−4

ik−2 − 3ik−3 + 3ik−4 − ik−5

...

 , C = T

vk − 2vk−1 + vk−2

vk−1 − 2vk−2 + vk−3

vk−2 − 2vk−3 + vk−4

...

 . (3.93)

The standard least-squares estimation involves calculating,

x̂ =
(
CTC

)−1
CT y. (3.94)

This batch style calculation is not appropriate for on-line estimation. Instead, the recur-
sive least-squares form is required. In this case, the estimation occurs for each data point
that is received. The estimation algorithm uses information from the previous iteration
to minimise the calculation required at each instant.

The recursive algorithms are specifically designed for the case where the estimation
is to occur over an indefinitely long time. In such cases, the conventional least-squares
algorithm will become “stale”. This is because the estimated variable is modelled as a
constant, and so time variations in the parameter are not accommodated. After a large
number of data are collected, each additional measurement will have little effect on the
estimation result.

In order to accommodate time-varying parameters, the variation may be explicitly
modelled. This would involve the introduction of a state variable, and a model of the
variation process, such as a random walk. While this addes complexity, for a basic
application where the specific model of the variation is not known, the simple inclusion
of a “forgetting factor” is sufficient. The forgetting factor is introduced to decrease the
modelled certainty at each timestep. Effectively, it gradually reduces the impact of old
estimates over time.

The form of the recursive least-squares estimation with a forgetting factor, λ, is
commonly expressed as,

ek = yk − Ckx̂k−1 (3.95)

Kk = TkC
T
k

(
W−1
k + CkTkC

T
k

)−1
(3.96)

x̂k = x̂k−1 +Kkek (3.97)

Tk+1 =
1
λ

(I −KkCk)Tk. (3.98)

The forgetting factor, λ, is a number between 0 and 1. The smaller this value is, the

70 CHAPTER 3. CURRENT CONTROL

sooner older measurements are “forgotten”. This value should be chosen based on how
quickly the parameter is expected to vary. For the inductance estimation, the value varies
slowly with respect to the sampling period, and so the value of λ can be rather high. For
the testing, values around 0.995 were used.

These least-squares equations have provision for a weighting factor on each measure-
ment. This expresses the relative confidence in the data for that measurement. For this
case, all of the data may be treated the same, and so the weighting on the values is a
constant. W may then be set to 1 for all iterations.

As only one value is being estimated, all of the quantities are scalars. Under these
conditions, the equations have been simplified to,

Uk =
Tk

1 + TkC
2
k

(3.99)

x̂k = x̂k−1 + CkUk(yk − Ckx̂k−1) (3.100)

Tk+1 =
1
λ
Uk. (3.101)

Each iteration requires one divide and six multiplications. This could be easily imple-
mented on a DSP, and a direct hardware implementation would be possible. In the
hardware version, careful scaling would be needed with the fixed-point quantities.

Simplified Estimator

In cases where the recursive least-squares estimate calculation is too complex, a simplified,
yet inferior, estimate may be found. By re-arranging Equation (3.91), the direct form for
the inductance estimate is,

Lestl = T
vk − 2vk−1 + vk−2

ik − 3ik−1 + 3ik−2 − ik−3
. (3.102)

The resulting estimate is very noisy, and must be filtered over time to be useful. A
suitable filter of a quantity uk is,

x̂k = λx̂k−1 + (1− λ)uk. (3.103)

The parameter λ is equivalent to the forgetting factor above. Indeed this filter is actually
a recursive least-squares estimator, for the simple case of Ck = 1.

As noted in the quarter-cycle estimation method above, the estimated value may be
filtered either directly, or in the reciprocal form. The advantage of the reciprocal form is
that it is easier to remove poorly conditioned estimates without introducing additional
bias. Values with a small sum of voltages are simply ignored.

If Lest is filtered directly, the conditioning is based on the sum of the currents. Sums
of zero must be removed to avoid a division by zero. If the rejection band is too small,
the estimate will be biased high due to the bias introduced by dividing by small numbers.

3.4. Inductance Estimation 71

In contrast, if too many measurements are rejected on the basis that the denominator
is too small, the result will be biased low. While satisfactory operation can be achieved
for a reasonably wide band, this dependence on a parameter can somewhat defeat the
original purpose in estimating the inductance.

By filtering 1/Lest, the bias issues are lessened, but a number of other problems are
introduced. Firstly, the actual value required by the controller is the inductance itself,
so the presence of the estimate as an inverse will require an additional division per cycle.

For the inductance value itself, in a fixed-point implementation the relative accuracy
of representation increases with increasing values of L. This is because the absolute
accuracy is a constant in fixed-point. This is convenient because erroneously small values
of inductance are more likely to provide controller stability in the case of parameter
uncertainty. As as fail-safe default, small values of inductance may be represented, but
with reduced accuracy.

When the reciprocal of inductance is being used, provision for small values of L in
fixed-point requires a significant increase in the word-length, or a reduction of accuracy
for normal values. A further disadvantage occurs during the start-up transient. In this
case, an initial value for the inductance estimate must be supplied. To ensure stability,
this value should be small, say one-tenth of the true value. Now, a linear filter will have
a better transient if the initial condition is one-tenth of the true value, rather than ten
times the true value. In the latter case, the size of the transient in the filter is nine
times as large. A comparison is illustrated in Figure 3.15. In this figure, the solid line

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

Direct filtering
Inverse filtering

Figure 3.15: Comparison of filtering types.

represents conventional filtering, while the broken line is for the case where the inverse
value is filtered. For equivalent steady-state filtering action, the initial transient from a
small value is faster for the direct filtering.

This comparison shows that there is a role for each of the estimation and filtering
techniques, depending on the calculation facilities. For the simplest calculation using
fixed-point numbers, the direct filtering of Equation (3.102) is most appropriate, but the
potential for bias is the highest. Where a wider numerical range is available, calculating
and filtering the reciprocal of this quantity is a viable alternative, although the recursive

72 CHAPTER 3. CURRENT CONTROL

least-squares will provider a superior estimate. Note also that the least-squares requires
the evaluation of only one division. For the case of a DSP implementation, where adds
and multiplies are cheap, yet divisions often expensive, the least-squares estimator is
likely to be the best alternative.

Performance

The performance of the full-cycle estimator is shown in Figure 3.16. This plot includes
three traces, for various forms of the estimator. These estimates are all obtained from
a real induction machine under test. The broken line with a sharp initial rise shows the

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

1

2

3

4

5

6

7

8

9

time(s)

In
du

ct
an

ce
(m

H
)

Inductance Estimate Filtering

λ=0.99
LS λ=0.99
LS Startup

Figure 3.16: Inductance Estimation using the full cycle method.

behaviour of the basic least-squares estimator on start-up. A very small initial condition
value of about 1mH was used for each test. The sharp transition toward the correct value
is possible because the recursive least-squares estimator weights the data according to
the certainty of the estimation. Initially, little is known of the true value, so additional
weighting is given to the observed data points. Later, as more data is collected, each
individual sample has less impact on the current estimate. As the estimator reaches
steady-state, all of the new data has the same weighting. The size of this weighting,
compared to the existing estimate, is given by the forgetting factor.

In the recursive least-squares formulation, the state variable T is a measure of the
current uncertainty in the estimate. Initially this starts off high, and is reduced as addi-
tional measurements are made. As older measurements are “forgotten”, this is divided
by λ to increase the uncertainty in the existing value.

In the case of the solid line, the value of T in the least-squares estimate is initialised
to the steady-state value from a previous test. This situation better represents the case
where there is a change in the parameter value during operation. The shape of the
transient under these conditions is determined by the value of λ.

3.5. Conclusions 73

This result may be directly compared to the cross points, which represent the sim-
plified filtering method. In this example, the inverse of the inductance is filtered, to
minimise the bias. The filtering constant used for the simplified estimator is the same as
the forgetting factor in the least-squares estimate. As a result, the transient is a similar
shape, but it does have a greater level of noise.

As the estimation equation is simply a relationship between the machine voltages,
currents and the inductance, it may instead be used to predict one of the other quantities.
Using the already estimated inductance, the performance of the estimator as a predictor
is shown in Figure 3.17. It is obtained by re-arranging the estimator to the form,

ik = 3ik−1 − 3ik−2 + ik−3 +
T

Lestl
(vk − 2vk−1 + vk−2) . (3.104)

This shows the ability of the estimator to predict future values of current, based on the
past currents and voltages.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
−10

−5

0

5

10

Time (s)

C
ur

re
nt

(A
)

Estimator Prediction Ability

Measured
Estimated

Figure 3.17: Performance of the estimator.

The measured value is shown with the solid line, and the one-step ahead predictor is
shown with the marks. The two traces show good agreement. This confirms the model,
because given that model, the estimator will find the minimum prediction error in a sum
of squares sense.

3.5 Conclusions

This chapter has presented the elements necessary for the construction of the current
controller. First a model was chosen that captured the correct level of detail of the
machine operation. It was shown that the approximations made from the full model
were valid.

74 CHAPTER 3. CURRENT CONTROL

For symmetric space-vector modulation, it was found that it is suitable to use two
measurements for control per output switching cycle. Using additional measurements is
awkward both in terms of susceptibility to noise, and the modelling required.

Two methods were proposed for estimating the machine leakage inductance. The
quarter-cycle method, was found to suffer from significant limitations, but the full-cycle
method shows good performance in a practical test situation. In particular, when coupled
with recursive least-squares estimation, it exhibits a fast initial transient and low steady-
state noise.

75

Chapter 4

Controller Analysis

4.1 Introduction

In the previous chapter, a system model and a corresponding predictive controller were
developed. The purpose of this chapter is to theoretically validate the controller design,
and identify its strengths and weaknesses. The controller as proposed also has a number
of parameters that may be altered to obtain a particular type of performance. The effect
of varying these parameters is investigated.

The first section presents a theoretical analysis of the performance of the current
controller. Two important aspects of the controller operation are its tracking ability, and
its stability, and these are both investigated. Following this, the limitations of the basic
model are analysed. The main shortcoming is found in the assumption of a constant
back-emf, and a number of schemes are proposed to reduced the error associated with
this.

4.2 Standard Controller Performance

For ease of notation, the definitions of the controller quantities have been varied for the
analysis section. This is to be more consistent with traditional signal processing notation,
and allows the same variables to be used in the transfer function form. Figure 4.1 shows
the quantities used.

For the purposes of this analysis, it is assumed that the current measured in the centre
of the switching interval is always the average of the currents measured at the endpoints.
According to the model (Figure 3.3) this will always be the case. Due to the symmetry
of the switching pattern, the average voltage applied across the first and second halves of
the switching cycle will be the same. Consequently, for a constant back-emf and leakage

76 CHAPTER 4. CONTROLLER ANALYSIS

i
i

i
i

v v
e

k
k
*

k-1

k+1

k
k+1

k

Time

C
ur

re
nt

Figure 4.1: Schematic current waveform showing the allocation of subscripts to measured
currents and voltages.

inductance, the change in current across each half of the interval will be the same, ie.

ik+0.5 − ik = ik+1 − ik+0.5 (4.1)

ik+0.5 =
ik + ik+1

2
. (4.2)

To facilitate analysis, it is assumed that there is no prediction error when estimating
the current at the start of a control interval. This is necessary to cast the controller in a
standard shift operator form. By making the prediction assumption, each sample period
has one voltage and one current associated with each axis of the machine.

Under these assumptions, the basic controller equations are:

vk+1 =
ρLl∆L
T

(uk+1 − ik) + epredk+1 (4.3)

eestk+1 = vk+1 −
Ll∆L
T

(ik+1 − ik) . (4.4)

In these equations, the real machine leakage inductance is Ll, while the estimated induc-
tance is Ll∆L. ∆L is the multiplicative estimation error.

In addition to the controller equations, the back-emf prediction is taken as the esti-
mate from the previous interval. The prediction is necessary in the controller for causality.
The simple assumption of a nearly constant back-emf has shortcomings, but alternatives
such as linear extrapolation are considered later. For the first analysis, the back-emf
prediction is given by:

epredk+1 = eestk . (4.5)

The behaviour of the coupled controller and machine may be found by simultaneously
solving all of the associated equations. The ideal model for the machine is:

vk =
Ll
T

(ik − ik−1) + ek. (4.6)

The combination of this model together with the controller equations describes the dy-
namics of the complete system.

4.2. Standard Controller Performance 77

4.2.1 System Transfer Function

In order to solve the equations, the controller equations may first be combined to obtain
a single updating equation,

vk+1 =
ρLl∆L
T

(uk+1 − ik) + vk −
Ll∆L
T

(ik − ik−1) . (4.7)

Following this, the machine equation may be used to eliminate the voltage terms from the
updating equation. Because the current is the quantity of interest, the equations should
be in terms of the machine currents and not the voltages. Once the current response is
found, the associated voltages could be determined from that if required.

By substituting the machine equation (4.6) into the controller equation 4.7, the system
difference equation is,

Ll
T

(ik+1 − ik) + ek+1 =
ρLl∆L
T

(uk+1 − ik) +
Ll
T

(ik − ik−1) + ek −
Ll∆L
T

(ik − ik−1)

(ik+1 − ik) +
T

Ll
ek+1 = ρ∆L (uk+1 − ik) + (ik − ik−1) +

T

Ll
ek −∆L (ik − ik−1) . (4.8)

Now collecting the current terms together:

ik+1 + (−1 + ρ∆L− 1 + ∆L) ik + (1−∆L) ik−1

= ρ∆Luk+1 +
T

Ll
(ek+1 − ek) . (4.9)

The forward shift operator z is now used to create a discrete-time transfer function. This
is defined as,

zxk = xk+1, (4.10)

for a discrete-time quantity x. After converting the system expressions to the forward
shift operator, the transfer function from the reference, u, to the output current, i is,

i
(
z2 + (∆L(ρ+ 1)− 2)z + (1−∆L)

)
= z2ρ∆Lu− (z − 1)z

T

Ll
e. (4.11)

In this case, the under-modelling of changes in the back-emf is treated by including the
back-emf as a disturbance term. Unless the time-varying nature of the back-emf is being
considered, this final term involving e may be ignored.

4.2.2 Stability Analysis

The stability of the controller may be determined by considering the locations of the
poles of the discrete-time transfer function. The poles are the values of z that set the
denominator of the transfer function to zero.

78 CHAPTER 4. CONTROLLER ANALYSIS

Ignoring the back-emf disturbance term, the transfer function from reference to ma-
chine current is:

G(z) =
I(z)
U(z)

(4.12)

=
z2ρ∆L

z2 + (∆L(ρ+ 1)− 2)z + (1−∆L)
. (4.13)

The denominator of this expression is the characteristic equation, and the values,
called the roots, for which this is zero are important for stability. The roots may be
complex numbers, and if the magnitude of all of the roots is less than one, the system is
stable.

Consider first the case where there is no inductance estimate error. In this case
∆L = 1, and the characteristic equation is:

(z + ρ− 1)z = 0. (4.14)

The roots of this equation are 1−ρ and 0. The root at zero simply indicates a time delay,
but dynamics may be associated with the root at 1−ρ. In particular, if ρ is greater than
two the system will become unstable.

This shows that the average current control (ρ = 2) is only marginally stable, with
an oscillation frequency of half the control rate. This result could be expected, as with
average control, only the midpoint of the straight-line segments is constrained, and the
endpoints may alternate between large positive and negative values. If the midpoint or
average current is used instead of the endpoint current, this oscillation frequency is an
unobservable mode, and the instability will not be apparent from those measurements.
Despite this, the instability is a bad thing because it will be likely to cause a very large
current ripple, constrained only by the saturation limits of the system.

In the absence of estimation errors, the endpoint controller (ρ = 1) offers dead-beat
control over the endpoint current. At the end of the interval the reference current is
reached and there are no undesirable dynamics.

The location of the closed-loop system poles may be plotted for varying inductance
estimation error. This root-locus plot appears as Figure 4.2. Figure 4.2 shows a discrete-
time root-locus plot for the endpoint control case (ρ = 1). The varied parameter is the
multiplicative error in the inductance estimate. The circle indicated with a broken line
represents the boundary of stability. Provided the poles remain inside this circle, the
system is stable.

In this case, all of the closed loop poles are stable provided ∆L < 1.3. If the estimate
of L is too low, only the bandwidth is affected. In the presence of uncertainty, it is quite
safe to deliberately underestimate the value of the leakage inductance.

The stability of a discrete-time system can be determined by the largest magnitude
of the closed loop poles. This value is plotted as a function of the error in the inductance

4.2. Standard Controller Performance 79

1

1
-1

-1

0

0

∆ L=1
∆ L=0

∆ L=1.3

Figure 4.2: Root-locus plot for the controller.

estimate in Figure 4.3. The solid line represents the case for endpoint control, with ρ = 1.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

3

3.5

Inductance Error ∆L

M
ax

im
um

 r
oo

t m
ag

ni
tu

de

ρ=1

ρ=2

Figure 4.3: Maximum root magnitude as a function of the inductance estimation error.

This clearly shows the limits of stability for this case, where the estimate for Ll may fall
anywhere between zero and over 1.3 times the the true value. However, for average
current control, the pole location magnitude is shown with the broken line. In this case,
estimates of Ll that are too small have the same properties, but any over-estimation will
cause instability. This shows that the average current control is difficult to tune.

Endpoint vs. Average Current Control

Figure 4.4 shows how the stability boundary changes for values of ρ between 1 and 2.
From this plot, it can be noted that further decreasing ρ below unity offers an even greater
tolerance to errors in the leakage inductance estimate. This corresponds to the controller
seeking to reach the reference at some point after the end of the control interval. There
are performance penalties in doing this, and the tolerance available at ρ = 1 should
generally be sufficient.

80 CHAPTER 4. CONTROLLER ANALYSIS

0.8 1 1.2 1.4 1.6 1.8 2
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

Control type ρ

M
ax

im
um

 ∆
L

 f
or

 a
 s

ta
bl

e
sy

st
em

Figure 4.4: Maximum inductance estimation error for a stable system, as a function of ρ.

To obtain the tracking benefits associated with a high value of ρ, reference prediction
could instead be used. This involves considering the reference to be controlling the
average current across an alternate time window. This is the window centred around
the control interval endpoint. The geometry is shown in Figure 4.5. With the reference

ii
i

(t)
(t)i

u

k1
2k-1

k

Time

C
ur

re
nt

Figure 4.5: Endpoint average current window.

prediction, the aim is to control the average current across the interval designated by
uk. The average current control is obtained by simply using the endpoint controller to
regulate the current at the centre of the uk window.

The error involved in making this assumption can be found by determining the true
average across the nominated window. The average uk will be found by:

uk = ik +
1
T

(
−
∫ 0

−T
2

di1
dt
t dt+

∫ T
2

0

di2
dt
t dt

)
(4.15)

= ik +
T

4

(
di2
dt
− di1

dt

)
(4.16)

≈ ik +
T 2

4

(
d2iref
dt2

)
. (4.17)

4.2. Standard Controller Performance 81

For a reference sinusoid, i = A sin(ωt), the second derivative is given by,

d2i

dt
= −Aω2 sin(ωt). (4.18)

The peak error in the average assumption is,

max(uk − ik) =
1
4
ipeak(ωT)T . (4.19)

For 50Hz operation, and a control rate of 3kHz, this represents a maximum error of
0.14% of the peak-to-peak reference current. For most applications, this will be little
more than the quantisation and noise errors in the measurement transducers. In the
implemented version, this accuracy exceeds the output PWM precision. For a general-
purpose controller, it would appear that the endpoint control is a satisfactory alternative
to the less stable alternative of average current control.

4.2.3 Tracking Performance

The transfer function developed in Section 4.2.1 may be used to analyse the ability of the
controller to track a sinusoidal reference. The steady-state frequency response is found
by substituting z := ejω∆ where ω is the frequency of interest, and ∆ is the sampling
period.

G(z)|z=ejω∆ =
z2ρ∆L

z2 + (∆L(ρ+ 1)− 2)z + (1−∆L)

∣∣∣∣
z=ejω∆

. (4.20)

The performance of a linear system is often displayed in the form of a Bode plot, which
displays the output magnitude and phase change as a function of the input frequency.
Figure 4.6 shows the reference to output gain for a given reference frequency of 50Hz.
This is for an endpoint controller, with a control frequency of 3kHz, and for two different
values of inductance estimation errors, ∆L = 0.5 and ∆L = 1.2. Because it is a linear
model, the output is a sinusoid with the same frequency as the input. The only change
is in the amplitude and phase, which is given by the magnitude and phase of G(ejω∆).

The case of no parameter error is not shown, as both the magnitude and phase
responses are perfectly flat in that case. A one time-step delay might be expected from
the controller so that causality may be obtained. This does not appear in the transfer
function because the reference is defined as the desired current at the end of the control
interval. This was done to separate behaviour that is specific to this controller from the
delays associated with all discrete-time control.

System Gain Error

Even with the errors in inductance estimation, the responses are very flat for frequencies
in the usable range of up to 100Hz. The effect of the parameter estimation is now

82 CHAPTER 4. CONTROLLER ANALYSIS

10
1

10
2

10
3

−4

−3

−2

−1

0

1

2

3

4

Frequency(Hz)

G
ai

n
(d

B
)

Magnitude Frequency Response

∆L=0.5
∆L=1.2

10
1

10
2

10
3

−10

−5

0

5

10

Frequency(Hz)

O
ut

pu
t p

ha
se

 le
ad

 (
de

gr
ee

s)

Phase Frequency Response

Figure 4.6: Sinusoidal magnitude frequency response of the closed-loop system.

considered for the standard operating frequency.

Figure 4.7 shows the reference to output gain for a given reference frequency of 50Hz.
This represents the same endpoint controller used above, but now the magnitude is
plotted over a range of inductance estimation errors. The value on the y-axis indicates
the ratio of the output amplitude over the input amplitude.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.6

0.7

0.8

0.9

1

1.1

1.2

No e Estimation

Inductance Error ∆L

R
ef

er
en

ce
 to

 o
ut

pu
t v

ol
ta

ge
 g

ai
n

50Hz Steady−State Sinusoid Response

Figure 4.7: Sinusoidal magnitude response of the closed-loop system.

In this case, the controller gain behaviour is shown with the solid line. For values of
∆L near 1 (no error), the output amplitude is equal to the reference amplitude. As the
estimated inductance decreases, the gain of the system increases. With the inductance
estimated at only one tenth of the true value, the output gain is 1.1. For more reasonable
estimates, the result is very close to the correct value.

4.2. Standard Controller Performance 83

This increased gain with a lower estimate of Ll is counter intuitive. One would expect
that with a lower value of Ll, the controller would be less aggressive, knowing that fewer
volts are necessary to make a given change in current. However, the additional gain is
a product of the back-emf estimation stage. The controller may instead be formulated
without the back-emf estimation. In this case, the controller and machine equations are:

vk+1 =
ρLl∆L
T

(uk+1 − ik) + ek+1 (4.21)

vk =
Ll
T

(ik − ik−1) + ek. (4.22)

By combining these equations, the system is described by a first-order transfer function,

ik+1 + (ρ∆L− 1) ik = ρ∆Luk+1 +
T

Ll
(ek+1 − ek) (4.23)

(z + ρ∆L− 1)i = zρ∆Lu+
T

Ll
(z − 1)e. (4.24)

The broken line in Figure 4.7 shows the performance of this system. In this case, using
the true back-emf in place of the estimated one causes a greater dependence on the
accuracy of the inductance parameter.

System Phase Error

By considering the phase of Equation (4.20), the phase delay between the reference and
the output may be found. Figure 4.8 shows this phase error as a function of inductance
estimation error. With the correct inductance, perfect phase may be obtained, but a
phase lag occurs if the estimated value is too small.

0 0.5 1 1.5
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

Estimated E

Inductance Error ∆L

O
ut

pu
t p

ha
se

 le
ad

 (
de

gr
ee

s)

0 0.5 1 1.5
−10

−8

−6

−4

−2

0

2

No e Estimation

Inductance Error ∆L

Figure 4.8: Sinusoidal phase response of the closed-loop system.

The broken line in Figure 4.8 shows the behaviour of the system when the true value
of the back-emf is used in place of the estimated quantity. In this case, the lack of the

84 CHAPTER 4. CONTROLLER ANALYSIS

estimator leaves the controller far more susceptible to errors in the Ll parameter.
It is quite clear from this that an error in Ll causes a corresponding error in the

eest. This error in eest serves to compensate for the Ll error when it is subsequently
used for control purposes. To observe the relationship between the two estimates in the
presence of error, the estimator (4.4) and the system (4.6) should be compared. Taking
the difference between these equations for a given time-step,

eestk − ek = vk − vk −
Ll∆L
T

(ik − ik−1) +
Ll
T

(ik − ik−1) (4.25)

= (1−∆L)
Ll
T

(ik − ik−1) (4.26)

eestk = (1−∆L)vk + ∆Lek. (4.27)

This occurs in both the d and q axes, so in the two-dimensional vector case eestk lies on the
line joining vk and ek. Furthermore, it should be noted that if vk and ek were constant
this translation would result in zero error.

Re

Im

e

v

v

e
e

est

est

k

k

k+1

k+1

1- ∆L

∆L

Figure 4.9: Vector diagram of translated back-emf estimate.

The only reason error occurs as a result of an inductance estimation error is that one
of the controller assumptions about eest is broken. This assumption is that this value
should remain largely constant from one cycle to the next. The value of ek only varies
slowly, but vk can change rapidly as a result of control action. As a result, the closer eest

moves to vk, the greater the violation of this assumption.
From this analysis, the controller behaviour as a function of the error in the Ll esti-

mate can be found. Figure 4.9 shows how eest relates to the back-emf and applied voltage
vectors. In this diagram, the back-emf is assumed to be constant, and the inductance
estimate about half the true value. eestk is the estimated value at time-step k, while eestk+1

is what it will be at the following time-step.
For zero-error controller operation, the value eestk+1 should be used when calculating

the control at time-step k. This value will exactly compensate for the error ∆L in the
inductance. However, only eestk and ek are available, which represent the estimated and
true back-emfs respectively. Provided the change in v is relatively small, the estimated
value is much better suited than the true value.

4.3. Time-Variations in Back-emf 85

Closed-Loop Step Response

The response of the system to a step change in the reference may be found by calcu-
lating each time-step from the closed-loop transfer function (4.20). For the case of zero
inductance error, dead-beat control is obtained, meaning that the final value is obtained
at the end of the first control interval.

With parameter estimation errors, dynamics will appear in the output step response.
The case of ∆L = 0.8 is shown in Figure 4.10.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (ms)

O
ut

pu
t A

m
pl

itu
de

Step Response With ∆L=0.8

Figure 4.10: System step response with an inductance estimation error.

Again, the response obtained with the true back-emf is shown as the broken line for
comparison. The value of first step can be directly related to the value of ∆L. Due
to the prior steady-state conditions, the inductance error has no effect on the back-emf
estimate, so both responses are the same. Because the change in current is proportional
to the the leakage inductance, the relative error in the first step is the same as that in
Ll.

In the case without back-emf estimation, this process continues, with the geometric
response y = 1−0.2k. However, after the first time-step of the step response, there will be
an error in the back-emf estimate due to ∆L. As the current was less than expected, the
estimator assumes that back-emf is more negative than it really is. Subsequently, there
is overshoot in the second time-step as the controller attempts to compensate for this
additional expected back-emf. Finally, the response settles to the correct steady-state
value, as expected from the preceding analysis.

4.3 Time-Variations in Back-emf

Throughout the analysis in the previous section, the machine back-emf was considered
to be a disturbance, and so did not affect the accuracy of the controller. However, in

86 CHAPTER 4. CONTROLLER ANALYSIS

practice the time variation in the machine back-emf does have a significant impact on
the controller performance.

In terms of stability, the machine back-emf will have negligible effect on the results
presented. This is because it can be considered an open-loop disturbance. While the
current controller does affect the back-emf, the bandwidth of the closed loop path is very
slow compared to the current controller dynamics. Consequently this issue is addressed
by the outer loop controllers. The back-emf estimator does have fast dynamics, but
the estimator was included in the prior analysis. This is why the effects of back-emf
estimation were visible even though the true back-emf was zero for the test.

The original controller derivation included the assumption that the lumped back-emf
term could be considered constant from one control interval to the next. Even though
the fundamental frequency is much lower than the control rate, there may still be a
significant change in machine back-emf across one control interval.

For a control frequency of fc and a fundamental of ff , the maximum error introduced
by the assumption of a constant back-emf may be estimated by,

∆e
epeak

= max
1
fc

d

dt
cos(2πff t)

= 2π
ff
fc
. (4.28)

With a fundamental of 50Hz and a control rate of 4kHz, this represents a maximum
error of 4% of the peak-to-peak back-emf. This cannot be considered to be negligible,
and merits analysis of how this error affects the system performance.

The system transfer function (4.11) derived in Section 4.2.1 includes the terms relating
to the true machine back emf. This allows a transfer function to be constructed which
defines how the the back-emf affects the controlled current,

i

e
(z) =

−(z − 1)z TLl
z2 + (∆L(ρ+ 1)− 2)z + (1−∆L)

. (4.29)

The same analysis may be performed on this transfer function as that from the
reference to the output. The stability results will be identical, as these transfer functions
share a common denominator. While the phase response is important in the current case,
it is not directly relevant here, because no phase relationship has been assumed between
the fundamental machine current and the back-emf.

Of primary interest is the magnitude frequency response. This describes the ampli-
tude of current that is caused by a particular amplitude of back-emf. As it is a linear
system, this value simply adds to the current obtained from the previous results to obtain
the combined effect.

The magnitude response for a fixed fundamental electrical frequency, and varied con-
troller parameters is shown in Figure 4.11. Unlike the the transfer functions involving

4.3. Time-Variations in Back-emf 87

0 0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01
ρ=1

Inductance Error ∆L

C
ur

re
nt

 d
ue

 to
 e

0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

Controller Configuration, ρ

∆L=1

Figure 4.11: Disturbance due to back-emf error at 50Hz.

only the current, the results here depend highly on the machine parameters. The param-
eters used for this analysis are shown in Table 4.1.

Parameter Value
Electrical Frequency 50Hz
Control Period 0.3ms
Leakage Inductance 10mH

Table 4.1: Test machine parameters.

With endpoint control and the correct value for inductance, the gain from the back-
emf to the output is approximately 3mS. For a sinusoidal back-emf of amplitude 200V,
this corresponds to a peak current error of 600mA. Under normal machine operation,
this could easily represent a 10% error in the machine current.

The results of a simulation of the controller coupled to a full d-q model of the machine
is shown in Figure 4.12. Here, the staircase waveform shows the current reference for a
given control cycle. For correct matching, the machine current should coincide with this
at the end of each interval.

The correct matching occurs toward the end of the plot window, at t = 1.895s.
However, shortly after the peak, there is a significant error in the setpoint tracking. The
peak error is about 500mA, as expected from the analysis.

The effect of the changing back-emf is the biggest shortcoming of the stationary-
frame controller. However, there are a number of methods that may be used to reduce
the effect of this error. These methods vary in effectiveness, side-effects and complexity.
The following sections describe these.

88 CHAPTER 4. CONTROLLER ANALYSIS

Direct Axis Current Without Predicted Back-emf Rotation

 (
-)

-5.0

0.0

5.0

10.0

 t(s)

1.891 1.892 1.893 1.894 1.895

(-) : t(s)

i_ref_d_s

id

Figure 4.12: Simulation of the controller with feed-forward back-emf compensation.

4.3.1 Back-emf Extrapolation

The basic problem with the variation in the back-emf is that the estimates are delayed
due to causality constraints. Essentially, the problem is with Equation (4.5), which is
simply a parameter time-shift,

epredk+1 = eestk . (4.30)

This is based on the observation that back-emf is slowly changing, and the existing
interval will adequately approximate the next. The improved back-emf compensation
methods involve improving the accuracy of this prediction equation.

Linear extrapolation

A closer approximation may be made by using linear extrapolation on the back-emf
estimates. This assumes that the change in back-emf across the interval is a constant,
rather than the back-emf itself being a constant.

epredk+1 = eestk +
(
eestk − eestk−1

)
(4.31)

= 2eestk − eestk−1. (4.32)

4.3. Time-Variations in Back-emf 89

This relies on the second derivative with respect to the sampling period being smaller
than the first. If T is the control period, the first derivative is

de

dk
=

d

dt
Asin(ωkT) (4.33)

= AωTcos(ωkT). (4.34)

In this case, the relative change is ωT . For a 50Hz fundamental and a 3kHz control rate,
this value is approximately 0.1. This value of 0.1 is roughly equivalent to the 10% error
found in the current above. For the case of linear extrapolation, the error is caused by
the change in the second derivative,

d2e

dk2
=

d2

dt2
Asin(ωkT) (4.35)

= −A(ωT)2sin(ωkT). (4.36)

This time the relative change is (ωT)2. For the 50Hz example, the error will be approx-
imately only one tenth of that without the extrapolation.

These results suggest that linear extrapolation is a good substitute for the simpler
method originally presented. One disadvantage is the additional calculation required,
but in reality this overhead is relatively small. On the final implementation, for each
axis, it involves storing and retrieving an additional past value of current, together with
a few extra addition operations.

Controller Performance

Of greater significance is how this change affects the other controller performance at-
tributes. This change in the emf-prediction increases the order of the system dynamics
from two to three. In doing so, the stability properties and reference tracking ability is
affected.

To obtain the new controller specification, Equation (4.32) may be combined with the
existing controller equations (4.3) and (4.4). The system is described by the equations,

vk+1 =
ρLl∆L
T

(uk+1 − ik) + 2eestk − eestk−1 (4.37)

eestk+1 = vk+1 −
Ll∆L
T

(ik+1 − ik) . (4.38)

which may be simplified into a single updating equation,

vk+1 = 2vk − vk−1 +
Ll∆L
T

(ρuk+1 − (2 + ρ)ik + 3ik−1 − ik−2) . (4.39)

Equation (4.39) would be used to implement this controller. This is a similar, but higher
order, equation to the one for the basic controller in (4.7).

The closed loop discrete-time transfer function is obtained from (4.39) together with

90 CHAPTER 4. CONTROLLER ANALYSIS

the machine model in (4.6). It may be shown that in forward shift operator this is,

i
(
z3 + (∆L(ρ+ 2)− 3)z2 + 3(1−∆L)z + ∆L− 1

)
= z3ρ∆Lu− (z − 1)2z

T

Ll
e. (4.40)

The same analysis techniques may be applied to this controller as the original controller.
In particular, the transfer function from the machine back-emf to the current reveals
the effectiveness of the revised prediction scheme. This is plotted as a function of the
inductance error in Figure 4.13.

0 0.5 1 1.5 2
0

0.5

1

1.5

2
x 10

−3 ρ=1

Inductance Error ∆L

C
ur

re
nt

 d
ue

 to
 e

0.5 1 1.5 2
0

0.5

1

1.5

2
x 10

−3

Controller Configuration, ε

∆L=1

Figure 4.13: Disturbance due to back-emf error at 50Hz.

The overall graph shape is similar to the previous case, but now the gain is much
lower, at about 0.25mS. For the same 200V back-emf, the resulting error in current is
only 50mA. This means that the expected reduction to one tenth of the original error is
realised.

The extrapolation offers much better disturbance rejection properties, but this does
come at a price of system stability and parameter estimation tolerance. The extrapolation
scheme involves more closely modelling the system, and so more is susceptible to problems
when there is a model error.

The root-locus plot for the controller with the extrapolation included is shown in
figure 4.14. Again, endpoint control is used. In this case, the available range of Lest for
a stable system is significantly smaller. In particular, it is now necessary to ensure that
the inductance estimate is at least half of the true inductance.

The magnitude of the maximum pole location magnitude as the estimation error
changes is shown in Figure 4.15. The warping of the pole locations with the addition of
the extra dynamics reduces the stability margin.

The system is only stable for ∆L in the range of 0.5 < ∆L < 1.2. The consequence

4.3. Time-Variations in Back-emf 91

1

1

-1
-1

0

0 L=0L=1.2 L=1

L=0.5∆

∆ ∆∆

Figure 4.14: Root-locus plot for the controller with back-emf extrapolation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

3

Inductance Error ∆L

M
ax

im
um

 r
oo

t m
ag

ni
tu

de

Extrapolation
No Extrapolation

Figure 4.15: Maximum root magnitude as a function of the inductance estimation error
with back-emf extrapolation.

of this is that the inductance estimate must be close to the true value, and large errors
in either direction result in instability. The advantage of the controller without the
extrapolation is that a low inductance estimate will be stable, even if the performance is
degraded. This is particularly helpful at start-up when the inductance may not be well
known. Overall, while performance may be improved by using the linear extrapolation,
it is more sensitive to errors in the inductance estimate.

4.3.2 Rotation Feed-forward

The extrapolation method described in the previous section operated purely on each axis
separately. Further alternatives may be found by utilising additional information from
the system. In particular, it is known that the back-emf space vector will generally follow
a circular trajectory at the electrical rotation frequency. This information may be used
to better predict the path of the space vector over the control interval. Figure 4.16 shows

92 CHAPTER 4. CONTROLLER ANALYSIS

the assumed back-emf geometry.

Re

Im

e

e

e

e

k+1

k

k

d

q

de
dφ

φ

∆φ

Figure 4.16: The back-emf trajectory.

The direct and quadrature axis back-emf components may be derived from the dia-
gram to be,

edk = ek cos(ωTk) (4.41)

eqk = ek sin(ωTk). (4.42)

If the value of ∆φ is known, the value of ek+1 can be quite accurately predicted from
ek. However, the value of ∆φ is not well known by the current controller. While it is true
that many quantities are changing at the electrical synchronous frequency, the angular
frequency is not known directly by the controller. An alternative would be to assume that
this quantity is known from another source. Typically the reference electrical rotation
speed is well known in a field-oriented torque controller, for example. As it is the role of
the torque controller to control the angle of the back-emf, it will not even be a predicted
quantity, but rather a control setpoint. As such it will not suffer from the errors in
forward prediction.

For the remainder of this section, it will be assumed that the projected change in
angular displacement of the back-emf space vector is known. If it cannot be derived, this
method is not directly suitable for the application. The modifications detailed in the
following section (§4.3.3) remove the need for this information.

Implementing Feed-forward

It is assumed that the expected change in back-emf angle is known for the given control
cycle,

∆φk = φk+1 − φk. (4.43)

4.3. Time-Variations in Back-emf 93

With this knowledge, a simple transformation exists to re-map the estimated back-emf
coordinates by the adjustment angle. From basic trigonometry, this is,[

epreddk+1

epredqk+1

]
=

[
cos(∆φ) − sin(∆φ)
sin(∆φ) cos(∆φ)

][
eestdk
eestqk

]
. (4.44)

This approach will indeed work. However, one of the aims of performing the control
in the stationary frame is to reduce the number of these types of transformations neces-
sary. It is possible to instead calculate a close approximation without the need for the
trigonometric lookups. This is done by performing a linear approximation to (4.44).

For small angles of θ, the following approximations hold,

cos(θ) ≈ 1 (4.45)

sin(θ) ≈ θ. (4.46)

These approximations are very close for the range range of θ under consideration. For
the example of a 50Hz fundamental with a 3kHz control rate, ∆φ will be of the order of
0.1. In this case, the approximations are accurate to less than 1%. As it is further scaled
against the 10% error in the measurable quantities, this approximation is adequate.

With the approximation, the transformations in (4.44) become a simpler expression,[
epreddk+1

epredqk+1

]
≈

[
1 −∆φ

∆φ 1

][
eestdk
eestqk

]
. (4.47)

In this form, the only additional calculation is a multiplication of the back-emf estimates
with the supplied ∆φ, and the associated additions. The resulting prediction equations
differ between two axes, and may be implemented as,

epreddk+1 = eestdk −∆φeestqk (4.48)

epredqk+1 = eestqk + ∆φeestdk . (4.49)

Performance Analysis

Analysis of the properties of this controller depends heavily on the value of ∆φ supplied.
However, it is reasonable to expect that it is a slowly-changing quantity with respect
to the current controller dynamics. In this case, the stability of the controller will be
unaffected, as the adjustment could be considered an open-loop disturbance.

The best approximation within the linear analysis framework is to assume that the
adjustment angle is correct. This would result an accurately compensated back-emf term,

epredk+1 = eestk + ζ (ek+1 − ek) . (4.50)

The constant ζ indicates the accuracy of the supplied change in angle. This parameter

94 CHAPTER 4. CONTROLLER ANALYSIS

can also be used to consider the effect of a change in the magnitude of the back-emf. The
changing magnitude is a less significant problem, but there will still be small changes
over time. A value of ζ = 1 indicates that the matching is perfect. For the case of an
error in the supplied angle, ζ is defined as,

ζ =
∆φpred

∆φ
. (4.51)

By combining (4.50) with the controller Equations (4.3) and (4.4), the controller
equation may be found,

ik+1 + ((ρ+ 1)∆L− 2) ik + (1−∆L) ik−1

= ρ∆Luk+1 +
T

Ll
(ek+1 − ek) (1− ζ). (4.52)

This controller behaviour is identical to the original one, except for the addition of the
(1 − ζ) term in the back-emf component. In the specification ζ = 0 corresponds to no
compensation. As expected, the expression reduces to the original equation with ζ = 0.

For all values of ζ, there is no effect on the reference tracking or stability dynamics.
It only has an impact on the magnitude of the error due to the back-emf. For perfect
compensation, (ζ = 1), the change in back-emf has no effect on the controller output.

This controller adjustment could be considered analogous to the rotating frame PID
controller operating in stationary coordinates[40], described in Section 2.4.2. It offers the
steady-state tracking advantages of a rotating-frame controller, but without the require-
ment for the coordinate transformations. However, as with the PI controller, knowledge
of the electrical rotation velocity is required.

Simulation Results

The merits of feed-forward scheme are difficult to show analytically because of the de-
pendence on the supplied rotation parameter. An alternative is to simulate a number of
trial situations to observe whether the result matches the expectations.

Figure 4.17 shows the tracking ability of the revised controller for the direct-axis cur-
rent. This is equivalent to the simulation of the original controller shown in Figure 4.12.

In this case, the tracking ability is greatly improved. Perfect matching occurs for
almost the entire region of the plot. The exception is an area near t = 1.9037s, where
there is a short period of deviation. This deviation coincides with the zero-crossing of
another phase and is almost certainly due to the effects of inverter dead-time.

The performance of the back-emf predictor itself can be examined by comparing the
predicted value of the back-emf to the estimated value obtained in the subsequent cycle.
This comparison is shown in Figure 4.18.

The predicted value of the back-emf is very close to the estimated value in the fol-

4.3. Time-Variations in Back-emf 95

Direct Axis Current With Predicted Back-emf Rotation

 (
-)

-5.0

0.0

5.0

10.0

 t(s)

1.902 1.903 1.904 1.905 1.906

(-) : t(s)

i_ref_d_s

id

Figure 4.17: Simulation of the controller with feed-forward back-emf compensation.

Predicted and Estimated Back-emf

 t(s)

1.902 1.904 1.906

 (
-)

-200.0

0.0

200.0

(-) : t(s)

ed_adjust

ed_samp

Figure 4.18: The predicted and estimated d-axis back-emf.

lowing cycle. This is the correct behaviour for the predictor. It is quite evident that the
predicted value is a significantly better approximation than simply using the previous
value obtained.

Figure 4.19 shows the transient response of the simulated controller and machine.
This was obtained by applying a step setpoint to the torque controller. The result is
a step reference for the quadrature-axis current. The simulation shows good tracking
performance on the direct axis current, and there is no evidence of degradation resulting
from the feed-forward mechanism. There is some coupling of the axes, but in comparison
to the step size, this is reasonably small. This coupling effect is due to saturation of the

96 CHAPTER 4. CONTROLLER ANALYSIS

Current Transient Performance With Feed-forward

 t(s)

0.02 0.025 0.03

 (
-)

0.0

20.0

 (
-)

0.0

20.0

(-) : t(s)

i_ref_q_s

iq

(-) : t(s)

i_ref_d_s

id

Figure 4.19: Transient response of the modified controller.

controller output, which limits the voltage that may be supplied to the machine.

Simulations were also performed with the introduction of error in the leakage induc-
tance parameter. In this case, the inclusion of the feed-forward term does not further
degrade the controller. The case for a very low controller leakage inductance parameter
is shown in Figure 4.20. With the error in the leakage inductance, the feed-forward still

Current Tracking, Delta L=.15, WIth No emf Prediction

 t(s)

1.878 1.88 1.882 1.884

0.0

10.0

(-) : t(s)

i_ref_d_s

id

Current Tracking, Delta L=.15, WIth emf Prediction

 t(s)

1.914 1.916 1.918 1.92

.

Figure 4.20: Machine current with significant inductance estimation error.

offers improvements in the tracking ability of the controller. In this case, the improve-
ment is greater. This greater improvement is to be expected from the results shown in
Figure 4.13. In that section(§4.3), it was shown that the controller is more susceptible to
changes in the back-emf when ∆L � 1. Consequently, the improvement offered by the
feed-forward is greater under these circumstances.

Overall, the simulation results support the analytic expectations of the controller.

4.3. Time-Variations in Back-emf 97

It offers the dynamics of the original controller, but with a great reduction in the error
introduced by the variation in machine back-emf.

4.3.3 Observer Based Rotational Adjustment

The principal drawback of the feed-forward method described in Section 4.3.2 was that
knowledge of the electrical rotation speed was required. At the cost of additional com-
plexity, this information can instead be provided by an observer within the current con-
troller. The observer removes the requirement for additional information to be passed to
the controller. This section describes the development and analysis of such an observer.

The basic philosophy behind the observer is to use the alternate phase (direct or
quadrature) to obtain derivative information. This derivative provides a coupling between
the rotation of the back-emf vector and the estimated quantities. The basic objective is to
use this coupling to perform linear extrapolation, but with the the angular displacement
of e as an intermediate parameter. The advantage of explicitly evaluating the rotation
speed is that this quantity is slowly changing, and thus can easily be filtered without
phase-delay problems.

In the previous section, a predictor was developed to estimate future values for the
back-emf, based on the change in back-emf angle across a control cycle. This resulted in
the equations,

epreddk+1 = eestdk −∆φeestqk

epredqk+1 = eestqk + ∆φeestdk . (4.53)

These may be re-arranged to obtain an estimate for ∆φ,

∆φestk =
−eestdk + eestdk−1

eestqk
(4.54)

∆φestk =
eestqk − eestqk−1

eestdk
. (4.55)

This offers two different estimates of the change in angle of the e. However, due to the
division operation, a good approach would be to use the equation which involves division
by the larger quantity.

Errors are to be expected in this estimation, particularly as it involves a differentiation
structure. However, the quantity being estimated is slowly-changing with respect to the
control frequency, and so may be filtered. The filter used in the analysis is,

∆φfiltk+1 = (1− ε)∆φfiltk + ε∆φestk , (4.56)

where ε controls the amount of data filtering. ε = 1 represents no filtering of the estimate.
This filtered estimate may be used in place of the torque controller supplied value that

98 CHAPTER 4. CONTROLLER ANALYSIS

was used in the feed-forward controller. Equation (4.53) is used in the prediction stage,
with the filtered value for ∆φ.

Observer Transfer Function

Unlike the basic feed-forward controller, the introduction of the observer introduces addi-
tional dynamics into the system. These dynamics may be analysed by forming a transfer
function for the revised system. The primary difficulty is to find a linear model of the
new estimator, preferably decoupled between the d and q axes.

From Equation (4.53), the quantity required for the predictor in the d axis is eestqk ∆φfiltk .
Let this be defined as,

γk , e
est
qk ∆φfiltk . (4.57)

Using (4.56),

∆φfiltk = (1− ε)∆φfiltk−1 − ε

(
eestdk − eestdk−1

eestqk

)
(4.58)

so,

γk = (1− ε)∆φfiltk−1e
est
qk − ε

(
eestdk − eestdk−1

)
(4.59)

= (1− ε)
[
γk−1 + ∆φfiltk−1

(
eestqk − eestqk−1

)]
− ε
(
eestdk − eestdk−1

)
. (4.60)

The quantity ∆φfiltk−1(eestqk − eestqk−1) is difficult to manage directly, because it relates
to quantities in the quadrature axis. It is also non-linear, meaning that a multi-variable
analysis does not offer a solution. Instead, an approximation may be made based on the
physical meaning of this quantity. By comparing Equation (4.53), ∆φeqk is an estimate of
the change in direct-axis back-emf across one control cycle. Now this is a slowly varying
quantity, so the change in ∆φeqk across one control cycle will be small. On this basis,
it is reasonable to approximate the change in ∆φeqk as being equal to its true physical
value. This is,

∆φ
(
eestqk − eestqk−1

)
≈ edk − 2edk−1 + edk−2. (4.61)

Again, because the change in γ is small compared to γ itself, it is reasonable to approxi-
mate the true value of ∆φ with the filtered estimate, ∆φfilt.

