-

ISSUE: |11

hitex s

DEVELOPMENTTOOLS

C51 Primer

An Introduction To The Use Of
The Keil C51 Compiler On The
8051 Family

Hitex (UK) Ltd.
University of Warwick Science Park
Coventry, CV4 7EZ

Tel: 024 7669 2066
Fax: 024 7669 2131
Email: sales@hitex.co.uk
Web: http://www.hitex.co.uk

© Copyright Hitex (UK) Ltd. 1996
All Rights Reserved.
No Part of this publication may be transmitted, transcribed, stored in a
retrieval system, trandlated into any language, in any form, by any means
without the written permission of Hitex (UK) Ltd..

N

Contents
B g oo 8 ox 1T o OSSO TE SRS
2 Keil C51 Compiler Basics- The 8051 Architecture
2.1 8051 MEMONY CONFIQUIBLIONScviueeierteertereeiesteeetereeiesee e steseesesee e sbeseeaeseeseebeseeaesee e ebeseeseabeseeaesEe st ebeseeaeabeseabe s eseebeseabe s ebesbenennan
2.1.1 Physical Location Of The Memory Spaces
2.1.2 Possible Memory ModelScccoiernennienicnneneens
2.1.3 Choosing The Best Memory Configuration/Model ..
2.1.4 Setting The Memory Model - #PragMalUSA0ecoeiueeiuiirieiecrieee ettt sttt st ae ettt s b et b et a e anan
2.2 Local MemOory MOl SPECITICALIONcciuieeiiieeitcree ettt bbbt e b et b s e et sb e e e bt se et e be st entsbe e enenean
2.2.1 Overview
2.2.2 Point To Watch In MUIti-MOOEl PrOGIaIMScc.oieiiiieiiiieeiieirieriee ettt see b et s b e be s e b e e b st e e be e e besaenennan
3 Declaring VariableS ANG CONSLANEScc.ciiiirerieirieet ettt e ae st e b e et b e e e b see e e be e e be e b e st eae s ese b e e saesbenesbe e ebesaeneaean
3.1 Constants
B2 VATADIES ...t R R RS E AR R R R R e R Rt e R et a Rt e ren e
321 UNINItialiSEAVarBDIESoovoveiiiiececeee et r e e et e e et eer e n et e ren e e
3.2.2 Initiglised Variables ...
3.3 Watchdogs With Large Amounts Of Initialised Data
3ACELVAADIES ...
341 VATBDIE TYPES ..ttt b e et b e e e h e s e e e e b e sE e st S E e e eheSEeme e b e e e R SE e R e eRe AR oA e e b e e e Re A e Rt b e e eRe b e Rt be e ereebenenan
3.4.2 SPECIAl FUNCLION BILS.....c.eitiieiiteieeie ettt b e b b e b e e e b e b e a e sE e e e he se e Rt e b e ne e bt s b e ne e b e neeae s b et e be st e be e b e e anan
3.4.3 Converting Between Types
3.4.4 A Non-ANSI Approach To Checking Data TYPe OVEITIOWcccciiiiiiiiiiiiieee e 17
4 Program SEFUCEUFN @ AN LAYOULoooiiieiieieiitesieeste ettt ettt sttt a et a et e s s e s e s e e e e b e s e e ae s e e se e b e seeaesbeneebeneeaesbeneebe s ebesaeneanan 19
4.1 Modular Programming In C51
4.2 Accessibility Of Variables IN MOAUIEI PrOGIaIMScouiuiriieriiieerieiesieres ettt sie s sa st et se s see e ebe st enesee e enenean 20
4.3 Building A Real Modular Program - The Practicalities Of Laying Out A C51 Programccccceeererereneeesesneseseseseseseeeseas 22
4.3.1 The Problem
4.3.2 Maintainable Inter-Module Links
4.4 Task SChedulingcccocveereneireere e
4.4.1 8051 APPIICALIONS OVEIVIEIWoueiuiiteniriiieierteeeieree st e stese e st see e s beseeaesee st ebeseeaessese s eaeebe s eseeaesee st ebe st eae et eneebe e eaeabeneabe s ebessenenean
4.4.2 SIMPIEBOSL SYSLEIMS ...ttt ettt sttt e et e s e e st se et s beseeaeseemeeb e s e eae e b e st e b e e ebeeheseeaesEeseebe e eheebene e b e e eae et enesbe s ebesbenenean
4.4.3 Simple Scheduling - A Partial Solution
N =0 | g [0 AN o] o] (o [OOSR
5 C Language Extensions FOr 8051 ProgramiMINgc.ccoeoeereerenerereeeseesesseseesessesesseseesessesessessesessessesessessssessesessessssessenesses 30
5.1 Accessing 8051 On-Chip Peripherals
Lo 1 0= 1 £ U] o £ TSP S TP PP PRTPRURURPI
5.2.1 The INterrUPt FUNCEION TYPE ...ttt ettt ettt e ae e et e a e s £ e ae b e e e bt se e s e e hene e bt e b eneebe s ehe b et eae b e neabe s ebesbeneanan
5.2.2 Using C51 With Target Monitor Debuggers....
5.2.3 Coping Interrupt Spacings Other Than 8 ..o
5.3 Interrupts, USING, Registerbanks, NOAREGS In C51 - Everything You Need To Know
5.3.1 The Basic Interrupt Service FUNCLION ATLITDULEcoi ittt
Lo N 0T O L oo @] o 11 (o) OSSR
5.3.2 Theabsolute register addressing trick in detail ...
5.3.3 TREUSING CONIOLeviiiieeieicreeieieiese sttt e et e bR bt e e e R e e e s e R et se R b et e e e e R et e e s n et e nnerenenearn
5.3.4 NOES 0N CEL'S "SEBCK FFAIME"oceiiirteieiresie sttt e bt e bt e r st e e e r et enn b e nenrene e ana
5.3.5 When To Use USING
5.3.6 THE NOAREGS PraOgMAcueiveuirierieeriesieterteesieseeaestesesteseesesseseeseseeseeseseeaeseeeeseseeaeabeseaaeseeseaaeseeseabenesaeseseabeneeaeabenesbeeabesaeneanan
5.3.7 The REGISTERBANK Control Alternative TO NOAREGScccoooiiinrieiieeesesse e
5.3.8 Summary Of USING And REGISTERBANKccccoevveinnnnee
5.3.9 Reentrancy In C51 - The Fina Solution..................
5.3.10 Summary Of Controls For Interrupt Functions....
5.3.11 ReentranCy AN Library FUNCHIONS........c.ciiieeieieceste ettt sttt b e et st e e e bt se et e b e st enesbe e enenean
(O 0T 1 L= S I T O TSSOSO U TSRS
6.1 Using Pointers And Arrays In C51
6.1.1 POINIEIS TN ASSEMDIES ...ttt E R e R e e e s e R et ne R s et e e e r et e s n et e e neenene e e
B.1.2 POINTEIS TN CBL ...ttt e e e R b et s R e e R Rt e e e R e e e e e R et s e R b et e e e e R et s e e n et e e neerene e e
6.2 Pointers To Absolute Addresses
6.3 Arrays And Pointers - TWO SideS Of The SAME COIN?cciiiiiiiieirie ettt st s sb e e s e se bbb e s b aeneeean 42
6.3. 1 UNINITIBIISEO ATTAYSeeieieeieeteeeieete ettt ettt ettt e et e e e s e e e e e e bt seea e e b e e e bt s A et e b2 e £ ehesEemeehesE e Rt eb e e eheebeneebeneeaesbeneebe s eseabeneanan
6.3.2 Initialised Arrays
6.3.3 USING ATTAYS ...oivierieieierieirieseeesiees e
6.3.4 Summary Of Arrays And Pointers
B.4 SHTUCIUIES ... e b e a e e e R R R e e e e R e s e e he se e e ae se s e s b e e e aese s e e b e e a e b e e r e e e e n e e e
B.4.1 WHY USE SITUCLUINES?eeeeieiteieiete sttt st ae st st e st be e e be b e s e ebe s e se s e e e e be e b e s e e b e s e s e b et sEemeeRese e Rt ebeaEeaesbene e b e neeaeebeneabe st eaeabeneanan 45
6.4.2 Arrays Of Structures
6.4.3 Initialised Structures
6.4.4 Placing SruCtUreS At ADSOIULE AGUIESSES........coueuirieiete ettt sttt b e b e e b e e st s b et e be s e se b et eae st e st s be e ebesaeneanan 46

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 2

6.4.5 POINLEIS TO SITUCIUIESciueeiteeeserereieeresses et s st se s st e et se e s e s e e se R et e s e e R e et ne e e e R e st e s e R et ne e R s e st n s e s er et neere b e e neerenesnann
6.4.6 Passing Structure POINLErS TO FUNCLIONScciuiiriieerieeieree sttt sttt st ae et b et ae st et e b e seeae b et b e s e neebeneenan
6.4.7 Structure Pointers To Absolute Addresses ..
LIRS TL O 0T ST S T OSE ST ST ST TTRPTN
6.6 GENENIC POIMEELSovieiiiece ettt E e e R e e e R et e R Rt ne e e R e s e e s e R et s e R R et e e e R et e e e n b et neerene e arn
6.7 Spaced PointersIn C51
7 Accessing External Memory Mapped Peripherals ... e
7.1 The XBYTE ANG XWORD IMBCIOSc.ccuireriirerrerestresreeisesrestesessesesessssesesesessesesessssesesessssesssssessesssessessssssnsesessssssesesssssesssanns
7.2 Initialised XDATA Pointers
7.3 Run Time xdata Pointers
7.4 The“volatile” Storage Class
7.5 Placing Variables At Specific Locations - The Linker Method
7.6 Excluding External Data Ranges From SPECITIC ATEEScouciiuiiriirireree ettt sttt sttt s ene e
7.7 -missing ORDER and AT now in C51
7.8 Using The _at_and _ORDER __ CONLIOIScouiiriiiiuirieiete ettt sttt be e be e b e e b e e e e st e s eaesa et ebe st enesee e enenean
8 Linking 1ssUeS AN SEACK PIACEIMENTciiuiiiiiiieee ettt b e e bt e bt b et st e s e e st e et e be st et sbe e enenean
8.1 Basic Use Of L51 Linker
8.2 SHACK PIBCEIMENT ...ttt R bt n e R e R Rt e e R e e e e R et s e e R Rt e e R et R bt e ren e
8.3 Using The Top 128 BYteS Of the 8052 RAM ..ottt st b s et e b e e e st e s enesae e ebeseenesbe e enenean
8.4 L51Linker Data RAM OVErayingcccocoveeienerinineneienesieesie e

8.4.1 Overlaying PriNCIPIEScc.ciiirieirieeee e

8.4.2 Impact Of Overlaying On Program CONStructioncccceceeevereeenenennes

8.4.2.1 Indirect Function Calls With Function Pointers (hazardous)
8.4.2.2 Indirectly called FUNCLIONS SOIULTONcouiiiiiiiirieieie ettt bbbt a et e e b et ae b et b e e b benenan
8.4.2.3 Function Jump Table Warning (Non-hazardous) ...
8.4.2.4 Function Jump Table Warning SOIULIONco.ciriirerieieiereee ettt e et se e et st e bt se et s b e et sbe e enenean
8.4.2.5 Multiple Call To Segment Warning (HAZArAOUS)ccceueeruirieinieieeienie ettt st sa et sbe et see e enenean
8.4.2.6 Multiple Call To Segment Solution
8.4.3 OVErlaying PUDIIC VAITBIDIES ..ottt ettt ae et b et a e b et e b e e e ae b et b et e b e e enan
O OLNEr CBL EXEENSIONScovveveiirirreresineireseese e esese st se et e e et s e s e sesr e s e s e e st st e e R e b e e ne R ea e se R e R e st ne e e R e st n e s e e b et neerene e e nreneneas
9.1 Special FuNction BitS.........cccoerrencienenseeene

9.2 Support For 80C517/537 32-bit Maths Unit
9.2.1 The MDU - How ToUSe It ...c.cvvvreereierierne

9.2.2 THE 8 DELAPOINTENSccuieeuerteieierteirteseeterte e steseeaesee e sbeseeaesee e eaesee e ebeseeaesEeneeaesEeaeeb e e eaeeeemeeheseeseeb et eaesbeneebeneeaeebeneebe s ebesbeneanan
9.2.3 80CS517 - ThINGS TO BEAWEIE OFf ...ttt et st a et ae e et e aese s b e e e bt s e e e eb e e e st se et ebesbentsbeneenenean
9.3 87C751 Support
9.3.1 87CT51 - SEENS TO TAKEeevvveeeerrereise ettt ettt s et E et e Rt e e R et e s e R et ne R b et e e e e R et s e e n b et neerenenearn
9.3.2 INLEOEN PIOMOLIONc.tiuiitiieiieteietert ettt sttt ae e bt ae e et b e e e he b et e b e e e bt b e s e eb e s ebe e b e e e b e eaeseeE e s e bt reeaeeb e s enene et ebeneentsee e enenean
10 Miscellaneous Points
10.1 Tying The C Program TO The RESLAIT VECTOTcciiiiiieiriiieierieisie ettt ae sttt e ae st b et ene b e e be e enesnene
10.2 INEMNSIC FUNCLIONSc.vvteeieieicesesr ettt e et e R et e R Rt et ee Rt s e R Rt e e e b et ne e r b et e nren e nn s
10.3 EA Bit Control #pragma.....
10.4 16-Bit sfr Supportccceeee.
10.5 Function Level Optimisation
10.6 IN-LiNE FUNCLIONS TN CBL ..ottt e et e Rt R et enn et e n e nn e
11 Some C51 ProgrammMiNg TEICKSceieiiieeerieisiestete ettt st b e e s e e e b e e e aesb et b e e ebe s b e st se et ebeseeaeseeneebe st enesbe e eneneeneabans
11.1 Accessing RO etc. directly from C51
11.2 Making Use Of UNUSEA INLEITUDPE SOUMCEScoueueiuiirierieerteeste st estesestesee e seeseeaesee e sbeseeaestesessessenesbeseeaesaenesbeseenesaenessansesessans
11.3 Code MEMOrY DEVICE SWITCHINGc.ceuirieerteiieiite ettt sttt st b e et s b et b e e st e b et e b e s e b e s e e e e b e b e st s b e e ebeseenenbeeenens
11.4 Simulating A Software Reset
11.5 The Compiler PreproCeSSOr - HUEMINEcoi ettt et b et be et b e e bt e et b st enesbe e beneeneanans
12 CBLLIDIAIrY FUNCLIONSttt sttt sttt a e e b e e he £ e st e b e e e he e b e Re R e e e b e b e s e eb e b e b e be e e b e b e st sbeneebesbenenbesenens
12.1 Library Function Callingcccce.e...

12.2 Memory-Model Specific Libraries
13 Outputs From C51cocevireeieecne

13,1 OBJECE FIES ...ttt E Rt e R e e R R e e e R Rt e R R e R Rt R e
13.2 HEX FileS FOr EPROM BIOWINGc.ccuiitiiitirieieterteie ettt st se st be e s s be e be e esesbe e ebesbesesae e ebesbesesbeeebessenesbensanens
13.3 Assembler Output
14 Assembler INterfacing TO C PrOQEaMSccoociieriiirieesiereeterieest et te e iesbe e ae st e e s ee e sbessesesee e sbeseeaeseeneebeseenesbeeeneseeneabans
14.1 Assembler FUNCEON EXAMPIEcoiiiiiitieie ettt s b e bt e et b e e e bt s e et e b e seeae s e et e beseenesbe e ebeneeneabans
14.2 Parameter Passing To Assembler Functions
14.3 Parameter PassinNg [N REGJISIENSc.ciiiiiieeiieeier ettt b et ae et b e ae s b et b e e e bt e b e st e b e b e s e s be e e beebesesbe e sbeseenenbesenens
15 General ThiNgS TO BE AWAI € Of ...ttt b et b et b et e b e s b et e b e b e s e b e e e b e b e st e be e sbesbenesbeneenen
15.7 Floating Point Numbers...................

16 Conclusionccccevevrerrennes

F N o] 0 1< T | OSSR

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 3

About The C51 Primer

If you’ veflicked throughthispublication, you may beleft thinking that it isnecessary to bean expert to produceworkable
programswith C51. Nothing could befurther fromthetruth. Itisperfectly possibletowritereal commercial programs
with nothing more than a reasonable knowledge of the ANSI C language.

However, to get the maximum performance from the 8051, knowing afew tricksisvery useful. Thisisparticularly true
if youareworking onavery cost-sensitive project whereneeding abigger RAM or EPROM canresultin an unacceptable
on-cost. After al, if cost was not a consideration, we would all be using 80C166s and 68000s!

Whilst the C51 Primer isreally aimed at users of the Keil C51 Compiler, itisapplicablein part tocompilerssuchaslAR
and Tasking. However, asthese compilersdo not allow such low-level accessand havefewer 8051-specific extensions,
they are lesslikely to be used on projects where getting maximum performance is essential.

The C51 Primer Will Help You

Find your way around the basic 8051 architecture.
Make a sensible choice of memory model and special things to watch out for.
L ocate things at specific addresses.

Make best use of structures.

Use bit-addressable memory.

Think in terms of charsrather than ints.

Get the best out of the various pointer types.

Get amodular structure into programs.

Access on and off-chip ports and peripherals.

Deal with interrupts.

Use registerbanks.

Deal with the stack.

Understand RAM overlaying.

Interface to assembler code.

Use specia versions like the 80C517 and 87C751.

Use assembler tricksin C.

Help the optimiser to produce the smallest, fastest code.

The C51 Primer Will Not Help You:

Program in ANSI C - get agood reference like Kernighan & Ritchie.

Write portable code - simply use the compiler without using any extensions.

Set-up each and every on-chip peripheral on all of the 90 different 8051 variants! Some are, however, covered in the
appendices.

This guide should be read in association with agood C reference such as Kernighan and Ritchie and is not meant to be
adefinitivework onthe C language. It coversall the 8051-specific|anguage extensions and those areas where the CPU
architecture has an impact on coding approach.

1 Introduction

C can be arather terse and mystifying language. Widely quoted as being ahigh level language, C doesindeed contain
many such features like structured programming, defined procedure calling, parameter passing, powerful control
structures etc.

However much of the power of Cliesinitsability to combine simple, low-level commandsinto complicated high-level
language-like functions and allow access to the actual bytes and words of the host processor. To a great extent then,
Cisasort of universal assembly language. Most programmerswho are familiar with C will have been used to writing
programs within large machines running Unix or latterly MS-DOS. Even in the now cramped 640KB of MS-DOS,
considerable spaceisavailable so that the smallest variablein aprogram will beanint (16-bits). Most interfacingtothe
real worldwill bedoneviaDOSIntsandfunctioncalls. Thustheactual Cwrittenisconcerned only withthemanipulation

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 4

and processing of variables, strings, arrays etc.

Withinthemodern 8bit microcontroller, however, thesituationissomewhat different. Takingthe8051 asanexample, the
total programsizecan only occupy 4 or 8K and useonly 128bytesof RAM. Ideally, real devicessuch asportsand special
function registersmust be addressed from C. Interruptshaveto be serviced, which require vectorsat absol ute addresses.
Specia caremust betakenwitharoutine’ sdatamemory all ocationif over-writing of backgroundloop dataisto beavoided.
Oneof thefundamental sof Cisthat parameters(input variabl es) are passed to afunction (subroutine) and resultsreturned
tothecaller viathe stack. Thusafunction can be called from both interrupts and the background without fear of itslocal
data being overwritten (re-cutrancy).

A serious restriction with the 8051 family isthe lack of aproper stack; typically with a processor such asthe 8086, the
stack pointer is 16-bits (at |east). Besidesthe basic stack pointer, there are usually other stack relative pointers such as
abase pointer etc..

With these extra demands on the stack control system, the ability to access data on the stack is crucial. As already
indicated, the8051 family isendowed with astack systemwhichisreally only capableof handling return addresses. With
only 256 bytes of stack potentially available, it would not take too much function-calling and parameter-passing to use
this up.

From thisyou might think that implementing a stack-intensive language like C on the 8051 would beimpossible. Well,
it very nearly has been! While there have been compilers around for some years now that have given C to 8051 users,
they have not been overly effective. Most have actually been adapted from generic compilersoriginally writtenfor more
powerful microssuchasthe68000. Theapproachtothestack problem haslargely beenthroughtheuseof artificial stacks
implemented by using 8051 opcodes.

Typicaly, an areain external RAM is set aside as a stack; special library routines manage the new stack every time a
functioniscalled. Whilethismethod worksand givesare-entrant capability, the pricehasbeen very slow runtimes. The
net effect is that the processor spends too much time executing the compiler’s own code rather than executing your
program!

Besides the inherent inefficiency of generating a new stack, the compiled program codeis not highly optimised to the
peculiarities of the 8051. With all this overhead, the provision of banked switch expanded memory, controlled by 10
ports, becomes almost a necessity!

Therefore, with the 8051 in particular, the assembler approach to programming has been the only real alternative for
small, time-critical systems.

However, as far back as 1980, Intel produced a partial solution to the problem of alowing high-level language
programming on itsnew 8051 in the shape of PLM51. Thiscompiler wasnot perfect, having been adapted from PLM85
(8085), but Intel wererealistic enoughto realisethat afull stack-based implementation of the language was simply not
on.

The solution adopted wasto simply pass parametersin defined areas of memory. Thuseach procedure hasitsown area
of memory inwhich it receives parameters and passes back theresults. Provided the passing segments are internal the
calling overhead is actually quite small.

Using external memory slows the process but is still faster than using an artificial stack.

The drawback with this “compiled stack” approach is that re-entrancy is now not possible. This apparently serious
omission in practice does not tend to cause a problem with typical 8051 programs. However the latest C51 versionsdo
allow selectivere-entrancy, sothat permitting re-entrant useof afew critical functionsdoesnot compromisetheefficiency
of thewhole program.

Other noteworthy considerationsfor C on amicrocontroller are:
0] control of on and off-chip peripheral devices

(i) servicing of interrupts

(@ii) making the best use of limited instruction sets

(iv) supporting different ROM/RAM configurations

(v) avery highlevel of optimisation to conserve code space
(vi) control of registerbank switching

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 5

(vii) support of enhanced or special family variants(87C751, 80C517 etc..).

TheKeil C51 compiler contains all the necessary C extensions for microcontroller use. This C compiler builds on the
techniques pioneered by Intel but adds proper C language features such as floating point arithmetic, formatted/
unformatted 10 etc. Itis, infact, animplementation of the C language ANSI standard specifically for 8051 processors.

2 Keil C51 Compiler Basics- The 8051 Architecture

The Keil C51 compiler has been written to allow C programmers to get code running quickly on 8051 systems
with little or no learning curve. However, to get the best from it, some appreciation of the underlying hardwareis
desirable. The most basic decision to be made is which memory model to use.

For general information on the C language, number and string representation, please refer to a standard C
textbook such asK & R

2.1 8051 Memory Configurations
2.1.1 Physical Location Of The Memory Spaces

Perhaps the most initially confusing thing about the 8051 is that there are three different memory spaces, all of which
start at the same address.

Other microcontrollers, such asthe 68HC11, have asingle Von Neuman memory configuration, where memory areas
are located at sequential addresses, regardless of in what device they physically exist.

Withinthe CPU thereisonesuch, theDATA on-chip RAM. Thisstartsat D:00 (the‘D:’ prefiximpliesDATA segment)
and ends at 07fH (127 decimal). This RAM can be used for program variables. It is directly addressable, so that
instructionslike' MOV A, X’ areusable. Above80H the special function registersarelocated, which are again directly
addressable. However, a second memory area exists between 80H and OFFH which isonly indirectly addressable and
is prefixed by I: and known as IDATA. It isonly accessible via indirect addressing (MOV A,@Ri) and effectively
overlaysthedirectly addressablesfr area. Thisconstitutesan extended on-chip RAM areaand wasadded to the ordinary
8051 design when the 8052 appeared. Asit is only indirectly addressable, it is best |eft for stack use, which is, by
definition, alwaysindirectly addressed viathe stack pointer SP. Just to confuse things, the normal directly addressable
RAM from 0-80H can aso be indirectly addressed by the MOV A,@Ri instruction!

CODE XDATA

DATA 0

020
DATA BDATA OxIF

E
2

Fig.1. The 8051's Memory Spaces.

A third memory space, the CODE segment, al so startsat zero, but thisisreserved for the program. It typically runsfrom
C:0000 to C:0FFFFH (65536 bytes) but asit is held within an external EPROM, it can be any size up to 64KB (65536
bytes). The CODE segment is accessed via the program counter (PC) for opcode fetches and by DPTR for data.
Obviously, being ROM, only constants can be stored here.

A fourth memory areais also off-chip, starting at X:0000. Thisexistsin an external RAM device and, like the C:0000

segment, can extend up to X:0FFFFH (65536 bytes). The* X:’ prefix impliestheexternal XDATA segment. The8051's
only 16 bit register, the DPTR (data pointer) is used to access the XDATA. Finally, 256 bytes of XDATA can also be

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 6

addressed in apaged mode. Here an 8-bit register (RO) is used to accessthis area, termed PDATA.
The obvious question is

“How does the 8051 prevent an access to C:0000 resulting in data being fetched from D:007”
The answer isin the 8051 hardware:

When the cpu intendsto access D:00, the on-chip RAM isenabled by apurely internal READ signal - the external /RD
pin is unchanged.

MOV A 40 ; Put value held in location 40 into the accunul at or
This addressing mode (direct) is the basis of the SMALL memory model.

MOV RO, #0A0H ; Put the value held in | DATA | ocation OAOH into

MOV A @RO ; the accunul at or

Thisaddressing modeisused to accesstheindirectly addressable on-chip memory above 80H and as an alternative way
to get at the direct memory below this address.

Avariationon DATA isBDATA (bit data). Thisisa16 byte (128-bit) area, starting at 020H inthe direct segment. Itis
useful inthat it can be both accessed byte-wise by the normal MOV instructions and addressed by special bit-orientated
intructions, as shown below:

SETB 20.0
CLRB 20.0

Theexternal EPROM device (C:0000) isnot enabled during RAM access. Infact, the external EPROM isonly enabled
when apinonthe8051 named the PSEN (program store enable) ispulled low. The nameindicatesthat themainfunction
of the EPROM s to hold the program.

TheXDATA RAM and CODE EPROM do not clashasthe XDATA deviceisonly activeduring aregquest fromthe 8051
pins named READ or WRITE, whereas the CODE device only responds when the PSEN pin islow.

To help access the external XDATA RAM, special instructions exist, conveniently containing an ‘X’

MOV DPTR, #08000H
MOVX A, @PTR ; “Put a value in A located at
address in the external RAM
contained in the DPTR register
(8000H) ".

The above addressing mode forms the basis of the LARGE model.

MOVX RO, #080H
MOVX A, @RO

This aternative access mode to external RAM forms the basis of the COMPACT memory model. Notethat if Port 2
is attached to the upper address lines of the RAM, it can act like amanually operated “paging” control.

Theimportant point to remember isthat the PSEN pinisactive wheninstructions are being fetched; READ and WRITE
are activewhen MOV X.... (“move external”) instructions are being carried-out.

Note that the * X’ means that the addressis not within the 8051 but is contained in an external device, enabled by the
READ and WRITE pins.

2.1.2 Possible Memory Models

With amicrocontroller like the 8051, the first decision is which memory model to use. Whereas the PC programmer
chooses between TINY, SMALL, MEDIUM, COMPACT, LARGE and HUGE to control how the processor segmen-
tation of the RAM isto be used (overcome!), the 8051 user has to decide where the program and data are to reside.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 7

C51 currently supportsthefollowing memory configurations:

i - currently the largest single object file that can be produced is , though up to can be

i) ROM ly thel ingle object file th b duced is 64K, although 1MB b
supportedwiththeBANKED model described bel ow. All compiler output to bedirected to Eprom/
ROM, constants, look-up tables etc., should be declared as “code”.

code unsi gned char constant_1
code unsigned char array_1[3]={‘'1","2","3","4" }

(i) RAM - There are three memory models, SMALL, COMPACT and LARGE
(iii) SMALL - all variables and parameter-passing segments will be placed in the 8051’ sinternal memory.

(iv) COMPACT- variablesarestoredin paged memory addressed by ports Oand 2. Indirect addressing opcodesare
used. On-chip registers are still used for localsand parameters.

(v) LARGE - variables etc. are placed in external memory addressed by @DPTR. On-chip registers are still
used for locals and parameters.

(vi) BANKED - Code can occupy up to IMB by using either CPU port pins or memory-mapped latches to page
memory above OxFFFF. Within each 64KB memory block a COMMON area must be set aside
for C library code. Inter-bank function calls are possible.

See the section on BL51 for mor e information on the BANKED model.

A variation on these modelsisto use one model globally and then to force certain variables and data objectsinto other
memory spaces.

This technique is covered later.
2.1.3 Choosing The Best Memory Configuration/Model

With the four memory models, a decision hasto be made asto which oneto use. Single chip 8051 users may only use
the SMALL model, unlessthey have an external RAM fitted which can be page addressed from Port O and optionally,
Port 2, using MOV X A,@RO addressing.

Thispermitsthe COMPACT model. Whileitispossibleto changethegloba memory model half way through aproject,
it is not recommended!

SMALL

Total RAM 128 bytes (8051/31)

Rather restricting in the case of 8051/31. Will support code sizes up to about 4K but a constant check must be kept on
stack usage. The number of global variables must be kept to aminimum to allow the linker OVERLAY er to work to
best effect. With 8052/32 versions, the manual use of the 128 byte IDATA area above 80H can allow applications up
to about 10-12K but again the stack position must be kept in mind.

Very large programs can be supported by the SMALL model by manually forcing large and/or slow data objectsin to
an external RAM, if fitted. Also variables which need to be viewed in real time are best located here, as dual -ported
emulators like the Hitex T51 can read their values on the fly. This approach is generally best for large, time-critical
applications, asthe SMALL global model guaranteesthat local variables and function parameters will have the fastest
access, while large arrays can be located off-chip.

COMPACT

Total RAM 256 bytes off-chip, 128 or 256 bytes on-chip.

Suitablefor programswhere, for example, the on-chip memory is applied to an operating system. The compact model

israrely used on its own but more usually in combination with the SMALL switch reserved for interrupt routines.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 8

COMPACT isespecially useful for programswith alarge number of medium speed 8 bit variables, for whichthe MOV X
A,@RO isvery suitable.

It can be useful in applicationswhere stack usageisvery high, meaning that dataneedsto be off-chip. Notethat register
variables are still used, so the loss of speed will not be significant in situations where only a small number of local
variables and/or passed parameters are used.

LARGE

Total RAM up to 64K B, 128 or 256 bytes on-chip.

Permits slow accessto avery large memory space and is perhaps the easiest model to use. Again, not often used on its
own but in combinationwith SMALL. Aswith COMPACT, register variables are still used and so efficiency remains
reasonable.

