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Preface

About This Manual

This manual describes HDL modeling in RTL Compiler. The RTL Compiler software accepts
both VHDL entities and Verilog design modules.

Additional References

The following sources are helpful references, but are not included with the product
documentation:

m  TclTutor, a computer aided instruction package for learning the Tcl language:
http://www.msen.com/~clif/TclTutor.html.

m  TCL Reference, Tcl and the Tk Toolkit, John K. Ousterhout, Addison-Wesley
Publishing Company

m |EEE Standard Hardware Description Language Based on the Verilog Hardware
Description Language (IEEE Std.1364-1995)

m |EEE Standard Hardware Description Language Based on the Verilog Hardware
Description Language (IEEE Std. 1364-2001)

m |EEE Standard VHDL Language Reference Manual (IEEE Std. 1076-1987)
m |EEE Standard VHDL Language Reference Manual (IEEE Std. 1076-1993)

Note: Forinformation on purchasing IEEE specifications go to_http://shop.ieee.org/store/ and
click on Standards.
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Reporting Problems or Errors in Manuals

The Cadence Online Documentation System, CDSDaoc, lets you view, search, and print
Cadence product documentation. You can access CDSDoc by typing cdsdoc from your
Cadence tools hierarchy.

Clicking the Feedback button lets you send e-mail directly to Cadence Technical
Publications. Use it if you find:

m  An error in the manual
m  An omission of information in a manual

m A problem displaying documents

Customer Support

Cadence offers live and online support, as well as customer education and training programs.

SourceLink Online Customer Support

SourceLink® online customer support offers answers to your most common technical
questions. It lets you search more than 40,000 FAQs, notifications, software updates, and
technical solutions documents that give you step-by-step instructions on how to solve known
problems. It also gives you product-specific e-mail notifications, software updates, service
request tracking, up-to-date release information, full site search capabilities, software update
ordering, and much more.

For more information on SourceLink go to:

http://www.cadence.com/support/sourcelink.aspx

Other Support Offerings

m  Support centers—Provide live customer support from Cadence experts who can
answer many questions related to products and platforms.

m  Software downloads—Provide you with the latest versions of Cadence products.

m  Education services—Offers instructor-led classes, self-paced Internet, and virtual
classroom.
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m University software program support—Provides you with the latest information to
answer your technical questions.

For more information on these support offerings go to:

http://www.cadence.com/support

Messages

From within RTL Compiler there are two ways to get information about messages.
m Usethereport nmessages command.

For example:

rc:/> report messages

This returns the detailed information for each message output in your current RTL
Compiler run. It also includes a summary of how many times each message was issued.

s  Use the man command.
Note: You can only use the man command for messages within RTL Compiler

For example, to get more information about the “TIM-11"message, type the following
command:

rc:/> man TIM11

If you do not get the details that you need or do not understand a message, either contact
Cadence Customer Support to file a PCR or email the message ID you would like improved
to:

rc_pubs@cadence.com
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Man Pages

In addition to the Command and Attribute References, you can also access information about
the commands and attributes using the man pages in RTL Compiler. Man pages contain the
same content as the Command and Attribute References. To use the man pages from the
UNIX shell:

1. Set your environment to view the correct directory:
set env MANPATH $CDN_SYNTH_ROOT/ shar e/ synt h/ man

2. Enter the name of the command or attribute that you want either in RTL Compiler or
within the UNIX shell. For example:

O nman check dft _rul es
0O man cell _| eakage_power

3. Enter the name of the command or attribute that you want. For example:
O man check _dft _rul es

O man cell | eakage_power

Command-Line Help

You can get quick syntax help for commands and attributes at the RTL Compiler command-
line prompt. There are also enhanced search capabilities so you can more easily search for
the command or attribute that you need.

Note: The command syntax representation in this document does not necessarily match the
information that you get when you type hel p conmand_nane. In many cases, the order of
the arguments is different. Furthermore, the syntax in this document includes all of the
dependencies, where the help information does this only to a certain degree.

If you have any suggestions for improving the command-line help, please e-mail them to:

rc_pubs@cadence.com

Getting the Syntax for a Command

0O  Type the hel p command followed by the command name. For example:
rc:/> hel p path_del ay

This returns the syntax for the pat h_del ay command.
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Getting the Syntax for an Attribute

O

Type the following:

rc:/> get_attribute attribute nanme * -help

For example:

rc:/> get_attribute nmax_transition * -help

This returns the syntax for the max_t r ansi t i on attribute.

Searching for Attributes

O

Get a list of all the available attributes by typing the following command:

rc:/> get_attribute * * -help

Type a sequence of letters after the set _att ri but e command and press Tab to get a
list of all attributes that contain those letters. For example:

rc:/> set_attr Ii

anbi guous "li": lib_lef consistency_check_enabl e
n

i b_search_path |ibcel
liberty attributes libpin library Iibrary_donai n

I
i ne_nunber

Searching For Commands When You Are Unsure of the Name

You can use help to find a command if you only know part of its name, even as little as one
letter.

If you only know the first few letters of a command, then you can get a list of commands
that begin with that letter.

For example, to get a list of commands that begin with “ed”, you would type the following
command:

rc:/> ed* -h

Type a single letter and press Tab to get a list of all commands that contains that letter.
For example:

rc:/> c <Tab>

This returns the following commands:

anbi guous "c": cache_vnane calling_proc case catch cd cdsdoc change_nanes
check_dft _rules chipware cl ear cl ock cl ock_gating clock_ports cl ose cnmdExpand
command_is_conpl ete concat configure _pad_dft connect scan_chai ns continue
cwd_inst al

You can also type a sequence of letters and press Tab to get a list of all commands that
contain those letters.
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For example:
rc:/> path_ <Tab>

This returns the following commands:

anbi guous "path_":

pat h_adj ust path_del ay path_di sabl e pat h_group

Documentation Conventions

Text Command Syntax

The list below defines the syntax conventions used for the RTL Compiler text interface

commands.

literal

argunments and options

[ ]

{1}

{}

June 2006

Nonitalic words indicate keywords you enter literally. These
keywords represent command or option hames.

Words in italics indicate user-defined arguments or information
for which you must substitute a name or a value.

Vertical bars (OR-bars) separate possible choices for a single
argument.

Brackets indicate optional arguments. When used with OR-bars,
they enclose a list of choices from which you can choose one.

Braces indicate that a choice is required from the list of
arguments separated by OR-bars. Choose one from the list.

{ argunentl | argunent2 | argunent3 }

Braces, used in Tcl commands, indicate that the braces must be
typed in.

Three dots (...) indicate that you can repeat the previous
argument. If the three dots are used with brackets (that is,

[ar gument ]. . .), you can specify zero or more arguments. If
the three dots are used without brackets (ar gument . . . ), you
must specify at least one argument.

The pound sign precedes comments in command files.
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s Overview on page 27

m  Modeling Flip-Flops on page 28

0 Modeling Flip-Flops in Verilog on page 28

O  Modeling Flip-Flops in VHDL on page 31

= Modeling Latches on page 38

0 Modeling Latches in Verilog on page 38

0 Modeling Latches in VHDL on page 39

= Modeling Combinational Logic on page 40

0 Modeling Combinational Logic in Verilog on page 40

0 Modeling Combinational Logic in VHDL on page 44

m  Modeling Arithmetic Components (Verilog and VHDL) on page 47

0  Adders on page 48

0  Subtractors on page 51
0  Multipliers on page 56
0 Dividers on page 59

m  Using Case Statements for Multi-Way Branching on page 64

O Using Case Statements in Verilog on page 64

0 Using casez and casex Statements in Verilog to Treat x, z and ? Like Don't Cares
on page 67

0 Using Case Statements in VHDL on page 70

m Using a for Statement to Describe Repetitive Operations on page 73
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ad

O

Using a for Statement in Verilog on page 73

Using a for Statement in VHDL on page 75

m  Modeling Logic Abstracts on page 77

O

O

O

June 2006

Inferring a Logic Abstract From the RTL in Verilog on page 77

Inferring a Logic Abstract From the RTL in VHDL on page 78

Interpreting a Logic Abstract in Verilog or VHDL on page 82

Writing Out a Logic Abstract in Verilog on page 83

Representing a Black Box as an Empty Module on page 85

Representing a Technology Cell as an Empty Module on page 85
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Overview

Perform RTL synthesis after loading the timing and power libraries. For information on
reading Verilog files and libraries, see Chapter 5, “Loading Files” in Using Encounter RTL

Compiler.

This chapter is organized for mixed Verilog and VHDL language usage and describes how to
use RTL Compiler to synthesize hardware models described in Verilog and VHDL. Use these
styles as a guideline to achieve the best synthesis results from RTL Compiler. See “Reading
Designs with Mixed Verilog and VHDL Files” in Using Encounter RTL Compiler for more
information.

See Supported Verilog Modeling Constructs on page 163 and Supported VHDL Constructs
on page 178 for a list of language constructs supported by RTL Compiler.

If you want to only see the Verilog-specific or the VHDL-specific information, refer to
Chapter 4, “Synthesizing Verilog Designs”, and Chapter 5, “Synthesizing VHDL Designs”,
respectively.

By default, RTL Compiler automatically generates a generic netlist from a RTL design. Use
synthesis pragmas to control the synthesis process. See Chapter 2, “Synthesis Pragmas” for
detailed information. See Supported Synopsys Pragmas on page 90 for a list of Synopsys
synthesis pragmas supported by RTL Compiler.

Chapter 3, “Using HDL Commands and Attributes” summarizes the commands and attributes
used by RTL Compiler to synthesize generic netlists from Verilog and VHDL RTL designs.

The synthesizable subset of Verilog is based on the IEEE 1364 - 1995Standard and the
1364 - 2001 Standard and the Accellera SystemVerilog 3.1a for Verilog Register
Transfer Level Synthesis.

The synthesizable subset of VHDL is based onthe IEEE 1076.6-1999 Standard for VHDL
Register Transfer Level Synthesis. For detailed information on the VHDL syntax and
semantics, refer to the following IEEE Standard VHDL Language Reference Manuals:

= ANSI/IEEE Std 1076-1987 (for VHDL87)
m  ANSI/IEEE Std 1076-1993 (for VHDL93)

VHDL designs have the following restrictions:
m  Read an entity before any of the entity’s architectures and packages.

m  Read package bodies before reading any other packages, entities, or architectures that
refer to them.
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Modeling Flip-Flops

A register is either a level-sensitive latch or an edge-triggered flip-flop memory element. RTL
Compiler identifies registers from the HDL syntax and generates the appropriate sequential
logic.

Modeling Flip-Flops in Verilog

When an assignment is conditioned upon a rising or falling transition on a signal, an edge-
triggered flip-flop is inferred to implement the variable on the left side of the assignment, as
shown in Example 1-1.

Example 1-1 Modeling a Rising Edge Triggered Flip-Flop (Verilog)

nmodul e sync_flop (clk, din, dout);
i nput cl k;
i nput din;
out put dout;
reg dout;
al ways @ posedge cl k)
begin
dout <= din;
end
endnodul e

Figure 1-1 shows the corresponding schematic for Example 1-1.
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Figure 1-1 Rising Edge Triggered Flip-Flop Schematic (Verilog)
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A flip-flop with an asynchronous operation is inferred, as shown in Example 1-2, when an
assignment is made without being dependent on the clock edge.

Example 1-2 Modeling an Active High Asynchronous Reset Flip-Flop (Verilog)

nmodul e ff_ar(dout, cl k, rst, en, sel, a, b);
i nput clk,rst,en,sel,a,b;
out put dout;
reg dout;

al ways @ posedge cl k or posedge rst)
begi n
if (rst)
dout =
else if (en) begin
if (sel)
dout = a;
el se
dout
end

11
(=2

end
endnodul e
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Figure 1-2 shows the corresponding schematic for Example 1-2.

Figure 1-2 Active High Asynchronous Reset Flip-Flop Schematic (Verilog)
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The al ways block is triggered when arising edge is detected on cl k or arising edgeonr st .
If r st is active low, then the event in the sensitivity list, and the condition in the i f statement
should be negated.
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Modeling Flip-Flops in VHDL

When a process is triggered by a rising edge or a falling edge transition on a signal, typically
a clock signal, the variable or signal on the left side of a procedural assignment is inferred as

a flip-flop, as shown in Example 1-3.

Example 1-3 Modeling a Rising Edge Triggered Flip-Flop (VHDL)

library ieee;
use ieee.std logic_1164. all

entity dffl is
port (
din, clk: in std_logic;
dout : out std_logic);
end;

architecture rtl of dffl is begin
process(cl k) begin
if clkevent and clk =1 then
dout <= din
end if;
end process;
end;

Figure 1-3 shows the corresponding schematic.
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Figure 1-3 Elaborated Netlist Schematic for Example 1-3 (VHDL)
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In VHDL93, the same flip-flop is modeled by using a concurrent conditional signal
assignment:

dout <= din when rising_edge(clk);

Note: Example 1-3 uses the standard ri si ng_edge function, which is defined in the
| EEE. STD LOd C 1164 and | EEE. NUVERI C_BI T packages to specify a positive edge on
the cl k signal

Modeling Flip-Flop Clocks

m  Usinganif statement:

process (cl k)
begi n
if (clk’event and clk = '1") then
dout <= din;
end if;
end process
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s Using await statement:

process

begi n
wait until (clk'event and clk = "1");
dout <= din;

process;

m Usingaconditional signal assignment statementin VHDL93:

dout <= din when (clk event and clk = DE

Use the model, as shown in Example 1-4, to synthesize a flip-flop with synchronous set and
reset connections.

Example 1-4 Synthesizing Synchronous Set and Reset Signals On a Flip-Flop (VHDL)

library ieee;
use ieee.std_|logic_1164. all

entity sync_srl is
port (
din, clk, set, reset: in std_|ogic;
dout : out std_logic);
end;

architecture rtl of sync_srl is begin
process(cl k) begin
if clk’event and clk =1 then
if set =1 then
dout <=~
elsif reset = '1" then
dout <=~
el se
dout <= din
end if;
end if;
end process;
end;
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The process is triggered only on the rising edge of cl k, but the assignment to dout is
controlled by set andr eset signals; dout is assigned the value of di n only when set and
r eset are inactive. Only single-bit set and r eset signals are supported. See Synthesis
Pragmas on page 87 for more information on controlling the set and r eset connections for

a flip-flop.

Figure 1-4 shows the corresponding schematic for Example 1-4.

Figure 1-4 Synchronous Set and Reset Signals On a Flip-Flop Schematic (VHDL)
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Use the model, as shown in Example 1-5, to synthesize a flip-flop with asynchronous set and

reset connections.
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Example 1-5 Synthesizing Asynchronous Set and Reset Signals on a Flip-Flop (VHDL)

library ieee;
use ieee.std_logic_1164. all

entity async_srl is
port (
din, clk, set, reset: in std_|ogic;
dout : out std_|logic);
end;

architecture rtl of async_srl is begin
process(cl k, set, reset) begin
if set =1 then
dout <=
elsif reset = '1" then
dout <= "'0";
elsif clk’event and clk = "1 then
dout <= din;
end if;
end process;
end;

The process is triggered when a rising edge is detected on cl k or a change is detected on
set orreset. Figure 1-5 shows the corresponding schematic for Example 1-5.
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Figure 1-5 Asynchronous Set and Reset Signals On a Flip-Flop Schematic (VHDL)
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Ifset orreset isactive low, then the conditionin thei f statementis canceled. For example:

process(cl k, set, ...)
begi n
if set ='0" then
dout <=~
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Specifying Clock Signals for Flip-Flops
Specify the rising edge of the clock signal in the following ways:

m  Forbit clock signals:
0 clkevent and clk ="
O not clk' stable and clk ="
m  For bool ean clock signals:
0O clk event and clk = TRUE
O not clk 'stable and clk = TRUE
m Forstd_ul ogi c and std_I| ogi c clock signals:
O rising_edge(clk)
0 clkevent and clk ="

O not clk 'stable and clk ="

Specify the falling edge of the clock signal in the following ways:

m  Forbit clock signals:
0 clk event and clk ="
O not clk stable and clk ="
m  For bool ean clock signals:
O clk event and clk = FALSE
O not clk stable and cl k = FALSE
m Forstd _ul ogicandstd_| ogi c clock signals:
0o falling_edge(clKk)
0 clk event and clk ="

0O not clk stable and clk ="

Use these clock-edge expressionsini f, wai t, and condi ti onal si gnal
assi gnnment statements.
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In addition, use the following expressions in wai t statements to specify rising and falling
edges respectively:

m wait until (clk "); -- rising clock edge

m wait until (clk '); -- falling clock edge

Modeling Latches

Modeling Latches in Verilog

RTL Compiler infers a latch for a variable if it is updated whenever any of the variables that

contribute to its value change when the enable signal is valid, as shown in Example 1-6. The
dout signal is updated when en is high, otherwise signal dout retains its previous value. RTL
Compiler infers a latch to implement the dout variable.

Example 1-6 Modeling a Latch in Verilog

nmodul e | at ch(dout, en, a,);
i nput en, a;
out put dout;
reg dout;

al ways @en or a)
begi n
if (en)
dout = a;
end
endnodul e

Figure 1-6 shows the corresponding schematic for Example 1-6.
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Figure 1-6 Latch Schematic (Verilog)
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Modeling Latches in VHDL

RTL Compiler infers a latch for a variable that is incompletely assigned and that is updated
whenever any of the variables that contribute to its value change, as shown in Example 1-7.