The result of these approximations is that the predictor may be expressed as,

γk = (1− ε) (γk−1 + ek − 2ek−1 + ek−2)− ε
(
eestk − eestk−1

)
. (4.62)

This equation is convenient for analysis because all of the terms refer to the same axis.
This expression is for the direct axis, but the quadrature axis is equivalent, except for

4.3. Time-Variations in Back-emf 99

sign changes.

Expressed in the shift operator, the full set of controller and machine equations are,

[
z2 + (ε− 1)z

]
γ = (1− ε)

(
z2 − 2z + 1

)
e− ε

(
z2 − z

)
eest (4.63)

zepred = eest − γ (4.64)

zeest = zv − Ll∆L
T

(z − 1)(i+m) (4.65)

z(v − e) =
Ll
T

(z − 1)i (4.66)

zv = zepred +
ρLl∆L
T

(zu− (i+m)). (4.67)

The term m represents the output measurement error. This is added to allow evalu-
ation of the susceptibility to errors and noise in measurement. It is defined as,

imeask = ik +mk. (4.68)

These equations may be solved for i, u, m and e to obtain the discrete-time transfer
function. The result is,

u
[
ρ∆Lz2(z + ε− 1)

]
+
T

Ll
e
[
−z3 + (3− ε)z2 + (2ε− 3)z + (1− ε)

]
= i
[
z3 + ((∆L− 1)(1 + ε) + ε+ ρ∆L− 2) z2

+ ((∆L− 1)(−ε− 2) + (ε− 1)ρ∆L+ 1− ε) z + (∆L− 1)]

+ ∆Lm
[
(1 + ε+ ρ)z2 + (ρ(ε− 1)− ε− 2)z + 1

]
. (4.69)

One useful observation about this transfer function is that with ε = 1, it reduces to
the transfer function in the back-emf extrapolation case. This means for that value of
the parameter, both the performance and stability attributes will be the same as those
of the extrapolation controller. This is not surprising, as the controllers are of the same
order, and use the same information for the predictions. The advantage is that, in the
case of the observer based controller, the filtering may be used to alter the stability and
performance characteristics.

Stability Analysis

The primary aim of developing the observer was to improve the stability over the back-emf
extrapolation case. The incorporation of the filter is aimed at decoupling the prediction
dynamics from the controller dynamics.

Figure 4.21 shows the root-locus plot for the controlled system. This plot is for the
nominal value of ε = 0.1. The shape of the root locus is very similar to that of the
extrapolation controller shown in Figure 4.14. The change occurs as ε moves away from
1, when the location of the locus is distorted.

100 CHAPTER 4. CONTROLLER ANALYSIS

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

real

im
ag

Figure 4.21: Root-locus plot for ε = 0.1.

Figure 4.22 shows the magnitude of the maximum root as a function of the error
in the leakage inductance parameter. Three cases are shown in this plot. The original
controller is shown for reference, and behaviour for ε = 0.1 and ε = 0.5 is plotted.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

2.5

Inductance Error ∆L

M
ax

im
um

 r
oo

t m
ag

ni
tu

de

Pole Location as a Function of ∆L

ε=0.1
ε=0.5
Original Control

Figure 4.22: Maximum root magnitude as a function of the inductance estimation error.

It can be seen that the range of stability is less than that of the original controller but,
as the ε parameter is reduced, the stable range approaches that of the original controller.
In the case of the ε = 0.1, the near-flat section in the centre of the plot is due to the pole
located on the real axis. This pole, at approximately (1−ε) represents the filtering mode.
Although the magnitude is high, that is necessary for a filter with a long time-constant.
The filter parameters are also design parameters, and so are not subject to uncertainty,
meaning that the location of this pole does not compromise the stability.

The range of controller stability is shown clearly in Figure 4.23. In this case, The

4.3. Time-Variations in Back-emf 101

maximum and minimum values for ∆L are shown as a function of the ε parameter.

10
−2

10
−1

10
0

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Control type ε

M
ax

im
um

 ∆
L

 fo
r

a
st

ab
le

 s
ys

te
m

Figure 4.23: Inductance estimation error range for a stable system, as a function of ε,
(ρ = 1).

For values of ε < 0.1 the region of stability is very similar to the original controller,
while for values approaching 1 it approaches that of the extrapolation controller. A
criticism of the extrapolation controller was that there was no safe fall-back value that
could be used for Ll when the true value is poorly known. In the original controller,
a very small value of Lestl could be used, and one could be confident of stability even
if the performance is poor. The observer based controller recaptures this advantage in
accepting very small values of Ll∆L. Even for the conservative value of ε = 0.1, the
inductance need only be known to within an order of magnitude.

Controller Performance

The magnitude frequency response of the controlled system is shown in Figure 4.24. This
is for a constant reference frequency of 50Hz and a control rate of 3kHz. The output
amplitude gain is shown as a function of error in Ll. At this frequency, the magnitude
of the controller tracking always lies between that of the basic controller, and the one
with back-emf extrapolation. The extrapolation controller has a magnitude response
that is quite independent of the leakage inductance estimation at this frequency. By
setting ε = 1, this performance is achieved, and with ε→ 0, the performance of the basic
controller is achieved. The values between these extremes falls between those limits.

The phase response has different attributes, as shown in Figure 4.25. The original
controller had a slightly lagging phase response for low values of ∆L, while the reverse
occurs when extrapolation is used.

When using the observer, the phase is likely to be leading at this frequency and Ll < 1.
For the case of ε = 0.1, the phase error is high compared to the existing controllers. The

102 CHAPTER 4. CONTROLLER ANALYSIS

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0.9

0.95

1

1.05

1.1

1.15

1.2

Inductance Error ∆L

R
ef

er
en

ce
 to

 o
ut

pu
t v

ol
ta

ge
 g

ai
n

50Hz Steady−State Sinusoid Response

Original
ε=0.01
ε=0.1
extrapolation

Figure 4.24: Sinusoidal magnitude response of the closed-loop system.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

1

Inductance Error ∆L

O
ut

pu
t p

ha
se

 le
ad

 (
de

gr
ee

s)

Original
ε=0.01
ε=0.1
extrapolation

Figure 4.25: Sinusoidal phase response of the closed-loop system.

response dependence on ε is shown in Figure 4.26. For 50Hz operation, this shows a peak
in the phase at an observer gain of 0.1.

The origin of the peak at ε can be seen in the frequency response plotted in Figure 4.27.
The extrapolation operation produces a resonance at a high frequency. As the level of
filtering is increased, the resonance is flattened out, resulting in a lower peak, but a
greater spread in its influence. With ε < 0.1, the response is quite similar to that of the
original controller.

Overall, the errors represented by these responses are small. For all values of ε. with
the sample machine parameters and a reasonable inductance estimate, the magnitude
was within 2% of the reference, and the phase was correct to about 0.1 degrees.

The step response is also included in Figure 4.28. For ∆L = 0.8 and ε = 0.1, the step

4.3. Time-Variations in Back-emf 103

0 0.2 0.4 0.6 0.8 1
1

1.0005

1.001

1.0015

1.002

1.0025

1.003

1.0035

1.004

1.0045

Observer Gain ε

R
ef

er
en

ce
 to

 o
ut

pu
t v

ol
ta

ge
 g

ai
n

50Hz Steady−State Sinusoid Response at ∆L=0.7

0 0.2 0.4 0.6 0.8 1
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Observer Gain ε

O
ut

pu
t p

ha
se

 le
ad

 (
de

gr
ee

s)
Figure 4.26: Sinusoidal phase response of the closed-loop system.

10
1

10
2

10
3

−4

−3

−2

−1

0

1

2

3

4

Frequency(Hz)

G
ai

n
(d

B
)

Magnitude Frequency Response, ∆L=0.7

Original
ε=0.1
ε=1

10
1

10
2

10
3

−4

−3

−2

−1

0

1

2

3

4

Frequency(Hz)

O
ut

pu
t p

ha
se

 le
ad

 (
de

gr
ee

s)

Phase Frequency Response

Figure 4.27: Sinusoidal phase response of the closed-loop system.

performance was similar to the basic controller.

As expected, this modified controller performs well at rejecting disturbance due to
time variations in the back-emf. In this case the level of disturbance across the range
of values for ε is almost identical to the controller with back-emf extrapolation. This
response is shown in Figure 4.13, and represents a very small effect on the machine
current setpoint tracking.

Sensitivity

The controller relies heavily on the measurements of the machine currents. By analysing
the response of the system to the measurement error parameter, the sensitivity of the con-

104 CHAPTER 4. CONTROLLER ANALYSIS

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (ms)

O
ut

pu
t A

m
pl

itu
de

Step Response With ∆L=0.8

Observer adjusted
Original System

Figure 4.28: System step response with an inductance estimation error.

troller to errors in measurement may be gauged. From Equation (4.69), the measurement
noise transfer function may be found,

i

u
=

∆L
(
(1 + ε+ ρ)z2 + (ρ(ε− 1)− ε− 2)z + 1

)
Q(z)

, (4.70)

where Q(z) is the characteristic equation,

Q(z) = z3 + ((∆L− 1)(1 + ε) + ε+ ρ∆L− 2) z2

+ ((∆L− 1)(−ε− 2) + (ε− 1)ρ∆L+ 1− ε) z + (∆L− 1). (4.71)

The frequency response corresponding to this transfer function is shown in Figure 4.29.
Two plots are shown, for different values of leakage inductance estimate error. Three
controllers are also included. The first is the original controller which has no compensa-
tion mechanism for variations in back-emf. This is the plot with the smallest sensitivity
peak, and hence the greatest immunity to noise in the current measurements. The broken
line represents the response of the ε = 1, or extrapolation controller. This has a large
sensitivity peak, and high frequency noise present in the measurements will be amplified
greatly by the controller.

The observer based controller varies in properties between the original controller
and the extrapolation one. For ε → 0, the sensitivity approaches that of the original
controller. For the useful range of ε, which is less than 0.1, the sensitivity is close to
the original controller. The peak in the sensitivity of this controller is about 10dB. This
would be considered high in controller design, but that is necessary in order to achieve
the high-bandwidth control.

The figure of 10dB sensitivity means that the controller will generate noise in the

4.3. Time-Variations in Back-emf 105

10
1

10
2

10
3

−5

0

5

10

15

20

Frequency(Hz)

G
ai

n
(d

B
)

Measurement Error Sensitivity, ∆L=1.0

Original
ε=0.1
ε=1

10
1

10
2

10
3

−5

0

5

10

15

20

Frequency(Hz)

Measurement Error Sensitivity, ∆L=0.7

Original
ε=0.1
ε=1

Figure 4.29: Noise sensitivity transfer function.

currents to a level of three times that present in the original measurements. Fortunately,
relatively noise-free measurements are achievable and the 10dB noise sensitivity can be
accommodated. The experimental part of this work has shown that a measurement
signal-to-noise ratio well in excess of 40dB (100:1) is readily achievable. At this level,
the 10dB of sensitivity may be accommodated, although it is accompanied with a loss of
precision.

At up to 20dB of noise amplification, the extrapolation controller is difficult to ac-
commodate. It would require very good current measurements for adequate control. In
all forms of the controller, increases in the inductance estimate will increase the noise
sensitivity. Increases in the controller gain, ρ, will also cause an increase in sensitivity.

To reduce the noise sensitivity, either ρ or ∆L may be reduced, although, reduction
of ρ below 1 causes significant tracking phase errors. Overall, a reduction in ∆L achieves
a greater reduction in sensitivity for the equivalent tracking phase error.

Inverter Dead-Time Tolerance

The presence of switching device dead time is a significant source of error in voltage-
source inverters. The cause of the error is described in Section 5.4.2. This error may be
considered as a disturbance to the controller, and the extent of its effect estimated.

The inverter dead-time causes an error in the average output voltage which is a
function of the the sign of the phase currents. When the current in one phase of the
inverter changes direction, the effect may be modelled as a step disturbance applied
to the output voltage from the controller. In this case, the voltage across the leakage
inductance becomes,

vl = v + verr − eb. (4.72)

106 CHAPTER 4. CONTROLLER ANALYSIS

Thus the effect of step on the current is equivalent to a step change in the back-emf. The
back-emf is modelled as a disturbance term in Equation (4.69), so that may also be used
for this purpose. Using this model, an example step response is shown in Figure 4.30. This

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

time (ms)

O
ut

pu
t A

m
pl

itu
de

Step Response With ∆L=0.8

Observer adjusted
Original System

Figure 4.30: Response to a step change in back-emf.

figure shows the effect on both the original controller, and the observer based controller
with ε = 0.1. The modified controller is more susceptible to the step than the original
controller, both in the size and the duration of the error.

As an example, the dead time might represent 2µs of a 300µs control interval. With
a 600V DC link, the peak magnitude of 0.04S represents an error of 160mA for this
system. This is certainly a significant deviation, but both controllers reduce the error
greatly after two to three control cycles.

The observer design includes a response mode that is slowly decaying. This is due to
the time-constant in the back-emf angular velocity filter. While the final settling time
from this step change is very long, after 2ms the error is quite small. In the example, the
error would be only 16mA at this point.

Simulation Results

The observer based controller was simulated under a number of conditions to verify the
results expected from the analysis. Figure 4.31 shows the performance of the flux rotation
angle estimate.

The dotted line shows the results of the raw angle estimate, while the solid line is
the filtered version of it. The raw value is obviously very noisy, and unsuitable for direct
usage. Note that in the case of the extrapolation controller, a value equivalent to this is
used directly.

The broken line represents the angular rotation requested by the torque controller.
Although there is some error between the torque controller and the filtered value, the

4.3. Time-Variations in Back-emf 107

Estimated Back-emf Rotation Angle

 (
-)

0.1

0.2

 t(s)

0.997 0.998 0.999 1.0 1.001 1.002 1.003 1.004 1.005

(-) : t(s)

flux_diff

phi(phi_est.phi_est1)

flux_diff_est

Figure 4.31: Observer based estimation of the electrical angular velocity.

result is accurate to within 10%. As this is only a correction term, this level of accuracy
should be sufficient. The source of the error is likely to be a bias introduced in the
axis selection process. The result may be obtained from either axis, but for numerical
stability the calculation is chosen to provide the larger of the two back-emfs in the
denominator. During the periods where the back-emfs in each axis have approximately
the same magnitude, the measurement with a magnitude that is inflated by noise is likely
to be chosen. At the expense of complexity, this error could be reduced, but it does not
appear necessary for this application.

The adjusted back-emf estimate is shown in Figure 4.32. This simulation shows a
sharp torque transient after accelerating the machine to rated speed. The aim was to show
the fastest possible change in back-emf rotation speed. Both the direct and quadrature

Observer Predicted, and Estimated Back-emf

 (
-)

-200.0

0.0

200.0

 t(s)

0.997 0.998 0.999 1.0 1.001 1.002 1.003 1.004 1.005

(-) : t(s)

ed_samp

ed_adjust

eq_samp

eq_adjust

Figure 4.32: Predicted and estimated back-emf.

axis results are shown, with the quadrature axis lagging. The solid line indicates the
basic back-emf estimation result. Due to causality, there is a delay in obtaining this

108 CHAPTER 4. CONTROLLER ANALYSIS

estimate. The dotted line shows the predicted value using the observer method. It can
be seen that this generally provides a good one step-ahead prediction of the back-emf. At
just after t = 1s, there is a glitch in the result, and this is due to the sharp transient in
the current setpoint. This does not affect the performance of the machine, as the control
is in saturation at that point anyhow. The error in the estimate at that point is due to
a mismatch of model parameters. When a greater inductance error is introduced, the
error at this point increases.

The actual current tracking performance of the controller is shown in Figure 4.33.
This is for the same set of conditions as the two above simulation results. As in the

Direct Axis Current With Observer Based Back-emf Rotation

 (
-)

-30.0

-20.0

-10.0

0.0

 t(s)

0.998 0.999 1.0 1.001 1.002 1.003 1.004 1.005

(-) : t(s)

i_ref_d_s

id

Figure 4.33: Current tracking performance with a torque transient.

case of previous simulation data, the dotted line indicates the endpoint current reference
across the control interval. The real machine current should coincide with the endpoint
of each reference segment, before the transition to the next reference. For most of the
plot, the tracking ability of the controller is very good. During the transition itself, there
is an output voltage saturation, limiting the rate of change of current.

The effect of a model parameter error is shown in Figure 4.34. In this case, there is an
error in the estimated inductance, with ∆L = 0.7. The main deviation in the results is
the presence of overshoot after the transient. Although this is undesirable, in proportion
to the size of the transient, the overshoot is quite small. After the transient, the tracking
performance is still good, despite the parameter error.

Another section of the same plot is shown in Figure 4.35. This figure has been included
to show the effect of inverter dead-time on the matching current. At time t ≈ 1.9135s, a
zero-crossing in current occurs in another phase. This causes a step change in the inverter
output voltage error, and a subsequent error in the current. In this case, the error persists

4.3. Time-Variations in Back-emf 109

Direct Axis Current With Observer Based Back-emf Rotation

 (
-)

-30.0

-20.0

-10.0

0.0

 t(s)

0.998 0.999 1.0 1.001 1.002 1.003 1.004 1.005

(-) : t(s)

i_ref_d_s

id

Figure 4.34: Current tracking performance with a torque transient and inductance esti-
mation error.

Direct Axis Current With Observer Based Back-emf Rotation

 (
-)

-5.0

0.0

5.0

10.0

 t(s)

1.912 1.913 1.914 1.915 1.916

(-) : t(s)

i_ref_d_s

id

Figure 4.35: Current tracking performance with inverter dead time.

for approximately four control cycles, with a peak magnitude of about 400mA. This is
consistent with the values expected from the analysis in Section 4.3.3.

110 CHAPTER 4. CONTROLLER ANALYSIS

4.4 Inclusion of Winding Resistance

A more complete model of the induction machine can be formed if the series winding
resistance is included, as shown in Figure 4.36. In the earlier sections, the presence of

v

R L

e
+

-

l

Figure 4.36: One phase of the d-q induction machine model, including the winding
resistance.

this resistance was dismissed as having negligible effect. This section considers the extent
of the errors introduced by neglecting to model the resistance.

Note that in the earlier sections, the effect of the resistance is not neglected simply
on the basis that the value of resistance is small. There are two other important factors
that combine to reduce the effect of modelling this parameter:

1. The voltage across the resistance is incorporated into the back-emf voltage param-
eter. For a constant current, the voltage across the resistance is a constant, and so
may also be modelled as a voltage source. This means that model error only occurs
as a result of the change in machine currents, and not based on the current itself.

2. Only the terminal voltages and currents are important for the purposes of control.
It is the job of the outer torque controller to make calculations based on the values
of internal parameters.

4.4.1 Under-modelling Errors

When resistance is included, the current is governed by the first order linear differential
equation,

v − eb −Ri = Ll
di

dt
. (4.73)

This has the solution,

i(t) =
v − eb
R

+
(
i(0)− v − eb

R

)
e
− R
Ll
t
. (4.74)

While this is a relatively simple model, it is harder to formulate a predictive controller
for it than the basic two-term model. In addition, the resistance parameter must be
known. It is therefore convenient to avoid the additional complication unless significant
performance improvements can be made.

4.4. Inclusion of Winding Resistance 111

The initial transient response of this model is the same as that without the resistance.
Figure 4.37 shows the departure over time of the two predicted responses. The initial
behaviour may be considered by taking the 1st order Taylor expansion of the exponential
in (4.74):

i(t) ≈ v − eb
R

+
(
i(0)− v − eb

R

)(
1− R

Ll
t

)
(4.75)

= i(0)− R

Ll
t

(
i(0)− v − eb

R

)
(4.76)

= i(0) +
(
V − eb − i(0)R

Ll

)
t (4.77)

= i(0) +
VL(0)
L

t. (4.78)

The response of the first-order approximation is identical to that of the simpler model,
assuming the i(0)R term forms part of the back-emf quantity.

The original model, shown in Figure 3.3, should include the voltage across the resis-
tance within the back-emf component. As the back-emf cannot be measured directly, but
is instead estimated from the measured voltages and currents, the estimator will include
the iR component within the e estimate, ie,

eest = eb + i(0)R. (4.79)

When the Taylor series expansion is continued beyond the first term, difference ap-
pears between the real system, and the simplified model. While the first derivatives at
the point of prediction are the same, the inclusion of the resistance results in an expo-
nential current, decaying to the value expected if the inductor were replaced with a short
circuit. This is shown in Figure 4.37.

V - e

R
b

i 0

L
R

τ =

With R

Without R

Figure 4.37: Comparison of response with and without winding resistance.

This comparison shows that the approximation will be good so long as the prediction
horizon is significantly less than the the leakage time constant τ = Ll

R . An example value

112 CHAPTER 4. CONTROLLER ANALYSIS

of τ for a typical induction machine is

τ =
10mH
1.4Ω

(4.80)

= 7.1ms. (4.81)

For control rates that are into the kilohertz range, this time constant is quite long. As
a result, the omission of the winding resistance in the model could be expected to only
have a small effect.

An approximation of the magnitude of the error may be obtained by considering the
second-order term to the Taylor expansion of the model response. This is:

e
− R
Ll
t = 1− R

Ll
t+

1
2

(
R

Ll

)2

t2 +O(t3). (4.82)

The difference in the resulting current between the two models is then approximated by:

ie ≈
1
2

(
eb + i(0)R− v

R

)(
R

Ll

)2

t2 (4.83)

= −VL(0)
2Ll

(
R

Ll

)
t2. (4.84)

This expression may be simplified if it is assumed that the prediction time is tp and
that there is a nominal change in current over that time of ∆ip. Using the relationship
VL = Ldi

dt for the inductor, the error may be approximated:

ie ≈ −
∆ip
2tp

(
R

Ll

)
t2p (4.85)

ie
∆ip

≈ − tpR
2Ll

. (4.86)

This represents the error in the final current as a ratio of the change in current over
a cycle. When this value is small, the effect of including or excluding the resistance in
the model is small. Again using some typical machine parameters, this value could be
expected to be: ∣∣∣∣ ie∆ip

∣∣∣∣ ≈ 0.3ms× 1.5
2× 10mH

(4.87)

= 0.02. (4.88)

This represents a 2% error in tracking a step change in current. Compared to other
errors present in the estimation, this is quite small. The sign of the error in (4.86) is also
negative, indicating that the control is less aggressive in tracking than it should be. This
indicates that this under-modelling does not pose a threat to the controller stability.

4.4. Inclusion of Winding Resistance 113

4.4.2 Compensation for Resistance Effects

While the effect of under-modelling the resistance is small, it can be reduced via a
compensation scheme. This involves using knowledge about the shape of the exponential
response, and matching it to the linear segment at the required point.

The controller operates at a fixed control rate, and nominally controls the current
which is to appear at the end of the given control interval. The reference may apply to
a current that is to appear before the end of the interval. This is controlled by the ρ
parameter defined in Section 3.2.4. In this case, matching should instead occur at that
point.

Figure 4.38 shows how the linear trajectory used in the control calculation is matched
to the exponential response of the system with resistance.

V - e

R
b

i 0

Tp

Response with R

Straight-line approximation

Figure 4.38: Endpoint current matching.

Even if the matching is successful, there is still an error in the average current across
the cycle. However, from the preceding analysis, this is very small and will be assumed
to not be significant.

In order to match the simple controller model without the winding resistance, the
machine current during one control interval should have the form

i(t) = i(0) +
v − ê
L̂

t, (4.89)

where ê, and L̂ represent parameters with the role of the machine back-emf and leakage
inductance respectively. Note that these do not have to correspond directly to the ma-
chine parameters, but rather can be any constant which may be calculated from available
information.

Equation (4.74), may be manipulated into this form by considering the current i(tp)
at time t = tp

114 CHAPTER 4. CONTROLLER ANALYSIS

i(tp) =
v − eb
R

+
(
i(0)− v − eb

R

)
e
− R
Ll
tp (4.90)

i(tp) =
v − eb
R

(
1− e−

R
Ll
tp

)
+ i(0)e−

R
Ll
tp (4.91)

= i(0) +
v − eb −Ri(0)

R

(
1− e−

R
Ll
tp

)
(4.92)

= i(0) +
v − eb −Ri(0)

Rtp

1−e
− R
Ll
tp

tp. (4.93)

This result may be matched to (4.89), to obtain adjusted controller parameters,

L̂ =
Rtp

1− e−
R
Ll
tp

(4.94)

ê = eb +Ri(0) (4.95)

The back-emf term is the same as that found earlier, where the voltage across the resis-
tance is included in the lumped voltage source. The value for the adjusted inductance
represents a deviation from the expected value. The modification represents the adjust-
ment required to model the resistance. This means that in terms of the current at the
end of the control interval, the model without resistance will be equivalent to the model
with resistance, provided the suitable adjustment is made to the leakage inductance value
used.

By taking the Taylor series expansion of the exponential in L̂ and approximating, a
more intuitive form may be found,

L̂ =
Rtp

1−
(

1− R
Ll
tp + 1

2

(
R
Ll
tp

)2
− 1

6

(
R
Ll
tp

)3
+ ...

) (4.96)

≈ Ll

1− Rtp
2Ll

(4.97)

≈ Ll
(

1 +
Rtp
2Ll

)
(4.98)

= Ll +
1
2
Rtp (4.99)

Equation (4.98) provides a multiplicative adjustment to the true machine leakage
inductance. The quantity here is the same as in (4.86), showing that the change required
is small. Typically, an increase in Ll of 2% would be necessary for matching.

This result is useful because it shows that the effects of the under-modelling can be
represented in terms of an error in a parameter. The analysis of the effect of changes in
R on controller performance and stability is then simply an extension to the analysis of
the inductance.

4.5. Conclusions 115

4.5 Conclusions

From the controller analysis, the controller as described previously offers good stability
and tracking performance with a suitable choice of controller parameters. In particular,
the ρ controller parameter is best set to 1 to obtain the best stability attributes. Since
its original formulation[3], it has been known that the average current was less stable,
but this analysis shows the extent of the difference.

The main limitations of the controller were found to be the effect of rotational changes
in the back-emf, and a high sensitivity to high frequency measurement noise. The sensi-
tivity is a necessary consequence of high-bandwidth control, and the levels are acceptable
for the type of signal-to noise ratios achievable in measurement.

In order to overcome the back-emf rotation errors, both the feed-forward, and observer
methods offer acceptable solutions. The feed-forward method requires little additional
calculation, but does mean the current controller depends on knowledge of the electrical
rotation speed. At the expense of some additional complexity, the observer method
removes this requirement.

117

Chapter 5

Controller Implementation

5.1 Introduction

A current controller design was described in Chapter 3, and then analysed in Chapter 4.
This chapter describes the additional details of the controller implementation using a
Digital Signal Processor (DSP).

Although one aim of this project is to implement a current controller in digital hard-
ware, this is not the most convenient algorithm development platform. For this reason,
controller hardware incorporating a DSP device was developed, allowing the controller to
be specified in software. This approach combines favorable attributes of both the hard-
ware and software implementations. Development in hardware is typically more difficult
than on an equivalent software platform. This is because debugging and testing facilities
are more easily implemented in software. Attributes such as controller gain may be easily
modified, and measurement data recorded with the aid of a microprocessor. The result
is a faster development path for control algorithms. Once the algorithm is sufficiently
tested, it may be implemented directly in hardware.

5.2 System Architecture

The software implementation has been made on a dual-processor Texas Instruments
TMS320C31 system. As this is a development platform only, no particular attention is
applied to exploiting the specific features of the processor hardware. Instead, it is made
to resemble the final hardware design in architecture. While this approach results in a
potentially less efficient software architecture, it may be directly ported to the hardware
implementation environment. For this reason, even though a floating point processor
is available, scaling factors are included to restrict the values to appropriate fixed-point
values. Advantage is taken of the non-integer values available, and is used to maintain
greater precision in the calculations. However, the code developed in this fashion is easily
modified to simulate integer-only calculation.

The basic structure of the test system and controller is shown in Figure 5.1. Apart

118 CHAPTER 5. CONTROLLER IMPLEMENTATION

Position
encoder

Sampling

Controller

Timing

PWM

speed
Reference

Figure 5.1: Controller desgin.

from the power electronics hardware, the controller comprises four primary sub-systems.
In the previous chapters, the focus has been on the algorithmic details of the controller
block. However, a functioning digital machine controller also requires the other elements.
It is in these additional elements that the additional complexity of a digital controller is
found. Fortunately, with modern digital devices, all of this complexity may be integrated
into a single integrated circuit. The design described in this chapter uses two small
EPLD (Erasable-Programmable Logic Device) devices in addition to the DSP chip to
implement the control structure. In the following chapter, a harware solution will be
described, where the controller and all the support logic is integrated into a single EPLD
device. The larger EPLD used in the second design is capable of containing all of the
logic from the software design, together with the controller itself.

The basic role of each subsystem is:

• The primary role of the sampling circuitry is to perform analogue to digital con-
version of the machine currents. In addition to this basic functionality, provision
is made for an error-controlled serial data link for each channel, minimising the
amount of analogue signal cabling.

• The PWM module implements a space-vector modulation scheme. This includes
a programmable device lock-out time, and an optional dead-time compensation
scheme.

• The controller itself is implemented in software. This includes the current, torque
and speed control loops.

• The entire controller system must be synchronised to achieve proper operation.
The timing logic is implemented as part of the sampling system. This ensures that
current samples are available at the correct locations within the switching period.

5.3. Data Acquisition 119

5.3 Data Acquisition

The data acquisition system is required principally to measure the phase currents of
the machine. These measurements are used both in the control calculation and as an
additional layer of overcurrent protection. While many devices have inbuilt overcurrent
protection, there are reasons for supplying the redundancy of an external measurement. It
offers more flexibility in the choice of the limit setpoint and better diagnostic information
in the event of a trip. The measurement latency precludes the protection from being
effective against output short-circuits, but it is quite adequate to protect against errors
in the control behaviour.

A number of high speed synchronous serial channel receivers are used to acquire
data from the serial A/D converters located remotely on the Hall Effect transducers.
The bit rate for each channel is 5Mbs, and each data packet is 20 bits. This allows
250,000 samples per second, giving an effective bandwidth of approximately 100kHz.
This matches the bandwidth of the Hall Effect transducers now in common use. The
use of serial transmission has the advantage that far fewer I/O pins are required on the
EPLD. Furthermore it allows simple low cost isolation of the cables from the Hall Effect
devices (if required),and eliminate potentially long cables carrying analog signals.

The DC-link voltage is also measured to allow for feed-forward compensation of this
quantity. This measurement also allows the controller to provide some control over the
voltage. This is of relevance under regeneration conditions, where it may be desirable to
dump energy. Knowledge of the link voltage may also be used to ride-through temporary
supply interruptions.

5.3.1 Connection Scheme

In the test system, the controller is physically remote from the power electronics and mea-
surement locations. This is done to assist physical access and improve the environment
for the controller electronics. However, the problem of accessing current measurements
is created. In order to reduce the amount of noise coupled into the signal, the signal
transmission is better done digitally. As a result a serial data comminications path is
needed between the analogue to digital converters and the controller processor. This
implementation uses coaxial cable with opto-couplers for isolation, although optical fibre
could also be used for the signal transmission.

A number of alternatives are available for synchronisation of the data packets. As
shown in Figure 5.2, the three basic categories considered for this application are;

a. Asynchronous.

b. Synchronous with transmitter supplied clock.

c. Synchronous with receiver supplied clock.

120 CHAPTER 5. CONTROLLER IMPLEMENTATION

A/D A/D A/DData Data
Data

(a) (b) (c)

Figure 5.2: Data synchronisation.

With an asynchronous link, the clocking information is recovered at the receiver, by
synchronising a local oscillator to the remote data stream. This is a common method for
low-frequency data streams, but at a bit rate of 5Mbps, the design of these systems can
become difficult. An alternative approach is to not only transmit the data stream, but
also transmit the clock information associated with it. While this doubles the number of
connections to be made, it simplifies the receiver as the clocking information is available.
The third option listed has the communications clock supplied by the receiver. This
simplifies the synchronisation with the receiver state machine as the whole system uses
the global clock, but also introduces clock skew problems. Due to delays, particularly in
the opto-couplers, the clock is skewed on reaching the transmitter. The data is further
delayed on the return path, resulting in potential timing problems.

The design of the current controller relies on current samples taken at particular
points in the switching cycle. As a result, it is neccessary for the controller to signal the
start of each conversion. For cases (1) and (2) above, this would be done by suppling an
additional connection to carry the start signal. The precision of the start timing would
be limited by the local oscillator used at the transmitter. Case (3) is more suited to this
form of operation, as the start signal may be encoded into the existing clock signal. It
has the additional advantage that the start time may be precisely controlled with respect
to the system clock.

Due to the synchronisation issues involved, and hardware available, a synchronous
design was chosen, with a receiver supplied clock (case 3 above). This data acquisition
structure is shown in Figure 5.3. The receiver supplies a common clock for all of the A/D
converters. The converters simultaneously transmit the converted values along the data
lines.

5.3.2 Communications Protocol

As shown in Figure 5.3, all of the A/D units are driven with a common clock signal.
This signal also carries the start conversion timing information. The start of conversion
is signalled by the supression of two cycles of the transmitted clock. The form of the
resulting clock signal is shown in Figure 5.4. The receiver detects the two supressed
periods, and uses this to synchronise the start of conversion, and subsequent data bits.

The synchronising circuit requires an oscillator local to the encoder. A state machine
operating off the higher frequency local oscillator detects any long inactive state on the

5.3. Data Acquisition 121

Clock

Data

A/D Converters

Receiver

Figure 5.3: The data acquisition structure.

d11d1 d0 p1 p2

Reference Clock

Data Framing

Sample point

Figure 5.4: A/D converter signal format.

incoming communications clock signal.

L

L

L

L
L

H H

H

H

H

000

010

110

111

011

001

SYNC

Start=0

Start=1

Figure 5.5: Synchronising state machine.

Figure 5.5 shows the detail of the state machine used to syncronise the transmitter to
the receiver. It starts in the 000 state, and remains there while the incoming communi-
cations clock is in the low state. When the signal is high for four successive clock periods
of the high frequency clock, the 110 state is reached. If it is high for a shorter time,
the machine returns to the 000 state. The 110 state indicates detection of a suppressed

122 CHAPTER 5. CONTROLLER IMPLEMENTATION

clock. The machine remains in this state until the clock again returns low. Once this oc-
curs, a synchronising output is set to reset the communications state machine. Once the
communcations state machine responds with a conversion start signal, the synchronising
state machine returns to the reset state.

Two primary methods are used to check the link integrity. These are based on the
start/stop bits in the frame, and the parity bits. The start bits are necessary due to the
delay from start of conversion until the data bits are available, but they are also used
to detect whether the link is operational. The receiver checks to ensure that the correct
start pattern is received before accepting the data stream. Bit errors in the received data
stream are also detected via the use of the parity bits.

The reliability of the link may be improved by allowing it to accomodate a small
number of communication bit errors without adversely affecting the operation of the
system. This may be done by incorporating error correction codes into the serial data
packet. An alternate approach is to only detect communication errors, and in the case
of an error, to replace the corrupted value with an estimate of the true value. In this
implementation a good estimate is readily available, due to the high sampling rate. In
the event that a data point is missing it may simply be replaced with the previous
measurement. While this does introduce an error, it is small due to the short sample
period.

An alternate estimate utilises the values measured in the other two phases. Due to
the zero neutral voltage, ia + ib + ic = 0, so only two phase measurements are required.
The third phase current measurement is useful for overcurrent protection, but also offers
some measurement redundancy. In the event that one of the current measurements is
unavailable, it may be supplied from the other two reliable measurements.

Due to the use of a modular design in the communicaitions link, the relationship
between the phase currents was not utilised. This approach would not be suitable for the
DC voltage or current measurements. Instead substitution of the previous value is used
for all of the measurements. Due to the low probability of bit error, the introduction of
error-correction codes in the data stream is not justified. This would incur a penalty not
only on the data transfer rate, but also on the transmitter and receiver complexity.

This error tolerance scheme is only suitable for isolated data bit errors. In the case
of sustained corruption, or a broken data link, the drive must be tripped. The interface
circuit generates a trip signal after a specified number of consecutive erroneous values.
Normally the trip would be programmed to occur after receiving two errors among three
consecutive received values. Each of the receivers operates independently, maintaining
separate counts.

Receiver Datapath

The overall computation datapath of the receiver module is shown in Figure 5.6. The
parity checking and trip limit comparison are both done sequentially, as each data bit

5.3. Data Acquisition 123

Data

Limit +

-

Shift

Shift

Limit

Parity Count

Detect

Check

Latch

Ready
Ack

8

12 12

Trip

Trip

Value

Σ

Figure 5.6: Receiver datapath structure.

arrives through the serial data channel. This was preferred over the parallel techniques
in terms of both time and space resources in the logic device. Only single bit adders
are required instead of full 8-bit or 12-bit adders, and the propagation delay is spread
through the receiver cycle, instead of being concentrated at the receipt of the final bit.
As the current limits are the same for each of the three phases, the logic for the trip-limit
shift register (or multiplexer) may be shared.

Another advantage of comparing the trip limits sequentially is that the average trip
latency may be reduced. This is because an overcurrent condition may be detected before
all of the bits are received. However, in this implementation, trip signalling is held back
until the parity is confirmed. If there is also a parity error, the overcurrent value is
assumed to be due to link data corruption. Parity errors do not immediately trip the
drive, and instead a counter is used to trigger a shutdown only in the case of consecutive
errors.

Samples are acquired and checked for value at a high frequency, and only a subset of
these are used by the controller. The timing module specifies which samples are to be
loaded into the output latch for later acquisition by the controller.

5.3.3 Sample Timing and Acquisition

One requirement of the proposed controller design is that the timing of the sample ac-
quisition is important. In particular, samples are required at the start and centre of the
PWM switching pattern. This synchronisation is implemented by using common timing
components.

The total cycle time, from one sample to the next, is twenty cycles of the A/D serial
channel clock. While it is not necessary to do so, it is convenient to have a constant
inter-sample period for all of the measurements. A futher constraint is that the controller
requires samples of the currents taken at the start, one quarter, and one half of the way
through the switching cycle. The resulting pattern is shown in Figure 5.7.

The use of this pattern constrains the switching period to a multiple of 80 × TSC ,

124 CHAPTER 5. CONTROLLER IMPLEMENTATION

20 Tsc

C CC C

PWM Switching Period

Control Sample

Figure 5.7: The location of the samples needed for the controller.

where TSC is the period of the serial data transfer clock. For a given serial data rate of
approximately 5Mbps, the switching frequency may be adjusted in increments of 16µs,
which would normally allow more than sufficient flexibility.

-:

-:

-:

20

4

T
80 TSC

Tsc

Receiver State

PWM Sync

Controller State

Collect control sample

Figure 5.8: The overall timing structure for the controller.

The synchronisation requirements for the design lead to the structure shown in Fig-
ure 5.8. This consists of three cascaded counter structures. The highest frequency is
at a period of Tsc, which is the serial communications clock. The frequency of this is
either equal to, or divided down from the hardware system oscillator. This clock is sup-
plied to the receiver state machine, which performs an implicit divide by 20 operation
corresponding to each sample received. A software programmable divider is then used
to count the number of samples to be collected in each quarter of a control cycle. The
quarter cycle is used because the algorithm uses samples at the start, T/4 and T/2 points
in the control cycle. The final division by 4 provides synchronisation information to the
PWM subsystem to ensure that the control cycle is synchronised with the PWM output
cycle.

5.4 PWM Generation

The PWM Generation module is designed to reduce the load on the CPU arising from
switching pattern generation. Before the start of each PWM cycle, the CPU supplies
switching times and sector information to the PWM module. The PWM subsystem then
loads the appropriate timers and switching patterns. Programmable dead time, and a
dead-time compensation strategy are implemented in the module.

5.4. PWM Generation 125

The PWM generation module was designed to be used with both the software and
hardware versions of the controller. The extent of the functionality was chosen based on
the requirements of the hardware version. The controller module calculates the output
sector and switching times, while the pattern itself is synthesised in the PWM module.
The switching time calculation could be performed in this hardware, but it would require
additional logic. However, the calculation time required in the controller module is quite
small.

5.4.1 Switching Generator Structure

The PWM module has been implemented in an 8k series Altera EPLD for operation with
the DSP based current controller. The same design has been integrated into the single
10k series Altera EPLD for the hardware controller.

The basic structure of the PWM module is shown in Figure 5.9. The switching time

i i ia b c, ,

Sync

Switching
State

0/1/2
Vector

Sector

Dead Time
Compensation Lockoutsign

Latch

t t t0 1 2, ,

Figure 5.9: Structure of the PWM module.

section generates a state signal that describes the current state in the firing sequence.
This is implemented using latches for each time period, and a down-counter to measure
the duration of the periods. A state-machine provides the synchronisation and counter
loading. This state machine is made more complicated by the allowance of zero-duration
periods, which occur when fewer than three vectors are needed to synthesize the desired
average voltage. The zero-vector is a special case of this, where no switching occurs at
all.

In order to simplify the logic, both in the controller and in the PWM module, a
specific choice of sector nomenclature has been devised. Instead of using the numbers
1 to 6, the sectors are represtented by a 3-bit binary string. The choice of sectors are
shown in Figure 5.10.

The sector code may easily be determined simply by comparisons between the duty
cycles and zero. This allocation does mean the two of the sectors are further divided
up into two halves. This is not a problem, as the PWM hardware treats the two halves
identically, and either may be used to specify the sector.

With the switching state determined, the output voltage states are simply a com-
binational function of the state and the sector. The latter is provided by the current

126 CHAPTER 5. CONTROLLER IMPLEMENTATION

000

001101

100

110

111 011

010

X0X
X1X

1X
X

0X
X

XX1

XX1

XX0XX0

S0 Determination

Figure 5.10: The PWM sector allocation.

controller module. The resulting vector consists of three signals, one for each phase of
the inverter. A logic ’1’ value indicates that the corresponding leg should be switched
high, and a ’0’ indicates it should be switched low. The remainder of the circuit relates
to issues regarding the turn-on and turn-off delays of the switching devices.

5.4.2 Dead Time Issues

The issue of inverter dead-time was described in Section 2.3.3. The effect of the dead
time is that delays occur on the output switching pattern. As the length of the delay
varies with the direction of the current, an error occurs in the average voltage, often
resulting in a distortion of the machine currents. It was found in Section 4.3.3 that this
does have an effect on the proposed current controller, although the feedback control
minimises the impact.

Observed Effect

The need for a factor of safety stipulates that, during an output transition of a bridge
inverter, there be a significant delay from when one device switches off to when the other
switches on. This safety margin worsens the output distortion because it increases the
time when the output is not controlled. During the period when it is not controlled by the
output devices, the output voltage is governed by the free-wheeling diodes. Depending
on the direction of the current, one of these diodes will conduct. Due to the inductive
nature of the load, the current will not change greatly in value during the switching
period.

Based on the machine current, there are two basic cases to consider. These are for
each direction of the current, and are shown in Figure 5.11. When the current is flowing
into the inverter, the top diode conducts, forcing the voltage to the positive potential of
the DC link. This results in the high side of the output waveform being lengthened. In
the converse case, the lower diode conducts, lengthening the negative side.

5.4. PWM Generation 127

+V

-V

+V

-V

(a) (b)

Upper Drive

Lower Drive

Output Voltage

Figure 5.11: Voltage during an output transition.

Compensation Scheme

When the direction of the current is known, compensation for this behaviour is possible.
The PWM circut may be modified to alter the timing based on the direction of the current
at the time of the switch. The modification may be performed by inserting a delay in
the switching time, based on the direction of current in that phase. Example voltage
patterns are shown in Figure 5.12. The accompanying switching strategy is shown in
Table 5.1.

(a) (b)

Upper Drive

Command

Lower Drive

Output Voltage

Delay Inserted

Figure 5.12: Dead-time compensation through delay insertion.

128 CHAPTER 5. CONTROLLER IMPLEMENTATION

Transition i < 0 i > 0
Low-to-High Delay No Delay
High-to-Low No Delay Delay

Table 5.1: Compensation switching strategy

Although the adjustment scheme is here described as a delay, the alternate transitions
can instead be considered to be advanced. It is simply necessary that the current mea-
suements be appropriately synchronised. In this particular implementation, the delay
concept is used, to allow it to be easily be switched in and out of the design.

Note that while this scheme works well for ideal switches, as described, the switches
are not ideal, and indeed that is the reason that the dead time is a problem at all. The
practical considerations are that the device delays are unknown and variable. This means
that the amount of compensation needed also varies. As a result, the main attribute being
compensated is the factor of safety that has been inserted. As this is likely to be longer
than a typical switching delay, there is merit in doing this. Much work has been done
in estimating the true switching delays[13], but this was deemed too complex for this
design.

The other problem with this compensation scheme is that it is difficult to model the
voltage if the current is near-zero at the time of the switch. Indeed, the current may
change sign between the time of measurement, and when the device actually switches.
In this situation, the compensation is in the wrong direction, and there will be greater
distortion than with no compensation at all. There is also a danger that the compensation
will cause the current to again change sign, lengthening the duration of the problem. The
nature of this problem is illustrated in Figure 5.13.

Measure

Switch

Time

C
ur

re
nt

Figure 5.13: Zero-crossing problems exacerbated by dead-time compensation.

As a result of this phenomena, the compensated waveforms are likely to have “flat
spots” near the zero crossings. This has been observed in trials of this system, and in
the published examples[13].

5.5. Controller Design 129

Implementation Details

In order to ensure the design integrity of the final lock-out logic, that part of the circuit
is kept as simple as possible. Although eventaually compiled into the same device, the
dead-time compensation forms a separate logic component. This structure is shown in
Figure 5.14.

Delay
Lock-out

EnableF

v

i>0

dv

Compensation

Figure 5.14: Dead-time circuit implementation.

The function block, F, may be combinatorial and is used to disable the active device
in the cases where the parallel diode could instead conduct the current. When this occurs
the direction of the current through the load will maintain the voltage during the period
of the delay. The output devices are only disabled during the delay period, and even then
only in the cases from Table 5.1 where the output pattern should should be delayed. A
suitable enable function is:

enable = (v ⊕ v̄d) + (ipos ⊕ vd). (5.1)

The final block forms the basic lock-out circuit. Complementary signals are first
created. The output of each of these drive signals is forced inactive whenever the other
drive signal has been active at all during the past tl seconds, where tl is the lock-out
time.

5.5 Controller Design

5.5.1 The DSPs

The development system utilises two Texas Instruments TMS320C31 processors. These
are a general-purpose DSP device, offering floating point numeric computation. Although
faster versions are now available, 33Mhz parts were used in this design. The structure of
the DSP system is shown in Figure 5.15.

The dual processors were not required for the design of the controller, and instead a
single processor of this speed would be sufficient to compute the algorithm. The second
processor is principally used as a logging facility and to run a monitor for external
communications. A small amount of dual-port RAM is used for communication between
the two processors.

130 CHAPTER 5. CONTROLLER IMPLEMENTATION

C31 DSP

C31 DSP

Dual-Port
RAM

RAM

UART
RAM

Sampling

EPLD

PWM

EPLD

Terminal Comms

Figure 5.15: The Dual-processor arrangement.

The Monitor

The second processor was used primarily for logging and control facilities. It is useful for
a number of roles:

• Enabling and disabling of the drive.

• Provide a set-point for the outer loop controller (e.g. speed).

• Choice of controller type (Speed/Position/Torque)

• Setting of parameters, such as the inductance.

• Obtaining values of controller variables.

• Provide a facility to log variables over time.

The DSP development tools offer some of these features, but they are too intrusive to
use in a real-time environment. Using the second processor, all of this functionality can
be achieved while the control algorithm is being executed.

The monitor communicates with a terminal emulator on a PC via an RS232 serial link.
The user is presented with a simple command-line interface, which may be used to access
variables and issue commands to the controller processor. In order to avoid continual
re-loading, the monitor program is programmed into an EPROM. In contrast, a JTAG
style interface is used to program the controller DSP in a the development environment.
For this reason, the monitor is designed to static, yet flexible in operation. To aid in this,
the functionality is very thin, with the command set being loaded at run-time from the
other processor.

The structure of the resulting monitor is shown in Figure 5.16. The left-hand side
represents the functions performed on the monitor processor. This involves parsing the
input lines and tokenising the strings. There are only three valid form of input:

5.5. Controller Design 131

Command
Parser

Interpreter
Event

Token List
Token List

Handler

System
Variables

Callback
Functions

Initialisation
Code

Dual-port
Interface

Figure 5.16: Structure of the monitor software.