In summary, there are five memory spaces available for data storage, each of which has particular pros and cons.
Here are some recommendations for the best use of each:

DATA: 128 bytes

SMALL model default location

Best For:

Frequently accessed data requiring the fastest access. Interrupt routines whose run timeis critical should use DATA,
usually by declaring thefunctionas"SMALL". Also, background codethat isfrequently run and has many parameters

to pass. If you are using re-entrant functions, the re-entrant stacks should be located here as a priority.

Worst For:
Any variable arrays and structures of more than afew bytes.

IDATA

Not model-dependant

Best For:

Fast access data arrays and structures of limited size (up to around 32 bytes each) but not totalling more than 64 or so

bytes. Asthesedatatypesrequireindirect addressing, they areideally placedintheindirectly addressablearea. Itisalso
agood place to locate the stack, asthisis by definition indirectly addressed.

Worst For:

Large data arrays, fast access words.
CODE

64K bytes

Best For:
Constants and large lookup tables, plus opcodes, of course!

Worst For:

Variables!

PDATA

COMPACT model default area

256 bytes

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 9

Best For:
M edium speed interrupt and fast background char (8-bit) variablesand moderate-sized arraysand structures. Also good
for variables which need to be viewed in real time using an emulator.

Worst For:

Very large data arrays and structure above 256 bytes.
Very frequently used data (in interrupts etc..).
Integer and long data.

XDATA
LARGE model default area

Best For:

Large variable arrays and structures (over 256 bytes)

Slow or infrequently-used background variables. Also good for variableswhich need to beviewed in real timeusing an
emulator.

Worst For:
Frequently-accessed or fast interrupt variables.

2.1.4 Setting The Memory Model - #Pragma Usage

The overall memory type is selected by including the line “#pragma SMALL” asthefirst linein the C sourcefile.

See Section 2.1.3for detail son specific variable placement. SMALL isthedefault model and can beused for quitelarge
programs, provided that full use is made of PDATA and XDATA memory spaces for less time-critical data.

Foecial note on COMPACT model usage

The COMPACT model makes certain assumptions about the state of Port 2. The XDATA space is addressed by the
DPTR instructions which place the 16 bit address on Ports 0 and 2. The COMPACT model uses RO as a 8 bit pointer
which placesan addresson port 0. Port 2 isunder user control and is effectively amemory page control. The compiler
hasno information about Port 2 and unlessthe user hasexplicitly setit to avalueit will be undefined, although generally
it will be at Oxff. Thelinker has the job of combining XDATA and PDATA variables and unlesstold otherwiseit puts
the PDATA (COMPACT default space) at zero. Hence, the resulting COMPACT program will not work.

Itistherefore essential to set the PPAGE number in the startup.a51 file to some definite value - zero isagood choice.
The PPAGEENABLE must be set to 1 to enable paged mode. Also, when linking, the PDATA(ADDR) control must
be used to tell L51 where the PDATA areaiis, thus:

L51 nodul el. obj, nodul e2.0bj to exec.abs PDATA(0) XDATA(100H)

Notethat thenormal XDATA areanow startsat 0x100, abovethe zero pageused for PDATA. Failuretodothisproperly
can result in very dangerous results, as data placement is at the whim of PORT2!

2.2 Local Memory Model Specification
2.2.1 Overview

C51 version 3.20 allows memory modelsto be assigned to individual functions. Within asingle module, functions can
bedeclaredasSMALL, COMPACT or LARGE thus:

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 10

#pragma COVPACT

/* A SMALL Mddel Function */

fsmall () small {
printf(“HELLO')

}
/* A LARGE Moddel Function */
flarge() large {
printf(“HELLO')

}
/* Caller */
mai n() {
fsmall () ; // Call small func.

flarge() ; // Call large func.
}

See pages 5-20 in the C51 reference manual for further details.

2.2.2 Point To Watch In Multi-Model Programs

A typical C51 program might be arranged with all background loop functions compiled as COMPACT, whilst all (fast)
interrupt functions treated as SMALL. The obvious approach of using the #pragma MODEL or command line option
to set themodel can cause odd side effects. The problem usually manifestsitself at link timeasa“MULTIPLE PUBLIC
DEFINITION” error related to, for instance, putchar().

The cause is that in modules compiled as COMPACT, C51 creates references to library functionsin the COMPACT
library, whilst the SMALL modules will access the the SMALL library. When linking, L51 finds that it has two
putchars() etc. from two different libraries.

Thesolutionisto stick to one global memory model and then usethe SMALL function attribute, coveredinthe previous
section, to set the memory model locally.

Example:

#pragma. COVPACT
voi d fast_func(void) SMALL{
/ *code*/

}

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 11

3 Declaring Variables And Constants
3.1 Constants

The most basic requirement when writing any program isto know how to allocate storage for program data. Constants
are the simplest; these can reside in the code (EPROM) area or as constants held in RAM and initialised at runtime.
Obviously, the former really are constants and cannot be changed.

Whilethe latter type are relatively commonplace on big systems (Microsoft C), in 8051 applications the code required
to set them up is often best used elsewhere. Also, accessis generally faster to ROMmed constants than RAM ones if
the RAM isexterna to the chip, asROM “MOVC A,@DPTR” instruction cycleis much faster than the RAM “MOV X
A,@DPTR".

Examples of Eprommed constant data are:

code unsigned char cool ant_tenp = 0x02 ;
code unsigned char |ook_up table[5]="1","2","3","4""} ;
code unsigned int pressure = 4 ;

Note that “const” does not mean "code". Objects declared as "const” will actually end up in the data memory area
determined by the current memory model.

Obviously, any large lookup tables should be located in the CODE area - a declaration might be:

/* Base Fuel Map */
/* x = Load : y = engine speed : output = Injector PW 0 - 8.16ns */

/* (x_size,y_size,
X_breakpoints,
y_breakpoints,
map_dat a)

*/

code unsigned char default_base fuel PWmap[] = {

0x08, 0x08,

0x00, 0x00, 0x00, 0x09, 0x41, 0x80, 0xCO, OxFF,
0x00, 0x00, 0x13, Ox1A, 0x26, 0x33, 0x80, OxFF,
0x00, 0x00, 0x00, 0x09, 0x41, 0x80, 0x66, 0x66,
0x00, 0x00, 0x00, 0x09, 0x41, 0x80, 0x66, 0x66,
0x00, 0x00, 0x00, 0x00, 0x4D, 0x63, 0x66, 0x66,
0x00, 0x00, 0x00, 0x02, 0x4D, 0x63, 0x66, 0x66,
0x00, 0x00, 0x00, 0x05, 0x4A, 0x46, 0x40, 0x40,
0x00, 0x00, 0x00, 0x08, 0x43, 0x43, 0x3D, 0x3A,
0x00, 0x00, 0x00, 0x00, 0x2D, 0x4D, 0x56, 0x4D,
0x00, 0x00, 0x00, 0x00, 0x21, 0x56, Ox6C, OX6F

} o

Withlargeobjectsliketheaboveitisobviously important to stateamemory space. Whenworkinginthe SMALL model
in particular, it is very easy to fill up the on-chip RAM with just asingle table!

RAM constants would be:

128
OxFD34 ;

unsi gned char scal e_factor
unsi gned int fuel _constant

These could, however, havetheir values modified during program execution. Assuch, they are more properly thought
of asinitialised variables - see section 3.2.2.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 12

3.2 Variables
3.2.1 Uninitialised Variables

Naturally, al variables exist in RAM, the configuration of which isgiven in section 2.1.1.

The#pragmaSMALL linewill determinethe overall memory model. Inthiscase, all variablesare placed withintheon-
chip RAM. However, specific variables can be forced el sewhere as follows:

#pragma SMALL

xdat a unsi gned char engi ne_speed
xdata char big_variable_array[192]

Thiswill have engine_speed placed in an external RAM chip. Note that no initial valueiswritten to engine_speed, so
the programmer must not read this before writing it with a start value! This xdata placement may be done to allow
engine_speed to be traced “on the fly”, by an in-circuit emulator for example.

In the case of the array, it would not be sensible to place this in the on-chip RAM because it would soon get filled up
with only 128 bytesavailable. Thisisavery important point - never forget that the 8051 hasvery limited on-chip RAM.

Another exampleis:

#pragma LARGE

function(data unsi gned char paral)

{

data unsigned char |ocal _variable

)
Herethe passed parametersareforcedintofast directly addressedinternal locationsto reducethetimeand code overhead
for calling the function, even though the memory model would normally force all datainto XDATA.

Inthiscaseit would bebetter to declarethefunctionasSMALL, eventhoughthe prevailing memory model islarge. This
is extremely useful for producing afew fast executing functions within a very big LARGE model program.

On a system using paged external RAM on Port 0, the appropriate directive is “ pdata’.

See notesin section 2.1.3 for details on how to best locate variables.

3.2.2 Initialised Variables

Toforcecertainvariablestoastart valuein an overall system setup function, for example, itisuseful to beableto declare
and initialise variablesin one operation. Thisis performed thus:

unsi gned int engi ne_speed = 0
function()
{
}
Herethevalue“0” will bewrittento thevariablebefore any function can accessit. To achievethis, thecompiler collects

together all suchinitialised variablesfromaroundthe systemintoasummary table. A runtimefunctionnamed“C_INIT”

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 13

iscalled by the*“ startup.obj” program which writesthe table valuesinto the appropriate RAM location, thusinitialising
them.

Immediately afterwards, the first C program “main()” iscalled. Therefore no read before write can occur, asC_INIT
getsthere first. The only point to noteis that you must modify the “startup.a51” program to tell C_INIT the location
and size of the RAM you are using. For the large model, XDATASTART and XDATALEN are the appropriate
parameters to change.

3.3 Watchdogs With Large Amounts Of Initialised Data

Inlargeprogramsthesituation may arisethat theinitialisationtakeslonger to completethanthewatchdog timeout period.
Theresultisthat the cpu will reset before reaching main() where presumably awatchdog refresh action would have been
taken.

To allow for thisthe INIT.A51 assembler file, located in the \C51p\LIB directory, should be modified.

This file is part of the CG51 Conpiler package Copyright KEI L ELEKTRONIK GrbH 1990

INIT. A51: This code is executed if the application programcontains initialised variables at
file level.

User - defi ned Wat ch-Dog Refresh.

; If the C application containing nmany initialised variables uses a watchdog it
; mght be possible that the user has to include a watchdog refresh in the

; initialisation process. The watchdog refresh routine can be included in the

; follow ng MACRO and can alter all CPU registers except DPTR

WATCHDOG MACRO
;I'nclude any Watchdog refresh code here
P6 "= wat chdog_refresh ;Special application code
ENDM

NAME ?CINIT

?C_C51STARTUP SEGVENT CODE
?C_INITSEG SEGMVENT CODE ; Segment with Initialising Data

EXTRN CODE (MAI N)
PUBLI C 2C_START
RSEG ?C C51STARTUP I NITEND: LJMP MAIN

?C_START:
MOV DPTR, #?C_I NI TSEG
LOOP:
WATCHDOG ; <<—WATCHDOG REFRESH CODE ADDED HERE!
CLR A
MV R6, #1
MOVC A, @\+DPTR
Jz I NI TEND
INC DPTR
MV R7,A

: Large initialisation loop code

XCH ARO
XCH ARz
XCH A DPH
XCH ARz

LIMP MAI N ; C51 Program start

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 14

RSEG ?C_I NI TSEG
DB 0
END

A special empty macro named WATCHDOG is provided which should be altered to contain your normal watchdog
refresh procedure. Subsequently, thisisautomatically inserted into each of the initialisation loops within the body of
INIT.A51.

3.4 Cb51 Variables
3.4.1 Variable Types

Variableswithin aprocessor arerepresented by either bits, bytes, wordsor long words, correspondingto 1, 8, 16 and 32-
bitsper variable. C51 variablesaresimilarly based, for example:

bi t =1 bit 0-1

char =8 bits 0 - +/- 127

unsi gned char =8 bhits 0 - 255

int =16 bits 0 - +/-32768

unsi gned i nt =16 bits g0 - 65535

| ong =32 bhits 0 - +/- 2.147483648x109

unsi gned | ong =32 bhits 0 - 4.29496795x109

fl oat =32 bits +/-1.176E-38 to +/-3.4E+38
poi nt er =24/ 16/ 8 bits Vari abl e address

Typical declarations would be:

xdata unsi gned char battery_volts ;
idata int correction_factor ;
bit flag_1 ;

(Note: bit variables are always placed in the bit-addressable memory area of the 8051 - see section 2.1.1)

With aprocessor such asthe 8086, int is probably the commonest datatype. Asthisisa 16-bit processor, the handling
of 16 bit numbersisgenerally the most efficient. The distinction between int and unsigned int has no particular impact
ontheamount of code generated by thecompiler, sinceit will ssmply usesigned opcodesrather thantheunsigned variety.

For the 8051, naturally enough, the char should be the most used type. Again, the programmer hasto be aware of the
thoroughly 8-bit natureof thechip. Extensiveuseof 16-bit variableswill produce slower code, asthecompiler hastouse
library routinesto achieve apparently innocuous 16 by 8 divides, for example.

The use of signed numbers has to be regulated, as the 8051 does not have any signed arithmetic instructions. Again,
library routines have to do the donkey work.

Aninteresting devel opment hasbeen the Infineon 80C537, which doeshave an extended arithmeticinstruction set. This
has, for instance, 32 by 16 divide and integer instructions. Indeed, this device might be a good upgrade path for those
8051 userswhoneed morenumber crunching power and who might beconsideringthe80C196. A suiteof runtimelibraries
isavailablefrom Keil to allow the compiler to take advantage of the 80C537 enhancements.

3.4.2 Special Function Bits

A major frustrationfor assembl er programmerscomingto Cistheinability of ANSI Cto handlebitsinthebit-addressable
BDATA areadirectly. Commonly bit masksareneeded whentesting for specific bitswith charsandints. InC51version
3 however, it is possible to force datainto the bit-addressable area (starting at 0x20) where the 8051’ s bit instructions
can be used directly from C.

An example istesting the sign of a char by checking for bit = 1.

Here, the char is declared as “bdata’ thus:
bdata char test ;

sign_bit is defined as:
shit sign ~ 7

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 15

To use this:

voi d main(void) {

test = -1 ;
if(test & 0x80) { // Conventional bit nask and &
test =1 ; /1 test was -ve

}
if(sign == 1) { /1l Use shit
test =1 ; /] test was -ve
}
}

Results in the assembler:

RSEG ?BA?T2
test: DS 1
sign EQU test.7

; bdata char test ;
; sbit sign =test ~ 7 ;

voi d main(void) {
mai n:
; test = -1 ;
MOV test, #OFFH

; if(test & 0x80) { // Conventional bit nmask and &
MOV A test
JNB ACC. 7, 7C0001

; test =1 ; /] test was -ve
MOV test, #01H

; }
2C0001:

; if(sign == 1) { /1 Use shit
JNB sign, 700003

; test =1 ; /] test was -ve
MOV test, #01H

; }

; }

?C0003:
RET

Here, using the shit, the check of thesign bitisasingle INB instruction, whichisan awful lot faster than using bit masks
and &’sinthefirst case!l Thesituation withintsissomewhat more complicated. The problemisthat the 8051 does not
store things as you first expect. The same sign test for an int would still require bit 7 to betested. Thisis because the
8051 storesint’ s high byte at the lower address. Thusbit 7 isthe highest bit of the higher byte and 15 isthe highest bit
of the lower.

Byte Nunmber: test_int(high) 20H Bit Nunber: 0,1,2,3,4,5,6,7
Byte Nunber: test_int+1(low) 21H Bit Nunber: 8,9,10,11, 12,13, 14, 15

Bit locationsin an integer

3.4.3 Converting Between Types

One of the easiest mistakes to make in C isto neglect the implications of type within calculations or comparisons.
Taking asimple example:

unsi gned char x ;

unsi gned char y ;

unsi gned char z ;

X
y

10 ;
5 5

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 16

z=x*y;

Results in z = 50

However:
x = 10 ;
y =50 ;
zZ=Xx*y,;

resultsin z = 244. The true answer of 500 (0x1F4) has been lost as z is unable to accommodateit. The solution is, of
course, to make z an unsigned int. However, it isalwaysagood ideato explicitly cast the two unsigned char operands
up to int thus:

unsi gned char x ;

unsi gned char y ;

unsigned int z ;

z = (unsigned int) x * (unsigned int) y ;
While C51 will automatically promote chars to int, it is best not to rely on it! It could be argued that on any small
microcontroller you should always be aware of exactly what size datais.
3.4.4 A Non-ANSI Approach To Checking Data Type Overflow

A very common situation is where two bytes are to be added together and the result limited to 255, i.e. the maximum
bytevalue. Withthe8051 being byte-orientated, incurringintegersmust beavoided if maximum speedisto beachieved.
Likewise, if the sum of two numbers exceeds the type maximum the use of integersis needed.

In thisexamplethefirst comparison uses aproper ANSI approach. Here, thetwo numbers are added byte-wise and any
resulting carry used to form the least significant bit of the upper byte of the notional integer result. A normal integer
comparethenfollows. Whilst C51 makesagood job of this, amuch faster routeispossible, asshowninthe second case.

; #include <reg51. h>

unsi gned char x, y, z ;

; /*** Add two bytes together and check if ***/
; I***the result has exceeded 255 ***/

; void main(void) {
RSEG ?PR?mai n?T
USI NG 0
SOURCE LINE # 8

if(((unsigned int)x + (unsigned int)y) > Oxff) {
; SOURCE LINE # 10

MOV A X
ADD Ay
MoV R7, A
CLR A

RLC A

MOV R6,A
SETB C

MoV A R7
SUBB A, #0FFH
MV A R6
SUBB A, #00H
JC ?C0001

z = Oxff ; /1 ANSI C version
; SOURCE LINE # 12

MOV z, #OFFH

}
SOURCE LINE # 13

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 17

Inthiscasethecarryflag,“CY”,ischecked directly, removing theneed to performany integer operations, asany addition

resulting in avalue over 255 setsthe carry. Of course, thisisnolonger ANSI C asareferenceto the 8051 carry flag has
been made.

?C0001:

Z =X +Yy;
; SOURCE LINE # 15
MOV A X
ADD Ay
MV z, A

if(cy) {
; SOURCE LINE # 17
JNB CY, 200003

z = Oxff ; /1 C51 Version using the carry flag
; SOURCE LINE # 19
Yo% z, #OFFH

}
; SOURCE LINE # 20

; SOURCE LINE # 25
?C0003:
RET

The situation of an integer compare for greater than 65535 (0xffff) is even worse aslong maths must be used. Thisis
almost adisaster for code speed asthe 8051 hasvery poor 32-bit performance. Thetrick of checkingthecarry flagisstill
valid asthe final addition naturally involves the two upper bytes of the two integers.

In any high performance 8051 system this loss of portability is acceptable, as it allows run time targets to be met.
Unfortunately, complete portability always compromises performance!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 18

4 Program Structure And Layout
4.1 Modular Programming In C51

Thisispossibly not the place to make the case for modular programming, but a brief justification might be appropriate.

In anything but the most trivial programsthe overall job of the softwareis composed of smaller tasks, all of which must
be identified before coding can begin. As an electronic system is composed of several modules, each with a unique
function, so a software system isbuilt from anumber of discretetasks. In the electronic case, each moduleis designed
and perfected individually and then finally assembled into a complete working machine. With software, the tasks are
the building blocks which are brought together to achieve the final objective.

The overall program thus has a loosely-predefined modular structure which could sensibly form the basis of the final
softwarelayout. Thelargest identifiable blockswithinthe program arethetasks. Thesearein turn built from modules,
which themselves are constructed from functions in the case of C.

The modules arein reality individual sourcefiles, created with atext editor. Grouping the software sections together
according to the function with which they are associated is the basis of modular programming.

Using the CEMS engine control system again as a real example, the task of running the engine is divided into the
following tasks:

Task 1
Provi de Tined Sparks For Ignition

Task 2
Provi de controlled pul sewidths for fuel injection

Task 3
Allow alteration of tune paranmeters via term na

Considering Task 1, thisisin turn composed of modules thus:

Task 1, Mdule 1
Determ ne crank shaft position and speed

Task 1, Mdule 2
Measur e engi ne | oad

Task 1, Module 3
Obtain required firing angle froml ook-up table

Taking module 2, aC function existswhich usesan A/D converter to read avoltagefromasensor. Itispart of theoverall
background loop and hence runsin afixed sequence. In module 1 aninterrupt function attached to an input capture pin
cal culatesengine speed and generatestheignition coil firing pulse. Module 3isanother functioninthebackgroundloop
and takes speed and load information from the other modules constituting the ignition function, to calculate the firing
angle. Obviously, datamust be communicated from the data coll ecting functionsto the processing functions and thence
to the signal generation parts across module boundaries.

In this case, the data flows are thus:

Module 1 Module 2 Module 3

Reluctor Sensor

Input Capture Pin Pressure Sensor

Engine Speed ————— 5 Find Advance Angle «————Engine Load

Advance Angle <«

Output Compare Pin

Ignition Coil

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 19

Commonly, thevariablesused aredeclaredinthemodul ethat first suppliesthemwith data. Hencetheengine loadwould
be defined in Module 2 as that is where its input data comes from.

In this system the data would be declared thus:

Module 1.c Module 3.c Module 2.c

[* Global Data Declaration */ /* Global Data Declaration */ [* Global Data Declaration */
unsigned char engine_speed unsigned char advance unsigned char engine_|load

* External Data References */ /* External Data References*/ [* External Data References */
extern unsigned char advance extern unsigned char engine_speed extern unsigned char engine_load

The most important thing to note is how the data defined in another module is referenced by redeclaring the required
dataitem but prefixed with “extern”.

Now, with a complete program spread across many different source files, the problem arises of how data is
communicated between modules (files) and how separate C functions which lie outside of the home module may be
accessed.

The next section illustrates how the linkage between modulesis undertaken.

4.2 Accessibility Of Variables In Modular Programs

A typical C51 application will consist of possibly fivefunctional blocks (modules) contained in five sourcefiles. Each
block will contain anumber of functions (subroutines) which operate on and usevariablesin RAM. Individual functions
will (ideally) receive their input data via parameter passing and will return the results similarly. Within a function
temporary variables will be used to store intermediate calculation values. As used to be done years ago in assembler,
all variables (even the temporary ones) will be defined in one place and will remain accessible to every routine.

Thisapproach isvery inefficient and would seriously limit the power of C programs, asthe internal RAM would soon
be used up. The high-level language feature of a clearly defined input and output to each function would also be lost.
Similarly, anentire C program might bewritten within onesinglesourcefile. Ashasbeen said, thispracticewascommon
many years ago with simple assemblers. Ultimately the source program can get so big that the 640K of a PC will get
full and the compiler will stop. Worsethanthis, theideal of breaking programsinto small, understandable chunksislost.
Programs then become a monolithic block and consume huge amounts of listing paper...

There should therefore be ahierarchical arrangement of variables and functions within a program; complete functional
blocks should be identified and given their own individual source files or modules. Use should be made of the ability
to access external variables and functions to achieve small program files!

The following should help explain:

'\mJLEl c: EEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEESEERERERESRESEESRESRERESEESRERESRESEESESES

unsi gned char globall ; (1)
unsi gned char gl obal 2 ;
extern unsigned char ext_function(unsigned char) ; (2)

/* Wility Routine */
i nt _function(x) (3)
unsi gned char x ; (4)
{
unsigned int templ ; (5)
unsi gned char tenp2 ;
temp 1 X * X ;
tenp2 X + X

x = tenpl/tenp2 ;

return(x) (6)
}

/* Program Proper */
mai n() (7)
{

unsi gned char locall ; (5)

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 20

unsi gned char local 2 ;
local 2 = int_function(locall) ; (8)
local 1 = ext_function(local2) ; (9)

end Of ’\mJLEl c khkhkhkhkhkhkhkhkhhkhhhhkhkhhkhkhkhhhhkhhhhhhkhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkk*k*x**x*%

WLEZ C: khkhkhkhkhkhkhkhkhhhhhhhhkhkhkhkhhhhhhkhkhhkhkhkhkhhhhhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkk*kk*k*x*%

extern unsigned char globall ; (10)

ext _function(y)
unsi gned char y ;

{
unsi gned char tenp ;
static unsigned char special ; (11)

speci al ++ ;
y = tenp * globall ; (12)

return(y) ;

Line (1) declaresvariableswhich will be accessible from all parts of the program. Ideally, such global usage should be
avoided but where an interrupt has to update a val ue used by the background program, for example, they are essential.

Line (2) makes an external reference to a function not defined in the current module (block). Thisline alowsall the
functionsin this MODULE to call the external function.

Line (3) declares afunction which isto be used by another function in this module. These utility functions are placed
above the calling function (here “main()”).

Line (4) declares the variable which has been passed-over by the calling function. When the variable left “main()”, it
was called “local1”. Withinthisfunctionitisknownsimply as“x”. Thebyte of ramisallocated to “x” only whilethe
8051’ s program counter iswithin this function. At the closing }, x will vanish.

Line (5) like “x” above, these variables are smply used as intermediate values within the function. They have no
significance outside. Again, the byte of RAM will be re-assigned within another function. However the locals defined
in“main()” will always exist asthe C program is entirely contained within “main()”.

Line(6) alowstheresult of the calculation to be passed back to the calling function. Once back in“main()” the value
isplaced in “local2”.

Line (7) definesthe start of the C program. Immediately prior to the point at which the program counter reachs main(),
theassembler routine* STARTUP.A51” will have been executed. Thisinturn startsat |ocation C:0000, thereset vector.
Note that no parameters are passed to “main()”.

Line (8) effectively callsthe function defined above, passing the value “local1” to it.

Line (9) islike 8, but thistime afunction is being called which resides outside of the current module.

Line(10) links up with line(1) in that it makes “global 1" visible to function within MODULE 2.

Line(11) declares a variable which is local to this function but which must not be destroyed having exited. Thus it
behaveslike aglobal except that no other function can useit. If it were placed above the function, accessibility would

be extended to all functionsin MODULE 2.

The physical linking of the data names and function names between modulesis performed by the L51 linker. Thisis
covered in detail in section 8.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 21

4.3 Building A Real Modular Program - The Practicalities Of
Laying Out A C51 Program

The need for amodular approach to program construction has been outlined earlier. Herethe practicalities of building
easily maintainable and documentable software is given, along with atrick for easing the development of embedded C
programs using popular compilers such as the Keil C51.

4.3.1 The Problem

The simplest embedded C program might consist of just:

/* Module Containing Serial Port Initialisation */ /* V241 N537.C */
voi d v24ini_537(void)
{

/* Serial Port Initialisation Code */

}

/* Modul e Containing Main Program*/ /* MAIN. C */
/* External Definitions */

extern void v24ini_537(void) ;

voi d main(void) {
v24ini _537() ;
while(l) {
printf(“Time =) ;
}

Thisminimal program hasonly one purpose- to print an asyet incomplete message on the terminal attached to the serial
port. Obviously, asingle source file or “module” is sufficient to hold the entire C program.

Any real program will of course contain more functionality than just this. The natural reaction isto simply add further
code to the existing main function, followed by additional functionsto the MAIN.C sourcefile. Unlessactionistaken
the programwill consist of one enormous sourcefile, containing dozens of functionsand interruptsand maybe hundreds
of public variables.

Whilst compilerswill still compile the file, the compilation time can become greatly extended, meaning that even the
smallest modification requires the entire program to be re-compiled. A monolithic program isusually symptomatic of
alack of proper program planning and islikely to contain suspect and difficult to maintain code.

The next stage in the sample program development is to add some means of generating the time thus:

/* Module Containing TimerO Initialisation */
/* TOI NI 537.C */

void tinmerO_init_537(void) {
/* Enable Timer 0 ExtO interrupts */
} /*init_timer_0*/
/* Modul e Containing TinmerO Service Routine */
/* RLT_INT.C */
/* Local Data Declarations */
/* Cock Structure Tenplate */

struct tine { unsigned char nsec ;
unsi gned char sec ; } ;

/* Create XDATA Structure */

struct time xdata clock ;

bit clock_run_fl =0 ; // Flag to tell tinmerO interrupt
/!l to stop clock

/* External References */

extern bit clock_reset_fl // Flag to tell timerO interrupt to reset clock to zero

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 22

[*** | NTERRUPT SERVICE FOR TIMER 0 ***/
void tinmerO_int(void) interrupt 1 using 1 {
i f(clock.nmsec++ == 1000) {
cl ock. sec++ ;
if(clock.sec == 60) {
clock_sec = 0 ;

}
}

To make this 4 module program useful, the main loop needs to be atered to:

/* Modul e Containing Main Program */
/* MAIN. C */

#i ncl ude <reg517. h>
/* External Definitions */

extern void v24ini _537(void) ;
extern void tinmerO_init_537(void) ;

/* General O ock Structure Tenplate */

struct tine { unsigned char secs ;
unsi gned char nsec ; } ;

/* Reference XDATA Structure In Another Mdule */

extern struct tine xdata clock ; extern bit clock_reset fl // Flag to tell tinmerO interrupt to
reset clock to zero
/* Local Data Declaration */
bit clock_run_fl ; // Flag to tell tiner0Q interrupt
/1 to stop clock
voi d main(void) {

v24ini _537() ;
timerO_init_537() ;
while(1l) {
printf(“Time = %: %: %: %@, cl ock. hours,
cl ock. m ns,
cl ock. secs,

cl ock. nmsecs) ;

}
if(P1| 0x01) {

clock_run_fl =1 ; // If button pressed start clock
}

el se {
clock_run_fl =0 ; // If button rel eased stop cl ock

}
if(P1 | 0x02) {
cl ock_reset_fl

}

1; // If button pressed clear clock

}

4.3.2 Maintainable Inter-Module Links

Theforegoing program has been contructed in amodul ar fashion with each major functional block in aseparate module
(file). However even with thissmall program amaintenance problem is starting to become apparent: The source of the
troubleisthat to add anew dataitem or function, at least two modul es need to be edited - the modul e containing the data
declaration plus any other module which makes a reference to the additional items. With long and meaningful names
common in C and complex memory space qualification widespread in C51, much time can be wasted in getting external
references to match at the linking stage. Simple typographic errors can waste huge amounts of time!

Inlarge programswith many functionsand global variables, the global area preceding the executabl e code can get very
untidy and cumbersome. Of course, there is an argument that says that having to add external referencesto the top of
amodule when first using anew piece of global datais good practice, asit meansthat you are always aware of exactly
which itemsare used. It is preferable to the common approach of having asingle include file incorporated as a matter
of coursein each source file, containing an external referencefor every global item, regardless of whether the host file
actually needsthem all.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 23

Thislatter method inevitably leadsto the undesirable situation where an original data declaration in the source module
issitting alongside its external reference in the general includefile.

A solution to thisisto have “module-specific” includefiles. Basically, for each source module*.c” file, asecond “.h”
include is created. This auxilliary file contains both origina declarations and function prototypes plus the external
references. Itisthereforesimilarinconcepttothestandardlibrary .hfilesusedinevery Ccompiler. Thetrickis, however,
to use conditional compilationto prevent the original declarationsand the external versions being seen simultaneously.