Example 1-7 Modeling a Latch (VHDL)

library ieee;
use ieee.std |ogic 1164. all

entity latchl is
port (
din, en: in std_|ogic;
dout : out std_logic);
end,;

architecture rtl of latchl is begin
process(di n, en) begin

if en =1 then
dout <= din;
end if;
end process;

end;

Figure 1-7 shows the corresponding schematic.
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Figure 1-7 Elaborated Netlist Schematic for Example 1-7 (VHDL)
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In VHDL93, the same latch is inferred by using a concurrent conditional signal assignment:

dout <= din when (en = '1');
Modeling Combinational Logic

Modeling Combinational Logic in Verilog

Much of logic design involves connecting simple, easily understood circuits to construct a
larger circuit that performs a much more complicated function. Combinational logic is
probably the easiest circuitry to design.

Use combinational logic to design circuits, such as multiplexers, decoders, and 1-bit adders.
The outputs from a combinational logic circuit depend only on the current inputs.

Continuous assignments and procedural assignments are the main styles for modeling
combinational logic.
Modeling Combinational Logic Using Continuous Assignments

Continuous assignments are introduced by the assign keyword. Combinational logic is
inferred for any variable assigned with continuous assignments, as shown in Example 1-8.
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Example 1-8 Modeling Combinational Logic Using Continuous Assignments (Verilog)

nmodul e conb_or (dout, a, b, ¢c);
i nput a, b, c;
out put dout;

assign dout = a | b | c;

endnodul e

Figure 1-8 shows the corresponding schematic for Example 1-8.

Figure 1-8 Combinational Logic Using Continuous Assignments (Verilog)
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Modeling Combinational Logic Using Procedural Assignments

Procedural assignments are introduced by always blocks, tasks, and functions and are used
to assign values to variables declared as registers. Use a procedural assignment statement
in a sequential block of an al ways statement to describe the composition of intermediate
values within a combinational block.

Combinational logic is inferred for any variable assigned using procedural assignments under
all possible conditions whenever any of the variables in the right-side expression change.

Variables used on the left side of a procedural assignment are declared as r eg, which is a
storage data type. However, not all variables declared as a r eg data type need to be
implemented in hardware with a memory element, such as a latch or flip-flop.

RTL Compiler synthesizes combinational logic to implement a variable under the following
conditions:

m  The variable is unconditionally assigned a value before it is used

= Whenever any of the variables on the right-side expression change
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Combinational logic is synthesized to implement the ¢c_out variable in Example 1-9.
Example 1-9 Modeling Combinational Logic Using Procedural Assignments (Verilog)

nodul e conb_full adder (al, a2, c_in, s, c_out);
input al, a2, c_in;
output s, c_out;
reg s, c_out;
al ways @al or a2 or c_in)
begin
s =al » a2 * c_in;
cout =(al &a2) | (al &c_in) | (a2 & c_in);
end
endnodul e

Figure 1-9 shows the corresponding schematic for Example 1-9.
Figure 1-9 Combinational Logic Using Procedural Assignments (Verilog)
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Modeling Clock Gating Using Conditional Statements
Registers that are conditionally loaded can be considered by low power (LP) for clock gating.

In Example 1-10 and Example 1-11 signal en is used for gating cl k. Example 1-10 shows an
incomplete conditional statement, while Example 1-11 shows a complete conditional
statement. Low Power can use both conditions to insert clock-gating logic.
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Example 1-10 Modeling Incomplete Conditional Statements (Verilog)

nmodul e ex1 (in, out, en, clk);
i nput clk, en;
input [3:0] inm;
out put [3:0] out;
reg [3:0] out;
al ways @ (posedege cl k) begin
if (en)
out <= in;
end
endnodul e

Example 1-11 Modeling Complete Conditional Statements (Verilog)

nmodul e exla (in, out, en, clk);
i nput en, clk;
input [3:0] in;
out put [3:0] out;
reg [3:0] out;
al wvays @ (posedge cl k) begin

if (en)
out <= in;
el se
out <= out;
endnodul e

Figure 1-10 shows the mapped netlist for Example 1-10 and Example 1-11 when the
| p_insert_cl ock_gating attribute is setto t r ue.

June 2006 43 Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Modeling HDL Designs

Figure 1-10 Complete Conditional Statement (Verilog)
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Modeling Combinational Logic in VHDL

The RTL Compiler software synthesizes combinational logic to implement a variable or signal
under any of the following conditions:

m  The variable or signal is unconditionally assigned a value before it is used and whenever
any of the signals on the right side of the expression change. See Example 1-12 and the

corresponding schematic shown in Figure 1-11.

m  The variable or signal is conditionally assigned a value under all possible conditions
whenever any of the signals in the right side of the expression change. See
Example 1-13 and the corresponding schematic shown in Figure 1-12.

June 2006

44

Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Modeling HDL Designs

Example 1-12 Modeling Combinational Logic With an Unconditional Assignment

(VHDL)

library ieee;
use ieee.nuneric_std. all

entity conbl is
port (

a, b: in unsigned(3 downto 0);
Zz : out unsigned(3 downto 0));

end;

architecture rtl of conbl is begin

process(a, b) begin
zZ <= a + b;
end process;
end;

Figure 1-11 Elaborated Netlist for Example 1-12 (VHDL)
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Example 1-13 Synthesizing Combinational Logic with a Conditional Assignment
(VHDL)

library ieee;
use ieee.std_|l ogic_1164. al |

entity conb2 is
port (
a, b, s: in std_|ogic;
z . out std logic);
end;

architecture rtl of conb2 is begin
process(a, b, s) begin
if (s ="1") then
zZ <= g;
el se
zZ <= b;
end if;
end process;
end;

Figure 1-12 Combinational Logic with a Conditional Assignment (VHDL)
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Modeling Arithmetic Components (Verilog and VHDL)

Using HDL operators, such as + (add) or * (multiply) to infer arithmetic components is
functionally equivalent to explicitly instantiating the corresponding CW add and CW mul t
ChipWare components. However, this is not true for division-related HDL operators, such as
/ and %in Verilog HDL, and nod and r emin VHDL.The core division functionality is the same
as the CW._di v component, but the exception handling is not.

See ChipWare in Encounter RTL Compiler for detailed information on ChipWare
components.

Adders on page 48
O Modeling an Unsigned Adder in Verilog and VHDL on page 48

O Modeling a Signed Adder in Verilog and VHDL on page 49
Subtractors on page 51

0 Modeling an Unsigned Subtractor in Verilog and VHDL on page 51

0 Modeling a Signed Subtractor in Verilog and VHDL on page 52

O Modeling a Negation Subtractor in Verilog and VHDL on page 53

0  Modeling an Absolute Value in VHDL on page 55

Multipliers on page 56
0 Modeling an Unsigned Multiplier in Verilog and VHDL on page 56

0 Modeling a Signed Multiplier in Verilog and VHDL on page 57

Dividers on page 59

0 Modeling an Unsigned Divider in Verilog and VHDL on page 59

O Modeling a Signed Divider in Verilog and VHDL on page 60

O  Modeling an Unsigned Modulus in Verilog and VHDL on page 60

0 Modeling a Signed Modulus in Verilog and VHDL on page 61

0 Modeling an Unsigned and Signed Remainder in VHDL on page 62
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Adders

Modeling an Unsigned Adder in Verilog and VHDL

Example 1-14 Modeling an Unsigned Adder in Verilog

modul e unsigned_add (y, a, b);
paraneter w = 16;
input [w1:0] a, b;
output [w1:0] v;
assigny = a + b;
endnodul e

Example 1-15 Modeling an Unsigned Adder in VHDL

library ieee;
use ieee.nuneric_std.all;

entity unsigned_add is

generic (w: integer := 4);
port (y . out unsigned (w1 downto 0);
a, b: in wunsigned (w1 downto 0)

end unsi gned_add;
architecture rtl of unsigned_add is
begi n
y <= a + b;
end rtl;
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Example 1-16 Modeling an Unsigned Adder in VHDL

library ieee;

use ieee.std_logic_1164.all;

use ieee.std | ogic_unsigned.all;
entity unsigned_add is

generic (w: integer := 4);
port (y : out std_logic_vector (w1 downto 0);
a, b: in std logic vector (w1l downto 0) );

end unsi gned_add;
architecture rtl of unsigned_add is
begi n
y <= a+b;
end rtl;

Modeling a Signed Adder in Verilog and VHDL

Example 1-17 Modeling a Signed Adder in Verilog

modul e signed_add (y, a, b);
paranmeter w = 16;
i nput signed [w1:0] a, b;
out put signed [w1:0] v;
assigny = a + b;

endnodul e
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Example 1-18 Modeling a Signed Adder in VHDL

library ieee;
use ieee.nuneric_std.all;

entity signed_add is

generic (w: integer := 16);
port (y : out signed (w1 downto 0);
a, b: in signed (w1 downto 0) );

end si gned_add;
architecture rtl of signed add is
begi n
y <= a+b;
end rtl;

Example 1-19 Modeling a Signed Adder in VHDL

library ieee;

use ieee.std logic_1164. all
use ieee.std_| ogic_signed.all
entity signed_add is

generic (w: integer := 16);
port (y . out std logic_vector (w1 downto 0);
a, b: in std logic_vector (w1 downto 0) );

end signed_add;
architecture rtl of signed_add is
begi n
y <= a + b;
end rtl;
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Subtractors

Modeling an Unsigned Subtractor in Verilog and VHDL

Example 1-20 Modeling an Unsigned Subtractor in Verilog

modul e unsi gned_subtract (y, a, b);
paraneter w = 16;
input [w1:0] a, b;
output [w1:0] v;
assigny =a - b;
endnodul e

Example 1-21 Modeling an Unsigned Subtractor in VHDL

library ieee;
use ieee.nuneric_std.all;

entity unsigned_subtract is

generic (w: integer := 16);
port (y . out unsigned (w1 downto 0);
a, b: in unsigned (w1 downto 0) );

end unsi gned_subtract;
architecture rtl of unsigned_subtract is
begi n
y <= a- b;
end rtl;
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Example 1-22 Modeling an Unsigned Subtractor in VHDL

library ieee;

use ieee.std_logic_1164. all

use ieee.std | ogic_unsigned.all
entity unsigned_subtract is

generic (w: integer := 16);
port (y : out std_logic_vector (w1 downto 0);
a, b: in std logic vector (w1l downto 0) );

end unsi gned_subtract;
architecture rtl of unsigned subtract is
begi n
y <= a- b;
end rtl;

Modeling a Signed Subtractor in Verilog and VHDL

Example 1-23 Modeling an Signed Subtractor in Verilog

modul e signed_subtract (y, a, b);
paranmeter w = 16;
i nput signed [w1:0] a, b;
out put signed [w1:0] v;
assigny = a - b;

endnodul e

Example 1-24 Modeling an Signed Subtractor in VHDL
library ieee;

use ieee.nuneric_std.all;
entity signed _subtract is

generic (w: integer := 16);
port (y . out signed (w1 downto 0);
a, b: insigned (w1l dowto 0) );

end signed_subtract;
architecture rtl of signed_subtract is
begi n
y <= a- b;
end rtl;
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Example 1-25 Modeling an Signed Subtractor in VHDL

library ieee;

use ieee.std_|l ogic_1164. all
use ieee.std_I| ogi c_signed. all

entity signed_subtract is

generic (w: integer := 16);
port (y . out std _logic_vector (w1 downto 0);
a, b: instd logic_vector (w1 downto 0) );

end signed_subtract;
architecture rtl of signed_subtract is
begi n
y <=a- b;
end rtl;

Modeling a Negation Subtractor in Verilog and VHDL

Example 1-26 Modeling a Negation Subtractor in Verilog

modul e unary_minus (y, a);
paranmeter w = 16;
i nput signed [w 1:0] a;
out put signed [w 0] v;
assigny = -a;
endnodul e
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Example 1-27 Modeling a Negation Subtractor in VHDL

library ieee;
use ieee.nuneric_std.all;
entity unary_mnus is

generic (w: integer := 16);
port (y : out signed (w1 downto 0);
a: in signed (w1 downto 0) );

end unary_m nus;
architecture rtl of unary_mnus is
begi n
y <= -a;
end rtl;

Example 1-28 Modeling a Negation Subtractor in VHDL

library ieee;

use ieee.std logic 1164. all
use ieee.std_|ogic_signed.all

entity unary_minus is

generic (w: integer := 16);
port (y : out std_logic_vector (w1 downto 0);
a: in stdlogic vector (w1l downto 0) );

end unary_m nus;
architecture rtl of unary _mnus is
begi n
y <= -a
end rtl;
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Modeling an Absolute Value in VHDL

Example 1-29 Modeling an Absolute Value in VHDL

library ieee;
use ieee.nuneric_std.all;
entity absolute value is

generic (w: integer := 16);
port (y : out signed (w1 downto 0);
a: in signed (w1 downto 0) );

end absol ute_val ue;
architecture rtl of absolute_value is
begi n
y <= abs(a);
end rtl;

Example 1-30 Modeling an Absolute Value in VHDL

library ieee;

use ieee.std logic 1164. all
use ieee.std_ | ogic_signed.all

entity absolute_value is

generic (w: integer := 16);
port (y : out std_logic_vector (w1 downto 0);
a: in stdlogic vector (w1l downto 0) );

end absol ute_val ue;
architecture rtl of absolute_value is
begi n
y <= abs(a);
end rtl;
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Multipliers

Modeling an Unsigned Multiplier in Verilog and VHDL

Example 1-31 Modeling an Unsigned Multiplier in Verilog

nodul e unsigned_multiply (y, a, b);
paraneter wA = 16, wB = 16;
i nput [wA-1:0] a;
i nput [wB-1:0] b;
out put [ wA+wB-1:0] v;
assigny = a * b;
endnodul e

Example 1-32 Modeling an Unsigned Multiplier in VHDL

library ieee;
use ieee.nuneric_std.all;
entity unsigned multiply is
generic (WA : integer := 16);
wB : interger := 16);
port (y : out unsigned (wA+wB-1 downto 0);
a : in unsigned (WA-1 downto 0);
b : in unsigned (wB-1 downto 0) );
end unsigned_nul tiply;
architecture rtl of unsigned_nultiply is
begi n
y <=a*b;
end rtl;
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Example 1-33 Modeling an Unsigned Multiplier in VHDL

library ieee;

use ieee.std logic 1164. all
use ieee.std_l ogi c_unsigned. al |

entity unsigned_multiply is
generic (WA : integer := 16);
wB : integer := 16);

port (y : out std _logic_vector (wA+wB-1 downto 0);

a: in std_logic_vector (wWA-1 downto O);
b: in std logic vector (wB-1 downto 0) );
end unsigned_mul ti ply;
architecture rtl of unsigned multiply is
begi n
y <= a* b;
end rtl;

Modeling a Signed Multiplier in Verilog and VHDL

Example 1-34 Modeling a Signed Multiplier in Verilog

nodul e signed_multiply (y, a, b);
paranmeter wA = 16, wB = 16;
i nput signed [wA-1:0] a;
i nput signed [wB-1:0] b;
out put signed [wA+wB-1:0] v;
assigny = a * b;
endnodul e
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Example 1-35 Modeling a Signed Multiplier in VHDL

library ieee;
use ieee.nuneric_std.all;
entity signed multiply is
generic (WA : integer := 16);
(wB : interger := 16);
port (y : out signed (wA+wB-1 downto O0);
a: in signed (wWA-1 downto 0) );
b: in signed (wB-1 downto 0) );
end signed_multiply;
architecture rtl of signed multiply is
begi n
y <= a * b;
end rtl;

Example 1-36 Modeling a Signed Multiplier in VHDL

library ieee;

use ieee.std_logic_1164. all
use ieee.std | ogic_signed.all

entity signed multiply is

generic (wA : integer := 16);
wB : integer := 16);
port (y : out std_logic_vector (wA+wB-1 downto 0);
a . in std logic_vector (WA-1 downto 0);

b: in std_logic_vector (wB-1 downto 0) );
end signed _multiply;
architecture rtl of signed _nmultiply is
begi n
y <= a * b;
end rtl;
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Dividers

Modeling an Unsigned Divider in Verilog and VHDL

Example 1-37 Modeling an Unsigned Divider in Verilog

nodul e unsi gned_di vide (y, a, b);
paraneter wA = 16, wB = 6;
i nput [wA-1:0] a;
i nput [wB-1:0] b;
out put [wA-1:0] v;
assigny = a/ b;
endnodul e

Example 1-38 Modeling an Unsigned Divider in VHDL

library ieee;
use ieee.nuneric_std.all;
entity unsigned divide is
generic (WA : integer := 16);
(wB : interger := 6);
port (y : out unsigned (wA-1 downto O);
a: in unsigned (WA-1 downto 0) );
b : in unsigned (wB-1 downto 0) );
end unsi gned_di vi de;
architecture rtl of unsigned_divide is
begi n
y <= a/ b;
end rtl;
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Modeling a Signed Divider in Verilog and VHDL

Example 1-39 Modeling a Signed Divider in Verilog

nodul e signed_divide (y, a, b);
paraneter wA = 16, wB = 6;
i nput signed [wA-1:0] a;
i nput signed [wB-1:0] b;
out put signed [wA-1:0] v;
assigny = a/ b;

endnodul e

Example 1-40 Modeling a Signed Divider in VHDL

library ieee;
use ieee.nuneric_std.all;
entity signed divide is
generic (WA : integer := 16);
(wB : interger := 6);
port (y : out signed (wWA-1 downto 0);
a: in signed (wWA-1 downto 0) );
b: in signed (wB-1 downto 0) );
end si gned_di vi de;
architecture rtl of signed_divide is
begi n
y <= a/ b;
end rtl;

