
© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 1

C51 Primer
An Introduction To The Use Of
The Keil C51 Compiler On The

8051 Family

Hitex (UK) Ltd.
University of Warwick Science Park

Coventry, CV4 7EZ

Tel: 024 7669 2066
Fax: 024 7669 2131

Email: sales@hitex.co.uk
Web: http://www.hitex.co.uk

© Copyright Hitex (UK) Ltd. 1996
All Rights Reserved.

No Part of this publication may be transmitted, transcribed, stored in a
retrieval system, translated into any language, in any form, by any means

without the written permission of Hitex (UK) Ltd..

ISSUE: III

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 2

Contents
1 Introduction ... 4
2 Keil C51 Compiler Basics - The 8051 Architecture ... 6
2.1 8051 Memory Configurations ... 6
2.1.1 Physical Location Of The Memory Spaces ... 6
2.1.2 Possible Memory Models .. 7
2.1.3 Choosing The Best Memory Configuration/Model ... 8
2.1.4 Setting The Memory Model - #Pragma Usage ... 10
2.2 Local Memory Model Specification .. 10
2.2.1 Overview .. 10
2.2.2 Point To Watch In Multi-Model Programs .. 11
3 Declaring Variables And Constants ... 12
3.1 Constants ... 12
3.2 Variables ... 13
3.2.1 Uninitialised Variables .. 13
3.2.2 Initialised Variables ... 13
3.3 Watchdogs With Large Amounts Of Initialised Data ... 14
3.4 C51 Variables .. 15
3.4.1 Variable Types .. 15
3.4.2 Special Function Bits .. 15
3.4.3 Converting Between Types .. 16
3.4.4 A Non-ANSI Approach To Checking Data Type Overflow ... 17
4 Program Structure And Layout .. 19
4.1 Modular Programming In C51 ... 19
4.2 Accessibility Of Variables In Modular Programs .. 20
4.3 Building A Real Modular Program - The Practicalities Of Laying Out A C51 Program ... 22
4.3.1 The Problem ... 22
4.3.2 Maintainable Inter-Module Links .. 23
4.4 Task Scheduling ... 27
4.4.1 8051 Applications Overview ... 27
4.4.2 Simple 8051 Systems ... 27
4.4.3 Simple Scheduling - A Partial Solution ... 28
4.4.4 A Pragmatic Approach ... 28
5 C Language Extensions For 8051 Programming .. 30
5.1 Accessing 8051 On-Chip Peripherals .. 30
5.2 Interrupts ... 30
5.2.1 The Interrupt Function Type ... 30
5.2.2 Using C51 With Target Monitor Debuggers ... 31
5.2.3 Coping Interrupt Spacings Other Than 8 ... 31
5.3 Interrupts, USING, Registerbanks, NOAREGS In C51 - Everything You Need To Know ... 32
5.3.1 The Basic Interrupt Service Function Attribute ... 32
5.2.4 The Using Control .. 32
5.3.2 The absolute register addressing trick in detail ... 33
5.3.3 The USING Control ... 34
5.3.4 Notes on C51's "Stack Frame" ... 35
5.3.5 When To Use USING ... 35
5.3.6 The NOAREGS pragma ... 35
5.3.7 The REGISTERBANK Control Alternative To NOAREGS .. 36
5.3.8 Summary Of USING And REGISTERBANK .. 37
5.3.9 Reentrancy In C51 - The Final Solution ... 37
5.3.10 Summary Of Controls For Interrupt Functions ... 39
5.3.11 Reentrancy And Library Functions .. 39
6 Pointers In C51 ... 40
6.1 Using Pointers And Arrays In C51 ... 40
6.1.1 Pointers In Assembler .. 40
6.1.2 Pointers In C51 ... 40
6.2 Pointers To Absolute Addresses ... 42
6.3 Arrays And Pointers - Two Sides Of The Same Coin? ... 42
6.3.1 Uninitialised Arrays ... 42
6.3.2 Initialised Arrays .. 42
6.3.3 Using Arrays .. 43
6.3.4 Summary Of Arrays And Pointers ... 44
6.4 Structures ... 45
6.4.1 Why Use Structures? .. 45
6.4.2 Arrays Of Structures .. 46
6.4.3 Initialised Structures ... 46
6.4.4 Placing Structures At Absolute Addresses ... 46

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 3

6.4.5 Pointers To Structures .. 47
6.4.6 Passing Structure Pointers To Functions .. 47
6.4.7 Structure Pointers To Absolute Addresses .. 48
6.5 Unions ... 49
6.6 Generic Pointers .. 49
6.7 Spaced Pointers In C51 ... 51
7 Accessing External Memory Mapped Peripherals ... 53
7.1 The XBYTE And XWORD Macros ... 53
7.2 Initialised XDATA Pointers .. 54
7.3 Run Time xdata Pointers .. 55
7.4 The “volatile” Storage Class .. 56
7.5 Placing Variables At Specific Locations - The Linker Method .. 57
7.6 Excluding External Data Ranges From Specific Areas ... 58
7.7 -missing ORDER and AT now in C51 .. 58
7.8 Using The _at_and _ORDER_ Controls ... 58
8 Linking Issues And Stack Placement .. 60
8.1 Basic Use Of L51 Linker ... 60
8.2 Stack Placement ... 60
8.3 Using The Top 128 Bytes of the 8052 RAM ... 61
8.4 L51 Linker Data RAM Overlaying ... 61
8.4.1 Overlaying Principles ... 61
8.4.2 Impact Of Overlaying On Program Construction .. 62
8.4.2.1 Indirect Function Calls With Function Pointers (hazardous) .. 63
8.4.2.2 Indirectly called functions solution ... 65
8.4.2.3 Function Jump Table Warning (Non-hazardous) ... 66
8.4.2.4 Function Jump Table Warning Solution ... 67
8.4.2.5 Multiple Call To Segment Warning (Hazardous) ... 68
8.4.2.6 Multiple Call To Segment Solution ... 69
8.4.3 Overlaying Public Variables .. 69
9 Other C51 Extensions ... 72
9.1 Special Function Bits .. 72
9.2 Support For 80C517/537 32-bit Maths Unit .. 72
9.2.1 The MDU - How To Use It ... 72
9.2.2 The 8 Datapointers ... 73
9.2.3 80C517 - Things To Be Aware Of .. 73
9.3 87C751 Support .. 73
9.3.1 87C751 - Steps To Take ... 74
9.3.2 Integer Promotion ... 74
10 Miscellaneous Points ... 75
10.1 Tying The C Program To The Restart Vector .. 75
10.2 Intrinsic Functions ... 75
10.3 EA Bit Control #pragma .. 76
10.4 16-Bit sfr Support ... 76
10.5 Function Level Optimisation ... 76
10.6 In-Line Functions In C51 .. 76
11 Some C51 Programming Tricks .. 78
11.1 Accessing R0 etc. directly from C51 ... 78
11.2 Making Use Of Unused Interrupt Sources .. 78
11.3 Code Memory Device Switching ... 79
11.4 Simulating A Software Reset ... 80
11.5 The Compiler Preprocessor - #define .. 80
12 C51 Library Functions ... 80
12.1 Library Function Calling .. 80
12.2 Memory-Model Specific Libraries .. 81
13 Outputs From C51 ... 81
13.1 Object Files .. 81
13.2 HEX Files For EPROM Blowing .. 81
13.3 Assembler Output ... 81
14 Assembler Interfacing To C Programs .. 82
14.1 Assembler Function Example .. 82
14.2 Parameter Passing To Assembler Functions .. 84
14.3 Parameter Passing In Registers .. 84
15 General Things To Be Aware Of .. 85
15.7 Floating Point Numbers ... 86
16 Conclusion .. 86
Appendix .. 87

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 4

About The C51 Primer
If you’ve flicked through this publication, you may be left thinking that it is necessary to be an expert to produce workable
programs with C51. Nothing could be further from the truth. It is perfectly possible to write real commercial programs
with nothing more than a reasonable knowledge of the ANSI C language.

However, to get the maximum performance from the 8051, knowing a few tricks is very useful. This is particularly true
if you are working on a very cost-sensitive project where needing a bigger RAM or EPROM can result in an unacceptable
on-cost. After all, if cost was not a consideration, we would all be using 80C166s and 68000s!

Whilst the C51 Primer is really aimed at users of the Keil C51 Compiler, it is applicable in part to compilers such as IAR
and Tasking. However, as these compilers do not allow such low-level access and have fewer 8051-specific extensions,
they are less likely to be used on projects where getting maximum performance is essential.

The C51 Primer Will Help You

Find your way around the basic 8051 architecture.
Make a sensible choice of memory model and special things to watch out for.
Locate things at specific addresses.
Make best use of structures.
Use bit-addressable memory.
Think in terms of chars rather than ints.
Get the best out of the various pointer types.
Get a modular structure into programs.
Access on and off-chip ports and peripherals.
Deal with interrupts.
Use registerbanks.
Deal with the stack.
Understand RAM overlaying.
Interface to assembler code.
Use special versions like the 80C517 and 87C751.
Use assembler tricks in C.
Help the optimiser to produce the smallest, fastest code.

The C51 Primer Will Not Help You:

Program in ANSI C - get a good reference like Kernighan & Ritchie.
Write portable code - simply use the compiler without using any extensions.
Set-up each and every on-chip peripheral on all of the 90 different 8051 variants! Some are, however, covered in the
appendices.

This guide should be read in association with a good C reference such as Kernighan and Ritchie and is not meant to be
a definitive work on the C language. It covers all the 8051-specific language extensions and those areas where the CPU
architecture has an impact on coding approach.

1 Introduction
C can be a rather terse and mystifying language. Widely quoted as being a high level language, C does indeed contain
many such features like structured programming, defined procedure calling, parameter passing, powerful control
structures etc.

However much of the power of C lies in its ability to combine simple, low-level commands into complicated high-level
language-like functions and allow access to the actual bytes and words of the host processor. To a great extent then,
C is a sort of universal assembly language. Most programmers who are familiar with C will have been used to writing
programs within large machines running Unix or latterly MS-DOS. Even in the now cramped 640KB of MS-DOS,
considerable space is available so that the smallest variable in a program will be an int (16-bits). Most interfacing to the
real world will be done via DOS Ints and function calls. Thus the actual C written is concerned only with the manipulation

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 5

and processing of variables, strings, arrays etc.

Within the modern 8 bit microcontroller, however, the situation is somewhat different. Taking the 8051 as an example, the
total program size can only occupy 4 or 8K and use only 128bytes of RAM. Ideally, real devices such as ports and special
function registers must be addressed from C. Interrupts have to be serviced, which require vectors at absolute addresses.
Special care must be taken with a routine’s data memory allocation if over-writing of background loop data is to be avoided.
One of the fundamentals of C is that parameters (input variables) are passed to a function (subroutine) and results returned
to the caller via the stack. Thus a function can be called from both interrupts and the background without fear of its local
data being overwritten (re-cutrancy).

A serious restriction with the 8051 family is the lack of a proper stack; typically with a processor such as the 8086, the
stack pointer is 16-bits (at least). Besides the basic stack pointer, there are usually other stack relative pointers such as
a base pointer etc..

With these extra demands on the stack control system, the ability to access data on the stack is crucial. As already
indicated, the 8051 family is endowed with a stack system which is really only capable of handling return addresses. With
only 256 bytes of stack potentially available, it would not take too much function-calling and parameter-passing to use
this up.

From this you might think that implementing a stack-intensive language like C on the 8051 would be impossible. Well,
it very nearly has been! While there have been compilers around for some years now that have given C to 8051 users,
they have not been overly effective. Most have actually been adapted from generic compilers originally written for more
powerful micros such as the 68000. The approach to the stack problem has largely been through the use of artificial stacks
implemented by using 8051 opcodes.

Typically, an area in external RAM is set aside as a stack; special library routines manage the new stack every time a
function is called. While this method works and gives a re-entrant capability, the price has been very slow runtimes. The
net effect is that the processor spends too much time executing the compiler’s own code rather than executing your
program!

Besides the inherent inefficiency of generating a new stack, the compiled program code is not highly optimised to the
peculiarities of the 8051. With all this overhead, the provision of banked switch expanded memory, controlled by IO
ports, becomes almost a necessity!

Therefore, with the 8051 in particular, the assembler approach to programming has been the only real alternative for
small, time-critical systems.

However, as far back as 1980, Intel produced a partial solution to the problem of allowing high-level language
programming on its new 8051 in the shape of PLM51. This compiler was not perfect, having been adapted from PLM85
(8085), but Intel were realistic enough to realise that a full stack-based implementation of the language was simply not
on.

The solution adopted was to simply pass parameters in defined areas of memory. Thus each procedure has its own area
of memory in which it receives parameters and passes back the results. Provided the passing segments are internal the
calling overhead is actually quite small.

Using external memory slows the process but is still faster than using an artificial stack.

The drawback with this “compiled stack” approach is that re-entrancy is now not possible. This apparently serious
omission in practice does not tend to cause a problem with typical 8051 programs. However the latest C51 versions do
allow selective re-entrancy, so that permitting re-entrant use of a few critical functions does not compromise the efficiency
of the whole program.

Other noteworthy considerations for C on a microcontroller are:
(i) control of on and off-chip peripheral devices
(ii) servicing of interrupts
(iii) making the best use of limited instruction sets
(iv) supporting different ROM/RAM configurations
(v) a very high level of optimisation to conserve code space
(vi) control of registerbank switching

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 6

2 Keil C51 Compiler Basics - The 8051 Architecture
The Keil C51 compiler has been written to allow C programmers to get code running quickly on 8051 systems

with little or no learning curve. However, to get the best from it, some appreciation of the underlying hardware is
desirable. The most basic decision to be made is which memory model to use.

For general information on the C language, number and string representation, please refer to a standard C
textbook such as K & R

2.1 8051 Memory Configurations
2.1.1 Physical Location Of The Memory Spaces

Perhaps the most initially confusing thing about the 8051 is that there are three different memory spaces, all of which
start at the same address.

Other microcontrollers, such as the 68HC11, have a single Von Neuman memory configuration, where memory areas
are located at sequential addresses, regardless of in what device they physically exist.

Within the CPU there is one such, the DATA on-chip RAM. This starts at D:00 (the ‘D:’ prefix implies DATA segment)
and ends at 07fH (127 decimal). This RAM can be used for program variables. It is directly addressable, so that
instructions like ‘MOV A,x’ are usable. Above 80H the special function registers are located, which are again directly
addressable. However, a second memory area exists between 80H and 0FFH which is only indirectly addressable and
is prefixed by I: and known as IDATA. It is only accessible via indirect addressing (MOV A,@Ri) and effectively
overlays the directly addressable sfr area. This constitutes an extended on-chip RAM area and was added to the ordinary
8051 design when the 8052 appeared. As it is only indirectly addressable, it is best left for stack use, which is, by
definition, always indirectly addressed via the stack pointer SP. Just to confuse things, the normal directly addressable
RAM from 0-80H can also be indirectly addressed by the MOV A,@Ri instruction!

Fig.1. The 8051's Memory Spaces.

A third memory space, the CODE segment, also starts at zero, but this is reserved for the program. It typically runs from
C:0000 to C:0FFFFH (65536 bytes) but as it is held within an external EPROM, it can be any size up to 64KB (65536
bytes). The CODE segment is accessed via the program counter (PC) for opcode fetches and by DPTR for data.
Obviously, being ROM, only constants can be stored here.

A fourth memory area is also off-chip, starting at X:0000. This exists in an external RAM device and, like the C:0000
segment, can extend up to X:0FFFFH (65536 bytes). The ‘X:’ prefix implies the external XDATA segment. The 8051’s
only 16 bit register, the DPTR (data pointer) is used to access the XDATA. Finally, 256 bytes of XDATA can also be

(vii) support of enhanced or special family variants (87C751, 80C517 etc..).

The Keil C51 compiler contains all the necessary C extensions for microcontroller use. This C compiler builds on the
techniques pioneered by Intel but adds proper C language features such as floating point arithmetic, formatted/
unformatted IO etc. It is, in fact, an implementation of the C language ANSI standard specifically for 8051 processors.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 7

addressed in a paged mode. Here an 8-bit register (R0) is used to access this area, termed PDATA.

The obvious question is

“How does the 8051 prevent an access to C:0000 resulting in data being fetched from D:00?”

The answer is in the 8051 hardware:

When the cpu intends to access D:00, the on-chip RAM is enabled by a purely internal READ signal - the external /RD
pin is unchanged.

MOV A,40 ; Put value held in location 40 into the accumulator

 This addressing mode (direct) is the basis of the SMALL memory model.

MOV R0,#0A0H ; Put the value held in IDATA location 0A0H into

MOV A,@R0 ; the accumulator

This addressing mode is used to access the indirectly addressable on-chip memory above 80H and as an alternative way
to get at the direct memory below this address.

A variation on DATA is BDATA (bit data). This is a 16 byte (128-bit) area, starting at 020H in the direct segment. It is
useful in that it can be both accessed byte-wise by the normal MOV instructions and addressed by special bit-orientated
intructions, as shown below:

SETB 20.0 ;
CLRB 20.0 ;

The external EPROM device (C:0000) is not enabled during RAM access. In fact, the external EPROM is only enabled
when a pin on the 8051 named the PSEN (program store enable) is pulled low. The name indicates that the main function
of the EPROM is to hold the program.

The XDATA RAM and CODE EPROM do not clash as the XDATA device is only active during a request from the 8051
pins named READ or WRITE, whereas the CODE device only responds when the PSEN pin is low.

To help access the external XDATA RAM, special instructions exist, conveniently containing an ‘X’....

MOV DPTR,#08000H
MOVX A,@DPTR ; “Put a value in A located at

 address in the external RAM,
 contained in the DPTR register
 (8000H)”.

The above addressing mode forms the basis of the LARGE model.

MOVX R0,#080H ;
MOVX A,@R0 ;

 This alternative access mode to external RAM forms the basis of the COMPACT memory model. Note that if Port 2
is attached to the upper address lines of the RAM, it can act like a manually operated “paging” control.

The important point to remember is that the PSEN pin is active when instructions are being fetched; READ and WRITE
are active when MOVX.... (“move external”) instructions are being carried-out.

Note that the ‘X’ means that the address is not within the 8051 but is contained in an external device, enabled by the
READ and WRITE pins.

2.1.2 Possible Memory Models

With a microcontroller like the 8051, the first decision is which memory model to use. Whereas the PC programmer
chooses between TINY, SMALL, MEDIUM, COMPACT, LARGE and HUGE to control how the processor segmen-
tation of the RAM is to be used (overcome!), the 8051 user has to decide where the program and data are to reside.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 8

C51 currently supports the following memory configurations:

(i) ROM - currently the largest single object file that can be produced is 64K, although up to 1MB can be
supported with the BANKED model described below. All compiler output to be directed to Eprom/
ROM, constants, look-up tables etc., should be declared as “code”.

code unsigned char constant_1
code unsigned char array_1[3]={‘1’,’2',’3',’4' }

(ii) RAM - There are three memory models, SMALL, COMPACT and LARGE

(iii) SMALL - all variables and parameter-passing segments will be placed in the 8051’s internal memory.

(iv) COMPACT- variables are stored in paged memory addressed by ports 0 and 2. Indirect addressing opcodes are
used. On-chip registers are still used for localsand parameters.

(v) LARGE - variables etc. are placed in external memory addressed by @DPTR. On-chip registers are still
used for locals and parameters.

(vi) BANKED - Code can occupy up to 1MB by using either CPU port pins or memory-mapped latches to page
memory above 0xFFFF. Within each 64KB memory block a COMMON area must be set aside
for C library code. Inter-bank function calls are possible.

See the section on BL51 for more information on the BANKED model.

A variation on these models is to use one model globally and then to force certain variables and data objects into other
memory spaces.

This technique is covered later.

2.1.3 Choosing The Best Memory Configuration/Model

With the four memory models, a decision has to be made as to which one to use. Single chip 8051 users may only use
the SMALL model, unless they have an external RAM fitted which can be page addressed from Port 0 and optionally,
Port 2, using MOVX A,@R0 addressing.

This permits the COMPACT model. While it is possible to change the global memory model half way through a project,
it is not recommended!

SMALL

Total RAM 128 bytes (8051/31)

Rather restricting in the case of 8051/31. Will support code sizes up to about 4K but a constant check must be kept on
stack usage. The number of global variables must be kept to a minimum to allow the linker OVERLAYer to work to
best effect. With 8052/32 versions, the manual use of the 128 byte IDATA area above 80H can allow applications up
to about 10-12K but again the stack position must be kept in mind.

Very large programs can be supported by the SMALL model by manually forcing large and/or slow data objects in to
an external RAM, if fitted. Also variables which need to be viewed in real time are best located here, as dual-ported
emulators like the Hitex T51 can read their values on the fly. This approach is generally best for large, time-critical
applications, as the SMALL global model guarantees that local variables and function parameters will have the fastest
access, while large arrays can be located off-chip.

COMPACT

Total RAM 256 bytes off-chip, 128 or 256 bytes on-chip.

Suitable for programs where, for example, the on-chip memory is applied to an operating system. The compact model
is rarely used on its own but more usually in combination with the SMALL switch reserved for interrupt routines.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 9

COMPACT is especially useful for programs with a large number of medium speed 8 bit variables, for which the MOVX
A,@R0 is very suitable.

It can be useful in applications where stack usage is very high, meaning that data needs to be off-chip. Note that register
variables are still used, so the loss of speed will not be significant in situations where only a small number of local
variables and/or passed parameters are used.

LARGE

Total RAM up to 64KB, 128 or 256 bytes on-chip.

Permits slow access to a very large memory space and is perhaps the easiest model to use. Again, not often used on its
own but in combination with SMALL. As with COMPACT, register variables are still used and so efficiency remains
reasonable.

In summary, there are five memory spaces available for data storage, each of which has particular pros and cons.

Here are some recommendations for the best use of each:

DATA: 128 bytes

SMALL model default location

Best For:
Frequently accessed data requiring the fastest access. Interrupt routines whose run time is critical should use DATA,
usually by declaring the function as "SMALL". Also, background code that is frequently run and has many parameters
to pass. If you are using re-entrant functions, the re-entrant stacks should be located here as a priority.

Worst For:
Any variable arrays and structures of more than a few bytes.

IDATA

Not model-dependant

Best For:
Fast access data arrays and structures of limited size (up to around 32 bytes each) but not totalling more than 64 or so
bytes. As these data types require indirect addressing, they are ideally placed in the indirectly addressable area. It is also
a good place to locate the stack, as this is by definition indirectly addressed.

Worst For:
Large data arrays, fast access words.

CODE

64K bytes

Best For:
Constants and large lookup tables, plus opcodes, of course!

Worst For:
Variables!

PDATA

COMPACT model default area

256 bytes

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 10

Best For:
Medium speed interrupt and fast background char (8-bit) variables and moderate-sized arrays and structures. Also good
for variables which need to be viewed in real time using an emulator.

Worst For:
Very large data arrays and structure above 256 bytes.
Very frequently used data (in interrupts etc..).
Integer and long data.

XDATA

LARGE model default area

Best For:
Large variable arrays and structures (over 256 bytes)
Slow or infrequently-used background variables. Also good for variables which need to be viewed in real time using an
emulator.

Worst For:
Frequently-accessed or fast interrupt variables.

2.1.4 Setting The Memory Model - #Pragma Usage

The overall memory type is selected by including the line “#pragma SMALL” as the first line in the C source file.

See Section 2.1.3 for details on specific variable placement. SMALL is the default model and can be used for quite large
programs, provided that full use is made of PDATA and XDATA memory spaces for less time-critical data.

Special note on COMPACT model usage

The COMPACT model makes certain assumptions about the state of Port 2. The XDATA space is addressed by the
DPTR instructions which place the 16 bit address on Ports 0 and 2. The COMPACT model uses R0 as a 8 bit pointer
which places an address on port 0. Port 2 is under user control and is effectively a memory page control. The compiler
has no information about Port 2 and unless the user has explicitly set it to a value it will be undefined, although generally
it will be at 0xff. The linker has the job of combining XDATA and PDATA variables and unless told otherwise it puts
the PDATA (COMPACT default space) at zero. Hence, the resulting COMPACT program will not work.

It is therefore essential to set the PPAGE number in the startup.a51 file to some definite value - zero is a good choice.
The PPAGEENABLE must be set to 1 to enable paged mode. Also, when linking, the PDATA(ADDR) control must
be used to tell L51 where the PDATA area is, thus:

L51 module1.obj, module2.obj to exec.abs PDATA(0)XDATA(100H)

Note that the normal XDATA area now starts at 0x100, above the zero page used for PDATA. Failure to do this properly
can result in very dangerous results, as data placement is at the whim of PORT2!

2.2 Local Memory Model Specification
2.2.1 Overview

C51 version 3.20 allows memory models to be assigned to individual functions. Within a single module, functions can
be declared as SMALL, COMPACT or LARGE thus:

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 11

#pragma COMPACT
/* A SMALL Model Function */
fsmall() small {
 printf(“HELLO”) ;
 }
/* A LARGE Model Function */
flarge() large {
 printf(“HELLO”) ;
 }
/* Caller */
main() {
 fsmall() ; // Call small func.
 flarge() ; // Call large func.
 }

See pages 5-20 in the C51 reference manual for further details.

2.2.2 Point To Watch In Multi-Model Programs

A typical C51 program might be arranged with all background loop functions compiled as COMPACT, whilst all (fast)
interrupt functions treated as SMALL. The obvious approach of using the #pragma MODEL or command line option
to set the model can cause odd side effects. The problem usually manifests itself at link time as a “MULTIPLE PUBLIC
DEFINITION” error related to, for instance, putchar().

The cause is that in modules compiled as COMPACT, C51 creates references to library functions in the COMPACT
library, whilst the SMALL modules will access the the SMALL library. When linking, L51 finds that it has two
putchars() etc. from two different libraries.

The solution is to stick to one global memory model and then use the SMALL function attribute, covered in the previous
section, to set the memory model locally.

Example:

#pragma COMPACT
void fast_func(void) SMALL{
/*code*/
}

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 12

3 Declaring Variables And Constants
3.1 Constants

The most basic requirement when writing any program is to know how to allocate storage for program data. Constants
are the simplest; these can reside in the code (EPROM) area or as constants held in RAM and initialised at runtime.
Obviously, the former really are constants and cannot be changed.

While the latter type are relatively commonplace on big systems (Microsoft C), in 8051 applications the code required
to set them up is often best used elsewhere. Also, access is generally faster to ROMmed constants than RAM ones if
the RAM is external to the chip, as ROM “MOVC A,@DPTR” instruction cycle is much faster than the RAM “MOVX
A,@DPTR”.

Examples of Eprommed constant data are:

 code unsigned char coolant_temp = 0x02 ;
 code unsigned char look_up table[5]=‘1’,’2',’3',’4''} ;
 code unsigned int pressure = 4 ;

Note that “const” does not mean "code". Objects declared as "const" will actually end up in the data memory area
determined by the current memory model.

Obviously, any large lookup tables should be located in the CODE area - a declaration might be:

/* Base Fuel Map */

/* x = Load : y = engine speed : output = Injector PW, 0 - 8.16ms */

/* (x_size,y_size,
 x_breakpoints,
 y_breakpoints,
 map_data)
*/

code unsigned char default_base_fuel_PW_map[] = {

 0x08,0x08,
 0x00,0x00,0x00,0x09,0x41,0x80,0xC0,0xFF,
 0x00,0x00,0x13,0x1A,0x26,0x33,0x80,0xFF,
 0x00,0x00,0x00,0x09,0x41,0x80,0x66,0x66,
 0x00,0x00,0x00,0x09,0x41,0x80,0x66,0x66,
 0x00,0x00,0x00,0x00,0x4D,0x63,0x66,0x66,
 0x00,0x00,0x00,0x02,0x4D,0x63,0x66,0x66,
 0x00,0x00,0x00,0x05,0x4A,0x46,0x40,0x40,
 0x00,0x00,0x00,0x08,0x43,0x43,0x3D,0x3A,
 0x00,0x00,0x00,0x00,0x2D,0x4D,0x56,0x4D,
 0x00,0x00,0x00,0x00,0x21,0x56,0x6C,0x6F

 } ;

With large objects like the above it is obviously important to state a memory space. When working in the SMALL model
in particular, it is very easy to fill up the on-chip RAM with just a single table!

