
 1

DESIGN AND IMPLEMENTATION OF OFDM TRANSMITTER AND

RECEIVER ON FPGA HARDWARE

KAMARU ADZHA BIN KADIRAN

UNIVERSITI TEKNOLOGI MALAYSIA

 2

DESIGN AND IMPLEMENTATION OF
OFDM TRANSMITTER AND RECEIVER
ON FPGA HARDWARE

2004/2005

KAMARU ADZHA BIN KADIRAN

√

KG
SE
83
JO
 PT SINGGAHAN 4,
RI MEDAN,
400 BATU PAHAT,
HOR.

PROF. DR. NORSHEILA BT FISAL

10 NOVEMBER 2005 10 NOVEMBER 2005

 3

“I hereby declare that I have read this thesis and in my opinion this thesis is

sufficient in terms of scope and quality for the award of the degree of Master of

Electrical Engineering (Electronics and Telecommunication)”

Signature : ___

Supervisor : PROF DR NORSHEILA BT FISAL

Date : 10 November 2005

 4

DESIGN AND IMPLEMENTATION OF OFDM TRANSMITTER AND

RECEIVER ON FPGA HARDWARE

KAMARU ADZHA BIN KADIRAN

A project report submitted in partial fulfillment of the

requirement for the award of the degree of

Master of Electrical Engineering (Electronics and Telecommunication)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

NOVEMBER, 2005

 5

I declare that this thesis entitled “Design and Implementation of OFDM Transmitter and

receiver on FPGA Hardware “ is the result of my own research except as cited in the

references. The thesis has not been accepted for any degree and is not concurrently

submitted in candidature of any other degree.

 Signature : _____________________

 Name : Kamaru Adzha Bin Kadiran

 Date : 10 November 2005

 iii

Special dedicated to

My Loving Family,

Father, Beloved Brothers,

All my friends and relatives,

And all my teachers and lecturers,

for the support and care.

 iv

ACKNOWLEDGEMENT

 Praise to Allah S.W.T the Most Gracious, the Most Merciful, whose blessing

and guidance have helped me through my thesis smoothly. There is no power no

strength save in Allah, the Highest and the Greatest. Peace and blessing of Allah be

upon our Prophet Muhammad S.A.W who has given light to mankind.

I would like to take this opportunity to express my deepest gratitude to my

supervisor, Prof. Dr. Norsheila Bt Fisal for his guidance, help and encouragement

throughout the period of completing my project.

I would like to thank to Mr Illyassak for all the help and guidance especially

in using Apex development board and configuration of the related software.

I also would like to thank to Mr. Muladi for his kind assistant and advice in

explaining the theory and concept of OFDM system.

I sincerely thank to all my friends and all those whoever has helped me either

directly or indirectly in the completion of my final year project and thesis.

 v

ABSTRACT

 Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier

modulation technique which divides the available spectrum into many carriers.

OFDM uses the spectrum efficiently compared to FDMA by spacing the channels

much closer together and making all carriers orthogonal to one another to prevent

interference between the closely spaced carriers. The main advantage of OFDM is

their robustness to channel fading in wireless environment. The objective of this

project is to design and implement a base band OFDM transmitter and receiver on

FPGA hardware. This project concentrates on developing Fast Fourier Transform

(FFT) and Inverse Fast Fourier Transform (IFFT). The work also includes in

designing a mapping module, serial to parallel and parallel to serial converter

module. The design uses 8-point FFT and IFFT for the processing module which

indicate that the processing block contain 8 inputs data. All modules are designed

using VHDL programming language and implement using Apex 20KE board. The

board is connected to computer through serial port and Nios development kit

software is used to provide interface between user and the hardware. All processing

is executed in Apex board and user only requires to give the inputs data to the

hardware throughout Nios. Input and output data is displayed to computer and the

results is compared using Matlab software. Software and tools which used in this

project includes VHDLmg Design Entry, Synopsys FPGA Express, Altera

Maxplus+II and Altera Quartus 3.0. Software tools are used to assist the design

process and downloading process into FPGA board while Apex board is used to

execute the designed module.

 vi

ABSTRAK

 Orthogonal Frequency Division Multiplexing (OFDM) adalah salah

satu teknik pemodulatan multi-pembawa yang membahagikan satu spektrum

frekuensi kepada banyak spektrum pembawa. OFDM menggunakan spektrum

dengan lebih effisien berbanding FDMA. OFDM meletakkan saluran berdekatan

antara satu sama lain dengan membuatkan setiap pembawa orthogonal dengan yang

lain untuk mengelakkan gangguan antara pembawa. Kelebihan OFDM adalah

kekuatan signalnya terhadap masalah channel fading di dalam persekitaran wireless.

Objektif projek ini adalah untuk mereka dan melaksanakan pemancar dan penerima

base band OFDM dengan menggunakan perkakasan FPGA. Projek ini menumpukan

dalam pembinaan modul Fast Fourier Transform (FFT) dan Inverse Fast Fourier

Transform (IFFT). Selain itu, kerja-kerja merekabentuk modul untuk mapping,

pengubah sesiri ke selari dan selari ke sesiri juga termasuk dalam skop projek.

Semua modul direkabentuk menggunakan bahasa pengaturcaraan VHDL dan

dilaksana menggunakan litar Apex 20KE. Litar ini akan disambungkan kepada

komputer melalui liang sesiri dan kit perisian Nios digunapakai untuk menyediakan

antaramuka kepada pengguna dan perkakasan. Kesemua pemprosessan dilaksanakan

oleh litar Apex 20KE yang mana pengguna hanya perlu menmberikan input kepada

peranti tersebut. Masukan dan keluaran data akan dipapar melalui skrin komputer

dan hasil keputusan akan dibanding dengan perisian Matlab. Antara perisian-perisian

yang digunapakai adalah VHDLmg Design entry, Synopsys FPGA Express, Altera

Max+Plus II dan Altera Quartus II 3.0. Perisian yang digunapakai adalah untuk

membantu dalam proses merekabentuk modul dan memuat turun program ke dalam

peranti manakala litar Apex digunapakai untuk melaksanakan operasi.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 THESIS TITLE i

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLE x

 LIST OF FIGURES xi

 LIST OF APPENDICES xiv

CHAPTER I INTRODUCTION

 1.1 Introduction 1

 1.2 Project Background 3

 1.3 Project Objectives 4

 1.4 Project Scope 5

 1.5 Project Outline 6

CHAPTER II LITERATURE REVIEW

 2.1 Introduction 8

 2.2 Literature Review 8

 2.3 Basic Principles of OFDM 9

 2.4 Orthogonality Defined 10

 2.5 OFDM Carriers 11

 viii

 2.6 Generation of OFDM Signals 12

 2.7 Guard Period 14

 2.8 Advantages of OFDM 15

 2.9 The weakness of OFDM 18

 2.10 Applications of OFDM 19

CHAPTER III METHODOLOGY

 3.1 Introduction 22

 3.2 Study Relevant Topic 23

 3.3 Design Process 24

 3.4 Implementation 25

 3.5 Test and Analysis 25

 3.6 VHDL and VHDLmg Software 25

 3.7 Synopsys FPGA Express Software 27

 3.8 Altera Max+Plus II software 27

 3.9 Matlab 28

 3.10 Apex 20KE Device Board 28

 3.11 Quartus II 3.0 29

CHAPTER IV HARDWARE DESIGN

 4.1 Introduction 30

 4.2 Simplified Transmitter Block Diagram 31

 4.3 Simplified Receiver Block Diagram 32

 4.4 Mapping Module 32

 4.5 Serial to Parallel Module 33

 4.6 Parallel to Serial Module 34

 4.7 Fast Fourier Transform (FFT) 36

 4.6.1 FFT signal flow graph 39

 4.6.2 FFT scheduling diagram 41

 4.8 Inverse Fast Fourier Transform (IFFT) 43

 4.9 Hardware Module 46

 4.9.1 Fast Fourier Transform 46

 4.9.2 Inverse Fast Fourier Transform 47

 ix

 4.9.3 Hardware Interfacing 47

CHAPTER V SOFTWARE DESIGN

 5.1 Introduction 49

 5.2 Hardware Programming 50

 5.2.1 Adding user defined logic 50

 5.2.2 Setting module properties 51

 5.2.3 Complete module integration 52

 5.2.4 Generating the files 53

 5.2.5 Compiling the system module 54

 5.2.6 Download the design into FPGA 55

 5.3 Software Design 56

 5.3.1 Compiling and downloading control

 vector program

 57

CHAPTER VI RESULTS

 6.1 Introduction 62

 6.2 How to Conduct Test? 64

 6.3 Results obtained for IFFT 66

 6.4 Results obtained for FFT 68

 6.5 Results obtained for Transmitter and Receiver 71

CHAPTER VII ANALYSIS AND DISCUSSION

 7.1 Introduction 79

 7.2 Why not Accurate 80

 7.3 Multiplication of Twiddle Factor 80

 7.4 Division by eight in IFFT module 87

 7.5 Overflow 82

CHAPTER VIII CONCLUSION

 8.1 Conclusion 83

 8.2 Proposed Future Works 84

 REFERENCES 86

 x

 APPENDICES

 APPENDICES A 88

 APPENDICES B 89

 APPENDICES C 91

 APPENDICES D 92

 APPENDICES E 95

 APPENDICES F 98

 APPENDICES G 106

 APPENDICES H 117

 xi

LIST OF TABLES

NO TITLE PAGE

4.0 Twiddle factor value for 8 point FFT 37

4.1 Twiddle factor value for 8 point IFFT 43

4.3 Frequently command used in Linux 38

5.1 Memory address 1 57

5.2 Memory address 2 58

5.3 Memory address 3 58

6.1 Results for FFT 76

6.2 Results for IFFT 77

6.3 Results for Transmitter and receiver 78

 xii

LIST OF FIGURES

NO TITLE PAGE

2.0 Orthogonality of sub-carriers 11

2.1 OFDM subcarrier in the frequency domain 12

2.2 Binary Phase Shift Key (BPSK) representation 13

2.3 A set of orthogonal signal 13

2.4 Block diagram for OFDM communication 14

2.5 Implementation of cyclic prefix 15

2.6 Two ways to transmit the same four pieces of binary data 17

2.7 Show amplitude varying in OFDM 18

3.1 Flow chart of the projects methodology 23

3.2 Basic modeling structure for VHDL 26

3.3 Show the VHDL design entity 26

4.1 Simplified transmitter block diagram 31

4.2 Simplified receiver block diagram 32

4.3 Mapping module 32

4.4 Block diagram for serial to parallel module 33

4.5 Simulation waveform of the serial to parallel module. 34

4.6 Block diagram for parallel to serial module 34

4.7 Simulation waveform of the parallel to serial module 35

4.8 8 point FFT flow graph using DIF 39

4.9 Scheduling diagram for stage one of 8 point FFT 41

4.10 Scheduling diagram for stage two of 8 point FFT 42

4.11 Scheduling diagram for stage three of 8 point FFT 42

4.12 Scheduling diagram for stage one of 8 point IFFT 44

 xiii

4.13 Scheduling diagram for stage two of 8 point IFFT 45

4.14 Scheduling diagram for stage three of 8 point IFFT 45

4.15 FFT module 46

4.16 Block diagram of the connection between IFFT/FFT

module with Avalon bus system

 47

5.1 Interface to the user logic setting on port tab 51

5.2 Interface to the user logic setting on timing tab 52

5.3 SOPC builder with modules 55

5.4 Generate the appropriate files for each module 54

5.5 Compiling the system module 55

5.6 Download the design into development board 55

5.7 The SOPC Builder system contents page 56

5.8 The portion of address mapping in Excalibr.h file

generated by SOPC builder

 57

5.9 The simplified block diagram of connection between ALU

with Avalon bus system

 59

5.10 Compiling the C code for test vector program 60

5.11 Downloading C code for test vector program 60

6.1 Apex 20KE development board 63

6.2 Apex 20KE connection with computer 63

6.3 (a) Matlab FFT/IFFT module

(b) Apex 20KE FFT/IFFT module

 64

6.4 Transmitter module and receiver module 65

6.5 Input value to the IFFT module 66

6.6 Stage 1 and stage 2 operation 67

6.7 Stage 3 and stage 4 operation 67

6.8 The final output from IFFT operation 68

6.9 Input value to FFT module 68

6.10 Stage 1 to stage 2 operation 69

6.11 Stage 3 to stage 5 operation 70

6.12 Stage 6 and final output of IFFT computation 70

6.13 Input to transmitter 71

6.14 Transmitter processing stage 1 to 2 72

 xiv

6.15 Transmitter processing stage 3 to 4 72

6.16 Output for transmitter module 73

6.17 Receiver buffer 73

6.18 Receiver operation for stage 1 to 2 74

6.19 Receiver operation for stage 3 to 5 74

6.20 Receiver operation for stage 6 and the dinal output for

receiver

 75

7.1 Example of twiddle factor multiplication 80

7.2 Example of the twiddle factor divisions 81

7.3 Addition of decimal number 82

 xv

LIST OF APPENDICES

APPENDICES TITLE PAGE

A VHDL code for Mapper 88

B VHDL code for serial to parallel 89

C VHDL code for parallel to serial 91

D VHDL code for IFFT and interface module 92

E VHDL code for FFT and interface module 95

F Test vector program for IFFT module in C 98

CHAPTER I

INTRODUCTION

1.1 Introduction

 This chapter covers the material on project background, project objectives,

project scope and the thesis outline. Introduction on this chapter covers about the

OFDM implementation method and description on the available hardware for

implementation. The problem statement of the project will also be carried out in this

chapter.

With the rapid growth of digital communication in recent years, the need for

high-speed data transmission has been increased. The mobile telecommunications

industry faces the problem of providing the technology that be able to support a

variety of services ranging from voice communication with a bit rate of a few kbps to

wireless multimedia in which bit rate up to 2 Mbps. Many systems have been

proposed and OFDM system has gained much attention for different reasons.

Although OFDM was first developed in the 1960s, only in recent years, it has been

recognized as an outstanding method for high-speed cellular data communication

where its implementation relies on very high-speed digital signal processing. This

method has only recently become available with reasonable prices versus

performance of hardware implementation.

 2

 Since OFDM is carried out in the digital domain, there are several methods to

implement the system. One of the methods to implement the system is using ASIC

(Application Specific Integrated Circuit). ASICs are the fastest, smallest, and lowest

power way to implement OFDM into hardware. The main problem using this method

is inflexibility of design process involved and the longer time to market period for

the designed chip.

 Another method that can be used to implement OFDM is general purpose

Microprocessor or Micro Controller. Power PC 7400 and DSP Processor is an

example of microprocessor that is capable to implement fast vector operations. This

processor is highly programmable and flexible in term of changing the OFDM design

into the system. The disadvantages of using this hardware are, it needs memory and

other peripheral chips to support the operation. Beside that, it uses the most power

usage and memory space, and would be the slowest in term of time to produce the

output compared to other hardware.

 Field-Programmable Gate Array (FPGA) is an example of VLSI circuit

which consists of a “sea of NAND gates” whereby the function are customer

provided in a “wire list”. This hardware is programmable and the designer has full

control over the actual design implementation without the need (and delay) for any

physical IC fabrication facility. An FPGA combines the speed, power, and density

attributes of an ASIC with the programmability of a general purpose processor will

give advantages to the OFDM system. An FPGA could be reprogrammed for new

functions by a base station to meet future needs particularly when new design is

going to fabricate into chip. This will be the best choice for OFDM implementation

since it gives flexibility to the program design besides the low cost hardware

component compared to others.

 3

1.2 Project Background

 This project is the continuation from the previous master student project

which entitled “Design of an OFDM Transmitter and Receiver Using FPGA” by Loo

Kah Cheng. The works involved from previous student is focused on the design of

the core processing block using 8 point Fast Fourier Transform (FFT) for receiver

and 8 point Inverse Fast Fourier Transform (IFFT) for transmitter part. The

implementation of this design into FPGA hardware is to no avail for several reasons

encountered during the integration process from software into FPGA hardware.

The project was done up to simulation level using Max+Plus II software and

only consists FFT and IFFT processing module. Some of the problem encountered by

this student is that the design of FFT and IFFT is not fit to FPGA hardware. The

design used a large number of gates and causes this problem to arise. Logic gates are

greatly consumed if the number of multiplier and divider are increase. One method to

overcome this problem is by decreasing the number of multiplier and divider in the

VHDL design.

Beside that, the design does not include control signal which cause

difficulties in controlling the data processing in FFT or IFFT module. The control

signal is use to select the process executed for each computation process during

VHDL design. As a result, the design is not applicable for hardware implementation

in the FPGA development board. New design is required to overcome this problem.

Since the design is not possible to use, this project will concentrate on designing the

FFT and IFFT module which can be implement in the dedicated FPGA board. To

ensure that the program can be implemented, the number of gates used in the design

must be small or at least less than the hardware can support. Otherwise the design

module is not able to implement into the dedicated bord.

 4

1.3 Project Objective

The aim for this project is to design a baseband OFDM processing including

FFT (Fast Fourier Transform) and IFFT (Inverse Fast Fourier Transform), mapping

(modulator), serial to parallel and parallel to serial converter using hardware

programming language (VHDL). These designs were developed using VHDL

programming language in design entry software.

The design is then implemented in the Apex 20k200EFC484-2X FPGA

development board. Description on the development board will be carried out at

methodology chapter.

 In order to implement IFFT computation in the FPGA hardware, the

knowledge on Very High Speed Integrated Circuit (VHSIC) Hardware Description

Language (VHDL) programming is required. This is because FPGA chip is

programmed using VHDL language where the core block diagram of the OFDM

transmitter implements in this hardware. The transmitter and receiver are developed

in one FPGA board, thus required both IFFT and FFT algorithm implemented in the

system.

 Several tool involved in the process of completing the design in real hardware

which can be divided into two categories, software tools and hardware tool. The

software which include in this project is using CAD tools software, VHDL module

generator v.109, Synopsis FPGA Express v3.31.4719 and Altera Max+plus II. While

the hardware use is UP1 board of ALTERA Flex 10K FPGA chip.

 5

1.4 Project Scope

 The work of the project will be focused on the design of the processing block

which is 8 point IFFT and FFT function. The design also includes mapping block,

serial to parallel and parallel to serial block set. All design need to be verified to

ensure that no error in VHDL programming before being simulated. Design process

will be described on the methodology chapter.

 The second scope is to implement the design into FPGA hardware

development board. This process is implemented if all designs are correctly verified

and simulated using particular software. Implementation includes hardware

programming on FPGA or downloading hardware design into FPGA and software

programming.

 Creating test vector program also include in the scope of the project. Test

vector is a program developed using c programming and is intended as the input

interface for user as well as to control data processing performed by the hardware.

Creating this software required in understanding the operation of the FFT and IFFT

computation process. Further chapter will discuss the method on developing the

program from mathematical algorithm into behavioral synthesis.

 The last works is to verify the result of the output for each module which has

been developed. Test vector program is used to deliver the computation result if

input value is provided by the user. These computation values should be verified and

tested to ensure the correctness of the developed module. Appropriate software is

used to compare the computation performed by the FPGA hardware with the

software. There are several test performed to the design modules and the test process

also will be discuss in the methodology chapter.

 6

1.5 Project Outline.

 The project is organized into six chapters, namely introduction, literature

review, methodology, hardware design, software design, result, analysis and

discussion, and conclusion.

 Chapter 1 discusses the general idea of the project which covers the

introduction, project objective, project background and scope of the project.

 Chapter 2 shows the literature review of the OFDM system, basic principles

of OFDM system, advantages and disadvantages of OFDM system, and lastly is the

application of the OFDM in recent technology.

 Chapter 3 describes the methodology of the project. The project is divided

into several stages which basically include study relevant topics, design stage,

implementation stage and testing stage. Further description will cover in this chapter.

 Chapter 4 explains regarding the hardware design which is developed from

mathematical equations. The chapter also includes on the theoretical part of FFT and

IFFT and describes until the hardware design.

 Chapter 5 enlightens the software design process involved in the project. This

part basically discussed on the works involved to download the modules into FPGA

board. Besides that, development of test vector which is used to test the modules will

be carried out in this chapter.

 7

 Chapter 6 shows the results obtained from the FPGA hardware. The results

obtained are captured and show in the figure as an examples. Further results will be

shown in the tables.

 Chapter 7 describes on the analysis and discussion of the result. Some results

which gives error output will be discussed in this chapter and provide the reason

behind the problem occurred.

 Chapter 8 consists of the conclusion and proposed works to enhance the

project in the future.

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

With the rapid growth of digital communication in recent years, the need for

high-speed data transmission has increased. The mobile telecommunications industry

faces the problem of providing the technology that be able to support a variety of

services ranging from voice communication with a bit rate of a few kbps to wireless

multimedia in which bit rate up to 2 Mbps. Many systems have been proposed and

OFDM system based has gained much attention for different reasons. Although

OFDM was first developed in the 1960s, only recently has it been recognized as an

outstanding method for high-speed cellular data communication where its

implementation relies on very high-speed digital signal processing, and this has only

recently become available with reasonable prices of hardware implementation.

2.2 Multichannel Transmission

OFDM started in the mid 60’s, Chang [2] proposed a method to synthesis

band limited signals for multi channel transmission. The idea is to transmit signals

 9

simultaneously through a linear band limited channel without inter channel (ICI) an

inter symbol interference (ISI).

After that, Saltzberg [3] performed an analysis based on Chang’s work and he

conclude that the focus to design a multi channel transmission must concentrate on

reducing crosstalk between adjacent channels rather than on perfecting the individual

signals.

In 1971, Weinstein and Ebert [4] made an important contribution to OFDM.

Discrete Fourier transform (DFT) method was proposed to perform the base band

modulation and demodulation. DFT is an efficient signal processing algorithm. It

eliminates the banks of sub carrier oscillators. They used guard space between

symbols to combat ICI and ISI problem. This system did not obtain perfect

orthogonality between sub carriers over a dispersive channel.

It was Peled and Ruiz [5] in 1980 who introduced cyclic prefix (CP) that

solves the orthogonality issue. They filled the guard space with a cyclic extension of

the OFDM symbol. It is assume the CP is longer than impulse response of the

channel.

2.3 Basic Principles of OFDM

Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier

transmission technique, which divides the available spectrum into many carriers,

each one being modulated by a low rate data stream. OFDM is similar to FDMA in

that the multiple user access is achieved by subdividing the available bandwidth into

multiple channels that are then allocated to users. However, OFDM uses the

 10

spectrum much more efficiently by spacing the channels much closer together. This

is achieved by making all the carriers orthogonal to one another, preventing

interference between the closely spaced carriers.

2.4 Orthogonality Defined

Orthogonality is defined for both real and complex valued functions. The

functions ϕm(t) and ϕn(t) are said to be orthogonal with respect to each other over the

interval a < t < b if they satisfy the condition:

∫ =
b

a
mm

OFDM splits the available bandwidth into many narrowband channels

(typically 100-8000), each with its own sub-carrier. These sub-carriers are made

orthogonal to one another, meaning that each one has an integer number of cycles

over a symbol period. Thus the spectrum of each sub-carrier has a “null” at the centre

frequency of each of the other sub-carriers in the system, as demonstrated in Figure

2.0 below. This results in no interference between the sub-carriers, allowing then to

be spaced as close as theoretically possible. Because of this, there is no great need f

users of the channel

dttt ,0)()(
*ϕϕ Where n ≠ m

or

 to be time-multiplexed, and there is no overhead associated with

witching between users. This overcomes the problem of overhead carrier spacing

quired in FDMA.

s

re

 11

Figure 2.0: Orthogonality of sub-carriers

2.5 OFDM Carriers

As fore mentioned, OFDM is a special form of Multi Carrier Modulation

(MCM) and the OFDM time domain waveforms are chosen such that mutual

orthogonality is ensured even though sub-carrier spectra may over-lap. With respect

to OFDM, it can be stated that orthogonality is an implication of a definite and fixed

relationship between all carriers in the collection.

It means that each carrier is positioned such that it occurs at the zero energy

frequency point of all other carriers. The sinc function, illustrated in Figure 2.1

exhibits this property and it is used as a carrier in an OFDM system.

 12

fu is the sub-carrier spacing

Figure 2.1: OFDM sub carriers in the frequency domain

2.6 Generation of OFDM Signals

To implement the OFDM transmission scheme, the message signal must first

be digitally modulated. The carrier is then split into lower-frequency sub-carriers that

are orthogonal to one another. This is achieved by making use of a series of digital

signal processing operations.

K,

r some form of QAM (16QAM or 64QAM for example). In BPSK, each data

ymbol modulates the phase of a higher frequency carrier. Figure 2.2 shows the time-

domain g

The message signal is first modulated using a scheme such as BPSK, QPS

o

s

 representation of 8 symbols (01011101) modulated within a carrier usin

BPSK. In the frequency domain, the effect of the phase shifts in the carrier is to

expand the bandwidth occupied by the BPSK signal to a sinc function. The zeros (or

“nulls”) of the sinc frequency occur at intervals of the symbol frequency.

 13

Figure 2.2: Binary Phase-Shift Key (BPSK) representation of “01011101”

Originally, multi-carrier systems were implemented through the use of

eparate local oscillator . This was both

efficient and costly. With the advent of cheap powerful processors, the sub-carriers

can now

 is that the FFT can keep tones orthogonal to

one another if the tones have an integer number of cycles in a symbol period. In the

example figure 2.3 below, we see signals w

s s to generate each individual sub-carrier

in

 be generated using Fast Fourier Transforms (FFT). The FFT is used to

calculate the spectral content of the signal. It moves a signal from the time domain

where it is expressed as a series of time events to the frequency domain where it is

expressed as the amplitude and phase of a particular frequency. The inverse FFT

(IFFT) performs the reciprocal operation.

The underlying principle here

ith 1, 2, and 4 cycles respectively that

form an orthogonal set.

Figure 2.3: A set of orthogonal signals

To convert the sub-carriers to a set of orthogonal signals, the data is first

combined into frames of a suitable size for an FFT or IFFT. A FFT should be always

 14

in the length of 2N (where N is an integer). Next, an N-point IFFT is performed and

the data stream is the output of the transmitter. Thus when the signals of the IFFT

output are transmitted sequentially, each of the N channel bits appears at a different

sub-carrier frequency.

By using an IFFT process, the spacing of a

ay that at the frequency where the received signal is evaluated, all other signals is

ero. In order for this orthogonality, the receiver and the transmitter must be

erfectly synchronized. This means they both must assume exactly the same

odulation frequency and the same time-scale for transmission. At the receiver, the

ions are performed to recover the data. Since the FFT is

perform d in this stage, the data is back in the frequency domain. It is then

demodulated according to the block diagram below.

 the sub carriers is chosen in such

w

z

p

m

exact inverse operat

e

ne of the most important properties of OFDM transmission is its robustness

against multi path delay. This is especially important if the signal’s sub-carriers are

to retain their orthog addition of a

uard period between transmitted symbols can be used to accomplish this. The guard

Figure 2.4: Block diagram for OFDM communications

2.7 Guard Period

O

onality through the transmission process. The

g

 15

period allows time for multipath signals from the previous symbol to dissipate before

formation from the current symbol is recorded.

he most effective guard period is a “cyclic prefix”, which is appended at the

front of e

e cyclic prefix imposes a

enalty on bandwidth efficiency, it is often the best compromise between

erformance and efficiency in the presence of inter-symbol interference.

in

T

 every OFDM symbol. The cyclic prefix is a copy of the last part of th

OFDM symbol, and is of equal or greater length than the maximum delay spread of

the channel (see Figure 2.5). Although the insertion of th

p

p

Figure 2.5: Implementation of cyclic prefix

2.8 Advantages of OFDM

OFDM has several advantages compared to other type of modulation

technique implemented in wireless system. Below are some of the advantages that

describe the uniqueness of OFDM compared to others:

 16

2.8.1 B

.

t and future

essage is divided up into parallel bit

streams of lower-frequency carriers, or sub-carriers. These sub-carriers are designed

to be orthogonal to one another, such that they can be separated out at the receiver

without interference from neighboring carriers. In this manner, OFDM is able to

space t annels much closer together, which allows for more efficient use of the

spectrum than through simple frequency division multiplexing. The advantage of

orthogonality in OFDM does not happen in FDMA where up to 50% of the total

bandwidth is wasted due to the extra spacing between channels.