When included in their home modules, i.e. the“.c” file having the same root, only the original declarations are seen by
C51 whereas, when included in aforeign module, only the external formisseen. To achieve thisapparent intelligence,
each source module must somehow identify itself to the include file.

Themeansto achievethisisto place a#define at the top of each module giving the name of themodule. When included
inits*“home” module, the #ifdef-#el sett-endif will causethe preprocessor to seethe original declarations. When placed
inforeign modul esnot sharing the sameroot, the preprocessor will seetheexternal equivalents. Keil supports_ FILE
but it is not of practicle usein this context, asits "value" cannot be used for a #define name.

By only including modul e-specific header filesin those modul esthat actually need to accessan item in another module,
theoperation of powerful makeutilitiessuch asPolymakeor Keil'sown AMAKE, isimproved; provided the dependency
listiskept uptodate, any changestoa.hfilewill causeall modulesthat referenceit to berecompiled automatically. Thus
amodified program cannot be built for testing unless all modules referencing the altered item successfully re-compile.
This usefully relieves the linker from being alone responsible for symbol attribute cross-checking - something which
some linkers cannot be relied upon to do.

In most embedded C dialects this can be amajor help in program devel opment as, for example, achangein awidely-
used function’ smemory model attribute can easily be propagated through an entire program; the changeintheintelligent
header file belonging to the function’s home modul e causing the AMAKE to recompile all other modules referencing
it. Likewise, achangeinavariable smemory spacefrom say XDATA to PDATA needsonly oneheader fileto be edited
- AMAKE will do the rest!

Here' s how it's donein practice:

/* Modul e Containing Main Program - MAIN. C */

#define _MAIN_

/* Define module name for include file control */

#i ncl ude <reg517. h> I/ Definitions for CPU

#i ncl ude <v24ini537.h> // External references from V24l N .C #i nclude <tOini537. h>
/1 External references from
/1 TOI NI 537. C

#include <rlt_int.h>

/1 External references for RLT_INT.C

voi d main(void) {
v24ini _537() ;
tinmer0_init_537() ;
while(1) {
printf(“Tinme = %. %", cl ock. secs, cl ock. nsecs) ;

}
if(P1 | 0x01) {

clock_run_fl =1 ; // If button pressed start clock
}

el se {
clock_run_fl =0 ; // If button rel eased stop clock

}
if(P1 | 0x02) {
cl ock_reset_fl

}

1; // If button pressed clear clock

}

/* Module Containing TinmerO Service Routine - RLT_INT.C */
#define _RLT_INT_ /* Identify nodul e name */

/* External References */
extern bit clock_reset_fl // Flag to tell timerO interrupt to

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 24

/Il reset clock to zero

[*** | NTERRUPT SERVICE FOR TIMER 0 ***/
void tinmerO_int(void) interrupt 1 using 1 {
i f(clock.nmsec++ == 1000) {
cl ock. sec++
if(clock.sec == 60) {
clock_sec = 0

}
}
Taking the include files:
/* Include File For RLT_INT.C */

/* General, non-nodul e specific definitions */
/* such as structure and union tenplates */
/* Cock Structure Tenplate - Available To All Mdul es */
struct tine { unsigned char secs
unsi gned char nsec ; } ;

#ifdef _RLT_INT_

/* Original declarations - active only in home nodule */

/* Create XDATA Structure */

struct tine xdata clock

bit clock_run_fl =0 ; // Flag to tell timerO interrupt to stop clock

#el se

/* External References - for use by other nodules */

extern struct tine xdata clock

extern bit clock_run_fl =0 ; // Flag to tell tinerO interrupt to stop clock
#endi f

/* Include File For MAIN.C */
#ifdef _MAIN_
/* Local Data Declaration */

bit clock_run_fl = 0 ; // Flag to tell tinerO interrupt to stop clock
#el se

/* External References - for other nodules */

extern bit clock_run_fl ; // Flag to tell tinmerO interrupt to stop clock
#endi f

/* Include File For V241N 537.C */

#i fdef _V24I N 537_

/* Original Function Prototype - for use in V241 NI537.C */
voi d v24ini _537(voi d)

#el se

/* External Reference - for use in other nodules */

extern void v24ini_537(void)

#endi f

Now, should any new global data be added to, for example, RLT_INT.C, adding the original declaration above the
“#endif” and the external version below, this makesthe new item instantly availableto any other module that wantsit.

To summarise, the basic source module format is:

#defi ne _MODULE_
#i ncl ude <nodl. h>#i ncl ude <nod2. h?

functions()

Theincludefileformat is:

/* General, non-nodule specific definitions such as structure and union tenplates */
#i f def _MODULE_

/* Put original function prototypes and gl obal data declarations here */

#el se

/* Put external references to itens in above section here */

#endi f

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 25

Standard Module Layouts For C51

To helpintegrate this program construction method, the following standard source and header modul es shown overleaf

may be used.

Standard Source Module Template

#define __STD _
/* Define hone nodul e name */

e T ey

T T ey

/* Project: X */
/* Author: X Creation Date: XX\ XX\ XX */
/* Fil enane: X Language: X */
/* Rights: X Ri ghts: X */
1* */
/* Conpiler: X Assenbler: X */
/* Version: X XX Ver si on: X XX */
Ty
/* Modul e Details: */
Ty
/* Purpose: */
1* */
1* */
1* */
R Ty
/* Modification History */
P N Ty
/* Nane: X Date: XX\ XX\ XX */
/* Modification: X */
/* */
/* Nane: X Date: XX\ XX\ XX */
/* Modification: X */
1* */
/* Nane: X Date: XX\ XX\ XX */
/* Modification: X */
1* */

R R R T ey
R R T T ey

/* External Function Prototypes */

R e T ey

#include “.h”

/* Standard ANSI C header files */
N Ty
/* dobal Data Declarations */

R T T ey

#include “.h”

/* Home header file */
Ty
/* External Declarations */

[HA KR AR KKK KKK KK KKK KKK KKK KA KKK KA KKK KKK KR AKX KA KA A KA XA [

#include *“.h”

/* Header files for other nodul es */
J KRR R R kKRR K KKK R K KRR K KK KKK K KKK KR K KKK KRR K KKK
/* Functions Details: */
T Ty
/* Function Name: */
/* Entered From */
/* Calls: */

R R e T ey

R e]

/* Purpose: main |oop for training program */
1* */
Ty
/* Resource Usage: */
1* */
/* CODE CONST DATA | DATA PDATA */
/* nla n/a n/a n/a n/a */
1* */
/* Performnce: */
/* Max Runtine: Mn Runtine: */
1* */
1* */
Ty
/* Executabl e functions */

[RE KR AR KKK KKK KK KA KKK KKK KA KKK KKK KKK KKK KK KKK KA KRR KA XA [

[RE KKK KKK KKK KKK KA KKK KK KA KRR KKK KA KKK X KA KR AKX KA KRR KA XA [

/* End OF STD.c */

R e T ey

Standard Include Header File Template

R e

/* Project: X */
/* Author: X Creation Date: XX\ XX\ XX */
/* Fil enane: X Language: X */
/* Rights: X Ri ghts: X */
1* */
/* Conpiler: X Assenbler: X */
/* Version: X XX Ver si on: X XX */
Yy
/* Modification History */
N Ty
/* Nane: X Date: XX\ XX\ XX */
/* Modification: X */
1* */

© Copyright Hitex (UK) Ltd. 1996

C51 Primer page 26

/* Nane: X Date: XX\ XX\ XX */

/* Modification: X */
/* */
/* Nane: X Date: XX\ XX\ XX */
/* Modification: X */
/* */
Yy
Yy
/* G obal Definitions */

[RAEEE KR KR A KKK KR A IR KKK A IR KA R KA IR I AR KA KR IR KA KR ARk K [

/* Structure and union tenplates plus other definitions */

#i fdef _STD_

/* Check for inclusion in home nodul e */
Ty
Yy
/* Wthin Mdul e Function Prototypes */
T Ty
/* Function prototypes from hone nodul e */
N Ty
/* Wthin Mdule Data Decl arations */
Ty
/* Data declarations from hone nodul e */
R Ly
#el se

B Yy
Yy
/* External Function Prototypes */

JRAEEF KK KR A KKK AR KA IR KKK R KR XK R KA KR IR KA IR I AR KRR AR Ak [

/* External function prototypes for use by other nodules */

JRAEEF KK KR A KRR KRR A IR KKK A KR KA R KA IR KRR KR I AR KRR AR Ak [

/* External Data Declarations */
Ty
/* External data definitions for use by other nodul es */
T Ty
#endi f

Summary

Provided the necessary modul e name defines are added to the first line of any new module and the new globals placed
intotheassociated“.h” file, theoverall amount of editing required over amajor projectisusefully reduced. Compilation
and, moreparticularly, linking errors are reduced asthereis effectively only one external referencefor each global item
in the entire program. For structures and unions the template only appears once, again reducing the potential for
compilation and linking problems.

4.4 Task Scheduling
4.4.1 8051 Applications Overview

Whenmost peoplefirst start tolearnto program, BASI Cisused onaPC or similar machine. Theprogramsarenot usually
too complicated; they start when you type “RUN” and finish at END or STOP. In between, the PC istotally devoted
to executing your “HELLO WORLD” program. When it isfinished you are simply thrown back to the BASIC editor/
" operating environment”.

All this is very good and you think you now know how to program. However, when writing for an embedded
microcontroller like the 8051, the problem of where does the program start and finish suddenly presentsitself. The
average 8051 software system consistsof many individual programswhich, when executed together, contributetowards
the fulfilment of the overall system objective. A fundamental problem isthen how to ensure that each part is actually
run.

4.4.2 Simple 8051 Systems

The simplest approach isto call each major sub-function in asimple sequential fashion so that after a given time each
function has been executed the same number of times. This congtitutes a“background loop”. In the foreground might
be interrupt functions, initiated by real time events such as incoming signals or timer overflows.

Dataisusually passed from background to foreground viaglobal variables and flags. This essentially simple program
model can be very successful if some careis taken over the order and frequency of execution of particular sections.

The background-called functions must be written so that they run a particular section of their code on each successive
entry from the background loop. Thus each function is entered, adecision istaken asto what to do thistime, the code
isexecuted and finally the program is exited, probably with some special control flags set up to tell the routine program
what to do next time. Thus each functional block must maintain its own control system to ensure that the right codeis
run on any particular entry.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 27

In this system all functional blocks are considered to be of equal importance and no new block can be entered until its
turn is reached by the background loop. Only interrupt routines can break this, with each one having its own priority.
Should a block need a certain input signal, it can either keep watching until the signal arrives, so holding up all other
parts, or it can wait until the next entry, next time round the loop. Now there isthe possibility that the event will have
been and gone before the next entry occurs. Thistype of systemisOK for situationswhere the time-critical parts of the
program are small.

Inreality many real-timesystemsarenot likethis. Typically they will consist of somefregquently-used code, theexecution
of whichiscaused by or causes somereal-world event. Thiscodeisfed datafrom other parts of the system, whose own
inputs may be changing rapidly or slowly.

Code which contributes to the system’ smgjor functionality must obviously take precedence over those sectionswhose
purposeisnot critical tothe successful completion of thetask. However most embedded 8051 applicationsarevery time-
critical, with such partsbeing attached tointerrupts. Theneedto serviceasmany interruptsasquickly aspossiblerequires
that interrupt coderuntimesareshort. With most real -world eventsbeing asynchronous, thesystemwill ultimately crash
when too many interrupt requests occur per unit time for the cpu to cope with.

Fast runtimes and hence acceptabl e system performance are normally achieved by moving complex functionsinto the
background loop, leaving the time-critical sections in interrupts. This gives rise to the problem of communication
between background code and its dependant interrupt routine.

Thesimplesystemisvery egalitarian, withall partstreated inthe sameway. When the cpu becomesvery heavily |oaded
with high speedinpuits, itislikely that major sub-functionswill not be run frequently enough for thereal-worldinterrupt
code to be able to run with sufficiently up to date information from the background. Thus, system transient response
is degraded.

4.4.3 Simple Scheduling - A Partial Solution

Theproblemsof thesimpleloop system can bepartially solved by controlling the order and frequency of functioncalling.
Oneapproachisto attach apriority to each function and allow each function to specify the next oneto be executed. The
real-world driveninterrupt functionswould overridethissteady progression so that themost important (highest priority)
jobs are executed as soon asthe current job iscompleted. Thiskind of system can yield useful results, provided that no
single function takes too long.

An dternativeisto control overall execution from areal timeinterrupt so that each job is allocated a certain amount of
time in which to run. If atimeout does occur, that task is suspended and another begins.

Unfortunately all these tend to be bolt-ons, added late in a project when run times are getting too long. Usually what
had been a well-structured program degenerates into spaghetti code, full of fixes and special modes, designed to
overcome the fundamental mismatch between the demands of real time events and the response of the program.
Moreover, theindividual control mechanisms of the called functions generate an overhead which simply contributesto
the runtime bottle-neck.

Thereality isthat real time eventsare not orderly and predictable. Somejobs are naturally moreimportant than others.
However inconvenient, the real world produces events that must be responded to immediately.

4.4.4 A Pragmatic Approach

Without resorting to a full real time executive like RTX51, what can be done?

A simple mechanism to control the running of the background loop can be a simple switch statement, with the switch
variable controlled by some external real time event. Ideally this should be the highest priority interrupt routine. The
high priority background tasks are placed at the top case, with lower priority tasks located further down the case
statement. Thus, on every occurrence of theinterrupt, the switchisset back tothetop. Asthebackground tasksexecute,
they increment theswitch. If theinterruptisabsent for long enough, theswitch will reach thelowest level and thenreturn
to the highest level automatically.

Shouldtheinterrupt occur at level 2, the switch variableisforced back to zero and so tasksat thelowest levelsaresimply
missed. Thisisby no means an ideal system, since only the top level is ever executed.given a high enough interrupt
frequency.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 28

However under normal conditionsit isauseful way of ensuring that low priority tasks are not executed frequently. For
example, there would be little point in measuring ambient temperature more than once per second. In atypical system
this measurement might be at level 100 in a switch scheduler.

Tobeableto makeajudgement about how best to structurethe program, itisvital to know theruntimesfor each section.

Where this simple method falls down is when alow priority task has along run time. Even though the interrupt has
requested that the loop returns back to the top level to calculate more data, there is no way of exiting the task until
completed. To do so requires a proper time-slice mechanism.

A useful dodge can beto utilise an unused interrupt to guarantee that high priority taskswill berun ontime. By setting
the unused interrupt pending flag within the exiting high priority interrupt routine and placing the background task into
the corresponding service routine, the punctual execution of the second task will occur. Of course, the unused interrupt
priority must be set to alower priority in the appropriate interrupt priority register(s).

Themost important factor overall isto keep runtimesas short aspossible, particularly ininterrupt routines. Thismeans
making full use of C51 extensions like memory-specific pointers, special function bits and local regsiter variables.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 29

5 C Language Extensions For 8051 Programming

8051 programming is mainly concerned with accessing real devices at specific locations, plus coping with interrupt
servicing. C51 has made many extensionsto the C language to allow near-assembler code efficiency. Themain points
are now covered.

5.1 Accessing 8051 On-Chip Peripherals

In the typical embedded control application, reading and writing port data, setting timer registers and reading input
captures etc. are commonplace. To copewith thiswithout recourseto assembler, C51 hasthe special datatypessfr and
shit.

Typical declarations are:

sfr PO 0x80

sfr P1 0x81

sfr ADCON; OxDE
shit EA Ox9F

and so on.

These declarations reside in header files such asreg51.h for the basic 8051 or reg552.h for the 80C552 and so on. Itis
the definition of sfrsin these header filesthat customises the compiler to the target processor. Accessing the sfr datais
then asimple matter:

{
ADCON = 0x08 ; /* Wite data to register */
P1 = OxFF ; /* Wite data to Port */

io_status = PO ; /* Read data from Port */
EA =1 ; /* Set a bit (enable all interrupts) */

}

Itisworth noting that control bitsin registerswhich are not part of Intel’ s original 8051 design generally cannot be bit-
addressed.

Theruleisusually that addressesthat are divisible by 8 are bit addressable. Thusfor example, the serial Port 1 control
bitsin an 80C537 must be addressed via byte instructions and masking.

Always check the processor’s user manual to verify which sfr register bits can be bit addressed.

5.2 Interrupts

Interrupts play an important part in most 8051 applications. There are several factors to be taken into account when
servicing an interrupt:

(1) The correct vector must be generated so that the routine may be called. C51 does this automatically.

(i) Thelocal variablesin the service routine must not be shared with locals in the background loop code: the L51
linker will try to re-use locations so that the same byte of RAM will have different significance depending on
which function is currently being executed. Thisis essential to make best use of the limited internal memory.
Obviously thisrelieson functions being executed only sequentially. Unexpected interrupts cannot therefore use
the same RAM.

5.2.1 The Interrupt Function Type

To allow C coding of interrupts a special function typeis used thus;

tinmerO_int() interrupt 1 using 2

{
unsi gned char tenpl ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 30

unsi gned char tenp2 ;
executabl e C statenents ;

}

Firstly, theargument of the" interrupt” statement, “1” causesavector to be generated at (8* n+3), wherenistheargument
of the"interrupt” declaration. Herea“LJMPtimerQ_int” will be placed at location 0BH inthe codememory. Any local
variables declared in the routine are not overlaid by the linker to prevent the overwriting of background variables.

Logicaly, withaninterrupt routine, parameters cannot be passedtoit or returned. When theinterrupt occurs, compiler-
inserted codeisrun which pushesthe accumulator, B,DPTR and the PSW (program statusword) onto the stack. Finally,
on exiting the interrupt routine, the items previously stored on the stack are restored and the closing “}” causesaRET]
to be used rather than anormal RET.

5.2.2 Using C51 With Target Monitor Debuggers

Many simple 8032 target debuggers place the monitor’ s EPROM code at 0, with aRAM mapped into both CODE and
XDATA spacesat 0x8000. Theuser’ sprogram isthen loadedintothe RAM at 0x8000 and, asthe PSEN isANDed with
the RD pin, the program isexecuted. This poses something of aproblem asregardsinterrupt vectors. C51/L 51 assume
that thevectorscanbeplaced at 0. M ost monitorsfor the 8032 foreseethisproblem by redirecting all theinterrupt vectors
up to 0x8000 and above, i.e. they add afixed offset of 0x8000. Thus the timer O overflow interrupt is redirected by a
vector at C:0x000B to C:0x800B.

Before C51 v3.40 the interrupt vector generation had to be disabled and assembler jumps had to beinserted. However
now the INTVECTOR control has been introduced to allow the interrupt vector areato be based at any address.

In most cases the vector area will start at 0x8000 so that the familar “8 * n + 3" formula outlined in section 5.2.1
effectively becomes:

8*n+ 3+ INTVECTOR

To usethis:
#pragma | NTVECTOR(0x8000) /* Set vector area start to 0Ox8000 */
void tinerO_int(void) interrupt 1 {

/* CCDE...*/

}

Thisproducesan LIMPtimerQ_int at address C:0x800B. Theredirection by the monitor from C:0x000B will now work
correctly.

5.2.3 Coping Interrupt Spacings Other Than 8

Some 8051’ s do not follow the normal interrupt spacing of 8 bytes - the ‘8’ inthe 8 * n + 3 formula. Fortunately the
“INTERVAL #pragma’ copes with this.

Theinterrupt formulais, in reality:

INTERVAL * n+ INTVECTOR and so:
#pragma | NTERVAL(6) /* Change spacing */
will allow a 6 byte spacing.

Please note that for convenience INTERVAL defaultsto 8 and INTVECTOR to 0x80000!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 31

5.2.4 The Using Control

The*using” control tellsthe compiler to switch register banks. Thisis an areawhere the 8051 architecture works for
thecompiler rather thanagainst it; theregistersROto R7 areused extensively for thetemporary storageof library routines
andfor locals. Ordinarily Bank 1isused. However, to be ableto usethis standard codein an interrupt the register bank
must be switched to 2 in the above example. Thus the variables of the interrupted routines are preserved. See section
5.3 on use of register banks and the USING statement.

Asaruleinterruptsof the samepriority can sharearegister bank, sincethereisnorisk that they will interrupt each other.

If interrupt runtime is not important the USING can be omitted, in which case C51 examines the registers which are
actually used within the routine and pushes only these onto the stack. This obviously increases the effective interrupt
latency. Seethe next section for more details.

5.3 Interrupts, USING, Registerbanks, NOAREGS In C51 -
Everything You Need To Know

Interrupts play an important part in most 8051 applications and fortunately, C51 allows interrupt service routinesto be
written entirely in C. Whilst you can write perfectly workable (and saf€) programs by using just straight ANSI C, you
cansignificantly improvethe efficiency of your code by gaining an understanding of thefollowing special C51 controls:

| NTERRUPT
USI NG
NOAREGS
RE- ENTRANT
REG STERBANK

5.3.1 The Basic Interrupt Service Function Attribute

Thecorrect vector must begenerated sothat theroutinemay becalled. C51 doesthisbased ontheargument totheinterrupt
keyword. Thelinkerthereafter doesnotallow local datafrominterrupt routinestobeoverlaidwiththat fromthebackground
by creating special sectionsin RAM.

C51 special "interrupt” function attribute example:
/* Timer O Overflow Interrupt Service Routine */
tinmerO_int() interrupt 1 {

unsi gned char tenpl ;

unsi gned char tenp2 ;

/* executable C statenents ; */

}

- The“interrupt 1" causes avector to be generated at (8*n+3), where nis the argument of the “interrupt” declaration.
An“LIMP timer0_int” will be placed at location OBH in the code memory.

- Local variablesdeclaredintheroutinearenot overlaid by thelinker to prevent the overwriting of background variables.

- When the interrupt occurs, compiler-inserted code is run which pushes the accumulator, B,DPTR and the PSW
(program status word) onto the stack if used in function, along with any registers RO-R7 used in the function.

- A RETI isinserted at the end of the function rather than RET.

Taking an empty interrupt service function for the timer O overflow interrupt, thisis how C51 starts off an interrupt
routine that uses no registers at all:

timerO_int Entry Code
; void tinerO_int(void) interrupt 1 {

RSEG ?PR?ti mer O_i nt ?TI MERO

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 32

USI NGO
timerO_int:
SCQURCE LINE # 2

If afunction, here called “sys interp” is now called from the timerO service function, thisis how the entry code to the
interrupt changes.

timer0_int Entry Code Now With Called Function
; void timerO_int(void) interrupt 1 {

RSEG ?PR?ti ner0_i nt ?TI MERO
USI NG 0
tinmerO_int:

PUSH ACC
PUSH B
PUSH DPH
PUSH DPL
PUSH PSW
PUSH ARO
PUSH ARl
PUSH AR2
PUSH AR3
PUSH AR4
PUSH AR5
PUSH ARG
PUSH AR7

Notethat theentire current registerbank is pushed onto the stack when entering timer0_int() as C51 assumesthat all will
be used by sys interp.

Sys_interpreceivesparametersinregisters; if theentry tosys interpisexamined, animportant compiler trick isreveal ed:
sys interp() Entry Code

unsigned char sys_interp(unsigned char x_val ue,

RSEG ?PR?_sys_i nterp?l NTERP
USI NG 0
_sys_interp:
MOV y_val ue?10, R5
MV map_base?10, R2
MV nmap_base?10+01H, R3
;—Variable ‘x_val ue?10’ assigned to Register ‘Rl’ —
MoV R1, AR7

The efficient MOV of R7 to R1 by using AR7 allowsa MOV direct, direct on entry to sys interp(). Thisis absolute
register addressing and is a useful dodge for speeding up code.

5.3.2 The absolute register addressing trick in detail

The situation often arises that the contents of one Ri register needs to be moved directly into another general purpose
register. Thisusually occursduring afunction’ sentry codewhen apointer ispassed. Unfortunately, Intel did not provide
aMOV Reg,Reg instruction and so Keil use the trick of treating a register as an absolute D: segment address:

Smulating A MOV Reg,Reg Instruction:
In registerbank O - MOV RO,AR7,is identical to - MOV RO0,07H.

Implementing a“ MOV Reg,Reg” instruction the long way:

XCH ARL
MOV A RL

Theuse of thistrick means however, that you must make sure that the compiler knowswhich isthe current registerbank

in use so that it can get the absolute addresses right. 1f you use the USING control, problems can arise!
Seethe next few sections..

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 33

5.3.3 The USING Control

“using” tellsthe compiler to switch register banks on entry to an interrupt routine. This*“context” switch isthe fastest
way of providing afresh registerbank for an interrupt routine' slocal dataand isto be preferred to stacking registersfor
very time-critical routines. Notethat interrupts of the same priority can share aregister bank, sincethereisno risk that
they will interrupt each other.

8051 Register Bank Base Addr esses

RO ARO Absol ute Addr. Ox00 REG STERBANK 0
R1 AR1

R2 AR2

R3 AR3

R4 AR4

R5 AR5

R6 ARG

R7 AR7

RO Absol ute Addr. 0x08 REG STERBANK 1, “USING 1"
R1

R2

R3

R4

R5

R6

R7

RO Absol ute Addr. 0x10 REG STERBANK 2, “USING 2"
R1

R2

R3

R4

R5

R6

R7

RO Absol ute Addr. 0x18 REG STERBANK 3, “USING 3"
R1

R2

R3

R4

R5

R6

R7

If aUSING 1isadded to thetimerl interrupt function prototype, the pushing of registersisreplaced by asimple MOV
to PSW to switch registerbanks. Unfortunately, while the interrupt entry is speeded up, the direct register addressing
used on entry to sys_interp fails. Thisisbecause C51 has not yet been told that the registerbank has been changed. If
noworking registersare used and no other functioniscalled, the optimizer eliminiatesteh code to switch register banks.

timerO_int Entry Code With USING

With USING 1
; void tinmerO_int(void) interrupt 1 using 1 {

RSEG ?PR?ti ner0_i nt ?TI MERO

USI NG 1 < New regi ster bank now
timerO_int

PUSH ACC

PUSH B

PUSH DPH

PUSH DPL

PUSH PSW

MOV PSW #08H

sys interp() Entry Code
Sill using registerbank 0

unsi gned char sys_interp(unsi gned char x_val ue,

RSEG ?PR?_sys_i nter p?l NTERP

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 34

USI NGO
_sys_interp:
MV y_val ue?10, R5
MV map_base?10, R2
MV nmap_base?10+01H, R3
;—Variable ‘x_val ue?10’ assigned to Register ‘Rl’ —
MoV R1, AR7 < FAILS!I! T

Absolute register addressing used assuming registerbank 0 is still current and so program fails! (Solutionsin 5.3.6-8).
5.3.4 Notes on C51's "Stack Frame"

C51 uses adegree of intelligence when entering interrupt functions. Besides the obvious step of substituting RETI for
RET at the end of the function, it automatically stacks only those registers that are actually used in the function.

There are however, some points to be aware of:

- If an interrupt function callsafunction, C51 will stack all the Ri registers, regardless of whether they are used or not.
The total time to PUSH and POP these is 16us at 12MHz, which may be viewed as unacceptable for a time critical
interrupt.

Thereforeyou should either avoid calling functions or usethe USING control. Thiswill do asimpleregisterbank switch
attheentry and exit fromtheroutine. AsthePUSHING of registersontothestack usesthesameoverall number of DATA
locations, thereis no differencein overall RAM usage.

- Any variable declared within an interrupt function will not be overlaid onto background data or that originating from
other interrupts.

- Never call an interrupt function from the background. There is sometimes a temptation to do this during program
initialisation, for example. The linker will get very confused and will quite likely make dangerous mistakes like
overwriting background variables!

- Usingthe USING control will generally consume more RAM than simply PUSHing registersonto thestack: inthe case
wheretheinterrupt function employslessthan 8 registers, 8- <number of registersactually used>will bewasted. Thus
thereis no virtue in avoiding the USING control!

- Interrupts of equal priority can share the same register bank as there is no chance of them interrupting each other.
5.3.5 When To Use USING

- Interrupts which must run as fast as possible, regardless of overall RAM usage.

- Interrupts which call other functions.

5.3.6 The NOAREGS pragma

Dealing With C51’ s Absolute Register Addressing.

Ashasbeen pointed out, the 8051 hasno MOV Register, Register instruction so the compiler usesMOV R1,AR7 where
ARY7 isthe absolute address of the current R7. To do thisthough, the current registerbank number must be known. 1f
afunction is called from an interrupt where ausing isin force, when compiling a called function the compiler must be

told:

(i) nottouseabsoluteregister addressing with#pragmaNOAREGS control beforethefunction, and #pragmaRESTORE
or #pragmas AREGS control enter the function.

Or:
(i) the current registerbank number with #pragma REGISTERBANK (n).
For (i), applying NOAREGStothesys_interpfunctionremovestheMOV R7,AR7, replacingitwithan awkward moveof

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 35

R7toR1usingXCHA Ri!

timerO_int Entry Code
; void tinerO_int(void) interrupt 1 using 1 {

RSEG ?PR?ti ner0_i nt ?TI MERO
USI NG 1
timerO_int:
PUSH ACC
PUSH B
PUSH DPH
PUSH DPL
PUSH PSW
MOV PSW #08H

sys interp() Entry Code With NOAREGS

; unsigned char sys_interp(unsigned char x_val ue,
RSEG ?PR?_sys_i nt er p?l NTERP
USI NG 0

_sys_interp:
MOV y_val ue?10, R5
MV map_base?10, R2
MV map_base?10+01H, R3

;—Variable ‘x_value?10’ assigned to Register ‘Rl’ —
XCH ARL ;

MV A R7 ; Slow Reg to Reg nove

5.3.7 The REGISTERBANK Control Alternative To NOAREGS

#pragma REGISTERBANK (n) tells C51 the absolute address of the current “using” registerbank base so that direct
register addressing will work.

EXAMPLE:
/* Timer O Overflow Interrupt Service Routine */
tinmerO_int() interrupt 1 USING 1 {

unsi gned char tenpl ;
unsi gned char tenp2 ;

/* executable C statenents */

}

Called function:

#pr agma SAVE /1 Renmber current registerbank
#pragma REG STERBANK(1) // Tel C51 base address of current registerbank.
voi d func(char x) { // Called frominterrupt routine
/1 with “using 1"
/* Code */
}
#pragma RESTORE /1 Put back to original registerbank

Applying #pragma REGISTERBANK(1) to sys interp() restores absolute register addressing as C51 now knows the
base address of the current register bank.