RAM constants would be:

unsigned char scale_factor = 128 ;
unsigned int fuel_constant = 0xFD34 ;

These could, however, have their values modified during program execution. As such, they are more properly thought
of as initialised variables - see section 3.2.2.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 13

3.2 Variables
3.2.1 Uninitialised Variables

Naturally, all variables exist in RAM, the configuration of which is given in section 2.1.1.

The #pragma SMALL line will determine the overall memory model. In this case, all variables are placed within the on-
chip RAM. However, specific variables can be forced elsewhere as follows:

#pragma SMALL
 .
 .
 .
 .
 xdata unsigned char engine_speed ;
 xdata char big_variable_array[192] ;

This will have engine_speed placed in an external RAM chip. Note that no initial value is written to engine_speed, so
the programmer must not read this before writing it with a start value! This xdata placement may be done to allow
engine_speed to be traced “on the fly”, by an in-circuit emulator for example.

In the case of the array, it would not be sensible to place this in the on-chip RAM because it would soon get filled up
with only 128 bytes available. This is a very important point - never forget that the 8051 has very limited on-chip RAM.

Another example is:

#pragma LARGE
 .
 .
 .
 .
 function(data unsigned char para1)
 {
 data unsigned char local_variable ;
 .
 .
 .
 .
 }

Here the passed parameters are forced into fast directly addressed internal locations to reduce the time and code overhead
for calling the function, even though the memory model would normally force all data into XDATA.

In this case it would be better to declare the function as SMALL, even though the prevailing memory model is large. This
is extremely useful for producing a few fast executing functions within a very big LARGE model program.

On a system using paged external RAM on Port 0, the appropriate directive is “pdata”.

See notes in section 2.1.3 for details on how to best locate variables.

3.2.2 Initialised Variables

To force certain variables to a start value in an overall system setup function, for example, it is useful to be able to declare
and initialise variables in one operation. This is performed thus:

unsigned int engine_speed = 0 ;

function()
 {
 .
 .
 .
 }

Here the value “0” will be written to the variable before any function can access it. To achieve this, the compiler collects
together all such initialised variables from around the system into a summary table. A runtime function named “C_INIT”

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 14

is called by the “startup.obj” program which writes the table values into the appropriate RAM location, thus initialising
them.

Immediately afterwards, the first C program “main()” is called. Therefore no read before write can occur, as C_INIT
gets there first. The only point to note is that you must modify the “startup.a51” program to tell C_INIT the location
and size of the RAM you are using. For the large model, XDATASTART and XDATALEN are the appropriate
parameters to change.

3.3 Watchdogs With Large Amounts Of Initialised Data

In large programs the situation may arise that the initialisation takes longer to complete than the watchdog timeout period.
The result is that the cpu will reset before reaching main() where presumably a watchdog refresh action would have been
taken.

To allow for this the INIT.A51 assembler file, located in the \C51p\LIB directory, should be modified.

;——;
This file is part of the C-51 Compiler package Copyright KEIL ELEKTRONIK GmbH 1990
;——;
INIT.A51: This code is executed if the application program contains initialised variables at
file level.
; ———;
; User-defined Watch-Dog Refresh.
;
; If the C application containing many initialised variables uses a watchdog it
; might be possible that the user has to include a watchdog refresh in the
; initialisation process. The watchdog refresh routine can be included in the
; following MACRO and can alter all CPU registers except DPTR.
;
WATCHDOG MACRO

;Include any Watchdog refresh code here
P6 ^= watchdog_refresh ;Special application code
ENDM

;————————————————————————————————————
NAME ?C_INIT

?C_C51STARTUP SEGMENT CODE
?C_INITSEG SEGMENT CODE ; Segment with Initialising Data

EXTRN CODE (MAIN)
PUBLIC ?C_START
RSEG ?C_C51STARTUP INITEND: LJMP MAIN

?C_START:
MOV DPTR,#?C_INITSEG

LOOP:
WATCHDOG ;<<— WATCHDOG REFRESH CODE ADDED HERE!
CLR A
MOV R6,#1
MOVC A,@A+DPTR
JZ INITEND
INC DPTR
MOV R7,A

.

.

.

. Large initialisation loop code

.

.

.
XCH A,R0
XCH A,R2
XCH A,DPH
XCH A,R2
DJNZ R7,XLoop
DJNZ R6,XLoop
SJMP Loop
LJMP MAIN ; C51 Program start

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 15

RSEG ?C_INITSEG
DB 0
END

A special empty macro named WATCHDOG is provided which should be altered to contain your normal watchdog
refresh procedure. Subsequently, this is automatically inserted into each of the initialisation loops within the body of
INIT.A51.

3.4 C51 Variables
3.4.1 Variable Types

Variables within a processor are represented by either bits, bytes, words or long words, corresponding to 1, 8, 16 and 32-
bits per variable. C51 variables are similarly based, for example:

bit =1 bit 0 - 1
char =8 bits 0 - +/- 127
unsigned char =8 bits 0 - 255
int =16 bits 0 - +/-32768
unsigned int =16 bits q0 - 65535
long =32 bits 0 - +/- 2.147483648x109
unsigned long =32 bits 0 - 4.29496795x109
float =32 bits +/-1.176E-38 to +/-3.4E+38
pointer =24/16/8 bits Variable address

Typical declarations would be:

xdata unsigned char battery_volts ;
idata int correction_factor ;
bit flag_1 ;

(Note: bit variables are always placed in the bit-addressable memory area of the 8051 - see section 2.1.1)

With a processor such as the 8086, int is probably the commonest data type. As this is a 16-bit processor, the handling
of 16 bit numbers is generally the most efficient. The distinction between int and unsigned int has no particular impact
on the amount of code generated by the compiler, since it will simply use signed opcodes rather than the unsigned variety.

For the 8051, naturally enough, the char should be the most used type. Again, the programmer has to be aware of the
thoroughly 8-bit nature of the chip. Extensive use of 16-bit variables will produce slower code, as the compiler has to use
library routines to achieve apparently innocuous 16 by 8 divides, for example.

The use of signed numbers has to be regulated, as the 8051 does not have any signed arithmetic instructions. Again,
library routines have to do the donkey work.

An interesting development has been the Infineon 80C537, which does have an extended arithmetic instruction set. This
has, for instance, 32 by 16 divide and integer instructions. Indeed, this device might be a good upgrade path for those
8051 users who need more number crunching power and who might be considering the 80C196. A suite of runtime libraries
is available from Keil to allow the compiler to take advantage of the 80C537 enhancements.

3.4.2 Special Function Bits

A major frustration for assembler programmers coming to C is the inability of ANSI C to handle bits in the bit-addressable
BDATA area directly. Commonly bit masks are needed when testing for specific bits with chars and ints. In C51 version
3 however, it is possible to force data into the bit-addressable area (starting at 0x20) where the 8051’s bit instructions
can be used directly from C.

An example is testing the sign of a char by checking for bit = 1.

Here, the char is declared as “bdata” thus:

bdata char test ;
sign_bit is defined as:
sbit sign ^ 7 ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 16

To use this:

void main(void) {
 test = -1 ;
 if(test & 0x80) { // Conventional bit mask and &
 test = 1 ; // test was -ve
 }
 if(sign == 1) { // Use sbit
 test = 1 ; // test was -ve
 }
 }

Results in the assembler:

RSEG ?BA?T2
test: DS 1
sign EQU test.7
;
; bdata char test ;
; sbit sign = test ^ 7 ;
;
; void main(void) {
main:
; test = -1 ;

MOV test,#0FFH
;
; if(test & 0x80) { // Conventional bit mask and &

MOV A,test
JNB ACC.7,?C0001

;
; test = 1 ; // test was -ve

MOV test,#01H
; }
?C0001:
;
; if(sign == 1) { // Use sbit

JNB sign,?C0003
;
; test = 1 ; // test was -ve

MOV test,#01H
; }
;
; }
?C0003:

RET

Here, using the sbit, the check of the sign bit is a single JNB instruction, which is an awful lot faster than using bit masks
and &’s in the first case! The situation with ints is somewhat more complicated. The problem is that the 8051 does not
store things as you first expect. The same sign test for an int would still require bit 7 to be tested. This is because the
8051 stores int’s high byte at the lower address. Thus bit 7 is the highest bit of the higher byte and 15 is the highest bit
of the lower.

Byte Number: test_int(high) 20H Bit Number: 0,1,2,3,4,5,6,7

Byte Number: test_int+1(low) 21H Bit Number: 8,9,10,11,12,13,14,15

Bit locations in an integer

3.4.3 Converting Between Types

One of the easiest mistakes to make in C is to neglect the implications of type within calculations or comparisons.

Taking a simple example:

unsigned char x ;
unsigned char y ;
unsigned char z ;

x = 10 ;
y = 5 ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 17

z = x * y ;

Results in z = 50

However:

x = 10 ;
y = 50 ;

z = x * y ;

results in z = 244. The true answer of 500 (0x1F4) has been lost as z is unable to accommodate it. The solution is, of
course, to make z an unsigned int. However, it is always a good idea to explicitly cast the two unsigned char operands
up to int thus:

unsigned char x ;
unsigned char y ;
unsigned int z ;

z = (unsigned int) x * (unsigned int) y ;

While C51 will automatically promote chars to int, it is best not to rely on it! It could be argued that on any small
microcontroller you should always be aware of exactly what size data is.

3.4.4 A Non-ANSI Approach To Checking Data Type Overflow

A very common situation is where two bytes are to be added together and the result limited to 255, i.e. the maximum
byte value. With the 8051 being byte-orientated, incurring integers must be avoided if maximum speed is to be achieved.
Likewise, if the sum of two numbers exceeds the type maximum the use of integers is needed.

In this example the first comparison uses a proper ANSI approach. Here, the two numbers are added byte-wise and any
resulting carry used to form the least significant bit of the upper byte of the notional integer result. A normal integer
compare then follows. Whilst C51 makes a good job of this, a much faster route is possible, as shown in the second case.

; #include <reg51.h>
;
;
; unsigned char x, y, z ;
;
; /*** Add two bytes together and check if ***/
; /***the result has exceeded 255 ***/
;
; void main(void) {

RSEG ?PR?main?T
USING 0

main:
; SOURCE LINE # 8

;
; if(((unsigned int)x + (unsigned int)y) > 0xff) {

; SOURCE LINE # 10
MOV A,x
ADD A,y
MOV R7,A
CLR A
RLC A
MOV R6,A
SETB C
MOV A,R7
SUBB A,#0FFH
MOV A,R6
SUBB A,#00H
JC ?C0001

;
; z = 0xff ; // ANSI C version

; SOURCE LINE # 12

MOV z,#0FFH
; }

; SOURCE LINE # 13

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 18

In this case the carry flag, “CY”, is checked directly, removing the need to perform any integer operations, as any addition
resulting in a value over 255 sets the carry. Of course, this is no longer ANSI C as a reference to the 8051 carry flag has
been made.

?C0001:
;
; z = x + y ;

; SOURCE LINE # 15
MOV A,x
ADD A,y
MOV z,A

;
; if(CY) {

; SOURCE LINE # 17
JNB CY,?C0003

;
; z = 0xff ; // C51 Version using the carry flag

; SOURCE LINE # 19
MOV z,#0FFH

; }
; SOURCE LINE # 20

;
;
;
;
; }

; SOURCE LINE # 25
?C0003:

RET

The situation of an integer compare for greater than 65535 (0xffff) is even worse as long maths must be used. This is
almost a disaster for code speed as the 8051 has very poor 32-bit performance. The trick of checking the carry flag is still
valid as the final addition naturally involves the two upper bytes of the two integers.

In any high performance 8051 system this loss of portability is acceptable, as it allows run time targets to be met.
Unfortunately, complete portability always compromises performance!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 19

4 Program Structure And Layout
4.1 Modular Programming In C51

This is possibly not the place to make the case for modular programming, but a brief justification might be appropriate.

In anything but the most trivial programs the overall job of the software is composed of smaller tasks, all of which must
be identified before coding can begin. As an electronic system is composed of several modules, each with a unique
function, so a software system is built from a number of discrete tasks. In the electronic case, each module is designed
and perfected individually and then finally assembled into a complete working machine. With software, the tasks are
the building blocks which are brought together to achieve the final objective.

The overall program thus has a loosely-predefined modular structure which could sensibly form the basis of the final
software layout. The largest identifiable blocks within the program are the tasks. These are in turn built from modules,
which themselves are constructed from functions in the case of C.

The modules are in reality individual source files, created with a text editor. Grouping the software sections together
according to the function with which they are associated is the basis of modular programming.

Using the CEMS engine control system again as a real example, the task of running the engine is divided into the
following tasks:

Task 1
Provide Timed Sparks For Ignition

Task 2
Provide controlled pulsewidths for fuel injection

Task 3
Allow alteration of tune parameters via terminal

Considering Task 1, this is in turn composed of modules thus:

Task 1, Module 1
Determine crank shaft position and speed

Task 1, Module 2
Measure engine load

Task 1, Module 3
Obtain required firing angle from look-up table

Taking module 2, a C function exists which uses an A/D converter to read a voltage from a sensor. It is part of the overall
background loop and hence runs in a fixed sequence. In module 1 an interrupt function attached to an input capture pin
calculates engine speed and generates the ignition coil firing pulse. Module 3 is another function in the background loop
and takes speed and load information from the other modules constituting the ignition function, to calculate the firing
angle. Obviously, data must be communicated from the data collecting functions to the processing functions and thence
to the signal generation parts across module boundaries.

In this case, the data flows are thus:

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 20

Commonly, the variables used are declared in the module that first supplies them with data. Hence the engine_load would
be defined in Module 2 as that is where its input data comes from.

In this system the data would be declared thus:

Module_1.c Module_3.c Module_2.c

/* Global Data Declaration */ /* Global Data Declaration */ /* Global Data Declaration */

unsigned char engine_speed unsigned char advance unsigned char engine_load

/* External Data References */ /* External Data References */ /* External Data References */

extern unsigned char advance extern unsigned char engine_speed extern unsigned char engine_load

The most important thing to note is how the data defined in another module is referenced by redeclaring the required
data item but prefixed with “extern”.

Now, with a complete program spread across many different source files, the problem arises of how data is
communicated between modules (files) and how separate C functions which lie outside of the home module may be
accessed.

The next section illustrates how the linkage between modules is undertaken.

4.2 Accessibility Of Variables In Modular Programs

A typical C51 application will consist of possibly five functional blocks (modules) contained in five source files. Each
block will contain a number of functions (subroutines) which operate on and use variables in RAM. Individual functions
will (ideally) receive their input data via parameter passing and will return the results similarly. Within a function
temporary variables will be used to store intermediate calculation values. As used to be done years ago in assembler,
all variables (even the temporary ones) will be defined in one place and will remain accessible to every routine.

This approach is very inefficient and would seriously limit the power of C programs, as the internal RAM would soon
be used up. The high-level language feature of a clearly defined input and output to each function would also be lost.
Similarly, an entire C program might be written within one single source file. As has been said, this practice was common
many years ago with simple assemblers. Ultimately the source program can get so big that the 640K of a PC will get
full and the compiler will stop. Worse than this, the ideal of breaking programs into small, understandable chunks is lost.
Programs then become a monolithic block and consume huge amounts of listing paper...

There should therefore be a hierarchical arrangement of variables and functions within a program; complete functional
blocks should be identified and given their own individual source files or modules. Use should be made of the ability
to access external variables and functions to achieve small program files!
The following should help explain:

MODULE1.c: **
 unsigned char global1 ; (1)
 unsigned char global2 ;
 extern unsigned char ext_function(unsigned char) ;(2)

/* Utility Routine */
 int_function(x) (3)
 unsigned char x ; (4)
 {
 unsigned int temp1 ; (5)
 unsigned char temp2 ;
 temp 1 = x * x ;
 temp2 = x + x ;

 x = temp1/temp2 ;

 return(x) (6)
 }

/* Program Proper */
 main() (7)
 {
 unsigned char local1 ; (5)

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 21

 unsigned char local2 ;
 local2 = int_function(local1) ; (8)
 local1 = ext_function(local2) ; (9)

 }
end of MODULE1.c **

MODULE2.c: **
 extern unsigned char global1 ; (10)

 ext_function(y)
 unsigned char y ;
 {
 unsigned char temp ;
 static unsigned char special ; (11)

 special++ ;
 y = temp * global1 ; (12)

 return(y) ;
)

Line (1) declares variables which will be accessible from all parts of the program. Ideally, such global usage should be
avoided but where an interrupt has to update a value used by the background program, for example, they are essential.

Line (2) makes an external reference to a function not defined in the current module (block). This line allows all the
functions in this MODULE to call the external function.

Line (3) declares a function which is to be used by another function in this module. These utility functions are placed
above the calling function (here “main()”).

Line (4) declares the variable which has been passed-over by the calling function. When the variable left “main()”, it
was called “local1”. Within this function it is known simply as “x”. The byte of ram is allocated to “x” only while the
8051’s program counter is within this function. At the closing }, x will vanish.

Line (5) like “x” above, these variables are simply used as intermediate values within the function. They have no
significance outside. Again, the byte of RAM will be re-assigned within another function. However the locals defined
in “main()” will always exist as the C program is entirely contained within “main()”.

Line (6) allows the result of the calculation to be passed back to the calling function. Once back in “main()” the value
is placed in “local2”.

Line (7) defines the start of the C program. Immediately prior to the point at which the program counter reachs main(),
the assembler routine “STARTUP.A51” will have been executed. This in turn starts at location C:0000, the reset vector.
Note that no parameters are passed to “main()”.

Line (8) effectively calls the function defined above, passing the value “local1” to it.

Line (9) is like 8, but this time a function is being called which resides outside of the current module.

Line(10) links up with line(1) in that it makes “global1” visible to function within MODULE 2.

Line(11) declares a variable which is local to this function but which must not be destroyed having exited. Thus it
behaves like a global except that no other function can use it. If it were placed above the function, accessibility would
be extended to all functions in MODULE 2.

The physical linking of the data names and function names between modules is performed by the L51 linker. This is
covered in detail in section 8.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 22

4.3 Building A Real Modular Program - The Practicalities Of
Laying Out A C51 Program

The need for a modular approach to program construction has been outlined earlier. Here the practicalities of building
easily maintainable and documentable software is given, along with a trick for easing the development of embedded C
programs using popular compilers such as the Keil C51.

4.3.1 The Problem

The simplest embedded C program might consist of just:

/* Module Containing Serial Port Initialisation */ /* V24IN537.C */
void v24ini_537(void)
 {

 /* Serial Port Initialisation Code */
 }

/* Module Containing Main Program */ /* MAIN.C */
/* External Definitions */

extern void v24ini_537(void) ;

void main(void) {
 v24ini_537() ;
 while(1) {
 printf(“Time = “) ;
 }

This minimal program has only one purpose - to print an as yet incomplete message on the terminal attached to the serial
port. Obviously, a single source file or “module” is sufficient to hold the entire C program.

Any real program will of course contain more functionality than just this. The natural reaction is to simply add further
code to the existing main function, followed by additional functions to the MAIN.C source file. Unless action is taken
the program will consist of one enormous source file, containing dozens of functions and interrupts and maybe hundreds
of public variables.

Whilst compilers will still compile the file, the compilation time can become greatly extended, meaning that even the
smallest modification requires the entire program to be re-compiled. A monolithic program is usually symptomatic of
a lack of proper program planning and is likely to contain suspect and difficult to maintain code.

The next stage in the sample program development is to add some means of generating the time thus:

/* Module Containing Timer0 Initialisation */
/* T0INI537.C */

 void timer0_init_537(void) {
 /* Enable Timer 0 Ext0 interrupts */
 } /*init_timer_0*/

/* Module Containing Timer0 Service Routine */
/* RLT_INT.C */
/* Local Data Declarations */
/* Clock Structure Template */

struct time { unsigned char msec ;
 unsigned char sec ; } ;

/* Create XDATA Structure */

struct time xdata clock ;
bit clock_run_fl = 0 ; // Flag to tell timer0 interrupt
 // to stop clock

/* External References */

extern bit clock_reset_fl // Flag to tell timer0 interrupt to reset clock to zero

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 23

/*** INTERRUPT SERVICE FOR TIMER 0 ***/
 void timer0_int(void) interrupt 1 using 1 {
 if(clock.msec++ == 1000) {
 clock.sec++ ;
 if(clock.sec == 60) {
 clock_sec = 0 ;
 }
 }
 }

To make this 4 module program useful, the main loop needs to be altered to:

/* Module Containing Main Program */
/* MAIN.C */

#include <reg517.h>

/* External Definitions */

extern void v24ini_537(void) ;
extern void timer0_init_537(void) ;

/* General Clock Structure Template */

struct time { unsigned char secs ;
 unsigned char msec ; } ;

/* Reference XDATA Structure In Another Module */

extern struct time xdata clock ; extern bit clock_reset_fl // Flag to tell timer0 interrupt to
reset clock to zero
/* Local Data Declaration */
bit clock_run_fl ; // Flag to tell timer0 interrupt
 // to stop clock
void main(void) {
 v24ini_537() ;
 timer0_init_537() ;
 while(1) {
 printf(“Time = %d:%d:%d:%d”,clock.hours,
 clock.mins,
 clock.secs,
 clock.msecs) ;
 }
 if(P1 | 0x01) {
 clock_run_fl = 1 ; // If button pressed start clock
 }
 else {
 clock_run_fl = 0 ; // If button released stop clock
 }
 if(P1 | 0x02) {
 clock_reset_fl = 1 ; // If button pressed clear clock
 }
 }

4.3.2 Maintainable Inter-Module Links

The foregoing program has been contructed in a modular fashion with each major functional block in a separate module
(file). However even with this small program a maintenance problem is starting to become apparent: The source of the
trouble is that to add a new data item or function, at least two modules need to be edited - the module containing the data
declaration plus any other module which makes a reference to the additional items. With long and meaningful names
common in C and complex memory space qualification widespread in C51, much time can be wasted in getting external
references to match at the linking stage. Simple typographic errors can waste huge amounts of time!

In large programs with many functions and global variables, the global area preceding the executable code can get very
untidy and cumbersome. Of course, there is an argument that says that having to add external references to the top of
a module when first using a new piece of global data is good practice, as it means that you are always aware of exactly
which items are used. It is preferable to the common approach of having a single include file incorporated as a matter
of course in each source file, containing an external reference for every global item, regardless of whether the host file
actually needs them all.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 24

This latter method inevitably leads to the undesirable situation where an original data declaration in the source module
is sitting alongside its external reference in the general include file.

A solution to this is to have “module-specific” include files. Basically, for each source module “.c” file, a second “.h”
include is created. This auxilliary file contains both original declarations and function prototypes plus the external
references. It is therefore similar in concept to the standard library .h files used in every C compiler. The trick is, however,
to use conditional compilation to prevent the original declarations and the external versions being seen simultaneously.

When included in their home modules, i.e. the “.c” file having the same root, only the original declarations are seen by
C51 whereas, when included in a foreign module, only the external form is seen. To achieve this apparent intelligence,
each source module must somehow identify itself to the include file.

The means to achieve this is to place a #define at the top of each module giving the name of the module. When included
in its “home” module, the #ifdef-#else#-endif will cause the preprocessor to see the original declarations. When placed
in foreign modules not sharing the same root, the preprocessor will see the external equivalents. Keil supports __FILE__
but it is not of practicle use in this context, as its "value" cannot be used for a #define name.

By only including module-specific header files in those modules that actually need to access an item in another module,
the operation of powerful make utilities such as Polymake or Keil's own AMAKE, is improved; provided the dependency
list is kept up to date, any changes to a .h file will cause all modules that reference it to be recompiled automatically. Thus
a modified program cannot be built for testing unless all modules referencing the altered item successfully re-compile.
This usefully relieves the linker from being alone responsible for symbol attribute cross-checking - something which
some linkers cannot be relied upon to do.

In most embedded C dialects this can be a major help in program development as, for example, a change in a widely-
used function’s memory model attribute can easily be propagated through an entire program; the change in the intelligent
header file belonging to the function’s home module causing the AMAKE to recompile all other modules referencing
it. Likewise, a change in a variable’s memory space from say XDATA to PDATA needs only one header file to be edited
- AMAKE will do the rest!

Here’s how it's done in practice:

/* Module Containing Main Program - MAIN.C */
#define _MAIN_
/* Define module name for include file control */
#include <reg517.h> // Definitions for CPU
#include <v24ini537.h> // External references from V24INI.C #include <t0ini537.h>

// External references from
//T0INI537.C

#include <rlt_int.h>
// External references for RLT_INT.C

void main(void) {

 v24ini_537() ;

 timer0_init_537() ;

 while(1) {

 printf(“Time = %d.%d”,clock.secs,clock.msecs) ;
 }
 if(P1 | 0x01) {
 clock_run_fl = 1 ; // If button pressed start clock
 }
 else {
 clock_run_fl = 0 ; // If button released stop clock
 }
 if(P1 | 0x02) {
 clock_reset_fl = 1 ; // If button pressed clear clock
 }
 }

/* Module Containing Timer0 Service Routine - RLT_INT.C */
#define _RLT_INT_ /* Identify module name */

/* External References */
extern bit clock_reset_fl // Flag to tell timer0 interrupt to

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 25

 // reset clock to zero

/*** INTERRUPT SERVICE FOR TIMER 0 ***/
 void timer0_int(void) interrupt 1 using 1 {
 if(clock.msec++ == 1000) {
 clock.sec++ ;
 if(clock.sec == 60) {
 clock_sec = 0 ;
 }
 }
 }

Taking the include files:

/* Include File For RLT_INT.C */

/* General, non-module specific definitions */
/* such as structure and union templates */
/* Clock Structure Template - Available To All Modules */
struct time { unsigned char secs ;
 unsigned char msec ; } ;

#ifdef _RLT_INT_
/* Original declarations - active only in home module */
/* Create XDATA Structure */
struct time xdata clock ;
bit clock_run_fl = 0 ; // Flag to tell timer0 interrupt to stop clock
#else
/* External References - for use by other modules */
extern struct time xdata clock ;
extern bit clock_run_fl = 0 ; // Flag to tell timer0 interrupt to stop clock
#endif

/* Include File For MAIN.C */
#ifdef _MAIN_
/* Local Data Declaration */
bit clock_run_fl = 0 ; // Flag to tell timer0 interrupt to stop clock
#else
/* External References - for other modules */
extern bit clock_run_fl ; // Flag to tell timer0 interrupt to stop clock
#endif

/* Include File For V24INI537.C */
#ifdef _V24INI537_
/* Original Function Prototype - for use in V24INI537.C */
void v24ini_537(void) ;
#else
/* External Reference - for use in other modules */
extern void v24ini_537(void) ;
#endif

Now, should any new global data be added to, for example, RLT_INT.C, adding the original declaration above the
“#endif” and the external version below, this makes the new item instantly available to any other module that wants it.

To summarise, the basic source module format is:

#define _MODULE_
#include <mod1.h>#include <mod2.h?
.
.
.
functions()

The include file format is:

/* General, non-module specific definitions such as structure and union templates */
#ifdef _MODULE_
/* Put original function prototypes and global data declarations here */
#else
/* Put external references to items in above section here */
#endif

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 26

Standard Module Layouts For C51

To help integrate this program construction method, the following standard source and header modules shown overleaf
may be used.