2.8.2 OFDM overcome the effect of ISI

he limitation of sending data in high bit rate is the effect of inter-symbol

interference

speed, the time for each transmission becomes shorter. Since the delay time caused

by multi-path remains constant, ISI becomes a limitation in sending high data rate

commu

andwidth Efficiency

A key aspect of all high-speed communications lies in bandwidth efficiency

This is especially important for wireless communications where all curren

devices are expected to share an already crowded range of carrier frequencies. In

OFDM, the frequency band containing the m

he ch

T

 (ISI). As communication systems increase their information transfer

nication. OFDM avoids this problem by sending many low speed

transmissions simultaneously. For example figure 2.6 below shows two ways to

transmit the same four pieces of binary data.

 17

Suppose that this transmission takes four seconds. Then, each piece of data in

e left picture has duration of four second. When transmit these data, OFDM would

end the four pieces simultaneously as shown on the right. In this case, each piece of

ata has duration of 16 seconds. This longer duration leads to fewer problems with

OFDM is used to spread out a frequency selective fade over many symbols.

errors caused by a deep fade or impulse

interference, so that instead of several adjacent symbols being completely destroyed,

many symbols are only slightly distorted. This allows successful reconstruction of a

majorit iding

 a

 system.

Figure 2.6: Two ways to transmit the same four pieces of binary data

0 11 0

1

1

0

0

f1

f2

f3

f4

4 s 4 s 4 s 4 s

16 s

th

s

d

ISI.

2.8.3 OFDM combats the effect of frequency selective fading and burst error

This effectively randomizes burst

y of them even without forward error correction (FEC). Because of div

an entire channel bandwidth into many narrow sub-bands, the frequency response

over each individual sub-band is relatively flat. Since each sub-channel covers only

small fraction of original bandwidth, equalization is potentially simpler than in a

serial

 18

2.9 The weakness of OFDM

Although OFDM is excellent in combating fading effect, it does not mean

at OFDM is free from any weaknesses. Below are some of the weaknesses for the

OFDM system.

2.9.1 P

he

ude is clipped or modified, then an FFT of the signal would no

nal frequency characteristics, and the modulation may be

st.

he

mplifier with a constant, high bias current resulting in very poor

ower efficiency.

th

eak-to-Mean Power Ratio

OFDM signal has varying amplitude as shown by figure 2.7. It is very

important that the amplitude variations be kept intact as they define the content of t

signal. If the amplit

longer result in the origi

lo

0 10 20 30 40 50 60 70
-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

A
m

pl
itu

de

Time

OFDM Time Signal, One Symbol Period

Figure2.7: Show amplitude varying in OFDM

This is one of the drawbacks of OFDM, the fact that it requires linear

amplification. In addition, very large amplitude peaks may occur depending on how

the sinusoids line up, so the peak-to-average power ratio is high. This means that the

linear amplifier has to have a large dynamic range to avoid distorting the peaks. T

result is a linear a

p

 19

2.9.2 Synchronization

he other limitation of OFDM in many applications is that it is very sensitive

to frequency errors caused by frequency differences between the local oscillators in

the tran

 inter-

ent, the

ance of an OFDM link, time and frequency

ynchronization between the transmitter and receiver is of absolute importance. This

 achieved by using known pilot tones embedded in the OFDM signal or attach fine

frequen n

OFDM has been chosen for several current and future communications

ystems all over the world. It is well suited for systems in which the channel

haracteristics make it difficult to maintain adequate communications link

plications, wired systems such as

asynchronous digital subscriber line (ADSL) and cable modem utilize OFDM as its

underlying technology to provide a method of delivering high-speed data. Recently,

OFDM

o

T

smitter and the receiver. Carrier frequency offset causes a number of

impairments including attenuation and rotation of each of the sub carriers and

carrier interference (ICI) between sub carriers. In the mobile radio environm

relative movement between transmitter and receiver causes Doppler frequency shifts,

in addition, the carriers can never be perfectly synchronized. These random

frequency errors in OFDM system distort orthogonality between sub carriers and

thus inter-carrier interference (ICI) occurs.

To optimize the perform

s

is

cy timing tracking algorithms within the OFDM signal’s cyclic extensio

(guard interval).

2.10 Application of OFDM.

s

c

performance. In addition to high-speed wireless ap

 has also been adopted into several European wireless communications

applications such as the digital audio broadcast (DAB) and terrestrial digital vide

broadcast (DVB-T) systems.

 20

2. 10.1 Digital Broadcasting

Standardized in 1995, Digital Audio Broadcasting (DAB) was the first

tandard to use OFDM. DAB uses a single frequency network, but the efficient

y sound, new data

ervices, and higher spectrum efficiency. A broadcasting industry group also created

igital Video Broadcasting (DVB) in 1993. DVB produced a set of specifications for

the deli ial

.

A pan-broadcasting-industry group created Digital Video Broadcasting

VB) in 1993. DVB produced a set of specifications for the delivery of digital

levision over cable, DSL and satellite. In 1997 the terrestrial network, Digital

, was standardized. DTTB utilizes

FDM in the 2,000 and 8,000 sub carrier modes.

 standard in the U.S. targeting a range of data rates up to 54 Mbps. In

urope, ETSI BRAN is now working on three extensions for OFDM in the

iperLAN standard: (i) HiperLAN2, a wireless indoor LAN with a QoS provision;

i) HiperLink, a wireless indoor backbone; and (iii) HiperAccess, an outdoor, fixed

s

handling of multi path delay spread results in improved CD qualit

s

D

very of digital television over cable, DSL and satellite. In 1997 the terrestr

network, Digital Terrestrial Television Broadcasting (DTTB), was standardized

DTTB utilizes OFDM in up to 2,000 and 8,000 sub-carrier modes.

2. 10.2 Terrestrial Digital Video Broadcasting

(D

te

Terrestrial Television Broadcasting (DTTB)

O

2.10.3 IEEE 802.11a/HiperLAN2 and MMAC Wireless LAN

OFDM in the new 5GHz band is comprised of 802.11a, HiperLAN2, and

WLAN standards. In July 1998, IEEE selected OFDM as the basis for the new

802.11a 5GHz

E

H

(i

 21

wireless network providing access to a wired infrastructure. In Japan, consumer

lectronics companies and service providers are cooperating in the MMAC project to

efine new wireless standards similar to those of IEEE and ETSI BRAN.

.10.4 Mobile Wireless Communication.

OFDM’s capability to work around interfering signals gives it potential to

reaten existing CDMA (2.5G and 3G) wireless technology. This is what is allowing

e technology to push forward in Europe. In densely populated areas where

uildings, vehicles and people can scatter the path of a signal, broadcasters as well as

high-speed data providers are anxious to eliminate multi-path effects. According to

industry analysts, telecom providers may also be lured to OFDM technology because

it could end up causing only a fraction of what it costs to implement 3G wireless

technologies.

e

d

2

th

th

b

CHAPTER III

METHODOLOGY

3.1 Introduction

This chapter discusses the methodology of the project and tools that involved

in the process to complete the design and implementation of OFDM tranciever in the

FPGA hardware. The topic basically covers on the usage of the software and some

explanation on the Altera APEX development board.

 The methodology of the project is basically divided into four main stages.

These stages is started with study the relevant topics and followed by the design

process, implementation, test and analysis stages. All stages are subdivided into

several small topics or sub-stages and explanation for each stage will be carried out

in this chapter.

 Several software are used throughout the stages which shown as Figure 3.1..

Each of the software function will be discussed in this chapter. For hardware part, an

APEX 20K200E is used and some documentation regarding this hardware also will

be shown.

 23

Study
related
topics

Design
Process

Implementation

Test &
Analys

i

FFT/IFFT

VHDL

Apex
Development

Board

Device
Programming

VHDL
design

VHDL
Analyzer

Logic
Synthesis

Device
Fitting

VHDLmg

Synopsys
FPGA

Express

Altera
Maxplus

Functional
Simulation

Waveform
Editor

Design
Verification

Software
Programming

Matlab

Qartus II

Nios Development Kit

Figure 3.1: Flow chart of the projects methodology.

3.2 Study Relevant Topics

Figure 3.1 depicts the flow of the projects methodology. As mention before,

methodology of the project is divided into three main stages. The first stage will

cover on study the relevant topics. On this stage, the works is subdivided into three

main topics which is FFT and IFFT, VHDL programming and Altera Apex

development board. These are the topics that need to cover before moved into the

design process. A study on FFT and IFFT is required to understand the computation

process. This requirement is important especially during hardware development and

software programming part. Bit representation in binary also is another issue which

require to study in this stage. Bit representation is crucial when the multiplication or

addition process involved point values such as twiddle factor. In VHDL topic, there

are two topic need to cover up which is Register Transfer Logic (RTL) and

 24

Behavioral Modeling and Synthesis. The last part in this stage is to study the Altera

Apex development board. The description for this board will be carried out later in

this chapter.

3.3 Design Process

 After all preparation in theoretical part is covered, the works is continued into

the design process stages. For this stage, the process is subdivided into several topics

which are VHDL design, VHDL analyzer, Logic Synthesis, device fitting, and design

verification. These topics actually are the process involved to complete the hardware

design. Each of the process required different software to accomplish the design.

VHDL design is the first steps to perform in the design process. VHDLmg

software is used as the design entry and programmed in VHDL language. Basically

this process is to generate the VHDL source code. After generating the code,

Synopsys FPGA Express software is used to verify the generated code. The software

will perform two processes which is VHDL analyzer and logic synthesis. VHDL

analyzer output is used as the logic synthesis and design verification. In logic

synthesis, the netlist file which obtain from VHDL analyzer is synthesized base on

the design constrain and technology library available in the software. The software

will produce *.edif for output file. This file is then used in technology mapping

which is performed by Altera Max+Plus II software. In technology mapping, a

process called device fitting is executed to partition, fit, place and route the design

base on the targeted device.

Device fitting process will produces three main output file which is *.pof,

*.sof and *.snf file. The *.snf file is used for the design verification which also

performed by Altera Max+Plus II software. There are two types of simulation at the

design verification which is functional simulation and timing simulation. The

 25

functional simulation is to simulate the hardware function and this process is not

carried out since the software used is not available. But the timing simulation is

perform using Max + Plus II software. The timing simulation is providing the timing

function for the designed hardware.

3.4 Implemetation

 The design is then proceed to the implementation stage. There are two

processes in this stage which is device programming and software programming.

Device programming is the process to program FPGA board using Quartus II

software. This process basically will burn hardware design into FPGA board.

Another task is to create test vector program in C. Creating this program is include as

in the software programming process.

3.5 Tests and Analysis

 Final stage involved is the test and analysis stage. During this stage, the

output from hardware computation is compared with Matlab. This is to ensure that

the design module is correctly works as performed by Matlab software.

3.6 VHDL and VHDLmg Software

VHDL is an acronym for VHSIC (Very high Speed Integrated Circuit)

Hardware Description Language. It is a hardware description language that can be

used to describe the structure and/or behavior of hardware designs and to model

 26

digital systems at many levels of abstraction, ranging from the algorithmic level to

gate level. The VHDL designs can be simulated and/or synthesized and permits the

rapid creation of complex hardware designs.

Figure 3.2: Basic Modeling structure for VHDL.

Figure 3.2 show the structure of VHDL programming which basically

escribe the digital component’s behavior in term programming language. A circuit

r sub circuit described with VHDL code is called a design entity. General structure

as two main parts whic

eclaration, it specifies the input and output signals for the entity. The architecture

art basically gives the details of the circuit in term of programming. Figure 3.3

hows the picture of VHDL design entity.

d

o

h h is entity declaration and architecture. For entity

d

p

s

Entity

Entity
Declarat

ion

Architecture

Figure 3.3: Show the VHDL design entity.

 27

3.7 Synopsys FPGA Express Software

FPGA Express provides logic synthesis and optimization, so you can

automa en

nd

try from VHDL mg must be

nalyzed first. If the design entry is error-free, then the synthesize process can be

one. But, if the design entry still has an error, it must be corrected and analyzed

gain. There are two steps in implementation of this synthesize process which are

etlist. Create Implementation is where the

ircuit is created by FPGA Express. While Export Netlist is for the synthesized

ircuit from FPGA Express is sent to Max+Plus II.

This is a testing stage using Max+Plus II software for the implemented

ystem. During this simulation process, the circuit design will be simulated and the

utput can be seen at the timing diagram. Based on the output from timing diagram,

e circuit design can be detected whether it is functional or not.

tically convert a VHDL description to a gate-level implementation in a giv

technology. This methodology eliminates the former gate-level design bottleneck a

reduces circuit design time and errors introduced when hand translating a VHDL

specification to gates.

Before the synthesize process, the design en

a

d

a

Create Implementation and Export N

c

c

3.8 Altera Max+Plus II Software

s

o

th

 28

3.9 Matlab

e software which usually use for mathematical

omputation in the engineering field. In this project Matlab software is used for

erification of the IFFT computation with the Max+Plus output simulation.

amily ranges from 30,000 to over 1.5 million gates

13,000 to over 2.5 million system gates) and ships on 0.22-µm, 0.18-µm, and 0.15-

m processes. Introduced in 1999, the APEX device family extended Altera's

leaders

ip

a

tal

SP) designs. Product-term-based logic is optimized for complex

ombinatorial paths, such as complex state machines. LUT- and product-term-based

gic combined with memory functions and a wide variety of Mega Core and AMPP

functio n-a-

Matlab is the multi purpos

c

v

3.10 APEX 20K Devices board

The APEX™ device f

(1

µ

hip in embedded PLD architectures to new levels of efficiency and

performance. APEX devices are uniquely suited for system-on-a-programmable-ch

(SOPC) solutions, allowing designers to integrate a system efficiently and use it in

broad range of applications.

APEXTM 20K devices are the first PLDs designed with the Multi Core

architecture, which combines the strengths of LUT-based and product term-based

devices with an enhanced memory structure. LUT-based logic provides optimized

performance and efficiency for data-path, register intensive, mathematical, or digi

signal processing (D

c

lo

ns make the APEX 20K device architecture uniquely suited for system-o

programmable-chip designs. Applications historically requiring a combination of

LUT-, product-term-, and memory-based devices can now be integrated into one

APEX 20K device.

 29

APEX 20KE devices are a superset of APEX 20K devices and include

dditional features such as advanced I/O standard support, CAM, additional global

locks, and enhanced ClockLock clock circuitry. In addition, APEX 20KE devices

 family to 1.5 million gates. APEX 20KE devices are denoted

ith an “E” suffix in the device name (e.g., the EP20K1000E device is an APEX

0KE device).

f

II

g

a

c

extend the APEX 20K

w

2

3.11 Quartus II 3.0

The Quartus® II development software provides a complete design

environment for system-on-a-programmable-chip (SOPC) design. Regardless o

whether you use a personal computer or a UNIX or Linux workstation, the Quartus

software ensures easy design entry, fast processing, and straightforward device

programming.The Quartus II software is a fully integrated, architecture-independent

package for designing logic with Altera® programmable logic devices, includin

ACEX® 1K, APEX™ 20K, APEX 20KC, APEX 20KE, APEX™ II, ARM®-based

Excalibur™, Cyclone™, FLEX® 6000, FLEX 10K®, FLEX 10KA, FLEX 10KE,

MAX® 3000A, MAX 7000AE, MAX 7000B, MAX 7000S, Mercury™, Stratix, and

Stratix

sign

s, block diagrams, AHDL, VHDL,

nd Verilog HDL, floorplan editing, functional and timing simulation, timing

nalysis, combined compilation and software projects, device programming and

erification and many more. The Quartus II software also reads standard EDIF netlist

les, VHDL netlist files, and Verilog HDL netlist files, and generates VHDL and

Verilog HDL netlist files, including VITAL-compliant files, for a convenient

interface to other industry-standard EDA tools.

™ GX devices. The Quartus II software offers a full spectrum of logic de

capabilities such as design entry using schematic

a

a

v

fi

CHAPTER IV

HARDWARE DESIGN

4.1 Introduction

This chapter covers the material on the Fast Fourier Transform and Inverse

Fast Fourier Transform theories, Mapping, Serial to Parallel and Parallel to Serial

block, VHDL design modules and verification of the design modules. Behavioral

synthesis is used to transfer the mathematical algorithm into register level process

and this will be discussed further in this chapter.

 There are various types of transmitter design for OFDM transmitter. Some of

the design use DSP chip as the main part to implement the core-processing block,

which is IFFT computation. This issue has been discussed in the previous chapter

and as stated in that chapter, FPGA is the most cost effective to implement the

design. As mentioned before, the OFDM transmitter consists of several block or

modules to implement the system using the IFFT function. After consulting various

books, white paper and journal, the proposed transmitter design is consist of serial to

parallel converter, modulator bank, processing block, parallel to serial converter and

cyclic prefix block module. This transmitter block diagram is close to the standard

for all OFDM systems. It was in close accordance with the systems discussed in the

 31

primary resource textbooks. These sources and several technical papers, served as

useful tools to validate our design.

4.2 Simplified Transmitter Block Diagram

Amplitude
Modulation

Mapping
 Bank

8-point
Inverse

 Fast
Fourier

Transform

Parallel to
Serial

Conversion

Serial
Data

In

Cyclic
prefix

Insertion

Serial to
Parallel

Conversion

Channel

Figure 4.1: Simplified transmitter block diagram.

Figure above show the simplified block diagram of OFDM transmitter. It can

be seen that the block is divided into several parts with each block function

differently and this is to ensure that the system works effectively. Since the main

component is processing block, so, the work is started from this part. All block set

function is implemented in the FPGA development board. Cyclic prefix is a module,

which is used to concatenate partial end of information bit and put at the beginning

of the information frame. But in this project cyclic prefix is not included in this

design because it is not the project scope. All module function will be discussed

further in this chapter.

 The generation of OFDM signal started from amplitude modulation mapping

bank. The serial input data is mapped to appropriate symbol to represent the data

bits. These symbols are in serial and need to convert into parallel format since IFFT

module requires parallel input to process data. The serial to parallel module does the

conversion. These parallel symbols are transformed from frequency domain into time

domain using IFFT module. These signals are converted into serial format and add a

cyclic prefix to data frame before being transmitted.

 32

4.3 Simplified Receiver Block Diagram

Serial to
Parallel

Conversion

Amplitude
de-

Modulation
Mapping

Bank

8-point
Fast

Fourier
Transform

Parallel to
Serial

Conversion

Serial
Data
out

Cyclic
prefix

Removal

Channel

Figure 4.2: simplified receiver block diagram.

Figure above show the basic block diagram for receiver module. There are

five modules in the receiver block and as mention before, cyclic prefix removal will

not be included into the design. The received data is in serial format, thus, since FFT

input is in parallel, a module which use to converts from serial to parallel is required.

Output from FFT is converted back to serial format through parallel to serial

converter. The conversion is required since the serial data need to be transmitted.

Finally the serial output is demodulated using de-mapping module to get the

transmitted data.

4.4 Mapping Module

Data in Data out

clock

reset

enable

Figure 4.3: Mapping module.

 33

Figure 4.3 show the mapping module for transmitter. The mapping module

used is BPSK type of modulation. BPSK is used because module is much easier to

design compared to QPSK or other modulation method. If the input is ‘1’ then the

value is mapped with ‘1’ while if the input is ‘0’ the value is mapped with ‘0’. This

type of modulation is monopodal type. The input passed through this module actually

does not get any changes to the value, but it can be assumed that the input is

modulated after pass through it.

4.5 Serial to Parallel module

Serial
to

Parallel

CLK

SERIN

RSTn

DRDY

DOUT
8

PERRn

Figure 4.4: Block diagram for Serial to Parallel module.

 A serial to parallel converter is somewhat the reverse of the operation of

parallel to serial converter. The data comes serially from the input port SERIN. The

parallel data is output from DOUT port. Output port DRDY is asserted ‘1’ when the

start bit, 8 bit data and the parity bit is received. Output port PERRn is asserted ‘0’

when the parity bit received is different from the parity generated inside the serial to

parallel circuit. When parity error is detected, the serial to parallel circuit would be

reset before its normal operation can be performed. This is the operation for serial to

parallel module. Source code is provided in the appendices chapter.

 34

1 1 0 0 1 0 0 1 0

Figure 4.5: Simulation waveform of the serial to parallel.

The figure 4.5 shows a simulation waveform for an input data ‘11001001’.

The input data is in serial format and the conversion is started with the start bit is

being asserted ‘1’ in the SERIN input. Then, the SERIN input receives serial data

‘1’,’1’,’0’,’0’,’1’,’0’,’0’,’1’ followed by the even parity bit of value ‘0’. After the

parity bit is received, the output signal DRDY is asserted ‘1’ in the next clock cycle.

The DRDY signal is used to tell another circuit block to get the parallel data from

DOUT right away. Otherwise the data may be lost when the next word comes. The

DRDY and the start bit are allows to be asserted simultaneously and DOUT’s value

is changed right after DRDY is disserted. The old data is shifted out bit by bit.

Output PERRn is not asserted since the parity error is not detected. A source code in

VHDL programming for serial to parallel is attached at the appendix pages.

4.6 Parallel to Serial module.

Parallel
 to

Serial

clk

Din

rstn

PL

serout 8

Figure 4.6: Block diagram of Parallel to Serial module.

 35

 A parallel to serial converter is a special function of shift register. The data is

parallel loaded to the shift register and then shift out bit by bit also is bounded by a

start bit and stop bit. In OFDM transmitter module, a parallel to serial converter is

used to convert computation result which is in parallel to serial before being sent to

other module for processing. This parallel to serial module is design such that the

data to be transmit is first parallel loaded then transmitted bit by bit by a start bit of

value ‘1’. This is followed by the 8-bit data with the left bit most bit first. The

converter holds the output low when the transmission is completed.

Figure 4.7: Simulation waveform for parallel to serial.

 Figure 4.7 above show three example of data conversion from parallel to

serial. When input signal PL is asserted ‘1’, the data DIN “11000111” is parallel

loaded into the parallel to serial circuit. In the next clock cycle, a start bit of ‘1’ is

outputted, followed by the data “11000111”, then completed with an even parity bit

of value ‘1’. After that, the output stays at low until the PL input is asserted again.

The second data is “11001111” and start bit value is ‘1’. But during data conversion

RSTn signal is asserted to ‘0’ result that the output of SEROUT is ‘0’. The third data

is “11010111”. The start bit is same followed by data and parity bit value is ‘1’.

Further source code for this module is attached in the appendix pages.

 36

4.7 Fast Fourier Transform

Before going further to discus on the FFT and IFFT design, it is good to

explain a bit on the Fast Fourier Transform and Inverse Fast Fourier Transform

operation. The Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform

(IFFT) are derived from the main function which is called Discrete Fourier

Transform (DFT). The idea of using FFT/IFFT instead of DFT is that the

computation of the function can be made faster where this is the main criteria for

implementation in the digital signal processing. In DFT the computation for N-point

of the DFT will calculate one by one for each point. While for FFT/IFFT, the

computation is done simultaneously and this method saves quite a lot of time. Below

is the equation showing the DFT and from here the equation is derived to get

FFT/IFFT function.

∑
−

=

−=
1

0

/2)()(
N

n

NkjenxkX π (4.1)

X(k) represent the DFT frequency output at the k-the spectral point where k

ranges from 0 to N-1. The quantity N represents the number of sample points in the

DFT data frame. The quantity x(n) represents the n-th time sample, where n also

ranges from 0 to N-1. In general equation, x(n) can be real or complex.

The DFT equation can be re-written into:

∑
−

=
=

1

0
)()(

N

n
nk
NWnxkX (4.2)

The quantity WN
nk is defined as:

Nnkjenk

NW /2π−= (4.3)

Here is where the secret lies between DFT and FFT/IFFT where the function

above is called Twiddle Factor. This factor is calculated and put in a table in order to

 37

make the computation easier and can run simultaneously. The Twiddle Factor table is

depending on the number of point use. During the computation of IFFT, the factor

does not to recalculate since it can refer to the Twiddle factor table thus it save time

since calculation is done concurrently. Below is the table for 8 point of FFT for

twiddle factor.

Table 4.0: Twiddle Factor value for FFT

FFT (N = 8)

nk W Value

1 0
8W 1

2 1
8W 0.7071 – j0.7071

3 2
8W -j1

4 3
8W -0.7071 – j0.7071

5 4
8W -1

6 5
8W -0.7071 + j0.7071

7 6
8W j1

8 7
8W 0.7071 + j0.7071

For decimation in frequency radix-2, the input is separated into two halves which is:

⎟
⎠
⎞

⎜
⎝
⎛ −1

2
),....,1(),0(Nxxx (4.4)

and

)1(,.......,1
2

,
2

−⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ NxNxNx (4.5)

Thus the DFT also can be separated into two summations:

 38

∑∑
−

=

−

=

++=
1

2/

2/
1)2/(

0
)()()(

N

Nn

nkkN
N

n

nk WnxWWnxkX (4.6)

Substituting the input into equation above, the result is:

nk
N

n

kN
N

n

nk WNnxWWnxkX ∑∑
−

=

−

=
⎟
⎠
⎞

⎜
⎝
⎛ ++=

1)2/(

0

2/
1)2/(

0 2
)()((4.7)

Substituting k = 2k for even and k = 2k + 1 for odd the equation become as:

1
2

..,,.........1,0,
2

)()2(2
1)2/(

0
−⎟

⎠
⎞

⎜
⎝
⎛=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++= ∑

−

=

NkWNnxnxkX nk
N

n
 (4.8)

and

1
2

..,,.........1,0,
2

)()12(2
1)2/(

0
−⎟

⎠
⎞

⎜
⎝
⎛=⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−=+ ∑

−

=

NkWWNnxnxkX nk
N

n

n (4.9)

Furthermore, let:

⎟
⎠
⎞

⎜
⎝
⎛ ++=

2
)()(Nnxnxna (4.10)

⎟
⎠
⎞

⎜
⎝
⎛ +−=

2
)()(Nnxnxnb (4.11)

To equation ….:

nk
N

N

n
WnakX 2/

1)2/(

0
)()2(∑

−

=

= (4.12)

nk
N

N

n
WnbkX 2/

1)2/(

0
)()12(∑

−

=

=+ (4.13)

The equation above shows that for FFT decimation in frequency radix 2, the

input can be grouped into odd and even number. Thus, graphically the operation can

be view using FFT flow graph shown in figure.

 39

4.7.1 FFT Signal Flow Graph.

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

W0

W1

W2

W3

-1

-1

-1

-1

W0

-1
W2

-1

W0

-1
W2

-1

-1

-1

-1

-1

Y(0)

Y(4)

Y(2)

Y(6)

Y(1)

Y(5)

Y(3)

Y(7)

Stage 3 Stage 2 Stage 1

Figure 4.8: 8-point FFT flow graph using decimation-in-frequency (DIF).