Modeling an Unsigned Modulus in Verilog and VHDL

Example 1-41 Modeling an Unsigned Modulus in Verilog

modul e unsi gned_nodul us (y, a, b);
paranmeter wA = 16, wB = 6;
i nput [wA-1:0] a;
i nput [wB-1:0] b;
out put [wB-1:0] vy;
assigny = a % hb;
endnodul e
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Example 1-42 Modeling an Unsigned Modulus in VHDL

library ieee;
use ieee.nuneric_std.all;
entity unsigned nodulus is
generic (WA : integer := 16);
(wB : interger := 6);
port (y : out unsigned (wB-1 downto 0);
a . in unsigned (wWA-1 downto 0) );
b : in unsigned (wB-1 downto 0) );
end unsi gned_nodul us;
architecture rtl of unsigned_nodulus is
begi n
y <= a nod b;
end rtl;

Modeling a Signed Modulus in Verilog and VHDL

Example 1-43 Modeling an Signed Modulus in Verilog

modul e signed_nodulus (y, a, b);
paranmeter wA = 16, wB = 6;
i nput signed [wA-1:0] a;
i nput signed [wB-1:0] b;
out put signed [wB-1:0] v;
assigny = a %b;

endnodul e
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Example 1-44 Modeling an Signed Modulus in VHDL

library ieee;
use ieee.nuneric_std.all;
entity signed nodulus is
generic (WA : integer := 16);
(wB : integer := 6);
port (y : out signed (wB-1 downto 0);
a: in signed (wWA-1 downto 0) );
b: in signed (wB-1 downto 0) );
end si gned_nodul us;
architecture rtl of signed_nodulus is
begi n
y <= a nod b;
end rtl;

Modeling an Unsigned and Signed Remainder in VHDL

Example 1-45 Modeling an Unsigned Remainder in VHDL

library ieee;
use ieee.nuneric_std.all;
entity unsigned_remainder is
generic (WA : integer := 16);
(wB : interger := 6);
port (y : out unsigned (wB-1 downto 0);
a . in unsigned (WA-1 downto 0);

b : in unsigned (wB-1 downto 0) );

end unsi gned_r enai nder
architecture rtl of unsigned_reminder is
begi n
y <= a rem b;
end rtl;
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Example 1-46 Modeling a Signed Remainder in VHDL

library ieee;
use ieee.nuneric_std.all;
entity signed remai nder is
generic (WA : integer := 16);
(wB : interger := 6);
port (y : out signed (wB-1 downto 0);
a: in signed (wWA-1 downto 0) );
b: in signed (wB-1 downto 0) );
end si gned_renmi nder;
architecture rtl of signed_remrainder is
begi n
y <= a rem b;
end rtl;
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Using Case Statements for Multi-Way Branching

Use a case statement for multi-way branching in a functional description. When a case
statement is used as a decoder to assign one of several different values to a variable, the
ensuing logic is implemented as combinational or sequential logic based on whether the
variable is assigned a value in all branches of the case statement. RTL Compiler
automatically determines whether a case statementisful | orparal |l el . Acase
statementis f ul | if all possible case items are specified. A case statementis par al | el if
none of the case statement conditions overlap and are mutually exclusive. If automatic
determination of f ul | orparal | el case isnotpossible,usetheful | andparal | el case
pragmas (see full_case Pragma on page 96, and parallel_case Pragma on page 97).

Using Case Statements in Verilog

The following sections describe the impact on synthesis for different use models and types of
case statements.

Using an Incomplete case Statement to Infer a Latch

When a case statement does not specify all possible case condition values, a latch is
inferred. If RTL Compiler determines that the case is not f ul | , it uses a latch to implement
a state transition table, as shown in Example 1-47.

Example 1-47 Modeling a State Transition Table to Infer a Latch (Verilog)

nodul e case_ | atch(dout, sel,a, b,c);
input [1:0] sel;
i nput a, b, c;
out put dout;
reg dout;

always @a or b or ¢ or sel)

begi n
case (sel)
dout = a;
dout = b;
dout = c;
endcase
end
endnodul e
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Figure 1-13 shows the corresponding schematic for Example 1-47.

Figure 1-13 State Transition Table to Infer a Latch Schematic (Verilog)
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Using a Fully Specified case Statement to Prevent a Latch

Use one of the following methods to assign a default value to dout .

= Initialize the dout variable to a default value, then use a case statement to modify it, as

shown in the Example 1-48.

Example 1-48 Preventing a Latch by Assigning a Default Value (Verilog)

modul e case_| atch(dout, sel , a, b, c);
i nput [1:0] sel;
i nput a, b, c;
out put dout;
reg dout;

always @a or b or c¢c or sel)

begi n

dout =

case (sel)
dout = a;
dout = b;
dout = c;

endcase

end
endnodul e
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m  Use the default case in the case statement to capture all the remaining cases where the
next state variable is assigned a value, as shown in Example 1-49.

Example 1-49 Preventing a Latch Using the Default Case in a Case Statement (Verilog)

nmodul e case_defaul t (dout, sel, a, b, ¢);
input [1:0] sel;
i nput a, b, c;
out put dout;
reg dout;

always @a or b or ¢ or sel) begin
case (sel)

dout = a;
dout = b;
dout = c;
default : dout =
endcase
end
endnodul e

Figure 1-14 shows the corresponding schematic for Example 1-48 and Example 1-49.

Figure 1-14 Preventing a Latch Using the Default Case Schematic (Verilog)
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You can also use the f ul | _case synthesis pragma. If the f ul | _case synthesis pragma is
incorrectly used, RTL simulation and gate-level simulation results in a mismatch. When an
unspecified case occurs during the simulation, the RTL model will preserve the value of the
variable because it is a r eg type variable. The gate-level simulation uses the implemented
combinational logic, possibly generating an incorrect output. The simulation results between
functional and gate level models may mismatch if this synthesis pragma is used.

Using casez and casex Statements in Verilog to Treat x, zand ? Like Don'’t
Cares

Use casex and casez statements to treat x, z and ? values like don’t care conditions when
comparing for the matching case. These statements are treated like case statements with
the following differences:

m Use acasez statement to treat z and ? as a don’t care condition.

m Use a casex statement to treat X, z and ? as a don’t care condition.

Example 1-50 shows a casez statement using don’t care conditions to mask three of the four
bits in the decoding select line (i nput sel).

Example 1-50 Modeling Don’t Care Conditions in a Casez Statement (VerilogQ)

nodul e case_z(dout, sel,a,b,c,d,e);
i nput [3:0] sel;
i nput a, b, c,d,e;
out put dout;
reg dout;

always @a or b or c or d or e or sel) begin
casez (sel)

dout = a;
dout = b;
dout = c¢
dout = d;
dout = e
endcase
end
endnodul e
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In the example, dout issettobifsel [ 0] = 1,regardless of the valuesofsel [ 3] ,sel [ 2]
andsel [ 1] ;dout issettoc onlyifsel [0] = 0 andsel [ 1] = 1, regardless of the values
ofsel [ 3] andsel [ 2] . One or more case items overlap (not parallel) and a priority encoder
is required to implement the equivalent hardware.

Figure 1-15 shows the corresponding schematic for Example 1-50.

Figure 1-15 Don’t Care Conditions in a Casez Statement Schematic (Verilog)
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Example 1-51 shows a casex statement using don’t care conditions in the same manner as
the casez statement. The difference between the two models is that the casex statement
masks three bits of the select line that would match x, z, or ?, but the casez statement will
not mask x in the select line.
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Example 1-51 Modeling Don’t Care Conditions in a Casex Statement (Verilog)

nodul e case_x(dout, sel,a,b,c,d,e);
input [3:0] sel;
i nput a,b,c,d,e;
out put dout;

reg dout;
always @a or b or ¢ or d or e or sel)
begi n
casex (sel)
dout = a;
dout = b;
dout = c;
dout = d;
default : dout = e;
endcase
end
endnodul e

Figure 1-16 shows the corresponding schematic for Example 1-51.

Figure 1-16 Don’t Care Conditions in a Casex Statement Schematic (Verilog)
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Using Case Statements in VHDL

Using an Incomplete case Statement to Infer a Latch

When a case statement specifies only some of the values that the case expression can
possibly have, a latch is inferred, as shown in Example 1-52.

Example 1-52 Modeling a State Transition Table to Infer a Latch (VHDL)

signal curr_state, next_state, nodifier:std |ogic vector(2 dowto 0);
process(curr_state, nodifier)

begin

case curr_state is
when " " => next_state <= " " or nodifier;
when " " => next_state <= " " or nodifier;
when " " => next_state <= " " and nodifier;
when " " => next_state <= " " and nodifier,
when " " => next_state <=" " or nodifier;
when " " => next_state <= " " and nodifier,
when others => nul | ;

end case;

end process;

The next _st at e signal is assigned a new value if cur r _st at e is any one of the six values
specified. For the other two possible states, the next _st at e signal retains its previous
value. This behavior causes RTL Compiler to infer a three bit latch for next _st at e.

Using a Complete case Statement to Prevent a Latch

If you do not want RTL Compiler to infer a latch, the next _st at e signal must be assigned a
value under all situations. In other words, the next _st at e signal must have a default value.
Assign the next _st at e signal a value unconditionally then modify it by a case statement,
as shown in Example 1-53.
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Example 1-53 Assigning the next_state Signal a Value to Prevent a Latch (VHDL)

process(curr_state,
begin

end

next _state <=
case curr_state i

when
when
when
when
when
when
when
case;

end process;

nmodi fi er)

s
next _state
next state
next _state
next state
next _state
next state

others => nul | ;

or
or
and
and
or
and

nodi fi er;
nmodi fi er;
nodi fi er;
nmodi fi er;
nodi fi er;
nmodi fi er;

Use the ot her s clause in the case statement to capture all the remaining cases where
next _st at e is assigned a value, as shown in Example 1-54.

Example 1-54 Using the Others Clause in the Case Statement (VHDL)

si gnal

curr_state, next _state, nodifier:
std_l ogi c_vector(

when
when
when
when
when
when
when

others => next_state <=

end case;
end process;

downto 0);
process(curr_state,
begin
case curr_state is

nmodi fier)

next _state
next _state
next _state
next _state
next _state
next _state

or
or
and
and
or
and

nodi fi er;
nodi fi er;
nodi fier;
nodi fi er;
nodi fier;
nodi fi er;

Replacing a Nested if-else-if Statement With a Functionally Equivalent case Statement

Example 1-55 shows a nested if-else-if statement. In general, it is better to use a case
statement to replace a functionally equivalent nested if-else-if statement, as shown in
Example 1-56.
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Example 1-55 Modeling a Nested if-else-if Statement (VHDL)

if (stat( downto 19) = 3 ) then result := 1;
elsif (stat( downto 19) =5 ) then result :=
elsif (stat( downto 19) = 6 ) then result :=
elsif (stat( downto 19) = 9 ) then result :=
elsif (stat( downto 19) = ) then result :=5;
elsif (stat( downto 19) = ) then result :=
el se

result :=
end if;

You can improve the QoS by changing the coding style to a functionally equivalent case
statement, as shown in Example 1-56. Although RTL Compiler can automatically transform
certain if-else-if statements into equivalent case-statements, it is better to model the RTL
using a case statement whenever possible.

Example 1-56 Replacing a nested if-else-if Statement With a Functionally Equivalent
Case Statement (VHDL)

case stat( downto 19) is
when " " =>result :=
when " " =>result :=
when " " => result ;
when " => result ;
when " " => result ;
when " ' => result ;
when ot hers => result ;

end case;
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Using a for Statement to Describe Repetitive Operations

Use the f or statement to describe repetitive operations.

Using a for Statement in Verilog

Example 1-57 uses the f or statement where i is declared as an integer and dout is a 4-bit
register. The f or statement is expanded to repeat the operations over the range of the index.

Example 1-57 Modeling a for Statement to Describe Repetitive Operations (Verilog)

nodul e for_| oop(dout, sel, a, b,)
i nput sel
i nput [3:0] a,b;
out put [3:0] dout;
reg [3:0] dout;
i nteger i;
al ways @a or b or sel)
begi n
for (i=0; i<=3; i=i+1)
begi n
if (sel)
dout[i]
el se
dout[i]
end
end
endnodul e

a[3-i];

bli];

Figure 1-17 shows the corresponding schematic for Example 1-57.

June 2006 73 Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Modeling HDL Designs

Figure 1-17 Using the for Statement to Describe Repetitive Operations Schematic
(Verilog)
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Supported Forms of the for Statement

for (index = low, index < high; index = index+step)
for (index = low, index <= high; index = index+step)
for (index = high; index > |low index = index-step)
for (index = high; index >= |ow, index = index-step)

The i ndex is declared as ani nt eger or areg; hi gh, | owand st ep are integers, and
hi gh must be greater than or equal to | ow.

Note: Hi gh, | ow, and st ep must evaluate to constant numbers during synthesis. An error
message is generated if one of them does not evaluate to a constant number.
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Af or statement can be nested inside another f or statement, but it cannot contain any form
of timing control or event control, as shown in Example 1-58.

Example 1-58 lllegal Use of the for Statement

for (i =0; i <=7, i =i + 1)
@ posedge clk) out[7-i] <= 1in[i]

Using a for Statement in VHDL

Using a for loop Statement to Describe Repetitive Operations
The following are the supported f or | oop statement forms:

for index in start_val to end_val |oop
for index in start_val downto end_val |oop
for index in discrete_subtype_indication |oop

Use af or | oop statement to describe repetitive operations, as shown in Example 1-59.

Example 1-59 Using a for loop Statement to Describe Repetitive Operations (VHDL)

process(in_sig, out_sig)

begin
for i in to | oop
out_sig(7-i) <=in_sig(i);
end | oop;

end process;

Where i is declared as i nt eger and out _si g and i n_si g are eight bit signals, the f or

| oop is expanded to repeat the operations over the range of the index. Therefore, the f or
statement model shown in Example 1-59 is treated in an equivalent manner to the following
operations:

out_sig(7) <=in_sig(0);
out _sig(6) <= in_sig(l);
out_sig(5) <=in_sig(2);
out _sig(4) <= in_sig(3);
out_sig(3) <=in_sig(4);
out _sig(2) <= in_sig(5);
out_sig(0) <= in_sig(6);
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Use af or | oop statement to store all the bits of a vector (i n_si g) in reverse order, as
shown in Example 1-60.

Example 1-60 Reversing and Assigning Bits of curr_state to next_state (VHDL)

signal curr_state: std_|logic_vector(2 downto 0);
signal next_state: std_logic_vector(2 downto 0);
process(curr_state)

subtype INTO2 is integer range to
begin

for I in INTO2 | oop

next _state(2-1) <= curr_state(l);

end | oop;

end process;
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Modeling Logic Abstracts

A logic abstract refers to a skeletal description of a module that only specifies the name of the
module and the name, width, and direction of the module’s ports. A logic abstract does not
describe the contents or the function of the module.

Inferring a Logic Abstract From the RTL in Verilog

You can infer a logic abstract in one of the following ways:

m Infer alogic abstract from an empty Verilog module description that lists the ports but has
no other information, such as no concurrent statements or sequential blocks.
Example 1-61 infers a logic abstract from the ny_sub_enpt y module:

Example 1-61 Inferring a Logic Abstract From an Empty Verilog Module Description

modul e ny_sub_enpty (p, q, X);
paranmeter w =
input [w-1:0] p, q;
out put [ 1 0] x;
endnodul e
module ny_top (a, b, c, y);
parameter w =

i nput [ :0] a, b, c;
wire [ (0] t;
out put [ 0] y;

ny_sub_enpty #(w) ul (.p(a), .q(b), .x(t));
assigny =t | c;
endrodul e

m Infer a logic abstract from a SystemVerilog external declaration of a module where the
definition of the external module is not found in the input HDL. This is different from a
typical unresolved reference since the input and output direction and bit-range of ports
of the instantiated sub-module are known. It is unresolved since the definition of that sub-
module is missing. The RTL coding style shown in Example 1-62, infers a logic abstract
for the my_sub_gr ay module.
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Example 1-62 Inferring a Logic Abstract for an External Module with Missing Module

extern nodul e nmy_sub_gray #(paraneter w = 4)
(input [ :0] p, g, output [ 0] x);
module ny_top (a, b, c, y);
paraneter w =
i nput [ :0] a, b, c;
wire [ (0] t;
out put [ 0] y;
ny_sub_gray #(w) ul (a, b, t);
assigny =t | c;
endnodul e

Inferring a Logic Abstract From the RTL in VHDL

You can infer a logic extract in VHDL in one of the following ways:
m Infer a logic abstract from a VHDL entity whose architecture is missing in the RTL.

The RTL coding style shown in Example 1-63, infers a logic abstract for the
nmy_sub_enpty component.
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Example 1-63 Inferring a Logic Abstract From a VHDL Entity with Missing Architecture

library ieee;
use ieee.std_|logic_1164. all
entity ny_sub enpty is
generic (w: integer := 4);
port (p, g : in std logic vector (w1 downto 0);
X : out std_logic_vector (w1 downto 0) );
end ny_sub_enpty;

library ieee;
use ieee.std_|logic_1164. all
entity ny top is

generic (w: integer := 4);
port (a, b, ¢ : in std |logic _vector (w1 downto 0);
y : out std_logic_vector (w1 downto 0) );
end ny_top;

architecture rtl of my_top is
signal t : std_logic _vector (w1 downto 0);
conmponent my_sub_enpty
generic (w: integer := 4);
port (p, g : in std_logic_vector (w1 downto 0);
X : out std_logic vector (w1 downto 0) );
end conponent;
begi n
ul: my_sub_enpty generic map (w => w)
port map (p => a, q => b, x =>1);
y <=1t or c;
end rtl;

m Infer a logic abstract from an empty VHDL architecture description that has ports but no
other information, such as no concurrent statements or process blocks.