• <Command>

• <Variable>

• <Variable>=<Value>

Provision was also added for commands to take parameters, but this was not required
for the controller. The dual-port RAM between the two processors is used to hold two
circular-buffers for bi-directional communications. A packet protocol is used to exchange
messages.

Each time the software on the controller processor is started, the initialisation code
configures the second processor, and builds matching token lists on each side of the
interface. Each command and variable is given a numeric identifier, which is used to
specify the target across the interface. For example, when the value of a variable is
needed, the controller processor need only dereference a pointer stored in its token list,
and pass the binary value back through the dual-port interface.

This dual-processor client/server monitor interface is mostly a by-product of the
development system available. An equivalent monitor could readily be implemented on
a single-processor if the controller is executed via interrupts.

5.5.2 EPLD Interface

The synchronous logic within the EPLDs must be interfaced to the asynchronous micro-
processor bus. This is done through a general purpose interface block within the EPLD.
The block provides eight inputs and outputs, each of 12 bits width. The structure of the
logic is shown in Figure 5.17.

The write procedure commences with the processor writing the value into the holding
register. Following this, a command word is written which specifies a write operation,
and the destination latch for the value in the holding register. The command signal is
synchronised to the local clock to ensure that the outputs only change synchronously

132 CHAPTER 5. CONTROLLER IMPLEMENTATION

Write Data

Write Command

Read Data

D D

D

D

OE

MUX

Sync
Select

Decode

D11-D0

Figure 5.17: The processor interface.

with the clock signal. This is important, as it ensures that data corruption does not
occur from simultaneous reading and writing to the latch.

The read procedure first involves writing a command word which specifies which value
is to be read. This sets the input multiplexer to the correct value, and causes the reading
hold register to be synchronously loaded with that value. Later, in a second bus access,
the processor may read the value from the holding register asynchronously.

5.6 The Controller Software

The current controller itself is implemented within the single file cc1.c, which is included
in the Appendix. This section describes the basic operation of the software controller
algorithm.

5.6.1 Controller Variables

A number of variables are used during the calculation process, and the units are chosen
to suit the fixed-point scaling. The most important of these are described here.

• T . This is the duration of the PWM cycle. The units of time are equal to the clock
period, so this value is equal to the ratio between the system clock and the control
rate. The nominal value is 1024, but it may be varied.

• AlphaD. The direct axis duty cycle. This is T
2 αd. Useful values are in the range

from −T
2 to T

2 .

• AlphaQ. The quadrature axis duty cycle, T
2
√

3
αd.

• IDx. These are direct axis currents. The forms of this are IDR for the reference,
ID0 for the t = 0 measurement, ID4 for the t = 0.25 measurement and ID2 for

5.6. The Controller Software 133

the t = 0.5 measurement. The specific value is three times the calibration of the
A/D converter. The factor of three comes from the three to two phase conversion.

• IQx. The quadrature axis currents. In this case, the scaling is
√

3 instead of 3.

• Lest. The inductance estimate is actually an estimate of L
3 , using the fixed point

units. For the system implemented, [i]=10mA, [v]=0.5V, and [t]=0.26µs, so [L/3]
= 39µH. This means that a real inductance of 10mH will be represented as 256.

5.6.2 The Main Loop

The controller does not use interrupts, but rather a single main loop, with polled waits
for measurements. The initial entry point is the main() function, at the end of the code.
The first section of code configures the firmware and inverter for the correct mode of
operation. Following this, the second processor is initialised, with the debugging and
logging variables sent across the interface. The remainder of the main() function deals
with the logic to start and stop the controller.

The basic structure of the loop calculations is shown in Figure 5.18. The division

Logging

Torque control /
Inducance estimation

Back-emf estimation

Prediction

Switching time calc.

t=0

t=0.25

t=0.5

t=1

Figure 5.18: Loop structure

into two quarter-cycles and a half-cycle was governed by acquisition of current samples
at the boundaries. Most of the current control algorithm operates in the second half of
the cycle, after the t = 0.5 measurement is available.

Each iteration of the control is executed in the CCCalc() routine, starting at line 317.
The routine starts by waiting for the start of the control interval, which is signalled by
the data acquisition EPLD. The following code fragment shows the method.

while (ReadInPAL(5)&1); /* wait for first measurement period*/

ThM=ReadInPAL(4)&0x3FF; /* read position here*/

335

ia=ReadInPAL(0); /* read the samples*/

ib=ReadInPAL(1);

ic=ReadInPAL(2);

134 CHAPTER 5. CONTROLLER IMPLEMENTATION

The first line is the polled wait for the start of the interval. This ensures the correct
synchronisation of the algorithm. Following this, the value is read from the position
transducer. The firmware converts the grey-code into a simple 10-bit binary count. The
currents themselves are read in with the final three lines.

After converting the values to the two-phase coordinates, the remainder of the first
quarter-cycle is used to perform any logging or interface tasks.

5.6.3 Torque Controller

The time available in the second quarter-cycle is used to either calculate the torque
control or the inductance estimate. The torque control variables are only calculated in
one out of every sixteen control cycles. In the other cycles this time is instead used for
the inductance estimator.

A standard indirect field-oriented controller has been used to provide torque control
for the machine. The algorithm is the same as that presented in Section 2.2.2. Unlike
the current controller, the variables are represented as true values, rather than scaled
fixed-point values. The basic updating code is:

/*TORQUE CONTROLLER*/

Isy=Tr/(3*Pp/2*Lm*Lm/Lr*Isx); 450

if (Isy>MaxIsy) Isy=MaxIsy;

else if (Isy<−MaxIsy) Isy=−MaxIsy;

Wsl=Isy*Rr/(1.0*Lr*Isx);

if (Wsl>120) Wsl=120; 455

This is simply an implementation of the equations in Section 2.2.2, with limiting
added. The limiting on Isy is necessary to prevent the torque controller generating set-
points that exceed the machine capability. The value for Isx is supplied by the user to
set the level of magnetising flux.

5.6.4 Current Control

The first part of the current control algorithm is to estimate the present back-emf. This
may be integrated into a single updating equation, as shown in Equation (3.39), but
in this case the back-emf is separately estimated. Although the performance is slightly
lower, this allows monitoring and manipulation of the estimates. The back-emfs are
estimated with the equations:

/*calc back-emfs*/

ed=AlphaD+LEst/VDC*1.0*(ID0−ID2); 510

eq=AlphaQ+LEst/VDC*1.0*(IQ0−IQ2);

5.6. The Controller Software 135

These back-emf values may then be used to obtain an estimate of the electrical rota-
tion speed as described in Section 4.3.3. This estimate is then filtered, and used in the
back-emf prediction stage. The prediction and voltages are obtained through the code:

ed pred=ed−DeltaThEf*eq*3;

eq pred=eq+DeltaThEf*ed;

530

AlphaD=ed pred+LEst/VDC*0.5*(IDR−2*ID2+ID0);

AlphaQ=eq pred+LEst/VDC*0.5*(IQR−2*IQ2+IQ0);

The scaling of 3 on the eq multiplication is necessary because of the non-even scaling
of the direct and quadrature axes. Although primarily used for step-ahead prediction,
the predicted back-emf values may also be used in the following iteration as a filter on
the back-emf estimate.

5.6.5 Space-Vector Modulation

Once the desired duty cycles have been calculated, the remainder of the code is addressed
at the space-vector modulation. The first task is to determine the which sector contains
the desired voltage vector. As described in Section 5.4.1, the sector may be determined
using simple comparisons,

Sector=0;

/*****calculate the sector*****/ 540

if (AlphaD<0) Sector|=4;

if (AlphaQ<0) Sector|=2;

if (absAQ−absAD<0) Sector|=1;

With the sectors determined, the next operation is to find the switching times t0, t1,
and t2. This is done with basic additions and subtractions,

if (!(Sector&1)) { /*sectors 2 and 5 */

T1=−AlphaD+absAQ;

T2=AlphaD+absAQ;

}
else { 550

if(!(Sector&4)) { /*SECTORS 1,6 */

T1=AlphaD−absAQ;

T2=2*absAQ;

}
else { /*SECTORS 3,4 */ 555

T1=2*absAQ;

T2=−AlphaD−absAQ;

136 CHAPTER 5. CONTROLLER IMPLEMENTATION

}

}

T0=T/2−T1−T2; 560

The remaining task is to ensure that the switching times are feasible. The only
problem that can occur is that the value of t0 may be negative. This occurs when the
voltage vector supplied is outside the range of the inverter output. The solution used
here is to scale back the values of t1 and t2 so that they fit within the switching period.
Once any scaling has been performed, the values are written out to the PWM hardware,
and the loop repeated.

5.7 Controller Performance

The performance of the controller has been evaluated using an inverter and a 7.5kW
induction machine. A DC machine is connected to the output shaft to act as a load. A
diagram of the test hardware arrangement is shown in Figure 5.19.

Induction
Machine

DC Machine

Ward-Leonard Set
IGBT Based
Inverter

Torque transducer
signal processing A/D

Interface
Electronics

Controller

Position/Speed +
Torque Controller

Brake

Posn.
Encoder

Figure 5.19: The test system hardware

A star-wound machine was used, with the parameters displayed in Table 5.2.

Parameter Value
Rated Power P = 7.5kW
Core Losses Rc = 430Ω
Magnetising reactance Xm = 35.9Ω/Ph
Stator resistance R1 = 0.57Ω
Rotor resistance r′2 = 0.80Ω
Leakage Reactance X1 + x′2 = 3.12Ω
Frequency f = 50Hz

Table 5.2: Test machine parameters.

5.7. Controller Performance 137

5.7.1 Back-Emf prediction

The first stage in the current control algorithm is the estimation of the present back-
emf. In Section 4.3.3, a method was also proposed to predict the back-emf for the
subsequent control cycle. A plot of these two variables is shown in Figure 5.20. The

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
−100

−50

0

50

100

Time (s)

B
ac

k−
em

f (
V

)

Machine Back−emf

Estimated
Predicted

Figure 5.20: Back-emf prediction performance.

main feature of this plot is the performance of the prediction algorithm. Except in the
case of disturbances, it performs well at predicting the future value, and is similar in
appearance to the simulation result shown in Figure 4.32.

Under transient conditions, errors may occur in the back-emf estimate. This occurs
when the inductance estimate does not match the real machine parameter exactly. In
fact, in Section 4.2.3 it was shown that the resulting error in the back-emf estimate helps
compensate for the error in the inductance estimate. Figure 5.21 shows a period of ripple
on the back-emf that is due to a step change in the current.

The oscillations die down after a few control cycles, but they may also be significantly
reduced by filtering the estimate using the predicted value from the previous cycle.

138 CHAPTER 5. CONTROLLER IMPLEMENTATION

0 0.005 0.01 0.015
−150

−100

−50

0

50

100

150

Time (s)

B
ac

k−
em

f (
V

)

Machine Back−emf

Estimated
Predicted

Figure 5.21: Back-emf under a set-point current transient.

5.7.2 Current Tracking

The steady-state tracking ability of the controller is shown in Figure 5.22. This shows the
reference and machine current with the machine operating at full speed, and is equivalent
to the system simulated in Figure 4.33. The plot data was obtained through the data
logging facility integrated into the controller software. The current at the endpoint of the

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
−4

−3

−2

−1

0

1

2

3

4

Time (s)

C
ur

re
nt

 (
A

)

Machine Direct Axis Current

Reference
Measured

Figure 5.22: Current tracking at rated speed.

interval generally matches the reference well. Flat areas are visible near the zero-crossing,
which indicate dead-time effects.

5.7. Controller Performance 139

Frequency Domain

The spectrum of the machine current is shown in Figure 5.23. This shows a single
dominant peak at the fundamental 50Hz. There is at least 35dB of separation between

Figure 5.23: Spectrum of the output current.

the fundamental, and any other frequency component. This shows that the controller’s
8dB sensitivity peak (§4.3.3) is not an obstacle to performance.

The high-frequency current spectrum is shown in Figure 5.24. This shows the ex-
pected spectral content for the space-vector PWM. The test was performed at approxi-
mately a 2.9kHz switching frequency, and the main peak is visible at twice that frequency.

Transients

The transient performance of the controller was evaluated using a step change in the
torque set-point. A resulting plot of the d− axis current is shown in Figure 5.25. There
is a small amount of overshoot and oscillation, which is consistent with mismatches
between the true and the estimated parameters. Similar behaviour was observed in the
simulation shown in Figure 4.34.

A plot of a current transient from an oscilloscope is shown in Figure 5.26. This plot
also shows the current ripple resulting from the PWM.

140 CHAPTER 5. CONTROLLER IMPLEMENTATION

Figure 5.24: Spectral content at the switching frequency.

0 0.005 0.01 0.015 0.02 0.025 0.03
−10

−5

0

5

10

Time (s)

C
ur

re
nt

 (
A

)

Machine Direct Axis Current

Reference
Measured

Figure 5.25: Response to a set-point transient.

5.7.3 Inductance Estimation

The results shown above were all performed with the inductance estimator enabled. The
performance of the inductance estimator is difficult to assess, as the true value for a
particular operating point is not known. Instead, the result may be verified through the
operation of the controller. Figure 5.27 shows the ability of the estimator to track from
an initially incorrect value. The final value of 9mH is close to the 10mH estimated from
the no load/blocked rotor tests. Approximately 0.3s is required to adapt to the change

5.8. Conclusions 141

in parameter value. The estimator’s forgetting factor provides a trade-off between the
tracking speed and steady-state ripple.

From the stability analysis(§4.3.3), it is known that the controller becomes unstable
when the inductance estimate exceeds about 1.3 times the true value. Figure 5.28 shows
the performance of the controller obtained after setting the inductance parameter to 1.2
times the estimated value. The oscillations that occur indicate that the limit of stability
is being reached at that point. This shows that the inductance estimate is consistent
with the behaviour expected from the model. With back-emf extrapolation enabled, the
expected instability at ∆L = 0.5 is also observed.

5.8 Conclusions

This chapter has demonstrated an implementation of the current controller described
in the previous chapters. Although the control algorithm itself is quite simple, a large
amount of supporting logic and software is necessary for an operational system. Much of
this logic has been implemented in a way that is suitable for integration into the hardware
controller, which is presented in the following chapter.

The controller performance shows good agreement with the theoretical and simulation
analysis in the previous chapters. The current controller implemented does not depend
on knowledge of any machine parameters, yet offers good steady-state and tracking per-
formance.

142 CHAPTER 5. CONTROLLER IMPLEMENTATION

Figure 5.26: Response to ta set-point transient.

5.8. Conclusions 143

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

time(s)

In
du

ct
an

ce
(m

H
)

Inductance Estimator Performance

Figure 5.27: The inductance estimator in operation.

0 0.005 0.01 0.015 0.02 0.025 0.03
−6

−4

−2

0

2

4

6

8

Time (s)

C
ur

re
nt

 (
A

)

Machine Direct Axis Current

Reference
Measured

Figure 5.28: .

145

Chapter 6

Hardware Implementation

6.1 Introduction

One of the principal benefits of the current controller described in this thesis is its rela-
tively simple computational structure. This allows a fast random-logic hardware imple-
mentation to be developed. The advantage of a random-logic controller is that it may
be easily integrated into a single EPLD or ASIC. This reduces the circuit complexity to
that of the simplest analogue controllers, bringing high-performance control to a greater
range of applications.

The availability of parallel computation and specialised logic also brings with it
greater computational power. This offers the potential for higher control rates. In the
literature, the potential benefits of direct hardware implementation have been noted.
However, some of the solutions published are limited to having little more than the
modulation code in the logic device[45]. An EPLD design incorporating both a PI con-
troller and a delta modulator has appeared, which can achieve switching rates in excess
of 20kHz[26]. These hardware controllers have been concentrated more in the area of
switched reluctance machines[5].

This chapter describes the hardware current controller for induction machines that
has been constructed. After a brief overview of the overall concept, the control equations
are reviewed for the purposes of hardware implementation. This leads to a hardware
controller design, and then a description of the architecture. Some practial results are
shown to verify the controller operation.

6.2 Physical Structure

An aim of the hardware controller is to maximise the on-chip integration. The connection
of the current controller chip to the rest of the system is shown in Figure 6.1. The only
external components are the inverter, A/D converters and the outer loop controller.
Future developments could include the integration of a field-oriented torque controller
into the current control chip, leaving only the application-specific controller.

146 CHAPTER 6. HARDWARE IMPLEMENTATION

A/D

Position
encoder

Outer Loop

Controller

Current
Controller
PLD/ASIC

Trip
settings

I ,I ref
d q

Figure 6.1: Connection of the current controller chip.

In order to achieve this level of integration, there are several other units on the chip
in addition to the computational unit. These include the data acquisition system, as
described in the previous chapter. The acquisition system was designed to be suitable
for the hardware controller, and so requires minimal modification.

Once the current samples are received, they are compared using digital comparators
with the trip levels. The drive is disabled when trip levels are reached. In the prototype,
the trip levels were set by the outer loop controller, but this could easily be achieved in
a variety of other ways, such as DIP switches on the controller PCB.

Another unit in the chip is the PWM generator. Again, the space-vector PWM
module from the previous chapter is used. It includes programmable deadbands and
deadband compensation. The chip may be programmed to operate over a large range of
switching frequencies, up to approximately 20kHz with a pulse timing accuracy of 70ns.
Energy dumping regeneration is supported, with integrated control for a brake chopper.

For the tests performed, the current controller EPLD was interfaced to an Intel 80186
processor. This processor was used to provide the set-point currents for the current
controller. A field-oriented controller was used on that processor to provide torque control
to the machine. This torque controller is similar to that implemented in the software
version, and is not detailed here. A photograph of the EPLD development board, with
the 80186 daughter-board attached, is shown in Figure 6.2.

6.3 Hardware Implementation issues

The basic algorithm, as developed in Chapter 3, can be manipulated to minimize the
number of arithmetic operations and improve scaling of the values. This allows a sim-
pler and more efficient hardware implementation with an add/subtract/shift ALU. This
section outlines these alterations.

6.3.1 Duty Cycle

For a given control cycle, k, the following quantities are used:

6.3. Hardware Implementation issues 147

Figure 6.2: Photo of the controller board.

• V : The DC link voltage

• α[k, k + 1]: The PWM duty cycle on the given axis.

• e[k, k + 1]: The machine back-emf.

• i[k]: The machine current at the start of the interval.

• i[k + 0.5]: The machine current in the middle of the interval.

• u[k]: The set-point current for the start of the interval.

The machine back-emf may be estimated by the expression found in (3.34):

eav[k, k + 1] ≈ V α[k, k + 1] +
2L
T

(i[k]− i[k + 0.5]). (6.1)

This same expression is then re-arranged to calculate the duty cycle required to reach
the setpoint,

α[k, k + 1] =
1
V
eav[k, k + 1] +

ρL

TV
(u[k + 1]− i[k]), (6.2)

where ρ was defined in Equation (3.36), and defines endpoint or average control, with
values of 1 and 2 respectively. The value i[k] is needed before the start of the kth interval,
and may be estimated as,

i[k] ≈ 2i[k − 0.5]− i[k − 1]. (6.3)

By combining these results, a single updating equation may be found. For endpoint
control, this may be expressed as,

T

2
α[k, k + 1] =

T

2
α[k − 1, k] +

L

2V
(u[k, k + 1]− 4i[k − 0.5] + 3i[k − 1]). (6.4)

148 CHAPTER 6. HARDWARE IMPLEMENTATION

Alternatively, with average control, this equation is,

T

2
α[k, k + 1] =

T

2
α[k − 1, k] +

L

V
(u[k, k + 1]− 3i[k − 0.5] + 2i[k − 1]). (6.5)

The T
2 α variable is a convenient representation of duty cycle because it appears in various

forms in the conversion to the switching times.

Using the definitions,

ix , 3id (6.6)

iy ,
√

3iq (6.7)

αx ,
T

2
αd (6.8)

αy ,
T

2
√

3
αq. (6.9)

The standard expressions for converting three phase to two phase currents are:

ix = 2ia − ib − ic (6.10)

iy = ib − ic. (6.11)

To further reduce the total operations the currents used in the internal variables are ix
and iy. Therefore, for endpoint control, the duty cycle equations become:

αx[k, k + 1] = αx[k − 1, k] +
L

6V
(3u[k, k + 1]− 4ix[k − 0.5] + 3ix[k − 1]) (6.12)

αy[k, k + 1] = αy[k − 1, k] +
L

6V
(
√

3u[k, k + 1]− 4iy[k − 0.5] + 3iy[k − 1]). (6.13)

6.3.2 Switching times

The space-vector switching time expressions originally appeared in Table 3.2. Since the
duty cycles are represented internally as Tαd

2 and Tαq
2
√

3
only one multiply operation is

required to calculate t1 and t2. t0 is calculated using t0 = T/2− (t1 + t2).

Using the new parameterisation, the switching time calcualtions are computationally
very simple. Table 6.1 shows the revised version of the original switching times from
Table 3.2.

Voltage limits must be applied to the output so that it may be physically realisable
with a switching waveform. Using the above method to calculate switching times, limiting
must be applied when the switching times satisfy 2(t1 + t2) > T . This may be detected
by examining the sign of the calculated t0. In order to reduce the total amount of
computation, all of the switching times are first calculated assuming that there are no
limits to be observed. This calculation is not significantly more complex than that
required for checking the limits alone.

The limit is applied by maintaining the angle of the voltage vector, but scaling the

6.4. Computational Architecture 149

Sector Firing Order t1 t2 Conditions
1 01277210 αx − αy 2αy αx > αy;αy > 0
2 03277230 −αx + αy αx + αy αx < αy;αy > −αx
3 03477430 2αy −αx − αy αx < −αy;αy > 0
4 05477450 −2αy −αx + αy αx < −αy;αy < 0
5 05677650 −αx − αy αx − αy αx < −αy;αy < αx
6 01677610 αx + αy −2αy αx > −αy;αy < 0

Table 6.1: PWM switching times and sector conditions with the new parameterisation.

magnitude by a value γ. The required γ is:

γ =
T

2(t1 + t2)
. (6.14)

The duty cycles are modified through the calculation αdlim = γαd and αqlim = γαq. As
these are the actual voltages applied, the limited values must be used for the back emf
estimate on the next control cycle.

More complex approaches may be applied to the limiting, to aviod torque set-point
changes affecting the flux. One example was described in Section 3.3.2. Due to the addi-
tional complexity and parameter dependence, this method has not yet been implemented
in hardware.

6.3.3 Inductance estimation

The machine leakage inductance is estimated using the method described in Section 3.4.
The values produced from this expression are low pass filtered. An efficient first order
filter implementation from a hardware perspective is:

Lk+1 = Lk +
Lest − Lk

2n
, (6.15)

where n determines the time constant.

6.4 Computational Architecture

The current control algorithm described above has been implemented in an Altera r©
FLEX10K series EPLD (Erasable Programmable Logic Device). Note that while an
EPLD was used only for a prototype, an ASIC (Application Specific Integrated Circuit)
would be the optimal final implementation. The overall design of the chip hardware is
shown in Figure 6.3. There are three main sections used in the architecture:

1. Data acquisition: The analog currents are sampled using Hall Effect transducers
and the values are converted to digital values using a serial A/D, and then trans-
mitted to the EPLD via an isolated serial channel that incorporates error detection.

150 CHAPTER 6. HARDWARE IMPLEMENTATION

Over-current protection on each phase, together with DC-link protection, is imple-
mented digitally in the EPLD. A 5Mbps link is used, allowing measurement at
250k samples per second. Given the machine inductance, this is fast enough to
offer an additional level of protection over that offered by the drivers themselves.
The primary use of the EPLD protection is to protect against overcurrents arising
from poor or incorrect behaviour of the current controller. An external physical
short circuit would require the intervention of the protection within the switching
modules.

2. Computational unit: This consists of an ALU and its associated sequencer. The
ALU is capable of 16 bit addition, subtraction and shifting. A 32 word register file
is used to store intermediate values. The sequencer controls the type of operations
performed in the ALU and their sequence, and is essentially microprogrammed.

3. PWM generator: This constructs the three phase switching pattern from the switch-
ing times calculated in the ALU. As an option these times can be compensated to
account for inverter dead time.

PWM
Generation

ALU Machine

ADCInterface Logic

Sequencer

Figure 6.3: Overall block diagram of the chip.

6.4.1 Computational Structure

Concurrent and Sequential Calculation

Two basic approaches were considered in designing the computational structure of the
controller hardware. One approach is to allocate a logic block for each of the calculations
to be performed. For example, each multiplication calculation required for the control
algorithm would have a multiplier block dedicated to it. Many of the calculations are
then performed concurrently, in separate sections of the logic. This approach maximises
the computational throughput, but is very demanding on the number of logic compo-
nents required. Multipliers and Dividers, in particular, consume a large number of logic
elements.

The second approach involves time-multiplexing the computational resources. A se-
ries of different calculations are performed sequentially using the same logic block. This

6.4. Computational Architecture 151

v1 v2 v3 v4 v1 v2 v3 v4

+

+

+

+

(a) (b)

Figure 6.4: Calculation logic alternatives: (a) Random Logic, (b) State Machine

forms a trade-off between speed and required logic resources. The time multiplexing is
achieved through the use of registers and multiplexers. The inputs to the computational
unit are connected to a multiplexer to select the source of each calculation, while results
are temporarily stored in registers.

Figure 6.4 shows a comparison between these two approaches for the simple case
of adding four numbers. In the first case, (a), three two-input adder blocks are used
to perform the additon. In the second case, (b), only one adder block is used, but it
performs a number of separate calculations. An external state machine controls the
input selection.

The random logic approach avoids the need for bus logic, multiplexers, registers and
a state machine, but requires more resources for adders and multipliers. In comparison,
the state machine design requires fewer on-chip resources, but sacrifices speed, especially
for complex calculations. The hardware logic based solution will give increased speed of
execution compared to the state machine design, but will consume more on-chip resources.

An architecture decision must be made based on the computational and logic resources
and demands of the given problem. In this case, the bulk of the calculations are carried
out in the state machine fashion in a single arithmetic logic unit (ALU). Those that need
greater throughput, or don’t easily fit into the basic architcture, are added as separate
calculation units.

ALU Connection Arrangement

A state-machine sequential design philosophy has been used for the chip design. Most of
the calculations for the control algorithm are performed in a single arithmetic logic unit
(ALU). The system inputs and outputs are connected to the ALU via a common bus
as shown in Figure 6.5. A register file is used to store the intermediate results, such as
past current measurements. This arrangement allows the calculations to be performed
in sequence as they would be in a microprocessor.

This design approach was chosen as it was appropriate for the speed and size require-
ments of the current control algorithm. Greater levels of parallel computation would
only be required for control rates significantly above 20kHz. Furthermore the Altera
10K EPLD chosen for the prototype is particularly amenable to this approach as it can

152 CHAPTER 6. HARDWARE IMPLEMENTATION

Register
Block

I
A

IB

IC

VDC

MUX

ALU

t

t

t

0

1

2

MUX

Figure 6.5: Input and output connections to the ALU

efficiently implement register files and memory required for this type of design.
From Figure 6.5, it can be seen that external input values enter the ALU via a single

16 bit wide data path. The source for this path is selected by the input multiplexers,
giving a choice between external inputs or internal register values. The multiplexers are
controlled by the sequencer. The register file consists of storage for 32 values, each 16 bits
in width. These locations are used for storing parameters and intermediate calculation
results. The output of each calculation may be latched into any of the output latches or
written back into the register memory. The overall operation of this is controlled by the
sequencer, which is described later, in Section 6.5.

6.4.2 ALU Structure

Computational Requirements

An aim of the controller design is to offer control of inverters with switching rates of up
to 20kHz. While this could easily be acheived by calculating the control algorithm at a
lower rate than the switching frequency, the resulting control would be inferior. Instead,
the controller should be able to operate at the full 20kHz rate. As the current control
algorithm requires measurements from the mid-point of the previous control interval,
only half of each 50µs interval is available for computation. In addition, another 5µs
should be allowed for data acquisition delays. This leaves 20µs to calculate the control
algorithm. The design specifications are summarised in Table 6.2.

Parameter Value
Switching Rate 20kHz
Control Rate 20kHz
Half-period Duration 25µs
I/O delays 5µs
Remaining Calculation Time 20µs

Table 6.2: Design Specifications.

An Altera r© FLEX10K50 EPLD was chosen for the prototype implementation. This

6.4. Computational Architecture 153

decision was made primarily on the availability of development tools, cost, packaging
and availability at the time of initial design. This family’s use of embedded arrays was
found useful for the design, as it allowed the efficient implementation of on-chip RAM
and ROM resources.

The FLEX10K50 device has a rated capacity of 50,000 typical gates. Preliminary
design tests indicated that this would be adequate for the controller. Initial testing also
revealed that a synchronous 16-bit adder could operate at clock rates of up to 40MHz.
For a more realistic circuit, the maximum frequency falls as the amount of logic between
the flip-flops increases.

To allow for more complex logic without excessive pipelining, 20MHz was chosen as
a target clock rate. This frequency allows 1024 clock cycles per control cycle, which
means it is also convenient to use the same clock for the the output modulator. In order
to use the data acquisition system detailed in the previous chapter, the sampling logic
would operate at a maximum of 5MHz, which is one quarter of the master clock. This
slower clock rate is not necessary for the logic, but rather for the bandwidth of the serial
communications link. The resulting delay in obtaining samples is,

td = 20× 1
5MHz

= 80× 1
20MHz

. (6.16)

After removing these 80 clock cycles from the half-interval, there remains 432 cycles for
the execution of the control algorithm.

Resource Allocation

The structure of the ALU was governed by the operations required to execute the current
controller algorithm. It is designed to be fast in the calculations that are performed often,
while operations that are less frequently used are optimised more for logic space than
speed.

An important design decision was the style of computation block to use for the various
types of calcuation. Multiplication and division operations, in particular are likely to be
time or resource intensive, but the simpler addition, subtraction and shifts are generally
more common. Fortunately other difficult operations, like square root evaluation are not
necessary for this algorithm. The approximate requirements (excluding the inductance
estimation) are shown in Table 6.3. Due to its particular precision requirements, the
inductance estimation uses additional hardware.

The available options for multiplication have varying demands on logic complexity and
computation time. Direct multiplication logic could reasonably perform the calculation
in the order of 50ns on the EPLD, but use a large proportion of its resources. Using
simple shift/add techniques, the calculation time rises to the order of 1.5µs.

The small number of multiply/divide operations required means that a shift/add/sub-
tract implementation is sufficient for the application. The result of this is a design decision

154 CHAPTER 6. HARDWARE IMPLEMENTATION

Operation Number
multiply 3
divide 3
add/subtract 60
shifts 8

Table 6.3: Operations required per iteration.

for a primarly Arithmetic Logic Unit (ALU) with add, subtract and shift functionality.
This is a standard feature of a basic microprocesser design[18]. The ALU was designed
to perform a 16× 16 bit signed multiplication in 32 clock cycles, and a 16 bit division in
64 cycles.

Figure 6.6 shows the basic structure of the ALU implemented . Each iteration of the
algorithm requires a number of arithmetic operations using this unit.

Shifter

R3R1

R2

++/-

ALU

C4

C3C1

C2

Figure 6.6: Block diagram of the ALU

Precision

The ALU was designed to handle 16-bit word lengths. Larger word lengths offer greater
flexibility but incur a greater cost in logic complexity. The required precision is de-
rived directly from that of the inputs and outputs to the systems. The data acquisition
subsystem offers 12-bit samples, while the output precision is ultimately limited by the
controllability of the output switching pattern. With dead times of approximatey 3µs,
and control rates as low as 1kHz, a 10-bit word length offers sufficient precision.

The intermediate calculations require an accumulator with greater precision than the
input data to avoid arithmetic overflow. The additional 4-bits provides this required

6.4. Computational Architecture 155

value range. There are also 32-bit registers to allow the manipulation of the results of
the multiply and divide operations.

6.4.3 ALU Control

Figure 6.6 shows that the ALU has one input and one output. For operations requiring
two parameters, such as addition, one parameter is read in first and stored in the internal
registers of the ALU. On each clock cycle, a new value is read into each of the registers
R1, R2 and R3. The source of the values is controlled by the command inputs C1, C2
and C3 respectively. The command inputs are defined as short binary numbers, which
reflect the internal representation. These commands control the operation of the ALU.
The possible commands are described in the following paragraphs:

Input Selection

The ALU command C1 selects the source for new calculation inputs. This essentially
involves controlling the input multiplexer. To minimise resource usage, there is only one
input multiplexer, so operands for binary operations have to be loaded on sequential
clock cycles.

C1 Description
00 R1=External read from Addr
01 R1=Read memory location Addr
10 R1=R2 (used for a=-a and a=abs(a))

11
R1 undefined, Write memory location
Addr with R2

Table 6.4: ALU Input Select Commands

C1 = 00 selects the external input multiplexer as the data source. This is designed
to connect to the external I/O subsections, and is principally for acquiring new sample
values. For example one input to the multiplexer will be connected to the direct axis
current measurement from the start of the present control cycle. The actual address
supplied to the multplexer does not enter the ALU module itself, instead being directly
supplied by the sequencer.

The other principle data source is the system register file. This is selected with
C1 = 01. The operation of the register file as a data source is essentially the same as the
external inputs. The address in the register file is again supplied by the sequencer.

Command C1 = 10 was specifically added to the ALU to enable the evaluation of
absolute values. It copies the value of R2 back into R1. Normally results are fed back
into the addition/subtraction block via R3, but this does not offer negation of the result.
This alternate path offers this ability.

156 CHAPTER 6. HARDWARE IMPLEMENTATION

The command C1 = 11 is not related to the specification of the source for R1. Instead,
it is an instruction to write back the contents of register R2 into the register file. It was
included in C1 because it would otherwise conflict with the C1 operation. There are two
reasons for the conflict:

1. The register file is most efficiently implemented as a single-port memory block.
This means that a read and write cannot occur simultaneously. Dual port memory
would be possible at the expense of greater complexity. A survey of an early version
of the current controller instruction sequence showed that simultaneous access was
infrequently desired.

2. In the final implementation, it was convenient to only have a single bus to specify
the addresses for both the register file and the external inputs. This was to minimise
resources, and was again evaluated on the draft instruction sequence.

Arithmetic Operation

The C2 instruction controls the core arithmetic operation of the arithmetic logic unit.
This is a 4-bit data field, offering the possibiliy of sixteen different operations. The
first eight operations provide the basic calculations, while the second half are for more
specialised functionality. Figure 6.7 shows the bit definitions for the basic operations.

b3 b2 b1 b0

Sign: 1=Addition, 0=Subtraction

Enable R1 input: 1=Use R1

Enable R2 input: 1=Use R2

0 for a basic command

Figure 6.7: Bit definitions for basic C2 commands.

Table 6.5 shows a summary of the complete set of instructions available with C2.
The special instructions were principally added to support efficient multiplication and
division.

Shift Register Control

The shift register supplying register R3 allows manipulation of the 32-bit datapath section
of the ALU. The left and right shifts are provided for the multiplication and division
algorithms. A facility to shift right by 16-bits is also provided to enable pre-loading of
the lower 16 bits of the registers R2 and R3. Table 6.6 shows a list of the available
commands.

6.4. Computational Architecture 157

C2 Description
000x R2=0
010x R2=R3
0011 R2=R1
0010 R2=-R1
0111 R2=R3+R1
0110 R2=R3-R1
1000 Multiply Instruction 1
1001 Divide Instruction 1
1010 Divide Instruction 3
1011 R2=abs(R1)
11xx Undefined

Table 6.5: ALU Calculation Selection

C3 Description
x00 R3=R2
001 R3=R2 shifted left
101 Shift+conditional add for division
x10 R3=R2 shifted right
x11 R3=R2 shifted right 16 bits

Table 6.6: ALU Shift Register Operation

158 CHAPTER 6. HARDWARE IMPLEMENTATION

C4 Description
0 Select low word of R2 for mem/ext write
1 Select high word

Table 6.7: Output Datapath Selection

Output Selection

The switch in C4 is to allow selection of the section of R2 to use for output. Normally
only the high 16-bits of R2 is used in calculations, but the result of a multiplication
occupies the full 32-bits. As the external datapath is only 16-bits in width, a multiplexer
is required to select the required section.

6.4.4 ALU Operation

Usage Example

The operation of the ALU may be demonstrated with the simple example of C = A+B,
where A, B, and C are locations in the register file. The actions on each rising edge of
the system clock and the commands required to achieve them are:

1. Load A into R1 (C1=01). The value A would be contained in the register file at
a specified address of &A. This value of &A is supplied to the register file at the
same time as the C1 command. The value of C3 is irrelevant as its result will not
be used.

2. Load A into R2 (C2=0011). This simply involves copying the value in R1 into R2
without modification. The aim is to place the value into the datapath ready for
later combination with the second operand.

3. Load B into R1 and A into R3 (C1=01 and C3=000). This operation prepares
both of the operands for the calculation. This time the address of B is supplied to
the register file.

4. Load A + B into R2 (C2=0111). The actual arithmentic operation occurs at this
stage, placing the result in R2.

5. Store A+B into location C (C1=11 and C4=1). If the result is to be placed into
a register, the address of that register is specified in this cycle. Note that in this
case R1 cannot be loaded with a value for the next operation in the same cycle. If
this is desired, an idle cycle must be inserted. This restriction incurs a small time
penalty in the execution of the current control algorithm.

The ability to only supply one operand in each clock cycle turns the addition process
from potentially one cycle, into a a 5 cycle procedure. For a practical set of instructions,

6.4. Computational Architecture 159

the penalty is not as great as this. For the current controller calculations, a number of
values are typically added together, and once the calculation is started, there is only a
small overhead in adding additional values into the sum.

Apart from reducing the multiplexer resources, this also simplifies the memory ac-
cessing scheme as only one value will need to be fetched at a time.

Pipelining

The ALU design, as shown in Figure 6.6 contains more registers than are required for
the logic operation. Only one set of registers are required in the feedback path. The
alternative ALU without these registers is shown in Figure 6.8.

Shifter

R2

++/-

ALU

C4

C3C1

C2

Figure 6.8: Alternative ALU without pipelining

This approach would be simpler, but suffers from greater propagation delays between
logic blocks. On the test platform, cycle times of approximately 100ns were required for
this configuration.

The addition of the extra register set approximately halves the maximum propagation
delay between the output of a register set and the input to the next synchronous element.
This reduction of propagation delay allows a doubling of the clock frequency. The cost
to the instruction sequence is that each operaton requires double the number of clock
cycles to complete, which in the simplest case negates the benefit.

The overall advantage of the additional register set is twofold:

1. The propagation delays throughout the synchronous design are better matched.
Doubling the clock speed allows all of the other elements of the state machine to
run at twice the speed, as this is one of the most complex sections. Thus, there is
an advantage in keeping delays in different parts of the design to a similar levels.

2. The addition of the registers halves the time each of the computational units is
active. This allows these units to be used for a subsequent calculation. In the

160 CHAPTER 6. HARDWARE IMPLEMENTATION

best case, when the reqiured operations are suited, the overall throughput may be
doubled.

Dual Data Path

Instead of speeding the sequential execution, the pipelined architecture was designed for
the execution of two concurrent instruction streams. This is possible through the use
of two internal register sets (R2 and R1/R3). On each cycle, the contents of each reg-
ister alternates between the two instruction paths. This approach offers less sequencing
overhead than conventional pipelining techniques.

In the previous example, the odd steps (1,3,5) only used R1 and R3, while the even
steps (2,4) only used R2. This means that the calculation throughput may be doubled
by using R2 on the odd steps and R1/R3 on the even steps.

The current controller offers the opportunity for efficient utilisation of the dual data
path as many of the calculations are duplicated for the two independent axes. One
sequence could be used for the direct axis, and the other for the quadrature axis. In the
prototype, this functionality was not used as the resources were sufficient without it. It
does, however, offer opportunities for improved performance.

6.5 Sequencing Architecture

6.5.1 State Machine Implementation Issues

The sequencer generates the control signals for the ALU. On each clock cycle, a number
of control signals need to be supplied. For a simple calculation sequence, this would be
achieved through using a state machine. The state machine is composed of two blocks
of combinatorial logic, along with a register to record the state. One block of logic
calculates the next state, given the present state, and the inputs. In this case, the inputs
would include the status information supplied from the ALU as well as other parts of
the design. The actual binary numbers being manipulated are not directly connected to
this logic. The output logic calculates the required control signals based on the present
state. Figure 6.9 shows the structure of the state machine sequencer.

Next State
Logic

State
Register

Output
Logic

Outputs
Inputs

Figure 6.9: The state machine sequencer option.

At the lowest level, the state machine may be specified by discrete logic, but the
state machine required for the calculation of the current control is quite large. Instead,
a higher level specification is more appropriate. An attempt was made to design an

6.5. Sequencing Architecture 161

appropriate state machine using Altera’s AHDL description language. This is similar
in concept to VHDL, but better supported by Altera at the time of design. While this
method of specification was satisfactory, the resulting design performed poorly.

The greatest problem was in propagation delays in the output-forming logic. The
optimisation during design compilation was able to resolve the next state logic adequately.
Techniques such as one-hot coding allow relatively simple next-state logic for designs that
are largely sequential, as in this case. The outputs, however, are not a well structured
function of the state. Each output depends on the value of almost all of the state
variables. As a result the logic becomes slow and large as the number of states grows.
State machine approaches were abandoned when it was found that the required number
of states for this application was unwieldy.

6.5.2 The Microcoded State Machine

An alternative to using a large state machine is a sequencer which is based on using
microcode stored in an internal ROM (Read-Only Memory). A small state machine is
used to fetch the microcode words from the ROM and generate the commands for the
ALU. A schematic diagram of this is shown in Figure 6.10.

ROM

Address

Generator

Instruction

Decoder

ALU Control
Signals

Condition Signals

(C1, C2, C3, C4,
Address, Commands)

Figure 6.10: The structure of the microcode sequencer

The ROM essentially stores the information that would otherwise be contained in the
state machine. In the simplest case, each successive address of the ROM would contain
bit patterns to describe each control signal that needs to be defined. This quite simple
approach would work for large parts of the current control algorithm, but is too limited
for the complete design. Additional complexity is required to handle conditional state
transitions. Some situations, such as applying limiting require different calculations to
the normal set. These are handled with a form of branching, similar in concept to the
JUMP instructions typically found in microprocessor instruction sets.

The ROM consists of 256 words of width 16 bits. This is quite a small structure,
and may easily be incorporated into EPLDs and ASICs. In the prototype version, it
is implemented within the EPLD. The address is provided by a presettable up-counter,
which is controlled by the instruction decoder. Normal program execution is achieved
by incrementing the counter and branches are implemented by presetting the counter to
the new address. The specific design of the sequencer is shown in Figure 6.11.

This design is quite precise to ensure that the timing synchronises correctly with itself

162 CHAPTER 6. HARDWARE IMPLEMENTATION

+1

Decode

MUX

(Async)

ROM

A
Q

Decode

Command
ALU

Decode

Command
ALUD

D

D

D

D

R2 Outputs

R1/R3 Outputs

R2 Outputs

Address Generation Memory
C2

C1/C3

Figure 6.11: The sequencer design.

and the ALU. In particular, the two-clocks per cycle on the ALU necessitate different
behaviour on odd and even clock cycles. The design could be simplified conceptually by
insertion of appropriate delays on the ALU control signals so that all signals for each
instruction cycle are applied simultaneously. This, however, would incur greater overall
delays and increase the overhead on branching.

Figure 6.12 shows the timing relationship between various parts of the sequencer and
computational engine. The overlap of sequential instructions in the pipeline spans three
system clock cycles.

C1 Decoding C2 Decoding

Address For
Next instruction

�

C1 Provided
To ALU

R1 Output
Valid

�
R2 Output
Valid

�

C2 Provided
To ALU

Address For
2nd WordAddress

Instruction

Formed
1st ROM Word 2nd ROM Word
Available Available

1 2 3 4Decoding Stage:

Figure 6.12: Sequencer Timing Diagram

The diagram shows that although each instruction takes five clock cycles to compm-
lete, it occupies only two clock cycles in the hardware. Although not implemented, the
dual data-path design of the ALU would allow an additional sequenced data path to
appear at a one clock cycle delay, doubling the maximum throughput (§6.5.3).

6.5. Sequencing Architecture 163

Instruction Format

The instruction decoder reads the contents of the ROM to generate the required com-
mands. Each microcode instruction consists of either one or two 16 bit memory words.
The first word contains the primary commands for the ALU, while the second provides
optional addresses and branch conditions if they are required. The format of these words
is shown in Table 6.8.

15 14 10 9 8 6 5 2 1 0
1/2 Words Addr C4 C3 C2 C1

Word 1
15 8 7 5 4 0
Br Address Br Condition Command

Word 2

Table 6.8: Instruction Word Format

From this table, it can be seen that the microcode is largely horizontal in its design.
Some narrowing has been used to reduce the instruction width to 32-bits, but there are
no format fields. Instead each instruction field appears in every instruction. The role of
each of the instruction fields is described in the following sections;

Word Selection: All instructions include the first word. The “1/2 Words” bit indicates
whether the second word is to follow. If this bit is set to zero, the second word is assumed
to be zero, and the next word in the ROM is interpreted as the first word of the next
instruction. This approach reduces the amount of chip resources required to represent the
algorithm as the second word is only needed infrequently. The behaviour is summarised
in Table 6.9.

1/2 Words Word 2 Next Instruction
0 All Fields=0 Address+ 1
1 read from Address+ 1 Address+ 2

Table 6.9: Instruction length selection.

Register Addressing: The Addr field supplies the address for the register file and the
select lines for the external input multiplexer. The sharing between these two functions
is logical because only one can be used to supply R1 at a time. The disadvantage is that
It does add an additional bottleneck, by preventing simultaneous reading of inputs and
writing of results. This was a tradeoff to reduce logic size in return for a slight increase in
exectuion time. The assembler (§ 6.5.3) automatically inserts delays to avoid the resource
conflict.

164 CHAPTER 6. HARDWARE IMPLEMENTATION

This field is placed in the first instruction word for both frequency of use and timing
reasons. For timing, the address is needed early so that it can be synchronised with a
flip-flop before memory decoding takes place. Without the synchronising flip-flop, the
propagation delays become too large.

ALU Commands: C1...C4 contain the command signals to be sent to the ALU, as
described in Section 6.4.3. These bit patterns are sent directly to the ALU at the ap-
propriate time. C1, C3 and C4 are applied immediatley to the ALU after one latching
stage. An extra delay is inserted for the C2 command as this is used one cycle later. The
timing constraints would have allowed C2 to appear in the second instruction word, but
the frequency of its use make the first word a more appropiate location.

Apart from delaying the C2 command, the piplining of instructions is left to the
instruction design stage. This means that while C1 and C4 commands are in the same
instruction, they will refer to different calculated values in the ALU. It is most likely
that the C4 command will refer to the results of the previous instruction. The assembly
language and compiler developed in Section 6.5.3 helps in this pipeline design.

Branch Address The second word is included when the instruction requires branching
(jumping) to another microcode location, or if an “external command” is required. The
“BrAddress” field specifies the destination location of a branch if a branch is to occur.
If a branch does not occur, based on the branch condition field, this field is ignored.

Branch Condition The branching logic makes use of two fields in the second instruc-
tion word. The “BrCondition” field specifies which condition is to be used for the branch
decisions. The two basic conditions are “branch never” and “branch always”, which
result in sequential execution and unconditional branching respectively. The “branch
never” condition is coded as 000 to make this the default when the second instruction
word is not supplied. If this field is 000, the Branch Address field is ignored. The other
conditions are similar in nature to “Branch if the ALU result is negative”. Table 6.10
shows the branching conditions defined for this application.

Value Symbol Action
000 Br0 Don’t jump
001 BrSign Jump if result negative
010 BOverflow Jump if the was a numerical overflow
011 BrCountNZ Jump if internal counter not at zero
100 BrLeNZ Jump if inductance estimator counter not zero
101 BRT0Wait Jump if sample at T0 not available
110 BRTxWait Jump if no samples are available
111 Br1 Always jump

Table 6.10: Defined Branch Conditions

6.5. Sequencing Architecture 165

Note that a number of these conditions are not directly related to the ALU or the
sequencer. Instead they have been defined to suit the controller hardware. In this sense,
the sequencer is much more tightly integrated into the application design than it would
be in a microprocessor based solution.

Command The external commands are used primarily to signal the presence of output
values from the ALU. For example, there are three external commands connected to the
PWM module to indicate when the switching times are available on the ALU output.
The five bits allocated to the “Command” field are decoded to allow up to 32 external
commands to be generated. Although only one of these commands may be asserted in a
single instruction, this is not a limitation as the algorithm requires only infrequent use
of commands.

The command 00000 is defined as a null command, performing no action. This is
compatible with single-word instructions, and allows an instruction to have a branch
without a command.