From this figure, the FFT computation is accomplished in three stages. The

X(0) until X(7) variable is denoted as the input value for FFT computation and Y(0)

until Y(7) is denoted as the output. There are two operations to complete the

computation in each stage. The upward arrow will execute addition operation while

downward arrow will execute subtraction operation. The subtracted value is

multiplied with twiddle factor value before being processed into the nest stage. This

operation is done concurrently and is known as butterfly process. For second stage,

there are two butterfly process with each process get reduced input variable. In the

first stage the butterfly process get eight input variable while in the second stage,

each butterfly process get four input variable that is from first stage computation.

This process is continued until third stage. In third stage, there are four butterfly

processes. Noted that each of the butterfly process is performed concurrently enable

it to execute FFT computation process in a very fast technique.

 Mathematically, the butterfly process for each stage can be derived as the

equation stated in the next page.

 40

FFT Stage 1

X(0) + X(4) => X’(0),

X(1) + X(5) => X’(1),

X(2) + X(6) => X’(2),

X(3) + X(7) => X’(3),

[X(0) – X(4)]W0 => X’(4),

[X(1) – X(5)]W1 => X’(5),

[X(2) – X(6)]W2 => X’(6),

[X(3) – X(7)]W3 => X’(7),

FFT Stage 2

X’(0) + X’(2) => X”(0),

X’(1) + X(3) => X”(1),

[X’(0) – X’(2)]W0 => X”(2),

[X’(1) – X’(3)]W0 => X”(3),

X’(4) + X’(2) => X”(4),

X’(5) + X(3) => X”(5),

[X’(4) – X’(6)]W0 => X”(6),

[X’(5) – X’(7)]W0 => X”(7),

FFT Stage 3

X”(0) + X”(1) => Y(0),

X”(1) – X”(5) => Y(1),

X”(2) + X”(3) => Y(2),

X”(2) – X”(3) => Y(3),

X”(4) + X”(5) => Y(4),

X”(4) – X”(5) => Y(5),

X”(6) + X”(7) => Y(6),

X”(6) – X”(7) => Y(7),

 41

4.7.2 FFT Scheduling Diagram

 In the stage three, final computation is done and the result is sent to the

variable Y(0) to Y(7). Equation in each stage is used to construct scheduling

diagram. Scheduling diagram is part of Behavioral Modeling and Synthesis steps to

translate the algorithmic description into RTL (register transfer level) in VHDL

design. The scheduling diagram for stage one computation is constructed as figure

4.9 below.

XR0 XR4

XR41 XR01

XR1 XR5

XRt51 XR11

XI1 XI5

XIt51 XI11

XR2 XR6

XRt61 XR21

XI2 XI6

XIt61 XI21

XR3 XR7

XIt71 XR31

XI3 XI7

XIt71 XI31

w2

XRt51a XIt51a

XIt51b

-1

XR51

XRt51b

XI51

XI61

-1

XI61

-1 -1

XIt71a

w2

XIt71b

XRt71a

XRt71b

XIt71a

w2

XIt71c

XI71 XR71

-1

0.707

S0

S1

S2

S3

Figure 4.9: Scheduling diagram for stage one of 8 point FFT.

 Base on figure 4.9., variable XR0, XR4, and the rest is denoted as the register

in FPGA. The register is name as such to ensure that each register has its own unique

name. During computation, these register will hold computation value, thus it is

required to be unique for easy recalling the value when needed. S0 until S3 is

denoted as clock cycle. Computation in stage one requires four clock cycle to

complete before moves to the next stage. In this stage, the operation takes longer

clock cycles because of the multiplication of twiddle factor value. Since twiddle

 42

factor value is complex, computation need to separate real value and imaginary

value. XR denoted as real value while XI is for imaginary.

XI21

XI02 XI22

-1

XI41

XI42 XI62

-1

XR12 XRt3

XR11 XR31

XI12 XIt32

XI11 XI31

XR42 XR62

XR41 XR61

XI52 XIt72

XI51 XI71

XR52 XRt7

XR51 XR71

XR02 XR22

XR01 XR21

-1

XI32 XR32

-1

XI72

-1

XR72

-1

S4

S5

Figure 4.10: Scheduling diagrams for stage two of 8 point FFT.

 Figure 4.10 show the scheduling diagram for stage two. The value from stage

one computation is sent to this stage as input. The number of register to store

computed values from stage one is same because it is already allocated to receive

real and imaginary values. The situation is different for IFFT operation. This will be

discussed later on IFFT topic. FFT commonly is used at the receiver to convert time

domain signal into frequency domain. XR01 until XI71 denoted as the register name

in stage two.

XI12

XI03 XI43

-1

XR23 XR6

XR2 XR3

XI23 XI63

XI22 XI32

XR13 XR5

XR4 XR5

XI33 XI73

XI62 XI72

XR33 XR7

XR6 XR7

XI13 XI53

XI42 XI52

XR03 XR4

XR0 XR1

Figure 4.11: Scheduling diagrams for stage three of 8 point FFT.

Figure 4.11 show the last stage of FFT computation. The register XR03 until

XI73 holds output values for FFT. These register will be call upon when displaying

the result during software programming.

 43

4.8 Inv

, Inverse Fast Fourier Transform (IFFT) is

sed to generate OFDM symbols. The data bits is represent as the frequency domain

nd since IFFT convert signal from frequency domain to time domain, it is used in

ansm

4)

 C

lgorithm can be used to find IFFT function with the changes in certain properties.

he changes that implement is by adding a scaling factor of 1/N and replacing

.

IFFT (N = 8)

erse Fast Fourier Transform

 As mention in previous chapter

u

a

tr itter to handle the process. IFFT is defined as the equation below:

 (4.1

omparing this equation with the equation (1)., it is shown that the same FFT

a

T

twiddle factor value (nkW) with the complex conjugate nkW − to the equation (1).

With these changes, the same FFT flow graph also can be used for the Inverse fast

Fourier Transform. Below is the table show the value of twiddle factor for IFFT

Table 4.1: Twiddle factor for 8 point Inverse Fast Fourier Transform.

nk W Value

1 0
8
−W 1

2 1−
8W 0.7071 + j0.7071

3 2
8
−W j1

4 3
8
−W -0.7071 + j0.7071

5 4
8
−W -1

6 5
8
−W -0.7071 - j0.7071

7 6
8
−W -j1

8 0.7071 - j0.7071 7
8
−W

∑
−

=
=−=

1

0
..1,0,)(1)(

N

k
knkWkXNnx

 44

 Base on the equation tain from , the scheduling diagram

is developed. Eight registers is required to store input value from user. These

registers only accept real value as the input for IFFT operation. Below is the

scheduling diagram for IFFT stage 1.

S0 to S2. T ause

FT processed both real and imaginary value while IFFT only real. The result from

FT is represented in real and imaginary value because of the multiplication of

 ob signal flow graph

XR0 XR4 XR1

Figure 4.12: Scheduling diagrams for stage one of 8 point IFFT.

 For stage one, computation is accomplished in three clock cycle denoted as

XR5 XR2 XR6 XR3 XR7

XR5 XI51

XR71

XRt7b XI71 XI61

XR01 XR41 XRt71 XR21 XRt61 XR31XR11 XRt51

S0

S1

S2

he operation is much simpler compared with the FFT. This is bec

F

IF

twiddle factor. Twiddle factor is a constant defined by the number of point used in

this transform. This scheduling diagram is derived from the equation obtain in FFT

signal flow graph.

 45

XR0 XR2 XR1 XR3 XR4 XI61 XR5 XR7

XR72

XR02 XR22 XI52 XR42 XI42 XRt72 XR12 XRt32 XR62 XI62

-1

XI72

XR52

XI51 XI71

XIt72

w2 w2

XI72

w2

S3

S4

Figure 4.13: Scheduling diagrams for stage two of 8 point IFFT.

XR02 XR12 XR22 XI32

XR03 XR43 XR23 XI23 XR63 XI63

-1

XR42 XR52

XR53 XR13

XI42 XI52

XI53 XI13

XR62 XR72

XR73 XR33

XI62 XI72

XI73 XI33

0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

S5

S6 0.125

Figure 4.14: Scheduling diagrams for stage three of 8 point IFFT.

 Figure 4.13 and figure 4.14 shows the scheduling diagram for stage two and

three respectively. The same notation with FFT scheduling diagram is used for IFFT

process. For example, referring to figure 4.13, in clock S3, the addition and

subtraction operation is performed. As mention before, each clock cycle, the addition

and subtraction is executed concurrently and the result is stored in the next register.

In clock S4, only three operations is performed, that is multiplication of twiddle

factor value.

 In figure 4.14, the resultant value is multiplied with the number 0.125. This

number actually same as the division with the N point value. In this case N value is 8

for 8 point IFFT. The final result is stored in the memory and will be called upon

 46

when it is required to display the result at user interface. Signal flow graph is very

important as the guided to understand the computation process especially during

software programming whereby to create test vector program.

4.9 Hardware Module

 Hardware module is developed using VHDL language. The modules which

developed include FFT/IFFT, serial to parallel and parallel to serial and mapping

block. Each of this module function is describe as in paragraph below.

4.9.1 Fast Fourier Transform (FFT)

DataA

DataB

Opcode

Result

FFT
8

8
8

3

Figure 4.15: FFT module

 Figure 4.15 show the block diagram for FFT module. This basic module

consists of only two inputs which is DataA and DataB. Opcode is used to select the

operation performed by the module. Result will be delivered through Result port.

Several operations are performed by this hardware where each operation executed in

one clock cycle. Each operation is assigned to the unique opcode value. Referring to

the source code in appendix, FFT module has eight operations involved such as

addition, subtraction, multiplication, pass module and conversion from positive

number to negative. A complete code is available in appendix pages.

 47

4.9.2 Inverse Fast Fourier Transform (FFT)

 The same block diagram as FFT is used to develop IFFT module. Input port

such as DataA, DataB and Opcode is also used as well as Result for output port. The

different between FFT and IFFT is that the IFFT module needs to divide with eight at

the end of the result. Additional operation to handle this process is inserted at this

module.

4.9.3 Hardware Interfacing

 Both FFT and IFFT need to connect to Avalon bus for data processing

performed by the standard 32 type CPU module. CPU module which is call NIOS

CPU is provided by Altera to manage the data processing performed by the FFT or

IFFT module.

clk
chipselect
address

writedata
readdata

Data1
Data2

opcode

DataA
DataB

opcode
result result

clk

Avalon
Address
bus

Avalon
Data
bus

IFFT
/ FFT Interface

Figure 4.16: Block diagram of the connection between IFFT or FFT module with

Avalon bus system.

 48

 Figure 4.16 shows the connection between FFT or IFFT module with the

Avalon bus system. Interface module is responsible to manage the communication

between buses with the FFT or IFFT module. Data is inputted through writedata port

and buffered in the interface module before it is sent to the FFT or IFFT. The result

of computation is delivered to the wiredata port and display to user through

appropriate interface.

CHAPTER V

SOFTWARE DESIGN

5.1 Introduction

 This chapter covers on the material related to the implementation stage as

discussed in the methodology chapter. In this part, there are two work required to

carry out which is hardware programming and software programming. The details

will be discussed further in this chapter.

 As mention in methodology chapter, the works required to complete this

stage consists of the hardware and software programming. Hardware programming is

the process where the designed hardware is programmed into the FPGA board while

software programming consists of creating a test vector program in c language to test

the operation of the designed module.

 50

5.2 Hardware Programming

 In hardware programming, Quartus II v 3.0 software is used to perform the

works on this stage. Nios CPU also need to be installed together along with Quartus

II software. Basically, Quartus II software handles the process during hardware

connection between design module and Avalon bus interface. Beside that, compiling

the system which includes the designed module and interface module also perform

using this software.

A tool called SOPC builder (System on a programmable chip) is used to

perform the module integration. This tool will be installed together during Quartus II

software installation. SOPC is an automated system development tool that

accelerates many phases of system-on-a-programmable-chip (SOPC) design

including system definition and customization, component integration, system

verification and software generation for the custom hardware. SOPC Builder enables

the combination of components such as embedded processors, standard peripherals,

IP cores, on-chip memory, interfaces to off-chip memory, and user-defined logic into

a custom system module. SOPC Builder generates a single system module that

instantiates these components, and automatically generates the necessary bus logic to

connect them together.

5.2.1 Adding the User Defined Logic

 To add a user defined logic (designed hardware) to the system module,

several steps is required to carry out. The details for these steps will be provided in

the appendix pages. Figure 5.1 show the interface to user logic where a process to

add FFT module is performed. It can be seen that from this interface, we can see the

port name used in the FFT module and the number of bit utilize in each ports.

Basically this process will read every port available in the designed module.

 51

Figure 5.1: Interface to user logic setting on Port Tab

5.2.2 Setting the Module Properties

 Figure 5.2 provided the interface for user to modify the properties of the

designed module such as timing properties. User can change the instantiations and

timing properties according to the desired value. Timing properties for example

provided the user to set the time required for data bus or address bus to hold data or

address value before another instruction is executed.

 52

Figure 5.2: Interface to user logic setting on Instantiation and Timing tabs.

5.2.3 Complete Module Integration

 Figure 5.3 is the example of the complete system integrated together between

FFT module, Ram module and System modules. A System modules is a Nios

embedded processor which provided by Altera as mention in previous chapter. From

this interface, we can set any properties provided by this software and it is reminded

that each property must be set properly according to the designed module capability.

For example the targeted device used is APEX 20KE with the clock speed of 33.33

Mhz. All these properties setting can be acquired in the manual sheet.

 Each of the modules in the system has its own unique address. These

addresses are given by the SOPC Builder tool and it shows the location of the

devices in the address of memory location. It is important especially during software

 53

programming to send the input value and direct it to appropriate module. Beside that

the result of the computation also can be read from the address in the specific

module.

Figure 5.3 SOPC Builder with modules.

5.2.4 Generating the Files

 After all setting is properly set, generate the module by clicking the generate

button. The SOPC builder will generate the necessary files required by the Nios

software to execute the test vector program. The process required around five

minutes to complete. If the generation of the files is successful, a message show that

the generation is completed will be displayed. Otherwise, the error message will be

 54

displayed and if there is an error to the design, it is required to correct the error

before continue to generate. Figure 5.4 shows the generation process.

Figure 5.4: Generate the appropriate files for each module.

5.2.5 Compiling the System Module

 If the generation of files is successful, the overall design must be saved and

re-compiled by clicking the compile button. This recompilation is required since the

standard 32 module setting is change due to the generation process. Beside that, it

allows the QuartusII software to identify which port in the module is changed. Some

changes may require the user to rename the default name of the Nios embedded

processor pin code.

 55

5.2.6 Download the design into FPGA board

When the compilation is successful, the design is ready to be downloaded

into FPGA board. These steps are provided in the Apex board manual in appendix

pages.

Figure 5.5: Compiling the system module.

Figure 5.6: Download the design into development board.

 56

5.3 Software Design

After the hardware design is successfully compiled and corrects all the errors, a

programme in C programming language is required to verify your design. The most

important things to know during this stage is how to communicate hardware design with the

software design.

 While inserting the user-defined logic design to the Nios system module using the

SOPC Builder, there is information which provides the base address and end address of each

module.

Figure 5.7: The SOPC Builder System Contents Page

This Base Address and the End Address will be use in the Address Mapping in the

Excalibur.h file generated by the SOPC Builder. Figure 5.8 below shows the portion of

Address Mapping in the Excalibur.h file. The highlighted line is address mapping specific

for the user-defined logic.

 57

#define na_Ram1 ((np_usersocket *) 0x00000430) // altera_avalon_user_defined_interface
#define na_Ram1_base 0x00000430
#define na_timer1 ((np_timer *) 0x00000440) // altera_avalon_timer
#define na_timer1_base 0x00000440
#define na_timer1_irq 25
#define na_led_pio ((np_pio *) 0x00000460) // altera_avalon_pio
#define na_led_pio_base 0x00000460
#define na_button_pio ((np_pio *) 0x00000470) // altera_avalon_pio
#define na_button_pio_base 0x00000470
#define na_button_pio_irq 27
#define na_lcd_pio ((np_pio *) 0x00000480) // altera_avalon_pio
#define na_lcd_pio_base 0x00000480
#define na_Ram2 (np_usersocket *) 0x00000490) // altera_avalon_user_defined_interface
#define na_Ram2_base 0x00000490
#define na_Ram2 (np_usersocket *) 0x000004a0) // altera_avalon_user_defined_interface
#define na_Ram2_base 0x000004a0
#define na_FFT3 (np_usersocket *) 0x000004b0) // altera_avalon_user_defined_interface
#define na_FFT3_base 0x000004b0

Figure 5.8: The portion of Address Mapping in Excalibur.h file generated by
SOPC Builder

If observed the Base Address and End Address, Ram1, Ram2, Ram3 and FFT3 just

require two bits address, which is 00, 01, 10, and 11. So the address given by the SOPC

Builder as expected should be as Table 5.1 below:

Table 5.1

Module Name Base End

Ram1 0x00000430 0x00000433

Ram2 0x00000490 0x00000493

Ram3 0x000004A0 0x000004A3

FFT3 0x000004B0 0x000004B3

 However, we found that the SOPC Builder gave extra two bits. As shown in Table

5.2 below: With the 4 bits that given to us, however, we just can utilize 2 bits from it. So, as

the result, the last 2 bits are considered as don’t care value. (We must assume the last 2 bits

as don’t care value instead of the first 2 bits!) So, to achieve the address to control your user-

defined logic, we can achieve by the way that shown in Table 5.3.

 58

Table 5.2

Module Name Base End

Ram1 0x00000430 0x0000043F

Ram2 0x00000490 0x0000049F

Ram3 0x000004A0 0x000004AF

FFT3 0x000004B0 0x000004B0

Table 5.3
Address(last

4 bits) Module Example Address Location in VHDL Block Diagram illustration Name

Ram1

00xx
01xx

 10xx
11xx

0x00000430
0x00000434
0x00000438
0x0000043C

Address 00 in Ram1 memory
Address 01 in Ram1 memory
Address 10 in Ram1 memory
Address 11 in Ram1 memory

Ram2

00xx

 01xx
10xx
11xx

0x00000491
0x00000495
0x00000499
0x0000049D

Address 00 in Ram2 memory
Address 01 in Ram2 memory
Address 10 in Ram2 memory
Address 11 in Ram2 memory

Ram3

00xx

 01xx
10xx
11xx

0x000004A2
0x000004A6
0x000004AA
0x000004AE

Address 00 in Ram2 memory
Address 01 in Ram2 memory
Address 10 in Ram2 memory
Address 11 in Ram2 memory

FFT3

00xx

01xx

10xx

11xx

0x000004B3

0x000004B7

0x000004BB

0x000004BF

Case address is
when “00” =>
opcode<=writedata(1downto0);
when “01” =>
 data1 <= writedata;
when “10” =>
 data2 <= writedata;
when others =>
 readdata <= result;
end case;

Please refer to Figure 20 on next
page.

00
01
10
11

Ram1

00
01
10
11

Ram2

00
01
10
11

Ram2

 59

Avalon Slave
Port Signal

Interface_

DATA1

CLK

DATA2

 OPCODE

 RESULT

DATAa

DATAb

 OPCODE

 RESULT

chipselect

 address

 writedata

 readdata

Figure 5.9: The simplified block diagram of Connection between ALU
with Avalon Bus System

 With the other words, for memory module such as RAM or ROM, the address

signal from Avalon Slave bus means the memory location. However, for the

processing module it is a slightly different.

For example, such a simple FFT in this case, the address indicates which data

to be passed between the FFT module unit and the Avalon Bus System. In this FFT

case, the FFT need 4 cycles to complete an operation. First clock cycle is used to

fetch opcode (OPCODE) from Avalon bus to FFT, second clock cycle to fetch first

operand (DATAa) from Avalon bus to FFT, third cycle to fetch second (DATAb)

operand from Avalon bus to FFT, and the last clock cycle to fetch the operation

result (RESULT) from the FFT to the Avalon Bus System.

 After understand the architecture of the memory system, the works will be

further carry out with the control vector programme in C language. The code for FFT

and IFFT is provided in the appendix.

 60

5.3.1 Compiling and Downloading the Control Vector programme

Figure 5.10: Compiling the C code for test vector program.

Figure 5.11: downloading C code for test vector program.

 61

The test vector programmed is required to be compiled to ensure no error in

the source code. If there is error during compilation, it has to be fixed before re-

compilation is performed. Compilation for the programme will produce several files

including *.srec files. This file is used to download into the Apex 20KE development

board to test the hardware module operation. Figure 5.10 and 5.11 depicts the

compilation process and download process respectively.

CHAPTER VI

RESULTS

6.1 Introduction

This chapter will discuss on the experiment set up and the test conducted to

the FPGA module. All results from hardware module are recorded into Microsoft

Excel to ensure the data is properly organized. The user interface for FPGA program

is also been captured and shown in this chapter.

 The Apex 20KE board requires to be set up properly before the program is

downloaded into the board. The procedure on this step is available in the Apex 20KE

manual data sheets. Basically the development board kits is shipped with one Apex

20KE board, DC power supply adapter, serial cable, LCD display and the

ByteBlasterTM II parallel port download cable. Figure 6.1 and 6.2 depict the connection between

Apex 20KE development boards with the computer.

 63

Power
Supply
cable

Download
cable
(Parallel
port)

Serial
communication
cable

 LCD
Display

Figure 6.1: Apex 20KE development board.

Figure 6.2: Apex 20KE connection with computer.

 64

6.2 How to Conduct Test?

 Several modules have been designed and testing is required to obtain the

result. The most important module is FFT and IFFT since this module depict the

processing technique performed in the receiver or transmitter. There are two methods

to conduct the test to the designed module, which firstly is each FFT, and IFFT

module is tested independently and the results is compared with the results computed

by Matlab software. Connecting the output of the transmitter to the input of the

receiver such that the input value will be same as the output value does the second

test.

 X(0)

X(7)

Z(0)

Z(7)

Input Output

Matlab

 (a)

 X(0)

X(7)

Y(0)

Y(7)

Input Output

FFT/
IFFT

(Apex)

(b)

Figure 6.3: (a) Matlab FFT/IFFT module. (b) Apex 20KE FFT/IFFT module.

Figure 6.3 (a) and (b) show the illustration of the block diagram for Matlab

module and designed module in Apex 20KE board. X(0) to X(7) denoted as the input

for each module while Z(0) to Z(7) and Y(0) to Y(7) denoted as output for Matlab

and Apex board respectively. Matlab output will be compared with the output obtain

by the designed module computation in Apex 20KE.

 65

 X(0)

X(7)

Z(0)

Z(7)

Input Output

Tranmitter
(IFFT)

 X(0)

X(7)

Y(0)

Y(7)

Input Output

Receiver
(FFT)

Figure 6.4: Transmitter module and receiver module.

 Figure 6.4 depicts the illustration for the transmitter and receiver module. The

output from transmitter module which is mainly consists of IFFT is used as the input

to the receiver module. Generally if the input from transmitter is real value the

computation of IFFT will result real and imaginary value. While if the input is

imaginary, computation will result in real value. For the IFFT design, the input only

accept real value, thus imaginary result is obtained. The receiver needs to have both

real and imaginary at the input to convert back to the original value. So, FFT is

design to have this feature in order to process the data and display the correct result.

 66

6.3 Result obtained for IFFT

Figure 6.5: Input value to the IFFT module.

 Figure 6.5 shows the captured result of the input value to the IFFT module.

User keys the input in and the value is stored at the memory or external ram of the

Apex 20KE board. XR0 to XR7 denoted as the variable to store the value in the

memory. The program is run using SOPC Builder, which is available when Nios

software is installed. SOPC builder provides an interface between user and the

hardware development board.

 Figure 6.6 depict the stage 2 and stage 3 of IFFT computation. The result of

each stage computation is in integer value. Number is represented by the 8 bit of

two’s complement binary representation. Using this method, the allowed number to

represent is from 0 to 255 values. Positive number is represent from 0 to 127 while

negative number from 255 to 128 which represent -1 to -127 respectively.

 67

Figure 6.6: Stage 1 and stage 2 operation.

Figure 6.7: Stage 3 and stage 4 operation.

 68

Figure 6.8: The final output from IFFT operation.

 Figure 6.8 shows the final result of the IFFT computation. As explain in the

theory final output of IFFT will be divided by 8. Overall computation results in both

real and imaginary for each input variable except for XR0 and XR4.

6.4 Result obtained for FFT

Figure 6.9: Input value to FFT module.

 69

 Figure 6.9 show the input that is given to the FFT module. FFT module as

mention before is able to process both real and imaginary value. Each input variable

has it own imaginary value except for variable X0 and X4.

Figure 6.10: Stage 1 to stage 2 operations.

 70

Figure 6.11: Stage 3 to stage 5 operation.

Figure 6.12: Stage 6 and final output of FFT computation.

 71

Figure 6.12 shows the final result of FFT computation. Using FFT module in

FPGA, the results obtained are integer value of 8 bit two’s complement. FFT

computation requires seven stages to complete until the result is obtained because it

involves both real and imaginary at the input. Computation takes longer clock cycles

since the twiddle factor value is not same as in IFFT. The FFT result will be

compared with the Matlab result and the comparison is shown in the table 6.1 to 6.3.

6.5 Results for Transmitter and Receiver

Figure 6.13: Input to transmitter.

 Figure 6.12 shows the input value which stored in the memory for transmitter

module. As we can see, the value for transmitter input is keyed in randomly. As

mention before, there are some assumption is made for the transmitter and receiver

module. The transmitter module only can accept real value with the bit length of 8

and two’s complement. While the receiver module, it can accept both real and

imaginary with the same bit length. The second condition is that, both of these

modules are implemented in one board.

 72

Figure 6.14: Transmitter processing stage 1 to 2.

Figure 6.15: Transmitter processing for stage 3 to 4.

 73

Figure 6.16: Output for transmitter module.

 Figure 6.13 and 6.14 depicts the computation process occurred in the

transmitter. With this, the computation can be easily checked in each input to ensure

the addition, subtraction or multiplication is correctly executed. Figure 6.15 show the

final output of the transmitter. The result of the transmitter is sent to the receiver

module and buffered at the receiver memory buffer. The process is captured and the

figure 6.16 depicts the buffering value in the receiver.

Figure 6.17: Receiver buffer

 74

Figure 6.18: Receiver operation for stage 1 to 2.

Figure 6.19: Receiver operation for stage 3 to 5.

 75

Figure 6.20: Receiver operation for stage 6 and the final output for receiver.

 Figure 6.18 and 6.19 depict the process in the receiver. Some operation is not

able to accomplish in one clock cycle which make the process longer to produce the

result. For example suppose the twiddle factor value is -0.7071 -j0.7071 and the

number to multiply is say 25. First step to do is to multiply the value with positive

value (0.7071) which require one process and convert the result to negative requiring

another process cycle. Figure 6.20 show the final result of the receiver process. The

result obtained at receiver consists of real and imaginary value. Theoretically, if the

input for FFT or IFFT is imaginary then the computation would result only real

value. This condition actually is only true for the floating point number

representation which used in Matlab software. For fix number representation, the

point number is represented by approximation, thus the number is not correctly

represented. This will be discussed more on the analysis and discussion chapter.