The RTL coding style, shown in Example 1-64, infers a logic abstract from the
ny_sub_enpt y component.
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Example 1-64 Inferring a Logic Abstract From an Empty VHDL Architecture

library ieee;
use ieee.std_|logic_1164. all
entity ny_sub_enpty is
generic (w: integer := 4);
port (p, q : in std_|logic_vector (w1 dowto 0);
X : out std_logic_vector (w1 downto 0) );
end ny_sub_enpty;
architecture rtl of ny_sub_enpty is
begi n
end rtl;

library ieee;

use ieee.std logic_1164. all
use work. my_sub_enpty;
entity ny_top is

generic (w: integer := 4);
port (a, b, ¢ : in std logic_vector (w1 downto 0);
y : out std_logic_vector (w1 downto 0) );
end ny_top;

architecture rtl of ny top is
signal t : std_logic_vector (w1 downto 0);
begi n
ul: entity nmy_sub_enpty generic map (w)
port map (a, b, t);
y <=t or c;
end rtl;

m Infer a logic abstract from a component instantiation where the component declaration
statement exists as usual, but the entity and architecture definition of the declared

component are not found in the input HDL code.

This is different from a typical unresolved reference since the input and output direction
and bit-range of ports of the instantiated component are known. It is unresolved since
the entity and architecture of that component are missing. The RTL coding style, shown

in Example 1-65 infers a logic abstract for the my _sub_gr ay component.
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Example 1-65 Inferring aLogic Abstract From a Component Instantiation With Missing
Entity and Architecture

library ieee;
use ieee.std |ogic_1164. all
entity ny_top is

generic (w: integer :=4);
port (a, b, ¢ : in std_logic_vector (w1 downto 0);
y : out std logic vector (w1 downto 0) );
end ny_top;

architecture rtl of ny top is
signal t : std_logic_vector (w1 downto 0);
conponent ny_sub_gray
generic (w: integer := 4);
port (p, q : in std |logic vector (w1 downto 0);
X : out std_logic_vector (w1 downto 0) );
end conponent;
begi n
ul: ny_sub_gray generic map (w) port map (a, b, t);
y <=t or c;
end rtl;
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Interpreting a Logic Abstract in Verilog or VHDL

O InVerilog,usethe hdl _use_t echelt first attribute when there is a user-defined
module (empty or not) that shares the same name as a technology element in the library.

If this attribute is set to f al se, RTL Compiler picks up the user module. If this attribute
is setto t rue, RTL Compiler picks up the tech element.

If a logic abstract is inferred from a SystemVerilog external module statement whose
module is missing, as shown in Example 1-62, then it goes through the library look-up
process. If a library cell of the same name is found, it becomes an instance of that library
cell. If not, it becomes an unresolved reference in the design.

In Verilog, if a logic abstract is inferred from either an empty module, as shown in

Example 1-61, or in VHDL, if a logic abstract is inferred from either an entity without an
architecture, as shown in Example 1-63, or an entity whose architecture is empty, as shown
in Example 1-64, then its interpretation is affected by the hdl _use_techelt _first and
hdl _infer_unresol ved_from | ogi c_abst ract attributes in the following way:

m If either attribute is set to t r ue, the logic abstract goes through the library look-up
process. If a library cell of the same name is found, then the logic abstract becomes an
instance of that library cell. If not, the process continues.

m Ifthehdl _infer_unresolved_from.| ogic_abstract attribute is setto
t r ue, then the logic abstract becomes an unresolved reference in the design.

m Ifthe hdl _infer_unresol ved _from.| ogi c_abstract attribute is setto f al se,
then it remains at the level of a user-defined design hierarchy, although its function is
unknown.

By default, the hdl _i nf er _unresol ved_from | ogi c_abstract attributeissettotrue
for LEC compatibility.
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Writing Out a Logic Abstract in Verilog

If a logic abstract is internally treated as an unresolved reference, it can be written out as
either an empty module or as an unresolved reference in a netlist generated by RTL Compiler
using the following attribute.

0 Setthewite_ vlog enpty nodul e for_|ogic_abstract attributetotrue to
write out this type of unresolved reference as an empty module in the Verilog netlist.

In the netlist it becomes a design hierarchy level with no known functionality, and it also
becomes a resolved reference, as shown in Example 1-67.

For example, for the RTL code shown in Example 1-67, a component statement is provided
but the entity and architecture of the instantiated component are missing. If you set the
write_vliog enpty modul e_for | ogic_abstract attributetotr ue, asshownin
Example 1-66, then Example 1-67 shows the resulting Verilog netlist.

Example 1-66 Writing an Unresolved Reference as an Empty Module

set _attribute library tutorial.lbr

set_attribute wite_vlog _enpty_nodul e for | ogic_abstract true
read_hdl test.v

el abor at e

write hdl

Example 1-67 Unresolved Reference as an Empty Module in a Verilog Netlist

nodul e ny_sub_gray w 4 (p, d, X);
fnput [3:0] p, q;
output [3:0] x;
endnodul e
module ny_top (a, b, ¢, y);
input [3:0] a, b, c;
output [3:0] v;
wret O, t 1, t 2, t_3;
nmy_sub gray w4 ul (.p (a), .q (b), .x ({t_3, t_2, t_ 1, t _0}));

or g1 (y[O], t_O, c[0]);

or g2 (y[1], t_1, c[1]);

or g3 (y[2], t_2, c[2]);

or g4 (y[3], t_3, c[3]);
endrodul e
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0 Setthewrite_vlog enmpty nodul e for_| ogic_abstract tofal seifyou
want this type of unresolved reference to remain unresolved in the netlist.

It does not have an empty module in the Verilog netlist, as shown in Example 1-69.

If yousetthewrite vlog enpty nmodul e for | ogic_abstract attribute to
f al se, as shown in Example 1-68, then Example 1-69 shows the resulting Verilog netlist.

Example 1-68 Writing an Unresolved Reference That Remains Unresolved in Netlist

set_attr library tutorial.lbr

set _attr wite vlog_enpty nodule for | ogic_abstract false
read _hdl tst.v

el aborate

write_ hdl

Example 1-69 Unresolved Reference Remains Unresolved in Netlist (Verilog)

nmodule ny_top (a, b, c, y);
input [3:0] a, b, c;
out put [3:0] v;
wiret 0, t_ 1, t_2, t_3;
nmy_sub gray w4 ul (.p (a), .q (b), .x ({t_3, t_2, t_1, t_0}));
or g1 (y[O], t_O, c[0]);
or g2 (y[1], t_1, c[1]);
or g3 (y[2], t_2, c[2]);
or g4 (y[3], t_3, c[3]);
endnodul e

— o~ o~ -

By default, the wite_ vl og enpty nodul e for | ogi c_abstract attribute is set to
t r ue for LEC compatibility.

Note: Thewite vl og_enpty nodul e for | ogi c_abstract attribute does notapply
to an unresolved reference that is not a logic abstract.
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Representing a Black Box as an Empty Module

O  If you want to use an empty module in the HDL code as a place-holder for an unresolved
reference, such as for a hard macro, set the following attributes to t r ue:
rc:/> set_attribute hdl _infer_unresolved from|logic_abstract true
rc:/> set_attribute wite vliog_enpty nodul e_for_|ogic_abstract true

If RTL Compiler reads back a netlist that it previously wrote out, setting these attributes to
t r ue ensures that everything is interpreted in the same way as before.

Representing a Technology Cell as an Empty Module

0 If you want to use empty modules in the HDL code to represent technology cells in the
synthesis library, set the following attributes:
rc.:/> set_attribute hdl _infer_unresolved fromlogic_abstract true
rc:/> set_attribute wite_vlog_enpty _nodul e_for_|ogic_abstract false

If RTL Compiler reads back a netlist that it previously wrote out, then this is consistent,
because an empty module in the original RTL code becomes an unresolved reference in the
netlist, therefore, it goes through the library look-up process when the netlist is read back in.
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Synthesis Pragmas

= Overview on page 89

m  Supported Synopsys Pragmas on page 90

O  Verilog Supported Synopsys Pragmas on page 90

0 VHDL Supported Synopsys Pragmas on page 91

m  Specifying Synthesis Pragma Keywords on page 92

s Code Selection Pragmas on page 94

0  Verilog translate_on and translate off Pragmas on page 94

0 VHDL translate_on and translate off Pragmas on page 95

m case Statement Pragmas (Verilog) on page 96

0O full_case Pragma on page 96

0 parallel_case Pragma on page 97

m Set and Reset Synthesis Pragmas on page 98

O  Verilog Set and Reset Synthesis Pragmas on page 98

0 VHDL Set and Reset Synthesis Pragmas on page 103

= Multiplexer Mapping Pragma on page 112

O  Verilog Multiplexer Mapping Pragma on page 112

O VHDL Multiplexer Mapping Pragma on page 116

m  Function and Task Mapping Pragmas (Verilog and VHDL) on page 120

m  Signed Type Pragma (VHDL) on page 121

m  Resolution Function Pragmas (VHDL) on page 124

m  Template Pragma (Verilog and VHDL) on page 122
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= Enumeration Encoding Pragma (VHDL) on page 123

m  Resolution Function Pragmas (VHDL) on page 124
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Overview

Synthesis pragmas are specially-formatted comments. Do not confuse these comments with
Verilog HDL compiler directives that begin with * . Synthesis pragmas perform code selection
or specify how the set and r eset pins of a register are wired.

m  RTL Compiler supports the following two forms of Verilog synthesis pragmas:

0  Short comments that terminate at the end of the line:

/] cadence pragma_nane
0 Long comments that extend beyond one line:
/* cadence pragma_name */

m  RTL Compiler supports the following two forms of VHDL synthesis pragmas:

O  Attributes—Defines VHDL attributes attached to appropriate objects in the source
VHDL.

0 Meta-comment—Defines the VHDL comments embedded in the VHDL source
code. These pragmas begin with the cadence synt hesi s keyword.

Note: When using a comment for specifying a synthesis pragma, that comment should not
contain any extra characters other than what is necessary for the synthesis pragma.
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Supported Synopsys Pragmas

Verilog Supported Synopsys Pragmas

Table 2-1 lists the supported Verilog Synopsys pragmas. The pragma keyword in RTL
Encounter is cadence. RTL Encounter also supports the synopsys pragma keyword.

Table 2-1 Supported Verilog Synopsys Pragmas

Synopsys

Cadence RTL Compiler

[l synopsys

| abel

/! cadence | abel

/'l synopsys

async_set reset

/| cadence async_set reset

[l synopsys

async_set _reset | ocal

/| cadence async_set reset | ocal

/'l synopsys

dc_script_begin

/| cadence dc_script_begin

[l synopsys

dc_script _end

/| cadence dc_script_end

/'l synopsys

full case

/'l cadence full case

[l synopsys

map_t o_nodul e

/'l cadence map_to_nodul e

/'l synopsys

i nfer_mux

/'l cadence map_to_mnux

[l synopsys

map_t o_oper at or

/| cadence nmap_to_operator

/'l synopsys

paral | el _case

/'l cadence parallel _case

[l synopsys

return_port _nanme

/| cadence return_port_nane

/'l synopsys

sync_set _reset

/| cadence sync_set _reset

[l synopsys

sync_set _reset | ocal

/'l cadence sync_set reset | ocal

/'l synopsys

tenpl ate

/'l cadence tenpl ate

[l synopsys

transl ate_off

/'l cadence transl ate_ off

/'l synopsys

transl ate_on

/'l cadence translate_on
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VHDL Supported Synopsys Pragmas

Table 2-2 lists the supported VHDL Synopsys pragmas.

Table 2-2 Supported VHDL Synopsys Pragmas

Synopsys RTL Compiler

--synopsys | abel - -cadence

--synopsys | abel _applies_to --cadence propagate_| abel _to
--synopsys map_to_nodul e --cadence map_to_nodul e
--synopsys i nfer_mux --cadence map_t o_nux
--synopsys map_t o_oper at or --synopsys map_t o_operat or
--synopsys return_port_nane --cadence return_port_nane
--synopsys synt hesis_off --cadence synthesis off
--synopsys synthesis_on --cadence synthesis on
--synopsys tenpl ate --cadence tenpl ate
--synopsys translate_off --cadence transl ate off
--synopsys translate_on --cadence transl ate_on

June 2006 91 Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Synthesis Pragmas

Specifying Synthesis Pragma Keywords

Normally, comments are meant to be ignored by RTL Compiler. However, setting a synthesis
pragma keyword enables RTL Compiler to process a comment that begins with the specified
keyword.

You can specify a pragma keyword and the name of individual pragmas. If the pragmas in the
RTL code do not use the same keyword, then you can define a set of pragma keywords using
the following two attributes. To define multiple keywords, put them in a TCL list.

0  Set a pragma keyword using the following attribute.

rc:/> set_attribute input_ pragm_keyword cadence

Default: get 2chi p g2c anbit synopsys cadence pragma

Setting this pragma keyword tells RTL Compiler that every comment beginning with
cadence is a synthesis pragma and should not be ignored.

For example, if the RTL code has the -- pragma transl ate_of f code selection
pragma, then tell RTL Compiler to use the pr agnma keyword by setting the
i nput _pragma_keywor d attribute.

In the RTL code, a pragma has the following form:

[l pragnma_keyword pragma_nanme [ pragnma_val ue]

Some pragmas have a pr agma_val ue. For popular pragmas, you can customize the
pragma_nane. If the RTL code uses multiple names for one pragma, then you can define a
set of names for that pragma.

Note: Set this attribute before using the r ead_hdl command.

Use the attributes listed in Table 2-3 to define the names of individual pragmas. To define
multiple names for one pragma, put them in a TCL list.
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Table 2-3 Synthesis Pragma Keyword Names

Attribute

synt hesi s_off_conmmand

synt hesi s_on_comand

del ayed_pragma_commands_i nterpreter

nput _case_cover_pragm
nput _case_decode_pragm

nput _asynchro_reset _pragnma

nput _asynchro_reset bl k_pragma

nput _nmap_t o_nmux_pragna
nput _synchro_reset _pragnma

nput _synchro_reset bl k_pragm

nput _synchro_enabl e_pragma

nput _synchro_enabl e_bl k_pragma

script_begin

script_end

Default

{transl ate_off synthesis_off}
{transl ate_on synt hesis_on}
full _case

paral | el _case

{async_set reset
asynchro_reset}

{async_set reset | oca
asynchro_reset bl k}

{map_t o_nux i nfer_mux}
{sync_set reset synchro_reset}

{sync_set reset | oca
synchro_reset bl k}

{synchro_enabl e}
{synchro_enabl e_bl k}

dc

{dc_script_begin script_begin}

{dc_script_end script_end}
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Code Selection Pragmas

By default, RTL Compiler compiles all HDL code from a file. Use the code selection synthesis
pragmas in pairs around HDL code that should not be compiled for synthesis. However, the
code between the two pragmas will be checked for syntactic correctness.

Verilog translate_on and translate_off Pragmas

In Verilog, all the code following the / / cadence transl at e_of f synthesis pragma up to
and including the / / cadence t r ansl at e_on synthesis pragma is ignored by RTL
Compiler.

For example, initialization code can be added for analysis purposes, as shown in

Example 2-1. This code is not synthesized. If the i ni ti al block is surrounded by these
synthesis pragmas, RTL Compiler will skip over the entire block.

Example 2-1 Modeling the translate_off and translate_on Pragmas

/'l cadence translate off
initial begin

cond _flag =
$di splay(“cond_flag cleared at the beginning.”) ;
end

/'l cadence transl ate_on

al ways @ posedge cl ock)
if (cond_fl ag)
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VHDL translate_on and translate_off Pragmas

In VHDL, all the code following the -- cadence t r ansl at e_of f synthesis pragma up to and
including the - - cadence t r ansl at e_on synthesis pragma is ignored by RTL Compiler.

You can add assertions in your model that are not synthesized for analysis purposes. If the
assertions are surrounded by the t r ansl at e_on and t r ans| at e_of f pragmas, RTL
Compiler ignores them for synthesis, but verifies the syntax between the pragmas.

Usethetransl ate_on andtransl at e_of f code selection pragmas, shown in
Example 2-2, around VHDL code that should be completely ignored by the VHDL parser and
that should not be synthesized by RTL Compiler. All the code following the synthesis pragma
cadence transl at e_of f up to and including the cadence t r ansl at e_on synthesis
pragma is ignored by RTL Compiler even if it contains syntax errors.

Example 2-2 Modeling the translate_on and translate_off Pragmas (VHDL)

function DIVIDE (L, R integer) return integer
is variable RESULT: integer;
begin

- cadence translate_off

- cadence translate_on
RESULT: = L/ R

return (RESULT);
end Dl VI DE;
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case Statement Pragmas (Verilog)

A case statement can be interpreted in many ways. The default interpretation decodes the
case labels in the order listed in the model. That is, the case statement is interpreted as a
nestedi f - el se statement.

Theful | _case and the par al | el _case synthesis pragmas provide a mechanism to
modify the default interpretation.

If the case statement has sufficient information, these synthesis pragmas are automatically
inferred, even if they are not included in the code.

full_case Pragma

If the synthesis pragma is f ul | _case, then the case expression evaluates to only those
values specified by the case labels in the case statement, as shown in Example 2-3. This
implies that all other possible values of the case expression are treated as don’ t care
conditions.

Note: This further implies that there is no need for a default clause in the case statement
and a latch is not inferred.

Example 2-3 Modeling the full_case Pragmato Suppress the Latch Inference (Verilog)

case (arith_opcode) // cadence full _case
result = 32°h0 ;// clear
result = srcl + src2 ;// add

result = srcl + 1°bl ;// inc
result = srcl - src2 ;// subl
result = src2 - srcl ;// sub2

result = srcl - 1°bl ;// dec
endcase

Use the f ul | _case synthesis pragma to suppress the latch inference only if the procedural
assignments in each case item are made to all the variables modified in the case statement.