Address Generation

In the first stage of instruction decoding, the value of the address for the instuction in
ROM must be calculated. Once this is done, the value of the first instruction word is
available on the next clock cycle. This is denoted Stage 1 in Figure 6.12. During this
stage, the “1/2 Words” bit is interrogated to determine whether the address should be
incremented or not.

In the instruction decoding Stage 2, the address for the following instruction is deter-
mined. This involves selecting between an address increment and a new branch address
from the address multiplexer. At this point, the result from the previous calculation
is available in R2 to use to evaluate branching condition. Note that this means that
branches typically act on results from the previous instruction, and not the operations
in the first word of the current instruction.

6.5.3 Microcode Assembler

A simple microcode assembly language and assembler were developed to simplify the
writing of the microcode. This was not an essential part of the design, but more of a
refinement. Both development and debugging time are reduced considerably through
using the more intuitive representation allowed with an assembler. In addition it greatly
simplifies the testing of modifications of some aspects of the algorithm, for example, the
inductance estimator.

It may be noted that including this step brings the system design closer to that
of a microcontroller-and-software approach. Once the chip can be programmed in an
assembly language, it presents many of the attributes of a microprocessor. However,
there are still significant differences between this design and that of a microprocessor.

166 CHAPTER 6. HARDWARE IMPLEMENTATION

Principally, the computational structure and peripheral integration is still customised to
the particular task. It should also be emphasised that a number of the controller tasks
are implemented outside this central ALU structure.

The assembly language itself has been modelled to some extent off the C programming
language, but with a very limited syntax. An example segment of the source code is shown
in Figure 6.13:

//allocate an entry in the register file
int Counter=2;
//pointer to external input
constant IB=6;

a=Counter;
a=a*two+Counter; // a=3*counter
a=a-IB; // subtract from IB
a=-a; // load a back via R1

Figure 6.13: Example source code for the assembler

This example multiplies the contents of a register in the file by three and then sub-
tracts it from the latest measurement of the B phase current.

The Grammar

The assembly code language may be specified by a context-free grammar. This is a useful
method of specifying the full syntax of the language, and aids in the compiler design[1].
In this case, the grammar is also strongly related to the command sets controlling the
ALU.

The complete grammar is shown in Figure 6.14, but the following sections describe
each expression. This grammar type is known as the Backus-Naur From (BNF), from
the work of Backus[2] and Naur[36] in the 1950’s and 60’s.

R1 Expressions:

< R1Expr > → < MemAddress > | < Ext > | < R4Expr > (6.17)

The < R1Expr > appears up to once in each generated instruction. Its role is to define
the bit pattern for the C1 command word. The three forms of this expression match
the three out of the four valid bit patterns for the ALU C1 input. The fourth (memory
write), is set by an alternate instruction.

The < MemAddress > and < Ext > fields are matched from a symbol table which
is constructed from memory allocation and external declaration statements (see below).
When these fields appear, the memory address in the first word is set to the associated
value, as derived from the symbol table. When an < R4Expr > is supplied, the address
field is not specified.

6.5. Sequencing Architecture 167

< R1Expr > → < MemAddress > | < Ext > | < R4Expr >
< R3Expr > → a | a ∗ two | a/two | a >> sixteen
< R4Expr > → al | ah

< R2Expr > → < R3Expr >
< R2Expr > → < R3Expr > + < R1Expr >
< R2Expr > → < R3Expr > − < R1Expr >
< R2Expr > → < R1Expr >
< R2Expr > → − < R1Expr >
< R2Expr > → zero
< R2Expr > → < R3Expr > ∗ < R1Expr > ∗two
< R2Expr > → < R3Expr > / < R1Expr > /two
< R2Expr > → abs(< R1Expr >)

< Statement > → int < MemAddress >
< Statement > → int < MemAddress >=< Number >
< Statement > → int < MemAddress >= − < Number >
< Statement > → constant < Ext >=< Number >
< Statement > → a =< R2Expr >
< Statement > → out(< R4Expr >)
< Statement > → < MemAddress >=< R4Expr >
< Statement > → < Ext >
< Statement > → if < Ext > goto < Label >
< Statement > → LABEL < Label >

Figure 6.14: The Complete Assembly Context-Free Grammar.

R3 Expressions:

< R3Expr > → a | a ∗ two | a/two | a >> sixteen (6.18)

The < R3Expr > defines the value of the C3 command word on the ALU. This controls
the shift register, which is placed between R2 and the R3. In this case, the variable a
appears as a reference to the contents of the R2 register. This is done because at the
conclusion of each instruction, generally R2 holds the result of the calculation. It is then
convenient to think of R2 as an accumulator, which takes the results, and can be used
as an operand via the < R3Expr >.

The four possible compositions of < R3Expr > correspond to the four modes of
operation that are possible with the ALU shift register. The three standard modes are:

1. Direct pass-through: a

2. Shift Left: a ∗ two

3. Shift Right: a/two

Note that alphabetical representations are used for each symbol in order to simplify the

168 CHAPTER 6. HARDWARE IMPLEMENTATION

parsing. It also emphasises that arbitrary integers cannot be accepted as operands. The
fourth shift register operation is provided to enable loading of the low-order sixteen bits of
R2 and R3. This is principally required for loading the dividend of a division calculation.

R4 Expressions:

< R4Expr > → al | ah (6.19)

The C4 ALU command word controls the output multiplexer from R2. The < R4Expr >
specifies which half of the R2 accumulator should be used for output. Typically ah is
used.

Addition and Subtraction:
< R2Expr > → < R3Expr >
< R2Expr > → < R3Expr > + < R1Expr >
< R2Expr > → < R3Expr > − < R1Expr >
< R2Expr > → < R1Expr >
< R2Expr > → − < R1Expr >
< R2Expr > → zero

(6.20)

The compositions in (6.20) select the basic operations of the adder unit in the ALU.
Because the priorR1 andR3 calculations are included in the same instruction, expressions
such as a ∗ two− ID0, are possible, where ID0 is a declared register.

Absolute Value:

< R2Expr > → abs(< R1Expr >) (6.21)

The absolute value instruction was added into the ALU specifically because it appeared
a number of times in the current control algorithm.

Multiplication and Division:
< R2Expr > → < R3Expr > ∗ < R1Expr > ∗two
< R2Expr > → < R3Expr > / < R1Expr > /two

(6.22)

While they share a similar syntax to the other R2 expressions, multiplication and di-
vision incur a much greater implementation complexity. In each case, the assembler
generates a number of instructions including a loop. See Section 6.6.2 for details of the
implementation.

Memory Allocation:
< Statement > → int < MemAddress >

< Statement > → int < MemAddress >=< Number >

< Statement > → int < MemAddress >= − < Number >

(6.23)

6.5. Sequencing Architecture 169

These statement compositions are used to declare memory locations. In implementing
the grammar, the < MemAddress > is actually identified as an unknown string, as is
the number. These statements do not generate any code, but rather add to the symbol
table for future use in R1 expressions. While an address is generated, and later used
in the microcode, the user is insulated from this at an assembly level. These memory
registers are always referred to by the symbol as defined here.

The optional initialiser is used to build up a table of initial values to be programmed
into the EPLD. This is particularly useful for defining constants, such as

√
3, for use in

calculations.

Constants:

< Statement > → constant < Ext >=< Number > (6.24)

These constants are not constants to be used in calculations, but rather as symbolic
shortcuts. It is similar in concept to the C language #define pre-processor directive.
The basic uses of these definitions are for:

1. External source addresses. These control the select lines of the external input mul-
tiplexer when reading from external hardware registers (for example, the sampling
hardware).

2. Branch conditions. While most of the branch conditions are specified by the ALU
design, these are declared symbolically in the assembler source.

3. Output commands. As the output equivalent for the external source address, these
control the output command decoder.

Note that while these are simply symbolic defines, integer numbers cannot be used in their
place in assembly statements. This restriction was imposed to simplify the grammar.

Basic Instruction:

< Statement > → a =< R2Expr > (6.25)

This is the form of the basic instruction to be converted to microcode. It often takes the
form of an updating equation on the a register. For example, a = a ∗ two+MRR1.

Output:

< Statement > → out(< R4Expr >) (6.26)

The out instruction simply specifies which half of R2 is to appear on the output of the
accumulator. It is usually used in conjunction with a command to indicate to external
hardware to read the value.

170 CHAPTER 6. HARDWARE IMPLEMENTATION

Memory Write:

< Statement > → < MemAddress >=< R4Expr > (6.27)

The register file can be written to by assigning al or ah to the appropriate symbolic
name. Note that for a given output instruction, this can conflict with other operations
that either use the ALU output or the 5-bit register/external address field.

Command:

< Statement > → < Ext > (6.28)

An external command is specified by simply using it as a statement.

Branching:
< Statement > → if < Ext > goto < Label >

< Statement > → LABEL < Label >
(6.29)

Branching is executed through the LABEL and if statements. LABEL is used to
declare a label for the target of a jump. While a number of statements can usually be
placed into a single microcode instruction, a LABEL statement flushes the pipeline and
forces a new instruction to be started. Unnecessary labels should be avoided as they are
likely to incur a performance and size penalty.

The if statement inserts a branch condition and target address into the microcode
instruction. The branch condition must be defined as a constant, and the target as a
label in the assembly source.

The assembler uses only a single pass, so branch targets may not necessarily be defined
at the time of use. If they are not defined, the instruction address is added to a symbol
table for later correction. As each new label is defined, the table is scanned to correct
any existing references to that label.

As already mentioned, the machine design incorporates piplining concepts. This
means that multiple source instructions may be decoded and executed concurrently.
While this improves performance, it creates unexpected relationships between instruc-
tions, and these are called hazards. The hazard of relevance to this design is the branch
hazard.

A branch hazard arises when a branch instruction is exectued concurrently with
the instruction following it. This means that even if the branch is taken, the following
instruction will be at least partially executed. In order to maximise performance, pipeline
branching hazard resolution is performed in the assembly source code. If protection were
instead added to the assembler or hardware, very short loops could be forced to require
double the existing execution time.

The pipelining causes difficulty for branching instructions because the conditions are
based on the results from the previous instruction, but the branch is not taken until the

6.5. Sequencing Architecture 171

next instruction. Consider the instruction sequence in Table 6.11.

Instruction Source code sequence
1 a = Value1;
2 if BrSign goto BranchTarget;

a = Value2;
3 a = Value3

Table 6.11: Example source code.

In this case, Instruction 2 will be completely executed regardless of the result of the
branch. This means that the a = V alue2 assignment occurs even if the jump is taken.
This anomaly could be resolved by reversing the order of the if statement and the
assignment in the instruction source, as shown in Table 6.12. In that case, the behaviour
would be the same, but the source code would better represent it.

Instruction Source code sequence
1 a = Value1;
2 a = Value2;

if BrSign goto BranchTarget;
3 a = Value3

Table 6.12: Alternate source code ordering (not used).

The code in Table 6.12 has a potentially more serious problem. In this case the
confusion would occur in the specification of the branch condition. The branch condition
is evaluated based on the results of the previous statement (statement 1). In this case, the
branch is taken based on the value of V alue1, not the V alue2 which would be expected
from the source code.

The instruction format necessitates that either one of these problems be present in
the assembly specification, or that unnecessary performance limitations be imposed. As
a result, it was chosen that the assembly format shown in Table 6.11 be used. This
behaviour is more predictable because it is a common product of branch hazards in
pipelined machines.

In summary, in the final design, if an R2 assignment statement appears immediately
after a branch statement, the R2 statement will be executed regardless of the outcome
of the branch. This includes the case of unconditional branches.

Figure 6.15 shows an example of a loop that consists of only a single instruction. In
this case, it appears that the manipulation of the a register is outside the loop, but it is
executed on each iteration based on the behaviour described above.

172 CHAPTER 6. HARDWARE IMPLEMENTATION

LABEL LCLoopD; //multiply by 2 until count is zero
COM_LeCDown; //count down
ifBrLeNZ goto LCLoopD;
a=a*two; //executed inside the loop

Figure 6.15: A single-instruction loop

Statement Ordering

The discussion of the branch statement above introduces the concept of how the assembly
statements should be ordered to represent an instruction. As multiple assembly state-
ments may be represented in a single microcode instruction, the assembler has the task of
gathering compatible statements together. This is done to minimise the number of final
microcode instructions generated, subject to the constraint that the resulting behaviour
is predictable and logical.

To remove ambiguity and misleading references, a standard order of statements is
imposed for each output instruction. These stages are shown in Table 6.13. This shows

Stage Description
1 Label
2 Memory or External Write
3 Commands
4 Branch
5 R2 assignment

Table 6.13: Statement encoding stages for microded instructions.

that one microcode instruction may be formed out of up to five source instructions,
provided they occur in the order listed and don’t conflict in resource usage.

For a single instruction, each additional statement must progress through the stages
in a non-decreasing fashion. In all cases except for the label, only one statement from
each stage may appear. Whenever a statement is encountered that is associated with an
earlier stage than the previous one, a new output instruction is started.

Sometimes even when the specified statement order is observed it may need to be
split based on resource conflicts. In particular, the register memory addressing field is
used for a number of purposes. A split is required if there is memory accesses in both
stages 2 and 5. In this case the split is made at the conclusion of stage 3 to ensure
predictability of the stage 5 execution in the presence of a branch.

Figure 6.16 shows an example of the partitioning of a block of code based on these
conditions. In this case, a total of five instructions would be required to implement the
supplied statements.

6.5. Sequencing Architecture 173

//Some arbitrary example code
a=ID0;

//break on [stage 5 repeat]
a=a*two-ID4;

//break on [move back to stage 1]
LABEL TheLoop;

COM_InLoop;
a=a+IncValue;

//break on [move back to stage 2]
Count = a;

//break on [memory address conflict between access
// to Count and DecValue]

if BrSign goto TheLoop;
a=a-DecValue;

Figure 6.16: Code sample demonstrating instruction partitioning.

Compiler Design

The art of Compiler design was not part of the core project intention, so the design
emphasis was more on rapid coding and optimal output, rather than a necessarily efficient
design. A basic recursive-descent parser was implemented using the grammer specified
in Figure 6.14. The full C++ source listing is included in the appendix.

The compiler is a single-pass design, that iterates through the source code matching
the statements to the supplied grammar. The preprocessing stage strips out the C++
style comments and splits the input into semi-colon delimited statements.

Each statement is tokenised and represented as a linked list structure of symbols
in the GetNextExpression() function. This function is called recursively to build up
the complete list from the input statement. The input is partitioned, and the symbol
type determined in the GetNextSymbol() function. This function compares each token
against an internal symbol table to determine and record the symbol type. This type is
later used in matching to the grammar compositions.

Once the input is tokenised, the expressions from the grammar are recursively ex-
panded and matched to the input expression. When a match is found, the instruction
fields are set by the code generation component. The code generation section handles the
collating of statements into instructions. An example of the recursive grammar expansion
is shown in Figure 6.17.

For each combination of compositions, a list structure is formed and compared to
the token list from the tokeniser. A left-to-right comparison is formed, and the search is
pruned when a partial expansion shows that a match is not possible. This optimisation
is made even though parsing speed is not an important factor due to the relatively short
source files.

Additional facilities are provided to maintain addresses both in the register memory,

174 CHAPTER 6. HARDWARE IMPLEMENTATION

<R3Expr>

<Statement> ;

;

;+ <R1Expr>

<R1Expr>

=

=a

a

<R2Expr>

;+two*a=a

;+two*a=a <MemAddress>

Figure 6.17: Recursive grammer token expansion example.

and program branching space. The final output is then written in a memory initialisation
file format for reading by the EPLD development software.

6.6 Additional Calculation Hardware

Apart from the ALU itself and the sequencer, a number of other hardware elements are
closely integrated into the computation hardware.

6.6.1 Loop Counter

A simple loop counter has been closely coupled with the sequencer. This is principally
to signal the end of loops for multiplication and division. The interface to the sequencer
is via the command interface, and uses boolean connections, as shown in Figure 6.18.

Preload 29

Preload 59

=0?

Down-count

Figure 6.18: The loop counter.

At the start of the loop, the command is issued to preset the counter, and a branch
instruction is used to execute the loop until the appropriate time has elapsed.

6.6.2 Multiplication

The ALU was designed specifically to accept shift-add style multiplication and division.
In both cases, signed operations were chosen because of the type of calculations needed
in the controller. Typically the currents or voltages being manipulated may be either
positive or negative in sign.

6.6. Additional Calculation Hardware 175

Signed multiplication may be achieved using Booth’s algorithm[18]. Although this
algorithm was originally designed for performance improvements over a simple shift-
add, its principal advantage is that it works on two’s-complement numbers without any
adjustment overhead. To use Booth’s algorithm, a small addition has to be made to the
ALU. This is shown in Figure 6.19. An extra bit is added to the right of the shift register.

Shifter

R3

B1 B0

R1

R2

++/-

ALU

C4

C3C1

C2

Figure 6.19: The ALU with support for Booth’s algorithm.

This additional bit, and the conventional least significant bit are used in the algorithm.

The multiplication starts by loading the multiplier into the least significant bits of
R3. This also clears the additional Booth bit, B0. At the same time, the multiplicand is
loaded into R1, and the loop counter preset to 29. Although the process takes 32 clock
cycles, the pipelining delay means the count value used is smaller.

Following this, a loop is entered, which consists of two clock cycles per iteration.
The first cycle involves selecting the correct operation for the add/subtract unit. The
operation to perform is chosen from the two Booth bits, B1 and B0. This choice is shown
in Table 6.14.

B1 B0 Operation
0 0 R2=R3
0 1 R2=R3+R1
1 0 R2=R3-R1
1 1 R2=R3

Table 6.14: Booth algorithm operation.

In the second clock cycle, the multiplicand is reloaded into R1, and the shifter is set
to shift right by one bit. The R2/R3 register set contains portions of both the product

176 CHAPTER 6. HARDWARE IMPLEMENTATION

and the multplier. The product is formed from the left, and the multiplier is shifted out
to the right. At the completion of the loop, the product fills the R2 register.

6.6.3 Division

Division is a more complex operation than multiplication. Fortunately it is not required
often in the control algorithm. Using the described hardware design, 64 clock cycles
are needed to perform the division operation. The design of the divider is essentially
a standard shift and subtract method, but with modifications to allow use with signed
numbers. The main addition is a signal which compares the signs of R1 and R3. This is
essentially a single XNOR gate,

S13 = R1MSB �R3MSB (6.30)

At the start of the process, the 32-bit dividend is loaded into register R3. At the
same time, register R1 is filled with the divisor. After this, a loop is entered to determine
each bit of the quotient. Each iteration of the loop comprises 4 clock cycles. The details
of these are:

1. If S13 == 1 (the signs of R1 and R3 are the same),
R2=R3-R1.

Otherwise,
R2=R3+R1.

2. R1=Divisor, R3=R2

3. If the add/sub caused a change in sign of R2,
If S13 == 1

R2=R3-R1.
Otherwise,

R2=R3+R1. (this reverses the previous subtraction)
Otherwise

R2=R3

4. R1=Divisor, R3=R2 shifted left by 1 bit. The value shifted in is S13 from the result
of step 2.

The result of this operation is a 32-bit quotient in ones-complement format. For
negative numbers, this differs by one from the usual twos-complement notation, but this
is not significant for the division operations to be performed for the current controller.

6.6.4 Inductance Estimator

Due to the precision and special operations required, the inductance estimator has addi-
tional hardware support outside the ALU. In order to accommodate variations in possible

6.6. Additional Calculation Hardware 177

inductance values and switching frequencies, a floating point scheme was adopted. The
precision needs to be higher than for normal calculations for two reasons

1. The per-unit inductance can vary from machine to machine. By considering ma-
chines of various ratings, it was estimated that a range spanning a factor of 100 is
adequate. This means an additional seven bits are needed to represent the variation
in the value.

2. The inductance value needs to be averaged to reduce the amount of noise on the
measurement. For this case, a simple IIR filter will be considered, rather than a
more sophisticated estimator, such as recursive least-squares. Adequate represen-
tation may be achieved by including an additional eight bits of precision.

Adding the 12-bits of basic precision to the above requirements results in a word-width
for the inductance of 27-bits. In the implementation, a 27 bit register is used to store the
value and a 3 bit counter for an exponent. The exponent is useful to aid in matching to
the fixed-point ranges of the controller.

The additional hardware is shown in Figure 6.20. The high 16 bits and low 11 bits
of the 27-bit register may be accessed separately, and loaded into the ALU.

Est. L

+ +
Count Up

Reset

Count Down
Preload

Count=0

3

27

(a) Mantissa Register (b) Exponent Counters

Figure 6.20: Inductance estimator hardware.

The first step in updating the inductance average is to find the difference between
the newest estimate and the existing average. The estimate itself is calculated within the
ALU, and the difference taken from the existing estimate. The external hardware then
performs the averaging operation. The estimation is implemented using the following
code fragment:

//calc the L/3 estimate

// = min(t1,t2)*V/2/3/abs(delta i1-delta i2)

a=ID4; 135

a=a*two−ID0L;

a=a−ID2;

178 CHAPTER 6. HARDWARE IMPLEMENTATION

a=abs(ah);

MR R1=ah; //store abs \delta i 1-\delta i 2 in MR R1

a=a*two+MR R1; 140

MR R1=ah; //3*abs(. . .)

a=T1; //get min (T1,T2)

a=a−T2;

if BrSign goto HaveTx; a=T1; 145

a=T2;

LABEL HaveTx;

a=a>>sixteen*ES DCV*two; //get 2TxV

a=a/two; //a=TxV

a=a−MR R1; //check if the result is usable 150

a=a+MR R1;

a=a/MR R1/two;

a=al; //now have TxV/2abs(. . .) = L/3V

//sub off existing estimate to give

a=a−ES LeH; //amount to add to inductance estimate 155

out(ah);

COM LeUpdate; //update the inductance

The overflow detection code has been removed from this code for clarity (see the
appendix for the complete version). Once the estimate is calculated, the high order word
of the existing estimate is read, and subtracted off the new value. The command on
the final line then causes the hardware to update the average based on the difference
calculated.

The next task in the algorithm is to find the quotient L
6V . The main complication is

that the fixed point result may be too large to fit in the 16 bits available. To overcome
this, the inductance estimate is first shifted right until it is smaller than V . Once this
occurs, it is safe to divide. The inductance counter keeps track of the number of shifts
necessary.

//— Find L/6V —

a=ES LeL; //load L/3

a=a>>sixteen+ES LeH; 195

LABEL LVLoop; //make sure division will not overflow

a=a−ES DCV; //div 2 until L/3<V

if BrSign goto LVLoopEnd;

a=a+ES DCV;

COM LeCUp; //count num of divs 200

if Br1 goto LVLoop;

a=a/two;

LABEL LVLoopEnd;

a=a/ES DCV/two; //have L/6V

L EST=al; 205

6.7. The Current Controller 179

The L
6V quotient is later multiplied with a summation of currents. The result of the

multiply fills 32 bits, and so the result of the product is shifted to compensate for the
earlier shift. For this operation, the second inductance loop counter is used to count the
correct number of left shifts.

COM LeCPre; //preload inductance counter

a=a>>sixteen*L EST*two; //multiply by L/3V 260

COM LeCDown; //count down after branch

if BrLeNZ goto LCLoopD; //do shifting if necessary

if Br1 goto LCLoopEndD;

The shifted result may then be used for further calculation.

6.7 The Current Controller

The current controller algorithm is closely based on the software version described in the
previous chapter. As the units and scaling of the variables were designed to be suitable
for a fixed-point implementation, these remain unchanged. The main changes have been
to suit the specific hardware requirements and instruction set of the microcode machine.

6.7.1 Sample Acquisition

The control process starts with the acquisition of the current samples on the three phases.
This first involves waiting until the samples are ready. This is done by polling the
BrT0Wait condition. The following code block marks the start of the loop:

//————————————————–

// WAIT FOR T=0

// Read In Currents at T=0 110

// and do 3-phase to 2-phase converstion of currents

//————————————————–

LABEL WaitT0;

if BrT0Wait goto WaitT0;

115

Following this, the currents are read in, and the 2-phase quantities calculated. This
involves simple addition and subtraction operations. The external multiplexer read is a
fast process, so the currents are actually read multiple times where required.

//IQ0=ES IB-ES IC

a=ES IB;

a=a−ES IC; 120

IQ0=ah;

180 CHAPTER 6. HARDWARE IMPLEMENTATION

//ID0=2*ES IA-ES IB-ES IC;

a=ZERO;

a=a>>sixteen+ES IA; 125

a=a*two−ES IB;

a=a−ES IC;

ID0=ah;

COM GotCurrents;

130

The final command signals the hardware that the values of current need no longer be
stored in the output latches. The assignment of zero to the accumulator in line 124 is
simply taking advantage of otherwise idle time. The aim here is to clear the lower 16 bits
of the accumulator for later use. The same basic procedure occurs to read the currents
at t = 0.25 and t = 0.5.

6.7.2 Updating Equation

During the first half of the control cycle, the inductance estimate is calculated, as de-
scribed in Section 6.6.4. In the second half, the current control algorithm is calculated.
The actual control updating equation is a relatively small portion of the code. The spe-
cific operations vary according to the specific control algorithm, such as midpoint and
endpoint control. For the endpoint control on the d-axis it is,

alphaD = alphaD +
L

6V
(IDR− 4ID2 + 3ID0). (6.31)

The summation of currents may be implemented with the following code fragment:

a=IDR;

a=a+ID0;

a=a/two−ID2; 250

a=a+ID0;

a=a−ID2;

a=a>>sixteen*L EST*two; //multiply by L/3V

255

Following this, the result is shifted to compensate for the prior scaling of the induc-
tance estimate, as described in the previous section. The product is then added to the
previous duty cycle to obtain the updated duty cycle.

6.7.3 Sector Determination

After calculating the q-axis value, the calculations for the space vector PWM are per-
formed. The first operation is to determine the sector associated with the voltage vector.
This is made a relatively simple operation through an appropriate method of sector
numbering. The method used in the software controller is replicated in this application.

6.7. The Current Controller 181

This sector pattern is shown again in Figure 6.21. The advantage of this allocation

000

001101

100

110

111 011

010

X0X
X1X

1X
X

0X
X

XX1

XX1

XX0XX0

S0 Determination

Figure 6.21: Binary sector allocation.

is that both the PWM hardware, and the calculation hardware are simplified.
Three additional flip-flops, and associated command outputs, are used to store the

sector value, as shown in Figure 6.22. Each bit is loaded directly from the most signif-
icant bit of the accumulator after the appropriate value is loaded. Using the controller

COM_Sector0Write

COM_Sector1Write

COM_Sector2Write

R2

D

D

D

MSB

S2 S1 S0

Figure 6.22: Sector determination hardware.

variables, each bit is calculated as:

• B2=MSB[AlphaD]

• B1=MSB[AlphaQ]

• B0=MSB[abs(AlphaD)-abs(AlphaQ)]

At the start of the next PWM interval, these values are supplied to the PWM hardware.

6.7.4 Switching Times

The remaining task is to determine the switching times, and then perform clipping if the
calculated values are not feasible. The algorithm is again the same as that implemented
in the software version. Some example code from the sector 2 and 5 section is shown
below. It is entered with AlphaD in the accumulator.

182 CHAPTER 6. HARDWARE IMPLEMENTATION

//THE MIDDLE SECTORS 2,5

//- T1=-aD+abs(aQ) T2=aD+abs(aQ) 375

LABEL Sect25;

a=a+ABSalphaQ;

T2=ah;

a=ABSalphaQ;

a=a−alphaD; 380

T1=ah;

As the absolute values were already calculated, this operation is quite simple. The
switching times in the other sectors are calculated in a similar manner. T0 is then
calculated from the relationship,

T0 =
T

2
− T1− T2. (6.32)

When T0 is found to be negative, the duty cycle values must be clipped. This involves
a scaling of both the alphas by the ratio:

γ =
T

2(T1 + T2)
. (6.33)

Following this, the switching times are written to the PWM hardware, and the entire
algorithm is repeated.

6.8 Controller Performance

The performace of the current control algorithm was demonstrated in the previous chap-
ter with the software version. This section includes only a basic performance evaluation.
As the improved back-emf prediction algorithm is not implemented, the performace of
the hardware version is inferior to the software one. The inductance estimation is also
less effective, as only the quarter-cycle method has been implemented.

However, despite these limitations, the hardware current controller does perform well.
Figure 6.23 shows the measured current and torque for a machine with an inertial load.
The upper trace on the CRO display is the signal from a current probe attached to one
phase of the machine. The lower trace is the output of a torque transducer attached
to the output shaft. The peak current shown is approximately 7 amps, and the torque
output is about 5Nm in each direction. The first part of the plot shows the machine
accelerating under a negative torque setpoint. The sharp change in measured current
indicates the reversal in the torque setpoint. Unfortunately, the torque measurement
system has a bandwidth limitation of 10Hz so this measurement cannot reflect the true
torque transient.

Figure 6.24 was obtained from tests with a locked rotor. Figure 6.24 shows square-
wave torque output and the corresponding machine current. The step change in torque

6.8. Controller Performance 183

Figure 6.23: Phase current and measured torque for a demanded torque transient with
a free rotor.

Figure 6.24: Phase current and measured torque for a demanded torque transient with
a locked rotor

Figure 6.25: Response of the current controller to a step change in setpoint. Step is from
-5A to +5A on the d-axis.

requires a step change in current. The required sharp change is visible just before the
t = 0 axis on channel 1. The fast nature of the transient indicates the high bandwidth
of the current controller in tracking the setpoint. The measured torque response is

184 CHAPTER 6. HARDWARE IMPLEMENTATION

somewhat slower. As mentioned above, the transient on the torque measurement is
governed by the filtering in the transducer electronics, not the actual torque produced
by the machine.

Figure 6.25 shows the response of the current controller to a step change in desired
current. This shows a fast transient response and small steady-state error. With an
appropriate outer loop torque controller, the electromagnetic torque bandwith will follow
the bandwidth of the current, resulting in good torque performance.

The final design utilised 42% of the logic cells available in the FLEX10K50-3 device.
The development tools also rated it for a clock frequency of up to 18Mhz. This is close to
the original design goal of 20MHz. Faster grade parts are now cheaply available, which
would allow the design to exceed the desired control rate.

6.9 Conclusions

This chapter has presented a digital hardware implementation of a current controller. It
illustrates that the current control algorithm described is sufficiently simple to be im-
plemented without the use of a microprocessor or DSP. Instead, the complete controller,
together with the sampling and PWM logic, may be constructed in a readily-available
EPLD device.

A number of design approaches were considered, and it was found that a microcoded
state machine was the most suitable method for designing the sequencing logic. This
method offers some of the advantages of a software solution, yet it still allows direct
hardware integration and parallelism. To further aid the development processes, a com-
piler was presented that allowed the microcode instructions to be entered in a C-like
description language.

Finally results have been presented that show the current controller operating a real
induction machine. A low-powered external microprocessor was used for the outer-loop
control, but as future work, this could also be integrated into the same hardware frame-
work.

185

Chapter 7

Conclusions & Further Work

7.1 Conclusions

This thesis has demonstrated the development of a new induction machine current con-
troller. Through appropriate choices in the machine model and controller algorithm, this
controller was suitable for a digital implementation in direct hardware. Coupled with
the estimation methods that have been developed, this controller may be developed as a
single-chip solution that requires no knowledge of the machine parameters.

Digital controllers are inherently sampled-data systems, and it was found that two
samples per PWM switching interval were adequate for effective control. This allows the
controller to use models based on average voltages across an interval, instead of more
complex instantaneous ones. Furthermore, it was demonstrated that the simple back-
emf plus leakage inductance model was sufficient to characterise the machine’s electrical
behaviour.

There are a number of advantages and disadvantages of a complete hardware imple-
mentation of a controller over a hardware/software approach. The main advantages are
in the price/performance ratio in production quantities, and in the level of integration.
The main disadvantage is that the development process is more difficult, and many con-
cepts need to be re-invented. However, with time, the two approaches are drawing closer.
Microcontrollers are offering greater on-chip support for motor control applications, and
the development facilities are improving for logic devices.

This thesis has demonstrated a controller that is suitable for both software and hard-
ware implementations. In both cases, the necessary hardware devices are readily avail-
able. The experimental results show that the controller performs well at tracking the
set-point currents without the use of supplied parameters. This provides a good basis
for a torque controller, as the fastest loop in the control strategy is robust to variations
in machine parameters.

186 CHAPTER 7. CONCLUSIONS & FURTHER WORK

7.2 Suggestions for Further Work

There are a number of areas in which this work may be extended. Some of these are:

• The newest inductance estimation and back-emf prediction schemes were not im-
plemented in the hardware version. The addition of these elements would raise the
performance of the hardware version to that of the software one.

• The hardware current controller design architecture has the capacity for further
integration. A field-oriented torque controller could be included into the single-
chip hardware design.

• The control of different types of power converters could be investigated. For ex-
ample, the model used here is similar to that of active rectifiers. There are a large
number of possibilities, including a single chip to control a combined active rectifier
and induction machine drive.

• Dead time effects at very low currents is still a problem, leading to distortion of the
current waveforms. New model independent techniques to alleviate these effects
could be researched.

187

Appendix A

DSP Implementation Code

A.1 Introduction

This appendix includes schematics and listings that are relevant to the Dual TMS320C31 DSP
implementation of the current controller. Due to space constraints, the hardware schematics are
not included, but instead only the software and firmware described in this thesis. The first section
consists of listings of the current controller software. Following this, the designs for the two Altera
devices are included.

A.2 Software Description

The current controller was implemented on a dual-processor system, and so there are two separate
executables. The first is for the processor executing the current controller. This uses the files:

• cc1.c

• iface.c

• p iface.c

The main current controller file is cc1.c. The other files are concerned with the monitor interface.
The other processor executes the monitor. It shares common source code from iface.c, and the

files are:

• c iface.c

• iface.c

• m serial.c

A.2.1 cc1.c

/**
cc1.c

The main current control program.
**
Scaling factors:

current transducers are calibrated for 1024=10A
note that the d-axis variable is three times this.
Voltage is calibrated to 1 unit=0.5V 10
Time is to 1/3.8MHz
**/
#include <stdlib.h>

#include <math.h>
#include "p_iface.h"

#include "iface.h"

#define IFACE /*use the interface*/

20
/* Output PAL Ports:
0: T0
1: T1
2: T2
3: [2. .0]: sector
4: contactor and drive enables
5: [5. .0] dead time [6] enable dead time compensation (+ve)*/

extern int Logging;
int LogStop=−1; /*set to +ve value to stop the log in n cycles*/ 30

188 APPENDIX A. DSP IMPLEMENTATION CODE

/*Output contactor bit definitions*/
#define MAIN CON CON 1 /*active high contactor bits*/
#define CH CON CON 2
#define SP1 CTRL 4
#define FAN1 CON 8
#define FAN2 CON 16
#define SP2 CTRL 32
#define SP3 CTRL 64
#define DRIVE ENABLE 512 /*active high drive enable*/ 40

/*output port definitions*/
#define WOP T0 0
#define WOP T1 1
#define WOP T2 2
#define WOP SECTOR3
#define WOP CONTACTOR 4
#define WOP DEAD 5

50
/*DUAL PROCESSOR PORTS*/
#define A WATCH DOG 0x200000
#define A INP DATA PORT 0x200040
#define A INP ADDR PORT 0x200080
#define A OUT DATA BASE 0x2001C0

#define A PRIMARY BCR 0x808064

/*VALUE CONSTANTS*/
#define Sqrt3 1.73205 60
#define ONEoverR337837`
#define TWO PII 1024

#define SW FREQ (3.68e6/1280)
#define IF PERIOD 16
int ITrip=0x600; /*15A*/
float MaxIsy=8;

/*******************************
Drive Control 70
*******************************/
int Running=0;
int Disabled=0;
int DriveStart=0;
int DriveStop=1;

/*******************************
Torque controller
*******************************/ 80
int ICnt=0;
int Tc=0;

unsigned long int NWs;
int NIsx,NIsy;

/*Field-oriented controller tables*/
#define TAB LEN TWO PII
int STab[TAB LEN];
int CTab[TAB LEN]; 90

/*Torque controller parameters*/
float Tr=10; /*Nm of torque*/
float TrL=0; /*Last torque for filtering*/
#define Pp 2
#define Lm 0.1144 /*H*/
#define Lr 0.1194 /*H*/
float Isx=5; /*A 6.7*/
float Rr=0.7; /*ohm 0.885*/
float Isy; /*in amps*/ 100
float Wsl; /*slip in rad/sec*/
unsigned long int Ws; /*fixed point slip 2pi=65536*1024*/
unsigned long int WsS=0;/*integral of Ws*/
int Isxi,Isyi;

/*Estimates*/
int ThL; /*last Theta*/
long int Delta,DeltaL=0; /*change in pos, last change in pos*/
long int DeltaA=0,DeltaAS=0;
long int Pos=0; 110
float W=0;
float X=0;

/*************Speed Control***************/
float Wset=0; /*squarewave setpoint size*/
float Wbase=10; /*dc offset of squarewave*/
float Wgain=3; /*speed controller gain*/

/*************Position Control*************/
floatfloat Xset=1; /*squarewave setpoint size*/ 120
floatfloat J= 8.0; /*moment of inertia of load*/
float Dr= 0.7; /*damping ratio of controller*/
float DclW=6; /*closed loop frequency*/

int BCount=0;

float T MAX =40; /*max torque setpoint (Nm)*/

/*DUAL PROCESSOR IMPLEMENTATION CONSTANTS*/ 130
#define M PI 3.14159265
#define PERIOD 1280 /*1280*/

/*1024=10A, but setpoint is 3x for d axis and sqrt(3) times for q axis*/
int IDRl,IQRl; /*last setpoint value, for debugging*/

/**********************************
Current Controller
**********************************/ 140
/* phase currents are calibrated for 1024=10A, or 1unit=10mA*/
/* d-axis currents are 3* these values. ie ID0=3id(0) */
/* q=axis currents are\sqrt(3)* */
int ia,ib,ic;
float ID0L=0; /* current measurements from last cycle */
float ID2L=0;
float ID0=0; /* from this cycle t=0*/
float ID4=0; /* t=0.25 */
float ID2=0; /* t=0.5 */

150
float IQ0L=0; /* current measurements from last cycle */
float IQ2L=0;
float IQ0=0; /* from this cycle t=0*/
float IQ4=0; /* t=0.25 */
float IQ2=0; /* t=0.5 */

float IA0=0; /*for logging*/
float IA2=0;
float IB0=0; /*for logging*/ 160
float IB2=0;
float IC0=0; /*for logging*/
float IC2=0;

float LEst=10*25; /* inductance value/3 typ 200*/
/* multiply real value by 25k to do unit conversion */
/* 25k is for [v]=0.5V, [t]=1/3.8MHz [i]=10mA */
float Lk=14*25/3; /*output from inductance estimator*/
float Ik=1; /*conrol type (rho) average CC=2 , endpoint=1*/
float LScale=0.9; /*multiply estimate by this to give value used*/ 170

float AlphaD=0; /* current duty cycles */
float AlphaQ=0;
float AlphaDL=0; /* duty cycle from previous cycle */
float AlphaQL=0;

int t0,t1,t2;

float VDC=60*2; /* use a fixed 60V for testing */ 180
float VDCL=0;

int OCnt=0; /*overrun count*/
int TripCode=0;

int useLEst=0;
float alphasum, isum, vk, Ck, yk, Pk, xhk, Tk;
float invL=1/0.999;

190
#define STORE LEN 32 /*store of previous currents and voltages*/
float istore[STORE LEN];
float astore[STORE LEN];
int storeCtr;

float eEps=0.01;
float DeltaThEst;
float DeltaThEstk;

int idOffs=0; 200
int iqOffs=0;

float eFilt=0.95;

/**
ReadInPAL
**/
int ReadInPAL(int Port)
{

int Val; 210
((int)A INP ADDR PORT)=Port|16; /*write address*/
asm(" NOP"); asm(" NOP"); asm(" NOP"); asm(" NOP"); asm(" NOP");
asm(" NOP"); asm(" NOP"); asm(" NOP"); asm(" NOP"); asm(" NOP");

((int)A WATCH DOG)=1;
((int)A WATCH DOG+1)=3;
((int)A WATCH DOG+2)=5;

A.2. Software Description 189

Val=*((int*)A INP DATA PORT); /*read value*/
if (Val&1<<11) /*if MSB is set*/ 220

return Val|˜0xFFF; /*sign extend*/
else

return Val&0xFFF;
}

/**
WriteInPAL
**/
void WriteInPAL(int Port,int Value) 230
{

((int)A INP DATA PORT)=Value; /*write value*/
asm(" NOP"); asm(" NOP"); asm(" NOP");
asm(" NOP"); asm(" NOP");
((int)A INP ADDR PORT)=Port&15; /*then latch in*/
}

/**
WriteOutPAL
**/ 240
void WriteOutPAL(int Port,int Value)
{

((int)(A OUT DATA BASE+Port))=Value; /*write value*/
}

/**
InitContactors
SetContactorBit
ClearContactorBit 250
**/
int WOP C Bits=0;
void InitContactors(void)
{

WOP C Bits=0; /*disable all*/

WOP C Bits=512; /*leave contactor in for testing*/

WriteOutPAL(WOP CONTACTOR,WOP C Bits);
} 260

void SetContactorBit(int BitPattern)
{

WOP C Bits|=BitPattern;
WriteOutPAL(WOP CONTACTOR,WOP C Bits);
}

void ClearContactorBit(int BitPattern)
{

WOP C Bits&=˜BitPattern; 270
WriteOutPAL(WOP CONTACTOR,WOP C Bits);
}

/**
InitTab

Initialises the sine and cosine tables for the field-oriented
controller
**/ 280
void InitTab(void)
{

int i;
for (i=0;i<TAB LEN;i++)
{

STab[i]=sin(i*3.1415*2/TAB LEN)*32767;
CTab[i]=cos(i*3.1415*2/TAB LEN)*32767;
}

}
290

int Sector=0;
int T0=0,T1=0,T2=0;
int LLCount=0,LLDiv =0; /*inductance log counters*/

int dt=0;
int IDR,IQR;
int IDRy;

300

float ed,eq,e m; /*d, q back emf, filtered emd amplitude*/
float ed pred, eq pred;
float ed last, eq last;
float e th,e th d; /*angle of back emf, change over one cycle*/

unsigned int ThM; /*measured theta*/
unsigned int ThP; /*predicted angle*/
unsigned int ThE; /*electrical angle*/ 310
float DeltaThEf; /*projected change in electrical angle, in rad*/

#define T PERIOD
/**
CCalc

Performs one iteration of the controller.
Outputs the calculated values to the PAL
**/
void CCCalc(float IDRo,float IQRo) /*parameters are obsolete*/ 320
{

float absAD,absAQ;

float f;
int i,j;

/***/
/* wait for t=0 and read in the currents */
/***/
while (ReadInPAL(5)&1);; /* wait for first measurement period*/ 330

ThM=ReadInPAL(4)&0x3FF;; /*read position here*/

ia=ReadInPAL(0); /* read the samples*/
ib=ReadInPAL(1);
ic=ReadInPAL(2);

VDCL=VDC; /*for logging only,*/
VDC=ReadInPAL(3); /*read voltage*/
if (VDC<20) VDC=20; 340
WriteInPAL(1,1); /*got samples*/
WriteInPAL(1,0);

/*do 3phase to 2 phase conversion*/
ID0L=ID0; IQ0L=IQ0;
IQ0=ib−ic−idOffs;
ID0=2*ia−ib−ic−iqOffs;

/*store past currents and voltages for the L est.*/
storeCtr=(storeCtr+1)%STORE LEN; 350
istore[storeCtr]=ID0;
astore[storeCtr]=AlphaD;

#ifdef IFACE
PCheckIf(); /*poll for messages*/
LogTime(); /*perform any logging*/
if(LogStop>0) /*stop logging if requested*/
{

LogStop−−;
if(!LogStop) lstop(); 360
}

#endif

/***/
/* wait for t=0.25 and read in the currents*/
/***/
/*the hardware supports a current sample at t=0.25, so

we need to wait for it and get it, although with the
new L estimator, the value is not used*/

while (ReadInPAL(5)&2); /* wait normal*/ 370
WriteInPAL(1,1); /*got samples*/
WriteInPAL(1,0);

/*==
Field Oriented Controller
==*/

/*do unwrapping of the position*/
Delta=ThM−ThL;
while (Delta>(TWO PII/2)) Delta=Delta−TWO PII; 380
while (Delta<(−TWO PII/2)) Delta=Delta+TWO PII;
if (abs(Delta)>TWO PII/16) Delta=DeltaL;
DeltaL=Delta;
DeltaA+=Delta; /*accumulated value for foc*/
ThL=ThM;

ThP=ThM+Delta; /*predict one ahead*/

/*accumulate slip and position changes with extra 16bits of precision*/ 390
/*extra shift on delta is for the two pole pairs*/
DeltaThEf=(Ws/65536.0+Delta*2)*(2*3.1415/1024);
if (DeltaThEf>0.2) DeltaThEf=0.2;
else if (DeltaThEf<−0.2) DeltaThEf=−0.2;

WsS=(WsS+Ws+(Delta<<17))&((TWO PII<<16)−1);
ThE=WsS>>16;

/*Speed estimate*/ 400
W=W*0.7+0.3*DeltaAS*1.0/IF PERIOD/1024*SW FREQ;
//speed in Hz
/*Position estimate*/
X=1.0*Pos/TWO PII;

/*calc id ref*/

190 APPENDIX A. DSP IMPLEMENTATION CODE

i=(1`*CTab[ThE]*Isxi−1`*STab[ThE]*Isyi)>>16; /* >>16 gives /2 */
IDR=i;
/*calc iq ref*/
i=(1`*STab[ThE]*Isxi+1`*CTab[ThE]*Isyi)>>16; 410
i=(1`*i*ONEoverR3)>>16;
IQR=i;

/*we don’t do the foc calc every cycle, on the other
cycles, the l estimator is execed instead*/

if(++ICnt>=IF PERIOD)
{

ICnt=0;
DeltaAS=DeltaA; DeltaA=0;
Pos+=DeltaAS; 420

/*Speed estimate*/
W=W*0.7+0.3*DeltaAS*1.0/IF PERIOD/1024*SW FREQ; //speed in Hz
/*Position estimate*/
X=1.0*Pos/TWO PII;

/*Setpoint oscillations*/
if (++Tc>360) //240 /4 360
{

Tc=0; 430
Tr=−Tr;
Xset=−Xset;
Wset=−Wset;
}

/*Speed control*/
Tr=(Wset+Wbase−W)*Wgain; /*Speed control*/
/*Position contol*/
/*Xset=ReadInPAL(6)/512.0;*/
/*Tr=(-J*(DclW*DclW*(X-Xset)+2*Dr*DclW*W)); /*XSet in revolutions*/ 440
/*Tr=0.4*Tr+0.6*TrL; /*LPF Torque Setpoint*/
TrL=Tr;

if (Tr>T MAX) Tr=T MAX ; else if (Tr<−T MAX) Tr=−T MAX ;

/*TORQUE CONTROLLER*/
Isy=Tr/(3*Pp/2*Lm*Lm/Lr*Isx);
if (Isy>MaxIsy) Isy=MaxIsy;
else if (Isy<−MaxIsy) Isy=−MaxIsy;

450
Wsl=Isy*Rr/(1.0*Lr*Isx); /* /Lr*/
if (Wsl>120) Wsl=120;

NWs=(65535.0*TWO PII/2/M PI)/SW FREQ*Wsl;
NIsx=Isx*2*3*1024/10; //10A=1024, d axis setpoint is3x current
NIsy=Isy*2*3*1024/10;

Isxi=NIsx;
Isyi=NIsy; Ws=NWs;
} 460

else{ /*if no FOC, the do inductance est*/

/**
Full-cycle inductance estimator
**/
if (storeCtr>2) {

/*recursive least-squares*/
/*alpha is offset by 1, becuase it is the future voltage*/
alphasum=astore[storeCtr−1]−2*astore[storeCtr−2]+astore[storeCtr−3];
isum=istore[storeCtr]−3*istore[storeCtr−1]+3*istore[storeCtr−2]− 470

istore[storeCtr−3];
Ck=alphasum*2*VDC;
yk=isum;
Pk=Tk/(1+Tk*Ck*Ck);
xhk=xhk+Ck*Pk*(yk−Ck*xhk);
Tk=Pk*invL; /* forgetting factor*/

Lk=1/xhk;
if (useLEst) LEst=Lk*LScale;
} 480
}

/*==*/

/***/
/* wait for t=0.5 and read in the currents*/
/***/
while (ReadInPAL(5)&2); /* wait normal*/