 Table 6.1 to 6.3 shows the comparison between hardware computation and

Matlab for FFT, IFFT and transmitter and receiver module. The output for hardware

and Matlab is bold such that it gives easiness to compare the result. Briefly, output

for FFT and IFFT modules gives the same result between hardware computation and

Matlab. But for transmitter and receiver module, the output is slightly different. The

reason will be discuss in the analysis and discussion chapter.

 76

 Output(FPGA)

 Input
Output(matlab

round) 2's complement Integer
 Real Imaginary Real Imaginary Real Imaginary Real Imaginary

x0 2 0 60 0 60 0 60 0
x1 1 0 -10 20 247 20 -9 20
x2 2 0 -3 15 253 15 -3 15
x3 9 0 -8 -4 247 252 -9 -4
x4 11 0 -2 0 254 0 -1 0
x5 7 0 -8 4 247 4 -9 4
x6 14 0 -3 -15 253 241 -3 -15
x7 14 0 -10 -20 247 236 -9 -20

x0 8 0 58 0 58 0 58 0
x1 0 0 7 12 7 12 7 12
x2 9 0 -7 17 249 17 -7 17
x3 5 0 -3 6 253 6 -3 6
x4 6 0 12 0 12 0 12 0
x5 3 0 -3 -6 253 250 -3 -6
x6 12 0 -7 -17 249 239 -7 -17
x7 15 0 7 -12 7 244 7 -12

x0 100 0 347 0 91 0 91 0
x1 25 0 66 145 66 145 66 -111
x2 250 0 35 - 18 35 238 35 -18
x3 2 0 26 - 117 26 139 26 -117
x4 54 0 199 0 199 0 -57 0
x5 21 0 26 117 26 117 26 117
x6 125 0 35 18 35 18 35 18
x7 26 0 66 - 145 66 111 66 111

x0 200 0 1434 0 154 0 -102 0
x1 156 0 -63 - 224 193 31 -63 31
x2 233 0 60 138 60 138 60 -118
x3 254 0 19 - 16 19 239 19 -17
x4 222 0 134 0 134 0 -122 0
x5 100 0 19 16 19 17 19 17
x6 129 0 60 -138 60 118 60 118
x7 140 0 -63 224 193 225 -63 -31

x0 2 0 33 27 33 27 33 27
x1 1 5 -5 4 249 0 -7 0
x2 9 6 -12 -8 0 248 0 -8
x3 2 4 -10 -3 251 4 -5 4
x4 8 0 19 -13 19 243 19 -13
x5 3 2 3 -8 241 252 -15 -4
x6 7 1 0 -6 244 250 -12 -6
x7 1 9 -12 7 3 0 3 0

Table 6.1: Result for FFT

 77

 Output(FPGA)

 Input
Output(matlab

round) 2's complement Integer
 Real Imaginary Real Imaginary Real Imaginary Real Imaginary

x0 2 0 8 0 8 0 7 0
x1 1 0 -1 -2 255 254 -1 -2
x2 2 0 0 -2 0 255 0 -1
x3 9 0 -1 1 255 0 -1 0
x4 11 0 0 0 0 0 0 0
x5 7 0 -1 -1 255 0 -1 0
x6 14 0 0 2 0 1 0 1
x7 14 0 -1 2 255 2 -1 2

x0 8 0 7 0 7 0 7 0
x1 0 0 1 -2 0 255 0 -1
x2 9 0 -1 -2 0 254 0 -2
x3 5 0 0 -1 0 0 0 0
x4 6 0 2 2 1 0 1 0
x5 3 0 0 1 0 0 0 0
x6 12 0 -1 2 0 2 0 2
x7 15 0 1 2 0 1 0 1

x0 2 0 4 0 4 0 4 0
x1 1 0 -1 0 255 0 -1 0
x2 9 0 -1 0 255 0 -1 0
x3 2 0 0 0 255 0 -1 0
x4 8 0 2 0 2 0 2 0
x5 3 0 0 0 255 0 -1 0
x6 7 0 -1 0 255 0 -1 0
x7 1 0 -1 0 255 0 -1 0

x0 200 0 179 0 243 0 -13 0
x1 156 0 -8 28 248 254 -8 -2
x2 233 0 8 -17 8 15 8 15
x3 254 0 2 2 248 2 -8 2
x4 222 0 17 0 240 0 -16 0
x5 100 0 2 -2 2 254 2 -2
x6 129 0 8 17 8 241 8 -15
x7 140 0 -8 -28 2 4 2 4

Table 6.2: Result for IFFT

 78

 Output(Receiver)

Input(Transmitter)
Output(Transmitter)

2's complement Integer
 Real Imaginary Real Imaginary Real Imaginary Real Imaginary

x0 2 0 8 0 4 0 4 0
x1 1 0 255 253 8 6 8 6
x2 2 0 0 254 2 254 2 -2
x3 9 0 255 1 10 4 10 4
x4 11 0 0 0 8 248 8 -8
x5 7 0 25 255 4 2 4 2
x6 14 0 0 2 14 254 14 -2
x7 14 0 255 3 14 0 14 0

x0 8 0 7 0 9 0 9 0
x1 0 0 1 254 6 255 6 -1
x2 9 0 255 254 5 4 5 4
x3 5 0 1 255 6 3 6 3
x4 6 0 2 0 7 246 7 -10
x5 3 0 0 1 4 1 4 1
x6 12 0 255 2 11 254 11 -2
x7 15 0 0 2 8 5 8 5

x0 11 0 7 0 11 0 11 0
x1 6 0 2 0 8 0 8 0
x2 11 0 0 0 8 3 8 3
x3 6 0 0 0 6 0 6 0
x4 7 0 0 1 3 2 3 2
x5 3 0 1 0 6 254 6 -2
x6 5 0 0 0 6 255 6 -1
x7 2 0 1 255 8 254 8 -2

x0 1 0 5 0 254 0 -2 0
x1 2 0 255 255 5 1 5 1
x2 3 0 255 255 4 0 4 0
x3 4 0 255 0 7 1 7 1
x4 5 0 255 0 6 252 6 -4
x5 6 0 255 0 5 1 5 1
x6 7 0 255 1 8 0 8 0
x7 8 0 255 1 7 1 7 1

x0 -56 0 243 0 231 0 -25 0
x1 -100 0 248 252 5 255 5 -1
x2 -23 0 8 15 244 211 -12 -45
x3 -2 0 248 2 241 223 -14 -33
x4 -34 0 240 0 239 26 -17 26
x5 100 0 2 254 11 41 11 41
x6 -127 0 8 241 226 3 -30 3
x7 -116 0 2 4 235 9 -21 9

Table 6.3: Results for transmitter and receiver

CHAPTER VII

ANALYSIS AND DISCUSSIONS

7.1 Introduction

 This chapter covers on the analysis of the results obtained from the FFT and

IFFT module plus the transmitter and receiver module. The comparison results

between Matlab and these modules were shown in the Table 6.1, Table 6.2 and Table

6.3 in the previous chapter.

 As notice from the comparison result, it can be concluded that the results

obtained were not exactly correct as using Matlab software especially for transmitter

and receiver module. This chapter will present some of the reason and discussed why

this problem occurred and suggest the best solution for the problem encountered.

 80

7.2 Why not Accurate?

 The biggest problem when dealing with hardware in implementing

mathematical computation is the accuracy. The main reason why computation using

hardware module is not accurate as using software base is that the multiplication and

division is using fix point number instead of floating point. The weakness of using

fix point representation is, approximation made for number representation introduce

error. For example decimal numbers for 0.7071 in binary is 010110101. If this binary

number converted back into decimal, the result is equal to 0.70. From this example, it

is proven that the twiddle factor is not represented accurately.

7.3 Multiplication of Twiddle Factor

Decimal

11
X 0.7071

7.7781

Binary

0000 1011
X 01011 0101

0 0000 0111 1100 0111

Figure 7.1: Example of twiddle multiplication.

 Figure 7.1 show an example of integer number multiply with twiddle factor in

decimal and binary representation. Result for decimal number can be shown up to

0.0001 point of accuracy. Compare to binary representation, the result obtained from

computation only can be displayed in 8 bit representation which is 7.The 8 bit

number multiply with 8 bit number will result 16 bit number. As we notice that, the

result only can store 8 bit number thus, the register only can store 7 instead of 7.7781

 81

and consequently it sacrifice the accuracy. This only involves one operation, since in

FFT/IFFT requires many stages and many operations the final result will be totally

different at some of the output. In Matlab computation is done all in floating point

format and only during the final result, it is made rounded. Compared to FPGA

module, each operation is already having an error, thus obviously some output will

not given same value. Fix point number provide faster processing time, less circuit

complexity and less usage of memory module compared to floating point

representation. The result shown in this example is only for one multiplication. The

result become worse if there are more than two twiddle multiplication.

7.4 Division by eight in IFFT module

Decimal

11

1.375

8

0

Binary

0000 1011
X 0010 0001

0000 0001 0110 1001

Figure 7.2: Example of twiddle division.

 Figure 7.2 shows the example of division process at the IFFT module. In

decimal, the result can be shown accurately until up to 0.001. But for binary

representation, the result can be shown is 1. In binary, division process is represented

as the multiplication process because it simplifies the programming code. Division of

8 can be shown as multiplication of number with 0.125.

 82

7.5 Overflow

 Overflow is the main problem in binary representation for arithmetic process.

Basically, overflow is occurred when the value of carry in is not same as the value

for carry out. Figure 7.3 depicts the example clearly.

Decimal

126
+ 126

252

Binary

0111 1110
+ 0111 1110

1111 1100

Figure 7.3: Addition of decimal number.

 This example shows the addition of both positive decimal numbers. As

mention before, maximum positive number representation for 8 bit two’s

complement is 127. Thus in decimal, additions of this number will results 252. But in

binary two’s complement, the value 252 is equal to -4. In this case, the result

obtained for this addition will create an error result.

 It can be concluded that the problem encountered are as discussed as above

which leads to the reason on why FPGA and Matlab computation gives different

result. Some suggestion is proposed and is stated at the conclusion chapter.

CHAPTER VIII

CONCLUSION

As mentioned in the objectives, a base band OFDM transmitter was

successfully developed using Altera APEX 20k200EFC484-2X FPGA development

board. The output from each module was tested using appropriate software to ensure

the correctness of the output result. On the transmitter part there are four blocks

which consists of mapper (modulation), serial to parallel, IFFT and parallel to serial

block. Each of these blocks was tested using Altera Max+Plus II software during

design process. This is to ensure that the hardware module was correctly working

when implemented in the FPGA hardware. During the implementation stage, the

operation for IFFT was tested using Matlab software. Since IFFT is base on

mathematical operation, Matlab is the best platform to compare the computation

result. The comparison result shows that IFFT module is working correctly as the

Matlab computation. Some computation gives slightly different from Matlab

especially in imaginary value and this problem has been discussed in the analysis and

discussion chapter. Thus, base on the test result, it was concluded that IFFT module

was viably used in transmitter part as processing module.

The same process was done at the receiver part whereby each of the modules

was tested during design process. On the implementation stage, FFT operation was

tested using Matlab software. From the result shown in the results chapter, FFT

module was correctly operated as Matlab computation. The different was only that

the result of the FFT computation was in decimal while Matlab provide in floating

point value. Matlab result was rounded such that it can be equally compared with the

 84

FFT computation using FPGA. FFT can accept real and imaginary at the input

because the data received from transmitter is in real and imaginary format. The

problem encountered by this module has been discussed in the analysis and

discussion chapter. As mention in this chapter, FFT module was finely worked if the

input only in real number format. If the input in both real and imaginary, the result

was not fully worked as Matlab computation due to the problem discussed in

previous chapter. Thus, this module was not fully viable to be used at the receiver

unless the input from transmitter only given in real number format.

 Other modules such as serial to parallel, parallel to serial and mapping

module was correctly worked. Thus, this module can be used as part of the OFDM

system. The waveform result for these modules was given in hardware design

chapter and the discussion regarding the operation of these modules was also made in

that chapter. The design can be further made to an improvement base on the

suggestion discussed in this chapter.

8.1 Proposed Future Works

 Some recommendations are suggested to overcome the problem encountered

during development of this project. First is to use higher bit representation to

represent the number. Instead of using 8 bit binary representation, use 16 bit or more

to represent each number in binary. The reason of using this method is to make the

number representation can represent in more wide range of number. Thus the risk of

overflow problem will decrease. Beside that, selective code words also can be used at

the input such as input is limited from 0 to 64 for positive value of 8 bit binary two’s

complement.

 85

 Use higher fixes point representation for point value representation. Floating

point format also can be considered as the solution to reduce error number

representation especially for twiddle factor value which is 0.7071. Although floating

point consume processing time and output latency, but it is an excellence method to

overcome accuracy problem.

 Beside that, it is suggested to create a circuit to detect the overflow by

indicating the flag or whatever way to ensure that the user know that the input given

creates error to the system. The user will notice this problem and will change the

input value to ensure no error occurred.

 In this design, the receiver module which is mainly using FFT is good at

processing for the positive input value. Therefore, any imaginary value should be

mapped into real value such that receiver can process the input data correctly.

 For the future works, it is suggested to develop other modules such as

interleaving, error correction, QAM or QPSK modulation, cyclic prefix module and

RF part. These modules will make a complete set of OFDM system for transmitter

and receiver.

REFERENCES

1. Dusan Matiae, “OFDM as a possible modulation technique for multimedia

applications in the range of mm waves”, TUD-TVS, 1998.

2. R.W Chang, “Synthesis of Band limited Orthogonal Signals for Multichannel

Data Transmission”, Bell System Tech. J., pp.1775-1776, Dec 1996.

3. B. R. Saltzberg, “Performance of an Efficient Parallel DataTransmission

System”, IEEE Trans. Comm., pp. 805-811, Dec 1967.

4. S. B Weinstein and P.M. Ebert, “Data Transmission by Frequency Division

Multiplexing Using the Discrete Fourier Transform”, IEEE Transactions on

Communication Technology”, Vol. COM-19, pp. 628-634, October 1971.

5. A. Peled an A. Ruiz, “Frequency Domain Data Transmission using Reduced

Computational Complexity Algorithms”, In Proc. IEEE Int. conf. Acoust.,

Speech, Signal Processing, pp. 964-967, Denver, CO, 1980.

6. Uwe Meyer-Baese, Digital Signal Processing with Field Programmable Gate

Arrays, second edition, Springer, Berlin, 2004.

7. Paul A. Lynn, Wolfgang Fuerst, Introductory Digital Signal Processing with

Computer Application, Second Edition, John Wiley & Sons, England, 1999.

8. Aseem Pandey,Shyam Ratan Agrawalla and Shrikant Manivannan, 2002,

“VLSI Implementation of OFDM Modem”, White Paper, Wipro

Technologies-Wipro Limited (NYSE:WIT).

9. “An Introduction to OFDM”, International Engineering Consortium (IEC),

http://www.iec.org/online/tutorial/ofdm/topic04.html.

10. Brown, Stephen D Zvonko G. Vranesic (2000). “Fundamentalls of Digital

Logic with VHDL Design”, McGraw-Hill Higher Education.

11. “Orthogonal Frequency Division Multiplexing (OFDM) Explained”, Magis

Networks, Inc., February 8, 2001, www.magisnetworks.com.

12. Erich Cosby, 2001, “Orthogonal Frequency Division Multiplexing (OFDM):

Tutorial and Analysis”, www.eng.jcu.edu.au/eric/thesis/Thesis.htm.

 87

13. “Advantages of OFDM”

http//pic.qcslink.com/introPLC/AdvOFDM.htm.

14. Fredrik Kristensen, Peter Nilsson and Anders Olsson, “Flexible baseband

transmitter of OFDM”, www.sciencedirect.com.

15. “OFDM Tutorial”, Wave Report, www.wave-report.com/tutorials/ofdm.htm.

16. “Wide-Band Orthogonal Frequency Multiplexing (W-Band)”, White Paper

by Wireless Data Communications Inc., www.wi-lan.com.

17. Rulph Chassaing, “Digital Signal Processing with C and the TMS320C30”,

John Wiley & Sons, Inc., Canada, 1992.

18. Design of an OFDM Transmitter and Receiver using FPGA , Loo Kah

Cheng, UTM, 2004.

19. Implementation of 8 point IFFT and FFT for OFDM system, Nor Hafizah Bt

Abdul Satar, UTM, 2004.

20. Advanced Electronic Communication Systems, Wayne Tomasi, 5th edition,

Prentice Hall 2001.

21. Communication Systems, Simon Haykin, 4th Edition, Wiley 2000.

22. Modulation and Coding for Wireless Communications, Alister Burr, Prentice

Hall 2001.

23. VHDL for Designers, Stefan Sjoholm and Lennart Lindh, Prentice Hall 1997.

24. VHDL for Programmable Logic, Kevin Skahill, Addison Wesley 1996.

25. Single and Multi-Carrier Quadrature Amplitude Modulation: principle and

Applications for Personal Communications, WLANs and Broadcasting,

L.Hanzo, W.Webb and T.Keller, Wiley, 2000.

 88

Appendices A

VHDL CODE FOR MAPPER

-- bpsk
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

entity bpsk is
 port (
 CLK : in STD_LOGIC;
 d : in STD_LOGIC;
 q : out STD_LOGIC_VECTOR(1 downto 0)
);
end bpsk;

architecture bpsk_arch of bpsk is
begin
 process (clk)
begin
 if (clk' event and clk='1') then
 if d='0' then
 q<= "01";
 else
 q<= "11";
 end if;
 end if;
end process;
 -- Enter concurrent statements here
end bpsk_arch;

 89

Appendices B

- VHDL CODE FOR SERIAL TO PARALLEL

library IEEE;
library work;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;
use work.PACK.all;
entity Se2par is
 port (
 CLK : in STD_LOGIC;
 RSTn : in STD_LOGIC;
 SERIN : in STD_LOGIC;
 PERRn : out STD_LOGIC;
 DRDY : out STD_LOGIC;
 DOUT : out STD_LOGIC_VECTOR(7 downto 0)
);
end Se2par;

architecture Se2par_arch of Se2par is
 signal DFF : STD_LOGIC_VECTOR(7 downto 0);
 signal CNT : STD_LOGIC_VECTOR(2 downto 0);
 signal CNT7_FF, SL_EN, NORMAL : std_logic;
 signal PERRn_FF, PAR_EN, CNT_EN,REDUCE_XOR: std_logic;
begin
regs:process
begin
 wait until (CLK' event and CLK='1');
 if (RSTn = '0') then
 DFF <= (DFF' range => '0');
 NORMAL <= '1';
 PERRn_FF <= '1';
 DRDY <= '0';
 PAR_EN <= '0';
 CNT7_FF <= '0';
 CNT <= "000";
 else
 if (SL_EN = '1') then
 DFF <= DFF (6 downto 0)&SERIN;
 end if;
 if (PERRn_FF = '0') then
 NORMAL <= '0';
 end if;
 if (CNT_EN ='1') then
 CNT <= CNT + 1;
 end if;
 if (PAR_EN = '1') then
 PERRn_FF <= not (REDUCE_XOR xor SERIN);
 end if;
 DRDY <= PAR_EN;
 CNT7_FF <= CNT(2) and CNT(1) and CNT (0);
 PAR_EN <= CNT7_FF;
 end if;
 end process;
 SL_EN <= NORMAL and (CNT7_FF or CNT(2) or CNT(1) or CNT(0));
 CNT_EN <= '1' when (NORMAL ='1') AND (PAR_EN ='0') AND
 (CNT7_FF ='0') AND (PERRn_FF ='1') AND
 ((CNT ="000" AND SERIN ='1') OR
 (CNT /= "000")) ELSE '0';
 PERRN <= PERRn_FF;
 DOUT <= DFF;
 -- Enter concurrent statements here
end Se2par_arch;

 90

 source code for work.vhd

library IEEE;
use IEEE.std_logic_1164.all;

package PACK is
 function REDUCE_AND(DIN: in std_logic_vector) return std_logic;
 function REDUCE_OR(DIN: in std_logic_vector) return std_logic;
 function REDUCE_XOR(DIN: in std_logic_vector) return std_logic;
end PACK;

package body PACK is
 function REDUCE_AND(DIN: in std_logic_vector) return std_logic is
 variable result: std_logic;
 begin
 result := '1';
 for i in DIN' range loop
 result := result and DIN(i);
 end loop;
 return result;
 end REDUCE_AND;

 function REDUCE_OR(DIN: in std_logic_vector) return std_logic is
 variable result: std_logic;
 begin
 result := '0';
 for i in DIN' range loop
 result := result or DIN(i);
 end loop;
 return result;
 end REDUCE_OR;
--
 function REDUCE_XOR(DIN: in std_logic_vector) return std_logic is
 variable result: std_logic;
 begin
 result := '0';
 for i in DIN' range loop
 result := result xor DIN(i);
 end loop;
 return result;
 end REDUCE_XOR;
end PACK;

 91

Appendices C

-- VHDL CODE FOR PARALLEL TO SERIAL
library IEEE;
library work;
use IEEE.std_logic_1164.all;
use work.PACK.all;

entity par2ser is
 port (
 CLK : in STD_LOGIC;
 RSTn : in STD_LOGIC;
 PL : in STD_LOGIC;
 DIN : in STD_LOGIC_VECTOR(7 downto 0);
 SEROUT : out STD_LOGIC
);
end par2ser;

architecture par2ser_arch of par2ser is

 signal DFF : std_logic_vector (7 downto 0);
 signal START, parbit : std_logic;
begin
 p0: process (RSTn ,CLK)
begin
 if (RSTn = '0') then
 START <= '0';
 PARBIT <= '0';
 DFF <= (DFF' range => '0');
 elsif (CLK' event and CLK='1') then
 if (PL='1') then
 START <= '1';
 DFF <= DIN;
 PARBIT <= REDUCE_XOR(DIN);
 else
 START <= DFF(7);
 DFF <= DFF(6 downto 0)&PARBIT;
 PARBIT <= '0';
 END IF;
 end if;
end process;
SEROUT <= START;
 -- Enter concurrent statements here
end par2ser_arch;

 92

Appendices D

-- VHDL CODE FOR IFFT_MODULE AND INTERFACE
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

entity IFFT_stage is
 port (
 clk : in STD_LOGIC;
 opcode : in std_logic_vector (2 downto 0);
 dataA : in std_logic_vector (7 downto 0);
 dataB : in std_logic_vector (7 downto 0);
 result : out std_logic_vector (7 downto 0)
 -- Enter port list here
);
end IFFT_stage;

architecture IFFT_stage_arch of IFFT_stage is
constant twiddle : std_logic_vector :="010110101";
constant divider : std_logic_vector :="000100001";
signal result1,result2 : std_logic_vector (16 downto 0);
begin
 process (clk,opcode, dataA,dataB)
begin
 if clk' event and clk='0' then
 case opcode is
 when "000" =>
 result <= dataA + dataB; --operation for addition
 when "001" =>
 result <= dataA - dataB; --operation for subtraction
 when "010" =>
 result1 <= twiddle*dataA; --twiddle multiplication
 if result1(7) ='1' then
 result <= result1(15 downto 8) + '1';
 else
 result <= result1(15 downto 8);
 end if;
 when "011" =>
 result2 <= divider*dataA;

 if result2(7) ='1' then
 result <= result2(15 downto 8) + '1'; --if twiddle multiplication is -ve
 else
 --add 1 bit and take 8-bit of the MSB as a result
 result <= result2(15 downto 8); --if twiddle multiplication is +ve
 end if;
 --just take 8-bit of the MSB

 when "100" =>
 result <= -dataA; --convert data from +ve to -ve
 when "101" => --just take 8-bit of the MSB
 result <= (not dataA) + '1'; --convert data from +ve to -ve
 when others =>
 result <= dataA; --pass the data
 end case;
 end if;
end process;
 -- Enter concurrent statements here
end IFFT_stage_arch;

 93

-- IFFT_Interface
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity IFFT_Interface is
 port (
 clk : in STD_LOGIC;
 chipselect : in STD_LOGIC;
 address : in STD_LOGIC_VECTOR(1 downto 0);
 writedata : in STD_LOGIC_VECTOR(7 downto 0);
 readdata : out STD_LOGIC_VECTOR(7 downto 0);
 result : in STD_LOGIC_VECTOR(7 downto 0);
 data1 : out STD_LOGIC_VECTOR(7 downto 0);
 data2 : out STD_LOGIC_VECTOR(7 downto 0);
 opcode : out STD_LOGIC_VECTOR(2 downto 0)
);
end IFFT_Interface;

architecture IFFT_Interface_arch of IFFT_Interface is
begin
 process (clk, chipselect)
 begin
 if clk'event and clk = '1' then
 if chipselect = '1' then
 case address is
 when "00" =>
 opcode <= writedata (2 downto 0);
 when "01" =>
 data1 <= writedata;
 when "10" =>
 data2 <= writedata;
 when others =>
 readdata <= result;
 end case;

 else
 readdata <= (OTHERS => '0');
 end if;
 end if;
 end process;
 -- Enter concurrent statements here
end IFFT_Interface_arch;

 94

-- IFFT1_module
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity IFFT1_module is
 port (
 clk : in STD_LOGIC;
 chipselect : in STD_LOGIC;
 address : in STD_LOGIC_VECTOR(1 downto 0);
 writedata : in STD_LOGIC_VECTOR(7 downto 0);
 readdata : out STD_LOGIC_VECTOR(7 downto 0)
);
end IFFT1_module;

architecture IFFT1_module_arch of IFFT1_module is
signal opkod : STD_LOGIC_VECTOR(2 downto 0);
signal lineA,lineB : STD_LOGIC_VECTOR(7 downto 0);
signal result_IFFT : STD_LOGIC_VECTOR(7 downto 0);

 -- VHDL Module Generator component declarations
 component IFFT_stage
 port (
 clk : in STD_LOGIC;
 opcode : in std_logic_vector (2 downto 0);
 dataA : in std_logic_vector (7 downto 0);
 dataB : in std_logic_vector (7 downto 0);
 result : out std_logic_vector (7 downto 0)
 -- Enter port list here
);
 end component;

 component IFFT_Interface
 port (
 clk : in STD_LOGIC;
 chipselect : in STD_LOGIC;
 address : in STD_LOGIC_VECTOR(1 downto 0);
 writedata : in STD_LOGIC_VECTOR(7 downto 0);
 readdata : out STD_LOGIC_VECTOR(7 downto 0);
 result : in STD_LOGIC_VECTOR(7 downto 0);
 data1 : out STD_LOGIC_VECTOR(7 downto 0);
 data2 : out STD_LOGIC_VECTOR(7 downto 0);
 opcode : out STD_LOGIC_VECTOR(2 downto 0)
);
 end component;

begin
 -- VHDL Module Generator component instantiations
 U_IFFT_stage: IFFT_stage
 port map (clk => clk,
 opcode => opkod,
 dataA => lineA,
 dataB => lineB,
 result => result_IFFT);

 U_IFFT_Interface: IFFT_Interface
 port map (clk => clk,
 chipselect => chipselect,
 address => address,
 writedata => writedata,
 readdata => readdata,
 result => result_IFFT,
 data1 => lineA,
 data2 => lineB,
 opcode => opkod);

 -- Enter concurrent statements here
end IFFT1_module_arch;