Standard Source Module Template

#define __STD__
/* Define home module name */
***/
***/
/* Project: X */
/* Author: X Creation Date: XX\XX\XX */
/* Filename: X Language: X */
/* Rights: X Rights: X */
/* */
/* Compiler: X Assembler: X */
/* Version: X.XX Version: X.XX */
/**/
/* Module Details: */
/**/
/* Purpose: */
/* */
/* */
/* */
***/
/* Modification History */
***/
/* Name: X Date: XX\XX\XX */
/* Modification: X */
/* */
/* Name: X Date: XX\XX\XX */
/* Modification: X */
/* */
/* Name: X Date: XX\XX\XX */
/* Modification: X */
/* */
/**/
/**/
/* External Function Prototypes */
/**/
#include “.h”
/* Standard ANSI C header files */
/**/
/* Global Data Declarations */
/**/
#include “.h”
/* Home header file */
/**/
/* External Declarations */
/**/
#include “.h”
/* Header files for other modules */
/**/
/* Functions Details: */
/**/
/* Function Name: */
/* Entered From: */
/* Calls: */
/**/
 /***/
/* Purpose: main loop for training program */
/* */
/**/
/* Resource Usage: */
/* */
/* CODE CONST DATA IDATA PDATA */
/* n/a n/a n/a n/a n/a */
/* */
/* Performance: */
/* Max Runtime: Min Runtime: */
/* */
/* */
/**/
/* Executable functions */
/**/
/**/
/* End Of STD.c */
/**/

Standard Include Header File Template

/***/
/* Project: X */
/* Author: X Creation Date: XX\XX\XX */
/* Filename: X Language: X */
/* Rights: X Rights: X */
/* */
/* Compiler: X Assembler: X */
/* Version: X.XX Version: X.XX */
/***/
/* Modification History */
/***/
/* Name: X Date: XX\XX\XX */
/* Modification: X */
/* */

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 27

/* Name: X Date: XX\XX\XX */
/* Modification: X */
/* */
/* Name: X Date: XX\XX\XX */
/* Modification: X */
/* */
/***/
/***/
/* Global Definitions */
/***/
/* Structure and union templates plus other definitions */

#ifdef _STD_
/* Check for inclusion in home module */
/***/
/***/
/* Within Module Function Prototypes */
/***/
/* Function prototypes from home module */
/***/
/* Within Module Data Declarations */
/***/
/* Data declarations from home module */
/***/
#else

/***/
/***/
/* External Function Prototypes */
/***/
/* External function prototypes for use by other modules */
/***/
/* External Data Declarations */
/***/
/* External data definitions for use by other modules */
/***/

#endif

Summary

Provided the necessary module name defines are added to the first line of any new module and the new globals placed
into the associated “.h” file, the overall amount of editing required over a major project is usefully reduced. Compilation
and, more particularly, linking errors are reduced as there is effectively only one external reference for each global item
in the entire program. For structures and unions the template only appears once, again reducing the potential for
compilation and linking problems.

4.4 Task Scheduling
4.4.1 8051 Applications Overview

When most people first start to learn to program, BASIC is used on a PC or similar machine. The programs are not usually
too complicated; they start when you type “RUN” and finish at END or STOP. In between, the PC is totally devoted
to executing your “HELLO WORLD” program. When it is finished you are simply thrown back to the BASIC editor/
”operating environment”.

All this is very good and you think you now know how to program. However, when writing for an embedded
microcontroller like the 8051, the problem of where does the program start and finish suddenly presents itself. The
average 8051 software system consists of many individual programs which, when executed together, contribute towards
the fulfilment of the overall system objective. A fundamental problem is then how to ensure that each part is actually
run.

4.4.2 Simple 8051 Systems

The simplest approach is to call each major sub-function in a simple sequential fashion so that after a given time each
function has been executed the same number of times. This constitutes a “background loop”. In the foreground might
be interrupt functions, initiated by real time events such as incoming signals or timer overflows.

Data is usually passed from background to foreground via global variables and flags. This essentially simple program
model can be very successful if some care is taken over the order and frequency of execution of particular sections.

The background-called functions must be written so that they run a particular section of their code on each successive
entry from the background loop. Thus each function is entered, a decision is taken as to what to do this time, the code
is executed and finally the program is exited, probably with some special control flags set up to tell the routine program
what to do next time. Thus each functional block must maintain its own control system to ensure that the right code is
run on any particular entry.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 28

In this system all functional blocks are considered to be of equal importance and no new block can be entered until its
turn is reached by the background loop. Only interrupt routines can break this, with each one having its own priority.
Should a block need a certain input signal, it can either keep watching until the signal arrives, so holding up all other
parts, or it can wait until the next entry, next time round the loop. Now there is the possibility that the event will have
been and gone before the next entry occurs. This type of system is OK for situations where the time-critical parts of the
program are small.

In reality many real-time systems are not like this. Typically they will consist of some frequently-used code, the execution
of which is caused by or causes some real-world event. This code is fed data from other parts of the system, whose own
inputs may be changing rapidly or slowly.

Code which contributes to the system’s major functionality must obviously take precedence over those sections whose
purpose is not critical to the successful completion of the task. However most embedded 8051 applications are very time-
critical, with such parts being attached to interrupts. The need to service as many interrupts as quickly as possible requires
that interrupt code run times are short. With most real-world events being asynchronous, the system will ultimately crash
when too many interrupt requests occur per unit time for the cpu to cope with.

Fast runtimes and hence acceptable system performance are normally achieved by moving complex functions into the
background loop, leaving the time-critical sections in interrupts. This gives rise to the problem of communication
between background code and its dependant interrupt routine.

The simple system is very egalitarian, with all parts treated in the same way. When the cpu becomes very heavily loaded
with high speed inputs, it is likely that major sub-functions will not be run frequently enough for the real-world interrupt
code to be able to run with sufficiently up to date information from the background. Thus, system transient response
is degraded.

4.4.3 Simple Scheduling - A Partial Solution

The problems of the simple loop system can be partially solved by controlling the order and frequency of function calling.
One approach is to attach a priority to each function and allow each function to specify the next one to be executed. The
real-world driven interrupt functions would override this steady progression so that the most important (highest priority)
jobs are executed as soon as the current job is completed. This kind of system can yield useful results, provided that no
single function takes too long.

An alternative is to control overall execution from a real time interrupt so that each job is allocated a certain amount of
time in which to run. If a timeout does occur, that task is suspended and another begins.

Unfortunately all these tend to be bolt-ons, added late in a project when run times are getting too long. Usually what
had been a well-structured program degenerates into spaghetti code, full of fixes and special modes, designed to
overcome the fundamental mismatch between the demands of real time events and the response of the program.
Moreover, the individual control mechanisms of the called functions generate an overhead which simply contributes to
the runtime bottle-neck.

The reality is that real time events are not orderly and predictable. Some jobs are naturally more important than others.
However inconvenient, the real world produces events that must be responded to immediately.

4.4.4 A Pragmatic Approach

Without resorting to a full real time executive like RTX51, what can be done?

A simple mechanism to control the running of the background loop can be a simple switch statement, with the switch
variable controlled by some external real time event. Ideally this should be the highest priority interrupt routine. The
high priority background tasks are placed at the top case, with lower priority tasks located further down the case
statement. Thus, on every occurrence of the interrupt, the switch is set back to the top. As the background tasks execute,
they increment the switch. If the interrupt is absent for long enough, the switch will reach the lowest level and then return
to the highest level automatically.

Should the interrupt occur at level 2, the switch variable is forced back to zero and so tasks at the lowest levels are simply
missed. This is by no means an ideal system, since only the top level is ever executed.given a high enough interrupt
frequency.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 29

However under normal conditions it is a useful way of ensuring that low priority tasks are not executed frequently. For
example, there would be little point in measuring ambient temperature more than once per second. In a typical system
this measurement might be at level 100 in a switch scheduler.

To be able to make a judgement about how best to structure the program, it is vital to know the run times for each section.

Where this simple method falls down is when a low priority task has a long run time. Even though the interrupt has
requested that the loop returns back to the top level to calculate more data, there is no way of exiting the task until
completed. To do so requires a proper time-slice mechanism.

A useful dodge can be to utilise an unused interrupt to guarantee that high priority tasks will be run on time. By setting
the unused interrupt pending flag within the exiting high priority interrupt routine and placing the background task into
the corresponding service routine, the punctual execution of the second task will occur. Of course, the unused interrupt
priority must be set to a lower priority in the appropriate interrupt priority register(s).

The most important factor overall is to keep run times as short as possible, particularly in interrupt routines. This means
making full use of C51 extensions like memory-specific pointers, special function bits and local regsiter variables.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 30

5 C Language Extensions For 8051 Programming
8051 programming is mainly concerned with accessing real devices at specific locations, plus coping with interrupt
servicing. C51 has made many extensions to the C language to allow near-assembler code efficiency. The main points
are now covered.

5.1 Accessing 8051 On-Chip Peripherals

In the typical embedded control application, reading and writing port data, setting timer registers and reading input
captures etc. are commonplace. To cope with this without recourse to assembler, C51 has the special data types sfr and
sbit.

Typical declarations are:

sfr P0 0x80
sfr P1 0x81
sfr ADCON; 0xDE
sbit EA 0x9F

and so on.

These declarations reside in header files such as reg51.h for the basic 8051 or reg552.h for the 80C552 and so on. It is
the definition of sfrs in these header files that customises the compiler to the target processor. Accessing the sfr data is
then a simple matter:

 {
 ADCON = 0x08 ; /* Write data to register */
 P1 = 0xFF ; /* Write data to Port */

 io_status = P0 ; /* Read data from Port */
 EA = 1 ; /* Set a bit (enable all interrupts) */

 }

It is worth noting that control bits in registers which are not part of Intel’s original 8051 design generally cannot be bit-
addressed.

The rule is usually that addresses that are divisible by 8 are bit addressable. Thus for example, the serial Port 1 control
bits in an 80C537 must be addressed via byte instructions and masking.

Always check the processor’s user manual to verify which sfr register bits can be bit addressed.

5.2 Interrupts

Interrupts play an important part in most 8051 applications. There are several factors to be taken into account when
servicing an interrupt:

(i) The correct vector must be generated so that the routine may be called. C51 does this automatically.

(ii) The local variables in the service routine must not be shared with locals in the background loop code: the L51
linker will try to re-use locations so that the same byte of RAM will have different significance depending on
which function is currently being executed. This is essential to make best use of the limited internal memory.
Obviously this relies on functions being executed only sequentially. Unexpected interrupts cannot therefore use
the same RAM.

5.2.1 The Interrupt Function Type

To allow C coding of interrupts a special function type is used thus;

timer0_int() interrupt 1 using 2
{
unsigned char temp1 ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 31

unsigned char temp2 ;
executable C statements ;
}

Firstly, the argument of the “interrupt” statement, “1” causes a vector to be generated at (8*n+3), where n is the argument
of the “interrupt” declaration. Here a “LJMP timer0_int” will be placed at location 0BH in the code memory. Any local
variables declared in the routine are not overlaid by the linker to prevent the overwriting of background variables.

 Logically, with an interrupt routine, parameters cannot be passed to it or returned. When the interrupt occurs, compiler-
inserted code is run which pushes the accumulator, B,DPTR and the PSW (program status word) onto the stack. Finally,
on exiting the interrupt routine, the items previously stored on the stack are restored and the closing “}” causes a RETI
to be used rather than a normal RET.

5.2.2 Using C51 With Target Monitor Debuggers

Many simple 8032 target debuggers place the monitor’s EPROM code at 0, with a RAM mapped into both CODE and
XDATA spaces at 0x8000. The user’s program is then loaded into the RAM at 0x8000 and, as the PSEN is ANDed with
the RD pin, the program is executed. This poses something of a problem as regards interrupt vectors. C51/L51 assume
that the vectors can be placed at 0. Most monitors for the 8032 foresee this problem by redirecting all the interrupt vectors
up to 0x8000 and above, i.e. they add a fixed offset of 0x8000. Thus the timer 0 overflow interrupt is redirected by a
vector at C:0x000B to C:0x800B.

Before C51 v3.40 the interrupt vector generation had to be disabled and assembler jumps had to be inserted. However
now the INTVECTOR control has been introduced to allow the interrupt vector area to be based at any address.

In most cases the vector area will start at 0x8000 so that the familar “8 * n + 3” formula outlined in section 5.2.1
effectively becomes:

8 * n + 3 + INTVECTOR

To use this:

#pragma INTVECTOR(0x8000) /* Set vector area start to 0x8000 */

void timer0_int(void) interrupt 1 {

 /* CODE...*/

 }

This produces an LJMP timer0_int at address C:0x800B. The redirection by the monitor from C:0x000B will now work
correctly.

5.2.3 Coping Interrupt Spacings Other Than 8

Some 8051’s do not follow the normal interrupt spacing of 8 bytes - the ‘8’ in the 8 * n + 3 formula. Fortunately the
“INTERVAL #pragma” copes with this.

The interrupt formula is, in reality:

INTERVAL * n + INTVECTOR and so:

#pragma INTERVAL(6) /* Change spacing */

will allow a 6 byte spacing.

Please note that for convenience INTERVAL defaults to 8 and INTVECTOR to 0x80000!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 32

5.3 Interrupts, USING, Registerbanks, NOAREGS In C51 -
Everything You Need To Know

Interrupts play an important part in most 8051 applications and fortunately, C51 allows interrupt service routines to be
written entirely in C. Whilst you can write perfectly workable (and safe) programs by using just straight ANSI C, you
can significantly improve the efficiency of your code by gaining an understanding of the following special C51 controls:

- INTERRUPT
- USING
- NOAREGS
- RE-ENTRANT
- REGISTERBANK

5.3.1 The Basic Interrupt Service Function Attribute

The correct vector must be generated so that the routine may be called. C51 does this based on the argument to the interrupt
keyword. The linker thereafter does not allow local data from interrupt routines to be overlaid with that from the background
by creating special sections in RAM.

C51 special "interrupt" function attribute example:

/* Timer 0 Overflow Interrupt Service Routine */

timer0_int() interrupt 1 {
 unsigned char temp1 ;
 unsigned char temp2 ;

 /* executable C statements ; */
 }

- The “interrupt 1” causes a vector to be generated at (8*n+3), where n is the argument of the “interrupt” declaration.
An “LJMP timer0_int” will be placed at location 0BH in the code memory.

- Local variables declared in the routine are not overlaid by the linker to prevent the overwriting of background variables.

- When the interrupt occurs, compiler-inserted code is run which pushes the accumulator, B,DPTR and the PSW
(program status word) onto the stack if used in function, along with any registers R0-R7 used in the function.

- A RETI is inserted at the end of the function rather than RET.

Taking an empty interrupt service function for the timer 0 overflow interrupt, this is how C51 starts off an interrupt
routine that uses no registers at all:

timer0_int Entry Code

; void timer0_int(void) interrupt 1 {

RSEG ?PR?timer0_int?TIMER0

5.2.4 The Using Control

The “using” control tells the compiler to switch register banks. This is an area where the 8051 architecture works for
the compiler rather than against it; the registers R0 to R7 are used extensively for the temporary storage of library routines
and for locals. Ordinarily Bank 1 is used. However, to be able to use this standard code in an interrupt the register bank
must be switched to 2 in the above example. Thus the variables of the interrupted routines are preserved. See section
5.3 on use of register banks and the USING statement.

As a rule interrupts of the same priority can share a register bank, since there is no risk that they will interrupt each other.

If interrupt runtime is not important the USING can be omitted, in which case C51 examines the registers which are
actually used within the routine and pushes only these onto the stack. This obviously increases the effective interrupt
latency. See the next section for more details.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 33

USING 0
timer0_int:

; SOURCE LINE # 2

If a function, here called “sys_interp” is now called from the timer0 service function, this is how the entry code to the
interrupt changes.

timer0_int Entry Code Now With Called Function

; void timer0_int(void) interrupt 1 {

RSEG ?PR?timer0_int?TIMER0
USING 0

timer0_int:
PUSH ACC
PUSH B
PUSH DPH
PUSH DPL
PUSH PSW
PUSH AR0
PUSH AR1
PUSH AR2
PUSH AR3
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7

Note that the entire current registerbank is pushed onto the stack when entering timer0_int() as C51 assumes that all will
be used by sys_interp.

Sys_interp receives parameters in registers; if the entry to sys_interp is examined, an important compiler trick is revealed:

sys_interp() Entry Code

; unsigned char sys_interp(unsigned char x_value,

RSEG ?PR?_sys_interp?INTERP
USING 0

_sys_interp:
MOV y_value?10,R5
MOV map_base?10,R2
MOV map_base?10+01H,R3

;—— Variable ‘x_value?10’ assigned to Register ‘R1’ ——
MOV R1,AR7

The efficient MOV of R7 to R1 by using AR7 allows a MOV direct, direct on entry to sys_interp(). This is absolute
register addressing and is a useful dodge for speeding up code.

5.3.2 The absolute register addressing trick in detail

The situation often arises that the contents of one Ri register needs to be moved directly into another general purpose
register. This usually occurs during a function’s entry code when a pointer is passed. Unfortunately, Intel did not provide
a MOV Reg,Reg instruction and so Keil use the trick of treating a register as an absolute D: segment address:

Simulating A MOV Reg,Reg Instruction:

 In registerbank 0 - MOV R0,AR7, is identical to - MOV R0,07H.

Implementing a “MOV Reg,Reg” instruction the long way:

XCH A,R1
MOV A,R1

The use of this trick means however, that you must make sure that the compiler knows which is the current registerbank
in use so that it can get the absolute addresses right. If you use the USING control, problems can arise!
See the next few sections..

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 34

5.3.3 The USING Control

“using” tells the compiler to switch register banks on entry to an interrupt routine. This “context” switch is the fastest
way of providing a fresh registerbank for an interrupt routine’s local data and is to be preferred to stacking registers for
very time-critical routines. Note that interrupts of the same priority can share a register bank, since there is no risk that
they will interrupt each other.

8051 Register Bank Base Addresses

R0 AR0 Absolute Addr. 0x00 REGISTERBANK 0
R1 AR1
R2 AR2
R3 AR3
R4 AR4
R5 AR5
R6 AR6
R7 AR7
R0 Absolute Addr. 0x08 REGISTERBANK 1, “USING 1”
R1
R2
R3
R4
R5
R6
R7
R0 Absolute Addr. 0x10 REGISTERBANK 2, “USING 2”
R1
R2
R3
R4
R5
R6
R7
R0 Absolute Addr. 0x18 REGISTERBANK 3, “USING 3”
R1
R2
R3
R4
R5
R6
R7

If a USING 1 is added to the timer1 interrupt function prototype, the pushing of registers is replaced by a simple MOV
to PSW to switch registerbanks. Unfortunately, while the interrupt entry is speeded up, the direct register addressing
used on entry to sys_interp fails. This is because C51 has not yet been told that the registerbank has been changed. If
no working registers are used and no other function is called, the optimizer eliminiates teh code to switch register banks.

timer0_int Entry Code With USING

With USING 1

; void timer0_int(void) interrupt 1 using 1 {

RSEG ?PR?timer0_int?TIMER0
USING 1 <——— New register bank now

timer0_int:
PUSH ACC
PUSH B
PUSH DPH
PUSH DPL
PUSH PSW
MOV PSW,#08H

sys_interp() Entry Code

Still using registerbank 0

; unsigned char sys_interp(unsigned char x_value,

RSEG ?PR?_sys_interp?INTERP

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 35

USING 0
_sys_interp:

MOV y_value?10,R5
MOV map_base?10,R2
MOV map_base?10+01H,R3

;—— Variable ‘x_value?10’ assigned to Register ‘R1’ ——
MOV R1,AR7 <————— FAILS!!!!

Absolute register addressing used assuming registerbank 0 is still current and so program fails! (Solutions in 5.3.6-8).

5.3.4 Notes on C51's "Stack Frame"

C51 uses a degree of intelligence when entering interrupt functions. Besides the obvious step of substituting RETI for
RET at the end of the function, it automatically stacks only those registers that are actually used in the function.

There are however, some points to be aware of:

- If an interrupt function calls a function, C51 will stack all the Ri registers, regardless of whether they are used or not.
The total time to PUSH and POP these is 16us at 12MHz, which may be viewed as unacceptable for a time critical
interrupt.

Therefore you should either avoid calling functions or use the USING control. This will do a simple registerbank switch
at the entry and exit from the routine. As the PUSHING of registers onto the stack uses the same overall number of DATA
locations, there is no difference in overall RAM usage.

- Any variable declared within an interrupt function will not be overlaid onto background data or that originating from
other interrupts.

- Never call an interrupt function from the background. There is sometimes a temptation to do this during program
initialisation, for example. The linker will get very confused and will quite likely make dangerous mistakes like
overwriting background variables!

- Using the USING control will generally consume more RAM than simply PUSHing registers onto the stack: in the case
where the interrupt function employs less than 8 registers, 8 - <number of registers actually used> will be wasted. Thus
there is no virtue in avoiding the USING control!

- Interrupts of equal priority can share the same register bank as there is no chance of them interrupting each other.

5.3.5 When To Use USING

- Interrupts which must run as fast as possible, regardless of overall RAM usage.

- Interrupts which call other functions.

5.3.6 The NOAREGS pragma

Dealing With C51’s Absolute Register Addressing.

As has been pointed out, the 8051 has no MOV Register, Register instruction so the compiler uses MOV R1,AR7 where
AR7 is the absolute address of the current R7. To do this though, the current registerbank number must be known. If
a function is called from an interrupt where a using is in force, when compiling a called function the compiler must be
told:

(i) not to use absolute register addressing with #pragma NOAREGS control before the function, and #pragma RESTORE
or #pragmas AREGS control enter the function.

Or:

(ii) the current registerbank number with #pragma REGISTERBANK(n).

For (i), applying NOAREGS to the sys_interp function removes the MOV R7,AR7, replacing it with an awkward move of

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 36

R7 to R1 using XCH A,Ri!

timer0_int Entry Code

; void timer0_int(void) interrupt 1 using 1 {

RSEG ?PR?timer0_int?TIMER0
USING 1

timer0_int:
PUSH ACC
PUSH B
PUSH DPH
PUSH DPL
PUSH PSW
MOV PSW,#08H

sys_interp() Entry Code With NOAREGS

; unsigned char sys_interp(unsigned char x_value,

RSEG ?PR?_sys_interp?INTERP
USING 0

_sys_interp:
MOV y_value?10,R5
MOV map_base?10,R2
MOV map_base?10+01H,R3

;—— Variable ‘x_value?10’ assigned to Register ‘R1’ ——
XCH A,R1 ;
MOV A,R7 ; Slow Reg to Reg move

5.3.7 The REGISTERBANK Control Alternative To NOAREGS

#pragma REGISTERBANK(n) tells C51 the absolute address of the current “using” registerbank base so that direct
register addressing will work.

EXAMPLE:

/* Timer 0 Overflow Interrupt Service Routine */

timer0_int() interrupt 1 USING 1 {

 unsigned char temp1 ;
 unsigned char temp2 ;

 /* executable C statements */
 }

Called function:

#pragma SAVE // Rember current registerbank
#pragma REGISTERBANK(1) // Tel C51 base address of current registerbank.

void func(char x) { // Called from interrupt routine
 // with “using 1”
 /* Code */
 }

#pragma RESTORE // Put back to original registerbank

Applying #pragma REGISTERBANK(1) to sys_interp() restores absolute register addressing as C51 now knows the
base address of the current register bank.

Note: Always try to use the REGISTERBANK(n) control for any functions called from an interrupt with a
USING!

sys_interp() Entry Code With REGISTERBANK(n)

; unsigned char sys_interp(unsigned char x_value,

RSEG ?PR?_sys_interp?INTERP

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 37

USING 1
_sys_interp:

MOV y_value?10,R5
MOV map_base?10,R2
MOV map_base?10+01H,R3

;—— Variable ‘x_value?10’ assigned to Register ‘R1’ ——
MOV R1,AR7

5.3.8 Summary Of USING And REGISTERBANK

Expressed in psuedo-code!

if(interrupt routine = USING 1) {

 subsequently called function uses #pragma REGISTERBANK(1)
 }

Note: subsequently called function must now only be called from functions using register bank 1.

5.3.9 Reentrancy In C51 - The Final Solution

In addition to calling a function from interrupt, it is also sometimes necessary to call the same function from the
background as well. This leaves the possibility open that the function may be called from two places simultaneously
with disasterous results!

The attribute required to permit a function to be safely called both from background and interrupt routines simultane-
ously is “reentrant”. This can also help in the previous situation of a function being called from an interrupt. The linker’s
“MULTIPLE CALL TO SEGMENT” warning is the first sign that you may be trying to use a function reentrantly.

Due to the way that C51 allocates storage for local variables and parameters, it is not possible to call a function from both
an interrupt and the background loop. To allow only those functions to be used reentrantly that really need to be, it is
possible to specify the reentrant attribute when declaring a function.

The ?C_IBP value set up in startup.a51 tells C51 where to locate the artificial stacks used for reentrant functions. Each
time a reentrant function is called, its incoming parameters are moved from the registers in which they were passed into
an area of RAM, starting at the address indicated by ?C_IBP. Likewise, any local variables used by the reentrant function
are also allocated a place on this special stack.

When startup.a51 is executed before main(), the line:

IF IBPSTACK <> 0
EXTRN DATA (?C_IBP)
MOV ?C_IBP,#LOW IBPSTACKTOP
ENDIF

initialises ?C_IBP to the value of IBPSTACKTOP that you set up earlier. As each local is “pushed” on to the reentrant
stack, ?C_IBP is decremented. Thus if an interrupt occurs which calls the function again, the new call will start its
reentrant stack from the current ?C_IBP value. Thereafter, any local data or parameter is accessed by the code sequence:

Get a local variable at offset 2 from the current base of the re-entrant stack:

MOV R0,?C_IBP ; Get stack base
MOV A,@R0 ; Add offset of local
ADD A,#002 ;
MOV A,@R0 ; Get local via indirect addressing.
MOV R7,A ; Store value whilst other local is

; accessed.

On leaving the function, ?C_IBP is restored to entry value by adding the total number of locals and parameters that were
used. This represents a very large overhead and shows why reentrancy should only be used where absolutely necessary.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 38

EXAMPLE:

The Reentrant Stack When Located In The IDATA Area

0xff sys_interp parameter 0
0xfe sys_interp parameter 1
0xfd sys_interp parameter 2L
0xfc sys_interp parameter 2H — call from background:

?C_IBP = 0xfc
0xfb sys_interp parameter 0
0xfa sys_interp parameter 0
0xf9 sys_interp parameter 1
0xf8 sys_interp parameter 2L
0xf7 sys_interp parameter 2H — call from timer0

interrupt: ?C_IBP = 0xf7
0xf6 sys_interp parameter 0
0xf5 sys_interp parameter 0
0xf4 sys_interp parameter 1
0xf3 sys_interp parameter 2L
0xf2 sys_interp parameter 2H — call from background

?C_IBP = 0xf2
0xf1
0xf0
0xef
0xee

?C_IBP acts as a base pointer to the reentrant stack and is used to access all locals in a reentrant function.

Adding the reentrant attribute to sys_interp() still requires the NOAREGS control as the registerbank has been changed
by USING 1. As a matter of policy, any reentrant function should also have the NOAREGS control so that it becomes
totally registerbank-independent.

sys_interp() Entry Code

; unsigned char interp_sub(unsigned char x,

RSEG ?PR?_?interp_sub?INTERP
USING 0

_?interp_sub:
DEC ?C_IBP
DEC ?C_IBP
MOV R0,?C_IBP
XCH A,@R0
MOV A,R2
XCH A,@R0
INC R0
XCH A,@R0
MOV A,R3
XCH A,@R0
DEC ?C_IBP
MOV R0,?C_IBP
XCH A,@R0
MOV A,R5
XCH A,@R0
DEC ?C_IBP
MOV R0,?C_IBP
XCH A,@R0
MOV A,R7
XCH A,@R0
DEC ?C_IBP

; SOURCE LINE # 22

sys_interp() Exit Code

?C0009:
MOV A,?C_IBP
ADD A,#010H <—— Restore ?C_IBP to original position
MOV ?C_IBP,A
RET

; END OF _?sys_interp

END

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 39

5.3.10 Summary Of Controls For Interrupt Functions

Provided the following combinations of controls are used, you will avoid linker warnings and potentially dangerous
code.

Interrupt Function Attribute Called Function Attribute:

"non-reentrant"

No USING no special attribute
required

USING n USING n
or
#pragma REGISTERBANK(n)
or
#pragma NOAREGS

Interrupt Function Attribute Called Function Attribute

"reentrant"

no USING no register attribute

USING n #pragma NOAREGS

5.3.11 Reentrancy And Library Functions

The majority of C51 library functions are reentrant and can be freely used from interrupts and background. However,
some larger library functions such as printf(), scanf() etc. are not reentrant. If you have used a non-reentrant library
function reentrantly, you will get a “MULTIPLE CALL TO SEGMENT” warning, as would be expected.

“Hidden” library functions used to perform integer divides and multiplies etc. are all reentrant so you can perform a 16/
16 divide in an interrupt without fear of upsetting the background.

To Summarise:

You can generally use library functions reentrantly but always check the C51 manual section 9 to check whether a
function is reentrant or not.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 40

6 Pointers In C51
Whilst pointers can be used just as in PC-based C, there are several important extensions to the way they are used in C51.
These are mainly aimed at getting more efficient code.

6.1 Using Pointers And Arrays In C51

One of C’s greatest strengths can also be its greatest weakness - the pointer. The use and, more appropriately, the abuse
of this language feature is largely why C is condemned by some as dangerous!