490
ia=ReadInPAL(0); /* read the samples */
ib=ReadInPAL(1);
ic=ReadInPAL(2);
WriteInPAL(1,1); /*got samples*/
WriteInPAL(1,0);

IA2=ia; /*store values*/
IB2=ib;
IC2=ic;

500

/*do 3phase to 2 phase conversion*/
ID2L=ID2; IQ2L=IQ2;
IQ2=ib−ic−idOffs;
ID2=2*ia−ib−ic−iqOffs;

/*calc back-emfs*/
ed=AlphaD+LEst/VDC*1.0*(ID0−ID2);
eq=AlphaQ+LEst/VDC*1.0*(IQ0−IQ2);

/*calculate rotation speed estimate. est=rotation/sqrt(3)*/ 510
if (fabs(eq)>fabs(ed)) {

if (fabs(eq)>20) {
DeltaThEstk=(ed last−ed)/(3*eq);
DeltaThEst=DeltaThEst*(1−eEps)+DeltaThEstk*eEps;
}
}
else{

if (fabs(ed)>20) {
DeltaThEstk=(eq−eq last)/ed;
DeltaThEst=DeltaThEst*(1−eEps)+DeltaThEstk*eEps; 520
}
}

/*do back-emf prediction*/
ed pred=ed−DeltaThEf*eq*3;
eq pred=eq+DeltaThEf*ed;

AlphaD=ed pred+LEst/VDC*0.5*(IDR−2*ID2+ID0);
AlphaQ=eq pred+LEst/VDC*0.5*(IQR−2*IQ2+IQ0);

530
absAD=fabs(AlphaD);
absAQ=fabs(AlphaQ);

/*******************Space-vector Modulation****************/
Sector=0;
/*****calculate the sector*****/
if (AlphaD<0) Sector|=4;
if (AlphaQ<0) Sector|=2;
if (absAQ−absAD<0) Sector|=1; 540

/*****Calculate the times*****/
if (!(Sector&1)) { /*sectors 2 and 5 */

/*T1=-aD+abs(aQ) T2=aD+abs(aQ)*/
T1=−AlphaD+absAQ;
T2=AlphaD+absAQ;
}
else {

if(!(Sector&4)) { /*SECTORS 1,6 */
/*T1=aD-abs(aQ) T2=2*abs(aQ)*/ 550
T1=AlphaD−absAQ;
T2=2*absAQ;
}
else{ /*SECTORS 3,4 */

/* T1=2*abs(aQ) T2=-aD-abs(aQ)*/
T1=2*absAQ;
T2=−AlphaD−absAQ;
}
}
T0=T/2−T1−T2; 560

/*****perform clipping*****/
if (T0<2) {

f=(T/2−2)/((float)T1+T2);
AlphaD*=f; /* scale the alphas for next time */
AlphaQ*=f;
if (T1<T2)
{

T1=T1*f;/*(T-2)/(T1+T2);*/
T2=T/2−T1−2; 570
}

else
{

T2=T2*f;/*(T-2)/(T1+T2);*/
T1=T/2−T2−2;
}

T0=2;
}
/*****write the new switching times*****/
WriteOutPAL(0,T0); 580
WriteOutPAL(1,T1);
WriteOutPAL(2,T2);
WriteOutPAL(3,Sector);

/*****Detect Overrun*****/
if (!(ReadInPAL(5)&1)) {

OCnt++;
}

} 590

/*start and stop functions*/
void DriveStartF(void) {DriveStart=1;}
void DriveStopF(void) {DriveStop=1;}

A.2. Software Description 191

/**
**
main
** 600
**/

void main(void)
{

int i,j,k;
int*IDataReg=(int*)0x200040;
int ctr=0;
int BreakCtr=0;
int QCnt=0;

610
/*initialise the hardware*/
InitContactors();
/*program bus control register H/W wait states*/
((int)A PRIMARY BCR)=0x10F0;

/*Reg 0 should have t/80-1*/
WriteInPAL(0,15); /*set t/80=16 (enable compensatin 1<<6)*/
WriteInPAL(0,15+(1<<11)+(1<<9)+(1<<10)); /*release reset*/
WriteInPAL(1,0); /*got samples*/

620
/*Voltage calibration 1V=2 1024V=2048(full scale)*/
WriteInPAL(2,79); /*regen off (value/16) ie Volts/8*/
WriteInPAL(3,88); /*regen on*/

WriteOutPAL(0,640); /*t0*/
WriteOutPAL(1,0);
WriteOutPAL(2,0);

WriteOutPAL(5,20); /*20 dead time in (us*5)*/
630

InitTab(); /*for the FOC*/

/*Initialise FOC*/
Isy=Tr/(3*Pp/2*Lm*Lm/Lr*Isx);
Wsl=Isy/Lr/Isx;
Ws=(65535.0*TWO PII/2/M PI)*(1280.0/4.91e6)*Wsl;
Isxi=Isx*2*3*1024/10; //10A=1024, d axis setpoint is3x current
Isyi=Isy*2*3*1024/10; 640

SetContactorBit(CH CON CON);
SetContactorBit(MAIN CON CON);

ThL=ReadInPAL(4); //initial position reading
SetContactorBit(DRIVE ENABLE);

/*now add the interface data*/
#ifdef IFACE

for (i=0;i<20;i++) /*synchronise with master cpu*/ 650
PIfaceInit();

LogInit();
PIfaceSendMessage("Slave Processor Started\r\n");
PIfaceInit();

PIfaceAddVariable(&OCnt,IF INT,"overrun","Overrun detect");
PIfaceAddVariable(&TripCode,IF INT,"tripcode","Trip code details");
PIfaceAddVariable(&MaxIsy,IF FLOAT,"maxisy","max flux current setpoint");

PIfaceAddVariable(&LEst,IF FLOAT,"lest","Inductance value"); 660
PIfaceAddVariable(&Lk,IF FLOAT,"lk","estimated inductance");
PIfaceAddVariable(&useLEst,IF INT,"usel","use estimated inductance");
PIfaceAddVariable(&invL,IF FLOAT,"invl","1/RLS forgetting factor");
PIfaceAddVariable(&LScale,IF FLOAT,"lscale","multiplier for L estimate");

PIfaceAddVariable(&Wset,IF FLOAT,"Wset","Speed variation");
PIfaceAddVariable(&Wbase,IF FLOAT,"Wbase","Average speed setpoint");
PIfaceAddVariable(&Wgain,IF FLOAT,"Wgain","Speed Controller gain");

/*************Position Control*************/ 670
PIfaceAddVariable(&Xset,IF FLOAT,"Xset","Pos control setpoint amplitude");
PIfaceAddVariable(&J,IF FLOAT,"J","Pos controller inertia");
PIfaceAddVariable(&Dr,IF FLOAT,"Dr","Pos controller damping ratio");
PIfaceAddVariable(&DclW,IF FLOAT,"DclW","closed loop frequency");

PIfaceAddVariable(&Isx,IF FLOAT,"isx","foc magnetising");
PIfaceAddVariable(&Isy,IF FLOAT,"isy","foc torque");
PIfaceAddVariable(&Rr,IF FLOAT,"rr","rotor resistance");

680
PIfaceAddVariable((void*)DriveStartF,IF FN0,"start","(re)start drive");
PIfaceAddVariable((void*)DriveStopF,IF FN0,"stop","stop drive");
AddLoggingCmds();

/*logging vars*/

PIfaceAddVariable(&IDR,IF INT,"IDR","current reference");
PIfaceAddVariable(&IQR,IF INT,"IQR","current reference");

PIfaceAddVariable(&ID0L,IF FLOAT,"IDa","current, t=0");
PIfaceAddVariable(&ID4,IF FLOAT,"IDb","current, t=0.25"); 690
PIfaceAddVariable(&ID2,IF FLOAT,"IDc","current, t=0.5");
PIfaceAddVariable(&VDCL,IF FLOAT,"VDC","DC volts");
PIfaceAddVariable(&AlphaD,IF FLOAT,"AlphaD","duty cycle calculated");
PIfaceAddVariable(&AlphaQ,IF FLOAT,"AlphaQ","duty cycle calculated");
PIfaceAddVariable(&ThM,IF INT,"Pos","measured position");
PIfaceAddVariable(&ThE,IF INT,"EPos","electrical position");

PIfaceAddVariable(&ed,IF FLOAT,"ede","back-emf");
PIfaceAddVariable(&eq,IF FLOAT,"eqe","back-emf");
PIfaceAddVariable(&ed pred,IF FLOAT,"edp","back-emf predicted"); 700
PIfaceAddVariable(&eq pred,IF FLOAT,"eqp","back-emf predicted");
PIfaceAddVariable(&eEps,IF FLOAT,"eeps","angle est filter coefficient");

PIfaceAddVariable(&Tk,IF FLOAT,"rlstk","recursive least squares Tk");
PIfaceAddVariable(&idOffs,IF INT,"idoffs","d axis current dc offset");
PIfaceAddVariable(&iqOffs,IF INT,"iqoffs","q axis current dc offset");

PIfaceAddVariable(&eFilt,IF FLOAT,"efilt","amount to filter e est, 0-1");
PIfaceAddVariable(&DeltaThEst,IF FLOAT,"deleo","delta e observer"); 710
PIfaceAddVariable(&DeltaThEf,IF FLOAT,"delef","delta e foc");

#endif

/*now calculate the offset on the transducers*/
idOffs=0;
iqOffs=0;

WriteInPAL(0,15+(1<<11)+(1<<10)); /*trip reset*/
WriteInPAL(0,15+(1<<11)+(1<<9)+(1<<10)); /*release reset*/

720
for(k=0;k<16;k++) {

while (ReadInPAL(5)&2); /* wait normal*/
ia=ReadInPAL(0); /* read the samples */
ib=ReadInPAL(1);
ic=ReadInPAL(2);
WriteInPAL(1,1); /*got samples*/
WriteInPAL(1,0);

idOffs+=ib−ic;
iqOffs+=2*ia−ib−ic; 730
}
idOffs=idOffs/16;
iqOffs=iqOffs/16;

k=1;
while(1) {

VDCL=ReadInPAL(3);
ThM=ReadInPAL(4)&0x3FF;

if(Running) { 740
if(ReadInPAL(4)&(2048+1024)) {

PIfaceSendMessage("Tripped");
Running=0;
Disabled=0;
WriteOutPAL(0,T/2); WriteOutPAL(1,0); WriteOutPAL(2,0);
TripCode=ReadInPAL(7);
}
else if (DriveStop) {

DriveStop=0;
Running=0; 750
Disabled=0;
WriteOutPAL(0,T/2); WriteOutPAL(1,0); WriteOutPAL(2,0);
ClearContactorBit(DRIVE ENABLE);
PIfaceSendMessage("Stopping");
}
else CCCalc(0,0); /*do the current control*/
}
else{

#ifdef IFACE
PCheckIf(); 760

#endif
if (DriveStart) {

DriveStart=0;
Running=1; Disabled=0;
AlphaD=0; AlphaQ=0;
WriteOutPAL(0,T/2); WriteOutPAL(1,0); WriteOutPAL(2,0);

WriteInPAL(0,15+(1<<11)+(1<<10)); /*trip reset*/
WriteInPAL(0,15+(1<<11)+(1<<9)+(1<<10)); /*release reset*/

770
ThL=ReadInPAL(4)&0x3FF; /*initial position*/
AlphaD=0;
AlphaQ=0;
Ws=0; WsS=0; W=0; DeltaAS=0; DeltaA=0; ICnt=1000;
Isxi=0; Isyi=0;
ed last=0; eq last=0;
DeltaL=0; TrL=0;

DeltaThEst=0;
for (k=0;k<STORE LEN;k++) { 780

istore[k]=0;
astore[k]=0;

192 APPENDIX A. DSP IMPLEMENTATION CODE

}
storeCtr=0;
LEst=80;
/*RLS inductance est: start with unknown state*/
Tk=1/(1200*100/2*T)^2;
xhk=1/40; /*initial inductance*/

790
while (ReadInPAL(5)&1); /* wait for first*/
WriteInPAL(1,1); /*got samples*/
WriteInPAL(1,0);
while (ReadInPAL(5)&1); /* wait for first*/
WriteInPAL(1,1); /*got samples*/
WriteInPAL(1,0);
SetContactorBit(DRIVE ENABLE);

PIfaceSendMessage("Starting");
} 800
}
}
}

A.2.2 c iface.c

/**
CONSOLE CODE
**/

#include "iface.h"

#include <stdio.h>
#include <stdlib.h>
#include "m_serial.h"

#include "hwdefs.h"

10

/**
Dual port details:

-Master writes to 7FF, slave writes to 7FE
-source of data stream writes to tail
-console is master, processor is slave
-interrupt when tail is written (ie add to queue)
-PCTail 7FE
-CPTail 7FF 20
-define PCHead 7FD, CPHead 7FC
***/

#ifdef PC
extern struct TCBuff BuffPC;
extern struct TCBuff BuffCP;
#else
struct TCBuff BuffCP={DP CP Base,DP CP Head,DP CP Tail,256,0};
struct TCBuff BuffPC={DP PC Base,DP PC Head,DP PC Tail,256,0};
#endif 30

void CPrintVars(void);
void CPrintCmds(void);

struct TCVarData{
char*Name; /* pointer to name & description(each 0 term)*/
int Type; /* the variable type */
int Value; /* current value */
}; 40

struct TCCmd
{

char*Name;
char*Description;
int (*Handler)(char*);
};

50
void CPutChar(char Ch)
{
#ifdef PC

putc(Ch,stderr);
#else

USendChar(Ch);
#endif
}

60
void CNewLine(void)
{

CPutChar(13);
CPutChar(10);
}

struct TCVarData CVars[IF MAX VARS];
int NumCVars=0;

70
struct TCCmd CCmds[]={
{"vars","List Available Variables",(int(*)(char*))CPrintVars},
{"cmds","List Available Commands",(int(*)(char*))CPrintCmds}
};
static int NumCCmds=2;

void CDisplayValue(int Num);

80
/**
CHandlePacket
**/
void CHandlePacket(int NumChars)
{

int i,j;
if (!NumChars) return ;

switch(IfaceGetChar(&BuffPC,0)) {
90

case IF PC INIT :
if (NumCVars)
{

for (i=0;i<NumCVars;i++) {
free(CVars[NumCVars].Name);
CVars[NumCVars].Name=NULL ;
}
NumCVars=0;
}
break; 100

case IF PC MESSAGE:
CPutChar(8); /*clear off the existing prompt*/
for(i=1;(j=IfaceGetChar(&BuffPC,i))&&i<NumChars;i++) CPutChar(j);
CNewLine();

CPutChar(’$’);
break;

case IF PC TEXT: /*as above, but without bs or$*/
for(i=1;(j=IfaceGetChar(&BuffPC,i))&&i<NumChars;i++) CPutChar(j); 110
CNewLine();
break;

case IF PC ADDVAR :
i=IfaceGetChar(&BuffPC,1);
for(;NumCVars<i;NumCVars++) CVars[NumCVars].Name=NULL ;
CVars[i].Name=malloc(NumChars−3);
CVars[i].Type=IfaceGetChar(&BuffPC,2);
for(j=0;j<NumChars−3;j++)

CVars[i].Name[j]=IfaceGetChar(&BuffPC,j+3); 120
CVars[i].Value=0;
/* printf(“added %s\n”,CVars[NumCVars].Name);*/

NumCVars++;
break;

case IF PC VARVAL :
i=IfaceGetChar(&BuffPC,1);
if (i<NumCVars) CVars[i].Value=IfaceGetWord(&BuffPC,2);
CPutChar(8); /*back over the prompt*/ 130
CDisplayValue(i);
CPutChar(’$’);
}
}

int CLastCheck=0; /* last character number checked */
/**
CCheckIf
**/ 140
void CCheckIf(void)
{

for (;CLastCheck<IfaceGetNumChar(&BuffPC);CLastCheck++)
if (IfaceGetChar(&BuffPC,CLastCheck)==IF DELIM) {

CHandlePacket(CLastCheck);
IfaceTakeChars(&BuffPC,CLastCheck+1);
CLastCheck=0;
break;
}

} 150

int CPutString(char*String,int MaxLen)
{

int i;
char Ch;

i=0;
while((Ch=String[i]) && i<MaxLen) { /* output non-zero chars */

CPutChar(Ch);

A.2. Software Description 193

i++; 160
}
return i;
}

void CDisplayValue(int Num)
{

int j,k;
char Buff[32];

170
j=CPutString(CVars[Num].Name,24);
/* j if offs to descript and length displayed*/
CPutChar(’=’); j++;
switch (CVars[Num].Type) {
case IF FLOAT:

sprintf(Buff,"%g",CVars[Num].Value);
break;

case IF INT:
sprintf(Buff,"%i",CVars[Num].Value);
break; 180
}
k=j+CPutString(Buff,16); /* k is the total length so far */
if (k>=24)

CPutChar(’ ’); /* can’t align, so just space */
else

for (;k<24;k+=8) CPutChar(9); /* otherwise tab to pos 24 */
CPutString(CVars[Num].Name+j,80−(k>24?k:24)); /*and print description*/
CNewLine();

}
190

/**
CPrintVars
**/
void CPrintVars(void)
{

int i;

for(i=0;i<NumCVars;i++) if ((CVars[i].Type&˜7)!=IF FN0) {
CDisplayValue(i);
} 200
}

/**
CPrintCmds
**/
void CPrintCmds(void)
{

char Buff[32];
int i,j,k; 210

for(i=0;i<NumCVars;i++) if ((CVars[i].Type&˜7)==IF FN0) {
j=CPutString(CVars[i].Name,24);
/*j if offs to descript and length displayed*/
CPutChar(’(’); j++;
k=j;
CPutChar(’0’+(CVars[i].Type&7)); k++;
CPutChar(’)’); k++;
if (k>=16)

CPutChar(’ ’); /* can’t align, so just space */ 220
else

for (;k<16;k+=8) CPutChar(9); /* otherwise tab to pos 16 */
CPutString(CVars[i].Name+j,80−(k>16?k:16)); /*and print description*/
CNewLine();
}
}

/**
230

**/

/**
FindWhitespace

Returns the number of leading spaces in the string
**/
int FindWhitespace(char*Str)
{ 240

int i;

for(i=0;i<80;i++) if (Str[i]!=32) return i;
return 0; /* give up and return 0 */
}

/**
FindInteger
**/ 250
int FindInteger(char*Str,int*Val)
{

int i,j;

Val=0; / start with zero */
for(i=0;i<80;i++){

j=Str[i]−’0’; /* find the digit */
if (j>=0 && j<=9)

*Val=*Val*10+j; /* if valid, add to num */
else

return i; /* otherwise, we are finished */ 260
}
return 0;
}

/**
FindFloat
**/
int FindFloat(char*Str,float*Val)
{

int i,j; 270
float Mult;

*Val=0;
for(i=0;i<80;){

j=Str[i]−’0’; /* find the digit */
if (j>=0 && j<=9) {

*Val=*Val*10+j; /* if valid, add to num */
i++;
}
else 280

break;
}
if(Str[i]!=’.’) return i;
i++; /* go onto first decimal digit */
Mult=0.1;
for(;i<80;i++){

j=Str[i]−’0’; /* find the digit */
if (j>=0 && j<=9)

*Val=*Val+j*Mult; /* if valid, add to num */
else 290

return i; /* otherwise, we are finished */
Mult*=0.1;
}
return 0;
}

/**
FindText
if Text and String match up to the first zero in Text, returns the 300
length of Text, otherwise returns 0
**/
int FindText(char*String,char*Text)
{

int i;
if (!Text | | !String) return 0;

for(i=0;i<80;i++) { /* now compare the strings */
if (!Text[i]) { /* if at end, have found match */

return i; 310
}
if (Text[i]!=String[i]) break; /* if different, no match */
}
return 0;
}

/**
FindVariable

320
If the string passed starts with text matching one of the variables,
VarNum is set to this variable number, and the string length of the
variable is returned.
Otherwise returns zero.
**/
int FindVariable(char*String,int*VarNum)
{

int i,j;

for(j=0;j<NumCVars;j++) { /* iterate through variables */ 330
if (i=(FindText(String,CVars[j].Name))) {

*VarNum=j;
return i;
}
}
return 0; /* no matches found */
}

/** 340
FindCommand

If the string passed starts with text matching one of the variables,
VarNum is set to this variable number, and the string length of the
variable is returned.
Otherwise returns zero.
**/

194 APPENDIX A. DSP IMPLEMENTATION CODE

int FindCommand(char*String,int*CmdNum)
{

int i,j; 350

for(j=0;j<NumCCmds;j++) { /* iterate through variables */
if (i=(FindText(String,CCmds[j].Name))) {

*CmdNum=j;
return i;
}
}
return 0; /* no matches found */
}

360

void PErr(char*Expect)
{

CPutString("Expected: ",20);
if (Expect) CPutString(Expect,20);
CNewLine();

}

union intfloat{ 370
int i;
float f;
};

int ParseString(char*String)
{

int i,j;
int CmdNum,ParamNum;
/*make float-int recast go through mem */
volatile union intfloat ival; 380
float f;
char TBuff[80];

i=FindWhitespace(String);
if (j=FindCommand(String+i,&CmdNum)) {

CCmds[CmdNum].Handler(String+i+j);
}
else if (j=FindVariable(String+i,&CmdNum)) {

i+=j; /* point i to the start of parameters */
i+=FindWhitespace(String+i); 390
switch(CVars[CmdNum].Type){

case IF INT:
case IF FLOAT:

if(String[i++]==’=’) {
i+=FindWhitespace(String+i);
if (CVars[CmdNum].Type==IF INT)

j=FindInteger(String+i,(int*)(&ival.i));
else

j=FindFloat(String+i,(float*)&ival.f); 400
if(!j)
{

PErr("Value");
return −1;
}
IfacePutChar(&BuffCP,IF CP VARSET); /*send a set msg */
IfacePutChar(&BuffCP,CmdNum);
IfacePutWord(&BuffCP,ival.i); /* the value */
IfacePutChar(&BuffCP,IF DELIM);
IfaceSendChars(&BuffCP); 410

sprintf(TBuff,"Changing var #%i to %i\n",CmdNum,ival.i);
CPutString(TBuff,80);
CNewLine();
}
else{

IfacePutChar(&BuffCP,IF CP VARREQ); /*send a request */
IfacePutChar(&BuffCP,CmdNum);
IfacePutChar(&BuffCP,IF DELIM);
IfaceSendChars(&BuffCP); 420
}
break;

case IF FN0:
IfacePutChar(&BuffCP,IF CP CMD); /*send a command message */
IfacePutChar(&BuffCP,CmdNum);
IfacePutChar(&BuffCP,IF DELIM);
IfaceSendChars(&BuffCP);
break;

case IF FN1: 430
if (FindInteger(String+i,&ParamNum)) {

IfacePutChar(&BuffCP,IF CP CMD); /*send a command message */
IfacePutChar(&BuffCP,CmdNum);
IfacePutWord(&BuffCP,ParamNum); /* send the int */
IfacePutChar(&BuffCP,IF DELIM);
IfaceSendChars(&BuffCP);
}
else PErr("Integer");
break;

440
case IF FN VAR:

if (FindVariable(String+i,&ParamNum)) {
IfacePutChar(&BuffCP,IF CP CMD); /*send a command message */
IfacePutChar(&BuffCP,CmdNum);
IfacePutWord(&BuffCP,ParamNum); /* send param number as an int */
IfacePutChar(&BuffCP,IF DELIM);
IfaceSendChars(&BuffCP);
}
else PErr("Variable");
break; 450
}
}
else PErr("Command");
}

#define CMAX INP BUFFER LEN 80
char CInpBuffer[CMAX INP BUFFER LEN]={0};
int CInpBufferLen=0;
int LInpBufferLen=0;

460
void CCheckInput(void)
{

int i;
char*str;
/*
str=readline(“Enter Cmd:”);
ParseString(str);
free(str);
*/

470
//return ;
// scanf("%c",&i);

#ifdef PC
i=getchar();
if (i==10) i=13;

#else
if (!UTestChar()) return ; /* if no chars waiting return */
i=UGetChar();

#endif
// if (i==ERR) return ; 480

if (i==13) {
CNewLine();
CInpBuffer[CInpBufferLen++]=0;
ParseString(CInpBuffer);
LInpBufferLen=CInpBufferLen−1;
CInpBufferLen=0;
CPutChar(’$’);
}
else if (i==8){ 490

if (CInpBufferLen) { CInpBufferLen−−; CPutChar(8);};
}
else if (i==16){ /*ctrl-p*/

CInpBufferLen=LInpBufferLen;
CPutString(CInpBuffer,80);
}
else{

if (CInpBufferLen<CMAX INP BUFFER LEN−1) {
CInpBuffer[CInpBufferLen++]=i;
CPutChar(i); 500
}
}
}

#ifdef PC
#else
void main(void)
{

volatile int i; 510
for (i=0;i<10000;i++); /*short delay for UART*/
InitUART();

CNewLine();
CPutString("Console v1.0a Started",80);
CNewLine();
CPutChar(’$’);

*(BuffPC.Head)=0;
*(BuffPC.Tail)=0; 520
(BuffPC.CTail)=0;

*(BuffCP.Head)=0;
*(BuffCP.Tail)=0;
(BuffCP.CTail)=0;

CPrintVars();
CPrintCmds();

while(1) { 530
CCheckInput();
CCheckIf();
}
}
#endif

A.2. Software Description 195

A.2.3 hwdefs.h

/*Dual processor interface hardware definitions*/
#define DP BASE 0x300000
#define DP PC Base(void*)(DP BASE+0)
#define DP CP Base(void*)(DP BASE+256)
#define DP PC Tail (void*)(DP BASE+0x7FE)
#define DP CP Tail (void*)(DP BASE+0x7FF)
#define DP PC Head(void*)(DP BASE+0x7FD)
#define DP CP Head(void*)(DP BASE+0x7FC)

A.2.4 iface.h

/**
iface.h

Common interface header file
**/
#ifndef IFACE H
#define IFACE H

#define IF MAX VARS 64
10

#define IF DELIM 0xFF // send to indicate end of message
//Processor to console commands
#define IF PC NULL 0 // send a few of these before init
#define IF PC INIT 0x41 // init message, sent on boot
#define IF PC MESSAGE 0x42 // zero terminated string follows
#define IF PC ADDVAR 0x43 // add new variable(var,type,name,description)
#define IF PC VARVAL 0x44 // notify variable value(var,value)
#define IF PC TEXT 0x45 //zero terminated text, no $ or bs

//console to processor commands 20
#define IF CP CMD 0x61 // issue command(command#, opt params)
#define IF CP VARSET 0x62 // set the variable to value(variable,val)
#define IF CP VARREQ 0x63 // request variable value(variable)

//variable types
#define IF INT 0x10 // specifies the type of variable(all are 32bit)
#define IF FLOAT 0x11
#define IF FN0 0x00 /* function with 0 parameters */
#define IF FN1 0x01 /* function with 1 parameter */
#define IF FN VAR 0x02 /* function with variable name as param */ 30
#define IF MAX STRLEN 40

/*———————————————–
TCBuff

Structure giving details of the dual port
circular buffer
———————————————–*/
struct TCBuff 40
{

volatile char*Buffer;
volatile int*Head;
volatile int*Tail;
int Len; /* total length of the buffer */
int CTail; /* current tail pos, *Tail only updated on the

end of a packet*/
};

50
/*no OO in normal C, so pass a structure to each of the handling fns*/
int IfaceGetChar(struct TCBuff *Buff,int CharNum);
int IfaceGetWord(struct TCBuff *Buff,int CharNum);
int IfaceGetNumChar(struct TCBuff *Buff);// number of chars in the buffer
void IfaceTakeChars(struct TCBuff *Buff,int NumChar);

int IfacePutChar(struct TCBuff *Buff,int Char);
int IfacePutWord(struct TCBuff*Buff,int);
int IfacePutSpace(struct TCBuff *Buff);//amount of space left in the buffer
void IfaceSendChars(struct TCBuff*Buff); 60

void IfaceInit(void);
int IfaceAddVariable(void*Val,int type,char*Name,char*Description);
void IfaceSendMessage(char*Message);

#endif

A.2.5 iface.c

/**
iface.c

Includes interface routines common to both processors
**/
#include "iface.h"

/*———————————————————————-
Byte

10
de-references and masks out the top 24 bits
———————————————————————-*/
int Byte(volatile int*Val)
{

return (((unsigned)*Val))&0xff;
}

/*———————————————————————-
IfaceMatchTail 20

Adjusts the private tail to match the public one
———————————————————————-*/
void IfaceMatchTail(struct TCBuff *Buff)
{

Buff−>CTail=Byte(Buff−>Tail);
}

/*———————————————————————- 30
IfaceGetChar

//non-destructively look at a char in the buffer
———————————————————————-*/
int IfaceGetChar(struct TCBuff *Buff,int CharNum)
{

return Buff−>Buffer[(Byte(Buff−>Head)+CharNum)%(Buff−>Len)]&0xff;
}

/*———————————————————————- 40
IFaceGetWord

non destructively look at a 32-bit word in the buffer
———————————————————————-*/
int IfaceGetWord(struct TCBuff*Buff,int CharNum)
{

return
IfaceGetChar(Buff,CharNum) |
(IfaceGetChar(Buff,CharNum+1)<<7) |
(IfaceGetChar(Buff,CharNum+2)<<14) | 50
(IfaceGetChar(Buff,CharNum+3)<<21) |
(IfaceGetChar(Buff,CharNum+4)<<28);

}

/*———————————————————————-
IfaceTakeChars

Remove NumChars from the buffer
———————————————————————-*/
void IfaceTakeChars(struct TCBuff*Buff,int NumChar) 60
{

*(Buff−>Head)=(Byte(Buff−>Head)+NumChar)%Buff−>Len;
}

/*———————————————————————-
IfaceGetNumChar

number of chars in the buffer
———————————————————————-*/
int IfaceGetNumChar(struct TCBuff*Buff) 70
{

int Num;

Num=Byte(Buff−>Tail)−Byte(Buff−>Head);
if (Num<0) Num+=Buff−>Len;
return Num;
}

/**/
80

/*———————————————————————-
IfacePutChar
———————————————————————-*/
int IfacePutChar(struct TCBuff *Buff,int Char)
{

while(!IfacePutSpace(Buff)); /*wait for space*/

Buff−>Buffer[Buff−>CTail]=Char;
Buff−>CTail=(Buff−>CTail+1)%Buff−>Len;

196 APPENDIX A. DSP IMPLEMENTATION CODE

} 90

/*———————————————————————-
IfacePutWord

32 bit words are spread over 5 bytes, 7bits in each, with the lsb first
———————————————————————-*/
int IfacePutWord(struct TCBuff*Buff,int Word)
{

int i; 100
for (i=0;i<5;i++) {IfacePutChar(Buff,Word&0x7f); Word>>=7;}
}

/*———————————————————————-
IfaceSendChars

sends the queued message buy updating the tail pointer
———————————————————————-*/
void IfaceSendChars(struct TCBuff*Buff)
{ 110

*(Buff−>Tail)=Buff−>CTail;
}

/*———————————————————————-
IfacePutSpace

amount of space left in the buffer
———————————————————————-*/
int IfacePutSpace(struct TCBuff *Buff)
{ 120

/*return Buff->Len-1-IfaceGetNumChar(Buff);*/
int Space;

/* Space=Byte(Buff->Head)-Byte(Buff->Tail)-1;*/
Space=Byte(Buff−>Head)−Buff−>CTail−1;

if (Space<0) Space+=Buff−>Len;
return Space;
}

130
/**
IfaceSendString

Writes the given string to the output stream, including null terminator
if the output buffer is full, waits for it.
**/
void IfaceSendString(struct TCBuff*Buff,char *String)
{

int j; // count through chars
char ch; // store char sent 140

j=0;

do {
if(!IfacePutSpace(Buff)) {

IfaceSendChars(Buff);
while(!IfacePutSpace(Buff)) ; //wait for space
}
IfacePutChar(Buff,ch=String[j++]);

} while (ch);
} 150

A.2.6 m serial.h

/**
UART driver for the master CPU
**/

int InitUART(void);

void USendChar(int Val);
char UTestChar(void);

int UGetChar(void);

void USendString(char*String);

A.2.7 m serial.c

/**
UART driver for the master CPU
**/
#include <stdio.h>

volatile char*UART Reg=(volatile char*)0x200040;

/*UART read ports*/
#define U SRA 1
#define U RHRA 3 10
#define U IPCR 4
#define U ISR 5
#define U CTU 6
#define U CTL 7

/*UART write ports*/
#define U MRA 0
#define U CSRA 1
#define U CRA 2
#define U THRA 3 20
#define U ACR 4
#define U IMR 5
#define U CRUR 6
#define U CTLR 7

int InitUART(void)
{

UART Reg[U CRA]=0x20; /* receiver reset */
UART Reg[U CRA]=0x1A; /* reset mode register pointer to MR1A */ 30
UART Reg[U MRA]=0x13; /* MR1A 8 bits, no parity */
UART Reg[U MRA]=0x07; /* MR2A one stop bit */
UART Reg[U CSRA]=0xCC; /* 0xCC: 19.2k, use 0xBB for 9.6k */
UART Reg[U ACR]=0x80; /* set bit 7 for 19.2k mode */

UART Reg[U CRA]=0x05; /* enable rx and tx, 0A disables */

/* U SRA: bit 2: transmit ready, bit 0: receive ready*/
40

return 0;
}

void USendChar(int Val)
{

while(!(UART Reg[U SRA]&4)); /* wait until ready */
UART Reg[U THRA]=Val;
}

50

char UTestChar(void)
{

return UART Reg[U SRA]&1; /* return 1 if there is a char waiting */
}

int UGetChar(void)
{

int ch; 60

while(!(UART Reg[U SRA]&1)); /* wait until ready */
ch=UART Reg[U RHRA]&0xFF;
return ch;
}

void USendString(char*String)
{

int i; 70

for (i=0;i<80 && String[i];i++) USendChar(String[i]);
}

A.2.8 p iface.h

/*initialisation functions*/
void PIfaceInit(void);
int PIfaceAddVariable(void*Val,int type,const char*Name,char*Description);
void LogInit(void);
void AddLoggingCmds(void);

/*Runtime functions*/
void PIfaceSendMessage(char*Message);

A.2. Software Description 197

void PCheckIf(void);
void LogTime(void); 10
void lstop(void);

A.2.9 p iface.c

#include <stdlib.h>
#include "iface.h"

#include "hwdefs.h"

struct TIVarDat
{

void*Var; /* pointer to the variable */
int Type; /* var type / number of params */
const char*Name; 10
};

struct TIVarDat VarDat[IF MAX VARS];
int NumVars=0;

#ifdef PC
char CTBuffer[256];
int CTHead=240;
int CTTail=240; 20
struct TCBuff BuffPC={CTBuffer,&CTHead,&CTTail,256,240};
char PTBuffer[256];
int PTHead=240;
int PTTail=240;
struct TCBuff BuffCP={PTBuffer,&PTHead,&PTTail,256,240};
#else
struct TCBuff BuffCP={DP CP Base,DP CP Head,DP CP Tail,256,0};
struct TCBuff BuffPC={DP PC Base,DP PC Head,DP PC Tail,256,0};
#endif

30

/**
PIfaceInit
**/
void PIfaceInit(void)
{

int i,j;
char ch;

IfaceMatchTail(&BuffPC); 40

IfacePutChar(&BuffPC,IF PC INIT); // sent the initchar
IfacePutChar(&BuffPC,IF DELIM);
IfaceSendChars(&BuffPC);
NumVars=0;
}

/**
PIfaceAddVariable 50
**/
int PIfaceAddVariable(void*Val,int type,const char*Name,char*Description)
{

if (NumVars>=IF MAX VARS) return −1;

VarDat[NumVars].Var=Val; /* copy the pointer to the variable */
VarDat[NumVars].Name=Name;
IfacePutChar(&BuffPC,IF PC ADDVAR); /* send a notification string */
IfacePutChar(&BuffPC,NumVars);
IfacePutChar(&BuffPC,VarDat[NumVars].Type=type); /* keep the type */ 60
IfaceSendString(&BuffPC,Name);
IfaceSendString(&BuffPC,Description);
IfacePutChar(&BuffPC,IF DELIM);
IfaceSendChars(&BuffPC);
NumVars++;

return 0;
}

70
/**
PIfaceSendMessage
**/
void PIfaceSendMessage(char*Message)
{

IfacePutChar(&BuffPC,IF PC MESSAGE); /* send a notification string */
IfaceSendString(&BuffPC,Message);
IfacePutChar(&BuffPC,IF DELIM);
IfaceSendChars(&BuffPC);
} 80

/**
PIfaceSendText

**/
void PIfaceSendText(char*Message)
{

IfacePutChar(&BuffPC,IF PC TEXT); /* send a notification string */
IfaceSendString(&BuffPC,Message);
IfacePutChar(&BuffPC,IF DELIM);
IfaceSendChars(&BuffPC); 90
}

/**
PHandlePacket
**/
void PHandlePacket(int NumChars)
{

int i,j;
union { 100

int (*FnPtr)(int);
void* vptr;

} FnPtr;

if (!NumChars) return ;

switch(IfaceGetChar(&BuffCP,0)) {

case IF CP CMD:
i=IfaceGetChar(&BuffCP,1); 110
if (i<0 | | i>=NumVars) return ;
j=IfaceGetWord(&BuffCP,2);
FnPtr.vptr=VarDat[i].Var;
(*FnPtr.FnPtr)(j);
break;

case IF CP VARSET:
i=IfaceGetChar(&BuffCP,1);
if (i<0 | | i>=NumVars) return ;
j=IfaceGetWord(&BuffCP,2);
((int)VarDat[i].Var)=j; 120
break;

case IF CP VARREQ:
i=IfaceGetChar(&BuffCP,1);
if (i<0 | | i>=NumVars) return ;
j=*((int*)VarDat[i].Var);
IfacePutChar(&BuffPC,IF PC VARVAL); /* send a notification string */
IfacePutChar(&BuffPC,i);
IfacePutWord(&BuffPC,j);
IfacePutChar(&BuffPC,IF DELIM);
IfaceSendChars(&BuffPC); 130
break;
}
}

int PLastCheck=0; /* last character number checked */
/**
PCheckIf
**/
void PCheckIf(void) 140
{

for (;PLastCheck<IfaceGetNumChar(&BuffCP);PLastCheck++)
if (IfaceGetChar(&BuffCP,PLastCheck)==IF DELIM) {

PHandlePacket(PLastCheck);
IfaceTakeChars(&BuffCP,PLastCheck+1);
PLastCheck=0;
break;
}

}
150

/**
Logging section
**/

#define MAX LOGGED VARS 8
int LoggedVars[MAX LOGGED VARS];
int NumLogs=0; /* number of variables to log */

int Logging; /*indicate whether we are logging now*/ 160
int LogNum; /*number of variable sets logged*/
int LogCtr; /*Current log pointer*/

int LogSpace; /*number of words in the log array*/
int LogSets; /* number of data sets (LogSpace/NumLogs) */
int*LogData; /*pointer to the array itself*/

/**
LogInit

170
init data structures
**/
void LogInit(void)
{

NumLogs=0;
Logging=0;
LogCtr=0;

198 APPENDIX A. DSP IMPLEMENTATION CODE

LogSpace=48*1024;
do { 180

LogSpace/=2;
LogData=malloc(LogSpace);
} while(!LogData&& LogSpace);
}

/**
lclear

clear logs 190
**/
void lclear(void)
{

NumLogs=0;
Logging=0;
LogCtr=0;
}

/** 200
ladd

add a variable to the log list
**/
void ladd(int LVar)
{

char Buff[80];

LogCtr=0; /*clear any existing data*/
if (NumLogs<MAX LOGGED VARS) { 210

LoggedVars[NumLogs++]=LVar;
sprintf(Buff,"Added Log Variable %s.",VarDat[LVar].Name);
PIfaceSendMessage(Buff);
}
else{

PIfaceSendMessage("Too Many Logged Variables");
}

}
220

/**
lstart

start logging
**/
void lstart(void)
{

char Buff[80];
230

if(!NumLogs)
PIfaceSendMessage("No Logged Variables");

else if (!LogSpace)
PIfaceSendMessage("No Memory Available");

else{
LogCtr=0;
LogNum=0;
Logging=1;
LogSets=LogSpace/NumLogs;
sprintf(Buff,"Logging %i sets of %i variables",LogSets,NumLogs); 240
PIfaceSendMessage(Buff);
}
}

/**
lstop

stop logging
**/ 250
void lstop(void)
{

char Buff[80];
if(Logging){

Logging=0;
sprintf(Buff,"Logged %i sets, %i available.",

LogNum,LogNum>LogSets?LogSets:LogNum);
PIfaceSendMessage(Buff);
}
else{ 260

PIfaceSendMessage("Not Logging.");
}
}

/**
lvars

print the variables that are being logged
**/ 270
void lvars(void)

{
int i;
for (i=0;i<NumLogs;i++) {

PIfaceSendMessage((char*)VarDat[LoggedVars[i]].Name);
}
}

/** 280
lprint

print the log contents
**/
void lprint(void)
{

int i,j,k;
char Buff[120];

if (!LogNum) { 290
PIfaceSendMessage("No Values Logged.");
return ;
}

/* print the variable names */
lvars();

if (LogNum>LogSets) /* have wrapped */
i=LogCtr−LogSets;

else 300
i=0;

if (i<0) i+=LogSets; /* find the oldest existing record */

do {
for (j=0;j<NumLogs;j++) {

switch(VarDat[LoggedVars[j]].Type) {
case IF INT:

sprintf(Buff+10*j," %9.7i",LogData[i*NumLogs+j]);
break;

case IF FLOAT: 310
sprintf(Buff+10*j," %9.7f",LogData[i*NumLogs+j]);
break;

default:
for (k=0;k<10;k++) Buff[10*i+k]=’ ’; Buff[10*(i+1)]=0;
}
}
PIfaceSendText(Buff);
i++;
i%=LogSets;
} while (i!=LogCtr); 320

}

/**
LogTime

add an extra line to the log table
**/
void LogTime(void) 330
{

int i;

if (!Logging) return ;

for (i=0;i<NumLogs;i++) {
LogData[LogCtr*NumLogs+i]=*(int*)VarDat[LoggedVars[i]].Var;
}
LogCtr++;
LogNum++; 340
if (LogCtr>=LogSets) LogCtr=0;
}

/*logging commands:
lclear clear logs
ladd add log (clears also) (param)
lstart start logging
lstop stop logging
lvars print logged vars
lprint print logged values 350

functions:
LogTime - called regularly by the main loop

void PCheckIf(void);
void LogTime(void);
void AddLoggingCmds(void);
*/

/** 360
AddLoggingCmds

Add the logging commands to the interface
**/
void AddLoggingCmds(void)

A.3. Data Acquisition Firmware 199

{
PIfaceAddVariable((void*)lclear,IF FN0,"lclear","Clear logs");
PIfaceAddVariable((void*)ladd,IF FN VAR,"ladd" ,"Add log (clears values)");
PIfaceAddVariable((void*)lstart,IF FN0,"lstart","Start logging");
PIfaceAddVariable((void*)lstop ,IF FN0,"lstop" ,"Stop logging"); 370

PIfaceAddVariable((void*)lvars ,IF FN0,"lvars" ,"Print logged vars");

PIfaceAddVariable((void*)lprint,IF FN0,"lprint","Print logged values");

}

A.3 Data Acquisition Firmware

The data acquisition consists of a number of design files for the FLEX8K series Altera device. The
top-level design file is called inp8k.gdf. The other files in the design heirarchy consist of a mixture
of the graphical .gdf files, and the .tdf files in Altera’s AHDL design language.

The following section details the modulation design, which is placed in the other 8K series EPLD.
The top-level file for that design is out stg.gdf. Both the data acquisition and modulation modules
are also used in the hardware controller.

200 APPENDIX A. DSP IMPLEMENTATION CODE

A.3. Data Acquisition Firmware 201

A.3.1 inp8k.gdf

H
ig

h
w

he
n

th
e

cu
rr

en
ti

s
po

si
tiv

e,
m

ap
[2

..0
]=

[a
..c

]

0:
[5

..0
]:

T
ov

er
80

,[
11

]R
es

et
/(

ac
tiv

e
lo

w
)

[1
0]

E
na

bl
e

lin
k

tr
ip

[9
]t

rip
re

se
t(

ac
tl

ow
)

1:
[0

]:
G

ot
S

am
pl

es
[1

]u
pd

at
e

da
c

[2
]i

dc
D

A
C

da
ta

pi
n

2:
[7

..0
]V

H
_M

IN
(R

eg
en

of
f)

3:
[7

..0
]V

H
_M

A
X

(R
eg

en
on

)

4:
D

A
C

-
A

To
w

rit
e

a
va

lu
e

to
on

e
of

th
e

ou
tp

ut
la

ch
es

To
re

ad
on

e
of

th
e

va
lu

es
at

V
IN

-
ap

pl
y

th
e

co
m

m
an

d
w

or
d

00
00

00
00

0a
aa

w
he

re
aa

a
is

th
e

ad
dr

es
s

of
th

e
de

si
re

d
la

tc
h

an
d

st
ro

be
th

e
W

R
_A

D
D

R
_

lin
e

lo
w

-
w

ai
ta

tl
ea

st
th

re
e

cl
oc

k
cy

cl
es

-
st

ro
be

W
R

_D
AT

A
_

lo
w

w
hi

le
th

e
da

ta
is

on
th

e
da

ta
bu

s

-
th

e
da

ta
ap

pe
ar

s
on

th
e

bu
s

w
he

n
R

D
_D

AT
A

_
is

st
ro

be
d

lo
w

-
w

ai
ta

tl
ea

st
th

re
e

cl
oc

k
cy

cl
es

-
ap

pl
y

th
e

co
m

m
an

d
w

or
d

00
00

00
01

0a
aa

w
he

re
aa

a
is

th
e

ad
dr

es
s

of
th

e
de

si
re

d
in

pu
t,

an
d

st
ro

be
th

e
W

R
_A

D
D

R
_

lin
e

lo
w

5:
D

A
C

-
B

6:
D

A
C

-
C

7:
D

A
C

-
V

D
C

T
he

M
S

B
is

no
tc

on
ne

ct
ed

to
th

e
tr

an
sd

uc
er

0:
IA

1:
IB

2:
IC

4:
[9

..0
]S

ha
ft

an
gl

e
[1

1]
cu

rr
en

tt
rip

pe
d

[1
0]

Li
nk

tr
ip

pe
d

3:
V

dc [2
]T

H
_S

P
1

[3
]T

H
_S

P
2

[1
1.

.4
]:

IA
tr

ip
se

tti
ng

(d
ip

sw
itc

h)

5:
[0

]T
0W

A
IT

[1
]T

X
W

A
IT

(s
et

by
G

ot
S

am
pl

es
,c

le
ar

ed
by

va
lu

e
re

ce
ip

t)

6:
Id

c
m

ea
su

re
m

en
t

7:
[4

..0
]i

nd
iv

id
ua

ll
in

k
tr

ip
si

gn
al

s

N
ot

e:
T

H
_S

P
1

dr
iv

es
th

e
tr

ip
lin

e,
di

sa
bl

in
g

th
e

dr
iv

e

Li
nk

Tr
ip

cu
rr

en
tt

rip

by
pa

ss
ed

to
te

st
po

sn
tr

an
sd

uc
er

in
p8

k.
gd

f:
in

pu
tE

P
LD

co
nt

en
ts

fo
r

th
e

du
al

C
31

bo
ar

d
D

ia
gn

os
tic

D
/A

C
on

ve
rt

er
s

in
p8

k@
2

cl
r_

ex
t_

tr
ip

/
IN

P
U

T

in
p8

k@
1

cl
r_

in
t_

tr
ip

/
IN

P
U

T

po
sn

[1
0.