Note: Alwaystry to use the REGI STERBANK(n) control for any functions called from an interrupt with a
USING!

sys interp() Entry Code With REGISTERBANK (n)
; unsigned char sys_interp(unsigned char x_val ue,

RSEG ?PR?_sys_i nt er p?l NTERP

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 36

USI NG1
_sys_interp:
MV y_val ue?10, R5
MV map_base?10, R2
MV nmap_base?10+01H, R3
;—Variable ‘x_val ue?10’ assigned to Register ‘Rl’ —
MoV R1, AR7

5.3.8 Summary Of USING And REGISTERBANK

Expressed in psuedo-code!
if(interrupt routine = USING 1) {

subsequently called function uses #pragma REG STERBANK(1)
}

Note: subsequently called function must now only be called from functions using register bank 1.
5.3.9 Reentrancy In C51 - The Final Solution

In addition to calling a function from interrupt, it is also sometimes necessary to call the same function from the
background aswell. Thisleaves the possibility open that the function may be called from two places simultaneously
with disasterous results!

The attribute required to permit afunction to be safely called both from background and interrupt routines simultane-
oudly is"reentrant”. Thiscanalsohelpinthe previoussituation of afunctionbeing calledfromaninterrupt. Thelinker’'s
“MULTIPLE CALL TO SEGMENT" warning isthe first sign that you may be trying to use a function reentrantly.

Duetotheway that C51 allocatesstoragefor local variablesand parameters, itisnot possibleto call afunctionfrom both
an interrupt and the background loop. To allow only those functions to be used reentrantly that really need to be, it is
possible to specify the reentrant attribute when declaring a function.

The?C_IBPvalue set up in startup.ab1 tells C51 whereto locate the artificial stacksused for reentrant functions. Each
timeareentrant function iscalled, itsincoming parameters are moved from the registersin which they were passed into
anareaof RAM, starting at theaddressindicated by ?C_IBP. Likewise, any local variablesused by thereentrant function
are also allocated a place on this special stack.

When startup.a51 is executed before main(), the line:

| F | BPSTACK <> 0

EXTRN DATA (?C_| BP)

MOV 2C_| BP, #LOW | BPSTACKTOP
ENDI F

initialises?C_IBPtothevalueof IBPSTACKTOP that you set up earlier. Aseachlocal is”pushed” onto thereentrant
stack, ?C_IBP is decremented. Thusif an interrupt occurs which calls the function again, the new call will start its
reentrant stack fromthecurrent ?2C_IBPvalue. Thereafter, any local dataor parameter isaccessed by the code sequence:

Get alocal variable at offset 2 from the current base of the re-entrant stack:

MOV RO, ?CIBP Get stack base

MOV A @RO ; Add of fset of Iocal

ADD A, #002

MOV A @O ; Get local via indirect addressing.

MOV R7,A ; Store value whilst other local is
; accessed.

Onleaving thefunction, ?C_IBPisrestored to entry value by adding thetotal number of localsand parametersthat were
used. Thisrepresentsavery large overhead and showswhy reentrancy should only be used where absol utely necessary.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 37

EXAMPLE:

The Reentrant Stack When Located In The IDATA Area

Oxf f sys_interp paraneter O
Oxfe sys_interp paraneter 1
oxfd sys_interp paraneter 2L
Oxfc sys_interp paraneter 2H —call from background
?C_IBP = Oxfc
Oxfb sys_interp paraneter O
Oxfa sys_interp paraneter O
0oxf9 sys_interp paraneter 1
0oxf 8 sys_interp paraneter 2L
oxf7 sys_interp paraneter 2H —call fromtinerO
interrupt: ?C_|BP = Oxf7
oxf 6 sys_interp paraneter O
oxf5 sys_interp paraneter 0O
oxf 4 sys_interp paraneter 1
oxf 3 sys_interp paraneter 2L
0xf 2 sys_interp paranmeter 2H —call from background
?C_IBP = Oxf2
oxf1
oxf O
Oxef
Oxee

?C_IBP acts as a base pointer to the reentrant stack and is used to access all locals in areentrant function.

Adding thereentrant attributeto sys_interp() still requiresthe NOAREGS control asthe registerbank has been changed
by USING 1. Asamatter of policy, any reentrant function should a so have the NOAREGS control so that it becomes
totally registerbank-independent.

sys interp() Entry Code
; unsi gned char interp_sub(unsigned char x,

RSEG ?PR?_?i nt er p_sub?l NTERP

USI NG 0
_?interp_sub:

DEC ?C IBP

DEC ?C IBP

MOV RO, ?C I BP

XCH A @0

MV AR

XCH A @0

INC RO

XCH A @0

MV A R3

XCH A @0

DEC ?C IBP

MOV RO, ?C I BP

XCH A @0

MV AR5

XCH A @0

DEC ?C IBP

MOV RO, ?C I BP

XCH A @0

MV A R7

XCH A @0

DEC ?C_I BP

; SOURCE LINE # 22

sys interp() Exit Code

?C0009:
MOV A ?C_IBP
ADD A #010H <—Restore ?C_IBP to original position
MOV ?C_IBP, A
RET
; END OF _?sys_interp

END

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 38

5.3.10 Summary Of Controls For Interrupt Functions

Provided the following combinations of controls are used, you will avoid linker warnings and potentially dangerous

code.

Interrupt Function Attribute Cal l ed Function Attribute:
"non-reentrant”

No USI NG no special attribute
required

USI NG n USI NG n
or
#pragma REGA STERBANK(n)
;O#:)ragrra NOAREGS

Interrupt Function Attribute Cal l ed Function Attribute
"reentrant”

no USI NG no register attribute

USI NG n #pragma NOAREGS

5.3.11 Reentrancy And Library Functions

The majority of C51 library functions are reentrant and can be freely used from interrupts and background. However,
some larger library functions such as printf(), scanf() etc. are not reentrant. 1f you have used a non-reentrant library
function reentrantly, you will get a“MULTIPLE CALL TO SEGMENT” warning, as would be expected.

“Hidden” library functions used to perform integer divides and multipliesetc. areall reentrant so you can perform a 16/

16 divide in an interrupt without fear of upsetting the background.

To Summarise:

You can generaly use library functions reentrantly but always check the C51 manual section 9 to check whether a

function is reentrant or not.

© Copyright Hitex (UK) Ltd. 1996

C51 Primer page 39

6 Pointers In C51

Whilst pointerscan beused just asin PC-based C, there are several important extensionsto theway they areusedin C51.
These are mainly aimed at getting more efficient code.

6.1 Using Pointers And Arrays In C51

Oneof C’sgreatest strengths can also beits greatest weakness - the pointer. The use and, more appropriately, the abuse
of thislanguage feature is largely why C is condemned by some as dangerous!

6.1.1 Pointers In Assembler

For an assembler programmer the C pointer equates closely to indirect addressing. Inthe 8051 thisis achieved by the
following instructions:

MOV RO, #40 ; Put on-chip address to be indirectly MOV A @RO addressed in RO
MOV RO, #40 ; Put off-chip address to be indirectly
MOVX A, @GRO addressed in RO
MOVX A, @PTR ; Put off-chip address to be indirectly
addressed in DPTR
CLR A
MOV DPTR, #0040 ; Put off-chip address to be indirectly MOWC A @G\+DPTR addressed in DPTR

In each case the dataiis held in amemory location indicated by the value in registers to the right of the* @’ .
6.1.2 Pointers In C51

The C equivalent of the indirect instruction isthe pointer. Theregister holding the addressto be indirectly accessed in
the assembler examplesisanormal C type, except that its purposeisto hold an addressrather than avariable or constant
data value.

It is declared by:

unsi gned char *pointer0 ;

Note the asterisk prefix, indicating that the data held in thisvariable isan address rather than a piece of data
that might be used in a calculation etc..

Inall casesin the assembler example two distinct operations are required:

(1) Place address to be indirectly addressed in aregister.
(i) Usethe appropriate indirect addressing instruction to access data held at chosen address.

Fortunately in C the same procedure is necessary, although the indirect register must be explicitly defined, whereasin
assembler the register existsin hardware.

/* 1 - Define a variable which will hold an address */
unsi gned char *pointer ;

/* 2 - Load pointer variable with address to be accessed*/
/*indirectly */

pointer = &c_variable ;

/* 3 - Put data ‘Oxff’ indirectly into c variable via*/
/ *poi nter */

*pointer = Oxff ;
Taking each operation in turn...

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 40

1. ReserveRAM toholdpointer. Inpracticethecompiler attachesasymbolicnametoaRAM location, just aswithanormal
variable.

2. Load reserved RAM with addressto be accessed, equivalent to ‘MOV RO,#40'. In English this C statement means:
“take the ‘address of’ ¢_variable and put it into the reserved RAM, i.e, the pointer”

In this case the pointer’s RAM correspondsto RO and the ‘&’ equates |oosely to the assembler ‘#'.

3. Move the data indirectly into pointed-at C variable, as per the assembler ‘MOV A,@RO'.

The ability to access data either directly, x =y, or indirectly, x = *y_ptr, isextremely useful. Hereis C example:

/* Dermonstration O Using A Pointer */

unsi gned char c_variable ; /1 1 - Declare a c variable unsigned char *ptr ;
/1 2 - Declare a pointer (not pointing at anything yet!)
mai n() {
c_variable = Oxff ; /1 3 - Set variable equal to Oxff directly
ptr = &_variable ; /!l 4 - Force pointer to point at c_variable at run tine
*ptr = Oxff ; /15 - Mve Oxff into c_variable indirectly
}

Note: Line 4 causes pointer to point at variable. An aternative way of doing thisis at compile time thus:
/* Dermonstration O Using A Pointer */
unsi gned char c_vari abl e; //1-Declare a c variable

unsi gned char *ptr = &c_variable; //2-Declare a pointer, intialised to pointing at
//c_variable during conpilation

mai n() {
c_variable = Oxff ; /1 3 - Set variable equal to Oxff directly
*ptr = Oxff /15 - Mve Oxff into c_variable ndirectly
}

Pointers with their asterisk prefix can be used exactly as per normal datatypes. The statement:

could equally well perform with pointers, as per

char x, y ;

char *x_ptr = & ;
char *y ptr = & ;
*X_ptr = *y ptr + 3 ;

or:

X =y * 25 ;
*X_ptr = *y_ptr * 25 ;

The most important thing to understand about pointersis that

*ptr = var ;

means “ set the value of the pointed-at address to value var”, whereas
ptr = &var ;

means “make ptr point at var by putting the address of (&) in ptr, but do not move any data out of var itself”.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 41

Thustheruleistoinitialise apointer,

ptr = &var ;

To access the data indicated by *ptr ;

var = *ptr ;

6.2 Pointers To Absolute Addresses

Inembedded C, ROM, RAM and peripheralsareat fixed addresses. Thisimmediately rai sesthe question of how to make
pointers point at absolute addresses rather than just variables whose address is unknown (and largely irrelevant).

The simplest method is to determine the pointed-at address at compile time:
char *abs_ptr = 0x8000 ; // Declare pointer and force to 0x8000 i medi ately

However if the address to be pointed at is only known at run-time, an alternative approach is necessary. Simply, an
uncommitted pointer is declared and then forced to point at the required address thus:

char *abs_ptr ; // Declare unconm tted pointer

abs_ptr = (char *) 0x8000 ; // Initialise pointer to 0x8000 *abs_ptr = Oxff ;
/1 Wite Oxff to 0x8000

*abs_ptr++ ; /1 Make pointer point at next location in RAM

Please see sections 6.8 and 6.9 for further details on C51 spaced and generic pointers.

6.3 Arrays And Pointers - Two Sides Of The Same Coin?
6.3.1 Uninitialised Arrays

The variables declared via

unsi gned char x ;
unsi gned char y ;

aresingle 8-bit memory locations. The declarations:

unsigned int a ;
unsigned int b ;

yield four memory locations, two allocatedto ‘@ andtwoto‘b’. Inother programming languagesit ispossibleto group
similar types together in arrays. In basic an array is created by DIM a(10).

Likewise ‘C’ incorporates arrays, declared by:
unsi gned char a[10] ;
This hasthe effect of generating ten sequential locations, starting at the address of ‘a’. Asthere isnothing to the right

of the declaration, noinitial valuesareinserted into the array. It therefore contains zero dataand servesonly to reserve
ten contiguous bytes.

6.3.2 Initialised Arrays
A more usual instance of arrayswould be:

unsigned char test_array [] = { 0x00,0x40,0x80,0xCO,0xFF } ;

wheretheinitia values are put in place before the program getsto “main()”. Notethat the size of thisinitialised array
is not given in the square brackets - the compiler works-out the size automatically.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 42

Another common instance of an array is analogousto the BASIC string as per:

A$ = “HELLO "

In C this equates to:

char test_array[] = { “HELLO" } ;

In Cthereisnoreal distinction between stringsand arraysasaC array isjust aseriesof sequential bytesoccupied either
by astring or a series of numbers. In fact the realms of pointers and arrays overlap with strings by virtue of :

char test_array = { “HELLO " } ;
char *string_ptr = { “HELLO " } ;

Case 1 creates a sequence of bytes containing the ASCII equivalent of “HELLO!”. Likewise the second case allocates
the same sequence of bytes but in addition creates a separate pointer called *string_ptr toit. Notice that the “unsigned
char” used previously has become “char”, literally an ASCII character.

The second isreally equivalent to:
char test_array = { “HELLO " } ;

Then at run time:

char arr_ptr = test_array ; // Array treated as pointer

or,

char arr_ptr = &est_array[0] ; // Put address of first
/1 elenment of array into
/1 pointer

This again shows the partial interchangeability of pointers and arrays. In English, the first means “transfer address of
test_arrayintoarr_ptr”. Statingan array nameinthiscontext causesthearray to betreated asapointer tothefirstlocation
of the array. Hence no “address of” (&) or **’ to be seen.

Thesecond casereadsas* get theaddressof thefirst element of thearray nameand putitintoarr_ptr”. Noimplied pointer
conversion is employed, just the return of the address of the array base.

The new pointer “*arr_ptr” now exactly correspondsto * string_ptr, except that the physical “HELLO!” they point at
isat adifferent address.

6.3.3 Using Arrays

Arrays aretypically used like this:

/* Copy The String HELLO Into An Enpty Array */
unsi gned char source_array[] = { “HELLO " } ;
unsi gned char dest_array[7];

unsi gned char array_i ndex

unsi gned char

array_index = 0

while(array_index < 7) { // Check for end of array

dest_array[array_i ndex] = source_array[array_i ndex]
/I Move character-by-character into destination array

array_i ndex++

}

Thevariablearray_index showsthe offset of the character to be fetched (and then stored) from the starts of the arrays.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 43

As has been indicated, pointers and arrays are closely related. Indeed the above program could be re-written thus:
/* Copy The String HELLO Into An Enpty Array */

char *string_ptr = { “HELLO " } ;

unsi gned char dest_array[7]

unsi gned char array_i ndex

unsi gned char

array_index = 0 ;

whil e(array_index < 7) { /'l Check for end of array

dest _array[array_index] = string_ptr[array_index] ; // Mpve character-by-character into
destination array.

array_i ndex++ ;

}

The point to note is that by removing the **’ on string_ptr and appending a ‘[]’ pair, this pointer has suddenly
become an array! However in this case there is an alternative way of scanning along the HELLO! string, using the
*ptr++ convention:

array_index = 0 ;

whil e(array_index < 7) { // Check for end of array

dest _array[array_index] = *string_ptr++ ; // Move character-by-character into destination array.
array_i ndex++ ;
}

Thisisan example of C being somewhat inconsistent; this* ptr++ statement does not mean “increment the thing being
pointed at” but rather, increment the pointer itself, so causing it to point at the next sequential address. Thusin the
example the character is obtained and then the pointer moved along to point at the next higher address in memory.

6.3.4 Summary Of Arrays And Pointers

To summarise:

Create An Uncommitted Pointer

unsi gned char *x_ptr ;

Create A Pointer To A Normal C Variable
unsi gned char x ; unsigned char *x_ptr = & ;
Create An Array With No Initial Values
unsi gned char x_arr[10]

Create An Array With Initialised Values
unsi gned char x_arr[] ={ 0,1,2,3} ;
Create An Array In The Form Of A String
char x_arr[] ={ “HELLO } ;

Create A Pointer To A String

char *string_ptr = { “HELLO } ;
Create A Pointer To An Array

char x_arr[] = { “HELLO } ; char *x_ptr = x_arr

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 44

Force A Pointer To Point At The Next Location

*ptr++
6.4 Structures

Structures are perhapswhat makes C such apowerful languagefor creating very complex programswith huge amounts
of data. They are basically away of grouping together related data items under a single symbolic name.

6.4.1 Why Use Structures?

Hereisan example: A pieceof C51 software had to perform alinearisation process on the raw signal from avariety of
pressure sensors manufactured by the same company. For each sensor to be catered for there is an input signal with a
span and offset, atemperature coefficient, the signal conditioning amplifier, again and offset. Theinformationfor each
sensor type could be held in “normal” constants thus:

unsi gned char sensor_typel gain = 0x30

unsi gned char sensor_typel offset = 0x50
unsi gned char sensor_typel tenp_coeff = 0x60
unsi gned char sensor_typel span = 0xC4

unsi gned char sensor_typel anp_gain = 0x21

unsi gned char sensor_type2_gain = 0x32

unsi gned char sensor_type2_offset = 0x56
unsi gned char sensor_type2_tenp_coeff = 0x56
unsi gned char sensor_type2_span = 0xC5

unsi gned char sensor_type2_anp_gain = 0x28
unsi gned char sensor_type3_gain = 0x20

unsi gned char sensor_type3_offset = 0x43
unsi gned char sensor_type3_tenp_coeff = 0x61
unsi gned char sensor_type3_span = 0x89

unsi gned char sensor_type3_anp_gai n = 0x29

As can be seen, the names conform to an easily identifiable pattern of:

unsi gned char sensor_typeN _gain = 0x20

unsi gned char sensor_typeN of fset = 0x43
unsi gned char sensor_typeN tenp_coeff = 0x61
unsi gned char sensor_typeN _span = 0x89

unsi gned char sensor_typeN_ anp_gai n = 0x29

Where ‘N’ isthe number of the sensor type. A structure isaneat way of condensing thistypeisrelated and repeating
data.

In fact the information needed to describe a sensor can be reduced to a generalised:

unsi gned char gain

unsi gned char of fset

unsi gned char tenp_coeff ;
unsi gned char span

unsi gned char anp_gain

Theconcept of astructureisbased onthisideaof generalised“template” for related data. Inthiscase, astructuretemplate
(or “component list”) describing any of the manufacturer's sensors would be declared:

struct sensor_desc {unsigned char gain
unsi gned char offset
unsi gned char tenp_coeff ;
unsi gned char span
unsi gned char anp_gain ; }

This does not physically do anything to memory. At thisstage it merely creates a template which can now be used to
put real datainto memory.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 45

Thisisachieved by:

struct sensor_desc sensor_dat abase ;

Thisreads as* use the template sensor_desc to layout an area of memory named sensor_database, reflecting the mix of
data types stated in the template”. Thus a group of 5 unsigned chars will be created in the form of a structure.

Theindividual elements of the structure can now be accessed as:
sensor _dat abase. gain = 0x30 ;

sensor _dat abase. of fset = 0x50 ;

sensor _dat abase. tenp_coeff = 0x60 ;

sensor _dat abase. span = 0xZ4
sensor_dat abase. anp_gain = 0x21 ;

6.4.2 Arrays Of Structures

In the example though, information on many sensorsisrequired and, aswith individual charsandints, it is possible to
declare an array of structures. This allows many similar groups of data to have different sets of values.

struct sensor_desc sensor_database[4] ;

This creates four identical structures in memory, each with an internal layout determined by the structure template.
Accessing this array is performed simply by appending an array index to the structure name:

/*Operate On Elenments In First Structure Describing */
/*Sensor 0 */

sensor _dat abase[0] .gain = 0x30 ;

sensor _dat abase[0] . of fset = Ox50 ; sensor_database[0].tenp_coeff = O0x60 ; sensor_dat abase[0].span
= 0x4

sensor _dat abase[0] . anp_gai n = 0x21 ;

/* Operate On Elenments In First Structure Describing */
/*Sensor 1 */

2

sensor _dat abase[1] .gain = 0x3
= 0x56 ;

sensor _dat abase[1] . of f set

sensor _dat abase[1] .t enp_coeff = 0x56 ;
sensor _dat abase[1] . span = 0xC5 ;
sensor _dat abase[1] . anp_gai n = 0x28 ;

and so on...

6.4.3 Initialised Structures

Aswith arrays, a structure can be initialised at declaration time:

struct sensor_desc sensor_database = { 0x30, 0x50, 0x60, 0OxC4, 0x21 } ;
so that here the structure is created in memory and pre-loaded with values.

The array case follows a similar form:
struct sensor_desc sensor_dat abase[4] = {{0x30, 0x50, 0x60, 0xC4, 0x21 },

{ 0x32, 0x56, 0x56, 0xC5, 0x28 ; }} ;

6.4.4 Placing Structures At Absolute Addresses

It is sometimes necessary to place a structure at an absolute address. This might occur if, for example, the registers of
amemory-mapped real-time clock chip areto be grouped together asastructure. Thetemplatein thisinstance might be:

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 46

ContentsOf RTCBY TES.CModule

struct RTC { unsigned char seconds
unsi gned char mnutes ;
unsi gned char hours
unsi gned char days

P
struct RTC xdata RTC chip ; // Create xdata structure

A trick using the linker isrequired here so the structure creation must be placed in adedicated module. Thismodul€e's
XDATA segement, containing the RTC structure, is then fixed at the required address at link time.

Using the absolute structure could be:

/* Structure |located at base of RTC Chip */
MAIN. C Mbdul e

extern xdata struct RTC chip ;

/* OQther XDATA Objects */

xdata unsi gned char tinme_secs, tine_mns ;
voi d main(void) {

time_secs

time_mns

}

RTC chi p. seconds ;
RTC _chi p. m nut es;

Linker Input File To Locate RTC_chip structure over real RTC Registersis:
I 51 nmin. obj, rtchytes. obj XDATA(?XD?RTCBYTES(0h))

See section 7.6 for further examples of this placement method.
6.4.5 Pointers To Structures

Pointers can be used to access structures, just as with simple dataitems. Hereisan example:
/* Define pointer to structure */

struct sensor_desc *sensor_dat abase ;

/* Use Pointer To Access Structure Elenents */

sensor _dat abase->gai n = 0x30 ;
sensor _dat abase- >of f set = 0x50 ;
sensor _dat abase- >t enp_coeff = 0x60 ;
sensor _dat abase- >span = 0xZ4 ;
sensor _dat abase->anp_gain = 0x21 ;

Note that the **’ which normally indicates a pointer has been replaced by appending ‘->’ to the pointer name.
Thus‘*name’ and ‘name->’ are equivalent.

6.4.6 Passing Structure Pointers To Functions

A common use for structure pointersis to alow them to be passed to functions without huge amounts of parameter
passing; atypical structuremight contain 20 databytesand to passthisto afunctionwould require 20 parametersto either
be pushed onto the stack or an abnormally large parameter passing area. By using a pointer to the structure, only the
two or three bytes that constitute the pointer need be passed. This approach isrecommended for C51 as the overhead
of passing whole structures can tie the poor old 8051 CPU in knots!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 47

This would be achieved thus:

struct sensor_desc *sensor_database ;

sensor _dat abase-> gain = 0x30 ;

sensor _dat abase-> offset = 0x50 ;
sensor _dat abase-> tenp_coeff = 0x60 ;
sensor _dat abase-> span = 0xC4 ;

sensor_ dat abase- >anp_gain = 0x21 ;
test _function(*struct_pointer) ;

test _function(struct sensor_desc *recei ved_struct_pointer) {
recei ved_struct_pointer->gain = 0x20 ;
recei ved_struct_pointer->tenp_coef = 0x40 ;

}

Advanced Note: Using a structure pointer will cause the called function to operate directly on the structure rather
than on a copy made during the parameter passing process.

6.4.7 Structure Pointers To Absolute Addresses

Itissometimesnecessary to placeastructureat an absoluteaddress. Thismight occur if, for example, amemory-mapped
real time clock chipisto be handled asastructure. An alternative approach to that given in section 6.4.4. isto address
the clock chip via a structure pointer.

Theimportant difference isthat in this case no memory is reserved for the structure - only an “image’ of it appearsto
be at the address.

The template in this instance might be:
/* Define Real Tine Cock Structure */

struct RTC {char seconds ;
char mns ;
char hours ;
char days ; } ;

/* Create A Pointer To Structure */

struct RTC xdata *rtc_ptr ; // ‘xdata’ tells C51 that this
/1is a nenory-nmapped devi ce.

voi d mai n(voi d) {
rtc_ptr = (void xdata *) 0x8000 ; // Mve structure
/1 pointer to address
/1of real time clock at
// 0x8000 in xdata

rtc_ptr->seconds = 0 ; // Operate on elenents
rtc_ptr->mns = 0x01 ;

}

Thisgeneral techniquecan beusedin any situation whereapointer-addressed structure needsto be placed over aspecific
IO device. However it isthe user’ sresponsibility to make surethat the addressgivenisnot likely to be allocated by the
linker as genera variable RAM!

To summarize, the procedureis:
(i) Definetemplate

(ii) Declare structure pointer as normal
(iii) At run-time, force pointer to required absolute addressin the normal way.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 48

6.5 Unions

A unionissimilar in concept to astructure except that rather than creating sequential locationsto represent each of the
itemsin the template, it places each item at the same address. Thus aunion of 4 bytes only occupies asingle byte. A
union may consist of a combination of longs, char and ints all based at the same physical address.

The the number of bytes of RAM used by a union is simply determined by the size of the largest element, so:

union test { char x
inty ;
char a[3]
long z

}

reguires 4 bytes, this being the size of along. The physical location of each element is:

addr —0 x byte y high byte a[0] =z highest byte
+1 y low byte a[1l] z byte
+2 a[2] z byte
+3 a[3] z lowest byte

Non-8051 programmers should see the section on byte ordering in the 8051 if they find the idea of the MSB being at
the low address odd!

In embedded C the commonest use of aunion isto allow fast access to individual bytes of longs or ints. These might
be 16 or 32-bit real-time counters, asin thisexample:

/* Declare Union */

union clock {long real _tine_count ; // Reserve four byte

int real _tinme_words[2] ; /'l Reserve four bytes as
/1 int array
char real _time_bytes[4] ; /'l Reserve four bytes as

/1 char array

P
/* Real Time Interrupt */
void timerO_int(void) interrupt 1 using 1 {
clock.real _tinme_count++ ; /1 Increnment clock

if(clock.real _time_words[1l] == 0x8000) { // Check
/1 lower word only for val ue

/* Do sonething! */
}

if(clock.real _time_bytes[3] == 0x80) { // Check nost
/1 significant byte only for val ue

/* Do sonething! */
}

}
6.6 Generic Pointers

C51 offerstwo basic types of pointer, the spaced (memory-specific) and the generic. Up to version 3.00 only generic
pointers were available.

As has been mentioned, the 8051 has many physically separate memory spaces, each addressed by special assembler
instructions. Such characteristicsarenot peculiar tothe8051 - for example, the 8086 hasdatainstructionswhich operate
on al16-bit (within segment) and a20-bit basis.

For the sake of simplicity, and to hidethereal structure of the 8051 from the programmer, C51 usesthree byte pointers,
rather than the single or two bytes that might be expected. The end result isthat pointers can be used without regard to

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 49

the actual location of the data
Forexample:

xdata char buffer[10] ;
code char nessage[] = { “HELLO } ;
voi d main(void) {

char *s ;

char *d ;

s
d

nessage ;
buffer ;

while(*s = \0") {
*d++ = *s++
}
}
Yields:

RSEG ?XD?T1

buf fer: DS 10
RSEG ?CO?T1

message:

DB ‘H ,’E ,’L ,'L ,"O ,000H

; xdata char buffer[10] ;
; code char nessage[] = { “HELLO }

; voi d main(void) {
RSEG ?PR?nmi n?T1
USI NG 0
; SOURCE LINE # 6

; char *s ;
; char *d ;

1)
1

nessage ;
; SOURCE LINE # 11
MOV s?02, #05H
MOV s?02+01H, #Hl GH nessage
MOV s?02+02H, #LOW nessage
buffer ;
; SOURCE LINE # 12
MOV d?02, #02H
MOV d?02+01H, #Hl GH buffer
MOV d?02+02H, #LOW buf f er
?C0001:
; while(*s I'=*\0") {
; SOURCE LINE # 14
MV R3,s?02
MOV R2,s?02+01H
MOV R1, s?02+02H
LCALL ?C_CLDPTR
Jz ?C0003
*d++ = *s++
; SOURCE LINE # 15
INC s?02+02H
MOV A s?02+02H

o
1

JNz ?C0004

INC s?02+01H
?C0004:

DEC A

MOV R1,A

LCALL ?C_CLDPTR

MOV R7,A

MOV R3, d?02

INC d?02+02H

MOV A d?02+02H

MOV R2,d?02+01H

JNz ?C0005

INC d?02+01H
?C0005:

© Copyright Hitex (UK) Ltd. 1996

1

C51 Primer page 50

DEC A

MOV R1, A

MOV A R7
LCALL ?C_CSTPTR

}
; SOURCE LINE # 16
SIMP 200001

}
; SOURCE LINE # 17

?C0003:
RET

; END OF main
END

Ascan beseen, thepointers'*s and‘*d' are composed of three bytes, not two as might be expected. 1nmaking * spoint
at the message in the code space an ‘05’ isloaded into s ahead of the actual addressto be pointed at. In the case of *d
‘02 isloaded. Theseadditional bytesarehow C51 knowswhich assembler addressing modetouse. Thelibrary function
C_CLDPTR checks the value of the first byte and loads the data, using the addressing instructions appropriate to the
memory space being used.

Thismeansthat every access viaageneric pointer requiresthislibrary function to be called. The memory space codes
used by C51 are:

CODE - 05
XDATA - 02
PDATA - 03
DATA - 05
| DATA - 01

6.7 Spaced Pointers In C51

Considerable run time savings are possible by using spaced pointers. By restricting apointer to only being ableto point
into one of the 8051’ s memory spaces, the need for the memory space “code” byteis eliminated, along with the library
routines needed to interpret it.

A spaced pointer is created thus:
char xdata *ext_ptr ;

to produce an uncommitted pointer into the XDATA space or
char code *const_ptr ;

which gives a pointer solely into the CODE space. Note that in both cases the pointers themselves are located in the
memory spacegiven by thecurrent memory model. Thusapointer toxdatawhichistobeitself locatedin PDATA would
be declared thus:

pdata char xdata *ext_ptr ;

| ocation |

of pointer |
Menory space pointed into
by pointer

In this example strings are always copied from the CODE area into an XDATA buffer. By customising the library
function“strepy()” to useaCODE source pointer and aX DATA destination pointer, the runtimefor the string copy was
reduced by 50%. The new strcpy has been named strcpy _x_c().