6.1.1 Pointers In Assembler

For an assembler programmer the C pointer equates closely to indirect addressing. In the 8051 this is achieved by the
following instructions:

MOV R0,#40 ; Put on-chip address to be indirectly MOV A,@RO addressed in R0

MOV R0,#40 ; Put off-chip address to be indirectly
MOVX A,@RO addressed in R0

MOVX A,@DPTR ; Put off-chip address to be indirectly
 addressed in DPTR

CLR A
MOV DPTR,#0040 ; Put off-chip address to be indirectly MOVC A,@A+DPTR addressed in DPTR

In each case the data is held in a memory location indicated by the value in registers to the right of the ‘@’.

6.1.2 Pointers In C51

The C equivalent of the indirect instruction is the pointer. The register holding the address to be indirectly accessed in
the assembler examples is a normal C type, except that its purpose is to hold an address rather than a variable or constant
data value.

It is declared by:

unsigned char *pointer0 ;

Note the asterisk prefix, indicating that the data held in this variable is an address rather than a piece of data
that might be used in a calculation etc..

In all cases in the assembler example two distinct operations are required:

(i) Place address to be indirectly addressed in a register.
(ii) Use the appropriate indirect addressing instruction to access data held at chosen address.

Fortunately in C the same procedure is necessary, although the indirect register must be explicitly defined, whereas in
assembler the register exists in hardware.

/* 1 - Define a variable which will hold an address */

unsigned char *pointer ;

/* 2 - Load pointer variable with address to be accessed*/
 /*indirectly */

pointer = &c_variable ;

/* 3 - Put data ‘0xff’ indirectly into c variable via*/
/*pointer */

*pointer = 0xff ;

Taking each operation in turn...

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 41

1. Reserve RAM to hold pointer. In practice the compiler attaches a symbolic name to a RAM location, just as with a normal
variable.

2. Load reserved RAM with address to be accessed, equivalent to ‘MOV R0,#40’. In English this C statement means:

“take the ‘address of’ c_variable and put it into the reserved RAM, i.e, the pointer”

In this case the pointer’s RAM corresponds to R0 and the ‘&’ equates loosely to the assembler ‘#’.

3. Move the data indirectly into pointed-at C variable, as per the assembler ‘MOV A,@R0’.

The ability to access data either directly, x = y, or indirectly, x = *y_ptr, is extremely useful. Here is C example:

/* Demonstration Of Using A Pointer */

unsigned char c_variable ; // 1 - Declare a c variable unsigned char *ptr ;
// 2 - Declare a pointer (not pointing at anything yet!)

main() {

 c_variable = 0xff ; // 3 - Set variable equal to 0xff directly

 ptr = &c_variable ; // 4 - Force pointer to point at c_variable at run time

 *ptr = 0xff ; // 5 - Move 0xff into c_variable indirectly

 }

Note: Line 4 causes pointer to point at variable. An alternative way of doing this is at compile time thus:

/* Demonstration Of Using A Pointer */

unsigned char c_variable; //1-Declare a c variable
unsigned char *ptr = &c_variable; //2-Declare a pointer, intialised to pointing at

//c_variable during compilation

main() {
 c_variable = 0xff ; // 3 - Set variable equal to 0xff directly

 *ptr = 0xff // 5 - Move 0xff into c_variable ndirectly
 }

Pointers with their asterisk prefix can be used exactly as per normal data types. The statement:

x = y + 3 ;

could equally well perform with pointers, as per

char x, y ;
char *x_ptr = &x ;
char *y_ptr = &y ;
*x_ptr = *y_ptr + 3 ;

or:

x = y * 25 ;
*x_ptr = *y_ptr * 25 ;

The most important thing to understand about pointers is that

*ptr = var ;

means “set the value of the pointed-at address to value var”, whereas

ptr = &var ;

means “make ptr point at var by putting the address of (&) in ptr, but do not move any data out of var itself”.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 42

Thus the rule is to initialise a pointer,

ptr = &var ;

To access the data indicated by *ptr ;

var = *ptr ;

6.2 Pointers To Absolute Addresses

In embedded C, ROM, RAM and peripherals are at fixed addresses. This immediately raises the question of how to make
pointers point at absolute addresses rather than just variables whose address is unknown (and largely irrelevant).

The simplest method is to determine the pointed-at address at compile time:

char *abs_ptr = 0x8000 ; // Declare pointer and force to 0x8000 immediately

However if the address to be pointed at is only known at run-time, an alternative approach is necessary. Simply, an
uncommitted pointer is declared and then forced to point at the required address thus:

char *abs_ptr ; // Declare uncommitted pointer

abs_ptr = (char *) 0x8000 ; // Initialise pointer to 0x8000 *abs_ptr = 0xff ;
// Write 0xff to 0x8000

*abs_ptr++ ; // Make pointer point at next location in RAM

Please see sections 6.8 and 6.9 for further details on C51 spaced and generic pointers.

6.3 Arrays And Pointers - Two Sides Of The Same Coin?
6.3.1 Uninitialised Arrays

The variables declared via

unsigned char x ;
unsigned char y ;

are single 8-bit memory locations. The declarations:

unsigned int a ;
unsigned int b ;

yield four memory locations, two allocated to ‘a’ and two to ‘b’. In other programming languages it is possible to group
similar types together in arrays. In basic an array is created by DIM a(10).

Likewise ‘C’ incorporates arrays, declared by:

unsigned char a[10] ;

This has the effect of generating ten sequential locations, starting at the address of ‘a’. As there is nothing to the right
of the declaration, no initial values are inserted into the array. It therefore contains zero data and serves only to reserve
ten contiguous bytes.

6.3.2 Initialised Arrays

A more usual instance of arrays would be:

unsigned char test_array [] = { 0x00,0x40,0x80,0xC0,0xFF } ;

where the initial values are put in place before the program gets to “main()”. Note that the size of this initialised array
is not given in the square brackets - the compiler works-out the size automatically.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 43

Another common instance of an array is analogous to the BASIC string as per:

A$ = “HELLO!”

In C this equates to:

char test_array[] = { “HELLO!” } ;

In C there is no real distinction between strings and arrays as a C array is just a series of sequential bytes occupied either
by a string or a series of numbers. In fact the realms of pointers and arrays overlap with strings by virtue of :

char test_array = { “HELLO!” } ;
char *string_ptr = { “HELLO!” } ;

Case 1 creates a sequence of bytes containing the ASCII equivalent of “HELLO!”. Likewise the second case allocates
the same sequence of bytes but in addition creates a separate pointer called *string_ptr to it. Notice that the “unsigned
char” used previously has become “char”, literally an ASCII character.

The second is really equivalent to:

char test_array = { “HELLO!” } ;

Then at run time:

char arr_ptr = test_array ; // Array treated as pointer

or;

char arr_ptr = &test_array[0] ; // Put address of first
 // element of array into
 // pointer

This again shows the partial interchangeability of pointers and arrays. In English, the first means “transfer address of
test_array into arr_ptr”. Stating an array name in this context causes the array to be treated as a pointer to the first location
of the array. Hence no “address of” (&) or ‘*’ to be seen.

The second case reads as “get the address of the first element of the array name and put it into arr_ptr”. No implied pointer
conversion is employed, just the return of the address of the array base.

The new pointer “*arr_ptr” now exactly corresponds to *string_ptr, except that the physical “HELLO!” they point at
is at a different address.

6.3.3 Using Arrays

Arrays are typically used like this:

/* Copy The String HELLO! Into An Empty Array */

unsigned char source_array[] = { “HELLO!” } ;
unsigned char dest_array[7];
unsigned char array_index ;
unsigned char

array_index = 0 ;

while(array_index < 7) { // Check for end of array

dest_array[array_index] = source_array[array_index] ;
//Move character-by-character into destination array

array_index++ ;
 }

The variable array_index shows the offset of the character to be fetched (and then stored) from the starts of the arrays.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 44

As has been indicated, pointers and arrays are closely related. Indeed the above program could be re-written thus:

/* Copy The String HELLO! Into An Empty Array */

char *string_ptr = { “HELLO!” } ;
unsigned char dest_array[7] ;
unsigned char array_index ;
unsigned char

array_index = 0 ;

while(array_index < 7) { // Check for end of array

dest_array[array_index] = string_ptr[array_index] ; // Move character-by-character into
destination array.
array_index++ ;
 }

The point to note is that by removing the ‘*’ on string_ptr and appending a ‘[]’ pair, this pointer has suddenly
become an array! However in this case there is an alternative way of scanning along the HELLO! string, using the

*ptr++ convention:

array_index = 0 ;

while(array_index < 7) { // Check for end of array

 dest_array[array_index] = *string_ptr++ ; // Move character-by-character into destination array.
 array_index++ ;
 }

This is an example of C being somewhat inconsistent; this *ptr++ statement does not mean “increment the thing being
pointed at” but rather, increment the pointer itself, so causing it to point at the next sequential address. Thus in the
example the character is obtained and then the pointer moved along to point at the next higher address in memory.

6.3.4 Summary Of Arrays And Pointers

To summarise:

Create An Uncommitted Pointer

unsigned char *x_ptr ;

Create A Pointer To A Normal C Variable

unsigned char x ; unsigned char *x_ptr = &x ;

Create An Array With No Initial Values

unsigned char x_arr[10] ;

Create An Array With Initialised Values

unsigned char x_arr[] = { 0,1,2,3 } ;

Create An Array In The Form Of A String

char x_arr[] = { “HELLO” } ;

Create A Pointer To A String

char *string_ptr = { “HELLO” } ;

Create A Pointer To An Array

char x_arr[] = { “HELLO” } ; char *x_ptr = x_arr

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 45

Force A Pointer To Point At The Next Location

*ptr++ ;

6.4 Structures

Structures are perhaps what makes C such a powerful language for creating very complex programs with huge amounts
of data. They are basically a way of grouping together related data items under a single symbolic name.

6.4.1 Why Use Structures?

Here is an example: A piece of C51 software had to perform a linearisation process on the raw signal from a variety of
pressure sensors manufactured by the same company. For each sensor to be catered for there is an input signal with a
span and offset, a temperature coefficient, the signal conditioning amplifier, a gain and offset. The information for each
sensor type could be held in “normal” constants thus:

unsigned char sensor_type1_gain = 0x30 ;
unsigned char sensor_type1_offset = 0x50 ;
unsigned char sensor_type1_temp_coeff = 0x60 ;
unsigned char sensor_type1_span = 0xC4 ;
unsigned char sensor_type1_amp_gain = 0x21 ;

unsigned char sensor_type2_gain = 0x32 ;
unsigned char sensor_type2_offset = 0x56 ;
unsigned char sensor_type2_temp_coeff = 0x56 ;
unsigned char sensor_type2_span = 0xC5 ;
unsigned char sensor_type2_amp_gain = 0x28 ;
unsigned char sensor_type3_gain = 0x20 ;
unsigned char sensor_type3_offset = 0x43 ;
unsigned char sensor_type3_temp_coeff = 0x61 ;
unsigned char sensor_type3_span = 0x89 ;
unsigned char sensor_type3_amp_gain = 0x29 ;

As can be seen, the names conform to an easily identifiable pattern of:

unsigned char sensor_typeN_gain = 0x20 ;
unsigned char sensor_typeN_offset = 0x43 ;
unsigned char sensor_typeN_temp_coeff = 0x61 ;
unsigned char sensor_typeN_span = 0x89 ;
unsigned char sensor_typeN_amp_gain = 0x29 ;

Where ‘N’ is the number of the sensor type. A structure is a neat way of condensing this type is related and repeating
data.

In fact the information needed to describe a sensor can be reduced to a generalised:

unsigned char gain ;
unsigned char offset ;
unsigned char temp_coeff ;
unsigned char span ;
unsigned char amp_gain ;

The concept of a structure is based on this idea of generalised “template” for related data. In this case, a structure template
(or “component list”) describing any of the manufacturer's sensors would be declared:

struct sensor_desc {unsigned char gain ;
 unsigned char offset ;
 unsigned char temp_coeff ;
 unsigned char span ;
 unsigned char amp_gain ; } ;

This does not physically do anything to memory. At this stage it merely creates a template which can now be used to
put real data into memory.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 46

This is achieved by:

struct sensor_desc sensor_database ;

This reads as “use the template sensor_desc to layout an area of memory named sensor_database, reflecting the mix of
data types stated in the template”. Thus a group of 5 unsigned chars will be created in the form of a structure.

The individual elements of the structure can now be accessed as:

sensor_database.gain = 0x30 ;
sensor_database.offset = 0x50 ;
sensor_database.temp_coeff = 0x60 ;
sensor_database.span = 0xC4 ;
sensor_database.amp_gain = 0x21 ;

6.4.2 Arrays Of Structures

In the example though, information on many sensors is required and, as with individual chars and ints, it is possible to
declare an array of structures. This allows many similar groups of data to have different sets of values.

struct sensor_desc sensor_database[4] ;

This creates four identical structures in memory, each with an internal layout determined by the structure template.
Accessing this array is performed simply by appending an array index to the structure name:

/*Operate On Elements In First Structure Describing */
/*Sensor 0 */

sensor_database[0].gain = 0x30 ;
sensor_database[0].offset = 0x50 ; sensor_database[0].temp_coeff = 0x60 ; sensor_database[0].span
= 0xC4 ;
sensor_database[0].amp_gain = 0x21 ;

/* Operate On Elements In First Structure Describing */
/*Sensor 1 */

sensor_database[1].gain = 0x32 ;
sensor_database[1].offset = 0x56 ;

sensor_database[1].temp_coeff = 0x56 ;
sensor_database[1].span = 0xC5 ;
sensor_database[1].amp_gain = 0x28 ;

and so on...

6.4.3 Initialised Structures

As with arrays, a structure can be initialised at declaration time:

struct sensor_desc sensor_database = { 0x30, 0x50, 0x60, 0xC4, 0x21 } ;

so that here the structure is created in memory and pre-loaded with values.

The array case follows a similar form:

struct sensor_desc sensor_database[4] = {{0x30,0x50,0x60, 0xC4, 0x21 },

{ 0x32,0x56,0x56,0xC5,0x28 ; }} ;

6.4.4 Placing Structures At Absolute Addresses

It is sometimes necessary to place a structure at an absolute address. This might occur if, for example, the registers of
a memory-mapped real-time clock chip are to be grouped together as a structure. The template in this instance might be:

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 47

Contents Of RTCBYTES.C Module

struct RTC { unsigned char seconds ;
 unsigned char minutes ;
 unsigned char hours ;
 unsigned char days ;

} ;

struct RTC xdata RTC_chip ; // Create xdata structure

A trick using the linker is required here so the structure creation must be placed in a dedicated module. This module’s
XDATA segement, containing the RTC structure, is then fixed at the required address at link time.

Using the absolute structure could be:

/* Structure located at base of RTC Chip */

MAIN.C Module

extern xdata struct RTC_chip ;

/* Other XDATA Objects */

xdata unsigned char time_secs, time_mins ;

void main(void) {

time_secs = RTC_chip.seconds ;
time_mins = RTC_chip.minutes;
}

Linker Input File To Locate RTC_chip structure over real RTC Registers is:

l51 main.obj,rtcbytes.obj XDATA(?XD?RTCBYTES(0h))

See section 7.6 for further examples of this placement method.

6.4.5 Pointers To Structures

Pointers can be used to access structures, just as with simple data items. Here is an example:

/* Define pointer to structure */

struct sensor_desc *sensor_database ;

/* Use Pointer To Access Structure Elements */

sensor_database->gain = 0x30 ;
sensor_database->offset = 0x50 ;
sensor_database->temp_coeff = 0x60 ;
sensor_database->span = 0xC4 ;
sensor_database->amp_gain = 0x21 ;

Note that the ‘*’ which normally indicates a pointer has been replaced by appending ‘->’ to the pointer name.
Thus ‘*name’ and ‘name->’ are equivalent.

6.4.6 Passing Structure Pointers To Functions

A common use for structure pointers is to allow them to be passed to functions without huge amounts of parameter
passing; a typical structure might contain 20 data bytes and to pass this to a function would require 20 parameters to either
be pushed onto the stack or an abnormally large parameter passing area. By using a pointer to the structure, only the
two or three bytes that constitute the pointer need be passed. This approach is recommended for C51 as the overhead
of passing whole structures can tie the poor old 8051 CPU in knots!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 48

This would be achieved thus:

struct sensor_desc *sensor_database ;

sensor_database-> gain = 0x30 ;
sensor_database-> offset = 0x50 ;
sensor_database-> temp_coeff = 0x60 ;
sensor_database-> span = 0xC4 ;
sensor_ database- >amp_gain = 0x21 ;

test_function(*struct_pointer) ;

test_function(struct sensor_desc *received_struct_pointer) {
 received_struct_pointer->gain = 0x20 ;
 received_struct_pointer->temp_coef = 0x40 ;
 }

Advanced Note: Using a structure pointer will cause the called function to operate directly on the structure rather
than on a copy made during the parameter passing process.

6.4.7 Structure Pointers To Absolute Addresses

It is sometimes necessary to place a structure at an absolute address. This might occur if, for example, a memory-mapped
real time clock chip is to be handled as a structure. An alternative approach to that given in section 6.4.4. is to address
the clock chip via a structure pointer.

The important difference is that in this case no memory is reserved for the structure - only an “image” of it appears to
be at the address.

The template in this instance might be:

/* Define Real Time Clock Structure */

struct RTC {char seconds ;
char mins ;
char hours ;
char days ; } ;

/* Create A Pointer To Structure */

struct RTC xdata *rtc_ptr ; // ‘xdata’ tells C51 that this
 //is a memory-mapped device.

void main(void) {
 rtc_ptr = (void xdata *) 0x8000 ; // Move structure

 // pointer to address
 //of real time clock at
 // 0x8000 in xdata

rtc_ptr->seconds = 0 ; // Operate on elements
rtc_ptr->mins = 0x01 ;

 }

This general technique can be used in any situation where a pointer-addressed structure needs to be placed over a specific
IO device. However it is the user’s responsibility to make sure that the address given is not likely to be allocated by the
linker as general variable RAM!

To summarize, the procedure is:

(i) Define template
(ii) Declare structure pointer as normal
(iii) At run-time, force pointer to required absolute address in the normal way.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 49

6.5 Unions

A union is similar in concept to a structure except that rather than creating sequential locations to represent each of the
items in the template, it places each item at the same address. Thus a union of 4 bytes only occupies a single byte. A
union may consist of a combination of longs, char and ints all based at the same physical address.

The the number of bytes of RAM used by a union is simply determined by the size of the largest element, so:

union test { char x ;
 int y ;
 char a[3] ;
 long z ;
} ;

requires 4 bytes, this being the size of a long. The physical location of each element is:

addr — 0 x byte y high byte a[0] z highest byte
 +1 y low byte a[1] z byte
 +2 a[2] z byte
 +3 a[3] z lowest byte

Non-8051 programmers should see the section on byte ordering in the 8051 if they find the idea of the MSB being at
the low address odd!

In embedded C the commonest use of a union is to allow fast access to individual bytes of longs or ints. These might
be 16 or 32-bit real-time counters, as in this example:

/* Declare Union */

union clock {long real_time_count ; // Reserve four byte
int real_time_words[2] ; // Reserve four bytes as

// int array
char real_time_bytes[4] ; // Reserve four bytes as

 // char array
 } ;

/* Real Time Interrupt */

void timer0_int(void) interrupt 1 using 1 {

clock.real_time_count++ ; // Increment clock

if(clock.real_time_words[1] == 0x8000) { // Check
// lower word only for value

/* Do something! */
}

if(clock.real_time_bytes[3] == 0x80) { // Check most
 // significant byte only for value

/* Do something! */
}

}

6.6 Generic Pointers

C51 offers two basic types of pointer, the spaced (memory-specific) and the generic. Up to version 3.00 only generic
pointers were available.

As has been mentioned, the 8051 has many physically separate memory spaces, each addressed by special assembler
instructions. Such characteristics are not peculiar to the 8051 - for example, the 8086 has data instructions which operate
on a 16-bit (within segment) and a 20-bit basis.

For the sake of simplicity, and to hide the real structure of the 8051 from the programmer, C51 uses three byte pointers,
rather than the single or two bytes that might be expected. The end result is that pointers can be used without regard to

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 50

the actual location of the data.
For example:

 xdata char buffer[10] ;
 code char message[] = { “HELLO” } ;
void main(void) {
 char *s ;
 char *d ;

 s = message ;
 d = buffer ;

 while(*s != ‘\0’) {
 *d++ = *s++ ;
 }
 }

Yields:

RSEG ?XD?T1
buffer: DS 10

RSEG ?CO?T1
message:

DB ‘H’ ,’E’ ,’L’ ,’L’ ,’O’ ,000H
;
;
; xdata char buffer[10] ;
; code char message[] = { “HELLO” } ;
;
; void main(void) {

RSEG ?PR?main?T1
USING 0

main:
; SOURCE LINE # 6

;
; char *s ;
; char *d ;
;
; s = message ;

; SOURCE LINE # 11
MOV s?02,#05H
MOV s?02+01H,#HIGH message
MOV s?02+02H,#LOW message

; d = buffer ;
; SOURCE LINE # 12

MOV d?02,#02H
MOV d?02+01H,#HIGH buffer
MOV d?02+02H,#LOW buffer

?C0001:
;
; while(*s != ‘\0’) {

; SOURCE LINE # 14
MOV R3,s?02
MOV R2,s?02+01H
MOV R1,s?02+02H
LCALL ?C_CLDPTR
JZ ?C0003

; *d++ = *s++ ;
; SOURCE LINE # 15

INC s?02+02H
MOV A,s?02+02H
JNZ ?C0004
INC s?02+01H

?C0004:
DEC A
MOV R1,A
LCALL ?C_CLDPTR
MOV R7,A
MOV R3,d?02
INC d?02+02H
MOV A,d?02+02H
MOV R2,d?02+01H
JNZ ?C0005
INC d?02+01H

?C0005:

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 51

DEC A
MOV R1,A
MOV A,R7
LCALL ?C_CSTPTR

; }
; SOURCE LINE # 16

SJMP ?C0001
; }

; SOURCE LINE # 17
?C0003:

RET
; END OF main

END

As can be seen, the pointers ‘*s’ and ‘*d’ are composed of three bytes, not two as might be expected. In making *s point
at the message in the code space an ‘05’ is loaded into s ahead of the actual address to be pointed at. In the case of *d
‘02’ is loaded. These additional bytes are how C51 knows which assembler addressing mode to use. The library function
C_CLDPTR checks the value of the first byte and loads the data, using the addressing instructions appropriate to the
memory space being used.

This means that every access via a generic pointer requires this library function to be called. The memory space codes
used by C51 are:

CODE - 05
XDATA - 02
PDATA - 03
DATA - 05
IDATA - 01

6.7 Spaced Pointers In C51

Considerable run time savings are possible by using spaced pointers. By restricting a pointer to only being able to point
into one of the 8051’s memory spaces, the need for the memory space “code” byte is eliminated, along with the library
routines needed to interpret it.

A spaced pointer is created thus:

char xdata *ext_ptr ;

to produce an uncommitted pointer into the XDATA space or

char code *const_ptr ;

which gives a pointer solely into the CODE space. Note that in both cases the pointers themselves are located in the
memory space given by the current memory model. Thus a pointer to xdata which is to be itself located in PDATA would
be declared thus:

pdata char xdata *ext_ptr ;
 | |
location |
of pointer |

Memory space pointed into
by pointer

In this example strings are always copied from the CODE area into an XDATA buffer. By customising the library
function “strcpy()” to use a CODE source pointer and a XDATA destination pointer, the runtime for the string copy was
reduced by 50%. The new strcpy has been named strcpy_x_c().

The function prototype is:

extern char xdata *strcpy(char xdata*,char code *) ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 52

Here is the code produced by the spaced pointer strcpy():

; char xdata *strcpy_x_c(char xdata *s1, char code *s2) {
_strcpy_x_c:

MOV s2?10,R4
MOV s2?10+01H,R5

;—— Variable ‘s1?10’ assigned to Register ‘R6/R7’ ——
; unsigned char i = 0;
;—— Variable ‘i?11’ assigned to Register ‘R1’ ——

CLR A
MOV R1,A

?C0004:
;
; while ((s1[i++] = *s2++) != 0);

INC s2?10+01H
MOV A,s2?10+01H
MOV R4,s2?10
JNZ ?C0008
INC s2?10

?C0008:
DEC A
MOV DPL,A
MOV DPH,R4
CLR A
MOVC A,@A+DPTR
MOV R5,A
MOV R4,AR1
INC R1
MOV A,R7
ADD A,R4
MOV DPL,A
CLR A
ADDC A,R6
MOV DPH,A
MOV A,R5
MOVX @DPTR,A
JNZ ?C0004

?C0005:
; return (s1);
; }
?C0006:

END

Notice that no library functions are used to determine which memory spaces are intended. The function prototype tells
C51 only to look in code for the string and xdata for the RAM buffer.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 53

7 Accessing External Memory Mapped Peripherals
Commonly, extra IO ports are added to 8051s to compensate for the loss of Ports 0 and 2. This is normally done by making
the additional device(s) appear to be just external RAM bytes. Thus they are addressed by the MOVX A,@DPTR
instruction. Typically UARTS, additional ports and real time clock devices are added to 8031s as xdata-mapped devices.

The simplest approach to adding external devices is to attach the /RD and or /WR lines to the device. Provided that only
one device is present and that it only has one register, no address decoding is necessary. To access this device from C
simply prefix an appropriately named variable with “xdata”. This will cause the compiler to use MOVX A,@DTPR
instructions when getting data in or out. In actual fact the linker will try to allocate a real address to this but, as no decoding
is present, the device will simply be enabled by /WR or /RD.

In practice life is rarely this simple. Usually a mixture of RAM, UARTS, ports, EEPROM and other devices may all
be attached to the 8031 by being mapped into the xdata space. Some sort of decoding is provided by discrete logic or
(more usually) a PAL.

Here the various registers of the different devices will appear at fixed locations in the xdata space. With normal on-chip
resources the simple “data book” name can be used to access them, so ideally these external devices should be the same.

There are three basic approaches to this:

(i) Use normal variables, char, ints etc, located by the linker
(ii) Use pointers and offsets, either via the XBYTE macros or directly with user-defined pointers.
(iii) Use the _At_ and _ORDER directives.

In detail, these may be implemented as shown in the following sections.

7.1 The XBYTE And XWORD Macros

To allow memory-mapped devices to be accessed from C, a method is required to effectively force pointers to point to
fixed addresses. C51 provides many methods of achieving this, the simplest of which are the XBYTE[addr16] and
XWORD[addr16] macros.

For instance:

The byte wide PORT8_DDI register of a memory mapped IO device is at 8000H. To access it from C it must be declared
thus:

#include “absacc.h”; /*Contains macro definitions */
#define port8_ddi XBYTE[0x8000]
#define port8_data XBYTE[0x8001]

To use it then,

port8_ddi = 0xFF ;
input_val = port8_data ;

To access a word at an even external address:

#define word_reg XWORD[0x4000]
/* gives a word variable at 8000H */

Ignoring the pre-defined XWORD macro, the equivalent C line is:

#define word_reg_ptr ((unsigned int *) 0x24000L)
/*creates a pointer to a word (int) at address 8000H*/

To use this address then,

*word_reg_ptr = 0xFFFF ;

Note that the address 8000H corresponds to 4000H words, hence the " 0x24000L ".

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 54

Here are some examples with the code produced:

#define XBYTE ((unsigned char volatile *) 0x20000L)
#define XWORD ((unsigned int volatile *) 0x20000L)

main() {

char x ;
 int y ;

x = XBYTE[0x8000] ;

0000 908000 MOV DPTR,#08000H
0003 E0 MOVX A,@DPTR
0004 FF MOV R7,A
0005 8F00 R MOV x,R7

y = XWORD[0x8000/sizeof(int)] ;
}
0007 908000 MOV DPTR,#08000H
000A E0 MOVX A,@DPTR
000B FE MOV R6,A
000C A3 INC DPTR
000D E0 MOVX A,@DPTR
000E FF MOV R7,A
000F 8E00 R MOV y,R6
0011 8F00 R MOV y+01H,R7
}
0013 ?C0001:
0013 22 RET

However the address indicated by “word_reg” is fixed and can only be defined at compile time, as the contents of the
square brackets may only be a constant. Any alteration to the indicated address is not possible with these macro-based
methods. This approach is therefore best suited to addressing locations that are fixed in hardware and unlikely to change
at run time.