In the case statement, shown in Example 2-4, the second case item does not modify r eg2,
so itis inferred as a latch to retain the last value.
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Example 2-4 Modeling the full_case Pragma to Infer a Latch (Verilog)

case (cntr_sig) // cadence full _case
begin regl = 0 ; reg2 = v_field ; end
regl = v _field ; // latch inferred for reg2
begin regl = v_field ; reg2 = ; end
endcase

If the f ul | _case synthesis pragma is incorrectly used, RTL simulation and gate-level
simulation results in a mismatch. When an unspecified case occurs during the simulation,
the RTL model will preserve the value of the variable because it is a r eg type variable. The
gate-level simulation uses the implemented combinational logic, possibly generating an
incorrect output.

parallel _case Pragma

If the synthesis pragma is par al | el _case, then all the case labels have equal priority of
matching the case expression. The optimizer uses this information to avoid building a
decoder to decode for 2" alternatives, where n is the size in bits of the case expression. The
optimizer builds a parallel decoding logic instead of priority encoder logic to drive the select
lines for the multiplexer. Example 2-5 shows how to model the par al | el _case pragma.

Example 2-5 Modeling the parallel _case Pragma (Verilog)

case (1 bl) // cadence parallel _case
cc[0] : cntr =

cc[1] : cntr = data_in ;
cc[2] : cntr =cntr -
cc[3] : cntr =cntr +

endcase

During simulation, if the case expression matches more than one case label, the logic
corresponds to each case label. This causes the results to differ between RTL simulation and
netlist simulation. This occurs if you use casex or casez statements to mask certain
combinations. The RTL simulation performs the procedural assignment corresponding to the
first case label match, whereas the gate-level simulation enables the logic for all the matching
case labels. Therefore, ensure that only one case label is matched in the case statement
before using the par al | el _case synthesis pragma. Example 2-5 shows the logic which
guarantees that only one of the four bits of cc is high at any given time.
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Set and Reset Synthesis Pragmas

Using the Verilog and VHDL set and reset synthesis pragmas only convey user preferences.
They do not force RTL Compiler to honor the pragmas or change the behavior of the design.
Therefore, in some scenarios the pragmas may be ignored to provide a better quality netlist.
If the design is written with synchronous control on a flip-flop and the synthesis pragma
specifies asynchronous selection, the resulting implementation will still be synchronous. A
warning is displayed if the synthesis pragma conflicts with the model.

Verilog Set and Reset Synthesis Pragmas

Use the set and reset synthesis pragmas to guide RTL Compiler to use set and reset pins to
implement synchronous set and reset behavior on a flip-flop or asynchronous set and reset
behavior on a latch. The default behavior is to implement these operations with the data input
pins. The set and reset pragmas are honored in the elaborated netlist only if constant O or 1
assignments are made under the control of the specified set and reset signal.

Note: Asynchronous set and reset behavior on a flip-flop is always implemented with
asynchronous set and reset pins, regardless of the state of the set and reset synthesis
pragmas, as shown Example 2-6.

Example 2-6 Modeling Asynchronous Set and Reset Control Logic for Flip-Flops
(Verilog)

nmodul e dff_async_sr(cl k, d, en, set,reset, q);
i nput clk,d,en, set, reset;
out put q;
reg q;

al ways @ (posedge cl k or posedge set or posedge reset) begin
if (set)
q <=
else if (reset)
q <=
else if (en)
q <= d;
end
endnodul e

Figure 2-1 shows the corresponding schematic for Example 2-6.
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Figure 2-1 Asynchronous Set and Reset Control Logic for Flip Flops (Verilog)
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Set and Reset Signal Pragmas

Specify the set and r eset signal pragmas as follows:
/1l cadence async_set _reset signal _name_Ii st
/| cadence sync_set _reset signal_nane_li st

The sync_set reset signal pragma is shown in Example 2-7 and Figure 2-2.

The set and reset signal pragmas are honored in the elaborated netlist only if constant O or
1 assignments are made under the control of the specified set and reset signal.

The si gnal _name_I i st is a comma separated list of signal names in a module, as
shown in Example 2-7.

The signal pragmas must be used within a module and precede all al ways blocks. Do not
list an undefined or an unused signal. The signal pragma must be in the same declarative
region as the specified signal.

The flip-flop inferred for q is connected so that the set and reset signals connect to the
synchronous sr 1 and sr d pins. The d and en signals are connected through combinational
logic feeding the D flip-flop and sena pins.
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Example 2-7 Modeling the synchronous_set_reset Pragma (Verilog)

nmodul e dff _sync_sr(clk, d, en, set, reset, q);
i nput clk,d,en, set, reset;
out put q;
reg qi

/1 cadence sync_set reset "set, reset"

al ways @ (posedge cl k) begin
if (set)
q <= ;
else if (reset)
q <= ;
else if (en)
q <= d;
end
endnodul e

Figure 2-2 shows the corresponding schematic for Example 2-7.

Figure 2-2 Synchronous Set and Reset Control Logic (Verilog)
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Signals in a Block Pragma

For Verilog, specify the signal name for the set and r eset operation by using the following
pragmas in the named block, as shown in Example 2-8:

/I cadence async_set reset |ocal signal _name_|ist

/I cadence sync_set _reset | ocal signal_nanme_|ist

Only the signals listed in the named block that perform synchronous or asynchronous set
and r eset operations are connected to the synchronous or asynchronous pins respectively.
For registers inferred from other blocks, these signals are connected to the data input.

Example 2-8 Modeling sync_set_reset Signals in a Block Pragma (Verilog)

nodul e sync_bl ock_sig dff(outl, out2, clk, in, rst);
out put outl, out?2;

input in, clk, rst;

reg outl, out?2;

al ways @ posedge cl k) begin: blk_1
/| *cadence sync_set _reset _local rst */

if (rst)
outl <=
else outl <= in;
end

al ways @ posedge cl k) begin: blk_2
if (rst)
out2 <=
el se out2 <= in;
out2 <=
end
endnodul e

Figure 2-3 shows the corresponding schematic for Example 2-8.
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Figure 2-3 sync_set_reset Signals in a Block Synthesis Pragma (Verilog)
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VHDL Set and Reset Synthesis Pragmas

When the el abor at e command infers a register from a VHDL description, the command
also infers set and r eset control of the register and defines whether these controls are
synchronous or asynchronous. For examples showing flip-flops and latches with set and reset
operations, see Modeling Latches on page 38 and Rising Edge Triggered Flip-Flop
Schematic (Verilog) on page 29 in Chapter 1, “Modeling HDL Designs.”

There are two ways to implement the synchronous set and r eset logic for these inferred
registers.

= Control the input to the data pin — Controls the input to the data pin of a register
component using set and r eset logic so that the data value is 1 when set is active, O
when r eset is active, and driven by the data source when both set and r eset are
inactive. This is the default approach.

s Implementset andreset control —Implements set and r eset control of a register by
selecting the appropriate register component (cell) from the technology library and
connecting the output of set and reset logic directly to the set and r eset pins of the
component. The data pin of the component is driven directly by the data source.

Figure 2-4 shows the default implementation for the set and r eset control logic.

Figure 2-4 Default Implementation of Set and Reset Control Logic (VHDL)
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There are synthesis pragmas to support set and reset logic at the process level, signal level,
or a mix of the process and signal levels for each register inferred. These synthesis pragmas
are advisory pragmas only. They do not force the tool to implement set and reset logic with
one approach; rather, they drive the selection of the component from the technology library
to provide additional options.
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Process Pragmas

Use the sync_set reset process process (or block) pragmas to control the connection
of set and reset control logic for all the registers inferred within a specific process. Specify
process pragmas using Boolean-valued attributes attached directly to the process labels as
shown below.

Example 2-9 VHDL Process Pragma

attribute SYNC SET_RESET PROCESS: bool ean;
attribute SYNC SET RESET PROCESS of P1: |abel is TRUE;
attribute SYNC SET_RESET PROCESS: bool ean;
attribute SYNC SET RESET PROCESS of P2: |abel is TRUE;

P1 and P2 are the labels for the processes. These pragmas indicate that the set and reset
control logic for all the registers inferred within the process is directly connected to the
synchronous (for SYNC_SET_ RESET_ PROCESS) and asynchronous (for
ASYNC_SET_RESET_PROCESS) pins of the register component. The

SYNC SET RESET PROCESS and ASYNC SET RESET PROCESS attributes are declared in
the cadence. attri but es package.

These process pragmas must be specified in the declarative region of the architecture that
contains the corresponding processes. In Example 2-10, D-type flip-flops are inferred for the
dout 1 and dout 2 signals. For dout 1, the synchronous set and reset operations, controlled
by the set and reset signals, are implemented in the elaborated netlist through the sr1 and
sr d pins on the generic CDN_f | op component. Logic for the dout 2 signal however, is
implemented entirely through the D pin on the CDN _f | op component.
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Example 2-10 Modeling the sync_set_reset_process Synthesis Pragma (VHDL)

library ieee, cadence;
use ieee.std _logic_1164. all
use cadence. attributes. all

entity sync_sr3 is
port (
din, clk, set, reset: in std_|ogic;
dout 1, dout2 : out std_logic);
end;

architecture rtl of sync_sr3 is
attribute sync_set_reset_ process of pl: label is true;
begin
pl: process(clk) begin
if rising _edge(clk) then
if set =1 then
doutl <= "1";
elsif reset = "1 then
doutl <= '0";
el se
doutl <= din;
end if;
end if;
end process;
p2: process(clk) begin
if rising_edge(clk) then
if set =1 then
dout 2 <=
elsif reset =1 then
dout2 <=~
el se
dout 2 <= din;
end if;
end if;
end process;
end;

Figure 2-5 shows the corresponding schematic for Example 2-10.

June 2006 105

Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Synthesis Pragmas

Figure 2-5 Implementing Set and Reset Synchronous Block Logic (VHDL)
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VHDL Signal Pragmas

Use signal pragmas to selectively connect some of the signals directly to the set orreset
pin of the component and let the other signals propagate through logic onto the data pin.

The si gnal pragma states that the specified signal should be connected directly to the set
and r eset pin of any inferred registers for which the signal causes a set or reset. Specify the

si gnal pragma using Boolean-valued attributes attached directly to the appropriate signals,
as shown in Example 2-11.

Example 2-11 VHDL Signal Pragmas

attribute SYNC SET RESET: bool ean;

attribute SYNC SET_RESET of S: signal is true;
attribute ASYNC SET RESET: bool ean;

attribute ASYNC SET RESET of R signal is true;
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The signals are tagged S and Rwith the SYNC_SET_RESET and ASYNC_SET_RESET
attributes respectively, indicating that they should be connected directly to the synchronous
set and asynchronous r eset pins of the inferred registers. The SYNC_SET_RESET and
ASYNC_SET_RESET attributes are declared in the cadence. att ri but es package.

Note: Specify the si gnal pragma in the same declarative region as the signal being
attributed. An error occurs if you specify these pragma for a non-existent or unused signal.

The flip-flop inferred for out 1 and out 2, shown in Example 2-12, is connected so that the
set signal connects to the synchronous set pin and the r eset signal is connected through

combinational logic feeding the D data port.

Example 2-12 Modeling the Signal Pragma (VHDL)

l'ibrary ieee, cadence;
use ieee.std |ogic 1164. all
use cadence. attributes. all
entity sync_sr4 is
port (
din, clk, set, reset: in std_|ogic;
dout : out std_logic);
attribute sync_set reset of set: signal is true;
end;
architecture rtl of sync_sr4 is
begi n
process(cl k) begin
if rising_edge(clk) then
if set =1 then
dout <=
elsif reset = '1" then
dout <=
el se
dout <= din;
end if;
end if;
end process;
end;

The generated logic is shown in Figure 2-6.
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Figure 2-6 Implementing Set and Reset Synchronous Signal Logic (VHDL)
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Signals in a Process Pragma

Sometimes it is necessary to connect signals directly to the set and r eset pins of certain
registers and through the data input of other registers. In this situation, two synthesis
pragmas that provide a combination of the synthesis pragmas, discussed in Process
Pragmas on page 104, are useful. These synthesis pragma combinations let you specify both
the process and the signal names.
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Using the sync_set_reset_local and async_set_reset_local Attributes

The model, shown in Example 2-13, usesthe sync_set reset | ocal attribute to indicate
that the r st signal should be connected to the synchronous set and r eset pins of the flip-
flops inferred in process P1.

Example 2-13 VHDL sync_set_reset_local and async_set_reset_local Attributes

signal rst, set: std_logic;

attribute sync_set reset l|ocal: string;
attribute sync_set _reset |ocal of Pl: |abel is
attribute sync_set reset l|ocal: string;
attribute sync_set _reset | ocal of P2: |abel is

rst”;

set";

The sync_set _reset | ocal attribute indicates that the signal set should be connected
to the asynchronous set orr eset pin of the latches inferred in P2.

The sync_set _reset | ocal and async_set _reset | ocal attributes are declared in
the cadence. attri but es package.

Only the listed signals in the process are inferred as synchronous or asynchronous set and
r eset signals and will be connected to the synchronous or asynchronous pins respectively.
For registers inferred from other processes, signals can be connected to the data input as
appropriate. Example 2-14 shows how to use the sync_set reset | ocal synthesis
pragma.
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Example 2-14 Modeling the sync_set_reset_local Synthesis Pragma (VHDL)

l'ibrary ieee, cadence;
use ieee.std_logic_1164. all
use cadence. attributes. all

entity sync_sr5 is
port (
din,clk,set,reset: in std_|ogic;
dout 1,dout?2 : out std_logic);
end;

architecture rtl of sync_sr5 is

attribute sync_set _reset | ocal of pl: |abe

begin
pl: process(clk) begin
if rising _edge(clk) then
if reset =1 then
doutl <= '0";
elsif set =1 then
doutl <= "1";
el se
doutl <= din;
end if;
end if;
end process;

p2: process(cl k) begin
if rising _edge(clk) then
if reset =1 then
dout2 <= '0";
elsif set ='1" then
dout2 <= "1";
el se
dout 2 <= din;
end if;
end if;
end process;
end;
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The generated logic is shown in Figure 2-7. The reset control (r st signal) for the out 1 flip-
flop is connected directly to the synchronous r eset pin, whereas the r eset control for the
out 2 flip-flop is connected through logic to the input pin. This is because the r st signal was
identified as synchronous in the pragma for pr ocess P1 only.

Figure 2-7 Implementing Set and Reset Synchronous Signals in a Block Logic (VHDL)
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Multiplexer Mapping Pragma

Usethe map_t o_nux pragma (also called i nf er _nmux) withthe case,i f -t hen- el se,and
Verilog or VHDL choice, suchasy = sel ? a: b; statements, and with Verilog named
blocks to force RTL Compiler to implement the statement with multiplexer components from
the technology library.

Note: The resulting netlist may have worse area, delay, or power than if RTL Compiler were
not forced to map to multiplexers.

Verilog Multiplexer Mapping Pragma

Modeling the map_to_mux Pragma With a Case Statement

Example 2-15 shows the map_t o_nux pragma with a case statement and Figure 2-8 shows
the resulting schematic.

Example 2-15 Modeling map_to_mux Pragma With a Case Statement (Verilog)

nmodul e map2mux1 (a, sel, z);

i nput [3:0] a;
input [1:0] sel;
out put z;

reg z;

always @ (a or sel) begin
case (sel) [/ cadence map_to_nux

z <= a[0];
z <= a[1];
z <= a[?7];
z <= a[ 3];
endcase
end
endnodul e
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Figure 2-8 map_to_mux (infer_mux) Pragma With a case Statement (Verilog)
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Modeling the map_to_mux Pragma With an if Statement

Example 2-16 shows the map_t o_nmux pragma with an i f statement and Figure 2-9 shows
the resulting schematic.

Example 2-16 Modelling map_to_mux (infer_mux) Pragma With an if Statement
(Verilog)

nodul e map2nux2(a, b, s, z);
i nput a, b, s;
out put z;

reg z;

always @a or b or s) begin
if (s) /! cadence nap_to_nux

endnodul e
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Figure 2-9 map_to_mux Pragma (infer_mux) With an if Statement (Verilog)
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Modeling the map_to_mux Pragma With a Choice Statement

Example 2-17 shows the map_t o_nux pragma with a choi ce statement and Figure 2-10
shows the resulting schematic.

Example 2-17 Modeling map_to_mux (infer_mux) Pragma With a Choice Statement

nmodul e map2nux3(a, b, s, z);
i nput a, b, s;
out put z;
assign z = s ? // cadence map_to_nux
a: b;
endnodul e
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Figure 2-10 map_to_mux Pragma With a choice Statement
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Modeling the map_to_mux Pragma for Named Blocks

Use the map_t o_nux pragma for named blocks such that all mux possibilities within the block
(i f, case, variable bit-selects) are mapped to muxes. As shown in Example 2-18, the syntax
generates muxes for case statements and indexed names within the named always blocks
given in the pragma.

Example 2-18 Modeling map_to_mux Pragma for Named Blocks

/1 cadence map_to_nmux "bl k1, blk2"
al ways @ (dl or sel)

begi n: bl k1
gl = difsel];
end
always @ (d2 or x0 or x1 or x2 or x3)
begi n: bl k2
case (d2)
gl = xO;
gl = x1;
gl = x2;
gl = x3;
endcase
end
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VHDL Multiplexer Mapping Pragma

Example 2-19 shows the map_t o_nux pragma with a case statement and Figure 2-11
shows the resulting schematic.