 95

Appendices E

-- VHDL CODE FOR FFT_AND INTERFACE MODULE
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_signed.all;

entity FFT_stage is
 port (
 clk : in STD_LOGIC;
 opcode : in std_logic_vector (2 downto 0);
 dataA : in std_logic_vector (7 downto 0);
 dataB : in std_logic_vector (7 downto 0);
 result : out std_logic_vector (7 downto 0)
 -- Enter port list here
);
end FFT_stage;

architecture FFT_stage_arch of FFT_stage is
constant twiddle : std_logic_vector :="010110101";
signal result1 : std_logic_vector (16 downto 0);
begin
 process (clk,opcode, dataA,dataB)
begin
 if clk' event and clk='0' then
 case opcode is
 when "000" =>
 result <= dataA + dataB; --operation for addition
 when "001" =>
 result <= dataA - dataB; --operation for subtraction
 when "010" =>
 result1 <= twiddle*dataA; --twiddle multiplication

 if result1(7) ='1' then
 result <= result1(15 downto 8) + '1';
 else
 result <= result1(15 downto 8);
 end if;

 when "011" =>
 result <= result1(15 downto 8) + 1;--if twiddle multiplication is -ve
 when "100" =>
 --add 1 bit and take 8-bit of the MSB as a result
 result <= result1(15 downto 8); --if twiddle multiplication is +ve
 when "101" => --just take 8-bit of the MSB
 result <= -dataA; --convert data from +ve to -ve
 when "110" => --just take 8-bit of the MSB
 result <= (not dataA) + '1'; --convert data from +ve to -ve
 when others =>
 result <= dataA; --pass the data
 end case;
 end if;
end process;
 -- Enter concurrent statements here
end FFT_stage_arch;

 96

-- FFT_Interface
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity FFT_Interface is
 port (
 clk : in STD_LOGIC;
 chipselect : in STD_LOGIC;
 address : in STD_LOGIC_VECTOR(1 downto 0);
 writedata : in STD_LOGIC_VECTOR(7 downto 0);
 readdata : out STD_LOGIC_VECTOR(7 downto 0);
 result : in STD_LOGIC_VECTOR(7 downto 0);
 data1 : out STD_LOGIC_VECTOR(7 downto 0);
 data2 : out STD_LOGIC_VECTOR(7 downto 0);
 opcode : out STD_LOGIC_VECTOR(2 downto 0)
);
end FFT_Interface;

architecture FFT_Interface_arch of FFT_Interface is
begin
 process (clk, chipselect)
 begin
 if clk'event and clk = '1' then
 if chipselect = '1' then
 case address is
 when "00" =>
 opcode <= writedata (2 downto 0);
 when "01" =>
 data1 <= writedata;
 when "10" =>
 data2 <= writedata;
 when others =>
 readdata <= result;
 end case;

 else
 readdata <= (OTHERS => '0');
 end if;
 end if;
 end process;
 -- Enter concurrent statements here
end FFT_Interface_arch;

 97

-- FFT_module
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity FFT_module is
 port (
 clk : in STD_LOGIC;
 chipselect : in STD_LOGIC;
 address : in STD_LOGIC_VECTOR(1 downto 0);
 writedata : in STD_LOGIC_VECTOR(7 downto 0);
 readdata : out STD_LOGIC_VECTOR(7 downto 0)
);
end FFT_module;

architecture FFT_module_arch of FFT_module is
signal lineA, lineB : std_logic_vector (7 downto 0);
signal opkod : std_logic_vector (2 downto 0);
signal result_FFT : std_logic_vector (7 downto 0);

 -- VHDL Module Generator component declarations
 component FFT_stage
 port (
 clk : in STD_LOGIC;
 opcode : in std_logic_vector (2 downto 0);
 dataA : in std_logic_vector (7 downto 0);
 dataB : in std_logic_vector (7 downto 0);
 result : out std_logic_vector (7 downto 0)
 -- Enter port list here
);
 end component;

 component FFT_Interface
 port (
 clk : in STD_LOGIC;
 chipselect : in STD_LOGIC;
 address : in STD_LOGIC_VECTOR(1 downto 0);
 writedata : in STD_LOGIC_VECTOR(7 downto 0);
 readdata : out STD_LOGIC_VECTOR(7 downto 0);
 result : in STD_LOGIC_VECTOR(7 downto 0);
 data1 : out STD_LOGIC_VECTOR(7 downto 0);
 data2 : out STD_LOGIC_VECTOR(7 downto 0);
 opcode : out STD_LOGIC_VECTOR(2 downto 0)
);
 end component;

begin
 -- VHDL Module Generator component instantiations
 U_FFT_stage: FFT_stage
 port map (clk => clk,
 opcode => opkod,
 dataA => lineA,
 dataB => lineB,
 result => result_FFT);

 U_FFT_Interface: FFT_Interface
 port map (clk => clk,
 chipselect => chipselect,
 address => address,
 writedata => writedata,
 readdata => readdata,
 result => result_FFT,
 data1 => lineA,
 data2 => lineB,
 opcode => opkod);

 -- Enter concurrent statements here
end FFT_module_arch;

 98

Appendices F

/*TEST VECTOR PROGRAM FOR IFFT IN C LABGUAGE*/
//The input to the ALU is from RAM and the result will store to RAM
#include "excalibur.h"
#include "stdio.h"

 int *opkod = (int*) 0x000004B3; //memory for fft computation
 int *data1 = (int*) 0x000004B7;
 int *data2 = (int*) 0x000004BB;
 int *dataout = (int*) 0x000004BF;

 int *XR0 = (int*) 0x00000430; //memory to hold data (input from keyboard)
 int *XR1 = (int*) 0x00000434; //hold real data
 int *XR2 = (int*) 0x00000438;
 int *XR3 = (int*) 0x0000043C;

 int *XR4 = (int*) 0x00000490;
 int *XR5 = (int*) 0x00000494;
 int *XR6 = (int*) 0x00000498;
 int *XR7 = (int*) 0x0000049C;

 int *XR01 = (int*) 0x00040000; //memory to hold data (1st stage of fft computation)
 int *XR11 = (int*) 0x00040004; //hold real data
 int *XR21 = (int*) 0x00040008;
 int *XR31 = (int*) 0x0004000C;

 int *XR41 = (int*) 0x00040010;
 int *XR51t = (int*) 0x00040014;
 int *XR61t = (int*) 0x00040018;
 int *XR71t = (int*) 0x0004001C;

 int *XR51 = (int*) 0x00040020; //memory to hold data (1st stage of fft computation)
 int *XI51 = (int*) 0x00040024; //hold imaginary data
 int *XI61 = (int*) 0x00040028;
 int *XR71t2 = (int*) 0x0004002C;

 int *XR71 = (int*) 0x00040030;
 int *XI71 = (int*) 0x00040034;
 int *XR02 = (int*) 0x00040038;
 int *XR12 = (int*) 0x0004003C;

 int *XR22 = (int*) 0x00040040;
 int *XI32 = (int*) 0x00040044;
 int *XR42 = (int*) 0x00040048;
 int *XI42 = (int*) 0x0004004C;

 int *XR52 = (int*) 0x00040050;
 int *XI52 = (int*) 0x00040054;
 int *XR62 = (int*) 0x00040058;
 int *XI62 = (int*) 0x0004005C;

 int *XR72 = (int*) 0x00040060;
 int *XI72 = (int*) 0x00040064;
 int *XR03 = (int*) 0x00040068;
 int *XR13 = (int*) 0x0004006C;

 int *XI13 = (int*) 0x00040070;
 int *XR23 = (int*) 0x00040074;
 int *XI23 = (int*) 0x00040078;
 int *XR33 = (int*) 0x0004007C;

 int *XI33 = (int*) 0x00040080;
 int *XR43 = (int*) 0x00040084;
 int *XR53 = (int*) 0x00040088;
 int *XI53 = (int*) 0x0004008C;

 int *XR63 = (int*) 0x00040090;
 int *XI63 = (int*) 0x00040094;
 int *XR73 = (int*) 0x00040098;
 int *XI73 = (int*) 0x0004009C;

 99

 int *XR0o = (int*) 0x000400A0;//
 int *XR1o = (int*) 0x000400A4;
 int *XI1o = (int*) 0x000400A8;
 int *XR2o = (int*) 0x000400AC;

 int *XI2o = (int*) 0x000400B0;
 int *XR3o = (int*) 0x000400B4;
 int *XI3o = (int*) 0x000400B8;
 int *XR4o = (int*) 0x000400BC;

 int *XR5o = (int*) 0x000400C0;
 int *XI5o = (int*) 0x000400C4;
 int *XR6o = (int*) 0x000400C8;
 int *XI6o = (int*) 0x000400CC;

 int *XR7o = (int*) 0x000400D0;
 int *XI7o = (int*) 0x000400D4;

 int a,b,c,d,e,f,g,h; //input variable from keyboard
 int op,clear;

 void Stage_1_Fftopration(); // stage 1 function initialization
 void Stage_2_Fftopration(); // stage 2 function initialization
 void Stage_3_Fftopration();
 void Stage_4_Fftopration();
 void Stage_5_Fftopration();
/* void Stage_6_Fftopration();
 void Stage_7_Fftopration();
 */
main(void)
{

 /*clear = 0x00000000; //to insert clear value to memory
 *XR0f = clear; // clear all value in the ram
 *XR1f = clear;
 *XR2f = clear;
 *XR3f = clear;
 *XR4f = clear;
 *XR5f = clear;
 *XR6f = clear;
 XR7f = clear;/

 a = clear; // clear all value in the ram
 b = clear;
 c = clear;
 d = clear;
 e = clear;
 f = clear;
 g = clear;
 h = clear;

 // get input from user Keyboard)
 printf ("\nInput 0 is: XR0 = ");
 scanf ("%d",&a);
 printf ("Input 1 is: XR1 = ");
 scanf ("%d",&b);
 printf ("Input 2 is: XR2 = ");
 scanf ("%d",&c);
 printf ("Input 3 is: XR3 = ");
 scanf ("%d",&d);
 printf ("Input 4 is: XR4 = ");
 scanf ("%d",&e);
 printf ("Input 5 is: XR5 = ");
 scanf ("%d",&f);
 printf ("Input 6 is: XR6 = ");
 scanf ("%d",&g);
 printf ("Input 7 is: XR7 = ");
 scanf ("%d",&h);

 // Set the Ram1 and Ram2 memory initial content

 /*a = 9; // clear all value in the ram
 b = 8;
 c = 5;
 d = 11;
 e = 5;

 100

 f = 11;
 g = 11;
 h = 6;*/

 *XR0 = a;
 *XR1 = b;
 *XR2 = c;
 *XR3 = d;
 *XR4 = e;
 *XR5 = f;
 *XR6 = g;
 *XR7 = h;

 /*XI1f = 0;
 *XI2f = 0;
 *XI3f = 0;
 *XI5f = 0;
 *XI6f = 5;
 XI7f = 0;/

 printf("\n\nvalue at ram XR0: %d\n", *XR0);
 printf("value at ram XR1: %d\n", *XR1);
 printf("value at ram XR2: %d\n", *XR2);
 printf("value at ram XR3: %d\n", *XR3);
 printf("value at ram XR4: %d\n", *XR4);
 printf("value at ram XR5: %d\n", *XR5);
 printf("value at ram XR6: %d\n", *XR6);
 printf("value at ram XR7: %d\n", *XR7);

 /*printf("\nvalue at ram XI1: %d\n", *XI1f);
 printf("value at ram XI2: %d\n", *XI2f);
 printf("value at ram XI3: %d\n", *XI3f);
 printf("value at ram XI5: %d\n", *XI5f);
 printf("value at ram XI6: %d\n", *XI6f);
 printf("value at ram XI7: %d\n", *XI7f);*/

 Stage_1_Fftopration(); //int,int,int,int,int,int,int,int
 Stage_2_Fftopration();
 Stage_3_Fftopration();
 Stage_4_Fftopration();
 Stage_5_Fftopration();

 printf("\n\nFINAL RESULTS OF IFFT\n\n");
 printf("\nXR0o = %d/8 = %d\n",*XR03,*XR0o);
printf("XR1o = %d/8 = %d\n",*XR13,*XR1o);
printf("XR2o = %d/8 = %d\n",*XR23,*XR2o);
printf("XR3o = %d/8 = %d\n",*XR33,*XR3o);
printf("XR4o = %d/8 = %d\n",*XR43,*XR4o);
printf("XR5o = %d/8 = %d\n",*XR53,*XR5o);
printf("XR6o = %d/8 = %d\n",*XR63,*XR6o);
printf("XR7o = %d/8 = %d\n",*XR73,*XR7o);

printf("\nXI0o = 0\n");
printf("XI1o = %d/8 = %d\n",*XI13,*XI1o);
printf("XI2o = %d/8 = %d\n",*XI23,*XI2o);
printf("XI3o = %d/8 = %d\n",*XI33,*XI3o);
printf("XI4o = 0\n");
printf("XI5o = %d/8 = %d\n",*XI53,*XI5o);
printf("XI6o = %d/8 = %d\n",*XI63,*XI6o);
printf("XI7o = %d/8 = %d\n",*XI73,*XI7o);

 return 0;
}

void Stage_1_Fftopration()
{
 printf ("\n-----STAGE 1 OF IFFT OPERATION-----\n");

 op = 0; //opcode for hardware to execute addition operation

 *opkod = op; //process input
 *data1 = *XR0;
 *data2 = *XR4;
 *XR01 = *dataout; //0th output

 101

 printf("\n\nXR01 = %d + %d = %d\n",*XR0,*XR4,*XR01); // XR01 = XR0 + XR4

 *opkod = op;
 *data1 = *XR1;
 *data2 = *XR5;
 *XR11 = *dataout; //1st output real

 printf("XR11 = %d + %d = %d\n",*XR1,*XR5,*XR11); // XR11 = XR1 + XR5

 *opkod = op;
 *data1 = *XR2;
 *data2 = *XR6;
 *XR21 = *dataout; //2nd output real

 printf("XR21 = %d + %d = %d\n",*XR2,*XR6,*XR21); // XR21 = XR2 + XR6

 *opkod = op;
 *data1 = *XR3;
 *data2 = *XR7;
 *XR31 = *dataout; //3rd output real

 printf("XR31 = %d + %d = %d\n",*XR3,*XR7,*XR31); // XR31 = XR3 + XR7

 op = 1;
 *opkod = op;
 *data1 = *XR0;
 *data2 = *XR4;
 *XR41 = *dataout; //4th output real

 printf("XR41 = %d - %d = %d\n", *XR0,*XR4,*XR41); // XR41 = XR0 - XR4

 *opkod = op;
 *data1 = *XR1;
 *data2 = *XR5;
 *XR51t = *dataout; //5th output real

 printf("XR51t = %d - %d = %d\n",*XR1,*XR5,*XR51t); // XR51t = XR1 - XR5

 *opkod = op;
 *data1 = *XR2;
 *data2 = *XR6;
 *XR61t = *dataout; //6th output real

 printf("XR61t = %d - %d = %d\n",*XR2,*XR6, *XR61t); // XR61t = XR2 - XR6

 *opkod = op;
 *data1 = *XR3;
 *data2 = *XR7;
 *XR71t = *dataout; //7th output real

 printf("XR71t = %d - %d = %d\n",*XR3,*XR7,*XR71t); // XR71t = XR3 - XR7

}

void Stage_2_Fftopration()
{
 printf ("\n-----STAGE 2 OF IFFT OPERATION-----\n");

 op = 2; //opcode for hardware to execute addition operation

 *opkod = op; //process input
 *data1 = *XR51t;
 //*data2 = *XR4f;
 *XR51 = *dataout;

 printf("\n\nXR51 = 0.7071x%d = %d\n",*XR51t,*XR51); // XR51 = 0.7071*XR51t

 *opkod = op; //process input
 *data1 = *XR51t;
 //*data2 = *XR4f;
 *XI51 = *dataout;
 printf("XI51 = 0.7071x%d = %d\n",*XR51t,*XI51); // XI51 = 0.7071*XI51t

 *XI61 = *XR61t;

 102

 printf("XI61 = %d = %d\n",*XR61t,*XI61); // XI61 = XR61t

 *opkod = op; //process input
 *data1 = *XR71t;
 //*data2 = *XR4f;
 *XR71t2 = *dataout;
 printf("\nXR71t2 = 0.7071x%d = %d\n",*XR71t,*XR71t2); // XR71t2 = 0.7071*XI71t

 op = 5;
 *opkod = op; //process input
 *data1 = *XR71t2;
 *XR71 = *dataout;

 printf("\nXR71 = -1x%d = %d\n",*XR71t2,*XR71); // XI71 = -1*XI71t2

 op = 2;
 *opkod = op; //process input
 *data1 = *XR71t;
 //*data2 = *XR4f;
 *XI71 = *dataout;
 printf("XI71 = 0.7071x%d = %d\n",*XR71t,*XI71); // XR71t2 = 0.7071*XI71t

}

void Stage_3_Fftopration()
{
 printf ("\n-----STAGE 3 OF IFFT OPERATION-----\n");

 op = 0;
 *opkod = op; //process input
 *data1 = *XR01;
 *data2 = *XR21;
 *XR02 = *dataout;
 printf("\nXR02 = %d + %d = %d\n",*XR01,*XR21,*XR02); // XR02 = XR01+XR21

 *opkod = op; //process input
 *data1 = *XR11;
 *data2 = *XR31;
 *XR12 = *dataout;
 printf("XR12 = %d + %d = %d\n",*XR11,*XR31,*XR12); // XR12 = XR11+XR31

 op = 1;
 *opkod = op; //process input
 *data1 = *XR01;
 *data2 = *XR21;
 *XR22 = *dataout;
 printf("XR22 = %d - %d = %d\n",*XR01,*XR21,*XR22); // XR22 = XR01-XR21

 *opkod = op; //process input
 *data1 = *XR11;
 *data2 = *XR31;
 *XI32 = *dataout;
 printf("XI32 = %d - %d = %d\n",*XR11,*XR31,*XI32); // XI32 = XR11-XR31

 *XR42 = *XR41;
 printf("XR42 = %d = %d\n",*XR41,*XR42);

 *XI42 = *XI61;
 printf("XI42 = %d = %d\n",*XI61,*XI42);

 op = 0;
 *opkod = op; //process input
 *data1 = *XR51;
 *data2 = *XR71;
 *XR52 = *dataout;
 printf("XR52 = %d + %d = %d\n",*XR51,*XR71,*XR52); // XR52 = XR51+XR71

 *opkod = op; //process input
 *data1 = *XI51;
 *data2 = *XI71;
 *XI52 = *dataout;
 printf("XI52 = %d + %d = %d\n",*XI51,*XI71,*XI52); // XI52 = XI51+XI71

 *XR62 = *XR41;
 printf("XR62 = %d = %d\n",*XR41,*XR62);

 103

 op = 5;
 *opkod = op; //process input
 *data1 = *XI61;
 //*data2 = *XI71;
 *XI62 = *dataout;
 printf("XI62 = -1x%d = %d\n",*XI61,*XI62); // XI52 = -1xXI62

 op = 1;
 *opkod = op; //process input
 *data1 = *XI51;
 *data2 = *XI71;
 *XR72 = *dataout;
 printf("XR72 = %d - %d = %d\n",*XI51,*XI71,*XR72); // XR72 = XI51-XI71

 *opkod = op; //process input
 *data1 = *XR51;
 *data2 = *XR71;
 *XI72 = *dataout;
 printf("XI72 = %d - %d = %d\n",*XR51,*XR71,*XI72); // XI72 = XR51-XR71

}

void Stage_4_Fftopration()
{
 printf ("\n-----STAGE 4 OF IFFT OPERATION-----\n");
 op = 0;
 *opkod = op; //process input
 *data1 = *XR02;
 *data2 = *XR12;
 *XR03 = *dataout;
 printf("\nXR03 = %d + %d = %d\n",*XR02,*XR12,*XR03); // XR03 = XR02+XR12

 *opkod = op; //process input
 *data1 = *XR42;
 *data2 = *XR52;
 *XR13 = *dataout;
 printf("XR13 = %d + %d = %d\n",*XR42,*XR52,*XR13); // XR13 = XR42+XR52

 op = 1; //subtraction operation
 *opkod = op; //process input
 *data1 = *XI42;
 *data2 = *XI52;
 *XI13 = *dataout;
 printf("XI13 = %d + %d = %d\n",*XI42,*XI52,*XI13); // XI13 = XI42+XI52

 *XR23 = *XR22;
 printf("XR23 = %d = %d\n",*XR22,*XR23);

 *XI23 = *XI32;
 printf("XI23 = %d = %d\n",*XI32,*XI23);

 op = 0;
 *opkod = op; //process input
 *data1 = *XR62;
 *data2 = *XR72;
 *XR33 = *dataout;
 printf("XR33 = %d + %d = %d\n",*XR62,*XR72,*XR33); // XR33 = XR62+XR72

 *opkod = op; //process input
 *data1 = *XI62;
 *data2 = *XI72;
 *XI33 = *dataout;
 printf("XI33 = %d + %d = %d\n",*XI62,*XI72,*XI33); // XI33 = XI62+XI72

 op = 1;
 *opkod = op; //process input
 *data1 = *XR02;
 *data2 = *XR12;
 *XR43 = *dataout;
 printf("XR43 = %d - %d = %d\n",*XR02,*XR12,*XR43); // XR43 = XR02-XR12

 op = 1;
 *opkod = op; //process input
 *data1 = *XR42;

 104

 *data2 = *XR52;
 *XR53 = *dataout;
 printf("XR53 = %d - %d = %d\n",*XR42,*XR52,*XR53); // XR53 = XR42-XR52

 *opkod = op; //process input
 *data1 = *XI42;
 *data2 = *XI52;
 *XI53 = *dataout;
 printf("XI53 = %d - %d = %d\n",*XI42,*XI52,*XI53); // XI53 = XI42-XI52

 *XR63 = *XR22;
 printf("XR63 = %d = %d\n",*XR22,*XR63);

 op = 5;
 *opkod = op; //process input
 *data1 = *XI32;
 //*data2 = *XI71;
 *XI63 = *dataout;
 printf("XI63 = -1x%d = %d\n",*XI32,*XI63); // XI63 = -1xXI32

 op = 1;
 *opkod = op; //process input
 *data1 = *XR62;
 *data2 = *XR72;
 *XR73 = *dataout;
 printf("XR53 = %d - %d = %d\n",*XR42,*XR52,*XR53); // XR53 = XR42-XR52

 *opkod = op; //process input
 *data1 = *XI62;
 *data2 = *XI72;
 *XI73 = *dataout;
 printf("XI73 = %d - %d = %d\n",*XI62,*XI72,*XI73); // XI73 = XI62-XI72

}

void Stage_5_Fftopration()
{
 printf ("\n-----STAGE 5 OF IFFT OPERATION-----\n");

 op = 3; //opcode for hardware to execute addition operation
 *opkod = op; //process input
 *data1 = *XR03;
 //*data2 = *XR21f;
 *XR0o = *dataout;
 printf("\nXR0o = %d/8 = %d\n",*XR03,*XR0o);

 *opkod = op; //process input
 *data1 = *XR13;
 //*data2 = *XR31f;
 *XR1o = *dataout;
 printf("XR1o = %d/8 = %d\n",*XR13,*XR1o);

 *opkod = op; //process input
 *data1 = *XI13;
 //*data2 = *XR31f;
 *XI1o = *dataout;
 printf("XI1o = %d/8 = %d\n",*XI13,*XI1o);

 *opkod = op; //process input
 *data1 = *XR23;
 //*data2 = *XR31f;
 *XR2o = *dataout;
 printf("XR2o = %d/8 = %d\n",*XR23,*XR2o);

 *opkod = op; //process input
 *data1 = *XI23;
 //*data2 = *XR31f;
 *XI2o = *dataout;
 printf("XI2o = %d/8 = %d\n",*XI23,*XI2o);

 *opkod = op; //process input
 *data1 = *XR33;

 105

 //*data2 = *XR31f;
 *XR3o = *dataout;
 printf("XR3o = %d/8 = %d\n",*XR33,*XR3o);

 *opkod = op; //process input
 *data1 = *XI33;
 //*data2 = *XR31f;
 *XI3o = *dataout;
 printf("XI3o = %d/8 = %d\n",*XI33,*XI3o);

 *opkod = op; //process input
 *data1 = *XR43;
 //*data2 = *XR31f;
 *XR4o = *dataout;
 printf("XR4o = %d/8 = %d\n",*XR43,*XR4o);

 *opkod = op; //process input
 *data1 = *XR53;
 //*data2 = *XR31f;
 *XR5o = *dataout;
 printf("XR5o = %d/8 = %d\n",*XR53,*XR5o);

 *opkod = op; //process input
 *data1 = *XI53;
 //*data2 = *XR31f;
 *XI5o = *dataout;
 printf("XI5o = %d/8 = %d\n",*XI53,*XI5o);

 *opkod = op; //process input
 *data1 = *XR63;
 //*data2 = *XR31f;
 *XR6o = *dataout;
 printf("XR6o = %d/8 = %d\n",*XR63,*XR6o);

 *opkod = op; //process input
 *data1 = *XI63;
 //*data2 = *XR31f;
 *XI6o = *dataout;
 printf("XI6o = %d/8 = %d\n",*XI63,*XI6o);

 *opkod = op; //process input
 *data1 = *XR73;
 //*data2 = *XR31f;
 *XR7o = *dataout;
 printf("XR7o = %d/8 = %d\n",*XR73,*XR7o);

 *opkod = op; //process input
 *data1 = *XI73;
 //*data2 = *XR31f;
 *XI7o = *dataout;
 printf("XI7o = %d/8 = %d\n",*XI73,*XI7o);

}

 106

Appendices G

/* TEST VECTOR SOURCE CODE FOR FFT IN C LANGUAGE*/
//The input to the ALU is from RAM and the result will store to RAM
#include "excalibur.h"
#include "stdio.h"

 int *opkod = (int*) 0x000004B3; //memory for fft computation
 int *data1 = (int*) 0x000004B7;
 int *data2 = (int*) 0x000004BB;
 int *dataout = (int*) 0x000004BF;

int *XR0f = (int*) 0x00000430;//memory to hold data (input from keyboard)
 int *XR1f = (int*) 0x00000434; //hold real data
 int *XR2f = (int*) 0x00000438;
 int *XR3f = (int*) 0x0000043C;

 int *XR4f = (int*) 0x00000490;
 int *XR5f = (int*) 0x00000494;
 int *XR6f = (int*) 0x00000498;
 int *XR7f = (int*) 0x0000049C;

 int *XI0f = (int*) 0x00040000;
 int *XI1f = (int*) 0x00040004; //hold imaginary data
 int *XI2f = (int*) 0x00040008;
 int *XI3f = (int*) 0x0004000C;

 int *XI4f = (int*) 0x00040010;
 int *XI5f = (int*) 0x00040014;
 int *XI6f = (int*) 0x00040018;
 int *XI7f = (int*) 0x0004001C;

 int *XR01f = (int*) 0x00040020;//memory to hold data (1st stage of fft computation)
 int *XR11f = (int*) 0x00040024; //hold real data
 int *XR21f = (int*) 0x00040028;
 int *XR31f = (int*) 0x0004002C;

 int *XR41f = (int*) 0x00040030;
 int *XR51tf = (int*) 0x00040034;
 int *XR61tf = (int*) 0x00040038;
 int *XR71tf = (int*) 0x0004003C;

 int *XI01f = (int*) 0x00040040; //memory to hold data (1st stage of fft computation)
 int *XI11f = (int*) 0x00040044; //hold imaginary data
 int *XI21f = (int*) 0x00040048;
 int *XI31f = (int*) 0x0004004C;

 int *XI41f = (int*) 0x00040050;
 int *XI51tf = (int*) 0x00040054;
 int *XI61tf = (int*) 0x00040058;
 int *XI71tf = (int*) 0x0004005C;

 int *XR51taf = (int*) 0x00040060;
 int *XI51taf = (int*) 0x00040064;
 int *XR51tbf = (int*) 0x00040068;
 int *XI51tbf = (int*) 0x0004006C;

 int *XR61f = (int*) 0x00040070;
 int *XI61f = (int*) 0x00040074;
 int *XR71taf = (int*) 0x00040078;
 int *XI71taf = (int*) 0x0004007C;

 int *XI71tbf = (int*) 0x00040080;
 int *XR71tbf = (int*) 0x00040084;
 int *XI51taaf = (int*) 0x00040088;
 int *XI51tbbf = (int*) 0x0004008C;

 int *XI71taaf = (int*) 0x00040090;
 int *XR71taaf = (int*) 0x00040094;
 int *XI71tbbf = (int*) 0x00040098;
 int *XR71tbbf = (int*) 0x0004009C;

 int *XR51f = (int*) 0x000400A0;