Note the use of the volatile storage class modifier. This is essential to prevent the optimiser removing data reads from
external ports.
See section 7.4 for more details.

Note: the header file “absacc.h” must be included at the top of the source file as shown above. This contains the
prototype for the XBYTE macro. (see page 9-15 in the C51 manual)

7.2 Initialised XDATA Pointers

In many cases the external address to be pointed at is known at compile time but may need to be altered at some point
during execution. Thus some method of making a pointer point at an intial specific external address is required.

Probably the simplest way of setting up such a pointer is to let the C_INIT program set the pointer to a location. However
the initial address must be known at compile time. If the pointer is to be altered at run-time, just equate it (without the “*”
at run-time) to the new address.

Note: this automatic initialisation was not supported on earlier versions of C51.

Simply do:

/* Spaced pointer */

 xdata char xdata *a_ptr = 0x8000 ;

/* Generic Pointer */

 xdata char *a_ptr = 0x028000L ;

Here the pointer is setup to point at xdata address 0x8000. Note that the spaced *a_ptr can only point at xdata locations
as a result of the second xdata used in its declaration. In the generic *a_ptr case, the “02” tells C51 that an xdata address
is intended.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 55

An example might be:

 6 xdata char xdata *ptr = 0x8000 ;
 7
 8
 9 main() {
 11 1 char x ;
 13 1 ptr += 0xf0 ;

0000 900000 R MOV DPTR,#ptr+01H
0003 E0 MOVX A,@DPTR
0004 24F0 ADD A,#0F0H
0006 F0 MOVX @DPTR,A
0007 900000 R MOV DPTR,#ptr
000A E0 MOVX A,@DPTR
000B 3400 ADDC A,#00H
000D F0 MOVX @DPTR,A

 15 1 x = *ptr ;
 16 1
 17 1 }

000E E0 MOVX A,@DPTR
000F FE MOV R6,A
0010 A3 INC DPTR
0011 E0 MOVX A,@DPTR
0012 F582 MOV DPL,A
0014 8E83 MOV DPH,R6
0016 E0 MOVX A,@DPTR
0017 F500 R MOV x,A

 17 1 }

0019 22 RET

7.3 Run Time xdata Pointers

The situation often occurs that you need to point at addresses in the xdata space which are only known at run-time. Here
the xdata pointer is setup in the executable code.

The best way to achieve this is to declare an “uncommitted” pointer at compile time and to then equate it to an address
when running:

char xdata *xdata_ptr ; /* Uncommitted pointer */
/* to xdata memory */

main() {

xdata_ptr=(char xdata*) 0x8000 ; /*Point at 0x8000 in */
 /*xdata */

}

An alternative is to declare a pointer to the xdata space and simply equate it to a variable.

Here is an example:

 char xdata *ptr ; /* This is a spaced pointer!!! */

 main(){

 start_address = 0x8000 ; /*Variable containing address*/
/*to be pointed to */

0000 750080 R MOV start_address,#080H
0003 750000 R MOV start_address+01H,#00H

 ptr = start_address ;

000C AE00 R MOV R6,start_address
000E AF00 R MOV R7,start_address+01H
0010 8E00 R MOV ptr,R6
0012 8F00 R MOV ptr+01H,R7
0014 ?C0001:

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 56

 while(1) {

 x = *ptr++ ;

0014 0500 R INC ptr+01H
0016 E500 R MOV A,ptr+01H
0018 AE00 R MOV R6,ptr
001A 7002 JNZ ?C0004
001C 0500 R INC ptr
001E ?C0004:
001E 14 DEC A
001F FF MOV R7,A

0020 8F82 MOV DPL,R7
0022 8E83 MOV DPH,R6
0024 E0 MOVX A,@DPTR
0025 FF MOV R7,A
0026 8F00 R MOV x,R7
 }
0028 80EA SJMP ?C0001
002A ?C0002:
 }
002A ?C0003:
002A 22 RET

A variation of this is to declare a pointer to zero and use a variable as an offset thus:

char xdata *ptr ;

main() {

unsigned int i ;
unsigned char x ;

ptr = (char*) 0x0000 ;

for(i = 0 ;
i < 0x40 ;
i++) {
 x = ptr[i] ;
 }
}

This results in rather more code, as an addition to the pointer must be performed within each loop.

7.4 The “volatile” Storage Class

A common situation with external devices is that values present in their registers change without the cpu taking any
action. A good example is a real-time clock chip - the time changes continuously without the cpu writing anything.

Consider the following:

unsigned int xdata *milliseconds = 0x8000 ; // Pointer to
 // RTC chip

time = *milliseconds ; -> (1) // Get RTC register value

x = array[time] ;

time = *milliseconds ; -> (2) // Second register access
 // optimised out!

y = array[time] ;

Here the value retrieved from the array is related to the value of *milliseconds, a register in an external RTC.

If this is compiled it will not work. Why? Well the compiler’s optimiser shoots itself in the foot by assuming that, because
no WRITE occurred between (1) and (2), *millisec cannot have changed. Hence all the code generated to make the
second access to the register is optimised out and so y == x!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 57

The solution is declare *milliseconds as “volatile” thus:

unsigned int volatile xdata *milliseconds = 0x8000 ;

Now the optimiser will not try to remove subsequent accesses to the register.

7.5 Placing Variables At Specific Locations - The Linker Method

A final method of establishing external variables at fixed addresses, especially arrays, is by using the linker rather than
the compiler. For example, to produce a 10 character array in external memory, starting at 8000H, the following steps
are necessary:

/*** Module 1 ***/

/* This module contains only data declarations! */

xdata unsigned char array[30] ;

/* End Module 1 */

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

/*** Module 2 ***/

/* This module contains the executable statements */

extern xdata unsigned char array[10] ;

 main()

 {
 unsigned char i ;

 i = array[i] ;

 }

Now by linking with the invocation:

L51 module1.obj, module2.obj XDATA (?XD?module1 (8000H))

the linker will make the XDATA segment in Module 1 (indicated by ?XD?module1) start at 8000H, regardless of other
xdata declarations elsewhere. Thus the array starts at 8000H and is 10 bytes (+ null terminator) long.

This approach lacks the flexibility of the above methods but has the advantage of making the linker reserve space in the
XDATA space.

Similar control can be exercised over the address of segments in other memory spaces. C51 uses the following
convention for segment names:

CODE ?PR?functionname?module_name (executable code)
CODE ?CO?functionname?module_name (lookup tables etc.)
BIT ?BI?functionname?module_name
DATA ?DT?functionname?module_name
XDATA ?XD?functionname?module_name
PDATA ?PD?functionname?module_name

Thus the parameter receiving area of a LARGE model function ‘test()’ in module MOD1.C would be:

?XD?TEST?MOD1,

The code is:

?PR?TEST?MOD1

And so on.

A knowledge of this is useful for assembler interfacing to C51 programs. See section 14.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 58

7.6 Excluding External Data Ranges From Specific Areas

This very much follows on from the previous section. Occasionally a memory-mapped device, such as real time clock
chip, is used as both a source of time values and RAM. Typically the first 8 bytes in the RTC’s address range are the
time counts, seconds, minutes etc. whilst the remaining 248 bytes are RAM.

Left to its own devices, the L51 linker will automatically place any xdata variables starting at zero. If the RTC has been
mapped at this address a problem occurs, as the RTC time registers are overwritten. In addition, it would be convenient
to allow the registers to be individually named.

One approach is to define a special module containing just a structure which describes the RTC registers. In the main
program the RTC registers are accessed as elements in the structure. The trick is that, when linking, the XDATA segment
belonging to the special module is forced to a specific address, here zero. This results in the RTC structure being at zero,
with any other XDATA variables following on. The basic method could also be used to stop L51 locating any variables
in a specific area.

Example Of Excluding Specific Areas From L51

/* Structure located at base of RTC Chip */

MAIN.C Module

extern xdata struct { unsigned char seconds ;
unsigned char minutes ;
unsigned char hours ;
unsigned char days ; } RTC_chip ;

/* Other XDATA Objects */

xdata unsigned char time_secs, time_mins ;

void main(void) {

time_secs = RTC_chip.seconds ;
time_mins = RTC_chip.minutes ;

}

RTCBYTES.C Module

xdata struct { unsigned char seconds ;
 unsigned char minutes ;
 unsigned char hours ;
 unsigned char days ; } RTC_chip ;

Linker Input File To Locate RTC_chip structure over real RTC
Registers is:

l51 main.obj,rtcbytes.obj XDATA(?XD?RTCBYTES(0h))

7.7 -missing ORDER and AT now in C51

Perhaps the most curious omission from C51 was the inability to fix the address of a data object at an absolute address
from the source file. Whilst there have always been methods of achieving the same effect, users have long requested
an extension to allow the address of an object to be included in the original declaration. In C51 v4.xx, the
new_AT_control now exists.

7.8 Using The _at_and _ORDER_ Controls

Here, the order of the variables must not change as it must match the physical location of the real time clock’s registers.
The #pragma ORDER tells C51 to place the data objects at ascending addresses, with the first item at the lowest address.
The linker must then be used to fix the address of the whole block in memory.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 59

Source File MAIN.C

#pragma ORDER
unsigned char xdata RTC_secs ;
unsigned char xdata RTC_mins ;
unsigned char xdata RTC_hours ;

main() { RTC_mins = 1 ; }

Linker Input File MAIN.LIN

main.obj & to main & XDATA(?XD?MAIN(0fa00h))

The alternative _at_ control forces C51 to put data objects at an address given in the source file:

/** Fix Real Time Clock Registers Over Memory-Mapped Device **/
/** Fix each item individually **/
unsigned char xdata RTC_secs _at_ 0xfa00 ;
unsigned char xdata RTC_mins _at_ 0xfa01 ;
unsigned char xdata RTC_hours _at_ 0xfa02 ;

main() { RTC_mins = 1 ;
 }

... which hopefully is self-explanatory!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 60

8 Linking Issues And Stack Placement
This causes some confusion, especially to those used to other compiler systems.

8.1 Basic Use Of L51 Linker

The various modules of a C program are combined by a linker. After compilation no actual addresses are assigned to
each line of code produced, only an offset is generated from the start of the module. Obviously before the code can be
executed each module must be tied to a unique address in the code memory. This is done by the linker.

L51, in the case of Keil (RL51 for Intel), is a utility which assigns absolute addresses to the compiled code. It also searches
library files for the actual code for any standard functions used in the C program.

A typical invocation of the linker might be:

l51 startup.obj, module1.obj, module2.obj, module3.obj, C51L.lib to exec.abs

Here the three unlocated modules and the startup code (in assembler) are combined. Any calls to library functions in
any of these files results in the library, C51L.lib, being searched for the appropriate code.

The target addresses (or offsets) for any JMPs or CALLs are calculated and inserted after the relevant opcodes.

When all five .obj files have been combined, they are placed into another file called EXEC.ABS, the ABS implying that
this is absolute code that could actually be executed by an 8051 cpu. In addition, a “map” file called EXEC.M51 is
produced which summarises the linking operation. This gives the address of every symbol used in the program plus the
size of each module.

In anything other than a very small program, the number of modules to be linked can be quite large, hence the command
line can become huge and unwieldy. To overcome this the input list can be a simple ASCII text file thus:

 l51 @<input_file>

where input_file = ;

 startup.obj,&
 module1.obj,&
 module2.obj,&
 module3.obj,&
 &
 C51L.lib &
 &
 to exec.abs

There are controls provided in the linker which determine where the various memory types should be placed.

For instance, if an external RAM chip starts at 4000H and the code memory (Eprom) is at 8000H, the linker must be given:

l51 startup.obj, module1.obj, module2.obj, module3.obj, C51L.lib to exec.abs CODE(8000H)
XDATA(4000H)

This will move all the variables in external RAM to 4000H and above and all the executable code to 8000H. Even more
control can be exercised over where the linker places code and data segments. By further specifying the module and
segment names, specific variables can be directed to particular addresses - see 2.1.8 for an example.

8.2 Stack Placement

Unless you specify otherwise, the linker will place the stack pointer to give maximum stack space. Thus after locating
all the sfr, compiled stack and data items, the real stack pointer is set to the next available IDATA address. If you use
the 8032 or other variant with 128 bytes of indirectly-addressable memory (IDATA) above 80H, this can be used very
effectively for stack.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 61

?C_C51STARTUP SEGMENT CODE ;Declare segment in indirect
area

?STACK SEGMENT IDATA ;

RSEG ?STACK ; Reserve one byte
DS 1
EXTRN CODE (?C_START)
PUBLIC ?C_STARTUP
CSEG AT 0

?C_STARTUP: LJMP STARTUP1

RSEG ?C_C51STARTUP
STARTUP1: ENDIF

MOV SP,#?STACK-1 ; Put address of STACK
location into SP

LJMP ?C_START ; Goto initialised data
section

8.3 Using The Top 128 Bytes of the 8052 RAM

The original 8051 design has just 128 bytes of directly/indirectly addressable RAM. C51, when in the SMALL model,
can use this for variables, arrays, structures and stack. Above 128 (80H) direct addressing will result in access of the
sfrs. Indirect addressing (MOV A,@R0) does not work.

However with the 8052 and above, the area above 80H can, when indirectly addressed, be used as additional storage.
The main use of this area is really as stack. Data in this area is addressed by the MOV A,@Ri instruction. As only indirect
addressing can be used, there can be some loss of efficiency as the Ri register must be loaded with the required 8-bit address
before any access can be made.

Left to its own devices C51 will not use this area other than for stack. Unusually, the 8051 stack grows up through RAM,
so the linker will place the STACK area at the top of the area taken up with variables, parameter passing segments etc..
If your application does not need all the stack area allocated, it is possible to use it for variables. This is simply achieved
by declaring some variables as “idata” and using “RAMSIZE(256)” when linking.

Such is human nature that most people will not think of using idata until the lower 128 bytes actually overflows and a
panic-driven search begins for more memory!

As has been pointed out, idata variables are rather harder to get at because of the loading of an Ri register first. However
there is one type of variable which is ideally suited to this - the array or pointer-addressed variable.

The MOV A,@Ri is ideal for array access as the Ri simply contains the array index. Similarly a variable accessed by
a pointer is catered for, as the @Ri is effectively a pointer. This is especially significant now that version 3.xx supports
memory space specific pointers. The STACK is now simply moved above these new idata objects.

To summarise, with the 8052 if you are hitting the 128 byte ceiling of the directly addressable space, the moving of arrays
and pointer addressable objects can free-up large amounts of valuable directly addressable RAM very easily.

8.4 L51 Linker Data RAM Overlaying
8.4.1 Overlaying Principles

One of the main tricks used to allow large programs to be generated within an 8051 is the OVERLAY function. This
is a mechanism whereby different program variables make use of the same RAM location(s). This possibility arises when
automatic local variables are declared. These by definition only have significance during the execution of the function
within which they were defined. Once the function is exited the area of RAM used by them is no longer required. Of
course static locals must remain intact until the function is next called. A similar situation exists for C51’s reserved
memory areas used for parameter passing.

Taken over a complete program, each function will have a certain area of memory reserved for its locals and parameters.
Within the confines of an 8051 the on-chip RAM would soon be exhausted.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 62

The possibility then arises for these individual areas to be combined into a single block, capable of supplying enough
RAM for the needs of the single biggest function.

In C51 this process is performed by the linker’s OVERLAY function. In simple terms, this examines all functions and
generates a special data segment called “DATA_GROUP”, able to contain all the local variables and parameters of all
C51 functions. As an example, if most functions require only 4 byes of local data but one particular one needs 10, the
DATA_GROUP will be 10 bytes long.

Using the registers as a location for temporary data means that a large number of locals and parameters can be
accommodated without recourse to the DATA_GROUP - this is why it may appear smaller than you expect.

The overlayer works on the basis that if function 1 calls function 2, then their respective local data areas may not be
overlaid, as both must be active at the same time. A third function 3, which is also called by 1, may have its locals overlaid
with 2, as the two cannot be running at the same time.

 main
 |
 funcA — func2 - func3 - func4
 |
 funcB — func5 - func6 - func7
 |
 funcC — func8 - func9 - func10
 |

As funcA refers to func2 and func2 refers to func3 etc., A, 2, 3 and 4 cannot have their locals overlaid, as they all form
part of the same path. Likewise, as funcB refers to func5 and func6 refers to func7 etc., B, 6, 7 and 4 cannot have their locals
overlaid. However the groups 2, 3, 4, 5, 6, 7 and 8, 9, 10 may have their locals overlaid as they are never active together,
being attached to sequential branches of the main program flow. This is the basis of the overlay strategy.

However a complication arises with interrupt functions. Since these can occur at any time, they would overwrite the local
data currently generated by whichever background (or lower priority interrupt) function was running, were they also to
use the DATA_GROUP. To cope with this, C51 identifies the interrupt functions and called functions and allocates them
individual local data areas.

8.4.2 Impact Of Overlaying On Program Construction

The general rule used by L51 is that any two functions which cannot be executing simultaneously may have their local
data overlaid. Re-entrant functions are an extension of this in that a single function may be called simultaneously from
two different places.

In 99% of cases the overlay function works perfectly but there are some cases where it can give unexpected results.

These are basically:

(i) Indirectly-called functions using function pointers
(ii) Functions called from jump tables of functions
(iii) Re-entrant functions (-incorrect or non-declaration thereof)

Under these conditions the linker issues the following warnings:

MULTIPLE CALL TO SEGMENT

UNCALLED SEGMENT

RECURSIVE CALL TO SEGMENT

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 63

8.4.2.1 Indirect Function Calls With Function Pointers (hazardous)

Taking (i) first:

Here func4 and func5 are called from main by an intermediate function called EXECUTE. A pointer to the required
function is passed. When L51 analyses the program, it cannot establish a direct link between execute and func4/5 because
the function pointer received as a parameter breaks the chain of references - this function pointer is undefined at link
time. Thus L51 overlays the local segments of func4, func5 and execute as if they were all references from main. Refer
to the overlay diagram above if in doubt.

The result is that the locals of func4/5 will corrupt the locals used in execute. This is clearly VERY dangerous, especially
as the overwriting may not be immediately obvious - it may only appear under abnormal operating conditions once the
code has been delivered.

#include <reg517.h>
/***
 *** OVERLAY HAZARD 1 - Indirectly called functions ***
**/
char func1(void) { // Function to be called directly

char x, y, arr[10] ;

for(x = 0 ; x < 10 ; x++) {
 arr[x] = x ;
 }

return(x) ;
}

char func2(void) { // Function to be called directly
(.... C Code ...)
}

char func3(void) { // Function to be called directly
(.... C Code ...)
return(x) ;
}

char func4(void) { // Function to be called indirectly

char x4, y4, arr4[10] ; // Local variables

for(x4 = 0 ; x4 < 10 ; x4++) {

 arr4[x4] = x4 ;
 }

return(x4) ;
}

char func5(void) { // Function to be called indirectly

char x5, y5, arr5[10] ; // Local variables

for(x5 = 0 ; x5 < 10 ; x5++) {

 arr5[x5] = x5 ;
 }

return(x5) ;
}

/*** Function which does the calling ***/

char execute(fptr) //Receive pointer to function to be used
 char (*fptr)() ;
 {

 char tex ; // Local variables for execute function
 char arrex[10] ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 64

 for(tex = 0 ; tex < 10 ; tex++) {
 arrex[tex] = (*fptr)() ;
 }

 return(tex) ;
 }

/*** Declaration of general function pointer ***/

char (code *fp[3])(void) ;

/*** Main Calling Function ***/

void main(void) {

 char am ;

 fp[0] = func1 ; // Point array elements at functions
 fp[1] = func2 ;
 fp[2] = func3 ;

 am = fp[0] ; // Execute functions
 am = fp[1] ;
 am = fp[2] ;

 if(P1) { // Control which function is called

 am = execute(func4) ; // Tell execute function which
to run

 }
 else {

 am = execute(func5) ; // Tell execute function which
to run

 }
 }

Resulting Linker Output .M51 File for the dangerous condition.

MS-DOS MCS-51 LINKER / LOCATER L51 V2.8, INVOKED BY: L51 MAIN.OBJ TO EXEC.ABS

OVERLAY MAP OF MODULE: EXEC.ABS (MAIN)

SEGMENT DATA-GROUP
 +—> CALLED SEGMENT START LENGTH

?C_C51STARTUP
 +—> ?PR?MAIN?MAIN

?PR?MAIN?MAIN 000EH 0001H
 +—> ?PR?FUNC1?MAIN
 +—> ?PR?FUNC2?MAIN
 +—> ?PR?FUNC3?MAIN
 +—> ?PR?FUNC4?MAIN
 +—> ?PR?_EXECUTE?MAIN
 +—> ?PR?FUNC5?MAIN

?PR?FUNC1?MAIN 000FH 000BH

?PR?FUNC2?MAIN 000FH 000BH

?PR?FUNC3?MAIN 000FH 000BH //Danger func4's

//local

?PR?FUNC4?MAIN 000FH 000BH //func4's data
//overlaid with

?PR?_EXECUTE?MAIN 000FH 000EH //execute's, its
 +—> ?C_LIB_CODE //caller!!

?PR?FUNC5?MAIN 000FH 000BH //func5's local
//data overlaid
//with execute's,
//its caller!!

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 65

RAM Locations Used:

D:0012H SYMBOL tex // execute’s locals overlap
D:0013H SYMBOL arrex // func4 and func5’s - OK

D:000FH SYMBOL y
D:0010H SYMBOL arr4

D:000FH SYMBOL y5
D:0010H SYMBOL arr5

Incidentally, the overlay map shows which functions referred to which other functions. By checking what L51 has found
against what you expect, overlay hazards may be spotted.

8.4.2.2 Indirectly called functions solution

Use the overlay command when linking thus:

main.obj & to exec.abs & OVERLAY(main ; (func4,func5), _execute ! (func4,func5))

Note: The tilde sign ‘;’ means: “Ignore the reference to func4/5 from main” The ‘!’ means: “Manually
generate a reference between intermediate function ‘execute’ and func4/5 to prevent overlaying of local variables

within these functions.”

Please make sure you understand exactly how this works!!!

The new linker output is:

MS-DOS MCS-51 LINKER / LOCATER L51 V2.8, INVOKED BY:

L51 MAIN.OBJ TO EXEC.ABS OVERLAY(MAIN ;(FUNC4, FUNC5), _EXECUTE ! (FUNC4, FUNC5))
OVERLAY MAP OF MODULE: EXEC.ABS (MAIN)

SEGMENT DATA-GROUP
 +—> CALLED SEGMENT START LENGTH

?C_C51STARTUP
 +—> ?PR?MAIN?MAIN

?PR?MAIN?MAIN 0024H 0001H
 +—> ?PR?FUNC1?MAIN
 +—> ?PR?FUNC2?MAIN
 +—> ?PR?FUNC3?MAIN
 +—> ?PR?_EXECUTE?MAIN

?PR?FUNC1?MAIN 0025H 000BH

?PR?FUNC2?MAIN 0025H 000BH

?PR?FUNC3?MAIN 0025H 000BH

?PR?_EXECUTE?MAIN 0025H 000EH
 +—> ?C_LIB_CODE

D:0028H SYMBOL tex // Execute’s variables
no longer

D:0029H SYMBOL arrex // overlaid with func4/
5’s

D:0008H SYMBOL y
D:0009H SYMBOL arr4

D:0013H SYMBOL y5
D:0014H SYMBOL arr5

*** WARNING 16: UNCALLED SEGMENT,IGNORED FOR OVERLAY PROCESS
 SEGMENT: ?PR?FUNC4?MAIN

*** WARNING 16: UNCALLED SEGMENT,IGNORED FOR OVERLAY PROCESS
 SEGMENT: ?PR?FUNC5?MAIN

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 66

Note: The WARNING 16’s show that func4/5 have been removed from the overlay process to remove the hazard.
See section 8.4.2.6 on the “UNCALLED SEGMENT, IGNORED FOR OVERLAY PROCESS” warning.

8.4.2.3 Function Jump Table Warning (Non-hazardous)

Here two functions are called an array of function pointers. The array “jump_table” exists in a segment called
“?CO?MAIN1, i.e. the constant area assigned to module main. The problem arises that the two message string arguments
to the printf ’s are also sited here. This leads to a recursive definition of the function start addresses in the jump table.

While this is not in itself dangerous, it prevents the real function references from being established and hence the
overlaying process is inhibited.

**;
<<<<<<<<<<<<<Recursive Call To Segment Error>>>>>>>>>>>>>>
**;
#include <stdio.h>
#include <reg517.h>

void func1(void) {

 unsigned char i1 ;

 for(i1 = 0 ; i1 < 10 ; i1++) {

 printf(“THIS IS FUNCTION 1\n”) ; // String stored in
?CO?MAIN1 segment

 }
 }

void func2(void) {

 unsigned char i2 ;

 for(i2 = 0 ; i2 < 10 ; i2++) {

 printf(“THIS IS FUNCTION 2\n”) ; // String stored in
?CO?MAIN1 segment

 }
 }

code void(*jump_table[])()={func1,func2}; //Jump table to
functions,

 // table stored in
 ?CO?MAIN1

 // segment.
/*** Calling Function ***/

main() {

 (*jump_table[P1 & 0x01])() ; // Call function via jump
table in ?CO?MAIN1

 }
 ^^^^^^^^^^^^^^^^^^^^^^^ End of Module

The resulting link output is:

Note: No reference exists between main and func1/2 so the overlay process cannot occur, resulting in wasted
RAM.

OVERLAY MAP OF MODULE: MAIN1 (MAIN1)

SEGMENT BIT-GROUP DATA-GROUP
 +—> CALLED SEGMENT START LENGTH START LENGTH

?C_C51STARTUP
 +—> ?PR?MAIN?MAIN1

?PR?MAIN?MAIN1
 +—> ?CO?MAIN1
 +—> ?C_LIB_CODE

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 67

?CO?MAIN1
 +—> ?PR?FUNC1?MAIN1
 +—> ?PR?FUNC2?MAIN1

?PR?FUNC1?MAIN1 0008H 0001H
 +—> ?PR?PRINTF?PRINTF

MCS-51 LINKER / LOCATER L51 V2.8
DATE 04/08/92 PAGE 2

?PR?PRINTF?PRINTF 0020H.0 0001H.1 0009H 0014H
 +—> ?C_LIB_CODE
 +—> ?PR?PUTCHAR?PUTCHAR

?PR?FUNC2?MAIN1 0008H 0001H
 +—> ?PR?PRINTF?PRINTF

*** WARNING 13: RECURSIVE CALL TO SEGMENT
 SEGMENT: ?CO?MAIN1
 CALLER: ?PR?FUNC1?MAIN1

*** WARNING 13: RECURSIVE CALL TO SEGMENT
 SEGMENT: ?CO?MAIN1
 CALLER: ?PR?FUNC2?MAIN1

8.4.2.4 Function Jump Table Warning Solution

The solution is to use the OVERLAY command when linking thus:

main1.obj &
to main1.abs &
OVERLAY(?CO?MAIN1 ~ (func1,func2), main ! (func1,func2))

This deletes the reference to func1 & 2 from the ?CO?MAIN1 segment and inserts the true reference from main to func1
& func2.

The linker output is now thus:

OVERLAY MAP OF MODULE: MAIN1.ABS (MAIN1)

SEGMENT BIT-GROUP DATA-GROUP
 +—> CALLED SEGMENT START LENGTH START LENGTH

?C_C51STARTUP
 +—> ?PR?MAIN?MAIN1

?PR?MAIN?MAIN1
 +—> ?CO?MAIN1
 +—> ?C_LIB_CODE
 +—> ?PR?FUNC1?MAIN1
 +—> ?PR?FUNC2?MAIN1

?PR?FUNC1?MAIN1 0008H 0001H
 +—> ?CO?MAIN1
 +—> ?PR?PRINTF?PRINTF

?PR?PRINTF?PRINTF 0020H.0 0001H.1 0009H 0014H
 +—> ?C_LIB_CODE
 +—> ?PR?PUTCHAR?PUTCHAR

?PR?FUNC2?MAIN1 0008H 0001H
 +—> ?CO?MAIN1
 +—> ?PR?PRINTF?PRINTF

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 68

8.4.2.5 Multiple Call To Segment Warning (Hazardous)

This warning generally occurs when a function is called from both the background and an interrupt. This means that
potentially the interrupt may call the function whilst it is still running, as a result of a background level call. The result
could be the over-writing of the local data in the background. The fact that the offending function is also overlaid with
other background functions makes the chances of failure very high. The simplest solution is to declare the function as
REENTRANT so that the compiler will generate a local stack for parameters and variables. Thus on each call to the
function, a new set of parameters and local variables are created without destroying any existing ones from the current
call.