.0
]

IN
P

U
T

in
p8

k@
12

1
di

r_
bi

t
IN

P
U

T

er
r_

H
B

[3
..1

]
IN

P
U

T

in
p8

k@
15

3
m

ai
n_

en
c_

ot
IN

P
U

T

in
p8

k@
15

2
cp

u_
en

c_
ot

IN
P

U
T

in
p8

k@
14

5
br

ak
e_

er
r

IN
P

U
T

in
p8

k@
15

4
re

ct
_o

t
IN

P
U

T

in
p8

k@
15

7
th

_s
p4

IN
P

U
T

in
p8

k@
14

8
st

ac
k_

ot
IN

P
U

T

in
p8

k@
14

7
th

_s
p2

IN
P

U
T

in
p8

k@
14

9
th

_s
p1

IN
P

U
T

in
p8

k@
15

6
th

_s
p3

IN
P

U
T

in
p8

k@
17

8
id

c_
se

r
IN

P
U

T

in
p8

k@
17

7
ic

_s
er

IN
P

U
T

in
p8

k@
17

9
vd

c_
se

r
IN

P
U

T

in
p8

k@
17

5
ia

_s
er

IN
P

U
T

in
p8

k@
17

6
ib

_s
er

IN
P

U
T

id
c_

tr
ip

[7
..0

]
IN

P
U

T

ia
_t

rip
[7

..0
]

IN
P

U
T

vd
c_

tr
ip

[7
..0

]
IN

P
U

T

in
p8

k@
10

re
f_

cl
k

IN
P

U
T

in
p8

k@
23

rd
_d

at
a_

la
tc

h
IN

P
U

T

in
p8

k@
22

ld
_d

at
a_

la
tc

h
IN

P
U

T

in
p8

k@
24

ad
d_

w
r/

IN
P

U
T

D
[1

1.
.0

]
B

ID
IR

GND

G
N

D

GND

G
N

D

GND

in
p8

k@
74

vd
c_

da
O

U
T

P
U

T

in
p8

k@
71

ic
_d

a
O

U
T

P
U

T

in
p8

k@
70

ib
_d

a
O

U
T

P
U

T

in
p8

k@
69

ia
_d

a
O

U
T

P
U

T

in
p8

k@
67

ld
_d

a/
O

U
T

P
U

T

in
p8

k@
68

st
_d

a
O

U
T

P
U

T

in
p8

k@
23

3
s_

cl
k

O
U

T
P

U
T

in
p8

k@
23

4
c_

cl
k

O
U

T
P

U
T

in
p8

k@
22

7
tr

ip
_i

nt
O

U
T

P
U

T

in
p8

k@
22

8
hw

_t
rip

O
U

T
P

U
T

in
p8

k@
73

id
c_

da
O

U
T

P
U

T

in
p8

k@
23

1
la

st
_t

O
U

T
P

U
T

in
p8

k@
23

2
t_

cl
k

O
U

T
P

U
T

si
gn

_i
[2

..0
]

O
U

T
P

U
T

LP
M

_A
V

A
LU

E
=

LP
M

_S
V

A
LU

E
=

LP
M

_W
ID

T
H

=
10

en
ab

le

da
ta

[]
q[

]

LP
M

_D
F

F

W
IR

E

W
IR

E

W
IR

E

W
IR

E

W
IR

E

W
IR

E

N
O

T

O
R

3

A
N

D
2

re
f_

cl
k

V
O

U
T

[7
..0

][1
1.

.0
]

V
IN

[7
..0

][1
1.

.0
]

V
O

U
T

[3
][7

..0
]

V
O

U
T

[2
][7

..0
]

V
O

U
T

[0
][5

..0
]

V
O

U
T

[1
][0

]

E
N

D
IN

T
E

R
V

A
L

V
IN

[5
][1

1.
.4

]

V
IN

[5
][1

]

V
IN

[5
][0

]

re
se

t
V

O
U

T
[0

][1
1]

V
O

U
T

[1
][2

]

V
IN

[0
][1

1.
.0

]

V
IN

[1
][1

1.
.0

]

V
IN

[2
][1

1.
.0

]

V
IN

[3
][1

1.
.0

]

V
IN

[6
][1

1.
.0

]

E
N

D
IN

T
E

R
V

A
L

V
IN

[5
][2

]

V
IN

[5
][3

]

P
O

S
N

[1
0.

.0
]

re
f_

cl
k

V
IN

[7
][1

1.
.1

0]

Li
nk

Tr
ip

[4
..0

]

V
IN

[7
][9

..5
]

V
IN

[4
][1

0]
V

O
U

T
[0

][1
0]

V
IN

[7
][4

..0
]

V
O

U
T

[0
][9

]

re
f_

cl
k

V
IN

[4
][1

1]

P
O

S
N

[9
..0

]

V
IN

[4
][9

..0
]

re
f_

cl
k

re
se

t

V
O

U
T

[4
][1

1.
.0

]

V
O

U
T

[1
][1

]

V
O

U
T

[5
][1

1.
.0

]

V
O

U
T

[6
][1

1.
.0

]

V
O

U
T

[7
][1

1.
.0

]

202 APPENDIX A. DSP IMPLEMENTATION CODE

A.3.2 if c31.gdf

To
w

rit
e

a
va

lu
e

to
on

e
of

th
e

ou
tp

ut
la

ch
es

-
st

ro
be

W
R

_D
AT

A
_

lo
w

w
hi

le
th

e
da

ta
is

on
th

e
da

ta
bu

s
-

w
ai

ta
tl

ea
st

th
re

e
cl

oc
k

cy
cl

es

-
ap

pl
y

th
e

co
m

m
an

d
w

or
d

00
00

00
00

0a
aa

w
he

re
aa

a
is

th
e

ad
dr

es
s

of
th

e
de

si
re

d
la

tc
h

an
d

st
ro

be
th

e
W

R
_A

D
D

R
_

lin
e

lo
w

To
re

ad
on

e
of

th
e

va
lu

es
at

V
IN

-
ap

pl
y

th
e

co
m

m
an

d
w

or
d

00
00

00
01

0a
aa

w
he

re
aa

a
is

th
e

ad
dr

es
s

of
th

e
de

si
re

d
in

pu
t,

an
d

st
ro

be
th

e
W

R
_A

D
D

R
_

lin
e

lo
w

-
w

ai
ta

tl
ea

st
th

re
e

cl
oc

k
cy

cl
es

-
th

e
da

ta
ap

pe
ar

s
on

th
e

bu
s

w
he

n
R

D
_D

AT
A

_
is

st
ro

be
d

lo
w

if_
c3

1.
gd

f:
In

te
rf

ac
e

to
th

e
C

31
P

ro
ce

ss
or

C
LK

IN
P

U
T

W
R

_A
D

D
R

_
IN

P
U

T

W
R

_D
AT

A
_

IN
P

U
T

V
IN

[7
..0

][1
1.

.0
]

IN
P

U
T

R
D

_D
AT

A
_

IN
P

U
T

V
C

C

V
C

C

D

D
F

F

C
LR

N

Q
P

R
N

D

D
F

F

C
LR

N

Q
P

R
N

D

D
F

F

C
LR

N

Q
P

R
N

N
O

T

N
O

T

A
N

D
2

LP
M

_W
ID

T
H

=
12

re
su

lt[
]

da
ta

[]

tr
id

at
a[

]

en
ab

le
dt

en
ab

le
tr

LP
M

_B
U

S
T

R
I

D
[1

1.
.0

]
B

ID
IR

V
O

U
T

[7
..0

][1
1.

.0
]

O
U

T
P

U
T

LP
M

_A
V

A
LU

E
=

LP
M

_F
F

T
Y

P
E

=
"D

F
F

"
LP

M
_S

V
A

LU
E

=
LP

M
_W

ID
T

H
=

12

q[
]

da
ta

[]

LP
M

_F
F

LP
M

_A
V

A
LU

E
=

LP
M

_F
F

T
Y

P
E

=
"D

F
F

"
LP

M
_S

V
A

LU
E

=
LP

M
_W

ID
T

H
=

12

q[
]

da
ta

[]

LP
M

_F
F

A.3. Data Acquisition Firmware 203

204 APPENDIX A. DSP IMPLEMENTATION CODE

A.3.3 inp stg.gdf

Regen off

Regen on

[2..0]==[a..c]

inp_stg.gdf: input stage

GOTSAMPLES
INPUT

TOVER80[5..0]
INPUT

S_IDC
INPUT

S_DCV
INPUT

VH_MIN[7..0]
INPUT

VH_MAX[7..0]
INPUT

V_MIN[7..0]
INPUT

V_MAX[7..0]
INPUT

S_IC
INPUT

I_MAX[7..0]
INPUT

S_IB
INPUT

S_IA
INPUT

RESET
INPUT

CLK
INPUT

NOT

NOT

NOT

NOT

NOT

TXWAIT
OUTPUT

REGEN
OUTPUT

T0WAIT
OUTPUT

ENDINTERVALOUTPUT

IDC[11..0]
OUTPUT

VTrip
OUTPUT

ValTrip[4..0]
OUTPUT

LinkTrip[4..0]
OUTPUT

IA[11..0]OUTPUT

SCLK
OUTPUT

IPOS[2..0]
OUTPUT

V[11..0]
OUTPUT

IC[11..0]
OUTPUT

IB[11..0]
OUTPUT

OR2

OR2

OR2

OR2

OR2

JKFF

CLRN

Q

K

J

PRN

GND

G
N

D

WIRE

ValTrip[1]

LinkTrip[0]

LinkTrip[3]

LinkTrip[2]

LinkTrip[1]

ValTrip[2]

LinkTrip[4]

ValTrip[0]

ValTrip[4]

LinkTrip[4..0]

ValTrip[4..0]

ValTrip[3]

A.3. Data Acquisition Firmware 205

A.3.4 da ctrl.tdf

%==
da ctrl.tdf

controls the on-board d/a converters, which are used
for debugging purposes.
==%
INCLUDE "lpm_mux";

SUBDESIGN dactrl 10
(

CLK,RESET: INPUT;
Din[11. .0]: INPUT;
Update: INPUT;

Sync,Dout: OUTPUT;
)

VARIABLE
dactr[3. .0]: DFF; 20
Shifting: DFF;
ShiftingL: DFF; −−allows lengthening of the sync pulse
UpdateL: DFF;
shmux: lpm mux with (LPM WIDTH=1, LPM SIZE=12, LPM WIDTHS=4);

BEGIN

dactr[].clk=CLK;
Shifting.clk=CLK;
ShiftingL.clk=CLK; 30
ShiftingL=Shifting;

−−keep state of update on last clock for edge detect
UpdateL.clk=CLK;
UpdateL=Update;

−−detect if it is the start of an update
if (!shifting & Update& !UpdateL) then

shifting=vcc;
dactr[]=15; −−preload bit counter 40

else −−not the start of an update
if (shifting & dactr[]==0) then−−end of a cycle

shifting=gnd;
else

shifting=shifting;
end if;
dactr[]=dactr[]−1; −−count down through the bits

end if;

50
shmux.data[][0]=Din[];
shmux.sel[]=dactr[];
Dout=shmux.result[0];

Sync=!(Shifting);
−− Sync=!(Shifting#ShiftingL);
−−it looks as if Sync has to stay low for an extra cycle after D0 to
−−satisfy the hold time from clock falling edge (max 190ns)

END; 60

A.3.5 gr2bin.tdf

%==
gr2bin.tdf

grey code to binary converter. For position encoder
==%
CONSTANT CWIDTH=10;

SUBDESIGN GR2BIN
(

Grey[CWIDTH−1. .0]: INPUT; 10
Binary[CWIDTH−1. .0]: OUTPUT;

)
VARIABLE

CVAL [CWIDTH−1. .0]: NODE;

BEGIN
CVAL [CWIDTH−1]=!Grey[CWidth−1];
FOR i IN 0 TO CWidth−2 GENERATE

CVAL [i]=CVAL [i+1]$(!Grey[i]);
END GENERATE; 20
Binary[]=CVAL [];

END;

A.3.6 if dec12.tdf

%==

if dec12.tdf

interface between the c31 bus and the logic. Offers

bidirectional latching

==%

INCLUDE "lpm_mux";

INCLUDE "lpm_decode";

10

%———————————————————————-

Interface decoder:

——————

Version: 8 inputs and outputs of 12 bits width.

Command types:

0000 0aaa: 186 writes to latch aaa

0001 0aaa: 186 reads input aaa into the temporary storage latch

———————————————————————-% 20

SUBDESIGN IF DEC12 DEC12

(

CLK: INPUT;

Din[11. .0]: INPUT;

Dout[11. .0]: OUTPUT;

CMD[11. .0]: INPUT;

ST: INPUT; 30

Vout[7. .0][11. .0]: OUTPUT;

Vin[7. .0][11. .0]: INPUT;

)

VARIABLE

OMUX: lpm mux with (LPM WIDTH=12,LPM SIZE=8,LPM WIDTHS=3);

OLTCH[11. .0]: DFFE;

40

IDEC: lpm decode with(LPM WIDTH=3, LPM DECODES=8);

ILTCH[7. .0][11. .0]: DFFE;

BEGIN

−−186 Reads from Altera

OMUX.sel[]=CMD[2. .0];

OMUX.data[][]=Vin[][];

OLTCH[].clk=CLK; 50

OLTCH[].ena=ST & CMD[4]; −−write to latch

OLTCH[].d=OMUX.result[];

Dout[]=OLTCH[];

−−186 Writes to Altera

IDEC.data[]=CMD[2. .0];

IDEC.enable=ST & !CMD[4];

ILTCH[][].clk=CLK; 60

FOR i IN 0 TO 7 GENERATE

ILTCH[i][].d=Din[]; −−watch this

ILTCH[i][].ena=IDEC.eq[i]; −−and this

END GENERATE;

Vout[][]=ILTCH[][];

END;

206 APPENDIX A. DSP IMPLEMENTATION CODE

A.3.7 lim mux.tdf

%==
lim mux

Trip limit multiplexer - converts the 8 bit parallel trip limits into
a serial data stream for the serin modules. The select pattern is
X011- bit 7 MSB (maps to the MSB of the input signal)
X010- bit 6
X001- bit 5
X000- bit 4
X111- bit 3 10
X110- bit 2
X101- bit 1
X100- bit 0 LSB
==%
INCLUDE"mux";
SUBDESIGN lim mux
(

Limit [7. .0]: INPUT;
Bit Num[3. .0]: INPUT;

20
SLimit: OUTPUT;

)

VARIABLE
smux: mux with (WIDTH=8, WIDTHS=3);

BEGIN
smux.sel[1. .0]=Bit Num[1. .0];
smux.sel[2]=!Bit Num[2];
smux.data[]=Limit []; 30

SLimit=smux.result;
END;

A.3.8 linktrip.tdf

%==
linktrip.tdf

maintains the trip status of the serial links
==%
SUBDESIGN LinkTrip
(

SigIn[4. .0]: INPUT;
CLK: INPUT;
RESETN: INPUT; 10

SigOut[4. .0]: OUTPUT;
Trip: OUTPUT;

)

VARIABLE
Mem[4. .0]: JKFF;

BEGIN
20

Mem[].j=SigIn[];
Mem[].k=gnd;
Mem[].clk=CLK;
Mem[].clrn=RESETN;

SigOut[]=Mem[].q;
Trip=Mem[].q!=0;

END;

A.3.9 p div.tdf

%==
p div.tdf

The global clock divider
==%
constant Tbits=5; −−1 less than the number of bits in T/80

SUBDESIGN pdiv
(

CLK: INPUT; 10

Tover80[Tbits. .0]: INPUT;

EndSIntervalSInterval: INPUT; −−final interval in 20-cycle sampling
GotSamples: INPUT; −−signal that samples have been

−−read in, allowing change

EndIntervalInterval: OUTPUT; −−true on last interval before t=0
T0Wait,TxWait: OUTPUT;

)
20

VARIABLE
Tcount[Tbits. .0]: DFFE; −−T/80 counter
Tzero: DFF; −−cycle ofter end of interval marker
Tone: DFF; −−end of interval marker
Ttwo: DFF; −−one before
Tthree: DFF; −−two before
Fcount[1. .0]: DFFE; −−four (quater) counter
T0W,TxW: DFF; −−wait flip-flops

BEGIN
30

−−T/80 counter
Tcount[].clk=CLK;
Tcount[].ena=EndSInterval;
if Tzero then

Tcount[].d=Tover80[];
else

Tcount[].d=Tcount[].q−1;
end if;

Tzero.clk=CLK; 40
Tzero=(Tcount[]==0);

Tone.clk=CLK;
Tone=(Tcount[]==1);

Ttwo.clk=CLK;
Ttwo=(Tcount[]==2);

Tthree.clk=CLK;
Tthree=(Tcount[]==3); 50

−−four counter
Fcount[].clk=CLK;
Fcount[].ena=Tone&EndSInterval;
Fcount[].d=Fcount[].q+1;

−−End Interval
−−MOD — moves endinterval forward 20 cycles by placing it in the Ttwo cycle.
EndIntervalInterval=(Fcount[]==3)&Ttwo&EndSInterval;

60
−−Wait Flip-flops
T0W.clk=CLK; T0Wait=T0W;
TxW.clk=CLK; TxWait=TxW;

if GotSamples then
−−after samples taken, set wait again
T0W=vcc;
TxW=vcc;

else
−−clear wait after 1st interval 70
T0W=T0W&!((Fcount[]==0)&Tzero&EndSInterval);
TxW=TxW&!((Fcount[]!=3)&Tzero&EndSInterval);

end if;
END;

A.3.10 rx seq.tdf

%==
rx seq

Receiver Sequencer

note: bits referred to are the values on the output of the first
shift register ff
==%
SUBDESIGN rx seq
(10

CLK, RESET: INPUT;

clk inh: OUTPUT;
MSB,last bit: OUTPUT; −−first and last bits (last is last parity)
out zero, out one: OUTPUT; −−bits should be 0 or 1 respectively (start bits)

−−reset the parity counter on outone
bit num[3. .0]: OUTPUT; −−current bit, 11=sign, 0=LSB

−−used for protection mux
end interval interval: OUTPUT; −−last cycle before conversion start

−−reset parity errors on this 20
)

VARIABLE
RSM: machine with states(rS1,rS2,rS3,rMSB,rOthers,rP1,rP2,rEnd,rFill1,rFill2);

A.3. Data Acquisition Firmware 207

Ctr[3. .0]: DFF;
ResetCtr: NODE;

BEGIN
DEFAULTS

ResetCtr=gnd;
END DEFAULTS; 30

Ctr[].clk=CLK;

if ResetCtr then −−count down counter unless reset
Ctr[]=11;

else
Ctr[]=Ctr[]−1;

end if;
bit num[]=Ctr[];

RSM.clk=CLK; 40
RSM.reset=RESET;

case RSM is
when rS1=> out one=vcc; RSM=rS2;
when rS2=> out zero=vcc; RSM=rS3;
when rS3=> out one=vcc;

ResetCtr=vcc; RSM=rMSB;

when rMSB=> MSB=vcc; RSM=rOthers;
when rOthers=> if Ctr[]==0 then RSM=rP1; else RSM=rOthers; end if;
when rP1=> clk inh=vcc; RSM=rP2; 50
when rP2=> clk inh=vcc; last bit=vcc; RSM=rEnd;
when rEnd=> end interval interval=vcc; RSM=rFill1;

when rFill1=> RSM=rFill2;

when rFill2=> RSM=rS1;
end case;

END;

A.3.11 scompare.tdf

%==
scompare

Performs a comparison between the two signed input data streams. Inputs
A and B are signed binary numbers presented MSB first. The MSB input
is driven high while the sign bit is presented.

On the the first difference, the Alt B output goes
high if A is less than B.
==% 10
SUBDESIGN scompare
(

clk: INPUT;

A,B,MSB: INPUT;

A lt B: OUTPUT;
)

VARIABLE
Leq,Llt : DFF; −−equal and less-than flip-flops 20
eq,lt: NODE; −−input nodes to the above

BEGIN
A lt B=lt; −−output on first difference

Leq.clk=CLK; Leq.d=eq;
Llt .clk=CLK; Llt .d=lt;

if MSB then
eq=A!$B; −−are equal if both the same 30
lt=A&!B; −−less than, if A is negative and B positive

else
if Leq then −−was still equal up to last stage so compare

eq=A!$B;

lt=B&!A; −−less than, if A=0 and B=1
else −−was different, so keep result

eq=Leq;
lt=Llt ;

end if;
end if; 40

END;

A.3.12 serin.tdf

%==
ser in

Serial Input module - reads in the serial data and converts into
parallel form, also checks the parity and the trip limits

note: bits referred to are the values on the output of the first
shift register ff
==%
INCLUDE"scompare"; 10

SUBDESIGN serin
(

CLK,RESET: INPUT;
SData: INPUT;

Upper,Lower: INPUT; −−upper and lower trip limits presented serially

MSB,last bit: INPUT; −−first and last bits (last is last parity)
out zero, out one: INPUT; −−bits should be 0 or 1 respectively (start bits) 20
end interval interval: INPUT; −−last cycle before conversion start

SampleWait: INPUT; −−update output register when this is true

Value[11. .0]: OUTPUT; −−output value
LinkTrip: OUTPUT; −−trip flags
ValueHigh,ValueLow: OUTPUT; −−value trips
Sign: OUTPUT; −−sign of current sample

)
30

VARIABLE
SReg[14. .0]: DFF;
CmpU,CmpL: scompare;
FrameError: JKFF;
Parity: JKFF;

CData: NODE;

ErrorCnt[1. .0]: DFF; 40
IncErrorCnt: NODE;
Reg[11. .0]: DFFE;
LoadReg: NODE;
SignL: DFFE;

BEGIN
DEFAULTS

FrameError.j=gnd; FrameError.k=gnd;
LoadReg=gnd;
IncErrorCnt=gnd; 50
LinkTrip=gnd;

ValueHigh=gnd;
ValueLow=gnd;

−− ValueTrip=gnd;
END DEFAULTS;

−−Sign
SignL.clk=CLK;
SignL.d=CData; 60
SignL.ena=MSB;
Sign=SignL;

−−shift register
SReg[].clk=CLK;
SReg[14. .1].d=SReg[13. .0].q;
SReg[0].d=SData;
CData=SReg[0];

−−Output register 70
Reg[].clk=CLK;
Reg[11. .0].d=SReg[13. .2].q; −−was [14. .3] for some reason?
Reg[].ena=LoadReg;
Value[]=Reg[];

−−Error Counter
ErrorCnt[].clk=CLK;
ErrorCnt[].clrn=!Reset;
if ErrorCnt[]==3 then

LinkTrip=vcc; 80
ErrorCnt[]=0;

else
if IncErrorCnt then

ErrorCnt[]=ErrorCnt[]+1;
else

ErrorCnt[]=ErrorCnt[];
end if;

end if;

−−comparators: A is the trip level, B is the incoming value 90

208 APPENDIX A. DSP IMPLEMENTATION CODE

−−this allows reasonably symmetric limits if ones complement is used for the
−−lower trip level.
CmpU.clk=CLK;
CmpU.A=Upper;
CmpU.B=CData;
CmpU.MSB=MSB;

CmpL.clk=CLK;
CmpL.A=Lower;
CmpL.B=CData; 100
CmpL.MSB=MSB;

−−Framing
FrameError.clk=CLK;
if end interval interval then FrameError.k=vcc; end if; −−clear error on new interval
if (out zero&CData)#(out one&!CData) then FrameError.j=vcc; end if;

−−set if wrong framing

−−Parity
Parity.clk=CLK; 110
if out one then −−clear parity on start bits

Parity.k=vcc;
Parity.j=gnd;

else
Parity.k=CData;
Parity.j=CData;

end if;

−−Handle the last bit
if last bit then 120

if FrameError#Parity!$CData then −−if error in frame
IncErrorCnt=vcc; −−increase error counter

else
if SampleWait then LoadReg=vcc; end if; −−if waiting for samples store val
−−check if the value was ok;
ValueHigh=CmpU.A lt B;
ValueLow =!CmpL.A lt B;

−− if CmpU.A lt B#!CmpL.A lt B then ValueTrip=vcc; end if;
end if;

end if; 130

END;

A.3. Data Acquisition Firmware 209

210 APPENDIX A. DSP IMPLEMENTATION CODE

A.4 Modulation Firmware

A.4.1 out stg.gdf

P
or

tL
is

tin
gs

0:
T

0
se

t
1:

T
1

se
t

2:
T

2
se

t
3:

bi
ts

2.
.0

:
se

ct
or

4:
co

nt
ra

ct
or

en
ab

le
s.

B
it

9:
dr

iv
e

en
ab

le
(a

ct
iv

e
hi

gh
)

5:
[5

..0
]:

de
ad

tim
e

[6
]C

om
pe

ns
at

io
n

en
ab

le
(a

ct
iv

e
hi

gh
)

P
os

iti
ve

ed
ge

tr
ig

ge
re

d
in

te
rr

up
t2

on
sl

av
e

ou
tp

ut
en

ab
le

is
ac

tiv
e

lo
w

on
re

vi
se

d
ba

ck
pl

an
e

In
ve

rt
ed

ou
tp

ut
s

fo
r

2n
d

ba
ck

pl
an

e

ou
t_

st
g.

gd
f:

S
pa

ce
-v

ec
to

r
P

W
M

m
od

ul
e

fo
r

th
e

C
31

bo
ar

d

ou
t_

st
g@

4
pl

d1
_s

el
/

IN
P

U
T

ou
t_

st
g@

65
tr

ip
IN

P
U

T

si
gn

_b
it[

2.
.0

]
IN

P
U

T

ou
t_

st
g@

5
w

r/
IN

P
U

T

A
[4

..0
]

IN
P

U
T

D
[9

..0
]

IN
P

U
T

ou
t_

st
g@

49
t_

cl
k

IN
P

U
T

ou
t_

st
g@

43
c_

cl
k

IN
P

U
T

ou
t_

st
g@

42
cl

k_
5m

IN
P

U
T

ou
t_

st
g@

48
s_

cl
k

IN
P

U
T

ou
t_

st
g@

50
la

st
_t

IN
P

U
T

ou
t_

st
g@

33
os

c_
cl

k
IN

P
U

T

ou
t_

st
g@

14
re

se
t/

IN
P

U
T

ou
t_

st
g@

31
c_

in
t/

O
U

T
P

U
T

ou
t_

st
g@

10
1

re
ge

n_
en

/
O

U
T

P
U

T

ou
t_

st
g@

98
dr

_q
2

O
U

T
P

U
T

ou
t_

st
g@

95
dr

_q
4

O
U

T
P

U
T

ou
t_

st
g@

90
dr

_q
6

O
U

T
P

U
T

ou
t_

st
g@

99
dr

_q
1

O
U

T
P

U
T

ou
t_

st
g@

96
dr

_q
3

O
U

T
P

U
T

ou
t_

st
g@

91
dr

_q
5

O
U

T
P

U
T

ou
t_

st
g@

11
7

dr
_e

na
bl

e/
O

U
T

P
U

T

ou
t_

st
g@

10
6

sp
2_

ct
rl/

O
U

T
P

U
T

ou
t_

st
g@

10
5

sp
3_

ct
rl/

O
U

T
P

U
T

ou
t_

st
g@

11
2

ch
_c

on
t_

co
n/

O
U

T
P

U
T

ou
t_

st
g@

11
1

sp
1_

ct
rl/

O
U

T
P

U
T

ou
t_

st
g@

10
9

fa
n1

_c
on

/
O

U
T

P
U

T

ou
t_

st
g@

10
8

fa
n2

_c
on

/
O

U
T

P
U

T

ou
t_

st
g@

11
6

m
ai

n_
co

n_
co

n/
O

U
T

P
U

T

ou
t_

st
g@

41
cl

k_
ou

t
O

U
T

P
U

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

N
O

T

D

D
F

F

C
LR

N

Q
P

R
N

N
A

N
D

2

D
O

U
TA

[5
][5

..0
]

D
O

U
T

S
[0

][9
..0

]

D
O

U
T

S
[2

][9
..0

]

D
O

U
T

S
[1

][9
..0

]

D
O

U
TA

[4
][3

]

D
O

U
TA

[4
][1

]

D
O

U
TA

[4
][5

]

D
O

U
TA

[4
][0

]

D
O

U
TA

[4
][2

]

D
O

U
TA

[4
][4

]

D
O

U
TA

[4
][6

]

D
O

U
T

S
[7

..0
][9

..0
]

D
O

U
TA

[7
..0

][9
..0

]

D
O

U
TA

[4
][9

]

D
O

U
T

S
[3

][2
..0

]

O
U

T
TO

P
[2

..0
]

O
U

T
B

O
T

[2
..0

]

O
U

T
TO

P
[2

]

O
U

T
TO

P
[0

]

O
U

T
TO

P
[1

]

O
U

T
B

O
T

[1
]

O
U

T
B

O
T

[2
]

O
U

T
B

O
T

[0
]

D
O

U
TA

[5
][6

]

A.4. Modulation Firmware 211

A.4.2 dead.tdf

%==
dead.tdf

Forms complementary drives, inserts lockout and optional
dead-time compensation
==%
INCLUDE "DEAD_TME";
INCLUDE "DEAD_CMP";

10
SUBDESIGN Dead
(

CLK, RESET: INPUT;
IPos[2. .0]: INPUT;
DEV IN[2. .0]: INPUT;

DEAD TIME[5. .0]: INPUT;
DeadCmpEna: INPUT;

OutTop[2. .0]: OUTPUT; 20
OutBot[2. .0]: OUTPUT;

)

VARIABLE

cmp[2. .0]: DEAD CMP;
tme[2. .0]: DEAD TME;

BEGIN
cmp[].clk=CLK; 30
cmp[].reset=RESET;
cmp[].DEV IN=DEV IN[];
cmp[].I POS=IPOS[];
cmp[].DEAD TIME[]=DEAD TIME[];

tme[].clk=CLK;
tme[].reset=RESET;
IF DeadCmpEna THEN −− dead time compensation enabled

tme[].DEV REQ=cmp[].DEV REQ;
tme[].TOP DIS=cmp[].TOP DIS; 40
tme[].BOT DIS=cmp[].BOT DIS;

ELSE
tme[].DEV REQ=DEV IN[]; −− compensation disabled
tme[].TOP DIS=GND;
tme[].BOT DIS=GND;

END IF;
tme[].DEAD TIME[]=DEAD TIME[];

OutTop[]=tme[].OutTop; 50
OutBot[]=tme[].OutBot;

END;

A.4.3 deadcmp.tdf

%==
deadcmp

dead-time compensation
==%

SUBDESIGN deadcmp
(

CLK, RESET: INPUT;
10

DEV IN: INPUT; −−the desired device output
I POS: INPUT; −−sign of current - active if positive

DEAD TIME[5. .0]: INPUT; −−the length of deadtime in clock cycles

DEV REQ: OUTPUT; −−the desired device output
TOP DIS, BOT DIS: OUTPUT; −−top and bottom disable signals

) 20

VARIABLE
DEV L: DFF;

LH SM: machine with states(LH IDLE, LH DELAY , LH DEAD);
LH CTR[5. .0]: DFF;
LH CtrLoad: NODE;

HL SM: machine with states(HL IDLE, HL DELAY , HL DEAD); 30

HL CTR[5. .0]: DFF;
HL CtrLoad: NODE;

DEV OUT: DFFE;

BEGIN
DEFAULTS

LH CtrLoad=gnd;
HL CtrLoad=gnd; 40
DEV OUT.ena=gnd;
BOT DIS=gnd;
TOP DIS=gnd;

END DEFAULTS;

−−last device input
DEV L.clk=CLK;
DEV L.d=DEV IN;

−−counter load 50
LH CTR[].clk=CLK; HL CTR[].clk=clk;
if LH CtrLoad then LHCTR[]=DEAD TIME[]; else LH CTR[]=LH CTR[]−1; end if;
if HL CtrLoad then HLCTR[]=DEAD TIME[]; else HL CTR[]=HL CTR[]−1; end if;

−−device output
DEV OUT.clk=CLK;
DEV REQ=DEV OUT;
−−for the two following transitions, disable the active device immediately
if I POS& (LH SM==LH DELAY) then BOT DIS=vcc; end if;
if !I POS& (HL SM==HL DELAY) then TOPDIS=vcc; end if; 60

LH SM.clk=CLK; HL SM.clk=CLK;
LH SM.reset=RESET; HL SM.reset=RESET;

−−Low to High transition
if DEV IN&!DEV L then−−rising edge of device drive signal

LH SM=LH DELAY ;
LH CtrLoad=VCC;

end if;
if LH SM==LH DELAY & LH CTR[]==1 then−−end of delay 70

DEV OUT.d=vcc;
DEV OUT.ena=vcc;
LH SM=LH IDLE;

end if;

−−High to Low transitions
if DEV L&!DEV IN then−−falling edge

HL SM=HL DELAY ;
HL CtrLoad=VCC;

end if; 80
if HL SM==HL DELAY & HL CTR[]==1 then−−end of delay

DEV OUT.d=gnd;
DEV OUT.ena=vcc;
HL SM=HL IDLE;

end if;

END;

A.4.4 deadtme.tdf

%==
dead tme

Insert lock-out for a single half-bridge
==%

SUBDESIGN deadtme
(

CLK, RESET: INPUT;
10

DEV REQ: INPUT; −−the desired device output
TOP DIS, BOT DIS: INPUT; −−top and bottom disable signals

DEAD TIME[5. .0]: INPUT; −−the length of deadtime in clock cycles

OutTop, OutBot: OUTPUT;
)

VARIABLE 20
USED TOP,USED BOT: DFF;
DEAD CTR[5. .0]: DFF;
DEAD CTR LOAD: NODE;

OUT TOP L,OUT BOT L: DFF; −−output latches
NEXT TOP,NEXT BOT: NODE;

212 APPENDIX A. DSP IMPLEMENTATION CODE

BEGIN
OUT TOP L.clk=CLK; −−output latch signals 30
OUT TOP L.d=NEXT TOP;
OutTop=OUT TOP L;

OUT BOT L.clk=CLK;
OUT BOT L.d=NEXT BOT;
OutBot=OUT BOT L;

NEXT TOP= DEV REQ&!(USED BOT#OUT BOT L#TOP DIS);
NEXT BOT=!DEV REQ&!(USED TOP#OUT TOP L#BOT DIS);

40
DEAD CTR LOAD=OUT TOP L#OUT BOT L#RESET;
DEAD CTR[].clk=CLK;
if DEAD CTR LOAD then

DEAD CTR[]=DEAD TIME[];
else

DEAD CTR[]=DEAD CTR[]−1;
end if;

USED TOP.clk=CLK;
−− USED TOP.prn=RESET; 50

if OUT TOP L then
USED TOP.d=vcc;

elsif DEAD CTR[]==2 then−−count down to 2 to allow for delays
USED TOP.d=gnd;

else
USED TOP.d=USED TOP.q;

end if;

USED BOT.clk=CLK;
−− USED BOT.prn=RESET; 60

if OUT BOT L then
USED BOT.d=vcc;

elsif DEAD CTR[]==2 then−−count down to 2 to allow for delays
USED BOT.d=gnd;

else
USED BOT.d=USED BOT.q;

end if;

END; 70

A.4.5 out ltch.tdf

%==
out ltch.tdf

latches in values from the C31 bus
==%
TITLE "PWM Output stage latch";

INCLUDE "lpm_ff";
INCLUDE "lpm_decode";

10
CONSTANT A WIDTH=5;
CONSTANT A USED=3;
CONSTANT OUTPUTS=8;
CONSTANT D WIDTH=10;

SUBDESIGN outltch
(

CLK, RESET: INPUT;
A[A WIDTH−1. .0]:INPUT;
D[D WIDTH−1. .0]: INPUT; 20
cs/: INPUT;
wr/: INPUT;

EndIntervalInterval: INPUT;

−−Asynchronous outputs
DOUTA[OUTPUTS−1. .0][D WIDTH−1. .0]: OUTPUT;
−−outputs synchronous to interval
DOUTS[OUTPUTS−1. .0][D WIDTH−1. .0]: OUTPUT;

) 30

VARIABLE
ILATCH [OUTPUTS−1. .0]: LPM FF with (LPM WIDTH=D WIDTH);
OLATCH[OUTPUTS−1. .0]: LPM FF with (LPM WIDTH=D WIDTH);

BEGIN

ILATCH [].DATA []=D[]; 40
ILATCH [].ENABLE=lpm decode(.data[]=A[], .enable=!cs/)
WITH (LPM WIDTH=A WIDTH, LPM DECODES=OUTPUTS);

ILATCH [].CLOCK=wr/;
ILATCH [].ACLR=RESET;

OLATCH[].DATA []=ILATCH [].Q[];
OLATCH[].ENABLE=EndInterval;
OLATCH[].CLOCK=CLK;
OLATCH[].ACLR=RESET; 50

DOUTA[][]=ILATCH [].q[];
DOUTS[][]=OLATCH[].q[];

% DOUT[][]=lpm ff
(

.data[]=ILATCH[].q[],

.enable=EndInterval,

.clock=CLK, 60

.aclr=RESET
)
with
(

LPM WIDTH=D WIDTH
);

%

END;

A.4.6 pwmst.tdf

%==
generates a sequence of states corresponding to the output PWM
vectors. This does not allow for dead time and doesnt calcuate
the actual vector (done in swgen.tdf).
==%
TITLE "PWM State Generator";

INCLUDE "pwm_comm";

−−Counter preload multiplexer settings 10
CONSTANT SelT0= 0;
CONSTANT SelT1=2;
CONSTANT SelT2=3;
CONSTANT SelT0over2=1;

% in pwmcomm
–Output States
CONSTANT ST0A=0;
CONSTANT ST0B=1;
CONSTANT ST1=2; 20
CONSTANT ST2=3;
%

SUBDESIGN pwmst
(

CLK, RESET: INPUT;
T0[9. .0], T1[9. .0], T2[9. .0]: INPUT;
NewInterval: INPUT;

PWMSwitch, PWMState[1. .0]: OUTPUT; 30
)

VARIABLE

−−state machine
P1: machine with states(T0E,T0S,T1S,T2S,T0M,T2E,T1E);

−−nodes to implement an OR function on the inputs
T1NZ, T2NZ: NODE;

40
−−time delay counter
PCNT[9. .0]: DFF;
PCNTsrc[1. .0]: NODE;
PCNTload: NODE;
EndCountCount: NODE;

BEGIN
DEFAULTS

PCNTLoad=GND; −−dont preload conter unless specified 50
END DEFAULTS;

−−Outputs
if P1==T0E then

PWMSwitch=NewInterval;
else

PWMSwitch=EndCount;
end if;
−−on all states except T0E, the end of the state is denoted by EndCount, but
−− on T0E, it waits for NewInterval in order to ensure synchonisation 60

A.4. Modulation Firmware 213

−−state machine
P1.clk = CLK;
P1.reset= RESET;

−−time delay counter
PCNT[].clk=CLK;
if PCNTload then

case PCNTsrc[] is
when SelT0=> PCNT[].d = T0[]; 70
when SelT1=> PCNT[].d = T1[];
when SelT2=> PCNT[].d = T2[];
when SelT0over2=> PCNT[8. .0].d = T0[9. .1]; PCNT[9].d=GND;

end case;
else

PCNT[].d = PCNT[].q−1;
end if;
if PCNT[].q==1 then EndCountCount=vcc; else Endcountcount=gnd; end if;

−−Tx=0 detectors 80
if T1[]==0 then T1NZ=gnd; else T1NZ=vcc; end if;
if T2[]==0 then T2NZ=gnd; else T2NZ=vcc; end if;
case(P1) is

when T0E=>
−−wait in this state for the NewInterval signal to indicate the
−−start of a new 1024 clock interval
if NewInterval then

PCNTLoad=VCC; −−load the new T0/2
PCNTsrc[]=SelT0over2;
P1=T0S; 90

end if;
PWMState[]=ST0A;

−−in each of the following states, if the state counter has reached the
−−end of count, a branch is made to the next state in the sequence.
−−If the next is zero in length, it is skipped and instead the following
−−one is used.
when T0S=>

if (!T1NZ & !T2NZ) then P1=T0E; 100
−−if both T1 and T2 are zero, then go straight to the end of the
−−control interval, as no switching is required.

else

if EndCountCount then
PCNTLoad=VCC;
if T1NZ then

PCNTsrc[]=SelT1; P1=T1S;
else
PCNTsrc[]=SelT2; P1=T2S; 110
end if;

end if;
PWMState[]=ST0A;

end if;

when T1S=>
if EndCountCount then

PCNTLoad=VCC; 120
if T2NZ then

PCNTsrc[]=SelT2; P1=T2S;
else

PCNTsrc[]=SelT0; P1=T0M;
end if;

end if;
PWMState[]=ST1;

when T2S=>
if EndCountCount then 130

PCNTLoad=VCC;
PCNTsrc[]=SelT0; P1=T0M; −−T0 is not zero, so must go there

end if;
PWMState[]=ST2;

when T0M =>
if EndCountCount then

PCNTLoad=VCC;
if T2NZ then

PCNTsrc[]=SelT2; P1=T2E; 140
else

PCNTsrc[]=SelT1; P1=T1E;
end if;

end if;
PWMState[]=ST0B;

when T2E=>
if EndCountCount then

PCNTLoad=VCC;
if T1NZ then 150

PCNTsrc[]=SelT1; P1=T1E;
else

PCNTsrc[]=SelT0over2; P1=T0E;
end if;

end if;

PWMState[]=ST2;

when T1E=>
if EndCountCount then

PCNTLoad=VCC; 160
PCNTsrc[]=SelT0over2; P1=T0E;

end if;
PWMState[]=ST1;

end case;
END;

A.4.7 swgen.tdf

%==
Calculates the switching vectors based on the state in the sequence and
allows for dead time.
==%
TITLE "Switching Generator";

INCLUDE "pwm_comm";
INCLUDE "dead";

10
−− Space vector firing allocations for phases “ABC”
CONSTANT V0=B"000";
CONSTANT V1=B"100";
CONSTANT V2=B"110";
CONSTANT V3=B"010";
CONSTANT V4=B"011";
CONSTANT V5=B"001";
CONSTANT V6=B"101";
CONSTANT V7=B"111";

20

SUBDESIGN swgen
(

CLK, RESET: INPUT;
PWMSwitch: INPUT; −−1 to indicate a change in the PWMState after the

−−next clock
PWMState[1. .0]: INPUT; −−the state in the pwm sequence
Sector[2. .0]: INPUT; −−current operation sector - defn in pwmcomm.inc

−−these two together give the vector.
30

IPOS[2. .0]: INPUT; −−1 if current is +ve for each A,B,C
DeadTime[5. .0]: INPUT; −−clock counts for dead time
DeadCmpEna: INPUT; −−when high, enables the dead time compensation.

OutTop[2. .0]: OUTPUT; −−output device drive signals — active high
OutBot[2. .0]: OUTPUT;

)

VARIABLE 40
CVector[2. .0]: NODE;
DT: Dead;

BEGIN

−−determine the current vector
−−this is interpreting the Firing order column in Table 1
case(PWMState[]) is

when ST0A=> CVector[]=V0;
when ST0B=> CVector[]=V7; 50
when ST1=>

case(Sector[]) is
when Sect1, Sect6=> CVector[]=V1;
when Sect2, Sect3=> CVector[]=V3;
when Sect4, Sect5=> CVector[]=V5;

end case;
when ST2=>

case(Sector[]) is
when Sect1, Sect2=> CVector[]=V2;
when Sect3, Sect4=> CVector[]=V4; 60
when Sect5, Sect6=> CVector[]=V6;

end case;
end case;

dt.clk=clk;
dt.reset=reset;

dt.IPos[]=IPos[];
dt.DEV IN[]=CVector[];
dt.DEAD TIME[]=DeadTime[]; 70
dt.DeadCmpEna=DeadCmpEna;

OutTop[]=dt.OutTop[];
OutBot[]=dt.OutBot[];

END;

215

Appendix B

Hardware Implementation Details

B.1 Introduction

The hardware design shares some of the design elements with the software based controller. The
core difference is that the software program cc1.c has been replaced with an ALU, a sequencer and
the control algorithm written in microcode. In this chapter, the additional Altera firmware design is
first presented. Following this, the control algorithm in microcode is presented. Finally, the code to
convert this to the internal representation is shown.

B.2 Altera Design Files

The top-level design file for the hardware implementation is if vsd.gdf. A number of files are
common with the TMS320C31 design which has already been detailed. The following files are part
of this design, but are included in the previous chapter:

Input Module

• gr2bin

• lim mux

• p div

• rx seq

• scompare

• ser in

PWM Module

• dead

• dead cmp

• dead tme

• pwmst

• swgen

216 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

B.2. Altera Design Files 217

B.2.1 if vsd.gdf

tr
ip

en
ab

le
on

ly
af

te
r

a
re

se
t

re
ge

n
on

re
ge

n
of

f

C
30

on
J6

D
at

a
se

nt
ba

ck
to

18
6

C
ur

re
nt

s

R
ot

at
io

n
an

gl
e

In
du

ct
an

ce
es

tim
at

e

P
ro

ce
ss

or
in

te
rr

up
t

if_
vs

d.
gd

f:
To

p-
le

ve
ls

ch
em

at
ic

fo
r

th
e

F
LE

X
10

K
ha

rd
w

ar
e

cu
rr

en
tc

on
tr

ol
le

r

if_
vs

d@
13

8
B

R
E

S
O

U
T

IN
P

U
T

if_
vs

d@
92

R
_S

W
IT

C
H

IN
P

U
T

if_
vs

d@
25

E
R

R
_B

R
A

K
E

IN
P

U
T

P
O

S
[9

..0
]

IN
P

U
T

if_
vs

d@
8

ID
C

IN
P

U
T

if_
vs

d@
30

E
R

R
_H

B
3

IN
P

U
T

if_
vs

d@
29

E
R

R
_H

B
2

IN
P

U
T

if_
vs

d@
28

E
R

R
_H

B
1

IN
P

U
T

if_
vs

d@
7

V
D

C
IN

P
U

T

if_
vs

d@
9

IC
IN

P
U

T

if_
vs

d@
12

IB
IN

P
U

T

if_
vs

d@
13

IA
IN

P
U

T

if_
vs

d@
91

C
LK

IN
P

U
T

if_
vs

d@
10

0
B

D
R

Q
1

IN
P

U
T

if_
vs

d@
10

2
B

D
R

Q
0

IN
P

U
T

B
A

[7
..1

]
IN

P
U

T

B
P

C
S

_[
5.

.0
]

IN
P

U
T

if_
vs

d@
12

7
B

R
E

S
O

U
T

_
IN

P
U

T

if_
vs

d@
12

9
B

C
LK

1
IN

P
U

T

if_
vs

d@
13

2
B

D
E

N
_

IN
P

U
T

if_
vs

d@
13

9
B

R
E

S
IN

IN
P

U
T

if_
vs

d@
99

B
W

R
_

IN
P

U
T

if_
vs

d@
10

1
B

R
D

_
IN

P
U

T

if_
vs

d@
10

3
B

A
LE

IN
P

U
T

if_
vs

d@
10

6
B

T
M

R
O

U
T

1
IN

P
U

T

if_
vs

d@
10

8
B

T
M

R
O

U
T

0
IN

P
U

T

if_
vs

d@
12

8
B

C
LK

2
IN

P
U

T

if_
vs

d@
13

1
B

D
T

_R
IN

P
U

T

B
D

[7
..0

]
B

ID
IR

B
IN

T
R

[7
..0

]
O

U
T

P
U

T

if_
vs

d@
14

2
S

Y
N

C
O

U
T

P
U

T

if_
vs

d@
22

1
LE

D
O

U
T

P
U

T

if_
vs

d@
34

D
R

_E
N

A
B

LE
O

U
T

P
U

T

if_
vs

d@
44

R
E

G
E

N
/

O
U

T
P

U
T

if_
vs

d@
72

O
V

F
L

O
U

T
P

U
T

O
U

T
B

O
T

[2
..0

]
O

U
T

P
U

T

O
U

T
TO

P
[2

..0
]

O
U

T
P

U
T

if_
vs

d@
14

1
E

N
D

IN
T

E
R

V
A

L
O

U
T

P
U

T

if_
vs

d@
6

S
C

LK
O

U
T

P
U

T

G
N

D

G
N

D

G
N

D

G
N

D

GND

W
IR

E

W
IR

E

W
IR

E

W
IR

E

W
IR

E

W
IR

E

W
IR

E

W
IR

E

W
IR

E

W
IR

E

W
IR

E

W
IR

E

W
IR

E

D

D
F

F
E E

N
A C
LR

N

Q
P

R
N

V
C

C

LP
M

_A
V

A
LU

E
=

LP
M

_S
V

A
LU

E
=

LP
M

_W
ID

T
H

=
10

en
ab

le

da
ta

[]
q[

]

LP
M

_D
F

F

N
O

T N
O

T

N
O

T

A
N

D
2

JK
F

F

C
LR

N

Q

KJ
P

R
N

O
R

2

B
A

N
D

2

B
P

C
S

_[
5.

.0
]

B
P

C
S

_[
2]

B
P

C
S

_[
3]

V
O

U
T

[1
5.

.0
][7

..0
]

V
O

U
T

[3
][7

..0
]

ID
R

E
F

[7
..0

]
V

O
U

T
[4

][7
..0

]

V
O

U
T

[5
][7

..0
]

ID
R

E
F

[1
5.

.8
]

V
O

U
T

[7
][7

..0
]

IQ
R

E
F

[1
5.

.8
]

V
O

U
T

[6
][7

..0
]

IQ
R

E
F

[7
..0

]

B
IN

T
R

[0
]

IA
[1

1.
.0

]

IB
[1

1.
.0

]

IC
[1

1.
.0

]

V
IN

[1
5.