 107

 int *XI51f = (int*) 0x000400A4;
 int *XR71f = (int*) 0x000400A8;
 int *XI71f = (int*) 0x000400AC;
 /*
 int *XR01f = (int*) 0x000400B0;
 int *XI01f = (int*) 0x000400B4;
 int *XR21f = (int*) 0x000400B8;
 int *XI21f = (int*) 0x000400BC;

 int *XR11f = (int*) 0x000400C0;
 int *XI11f = (int*) 0x000400C4;
 int *XR31f = (int*) 0x000400C8;
 int *XI31f = (int*) 0x000400CC;

 int *XR41f = (int*) 0x000400D0;
 int *XI41f = (int*) 0x000400D4;
 int *XR61f = (int*) 0x000400D8;
 int *XI61f = (int*) 0x000400DC;

 int *XR51f = (int*) 0x000400E0;
 int *XI51f = (int*) 0x000400E4;
 int *XR71f = (int*) 0x000400E8;
 int *XI71f = (int*) 0x000400EC;*/

 int *XR02f = (int*) 0x000400F0;
 int *XR22f = (int*) 0x000400F4;
 int *XI02f = (int*) 0x000400F8;
 int *XI22f = (int*) 0x000400FC;

 int *XR12f = (int*) 0x00040100;
 int *XR32tf = (int*) 0x00040104;
 int *XI12f = (int*) 0x00040108;
 int *XI32tf = (int*) 0x0004010C;

 int *XR42f = (int*) 0x00040120;
 int *XR62f = (int*) 0x00040124;
 int *XI42f = (int*) 0x00040128;
 int *XI62f = (int*) 0x0004012C;

 int *XR52f = (int*) 0x00040130;
 int *XR72tf = (int*) 0x00040134;
 int *XI52f = (int*) 0x00040138;
 int *XI72tf = (int*) 0x0004013C;

 int *XI32f = (int*) 0x00040140;
 int *XR32f = (int*) 0x00040144;
 int *XI72f = (int*) 0x00040148;
 int *XR72f = (int*) 0x0004014C;

 int *XR03f = (int*) 0x00040150;
 int *XR43f = (int*) 0x00040154;
 int *XI03f = (int*) 0x00040158;
 int *XI43f = (int*) 0x0004015C;

 int *XR23f = (int*) 0x00040160;
 int *XR63f = (int*) 0x00040164;
 int *XI23f = (int*) 0x00040168;
 int *XI63f = (int*) 0x0004016C;

 int *XR13f = (int*) 0x00040170;
 int *XR53f = (int*) 0x00040174;
 int *XI13f = (int*) 0x00040178;
 int *XI53f = (int*) 0x0004017C;

 int *XR33f = (int*) 0x00040180;
 int *XR73f = (int*) 0x00040184;
 int *XI33f = (int*) 0x00040188;
 int *XI73f = (int*) 0x0004018C;

 int a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p; //input variable from keyboard
 int op,clear;

 void Stage_1_Fftopration(); // stage 1 function initialization
 void Stage_2_Fftopration(); // stage 2 function initialization
 void Stage_3_Fftopration();

 108

 void Stage_4_Fftopration();
 void Stage_5_Fftopration();
 void Stage_6_Fftopration();
 void Stage_7_Fftopration();

main(void)
{

 /*clear = 0x00000000; //to insert clear value to memory
 *XR0f = clear; // clear all value in the ram
 *XR1f = clear;
 *XR2f = clear;
 *XR3f = clear;
 *XR4f = clear;
 *XR5f = clear;
 *XR6f = clear;
 XR7f = clear;/

 a = 0; // clear all value in the ram
 b = 0;
 c = 0;
 d = 0;
 e = 0;
 f = 0;
 g = 0;
 h = 0;

 *XI1f = 0;
 *XI2f = 0;
 *XI3f = 0;
 *XI5f = 0;
 *XI6f = 0;
 *XI7f = 0;

 // get input from user Keyboard)
 printf ("\nInput 0 is: XR0 = ");
 scanf ("%d",&a);
 printf ("Input 1 is: XR1 = ");
 scanf ("%d",&b);
 printf ("Input 2 is: XR2 = ");
 scanf ("%d",&c);
 printf ("Input 3 is: XR3 = ");
 scanf ("%d",&d);
 printf ("Input 4 is: XR4 = ");
 scanf ("%d",&e);
 printf ("Input 5 is: XR5 = ");
 scanf ("%d",&f);
 printf ("Input 6 is: XR6 = ");
 scanf ("%d",&g);
 printf ("Input 7 is: XR7 = ");
 scanf ("%d",&h);

 printf ("\nInput 0 is: XI0 = ");
 scanf ("%d",&i);
 printf ("Input 1 is: XI1 = ");
 scanf ("%d",&j);
 printf ("Input 2 is: XI2 = ");
 scanf ("%d",&k);
 printf ("Input 3 is: XI3 = ");
 scanf ("%d",&l);
 printf ("Input 4 is: XI4 = ");
 scanf ("%d",&m);
 printf ("Input 5 is: XI5 = ");
 scanf ("%d",&n);
 printf ("Input 6 is: XI6 = ");
 scanf ("%d",&o);
 printf ("Input 7 is: XI7 = ");
 scanf ("%d",&p);

 // Set the Ram1 and Ram2 memory initial content

 /*a = 5; // clear all value in the ram
 b = 0;
 c = 0;

 109

 d = 0;
 e = 0;
 f = 0;
 g = 0;
 h = 0;
 */
 *XR0f = a;
 *XR1f = b;
 *XR2f = c;
 *XR3f = d;
 *XR4f = e;
 *XR5f = f;
 *XR6f = g;
 *XR7f = h;

 *XI0f = 0;
 *XI1f = j;
 *XI2f = k;
 *XI3f = l;
 *XI4f = 0;
 *XI5f = n;
 *XI6f = o;
 *XI7f = p;

 printf("\n\nvalue at ram XR0: %d\n", *XR0f);
 printf("value at ram XR1: %d\n", *XR1f);
 printf("value at ram XR2: %d\n", *XR2f);
 printf("value at ram XR3: %d\n", *XR3f);
 printf("value at ram XR4: %d\n", *XR4f);
 printf("value at ram XR5: %d\n", *XR5f);
 printf("value at ram XR6: %d\n", *XR6f);
 printf("value at ram XR7: %d\n", *XR7f);

 printf("\nvalue at ram XI0: %d\n",*XI0f);
 printf("value at ram XI1: %d\n", *XI1f);
 printf("value at ram XI2: %d\n", *XI2f);
 printf("value at ram XI3: %d\n", *XI3f);
 printf("value at ram XI1: %d\n", *XI4f);
 printf("value at ram XI5: %d\n", *XI5f);
 printf("value at ram XI6: %d\n", *XI6f);
 printf("value at ram XI7: %d\n", *XI7f);

 Stage_1_Fftopration();
 Stage_2_Fftopration();
 Stage_3_Fftopration();
 Stage_4_Fftopration();
 Stage_5_Fftopration();
 Stage_6_Fftopration();
 Stage_7_Fftopration();

 printf("\n\nOutput of XR03: %d\n", *XR03f);
 printf("Output of XR13: %d\n", *XR13f);
 printf("Output of XR23: %d\n", *XR23f);
 printf("Output of XR33: %d\n", *XR33f);
 printf("Output of XR43: %d\n", *XR43f);
 printf("Output of XR53: %d\n", *XR53f);
 printf("Output of XR63: %d\n", *XR63f);
 printf("Output of XR73: %d\n", *XR73f);

 printf("\nOutput of XI03: %d\n",*XI03f);
 printf("Output of XI13: %d\n", *XI13f);
 printf("Output of XI23: %d\n", *XI23f);
 printf("Output of XI33: %d\n", *XI33f);
 printf("Output of XI43: %d\n", *XI43f);
 printf("Output of XI53: %d\n", *XI53f);
 printf("Output of XI63: %d\n", *XI63f);
 printf("Output of XI73: %d\n", *XI73f);

 /*
 printf("\n\nOutput of XR03: %d\n", *XR03f);
 printf("Output of XR13: %d\n",*XI73f);
 printf("Output of XR23: %d\n",*XR63f);
 printf("Output of XR33: %d\n",*XI53f);
 printf("Output of XR43: %d\n",*XR43f);
 printf("Output of XR53: %d\n",*XI33f);
 printf("Output of XR63: %d\n",*XR23f);

 110

 printf("Output of XR73: %d\n",*XI13f);

 printf("\nOutput of XI03: %d\n",*XI03f);
 printf("Output of XI13: %d\n",*XR73f);
 printf("Output of XI23: %d\n",*XI63f);
 printf("Output of XI33: %d\n",*XR53f);
 printf("Output of XI43: %d\n",*XI43f);
 printf("Output of XI53: %d\n",*XR33f);
 printf("Output of XI63: %d\n",*XI23f);
 printf("Output of XI73: %d\n",*XR13f);
 */
 return 0;
}

void Stage_1_Fftopration()
{
 printf ("\n-----STAGE 1 OF IFFT OPERATION-----\n");

 op = 0; //opcode for hardware to execute addition operation

 *opkod = op; //process input
 *data1 = *XR0f;
 *data2 = *XR4f;
 *XR01f = *dataout; //0th output
 printf("\n\nXR01 = %d + %d = %d\n",*XR0f,*XR4f,*XR01f); // XR01 = XR0 + XR4

*opkod = op; //process input
 *data1 = *XI0f;
 *data2 = *XI4f;
 *XI01f = *dataout; //0th output
 printf("XI01 = %d + %d = %d\n",*XI0f,*XI4f,*XI01f); // XI01 = XI0 + XI4

*opkod = op;
 *data1 = *XR1f;
 *data2 = *XR5f;
 *XR11f = *dataout; //1st output real
 printf("XR11 = %d + %d = %d\n",*XR1f,*XR5f,*XR11f); // XR11 = XR1 + XR5

*opkod = op;
 *data1 = *XI1f;
 *data2 = *XI5f;
 *XI11f = *dataout; //1st output imag
 printf("XI11 = %d + %d = %d\n",*XI1f,*XI5f,*XI11f); // XI11 = XI1 + XI5

*opkod = op;
 *data1 = *XR2f;
 *data2 = *XR6f;
 *XR21f = *dataout; //2nd output real
 printf("XR21 = %d + %d = %d\n",*XR2f,*XR6f,*XR21f); // XR21 = XR2 + XR6

 *opkod = op;
 *data1 = *XI2f;
 *data2 = *XI6f;
 *XI21f = *dataout; //2nd output imag
 printf("XI21 = %d + %d = %d\n",*XI2f,*XI6f,*XI21f); // XI11 = XI2 + XI5

 *opkod = op;
 *data1 = *XR3f;
 *data2 = *XR7f;
 *XR31f = *dataout; //3rd output real
 printf("XR31 = %d + %d = %d\n",*XR3f,*XR7f,*XR31f); // XR31 = XR3 + XR7

 *opkod = op;
 *data1 = *XI3f;
 *data2 = *XI7f;
 *XI31f = *dataout; //3rd output imag
 printf("XI31 = %d + %d = %d\n",*XI3f,*XI7f,*XI31f); // XI31 = XI3 + XI7

 op = 1;
 *opkod = op;
 *data1 = *XR0f;
 *data2 = *XR4f;
 *XR41f = *dataout;
 printf("XR41 = %d - %d = %d\n", *XR0f,*XR4f,*XR41f); // XR41 = XR0 - XR4

 111

 *opkod = op;
 *data1 = *XI0f;
 *data2 = *XI4f;
 *XI41f = *dataout;
 printf("XI41 = %d - %d = %d\n", *XI0f,*XI4f,*XI41f); // XI41 = XI0 - XI4

 *opkod = op;
 *data1 = *XR1f;
 *data2 = *XR5f;
 *XR51tf = *dataout;
 printf("XR51t = %d - %d = %d\n",*XR1f,*XR5f,*XR51tf); // XR51 = XR1 - XR5

 *opkod = op;
 *data1 = *XI1f;
 *data2 = *XI5f;
 *XI51tf = *dataout; //5th output imag
 printf("XI51t = %d - %d = %d\n",*XI1f,*XI5f, *XI51tf); // XI51t = XI1 - XI5

 *opkod = op;
 *data1 = *XR2f;
 *data2 = *XR6f;
 *XR61tf = *dataout; //6th output real
 printf("XR61t = %d - %d = %d\n",*XR2f,*XR6f, *XR61tf); // XR61t = XR2 - XR6

 *opkod = op;
 *data1 = *XI2f;
 *data2 = *XI6f;
 *XI61tf = *dataout; //6th output imag
 printf("XI61t = %d - %d = %d\n",*XI2f,*XI6f,*XI61tf); // XI61t = XI2 - XI6

 *opkod = op;
 *data1 = *XR3f;
 *data2 = *XR7f;
 *XR71tf = *dataout; //7th output real
 printf("XR71t = %d - %d = %d\n",*XR3f,*XR7f,*XR71tf); // XR71t = XR3 - XR7

 *opkod = op;
 *data1 = *XI3f;
 *data2 = *XI7f;
 *XI71tf = *dataout; //7th output imag
 printf("XI71t = %d - %d = %d\n\n",*XI3f,*XI7f,*XI71tf); // XI71t = XI3 - XI7

}

void Stage_2_Fftopration()
{
 printf ("\n-----STAGE 2 OF FFT OPERATION-----\n");

 op = 2; //opcode for hardware to execute addition operation

 *opkod = op; //process input
 *data1 = *XR51tf;
 //*data2 = *XR4f;
 *XR51taf = *dataout;
 printf("\nXR51ta = 0.7071x%d = %d\n",*XR51tf,*XR51taf);

 *opkod = op; //process input
 *data1 = *XR51tf;
 //*data2 = *XR4f;
 *XI51taf = *dataout;
 printf("XI51ta = 0.7071x%d = %d\n",*XR51tf,*XI51taf);

 *opkod = op; //process input
 *data1 = *XI51tf;
 //*data2 = *XR4f;
 *XR51tbf = *dataout;
 printf("\nXR51tb = 0.7071x%d = %d\n",*XI51tf,*XR51tbf);

 *opkod = op; //process input
 *data1 = *XI51tf;
 //*data2 = *XR4f;
 *XI51tbf = *dataout;
 printf("XI51tb = 0.7071x%d = %d\n",*XI51tf,*XI51tbf);

 op = 6;

 112

 *opkod = op; //process input
 *data1 = *XR61tf;
 //*data2 = *XR4f;
 *XI61f = *dataout; //6th output
 printf("\nXI61 = -1x%d = %d\n",*XR61tf,*XI61f); // XI61 = -1*XR61

 *opkod = op; //process input
 *data1 = *XI61tf;
 //*data2 = *XR4f;
 *XR61f = *dataout; //6th output
 printf("\nXR61 = -1x%d = %d\n",*XI61tf,*XR61f); // XR61 = -1*XI61

 op = 2;
 *opkod = op; //process input
 *data1 = *XR71tf;
 //*data2 = *XR4f;
 *XR71taf = *dataout;
 printf("\nXR71ta = 0.7071x%d = %d\n",*XR71tf,*XR71taf);

 *opkod = op; //process input
 *data1 = *XR71tf;
 //*data2 = *XR4f;
 *XI71taf = *dataout;
 printf("\nXI71ta = 0.7071x%d = %d\n",*XR71tf,*XI71taf);

 *opkod = op; //process input
 *data1 = *XI71tf;
 //*data2 = *XR4f;
 *XR71tbf = *dataout;
 printf("\nXR71tb = 0.7071x%d = %d\n",*XI71tf,*XR71tbf);

 *opkod = op; //process input
 *data1 = *XI71tf;
 //*data2 = *XR4f;
 *XI71tbf = *dataout;
 printf("\nXR71tb = 0.7071x%d = %d\n",*XI71tf,*XI71tbf);

}

void Stage_3_Fftopration()
{
 printf ("\n-----STAGE 3 OF FFT OPERATION-----\n");

 op = 6; //opcode for hardware to execute addition operation
 *opkod = op; //process input
 *data1 = *XI51taf;
 //*data2 = *XR4f;
 *XI51taaf = *dataout;
 printf("\nXI51taa = -1x%d = %d\n",*XI51taf,*XI51taaf); //

 op = 6; //opcode for hardware to execute addition operation
 *opkod = op; //process input
 *data1 = *XI51tbf;
 //*data2 = *XR4f;
 *XI51tbbf = *dataout;
 printf("\nXI51tbb = -1x%d = %d\n",*XI51tbf,*XI51tbbf); //

 *opkod = op; //process input
 *data1 = *XI71taf;
 //*data2 = *XR4f;
 *XI71taaf = *dataout;
 printf("\nXI71taa = -1x%d = %d\n",*XI71taf,*XI71taaf); //

 *opkod = op; //process input
 *data1 = *XR71taf;
 //*data2 = *XR4f;
 *XR71taaf = *dataout;
 printf("\nXR71taa = -1x%d = %d\n",*XR71taf,*XR71taaf); //

 *opkod = op; //process input
 *data1 = *XI71tbf;
 //*data2 = *XR4f;

 113

 *XI71tbbf = *dataout;
 printf("\nXI71tbb = -1x%d = %d\n",*XI71tbf,*XI71tbbf); //

 *opkod = op; //process input
 *data1 = *XR71tbf;
 //*data2 = *XR4f;
 *XR71tbbf = *dataout;
 printf("\nXR71tbb = -1x%d = %d\n",*XR71tbf,*XR71tbbf); //

}

void Stage_4_Fftopration()
{
 printf ("\n-----STAGE 4 OF FFT OPERATION-----\n");

 op = 0; //opcode for hardware to execute addition operation
 *opkod = op; //process input
 *data1 = *XR51taf;
 *data2 = *XR51tbf;
 *XR51f = *dataout;
 printf("\nXR51 = %d + %d = %d\n",*XR51taf,*XR51tbf,*XR51f);

 *opkod = op; //process input
 *data1 = *XI51taaf;
 *data2 = *XI51tbbf;
 *XI51f = *dataout;
 printf("XI51 = %d + %d = %d\n",*XI51taaf,*XI51tbbf,*XI51f);

 *opkod = op; //process input
 *data1 = *XR71taaf;
 *data2 = *XR71tbbf;
 *XR71f = *dataout;
 printf("XR71 = %d + %d = %d\n",*XR71taaf,*XR71tbbf,*XR71f);

 *opkod = op; //process input
 *data1 = *XI71taaf;
 *data2 = *XI71tbbf;
 *XI71f = *dataout;
 printf("XI71 = %d + %d = %d\n\n",*XI71taaf,*XI71tbbf,*XI71f);

}

void Stage_5_Fftopration()
{
 printf ("\n-----STAGE 5 OF FFT OPERATION-----\n");

 op = 0; //opcode for hardware to execute addition operation
 *opkod = op; //process input
 *data1 = *XR01f;
 *data2 = *XR21f;
 *XR02f = *dataout;
 printf("\nXR02 = %d + %d = %d\n",*XR01f,*XR21f,*XR02f);

 *opkod = op; //process input
 *data1 = *XI01f;
 *data2 = *XI21f;
 *XI02f = *dataout;
 printf("XI02 = %d + %d = %d\n",*XI01f,*XI21f,*XI02f);

 *opkod = op; //process input
 *data1 = *XR11f;
 *data2 = *XR31f;
 *XR12f = *dataout;
 printf("XR12 = %d + %d = %d\n",*XR11f,*XR31f,*XR12f);

 *opkod = op; //process input
 *data1 = *XI11f;
 *data2 = *XI31f;
 *XI12f = *dataout;
 printf("XI12 = %d + %d = %d\n",*XI11f,*XI31f,*XI12f);

 *opkod = op; //process input
 *data1 = *XR41f;

 114

 *data2 = *XR61f;
 *XR42f = *dataout;
 printf("XR42 = %d + %d = %d\n",*XR41f,*XR61f,*XR42f);

 *opkod = op; //process input
 *data1 = *XI41f;
 *data2 = *XI61f;
 *XI42f = *dataout;
 printf("XI42 = %d + %d = %d\n",*XI41f,*XI61f,*XI42f);

 *opkod = op; //process input
 *data1 = *XR51f;
 *data2 = *XR71f;
 *XR52f = *dataout;
 printf("XR52 = %d + %d = %d\n",*XR51f,*XR71f,*XR52f);

 *opkod = op; //process input
 *data1 = *XI51f;
 *data2 = *XI71f;
 *XI52f = *dataout;
 printf("XI52 = %d + %d = %d\n",*XI51f,*XI71f,*XI52f);

 op = 01; //subtraction
 *opkod = op;
 *data1 = *XR01f;
 *data2 = *XR21f;
 *XR22f = *dataout;
 printf("XR22 = %d - %d = %d\n",*XR01f,*XR21f,*XR22f);

 *opkod = op; //process input
 *data1 = *XI01f;
 *data2 = *XI21f;
 *XI22f = *dataout;
 printf("XI22 = %d - %d = %d\n",*XI01f,*XI21f,*XI22f);

 *opkod = op;
 *data1 = *XR11f;
 *data2 = *XR31f;
 *XR32tf = *dataout;
 printf("XR32t = %d - %d = %d\n",*XR11f,*XR31f,*XR32tf);

 *opkod = op; //process input
 *data1 = *XI11f;
 *data2 = *XI31f;
 *XI32tf = *dataout;
 printf("XI32t = %d - %d = %d\n",*XI11f,*XI31f,*XI32tf);

 *opkod = op;
 *data1 = *XR41f;
 *data2 = *XR61f;
 *XR62f = *dataout;
 printf("XR62 = %d - %d = %d\n",*XR41f,*XR61f,*XR62f);

 *opkod = op; //process input
 *data1 = *XI41f;
 *data2 = *XI61f;
 *XI62f = *dataout;
 printf("XI62 = %d - %d = %d\n",*XI41f,*XI61f,*XI62f);

 *opkod = op;
 *data1 = *XR51f;
 *data2 = *XR71f;
 *XR72tf = *dataout;
 printf("XR72t = %d - %d = %d\n",*XR51f,*XR71f,*XR72tf);

 *opkod = op; //process input
 *data1 = *XI51f;
 *data2 = *XI71f;
 *XI72tf = *dataout;
 printf("XI72t = %d - %d = %d\n",*XI51f,*XI71f,*XI72tf);

}

void Stage_6_Fftopration()
{

 115

 printf ("\n-----STAGE 6 OF FFT OPERATION-----\n");

 op = 6; //opcode for hardware to execute addition operation
 *opkod = op; //process input
 *data1 = *XR32tf;
 //*data2 = *XR21f;
 *XI32f = *dataout;
 printf("\nXI32 = -1x%d = %d\n",*XR32tf,*XI32f);

 *opkod = op; //process input
 *data1 = *XI32tf;
 //*data2 = *XR21f;
 *XR32f = *dataout;
 printf("XR32 = -1x%d = %d\n",*XI32tf,*XR32f);

 *opkod = op; //process input
 *data1 = *XR72tf;
 //*data2 = *XR21f;
 *XI72f = *dataout;
 printf("XI72 = -1x%d = %d\n",*XR72tf,*XI72f);

 *opkod = op; //process input
 *data1 = *XI72tf;
 //*data2 = *XR21f;
 *XR72f = *dataout;
 printf("XR72 = -1x%d = %d\n",*XI72tf,*XR72f);

}

//////////////////////////-----stage 7------///////////////

void Stage_7_Fftopration()
{
 printf ("\n-----STAGE 7 OF FFT OPERATION-----\n");

 op = 0; //opcode for hardware to execute addition operation
 *opkod = op; //process input
 *data1 = *XR02f;
 *data2 = *XR12f;
 *XR03f = *dataout;
 printf("\nXR0 = %d + %d = %d\n",*XR02f,*XR12f,*XR03f);

 *opkod = op; //process input
 *data1 = *XI02f;
 *data2 = *XI12f;
 *XI03f = *dataout;
 printf("XI0 = %d + %d = %d\n",*XI02f,*XI12f,*XI03f);

 *opkod = op; //process input
 *data1 = *XR22f;
 *data2 = *XR32f;
 *XR23f = *dataout;
 printf("XR23 = %d + %d = %d\n",*XR22f,*XR32f,*XR23f);

 *opkod = op; //process input
 *data1 = *XI22f;
 *data2 = *XI32f;
 *XI23f = *dataout;
 printf("XI23 = %d + %d = %d\n",*XI22f,*XI32f,*XI23f);

 *opkod = op; //process input
 *data1 = *XR42f;
 *data2 = *XR52f;
 *XR13f = *dataout;
 printf("XR13 = %d + %d = %d\n",*XR42f,*XR52f,*XR13f);

 *opkod = op; //process input
 *data1 = *XI42f;
 *data2 = *XI52f;
 *XI13f = *dataout;
 printf("XI13 = %d + %d = %d\n",*XI42f,*XI52f,*XI13f);

 *opkod = op; //process input
 *data1 = *XR62f;
 *data2 = *XR72f;
 *XR73f = *dataout;

 116

 printf("XR73 = %d + %d = %d\n",*XR62f,*XR72f,*XR73f);

 *opkod = op; //process input
 *data1 = *XI62f;
 *data2 = *XI72f;
 *XI33f = *dataout;
 printf("XI33 = %d + %d = %d\n",*XI62f,*XI72f,*XI33f);

 op = 01; //opcode for hardware to execute subtraction operation
 *opkod = op; //process input
 *data1 = *XR02f;
 *data2 = *XR12f;
 *XR43f = *dataout;
 printf("\nXR43 = %d - %d = %d\n",*XR02f,*XR12f,*XR43f);

 *opkod = op; //process input
 *data1 = *XI02f;
 *data2 = *XI12f;
 *XI43f = *dataout;
 printf("XI43 = %d - %d = %d\n",*XI02f,*XI12f,*XI43f);

 *opkod = op; //process input
 *data1 = *XR22f;
 *data2 = *XR32f;
 *XR63f = *dataout;
 printf("XR63 = %d - %d = %d\n",*XR22f,*XR32f,*XR63f);

 *opkod = op; //process input
 *data1 = *XI22f;
 *data2 = *XI32f;
 *XI63f = *dataout;
 printf("XI63 = %d - %d = %d\n",*XI02f,*XI12f,*XI63f);

 *opkod = op; //process input
 *data1 = *XR42f;
 *data2 = *XR52f;
 *XR53f = *dataout;
 printf("XR53 = %d - %d = %d\n",*XR42f,*XR52f,*XR53f);