The function prototypeis:

extern char xdata *strcpy(char xdata*, char code *) ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 51

Hereisthe code produced by the spaced pointer strcpy():

; char xdata *strcpy_x_c(char xdata *sl1, char code *s2) {
_strcpy_x_c:

Yo% s2?10, R4

o s2?10+01H, RS
;—Variable ‘s1?10° assigned to Register ‘R6/R7’ —

; unsi gned char i = 0;

;—Variable ‘i?11' assigned to Register ‘R’ —
CLR A
Yo% R1, A

?C0004:

; while ((sl[i++] = *s2++) !'= 0);
INC s2?10+01H
MOV A s2?10+01H
MV R4,s2?10

JNz ?00008
INC s2?10
?C0008:
DEC A
MOV DPL, A
MOV DPH, R4
CLR A
MOVC A, @\+DPTR
MV R5,A
MOV R4, ARL
INC R1
MV A R7
ADD A R4
MOV DPL, A
CLR A
ADDC A, R6
MOV DPH, A
MV A RS
MOVX @PTR, A
JNz ?00004
?C0005:
; return (sl);
vt
?C0006:

END

Noticethat no library functions are used to determine which memory spacesareintended. The function prototypetells
C51 only to look in code for the string and xdata for the RAM buffer.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 52

7 Accessing External Memory Mapped Peripherals

Commonly, extral O portsareadded to 8051sto compensatefor thel ossof PortsOand 2. Thisisnormally doneby making
the additional device(s) appear to be just external RAM bytes. Thus they are addressed by the MOV X A,@DPTR
instruction. Typicaly UARTS, additional portsand real timeclock devicesareadded to 8031sasxdata-mapped devices.

Thesimplest approach to adding external devicesisto attach the/RD and or /WR linesto the device. Provided that only
one deviceispresent and that it only has one register, no address decoding is necessary. To access thisdevicefrom C
simply prefix an appropriately named variable with “xdata’. Thiswill cause the compiler to use MOVX A,@DTPR
instructionswhen getting datain or out. Inactual fact thelinker will try toallocateareal addresstothisbut, asnodecoding
is present, the device will simply be enabled by /WR or /RD.

In practice lifeisrarely thissimple. Usually amixture of RAM, UARTS, ports, EEPROM and other devices may all
be attached to the 8031 by being mapped into the xdata space. Some sort of decoding is provided by discrete logic or
(more usualy) aPAL.

Herethevariousregistersof thedifferent deviceswill appear at fixed | ocationsin the xdataspace. With normal on-chip
resourcesthe simple*databook” name can be used to accessthem, so ideally these external devices should bethe same.

There are three basic approachesto this:

(1) Use normal variables, char, ints etc, located by the linker
(i) Usepointers and offsets, either viathe XBY TE macros or directly with user-defined pointers.
(i) Usethe At _and ORDER directives.

In detail, these may be implemented as shown in the following sections.

7.1 The XBYTE And XWORD Macros

To allow memory-mapped devicesto be accessed from C, amethod is required to effectively force pointersto point to
fixed addresses. C51 provides many methods of achieving this, the simplest of which are the XBY TE[addr16] and
XWORDJ[addr16] macros.

For instance:

Thebytewide PORT8_DDI register of amemory mapped 10 deviceisat 8000H. To accessit from Cit must bedeclared
thus:

#i ncl ude “absacc. h”; /*Contains macro definitions */
#defi ne port8_ddi XBYTE[0x8000]
#define port8_data XBYTE[0x8001]

To useit then,
port8_ddi = OxFF ;
i nput _val = port8_data ;

To access aword at an even externa address:

#define word_reg XWORD[0x4000]
/* gives a word variable at 8000H */

Ignoring the pre-defined XWORD macro, the equivalent C lineis:

#define word_reg_ptr ((unsigned int *) 0x24000L)
/*creates a pointer to a word (int) at address 8000H*/

To use this address then,

*word_reg_ptr = OxFFFF ;

Note that the address 8000H corresponds to 4000H words, hence the " 0x24000L ".

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 53

Here are some examples with the code produced:

#define XBYTE ((unsigned char volatile *) 0x20000L)
#define XWORD ((unsigned int volatile *) 0x20000L)

mai n() {

char x ;
inty;

x = XBYTE[0x8000]

0000 908000 MoV DPTR, #08000H
0003 EO MOVX A @PTR

0004 FF MoV R7, A

0005 8F00 R MoV x, R7

y = XWORD[0x8000/ si zeof (int)]
}

0007 908000 MoV DPTR, #08000H
000A EO MOVX A, @PTR
000B FE MoV R6, A
000C A3 I'NC DPTR
000D EO MOVX A, @PTR
000E FF MoV R7, A
000F 8EOO R MoV y, R6
0011 8FOO R MoV y+01H, R7
}

0013 ?C0001:

0013 22 RET

However the address indicated by “word_reg” isfixed and can only be defined at compile time, as the contents of the
square brackets may only be aconstant. Any alteration to the indicated addressis not possible with these macro-based
methods. Thisapproachisthereforebest suited to addressing locationsthat arefixed in hardwareand unlikely to change
at run time.

Note the use of the volatile storage class modifier. Thisisessential to prevent the optimiser removing datareads from
external ports.
See section 7.4 for more details.

Note: the header file " absacc.h” must beincluded at the top of the source file as shown above. This containsthe
prototype for the XBYTE macro. (see page 9-15 in the C51 manual)

7.2 Initialised XDATA Pointers

In many cases the external addressto be pointed at is known at compile time but may need to be atered at some point
during execution. Thus some method of making a pointer point at an intial specific external addressis required.

Probably the simplest way of setting up suchapointer istolettheC_INIT program set the pointer to alocation. However
theinitial addressmust beknown at compiletime. If thepointer isto bealtered at run-time, just equateit (without the**”
at run-time) to the new address.

Note: thisautomatic initialisation was not supported on earlier versions of C51.
Simply do:
/* Spaced pointer */
xdata char xdata *a_ptr = 0x8000 ;
/* Ceneric Pointer */
xdata char *a_ptr = 0x028000L ;

Herethe pointer is setup to point at xdata address 0x8000. Notethat the spaced *a ptr can only point at xdatalocations
asaresult of the second xdataused initsdeclaration. Inthegeneric*a ptr case, the* 02" tellsC51 that an xdataaddress
isintended.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 54

Anexamplemight be:

6 xdata char xdata *ptr = 0x8000 ;

7

8

9 mai n() {

11 1 char x ;

13 1 ptr += OxfO ;
0000 900000 R MoV DPTR, #pt r +01H
0003 EO MOVX A, @PTR
0004 24F0 ADD A, #O0FOH
0006 FO MOVX @PTR, A
0007 900000 R MoV DPTR, #ptr
000A EO MOVX A @PTR
000B 3400 ADDC A, #00H
000D FO MOVX @PTR, A

15 1 X = *ptr ;

16 1

17 1 }
000E EO MOVX A, @PTR
000F FE MoV R6, A
0010 A3 I NC DPTR
0011 EO MOVX A, @PTR
0012 F582 MOV DPL, A
0014 8E83 MoV DPH, R6
0016 EO MOVX A, @PTR
0017 F500 R MOV X, A

17 1 }
0019 22 RET

7.3 Run Time xdata Pointers

Thesituation often occursthat you need to point at addressesin the xdata space which are only known at run-time. Here
the xdata pointer is setup in the executable code.

The best way to achieve thisisto declare an “ uncommitted” pointer at compile time and to then equate it to an address
when running:

char xdata *xdata_ptr ; /* Uncommitted pointer */
/* to xdata nenory */
mai n() {

xdat a_ptr=(char xdata*) 0x8000 ; /*Point at 0x8000 in */

/*xdata */

}
An aternative isto declare a pointer to the xdata space and simply equate it to a variable.

Here is an exanple:

char xdata *ptr ; /* This is a spaced pointer!!! */
mai n(){
start_address = 0x8000 ; /*Variable containing address*/

/*to be pointed to */

0000 750080 R MoV start_address, #080H
0003 750000 R MoV start_address+01H, #00H

ptr = start_address ;

000C AEOO0 R MoV R6, start _address
000E AFOO R MoV R7, start _addr ess+01H
0010 8EOO R MoV ptr, R6

0012 8F00 R MoV ptr+01H, R7

0014 ?00001:

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 55

whi le(1) {

X = *ptr++

0014 0500 R I'NC ptr+01H
0016 E500 R MoV A ptr+01H
0018 AEO0 R MoV R6, ptr
001A 7002 JNZ ?C0004
001C 0500 R I'NC ptr
001E ?C0004:
001E 14 DEC A
001F FF MoV R7, A
0020 8F82 MoV DPL, R7
0022 8E83 MoV DPH, R6
0024 EO MOVX A, @PTR
0025 FF MoV R7, A
0026 8F00 R MoV x, R7
}

0028 80EA SIMP ?C0001
002A ?C0002:

}
002A ?C0003:
002A 22 RET

A variation of this is to declare a pointer to zero and use a variable as an of fset thus:
char xdata *ptr ;
mai n() {

unsigned int i ;
unsi gned char x ;

ptr = (char*) 0x0000 ;
for(i =0 ;
i < 0x40 ;
i++) {
X =ptri] ;
}

This resultsin rather more code, as an addition to the pointer must be performed within each loop.

7.4 The “volatile” Storage Class

A common situation with external devicesis that values present in their registers change without the cpu taking any
action. A good exampleisareal-time clock chip - the time changes continuously without the cpu writing anything.

Consider the following:

unsigned int xdata *mlliseconds = 0x8000 ; // Pointer to
/1 RTC chip
time = *mlliseconds ; -> (1) // Get RTC register value

X = array[tine] ;

tinme = *mlliseconds ; -> (2) // Second regi ster access
/1 optimsed out!

y = array[tine] ;
Here the value retrieved from the array is related to the value of * milliseconds, aregister in an external RTC.
If thisiscompiled itwill notwork. Why? Well thecompiler’ soptimiser shootsitself inthefoot by assumingthat, because

no WRITE occurred between (1) and (2), *millisec cannot have changed. Hence all the code generated to make the
second access to the register is optimised out and so y == x!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 56

The solution is declare * milliseconds as “ volatile” thus:

unsigned int volatile xdata *milliseconds = 0x8000

Now the optimiser will not try to remove subsequent accesses to the register.

7.5 Placing Variables At Specific Locations - The Linker Method

A final method of establishing external variables at fixed addresses, especially arrays, isby using the linker rather than
the compiler. For example, to produce a 10 character array in external memory, starting at 8000H, the following steps
are necessary:

[*** Nodule 1 ***/
/* This npdul e contains only data declarations! */
xdat a unsi gned char array[30]
/* End Module 1 */
AAAAANAANAAAANANAAAANANAAAANAAAANANAA
[*** Nodul e 2 ***/
/* This nmodul e contains the executable statements */
extern xdata unsigned char array[10]

mai n()

{

unsi gned char
i = array[i]
}

Now by linking with the invocation:

L51 nodul el. obj, nodul e2. obj XDATA (?XD?npdul el (8000H))

thelinker will makethe XDATA segment in Module 1 (indicated by ?XD?modulel) start at 8000H, regardless of other
xdata declarations elsewhere. Thusthe array starts at 8000H and is 10 bytes (+ null terminator) long.

Thisapproach lackstheflexibility of the above methods but has the advantage of making the linker reserve spaceinthe
XDATA space.

Similar control can be exercised over the address of segments in other memory spaces. C51 uses the following
convention for segment names:

CODE ?PR?functi onnane?nodul e_nanme (executabl e code)

CODE ?CO?functi onnanme?nodul e_nanme (| ookup tables etc.)

BIT ?BI ?f uncti onnanme?nodul e_nane

DATA ?DT?functi onname?nodul e_nane

XDATA ?XD?f uncti onnane?nodul e_nane

PDATA ?PD?functi onnanme?nodul e_nane

Thus the parameter receiving area of a LARGE model function ‘test()’ in module MOD1.C would be:
?XD?TEST?MODL,

Thecodeis:

?PR?TEST?MODL

And so on.

A knowledge of thisis useful for assembler interfacing to C51 programs. See section 14.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 57

7.6 Excluding External Data Ranges From Specific Areas

This very much follows on from the previous section. Occasionally a memory-mapped device, such asreal time clock
chip, isused as both a source of time valuesand RAM. Typically thefirst 8 bytesin the RTC’ s address range are the
time counts, seconds, minutes etc. whilst the remaining 248 bytes are RAM.

Left toitsown devices, theL51 linker will automatically place any xdatavariables starting at zero. If the RTC has been
mapped at thisaddressaproblem occurs, asthe RTC timeregistersare overwritten. Inaddition, it would be convenient
to allow the registers to be individually named.

One approach isto define a special module containing just a structure which describesthe RTC registers. Inthe main
programthe RTC registersareaccessed aselementsinthestructure. Thetrick isthat, whenlinking, the XDATA segment
bel onging to the special moduleisforced to aspecific address, herezero. Thisresultsinthe RTC structurebeing at zero,
with any other XDATA variablesfollowing on. The basic method could also be used to stop L51 locating any variables
in a specific area.

Example Of Excluding Specific Areas From L51
/* Structure |located at base of RTC Chip */
MAIN.C Module
extern xdata struct { unsi gned char seconds ;
unsi gned char mnutes ;
unsi gned char hours ;
unsi gned char days ; } RTC chip ;
/* Other XDATA Objects */

xdata unsigned char tinme_secs, tine_mns ;

voi d main(void) {

ti me_secs = RTC chi p. seconds ;
time_mns = RTC chip.mnutes ;
}

RTCBYTES.C Module

xdata struct { unsigned char seconds ;
unsi gned char mnutes ;
unsi gned char hours
unsi gned char days ; } RTC_chip ;

Linker Input File To Locate RTC_chip structure over real RTC
Registersis:

I 51 main. obj, rtchytes. obj XDATA(?XD?RTCBYTES(0h))
7.7 -missing ORDER and AT now in C51

Perhaps the most curious omission from C51 was the inability to fix the address of a data object at an absolute address
from the source file. Whilst there have always been methods of achieving the same effect, users have long requested
an extension to allow the address of an object to be included in the original declaration. In C51 v4.xx, the
new_AT_control now exists.

7.8 Using The _at and ORDER_ Controls

Here, the order of the variables must not change as it must match the physical location of thereal time clock’ sregisters.
The#pragma ORDER tells C51 to place the data objects at ascending addresses, with thefirst item at the lowest address.
The linker must then be used to fix the address of the whole block in memory.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 58

SourceFileMAIN.C

#pragma ORDER

unsi gned char xdata RTC secs ;
unsi gned char xdata RTC nmins ;
unsi gned char xdata RTC hours ;
mai n() { RTC mins =1 ; }
Linker Input File MAIN.LIN

mai n.obj & to main & XDATA(?XD?MAI N(Of a00h))

The alternative _at _control forces C51 to put data objects at an address given in the source file:
/** Fix Real Time O ock Registers Over Menory-Mapped Device **/

/** Fix each itemindividually **/

unsi gned char xdata RTC secs _at__ 0xfa0O0 ;

unsi gned char xdata RTC mins _at_ OxfaOl ;

unsi gned char xdata RTC hours _at_ Oxfa02 ;

mai n() { RTC_ mns =1 ;

... which hopefully is self-explanatory!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 59

8 Linking Issues And Stack Placement

This causes some confusion, especially to those used to other compiler systems.

8.1 Basic Use Of L51 Linker

The various modules of a C program are combined by alinker. After compilation no actual addresses are assigned to
each line of code produced, only an offset is generated from the start of the module. Obviously before the code can be
executed each module must be tied to a unique address in the code memory. Thisis done by the linker.

L51,inthecaseof Keil (RL51for Intel), isautility which assignsabsol uteaddressesto thecompiled code. It alsosearches
library files for the actual code for any standard functions used in the C program.

A typical invocation of the linker might be:
I 51 startup.obj, nodulel.obj, nodule2.obj, nodule3.obj, C51L.lib to exec.abs

Here the three unlocated modules and the startup code (in assembler) are combined. Any callsto library functionsin
any of thesefiles resultsin the library, C51L .lib, being searched for the appropriate code.

The target addresses (or offsets) for any IMPs or CALLs are calculated and inserted after the relevant opcodes.

When dl five .obj files have been combined, they are placed into another file called EXEC.ABS, the ABSimplying that
this is absolute code that could actually be executed by an 8051 cpu. In addition, a “map” file called EXEC.M51 is
produced which summarisesthelinking operation. Thisgivesthe addressof every symbol usedin the program plusthe
size of each module.

In anything other than avery small program, the number of modulesto belinked can be quite large, hence the command
line can become huge and unwieldy. To overcome thisthe input list can be asimple ASCII text file thus:

I 51 @input_file>
where input_file = ;

startup. obj,
nodul el. obj,
nodul e2. obj ,
nodul e3. obj ,
&

C51L.lib &
&

to exec. abs

R0 Ro Ro Ro

There are controls provided in the linker which determine where the various memory types should be placed.

Forinstance, if anexternal RAM chip startsat 4000H and thecodememory (Eprom) isat 8000H, thelinker must begiven:

| 51 startup.obj, nodul el.obj, nodul e2.obj, nodul e3.0bj, C51L.lib to exec.abs CODE(8000H)
XDATA(4000H)

Thiswill moveall thevariablesin external RAM to 4000H and above and all the executable codeto 8000H. Even more
control can be exercised over where the linker places code and data segments. By further specifying the module and
segment names, specific variables can be directed to particular addresses - see 2.1.8 for an example.

8.2 Stack Placement

Unlessyou specify otherwise, the linker will place the stack pointer to give maximum stack space. Thus after locating
all the sfr, compiled stack and dataitems, the real stack pointer is set to the next available IDATA address. If you use
the 8032 or other variant with 128 bytes of indirectly-addressable memory (IDATA) above 80H, this can be used very
effectively for stack.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 60

?C_C51STARTUP SEGVENT CODE ; Declare segnment in indirect

area
?STACK SEGVENT | DATA ;
RSEG ?STACK ; Reserve one byte
DS 1
EXTRN CODE (?C_START)
PUBLI C ?C_STARTUP

CSEG AT 0
?C_STARTUP: LJMP STARTUP1

RSEG 7?C_C51STARTUP
STARTUPL: ENDI F
MOV SP, #?STACK-1 ; Put address of STACK
location into SP
LIMP ?C_START ; Goto initialised data
section

8.3 Using The Top 128 Bytes of the 8052 RAM

Theoriginal 8051 design hasjust 128 bytes of directly/indirectly addressable RAM. C51, wheninthe SMALL model,
can usethisfor variables, arrays, structures and stack. Above 128 (80H) direct addressing will result in access of the
sfrs. Indirect addressing (MOV A,@R0) does not work.

However with the 8052 and above, the area above 80H can, when indirectly addressed, be used as additional storage.
Themainuseof thisareaisreally asstack. Datainthisareaisaddressed by theMOV A,@Ri instruction. Asonly indirect
addressing can beused, therecan besomel ossof efficiency astheRi register must bel oaded withtherequired 8-bit address
before any access can be made.

Lefttoitsown devicesC51 will not usethisareaother thanfor stack. Unusually, the 8051 stack growsup through RAM,
sothelinker will placethe STACK areaat thetop of the areataken up with variables, parameter passing segments etc..
If your application doesnot need all the stack areaallocated, itispossibleto useit for variables. Thisissimply achieved
by declaring some variables as “idata” and using “RAMSIZE(256)” when linking.

Such is human nature that most people will not think of using idata until the lower 128 bytes actually overflows and a
panic-driven search begins for more memory!

Ashasbeen pointed out, idatavariablesarerather harder to get at because of theloading of an Ri register first. However
thereis one type of variable which isideally suited to this - the array or pointer-addressed variable.

The MOV A,@Ri isideal for array access asthe Ri simply containsthe array index. Similarly avariable accessed by
apointer iscatered for, asthe @Ri iseffectively apointer. Thisisespecially significant now that version 3.xx supports
memory space specific pointers. The STACK is now simply moved above these new idata objects.

Tosummarise, withthe 8052 if you arehitting the 128 byte ceiling of thedirectly addressable space, themoving of arrays
and pointer addressable objects can free-up large amounts of valuable directly addressable RAM very easily.

8.4 L51 Linker Data RAM Overlaying
8.4.1 Overlaying Principles

One of the main tricks used to allow large programs to be generated within an 8051 isthe OVERLAY function. This
isamechanismwhereby different program variablesmakeuseof thesame RAM location(s). Thispossibility ariseswhen
automatic local variablesare declared. These by definition only have significance during the execution of the function
within which they were defined. Once the function is exited the area of RAM used by them isno longer required. Of
course static locals must remain intact until the function is next called. A similar situation exists for C51's reserved
memory areas used for parameter passing.

Taken over acomplete program, each function will have acertain areaof memory reserved for itslocalsand parameters.
Within the confines of an 8051 the on-chip RAM would soon be exhausted.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 61

The possibility then arises for these individual areas to be combined into a single block, capable of supplying enough
RAM for the needs of the single biggest function.

In C51 thisprocessis performed by thelinker’ sSOVERLAY function. In simpleterms, thisexaminesall functionsand
generates aspecia datasegment called “DATA_GROUP”, ableto contain all the local variables and parameters of all
C51 functions. Asan example, if most functions require only 4 byes of local data but one particular one needs 10, the
DATA_GROUP will be 10 bytes long.

Using the registers as a location for temporary data means that a large number of locals and parameters can be
accommaodated without recourse to the DATA_GROUP - thisiswhy it may appear smaller than you expect.

The overlayer works on the basis that if function 1 calls function 2, then their respective local data areas may not be
overlaid, asboth must beactiveat thesametime. A thirdfunction 3, whichisalsocalled by 1, may haveitslocalsoverlaid
with 2, as the two cannot be running at the same time.

mai n
|

funcA —func2 - func3 - func4

funcB —func5 - func6 - func?

funcC —func8 - func9 - funclO

AsfuncA refersto func2 and func2 refersto func3 etc., A, 2, 3 and 4 cannot have their locals overlaid, asthey all form
part of thesamepath. Likewise, asfuncB referstofuncsandfunc6referstofunc? etc., B, 6, 7and 4 cannot havetheir local s
overlaid. However thegroups?2, 3,4, 5,6, 7and 8,9, 10 may havetheir localsoverlaid asthey are never activetogether,
being attached to sequentia branches of the main program flow. Thisisthe basis of the overlay strategy.

However acomplicationariseswithinterrupt functions. Sincethesecanoccur at any time, they would overwritethelocal
data currently generated by whichever background (or lower priority interrupt) function was running, were they also to
usetheDATA_GROUP. Tocopewiththis, C51identifiestheinterrupt functionsand called functionsand allocatesthem
individual local data areas.

8.4.2 Impact Of Overlaying On Program Construction

The general rule used by L51 isthat any two functions which cannot be executing simultaneously may havetheir local
dataoverlaid. Re-entrant functions are an extension of thisin that asingle function may be called simultaneously from
two different places.

In 99% of cases the overlay function works perfectly but there are some cases where it can give unexpected results.
These are basically:

(1) Indirectly-called functions using function pointers

(i) Functions called from jump tables of functions

(iii) Re-entrant functions (-incorrect or non-declaration thereof)

Under these conditions the linker issues the following warnings:
MULTI PLE CALL TO SEGVENT
UNCALLED SEGVENT

RECURSI VE CALL TO SEGVENT

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 62

8.4.2.1 Indirect Function Calls With Function Pointers (hazardous)
Taking (i) first:

Here func4 and func5 are called from main by an intermediate function called EXECUTE. A pointer to the required
functionispassed. When L 51 analysesthe program, it cannot establish adirect link between executeand func4/5 because
the function pointer received as a parameter breaks the chain of references - this function pointer is undefined at link
time. ThusL51 overlaysthelocal segmentsof func4, func5 and execute asif they wereall referencesfrom main. Refer
to the overlay diagram above if in doubt.

Theresultisthat thelocalsof func4/5will corrupt thelocalsusedinexecute. Thisisclearly VERY dangerous, especially
asthe overwriting may not be immediately obvious - it may only appear under abnormal operating conditions once the
code has been delivered.

#i ncl ude <reg517. h>

/***

i OVERLAY HAZARD 1 - Indirectly called functions ***
**/
char funcl(void) { /1 Function to be called directly
char x, y, arr[10]

for(x =0 ; x <10 ; x++) {

arr[x] - X
}
return(x) ;
}
char func2(void) { /1 Function to be called directly
(.... CCode ...)
}
char func3(void) { /1 Function to be called directly
(.... CCode ...)
return(x) ;
}

char func4(void) { /1 Function to be called indirectly

char x4, y4, arr4[10] ; /1 Local variables
for(x4 =0 ; x4 <10 ; x4++) {

arr4[x4] = x4
}

return(x4)

}

char func5(void) { /] Function to be called indirectly
char x5, y5, arr5[10] ; /'l Local variables
for(x5 =0 ; x5 < 10 ; x5++) {

arr5[x5] = x5
}

ret urn(x5)

}

/*** Function which does the calling ***/

char execute(fptr) //Receive pointer to function to be used
char (*fptr)() ;
{

char tex ; /1 Local variables for execute function
char arrex[10]

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 63

for(tex = 0 ; tex < 10
arrex[tex] = (*fptr)()

}

return(tex)

}

/*** Decl arati on of genera

char (code *fp[3])(void)

1

;otex++) |

1

function pointer ***/

/*** Main Calling Function ***/

voi d main(void) {
char am;

fp[O]
fpl1]
fp[2]

f
func2 ;
func3 ;

am= fp[0] ;
am= fp[1] ;
am = fp[2]

if(PL) { /1 Control

am = execut e(func4)

}

el se {

am = execut e(funch)

}
}

1

1

/| Execute functions

uncl ; /1 Point array elenents at functions

whi ch function is called

/1 Tell execute function which

to run

/1 Tell execute function which

to run

Resulting Linker Output .M51 File for the dangerous condition.

MS-DOS MCS-51 LINKER / LOCATER L51 V2.8,

OVERLAY MAP OF MODULE:

SEGVENT
+— CALLED SEGVENT

?C_C51STARTUP
+— ?PR?MAI N?MAI N

?PR?MAI N?MAI N
+— ?PR?FUNC1?MAI N
+— ?PR?FUNC2?MAI N
+— ?PR?FUNC3?MAI N
+— ?PR?FUNC4A?MAI N
+— ?PR?_EXECUTE?MAI N
+— ?PR?FUNC5?MAI N
?PR?FUNC1?MAI N
?PR?FUNC2?MAI N
?PR?FUNC3?MAI N
?PR?FUNC4A?MAI N

?PR?_EXECUTE?MAI N
+— ?C LI B_CODE

?PR?FUNC5?MAI N

© Copyright Hitex (UK) Ltd. 1996

EXEC. ABS (MAI N)

DATA- GROUP
START LENGTH
000EH 0001H
000FH 000BH
000FH 000BH
000FH 000BH
000FH 000BH
000FH 000EH
000FH 000BH

I NVOKED BY: L51 MAIN. OBJ TO EXEC. ABS

/1 Danger func4's
/1l ocal
/1funcd's data
/loverlaid with
/lexecute's, its
/lcaller!!

/1func5's |ocal

//data overlaid

/1with execute's,
/lits caller!!

C51 Primer page 64

RAM Locations Used:

D: 0012H SYMBOL tex /1 execute's locals overlap
D: 0013H SYMBOL arrex /1 func4 and funcs's - OK
D: 000FH SYMBOL y

D: 0010H SYMBOL arré

D: 000FH SYMBOL y5

D: 0010H SYMBOL arr5

Incidentally, the overlay map showswhich functionsreferred to which other functions. By checkingwhat L51 hasfound
against what you expect, overlay hazards may be spotted.

8.4.2.2 Indirectly called functions solution

Use the overlay command when linking thus:
mai n.obj & to exec.abs & OVERLAY(main ; (func4,func5), _execute ! (func4,funch))

Note: Thetilde sign‘;’ means. “Ignorethereferenceto func4/5 from main” The'!” means: “Manually
generate a reference between intermediate function ‘execute’ and func4/5 to prevent overlaying of local variables
within these functions.”

Please make sure you understand exactly how thisworks! !

The new linker output is:

MS-DOS MCS-51 LINKER / LOCATER L51 V2.8, |NVOKED BY:

L51 MAIN.OBJ TO EXEC. ABS OVERLAY(MAIN ;(FUNC4, FUNC5), _EXECUTE ! (FUNC4, FUNCS))
OVERLAY MAP OF MODULE: EXEC. ABS (MAIN)

SEGVENT DATA- GROUP
+—> CALLED SEGVENT START LENGTH

?C_C51STARTUP
+— ?PR?MAI N?MAI N

?PR?MAI N?MAI N 0024H 0001H
+— ?PR?FUNC1?MAI N
+— ?PR?FUNC2?MAI N
+— ?PR?FUNC3?MAI N
+— ?PR?_EXECUTE?NAI N

?PR?FUNC1?MAI N 0025H 000BH

?PR?FUNC2?MAI N 0025H 000BH

?PR?FUNC3?MAI N 0025H 000BH

?PR?_EXECUTE?NAI N 0025H 000EH

+— ?C_LI B_CODE

D: 0028H SYMBOL tex /1 Execute's variables
no | onger

D: 0029H SYMBOL arrex // overlaid with func4/
5s

D: 0008H SYMBOL y

D: 0009H SYMBOL arr4

D: 0013H SYMBOL y5

D: 0014H SYMBCL arr5

*** WARNI NG 16: UNCALLED SEGMVENT, | GNORED FOR OVERLAY PROCESS
SEGVENT: ?PR?FUNC4A?MAI N

*** WARNI NG 16: UNCALLED SEGVENT, | GNORED FOR OVERLAY PROCESS
SEGVENT: ?PR?FUNC5?MAI N

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 65

Note: The WARNING 16’ s show that func4/5 have been removed from the overlay processto remove the hazard.
Seesection 8.4.2.6 onthe* UNCALLED SEGMENT, |GNORED FOR OVERLAY PROCESS’ warning.

8.4.2.3 Function Jump Table Warning (Non-hazardous)

Here two functions are called an array of function pointers. The array “jump_table” exists in a segment called
“2CO?MAINL, i.e. theconstant areaassigned to modulemain. Theproblem arisesthat thetwo messagestring arguments
tothe printf 'sare also sited here. Thisleadsto arecursive definition of the function start addresses in the jJump table.