.0
][7

..0
]

LE
H

[1
5.

.0
]

V
IN

[1
][7

..0
]

V
IN

[0
][7

..0
]

IB
[1

1.
.4

]

IA
[1

1.
.4

]

V
IN

[3
][7

..0
]

V
IN

[2
][7

..0
]

V
IN

[5
][7

..0
]

V
IN

[4
][7

..0
]

LE
H

[1
5.

.8
]

LE
H

[7
..0

]

V
IN

[6
][7

..0
]

B
P

O
S

[7
..0

]

B
P

O
S

[9
..8

]
V

IN
[7

][1
..0

]
V

IN
[7

][7
..2

]

V
O

U
T

[0
][7

]

ID
R

E
F

[1
5.

.0
]

IQ
R

E
F

[1
5.

.0
]

V
O

U
T

[1
][5

..0
]

V
O

U
T

[0
][5

..0
]

V
O

U
T

[9
][7

..0
]

V
O

U
T

[8
][7

..0
]

B
IN

T
R

[7
..0

]

D
oT

rip

D
oT

rip

D
oT

rip

B
P

O
S

[9
..0

]
E

N
D

IN
T

E
R

V
A

L

IC
[1

1.
.4

]

V
IN

[1
5.

.8
][7

..0
]

B
IN

T
R

[7
..1

]

218 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

B.2.2 if186.gdf
if186.gdf: interface to the 186 processor

CLK
INPUT

RD_
INPUT

VIN[15..0][7..0]
INPUT

CS_CTRL
INPUT

WR_
INPUT

CS_DATA
INPUT

Q[8..1]

CLK

D[8..1]

CLRN

74273b

OCTAL D-FF

Q[8..1]

CLK

D[8..1]

CLRN

74273b

OCTAL D-FF

VCC

V
C

C
V

C
C

VCC

D

DFF

CLRN

Q
PRND

DFF

CLRN

Q
PRN

D

DFF

CLRN

Q
PRN

NOT

AND2

LPM_WIDTH=8

result[]

data[]

tridata[]

enabledt

enabletr

LPM_BUSTRI

D[7..0]
BIDIR

BAND2

BNAND2

BNAND2

VOUT[15..0][7..0]
OUTPUT

B.2. Altera Design Files 219

B.2.3 inp stg.gdf

Regen on

Regen off

inp_stg.gdf: Input stage for hardware version

RESET
INPUT

GOTSAMPLES
INPUT

TOVER80[5..0]
INPUT

S_DCV
INPUT

VH_MIN[7..0]
INPUT

VH_MAX[7..0]
INPUT

V_MIN[7..0]
INPUT

V_MAX[7..0]
INPUT

S_IC
INPUT

S_IA
INPUT

S_IB
INPUT

CLK
INPUT

I_MAX[7..0]
INPUT

NOT

NOT

NOT

NOT

NOT

V[11..0]
OUTPUT

LinkTripOUTPUT

IA[11..0]OUTPUT

SCLK
OUTPUT

IC[11..0]
OUTPUT

ITrip
OUTPUT

TXWAIT
OUTPUT

T0WAITOUTPUT

ENDINTERVALOUTPUT

REGEN
OUTPUT

VTripOUTPUT

IPOS[2..0]
OUTPUT

IB[11..0]
OUTPUT

OR4

OR2

OR2

OR2

OR2

OR2

JKFF

CLRN

Q

K

J

PRN

OR3

220 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

B.2.4 pwm.gdf

pw
m

.g
df

:
P

W
M

ge
ne

ra
to

r

C
LK

IN
P

U
T

IS
E

LT
2

IN
P

U
T

IS
E

LT
1

IN
P

U
T

IS
E

LT
0

IN
P

U
T

IV
A

L[
9.

.0
]

IN
P

U
T

IS
E

C
TO

R
S

E
L

IN
P

U
T

IS
E

C
TO

R
[2

..0
]

IN
P

U
T

E
nd

In
te

rv
al

IN
P

U
T

D
E

A
D

T
IM

E
[5

..0
]

IN
P

U
T

IP
O

S
[2

..0
]

IN
P

U
T

R
E

S
E

T
IN

P
U

T

O
U

T
B

O
T

[2
..0

]
O

U
T

P
U

T

T
0[

9.
.0

]
O

U
T

P
U

T

ne
w

in
te

rv
al

O
U

T
P

U
T

O
U

T
TO

P
[2

..0
]

O
U

T
P

U
T

B.2. Altera Design Files 221

B.2.5 vsd1.gdf
vsd1.gdf: The ALU and Sequencer

CLK
INPUT

TxWait
INPUT

T0Wait
INPUT

RESET
INPUT

DCV[11..0]
INPUT

IDREF[15..0]
INPUT

IQREF[15..0]
INPUT

IA[11..0]
INPUT

IB[11..0]
INPUT

IC[11..0]
INPUT

T2SOUTPUT

LEH[15..0]OUTPUT

T1S
OUTPUT

T0SOUTPUT

GotCurrentsOUTPUT

LOVFL
OUTPUT

DATA_OUT[15..0]
OUTPUT

RAMOUT[15..0]
OUTPUT

Sector[2..0]
OUTPUT

LPM_AVALUE=
LPM_SVALUE=
LPM_WIDTH=5

data[]
q[]

LPM_DFF

LeNZ

LeL[15..0]

LeH[15..0]

LEL[15..0]

LeNZ

LEH[15..0]

222 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

B.2.6 vsdtop.gdf

vs
dt

op
.g

df
:

T
he

co
nt

ro
lle

r
its

el
f,

w
ith

ou
tt

he
in

te
rf

ac
e

ID
R

E
F

[1
5.

.0
]

IN
P

U
T

V
H

_M
IN

[7
..0

]
IN

P
U

T

V
H

_M
A

X
[7

..0
]

IN
P

U
T

C
LK

IN
P

U
T

R
E

S
E

T
IN

P
U

T

IQ
R

E
F

[1
5.

.0
]

IN
P

U
T

TO
V

E
R

80
[5

..0
]

IN
P

U
T

S
_D

C
V

IN
P

U
T

S
_I

C
IN

P
U

T

S
_I

B
IN

P
U

T

S
_I

A
IN

P
U

T

D
ea

dT
im

e[
5.

.0
]

IN
P

U
T

I_
M

A
X

[7
..0

]
IN

P
U

T

V
_M

A
X

[7
..0

]
IN

P
U

T

V
_M

IN
[7

..0
]

IN
P

U
T

O
U

T
TO

P
[2

..0
]

O
U

T
P

U
T

E
N

D
IN

T
E

R
V

A
L

O
U

T
P

U
T

V
T

R
IP

O
U

T
P

U
T

R
E

G
E

N
O

U
T

P
U

T

LE
H

[1
5.

.0
]

O
U

T
P

U
T

IC
[1

1.
.0

]
O

U
T

P
U

T

IB
[1

1.
.0

]
O

U
T

P
U

T

IA
[1

1.
.0

]
O

U
T

P
U

T

IN
T

_S
T

B
O

U
T

P
U

T
S

C
LK

O
U

T
P

U
T

LT
R

IP
O

U
T

P
U

T
IT

R
IP

O
U

T
P

U
T

LI
N

K
T

R
IP

O
U

T
P

U
T

O
U

T
B

O
T

[2
..0

]
O

U
T

P
U

T

G
ot

C
ur

re
nt

s

G
ot

C
ur

re
nt

s

E
nd

In
te

rv
al

E
nd

In
te

rv
al

B.2. Altera Design Files 223

B.2.7 aalu.tdf

%==
aalu.tdf

The ahdl alu design
==%

TITLE "AHDL ALU";

INCLUDE "pwm_comm";
INCLUDE "lpm_ram_dq"; 10
INCLUDE "lpm_add_sub";
INCLUDE "lpm_mux";
INCLUDE "aalu_h";

SUBDESIGN aalu
(

CLK, RESET: INPUT;
R1i[1. .0],R2i[3. .0],R3i[2. .0],R4i[0. .0]: INPUT;
DATA IN[15. .0]: INPUT; 20
M ADDR[4. .0]: INPUT;
DATA OUT[15. .0]: OUTPUT;
Sign, Overflow: OUTPUT; −−valid in R2 cycle

RAMOUT[15. .0]: OUTPUT;
)

VARIABLE

ADDR[4. .0]: DFF; 30
R1[1. .0],R2[3. .0],R3[2. .0],R4[0. .0]: DFF;

RG1[15. .0], RG2[31. .0], RG3[31. .0]: DFF;
InputSign: NODE;
AddSrc1[15. .0],AddSrc3[15. .0]: NODE;
AddRes[15. .0]: NODE;
SHI[3. .0][31. .0],SHO[31. .0]: NODE;
Booth[1. .0]: NODE;
SignDiff, SignDiffL, SignChg: NODE;
SignL: DFF; 40
MUL1 R2[3. .0]: NODE;
DIV1 R2[3. .0]: NODE;
DIV3 R2[3. .0]: NODE;

OverflowL: DFF;

MEM: lpm ram dq WITH (LPM WIDTH=16, LPM WIDTHAD=5,
LPM NUMWORDS=32, LPM FILE="regs.mif",
LPM INDATA ="UNREGISTERED",
LPM ADDRESS CONTROL="REGISTERED", 50
LPM OUTDATA="UNREGISTERED");

ADDER: lpm add sub WITH (LPM WIDTH=16,
LPM REPRESENTATION="SIGNED");

SMUX: lpm mux with(LPM WIDTH=32, LPM WIDTHS=2, LPM SIZE=4);

BEGIN

RAMOUT[15. .0]=MEM.q[];

60
−− multiplication node defines ———————————————-
case(Booth[]) is

when B"00" => MUL1 R2[]=R3 LD; −− just shift
when B"11" => MUL1 R2[]=R3 LD; −− just shift
when B"01" => MUL1 R2[]=R1R3 ADD; −− add and shift
when B"10" => MUL1 R2[]=R1R3 SUB; −− sub and shift

end case;

−− division node defines —————————————————–
if (SignDiff) then 70

DIV1 R2[]=R1R3 ADD;
else

DIV1 R2[]=R1R3 SUB;
end if;

if (SignChg) then
DIV3 R2[]=DIV1 R2[];

else
DIV3 R2[]=R3 LD;

end if; 80
%

if (SignDiffl) then
DIV4 R3[]=R2 SHL0;

else
DIV4 R3[]=R2 SHL1; –shift

end if;
%

−−Generate Command Inputs——————————————— 90

−−multiplex RXi[] for dual-processor
R1[].clk=CLK; R2[].clk=CLK; R3[].clk=CLK; R4[].clk=CLK;
ADDR[].clk=CLK; ADDR[].d=M ADDR[];

R1[].d=R1i[];
−−NOTE!!! REGISTER MEMORY USES R1i[]

if !R2i[3] then
R2[].d=R2i[];

else 100
case R2i[] is

when R1R3MUL1=> R2[].d=MUL1 R2[];
when R1R3DIV1=> R2[].d=DIV1 R2[];
when R1R3DIV3=> R2[].d=DIV3 R2[];
when R1ABS=> if InputSign then

R2[].d=R1 LDN;
else

R2[].d=R1 LD;
end if;

end case; 110
end if;

R3[1. .0].d=R3i[1. .0];
R3[2]=R3i[2]&!SignDiffl; −−assume that a shift in of 1 command means

−−a divide operation
R4[].d=R4i[];

−−R1 Inputs
RG1[].clk=CLK; 120
case R1[] is

when MEM RD => RG1[].d=MEM.q[]; InputSign=MEM.q[15];
when EXT RD => RG1[].d=DATA IN[]; InputSign=DATA IN[15];
when R2RD => RG1[].d=DATA OUT[]; InputSign=DATA OUT[15];
when MEM WR => RG1[].d=DATA OUT[]; InputSign=DATA OUT[15];

end case;

−−Adder Inputs;
AddSrc3[15. .0]=RG3[31. .16] & R2[2];
AddSrc1[15. .0]=RG1[15. . 0] & R2[1]; 130

−− if R2[2] then AddSrc3[15. .0]=RG3[31. .16]; else AddSrc3[]=0; end if;
−− if R2[1] then AddSrc1[15. .0]=RG1[15. .0]; else AddSrc1[]=0; end if;

−−R2 Inputs (Adder);
RG2[].clk=CLK;

%
if R2[0] then –add

AddRes[]=AddSrc1[]+AddSrc3[];
Overflow=(AddSrc1[15]& AddSrc3[15]&!AddRes[15])# 140

(!AddSrc1[15]&!AddSrc3[15]& AddRes[15]);
else –subtract

AddRes[]=AddSrc1[]-AddSrc3[];
Overflow=(AddSrc1[15]&!AddSrc3[15]&!AddRes[15])#

(!AddSrc1[15]& AddSrc3[15]& AddRes[15]);
end if;

%
ADDER.dataa[]=AddSrc3[];
ADDER.datab[]=AddSrc1[];
ADDER.add sub=R2[0]; 150
ADDER.cin=!R2[0];

OverflowL.d=ADDER.overflow;
OverflowL.clk=CLK;
Overflow=OverflowL.q;

−− Overflow=GND;
AddRes[]=ADDER.result[];

160
RG2[31. .16].d=AddRes[];
RG2[15. . 0].d=RG3[15. .0];

−−Shifter
SHI[0][]=RG2[].q;
SHI[1][31. .1]=RG2[30. .0]; SHI[1][0]=R3[2];
SHI[2][30. .0]=RG2[31. .1]; SHI[2][31]=RG2[31];
SHI[3][15. .0]=RG2[31. .16]; −−do sign extension

SHI[3][31. .16]=0; −−RG2[31]; –better not to sign extend for multiply
SMUX.data[][]=SHI[][]; 170
SMUX.sel[]=R3[1. .0];
SHO[]=SMUX.result[];

−−Booth multiplication bits - value available on R2 cycle.
Booth[1]=SHO[0];
if R3[]==R2 SHR then Booth[0]=RG2[0]; else Booth[0]=GND; end if;

−−division sign detect bits
SignDiff=InputSign $ RG2[31].q; −−look-ahead xor of R1 and R3 180

−−valid in previous R2 cycle
SignDiffL=RG1[15].q $ RG3[31].q; −−valid in R3 cycle

SignL.d=RG3[31]; −−Store previous sign of R3

224 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

SignL.clk=CLK;
SignChg=SignL.q $ RG2[31].q; −−true if sign od R3 has changed

−−due to last Add, valid in R2

−−Output
if R4[0] then 190

DATA OUT[]=RG2[31. .16];
else

DATA OUT[]=RG2[15. .0];
end if;
Sign=RG2[31]; −−sign valid in R2 cycle

−−Register Memory
MEM.data[]=DATA OUT[];
if R1i[]==MEM WR then MEM.we=VCC; else MEM.we=GND; end if;
MEM.address[]=M ADDR[]; 200
MEM.inclock=CLK;

−−R3 Inputs
RG3[].clk=CLK;
RG3[].d=SHO[];

END;

B.2.8 extmux.tdf

%==
extmux.tdf

the multiplexer to select external source data for the
ALU.
==%
TITLE "External Multiplexer";

INCLUDE "lpm_mux";
10

constant ESIA=0;
constant ESIB=1;
constant ESIC=2;
constant ESDCV=3;
constant ESIDREF=4;
constant ESIQREF=5;
constant ESR4=6;
−−constant EST=7;
−−constant ESTminus2=8;
constant ESDCVover4=9; 20

constant ESLeL=10;
constant ESLeH=11;

SUBDESIGN extmux
(

ADDR[4. .0]: INPUT;
IA [11. .0],IB[11. .0],IC[11. .0],DCV[11. .0]: INPUT;
IDREF[15. .0], IQREF[15. .0]: INPUT;

30
LeH[15. .0], LeL[15. .0]: INPUT;

Result[15. .0]: OUTPUT;
)

VARIABLE

ISel: lpm mux with(LPM WIDTH=16, LPM WIDTHS=4, LPM SIZE=16);

BEGIN 40
ISel.sel[]=Addr[3. .0];

ISel.data[ES IA][11. .0]=IA []; ISel.data[ES IA][15. .12]=IA [11];
ISel.data[ES IB][11. .0]=IB[]; ISel.data[ES IB][15. .12]=IB[11];
ISel.data[ES IC][11. .0]=IC[]; ISel.data[ES IC][15. .12]=IC[11];

−−PATCH FOR LOW VOLTAGE FIX — VOLTAGE IS ALWAYS 1024
ISel.data[ES DCV][]=1024;

ISel.data[ES DCVover4][9. .0]=DCV[11. .2]; 50
ISel.data[ES DCVover4][15. .10]=GND;

ISel.data[ES IDREF][]=IDREF[];
ISel.data[ES IQREF][]=IQREF[];

ISel.data[ES LeL][]=LeL[];
ISel.data[ES LeH][]=LeH[];

Result[]=ISel.result[];
END; 60

B.2.9 if dec.tdf

%==

if dec.tdf

interface between the 186 bus and the logic. Offers

bidirectional latching

==%

INCLUDE "lpm_mux";

INCLUDE "lpm_decode";

10

%———————————————————————-

Command types:

0000 0aaa: 186 writes to latch aaa

0001 0aaa: 186 reads input aaa into the temporary storage latch

———————————————————————-%

SUBDESIGN IF DEC DEC

(20

CLK: INPUT;

Din[7. .0]: INPUT;

Dout[7. .0]: OUTPUT;

CMD[7. .0]: INPUT;

ST: INPUT;

Vout[15. .0][7. .0]: OUTPUT;

Vin[15. .0][7. .0]: INPUT; 30

)

VARIABLE

OMUX: lpm mux with (LPM WIDTH=8,LPM SIZE=16,

LPM WIDTHS=4);

OLTCH[7. .0]: DFFE;

IDEC: lpm decode with(LPM WIDTH=4, LPM DECODES=16);

ILTCH[15. .0][7. .0]: DFFE; 40

BEGIN

−−186 Reads from Altera

OMUX.sel[]=CMD[3. .0];

OMUX.data[][]=Vin[][];

OLTCH[].clk=CLK;

OLTCH[].ena=ST & CMD[4]; −−write to latch

OLTCH[].d=OMUX.result[]; 50

Dout[]=OLTCH[];

−−186 Writes to Altera

IDEC.data[]=CMD[3. .0];

IDEC.enable=ST & !CMD[4];

ILTCH[][].clk=CLK;

FOR i IN 0 TO 15 GENERATE

ILTCH[i][].d=Din[]; −−watch this 60

ILTCH[i][].ena=IDEC.eq[i]; −−and this

END GENERATE;

Vout[][]=ILTCH[][];

END;

B.2. Altera Design Files 225

B.2.10 lest.tdf

%==
lest.tdf

Inductance estimator logic
==%
TITLE "Inductance Estimator";

INCLUDE "lpm_add_sub";

SUBDESIGN Lest 10
(

CLK, RESET: INPUT;

DATA IN[15. .0]: INPUT;
LeAdd: INPUT;
LeH[15. .0],LeL[15. .0]: OUTPUT;
LOvfl: OUTPUT;

LcR, LcU, LcP, LcD: INPUT;
LcNZ: OUTPUT; 20

)

VARIABLE
Lc upc[2. .0], Lc dnc[2. .0]: DFF; −−Up and down inductance counters;

InLatch[15. .0]: DFF;
L Latch[26. .0]: DFF;
DoAdd: DFF;
Adder: lpm add sub with 30

(LPM WIDTH=27, LPM DIRECTION="ADD",
LPM REPRESENTATION="UNSIGNED");

BEGIN

−−input latch
InLatch[].clk=CLK;
InLatch[]=DATA IN[];
−−InLatch[].ena=LeAdd;

−−ADD Pipeline latch 40
DoAdd.clk=CLK;
DoAdd=LeAdd; −−do add on cycle after preload

−−ADDER STUFF
Adder.cin=gnd;
Adder.dataa[]=L Latch[];
Adder.datab[15. .0]=InLatch[]; Adder.datab[26. .16]=InLatch[15];
LOvfl=Adder.cout & DoAdd;

−−Inductance latch 50
if RESET then

L Latch[11. .0]=0; L Latch[26. .12]=200; −−initial L
elsif DoAdd then

L Latch[]=Adder.result[];
else

L Latch[]=L Latch[];
end if;
L Latch[].clk=CLK;
−−L Latch[].ena=DoAdd;
LeH[15]=gnd; LeH[14. .0]=L Latch[26. .12]; 60
LeL[15. .4]=L Latch[11. .0]; LeL[3. .0]=0;

−−Up inductance counter
Lc upc[].clk=CLK;
if LcR then

Lc upc[]=0;
elsif LcU then

Lc upc[]=Lc upc[]+1;
else 70

Lc upc[]=Lc upc[];
end if;

−−Down inductance counter
Lc dnc[].clk=CLK;
if LcP then

Lc dnc[]=Lc upc[];
elsif LcD then

Lc dnc[]=Lc dnc[]−1;
else 80

Lc dnc[]=Lc dnc[];
end if;
−−Output
LcNZ=Lc dnc[0] # Lc dnc[1] # Lc dnc[2];

END;

B.2.11 mcon.tdf

%==
mcon.tdf

The microcode sequencer. Reads values from the microcode
ROM, and generates commands
==%
TITLE "Microcode Controller";

INCLUDE "lpm_rom";
INCLUDE "lpm_mux"; 10
INCLUDE "aalu_h.inc";

CONSTANT Br0=0;
CONSTANT BrSign=1;
CONSTANT BrOverflow=2;
CONSTANT BrCountNZ=3;
CONSTANT BrLeNZ=4;
constant BrT0Wait=5;
constant BrTxWait=6;
CONSTANT Br1=7; 20

constant COMpreload29=1;
constant COMpreload59=2;

constant COMT0s=4;
constant COMT1s=5;
constant COMT2s=6;
constant COMGotCurrents=7;

constant COMSector2Write=8; 30
constant COMSector1Write=9;
constant COMSector0Write=10;

constant COMClearOverflow=11;

constant COMLeUpdate=12;
constant COMLeCUp=13;
constant COMLeCPre=14;
constant COMLeCDown=15;

40
−−constant COMT1Pre1=12;
−−constant COMT1Pre2=13;
−−constant COMT2Pre1=14;
−−constant COMT2Pre2=15;

SUBDESIGN mcon
(

CLK, RESET: INPUT;
Sign, Overflow: INPUT; 50

LeNZ:INPUT;
R1c[1. .0],R2c[3. .0],R3c[2. .0],R4c[0. .0]: OUTPUT;
ADDR[4. .0]: OUTPUT;

CSector[2. .0]: OUTPUT;
LeUpdate,LeCUp,LeCPre,LeCDown: OUTPUT;

T0Wait, TxWait: INPUT;
GotCurrents: OUTPUT; 60
T0s,T1s,T2s: OUTPUT;

)

VARIABLE
SM1: machine with states(Word1,Word1Pre,Word1 2,Word2);
ROM: lpm rom WITH (LPM WIDTH=16,LPM WIDTHAD=9,

LPM FILE="ccprog.mif",
LPM ADDRESS CONTROL="unregistered",
LPM OUTDATA="unregistered");

70
R2comm[3. .0]: DFF;
IAddr[8. .0]: NODE;
AddrLatch[8. .0]: DFF;
BrCond: lpm mux with(LPM WIDTH=1, LPM WIDTHS=3, LPM SIZE=8);

count[5. .0]: DFF;
load count: NODE;
preload[5. .0]: NODE;
Sector[2. .0]: DFFE;

80
Ovfl: DFFE;
NewOvfl: NODE;
ResetOvfl: NODE;

−−prepared instructions
−−R1cP[1. .0],R2cP[3. .0],R3cP[2. .0],R4cP[0. .0]: DFF;

−−UsePrepared: NODE;

BEGIN 90

226 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

DEFAULTS
preload[]=B"XXXXXX";
load count=0;
Sector[].ena=GND;

LeUpdate=gnd; LeCUp=gnd; LeCPre=gnd; LeCDown=gnd;
T0s=gnd; T1s=gnd; T2s=gnd;
GotCurrents=GND;

Ovfl.ena=GND; 100
ResetOvfl=GND;

END DEFAULTS;

−− DEBUGGING
CSector[]=Sector[];

−− counter stuff ————————————————————
count[].clk=CLK; 110
if load count then

count[].d = preload[];
else

count[].d = count[].q−1;
end if;

−− Sector Stuff ————————————————————-
Sector[].clk=CLK;
Sector[].d=Sign;

120
−− State machine
SM1.clk=CLK;
SM1.reset=RESET;

−−Memory latch
AddrLatch[].d=IAddr[];
AddrLatch[].clk=CLK;
AddrLatch[].clrn=!RESET;

−−Memory 130
ROM.MEMENAB=VCC;
ROM.address[]=AddrLatch[]; −−IAddr[];
−−ROM.outclock=CLK;

−−R2 output
R2comm[].clk=CLK;
R2c[]=R2comm[].q;

−−Branch Conditions 140
BrCond.sel[]=ROM.q[6. .4];
BrCond.data[Br0][0]=GND; −−no jump condition
BrCond.data[BrSign][0]=Sign;
BrCond.data[BrOverflow][0]=NewOvfl;
BrCond.data[BrCountNZ][0]=(count[]!=0);
BrCond.data[BrLeNZ][0]=LeNZ;
BrCond.data[BrT0Wait][0]=T0Wait;
BrCond.data[BrTxWait][0]=TxWait;
BrCond.data[Br1][0]=VCC;

150
−−Prepared Instructions
−− R1cP[1. .0].clk=CLK;
−− R2cP[3. .0].clk=CLK;
−− R3cP[2. .0].clk=CLK;
−− R4cP[0. .0].clk=CLK;

Addr[]=ROM.q[14. .10];

−−Overflow 160
Ovfl.clk=CLK;
NewOvfl=(Ovfl#Overflow)&!ResetOvfl;
Ovfl.d=NewOvfl;

−−state machine
case SM1 is

when Word1=> −−first word
R1c[]=ROM.q[1. .0];
R2comm[].d=ROM.q[5. .2];
R3c[]=ROM.q[8. .6]; 170
R4c[]=ROM.q[9];

IAddr[]=AddrLatch[].q+1; −−read next address
if ROM.q[15] then SM1=Word2; else SM1=Word1 2; end if;

when Word12 => −−2nd clock of 1 word sequence
Ovfl.ena=VCC; −−latch in the overflow
IAddr[]=AddrLatch[].q; −−retain the same address
SM1=Word1; 180

when Word2=>
Ovfl.ena=VCC; −−latch in the overflow

if BrCond.result[] then

IAddr[]=ROM.q[15. .7]; −−branch

else

IAddr[]=AddrLatch[].q+1; −−else increment

end if;

−−SM1=Word1; is the default 190

case ROM.q[3. .0] is

when COM preload29=> preload[]=29; load count=VCC;

when COM preload59=> preload[]=59; load count=VCC;

when COM Sector2Write=> Sector[2].ena=VCC;

when COM Sector1Write=> Sector[1].ena=VCC;

when COM Sector0Write=> Sector[0].ena=VCC;

when COM ClearOverflow=> ResetOvfl=VCC;

when COM LeUpdate=> LeUpdate=VCC; 200

when COM LeCUp => LeCUp=VCC;

when COM LeCPre=> LeCPre=VCC;

when COM LeCDown => LeCDown=VCC;

when COM GotCurrents=>GotCurrents=VCC;

when COM T0s=>T0s=vcc;

when COM T1s=>T1s=vcc;

when COM T2s=>T2s=vcc;

210

end case;

SM1=Word1;

end case;

END;

B.2.12 pulselen.tdf

%==

pulselen.tdf

simple pulse lengthenging.

output goes high for 8 cycles when the input goes high

==%

subdesign PulseLen

(10

CLK, in: INPUT;

out: OUTPUT;

)

VARIABLE

Ctr[2. .0]: DFF;

BEGIN

Ctr[].clk=CLK;

20

if in then

Ctr[]=7;

else

if Ctr[]==0 then

Ctr[]=0;

else

Ctr[]=Ctr[]−1;

end if;

end if;

30

out=!(Ctr[]==0) # in;

END;

B.3. Microcode Source Code 227

B.2.13 pwmlatch.tdf

%==
pwmlatch.tdf

Interface between the ALU and PWM generator. Takes the Tx values off a
common bus and latches them for the next PWM cycle. There are two sets of
latches so that the values can be held across the whole cycle.
==%
TITLE "PWM value latch";

INCLUDE "pwm_comm"; 10

SUBDESIGN pwmlatch
(

CLK, RESET: INPUT;
IVal[9. .0]: INPUT;
%IAddr[IAddrLen. .0], ISel: INPUT;%
ISelT0,ISelT1,ISelT2: INPUT; −−active high selects
ISector[2. .0], ISectorSel: INPUT;
EndIntervalInterval: INPUT;

20
NewInterval: OUTPUT;
T0[9. .0], T1[9. .0], T2[9. .0], Sector[2. .0]: OUTPUT;

)

VARIABLE
Interval: DFF; −−flip-flop to delay the EndInterval signal

−−by one clock
L1Sect[2. .0], L2Sect[2. .0]: DFFE;
L1T[2. .0][9. .0], L2T[2. .0][9. .0]: DFFE; 30

BEGIN
DEFAULTS

L1T[][].ena=GND;
L1Sect[].ena=GND;

END DEFAULTS;

−−NewInterval logic
Interval.clk=CLK;
Interval.clrn=!RESET; 40
Interval.d=EndInterval;
NewInterval=Interval.q;

−−INPUT LATCHES
L1Sect[].clk=CLK;
L1Sect[].ena=ISectorSel;
L1Sect[].d=ISector[];

L1T[][].clk=CLK;
L1T[0][].d=IVal[]; L1T[1][].d=IVal[]; L1T[2][].d=IVal[]; 50

%
if ISel then case IAddr[] is

when IAT0 => L1T[0][].ena=VCC;
when IAT1 => L1T[1][].ena=VCC;
when IAT2 => L1T[2][].ena=VCC;

end case; end if;
%

if ISelT0 then L1T[0][].ena=VCC; end if;
if ISelT1 then L1T[1][].ena=VCC; end if;
if ISelT2 then L1T[2][].ena=VCC; end if; 60

−−OUTPUT LATAHES
L2Sect[].clk=CLK;
L2Sect[].ena=EndInterval;
L2Sect[].d=L1Sect[].q;

L2T[][].clk=CLK;
L2T[][].ena=EndInterval;
L2T[][].d=L1T[][].q;

70
−−OUTPUTS
Sector[]=L2Sect[].q;
T0[]=L2T[0][].q; T1[]=L2T[1][].q; T2[]=L2T[2][].q;

END;

B.3 Microcode Source Code

The control algorithm itself is described in a microcode. This section contains that microcode in a
source format. The complier in the next section is used to convert the source into the final binary
code.

B.3.1 ccprog.vmc

//==
// ccprog.vmc
//
// Source code for the variable speed drive current controller.
//==

//——————
//External Sources
//—————— 10
constant ESIA=0;
constant ESIB=1;
constant ESIC=2;
constant ESDCV=3;
constant ESIDREF=4;
constant ESIQREF=5;
constant ESR4=6;
//constant EST=7;
//constant ESTminus2=8;
constant ESDCVover4=9; 20

constant ESLeL=10;
constant ESLeH=11;

//——————
//MEMORY ADDRESSES
//——————
//direct axis currents
int ID0L=0; // t=-1
int ID2L=0; // t=-0.5 30
int ID0=0; // t= 0
int ID4=0; // t= 0.25
int ID2=0; // t= 0.5
//quadrature axis currents
int IQ0L=0; // t=-1
int IQ2L=0; // t=-0.5

int IQ0=0; // t=0
int IQ2=0; // t=0.5
//reference currents
int IDR=0; //direct*3 40
int IQR=0; //quadrature*sqrt(3)

int L EST=873; //inductance estimate -
//L/6V*2^(16-k) where k is stored in
//the inductance counter

int alphaD=0;
int alphaQ=0;
int alphaDL=0;
int alphaQL=0;
int ABSalphaD; 50
int ABSalphaQ;
int T0; //PWM times
int T1=453;
int T2=789;
int MR R1; //GP reg
int MaxPreAlpha=16383;
int Tminus2=638; // T/2-2 510
int T=640; // T/2 512
int vtwo=2; // 2
int Root3over4=28378; //used to calc reference 60

//iq*sqrt(3) (not implemented)

//——————
//Branch Conditions
//——————
constant Br0=0;
constant BrSign=1;
constant BrOverflow=2;
constant BrCountNZ=3;
constant BrLeNZ=4; 70
constant BrT0Wait=5;
constant BrTxWait=6;
constant Br1=7;

//——————
//Commands

228 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

//——————
//commands 1 and 2 are reserved for multiply
// and divide counter preload
constant COMtest0=4; 80
constant COMtest1=5;
constant COMtest2=6;

constant COMGotCurrents=7; //!!!

constant COMSector2Write=8;
constant COMSector1Write=9;
constant COMSector0Write=10;

constant COMClearOverflow=11; 90

constant COMLeUpdate=12;
constant COMLeCUp=13;
constant COMLeCPre=14;
constant COMLeCDown=15;

//Note: units of T are not explicitly specified. The only
//points where this is important are the initial values of
//the inductance and in the values of T, Tminus2 etc. The 100
//largest value of T usable with this arithmetic is 2048 —
//to prevent overflow.

//————————————————–
// WAIT FOR T=0
// Read In Currents at T=0
// and do 3-phase to 2-phase converstion of currents
//————————————————–

LABEL WaitT0; 110
if BrT0Wait goto WaitT0;
a=ID0; ID0L=ah; //store last ID0 as ID0L
a=IQ0; IQ0L=ah; //store last IQ0 as IQ0L

//IQ0=ES IB-ES IC
//—————-
a=ES IB;
a=a−ES IC;
IQ0=ah;

120
//ID0=2*ES IA-ES IB-ES IC;
//———————–
a=ZERO;
a=a>>sixteen+ES IA ;
a=a*two−ES IB;
a=a−ES IC;
ID0=ah;
COM GotCurrents;

//calc the L/3 estimate 130
// = min(t1,t2)*V/2/3/abs(delta i1-delta i2)
//—————————————————————
//any overflow will be trapped at the end
//and will cause the inductance estimate
//to be ignored.
a=ID4;
a=a*two−ID0L;
a=a−ID2;
a=abs(ah);
MR R1=ah; //store abs\delta i 1-\delta i 2 in MR R1 140
a=a*two+MR R1;
MR R1=ah; //3*abs(. . .)

a=T1; //get min (T1,T2)
a=a−T2;
if BrSign goto HaveTx; a=T1;
a=T2;

LABEL HaveTx;
a=a>>sixteen*ES DCV*two; //get 2TxV
a=a/two; //a=TxV 150
a=a−MR R1; //check if the result is usable
if BrSign goto LeSizeOK; a=a+MR R1;
if Br1 goto LUpdateOvfl;

LABEL LeSizeOK;
a=a/MR R1/two;

if BrOverflow goto LUpdateOvfl;
//dont update if there was an overflow
//sub instr cannot ovfl as it is +ve - +ve

a=al; //now have TxV/2abs(. . .) = L/3V 160

if Br1 goto LUpdate; //sub off existing estimate to give
a=a−ES LeH; //amount to add to inductance estimate

LABEL LUpdateOvfl;
COM ClearOverflow;
a=ZERO; //do an update of zero to reset the counter

//in the event of an overflow.
LABEL LUpdate;

out(ah); 170

COM LeUpdate; //update the inductance

//————————————————–
// WAIT FOR T=0.25
// Read In Currents at T=0.25
// and do 3-phase to 2-phase converstion of currents
// (Direct axis only)
//————————————————–
//ID4=2*ES IA-ES IB-ES IC;
//———————– 180
a=ZERO;

LABEL WaitT4;
if BrTxWait goto WaitT4;
a=a>>sixteen+ES IA ;
a=a*two−ES IB;
a=a−ES IC;
ID4=ah;
COM GotCurrents;

//Find L/6V 190
//———-
a=ES LeL; //load L/3
a=a>>sixteen+ES LeH;

//to make the alphas bigger for more precision,
//could add COMLeCUp commands here

LABEL LVLoop; //make sure division will not overflow
a=a−ES DCV;
if BrSign goto LVLoopEnd; 200
a=a+ES DCV;
COM LeCUp;
if Br1 goto LVLoop;
a=a/two;

LABEL LVLoopEnd;
a=a/ES DCV/two; //have L/6V
L EST=al;

210
a=ID2; ID2L=ah; //store last ID2 as ID2L
a=IQ2; IQ2L=ah; //store last IQ2 as IQ2L

//————————————————–
// WAIT FOR T=0.5
// Read In Currents at T=0.5
// and do 3-phase to 2-phase converstion of currents
//————————————————–

LABEL WaitT2;
if BrTxWait goto WaitT2; 220
a=ES IDREF; IDR=ah;
a=ES IQREF; IQR=ah;

//IQ2=ES IB-ES IC
//—————-
a=ES IB;
a=a−ES IC;
IQ2=ah;

//ID2=2*ES IA-ES IB-ES IC; 230
//———————–
a=ZERO;
a=a>>sixteen+ES IA ;
a=a*two−ES IB;
a=a−ES IC;
ID2=ah;
COM GotCurrents;

//—————————–
// CALCULATE DIRECT AXIS ALPHA 240
//—————————–
//alphaD=2*alphaD(L)-alphaDL(L)+
// 2*Lover6V*(IDR-4*ID2+3*ID0+ID2L-ID0L)
//alphaDL=alphaD(L)
a=−ah;
a=a*two+ID0;
a=a*two+ID0;
a=a+ID2;
a=a−ID0;
a=a+IDR; 250
ABSalphaD=ah; //temp store this result so that the

//sign of it may be used if there is
//an overflow in calculating alpha

COM LeCPre; //preload inductance counter

a=a>>sixteen*L EST*two; //multiply by L/3V

COM LeCDown; //count down after branch
if BrLeNZ goto LCLoopD; //do shifting if necessary 260
if Br1 goto LCLoopEndD;

LABEL AD MagError;

B.3. Microcode Source Code 229

//————————————————————–
//Magnitude Error in product
//so just give the maximium allowable magnitude instead of the
//multiplication result
COM ClearOverflow;
a=ABSalphaD; 270
if BrSign goto AD Store; a=−MaxPreAlpha;
if Br1 goto AD Store; a= MaxPreAlpha;

//————————————————————–

//loop to do 2̂ n adjustment of the product
LABEL LCLoopD; //multiply by two until count is zero

COM LeCDown; //this loop must be one instruction!!!
if BrLeNZ goto LCLoopD;
a=a*two;

280
LABEL LCLoopEndD;

//combine with previous alphas
a=a−alphaD; //sub off alpha(t-2)
MR R1=ah; //store result
a=ZERO;
a=a>>sixteen+alphaD; //before updating alphaDL
alphaDL=ah;
a=a*two+MR R1; //then add 2*last

290
LABEL AD Store;

//Write the new desired alphaD
alphaD=ah;
COM Sector2Write;
if BrOverflow goto AD MagError; //if there was overflow, fix it

a=abs(ah); //store the absolute value of alphaD
ABSalphaD=ah;

LABEL CalcAQ; 300
//——————————–
// CALCULATE QUADRATURE AXIS ALPHA
//——————————–
//alphaQ=2*alphaQ(L)-alphaQL(L)+
// L/3V*(IQR-4*IQ2+3*IQ0+IQ2L-IQ0L)
//alphaQL=alphaQ(L);
a=ZERO; //purge lower 16 bits
a=a>>sixteen−IQ2;
a=a*two+IQ0;
a=a*two+IQ0; 310
a=a+IQ2;
a=a−IQ0;
a=a+IQR;
ABSalphaQ=ah; //temp store this result so that the

//sign of it may be used if there is
//an overflow in calculating alpha

COM LeCPre; //preload inductance counter

a=a>>sixteen*L EST*two; //multiply by 2L/3V 320

COM LeCDown; //count down after branch
if BrLeNZ goto LCLoopQ; //do shifting if necessary
if Br1 goto LCLoopEndQ;

LABEL AQ MagError;
//————————————————————–

//Magnitude Error in product
//so just give the maximium allowable magnitude instead of the 330
//multiplication result
COM ClearOverflow;
a=ABSalphaQ;
if BrSign goto AQ Store; a=−MaxPreAlpha;
if Br1 goto AQ Store; a= MaxPreAlpha;

//————————————————————–

//loop to do 2̂ n adjustment of the product
LABEL LCLoopQ; //multiply by two until count is zero

COM LeCDown; //this loop must be one instruction!!! 340
if BrLeNZ goto LCLoopQ;
a=a*two;

LABEL LCLoopEndQ;

//combine with previous alphas
a=a−alphaQ; //sub off alpha(t-2)
MR R1=ah; //store result
a=ZERO;
a=a>>sixteen+alphaQ; //before updating alphaQL 350
alphaQL=ah;
a=a*two+MR R1; //then add 2*last

LABEL AQ Store;
//Write the new desired alphaQ
alphaQ=ah;
COM Sector1Write;
if BrOverflow goto AQ MagError; //if there was overflow, fix it

a=abs(ah); //store the absolute value of alphaQ 360
ABSalphaQ=ah;
a=a−ABSalphaD; //get abs(aQ)-abs(aD)
COM Sector0Write;

//———————————————————————-
// Calculate T1,T2 based on the sector
//———————————————————————-

if BrSign goto Sect1346;
a=alphaD; //load aD for the comparison in Sect1346

370
//THE MIDDLE SECTORS 2,5
//- T1=-aD+abs(aQ) T2=aD+abs(aQ)
LABEL Sect25;

a=a+ABSalphaQ;
T2=ah;
a=ABSalphaQ;
a=a−alphaD;
T1=ah;
if Br1 goto FindT0;

380
LABEL Sect1346;

//check sign of aD loaded after delayed branch
if BrSign goto Sect34;
a=ABSalphaQ;

//THE RIGHT SECTORS 1,6
//- T1=aD-abs(aQ) T2=2*abs(aQ)
LABEL Sect16;

a=a*two;
T2=ah; 390
a=alphaD;
a=a−ABSalphaQ;
T1=ah;
if Br1 goto FindT0;

//THE LEFT SECTORS 3,4
//- T1=2*abs(aQ) T2=-aD-abs(aQ)
LABEL Sect34;

a=a*two;
T1=ah; 400
a=−alphaD;
a=a−ABSalphaQ;
T2=ah;

//———————————————————————-
LABEL FindT0;
//———————————————————————-

a=Tminus2;
a=a−T1;
a=a−T2; 410
if BrSign goto DoClip;
a=a+vtwo;
T0=ah;
if Br1 goto OutputTx; //need T0 in ah
a=a;

LABEL DoClip;
//———————————————————————-
//T1+T2 is too large - clipping required
//———————————————————————- 420

//T0=2^16*(t1+t2)/T/2;
a=T1; //MESSY
a=a+T2;
T0=ah;
a=Tminus2;
a=a/T0/two;
T0=al;

// a=a>>16*alphaD*two; //other method
// a=a/Tminus2/two; 430
// alphaD=al;

//now scale the alphas by this value
a=al;
a=a>>sixteen*alphaD*two;
alphaD=ah;
COM Sector2Write;

a=abs(ah); //store absolute value also
ABSalphaD=ah; 440
a=T0;
a=a>>sixteen*alphaQ*two;
alphaQ=ah;
COM Sector1Write;

//do last bit of sector determination by
//storing sign of abs(aD)-abs(aQ)
//in sector[0]

a=abs(ah);
ABSalphaQ=ah; 450
a=a−ABSalphaD;
COM Sector0Write;

230 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

//sector is re-determined as I don’t know that
//the mul and div routines will
//always give the same sector - but they may. . .

//———————————————————————-
// Calculate Clipped T1,T2 based on the sector
//———————————————————————- 460

if BrSign goto cSect1346;
a=alphaD; //load aD for the comparison in Sect1346

LABEL cSect25;
if Br1 goto HaveT2; //aD laoded
a=a+ABSalphaQ;

LABEL cSect1346;
if BrSign goto cSect34; //check sign of aD
a=ABSalphaQ; 470

LABEL cSect16;
if Br1 goto HaveT2; //abs(aQ) loaded
a=a+ABSalphaQ;

LABEL cSect34; //abs(aQ) loaded
a=−ah;
if Br1 goto HaveT2;
a=a−alphaD;

480
LABEL HaveT2;

T2=ah;
if BrSign goto T2isZero;
a=−ah;
a=a+Tminus2;
if BrSign goto T1isZero;
T1=ah;

if Br1 goto cFindT0;

490
LABEL T2isZero;

a=ZERO;
T2=ah;
a=Tminus2;
T1=ah;
if Br1 goto cFindT0;

LABEL T1isZero;
a=ZERO;
T1=ah; 500
a=Tminus2;
T2=ah;

LABEL cFindT0;
a=vtwo;
T0=ah;

LABEL OutputTx; //assume T0 is in ah
out(ah);
COM test0; 510
a=T1;
out(ah);
COM test1;
a=T2;
out(ah);
COM test2;

if Br1 goto WaitT0;
a=T0;

520
END;

B.4 The Microcode Compiler

B.4.1 vsdc.cpp

/*==
vsdc1u.cpp

updated microcode compiler
==*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

10
//Stage Defines
#define ST Label 0
#define ST Write 1
#define ST Command 2
#define ST Branch 3
#define ST R2Expr 4

//note: if an R2 expression follows a branch, that R2 expression will
//be executed regardless of whether the branch is taken or not

20
#define NumFields8
//Instruction field codes
#define IF R1 0
#define IF R2 1
#define IF R3 2
#define IF R4 3
#define IF Addr 4
#define IF BrAddr 5
#define IF BrCond 6
#define IF Command 7 30

#define CONSTANt int

#define COM preload291 //prelaod the counter to 31
#define COM preload592

#define BR countnz 3

FILE *FIn,*FOut,*FReg;
40

//R1 CONSTANTS
CONSTANt MEM RD= 1;//B“01”;
CONSTANt EXT RD= 0;//B“00”;
CONSTANt MEM WR= 3;//B“11”;

CONSTANt R2 RD= 2;

//R2 CONSTANTS
CONSTANt R3 LD= 4;//B“010X”;
CONSTANt R1 LD= 3;//B“0011”; 50
CONSTANt R1 LDN= 2;//B“0010”;
CONSTANt R1R3ADD= 7;//B“0111”;
CONSTANt R1R3SUB= 6;//B“0110”;
CONSTANt ZEROLD= 0;//B“000X”;

CONSTANt R1R3MUL1= 8;//B“1000”;
CONSTANt R1R3DIV1= 9;//B“1001”;
CONSTANt R1R3DIV3= 10;//B“1010”;
CONSTANt R1 ABS= 11;

60
//R3 CONSTANTS
CONSTANt R2 LD= 0;//B“X00”;
CONSTANt R2 SHL0= 1;//B“001”;
CONSTANt R2 SHL1= 5;//B“101”; //internal use only
CONSTANt R2 SHR= 2;//B“X10”;
CONSTANt R2 SHW= 3;//B“X11”;
CONSTANt R2 DIV= R2 SHL1; //treat shift in of 1 as a divide op

//R4 CONSTANTS
//CONSTANt MEMWRH=B“11”; 70
//CONSTANt MEMWRL=B“10”;
CONSTANt OUTH= 1;//B“1”;
CONSTANt OUTL= 0;//B“0”;

/*==
Register Initialisation
==*/
#define REG LEN 32
int RegInit[REG LEN]; 80

void InitReg(int Reg,int Val)
{

if (Reg<0 | | Reg>=REG LEN)
printf("Register Number out of range\n");

else
RegInit[Reg]=Val;

}
90

void WriteRegs(void)
{

int i;
fprintf(FReg,"WIDTH=16;\nDEPTH=32;\nADDRESS_RADIX=HEX;\

B.4. The Microcode Compiler 231

\nDATA_RADIX=HEX;\n");
fprintf(FReg,"\nCONTENT BEGIN\n");

for (i=0;i<REG LEN;i++)
fprintf(FReg,"%2.2X : %4.4X;\n",i,RegInit[i]);

fprintf(FReg,"\nEND;\n"); 100

}

int Bound(int Val,int Min,int Max)
{

if (Val>Max) printf("<Warning> Constant out of Range\n");
return (Val>=Min && Val<=Max);
} 110

/*==
Code generation
==*/
int Field[NumFields];
int LastStage=0;
int AddressCounter=0;
long Word1;
long Output[512];

120
/**
WriteWord

Writes the next instruction word to the output stream
**/
int WriteWord(long Word)
{

printf("<<%2.2X : %4.4lX>>;\n\n",AddressCounter,Word);
Output[AddressCounter++]=Word;

130
return 0;
}

/**
ShipInstruction

Converts the field information into instructions and outputs them
**/
int ShipInstruction(void) 140
{

long Word1=0;
long Word2=0;

Word1+=(Bound(Field[IF Addr],0,31))?Field[IF Addr]:0;
Word1<<=1;
Word1+=(Bound(Field[IF R4],0,1))?Field[IF R4]:1;
Word1<<=3;
Word1+=(Bound(Field[IF R3],0,7))?Field[IF R3]:R2 LD;
Word1<<=4; 150
Word1+=(Bound(Field[IF R2],0,15))?Field[IF R2]:R3 LD;
Word1<<=2;
Word1+=(Bound(Field[IF R1],0,3))?Field[IF R1]:EXT RD;

if (Field[IF BrCond]<0 && Field[IF Command]<0)
{ //one word only

WriteWord(Word1);
}
else
{ //two words 160

WriteWord(Word1|0x8000);
Word2=0;
Word2+=(Bound(Field[IF BrAddr],0,511))?Field[IF BrAddr]:0;
Word2<<=3;
Word2+=(Bound(Field[IF BrCond],0,7))?Field[IF BrCond]:0;
Word2<<=4;
Word2+=(Bound(Field[IF Command],0,15))?Field[IF Command]:0;
WriteWord(Word2);
}

170
//reset fields
LastStage=0;
for (int i=0;i<NumFields;i++) Field[i]=−1;

return 0;
}

/**
SetField

180
Sets the value of one of the instruction fields. Stage indicates the
instruction stage. If this is less than the previous field add, a new
instruction is started and the previous one is output. This is so that
instructions are added in the correct order.