 *opkod = op; //process input
 *data1 = *XI42f;
 *data2 = *XI52f;
 *XI53f = *dataout;
 printf("XI53 = %d - %d = %d\n",*XI42f,*XI52f,*XI53f);

 *opkod = op; //process input
 *data1 = *XR62f;
 *data2 = *XR72f;
 *XR33f = *dataout;
 printf("XR33 = %d - %d = %d\n",*XR62f,*XR72f,*XR33f);

 *opkod = op; //process input
 *data1 = *XI62f;
 *data2 = *XI72f;
 *XI73f = *dataout;
 printf("XI73 = %d - %d = %d\n",*XI62f,*XI72f,*XI73f);

}

 117

Appendices H

/*TEST VECTOR PROGRAM FOR TRANSMITTER AND RECEIVER IN C LANGUAGE*/
#include "excalibur.h"
#include "stdio.h"

/////////////-------- Memory Allocation for IFFT Process------//////////

 int *opkodA = (int*) 0x00000430; //address of the transmitter
 int *data1A = (int*) 0x00000434; //contain IFFT module
 int *data2A = (int*) 0x00000438;
 int *dataoutA = (int*) 0x0000043C;

 int *XR0 = (int*) 0x00000491; //ram module
 int *XR1 = (int*) 0x00000495;
 int *XR2 = (int*) 0x00000499;
 int *XR3 = (int*) 0x0000049D;

 int *XR4 = (int*) 0x000004A2;
 int *XR5 = (int*) 0x000004A6;
 int *XR6 = (int*) 0x000004AA;
 int *XR7 = (int*) 0x000004AE;

 int *opkodB = (int*) 0x000004B3; //address of the receiver
 int *data1B = (int*) 0x000004B7; //contain FFT module
 int *data2B = (int*) 0x000004BB;
 int *dataoutB = (int*) 0x000004BF;

 int *XR01 = (int*) 0x00040000; //memory to hold data (1st stage of ifft computation)
 int *XR11 = (int*) 0x00040004; //hold real data
 int *XR21 = (int*) 0x00040008;
 int *XR31 = (int*) 0x0004000C;

 int *XR41 = (int*) 0x00040010;
 int *XR51t = (int*) 0x00040014;
 int *XR61t = (int*) 0x00040018;
 int *XR71t = (int*) 0x0004001C;

 int *XR51 = (int*) 0x00040020; //memory to hold data (1st stage of fft computation)
 int *XI51 = (int*) 0x00040024; //hold imaginary data
 int *XI61 = (int*) 0x00040028;
 int *XR71t2 = (int*) 0x0004002C;

 int *XR71 = (int*) 0x00040030;
 int *XI71 = (int*) 0x00040034;
 int *XR02 = (int*) 0x00040038;
 int *XR12 = (int*) 0x0004003C;

 int *XR22 = (int*) 0x00040040;
 int *XI32 = (int*) 0x00040044;
 int *XR42 = (int*) 0x00040048;
 int *XI42 = (int*) 0x0004004C;

 int *XR52 = (int*) 0x00040050;
 int *XI52 = (int*) 0x00040054;
 int *XR62 = (int*) 0x00040058;
 int *XI62 = (int*) 0x0004005C;

 int *XR72 = (int*) 0x00040060;
 int *XI72 = (int*) 0x00040064;
 int *XR03 = (int*) 0x00040068;
 int *XR13 = (int*) 0x0004006C;

 int *XI13 = (int*) 0x00040070;
 int *XR23 = (int*) 0x00040074;
 int *XI23 = (int*) 0x00040078;
 int *XR33 = (int*) 0x0004007C;

 int *XI33 = (int*) 0x00040080;
 int *XR43 = (int*) 0x00040084;
 int *XR53 = (int*) 0x00040088;
 int *XI53 = (int*) 0x0004008C;

 118

 int *XR63 = (int*) 0x00040090;
 int *XI63 = (int*) 0x00040094;
 int *XR73 = (int*) 0x00040098;
 int *XI73 = (int*) 0x0004009C;

 int *XR0o = (int*) 0x000400A0;//
 int *XR1o = (int*) 0x000400A4;
 int *XI1o = (int*) 0x000400A8;
 int *XR2o = (int*) 0x000400AC;

 int *XI2o = (int*) 0x000400B0;
 int *XR3o = (int*) 0x000400B4;
 int *XI3o = (int*) 0x000400B8;
 int *XR4o = (int*) 0x000400BC;

 int *XR5o = (int*) 0x000400C0;
 int *XI5o = (int*) 0x000400C4;
 int *XR6o = (int*) 0x000400C8;
 int *XI6o = (int*) 0x000400CC;

 int *XR7o = (int*) 0x000400D0;
 int *XI7o = (int*) 0x000400D4;

 /////////////-------- Memory Allocation for FFT Process------//////////

 int *XR0f = (int*) 0x000400E0; //memory to hold data (input from keyboard)
 int *XR1f = (int*) 0x000400E4; //hold real data
 int *XR2f = (int*) 0x000400E8;
 int *XR3f = (int*) 0x000400EC;

 int *XR4f = (int*) 0x000400F0;
 int *XR5f = (int*) 0x000400F4;
 int *XR6f = (int*) 0x000400F8;
 int *XR7f = (int*) 0x000400FC;

 int *XI0f = (int*) 0x00040100;
 int *XI1f = (int*) 0x00040104; //hold imaginary data
 int *XI2f = (int*) 0x00040108;
 int *XI3f = (int*) 0x0004010C;

 int *XI4f = (int*) 0x00040110;
 int *XI5f = (int*) 0x00040114;
 int *XI6f = (int*) 0x00040118;
 int *XI7f = (int*) 0x0004011C;

 int *XR01f = (int*) 0x00040120; //memory to hold data (1st stage of fft computation)
 int *XR11f = (int*) 0x00040124; //hold real data
 int *XR21f = (int*) 0x00040128;
 int *XR31f = (int*) 0x0004012C;

 int *XR41f = (int*) 0x00040130;
 int *XR51tf = (int*) 0x00040134;
 int *XR61tf = (int*) 0x00040138;
 int *XR71tf = (int*) 0x0004013C;

 int *XI01f = (int*) 0x00040140; //memory to hold data (1st stage of fft computation)
 int *XI11f = (int*) 0x00040144; //hold imaginary data
 int *XI21f = (int*) 0x00040148;
 int *XI31f = (int*) 0x0004014C;

 int *XI41f = (int*) 0x00040150;
 int *XI51tf = (int*) 0x00040154;
 int *XI61tf = (int*) 0x00040158;
 int *XI71tf = (int*) 0x0004015C;

 int *XR51taf = (int*) 0x00040160;
 int *XI51taf = (int*) 0x00040164;
 int *XR51tbf = (int*) 0x00040168;
 int *XI51tbf = (int*) 0x0004016C;

 int *XR61f = (int*) 0x00040170;
 int *XI61f = (int*) 0x00040174;
 int *XR71taf = (int*) 0x00040178;
 int *XI71taf = (int*) 0x0004017C;

 int *XI71tbf = (int*) 0x00040180;

 119

 int *XR71tbf = (int*) 0x00040184;
 int *XI51taaf = (int*) 0x00040188;
 int *XI51tbbf = (int*) 0x0004018C;

 int *XI71taaf = (int*) 0x00040190;
 int *XR71taaf = (int*) 0x00040194;
 int *XI71tbbf = (int*) 0x00040198;
 int *XR71tbbf = (int*) 0x0004019C;

 int *XR51f = (int*) 0x000401A0;
 int *XI51f = (int*) 0x000401A4;
 int *XR71f = (int*) 0x000401A8;
 int *XI71f = (int*) 0x000401AC;
 /*
 int *XR01f = (int*) 0x000401B0;
 int *XI01f = (int*) 0x000401B4;
 int *XR21f = (int*) 0x000401B8;
 int *XI21f = (int*) 0x000401BC;

 int *XR11f = (int*) 0x000401C0;
 int *XI11f = (int*) 0x000401C4;
 int *XR31f = (int*) 0x000401C8;
 int *XI31f = (int*) 0x000401CC;

 int *XR41f = (int*) 0x000401D0;
 int *XI41f = (int*) 0x000401D4;
 int *XR61f = (int*) 0x000401D8;
 int *XI61f = (int*) 0x000401DC;

 int *XR51f = (int*) 0x000401E0;
 int *XI51f = (int*) 0x000401E4;
 int *XR71f = (int*) 0x000401E8;
 int *XI71f = (int*) 0x000401EC;*/

 int *XR02f = (int*) 0x000401F0;
 int *XR22f = (int*) 0x000401F4;
 int *XI02f = (int*) 0x000401F8;
 int *XI22f = (int*) 0x000401FC;

 int *XR12f = (int*) 0x00040200;
 int *XR32tf = (int*) 0x00040204;
 int *XI12f = (int*) 0x00040208;
 int *XI32tf = (int*) 0x0004020C;

 int *XR42f = (int*) 0x00040220;
 int *XR62f = (int*) 0x00040224;
 int *XI42f = (int*) 0x00040228;
 int *XI62f = (int*) 0x0004022C;

 int *XR52f = (int*) 0x00040230;
 int *XR72tf = (int*) 0x00040234;
 int *XI52f = (int*) 0x00040238;
 int *XI72tf = (int*) 0x0004023C;

 int *XI32f = (int*) 0x00040240;
 int *XR32f = (int*) 0x00040244;
 int *XI72f = (int*) 0x00040248;
 int *XR72f = (int*) 0x0004024C;

 int *XR03f = (int*) 0x00040250;
 int *XR43f = (int*) 0x00040254;
 int *XI03f = (int*) 0x00040258;
 int *XI43f = (int*) 0x0004025C;

 int *XR23f = (int*) 0x00040260;
 int *XR63f = (int*) 0x00040264;
 int *XI23f = (int*) 0x00040268;
 int *XI63f = (int*) 0x0004026C;

 int *XR13f = (int*) 0x00040270;
 int *XR53f = (int*) 0x00040274;
 int *XI13f = (int*) 0x00040278;
 int *XI53f = (int*) 0x0004027C;

 int *XR33f = (int*) 0x00040280;
 int *XR73f = (int*) 0x00040284;

 120

 int *XI33f = (int*) 0x00040288;
 int *XI73f = (int*) 0x0004028C;

 int a,b,c,d,e,f,g,h; //input variable from keyboard
 int op;

 ////---------ifft function initialization-------///////
 void Stage_1_IFFTopration();
 void Stage_2_IFFTopration();
 void Stage_2a_IFFTopration();
 void Stage_3_IFFTopration();
 void Stage_4_IFFTopration();
 void Stage_5_IFFTopration();
 ////---------fft function initialization-------///////
 void Stage_1_FFTopration();
 void Stage_2_FFTopration();
 void Stage_3_FFTopration();
 void Stage_4_FFTopration();
 void Stage_5_FFTopration();
 void Stage_6_FFTopration();
 void Stage_7_FFTopration();

 main(void)
{
 a = 0; // clear all value in the ram
 b = 0;
 c = 0;
 d = 0;
 e = 0;
 f = 0;
 g = 0;
 h = 0;

 /*XI1f = 0;
 *XI2f = 0;
 *XI3f = 0;
 *XI5f = 0;
 *XI6f = 0;
 XI7f = 0;/

 // get input from user Keyboard)
 printf ("\nInput 0 is: XR0 = ");
 scanf ("%d",&a);
 printf ("Input 1 is: XR1 = ");
 scanf ("%d",&b);
 printf ("Input 2 is: XR2 = ");
 scanf ("%d",&c);
 printf ("Input 3 is: XR3 = ");
 scanf ("%d",&d);
 printf ("Input 4 is: XR4 = ");
 scanf ("%d",&e);
 printf ("Input 5 is: XR5 = ");
 scanf ("%d",&f);
 printf ("Input 6 is: XR6 = ");
 scanf ("%d",&g);
 printf ("Input 7 is: XR7 = ");
 scanf ("%d",&h);

 /*a = 2; // clear all value in the ram
 b = 1;
 c = 2;
 d = 9;
 e = 11;
 f = 7;
 g = 14;
 h = 14;
 */
 *XR0 = a;
 *XR1 = b;
 *XR2 = c;
 *XR3 = d;
 *XR4 = e;
 *XR5 = f;
 *XR6 = g;
 *XR7 = h;

 121

 printf ("\n\t~~~~~~~~~~~~~~~~~~~~~~~~~~~\n");
 printf ("\n\tINPUT TO THE TRANSMITTER\n");
 printf ("\n\t~~~~~~~~~~~~~~~~~~~~~~~~~~~\n");

 printf("\n\nvalue at ram XR0: %d\n",*XR0);
 printf("value at ram XR1: %d\n", *XR1);
 printf("value at ram XR2: %d\n", *XR2);
 printf("value at ram XR3: %d\n", *XR3);
 printf("value at ram XR4: %d\n", *XR4);
 printf("value at ram XR5: %d\n", *XR5);
 printf("value at ram XR6: %d\n", *XR6);
 printf("value at ram XR7: %d\n", *XR7);

 Stage_1_IFFTopration();
 Stage_2_IFFTopration();
 Stage_2a_IFFTopration();
 Stage_3_IFFTopration();
 Stage_4_IFFTopration();
 Stage_5_IFFTopration();

 *XR0f = 0;
 *XR1f = 0;
 *XI1f = 0;
 *XR2f = 0;
 *XI2f = 0;
 *XR3f = 0;
 *XI3f = 0;
 *XR4f = 0;
 *XR5f = 0;
 *XI5f = 0;
 *XR6f = 0;
 *XI6f = 0;
 *XR7f = 0;
 *XI7f = 0;
 printf ("\nOUTPUT OF THE TRANSMITTER \n");
 printf("\nOutput of XR03: %d\n", *XR0o);
 printf("Output of XR1o: %d\n", *XR1o);
 printf("Output of XR2o: %d\n", *XR2o);
 printf("Output of XR3o: %d\n", *XR3o);
 printf("Output of XR4o: %d\n", *XR4o);
 printf("Output of XR5o: %d\n", *XR5o);
 printf("Output of XR6o: %d\n", *XR6o);
 printf("Output of XR7o: %d\n", *XR7o);

 //printf("\nOutput of XI0o: %d\n",*XI0o);
 printf("Output of XI1o: %d\n", *XI1o);
 printf("Output of XI2o: %d\n", *XI2o);
 printf("Output of XI3o: %d\n", *XI3o);
 //printf("Output of XI4o: %d\n", *XI4o);
 printf("Output of XI5o: %d\n", *XI5o);
 printf("Output of XI6o: %d\n", *XI6o);
 printf("Output of XI7o: %d\n", *XI7o);

 printf ("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n");
 printf ("\nEND OF THE TRANSMITTER PROCESS\n");
 printf ("\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n");
 printf ("Output from the Transmitter is transmitted to the Receiver module\n\n");
 printf ("\n~~~~~~~~~~~~~~~~~~~~~~~~\n");
 printf ("\nINPUT TO THE RECEIVER\n");
 printf ("\n~~~~~~~~~~~~~~~~~~~~~~~~\n");

 /*XR0f = *XR0o; //output Tx mapping to input Rx (in sequence)
 *XI0f = 0;
 *XR1f = *XR1o;
 *XI1f = *XI1o;
 *XR2f = *XR2o;
 *XI2f = *XI2o;
 *XR3f = *XR3o;
 *XI3f = *XI3o;
 *XR4f = *XR4o;
 *XI4f = 0;
 *XR5f = *XR5o;
 *XI5f = *XI5o;
 *XR6f = *XR6o;
 *XI6f = *XI6o;

 122

 *XR7f = *XR7o;
 *XI7f = *XI7o;
 */
 *XR0f = *XR0o; //output Tx mapping to input Rx (reverse order)
 *XI0f = 0;
 *XR1f = *XR4o;
 *XI1f = 0;
 *XR2f = *XR2o;
 *XI2f = *XI2o;
 *XR3f = *XR6o;
 *XI3f = *XI6o;
 *XR4f = *XR1o ;
 *XI4f = *XI1o ;
 *XR5f = *XR5o;
 *XI5f = *XI5o;
 *XR6f = *XR3o ;
 *XI6f = *XI3o ;
 *XR7f = *XR7o;
 *XI7f = *XI7o;

 /*XR0f = *XR0o; //imaginary value = 0
 *XI0f = 0; //output Tx mapping to input Rx (reverse order)
 *XR1f = *XR4o;
 *XI1f = 0;
 *XR2f = *XR2o;
 *XI2f = 0;
 *XR3f = *XR6o;
 *XI3f = 0;
 *XR4f = *XR1o ;
 *XI4f = 0 ;
 *XR5f = *XR5o;
 *XI5f = 0;
 *XR6f = *XR3o ;
 *XI6f = 0 ;
 *XR7f = *XR7o;
 *XI7f = 0;
 */
 /*XR0f = *XR0o; //output Tx mapping to input Rx (in sequence)
 *XI0f = 0; //imaginary value = 0
 *XR1f = *XR1o;
 *XI1f = 0;
 *XR2f = *XR2o;
 *XI2f = 0;
 *XR3f = *XR3o;
 *XI3f = 0;
 *XR4f = *XR4o;
 *XI4f = 0;
 *XR5f = *XR5o;
 *XI5f = 0;
 *XR6f = *XR6o;
 *XI6f = 0;
 *XR7f = *XR7o;
 *XI7f = 0;
 */
 printf("\nReceiver buffer no XR0f: %d\n",*XR0f);
 printf("Receiver buffer no XR1f: %d\n", *XR1f);
 printf("Receiver buffer no XR2f: %d\n", *XR2f);
 printf("Receiver buffer no XR3f: %d\n", *XR3f);
 printf("Receiver buffer no XR4f: %d\n", *XR4f);
 printf("Receiver buffer no XR5f: %d\n", *XR5f);
 printf("Receiver buffer no XR6f: %d\n", *XR6f);
 printf("Receiver buffer no XR7f: %d\n", *XR7f);

 printf("\nReceiver buffer no XI0f: %d\n",*XI0f);
 printf("Receiver buffer no XI1f: %d\n", *XI1f);
 printf("Receiver buffer no XI2f: %d\n", *XI2f);
 printf("Receiver buffer no XI3f: %d\n", *XI3f);
 printf("Receiver buffer no XI4f: %d\n", *XI4f);
 printf("Receiver buffer no XI5f: %d\n", *XI5f);
 printf("Receiver buffer no XI6f: %d\n", *XI6f);
 printf("Receiver buffer no XI7f: %d\n", *XI7f);

 Stage_1_FFTopration();
 Stage_2_FFTopration();
 Stage_3_FFTopration();
 Stage_4_FFTopration();

 123

 Stage_5_FFTopration();
 Stage_6_FFTopration();
 Stage_7_FFTopration();

 printf ("\nOUTPUT FROM RECEIVER\n");
 /*
 printf("\n\nOutput of XR03: %d\n", *XR03f); //output in sequence order
 printf("Output of XR13: %d\n", *XR13f);
 printf("Output of XR23: %d\n", *XR23f);
 printf("Output of XR33: %d\n", *XR33f);
 printf("Output of XR43: %d\n", *XR43f);
 printf("Output of XR53: %d\n", *XR53f);
 printf("Output of XR63: %d\n", *XR63f);
 printf("Output of XR73: %d\n", *XR73f);

 printf("\nOutput of XI03: %d\n",*XI03f);
 printf("Output of XI13: %d\n", *XI13f);
 printf("Output of XI23: %d\n", *XI23f);
 printf("Output of XI33: %d\n", *XI33f);
 printf("Output of XI43: %d\n", *XI43f);
 printf("Output of XI53: %d\n", *XI53f);
 printf("Output of XI63: %d\n", *XI63f);
 printf("Output of XI73: %d\n", *XI73f);
 */
 printf("\n\nOutput of XR03: %d\n", *XR03f); //output as matlab order
 printf("Output of XR13: %d\n", *XR73f);
 printf("Output of XR23: %d\n", *XR63f);
 printf("Output of XR33: %d\n", *XR53f);
 printf("Output of XR43: %d\n", *XR43f);
 printf("Output of XR53: %d\n", *XR33f);
 printf("Output of XR63: %d\n", *XR23f);
 printf("Output of XR73: %d\n", *XR13f);

 printf("\nOutput of XI03: %d\n",*XI03f);
 printf("Output of XI13: %d\n", *XI73f);
 printf("Output of XI23: %d\n", *XI63f);
 printf("Output of XI33: %d\n", *XI53f);
 printf("Output of XI43: %d\n", *XI43f);
 printf("Output of XI53: %d\n", *XI33f);
 printf("Output of XI63: %d\n", *XI23f);
 printf("Output of XI73: %d\n", *XI13f);
 /*
 printf("\n\nOutput of XR03: %d\n", *XR03f); //output reverse order
 printf("Output of XR13: %d\n",*XI73f);
 printf("Output of XR23: %d\n",*XR63f);
 printf("Output of XR33: %d\n",*XI53f);
 printf("Output of XR43: %d\n",*XR43f);
 printf("Output of XR53: %d\n",*XI33f);
 printf("Output of XR63: %d\n",*XR23f);
 printf("Output of XR73: %d\n",*XI13f);

 printf("\nOutput of XI03: %d\n",*XI03f);
 printf("Output of XI13: %d\n",*XR73f);
 printf("Output of XI23: %d\n",*XI63f);
 printf("Output of XI33: %d\n",*XR53f);
 printf("Output of XI43: %d\n",*XI43f);
 printf("Output of XI53: %d\n",*XR33f);
 printf("Output of XI63: %d\n",*XI23f);
 printf("Output of XI73: %d\n",*XR13f);
 */

 printf ("\n\n\n");

 return 0;
}

void Stage_1_IFFTopration()
{
 printf ("\n-----STAGE 1 Tx OPERATION-----\n");

 op = 0; //opcode for hardware to execute addition operation
 *opkodA = op; //process input
 *data1A = *XR0;
 *data2A = *XR4;
 *XR01 = *dataoutA; //0th output
 printf("\n\nXR01 = XR0 + XR4 = %d + %d = %d\n",*XR0,*XR4,*XR01); // XR01 = XR0 + XR4

 124

 *opkodA = op;
 *data1A = *XR1;
 *data2A = *XR5;
 *XR11 = *dataoutA; //1st output real
 printf("XR11 = XR1 + XR5 = %d + %d = %d\n",*XR1,*XR5,*XR11); // XR11 = XR1 + XR5

 *opkodA = op;
 *data1A = *XR2;
 *data2A = *XR6;
 *XR21 = *dataoutA; //2nd output real
 printf("XR21 = XR2 + XR6 = %d + %d = %d\n",*XR2,*XR6,*XR21); // XR21 = XR2 + XR6

 *opkodA = op;
 *data1A = *XR3;
 *data2A = *XR7;
 *XR31 = *dataoutA; //3rd output real
 printf("XR31 = XR3 + XR7 = %d + %d = %d\n",*XR3,*XR7,*XR31); // XR31 = XR3 + XR7

 op = 1;
 *opkodA = op;
 *data1A = *XR0;
 *data2A = *XR4;
 *XR41 = *dataoutA; //4th output real
 printf("XR41 = XR0 - XR4 = %d - %d = %d\n", *XR0,*XR4,*XR41); // XR41 = XR0 - XR4

 *opkodA = op;
 *data1A = *XR1;
 *data2A = *XR5;
 *XR51t = *dataoutA; //5th output real
 printf("XR51t = XR1 - XR5 = %d - %d = %d\n",*XR1,*XR5,*XR51t); // XR51t = XR1 - XR5

 *opkodA = op;
 *data1A = *XR2;
 *data2A = *XR6;
 *XR61t = *dataoutA; //6th output real
 printf("XR61t = XR2 - XR6 = %d - %d = %d\n",*XR2,*XR6, *XR61t); // XR61t = XR2 - XR6

 *opkodA = op;
 *data1A = *XR3;
 *data2A = *XR7;
 *XR71t = *dataoutA; //7th output real
 printf("XR71t = XR3 - XR7 = %d - %d = %d\n",*XR3,*XR7,*XR71t); // XR71t = XR3 - XR7

}

void Stage_2_IFFTopration()
{
 printf ("\n-----STAGE 2 Tx OPERATION-----\n");

 op = 2; //opcode for hardware to execute addition operation

 *opkodA = op; //process input
 *data1A = *XR51t;
 //*data2 = *XR4f;
 *XR51 = *dataoutA;

 printf("\n\nXR51 = 0.7071xXR51t = 0.7071x%d = %d\n",*XR51t,*XR51); // XR51 = 0.7071*XR51t

 *opkodA = op; //process input
 *data1A = *XR51t;
 //*data2 = *XR4f;
 *XI51 = *dataoutA;
 printf("XI51 = 0.7071xXR51t = 0.7071x%d = %d\n",*XR51t,*XI51); // XI51 = 0.7071*XI51t

 *XI61 = *XR61t;
 printf("XI61 = XR61t = %d = %d\n",*XR61t,*XI61); // XI61 = XR61t

 *opkodA = op; //process input
 *data1A = *XR71t;
 //*data2 = *XR4f;
 *XR71t2 = *dataoutA;
 printf("\nXR71t2 = 0.7071xXR71t = 0.7071x%d = %d\n",*XR71t,*XR71t2); // XR71t2 = 0.7071*XI71t

 125

 op = 2;
 *opkodA = op; //process input
 *data1A = *XR71t;
 //*data2 = *XR4f;
 *XI71 = *dataoutA;
 printf("XI71 = 0.7071xXR71t = 0.7071x%d = %d\n",*XR71t,*XI71); // XR71t2 = 0.7071*XI71t

}
void Stage_2a_IFFTopration()
{
 printf ("\n-----STAGE 2a Tx OPERATION-----\n");
 op = 5;
 *opkodA = op; //process input
 *data1A = *XR71t2;
 *XR71 = *dataoutA;
 printf("\nXR71 = -1xXR71t2 = -1x%d = %d\n",*XR71t2,*XR71); // XI71 = -1*XI71t2
}
void Stage_3_IFFTopration()
{
 printf ("\n-----STAGE 3 Tx OPERATION-----\n");

 op = 0;
 *opkodA = op; //process input
 *data1A = *XR01;
 *data2A = *XR21;
 *XR02 = *dataoutA;
 printf("\nXR02 = XR01 + XR21 = %d + %d = %d\n",*XR01,*XR21,*XR02); // XR02 = XR01+XR21

 *opkodA = op; //process input
 *data1A = *XR11;
 *data2A = *XR31;
 *XR12 = *dataoutA;
 printf("XR12 = XR11 + XR31 = %d + %d = %d\n",*XR11,*XR31,*XR12); // XR12 = XR11+XR31

 op = 1;
 *opkodA = op; //process input
 *data1A = *XR01;
 *data2A = *XR21;
 *XR22 = *dataoutA;
 printf("XR22 = XR01 - XR21 = %d - %d = %d\n",*XR01,*XR21,*XR22); // XR22 = XR01-XR21

 *opkodA = op; //process input
 *data1A = *XR11;
 *data2A = *XR31;
 *XI32 = *dataoutA;
 printf("XI32 = XR11 - XR31 = %d - %d = %d\n",*XR11,*XR31,*XI32); // XI32 = XR11-XR31 --XI32 =betulkan

 *XR42 = *XR41;
 printf("XR42 = XR41 = %d = %d\n",*XR41,*XR42);