Unfortunately this significantly increases the run time and code produced. Another possibility is to make a second and
renamed version of the function, one for background use and one for interrupt. This is somewhat wasteful and presents
a maintenance problem, as you now have effectively two versions of the same piece of code.

In many cases the situation is not a problem, as the user may have ensured that the reentrant use could never occur, but
is left with the linker warning. However this must be viewed as dangerous, particularly if more than one programmer
is involved.

#include <stdio.h>
#include <reg517.h>

void func1(void) {

 unsigned char i1,a1[15] ;

 for(i1 = 0 ; i1 < 10 ; i1++) {

 a1[i1] = i1 ;
 }
 }

void func2(void) {

 unsigned char i2,a2[15] ;

 for(i2 = 0 ; i2 < 10 ; i2++) {

 a2[15] = i2 ;
 }
 }

main() {
 func1() ;
 func2() ;
 }

void timer0_int(void) interrupt 1 {
 func1() ;
 } ^^^^^^^^^^^^^^^^^^^^^^^ End of Module

This produces the linker map:

OVERLAY MAP OF MODULE: MAIN2 (MAIN2)
SEGMENT DATA-GROUP
 +—> CALLED SEGMENT START LENGTH

?PR?TIMER0_INT?MAIN2
 +—> ?PR?FUNC1?MAIN2

?PR?FUNC1?MAIN2 0017H 000FH

?C_C51STARTUP
 +—> ?PR?MAIN?MAIN2

?PR?MAIN?MAIN2
 +—> ?PR?FUNC1?MAIN2
 +—> ?PR?FUNC2?MAIN2

?PR?FUNC2?MAIN2 0017H 000FH

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 69

D:0007H SYMBOL i1 // Danger!
D:0017H SYMBOL a1

D:0007H SYMBOL i2
D:0017H SYMBOL a2

*** WARNING 15: MULTIPLE CALL TO SEGMENT
 SEGMENT: ?PR?FUNC1?MAIN2
 CALLER1: ?PR?TIMER0_INT?MAIN2
 CALLER2: ?C_C51STARTUP

8.4.2.6 Multiple Call To Segment Solution

The solution is to:

(i) Declare func1 as REENTRANT thus:

void func1(void) reentrant { }

(ii) Use OVERLAY linker option thus:

main2.obj &
to main2.abs &
OVERLAY(main ~ func1,timer0_int ~ func1)

to break connection between main and func1 and timer0_int and func1.

OVERLAY MAP OF MODULE: MAIN2.ABS (MAIN2)

SEGMENT DATA-GROUP
 +—> CALLED SEGMENT START LENGTH

?C_C51STARTUP
 +—> ?PR?MAIN?MAIN2

?PR?MAIN?MAIN2
 +—> ?PR?FUNC2?MAIN2

?PR?FUNC2?MAIN2 0017H 000FH

*** WARNING 16: UNCALLED SEGMENT, IGNORED FOR OVERLAY PROCESS
 SEGMENT: ?PR?FUNC1?MAIN2

This means that the safe overlaying of func1 with other background functions will not occur. Removing the link only
with the interrupt would solve this:

main2.obj &
to main2.abs &
OVERLAY(timer0_int ~ func1)

Another route would be to disable all overlaying but this is likely to eat up large amounts of RAM very quickly and is
thus a poor solution.

main2.obj & to main2.abs & NOOVERLAY

With the MULTIPLE CALL TO SEGMENT WARNING the only really “safe” solution is to declare func1 as
REENTRANT, with the duplicate function a good second. The danger of using the OVERLAY command is that a less
experienced programmer new to the system might not realise that the interrupt is restricted as to when it can call the
function and hence system quality is degraded.

8.4.3 Overlaying Public Variables

All the preceding examples deal with the overlaying of locals and parameters at a function level. A case occurred recently
in which the program was split into two distinct halves; the divide taking place very early on. To all intents and purposes
the 8051 was able to run one of two completely different application programs, based on some user input during
initialisation.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 70

Each program half had a large number of public variables, some of which were known to both sides but the majority of
which were local to one side only. This is almost multitasking.

This type of program structure really needs a new storage class like “GLOBAL”, with public meaning available to a
certain number of modules only. GLOBAL would then be available to all modules. The new C166 supports this type
of task-based variable scope. Unfortunately C51 does not, so a fix is required.

The linker’s OVERLAY command does not help, as it only controls the overlaying of local and parameter data. One
possible solution uses special modules to declare the publics. Module1 declares the publics for program (task1);
Module2 declares the publics for program2 (task2). Finally, Module3 declares the publics which are available to both
sides.

The trick then is to use the linker to fix the data segments on Module1 and Module2 at the same physical address, whilst
allowing Module3’s variables to be placed automatically by the linker.

This solution uses three special modules for declaring the publics:

/* Example of creating two sets of public data */
/*in same memory space */

extern void main1(void) ;
extern void main0(void) ;

/* Main module where system splits into two parts */

void main(void) {
 bit flag ;

 if(flag) {
 main0() ; // Branch 0
 }
 else {
 main1() ; // Branch 1
 }
 } ^^^^^^^^^^^^^^^^^^^^^^^ End of Module

/* Module that declares publics for branch 2 */

/* Publics for branch 2 */

unsigned char x2,y2 ;
unsigned int z2 ;
char a2[0x30] ;

/* A variable which is accessible from both branches */

extern int common ;

^^^^^^^^^^^^^^^^^^^^^^^ End of Module

void main0(void) {

 unsigned char c0 ; /* Local - gets overlaid with c1 in*/
/*other branch */

 x2 = 0x80 ;
 y2 = x2 ;

 c0 = y2 ;

 z2 = x2*y2 ;

 a2[2] = x2 ;

 common = z2 ;

 }

^^^^^^^^^^^^^^^^^^^^^^^ End of Module

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 71

/* Module that declares publics for branch 1 */

/* Publics for branch 1 */

unsigned char x1,y1 ;
unsigned int z1 ;
char a1[0x30] ;

/* A variable which is accessible from both branches */

extern int common ;

void main1(void) {

 char c1 ;

 x1 = 0x80 ;
 y1 = x1 ;

 c1 = y1 ;

 z1 = x1*y1 ;
 a1[2] = x1 ;

 common = z1 ;

 }
^^^^^^^^^^^^^^^^^^^^^^^ End of Module

/* Module that declares variables that both */
/*branches can access */

int common ; /* A variable common to both branches */

^^^^^^^^^^^^^^^^^^^^^^^ End of Module

/* Linker Input */

l51 t.obj,t1.obj,t2.obj,com.obj to t.abs
DATA(?DT?T1(20H),?DT?T2(20H))

The choice of “20H” for the location places the combined segments just above the register banks.

The main problem with this approach is that a DATA overlay warning is produced. This is not dangerous but is obviously
undesirable.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 72

9 Other C51 Extensions
9.1 Special Function Bits

A frustration for assembler programmers with the old C51 version was the need to use bit masks when testing for specific
bits with chars and ints, despite there being a good set of bit-orientated assembler instructions within the 8051. In version
3, however, it is possible to force data into the bit-addressable area (starting at 0x20) where the 8051’s bit instructions
can be used.

An example is testing the sign of a char by checking for bit = 1.

Here the char is declared as “bdata” thus:

 bdata char test_char ;

sign_bit is defined as:

 sbit sign_bit = test_char ^ 7 ;

to use this:

 test_char = counter ;
 if(sign_bit) { /* test_char is negative */ }

the opcodes executed are:

 MOV A,counter ;
 MOV test_char,A ;
 JNB 0,DONE ;
 /* Negative */
DONE:

All of which is a lot faster than using bit masks and &'s!

The important points are that the “bdata” tells C51 and L51 that this variable is to be placed in the bit-addressable RAM
area and the “sbit sign_bit = test_char ^ 7” tells C51 to assume that a bit called sign_bit will be located at position 7 in
the test_char byte.

Byte Number: test_char 20H Start Of BDATA area
Bit Number: 0,1,2,3,4,5,6,7<— sign_bit
Byte Number: 21H
Bit Number: 8,9,10,11,12,13,14,15
Byte Number: 22H
Bit Number: 16,17,18,19,20,21,22,23,24.....

The situation with ints is somewhat more complicated. The problem is that the 8051 does not store things as you first
expect. The same sign test for an int would require bit 7 to be tested. This is because the 8051 stores int’s high byte at
the lower address. Thus bit 7 is the highest bit of the higher byte and 15 is the highest bit of the lower.

Byte Number: test_int(high) 20H
Bit Number: 0,1,2,3,4,5,6,7

Byte Number: test_int+1(low) 21H
Bit Number: 8,9,10,11,12,13,14,15

Bit locations in an integer

9.2 Support For 80C517/537 32-bit Maths Unit

The Infineon 80C537 and 80C517A group have a special hardware maths unit, the MDU, aimed at speeding-up number-
crunching applications.

9.2.1 The MDU - How To Use It

To allow the 8051 to cope with 16 and 32-bit (“int” and “long”) multiplication and division, the Infineon 80C517 variant
has a special maths co-processor (MDU) integrated on the cpu silicon. A 32-bit normalise and shift is also included for

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 73

floating point number support. It also has 8 data pointers to make accessing external RAM more efficient.

The compiler can take advantage of these enhancements if the “MOD517” switch is used, either as a #pragma or as a
command line extension. This will result in the use of the MDU to perform > 8-bit multiplies and divides. However a special
set of runtime libraries is required from Keil for linking.

Using the MDU will typically yield a runtime improvement of 6 to 9 times the basic 8051 cpu for 32-bit unsigned integer
arithmetic.

Optionally the blanket use of the 80C517 enhancements after MOD517 can be selectively disabled by the NOMDU and
NODP pragmas. Predictably NOMDU will inhibit the use of the maths unit, while NODP will stop the eight data
pointers being used.

9.2.2 The 8 Datapointers

To speed up block data moves between external addresses, the 517A has 8 datapointers. These are only used by C51
in the memcpy() and strcpy() library functions.

The general “MOD517” switch will enable their use. Note that the strcat() routine does not use the additional data
pointers.

If the extra pointers are to be used both in background and interrupt functions, the DPSEL register is automatically
stacked on entry to the interrupt and a new DPSEL value allocated for the duration of the function.

9.2.3 80C517 - Things To Be Aware Of

The 80C517 MDU is used effectively like a hardware subroutine, as it is not actually part of the 8051 cpu. As such it
is subject to normal sub-routine rules regarding re-entrancy. If, as an example, both a background program and an
interrupt routine try to use the MDU simultaneously, the background calculation will be corrupted. This is because the
MDU input and output registers are fixed locations and the interrupt will simply overwrite the background values.

To allow the background user to detect corruption of the MDU registers, the MDEF bit is provided within the ARCON
register. After any background use of the MDU, a check should be made for this flag being set. If so, the calculation
must be repeated. Appropriate use of the NOMDU pragma could be used instead.

Note: the compiler does not do this - the user must add the following code to overcome the problem:

#pragma MOD517
#include “reg517.h”

 long x,y,z ;
 func()
 {
 while(1)
 {
 x = y / z ; /* 32-bit calculation */
 if(MDEF == 0) /* If corruption has */
 { break ; } /* occurred then repeat */
 } /* else exit loop */
 }

9.3 87C751 Support

The Philips 87C751 differs from the normal 8051 CPU by having a 2k code space with no option for external ROM. This
renders the long LJMP and LCALL instructions redundant. To cope with this the compiler must be forced to not generate
long branch instructions but to use AJMPs and ACALLs instead.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 74

9.3.1 87C751 - Steps To Take

1. Invoke C51 with:
C51 myfile.c ROM(SMALL) NOINTVECTOR or use “#pragma ROM(SMALL)”

2 Use the INIT751.A51 startup file in the LIB directory.

3. Do not use floating point arithmetic, integer or long divides, printf, scanf etc., as they all use LCALLs.

4. A special 87C751 library package is available which will contain short call versions of the standard library
routines.

9.3.2 Integer Promotion

Automatic integer promotion within “IF” statements is incorporated in version >= 3.40 to meet recent ANSI stipulations
in this area. This makes porting code from Microsoft or Borland PC C compilers much easier. Thus any char(s) within
a conditional statement are pre-cast to int before the compare is performed. This makes some sense on 16 bit machines
where int is as efficient as char but, in the 8051, char is the “natural” size for data and so some loss of efficiency results.

Fortunately Keil have provided “#pragma NOINTPROMOTE” to disable this feature! In this case explicit casts should
be used if another data type might result from an operation.

To show why this #pragma is important, this C fragment’s code sizes are influenced thus:

char c ; unsigned char c1, c2 ; int i ;
main() {
 if((char)c == 0xff) c = 0 ;
 if((char)c == -1) c = 1 ;
 i = (char)c + 5 ;

 if((char)c1 < (char)c2 + 4) c1 = 0 ;

 }

Code Sizes

47 bytes - C51 v3.20
49 bytes - C51 v3.40 (INTPROMOTE)
63 bytes - C51 v3.40 (NOINTPROMOTE)

Again this goes to show that C portability compromises efficiency in 8051 programs...

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 75

10 Miscellaneous Points
10.1 Tying The C Program To The Restart Vector

This is achieved by the assembler file “STARTUP.A51”. This program simply places a LJMP STARTUP at location
C:0000 (Lowest EPROM location).

The startup routine just clears the internal RAM and sets up the stack pointer. Finally it executes a LJMP to “main”,
(hopefully) the first function in the C program.

LJMP main
.
.
.
.
main()
{
}

In fact this need be the only assembler present in a C51 program.

10.2 Intrinsic Functions

There are a number of special 8051 assembler instructions which are not normally used by C51. For the sake of speed
it is sometimes useful to get direct access to these.

Unlike the normal C51 ‘>>’ functions, _cror_ allows direct usage of an 8051 instruction set feature, in this case the “RR
A” (rotate accumulator). This yields a much faster result than would be obtained by writing one using bits and the normal
>> operator. There are also _iror_ and _lror_ intrinsic functions for integer and long data as well.

The _nop_ function simply adds an in-line NOP instruction to generate a short and predictable time delay. Another
function, _testbit_, makes use of the JBC instruction to allow a bit to be tested, a branch taken and the bit cleared if set.
The only extra step necessary is to include “intrins.h” in the C51 source file.

Here is an example of how the _testbit_() intrinsic function is used to save a CLR instruction:

; #include <intrins.h>
;
;
; unsigned int shift_reg = 0 ;
;
; bit test_flag ;
;
; void main(void) {

RSEG ?PR?main?T
USING 0

main:
; SOURCE LINE # 12

;
; /* Use Normal Approach */
;
; test_flag = 1 ;

; SOURCE LINE # 14
SETB test_flag

;
; if(test_flag == 1) {

; SOURCE LINE # 16
JNB test_flag,?C0001

; test_flag = 0 ;
; SOURCE LINE # 17

CLR test_flag
; P1 = 0xff ;

; SOURCE LINE # 18
MOV P1,#0FFH

; }
; SOURCE LINE # 19

?C0001:
;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 76

; /* Use Intrinsic Function */
;
; test_flag = 1 ;

; SOURCE LINE # 21
SETB test_flag

;
; if(!_testbit_(test_flag)) {

; SOURCE LINE # 23
JBC test_flag,?C0003

; P1 = 0xff ;
; SOURCE LINE # 24

MOV P1,#0FFH
; }

; SOURCE LINE # 25
;
; }

; SOURCE LINE # 27
?C0003:

RET
; END OF main

END

See pages 9-17 in the C51 Manual

10.3 EA Bit Control #pragma

Whilst the interrupt modifier for function declarations remains unchanged a new directive, DISABLE, allows interrupts
to be disabled for the duration of a function. Note that this can be individually applied to separate functions within a
module but is given as a #pragma rather than as part of the function declaration. Although not verified yet, DISABLE
gives the user some control over the EA or EAL bit.

10.4 16-Bit sfr Support

Another new feature is the 16-bit sfr type. Within expanded 8051 variants in particular, many 16-bit timer and capture
registers exist. Rather than having to load the upper and lower bytes individually with separate C statements, the sfr16
type is provided. The actual address declared for a 16-bit sfr in the header file is always the low byte of the sfr. Now to
load a 16-bit sfr from C, only a single int load is required. Be warned - 8-bit instructions are still used, so the 16-bit load/
read is not indivisible - odd things can happen if you load a timer and it overflows during the process! Note that usually
only timer 2 or above has the high/low bytes arranged sequentially.

10.5 Function Level Optimisation

Optimisation levels of 4 and above are essentially function optimisations and, as such, the whole function must be held
in PC memory for processing. If there is insufficient memory for this, a warning is issued and the additional optimisation
abandoned. Code execution will still be correct however. See p1-8 in the C51 manual.

10.6 In-Line Functions In C51

One of the fundamentals of C is that code with a well-defined input, output and job is placed into a function i.e. a
subroutine. This involves placing parameters into a passing area, whether a stack or a register, and then executing a
CALL. It is unavoidable that the call instruction will use two bytes of stack.

In most 8051 applications this not a problem, as there is generally 256 on-chip RAM potentially available as stack. Even
after allowing for a few registerbanks, there is normally sufficient stack space for deeply nested functions.

However in the case of the 8031 and reduced devices such as the 87C751, every byte of RAM is critical. In the latter
case there are only 64 bytes!

A trick which can both save stack and reduce run time is to use macros with parameters to act like “in-line” functions.
The ability to create macros with replaceable parameters is not commonly used but on limited RAM variants it can be
very useful.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 77

Here a strcpy() function created as a macro named “Inline_Strcpy”, whilst it looks like a normal function, it does not actually
have any fixed addresses or local data of its own. The ‘\’ characters serve to allow the macro definition to continue to
a new line, in this case to preserve the function-like appearance.

It is “called” like a normal function with the parameters to be passed enclosed in (). However no CALL is used and the
necessary code is created in-line. The end result is that a strcpy is performed but no new RAM or stack is required.

Please note however, the drawback with this very simple example is that the source and destination pointers are modified
by the copying process and so is rather suspect!

A further benefit in this example is that the notional pointers s1 and s2 are automatically memory-specific and thus very
efficient. Thus in situations where the same function must operate on pointer data in a variety of memory spaces, slow
generic pointers are not required.

#define Inline_Strcpy(s1,s2) {\ while((*s1 = *s2) != 0)}\
 {*s1++ ; *s2++; }\

 }
char xdata *out_buffx = { “ “ } ;
char xdata *in_buffx = { “Hello” } ;
char idata *in_buffi = { “Hello” } ;
char idata *out_buffi = { “ “ } ; char code *in_buffc = { “Hello” } ;

void main(void) {

 Inline_Strcpy(out_buffx,in_buffx) // In line functions
 Inline_Strcpy(out_buffi,in_buffi)
 Inline_Strcpy(out_buffx,in_buffc)
 }

Another good example of how a macro with parameters can be used to aid source readability is in the optimisation feature
in Appendix D. The interpolation calculation that originally formed a subroutine could easily be redefined as a macro
with 5 parameters, realising a ram and run time saving at the expense of code size.

Note that ‘r’, the fifth parameter, represents the return value which has to be “passed” to the macro so that it has
somewhere to put the result!

#define interp_sub(x,y,n,d,r) y -= x ; \
if(!CY) { r = (unsigned char) (x +(unsigned char)(((unsigned

int)(n * y))/d)) ;\

} else { r = (unsigned char) (x - (unsigned char)(((unsigned int)(n * -y))/d)) ; }

This is then called by:

/*Interpolate 2D Map Values */
/*Macro With Parameters Used*/

interp_sub(map_x1y1,map_x2y1,x_temp1,x_temp2,result_y1)

and later it is reused with different parameters thus:

interp_sub(map_x1y2,map_x2y2,x_temp1,x_temp2,result_y2)

To summarise, parameter macros are a good way of telling C51 about a generalised series of operations whose memory
spaces or input values change in programs where speed or RAM usage is critical.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 78

11 Some C51 Programming Tricks
11.1 Accessing R0 etc. directly from C51

A C51 user was using existing assembler routines to perform a specific task. For historical reasons the 8 bit return value
from the assembler was left in R0 of register bank 3. Ordinarily C51 would return chars in R7 and therefore simply
equating a variable to the assembler function call would not work.

The solution was to declare an uncommitted memory specific pointer to the DATA area. At run time the absolute address
of the register (here 0x18) was assigned to the pointer. The return value was then picked up via the pointer after exiting
the assembler section.

/*** Example Of Accessing Specific Registers In C ***/
char data *dptr ; // Create pointer to DATA location

/* Define Address Of Register */

#define R0_bank3 0x40018L /* Address of R0 in */
 /* bank 3, 4 => DATA space */

char x,y ;

/* Execute */

main() {
dptr = (char*) R0_bank3 ; // Point at R0, bank3

x = 10 ;
dptr[0] = x ; // Write x into R0, bank3
y = *dptr ; // Get value of R0, bank3

}

An alternative might have been to declare a variable to hold the return value in a separate module and to use the linker
to fix that module’s DATA segment address at 0x18. This method is more robust and code efficient but is considerably
less flexible.

11.2 Making Use Of Unused Interrupt Sources

One problem with the 8051 is the lack of a TRAP or software interrupt instruction. While C166 users have the luxury
of real hardware support for such things, 8051 programmers have to be more cunning.

A situation arose recently where the highest priority interrupt function in a system had to run until a certain point, from
which lesser interrupts could then come in. Unfortunately, changing the interrupt priority registers part way through
the interrupt function did not work, the lesser interrupts simply waiting until the RETI. The solution was to hijack the
unused A/D converter interrupt, IADC, and attach the second section of the interrupt function to it. Then by deliberately
setting the IADC pending flag just before the closing “}”, the second section could be made to run immediately
afterwards. As the priority of the ADC interrupt had been set to a low level, it was interruptable.

/* Primary Interrupt Attached In CC0 Input Capture */

tdc_int() interrupt 8 {

/* High priority section - may not be interrupted */

/* Enable lower priority section attached to */
 /* ADC interrupt */

IADC = 1 ; // Force ADCinterrupt
EADC = 1 ; // Enable ADC interrupt
}

/* Lower priority section attached to ADC interrupt */

tdc_int_low_priority() interrupt 10

IADC = 0 ; // Prevent further calls
EADC = 0 ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 79

/* Low priority section which must be interruptable and */
 /* guaranteed to follow high priority section above */

}

11.3 Code Memory Device Switching

This dodge was used during the development of a HEX file loader for a simple 8051 monitor. After receiving a hexfile
into a RAM via the serial port, the new file was to be executed in RAM starting from 0000H. A complication was that
the memory map had to be switched immediately prior to hitting 0000H.

The solution was to place the map switching section at 0xfffd so that the next instruction would be fetched from 0x0000,
thus simulating a reset. Ideally all registers and flags should be cleared before this.

#include “reg.h”
#include “cemb537.h”
#include <stdio.h>

 main()
 {

 unsigned char tx_char,rx_char,i ;

 P4 = map2 ;

 v24ini_537() ;

 timer0_init_537() ;

 hexload_ini() ;

 EAL = 1 ;

 while(download_completed == 0)
 {

 while(char_received_fl == 0)
 { receive_byte() ; }

 tx_byte = rx_byte ; /* Echo */
 hexload() ;
 send_byte(tx_byte) ;

 char_received_fl = 0 ;
 }

 real_time_count = 0 ;
 while(real_time_count < 200)
 { ; }

 i = ((unsigned char (code*)(void)) 0xFFFD) () ;
 // Jump to absolute address.

 }

^^^^^^^^^^^^^^^^^^^^^^^ End of Module

;
 NAME SWITCH
;
; Cause PC to roll-over at FFFFH to simulate reset
;
 P4 DATA 0E8H
;
 CSEG AT 0FFFDH
;
 MOV P4,#02Fh ;
;
 END

^^^^^^^^^^^^^^^^^^^^^^^ End of Module “MAPCON”

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 80

There are other ways of doing this. For instance the code for the MAPCON module could be located at link time thus:
CODE(SWITCH(0FFFDH)), so dispensing with the “CSEG AT”.

11.4 Simulating A Software Reset

In a similar vein to the above, the 8051 does not possess a software reset instruction, unlike the 80C166 etc.. This method
uses abstract pointers to create a call to address zero, thus simulating a software reset.

However it should be remembered that all internal locations must be cleared before the CPU can be considered properly
reset! The return address must be reset as the stack still contains the return address from the call.

;
;
; void main(void) {

RSEG ?PR?main?T1
USING 0

main:
; SOURCE LINE # 9

;
; ((void (code*) (void)) 0x0000) () ;

; SOURCE LINE # 11
LCALL 00H ; Jump to address ZERO!

;
; }

; SOURCE LINE # 13
RET

; END OF main

11.5 The Compiler Preprocessor - #define

This is really just a text replacement device.

It can be used to improve program readability by giving constants meaningful names, for example:

#define fuel_constant 100 * 2

so that the statement temp = fuel_constant will assign the value 200 to temp.

Note that the preprocessor only allows integer calculations.

Other more sophisticated examples are given in the C51 manual, pages 4-2.

12 C51 Library Functions
One of the main characteristics of C is its ability to allow complex functions to be constructed from the basic commands.
To save programmer effort many common mathematical and string functions are supplied ready compiled in the form
of library files.

12.1 Library Function Calling

Library functions are called as per user-defined functions, i.e.;

#include ctype.h
{
char test_byte ;
result = isdigit(test_byte) ;
}

where “isdigit()” is a function that returns value 1 (true) if the test_byte is an ASCII character in the range 0 to 9.

The declarations of the library functions are held in files with a “.h” extension - see the above code fragment.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 81

Examples are:

ctype.h,
stdio.h,
string.h etc..

These are included at the top of the module which uses a library function.

Many common mathematical functions are available such as ln, log, exp, 10x, sin, cos, tan (and the hyperbolic
equivalents). These all operate on floating point numbers and should therefore be used sparingly! The include file
containing the mathematical function prototypes is “math.h”.

Library files contain many discrete functions, each of which can be used by a C program. They are actually retrieved
by the linker utility covered in section 8. These files are treated as libraries by virtue of their structure rather than their
extension. The insertion or removal of functions from such a file is performed by a library manager called LIB51.

12.2 Memory-Model Specific Libraries

Each of the possible memory models requires a different run-time library file. Obviously if the LARGE model is used
the code required will be different for a SMALL model program.

Thus with C51, 6 different library files are provided:

C51S.LIB - SMALL model
C51C.LIB - COMPACT model
C51L.LIB - LARGE model

plus three additional files containing floating point routines as well as the integer variety.

C51 library functions are registerbank independent. This means that library functions can be used freely without regard
to the current REGISTERBANK() or USING status. This is a major advantage as it means that library functions can
be used freely within interrupt routines and background functions without regard to the current register bank.

13 Outputs From C51
13.1 Object Files

Being closely related to the original Intel tools, C51 defaults to the Intel object file format. This is a binary file containing
the symbolic information necessary for debugging with in-circuit emulators etc.. It may be linked with object files from
either Intel PLM51 or ASM51 using the Keil L51 linker. The final output is Intel OMF51.

Versions >2.3 of the compiler will produce an extended Intel OMF51 object file if the DEBUG OBJECTEXTEND
command line switches are used. This passes type and scope information into the OMF51 file which any debugger/in-
circuit emulator should be able to use. The extensions to the original Intel format are a proprietary Keil development
but have been widely copied by IAR et al.

13.2 HEX Files For EPROM Blowing

To blow EPROMs an additional stage is usually necessary to get a HEX file. This is an ASCII representation of the final
program without any symbol information. Almost every EPROM programmer will understand Intel HEX. The OH51/
OHS51 utility performs the conversion from the linker’s OMF51 file to the standard 8bit Intel HEX format.

13.3 Assembler Output

Optionally, a valid A51 assembler/C source listing file can be produced by C51 if the SRC command line switch is used.
This has the original C source lines interleaved with the assembler and is very useful for getting to know how the compiler
drives the 8051.