While this is not in itself dangerous, it prevents the real function references from being established and hence the
overlaying process isinhibited.
EEEEEEEREEEEEEEEEEEEEEEREEEREEREREERESEERERERERERERESREREEEEEEEEEEREEEEESEEEEEESEEESE N

<<<<<<<<<<<<<Recursive Call To Segnment Error>>>>>>>>>>>>>>
R RS RS R R R SRR R R EEEEEEEEEEEEEEES N
;

#i ncl ude <stdio. h>
#i ncl ude <reg517. h>

void funcl(void) {
unsi gned char i1 ;
for(il =0; il <10 ; il1++) {
printf(“THIS 1S FUNCTION 1\n”) ; // String stored in

?CO?MAI N1 segnent

}
}

voi d func2(void) {
unsi gned char i2 ;
for(i2a2 =0; i2 <10 ; i2++) {

printf(“THIS IS FUNCTION 2\n") ; // String stored in
?CO?MAI N1 segrent

}
}
code void(*junp_table[])()={funcl, func2}; //Junp table to
functi ons,
// table stored in
?CO?MAI N1
/1 segnent.
[*** Calling Function ***/
mai n() {
(*junp_table[P1 & 0x01])() ; /1 Call function via junp

table in ?CO?MAI N1

NANNNANNNNNNNNNNNNNNNNNNNN End Of 'vbdul e

The resulting link output is:

Note: No reference exists between main and funcl/2 so the overlay process cannot occur, resulting in wasted

RAM.
OVERLAY MAP OF MODULE: MAI N1 (VA N1)
SEGVENT Bl T- GROUP DATA- GROUP
+— CALLED SEGVENT START LENGTH START LENGTH

?C_C51STARTUP
+— ?PR?MAI N?MVAI N1

2PR?MAI N?MAI N1
+—> 2CO?MAI NL
+— ?C LI B_CODE

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 66

200?MAI N1
+—> ?PR?PFUNCL?MAI N1
+— ?PR?PFUNC2?MAI N1

?PR?FUNC1?MAI N1 0008H
+— ?PR?PRI NTF?PRI NTF

MCS-51 LINKER / LOCATER L51 V2.8
DATE 04/08/92 PAGE 2

?PR?PRI NTF?PRI NTF 0020H.0 0001H. 1 0009H
+— ?C LI B_CODE
+—> ?PR?PUTCHAR?PUTCHAR

?PR?FUNC2?MAI N1 0008H
+— ?PR?PRI NTF?PRI NTF

*** WARNI NG 13: RECURSI VE CALL TO SEGVENT
SEGVENT: ?CO?MAI N1
CALLER ?PR?FUNC1?MAI N1

*** WARNI NG 13: RECURSI VE CALL TO SEGVENT
SEGVENT: ?CO?MAI N1
CALLER ?PR?FUNC2?MAI N1

8.4.2.4 Function Jump Table Warning Solution

0001H

0014H

0001H

The solution isto use the OVERLAY command when linking thus:

mai nl. obj &
to mainl.abs &

OVERLAY(?CO?MAI N1 ~ (funcl, func2), main ! (funcl,func2))

Thisdeletesthereferencetofuncl & 2 fromthe 2CO?MAIN1 segment and insertsthetruereferencefrom maintofuncl

& func2.

The linker output is now thus:

OVERLAY MAP OF MODULE: MAI N1. ABS (MAI N1)

SEGVENT Bl T- GROUP DATA- GROUP

+— CALLED SEGVENT START LENGTH START

?C_C51STARTUP
+— ?PR?MAI N?VAI N1

2PR?MAI N?MAI N1
+—> ?CO?MAI NL
+— ?C LI B_CODE
+—> ?PR?FUNCL?MAI N1
+—> ?PR?FUNC2?MAI N1

?PR?FUNC1?MAI N1 0008H
+— ?CO?NAI N1
+— ?PR?PRI NTF?PRI NTF

?PR?PRI NTF?PRI NTF 0020H.0 0001H. 1 0009H
+— ?C LI B_CODE
+—> ?PR?PUTCHAR?PUTCHAR

?PR?FUNC2?MAI N1 0008H

+— ?CO?NAI N1
+— ?PR?PRI NTF?PRI NTF

© Copyright Hitex (UK) Ltd. 1996

LENGTH

0001H

0014H

0001H

C51 Primer page 67

8.4.2.5 Multiple Call To Segment Warning (Hazardous)

Thiswarning generally occurs when afunction is called from both the background and an interrupt. This means that
potentially the interrupt may call the function whilst it isstill running, asaresult of abackground level call. Theresult
could bethe over-writing of thelocal datain the background. The fact that the offending functionisalso overlaid with
other background functions makes the chances of failure very high. The simplest solution isto declare the function as
REENTRANT so that the compiler will generate alocal stack for parameters and variables. Thus on each call to the
function, anew set of parametersand local variables are created without destroying any existing ones from the current
call.

Unfortunately this significantly increases the run time and code produced. Another possibility isto make a second and
renamed version of the function, one for background use and onefor interrupt. Thisissomewhat wasteful and presents
amaintenance problem, as you now have effectively two versions of the same piece of code.

In many casesthe situation is not aproblem, asthe user may have ensured that the reentrant use could never occur, but
isleft with the linker warning. However this must be viewed as dangerous, particularly if more than one programmer
isinvolved.

#i ncl ude <stdio. h>
#i ncl ude <reg517. h>

voi d funcl(void) {
unsi gned char i1, al[15]
for(il =0; i1 <10 ; il++) {
al[il] =i1;
}
}
voi d func2(void) {

unsi gned char i 2, a2[15]

for(iz2 =0; i2 <10 ; i2++) {

a2[15] = i2 ;
}
}

mai n() {
funcl()
func2() ;
}

void tinmerO_int(void) interrupt 1 {

funcl() ;

} ANNNANNNNNNNNNNNNNNNNNNNN End Of 'vbdul e

Thi s produces the |inker map:

OVERLAY MAP OF MODULE: MAI N2 (MAI N2)

SEGVENT DATA- GROUP
+— CALLED SEGVENT START LENGTH

?PR?TI MERO_I NT?MAI N2
+— ?PR?FUNC1?MAI N2

?PR?FUNC1?MAI N2 0017H 000FH

?C_C51STARTUP
+— ?PR?MAI N?MVAI N2

?PR?MAI N?MVAI N2
+— ?PR?FUNC1?MAI N2
+— ?PR?FUNC2?MAI N2

?PR?FUNC2?MAI N2 0017H 000FH

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 68

D: 0007H SYMBOL il [// Danger!

D: 0017H SYMBOL al
D: 0007H SYMBOL i2
D: 0017H SYMBOL a2

*** WARNI NG 15: MULTI PLE CALL TO SEGVENT
SEGVENT: ?PR?FUNC1?MAI N2
CALLER1: ?PR?TI MERO_I NT?MAI N2
CALLER2: ?C_C51STARTUP

8.4.2.6 Multiple Call To Segment Solution

The solution isto:

(i) Declarefuncl as REENTRANT thus:
void funcl(void) reentrant { }

(ii) Use OVERLAY linker option thus:

mai n2. obj &
to main2.abs &
OVERLAY(main ~ funcl,timerO_int ~ funcl)

to break connection between main and funcl and timerQ_int and funcl.

OVERLAY MAP OF MODULE: MAIN2.ABS (MAIN2)

SEGVENT DATA- GROUP
+—> CALLED SEGVENT START LENGTH

?C_C51STARTUP
+— ?PR?MAI N?VAI N2

?PR?MAI N?VAI N2
+— ?PR?FUNC2?MAI N2

?PR?FUNC2?MAI N2 0017H 000FH

*** WARNI NG 16: UNCALLED SEGMVENT, | GNORED FOR OVERLAY PROCESS
SEGVENT: ?PR?FUNC1?MAI N2

This means that the safe overlaying of funcl with other background functionswill not occur. Removing the link only
with the interrupt would solve this:

mai n2. obj &
to main2.abs &
OVERLAY(timer0O_int ~ funcl)

Another route would beto disable all overlaying but thisislikely to eat up large amounts of RAM very quickly and is
thus a poor solution.

mai n2. obj & to nmi n2. abs & NOOVERLAY

With the MULTIPLE CALL TO SEGMENT WARNING the only really “safe” solution is to declare funcl as
REENTRANT, with the duplicate function agood second. The danger of usingthe OVERLAY command isthat aless
experienced programmer new to the system might not realise that the interrupt is restricted as to when it can call the
function and hence system quality is degraded.

8.4.3 Overlaying Public Variables
All thepreceding examplesdeal withtheoverlaying of local sand parametersat afunctionlevel. A caseoccurredrecently
inwhichthe programwassplitinto two distinct halves; thedividetaking placevery early on. Toall intentsand purposes

the 8051 was able to run one of two completely different application programs, based on some user input during
initialisation.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 69

Each program half had alarge number of public variables, some of which were known to both sides but the majority of

which were local to one side only. Thisisamost multitasking.

This type of program structure really needs a new storage class like “GLOBAL”, with public meaning available to a
certain number of modules only. GLOBAL would then be available to all modules. The new C166 supportsthistype

of task-based variable scope. Unfortunately C51 does not, so afix is required.

Thelinker’sOVERLAY command does not help, asit only controls the overlaying of local and parameter data. One
possible solution uses special modules to declare the publics. Modulel declares the publics for program (taskl);
Module2 declaresthe publicsfor program?2 (task?). Finally, Module3 declares the publics which are available to both

sides.

Thetrick thenisto usethelinker to fix the data segments on Modulel and M odul e2 at the same physical address, whilst

allowing Module3' s variables to be placed automatically by the linker.

This solution uses three special modules for declaring the publics:

/* Exanple of creating two sets of public data */
/*in sane menory space */

extern void mainl(void) ;
extern void mai nO(void) ;

/* Main nodul e where systemsplits into two parts */

voi d main(void) {

bit flag ;

if(flag) {
mai n0() ; /1 Branch 0
}

el se {
mai n1() ; /1 Branch 1

} NANNNNNNNNNNNNNNNNNNNNNN End Of 'vbdul e

/* Modul e that declares publics for branch 2 */
/* Publics for branch 2 */

unsi gned char x2,y2 ;

unsi gned int z2 ;

char a2[0x30]

/* A variable which is accessible fromboth branches */

extern int comon ;

NANNNNNNNNNNNNNNNNNNNNNN End Of 'vbdul e

voi d mai nO(void) {

unsi gned char c0 ; /* Local - gets overlaid with cl1 in*/
/*ot her branch */

x2 = 0x80 ;

y2 = x2 ;

cO0 =y2;

z2 = X2*y2 ;

a2[2] = x2 ;

conmon = z2 ;

}

NANNNANNNNNNNNNNNNNNNNNNNN End Of 'vbdul e

© Copyright Hitex (UK) Ltd. 1996

C51 Primer page 70

/* Modul e that declares publics for branch 1 */

/* Publics for branch 1 */

unsi gned char x1,yl

unsi gned int z1

char al[0x30]

/* A variable which is accessible fromboth branches */

extern int comon

voi d mainl(void) {

char c1
x1 = 0x80
yl = x1
cl =yl
z1 = x1*y1l
al[2] = x1

conmon = z1

ANNNANNNNNNNNNNNNNNNNNNNN End Of '\/bdul e

/* Modul e that declares variables that both */
/ *branches can access */

int coomon ; /* A variable comopn to both branches */
ANNNANNNNNNNNNNNNNNNNNNNN End Of 'Vbdul e
/* Linker Input */

|51 t.obj,t1l.0obj,t2.0bj,comobj to t.abs
DATA(?DT?T1(20H) , ?DT?T2(20H))

The choice of “20H" for the location places the combined segments just above the register banks.

Themain problemwiththisapproachisthat aDATA overlay warningisproduced. Thisisnot dangerousbutisobviously
undesirable.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 71

9 Other C51 Extensions

9.1 Special Function Bits

A frustrationfor assembler programmerswith the old C51 version wasthe need to use bit maskswhentesting for specific
bitswith charsandints, despitetherebeing agood set of bit-orientated assembler instructionswithinthe8051. Inversion

3, however, it is possible to force datainto the bit-addressable area (starting at 0x20) where the 8051’ s bit instructions
can be used.

An example istesting the sign of a char by checking for bit = 1.

Here the char is declared as “bdata’ thus:
bdata char test_char ;
sign_bit is defined as:
shit sign_bit = test_char 7 ;
to use this:

test_char = counter ;
if(sign_bit) { /* test_char is negative */ }

the opcodes executed are:

MOV A counter

MOV test_char, A

JNB 0, DONE

/* Negative */
DONE:

All of which isalot faster than using bit masks and & 's!

Theimportant pointsarethat the* bdata’ tells C51 and L51 that thisvariableisto be placed in the bit-addressable RAM
areaand the “ shit sign_bit = test_char ~ 7 tells C51 to assume that abit called sign_bit will be located at position 7 in
thetest_char byte.

Byte Number: test_char 20H Start O BDATA area
Bit Nunber: 0,1,2,3,4,5,6,7<— sign_bit

Byte Nunber: 21H

Bit Nunber: 8,9,10,11,12, 13, 14, 15

Byte Nunber: 22H

Bit Nunber: 16,17, 18, 19, 20, 21, 22, 23,24.....

The situation with ints is somewhat more complicated. The problem isthat the 8051 does not store things as you first
expect. Thesamesigntest for anint would require bit 7 to betested. Thisisbecause the 8051 storesint’s high byte at
the lower address. Thus bit 7 isthe highest bit of the higher byte and 15 is the highest bit of the lower.

Byt e Nunmber: test_int(high) 20H
Bit Nunber: 0,1,2,3,4,5,6,7

Byte Nunber: test_int+1(]ow) 21H
Bit Nunber: 8,9,10,11, 12,13, 14,15

Bit locations in an integer

9.2 Support For 80C517/537 32-bit Maths Unit

Thelnfineon 80C537 and B0C517A group have aspecial hardware mathsunit, theMDU, aimed at speeding-up number-
crunching applications.

9.2.1 The MDU - How To Use It

Toallow the8051 to copewith 16 and 32-bit (“int” and “long”) multiplication and division, theInfineon 80C517 variant
has a special maths co-processor (MDU) integrated on the cpu silicon. A 32-bit normalise and shift isalso included for

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 72

floating point number support. It also has 8 data pointers to make accessing external RAM more efficient.

The compiler can take advantage of these enhancementsif the“MOD517” switch is used, either asa#pragmaor asa
command lineextension. Thiswill resultintheuseof theM DU to perform > 8-bit multipliesand divides. However aspecial
set of runtimelibrariesisrequired from Keil for linking.

Usingthe MDU will typically yield aruntimeimprovement of 6 to 9timesthe basic 8051 cpu for 32-bit unsigned integer
arithmetic.

Optionally the blanket use of the 80C517 enhancementsafter M OD517 can be sel ectively disabled by theNOM DU and
NODP pragmas. Predictably NOMDU will inhibit the use of the maths unit, while NODP will stop the eight data
pointers being used.

9.2.2 The 8 Datapointers

To speed up block data moves between external addresses, the 517A has 8 datapointers. These are only used by C51
in the memcpy/() and strcpy() library functions.

The general “MOD517” switch will enable their use. Note that the strcat() routine does not use the additional data
pointers.

If the extra pointers are to be used both in background and interrupt functions, the DPSEL register is automatically
stacked on entry to the interrupt and a new DPSEL value allocated for the duration of the function.

9.2.3 80C517 - Things To Be Aware Of

The 80C517 MDU isused effectively like a hardware subroutine, asit is not actually part of the 8051 cpu. Assuch it
is subject to normal sub-routine rules regarding re-entrancy. If, as an example, both a background program and an
interrupt routinetry to use the MDU simultaneoudly, the background cal culation will be corrupted. Thisisbecausethe
MDU input and output registers are fixed locations and the interrupt will simply overwrite the background values.

To alow the background user to detect corruption of the MDU registers, the MDEF bit is provided within the ARCON
register. After any background use of the MDU, a check should be made for this flag being set. If so, the calculation
must be repeated. Appropriate use of the NOM DU pragma could be used instead.

Note: the compiler does not do this - the user must add the following code to overcome the problem:

#pragma MOD517
#i nclude “reg517. h”

long x,y,z ;
func()

{
whi | e(1)
{
x =yl z; /* 32-bit calculation */
i f(MDEF == 0) /* |f corruption has */
{ break ; } /* occurred then repeat */
} /* else exit loop */

}
9.3 87C751 Support

ThePhilips87C751 differsfromthenormal 8051 CPU by having a2k code spacewith no optionfor external ROM. This
rendersthelong LIMPand L CALL instructionsredundant. To copewiththisthecompiler must beforcedto not generate
long branch instructions but to use AJMPs and ACALLs instead.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 73

9.3.1 87C751 - Steps To Take

1 Invoke C51 with:
C51 nyfile.c ROMSMALL) NO NTVECTOR or wuse “#pragnma ROM SMALL)”

2 Usethe INIT751.A51 startup file in the LIB directory.
3. Do not use floating point arithmetic, integer or long divides, printf, scanf etc., asthey all use LCALLSs.

4. A special 87C751 library package is available which will contain short call versions of the standard library
routines.

9.3.2 Integer Promotion

Automaticinteger promotionwithin“1F’ statementsisincorporated in version >= 3.40 to meet recent ANSI stipulations
inthisarea. Thismakes porting code from Microsoft or Borland PC C compilersmuch easier. Thusany char(s) within
aconditional statement are pre-cast to int before the compareis performed. This makes some sense on 16 bit machines
whereint isasefficient aschar but, inthe 8051, char isthe " natural” sizefor dataand so someloss of efficiency results.

Fortunately Keil have provided “ #pragmaNOINTPROMOTE” to disablethisfeature! Inthiscaseexplicit castsshould
be used if another data type might result from an operation.

To show why this #pragmais important, this C fragment’s code sizes are influenced thus:

char ¢ ; unsigned char cl1, c2 ; int i ;
mai n() {
if((char)c == Oxff) ¢ =0 ;
if((char)c == -1) ¢ =1 ;

i = (char)c + 5 ;
if((char)cl < (char)c2 + 4) cl1 =0 ;
}

Code Sizes

47 bytes - C51 v3.20
49 bytes - C51 v3.40 (I NTPROMOTE)
63 bytes - C51 v3.40 (NO NTPROVOTE)

Again this goes to show that C portability compromises efficiency in 8051 programs...

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 74

10 Miscellaneous Points
10.1 Tying The C Program To The Restart Vector

Thisis achieved by the assembler file “STARTUP.A51". This program simply placesaLIJMP STARTUP at location
C:0000 (Lowest EPROM location).

The startup routine just clearsthe internal RAM and sets up the stack pointer. Finaly it executesaLJMP to “main”,
(hopefully) the first function in the C program.

LIMP mai n

mai n()
{
}

In fact this need be the only assembler present in a C51 program.

10.2 Intrinsic Functions

There are anumber of special 8051 assembler instructions which are not normally used by C51. For the sake of speed
it is sometimes useful to get direct access to these.

Unlikethenormal C51*>>' functions, _cror_allowsdirect usage of an 8051 instruction set feature, inthiscasethe“RR
A" (rotateaccumulator). Thisyieldsamuch faster result than woul d be obtained by writing oneusing bitsand the normal
>> operator. Thereareaso _iror_and _lror_intrinsic functions for integer and long data as well.

The _nop_ function smply adds an in-line NOP instruction to generate a short and predictable time delay. Another
function, _testbit_, makes use of the JBBC instruction to allow abit to be tested, abranch taken and the bit cleared if set.
The only extra step necessary isto include “intrins.h” in the C51 sourcefile.

Here is an example of how the _testbit () intrinsic function is used to save a CLR instruction:

; #include <intrins.h>

; unsigned int shift _reg =0 ;
; bit test_flag ;

; void main(void) {
RSEG ?PR?mai n?T
USI NG 0

; SOURCE LINE # 12
; /* Use Normal Approach */

test_flag = 1 ;
; SOURCE LINE # 14
SETB test_flag

if(test_flag == 1) {
; SOURCE LINE # 16
JNB test_flag, 7C0001
test_flag = 0 ;
; SOURCE LINE # 17
CLR test_flag
P1 = Oxff
; SOURCE LINE # 18
MV P1, #OFFH
}
; SOURCE LINE # 19
?C0001:

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 75

/* Use Intrinsic Function */

test flag = 1 ;
; SOURCE LINE # 21
SETB test_flag

if(!_testbit_(test_flag)) {
; SOURCE LINE # 23
JBC test_flag, 700003
P1 = Oxff
; SOURCE LINE # 24
MV P1, #OFFH

}
; SOURCE LINE # 25

}

?C0003:
RET

; END OF main
END

; SOURCE LINE # 27

See pages 9-17 in the C51 Manual

10.3 EA Bit Control #pragma

Whilst theinterrupt modifier for function declarationsremainsunchanged anew directive, DISABLE, alowsinterrupts
to be disabled for the duration of afunction. Note that this can be individually applied to separate functions within a
module but is given as a#pragmarather than as part of the function declaration. Although not verified yet, DISABLE
gives the user some control over the EA or EAL hit.

10.4 16-Bit sfr Support

Another new featureisthe 16-bit sfr type. Within expanded 8051 variantsin particular, many 16-bit timer and capture
registersexist. Rather than having to |oad the upper and lower bytesindividually with separate C statements, the sfr16
typeisprovided. Theactual addressdeclared for a16-bit sfr inthe header fileisalwaysthelow byte of the sfr. Now to
load a16-bit sfr from C, only asingleint load isrequired. Bewarned - 8-bit instructionsarestill used, sothe 16-bit load/
read isnot indivisible - odd things can happen if you load atimer and it overflows during the process! Notethat usually
only timer 2 or above has the high/low bytes arranged sequentially.

10.5 Function Level Optimisation

Optimisation levels of 4 and above are essentially function optimisations and, as such, the whole function must be held
in PC memory for processing. If thereisinsufficient memory for this, awarningisissued and the additional optimisation
abandoned. Code execution will still be correct however. See p1-8in the C51 manual.

10.6 In-Line Functions In C51

One of the fundamentals of C is that code with a well-defined input, output and job is placed into a function i.e. a
subroutine. This involves placing parameters into a passing area, whether a stack or a register, and then executing a
CALL. Itisunavoidable that the call instruction will use two bytes of stack.

In most 8051 applicationsthisnot aproblem, asthereisgenerally 256 on-chip RAM potentially availableasstack. Even
after allowing for afew registerbanks, there is normally sufficient stack space for deeply nested functions.

However in the case of the 8031 and reduced devices such asthe 87C751, every byte of RAM iscritical. Inthelatter
case there are only 64 bytes!

A trick which can both save stack and reduce run timeis to use macros with parametersto act like “in-line” functions.

The ability to create macros with replaceable parametersis not commonly used but on limited RAM variantsit can be
very useful.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 76

Here astrcpy() functioncreated asamacronamed* Inline_Strcpy”, whilstitlookslikeanormal function, it doesnot actually
have any fixed addresses or local data of itsown. The*\" characters serve to allow the macro definition to continue to
anew line, in this case to preserve the function-like appearance.

Itis“caled” likeanormal function with the parametersto be passed enclosed in (). However no CALL isused and the
necessary code is created in-line. The end result is that a strcpy is performed but no new RAM or stack is required.

Please note however, thedrawback with thisvery simple exampleisthat the source and destination pointersaremodified
by the copying process and so is rather suspect!

A further benefit inthisexampleisthat the notional pointerssl and s2 are automatically memory-specific and thusvery
efficient. Thusin situationswhere the same function must operate on pointer datain avariety of memory spaces, slow
generic pointers are not required.

#define Inline_Strcpy(sl,s2) {\ while((*sl = *s2) = 0)}\
{*sl++ ; *s2++; }\

}
char xdata *out_buffx = { “ B
char xdata *in_buffx = { “Hello” } ;
char idata *in_buffi = { “Hello” } ;
char idata *out_buffi ={ “ “} ; ~char code *in_buffc = { “Hello” } ;

voi d main(void) {
Inline_Strcpy(out_buffx,in_buffx) // In line functions
Inline_Strcpy(out_buffi,in_buffi)

I nl'i ne_Strcpy(out_buffx,in_buffc)
}

Another good exampl e of how amacrowith parameters can beused to aid sourcereadability isin theoptimisationfeature
in Appendix D. Theinterpolation calculation that originally formed a subroutine could easily be redefined asamacro
with 5 parameters, realising aram and run time saving at the expense of code size.

Note that ‘r’, the fifth parameter, represents the return value which has to be “passed” to the macro so that it has
somewhere to put the result!

#define interp_sub(x,y,n,d,r) y -=x; \
if(lCY) { r = (unsigned char) (x +(unsigned char) (((unsigned
int)(n* y))/d)) ;\
} else { r = (unsigned char) (x - (unsigned char)(((unsigned int)(n * -y))/d)) ; }
Thisisthen called by:

/*Interpol ate 2D Map Val ues */
/*Macro Wth Paraneters Used*/

interp_sub(map_x1yl, map_x2yl, x_tenpl, x_tenp2,result_y1l)
and later it is reused with different paraneters thus:

interp_sub(map_x1ly2, map_x2y2, x_tenpl, x_tenp2,result_y2)

To summarise, parameter macros are agood way of telling C51 about ageneralised series of operationswhose memory
spaces or input values change in programs where speed or RAM usageis critical.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 77

11 Some C51 Programming Tricks
11.1 Accessing RO etc. directly from C51

A C51 user was using existing assembl er routinesto perform aspecifictask. For historical reasonsthe 8 bit return value
from the assembler was left in RO of register bank 3. Ordinarily C51 would return charsin R7 and therefore smply
equating a variable to the assembler function call would not work.

Thesolutionwasto declarean uncommitted memory specificpointer tothe DATA area. Atruntime theabsoluteaddress
of theregister (here 0x18) was assigned to the pointer. Thereturn value wasthen picked up viathe pointer after exiting
the assembler section.

/*** Exanple Of Accessing Specific Registers In C ***/
char data *dptr ; // Create pointer to DATA | ocation

/* Define Address O Register */
#defi ne RO_bank3 0x40018L /* Address of RO in */

/* bank 3, 4 => DATA space */
char x,y ;

/* Execute */

mai n() {
dptr = (char*) RO_bank3 ; // Point at RO, bank3

x = 10 ;
dptr[0] = x ; // Wite x into RO, bank3
y = *dptr ; /'l Get value of RO, bank3

}

An aternative might have been to declare a variable to hold the return value in a separate module and to use the linker
tofix that module’ SDATA segment addressat 0x18. Thismethod ismore robust and code efficient but is considerably
lessflexible.

11.2 Making Use Of Unused Interrupt Sources

One problem with the 8051 isthe lack of a TRAP or software interrupt instruction. While C166 users have the luxury
of real hardware support for such things, 8051 programmers have to be more cunning.

A situation arose recently where the highest priority interrupt function in asystem had to run until a certain point, from
which lesser interrupts could then comein. Unfortunately, changing the interrupt priority registers part way through
the interrupt function did not work, the lesser interrupts simply waiting until the RETI. The solution wasto hijack the
unused A/D converter interrupt, IADC, and attach the second section of theinterrupt functiontoit. Then by deliberately
setting the IADC pending flag just before the closing “}”, the second section could be made to run immediately
afterwards. Asthe priority of the ADC interrupt had been set to alow level, it was interruptable.

/* Primary Interrupt Attached In CCO |nput Capture */
tdc_int() interrupt 8 {
/* High priority section - nay not be interrupted */
/* Enable lower priority section attached to */

/* ADC interrupt */

I ADC
EADC

}

1; // Force ADC nterrupt
1; // Enable ADC interrupt

/* Lower priority section attached to ADC interrupt */
tdc_int_low priority() interrupt 10

I ADC
EADC

0 ; // Prevent further calls
0;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 78

/* Low priority section which nmust be interruptable and */
/* guaranteed to follow high priority section above */

}
11.3 Code Memory Device Switching

Thisdodge was used during the development of aHEX fileloader for asimple 8051 monitor. After receiving ahexfile
into aRAM viathe serial port, the new file was to be executed in RAM starting from 0O000H. A complication was that
the memory map had to be switched immediately prior to hitting 0000H.

The solution wasto place the map switching section at Oxfffd so that the next instruction would be fetched from 0x0000,
thus simulating areset. Ideally all registers and flags should be cleared before this.

#include “reg. h”

#i ncl ude “cenb537. h”

#include <stdio. h>

mai n()

{

unsi gned char tx_char,rx_char,i ;
P4 = map2 ;

v24ini _537() ;

tinmer0_init_537() ;

hexl oad_i ni () ;

whi | e(downl oad_conpl eted == 0)
{

whi | e(char _received_fl == 0)
{ receive_byte() ; }

tx_byte = rx_byte ; /* Echo */
hexl oad() ;
send_byte(tx_byte) ;

char _received_fl =0 ;

}

real _time_count =0 ;
whi |l e(real _time_count < 200)

{1

i = ((unsigned char (code*)(void)) OxFFFD) () ;
/1 Junp to absol ute address.

}

ANNNANNNNNNNNNNNNNNNNNNNN End Of '\/bdul e

NAME SW TCH
; Cause PCto roll-over at FFFFH to sinul ate reset
P4 DATA OE8H
CSEG AT OFFFDH
MOV P4, #02Fh ;
END
ARAAAAAAAAAAAAAAAAAAAAA End of Modul e * MAPCON!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 79

There are other ways of doing this. For instance the code for the M APCON module could be located at link time thus:
CODE(SWITCH(OFFFDH)), so dispensing with the “CSEG AT".

11.4 Simulating A Software Reset

Inasimilar veintotheabove, the 8051 doesnot possessasoftwarereset instruction, unlikethe 80C166 etc.. Thismethod
uses abstract pointersto create acall to address zero, thus simulating a software reset.

However it should beremembered that all internal |ocations must be cleared before the CPU can be considered properly
reset! The return address must be reset as the stack still contains the return address from the call.

© void main(void) {

RSEG ?PR?mai n?T1
USI NG 0

; SOURCE LINE # 9

; ((void (code*) (void)) 0x0000) () ;
; SOURCE LINE # 11
LCALL OOH ; Junp to address ZERO

; SOURCE LINE # 13
RET
; END OF main

11.5 The Compiler Preprocessor - #define

Thisisreally just atext replacement device.

It can be used to improve program readability by giving constants meaningful names, for example:

#define fuel _constant 100 * 2

so that the statement temp = fuel_constant will assign the value 200 to temp.
Note that the preprocessor only allows integer calculations.

Other more sophisticated examples are given in the C51 manual, pages 4-2.

12 C51 Library Functions

Oneof themain characteristicsof Cisitsability to allow complex functionsto be constructed from the basic commands.
To save programmer effort many common mathematical and string functions are supplied ready compiled in the form
of library files.

12.1 Library Function Calling

Library functions are called as per user-defined functions, i.e.;

#i ncl ude ctype.h
{

char test_byte ;
result = isdigit(test_byte) ;
}

where “isdigit()” isafunction that returnsvalue 1 (true) if the test_byteis an ASCII character in therange 0 to 9.

The declarations of the library functions are held in fileswith a“.h” extension - see the above code fragment.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 80

Examplesare:

ctype. h,
stdio. h,
string.h etc..

These are included at the top of the module which uses alibrary function.

Many common mathematical functions are available such as In, log, exp, 10x, sin, cos, tan (and the hyperbolic
equivalents). These all operate on floating point numbers and should therefore be used sparingly! The include file
containing the mathematical function prototypesis “math.h”.

Library files contain many discrete functions, each of which can be used by a C program. They are actually retrieved
by thelinker utility coveredin section 8. Thesefilesaretreated aslibrariesby virtue of their structure rather than their
extension. The insertion or removal of functions from such afileis performed by alibrary manager called LIB51.