Example 2-19 Modeling map_to_mux (infer_mux)Pragma With a Case Statement
(VHDL)

entity map2muxl is

port (
sel : in integer range 0 to 1;
a, b: inbit;
q : out bit);
end;

architecture rtl of map2muxl is
begin
process(sel, a, b) begin
case sel is-- cadence map_to_nux
when 0 => q <= a;
when 1 => q <= b;
end case;
end process;
end;

Figure 2-11 map_to_mux (infer_mux)Pragma With a Case Statement Schematic
(VHDL)
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Example 2-20 shows the map_t o_nux pragma with a choice statement and Figure 2-12
shows the resulting schematic.

Example 2-20 Modeling the map_to_mux (infer_mux)Pragma With an if Statement
(VHDL)

entity map2mux2 is

port (
sel : in integer range 0 to 7;
a, b, ¢, d, e: in bit;
q : out bit);
end;

architecture rtl of map2nux2 is

begi n
process (sel, a, b, c, d, e) begin
if sel = 0 then-- cadence map_to_mux
q <= a;
elsif sel =1 then
q <= b;
elsif sel = 2 then
q <= c;
elsif sel =5 then
q <= d;
el se
q <= e
end if;
end process;
end;
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Figure 2-12 map_to_mux (infer_mux)Pragma With an if Statement Schematic (VHDL)
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Example 2-21 shows the map_t o_nmux pragma with a choice statement RTL and Figure 2-13
shows the resulting schematic.

Example 2-21 Modeling map_to_mux (infer_mux)Pragma With a Choice Statement

(VHDL)

entity map2nmux3 is
port (

sel : in integer range 0 to 7;
a, b, c, d e:

q : out bit);
end;

architecture rtl of

begin
g <= a when sel
el se

b when sel
¢ when sel
d when sel
€,

end;
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Figure 2-13 map_to_mux (infer_mux)Pragma With a Choice Statement Schematic
(VHDL)
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Function and Task Mapping Pragmas (Verilog and VHDL)

Use the map_t o_nodul e pragma in functions and tasks, and use ther et urn_port _nane
pragma only in functions. These pragmas should appear within the declaration of a task or
function. For example:

/1 cadence nmap_to_nodul e nodul e_name

The map_t o_nodul e pragma specifies that any call to the given function or task is to be
internally mapped to an instantiation of the specified module. The statements in the function
or task body are therefore ignored. Arguments to the function or task are mapped positionally
onto ports in the module as follows:

/1 cadence return_port_name port_nane
The r et urn_port _nane pragma applies only to a function to which the map_t o_nodul e

pragma is in effect, and specifies that the return value for the function call is given by the
output port of the mapped-to module.

Example 2-22 maps a function to the BUF entity with a z output.

Example 2-22 Modeling the Function and Task Mapping Pragmas

function f(d : in std_logic) return std logic is
- cadence nmap_to_nodul e my_buf
- cadence return_port_nane z
begin
return d;
end;

The following entity instantiation:
q <= f(d);

is equivalent to the following function call:
il : entity work.ny_buf port map(z, d);
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Signed Type Pragma (VHDL)

Use this pragma to specify that the annotated vector type is to be treated like a signed type
for all arithmetic, logical, and relational operations. The SI GNED_TYPE attribute is a Boolean-
valued attribute declared in the cadence. att ri but es package.

Example 2-23 shows the i eee. nuneri c_st d. si gned type.
Example 2-23 Modeling the Signed Type Pragma (VHDL)
use cadence. attributes.all;

type SIGNED i s array (NATURAL range <>) of STD LOd C,

-- Attribute the type 'SIGNED for synthesis
attribute SIGNED TYPE of SIGNED : type is TRUE
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Template Pragma (Verilog and VHDL)

The el abor at e command runs faster by designating Verilog modules or VHDL entities as
templates, which eliminates synthesizing the template modules or entities that are not
actually used in the hierarchical design as stand-alone modules or entities. The TEMPLATE
attribute is declared in the cadence. attri but es package.

When a module or entity is written with generic declarations for use as a template, only the
instantiated, parameterized design is synthesized. Use the TEMPLATE pragma on a module
or entity to indicate that the template module or entity is not to be synthesized exceptin the
context of an instantiation from a higher level module or entity, never as a top-level module or
entity. Specify the TEMPLATE pragma as TRUE in the module or in the entity declaration, as
shown in Example 2-24.

Example 2-24 Modeling the Entity Template Pragma

use cadence. attributes.all;
entity FOO is

generic (Wdth : integer := 64);
port (DIN: bit_vector (Wdth - downt o 0);
DOUT : bit_vector (Wdth - downto 0));
attribute TEMPLATE of FOO entity is TRUE
end FOG,
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Enumeration Encoding Pragma (VHDL)

Use this pragma to override the default encoding of enumeration literals. In Example 2-25,
the literals RED and YELLOWwould normally be encoded as 00 and 11, respectively,
corresponding to their position in the COLOR type, starting from 0. Because of the
ENUM_ENCODI NG attribute, RED and YELLOWare encoded as 10 and 01, respectively. The
ENUM_ENCODI NG attribute is declared in the cadence. attri but es package.

The ENUM_ENCODI NG value string must contain as many encodings as there are literals in

the corresponding enumeration type. All encodings contain only 0’s or 1's and should have
an identical number of bits.

Example 2-25 Modeling the Enumeration Encoding Pragma (VHDL)
type COLOR is (RED, BLUE, GREEN, YELLOW;

attribute ENUM ENCODI NG string;
attri bute ENUM ENCODI NG of COLOR: type is "
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Resolution Function Pragmas (VHDL)

Use the RESOLUTON function pragmas to identify and define the intended behavior of a
resolution function in the design.

Define the resolution by specifying the string-valued RESOLUTI ON attribute to control how a
signal with multiple drivers and resolved by the attributed function is synthesized.

The following pragmas will cause a W RED_AND, W RED_CR, or W RED_TRI (three-state)
behavior to be synthesized for any signal that is resolved by the MYRES function.

Example 2-26 Resolution Function Pragmas (VHDL)

attribute RESCLUTI ON: string;

attribute RESOLUTI ON of MYRES:. function is "WRED AND';
attri bute RESOLUTI ON of MYRES:. function is "WRED OR';
attribute RESOLUTI ON of MYRES:. function is "WRED TRI";

In Example 2-27, the MYRES function has been tagged as having W RED_OR behavior using
the RESOLUTI ON attribute. si gnal X with the MYRES resolution function is synthesized to
exhibit a W RED_OR behavior.

Example 2-27 Modeling the Resolution Function Pragma (VHDL)

function MYRES(bv: bit_vector) return ulogic_4 is variable tnp: bit:= "0
begi n
for I in vtbr'range |oop
tmp:=tnp or bv(l);
end | oop;
return tnp;
end;

attri bute RESOLUTI ON of MYRES:. function is "WRED OR';
signal X: MYRES bit;

The RESOLUTI ON attribute is declared in the cadence. att ri but es package.
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Using HDL Commands and Attributes

m  HDL-Related Commands on page 126

s  HDL-Related Attributes on page 127

m  Verilog-Specific Attributes on page 143

m  VHDL-Specific Attributes on page 144
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HDL-Related Commands

Table 3-1 HDL-Related Commands

Variable Description

el aborate Creates a design from a Verilog module or from a VHDL
entity and architecture. Undefined modules and VHDL
entities are labeled “unresolved” and treated as blackboxes.

r ead_hdl Loads one or more HDL files in the order given into memory.
write_ hdl Generates one of the following design descriptions in Verilog
format:

m A structural netlist using generic logic

m A structural netlist using mapped logic

read_netli st Reads and elaborates a Verilog 1995 structural netlist.
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HDL-Related Attributes

The following attributes are commonly used for Verilog and VHDL designs.

hdl _all ow i nout _const_port_connect {true | false}

Default: f al se

If this attribute is set to f al se, then an error message is issued if an output or inout port
of an instantiated submodule is connected to a constant value.

hdl _array_nam ng_style string

Chooses a scheme to name individual bits of array ports and registers. The string
argument must include %s to indicate the record name of the bus signal, and % to
indicate the array index. Set this attribute before using the el abor at e command.
Default: ¥%s\ [ %\ ]

hdl async set reset

Specifies that RTL Compiler implement the listed signals using asynchronous set and
reset pins on a latch if that logic controls an asynchronous assignment.

Default; “ “

The following command implements the reset signal for the RTL, shown in Example 3-1:

rc:/> set_attr hdl _async_set reset "reset”

Example 3-1 RTL Asynchronous Set and Reset

nodul e asynchl(clk, d,en,q);
al ways @ (reset or en or d or reset_val) begin
if (reset)
g <= reset_val
else if (en)
q <=d
end
endnodul e

The corresponding schematic is shown in Figure 3-1:
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Figure 3-1 Schematic hdl_async_set_reset
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m hdl _auto_async_set_reset {true | false}

Specifies that RTL Compiler implement logic using asynchronous set and reset pins on
a latch if that logic controls an asynchronous assignment of a constant O or constant 1.
Default: f al se

The following command implements the r eset signal in the RTL (shown in
Example 3-1) using a latch asynchronous reset pin:

rc:/> set_attribute hdl _auto_async_set reset true

The corresponding schematic is shown in Figure 3-2.

Figure 3-2 Schematic hdl_auto_async_set_reset
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m hdl _auto_sync_set_reset {true| false}

When set to t r ue, specifies that RTL Compiler implement logic using synchronous set
and reset pins on a flip-flop if that logic controls a synchronous assignment of a constant
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0 or constant 1.
Default: f al se

The following command implements the r eset signal shown in the RTL, as shown in
Example 3-2 using a flip-flop synchronous reset pin:

rc:/> set_attribute hdl _auto_sync_set reset true

Example 3-2 RTL Synchronous Reset

nodul e synchl(clk, d,en,q);
al ways @ (posedge cl k) begin
if (reset)
q <=
el se
q <= d;
end
endnodul e

The corresponding schematic is shown in Figure 3-3.

Figure 3-3 Schematic hdl_auto_sync_set_reset
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m hdl _bit _blast_threshold{true | false}

When the value of this attribute is greater than 0, vector variables whose width is the
value of the hdl _bit _bl ast _t hr eshol d attribute or greater are bit-blasted during
elaboration.This results in a faster runtime and less memory usage during elaboration
where there are many constant bit selects of large vector variables.

Default: 0
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m hdl _delete_transparent | atches {true | false}

Controls whether transparent latches are preserved or deleted during elaboration. When
settot r ue, deletes latches that are always enabled.

m hdl _enable_proc_nane{true | false}

When settot r ue, allows to update the value of the hdl _pr oc_nan® instance attribute
for sequential elements during elaboration.

m hdl_error_on_bl ackbox {true | false}

When setto t r ue, an error message is issued if there is an unresolved reference (black
box) during elaboration.
Default: f al se

m hdl _error_on_latch{true | false}

When set to t r ue, issues an error message if a latch is inferred for a design.
Default: f al se

m hdl _ff_keep_feedback {true | false}

Controls how flip-flop stable states are implemented. When set to t r ue, implements a
feedback path from the Qoutput to the D input. When set to f al se, implements a
synchronous enable signal.

Default: t rue

0  The following command implements a feedback path from the Qoutput to the Dinput
for the RTL, as shown in Example 3-3:

rc:/> set_attribute hdl _ff_keep_feedback true
Example 3-3 RTL hdl_ff_keep_feedback true

nmodul e dff1(clk, d, en,q);
i nput clk, d,en;
out put q;
reg q;

al wvays @ ( posedge cl k) begin
if (en)
q <= d;
end
endnodul e

The corresponding schematic is shown in Figure 3-4.
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Figure 3-4 Schematic hdl_ff_keep_feedback true
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0  The following command implements a synchronous enable signal from the Qoutput
to the Dinput for the RTL (shown in Example 3-3) and the corresponding schematic
shown in Figure 3-5:

rc:/> set_attribute hdl _ff_keep_feedback fal se
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Figure 3-5 Schematic hdl_ff_keep_feedback false
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m hdl ff keep explicit feedback

Controls how flip-flop stable states are implemented for feedback assignments that are

explicitly specified in the RTL.

The following command implements flip-flop stable states for feedback assignments that

are explicitly specified in the RTL, as shown in Example 3-4:

rc:/> set_attribute hdl _ff_keep_explicit_feedback true
Example 3-4 hdl_ff_keep_explicit_feedback true

nodul e dff3(clk, d, en, q);
i nput clk,d, en;
out put g;
reg q
al ways @ (posedge cl k) begin
if (en)
q <= d;
el se
q <=0q;
end
endnodul e

The corresponding schematic is shown in Figure 3-6.

June 2006 132

Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Using HDL Commands and Attributes

Figure 3-6 Schematic hdl_ff_keep_explicit_feedback true
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0  The following command implements a synchronous enable signal from the Qoutput
to the D input for the RTL, shown in Example 3-5:

rc:/> set_attribute hdl _ff_ keep_feedback fal se
rc:/> set_attribute hdl _ff_keep_explicit_feedback false

Example 3-5 RTL hdl_ff_keep_explicit_feedback false

nmodul e dff4(clk,d, en,q);
i nput clk,d, en;
out put q;
reg q;

al ways @ (posedge cl k) begin
if (en)
q <= d;
el se
q <=q
end
endnodul e

The corresponding schematic is shown in Figure 3-7.
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Figure 3-7 Schematic hdl_ff_keep_explicit_feedback false
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m hdl _filelist {{hdl_library language_standard {hdl file ...} }...}

Automatically set by the r ead_hdl command to keep track of which files are being read
into RTL Compiler. The library, language, and list of files specified with each r ead_hdI
command are appended to this root attribute. The language standards are in the
-v1995, -v2001, and - vhdl HDL option forms.

m hdl_infer_unresolved fromlogic_abstract true | false

Default: t rue

See Modeling Logic Abstracts on page 77 for detailed information.

= hdl _| anguage {v1995 | v2001 | vhdl | sv}

Default: v1995

Specifies the default HDL language mode assumed when you use the r ead_hdl
command without specifying the language mode.

m hdl _latch _keep feedback {true | false}

Controls how explicitly-specified latch stable states (for example, g <= q) are
implemented. When set to t r ue, implements a feedback path from the Q output to the
D input, resulting in a combinational loop. When set to f al se, implements a latch with
an enable signal.
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For the following command, RTL Compiler implements a feedback path from the Qoutput
to the D input for the RTL, shown in Example 3-6, resulting in a combinational loop, as
shown in Figure 3-8:

rc:/> set_attribute hdl | atch _keep feedback true

Example 3-6 RTL for hdl_latch_keep_ feedback

nmodul e | atchl(d, en, q);
i nput d, en;
out put q;
reg dq;

always @ (en or d) begin
if (en)
q <= d;
el se
q <= q;
end
endnodul e

The corresponding schematic is shown in Figure 3-8.

Figure 3-8 Schematic of hdl_latch_keep_feedback true
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0  Forthe following command, RTL Compiler implements a latch with an enable signal
specified in the RTL shown in Example 3-7:

rc:/ set_attribute hdl _|atch_keep_feedback fal se
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Example 3-7 RTL hdl_latch_keep_feedback false

nodul e | atch2(d, en, q);
i nput d, en;
out put q;
reg q;

always @ (en or d) begin
if (en)
q <= d;
el se
q <=q
end
endnodul e

The corresponding schematic is shown in Figure 3-9.

Figure 3-9 Schematic hdl_latch_keep_feedback false
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m hdl_nmax_loop limtinteger

Default: 1024

Determines the maximum number of iterations for unfolding a loop construct of any type.
RTL Compiler stops and produces an error message when it needs to unroll a loop that
has more iterations than the specified threshold.

m hdl_mex_recursion_limtinteger

Default: 1000

Sets the maximum number of elaborations for recursive instantiations to prevent possible
infinite recursions.
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m hdl_paraneter_nam ng_style string

Default: % %

Specifies the format of the suffix added to the original module name for each parameter
overwrite. For more information, see “Naming Individual Bits of Array and Record Ports
and Registers” in the Using Encounter RTL Compiler manual.

m hdl _paranetersstring

Keeps track, in a Tcl list, both parameters explicitly set by the instantiating module and
unset parameters, which use their default values while reading the top-level design. Also
tracks attributes set through the el abor at e - par anet er s command.

m hdl_preserve_dangling_output_nets {true | false}

Default: f al se

When set to t r ue, RTL Compiler preserves the names of dangling output nets in
designs that are read using theread_net | i st command or the
read_hdl -netli st command.

m hdl_preserve unused reqgisters {true | false}

Default: f al se

When settot r ue, RTL Compiler does not remove registers (latches and flip-flops) that
do not, directly or indirectly, affect any outputs. This can be used, for example, to keep
registers that are only used to observe internal nets through scan chains in test mode.

m hdl_proc_nanestring

If the hdl _enabl e_pr oc_nane attribute is set to t r ue, specifies for sequential
elements either

0  The Verilog block identifier of the named always block that infers this sequential
element

0 The VHDL label of the process that infers this sequential element

If no name was given to the Verilog block or VHDL process, a tool-generated name is
given.

Note: This attribute is created during elaboration. After elaboration, it has no value for
hierarchical instances, or for instances that are not sequential elements.

m hdl_record_nam ng_stylestring

Default: s\ [ %8\ ]
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Chooses a scheme to name individual bits of record ports and registers. The string
argument must include %s to indicate the record name of the bus signal and a second
%s to indicate the field name. Set this attribute before using the el abor at e command.