Do not be tempted to try hand-tweaking the compiler’s efforts. Whilst you may be able to save the odd instruction here
and there, you will create a totally unmaintainable program! It is much better to structure source code so that you write
efficient code from the start. Simple, efficient C will produce the best 8051 code.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 82

14 Assembler Interfacing To C Programs
The calling of assembler routines from C51 is not difficult, provided that you read both this and the user manual.

14.1 Assembler Function Example

The example below is taken from a real application where an EEPROM was being written in a page mode. Because of
a 30us timeout of this mode, the 25us run time of the C51 code was viewed as being a bit marginal. It was therefore
decided to code it in assembler.

If an assembler-coded function is to receive no parameters then an ordinary assembler label at the beginning of the
function is simply called like any C function. Note that an extern function prototype must be given after the style of:

C51 File:

extern void asm_func(void).

A51 File:

ASM_FUNC: MOV A,#10 ; 8051 assembler instructions

Should there be parameters to be passed, C51 will place the first few parameters into registers. Exactly how it does this
is outlined in section

The complication arises when there are more parameters to be passed than can be fitted into registers.

In this case the user must declare a memory area into which the extra parameters can be placed. Thus the assembler
function must have a DATA segment defined that conforms to the naming conventions expected by C51.

In the example below, the segment

 “?DT?_WRITE_EE_PAGE?WRITE_EE SEGMENT DATA OVERLAYABLE”

does just that.

The best advice is to write the C that calls the assembler and then compile with the SRC switch to produce an assemblable
equivalent. Then look at what C51 does when it calls your as yet unwritten assembler function. If you stick to the
parameter passing segment name generated by C51 you will have no problems.

Example Of Assembler Function With Many Parameters

C Calling Function

Within the C program that calls this function the following lines must be added to the calling module/source file:

 /* external reference to assembler routine */

extern unsigned char write_ee_page(char*,unsigned
 char,unsigned char) ;

 .
 dummy()
 . {
 unsigned char number, eeprom_page_buffer,

 ee_page_length ;
 char * current_ee_page ;
 .
 number = write_ee_page (current_ee_page,

 eeprom_page_buffer, ee_page_length) ;
 . } /* End dummy */

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 83

The assembler routine is:

NAME EEPROM_WRITE ;

PUBLIC _WRITE_EE_PAGE ; Essential!
PUBLIC ?_WRITE_EE_PAGE?END_ADDRESS ;
PUBLIC ?_WRITE_EE_PAGE?END_BUFFER ;

;
P6 EQU 0FAH ;
Port 6 has watchdog pin ;
;** ;
*<<<<<<<<< Declare CODE And DATA Segments For

 Assembler Routine >>>>>>>>>>>*
;**;
?PR?_WRITE_EE_PAGE?WRITE_EE SEGMENT CODE ?DT?_WRITE_EE_PAGE?WRITE_EE SEGMENT DATA OVERLAYABLE ;
; ;** ;
*<<<<<< Declare Memory Area In Internal RAM For Local

 Variables Etc. >>>>>>*
;** ;
 RSEG ?DT?_WRITE_EE_PAGE?WRITE; ?_WRITE_EE_PAGE?END_ADDRESS: DS 2 ;
?_WRITE_EE_PAGE?END_BUFFER: DS 1 ;
;
; ;** ;
<<<<<<<<<<<<<<< EEPROM Page Write Function >>>>>>>>>>>>>>
;** ;
 RSEG ?PR?_WRITE_EE_PAGE?WRITE ;
; _
WRITE_EE_PAGE:
 CLR EA
 MOV DPH,R6 ; Address of EEPROM in R7/R6
 MOV DPL,R7 ;
;
 MOV A,R3 ; Length of buffer in R3
 DEC A ;
 ADD A,R7 ; Calculate address of last
 MOV ?_WRITE_EE_PAGE?END_ADDRESS+01H,A ; byte

in page in XDATA.
 CLR A ;
 ADDC A,R6 ;
 MOV ?_WRITE_EE_PAGE?END_ADDRESS,A ;
;
 MOV A,R5 ; Address of buffer in IDATA in R5
 MOV R0,A ;
 ADD A,R3 ;
 MOV ?_WRITE_EE_PAGE?END_BUFFER,A ;
;
LOOP: MOV A,@R0 ;
 MOVX @DPTR,A ;
 INC R0 ;
 INC DPTR ;
 MOV A,R0 ;
 CJNE A,?_WRITE_EE_PAGE?END_BUFFER,LOOP ;
;
 MOV DPH,?_WRITE_EE_PAGE?END_ADDRESS ;
 MOV DPL,?_WRITE_EE_PAGE?END_ADDRESS+01H ;
 DEC R0 ;
;
CHECK: XRL P6,#08 ; Refresh watchdog on MAX691
 MOVX A,@DPTR ;
 CLR C ;
 SUBB A,@R0 ;
 JNZ CHECK ;
;
 SETB EA ;
 RET ; Return to C calling program
;
 END
;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 84

14.2 Parameter Passing To Assembler Functions

In the assembler example the parameter “current_ee_page” was received in R6 and R7. Notice that the high byte is in
the lower register, R6. The fact that the 8051 stores high bytes at the low address of any multiple byte object always causes
head scratching!

The “_” prefix on the WRITE_EE_PAGE assembler function name is a convention to indicate that registers are used
for parameter passing. If you are converting from C51 version <3.00, please bear this in mind.

Note that if you pass more parameters than the registers can cope with, additional space is taken in the default memory
space (SMALL-data, COMPACT-pdata, LARGE-xdata).

14.3 Parameter Passing In Registers

Parameter passing is now possible via CPU registers (R0-R7). Coupled with register auto/local variables means that
function calls can be made very quickly. Up to three parameters may be passed this way although when using long and/
or float parameters only two may be passed, due to there being 4 bytes per variable and only 8 registers available! To
maintain compatibility with 2.5x the NOREGPARMS #pragma is provided to force fixed memory locations to be used.
Those calling assembler coded functions must take note of this.

Parameter Type Char Int+Spaced ptr Long/Float Generic Ptr

Parameter R7 R6/R7 R4-R7 R1,R2,R3
Parameter R5 R4/R5 R4-R7 R1,R2,R3
Parameter R3 R2/R3 R1,R2,R3

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 85

15 General Things To Be Aware Of
The following rules will allow the compiler to make the best use of the processor’s resources. Generally, approaching
C from an assembler programmer’s viewpoint does no harm whatsoever!

15.1
Always use 8-bit variables: the 8051 is strictly an 8-bit machine with no 16-bit instructions. char will always be more efficient
than int’s.

15.2
Always use unsigned variables where possible. The 8051 has no signed compares, multiplies etc., hence all sign
management must be done by discrete 8051 instructions.

15.3
Try to avoid dividing anything but 8 bit numbers. There is only an 8 by 8 divide in the instruction set. 32 by 16 divides
could be lengthy unless you are using an 80C537!

15.4
Try to avoid using bit structures. Until v2.30, C51 did not support these structures as defined by ANSI. Having queried
this omission with Keil, the explanation was that the code produced would be very large and inefficient. Now that they
have been added, this has proved to be right. An alternative solution is to declare bits individually, using the “bit” storage
class, and pass them to a user-written function.

15.5
The ANSI standard says that the product of two 8- bit numbers is also an 8 bit number. This means that any unsigned
chars which might have to be multiplied must actually be declared as unsigned int’s if there is any possibility that they
may produce even an intermediate result over 255.

However it is very wasteful to use integer quantities in an 8051 if a char can do the job! The solution is to temporarily
convert (cast) a char to an int. Here the numerator potentially could be 16 bits but the result always 8-bits. The “(unsigned
int)” casts ensure that a 16-bit multiply is used by C51.

{

unsigned char z ;
unsigned char x ;
unsigned char y ;

z = ((unsigned int) y * (unsigned int) x) >> 8 ;

}

Here the two 8-bit numbers x and y are multiplied and then divided by 256. The intermediate 16-bit (unsigned int) result
is permissible because y and x have been loaded by the multiplier library routine as int’s.

15.6
Calculations which consist of integer operands but which always produce an 8-bit (char) due to careful scaling result thus:

unsigned int x, y ;
unsigned char z ;
z = x*y/256 ;

will always work, as C51 will equate z to the upper byte (least significant) of the integer result. This is not machine-
dependant as ANSI dictates what should be done. Also note that C51 will access the upper byte directly, thus saving
code.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 86

15.7 Floating Point Numbers

One operand is always pushed onto an arithmetic stack in the internal RAM. In the SMALL model the 8051 stack is
used, but in other models a fixed segment is created at the lowest available address above the register bank area. In
applications where on-chip RAM is at a premium, full floating point maths really should not be used. Fixed point is a
far more realistic alternative.

16 Conclusion
The foregoing should give a fair idea how the C51 compiler can be used in real embedded program development. Its
great advantage is that it removes the necessity of being an expert in 8051 assembler to produce effective programs.
Really, for the 8051, C51 should be viewed as a universal low to medium level language which both assembler and C
programmers can move to very simply. Access to on and off-chip peripherals is painless and the need for assembler
device-drivers is removed. It will allow well structured programs devoid of the dreaded “goto” or “LJMP”. In fact most
of the extra code generated by C over an assembler is employed in ensuring good program structure rather than just
inefficient use of the 8051 instruction set. It offers true portability from the 8051 to other processors and, unusually, the
reverse is also true. Thus existing functions can be re-used, so reducing development time.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 87

Appendix A

Constructing A Simple 8051 C Program

Often the most difficult stage in 8051 C programming is getting the first program to run! Even if you are not having to
grapple with C as a new language, the business of dealing with special function registers, interrupts and memory-mapped
peripherals can be a bit daunting.

This simple program contains all the basic steps required to get an 8051 program to run. Like all the classic first programs,
it prints “hello world” down the serial port which is assumed to be connected to a dumb terminal.

A First C51 Program

/**
* Main Program - Simplest Version *
**/

/* This program is entered from the reset vector. It simply initialises the serial port, and
 prints “hello world” repeatedly */

/* Declare Memory Model */

.i.#pragma;#pragma SMALL // Set SMALL model (on-chip RAM only)

#include “\C51P\INC\stdio.h” // Include file contains function prototype for printf.
/* Function Prototype */

void serial0_init_T1(void) ; // Serial port initialisation function

/* Main Loop */

void main(void) // Enter from reset vector
{

serial0_init_T1() ; // Initialise serial port 0 timer1 baudrate generator

/*** Loop Forever ***/

while(FOREVER) {

 printf(“hello world”) ; // Send message down 8051 serial port forever
 }

}

/**
This function initialises Serial Port 0 to run at
4800 Baud using the Timer 1 auto-reload mode with a
12MHz XTAL.

**/

/* To get 9600 baud with timer1 requires an 11.059MHz
 crystal! */

void serial0_init_T1(void)
 {

 TH1 = 0x0f3 ; /* Timer 1 high byte (= reload value) SMOD = 0, F(Osc) = 12 MHz,
 and Timer 1 in mode 2, baudrate of 4800 Baud Timer 1 Interrupt is
 disabled after RESET */

 TMOD |= 0x20 ; /* Load Timer Mode Control Register Timer 1 under software
 control with TR1 as Timer in mode 2(= 8 bit, auto-reload) */

 S0CON = 0x52 ; /* Serial connection in mode 1 (= 1 Start-,8 Data-, 1 stop
 bit)start enabled Transmitter empty, Receiver empty */

 PCON |= 0x80 ; /* SMOD = 1 to double baud rate */

 TR1 = 1 ; /* Timer 1 start */

 }

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 88

This should be placed in a module, preferably called “main.c” and compiled with:

>C51 main.c

This produces a file, ‘main.obj’

Next, link main.obj with the printf function, held in a C51S.LIB library, and fix the location of the program:

>L51 main.obj,\c51p\lib\c51s.lib to exec.abs

To yield an Intel OMF51 format file named “exec.abs”. If you are using an EPROM programmer, you will need an Intel
HEX file.

Use OHS51.EXE for this:

>OHS51 exec.abs

to give exec.hex an Intel HEX file.

Basically this is all there is to producing a working C51 program! Some refinements might be to make sure that the
C51LIB DOS environment variable has been set to indicate where the C51S.LIB is located.
To do this, make sure that you have

SET C51LIB=\C51P\LIB

in your autoexec.bat file.

Likewise, if you also add

SET C51INC=\C51P\INC,

the long and untidy pathname for ‘stdio.h’ can be eliminated.

If C51 has been installed properly, this should have already been done.

Appendix BAppendix BAppendix BAppendix BAppendix B

Driving The 8051 For RealDriving The 8051 For RealDriving The 8051 For RealDriving The 8051 For RealDriving The 8051 For Real

The following example program does the following typical
8051 tasks:

(i) Read a port pin value
(ii) Write a port pin value
(iii) Generate a periodic timer interrupt
(iv) Transmit data via the serial port
(v) Write to a memory-mapped port

It is suggested that to get started you steal sections from the following program! Although the Infineon 80C537 has been
used as the basis for this, the approaches used are applicable to all 8051 variants.

#include <stdio.h> /* include standard io libs */
#include <reg517.h> /* include 80C517 register set */
#include <math.h> /* include mathematical prototypes */
#include <string.h> /* include string handling functions */

#pragma MOD517 /* Use 80C537 extensions */

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 89

The 8051 areas covered are:The 8051 areas covered are:The 8051 areas covered are:The 8051 areas covered are:The 8051 areas covered are:

1. Serial Port0 - Polled Mode

- Baudrate generation from timer1
- Baudrate generation from baudrate generator

2. Analog To Digital Convertor

- Reading values into an array

3. Frequency Measurement

- Input Capture CC0
4. Time Pulse Generation

- Output compare CC4

5. Symmetrical PWM Generation

- CC3 and timer2 overflow

6. Zero CPU Overhead Asymmetric PWM Generation

- CMx/Compare Timer

7. Accessing Memory-Mapped Ports

- Via pointers
- With XBYTE[]

**
* Global Definitions *
**/

/*** CCMx PWMS ***/

 xdata float pwm_period = 42.5 ; // Initial period in
 us,variable located in
 XDATA.

 xdata float pwm_duty_ratio = 50 ; // Initial ratio in %
 xdata unsigned int pwm_prescale = 0 ;

/*** Analog Inputs ***/
xdata float analog_data[4]; // Floating point array
xdata unsigned char rx_byte;

 xdata unsigned char channel_0 = 0 ;
 xdata unsigned char channel_1 = 0 ;

/*** Timer0 Overflow Timebase ***/

 xdata unsigned int real_time_count = 0 ;

/*** Timed Pulse Generation ***/
 xdata unsigned char marker_angle = 128 ;
 data unsigned int marker_time = 0 ;
 unsigned int time_for_360 = 0 ;
 unsigned int time_last_360 = 0 ;
 xdata unsigned int frequency = 0 ;
 xdata unsigned int analog_data10 = 0 ;

/*** Port 1 Bit Definitions ***/
 sbit P10 = 0x90; // CC0
 sbit P13 = 0x93; // CC3
 sbit P14 = 0x94; // CC3

/*** Symmetrical PWM Generation ***/

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 90

 xdata unsigned int symm_PWM_DR = 256 ; // Integer ratio from background
 xdata unsigned int symm_PWM_period = 2048 ; //PWM Period = 4096us
/

**
* General Definitions *
**/

#define FOREVER 1

/*** CMx PWM Control ***/

#define Pulse_Width 25 /* 50us marker pulse */
#define PWM_Resolution 0.1666667 /* Smallest PWM time is at 12MHz */

/*** Cursor Positioning Escape Codes For VT52 ***/
code char Line0[] = { 0x1b,’Y’,0x20,0x20,0 } ;
code char Line1[] = { 0x1b,’Y’,0x21,0x20,0 } ;
code char Line2[] = { 0x1b,’Y’,0x22,0x20,0 } ;
code char Line3[] = { 0x1b,’Y’,0x23,0x20,0 } ;
code char Line4[] = { 0x1b,’Y’,0x24,0x20,0 } ;
code char Line5[] = { 0x1b,’Y’,0x25,0x20,0 } ;
code char Line6[] = { 0x1b,’Y’,0x26,0x20,0 } ;
code char Line7[] = { 0x1b,’Y’,0x27,0x20,0 } ;

code char Line8[] = { 0x1b,’Y’,0x28,0x20,0 } ;
code char Line9[] = { 0x1b,’Y’,0x29,0x20,0 } ;
code char Line10[] = { 0x1b,’Y’,0x2a,0x20,0 } ;
code char Line11[] = { 0x1b,’Y’,0x2b,0x20,0 } ;
code char Line12[] = { 0x1b,’Y’,0x2c,0x20,0 } ;
code char Line13[] = { 0x1b,’Y’,0x2d,0x20,0 } ;
code char Line14[] = { 0x1b,’Y’,0x2e,0x20,0 } ;
code char Line15[] = { 0x1b,’Y’,0x2f,0x20,0 } ;

code char Clear[] = { 0x0C,0 } ;
code char double_bell[] = { 0x07,0x07,0x07,0 } ;

/
**
* Function Prototypes *
**/

void ad_init(void);
void serial_init(void);
void serial0_init_BD(void);
void serial0_init_T1(void);
void send_byte(unsigned char);
void ad_convert(void);
void capture_init(void);
extern void control_pwm(void) ;

/

* This function initialises the A/D convertor (P103 of 517 manual) *
***/

void ad_init(void)
{
 ADCON0 &= 0x80 ; // Clear register but preserve BD bit

ADCON0 |= 0x01 ; /* Single conversion internal Start Channel 0 */
}
/

* This function will perform three conversions on the A/D convertor reading values from
channels 0 - 3 *
***/
/* Channel 0 is read using the 10 bit programmable reference method */

void ad_convert(void)
 {
 unsigned char i;

for(i = 1 ; i < 4 ; i++)

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 91

 {
 ADCON0 &= 0x80 ; // Preserve BD bit (80C537 only)

 ADCON0 |= i ;
 DAPR = 0 ;

 while (BSY)
 { ; }

 analog_data[i] = ((float) ADDAT * 5) / 255 ;
 }
 }

* These routines will transmit and receive single characters by Polled use of the serial Port 0
*
***/

/* Note: In real applications, an interrupt-driven serial
 port is usually preferable to avoid loss of characters.*/

 char receive_byte(void) /* Polled use of serial port */
 {

 if(RI == 1) /* Test for char received */
 {
 rx_byte = S0BUF ; /* Place char in rx_byte */

 RI = 0 ; /* clear flag */
 }
 else {
 rx_byte = 0 ;
 }

 return(rx_byte) ;
 }

 void send_byte(char tx_byte) /*Polled use of serial port*/
 {

 TI = 0; // Clear TI flag
 S0BUF = tx_byte ; // Begin transmission
 while (!TI) {;} // Wait until transmit flag is set

 }

/

**
* This function initialises Serial Port 0 to run at 9600 Baud using the Siemens Baud rate
generator (see P76 of the 517 Manual) *
**/
/* This method does not tie up timer1 as on ordinary 8051’s */
void serial0_init_BD(void)
{
 BD = 1; /* Enable Baud rate generator */
 PCON = PCON | 0x80; /* Set SMOD to double baud rate */
 S0CON = 0x50; /* Mode 1, Receiver enabled */
 TI = 1; /* Set Transmit interupt flag for first run through PRINTF */
}
/
**
* This function initialises Serial Port 0 to run at 4800 Baud using the Timer 1 auto-reload
mode. *
**/

/* To get 9600 baud with timer1 requires an 11.059MHz
 crystal */

void serial0_init_T1(void)
 {

 TH1 = 0x0f3 ; /* Timer 1 high byte (= reload value) SMOD = 0,
 F(Osc) = 12 MHz,and Timer 1 in mode 2,baudrate of 4800
 Baud Timer 1 Interrupt is disabled after RESET */

 TMOD |= 0x20 ; /* Load Timer Mode Control Register Timer 1
 under software control with TR1 as Timer

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 92

 in mode 2(= 8 bit, auto-reload) */

 S0CON = 0x52 ; /* Serial connection in mode 1 (= 1 Start-, 8 Data-, 1 stop bit)
 start enabled Transmitter empty, Receiver empty */

 PCON |= 0x80 ; /* SMOD = 1 to double baud rate */

 TR1 = 1 ; /* Timer 1 start */
 }
/

* Generate 2ms Timer Tick On Timer 0 *
***/

/* Entered every timer0 overflow */
void timer0_init(void)
 {
 TR0 = 0 ;
 TMOD |= 01 ; /* 16 bit timer mode */
 TH0 = 0xf8 ; /* Reload with with count for 2ms time base at 12MHz */
 TL0 = 0x82 ;
 TR0 = 1 ; /* Start timer */
 IEN0 |= 0x02 ; /* Enable Timer 0 Ext0 interrupts */
 } /*init_timer_0*/
/

* Timer0 Interrupt Service Routine *
***/

/* An allowance really needs to be made for the fact that the timer is stopped during the re-
 initialisation process */

/* “interrupt” arguments are:

 ‘1’ => generate interrupt vector at address 8*1 + 3 = 0x0b
 ‘2’ => Switch to register bank two on entry, restore

 original bank on exit */

void timer0_int(void) interrupt 1 using 2
 {

/* Setup Next Interrupt ***/

IEN0 &= 0xfd ; /* Clear interrupt flags */
TR0 = 0 ; /* Stop timer */

TH0 = 0xf8 ; /* Reset timer for next interrupt */
TL0 = 0x2f ; /* 2ms at 12 MHZ */
TR0 = 1 ; /* Start timer */
IEN0 |= 0x02 ;

real_time_count++ ;

P6 ^= 0x08 ;
}

/

* This function sets up the Capture Compare Unit and generates a PWM output on Port 4.0 (Pin
1). See p112 of the 517 Manual *

* => CTREL = 65536 - 255 for 42.5us period/ overflow rate at 12MHz *

* Compare timer counts from CTREL to 65535 when Port bit is cleared Port bit set when Compare
timer = CM0 to give asymmetric 8 bit PWM *
***/

/* This PWM requires no CPU time and is thus very efficient */

/* On 535 an interrupt service would be required to reload the compare */
/* register */
void pwm_init(void)
 {

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 93

 union { unsigned int temp ;
 unsigned char tmp[2] ; } t ;

CTCON = 0 ; // Basic count time = 166ns

 t.temp = -pwm_period/PWM_Resolution ; // 42.5us
 initial period

CTRELH = t.tmp[0] ;
CTRELL = t.tmp[1] ;

CM1 = t.temp + ((unsigned int)(65536 - t.temp) * pwm_duty_ratio)/100 ; // Initial duty
ratio = 255:1

CM0 = CM1 ;

CMSEL = 0 ;
CMSEL | = 1 ; // Assign CM0 to compare timer
CMSEL | = 2 ; // Assign CM1 to compare timer

CMEN = 0 ;
CMEN | = 1 ; // Enable port 4.0 as PWM

 (front)
CMEN | = 2 ; // Enable port 4.1 as PWM

 (rear)
}

/

* This function initializes the Output Compare/Input Capture System on Timer2/Port 1. Two
captures are enabled: CC0 captures an event on Pin 1.0, CC1 will be triggered by a write to the
low order Byte CCL1 *
***/

/* The capcom unit when attached to timer2 is suitable for
 frequency */
/* measurement and pulse generation */

 void capture_CC0_init(void)
{

T2CON = 0 ;
T2I1 = 0 ; /* Timer 2 = 12MHz/24 = 2us/count */
T2I0 = 1 ;
T2PS = 1 ; /* /2 prescale for 2us/count */

CTCON = 0 ;

T2CM = 1 ; /* Timer 2 compare/capture in mode 1*/
T2R1 = 0 ; /* No autoreload off CC0 */

CCEN = 0 ;
CCEN |= 0x01 ; /* Input capture on CC0 */

CCEN |= 0x0C ; /* Timer 2 latched into CC1 on write
 into CCL1 */

CCEN |= 0x80 ; /* CC3 is output compare */

I3FR = 0 ; /* CC0 is initially -ve edge
 triggered */

P1 | = 0x01 ; /* Put port 1.0 high for input
 capture */

EX3 = 1 ; /* Enable capture interrupt for road
 speed */

EX2 = 1 ; /* Enable output compare interrupt
 for ign0 */

CC4EN = 0x05 ; /* CC4 port 1.4 is output compare
 mode 1 */

IP0 = 0 ; /* Initialise interrupt priorities */
IP1 = 0 ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 94

IP1 |= 0x26 ; /* Make CC4 interrupt 3 priority */
IP0 |= 0x3A ; /* Input capture is 2 priority */
}

/

**
* Input Capture Interrupt On Port1.0/CC *
**/

/* On every negative edge at P1.0, this routine is entered*/
/* Frequency calculation is possible using:

frequency = 100000/(Timer2 Count Time * (this T2 - last
 timer2))

= 50000/(CRC - last CRC)

A new pulse is generated at a fixed angle after the interrupt using CC4 output compare

- This is the basis for ignition and injection timing in engine management
 systems
- The maths unit is essential for keeping run times short.