12.2 Memory-Model Specific Libraries

Each of the possible memory models requires adifferent run-timelibrary file. Obviously if the LARGE model isused
the code required will be different for a SMALL model program.

Thuswith C51, 6 different library files are provided:

C51S. LI B - SMALL nodel
C51C. LI B - COWPACT nodel
C51L. LI B - LARGE nodel

plus three additional files containing floating point routines as well as the integer variety.

C51 library functions are registerbank independent. Thismeansthat library functions can be used freely without regard
to the current REGISTERBANK () or USING status. Thisisamajor advantage as it means that library functions can
be used freely within interrupt routines and background functions without regard to the current register bank.

13 Outputs From C51
13.1 Object Files

Being closely related to theoriginal Intel tools, C51 defaultstothelntel object fileformat. Thisisabinary filecontaining
the symbolic information necessary for debugging with in-circuit emulatorsetc.. It may belinked with object filesfrom
either Intel PLM51 or ASM51 using the Keil L51 linker. Thefinal output is Intel OMF51.

Versions >2.3 of the compiler will produce an extended Intel OMF51 object file if the DEBUG OBJECTEXTEND
command line switchesare used. This passestype and scopeinformation into the OMF51 file which any debugger/in-
circuit emulator should be ableto use. The extensionsto the original Intel format are a proprietary Keil development
but have been widely copied by IAR et al.

13.2 HEX Files For EPROM Blowing

Toblow EPROMsan additional stageisusually necessary to get aHEX file. Thisisan ASCII representation of thefinal
program without any symbol information. Almost every EPROM programmer will understand Intel HEX. The OH51/
OHSE1 utility performs the conversion from the linker’s OMF51 file to the standard 8bit Intel HEX format.

13.3 Assembler Output

Optionally, avalid A51 assembler/C sourcelisting file can be produced by C51 if the SRC command line switchisused.
Thishastheoriginal C sourcelinesinterleaved withtheassembler andisvery useful for getting to know how thecompiler
drives the 8051.

Do not be tempted to try hand-tweaking the compiler’ sefforts. Whilst you may be ableto save the odd instruction here
and there, you will create atotally unmaintainable program! 1t ismuch better to structure source code so that you write
efficient code from the start. Simple, efficient C will produce the best 8051 code.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 81

14 Assembler Interfacing To C Programs

The calling of assembler routines from C51 is not difficult, provided that you read both this and the user manual.
14.1 Assembler Function Example

The example below istaken from areal application where an EEPROM was being written in apage mode. Because of
a 30us timeout of this mode, the 25us run time of the C51 code was viewed as being a bit marginal. It was therefore
decided to code it in assembler.

If an assembler-coded function is to receive no parameters then an ordinary assembler label at the beginning of the
functionis simply called like any C function. Note that an extern function prototype must be given after the style of:

Ch1 File:
extern void asm func(void).

A51 File:

ASM FUNC: MOV A #10 ; 8051 assenbler instructions

Should there be parametersto be passed, C51 will placethefirst few parametersinto registers. Exactly how it doesthis
isoutlined in section

The complication arises when there are more parameters to be passed than can be fitted into registers.

In this case the user must declare a memory areainto which the extra parameters can be placed. Thus the assembler
function must have aDATA segment defined that conforms to the naming conventions expected by C51.

In the example below, the segment

“?DT? WRITE_EE_PAGE?WRITE_EE SEGMENT DATA OVERLAYABLE”"

doesjust that.

Thebest adviceistowritethe Cthat callsthe assembler and then compilewith the SRC switch to produce an assemblable
equivalent. Then look at what C51 does when it calls your as yet unwritten assembler function. If you stick to the
parameter passing segment name generated by C51 you will have no problems.

Example Of Assembler Function With Many Parameters
C Calling Function

Within the C program that calls this function the following lines must be added to the calling module/sourcefile:
/* external reference to assenbler routine */

extern unsigned char wite_ee_page(char*, unsi gned
char, unsi gned char) ;

dunmmy()

- A

unsi gned char nunber, eeprom page_buffer,
ee_page_l ength ;

char * current_ee_page ;

nunber = wite_ee_page (current_ee_page,

eeprom page_buffer, ee_page_length) ;
} /* End dunmmy */

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 82

The assenbl er

P6

PUBLI C

EQU OFAH ;

routine is:
NAMVE EEPROM WRI TE ;
_\W\RI TE_EE_PAGE

PUBLI C ?_WRI TE_EE_PAGE?END_ADDRESS ;
PUBLI C ?_WRI TE_EE_PAGE?END_BUFFER ;

Port 6 has watchdog pin ;

BE R RS SRS SRR SRR R
’

; Essential!

*<<<<<<<<< Decl are CODE And DATA Segnents For
Rout i ne >>>>>>>>>>>*

Assenbl er

BEE RS S S S S EEEE R R R R EE
’ ’

?PR?_WRI TE_EE_PAGE?WRI TE_EE SEGVENT CODE ?DT?_WRI TE_EE _PAGE?WRI TE_EE SEGVENT DATA OVERLAYABLE ;

BE R RS SRS SRR SRR R
’

*<<<<<< Declare Menory Area In Internal RAM For Local
Vari ables Etc.

BE R RS SRS SRR R RS E R E R
’

RSEG ?DT?_WRI TE_EE_PAGE?WRI TE; ?_WRI TE_EE_PAGE?END_ADDRESS:

>S>>>>>*

?_WRI TE_EE_PAGE?END_BUFFER:

* <<<<<<<<<<<<<<< EEPROM Page Wite Function >>>>>>>>>>>>>>*
AR EEEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEREREEEREEEREEREEEEEEEEEESESES
;

WRI TE_EE_PAGE:

LOOP:

CHECK:

RSEG

CLR
MoV
MoV

MoV
DEC
ADD
MoV

CLR
ADDC
MoV

MoV
MoV
ADD
MoV

MoV
MOVX
I NC
I NC
MoV
CINE

MoV
MoV
DEC

XRL
MOVX
CLR
SUBB
JNZ

SETB

END

DS 1 ;

BE R RS R RS SRR RS R
’

?PR?_WRI TE_EE_PAGE?WRI TE ;

EA
DPH, R6
DPL, R7

A R3 ;
A ;
A R7

; Address of EEPROM in R7/R6

Length of buffer in R3

; Calcul ate address of |ast

?_V\RI TE_EE_PAGE?END_ADDRESS+01H, A ; byte

> ~N>>
%é%

P
%8;&

A
@PTR, A
RO

DPTR

A RO

%

in page in XDATA.

| TE_EE_PAGE?END_ADDRESS, A ;

Address of buffer in IDATAin RS

| TE_ EE PAGE?END_BUFFER, A ;

A, ?_\\RI TE_EE_PAGE?END BUFFER, LOOP ;

DPH, ?_\\RI TE_EE_PAGE?END_ADDRESS :
DPL, ?_\WRI TE_EE_PAGE?END_ADDRESS+01H ;

RO

P6, #08
A @PTR
C

A @0
CHECK

EA

© Copyright Hitex (UK) Ltd. 1996

Refresh wat chdog on MAX691

Return to C calling program

C51 Primer page 83

14.2 Parameter Passing To Assembler Functions

In the assembler example the parameter “current_ee page” wasreceived in R6 and R7. Notice that the high byteisin
thelower register, R6. Thefact that the 8051 storeshigh bytesat thelow addressof any multiplebyteobject alwayscauses
head scratching!

The*®_” prefix onthe WRITE_EE PAGE assembler function name is a convention to indicate that registers are used
for parameter passing. If you are converting from C51 version <3.00, please bear thisin mind.

Notethat if you pass more parameters than the registers can cope with, additional spaceistaken in the default memory
space (SMALL-data, COMPACT-pdata, LARGE-xdata).

14.3 Parameter Passing In Registers

Parameter passing is now possible via CPU registers (RO-R7). Coupled with register auto/local variables means that
function calls can be madevery quickly. Up to three parameters may be passed thisway although when using long and/
or float parameters only two may be passed, due to there being 4 bytes per variable and only 8 registers available! To
maintain compatibility with 2.5x the NOREGPARM S#pragmais provided to force fixed memory locationsto be used.
Those calling assembler coded functions must take note of this.

Parameter Type Char Int+Spaced ptr Long/Float Generic Ptr
Parameter R7 R6/R7 R4-R7 R1,R2,R3
Parameter R5 R4/R5 R4-R7 R1,R2,R3
Parameter R3 R2/R3 R1,R2,R3

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 84

15 General Things To Be Aware Of

Thefollowing ruleswill allow the compiler to make the best use of the processor’ sresources. Generally, approaching
C from an assembler programmer’ s viewpoint does no harm whatsoever!

15.1

Alwaysuse8-hit variables: the8051isstrictly an8-bit machinewithno 16-bitinstructions. char will alwaysbemoreefficient
than int’s.

15.2

Always use unsigned variables where possible. The 8051 has no signed compares, multiplies etc., hence all sign
management must be done by discrete 8051 instructions.

15.3

Try to avoid dividing anything but 8 bit numbers. Thereisonly an8by 8 divideintheinstructionset. 32 by 16 divides
could be lengthy unless you are using an 80C537!

15.4

Try toavoid using bit structures. Until v2.30, C51 did not support these structures as defined by ANSI. Having queried
this omission with Keil, the explanation was that the code produced would be very large and inefficient. Now that they
havebeen added, thishasprovedtoberight. Analternativesolutionistodeclarebitsindividually, usingthe* bit” storage
class, and pass them to a user-written function.

15.5

The ANSI standard says that the product of two 8- bit numbersisalso an 8 bit number. This meansthat any unsigned
chars which might have to be multiplied must actually be declared asunsigned int’s if thereis any possibility that they
may produce even an intermediate result over 255.

However it isvery wasteful to useinteger quantitiesin an 8051 if achar can do thejob! The solutionisto temporarily
convert (cast) achar toanint. Herethenumerator potentially could be 16 bitsbut theresult always8-bits. The* (unsigned
int)” casts ensure that a 16-bit multiply isused by C51.

{

unsi gned char z ;

unsi gned char x ;

unsi gned char y ;

z = ((unsigned int) y * (unsigned int) x) >> 8 ;

}

Herethetwo 8-bit numbersx andy are multiplied and then divided by 256. Theintermediate 16-bit (unsigned int) result
is permissible because y and x have been loaded by the multiplier library routine asint’s.

15.6

Calculationswhich consist of integer operandsbut which alwaysproducean 8-bit (char) dueto careful scaling result thus:

unsigned int x, y ;
unsi gned char z ;
z = x*y/ 256 ;

will aways work, as C51 will equate z to the upper byte (least significant) of the integer result. Thisis not machine-
dependant as ANSI dictates what should be done. Also note that C51 will access the upper byte directly, thus saving
code.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 85

15.7 Floating Point Numbers

One operand is always pushed onto an arithmetic stack in the internal RAM. Inthe SMALL model the 8051 stack is
used, but in other models a fixed segment is created at the lowest available address above the register bank area. In
applications where on-chip RAM isat apremium, full floating point maths really should not be used. Fixed pointisa
far morerealistic alternative.

16 Conclusion

The foregoing should give afair idea how the C51 compiler can be used in real embedded program development. Its
great advantage is that it removes the necessity of being an expert in 8051 assembler to produce effective programs.
Really, for the 8051, C51 should be viewed as a universal low to medium level language which both assembler and C
programmers can move to very simply. Access to on and off-chip peripheralsis painless and the need for assembler
device-driversisremoved. It will allow well structured programsdevoid of thedreaded “goto” or “LIMP”. Infact most
of the extra code generated by C over an assembler is employed in ensuring good program structure rather than just
inefficient use of the 8051 instruction set. It offerstrue portability from the 8051 to other processorsand, unusually, the
reverseisalso true. Thus existing functions can be re-used, so reducing development time.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 86

Appendix A
Constructing A Simple 8051 C Program

Often the most difficult stagein 8051 C programming is getting thefirst program to run! Evenif you are not having to
grapplewith C asanew language, the business of dealing with special functionregisters, interruptsand memory-mapped
peripherals can be a bit daunting.

Thissimpleprogram containsall thebasi c stepsrequired toget an 8051 programtorun. Likeall theclassicfirst programs,
it prints “hello world” down the serial port which is assumed to be connected to a dumb terminal.

A First C51 Program

/**

* Mai n Program - Sinpl est Version *

**/

/* This programis entered fromthe reset vector. It sinply initialises the serial port, and
prints “hello world” repeatedly */

/* Declare Menory Model */
.i . #pragma; #pragma SMALL // Set SMALL nodel (on-chip RAM only)

#include “\C51P\INC\stdio.h” // Include file contains function prototype for printf.
/* Function Prototype */

void serialO_init_Ti(void) ; /1 Serial port initialisation function

/* Main Loop */

voi d mai n(voi d) /1 Enter fromreset vector
{
serialO_init_T1() ; I/l Initialise serial port O tinerl baudrate generator

[*** Loop Forever ***/
whi | e(FOREVER) {

printf(“hello world”) ; // Send nessage down 8051 serial port forever

}
}

/**

This function initialises Serial Port 0 to run at
4800 Baud using the Tinmer 1 auto-reload node with a
12MHz XTAL.

**/

/* To get 9600 baud with tinerl requires an 11. 059M+z
crystal! */

void serialO_init_T1(void)

{
TH1 = Ox0f3 ; /* Timer 1 high byte (= reload value) SMOD = 0, F(Gsc) = 12 MHz,
and Timer 1 in node 2, baudrate of 4800 Baud Timer 1 Interrupt is
di sabl ed after RESET */
TMOD | = 0x20 /* Load Tinmer Mdde Control Register Tinmer 1 under software
control with TRL as Tiner in node 2(= 8 bit, auto-reload) */
SOCON = 0x52 /* Serial connection in mde 1 (=1 Start-,8 Data-, 1 stop
bit)start enabled Transmitter enpty, Receiver empty */
PCON | = 0x80 ; /* SMOD = 1 to double baud rate */
TR1 =1 ; /* Tinmer 1 start */
}

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 87

This should be placed inamodule, preferably called “main.c” and compiled with:
>C51 main.c

This produces afile, ‘main.obj’

Next, link main.obj with the printf function, held in a C51S.LIB library, and fix the location of the program:
>L51 main.obj,\c51p\lib\c51s.1ib to exec. abs

ToyieldanIntel OMF51 format file named “ exec.abs’. If you areusingan EPROM programmer, you will need an Intel
HEX file.

UseOHS51.EXEforthis:
>0HS51 exec. abs
to give exec.hex an Intel HEX file.
Basically thisis al thereisto producing aworking C51 program! Some refinements might be to make sure that the
C51LIB DOS environment variable has been set to indicate where the C51S.LIB is located.
To do this, make sure that you have
SET C51LIB=\C51P\LI B
in your autoexec.bat file.
Likewise, if you also add
SET C511 NC=\ C51P\ | NC,

the long and untidy pathname for ‘stdio.h’ can be eliminated.

If C51 has been installed properly, this should have already been done.

Appendix B

Driving The 8051 For Real

The following example program does the following typical
8051 tasks:

(1) Read a port pin value

(i) Writeaport pin value

(iii) Generate a periodic timer interrupt
(iv) Transmit dataviathe serial port
(v) Writeto amemory-mapped port

Itissuggested that to get started you steal sectionsfrom thefollowing program! Although the Infineon 80C537 hasbeen
used as the basis for this, the approaches used are applicable to all 8051 variants.

#i ncl ude <stdio. h> /* include standard io |libs */
#incl ude <reg517. h> /* i ncl ude 80C517 register set */

#i nclude <math. h> ! * include mathematical prototypes */
#include <string.h> [* include string handling functions */
#pragma MOD517 /* Use 80C537 extensions */

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 88

The 8051 areas covered are:

1 Serial Port0- Polled Mode

- Baudrate generation from timerl
- Baudrate generation from baudrate generator

2. Analog To Digital Convertor

- Reading valuesinto an array

3. Freguency M easurement

- Input Capture CCO
4, Time Pulse Generation

- Output compare CC4

5. Symmetrical PWM Generation

- CC3 and timer2 overflow
6. Zero CPU Overhead Asymmetric PWM Generation

- CMx/Compare Timer
7. Accessing Memory-Mapped Ports

- Viapointers
- With XBYTE[]

khkhkhkhkhkhkhkhhhhhhhhhhhhhkhhhhhkhhhhkhhhhhkhkhkhhkhhkhkhkhkhkhkhkhhk*k*k*k*k*x*%

* d obal Definitions *

**/

[*** COMK PWKB ***/

xdata float pwmperiod = 42.5 ; // Initial period in
us,variable located in
XDATA.

xdata float pwmduty ratio =50 ; // Initial ratioin %
xdata unsigned int pwmprescale = 0 ;

/*** Anal og | nputs ***/
xdata float anal og_data[4]; /1 Floating point array
xdata unsi gned char rx_byte;

xdat a unsi gned char channel _0
xdat a unsi gned char channel _1

/*** Tinmer0 Overfl ow Ti nebase ***/
xdata unsigned int real _time_count = 0 ;

/*** Tinmed Pul se Generation ***/
xdat a unsi gned char marker_angle = 128 ;
data unsigned int marker_tine = 0 ;
unsigned int time_for_360 = 0 ;
unsigned int time_last_360 = 0 ;
xdata unsigned int frequency = 0 ;
xdat a unsigned int anal og_datal0 = 0 ;

/*** Port 1 Bit Definitions ***/

shit P10 = 0x90; /1 CQ0
shit P13 = 0x93; /1 CC3
shit P14 = 0x94, /1 CC3

[*** Symmetrical PWM Generation ***/

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 89

xdata unsigned int symftmPW DR = 256 ; // Integer ratio from background
xdata unsigned int synmPWM period = 2048 ; //PWM Period = 4096us
/

EEEEEEEEEEEEEEEREEREEREEEEREEREERERERESEESRERERERERERESREREEESEEEESEEEESEEEEEEEEEEEEEESES

* Ceneral Definitions *

**/

#defi ne FOREVER 1
[*** CMk PWM Control ***/

#define Pul se_Wdth 25 /* 50us marker pulse */
#define PWM Resolution 0.1666667 /* Smallest PMMtine is at 12Miz */

/*** Cursor Positioning Escape Codes For VT52 ***/
code char LineO[] Ox1b, ' Y', 0x20, 0x20,0 } ;
code char Linel[] Ox1b, ' Y', 0x21, 0x20,0 } ;
code char Line2[] Ox1b, ' Y, 0x22, 0x20,0 } ;
code char Line3[] Ox1b, ' Y', 0x23, 0x20,0 } ;
code char Line4[] Ox1b, ' Y', 0x24, 0x20,0 } ;
code char Line5[] Ox1b, ' Y', 0x25, 0x20,0 } ;
code char Line6[] Ox1b, ' Y', 0x26, 0x20,0 } ;
code char Line7[] Ox1b, ' Y', 0x27, 0x20,0 } ;

e e R Rae Raoe Rate Raoe Ratn]

code char Line8[] = { Oxlb,’Y,b 0x28,0x20,0 } ;

code char Line9[] = { Oxlb,’Y,b 0x29,0x20,0 } ;

code char LinelO[] = { Oxl1b,’Y,0x2a,0x20,0 } ;
code char Linell[] = { Ox1b,’Y,0x2b, 0x20,0 } ;
code char Linel2[] = { Oxlb,’Y,0x2c, 0x20,0 } ;
code char Linel3[] = { Oxl1b,’Y,0x2d, 0x20,0 } ;
code char Linel4[] = { Oxlb,’Y ,0x2e,0x20,0 } ;
code char Linel5[] = { Ox1b,’Y,0x2f,0x20,0 } ;

code char dear[] = { O0x0C 0 } ;
code char double_bell[] = { 0x07,0x07,0x07,0 } ;

LR EEEEEEEEREEEEEEEEEREEEEREERERERERESESRESRERESRERERESRERERESEESEEEEEESEESEEEEEEEEEESS
* Function Prototypes *

**/

void ad_init(void);

void serial _init(void);

voi d serial O_init_BD(void);
void serial O_init_T1(void);

voi d send_byt e(unsi gned char);
voi d ad_convert (void);

void capture_init(void);

extern void control _pwi(void) ;

/

EEEEEEEREEEEEEEEEEEEREEREREERESREERERESRESRESERERERERESEERESRESESREEEREEEEEEEEEEEEESEESEE]

* This function initialises the A/D convertor (P103 of 517 manual) *

***/

void ad_init(void)

{
ADCONO &= 0x80 ; /1 Clear register but preserve BD bit
ADCONO | = 0x01 ; /* Single conversion internal Start Channel 0 */
}
/

EEEEEEEREEEEEEEEEEEEEEREEEERESEERERESRESRESERERERERESEERESRESEREREREEEEEEEEEEEESEEESESE]

* This function will performthree conversions on the A/ D convertor reading values from
channels 0 - 3 *

***/
/* Channel 0 is read using the 10 bit programmabl e reference nmethod */
voi d ad_convert (voi d)

{

unsi gned char i;

for(i =1 ; i <4 ; i++)

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 90

{
ADCONO &= 0x80 ; // Preserve BD bit (80C537 only)

ADCONO | =i ;

DAPR =0 ;
whil e (BSY)
{1

anal og_data[i] = ((float) ADDAT * 5) / 255 ;
}

IR R SR E R R R RS S E RS E SRR R RS RS R R R SRR R EE R R EREE RS R R R EEEE R EREEREEREREEEEEEEEEESEESEESERSEES
* These routines will transmt and receive single characters by Polled use of the serial Port O
*

***/

/* Note: In real applications, an interrupt-driven serial
port is usually preferable to avoid | oss of characters.*/

char receive_byte(void) /* Polled use of serial port */
{
if(Rl == 1) /* Test for char received */
{
rx_byte = SOBUF ; /* Place char in rx_byte */
Rl =0 ; /* clear flag */
}
el se {
rx_byte = 0 ;
}

return(rx_byte) ;

}

voi d send_byte(char tx_byte) /*Polled use of serial port*/

{

TI = 0; /1 Clear TI flag
SOBUF = tx_byte ; // Begi n transm ssi on
while (!'TI) {;} 1/ Wait until transmt flag is set

}
/
IR RS R RS RS R RS E R RS RS R SRR SRR R SRR R R R SRR EEEE R R R R EREREREREEREEEEREEEEEESEEEEEEEEEES]
* This function initialises Serial Port 0 to run at 9600 Baud using the Sienens Baud rate
generator (see P76 of the 517 Manual) *

**/

/* This nethod does not tie up tinerl as on ordinary 8051's */
voi d serial O_init_BD(void)

{
BD = 1; /* Enable Baud rate generator */
PCON = PCON | 0x80; /* Set SMOD to doubl e baud rate */
SOCON = 0x50; /* Mode 1, Receiver enabled */
TI = 1, /* Set Transmit interupt flag for first run through PRI NTF */
}
/
khkkhkhkhkhkhkhkhkhhhhhhhhhhhkhhhhhhhhhhkhhhhhkhkhkhkhhhhhhhkkkkkk*x*k*x*%
* This function initialises Serial Port 0 to run at 4800 Baud using the Tiner 1 auto-reload
node. *

**/

/* To get 9600 baud with tinerl requires an 11. 059M+z
crystal */

void serialO_init_T1(void)
{
THL = 0x0f3 ; /* Tiner 1 high byte (= reload value) SMD = 0,
F(GCsc) = 12 MHz,and Tinmer 1 in node 2, baudrate of 4800
Baud Timer 1 Interrupt is disabled after RESET */

TMOD | = 0x20 ; /* Load Tiner Mdde Control Register Tiner 1
under software control with TRl as Tiner

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 91

in nmde 2(= 8 bit, auto-reload) */

SOCON = 0x52 ; /* Serial connection in nmode 1 (= 1 Start-, 8 Data-, 1 stop bhit)
start enabled Transmtter enpty, Receiver enpty */

PCON | = 0x80 ; /* SMOD = 1 to double baud rate */

TR1L = 1 ; /* Timer 1 start */

}

/

EEEEEEEREEEEEEEEEREEEEEREEEEREEREERERESRESRESRERERESRERESERESRESEESREEEREEEEEEEEEEEEESEESESE]

* Cenerate 2nms Tinmer Tick On Tinmer 0O *

***/

/* Entered every tinmer0O overflow */
void timerO_init(void)

{

TRO = 0 ;

TMOD | = 01 ; /* 16 bit timer node */

THO = Oxf8 ; /* Reload with with count for 2ms tinme base at 12MHz */

TLO = 0x82 ;

TRO = 1 ; /* Start tinmer */

IENO | = Ox02 ; /* Enable Tiner O ExtO interrupts */

} /*init_tinmer_0*/
i**
* TinmerO Interrupt Service Routine *

***/

/* An allowance really needs to be made for the fact that the tiner is stopped during the re-
initialisation process */

/* “interrupt” argunents are:
‘1 => generate interrupt vector at address 8*1 + 3 = 0x0b
‘2" => Switch to register bank two on entry, restore

original bank on exit */

void timerO_int(void) interrupt 1 using 2

{

/* Setup Next Interrupt ***/

I ENO &= Oxfd ; /* Clear interrupt flags */

TRO = 0 ; /* Stop timer */

THO = Oxf8 ; /* Reset timer for next interrupt */
TLO = Ox2f ; /* 2nms at 12 MHZ */

TRO = 1 ; /* Start timer */

IENO | = 0x02 ;

real _tinme_count ++ ;

P6 ~= 0x08 ;

}
/

EEEEEEEREEEEEEEEEEEEREEEEEEREESRERERESRESRESRERERESRERESEERERESEESREEEEEEEEEEEEEREEESEESESE]

* This function sets up the Capture Conpare Unit and generates a PWM output on Port 4.0 (Pin
1). See pll2 of the 517 Manual *

* => CTREL = 65536 - 255 for 42.5us period/ overflowrate at 12MHz *

* Conpare timer counts from CTREL to 65535 when Port bit is cleared Port bit set when Conpare
tinmer = CMD to give asymmetric 8 bit PW *

***/

/* This PMMrequires no CPU tinme and is thus very efficient */

/* On 535 an interrupt service would be required to reload the conpare */
/* register */
voi d pwm.init(void)

{

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 92

union { unsigned

int

temp ;

unsi gned char tnmp[2] ; } t ;

CTCON = 0

// Basic count time = 166ns

t.tenmp = -pwm period/ PMM Resol ution ; // 42.5us

CTRELH

CTRELL

cMmL =

t.temp + ((unsigned int)(65536 - t.tenp) * pwnduty ratio)/100 ; //

ratio = 255:1

CM = CML

CVSBEL
CVSBEL
CNVSEL

CMVEN
CMEN |

CMEN |

}
/

In 1 o

o

t.tnp[0] ;
t.tnp[1] ;

initial period

; /1 Assign CMD to conpare tiner
; /'l Assign CML to conpare tiner

; /! Enable port 4.0 as PW
(front)

; /'l Enable port 4.1 as PW
(rear)

khkkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhkhkhhhkhkhhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkk*kkkk*k*x*%x

* This function initializes the Qutput Conpare/lnput Capture System on

duty

Timer2/Port 1. Two

captures are enabl ed: CCO captures an event on Pin 1.0, CCl will be triggered by a wite to the
low order Byte CCL1

***/

*

/* The capcomunit when attached to tiner2 is suitable for

frequency

*/

/* measurenment and pul se generation*/

voi d capture_CCO_init(void)

{

T2CON
T211
T210
T2PS
CTCON

T2CM
T2R1

CCEN
CCEN
CCEN

CCEN

I 3FR

P1 |

EX3

EX2

CCAEN

I PO
I P1

= 0x0

= 0x0

= 0x8

0x01

0

0; /* Timer 2 =12MHz/24 = 2us/count */

1;

1; /* /2 prescale for 2us/count */

0

1
0

0
1

ol

0 -

© Copyright Hitex (UK) Ltd. 1996

/* Timer 2 conpare/capture in node 1*/

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

No autorel oad off CCO */

| nput capture on CCO */

Timer 2 latched into CClL on wite
into CCL1 */

CC3 is output conpare */

CC0 is initially -ve edge
triggered */

Put port 1.0 high for input
capture */

Enabl e capture interrupt for road
speed */

Enabl e out put conpare interrupt
for ign0 */

CC4 port 1.4 is output conpare
node 1 */

Initialise interrupt priorities */

C51 Primer page 93

x26 ; /* Make CC4 interrupt 3 priority */
x3A ; /* Input capture is 2 priority */

EEEEEEEEEEEEEEEEEEEEEEEREEEEEEEEERESEEESEEREEREREREREREEEEREREREEEEEEEEEEEEEEESEEEEEES

* I nput Capture Interrupt On Portl.0/CC *

**/

/* On every negative edge at P1.0, this routine is entered*/
/* Frequency cal cul ation is possible using:

frequency 100000/ (Timer2 Count Time * (this T2 - |ast

tiner2))

50000/ (CRC - |ast CRC)

A new pulse is generated at a fixed angle after the interrupt using CC4 output conpare

- This is the basis for ignition and injection timng in engi ne nmanagenent
syst ens
- The maths unit is essential for keeping run tines short.

*/
void CCO_int(void) interrupt 10 using 3
{
unsigned int tenp ;
/* Cal cul ate I nput Frequency */
frequency = 500000 /(unsigned |long) (CRC -
time_l ast_360) ;
time_for_360 = CRC - tinme_last_360 ;
tenp = CRC + (unsigned int)
((unsigned long)((unsigned long)tinme_for_360 * marker_angl e)/255) ;
EAL = 0 ;
marker _tinme = tenp ;
EAL = 1 ;
tinme_last_360 = CRC ;
}
/

EEEEEEEEEEEEEEEREEREEREEEEEEREEEEEEEEEEEEREEEERERERESRERERESEESRESERESEEEEEEEEEEEEESEES

* Generate marker pulse after CCO interrupt *

**/

/* Entered in response to request fromCCO interrupt to generate a pulse at a predefined tine

af t erwar ds. */

voi d marker_int(void) interrupt 9 using 2

{
unsigned int tinmer_tenp ;
EX2 = 0 ;

i f (P14 == 0)
{

/* Port Pin Low */

if((int)(marker_time - CC4 - 500) > 0) {
tiner_tenp = marker_tine ;

}

el se {

© Copyright Hitex (UK) Ltd. 1996

C51 Primer page 94

tinmer_tenp = marker_time + tine_for_360 ;

}
CCA = timer_tenp ;
IEX2 = 0 ;
P14 =1 ; /1 Turn on at next conpare
EX2 =1 ;
}
el se
{

/* Port Pin High */

timer_tenp = CC4 + Pulse_Wdth ;
CCA = timer_tenp ;

IEX2 = 0 ;

P14 = 0 ; /1 Turn off at next conpare
EX2 = 1 ;

}

khkhkhkkhkhkhkhkhkhhhhhhhhhhhkhhhhhhhhhhhhhhhhkhhkhhhkhhkhkhhkhhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkk*k*k*x*%x

* This function initialises the Qutput Conpare/lnput Capture System on Tinmer2/
* Port 1 to generate a symetrical PWM on CCA. *

***/

/* This gives a PWM output where the on-tinme grows from either side of the tiner 2
overfl ow point */

/* This is very useful for notor control as the symetrical nature of the waveformreduces
the higher current harnonics circulating in the w ndings under changing duty ratio
condi ti ons. */

/* Downside is that two interrupt services are required per period */

Symmetrical PWM Waveform

< PWM Period >,
T2 Overflow

5v

Ov.