See “Naming Individual Bits of Array and Record Ports and Regqisters” in the Using
Encounter RTL Compiler manual for detailed examples.

m hdl _reg_namng_style string

Default: %s_reg¥%s

Specifies the format in which flops of vectored variables and latches of scalar variables
are printed out. For more information, see Naming Individual Bits of Array and Record
Ports and Regqister in Using Encounter RTL Compiler.

m hdl_search_path Tcl _|i st
Default: {.}

Specifies a list of UNIX directories that RTL Compiler should search for files associated
with the r ead_hdl command. The behavior is similar to the search path in UNIX.

In Verilog, this attribute directs the search of Verilog files specified with the r ead _hdl
command and " i ncl ude files specified in Verilog code.

In VHDL, this attribute directs the search of VHDL files specified with the r ead_hdl
command.

m hdl_sync_set_reset "comma_separated |ist_of _signals”
Default: nul |

Specifies that RTL Compiler implement the listed signals using synchronous set and
reset pins on a flip-flop if that logic controls a synchronous assignment.

0  For the following RTL, shown in Example 3-8, the "r eset " signal is implemented
using synchronous set and reset pins on a flip-flop, as shown in Figure 3-10:

rc:/> set_attr hdl _sync_set _reset "reset"
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Example 3-8 RTL hdl_sync_set_reset “reset”

nodul e sync(d, en, q);
al ways @ (posedge cl k)
begi n
if (reset)
g <= reset _val;
el se
q <= d;
end
endnodul e

Using this attribute has the same effect as using the sync_set _reset pragmain
the RTL:

/I cadence sync_set _reset "comma_separated_list_of _signals”

The corresponding schematic is shown in Figure 3-10.

Figure 3-10 Schematic of Reset Signal
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m Inthe RTL, shown in Example 3-9, RTL Compiler implements the set and reset
operations using flip-flop synchronous set and reset pins, as shown in Figure 3-11.
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Example 3-9 Implementing Flip-Flop Synchronous set and reset Pins in the RTL

modul e syncff(d,en,q);
al ways @ (posedge cl k)

begi n //cadence sync_set reset

if (set)

q <=
else if (reset)
q <=

else if (en)

q <=d

endnodul e

"set, reset"”

Figure 3-11 Schematic of Set and Reset Operations
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m hdl _track filenanme_row col {true |

Default: f al se

fal se}

Enables or disables file/row/col information tracking. When you set this attribute to
f al se, all the file, row, and column information is deleted.

Note: Currently, only the flow down to synt hesi ze -t 0_generi c is supported.
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m hdl _trimtarget_index{true | false}

Default: t r ue

Affects how logic is generated to implement the index of an array assignment when the
index has more bits than necessary to address the array. When setto t r ue, trims the
index bits using the least number of bits required to address the array. This results in the
most efficient implementation, but may result in a simulation mismatch between the
original and synthesized design.

m hdl _unconnected_input_port _value{O | 1| X | Z | none}

Default: none

Connects each undriven input pin in a module or cell instantiation to the specified value
unless the none value is specified. If the none value is specified, undriven pins remain
undriven.

m hdl _undriven_output_port_value {O| 1| X | Z | none}

Default: none

Connects each undriven output port in a module to the specified value unless the none
value is specified. If the none value is specified, undriven ports remain unconnected.

m hdl _undriven_signal _value {O | 1| X | none}

Default: none

Connects each undriven signal, including undriven bits of a bus, to the specified value.
If the none or Z values are specified, undriven signals remain undriven.

m hdl_use default_paraneter_values_in_nane{true | false}
Default: f al se

When set to f al se shortens the name of the parmeterized module by using only the
parameter values specified at instantiation, while the default uses all the available
parameters in the module name.

m hdl _use_paraneterized_nodul e_by nane {true | false}

Default: f al se

When set to t r ue, RTL Compiler tries to bind, for an ul instance of a parameterized M
design with a parameter overwrite, a module or architecture named with the generated
parameterized name, including parameter names and values.
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For example, for a Verilog instance M #( 1, 5) u0() ; , RTL Compiler tries to bind
M w dt h_1 dept h_5, rather than using the definition of module Mwith the parameter
overwrite (width, 1) and (depth, 5).

m hdl_use port_default_ value{true | false}

Default: f al se

When set to t r ue, RTL Compiler honors default initial values of input ports in a VHDL
component declaration or entity declaration.

m hdl _use techelt first {true | false}

Default: f al se

Whensettot r ue, RTL Compiler tries to bind, for an ul instance of design M a gate from
a technology library named M rather than a module or architecture named M

m hdl_vector_nami ng_stylestring

Default: % %
Specifies the format in which flatten elements of array variables are printed out.

m input_pragm_keywordstring

Default: get 2chi p g2c anbit synopsys pragna cadence

Specifies a keyword that RTL Compiler must consider as an input pragma when it
encounters it as the first word in a Verilog or VHDL source comment.
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Verilog-Specific Attributes

Table 3-2 Verilog-Specific Attributes

Command Description (Default)

hdl _| anguage {v1995 | v2001 | vhdl | sv} Specifies the default HDL language
mode assumed when you use the
read_hdl command without
specifying the language mode.
Default: v1995
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VHDL-Specific Attributes

Table 3-3 VHDL-Specific Attributes

{ true | false }

Command Description (Default)

hdl _vhdl _case Stores VHDL identifiers and

{ lower | upper | original } operators in lower case, upper case,
or the case given in the source file.
Default: ori gi nal

hdl _vhdl _envi r onnent Specifies the selection of the

{ conmon | synopsys} predefined arithmetic libraries.
Default: conmon

hdl _vhdl | rm conpliance When settot r ue, the r ead_hdl

command enforces a more strict
interpretation of the VHDL LRM.
Default: f al se

{ 1987 | 1993 }

hdl _vhdl preferred_architecture Specifies the name of the preferred

string architecture to use with an entity
when there are multiple architectures.
Default: *”

hdl _vhdl _read_version Specifies the VHDL version when

files are analyzed using r ead _hdl .
Default: 1993
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Synthesizing Verilog Designs

s Overview on page 146

= Modeling Verilog Designs on page 146

m  Synthesis Pragmas on page 146

m  Using HDL Commands and Attributes on page 147

m  Verilog-2001 Hardware Description Language Extensions on page 148

O

ad

O

O

O

Verilog-1995 and Verilog-2001 Modes of Parsing on page 149

Generate Statements on page 149 (LRM 12.1.3)

Multidimensional Arrays on page 154 (LRM 3.10)

Automatic Functions and Tasks on page 155 (LRM 10)

Parameter Passing by Name on page 156 (LRM 12.2.2.2)

Comma-Separated Sensitivity List on page 156 (LRM 9.7.4)

ANSI-Style Input and Output Declarations on page 157 (LRM 12.3.4)

Variable Part Selects on page 158 (LRM 4.2.1)

Constant Functions on page 158 (LRM 10.3.5)

New Preprocessor Directives on page 159 (LRM 19)

s Supported Verilog Modeling Constructs on page 163

m  Supported SystemVerilog Hardware Description Language Constructs on page 170

m  Troubleshooting on page 173

ad
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Reading Designs with Mixed Verilog-2001 and SystemVerilog Files on page 173

145 Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Synthesizing Verilog Designs

Overview

This chapter is organized for synthesizing Verilog RTL designs and provides links to the
corresponding Verilog sections throughout the manual.

For mixed Verilog and VHDL usage, Chapter 1, “Modeling HDL Designs” provides modeling
guidelines in both languages in one convenient location.

Modeling Verilog Designs

m  Modeling Flip-Flops in Verilog on page 28

= Modeling Latches in Verilog on page 38

m  Modeling Combinational Logic in Verilog on page 40

m  Modeling Arithmetic Components (Verilog and VHDL) on page 47

m  Using Case Statements in Verilog on page 64

m  Using a for Statement in Verilog on page 73

m Inferring a Logic Abstract From the RTL in Verilog on page 77

m Interpreting a Logic Abstract in Verilog or VHDL on page 82

m  Writing Out a Logic Abstract in Verilog on page 83

m  Representing a Black Box as an Empty Module on page 85

m  Representing a Technology Cell as an Empty Module on page 85

Synthesis Pragmas

m  Verilog Supported Synopsys Pragmas on page 90

m  Specifying Synthesis Pragma Keywords on page 92

m  Verilog translate_on and translate_off Pragmas on page 94

m case Statement Pragmas (Verilog) on page 96

m  Verilog Set and Reset Synthesis Pragmas on page 98

m  Verilog Multiplexer Mapping Pragma on page 112

m  Function and Task Mapping Pragmas (Verilog and VHDL) on page 120

June 2006 146 Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Synthesizing Verilog Designs

m  Template Pragma (Verilog and VHDL) on page 122

Using HDL Commands and Attributes

m  HDL-Related Commands on page 126

s HDL-Related Attributes on page 127
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Verilog-2001 Hardware Description Language Extensions

Verilog-2001 is the latest version of the IEEE 1364 Verilog HDL standard. The Verilog-2001
extensions are a superset of the existing Verilog-1995 language. These extensions increase
design productivity and enhance synthesis capability. Prior knowledge and experience with
Verilog-1995 is assumed. The new Verilog-2001 language features supported in this release
are explained in detail in the IEEE 1364-2001 Verilog HDL standard Language
Reference Manual (LRM). For information on purchasing IEEE specifications go to
http://shop.ieee.org/store/ and click on Standards.

This section describes how to handle incompatibilities between the various Verilog versions
and explains the new Verilog-2001 synthesis-specific features relevant to RTL synthesis. The
features supported in this release include a reference to the corresponding chapter number
of the Verilog-2001 LRM.

m  Verilog-1995 and Verilog-2001 Modes of Parsing on page 149
m  Generate Statements on page 149 (LRM 12.1.3)

m  Multidimensional Arrays on page 154 (LRM 3.10)

m  Automatic Functions and Tasks on page 155 (LRM 10)

m Parameter Passing by Name on page 156 (LRM 12.2.2.2)

m  Comma-Separated Sensitivity List on page 156 (LRM 9.7.4)

= ANSI-Style Input and Output Declarations on page 157 (LRM 12.3.4)
m Variable Part Selects on page 158 (LRM 4.2.1)

m  Constant Functions on page 158 (LRM 10.3.5)

= New Preprocessor Directives on page 159 (LRM 19)

In addition, the following HDL extensions are supported, but are not described:
m  Signed arithmetic extensions

m  Combinational logic sensitivity list

= Automatic width extension beyond 32 bits for bz, bx

m  Sized and typed parameters

m Localparams

s Combined port and data type declarations
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m  Enhanced conditional compilation
m line compiler directive

m  Attributes

Verilog-1995 and Verilog-2001 Modes of Parsing

0  To handle potential incompatibilities, RTL Compiler supports separate Verilog-2001 and
Verilog-1995 modes of parsing using the following attribute:

set _attribute hdl _|anguage {v1995 | v2001| vhdl |sv}

In addition to enabling Verilog parsing for Verilog-1995 and Verilog-2001, the hdl _| anguage
attribute also turns on language-specific error checks.

In most cases, a Verilog-2001 design behaves like a Verilog-1995 design. Verilog-2001 adds
several new keywords to the Verilog language. Older models, which happen to use one of
these new reserved words, will not work with a Verilog-2001 simulator or other software tools.
For example, gener at e is a new keyword in Verilog-2001. Therefore, a Verilog-1995 design
that has a gener at e wire name will not compile under Verilog-2001 rules.

Generate Statements

Use Verilog gener at e statements to conditionally compile concurrent constructs. The
Verilog-2001 gener at e statements are modeled on VHDL gener at e statements.

Concurrent Begin and End Blocks

Use the begi n and end keywords to group concurrent statements within a gener at e
statement. A begi n and end block must be labeled if declarations are included within it.
There are three types of generate statements:

m if generate Statement — Performs a set of concurrent statements if a specified condition
IS met.

m case generate Statement — Behaves like a nested i f statement, and selects from a set
of concurrent statements.

m for generate Statement — Replicates a set of concurrent statements.

Thei f,case, and f or gener at e statements provide different ways of conditionally
compiling a declaration, a concurrent statement, or a block of declarations and concurrent
statements.
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Note: The condition must not depend on dynamic values, such as the values of wires or
registers. Thei f gener at e condition, the case gener at e expression and choices, and the
f or gener at e loop bounds must be constant expressions.

if generate Statement

Usethei f gener at e statement to conditionally generate a concurrent statement, as shown
in Example 4-1.

Example 4-1 Modeling the if generate Statement

nodul e
par aneter pl =1, p2=2;

generate if (pl == p2)
assign q = d;
el se
assign q = ~d;
endgener at e
endnodul e

In this example, one of two possible assignment statements is generated depending on the
values of the parameters. If the condition p1 == p2 evaluates to t r ue, taking into account
any parameter overrides or defparams, then the result of the i f gener at e statement is that
the first assignment statement will be processed and the second will be ignored. Otherwise,
only the second assignment will be processed.

The determination of which concurrent statement to process is made after the design has
been linked together and the module instantiations and defparams have been processed.

Generate statements let you choose concurrent models (a particular instance) based on the
selection criteria, as shown in Example 4-2.

June 2006 150 Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Synthesizing Verilog Designs

Example 4-2 Modeling the if generate Statement

nodul e crc_gen (a, b,crc_out);

paraneter a width = 8 b width =
paraneter crc_en = crc8 = 1;
i nput [a_w dt h- ]

i nput [b_wi dt h- ]
i nput crc_en, crc8;
out put crc_out;

a;
b;

generate
if ((crc_en == 1"bl) & (crc8 == 1"h1))
CRC8 #(a_width) UL (a, crc_en, crc_out); //Instantiate an 8 bit crc generator

el se
CRC16 #(b_width) Ul (b, crc_en, crc_out); // Instantiate a 16 bit crc generator
endgener at e /'l The generated instance is Ul
endnodul e

case generate Statement

Use a case gener at e statement for multi-way branching in a functional description, as
shown in Example 4-3.

Example 4-3 Modeling the case generate Statement for Multi-Way Branching

nodul e

paraneter p=2;

generate case (p)
1: assign q =d
2: assign q = ~d;
3: assign q “bl;
default: assign g = 1 bl;
endcase

endgener at e

endnodul e

The value of p determines which one of the assignment statements is processed. The case
expression p is evaluated after the design has been linked together.
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A case gener at e statement permits modules, lets you define primitives, and lets i ni ti al
and al ways blocks be conditionally instantiated into another module based on a case
construct, as shown in Example 4-4.

Example 4-4 Modeling the case generate Statement to Define Primitives

nodul e
generate
case (width)
1. counter_2bitx1l (en, reset, preset, datain, dataout);
/1 2 bit counter inplenmentation
2: counter _3bitx1l (en, reset, preset, datain, dataout);
/1 3 bit counter inplenmentation
default: counter _4bit #(width) x1 (en, reset, preset, datin, dataout);
/1l others - 4 bit counter inplenentation
endcase
endgenerate // generated instance is x1
endnodul e

for generate Statement

Use af or gener at e statement to replicate a concurrent block. The f or gener at e
statement uses a genvar.

Genvar
A genvar is a new declaration that resembles an integer declaration, except that it is used
only within a f or gener at e statement. A genvar is a 32-bit integer that is treated as a

constant when referenced. Assign a genvar value only in a f or gener at e statement
between the parentheses following the keyword f or, as shown in Example 4-5.
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Example 4-5 Modeling the for generate Statement

nodul e
genvar i;
generate for (i =0; i <=7; i =i + 1)
begin : bl ah
assign a[i] = b[i] + c[i];
end
endgener at e
endnodul e

Nest a f or gener at e statement to generate multi-dimensional arrays of component
instances or other concurrent statements.In Example 4-6, eight copies of the assignment
statement are created. In each copy, any reference to the genvar * i ’ is replaced by its value
during iteration. Therefore, the generate statement shown in Example 4-5 is equivalent to the
following:

nodul e
assign a[0] = b[0] + c[0];
assign a[1] = b[1] + c[1];
assign a[2] = b[2] + c[2];
assign a[3] = b[3] + c[3];
assign a[4] = b[4] + c[4];
assign a[5] = b[5] + c[5];
assign a[6] = b[6] + c[6];
assign a[ 7] = b[7] + c[7];

endnodul e

The f or gener at e statement, like the procedural f or statement, is restricted to the
following form:

for (i = <expr>; i <relop> <expr>; i =i <addop> <expr>)
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Example 4-6 Modeling the for generate Statement

nodul e
paraneter size = 4,
genvar i;
generate
for (i =0; i <size; i =i + 1) begin:bit
xor g1 ( t[i], a[i], b[i], c[i];
and g2 ( sum{[i], t[i], c[i] );
end
endgener at e
endnodul e
/'l Cenerated instance name are:
/1 xor gates : bit[0].gl, bit[1].gl, bit[2].gl bit[3].01
/1 and gates: bit[0].g2, bit[1l].g2, bit[2]. g2, bit[3].g2

Multidimensional Arrays

In Verilog-1995, only one dimensional arrays of r eg are allowed. In contrast, Verilog-2001
allows multi-dimensional arrays of wi r e and r eg (See Example 4-7). Verilog-2001 allows
reading and writing array words and bits within array words, but does not allow reading or
writing of array slices or whole arrays.
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Example 4-7 Multi-Dimensional Arrays of wire and reg

reg [7:0] tnp;

-- one-di nmensional array of reg

reg [7:0] m[3:0]; /llegal in Verilog-1995 and 2001
reg [7:0] mR[3:0]; /'l legal in Verilog-1995 and 2001

-- one- and two-dinmensional arrays of wire
wire [7:0] wi[3:0]; /1 illegal in Verilog-1995 legal in 2001
wire [7:0] w2[3:0] [2:0]];// illegal in Verilog-1995, legal in 2001

-- two-di nensional arrays of reg
reg [7:0] al[3:0] [2:0]]; /7 illegal in Verilog-1995, legal in 2001
reg [7:0] a2[3:0] [2:0]; [// illegal in Verilog-1995, legal in 2001

-- reading and witing within an array
mi[ 1] = tnp; /1 legal in Verilog-1995, 200
tnp = ni[ 1]; /1 legal in Verilog-1995

Automatic Functions and Tasks

Verilog-1995 functions or tasks use static memory for arguments and local variables, which
is why a task enable is not permitted in a concurrent context. If two tasks start at the same
time, they will write over each other’s data.