*/

 void CC0_int(void) interrupt 10 using 3
 {

 unsigned int temp ;

 /* Calculate Input Frequency */

 frequency = 500000 /(unsigned long) (CRC -
 time_last_360) ;

 time_for_360 = CRC - time_last_360 ;

 temp = CRC + (unsigned int)
 ((unsigned long)((unsigned long)time_for_360 * marker_angle)/255) ;

 EAL = 0 ;
 marker_time = temp ;
 EAL = 1 ;

 time_last_360 = CRC ;
 }

/

**
* Generate marker pulse after CC0 interrupt *
**/

/* Entered in response to request from CC0 interrupt to generate a pulse at a predefined time
 afterwards. */

void marker_int(void) interrupt 9 using 2
 {

 unsigned int timer_temp ;

 EX2 = 0 ;

 if(P14 == 0)
 {

 /* Port Pin Low */

 if((int)(marker_time - CC4 - 500) > 0) {
 timer_temp = marker_time ;
 }
 else {

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 95

 timer_temp = marker_time + time_for_360 ;
 }

 CC4 = timer_temp ;
 IEX2 = 0 ;
 P14 = 1 ; // Turn on at next compare
 EX2 = 1 ;
 }
 else
 {

 /* Port Pin High */

 timer_temp = CC4 + Pulse_Width ;
 CC4 = timer_temp ;
 IEX2 = 0 ;
 P14 = 0 ; // Turn off at next compare
 EX2 = 1 ;
 }
 }

* This function initialises the Output Compare/Input Capture System on Timer2/
* Port 1 to generate a symmetrical PWM on CC4. *
***/

/* This gives a PWM output where the on-time grows from either side of the timer 2
 overflow point */

/* This is very useful for motor control as the symmetrical nature of the waveform reduces
 the higher current harmonics circulating in the windings under changing duty ratio
 conditions. */

/* Downside is that two interrupt services are required per period */

Symmetrical PWM Waveform

Asymmetrical PWM Waveform

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 96

 void symm_PWM_init(void)
 {

 T2CON = 0 ; /* Clear configuration register */
 T2I1 = 0 ; /* Timer 2 = 12MHz/24 = 2us/count */
 T2I0 = 1 ;
 T2PS = 1 ; /* /2 prescale for 2us/count */
 /* Additional prescale possible on BB step */

 T2CM = 1 ; /* Timer 2 compare/capture in mode 1 */
 T2R1 = 1 ; /* Autoreload off CC0 */
 T2R0 = 0 ; /* mode 1 (CRC into Timer2 at rollover)*/

 /* Set initial reload value (4096us/2048 steps) */

 CRC = -2*symm_PWM_period ;

 ET2 = 1 ; /* Enable timer2 overflow interrupt */

 EX3 = 1 ; /*Enable capture interrupt for PWM drive*/

 CCEN = 0 ; /* CRC - CC2 unused */
 CCEN |= 0x80 ; /* CC3 is symmetrical PWM output */

 IP0 = 0 ; /* Initialise interrupt priorities */
 IP1 = 0 ;

 IP1 |= 0x20 ; /* Make CC3/T2 Overflow interrupts
 priority 3 */

 P10 = 0 ;
 }

/**
* Timer 2 Overflow Interrupt *
**/

/* Interrupt at centre point of waveform to create next off point */

/* A good example of where C now givesoverhead when compared with assembler! */

/* USING gives single cycle registerbank switch like ‘166 */

 void timer2_overflow(void) interrupt 5 using 2
 {

 /* Runtime here limits min/max PWM DR */

 P1 |= 0x01 ; /* Toggle P1.0 to show centre of PWM */

 TF2 = 0 ; /* Clear interrupt request flag */

 CC3 = CRC + symm_PWM_DR ;
 IEX6 = 0 ;
 P13 = 0 ;
 EX6 = 1 ;

 P1 &= 0xfe ; /* Toggle P1.0 to show centre of PWM */
 }

/**
* CC4 Interrupt For Symmetrical PWM *
**/

/* Interrupt at end of first on period of waveform to create next on point */

 void symm_PWM_CC3_int(void) interrupt 13 using 2
 {

 /* Runtime here limits min/max PWM DR */

 CC3 = -symm_PWM_DR ;
 IEX6 = 0 ;
 P13 = 1 ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 97

 EX6 = 0 ; // No further interrupts this period
 }

/**
* Modulate Symmetrical PWM With Analog Input0 *
**/

/* Duty ratio is calculated in background to prevent having
 to do floating */
/* point calculations in interrupts */

/* Note: As PWM is symmetrical, duty ratio cannot exceed 1/2
 period */

void mod_symm_pwm(void) {

 union { unsigned int temp ;
 unsigned char tmp[2] ;
} t ;

 t.tmp[0] = CRCH ;
 t.tmp[1] = CRCL ;

 symm_PWM_DR = ((65536-t.temp)/2 * (5-analog_data[1]))/5 ;
 }

/

**
* Drive TOC PWM’s *
**/

void configure_pwm(void) {

 unsigned int temp ;
 union { unsigned int temp ;
 unsigned char tmp[2] ; } t ;

 t.temp = -pwm_period/((float)pwm_prescale * PWM_Resolution) ;

 CTRELH = t.tmp[0] ;
 CTRELL = t.tmp[1] ;

 CM1 = t.temp + ((unsigned int)(65536 - t.temp) * pwm_duty_ratio)/100 ;
 }

/

**
* Write First Message To Terminal *
**/

/* Whilst many printf’s are used here, in a real program
 they would not */
/* in the main program loop due to huge run time */

void initialise_screen(void) {

 printf(“%s”,Clear) ; // Clear Screen
 printf(“%s *** 80C537 Demo Program *** “,Line0) ;

//Print Sign-On
 printf(“%s”,Line1) ; // Print Sign-On

 }
**
* Modulate PWM With Analog Input0 *
**/
void mod_pwm(void) {

 union { unsigned int temp ;
 unsigned char tmp[2] ; } t ;

 t.tmp[0] = CTRELH ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 98

 t.tmp[1] = CTRELL ;

 CM0 = t.temp + ((65536-t.temp) * (5-analog_data[1]))/5 ;
 }

/**
* Send Information To Terminal *
**/
void print_info(void) {

printf(“%sAnalog 0a(8bits) = %-1.2f Volts “,Line3,analog_data[1]) ;
printf(“%sAnalog 2 (8bits) = %-1.2f Volts “,Line4,analog_data[2]) ;
printf(“%sPWM Fbck (8bit) = %-1.2f Volts “,Line5,analog_data[3]) ;
printf(“%sFrequency = %d Hz “,Line6,(unsigned int)frequency) ;
printf(“%sTimer = %d x2 ms “,Line7,(unsigned int) real_time_count) ;
 }
/**
* Access Memory-Mapped Port *
**/

/* This function receives a port address and a value to
 write to it. It returns a value at a fixed address */

#include <absacc.h> // Contains definition of XBYTE[] macro
 // ‘<‘ and ‘>’ mean that the include
 // file will be obtained from the
 // directory indicated by
 // the C51INC DOS environment variable

unsigned char get_memory_port(unsigned int port_address, unsigned char value) {

 unsigned char port_value ; // Returned variable
 unsigned char xdata *port_pointer ; // Declare uncommitted pointer into external

 memory space (xdata)

 port_pointer = (char*) port_address ; // Make uncommitted pointer point at
 required address

 *port_pointer = value ; // Write value to port

 port_value = XBYTE[0x8000] ; // Get value from external address 0x8000

 return(port_value) ;
 }

/**
* Main Program - Full Version *
**/

/* This program initialises the peripheral functions and then loops around, reading the
 A/D converter and transmitting values down the serial port */

void main(void) // Enter from reset vector
{
serial0_init_T1() ; // Initialise serial port 0 timer1 baudrate generator

ad_init() ; // Initialise A/D converter

capture_CC0_init() ; // Initialise input capture/T2 for freq. measurement
// and timed pulse generation /*

symm_PWM_init() ; // Generate symmetrical PWM on CC3 (P1.3) */
 // (may only be present if capture_CC0_init() is
// commented out)

pwm_init() ; // Initialise TOC PWM on CMx

timer0_init() ; // Initialise timer 0 overflow 2ms interrupt

EAL = 1 ; // Enable interrupts

initialise_screen() ; // Write startup message to terminal

/*** Loop Forever ***/

while(FOREVER) {

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 99

 P6 ^= 0x08 ; // Refresh MAX691 watchdog every background loop
// This is attached to port 6, bit 3.

 ad_convert() ; // Read all analog channels

 print_info() ; // Send analog values etc. to terminal

 mod_pwm() ; // Modulate PWM0 with analog channel 0 input

 mod_symm_pwm() ; // Modulate symm PWM with analog channel 0 input
 }
}

Appendix C

Typical C51 Performance Figures

For each C operation the number of cycles to execute typical examples is given for all supported data types. To give
some idea of execution times, with a 12MHz 8031, one cycle is 1us. Please note that timings for long and float operations
are considerably reduced on the Infineon 80C537 due to its 32 bit maths unit.

Cycle Table KeyCycle Table KeyCycle Table KeyCycle Table KeyCycle Table Key

Unsigned Char - 8-bits
Char - 8 sign
Unsigned Int - 16-bits
Int - 16 sign
Unsigned Long - 32-bits
Long - 32 sign
float - float (32-bits IEEE single precision)

Notes:

- Timings include parameter loading pre-amble where appropriate.
- Clock speed assumed to be 12MHz (1us/cycle), if not otherwise stated.
- The small memory model was used so that no off-chip ram was employed.

Basic C Mathematical Functions

+ Addition
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 3 3 6 6 63 63 140

- Subtraction
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 4 4 7 7 64 64 146

* Multiplication
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 10 13 46 48 160 160 131

/ Division
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 8 19 26 39 1611 1624 134

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 100

% Modulo
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 3 3 6 6 63 63 140

Examples

a = b + c ;
a = b/c ;

Complex Mathematical Functions

sin(x)
float

Cycles: 1553

cos(x)
float

Cycles: 1433

tan(x)
float

Cycles: 2407-9570

exp(x)
float

Cycles: 3002-7870

sqrt(x)
float

Cycles: 42-2860

log(x)
float

Cycles: 45-6050

Other Maths Functions are:Other Maths Functions are:Other Maths Functions are:Other Maths Functions are:Other Maths Functions are:

cosh Hyperbolic cosine
sinh Hyperbolic sine
abs find absolute value
rand generate a random number

Examples:

x = sin(3.1415926/2) ; find the sine of (PI/2)
x = sqrt(2) ; find square root of x

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 101

Bitwise FunctionsBitwise FunctionsBitwise FunctionsBitwise FunctionsBitwise Functions

These allow direct bit by bit operations to be performed.

& AND
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign

Cycles: 3 3 6 6 63 63

| Inclusive OR
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign

Cycles: 3 3 6 6 63 63

^ Exclusive OR
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign

Cycles: 3 3 6 6 63 63

! NOT (Invert)
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign

Cycles: 3 3 6 6 63 63

Examples:

a = b & 0xfe ; make a equal to a bit wise AND with 0xFE (11111110)
a = b | 0x01 ; make a equal to a bit wise OR with 0x01 (00000001)

Two Operand Functions

= Make left side equal to right side
== test for left being equal to right

+= Add two operands and store result in first one.
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140

-= Subtract two operands and store result in first one.
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140

*= Multiply two operands and store result in first one.
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140

/= Divide two operands and store result in first one.
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 102

Example:

a = b ; Make a equal to b
if(a == b) { } check whether a is equal to b
a += 3 ; a is equal to itself + 3
a /= 10 ; a is equal to itself divided by 10

Relational And Logical Functions

These are used to test data and are usually used with if() and other control statements.

&& AND
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 6 6 8 8 28 28 28

|| OR
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 6 6 8 8 28 28 28

> Greater than
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 5 9 7 11 85 88 302

< Less than
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 5 9 7 11 85 88 302

>= Greater than or equal to
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 5 9 7 11 85 88 302

<= Less than or equal to
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 5 9 7 11 85 88 302

Examples:

if(a > b) {
 /* executable code 1 */
 }

if((a == 1) && (b == 2)) {
 /* executable code 1 */
 }
else {
 /* Alternative executable code */
 }

Execute code 1 if a is equal to 1 and b equal to 2 otherwise execute the alternative block.

if((a == 1) || (b == 2)) {
 /* executable code */
 }

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 103

Execute if a is equal to 1 or b equal to 2

Increment And Decrement

These make direct use of the INC xx opcodes and consequently are very fast. Normally, they are used as part of larger
C expressions where a value needs incrementing or decrementing.

++ Increment
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140

Decrement
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 1 1 5 5 59 59 140

Examples:

i ++ ; Post-increment i
++ i ; Pre-increment i
i - - ; Post-decrement i
- - i ; Pre-increment i

 for(i = 0 ; i < 10 ; i) {
 P1 = array[i++] ; /* Sequentially write all the */
 /* values in array onto Port 1. */
 } /* i points to next value after */
 /* after current access */

ShiftingShiftingShiftingShiftingShifting

These allow values to be shifted left or right by a number of bit positions, determined either by a constant at compile time
or a variable at run time.

>> Right shift
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign

Cycles: 7 7 56 56 129 129 (7 shifts)

<< Left shift
8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 7 7 56 56 129 129 (7 shifts)

Examples:

 a << 2 ; shift a left two bit places
 a << b ; shift a left by a number of bit positions determined by the value of b

Strings And Arrays

These are a number of sequential locations that together constitute some sort of larger single data object. Arrays may
be single or multidimensional, as is BASIC etc.. Strings are as in BASIC but, because of C’s near-assembler nature, they
must be handled with care - you must always be aware where they end! A true string is always finished with a zero, called
the “null terminator”.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 104

array[4] ; an array of four elements, STARTING at element 0

array[4][2] ; a two-dimensional array of four by 2 elements,STARTING at element 0,0

“ABCDEF” ; a true string of ascii characters, with a zero after the last element. It is the use of
doublequotation marks that defines this as a true string. Looking at the memory in which
this was declared would show: 65, 66, 67, 68, 69, 70, 00

{ ‘A’,’B’,’C’,’D’,’E’,’F’ } ; an array of ascii characters with no null terminator. Note the { and } defining the limits
of the complete data object.

Examples:

char array[4] ; Reserve a RAM area of 4 bytes into which 8 bit data will be put at run-time.

char array[] = { “ABCD” } ; Fill a RAM area with ABCD0 prior to starting the main() function. The ‘0’ is the null
terminator

Handling Strings And Characters

strcpy(*destination,*source) ;
8 element strings

Cycles: 102

- Copy string pointed at by *source to another string pointed at by *destination. The second string is completely
overwritten in the process.

strcat(*destination,*source) ;
8 element strings

Cycles: 913

- Concatenate the string pointed at by *source onto another string pointed at by *destination.

result = strcmp(*destination,*source) ;

8 element strings

Cycles: 152

- Compare two strings pointed at by *source with another string pointed at by *destination. If equal, value of 1 is
returned.

result = strlen(*source) ;
8 element string

Cycles: 505

- Find the length of the *source string

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 105

In addition to these functions, a range of other string and character functions are provided to perform tasks such as:

atoi() ascii to integer
atof() ascii to floating point
itof() integer to floating point
isalpha() test for alpha character
isdigit() test for digit
isalnum() test for alpha-numeric

+ many other pre-defined routines.

Examples:

char x[10] ;
char *y = “String of chars” ;

strcpy(x,y) ; - Copies string pointed at by y to the empty array x. Note, C does not check that x is actually big enough
to hold the string!

Program Control

if (condition) {/* Code */;} else { /* Alternative Code */ ; }

- Perform one of either two blocks of code, depending on the result of a specified condition

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign float

Cycles: 3 3 6 6 79 79 131

for(i = 0 ; i < end_value ; i = i + 1) {/*Executable Code*/;}

- Repeat executable code until i = end_value.

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign

Cycles: 15 17 23 25 227 233

do { /* Executable Code */ ; } while(condition is true) ;

- Perform executable code while condition is true

8-bits 8 sign 16-bits 16 sign 32-bits 32 sign

Cycles: 5 6 7 8 79 82

do-case - execute blocks of code determined by the value of a
 control variable

No data measured

Examples:

if(a == b) { /* Executable code*/ }

- execute code within braces if a equal to b

for(i = 0 ; i > end_value ; i++) { /* Executable code*/ }

- execute code until i is equal to end_value (i.e. not greater than)

do { /* Executable code*/ } while i++ < end_value ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 106

- execute code while i less than end_value

switch(x) {

 case 1 :
 y++ ;
 break ;

 case 2 :
 y ;
 break ;

 case 3 ;
 y *= y ;
 break ;
 }

- Perform the operation determined by the value of x.
Examples:

for(i = 0 ; i > end_value ; i++) {
 /* Executable code*/
 if(x == i) {
 break ;
 }
 }

- execute code until i is equal to end_value (i.e. not greater than) but if x is ever equal to i then break out of the loop
immediately.

Accessing Bits

Bit A single bit variable, located in the Bit-addressable memory area

Sbit A single bit variable, located in the bit-addressable memory, either in the user or sfr area. When located
in the user area, sbit is a defined bit within a larger char or int variable.

Examples:

bdata char x ;/* x is an 8 bit signed number in the bit area */

sbit sign_bit = x ^ 8 ; /* bit 8 is the sign bit */

Now to test whether x is negative, the state of sign_bit need only be tested:

if(sign_bit) {
 /* x is negative */ ;
 sign_bit = 0 ;
 }

Gives:

 JNB sign_bit POSITIVE
 CLRB sign_bit

POSITIVE:

Or using a non-sbit method:

if(x < 0) {
 /* x is negative */ ;
 sign_bit = 0 ;
 }

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 107

Gives:

 MOV A,x
 ANL A,080H
 JZ POSITIVE
 ANL x,07FH
POSITIVE:

Handling 8051 Ports and SFRs

Examples:

 P1 = 0xff ; writes value ff to port 1
 ADCON |= 0x80 ; OR 80 hex into ADCON
 P1^0 = 1 ; set bit 0 of port 1

Getting Data In And Out Of C Programs In The 8051

printf(“string”,*x,*y,...)

- Print the characters, numbers and or strings contained within () to the serial and thence to a terminal (VT100 etc).

16 * 8-bit characters

Cycles: 3553
scan(&x,...)

- Store incoming characters from terminal into memory buffers indicated within (). Note that the “&” implies “the address
 of buffer x”.

16 * 8-bit characters

Cycles: Not measurable but similar to “printf”

Examples:

value_1 = 3.000 ;
value_2 = 4.256 ;

printf(“Results Are: %f & %f”,value_1,value_2) ;

“Results Are: 3.000 & 4.256” is printed on terminal screen. Here the numerical values of the two numbers are substituted
into the two “%f” symbols.

char keyboard_buffer[20]

scan(&keyboard_buffer) read incoming characters from terminal keyboard into memory starting at the address of
keyboard_buffer.

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 108

Appendix D

A Useful Look-up Table Application

In a real system, getting a true floating point sine would take around 1ms. In a very time-critical application this may
well be unacceptable. If only an approximation is required, it is possible to use linear interpolation to get values between
the known values in the table.

To do this, a look-up table interpolator is required. Below is a combine one and two dimensional table interpolator, taken
from a real project. Here, the 2-D capability is not used!

Note: The term “.i.Map;map” is used instead of look-up table.

#include <reg517.h>

***/
/* Main Interpolation Routine */
***/
/* */
/* This routine has been optimised to run as fast as

possible at the ***/
/* expense of code size. Further savings could be made by

re-using temporary RAM. */

/* With a 5 x 5 map, run time is 490us - 735us at 12MHz */
/* or 290us - 400us with 12MHz Siemens 80C537 */
***/
/* Input Map Format: */
/* */
/* { x_size,y_size, */
/* x_breakpoints, */
/* y_breakpoints, */
/* */
/* map_data } ; */
/* */
***/
unsigned char interp(unsigned char x_value,
/* x-axis input */
 unsigned char y_value,
/* y-axis input */
 unsigned char const *map_base
/* pointer to table base */
)
 {

 /* Declare Local RAM */

 unsigned char x_size ;
 unsigned char y_size ;

 unsigned char x_offset ;
 unsigned char y_offset ;
 unsigned char x_break_point1,x_break_point2 ;
 unsigned char y_break_point1,y_break_point2 ;

 unsigned char map_x1y1 ;
 unsigned char map_x2y1 ;
 unsigned char map_x1y2 ;
 unsigned char map_x2y2 ;

 unsigned char result ;
 unsigned char result_y1 ;
 unsigned char result_y2 ;
 unsigned char const *mp ;

 unsigned char x_temp1,x_temp2, y_temp2 ;

 /* Get Size Of Map */

 x_size = *map_base ;
 y_size = map_base[1] ;

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 109

 /* Create Temporary Map Scanning Pointer */

 map_base += 2 ;
 x_offset = x_size - 1 ;
 mp = map_base + (unsigned char)x_offset ;

 /* Locate Upper and Lower X Breakpoints */
 /* Find break point immediately below x-value */
 while((x_value < *mp) && (x_offset != 0))
 {
 mp ;
 x_offset ;
 }

 /* Extract Upper And Lower X-Breakpoints From Map */

 x_break_point1 = mp[0] ;
 x_break_point2 = mp[1] ;
 x_temp2 = (x_break_point2 - x_break_point1) ; // bpt2 still in ACC

 /* Safety Check To Prevent Divide By Zero */

 if(x_temp2 == 0) {
 x_temp2++ ; // Ensure denominator never zero
 }

 /* Check For x_value Less Than Bottom Breakpoint Value */

 if((x_offset == x_size - 1) || (x_value <= x_break_point1))
 {
 x_value = x_break_point1 ;
 }

 x_temp1 = (x_value - x_break_point1) ;

 /* Locate Upper And Lower Y Breakpoints */

 /* Check For 1D Map */

 if(y_size != 0)
 {
 y_offset = y_size - 1 ;

 mp = map_base + (unsigned char)(x_size + y_offset) ;

 while ((y_value < *mp) && (y_offset != 0))
 {
 y_offset ;
 mp ;
 }

 /* Extract Upper And Lower Y-Breakpoints */

 y_break_point1 = mp[0] ;
 y_break_point2 = mp[1] ;

 if((y_offset == y_size - 1) || (y_value <= y_break_point1))
 {
 y_value = y_break_point1 ;
 }

 /* Get Map Values */

 map_base += x_size + y_size + x_size * y_offset + x_offset ;

 map_x1y1 = *(map_base) ;
 map_x2y1 = *(map_base + 1) ;
 /* Interpolate 2D Map Values */
 /* Defines used to remove need for function calling */

#define x map_x1y1
#define y map_x2y1
#define n x_temp1
#define d x_temp2

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 110

 y -= x ;
 if(!CY)
 {
 result_y1 = (unsigned char) (x + (unsigned char)(((unsigned int)(n * y))/d)) ;
 }
 else
 {
 result_y1 = (unsigned char) (x - (unsigned char)(((unsigned int)(n * -y))/d)) ;
 }

 map_x1y2 = *(map_base + x_size) ;
 map_x2y2 = *(map_base + x_size + 1) ;

#undef x
#undef y

#define x map_x1y2
#define y map_x2y2

 y -= x ;
 if(!CY)
 {
 result_y2 = (unsigned char) (x + (unsigned char)(((unsigned int)(n * y))/d)) ;
 }
 else
 {
 result_y2 = (unsigned char) (x - (unsigned char)(((unsigned int)(n * -y))/d)) ;
 }

#undef x
#undef y
#undef n
#undef d

 y_temp2 = (y_break_point2 - y_break_point1) ;

 /* Prevent Divide By Zero */

 if(y_temp2 == 0) {
 y_temp2++ ;
 }

#define x result_y1
#define y result_y2
#define n (y_value - y_break_point1)
#define d y_temp2
 y -= x ;
 if(!CY)
 {
 result = (unsigned char) (x + (unsigned char)(((unsigned int)(n * y))/d)) ;
 }
 else
 {
 result = (unsigned char) (x - (unsigned char)(((unsigned int)(n * -y))/d)) ;
 }

 } /* End of 2D Section */
 else
 {
 /* 1D Interpolation Only */

 map_base = map_base + x_size + x_offset ;

 map_x1y1 = map_base[0] ;
 map_x2y1 = map_base[1] ;

#undef x
#undef y
#undef n
#undef d

#define x map_x1y1
#define y map_x2y1
#define n x_temp1
#define d x_temp2

© Copyright Hitex (UK) Ltd. 1996 C51 Primer page 111

 y -= x ;
 if(!CY)
 {
 result = (unsigned char) (x + (unsigned char)(((unsigned int)(n * y))/d)) ;
 }
 else
 {
 result = (unsigned char) (x - (unsigned char)(((unsigned int)(n * -y))/d)) ;
 }
 } /* End 1D Section */
 return result ;
 }

Here is the test harness used to drive it:

/*** Sine Conversion Map ***/
/* Converts integer angle into sine value, 0-255 */

/* (x_size,y_size,
 x_breakpoints,
 y_breakpoints,
 map_data)
*/

const unsigned char sine_table[] = {
07,00,
00,15,30,45,60,75,90,
00,66,127,180,220,246,255
} ;

/** Test Variables **/

 unsigned char input_x_val ;
 unsigned char input_y_val ;
 unsigned char sine_value ;

/** Routine To Be Tested **/

 extern interp(unsigned char,
 unsigned char,
 unsigned char const *) ;

/** Global Variables **/

 unsigned int angle ;

/** Dummy Harness Program **/

 void main(void)
 {

 while(1)
 {
 for(angle = 0 ; angle < 0x100 ; angle++) {

 sine_value = interp(angle,0,sine_table) ;
 }
 }
 }

	Contents
	1 Introduction
	2 Keil C51 Compiler Basics - The 8051 Architecture
	2.1 8051 Memory Configurations
	2.1.1 Physical Location Of The Memory Spaces
	
	2.1.2 Possible Memory Models
	
	2.1.3 Choosing The Best Memory Configuration/Model
	2.1.4 Setting The Memory Model - #Pragma Usage
	
	2.2 Local Memory Model Specification
	2.2.1 Overview
	
	2.2.2 Point To Watch In Multi-Model Programs
	
	3 Declaring Variables And Constants
	3.1 Constants
	3.2 Variables
	3.2.1 Uninitialised Variables
	
	3.2.2 Initialised Variables
	3.3 Watchdogs With Large Amounts Of Initialised Data
	3.4 C51 Variables
	3.4.1 Variable Types
	
	3.4.2 Special Function Bits
	3.4.3 Converting Between Types
	
	3.4.4 A Non-ANSI Approach To Checking Data Type Overflow
	4 Program Structure And Layout
	4.1 Modular Programming In C51
	
	4.2 Accessibility Of Variables In Modular Programs
	4.3 Building A Real Modular Program - The Practicalities Of Laying Out A C51 Program
	4.3.1 The Problem
	4.3.2 Maintainable Inter-Module Links
	4.4 Task Scheduling
	4.4.1 8051 Applications Overview
	4.4.2 Simple 8051 Systems
	4.4.3 Simple Scheduling - A Partial Solution
	4.4.4 A Pragmatic Approach
	
	5 C Language Extensions For 8051 Programming
	5.1 Accessing 8051 On-Chip Peripherals
	5.2 Interrupts
	5.2.1 The Interrupt Function Type
	5.2.2 Using C51 With Target Monitor Debuggers
	5.2.3 Coping Interrupt Spacings Other Than 8
	5.3 Interrupts, USING, Registerbanks, NOAREGS In C51 - Everything You Need To Know
	5.3.1 The Basic Interrupt Service Function Attribute
	5.2.4 The Using Control
	5.3.2 The absolute register addressing trick in detail
	5.3.3 The USING Control
	5.3.4 Notes on C51's "Stack Frame"
	5.3.5 When To Use USING
	5.3.6 The NOAREGS pragma
	5.3.7 The REGISTERBANK Control Alternative To NOAREGS
	5.3.8 Summary Of USING And REGISTERBANK
	5.3.9 Reentrancy In C51 - The Final Solution
	5.3.10 Summary Of Controls For Interrupt Functions
	5.3.11 Reentrancy And Library Functions
	6 Pointers In C51
	6.1 Using Pointers And Arrays In C51
	6.1.1 Pointers In Assembler
	6.1.2 Pointers In C51
	6.2 Pointers To Absolute Addresses
	
	6.3 Arrays And Pointers - Two Sides Of The Same Coin?
	6.3.1 Uninitialised Arrays
	6.3.2 Initialised Arrays
	
	6.3.3 Using Arrays
	6.3.4 Summary Of Arrays And Pointers
	
	6.4 Structures
	6.4.1 Why Use Structures?
	6.4.2 Arrays Of Structures
	
	6.4.3 Initialised Structures
	
	6.4.4 Placing Structures At Absolute Addresses
	
	6.4.5 Pointers To Structures
	
	6.4.6 Passing Structure Pointers To Functions
	6.4.7 Structure Pointers To Absolute Addresses
	6.5 Unions
	
	6.6 Generic Pointers
	6.7 Spaced Pointers In C51
	7 Accessing External Memory Mapped Peripherals
	7.1 The XBYTE And XWORD Macros
	7.2 Initialised XDATA Pointers
	
	7.3 Run Time xdata Pointers
	7.4 The "volatile" Storage Class
	
	7.5 Placing Variables At Specific Locations - The Linker Method
	7.6 Excluding External Data Ranges From Specific Areas
	
	7.7 -missing ORDER and AT now in C51
	7.8 Using The _at_and _ORDER_ Controls
	8 Linking Issues And Stack Placement
	8.1 Basic Use Of L51 Linker
	8.2 Stack Placement
	8.3 Using The Top 128 Bytes of the 8052 RAM
	8.4 L51 Linker Data RAM Overlaying
	8.4.1 Overlaying Principles
	
	8.4.2 Impact Of Overlaying On Program Construction
	
	8.4.2.1 Indirect Function Calls With Function Pointers (hazardous)
	8.4.2.2 Indirectly called functions solution
	
	8.4.2.3 Function Jump Table Warning (Non-hazardous)
	
	8.4.2.4 Function Jump Table Warning Solution
	
	8.4.2.5 Multiple Call To Segment Warning (Hazardous)
	8.4.2.6 Multiple Call To Segment Solution
	
	8.4.3 Overlaying Public Variables
	9 Other C51 Extensions
	9.1 Special Function Bits
	9.2 Support For 80C517/537 32-bit Maths Unit
	
	9.2.1 The MDU - How To Use It
	9.2.2 The 8 Datapointers
	9.2.3 80C517 - Things To Be Aware Of
	
	9.3 87C751 Support
	9.3.1 87C751 - Steps To Take
	9.3.2 Integer Promotion
	
	10 Miscellaneous Points
	10.1 Tying The C Program To The Restart Vector
	10.2 Intrinsic Functions
	10.3 EA Bit Control #pragma
	10.4 16-Bit sfr Support
	10.5 Function Level Optimisation
	10.6 In-Line Functions In C51
	11 Some C51 Programming Tricks
	11.1 Accessing R0 etc. directly from C51
	
	11.2 Making Use Of Unused Interrupt Sources
	11.3 Code Memory Device Switching
	
	11.4 Simulating A Software Reset
	11.5 The Compiler Preprocessor - #define
	12 C51 Library Functions
	
	12.1 Library Function Calling
	
	12.2 Memory-Model Specific Libraries
	
	13 Outputs From C51
	13.1 Object Files
	
	13.2 HEX Files For EPROM Blowing
	
	13.3 Assembler Output
	
	14 Assembler Interfacing To C Programs
	
	14.1 Assembler Function Example
	14.2 Parameter Passing To Assembler Functions
	
	14.3 Parameter Passing In Registers
	
	15 General Things To Be Aware Of
	
	15.7 Floating Point Numbers
	16 Conclusion
	
	Appendix
	