A AN
PWM On PWM Off

Asymmetrical PWM Waveform

< PWM Period>

T2 Overflow
5v

ov

AN A
PWM On PWM Off

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 95

void symm PWM.init(void)

{

T2CON = 0 ; /* Clear configuration register */
T211 =0 ; /[* Timer 2 = 12MHz/ 24 = 2us/count */
T210 =1

T2PS =1 ; [/* |2 prescale for 2us/count */

/* Additional prescale possible on BB step */
T2CM =1 ; /* Timer 2 conpare/capture in nmode 1 */
T2R1 =1 ; /* Autoreload off CCO */

T2RO = 0 /* mode 1 (CRCinto Tinmer2 at rollover)*/

/* Set initial reload value (4096us/ 2048 steps) */

CRC = -2*symm PWM period ;

ET2 = 1 ; /* Enable timer2 overflow interrupt */

EX3 =1 ; | *Enabl e capture interrupt for PW/drive*/

CCEN = 0 ; /* CRC- CC2 unused */

CCEN | = 0x80 ; /* CC3 is symetrical PWM out put */

IPO=0; /* Initialise interrupt priorities */

IP1L =0 ;

IP1 |= 0x20 ; /* Make CC3/ T2 Overflow interrupts

priority 3 */

P10 = 0 ;

}
/**
* Timer 2 Overflow Interrupt *

**/

/* Interrupt at centre point of waveformto create next off point */
/* A good exanple of where C now givesoverhead when conpared with assenbler! */
/* USING gi ves single cycle registerbank switch like ‘166 */

void timer2_overflow(void) interrupt 5 using 2

{

/* Runtinme here limts mn/max PWJM DR */

P1 |= 0x01 ; /* Toggle P1.0 to show centre of PW/*/

TF2 = 0 ; /* Cear interrupt request flag */

CC3 = CRC + synmm PWM DR ;

I1EX6 = 0 ;

P13 = 0 ;

EX6 = 1 ;

P1 & Oxfe ; /* Toggle P1.0 to show centre of PWM */

}
/**
* CCA Interrupt For Synmetrical PWM *

**/

/* Interrupt at end of first on period of waveformto create next on point */

void synm PWM CC3_int(void) interrupt 13 using 2
{

/* Runtinme here limts mn/max PWM DR */
CC3 = -synm PWM DR ;

IEX6 = 0 ;
P13 =1 ,;

© Copyright Hitex (UK) Ltd. 1996

C51 Primer page 96

EX6 = 0 ; /1 No further interrupts this period

/**

* Mbdul ate Symmetrical PWM Wth Anal og | nputO *

**/

/* Duty ratio is calculated in background to prevent having
to do floating */
/* point calculations in interrupts */

/* Note: As PWMis symetrical, duty ratio cannot exceed 1/2
period */

voi d mod_symm pwr(void) {
union { unsigned int tenp ;

unsi gned char tnp[2] ;
P

CRCH ;
CRCL ;

t.tnp[0]
t.tnp[1]

symm PWM DR = ((65536-t.tenp)/2 * (5-analog _data[1]))/5 ;
}

/

khkhkhkhkhkhhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhkhkhhhhkhkhkhhkkkk*kk*k*x*x*%x

* Drive TOC PWM s *

**/

voi d configure_pwr(void) {

unsigned int tenp ;
union { unsigned int tenp ;
unsigned char tmp[2] ; } t ;

t.temp = -pwm period/ ((float)pwnprescale * PW Resol ution) ;

CTRELH = t.tnp[0] ;
CTRELL = t.tnp[1] :

CML = t.tenp + ((unsigned int)(65536 - t.tenp) * pwmduty ratio)/100 ;
}

/

khkhkhkhkhkhhkhhkhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhhkhkhhhhhkhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkk*k*k*x*%

* Wite First Message To Termi nal *

**/

/* Whilst many printf’'s are used here, in a real program
they woul d not */
/* in the main program | oop due to huge run tine */

void initialise_screen(void) {
printf(“%”,Cear) ; [/ Clear Screen

printf(“% *** 80C537 Denp Program *** “ Line0) ;
//Print Sign-On

printf(“%”, Linel) ; /1 Print Sign-On

}
khkhkhkhkhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhkhkhhhhkhkhhhkkkk*k*x*x*x*%
* Mbdul ate PWM Wth Anal og | nputO *

**/

voi d mod_pwr(voi d) {

union { unsigned int tenp ;
unsigned char tmp[2] ; } t ;

t.tnp[0] = CTRELH :

© Copyright Hitex (UK) Ltd. 1996

C51 Primer page 97

t.tnp[1] = CTRELL ;

CMD =t.tenp + ((65536-t.tenp) * (5-analog_data[l1]))/5 ;
}

/**

* Send Information To Term nal *

**/

void print_info(void) {

printf(“%Anal og Oa(8bits) = %1.2f Volts “,Line3, anal og_data[1]) ;
printf(“%Analog 2 (8bits) = %1.2f Volts “,Line4, anal og_data[2]) ;

printf(“%PW Fbck (8bit) = %1.2f Volts “, Line5, anal og_data[3]) ;
printf(“%Frequency = 9% Hz “, Line6, (unsi gned int)frequency) ;
printf(“%Tiner = 9% x2 s “,Line7,(unsigned int) real _tine_count) ;

/**

* Access Menory- Mapped Port *

**/

/* This function receives a port address and a value to
wite toit. It returns a value at a fixed address */

#i ncl ude <absacc. h> /1 Contains definition of XBYTE[] macro
/1 ‘<" and ‘> nean that the include
/1 file will be obtained fromthe
/1 directory indicated by
/1 the C511I NC DCS environment variable

unsi gned char get_nenory_port (unsigned int port_address, unsigned char value) {
unsi gned char port_val ue ; /1 Returned variable
unsi gned char xdata *port_pointer ; /1 Declare unconmtted pointer into external

menory space (xdata)

port _pointer = (char*) port_address ; // Make uncomritted pointer point at
required address

*port_pointer = value ; // Wite value to port
port_val ue = XBYTE[0x8000] ; /'l Get value fromexternal address 0x8000
return(port_val ue) ;
}
/**
* Mai n Program - Full Version *

**/

/* This programinitialises the peripheral functions and then |oops around, reading the
A/ D converter and transmtting values down the serial port */

voi d mai n(voi d) /1 Enter fromreset vector

{

serialO_init_Ti() ; // Initialise serial port O tinerl baudrate generator
ad_init() ; /1 Initialise A/D converter

capture_CCO_init() ; // Initialise input capture/ T2 for freg. neasurenent
/1 and timed pul se generation /*
symm PWMinit() ; /1 CGenerate symetrical PWMon CC3 (P1.3) */
/1 (may only be present if capture_CCO_init() is
/1 commented out)

pwminit() ; /1 Initialise TOC PWM on CMk
timerO_init() ; /1l Initialise timer O overflow 2ms interrupt
EAL = 1 ; /1 Enable interrupts

initialise_screen() ; // Wite startup nessage to term nal

[*** Loop Forever ***/

whi | e(FOREVER) {

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 98

P6 "= 0x08 ; /1 Refresh MAX691 watchdog every background | oop
/1 This is attached to port 6, bit 3.

ad_convert() ; // Read all anal og channel s
print_info() ; /1 Send anal og values etc. to termnal
mod_pwn() ; /1 Modul ate PWWD with anal og channel 0 input
mod_symm pwn() ; /1 Modul ate synm PWM wi t h anal og channel 0 input
}
Appendix C

Typical C51 Performance Figures

For each C operation the number of cyclesto execute typical examplesis given for all supported datatypes. To give
someideaof executiontimes, withal2MHz 8031, onecycleis1us. Pleasenotethat timingsfor long and float operations
are considerably reduced on the Infineon 80C537 due to its 32 bit maths unit.

Cycle Table Key

Unsi gned Char - 8-bits

Char - 8 sign

Unsigned Int - 16-bits

I nt - 16 sign

Unsigned Long - 32-bits

Long - 32 sign

float - float (32-bits IEEE single pr eci si on)

Notes:

- Timings include parameter loading pre-amble where appropriate.

- Clock speed assumed to be 12MHz (1us/cycle), if not otherwise stated.

- The small memory model was used so that no off-chip ram was employed.

Basic C Mathematical Functions

+ Addition

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float
Cycles: 3 3 6 6 63 63 140
- Subtraction

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float
Cycles: 4 4 7 7 64 64 146
* Multiplication

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float
Cycles: 10 13 46 48 160 160 131
/ Divison

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 8 19 26 39 1611 1624 134

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 99

% Modulo

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 3 3 6 6 63 63

Examples

a=b+c;
a=b/c ;

Complex Mathematical Functions

sin(x)
float

Cycles: 1553

cos(x)

float
Cycles: 1433
tan(x)

float
Cycles: 2407-9570
exp(x)

float
Cycles: 3002-7870
sqrt(x)

float
Cycles: 42-2860
log(x)

float

Cycles: 45-6050

Other Maths Functions are:

cosh Hyperbolic cosine

sinh Hyperbolic sine

abs find absolute value

rand generate a random number
Examples:

X = 8in(3.1415926/2) ; find the sine of (P1/2)
X = sort(2) ; find sguare root of x

© Copyright Hitex (UK) Ltd. 1996

C51 Primer page 100

Bitwise Functions

These allow direct bit by bit operations to be performed.

& AND

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign
Cycles: 3 3 6 6 63 63
| InclusiveOR

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign

Cycles: 3 3 6 6 63 63

n ExclusveOR
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign

Cycles: 3 3 6 6 63 63
! NOT (Invert)

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign
Cycles: 3 3 6 6 63 63
Examples:

a=b & Oxfe; make aequal to abit wise AND with OXFE (11111110)
a=b|0x01 ; makeaequal toabit wise OR with 0x01 (00000001)

Two Operand Functions

= Make left side equal to right side
== test for left being equal to right

+= Addtwooperandsandstoreresultinfirst one.
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140

= Subtract twooperandsand storeresultinfirst one.
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140

*= Multiply twooperandsand storeresultinfir st one.
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140
/= Dividetwooperandsand storeresultinfir st one.
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 101

Example

a=b ; Make aequa to b

ifa==b) { } check whether aisequal tob
a+=3 ; aisequal toitself + 3

a/=10 ; aisequal to itself divided by 10

Relational And Logical Functions

These are used to test data and are usually used with if() and other control statements.

&& AND

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float
Cycles: 6 6 8 8 28 28 28
I OR

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 6 6 8 8 28 28 28

> Greater than
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 5 9 7 11 85 88 302

< Lessthan
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 5 9 7 11 85 88 302

>= Greaterthanor equal to
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 5 9 7 11 85 88 302

<= Lessthanor equal to
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 5 9 7 11 85 88 302
Examples:
if(a>b) {

/* executabl e code 1 */

}

if((a==1) && (b == 2)) {
/* executabl e code 1 */

}
el se {
/* Alternative executable code */

}
Execute code 1 if aisequal to 1 and b equal to 2 otherwise execute the alternative block.
if((a==1) || (b==2) {

/* execut abl e code */

}

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 102

Executeif aisequal to 1 or bequal to 2
Increment And Decrement

These make direct use of the INC xx opcodes and consequently are very fast. Normally, they are used as part of larger
C expressions where a value needs incrementing or decrementing.

+ Increment
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140

Decrement
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140
Examples:

i ++ Post -i ncrement i

++ i Pre-increnment i

i - - Post - decrement i
i Pre-increnment i

for(i =0 ; i <10 ; i) {
P1 = array[i++] ; /* Sequentially wite all the */
/* values in array onto Port 1. */
} /* i points to next value after */
/* after current access */
Shifting

Theseallow valuesto be shifted left or right by anumber of bit positions, determined either by aconstant at compiletime
or avariable at run time.

>> Rightshift
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign
Cycles: 7 7 56 56 129 129 (7 shifts)
<< L eft shift
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float
Cycles: 7 7 56 56 129 129 (7 shifts)
Examples:
a << 2 ; shift a left two bit places
a << b shift a left by a nunber of bit positions determned by the value of b

Strings And Arrays

These are anumber of sequential locations that together constitute some sort of larger single data object. Arrays may
besingleor multidimensional, asisBASIC etc.. Stringsareasin BASI C but, because of C’ snear-assembler nature, they
must be handled with care- you must alwaysbeawarewherethey end! A truestringisalwaysfinishedwithazero, called
the “null terminator”.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 103

array[4] ; an array of four elements, STARTING at element O

array[4][2] ; a two-dimensiona array of four by 2 elements STARTING at element 0,0

“ABCDEF" ; a true string of ascii characters, with a zero after the last element. It is the use of
doublequotation marks that defines this as a true string. Looking at the memory in which
this was declared would show: 65, 66, 67, 68, 69, 70, 00

{‘AB/C/'DEF } ; an array of ascii characters with no null terminator. Note the { and } defining the limits
of the completedata object.

Examples:
char array[4] ; Reserve a RAM area of 4 bytes into which 8 bit data will be put at run-time.
char array[] ={“ABCD" }; Fill a RAM area with ABCDO prior to starting the main() function. The ‘0’ is the null

terminator

Handling Strings And Characters

strcpy(*destination,* source) ;
8 element strings

Cycles: 102

- Copy string pointed at by *source to another string pointed at by *destination. The second string is completely
overwritten in the process.

strcat(*destination,*source) ;
8 element strings

Cycles: 913
- Concatenate the string pointed at by * source onto another string pointed at by * destination.

result = stremp(*destination,*source) ;
8 element strings

Cycles: 152

- Compare two strings pointed at by * source with another string pointed at by *destination. If equal, value of 1 is
returned.

result = strlen(*source) ;
8 element string

Cycles: 505

- Find the length of the * source string

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 104

In addition to these functions, a range of other string and character functions are provided to perform tasks such as:

atoi () ascii to integer

at of () ascii to floating point
itof () integer to floating point
i sal pha() test for alpha character
isdigit() test for digit

i sal num() test for al pha-nuneric

+ many other pre-defined routines.

Examples

char x[10] ;
char *y = “String of chars” ;

strepy(x,y) ; - Copies string pointed at by y to the empty array x. Note, C does not check that x isactually big enough
to hold the string!

Program Control
if (condition) {/* Code */;} else { /* Alternative Code */ ; }
- Perform one of either two blocks of code, depending on the result of a specified condition

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 3 3 6 6 79 79 131
for(i =0 ; i <end.wvalue ; i =i + 1) {/*Executable Code*/;}
- Repeat executable code until i = end_value.

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign

Cycles: 15 17 23 25 227 233

do { /* Executable Code */ ; } while(condition is true) ;
- Perform executable code while condition is true

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign

Cycles: 5 6 7 8 79 82

do-case - execute blocks of code determined by the value of a
control variable

No data measured

Examples:

if(a==0b) { /* Executable code*/ }

- execute code within bracesif aequal to b

for(i =0 ; i >end_value ; i++) { /* Executable code*/ }
- execute code until i isequal to end_value (i.e. not greater than)

do { /* Executable code*/ } while i++ < end_value ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 105

- execute code whilei lessthan end value
switch(x) {
case 1 :
y++
break ;
case 2 :
y
break ;
case 3 ;
y *=y;
break ;

}

- Perform the operation determined by the value of x.
Examples:
for(i =0 ; i > end_value ; i++) {
/* Execut abl e code*/
if(x ==1i) {
break ;

}
}

- execute codeuntil i isequal toend_value(i.e. not greater than) but if x isever equal toi then break out of theloop
immediately.

Accessing Bits
Bit A singlebit variable, located in the Bit-addressable memory area

Shit A single bit variable, located in the bit-addressable memory, either in the user or sfr area. When located
intheuser area, shitisadefined bit within alarger char or int variable.

Examples:
bdata char x ;/* x is an 8 bit signed nunber in the bit area */
shit sign_bit =x ~ 8; /* bit 8is the sign bit */
Now to test whether x is negative, the state of sign_bit need only be tested:
if(sign_bit) {

/* x is negative */ ;

sign_bit =0 ;
}

Gives:

JNB sign_bit POSITIVE
CLRB sign_bit

PGCsSI Tl VE:

Or using a non-shit method:

if(x <0) {
/* x is negative */ ;
sign_bit = 0 ;
}

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 106

Gives,

MoV A, X
ANL A, 080H
JZ PCSI TI VE
ANL x, 07FH
PCSI Tl VE:

Handling 8051 Ports and SFRs

Examples:
P1 = Oxff ; wites value ff to port 1
ADCON | = 0x80 ; OR 80 hex into ADCON
P1r0 = 1 ; set bit 0 of port 1

Getting Data In And Out Of C Programs In The 8051
printf(“string”, *x, *y,...)
- Print the characters, numbers and or strings contained within () to the serial and thence to aterminal (V T100 etc).

16 * 8-bit characters

Cycl es: 3553
scan(&x, ...)

- Storeincoming charactersfromterminal into memory buffersindicatedwithin (). Notethat the* & ” implies”theaddress
of buffer x”.

16 * 8-bit characters

Cycles: Not measurable but similar to “printf”
Examples

value_1 = 3.000 ;

value_2 = 4.256 ;

printf(“Results Are: % & %",value_1,value_2) ;

“ResultsAre: 3.000& 4.256” isprinted onterminal screen. Herethenumerical valuesof thetwo numbersare substituted
into the two “%f” symbols.

char keyboard_buffer[20]

scan(& keyboard_buffer) read incoming characters from terminal keyboard into memory starting at the address of
keyboard_buffer.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 107

Appendix D

A Useful Look-up Table Application

In areal system, getting atrue floating point sine would take around 1ms. In avery time-critical application this may
well beunacceptable. If only an approximationisrequired, itispossibleto uselinear interpol ation to get val ues between

the known values in the table.

Todothis, alook-uptableinterpolator isrequired. Below isacombineoneand two dimensional tableinterpolator, taken

from areal project. Here, the 2-D capability is not used!

Note: The term “.i.Map;map” is used instead of look-up table.
#i ncl ude <reg517. h>

***/

/* Mai n I nterpol ati on Routine */
***/
/* */

/* This routine has been optimsed to run as fast as
possi ble at the ***/
/* expense of code size. Further savings could be nade by

re-using tenporary RAM */
/* Wth a5 x 5 map, run tine is 490us - 735us at 12MHz */
/* or 290us - 400us with 12MHz Si enens 80C537 */
***/
/* Input Map Format: */
/* */
/* { x_size,y_size, */
/* x_breakpoi nts, */
/* y_breakpoints, */
/* */
/* map_data } ; */
/* */

***/

unsi gned char interp(unsigned char x_val ue,

/* x-axis input */
unsi gned char y_val ue,
/* y-axis input */
unsi gned char const *map_base
/* pointer to table base */
)
{

/* Declare Local RAM */

unsi gned char x_size ;
unsi gned char y_size ;

unsi gned char x_offset ;
unsi gned char y_offset ;
unsi gned char x_break_point1, x_break_point2 ;
unsi gned char y_break _pointl,y break_point2 ;

unsi gned char map_x1yl ;
unsi gned char map_x2yl ;
unsi gned char map_x1ly2 ;
unsi gned char map_x2y2 ;

unsi gned char result ;

unsi gned char result_yl ;

unsi gned char result_y2 ;

unsi gned char const *np ;

unsi gned char x_tenpl, x_tenp2, y_tenp2 ;
/* Get Size O Map */

X_si ze
y_size

*map_base ;
map_base[1] ;

© Copyright Hitex (UK) Ltd. 1996

C51 Primer page 108

/* Create Tenporary Map Scanni ng Pointer */

map_base += 2 ;
x_offset = x_size - 1 ;
mp = nmap_base + (unsigned char)x_offset ;

/* Locate Upper and Lower X Breakpoints */
/* Find break point inmmediately bel ow x-val ue */
whi l e((x_value < *np) && (x_offset 1= 0))

{

np ;

x_offset ;

}
/* Extract Upper And Lower X-Breakpoints From Map */
X_break_pointl = nmp[0] ;

Xx_break_poi nt 2 mp[1] ;
Xx_temp2 = (x_break_point2 - x_break_pointl) ; // bpt2 still in ACC

/* Safety Check To Prevent Divide By Zero */
if(x_tenp2 == 0) {
X_tenmp2++ ; /1 Ensure denomi nator never zero

}

/* Check For x_value Less Than Bottom Breakpoint Val ue */

if((x_offset == x_size - 1) || (x_value <= x_break_point1l))
{
x_val ue = x_break_point1l ;
}

x_templ = (x_value - x_break_pointl) ;
/* Locate Upper And Lower Y Breakpoints */
/* Check For 1D Map */
if(y_size = 0)
i/_offset =y size - 1;
nmp = nmap_base + (unsigned char)(x_size + y_offset) ;
while ((y_value < *np) && (y_offset 1= 0))
y_offset ;

m ;
}

/* Extract Upper And Lower Y-Breakpoints */

y_break_pointl = np[0] ;

y_break_point2 = np[1] ;

if((y_offset ==y size - 1) || (y_value <= y_break_pointl))
{
y_value = y_break _pointl ;
}

/* Get Map Val ues */
map_base += x_size + y_size + x_size * y offset + x_offset ;

map_x1lyl = *(map_base) ;

map_x2yl = *(map_base + 1) ;
/* Interpolate 2D Map Val ues */
/* Defines used to renpve need for function calling */

#define x nap_x1lyl
#define y nap_x2yl
#define n x_tenpl
#define d x_tenp2

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 109

-= X

if(1cy)
{

result _yl = (unsigned char) (x + (unsigned char)(((unsigned int)(n * y))/d))

}

el se

{

result_yl = (unsigned char) (x -

}

map_x1ly2
map_x2y2

#undef x
#undef y

1

#define x map_x1ly2
#define y map_x2y2

result_y2 = (unsigned char) (x + (unsigned char)(((unsigned int)(n * y))/d))

*(map_base + x_si ze)
*(map_base + x_size + 1) ;

1

(y_break_point2 - y_break_point1)

y -= X,
if(rey)
{
}
el se
{
result_y2 = (unsigned char) (x -
}
#undef x
#undef y
#undef n
#undef d
y_tenp2
/* Prevent Divide By Zero */

if(y_tenp2 == 0) {
y_temp2++ |

}

#define x result_yl
#define y result_y2

#define n (y_value - y_break_point1l)

#define d y_tenp2

y == x;

if(1cy)
{

resul t

}

el se

{

resul t

}

} /* End of 2D Section */

el se

{
/* 1D Interpolation Only */

map_base

map_x1lyl
map_x2y1l

#undef x
#undef y
#undef n
#undef d

1

(unsigned char) (x -

= (unsigned char) (x + (unsigned char)(((unsigned int)(n * y))/d))

(unsigned char) (((unsigned int)(n * -y))/d))

map_base + x_size + x_offset ;

map_base][0]
map_base[1]

#define x map_x1lyl
#define y map_x2yl
#define n x_tenpl
#define d x_tenp2

© Copyright Hitex (UK) Ltd. 1996

1

1

1

(unsigned char) (((unsigned int)(n * -y))/d))

(unsigned char) (((unsigned int)(n * -y))/d))

1

1

1

1

i

C51 Primer page 110

y -= X ;
if(rey
{

result = (unsigned char) (x + (unsigned char)(((unsigned int)(n * y))/d))

}

el se

{

result = (unsigned char) (x - (unsigned char)(((unsigned int)(n * -y))/d))

}
} /* End 1D Section */
return result ;

}

Here is the test harness used to drive it:

/*** Sine Conversion Map
/* Converts integer angle into sine val ue,

/* (x_size,y_size,
x_breakpoi nts,
y_breakpoints,
map_dat a)
*/
const unsigned char sine_table[] = {
07, 00,
00, 15, 30, 45, 60, 75, 90,
00, 66, 127, 180, 220, 246, 255
Y

/** Test Variables **/
unsi gned char input_x_val ;
unsi gned char input_y_ val ;
unsi gned char sine_val ue ;
/** Routine To Be Tested **/
extern interp(unsigned char,
unsi gned char,
unsi gned char const *) ;
/** d obal Variables **/
unsigned int angle ;

[** Dummy Har ness Program **/

voi d mai n(voi d)

***/

0- 255 */

{
whi | e(1)
{
for(angle = 0 ; angle < 0x100 ; angle++) {
sine_value = interp(angle,0,sine_table) ;
}
}
}

© Copyright Hitex (UK) Ltd. 1996

C51 Primer page 111

	Contents
	1 Introduction
	2 Keil C51 Compiler Basics - The 8051 Architecture
	2.1 8051 Memory Configurations
	2.1.1 Physical Location Of The Memory Spaces
	
	2.1.2 Possible Memory Models
	
	2.1.3 Choosing The Best Memory Configuration/Model
	2.1.4 Setting The Memory Model - #Pragma Usage
	
	2.2 Local Memory Model Specification
	2.2.1 Overview
	
	2.2.2 Point To Watch In Multi-Model Programs
	
	3 Declaring Variables And Constants
	3.1 Constants
	3.2 Variables
	3.2.1 Uninitialised Variables
	
	3.2.2 Initialised Variables
	3.3 Watchdogs With Large Amounts Of Initialised Data
	3.4 C51 Variables
	3.4.1 Variable Types
	
	3.4.2 Special Function Bits
	3.4.3 Converting Between Types
	
	3.4.4 A Non-ANSI Approach To Checking Data Type Overflow
	4 Program Structure And Layout
	4.1 Modular Programming In C51
	
	4.2 Accessibility Of Variables In Modular Programs
	4.3 Building A Real Modular Program - The Practicalities Of Laying Out A C51 Program
	4.3.1 The Problem
	4.3.2 Maintainable Inter-Module Links
	4.4 Task Scheduling
	4.4.1 8051 Applications Overview
	4.4.2 Simple 8051 Systems
	4.4.3 Simple Scheduling - A Partial Solution
	4.4.4 A Pragmatic Approach
	
	5 C Language Extensions For 8051 Programming
	5.1 Accessing 8051 On-Chip Peripherals
	5.2 Interrupts
	5.2.1 The Interrupt Function Type
	5.2.2 Using C51 With Target Monitor Debuggers
	5.2.3 Coping Interrupt Spacings Other Than 8
	5.3 Interrupts, USING, Registerbanks, NOAREGS In C51 - Everything You Need To Know
	5.3.1 The Basic Interrupt Service Function Attribute
	5.2.4 The Using Control
	5.3.2 The absolute register addressing trick in detail
	5.3.3 The USING Control
	5.3.4 Notes on C51's "Stack Frame"
	5.3.5 When To Use USING
	5.3.6 The NOAREGS pragma
	5.3.7 The REGISTERBANK Control Alternative To NOAREGS
	5.3.8 Summary Of USING And REGISTERBANK
	5.3.9 Reentrancy In C51 - The Final Solution
	5.3.10 Summary Of Controls For Interrupt Functions
	5.3.11 Reentrancy And Library Functions
	6 Pointers In C51
	6.1 Using Pointers And Arrays In C51
	6.1.1 Pointers In Assembler
	6.1.2 Pointers In C51
	6.2 Pointers To Absolute Addresses
	
	6.3 Arrays And Pointers - Two Sides Of The Same Coin?
	6.3.1 Uninitialised Arrays
	6.3.2 Initialised Arrays
	
	6.3.3 Using Arrays
	6.3.4 Summary Of Arrays And Pointers
	
	6.4 Structures
	6.4.1 Why Use Structures?
	6.4.2 Arrays Of Structures
	
	6.4.3 Initialised Structures
	
	6.4.4 Placing Structures At Absolute Addresses
	
	6.4.5 Pointers To Structures
	
	6.4.6 Passing Structure Pointers To Functions
	6.4.7 Structure Pointers To Absolute Addresses
	6.5 Unions
	
	6.6 Generic Pointers
	6.7 Spaced Pointers In C51
	7 Accessing External Memory Mapped Peripherals
	7.1 The XBYTE And XWORD Macros
	7.2 Initialised XDATA Pointers
	
	7.3 Run Time xdata Pointers
	7.4 The "volatile" Storage Class
	
	7.5 Placing Variables At Specific Locations - The Linker Method
	7.6 Excluding External Data Ranges From Specific Areas
	
	7.7 -missing ORDER and AT now in C51
	7.8 Using The _at_and _ORDER_ Controls
	8 Linking Issues And Stack Placement
	8.1 Basic Use Of L51 Linker
	8.2 Stack Placement
	8.3 Using The Top 128 Bytes of the 8052 RAM
	8.4 L51 Linker Data RAM Overlaying
	8.4.1 Overlaying Principles
	
	8.4.2 Impact Of Overlaying On Program Construction
	
	8.4.2.1 Indirect Function Calls With Function Pointers (hazardous)
	8.4.2.2 Indirectly called functions solution
	
	8.4.2.3 Function Jump Table Warning (Non-hazardous)
	
	8.4.2.4 Function Jump Table Warning Solution
	
	8.4.2.5 Multiple Call To Segment Warning (Hazardous)
	8.4.2.6 Multiple Call To Segment Solution
	
	8.4.3 Overlaying Public Variables
	9 Other C51 Extensions
	9.1 Special Function Bits
	9.2 Support For 80C517/537 32-bit Maths Unit
	
	9.2.1 The MDU - How To Use It
	9.2.2 The 8 Datapointers
	9.2.3 80C517 - Things To Be Aware Of
	
	9.3 87C751 Support
	9.3.1 87C751 - Steps To Take
	9.3.2 Integer Promotion
	
	10 Miscellaneous Points
	10.1 Tying The C Program To The Restart Vector
	10.2 Intrinsic Functions
	10.3 EA Bit Control #pragma
	10.4 16-Bit sfr Support
	10.5 Function Level Optimisation
	10.6 In-Line Functions In C51
	11 Some C51 Programming Tricks
	11.1 Accessing R0 etc. directly from C51
	
	11.2 Making Use Of Unused Interrupt Sources
	11.3 Code Memory Device Switching
	
	11.4 Simulating A Software Reset
	11.5 The Compiler Preprocessor - #define
	12 C51 Library Functions
	
	12.1 Library Function Calling
	
	12.2 Memory-Model Specific Libraries
	
	13 Outputs From C51
	13.1 Object Files
	
	13.2 HEX Files For EPROM Blowing
	
	13.3 Assembler Output
	
	14 Assembler Interfacing To C Programs
	
	14.1 Assembler Function Example
	14.2 Parameter Passing To Assembler Functions
	
	14.3 Parameter Passing In Registers
	
	15 General Things To Be Aware Of
	
	15.7 Floating Point Numbers
	16 Conclusion
	
	Appendix
	