 *XI42 = *XI61;
 printf("XI42 = XI61 = %d = %d\n",*XI61,*XI42);

 op = 0;
 *opkodA = op; //process input
 *data1A = *XR51;
 *data2A = *XR71;
 *XR52 = *dataoutA;
 printf("XR52 = XR51 + XR71 = %d + %d = %d\n",*XR51,*XR71,*XR52); // XR52 = XR51+XR71

 *opkodA = op; //process input
 *data1A = *XI51;
 *data2A = *XI71;
 *XI52 = *dataoutA;
 printf("XI52 = XI51 + XI71 = %d + %d = %d\n",*XI51,*XI71,*XI52); // XI52 = XI51+XI71

 *XR62 = *XR41;
 printf("XR62 = XR41 = %d = %d\n",*XR41,*XR62);

 op = 5;
 *opkodA = op; //process input
 *data1A = *XI61;
 //*data2 = *XI71;
 *XI62 = *dataoutA;
 printf("XI62 = -1xXI61 = -1x%d = %d\n",*XI61,*XI62); // XI52 = -1xXI62

 126

 op = 1;
 *opkodA = op; //process input
 *data1A = *XI51;
 *data2A = *XI71;
 *XR72 = *dataoutA;
 printf("XR72 = XI51 - XI71 = %d - %d = %d\n",*XI51,*XI71,*XR72); // XR72 = XI51-XI71

 *opkodA = op; //process input
 *data1A = *XR51;
 *data2A = *XR71;
 *XI72 = *dataoutA;
 printf("XI72 = XR51 - XR71 = %d - %d = %d\n",*XR51,*XR71,*XI72); // XI72 = XR51-XR71

}

void Stage_4_IFFTopration()
{
 printf ("\n-----STAGE 4 Tx OPERATION-----\n");
 op = 0;
 *opkodA = op; //process input
 *data1A = *XR02;
 *data2A = *XR12;
 *XR03 = *dataoutA;
 printf("\nXR03 = XR02 + XR12 = %d + %d = %d\n",*XR02,*XR12,*XR03); // XR03 = XR02+XR12

 *opkodA = op; //process input
 *data1A = *XR42;
 *data2A = *XR52;
 *XR13 = *dataoutA;
 printf("XR13 = XR42 + XR52 = %d + %d = %d\n",*XR42,*XR52,*XR13); // XR13 = XR42+XR52

 //op = 1; //subtraction operation
 *opkodA = op; //process input
 *data1A = *XI42;
 *data2A = *XI52;
 *XI13 = *dataoutA;
 printf("XI13 = XI42 + XI52 = %d + %d = %d\n",*XI42,*XI52,*XI13); // XI13 = XI42+XI52

 *XR23 = *XR22;
 printf("XR23 = XR22 = %d = %d\n",*XR22,*XR23);

 *XI23 = *XI32;
 printf("XI23 = XI32 = %d = %d\n",*XI32,*XI23);

 op = 0;
 *opkodA = op; //process input
 *data1A = *XR62;
 *data2A = *XR72;
 *XR33 = *dataoutA;
 printf("XR33 = XR62 + XR72 = %d + %d = %d\n",*XR62,*XR72,*XR33); // XR33 = XR62+XR72

 *opkodA = op; //process input
 *data1A = *XI62;
 *data2A = *XI72;
 *XI33 = *dataoutA;
 printf("XI33 = XI62 + XI72 = %d + %d = %d\n",*XI62,*XI72,*XI33); // XI33 = XI62+XI72

 op = 1;
 *opkodA = op; //process input
 *data1A = *XR02;
 *data2A = *XR12;
 *XR43 = *dataoutA;
 printf("XR43 = XR02 + XR12 = %d - %d = %d\n",*XR02,*XR12,*XR43); // XR43 = XR02-XR12

 op = 1;
 *opkodA = op; //process input
 *data1A = *XR42;
 *data2A = *XR52;
 *XR53 = *dataoutA;
 printf("XR53 = XR42 + XR52 = %d - %d = %d\n",*XR42,*XR52,*XR53); // XR53 = XR42-XR52

 *opkodA = op; //process input
 *data1A = *XI42;
 *data2A = *XI52;
 *XI53 = *dataoutA;
 printf("XI53 = XI42 + XI52 = %d - %d = %d\n",*XI42,*XI52,*XI53); // XI53 = XI42-XI52

 127

 *XR63 = *XR22;
 printf("XR63 = XR22 = %d = %d\n",*XR22,*XR63);

 op = 5;
 *opkodA = op; //process input
 *data1A = *XI32;
 //*data2 = *XI71;
 *XI63 = *dataoutA;
 printf("XI63 = -1xXI32 = -1x%d = %d\n",*XI32,*XI63); // XI63 = -1xXI32

 op = 1;
 *opkodA = op; //process input
 *data1A = *XR62;
 *data2A = *XR72;
 *XR73 = *dataoutA;
 printf("XR73 = XR62 - XR72 = %d - %d = %d\n",*XR62,*XR72,*XR73); // XR53 = XR42-XR52

 *opkodA = op; //process input
 *data1A = *XI62;
 *data2A = *XI72;
 *XI73 = *dataoutA;
 printf("XI73 = XI62 - XI72 = %d - %d = %d\n",*XI62,*XI72,*XI73); // XI73 = XI62-XI72

}

void Stage_5_IFFTopration()
{
 printf ("\n-----STAGE 5 Tx OPERATION-----\n");
 //printf ("\nFinal output of the IFFT\n");
 op = 3; //opcode for hardware to execute addition operation
 *opkodA = op; //process input
 *data1A = *XR03;
 //*data2 = *XR21f;
 *XR0o = *dataoutA;
 printf("\nXR0o = XR03/8 = %d/8 = %d\n",*XR03,*XR0o);

 *opkodA = op; //process input
 *data1A = *XR13;
 //*data2 = *XR31f;
 *XR1o = *dataoutA;
 printf("XR1o = XR13/8 = %d/8 = %d\n",*XR13,*XR1o);

 *opkodA = op; //process input
 *data1A = *XI13;
 //*data2 = *XR31f;
 *XI1o = *dataoutA;
 printf("XI1o = XI13/8 = %d/8 = %d\n",*XI13,*XI1o);

 *opkodA = op; //process input
 *data1A = *XR23;
 //*data2 = *XR31f;
 *XR2o = *dataoutA;
 printf("XR2o = XR23/8 = %d/8 = %d\n",*XR23,*XR2o);

 *opkodA = op; //process input
 *data1A = *XI23;
 //*data2 = *XR31f;
 *XI2o = *dataoutA;
 printf("XI2o = XI23/8 = %d/8 = %d\n",*XI23,*XI2o);

 *opkodA = op; //process input
 *data1A = *XR33;
 //*data2 = *XR31f;
 *XR3o = *dataoutA;
 printf("XR3o = XR33/8 = %d/8 = %d\n",*XR33,*XR3o);

 *opkodA = op; //process input
 *data1A = *XI33;
 //*data2 = *XR31f;
 *XI3o = *dataoutA;
 printf("XI3o = XI33/8 = %d/8 = %d\n",*XI33,*XI3o);

 *opkodA = op; //process input

 128

 *data1A = *XR43;
 //*data2 = *XR31f;
 *XR4o = *dataoutA;
 printf("XR4o = XR43/8 = %d/8 = %d\n",*XR43,*XR4o);

 *opkodA = op; //process input
 *data1A = *XR53;
 //*data2 = *XR31f;
 *XR5o = *dataoutA;
 printf("XR5o = XR53/8 = %d/8 = %d\n",*XR53,*XR5o);

 *opkodA = op; //process input
 *data1A = *XI53;
 //*data2 = *XR31f;
 *XI5o = *dataoutA;
 printf("XI5o = XI53/8 = %d/8 = %d\n",*XI53,*XI5o);

 *opkodA = op; //process input
 *data1A = *XR63;
 //*data2 = *XR31f;
 *XR6o = *dataoutA;
 printf("XR6o = XR63/8 = %d/8 = %d\n",*XR63,*XR6o);

 *opkodA = op; //process input
 *data1A = *XI63;
 //*data2 = *XR31f;
 *XI6o = *dataoutA;
 printf("XI6o = XI63/8 = %d/8 = %d\n",*XI63,*XI6o);

 *opkodA = op; //process input
 *data1A = *XR73;
 //*data2 = *XR31f;
 *XR7o = *dataoutA;
 printf("XR7o = XR73/8 = %d/8 = %d\n",*XR73,*XR7o);

 *opkodA = op; //process input
 *data1A = *XI73;
 //*data2 = *XR31f;
 *XI7o = *dataoutA;
 printf("XI7o = XI73/8 = %d/8 = %d\n",*XI73,*XI7o);

}

////////////////// -------PROGRAM FOR FFT COMPUTATION---------//////////////

void Stage_1_FFTopration()
{
 printf ("\n-----STAGE 1 OF IFFT OPERATION-----\n");

 op = 0; //opcode for hardware to execute addition operation

 *opkodB = op; //process input
 *data1B = *XR0f;
 *data2B = *XR4f;
 *XR01f = *dataoutB; //0th output
 printf("\n\nXR01 = %d + %d = %d\n",*XR0f,*XR4f,*XR01f); // XR01 = XR0 + XR4

 *opkodB = op; //process input
 *data1B = *XI0f;
 *data2B = *XI4f;
 *XI01f = *dataoutB; //0th output
 printf("XI01 = %d + %d = %d\n",*XI0f,*XI4f,*XI01f); // XI01 = XI0 + XI4

 *opkodB = op;
 *data1B = *XR1f;
 *data2B = *XR5f;
 *XR11f = *dataoutB; //1st output real
 printf("XR11 = %d + %d = %d\n",*XR1f,*XR5f,*XR11f); // XR11 = XR1 + XR5

 *opkodB = op;
 *data1B = *XI1f;
 *data2B = *XI5f;
 *XI11f = *dataoutB; //1st output imag
 printf("XI11 = %d + %d = %d\n",*XI1f,*XI5f,*XI11f); // XI11 = XI1 + XI5

 *opkodB = op;

 129

 *data1B = *XR2f;
 *data2B = *XR6f;
 *XR21f = *dataoutB; //2nd output real
 printf("XR21 = %d + %d = %d\n",*XR2f,*XR6f,*XR21f); // XR21 = XR2 + XR6

 *opkodB = op;
 *data1B = *XI2f;
 *data2B = *XI6f;
 *XI21f = *dataoutB; //2nd output imag
 printf("XI21 = %d + %d = %d\n",*XI2f,*XI6f,*XI21f); // XI11 = XI2 + XI5

 *opkodB = op;
 *data1B = *XR3f;
 *data2B = *XR7f;
 *XR31f = *dataoutB; //3rd output real
 printf("XR31 = %d + %d = %d\n",*XR3f,*XR7f,*XR31f); // XR31 = XR3 + XR7

 *opkodB = op;
 *data1B = *XI3f;
 *data2B = *XI7f;
 *XI31f = *dataoutB; //3rd output imag
 printf("XI31 = %d + %d = %d\n",*XI3f,*XI7f,*XI31f); // XI31 = XI3 + XI7

 op = 1;
 *opkodB = op;
 *data1B = *XR0f;
 *data2B = *XR4f;
 *XR41f = *dataoutB;
 printf("XR41 = %d - %d = %d\n", *XR0f,*XR4f,*XR41f); // XR41 = XR0 - XR4

 *opkodB = op;
 *data1B = *XI0f;
 *data2B = *XI4f;
 *XI41f = *dataoutB;
 printf("XI41 = %d - %d = %d\n", *XI0f,*XI4f,*XI41f); // XI41 = XI0 - XI4

 *opkodB = op;
 *data1B = *XR1f;
 *data2B = *XR5f;
 *XR51tf = *dataoutB;
 printf("XR51t = %d - %d = %d\n",*XR1f,*XR5f,*XR51tf); // XR51 = XR1 - XR5

 *opkodB = op;
 *data1B = *XI1f;
 *data2B = *XI5f;
 *XI51tf = *dataoutB; //5th output imag
 printf("XI51t = %d - %d = %d\n",*XI1f,*XI5f, *XI51tf); // XI51t = XI1 - XI5

 *opkodB = op;
 *data1B = *XR2f;
 *data2B = *XR6f;
 *XR61tf = *dataoutB; //6th output real
 printf("XR61t = %d - %d = %d\n",*XR2f,*XR6f, *XR61tf); // XR61t = XR2 - XR6

 *opkodB = op;
 *data1B = *XI2f;
 *data2B = *XI6f;
 *XI61tf = *dataoutB; //6th output imag
 printf("XI61t = %d - %d = %d\n",*XI2f,*XI6f,*XI61tf); // XI61t = XI2 - XI6

 *opkodB = op;
 *data1B = *XR3f;
 *data2B = *XR7f;
 *XR71tf = *dataoutB; //7th output real
 printf("XR71t = %d - %d = %d\n",*XR3f,*XR7f,*XR71tf); // XR71t = XR3 - XR7

 *opkodB = op;
 *data1B = *XI3f;
 *data2B = *XI7f;
 *XI71tf = *dataoutB; //7th output imag
 printf("XI71t = %d - %d = %d\n\n",*XI3f,*XI7f,*XI71tf); // XI71t = XI3 - XI7

}

void Stage_2_FFTopration()

 130

{
 printf ("\n-----STAGE 2 OF FFT OPERATION-----\n");

 op = 2; //opcode for hardware to execute addition operation

 *opkodB = op; //process input
 *data1B = *XR51tf;
 //*data2 = *XR4f;
 *XR51taf = *dataoutB;
 printf("\nXR51ta = 0.7071x%d = %d\n",*XR51tf,*XR51taf);

 *opkodB = op; //process input
 *data1B = *XR51tf;
 //*data2 = *XR4f;
 *XI51taf = *dataoutB;
 printf("XI51ta = 0.7071x%d = %d\n",*XR51tf,*XI51taf);

 *opkodB = op; //process input
 *data1B = *XI51tf;
 //*data2 = *XR4f;
 *XR51tbf = *dataoutB;
 printf("\nXR51tb = 0.7071x%d = %d\n",*XI51tf,*XR51tbf);

 *opkodB = op; //process input
 *data1B = *XI51tf;
 //*data2 = *XR4f;
 *XI51tbf = *dataoutB;
 printf("XI51tb = 0.7071x%d = %d\n",*XI51tf,*XI51tbf);

 op = 6;
 *opkodB = op; //process input
 *data1B = *XR61tf;
 //*data2 = *XR4f;
 *XI61f = *dataoutB; //6th output
 printf("\nXI61 = -1x%d = %d\n",*XR61tf,*XI61f); // XI61 = -1*XR61

 *opkodB = op; //process input
 *data1B = *XI61tf;
 //*data2 = *XR4f;
 *XR61f = *dataoutB; //6th output
 printf("\nXR61 = -1x%d = %d\n",*XI61tf,*XR61f); // XR61 = -1*XI61

 op = 2;
 *opkodB = op; //process input
 *data1B = *XR71tf;
 //*data2 = *XR4f;
 *XR71taf = *dataoutB;
 printf("\nXR71ta = 0.7071x%d = %d\n",*XR71tf,*XR71taf);

 *opkodB = op; //process input
 *data1B = *XR71tf;
 //*data2 = *XR4f;
 *XI71taf = *dataoutB;
 printf("\nXI71ta = 0.7071x%d = %d\n",*XR71tf,*XI71taf);

 *opkodB = op; //process input
 *data1B = *XI71tf;
 //*data2 = *XR4f;
 *XR71tbf = *dataoutB;
 printf("\nXR71tb = 0.7071x%d = %d\n",*XI71tf,*XR71tbf);

 *opkodB = op; //process input
 *data1B = *XI71tf;
 //*data2 = *XR4f;
 *XI71tbf = *dataoutB;
 printf("\nXR71tb = 0.7071x%d = %d\n",*XI71tf,*XI71tbf);

}

void Stage_3_FFTopration()
{
 printf ("\n-----STAGE 3 OF FFT OPERATION-----\n");

 131

 op = 6; //opcode for hardware to execute addition operation
 *opkodB = op; //process input
 *data1B = *XI51taf;
 //*data2 = *XR4f;
 *XI51taaf = *dataoutB;
 printf("\nXI51taa = -1x%d = %d\n",*XI51taf,*XI51taaf); //

 op = 6; //opcode for hardware to execute addition operation
 *opkodB = op; //process input
 *data1B = *XI51tbf;
 //*data2 = *XR4f;
 *XI51tbbf = *dataoutB;
 printf("\nXI51tbb = -1x%d = %d\n",*XI51tbf,*XI51tbbf); //

 *opkodB = op; //process input
 *data1B = *XI71taf;
 //*data2 = *XR4f;
 *XI71taaf = *dataoutB;
 printf("\nXI71taa = -1x%d = %d\n",*XI71taf,*XI71taaf); //

 *opkodB = op; //process input
 *data1B = *XR71taf;
 //*data2 = *XR4f;
 *XR71taaf = *dataoutB;
 printf("\nXR71taa = -1x%d = %d\n",*XR71taf,*XR71taaf); //

 *opkodB = op; //process input
 *data1B = *XI71tbf;
 //*data2 = *XR4f;
 *XI71tbbf = *dataoutB;
 printf("\nXI71tbb = -1x%d = %d\n",*XI71tbf,*XI71tbbf); //

 *opkodB = op; //process input
 *data1B = *XR71tbf;
 //*data2 = *XR4f;
 *XR71tbbf = *dataoutB;
 printf("\nXR71tbb = -1x%d = %d\n",*XR71tbf,*XR71tbbf); //

}

void Stage_4_FFTopration()
{
 printf ("\n-----STAGE 4 OF FFT OPERATION-----\n");

 op = 0; //opcode for hardware to execute addition operation
 *opkodB = op; //process input
 *data1B = *XR51taf;
 *data2B = *XR51tbf;
 *XR51f = *dataoutB;
 printf("\nXR51 = %d + %d = %d\n",*XR51taf,*XR51tbf,*XR51f);

 *opkodB = op; //process input
 *data1B = *XI51taaf;
 *data2B = *XI51tbbf;
 *XI51f = *dataoutB;
 printf("XI51 = %d + %d = %d\n",*XI51taaf,*XI51tbbf,*XI51f);

 *opkodB = op; //process input
 *data1B = *XR71taaf;
 *data2B = *XR71tbbf;
 *XR71f = *dataoutB;
 printf("XR71 = %d + %d = %d\n",*XR71taaf,*XR71tbbf,*XR71f);

 *opkodB = op; //process input
 *data1B = *XI71taaf;
 *data2B = *XI71tbbf;
 *XI71f = *dataoutB;
 printf("XI71 = %d + %d = %d\n\n",*XI71taaf,*XI71tbbf,*XI71f);

}

void Stage_5_FFTopration()

 132

{
 printf ("\n-----STAGE 5 OF FFT OPERATION-----\n");

 op = 0; //opcode for hardware to execute addition operation
 *opkodB = op; //process input
 *data1B = *XR01f;
 *data2B = *XR21f;
 *XR02f = *dataoutB;
 printf("\nXR02 = %d + %d = %d\n",*XR01f,*XR21f,*XR02f);

 *opkodB = op; //process input
 *data1B = *XI01f;
 *data2B = *XI21f;
 *XI02f = *dataoutB;
 printf("XI02 = %d + %d = %d\n",*XI01f,*XI21f,*XI02f);

 *opkodB = op; //process input
 *data1B = *XR11f;
 *data2B = *XR31f;
 *XR12f = *dataoutB;
 printf("XR12 = %d + %d = %d\n",*XR11f,*XR31f,*XR12f);

 *opkodB = op; //process input
 *data1B = *XI11f;
 *data2B = *XI31f;
 *XI12f = *dataoutB;
 printf("XI12 = %d + %d = %d\n",*XI11f,*XI31f,*XI12f);

 *opkodB = op; //process input
 *data1B = *XR41f;
 *data2B = *XR61f;
 *XR42f = *dataoutB;
 printf("XR42 = %d + %d = %d\n",*XR41f,*XR61f,*XR42f);

 *opkodB = op; //process input
 *data1B = *XI41f;
 *data2B = *XI61f;
 *XI42f = *dataoutB;
 printf("XI42 = %d + %d = %d\n",*XI41f,*XI61f,*XI42f);

 *opkodB = op; //process input
 *data1B = *XR51f;
 *data2B = *XR71f;
 *XR52f = *dataoutB;
 printf("XR52 = %d + %d = %d\n",*XR51f,*XR71f,*XR52f);

 *opkodB = op; //process input
 *data1B = *XI51f;
 *data2B = *XI71f;
 *XI52f = *dataoutB;
 printf("XI52 = %d + %d = %d\n",*XI51f,*XI71f,*XI52f);

 op = 01; //subtraction
 *opkodB = op;
 *data1B = *XR01f;
 *data2B = *XR21f;
 *XR22f = *dataoutB;
 printf("XR22 = %d - %d = %d\n",*XR01f,*XR21f,*XR22f);

 *opkodB = op; //process input
 *data1B = *XI01f;
 *data2B = *XI21f;
 *XI22f = *dataoutB;
 printf("XI22 = %d - %d = %d\n",*XI01f,*XI21f,*XI22f);

 *opkodB = op;
 *data1B = *XR11f;
 *data2B = *XR31f;
 *XR32tf = *dataoutB;
 printf("XR32t = %d - %d = %d\n",*XR11f,*XR31f,*XR32tf);

 *opkodB = op; //process input
 *data1B = *XI11f;
 *data2B = *XI31f;
 *XI32tf = *dataoutB;
 printf("XI32t = %d - %d = %d\n",*XI11f,*XI31f,*XI32tf);

 133

 *opkodB = op;
 *data1B = *XR41f;
 *data2B = *XR61f;
 *XR62f = *dataoutB;
 printf("XR62 = %d - %d = %d\n",*XR41f,*XR61f,*XR62f);

 *opkodB = op; //process input
 *data1B = *XI41f;
 *data2B = *XI61f;
 *XI62f = *dataoutB;
 printf("XI62 = %d - %d = %d\n",*XI41f,*XI61f,*XI62f);

 *opkodB = op;
 *data1B = *XR51f;
 *data2B = *XR71f;
 *XR72tf = *dataoutB;
 printf("XR72t = %d - %d = %d\n",*XR51f,*XR71f,*XR72tf);

 *opkodB = op; //process input
 *data1B = *XI51f;
 *data2B = *XI71f;
 *XI72tf = *dataoutB;
 printf("XI72t = %d - %d = %d\n",*XI51f,*XI71f,*XI72tf);

}

void Stage_6_FFTopration()
{
 printf ("\n-----STAGE 6 OF FFT OPERATION-----\n");

 op = 6; //opcode for hardware to execute addition operation
 *opkodB = op; //process input
 *data1B = *XR32tf;
 //*data2 = *XR21f;
 *XI32f = *dataoutB;
 printf("\nXI32 = -1x%d = %d\n",*XR32tf,*XI32f);

 *opkodB = op; //process input
 *data1B = *XI32tf;
 //*data2 = *XR21f;
 *XR32f = *dataoutB;
 printf("XR32 = -1x%d = %d\n",*XI32tf,*XR32f);

 *opkodB = op; //process input
 *data1B = *XR72tf;
 //*data2 = *XR21f;
 *XI72f = *dataoutB;
 printf("XI72 = -1x%d = %d\n",*XR72tf,*XI72f);

 *opkodB = op; //process input
 *data1B = *XI72tf;
 //*data2 = *XR21f;
 *XR72f = *dataoutB;
 printf("XR72 = -1x%d = %d\n",*XI72tf,*XR72f);

}

//////////////////////////-----stage 7------///////////////

void Stage_7_FFTopration()
{
 printf ("\n-----STAGE 7 OF FFT OPERATION-----\n");

 op = 0; //opcode for hardware to execute addition operation
 *opkodB = op; //process input
 *data1B = *XR02f;
 *data2B = *XR12f;
 *XR03f = *dataoutB;
 printf("\nXR0 = %d + %d = %d\n",*XR02f,*XR12f,*XR03f);

 *opkodB = op; //process input
 *data1B = *XI02f;
 *data2B = *XI12f;
 *XI03f = *dataoutB;

 134

 printf("XI0 = %d + %d = %d\n",*XI02f,*XI12f,*XI03f);

 *opkodB = op; //process input
 *data1B = *XR22f;
 *data2B = *XR32f;
 *XR23f = *dataoutB;
 printf("XR23 = %d + %d = %d\n",*XR22f,*XR32f,*XR23f);

 *opkodB = op; //process input
 *data1B = *XI22f;
 *data2B = *XI32f;
 *XI23f = *dataoutB;
 printf("XI23 = %d + %d = %d\n",*XI22f,*XI32f,*XI23f);

 *opkodB = op; //process input
 *data1B = *XR42f;
 *data2B = *XR52f;
 *XR13f = *dataoutB;
 printf("XR13 = %d + %d = %d\n",*XR42f,*XR52f,*XR13f);

 *opkodB = op; //process input
 *data1B = *XI42f;
 *data2B = *XI52f;
 *XI13f = *dataoutB;
 printf("XI13 = %d + %d = %d\n",*XI42f,*XI52f,*XI13f);

 *opkodB = op; //process input
 *data1B = *XR62f;
 *data2B = *XR72f;
 *XR73f = *dataoutB;
 printf("XR73 = %d + %d = %d\n",*XR62f,*XR72f,*XR73f);

 *opkodB = op; //process input
 *data1B = *XI62f;
 *data2B = *XI72f;
 *XI33f = *dataoutB;
 printf("XI33 = %d + %d = %d\n",*XI62f,*XI72f,*XI33f);

 op = 01; //opcode for hardware to execute subtraction operation
 *opkodB = op; //process input
 *data1B = *XR02f;
 *data2B = *XR12f;
 *XR43f = *dataoutB;
 printf("\nXR43 = %d - %d = %d\n",*XR02f,*XR12f,*XR43f);

 *opkodB = op; //process input
 *data1B = *XI02f;
 *data2B = *XI12f;
 *XI43f = *dataoutB;
 printf("XI43 = %d - %d = %d\n",*XI02f,*XI12f,*XI43f);

 *opkodB = op; //process input
 *data1B = *XR22f;
 *data2B = *XR32f;
 *XR63f = *dataoutB;
 printf("XR63 = %d - %d = %d\n",*XR22f,*XR32f,*XR63f);

 *opkodB = op; //process input
 *data1B = *XI22f;
 *data2B = *XI32f;
 *XI63f = *dataoutB;
 printf("XI63 = %d - %d = %d\n",*XI02f,*XI12f,*XI63f);

 *opkodB = op; //process input
 *data1B = *XR42f;
 *data2B = *XR52f;
 *XR53f = *dataoutB;
 printf("XR53 = %d - %d = %d\n",*XR42f,*XR52f,*XR53f);

 *opkodB = op; //process input
 *data1B = *XI42f;
 *data2B = *XI52f;
 *XI53f = *dataoutB;
 printf("XI53 = %d - %d = %d\n",*XI42f,*XI52f,*XI53f);

 *opkodB = op; //process input

 135

 *data1B = *XR62f;
 *data2B = *XR72f;
 *XR33f = *dataoutB;
 printf("XR33 = %d - %d = %d\n",*XR62f,*XR72f,*XR33f);

 *opkodB = op; //process input
 *data1B = *XI62f;
 *data2B = *XI72f;
 *XI73f = *dataoutB;
 printf("XI73 = %d - %d = %d\n",*XI62f,*XI72f,*XI73f);

}

	3.10 APEX 20K Devices board
	3.11 Quartus II 3.0