Num is the field number and val is the new value.
If there is a field conflict (eg 2 instructions using memory at once),
the command is split, outputing two commands.

**/
int SetField(int Stage,int Num,int Val) 190
{

//if an earlier stage in the sequence, write out the last instr
if (Stage<LastStage) ShipInstruction();
LastStage=Stage;

if (Num>=0)
{

if (Field[Num]>=0) //check if already initilised
//if so, extend

{ 200
//send off the R1 and address operations in the first instruction
//and copy existing branching, R2 and R3 stuff into next instruction
//keep R2 by shuffling back into R3

int ExR2,ExR3,ExBrA,ExBrC;
ExR2 =Field[IF R2]; Field[IF R2]=R3 LD;
ExR3 =Field[IF R3]; Field[IF R3]=R2 LD;
ExBrA=Field[IF BrAddr]; Field[IF BrAddr]=−1;
ExBrC=Field[IF BrCond]; Field[IF BrCond]=−1;
ShipInstruction(); //send out the first instruction 210

Field[IF R2]=ExR2;
Field[IF R3]=ExR3;
Field[IF BrAddr]=ExBrA;
Field[IF BrCond]=ExBrC;
}
Field[Num]=Val;
}
return 0;
} 220

/**
GetMemAdder

Returns the current address count - valid only immediately after a
SetField(STLabel,-1,0); or a SetField(STBranch,IF BrAddr)
**/
int GetMemAddr(void) {return AddressCounter;}

230

/**
EndStage

Called to indicate that no more field entries of this stage are acceptable
in this command
**/
void EndStage(int Stage) {LastStage=Stage+1;}

240
/**
InitialiseOutput

Prepares the fields and the output file
**/
void InitialiseOutput(void)
{

int i;

//initialise fields to empty 250
for (i=0;i<NumFields;i++) Field[i]=−1;
AddressCounter=0;
LastStage=0;

fprintf(FOut,"WIDTH=16;\nDEPTH=512;\nADDRESS_RADIX=HEX;\
\nDATA_RADIX=HEX;\n");

fprintf(FOut,"\nCONTENT BEGIN\n");
}

260

/**
CloseOutput

Ships out the last instruction and closes the MIF file
**/
void CloseOutput(void)
{

int i;
270

SetField(0,−1,0); //stage zero command to force any outpt

for (i=0;i<AddressCounter;i++)
fprintf(FOut,"%2.2X : %4.4lX;\n",i,Output[i]);

fprintf(FOut,"\nEND;\n");
}

/**
ChangeMemRef 280

Changes the memory reference at location InstrLoc to point to BrLoc

232 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

**/
void ChangeMemRef(int InstrLoc,int BrLoc)
{

Output[InstrLoc+1]&=0x7F;
Output[InstrLoc+1]|=BrLoc<<7;
}

290
struct LabelInfo
{

char Text[64];
int Location;
LabelInfo*Next;
};

LabelInfo*LabRefs=0;

/** 300
ResolveLabel

Scans the list of labels Refs and if any match the Text, the pointer in the
instruction is changed to Loc.

Returns the new list of labels, with the resolved labels deleted
**/
LabelInfo*ResolveLabel(LabelInfo*Refs,char*Text,int Loc)
{

LabelInfo*RetPtr; 310

if (!Refs) return Refs; //if no list, return nothing
Refs−>Next=ResolveLabel(Refs−>Next,Text,Loc);

//reslove rest of list
if (!strcmp(Text,Refs−>Text))
{

printf("Resolved <%s> referred at [%i] is at [%i]\n",
Text,Refs−>Location,Loc);

ChangeMemRef(Refs−>Location,Loc);
RetPtr=Refs−>Next; 320
delete Refs;
return RetPtr;
}
return Refs;
}

/**
PrintUnresolved

Prints the list of unresolved labels 330
**/
void PrintUnresolved(LabelInfo*Refs)
{

if (!Refs) return ; //if no list, return nothing

printf("Unknown <%s> referred at [%i]\n",
Refs−>Text,Refs−>Location);

PrintUnresolved(Refs−>Next);
}

340

/**
UnknownLabel

Adds a label to the unresolved list.
**/
void UnknownLabel(char*Text,int Location)
{

LabelInfo*Next;
350

Next=LabRefs;
LabRefs=new LabelInfo;
if (!LabRefs)
{

printf("ERROR: Cannot allocate memory");
exit(1);
}
LabRefs−>Next=Next;
LabRefs−>Location=Location;
strcpy(LabRefs−>Text,Text); 360

}

/*==
NODE CLASS

Forms a base class for a linked list
==*/

370
class Node
{

Node*NextN;

public:

Node(Node*N): NextN(N) { }

Node*Next(void) {return NextN;};
void Next(Node*N) {NextN=N;}; 380
};

/*==
SYMBOL CLASS
==*/

class Symbol:public Node
{

int SType;
int SValue; 390
char SText[32];

public:

Symbol(int Type,int Value,char*Text,Symbol*Next); //:Node(Next);
Symbol(Symbol*S,Symbol*Next);
int Type(void) {return SType;}
int Value(void) {return SValue;}
char*Text(void) {return SText;}

400
Symbol*Next(void) {return (Symbol*)(Node::Next());}
void Next(Symbol*S) {Node::Next(S);};

virtual int Parse(Symbol*Expr);

};

/*———————————————————————- 410
Node Functions
———————————————————————-*/

/**
DeleteNode

Deletes up to Num nodes off the head of a linked list. Returns the pointer
to the rest of the list
**/ 420
Node*DeleteNode(Node*N,int Num)
{

Node*Nt;

if (!N | | !Num) return 0; //stop if at end
Nt=DeleteNode(N−>Next(),Num−1); //delete rest
delete N; //delete this node

return Nt; //return pointer to rest
} 430

/*———————————————————————-
Symbol Functions
———————————————————————-*/

/**
Constructor
**/
Symbol::Symbol(int Type,int Value,char*Text,Symbol*Next):Node(Next) 440
{

SType=Type;
SValue=Value;

if (Text) //if string text was passed
{

strncpy(SText,Text,31); //copy the string text
SText[31]=0;
}
else 450

SText[0]=0; //otherwise have empty string
}

/**
copy constructor

copies existing symbol, and then links to the specified next node
**/
Symbol::Symbol(Symbol*S,Symbol*NextS):Node(NextS)
{ 460

*this=*S;
Next(NextS);
}

/**
Parse

Tries to match the passed symbol list to this type of symbol. The passed
expression comes from the command line. This function is overridden in 470

B.4. The Microcode Compiler 233

classes that represent more complex grammar elements.

Returns 0 if the expression did not match this expression type.
**/
int Symbol::Parse(Symbol*Expr)
{

int Match;

if (!Expr) return 0; //no match if no expression
if (Type()!=Expr−>Type()) return 0; //no match to this symbol 480
if (!Next())

Match=1; //last in chain, so there is match
else

Match=Next()−>Parse(Expr−>Next()); //otherwise check rest of chain

if (Match) //if it matched, copy the details
{ //into this symbol data

SValue=Expr−>Value();
strcpy(SText,Expr−>Text());
} 490
return Match;
}

/**
Print Expression

Provides an ascii represenation of the parsed expression. Used in error
reporting
**/ 500
void PrintExpression(Symbol*S)
{

if (S)
{

printf("[%c,%i,%s]",S−>Type(),S−>Value(),S−>Text());
PrintExpression(S−>Next());
}
else printf("\n");
}

510

/**
Symbol defines

Following are the integer typenames for the allowed vocabulary of symbols
S unknown are typically labels.
**/

#define IDoffset ’a’
#define S unknown’A’ 520

#define S memloc IDoffset+0
#define S extloc IDoffset+1
#define S memdecl IDoffset+2
#define S extdecl IDoffset+3//declare both external memory and ext commands
#define S if IDoffset+4
#define S brd IDoffset+5
#define S R2 IDoffset+6
#define S R2H IDoffset+7
#define S R2L IDoffset+8 530
#define S eof IDoffset+9
#define S one IDoffset+10
#define S sixteen IDoffset+11
#define S zero IDoffset+12
#define S out IDoffset+13
#define S labdecl IDoffset+14
#define S label IDoffset+15
#define S two IDoffset+16
#define S R3 IDoffset+17
#define S abs IDoffset+18 540
//#define Tcommode 5 //change to command mode

//To simplify the grammar, numeric operands, such as the 2 and 16 used
//for shift operations, are spelt out. This also makes it plain that
//these numbers are special and that other integers cannot be used.

//Here the symbol structure is used to store the list of all possible
//symbols, and their associated text. This is not the conventional
//use of the symbol structure. 550

Symbol*Table= new Symbol(S memdecl,0,"int",
new Symbol(S extdecl,0,"constant",
new Symbol(S if ,0,"if",
new Symbol(S brd,0,"goto",
new Symbol(S R2,0,"a",
new Symbol(S R2H,0,"ah",
new Symbol(S R2L,0,"al",
new Symbol(S eof,0,"END",
new Symbol(S one,0,"one", 560
new Symbol(S sixteen,0,"sixteen",
new Symbol(S zero,0,"ZERO",
new Symbol(S out,0,"out",
new Symbol(S labdecl,0,"LABEL",

new Symbol(S two,0,"two",
new Symbol(S R3,0,"R3",
new Symbol(S abs,0,"abs",
0))))))))))))))));

570
int Nmemloc=0; //number of memory locations defined

/**
AddTableEntry

Adds an entry to the dynamic symbol table
**/
void AddTableEntry(int ID,int Value,char*Label)
{

Table=new Symbol(ID,Value,Label,Table); 580
}
void AddTableEntry(Symbol*S)
{

Table=new Symbol(S−>Type(),S−>Value(),S−>Text(),Table);
}

/**
AddMemoryLocation

590
Memory locations are added to the symbol table with the location value
as a parameter
**/
int AddMemoryLocation(char*Label)
{

AddTableEntry(S memloc,Nmemloc,Label);
return Nmemloc++; // global counter
}

600
/**
FindTableEntry

Find the symbol in the table with the text of Label
**/
//recursive helper function to span the table
Symbol*FindEntry(char*Label,Symbol*List)
{

if (!List) return 0;
if (!strcmp(Label,List−>Text())) return List; 610
return FindEntry(Label,(Symbol*)List−>Next());
}

Symbol*FindTableEntry(char*Label)
{

return FindEntry(Label,Table);
}

int NextChar=32; // remembers fetched char 620
int LineNo=1; // global line number counter

/**
GetNextChar

Returns the next pre-processed character
comments are removed
Line numbers are counted
**/
int GetNextChar(void) 630
{

int ThisChar;

ThisChar=NextChar;
NextChar=fgetc(FIn);

//Filter out line comments
if ((ThisChar==’/’ && NextChar==’/’) | |

(ThisChar==’-’ && NextChar==’-’))
{ 640

while (NextChar!=10 && NextChar!=EOF) NextChar=fgetc(FIn);
ThisChar=’ ’;
}

if (ThisChar==10) LineNo++;

return ThisChar;
}

650
/**
GetLineNo

returns the line number in the current main file
**/
int GetLineNo(void)
{

return LineNo;

234 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

}
660

/*==
R1Expr Class

==*/
class R1Expr:public Symbol
{

int Stage;
Symbol*LastExpr;
public: 670

R1Expr(int EStage,Symbol*Next):Stage(EStage), Symbol(0,0,0,Next) { }
virtual int Parse(Symbol*Expr);
void ParseLastAgain(void);
};

/*==
R4Expr Class

680
==*/
class R4Expr:public Symbol
{

public:

R4Expr(Symbol*Next):Symbol(0,0,0,Next) { }
virtual int Parse(Symbol*Expr);
};

690
/**
R1Expr::Parse

Parse an R1 Expression
**/
int R1Expr::Parse(Symbol*Expr)
{

Symbol*TestExpr;

LastExpr=Expr; //kludge to allow multiply to request the r1 status 700
//to be written again

//————————
//Check for memory read
//————————

//the test expression is linked into the Next() node, because *this is
//likely to be a test expression itself, with a greater structure imposed
//by the subsequent nodes.
TestExpr= new Symbol(S memloc,0,0, Next()); 710
if (TestExpr−>Parse(Expr))
{

SetField(Stage,IF R1,MEM RD);
SetField(Stage,IF Addr,TestExpr−>Value());
printf("Read <Mem>%s\n",TestExpr−>Text());

DeleteNode(TestExpr,1);
return 1;
}
DeleteNode(TestExpr,1); 720

//————————
//Check for External read
//————————

TestExpr= new Symbol(S extloc,0,0, Next());
if (TestExpr−>Parse(Expr))
{

SetField(Stage,IF R1,EXT RD); 730
SetField(Stage,IF Addr,TestExpr−>Value());
printf("Read Ext <%s>\n",TestExpr−>Text());

DeleteNode(TestExpr,1);
return 1;
}
DeleteNode(TestExpr,1);

//————————
//Check for R2 read 740
//————————

TestExpr= new R4Expr(Next());
if (TestExpr−>Parse(Expr))
{

SetField(Stage,IF R1,R2 RD);
printf("Read R4");

DeleteNode(TestExpr,1);
return 1; 750
}
DeleteNode(TestExpr,1);

return 0;
}

/**
R1Expr::ParseLastAgain

kludge to allow multiply to request the r1 status to be written again 760
Re-scans the R1 expression from last time
**/
void R1Expr::ParseLastAgain(void)
{

Symbol*Nxt=Next();
Next(0); //making this the end of the list means that it

//will successfully parse only the R1 expression
//this relys on Symbol declaring a success if
//it is the last element in the expresssion list

Parse(LastExpr); 770

Next(Nxt);
}

/*==
R3Expr Class

==*/
class R3Expr:public Symbol 780
{

public:

R3Expr(Symbol*Next):Symbol(0,0,0,Next) { }
virtual int Parse(Symbol*Expr);
};

/**
R3Expr::Parse 790

Parse an R3 Expression
**/
int R3Expr::Parse(Symbol*Expr)
{

Symbol*TestExpr;

//————————
//Check for R3=R2 800
//————————

TestExpr= new Symbol(S R2,0,0, Next());
if (TestExpr−>Parse(Expr))
{

SetField(ST R2Expr,IF R3,R2 LD);
printf("R3=R2\n");

DeleteNode(TestExpr,1);
return 1; 810
}
DeleteNode(TestExpr,1);

//————————
//Check for R3=R2*two
//————————

TestExpr= new Symbol(S R2,0,0,
new Symbol(’*’,0,0, 820
new Symbol(S two,0,0,

Next())));
if (TestExpr−>Parse(Expr))
{

SetField(ST R2Expr,IF R3,R2 SHL0);
printf("R3=R2<<1\n",TestExpr−>Text());

DeleteNode(TestExpr,3);
return 1;
} 830
DeleteNode(TestExpr,3);

//————————
//Check for R3=R2/two
//————————

TestExpr= new Symbol(S R2,0,0,
new Symbol(’/’,0,0,
new Symbol(S two,0,0, 840

Next())));
if (TestExpr−>Parse(Expr))
{

SetField(ST R2Expr,IF R3,R2 SHR);
printf("R3=R2>>1\n",TestExpr−>Text());

B.4. The Microcode Compiler 235

DeleteNode(TestExpr,3);
return 1;
}
DeleteNode(TestExpr,3); 850

//————————
//Check for R3=R2>>16
//————————

TestExpr= new Symbol(S R2,0,0,
new Symbol(’>’,0,0,
new Symbol(’>’,0,0,
new Symbol(S sixteen,0,0, 860

Next()))));
if (TestExpr−>Parse(Expr))
{

SetField(ST R2Expr,IF R3,R2 SHW);
printf("R3=R2>>16\n",TestExpr−>Text());

DeleteNode(TestExpr,4);
return 1;
}
DeleteNode(TestExpr,4); 870

//————————
//Check for R3=“R3”
//————————
TestExpr= new Symbol(S R3,0,0,

Next());
if (TestExpr−>Parse(Expr))
{

printf("Reading R3 directly\n"); 880

DeleteNode(TestExpr,1);
return 1;
}
DeleteNode(TestExpr,1);

return 0;
}

890
/*==
R2Expr Class

==*/
class R2Expr:public Symbol
{

public:

R2Expr(Symbol*Next):Symbol(0,0,0,Next) { }
virtual int Parse(Symbol*Expr); 900
};

/**
R2Expr::Parse

Parse an R2 Expression
**/
int R2Expr::Parse(Symbol*Expr)
{ 910

Symbol*TestExpr;
int Match;
int i;

Symbol*S1,*S2;

//————————
//Check for R3
//————————
TestExpr= new R3Expr(Next()); 920
if (TestExpr−>Parse(Expr))
{

SetField(ST R2Expr,IF R2,R3 LD);
printf("R2=R3\n");

DeleteNode(TestExpr,1);
return 1;
}
DeleteNode(TestExpr,1);

930
//————————
//Check for R1
//————————
TestExpr= new R1Expr(ST R2Expr,Next());

if (TestExpr−>Parse(Expr))
{

SetField(ST R2Expr,IF R2,R1 LD);
printf("R2=R1\n");

940

DeleteNode(TestExpr,1);
return 1;
}
DeleteNode(TestExpr,1);

//————————
//Check for R3+R1
//————————
TestExpr= new R3Expr(950

new Symbol(’+’,0,0,
new R1Expr(ST R2Expr,
Next())));

if (TestExpr−>Parse(Expr))
{

SetField(ST R2Expr,IF R2,R1R3 ADD);
printf("R2=R3+R1\n");

DeleteNode(TestExpr,3); 960
return 1;
}
DeleteNode(TestExpr,3);

//————————
//Check for R3-R1
//————————
TestExpr= new R3Expr(

new Symbol(’-’,0,0, 970
new R1Expr(ST R2Expr,
Next())));

if (TestExpr−>Parse(Expr))
{

SetField(ST R2Expr,IF R2,R1R3 SUB);
printf("R2=R3-R1\n");

DeleteNode(TestExpr,3);
return 1; 980
}
DeleteNode(TestExpr,3);

//————————
//Check for -R1
//————————
TestExpr= new Symbol(’-’,0,0,

new R1Expr(ST R2Expr,
Next()));

990
if (TestExpr−>Parse(Expr))
{

SetField(ST R2Expr,IF R2,R1 LDN);
printf("R2=-R1\n");

DeleteNode(TestExpr,2);
return 1;
}
DeleteNode(TestExpr,2);

1000
//————————
//Check for 0
//————————
TestExpr= new Symbol(S zero,0,0, Next());

if (TestExpr−>Parse(Expr))
{

SetField(ST R2Expr,IF R2,ZERO LD);
printf("R2=0\n");

1010
DeleteNode(TestExpr,1);
return 1;
}
DeleteNode(TestExpr,1);

//———————————–
//Check for Multiply
//———————————–
R1Expr*R1E; 1020
TestExpr= new R3Expr(

new Symbol(’*’,0,0,
R1E=new R1Expr(ST R2Expr,

new Symbol(’*’,0,0,
new Symbol(S two,0,0,
Next())))));

if (TestExpr−>Parse(Expr))
{

1030
//1st instr
SetField(ST R2Expr,IF Command,COM preload29);

// SetField(STR2Expr,IF R3,R2SHW);
SetField(ST R2Expr,IF R2,R1R3 MUL1);

236 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

// EndStage(STR2Expr);
SetField(ST Label,−1,0); //force new instruction
i=GetMemAddr();

//2nd instr
SetField(ST Branch,IF BrCond,BR countnz); 1040
SetField(ST Branch,IF BrAddr,i);

// TestExpr->Parse(Expr); //set R1expr again
R1E−>ParseLastAgain();
SetField(ST R2Expr,IF R3,R2 SHR);
SetField(ST R2Expr,IF R2,R1R3 MUL1);
printf("Multiply\n");

DeleteNode(TestExpr,5);
return 1;
} 1050
DeleteNode(TestExpr,5);

//———————————–
//Check for Divide
//———————————–
TestExpr= new R3Expr(

new Symbol(’/’,0,0,
R1E=new R1Expr(ST R2Expr,

new Symbol(’/’,0,0, 1060
new Symbol(S two,0,0,
Next())))));

if (TestExpr−>Parse(Expr))
{

//1st instr
SetField(ST R2Expr,IF Command,COM preload59);
SetField(ST R2Expr,IF R2,R1R3 DIV1);

1070
//2nd instr
SetField(ST Label,−1,0); //force new instruction
i=GetMemAddr();
SetField(ST R2Expr,IF R3,R2 LD);
R1E−>ParseLastAgain();
SetField(ST R2Expr,IF R2,R1R3 DIV3);

//3rd instr
SetField(ST Label,−1,0); //force new instruction
SetField(ST Branch,IF BrCond,BR countnz); 1080
SetField(ST Branch,IF BrAddr,i);
SetField(ST R2Expr,IF R3,R2 DIV);
R1E−>ParseLastAgain();
SetField(ST R2Expr,IF R2,R1R3 DIV1);

//4th instr - same as 2nd
SetField(ST Label,−1,0); //force new instruction
SetField(ST R2Expr,IF R3,R2 LD);
R1E−>ParseLastAgain();
SetField(ST R2Expr,IF R2,R1R3 DIV3); 1090

//5th instr
SetField(ST Label,−1,0); //force new instruction
SetField(ST R2Expr,IF R3,R2 DIV);
//allow R2 instructions to occur now the result may be accessed in
//this instruction by the R3 expression “R3”
printf("Divide\n");

DeleteNode(TestExpr,5);
return 1; 1100
}
DeleteNode(TestExpr,5);

//————————
//Check for abs R1
//————————
TestExpr= new Symbol(S abs,0,0,

new Symbol(’(’,0,0,
new R1Expr(ST R2Expr, 1110
new Symbol(’)’,0,0,
Next()))));

if (TestExpr−>Parse(Expr))
{

SetField(ST R2Expr,IF R2,R1 ABS);
printf("R2=abs(R1)\n");

DeleteNode(TestExpr,4);
return 1; 1120
}
DeleteNode(TestExpr,4);

return 0;
}

/**
R4Expr::Parse 1130

Parse an R4 Expression
**/
int R4Expr::Parse(Symbol*Expr)
{

Symbol*TestExpr;

//————————
//Check for out low 1140
//————————

TestExpr= new Symbol(S R2L,0,0, Next());
if (TestExpr−>Parse(Expr))
{

SetField(ST Write,IF R4,OUTL);
printf("Low Output\n");

DeleteNode(TestExpr,1);
return 1; 1150
}
DeleteNode(TestExpr,1);

//————————
//Check for out high
//————————

TestExpr= new Symbol(S R2H,0,0, Next());
if (TestExpr−>Parse(Expr))
{ 1160

SetField(ST Write,IF R4,OUTH);
printf("High Output\n");

DeleteNode(TestExpr,1);
return 1;
}
DeleteNode(TestExpr,1);

return 0;
} 1170

/*==
Statement Class

==*/
class Statement:public Symbol
{

public:
1180

Statement(Symbol*Next):Symbol(0,0,0,Next) { }
virtual int Parse(Symbol*Expr);
};

/*Statement::Statement(Symbol*Next):Symbol(0,0,0,Next)
{
} */

int Statement::Parse(Symbol*Expr)
{ 1190

Symbol*TestExpr;
int Match;
int i,j;

Symbol*S1,*S2;

//————————
//Check for memory declare
//————————

1200
TestExpr= new Symbol(S memdecl,0,0,

S1=new Symbol(S unknown,0,0,
Next()));

if (TestExpr−>Parse(Expr))
{

printf("Memory Allocated to %s\n",TestExpr−>Next()−>Text());
AddMemoryLocation(TestExpr−>Next()−>Text());

DeleteNode(TestExpr,2); 1210
return 1;
}
DeleteNode(TestExpr,2);

//————————–
//Check for init mem declare
//————————–
TestExpr= new Symbol(S memdecl,0,0,

S1=new Symbol(S unknown,0,0, 1220
new Symbol(’=’,0,0,

S2=new Symbol(S unknown,0,0,

B.4. The Microcode Compiler 237

Next()))));

if (TestExpr−>Parse(Expr))
{

i=atoi(S2−>Text());
printf("Memory Allocated to %s, Init=%i\n",S1−>Text(),i);
j=AddMemoryLocation(TestExpr−>Next()−>Text());
InitReg(j,i); 1230

DeleteNode(TestExpr,4);
return 1;
}
DeleteNode(TestExpr,4);

//————————–
//Check for negative init mem declare
//————————– 1240
TestExpr= new Symbol(S memdecl,0,0,

S1=new Symbol(S unknown,0,0,
new Symbol(’=’,0,0,
new Symbol(’-’,0,0,

S2=new Symbol(S unknown,0,0,
Next())))));

if (TestExpr−>Parse(Expr))
{

i=−atoi(S2−>Text()); 1250
printf("Memory Allocated to %s, Init=%i\n",S1−>Text(),i);
j=AddMemoryLocation(TestExpr−>Next()−>Text());
InitReg(j,i);

DeleteNode(TestExpr,5);
return 1;
}
DeleteNode(TestExpr,5);

1260
//————————–
//Check for External declare
//————————–
TestExpr= new Symbol(S extdecl,0,0,

S1=new Symbol(S unknown,0,0,
new Symbol(’=’,0,0,

S2=new Symbol(S unknown,0,0,
Next()))));

if (TestExpr−>Parse(Expr)) 1270
{

i=atoi(S2−>Text());
printf("External <%i> Allocated to %s\n",i,S1−>Text());
AddTableEntry(S extloc,i,S1−>Text());

DeleteNode(TestExpr,4);
return 1;
}
DeleteNode(TestExpr,4);

1280

//————————–
//Check for R2=R2Expr
//————————–
TestExpr= new Symbol(S R2,0,0,

S1=new Symbol(’=’,0,0,
S2=new R2Expr(

Next())));

if (TestExpr−>Parse(Expr)) 1290
{

i=atoi(S2−>Text());
EndStage(ST R2Expr);
printf("R2=R2Expr\n");
AddTableEntry(S extloc,i,S1−>Text());

DeleteNode(TestExpr,3);
return 1;
}
DeleteNode(TestExpr,3); 1300

//————————–
//Check for output value
//————————–
TestExpr= new Symbol(S out,0,0,

S1=new Symbol(’(’,0,0,
S2=new R4Expr(

new Symbol(’)’,0,0,
Next()))));

1310
if (TestExpr−>Parse(Expr))
{

//dont end stage EndStage(STWrite);
printf("Output\n");

DeleteNode(TestExpr,4);

return 1;
}
DeleteNode(TestExpr,4);

1320
//————————–
//Check for memory write
//————————–
TestExpr= new Symbol(S memloc,0,0,

new Symbol(’=’,0,0,
new R4Expr(
Next())));

if (TestExpr−>Parse(Expr))
{ 1330

//dont end stage EndStage(STWrite);
SetField(ST Write,IF R1,MEM WR);
SetField(ST Write,IF Addr,TestExpr−>Value());
printf("Mem write\n");

DeleteNode(TestExpr,3);
return 1;
}
DeleteNode(TestExpr,3);

1340
//————————–
//Check for command
//————————–
TestExpr= new Symbol(S extloc,0,0,

Next());

if (TestExpr−>Parse(Expr))
{

SetField(ST Command,IF Command,TestExpr−>Value());
EndStage(ST Command); 1350
printf("Command <%s>\n",TestExpr−>Text());

DeleteNode(TestExpr,1);
return 1;
}
DeleteNode(TestExpr,1);

//————————–
//Check for UnDefined label 1360
//————————–
TestExpr= new Symbol(S labdecl,0,0,

S1=new Symbol(S unknown,0,0,
Next()));

if (TestExpr−>Parse(Expr))
{

//dont end stage EndStage(STLabel);
SetField(ST Label,−1,0); //force start of instruction
AddTableEntry(S label,GetMemAddr(),S1−>Text()); 1370
LabRefs=ResolveLabel(LabRefs,S1−>Text(),GetMemAddr());
printf("Address Defined <%s=%i>\n",S1−>Text(),GetMemAddr());

DeleteNode(TestExpr,2);
return 1;
}
DeleteNode(TestExpr,2);

//——————————— 1380
//Check for Branch to Defined label
//———————————
TestExpr= new Symbol(S if ,0,0,

S1=new Symbol(S extloc,0,0,
new Symbol(S brd,0,0,

S2=new Symbol(S label,0,0,
Next()))));

if (TestExpr−>Parse(Expr))
{ 1390

SetField(ST Branch,IF BrCond,S1−>Value());
SetField(ST Branch,IF BrAddr,S2−>Value());
EndStage(ST Branch);
printf("If <%s> Branch to <%s=%i>\n",S1−>Text(),S2−>Text(),S2−>Value());

DeleteNode(TestExpr,4);
return 1;
}
DeleteNode(TestExpr,4);

1400

//———————————–
//Check for Branch to Undefined label
//———————————–
TestExpr= new Symbol(S if ,0,0,

S1=new Symbol(S extloc,0,0,
new Symbol(S brd,0,0,

S2=new Symbol(S unknown,0,0,
Next()))));

1410

238 APPENDIX B. HARDWARE IMPLEMENTATION DETAILS

if (TestExpr−>Parse(Expr))
{

SetField(ST Branch,IF BrCond,S1−>Value());
UnknownLabel(S2−>Text(),GetMemAddr());
SetField(ST Branch,IF BrAddr,0);
EndStage(ST Branch);
printf("If <%s> Branch to <%s=???>\n",S1−>Text(),S2−>Text());

DeleteNode(TestExpr,4);
return 1; 1420
}
DeleteNode(TestExpr,4);
printf("Error in Line %i:",GetLineNo());
PrintExpression(Expr);
return 0;
}

char SymBuff[80];
int Next=32; //holds next char to be processed 1430

//initialise with whitespace
/**
GetNextSymbol

Returns a pointer to a string containg the next symbol in the command line.
For alphanumeric strings, the first character in the string is A, followed
by the string. For other symbols, the first character is the symbol.
**/
Symbol*GetNextSymbol(void)
{ 1440

Symbol*NewSymbol;
Symbol*TableSymbol;
int SymLen=0;

while (Next>=0 && Next<=’ ’) Next=GetNextChar(); //skip whitespace
if (Next==EOF | | Next<0) return 0; //check for end of file

//check for alphanumeric string
if ((Next>=’a’ && Next<=’z’) | | Next==’_’ | | 1450

(Next>=’A’ && Next<=’Z’) | |
(Next>=’0’ && Next<=’9’))

{
SymLen=0;
do
{

SymBuff[SymLen++]=Next;
Next=GetNextChar();
} while ((Next>=’a’ && Next<=’z’) | | Next==’_’ | |

(Next>=’A’ && Next<=’z’) | | 1460
(Next>=’0’ && Next<=’9’));

SymBuff[SymLen++]=0;

//check if it is a symbol in the table
//if it is, replace the info with the symbol info
if ((TableSymbol=FindTableEntry(SymBuff))!=0)

NewSymbol=new Symbol(TableSymbol,0);
else

NewSymbol=new Symbol(S unknown,0,SymBuff,0);
} 1470
else
{

NewSymbol= new Symbol(Next,0,0,0);
Next=GetNextChar();
}

return NewSymbol;
}

1480

Symbol*GetNextExpression(void)
{

Symbol*S;

S=GetNextSymbol();
//keep collecting symbols into the list until end of line or file
if (S && S−>Type()!=’;’ && S−>Type()!=S eof)

S−>Next(GetNextExpression());
return S; 1490
}

/**
Statement loop

**/
int ReadStatements(void)
{

int Res; 1500
Symbol*Expr=new Statement(new Symbol(’;’,0,0,0));
Symbol*Line;

Line=GetNextExpression();
while (Line−>Type()!=S eof)
{

if (!Line)
{

printf("Unexpected end of file\n"); 1510
return 1;
}

Res=Expr−>Parse(Line); //parse the line
DeleteNode(Line,−1); //then delete it
if (!Res) return 1; //if error, then exit

Line=GetNextExpression(); //get the next line
}

1520
return 0;
}

int main(int argc,char*argv[])
{

char FName[64];

printf("--\n");
printf("VSD-1 Assembler\n"); 1530
printf("--\n");

//If no filename, print out usage prompt
if (argc<2)
{

printf("Format:\n%s Input_File [Register_Init_File]\n",argv[0]);
return 1;
}

strcpy(FName,argv[1]); 1540
strcat(FName,".VMC");
//attempt to open file
if (!(FIn=fopen(FName,"rb")))
{

printf("Cannot Open %s For Input\n",FName);
return 1;

}
NextChar=fgetc(FIn);

1550
strcpy(FName,argv[1]);
strcat(FName,".MIF");
//attempt to open file
if (!(FOut=fopen(FName,"wt")))
{

printf("Cannot Open %s For Output\n",FName);
return 1;

}

InitialiseOutput(); 1560
ReadStatements();
CloseOutput();

printf("Unresolved References:\n");
if (LabRefs)

PrintUnresolved(LabRefs);
else

printf("None.\n");

1570
if (argc>2)
{

strcpy(FName,argv[2]);
strcat(FName,".MIF");
printf("Writing Register Initialisation to %s\n",FName);
printf("%i of 32 Registers used",Nmemloc);
//attempt to open file
if (!(FReg=fopen(FName,"wt")))
{

printf("Cannot Open %s For Output\n",FName); 1580
return 1;

}

WriteRegs();
fclose(FReg);
}
else

printf("No register initialisation file specified.\n");

1590
fclose(FIn); fclose(FOut);
//FOut=fopen(“out.ser”,“wb”);
return 0;

}

239

Bibliography

[1] Alfred V. Aho and Jeffrey D. Ullman. Foundations of Computer Science. W.H.
Freeman and Company, New York, 1992.

[2] J. W. Backus. The fortran automatic coding system. In Proceedings AFIPS Western
Joint Compter Conference, pages pp 188–198, Baltimore, 1957. Spartan Books.

[3] R.E. Betz and B.J. Cook. A digital current controller for three phase voltage
source inverters. Technical Report EE9702, Department of Electrical and Com-
puter Engineering, The University of Newcastle, Australia, January 1997. Available
at http://www.ee.newcastle.edu.au/users/staff/reb/Betz.html.

[4] R.E. Betz, B.J. Cook, and S.J. Henriksen. Digital current controller for three phase
voltage source inverters. In Proceedings of the IEEE IAS Annual Meeting, New
Orleans, October 1997.

[5] F. Blaabjerg, P. C. Kjaer, L. Christensen P. O. Rasmussen, S. Hansen, and J.R.
Kristoffersen. Fast digital current control in switched reluctance motor drive with-
out current feedback filters. In European Conference on Power Electronics and
Applications, pages pp. 3625–3630, Trondheim, 1997.

[6] B. K. Bose. An adaptive hysteresis-band current control technique of a voltage-fed
PWM inverter for machine drive system. IEEE Transactions on Industrial Electron-
ics, vol. 37(no. 5):pp. 402–408, Oct 1990.

[7] Bimal K. Bose. Power Electronics and AC Drives. Prentice-Hall, Englewood Cliffs,
NJ, 1986.

[8] Bimal K. Bose. Power electronics and motion control - technology status and recent
trends. IEEE Transactions on Industry Applications, Vol. 29(No. 5):pp. 902–909,
Sep 1993.

[9] Bimal K. Bose, editor. Power Electronics and Variable Frequency Drives. IEEE
Press, Piscataway, NJ, 1997.

[10] Bimal K. Bose. Fuzzy logic and neural networks in power electronics and drives.
IEEE Industry Applications Magazine, Vol. 6(No. 3):pp. 57–63, May 2000.

240 BIBLIOGRAPHY

[11] F. Briz, M. W. Degner, and R. D. Lorenz. Analysis and design of current regulators
using complex vectors. In Proceedings of the IEEE IAS-97 Annual Meeting, pages
pp. 1504–1511, New Orleans, Oct 1997.

[12] David M. Brod and Donald W. Novotny. Current control of vsi-pwm inverters. IEEE
Transactions on Industry Applications, Vol. 21(4):562–570, May 1985.

[13] Jong-Woo Choi and Seung-Ki Sul. Inverter output voltage synthesis using novel
dead time compensation. IEEE Transactions on Power Electronics, Vol. 11(No.
2):pp. 221–227, Mar 1996.

[14] M. Depenbrock. Direct self-control (dsc) of inverter-fed induction machine. IEEE
Transactions on Power Electronics, Vol. 3(No. 4):pp. 420–429, Oct 1988.

[15] W. Farrer and J.D. Miskin. Quasi-sine-wave fully regenerative invertor. Proceedings
of the IEE, Vol. 120(No. 9):pp. 969–976, September 1973.

[16] Gene F. Franklin, J. David Powell, and Abbas Emmami-Naeini. Feedback Control
of Dynamic Systems. Addison-Wesley Publishing Company, third edition, 1994.

[17] Thomas G. Habetler, Francesco Profumo, Michele Pastorelli, and Leon M. Tolbert.
Direct torque control of induction machines using space vector modulation. IEEE
Transactions on Industry Applications, Vol. 28(No. 5):pp. 1045–1053, Sep 1992.

[18] John L. Hennessy and David A. Patterson. Computer Organization and Design.
Morgan Kaufmann Publishers, Inc., San Francisco, USA, 1994.

[19] Soren J. Henriksen, Robert E. Betz, and Brian J. Cook. Digital hardware imple-
mentation of a current controller for im variable-speed drives. In Proceedings of the
IEEE IAS Annual Meeting, St. Louis, October 1998.

[20] Soren J. Henriksen, Robert E. Betz, and Brian J. Cook. Digital hardware imple-
mentation of a current controller for im variable-speed drives. IEEE Transactions
on Industry Applications, Vol. 35(No. 5):pp. 1021–1029, Sep 1999.

[21] Soren J. Henriksen, Robert E. Betz, and Brian J. Cook. Induction machine current
control in digital hardware. In Proceedings of the Australasian Universities Power
Engineering Conference, pages 557–562, Darwin, Septemper 1999.

[22] D.G. Holmes and D.A. Martin. Implementation of a direct digital predictive current
controller for single and three phase voltage source inverters. In Proceedings of the
IEEE IAS-96 Annual Meeting, pages pp. 906–913, San Diego, Oct 1996.

[23] Joachim Holtz. Pulsewidth modulation for electronic power conversion. Proceedings
of the IEEE, Vol. 82(No. 8):pp. 1194–1214, Aug 1994.

BIBLIOGRAPHY 241

[24] Jun-Koo Kang and Seung-Ki Sul. New direct torque control of induction motor for
minimum torque ripple and constant switching frequency. IEEE Transactions on
Industry Applications, Vol. 35(No. 5):pp. 1076–1082, Sep 1999.

[25] Marian P. Kazmierkowski and Luigi Malesani. Current control techniques for three-
phase voltage-source pwm converters: A survey. TIE, Vol. 45(No. 5):pp. 691–703,
Oct 1998.

[26] P. C. Kjaer, C. Cossar, and T. J. E. Miller. Very high bandwidth digital current
controller for high-performance motor drives. In 6th International Conference of
Power Electronics and Variable Speed Drives, pages pp. 185–190, Nottingham, 1996.

[27] O. Kukrer. Discrete-time current control of voltage-fed three-phase pwm inveters.
In IEEE Transactions of Power Electronics, volume Vol. 11, pages pp. 460–469, Mar
1996.

[28] Cristian Lascu, Ion Boldea, and Frede Blaabjerg. A modified direct torque control
fo induction motor sensorless drive. IEEE Transactions on Industry Applications,
Vol. 36(No. 1):pp. 122–130, Jan 2000.

[29] Dong-Choon Lee, Seung-Ki Sul, and Min-Ho Park. High performance current reg-
ulator for a field-orientted controlled induction motor drive. IEEE Transactions on
Industry Applications, Vol. 30(No. 5):1247–1257, Sep 1994.

[30] S. Lithgow. Notes on induction machine modelling. Technical report, Department of
Electrical and Computer Engineering, The University of Newcastle, Australia, 2000.

[31] Robert D. Lorenz and Donald B. Lawson. Performance of feedforward current regula-
tors for field-oriented induction machine controllers. IEEE Transactions on Industry
Applications, Vol. 23(No. 4):pp. 597–602, Jul 1987.

[32] Robert D. Lorenz, Thomas A. Lipo, and Donald W. Novotny. Motion control with
induction motors. Proceedings of the IEEE, Vol. 82(No. 8):pp. 1215–1240, Aug 1994.

[33] Luigi Malesani, Paolo Mattavelli, and Simone Buso. Robust dead-beat current con-
trol for pwm rectifiers and active filters. IEEE Transactions on Industry Applica-
tions, Vol. 35(No. 3):pp. 613–620, May 1999.

[34] Luigi Malesani, Paolo Tenti, Elana Gaio, and Roberto Piovan. Improved current
control technique of vsi pwm inverters with constant modulation frequency and
extended voltage range. IEEE Transactions on Industry Applications, Vol. 27(No.
2):pp. 365–369, Mar 1991.

[35] Akira Nabae, Satoshi Ogasawara, and Hirofumi Akagi. A novel control scheme for
current-controlled pwm inverters. IEEE Transactions on Industry Applications, Vol.
22(No. 4):pp. 678–690, Jul 1986.

242 BIBLIOGRAPHY

[36] P. Naur, editor. Revised report on the algorithmic language Algol 60. Comm. ACM
6:1, 1963. pp. 1-17.

[37] D. O’Kelly and S. Simmons. Introduction to Generalized Electrical Machine Theory.
McGraw-Hill Publishing Company, London, 1968.

[38] Gerhard Pfaff, Alois Weschta, and Albert F. Wick. Design and experimental results
of a brushless ac servo drive. IEEE Transactions on Industry Applications, Vol.
20(Num. 4):pp. 814–821, July 1984.

[39] A. B. Plunkett. A current-controlled pwm transister inverter drive. In Conference
Record of the 14th Annual Meeting, IEEE Industry Applications Society, pages pp.
785–892, 1979.

[40] Timothy M. Rowan and Russell J. Kerkman. A new synchronous current regulator
and an analysis of current-regulated pwm inverters. IEEE Transactions on Industry
Applications, Vol. 22(No. 4):pp. 678–690, Jul 1986.

[41] C. Schauder. Adaptive speed identification for vector control of induction motors
without rotational transducers. In Proceedings of the IEEE IAS Annual Meeting,
pages pp. 493–499, Oct 1991.

[42] C. D. Schauder and R. Caddy. Current control of voltage-source inverters for fast
four-quadrant drive performance. IEEE Transactions on Industry Applications, Vol.
18(No. 2):pp. 163–171, Mar 1982.

[43] Lothar Springob and Joachim Holtz. High-bandwidth current control for torque-
ripple compensation in pm synchronous machines. IEEE Transactions on Industrial
Electronics, Vol. 45(No. 5):pp. 713–721, Oct 1998.

[44] Isao Takahashi and Toshihiko Noguchi. A new quick-response and high-efficiency
control strategy of an induction motor. IEEE Transactions on Industry Applications,
Vol. 22(No. 5):pp. 820–827, Sep 1986.

[45] Ying-Yu Tzou and Hau-Jean Hsu. Fpga realization of space-vector pwm control
ic for three-phase pwm inverters. IEEE Transactions on Power Electronics, Vol.
12(No. 6):pp. 953–963, Nov 1997.

[46] H. W. van der Broeck, H. Ch. Skudelny, and G. Stanke. Analysis and realization
of a pulse width modulator based on voltage space vectors. IEEE Transactions on
Industry Applications, Vol. 24(No. 4):pp. 124–150, Jan 1988.

[47] L. A. Zadeh. Fuzzy sets. Informat. Contr., Vol 8:pp 338–353, 1965.

	Introduction
	Induction Machine Control
	Overview
	Key Contributions
	Publications

	Survey of Prior Work
	Introduction
	Machine Control Overview
	Scalar Control
	Vector Control
	Direct Torque Control
	Power Converter Topology

	Current Control Issues
	Performance Metrics
	Modulation Methods
	Inverter Dead Time

	Existing Control Schemes
	Stationary Frame PI Control
	Rotating Frame PI Control
	State Feedback
	Hysteresis Controllers
	Predictive Controllers
	Artificial Intelligence Approaches

	Conclusions

	Current Control
	Introduction
	The Predictive Controller
	The Model
	Output Switching Pattern
	Back-emf Estimation
	The Controller

	Output Considerations
	PWM Generation
	Voltage Limiting

	Inductance Estimation
	Quarter-Cycle Method
	Estimation Sampling Alternatives
	Full-Cycle Inductance Estimator

	Conclusions

	Controller Analysis
	Introduction
	Standard Controller Performance
	System Transfer Function
	Stability Analysis
	Tracking Performance

	Time-Variations in Back-emf
	Back-emf Extrapolation
	Rotation Feed-forward
	Observer Based Rotational Adjustment

	Inclusion of Winding Resistance
	Under-modelling Errors
	Compensation for Resistance Effects

	Conclusions

	Controller Implementation
	Introduction
	System Architecture
	Data Acquisition
	Connection Scheme
	Communications Protocol
	Sample Timing and Acquisition

	PWM Generation
	Switching Generator Structure
	Dead Time Issues

	Controller Design
	The DSPs
	EPLD Interface

	The Controller Software
	Controller Variables
	The Main Loop
	Torque Controller
	Current Control
	Space-Vector Modulation

	Controller Performance
	Back-Emf prediction
	Current Tracking
	Inductance Estimation

	Conclusions

	Hardware Implementation
	Introduction
	Physical Structure
	Hardware Implementation issues
	Duty Cycle
	Switching times
	Inductance estimation

	Computational Architecture
	Computational Structure
	ALU Structure
	ALU Control
	ALU Operation

	Sequencing Architecture
	State Machine Implementation Issues
	The Microcoded State Machine
	Microcode Assembler

	Additional Calculation Hardware
	Loop Counter
	Multiplication
	Division
	Inductance Estimator

	The Current Controller
	Sample Acquisition
	Updating Equation
	Sector Determination
	Switching Times

	Controller Performance
	Conclusions

	Conclusions & Further Work
	Conclusions
	Suggestions for Further Work

	DSP Implementation Code
	Introduction
	Software Description
	cc1.c
	c_iface.c
	hwdefs.h
	iface.h
	iface.c
	m_serial.h
	m_serial.c
	p_iface.h
	p_iface.c

	Data Acquisition Firmware
	inp8k.gdf
	if_c31.gdf
	inp_stg.gdf
	da_ctrl.tdf
	gr2bin.tdf
	if_dec12.tdf
	lim_mux.tdf
	linktrip.tdf
	p_div.tdf
	rx_seq.tdf
	scompare.tdf
	ser_in.tdf

	Modulation Firmware
	out_stg.gdf
	dead.tdf
	dead_cmp.tdf
	dead_tme.tdf
	out_ltch.tdf
	pwmst.tdf
	swgen.tdf

	Hardware Implementation Details
	Introduction
	Altera Design Files
	if_vsd.gdf
	if186.gdf
	inp_stg.gdf
	pwm.gdf
	vsd1.gdf
	vsdtop.gdf
	aalu.tdf
	extmux.tdf
	if_dec.tdf
	lest.tdf
	mcon.tdf
	pulselen.tdf
	pwmlatch.tdf

	Microcode Source Code
	ccprog.vmc

	The Microcode Compiler
	vsdc.cpp