Verilog-2001 includes reentrant procedures that are implemented so that more than one
process can perform it at the same time without conflict. By using the aut omat i ¢ keyword
to mark a task or function that performs in a per-call context, just as C or VHDL functions or
procedures do, Verilog compilers treat the variables inside of the task as unique stacked
variables. The parameters and local variables for these procedures are allocated immediately
when they are called then they are discarded when the procedures exit.

RTL Compiler treats Verilog functions and tasks as automatic procedures, whether the
keyword aut omat i c is specified or not. For this reason, synthesis of a non-automatic
function or task, which relies on static allocation of local variables, will produce a simulation
mismatch.
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Parameter Passing by Name

Verilog-1995 defines two ways to change parameters for instantiated modules: parameter
redefinition and def par amstatements.

Verilog-2001 lets you specify module instance parameters, such as module instance ports by
name, as shown in Example 4-8.

Example 4-8 Specifying Module Instance Parameters by Name
mod #(.width(1l), .length(2)) ul(q,d);

Passing parameters by name is similar to def par amstatements, except only the parameters
that change are referenced in named port instantiations.

Example 4-9 Using the defparam Keyword

def paramul .wi dth = 1;
def param ul.l ength = 2;
nmod ul (g, d);

Comma-Separated Sensitivity List

Verilog-1995 uses the keyword or as a separator between signals in the sensitivity list.
Verilog-2001 lets a comma take the place of the or keyword in an event list, as shown in
Example 4-10.

Example 4-10 Using a Comma-Separated Sensitivity List

nodul e
al ways @ (posedge cl k, negedge reset)
begi n
if (!'reset)
q=0;
el se
q = d;
end
endnodul e
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ANSI-Style Input and Output Declarations

The Verilog-1995 mode uses the older Kernighan and Ritchie C language syntax to declare
module ports, as shown in Example 4-11, which requires that module header ports be
declared up to three times: in the module header port list, in an output port declaration, and
in a r eg data-type declaration. Verilog-2001 updates the syntax for declaring ports and
parameters in a more ANSI C fashion, as shown in Example 4-12, that combines the header
port list, port direction, and data-type declarations into a single declaration:

Example 4-11 Verilog-1995 Style Declaration

nodul e n(q, d);

paraneter p = 1;

out put g;
reg q
i nput d;
wire d;
al ways @ d)
q=d;
endnodul e

Example 4-12 Verilog-2001 ANSI C-like Declaration

nodul e m #(paraneter p = 1)
(output reg g, input wire d);

al ways @d)
q = d;
endnodul e

Use this enhancement in functions and tasks to make port declarations more compact.

June 2006 157 Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Synthesizing Verilog Designs

Variable Part Selects

Verilog-1995 permits variable bit selects of a vector, but the part selects must be constant;
thus, you cannot use a variable to select a specific byte out of a word.

Verilog-2001 lets a slice have a variable base offset and a constant width. This means that

the starting point of the part select can vary during simulation run time, but the width of the
part select remains constant, as shown in Example 4-13.

Example 4-13 Variable Part Select

wire [ ] d;
wire [3:0] x;
wire [ 1 q;

assign q = d[ x+:4];
/lis equivalent to the follow ng:
assign q = {d[x+3], d[x+2], d[x+1], d[x]};

Constant Functions

A constant expression is required in certain contexts, for example, when specifying a range
in a declaration or a part select. In Verilog-1995, a constant expression is either a literal, a
parameter, or some arithmetic expression whose operands are constant expressions.
Verilog-2001 allows a function call to appear in a constant expression in certain
circumstances. Mainly, the arguments to the function must be constant expressions, and the
function must compute its result entirely on the basis of its arguments.

In Example 4-14, the m n and max functions are used to size the declaration of Wi r e X.
Because these functions are called with constant arguments and return a result based only
on their arguments, their calls are considered constant expressions. In Verilog-1995, it is
illegal to use a function call in sizing a declaration.
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Example 4-14 Modeling a Function Call in a Constant Expression

nmodul e m

paranmeter pl = 1, p2 =
wire [max(pl, p2):mn(pl,p2)] x;

function mn;
i nput x, vy;
i nteger x, Yy;
mn=x <y ? X :Y,;
endf uncti on

function max;
i nput x, vy;
i nteger x, Yy;
mx = X >y ? X Y,
endf uncti on
endnodul e

New Preprocessor Directives

Preprocessor directives let you define and use macro definitions, file inclusion, and
conditional compilation.

Verilog-1995 supports conditional compilation using only a few compiler directives, such as
“ifdef, else,and endif.

Verilog-2001 adds the following C-like preprocessor directives:

m ifndef Directive (comparable to #i f ndef)

m line Directive (comparable to #l i ne).

m  elsif Directive (comparable to #el i f)

ifndef Directive

Use an i f ndef directive, as shown in Example 4-15, to discard code in a program if an
identifier is defined as a macro. If the i f ndef text macro identifier is defined, the i f ndef
group of lines is ignored.
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Example 4-15 Using the “ifndef Directive

“define first_block
“ifdef first bl ock
“ifndef second_nest
initial $display )"first block is defined”O0;
“el se
initial $display (“first block and second_nest defined”);
“endi f

line Directive

The " | i ne directive is mainly used by a source preprocessor to relate the processed output
back to the original source file. Use the " | i ne directive to change the source file and the line
number. For example, if your Verilog file is called foo.v:
f 0o. v:
nodul e m
some_synt ax_error

then you will see a message when using the r ead_hdl command pointing to a syntax error
on line 2 of f 00. v. However, if you use the " | i ne directive, then the compiler thinks it is
looking at a different file or line. For example:

foo. v:
modul e m
“line 1 “bar.v” 25
sonme_syntax_error

The r ead_hdl command message reports that the syntax error occurred on line 25 of
bar. v (bar. v is an example file name). Even if there are no syntax errors, the line number
and file name given in the " | i ne directive can affect other reports, such as messages from
el abor at e, or the line number and file name on netlist objects.
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elsif Directive

The " el si f directive must appear after an *i f def or i f ndef directive. The “el si f
directive is short hand for “ el se..."i f def ...” endi f . For example:

“ifdef x
“elsify y
“endi f

is equivalent to:
“ifdef x

“el se
“ifdef y

“endi f
“endi f

June 2006 161 Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Synthesizing Verilog Designs

Verilog Compiler Directives

The r ead_hdl command supports and interprets the following Verilog HDL compiler
directives:

m define

mifdef

m ifndef
m else

m elsif

m  endif

m " include
m " undef

m default _nettype

m |line
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Supported Verilog Modeling Constructs

m  Verilog and Verilog-2001 Constructs and Level of Support on page 163

= Notes on Verilog Constructs on page 169

Verilog and Verilog-2001 Constructs and Level of Support

Table 4-1 lists the level of support for all Verilog HDL constructs and indicates the level as fully
supported (Full), partially supported (Partial), ignored (Ignored), and not supported (NO).
Wherever possible, restrictions are listed to describe the partially supported language
constructs. The extension column specifies whether the construct is a Verilog-2001
extension, otherwise the construct is Verilog.

Table 4-1 Verilog Constructs and Level of Support

Group Construct Support Extension
Basic Identifiers Full
Escaped identifiers Full
Sized constants (b, o, d, h) Full
Unsized constants Full
2'bl1, 307,32 d123, 8’ hf f
Signed constants (s) Full Verilog-2001
3" bs101
String constants Full
Real constants No
Use of z, ? in constants Full
Use of x in constants Full
nodul e, endnodul e Full
macr onodul e Full
Hierarchical references No
/ | comment Full
/ * comment*/ Full
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Group Construct Support Extension
Basic, Continued System tasks Ignored

$di spl ay

System functions Partial

Only $si gned and $unsi gned

ANSI-style module, task, and Full Verilog-2001

function port lists See ANSI-Style

Declarations for more information.

Attributes Ignored Verilog-2001
Data types Wi re,wand, wor,tri,triand, Full

trior

triO,tril No

suppl yO, suppl y1 Full

trireg,small,mediumlarge |No

reg,integer Full

real No

tinme No

event No

par anet er Full

Range and type in parameter Full Verilog-2001

declaration

scal ared, vect or ed Ignored

i nput, out put, i nout Full

Memory Full

For example,reg [7: 0] x[3:0];

N-dimensional arrays Full Verilog-2001
input[]d;
Drive strengths Ignored
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Table 4-1 Verilog Constructs and Level of Support, continued

Group Construct Support Extension
Module instances Connect port by name, order Full
Override parameter by order Full
Override parameter by name Full Verilog-2001
def par am Partial
Constants connected to ports Full
Unconnected ports Full
Expressions connected to ports Full
Delay on built-in gates Ignored
Generate statements i f generate Full Verilog-2001
case generate Full Verilog-2001
f or generate Full Verilog-2001
concurrent begi nend blocks |[Full Verilog-2001
genvar Full Verilog-2001
Built-in primitives and, or, nand, nor, xor, xnor Full
not,notifO,notifl Full
buf, bufifO, bufifl Full
tran Full
tranifO,tranifl,rtran, No
rtranifO,rtranifl
pnos, Nnos, cnNos, r pnos, rnnos, [No
r cnos
pul | up, pul | down No
User defined primitives |[primtive No
(UDPs)
tabl e No
Operators and +, - (binary and unary) Full

expressions
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Table 4-1 Verilog Constructs and Level of Support, continued
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Group Construct Support Extension
Report operators and /, % Full
expressions See Notes on Verilog Constructs on
page 169
* Full
~ Full
Bitwise operations & |,N, ~", N~ Full
Reduction operations & |," ~& ~|, -, N~ Full
I, &&, | |
== 1= <,<= > >=
<<, >>
<<< >>> 2001
{}.{n{}}
?:
function call
===, l== No
*x Partial Verilog-2001
*Supported only when both the
operands are constants.
Event control event or Full
@ Partial
del ay and wai t (#) Ignored
event or using comma syntax Full Verilog-2001
posedge, negedge Partial
wai t Ignored
Intra-assignment event control Ignored
Event trigger (- >) No
Bit and part selects Bit select Full
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Table 4-1 Verilog Constructs and Level of Support, continued
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Group Construct Support Extension
Bit select of array element Full Verilog-2001
Constant part select Full
Note: The bounds of a part select
may be elaboration-time constants.
Variable part select (+: ,-:) Full Verilog-2001
Variable bit-select on left side of an |Full Verilog-2001
assignment
Continuous assignments |net and wi r e declaration Full
Using assign Full
Using delay Ignored
Procedural blocks al ways (exactly one @ required) |Partial
initial Ignored
Procedural statements  |; Full
begi n-end Full
if,else Full
repeat* Full
The r epeat statement must have a
constant repeat count.
case, casex, casez, def aul t Full
Task enable Full
f or (constant bounds, only + and - |Partial
operation on index)*
The f or statement must have
constant bounds.
whi | e* Partial
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Table 4-1 Verilog Constructs and Level of Support, continued

Group Construct Support Extension
forever* Partial
The f or ever statement must
contain a disable statement.
*A loop is unrolled to a maximum count specified
inhdl _max_loop limt
di sabl e Partial
The di sabl e statement must be
applied to an enclosing task or
named block.
fork,join No
Procedural assignments |Blocking (=) assignments Full
Non-blocking (<=) assignments Full
Procedural continuous assignments | No
(assi gn)
deassi gn No
force,rel ease No
Functions and tasks function Full
t ask Full
Automatic tasks and functions Full Verilog-2001
Named blocks Named block creation Full
Local variable declaration Full
Specify block specify Ignored
specpar am Ignored
Module path delays Ignored
Compiler directives “define Full
“undef Full
“resetall Full
“ifndef, elsif, line Full Verilog-2001
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Table 4-1 Verilog Constructs and Level of Support, continued

Group Construct Support Extension
“ifdef, else, endif Full
“include Full

Notes on Verilog Constructs

For Verilog module instances, there is limited support for def par amusing hierarchical
names. The def par ammust refer to a module instance in the current module.

A f or and whi | e statement is unrolled to a maximum count specified in the
hdl _max_| oop_| i mt attribute.

The Verilog-2001 $si gned and $unsi gned system functions are also supported in the
Verilog 1995 mode.

The Verilog 2001 $si gned keyword is also supported in the Verilog 1995 mode.

A single variable cannot have both blocking and non-blocking assignments in an always
block as shown in Example 4-16.

Example 4-16 Bitwise Assignment Restriction

nodul e TOP(a, b, 0);

i nput a, b;
out put o;
reg o;
al ways @a or b) begin:conb
0 = a;
0 <= b;
end
endnodul e
/I Results in the following error:
Error : Variables witten with both bl ocki ng and nonbl ocki ng assi gnnents are not

supported. [ ELAB- VLOG 1400]

Variable "o in block conmb’ in file top.v’ at line 8, colum 5
Al ways bl ock conb’ contains unsynthesizable constructs

Modul e ~ TOP' contains errors and cannot be el aborat ed

All Verilog conditional assignments must be either blocking or non-blocking or an error
message displays.
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Supported SystemVerilog Hardware Description

Language Constructs

RTL Compiler supports the synthesizable subset of SystemVerilog 1800-2005.
SystemVerilog is built on top of Verilog 2001 and improves the usability of Verilog code.

Table 4-2 lists the level of support for the SystemVerilog 1800-2005 constructs and indicates
the level as fully supported (Full), partially supported (Partial), and ignored (Ignored). The
chapter and section numbers follow the latest draft of the 1800-2005 standard.

Table 4-2 Supported SystemVerilog Constructs

Construct

unsized literals

time units in literals

string literals

array literals

structure literals

logic (4-state) data types

integer and bit (2-state) data types
byte, shortint, longint

shortreal data type

user-defined types

enumeration data type

typedef enum

enum type ranges

packed structure data type (4-state)
packed structure data type (2-state)
structure data type (unpacked)
union data type (packed)

union data type (unpacked)

casting

June 2006

Chapter & Section
Number

3.3
3.5
3.6
3.7
3.8
4.3
4.3
4.2
4.4
4.9
4.10
4.10.1
4.10.2
411
411
411
411
411
414
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Support

Full
Partial/lgnored
Full
Full
Full
Full
Full
Full
Partial
Full
Full
Full
Full
Full
Full
Full
Full
Partial

partial
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Table 4-2 Supported SystemVerilog Constructs, continued

packed arrays

unpacked arrays

indexing and slicing of arrays

array query functions

array assignment

arrays as arguments

constants

scope/lifetime (unnamed blocks)
default attribute type

assignment operators as statements
assignment operators as expressions
postincrement/decrement statements
preincrement/decrement statements
++ and -- as expressions

unpacked array expressions
structure expressions

aggregate expressions

do while loop

enhanced for loop

jump statements (return, break, continue)

final blocks

named blocks (matching end block name)

iff event control

always_comb

always_latch

always_ff

continuous assignments to variables

void functions

June 2006

5.2
5.2
5.4
5.5
5.7
5.8
6.3
6.6
6.2
8.3
8.3
8.3
8.3
8.3
8.15
8.13
8.15
10.5
10.5
10.6
10.7
10.8
10.10
11.2
11.3
11.4
11.5
12.3.1
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Full
Full
Full
Full
Full
Full
Full
Full

Partial/lgnored

Full
Full
Full
Full
Full
Full
Full
Full
Full
Full
Full

Ignored

Full
Full
Full
Full
Full
Full
Full
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Table 4-2 Supported SystemVerilog Constructs, continued

discarding func return 12.3.2 Full

pass by reference 12.4.2 Full
immediate assertions 17.2 Partial/lgnored
extern modules 19.7 Full

interface ports 19.8 Full

variable ports 19.8 Full

array ports 19.8 Full
structure/union ports 19.8 Full

timeunit and timeprecision 19.10 Partial/lgnored
implicit .name port connections 19.11.3 Full

implicit .* port connections 19.114 Full

attributes on interfaces 20.2 Partial/lgnored
named bundles 20.2.2 Full

generic bundles 20.2.3 Full

ports in interfaces 20.3 Full

tasks and functions in interfaces 20.6 Full

modports 204 Full
parameterized Interfaces 20.7 Full

typed parameters (V2001 feature) 6.3 Full
parameterized types 6.3 Full
expression size $bits 22.3 Full

define macros 23.2 Full
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Troubleshooting

Reading Designs with Mixed Verilog-2001 and SystemVerilog Files

RTL Compiler can read an HDL file that contains a mix of Verilog-2001 and SystemVerilog
commands. However, SystemVerilog defines some new keywords. If these keywords are
used as identifiers in a - v2001 design, then RTL Compiler will report syntax errors if the
design is read in the - sv _mode. Keywords that may have been used as identifiers include
bit,int,char,break, and so on. To workaround this problem use the * begi n_keywor ds
compiler directive as follows:
interface intf;
. Sv code ..
endi nterface
‘begi n_keywords "1364-2001"
modul e interface(output bit, input logic);
. other v2001 code which uses sv
keywords ..
endnodul e
“end_keywor ds

The ‘ begi n_keywor ds directive tells the parser to recognize only those keywords defined
by the specified language dialect. This lets you parse legacy code even in the - sv mode.

You can use the following options with the * begi n_keywor ds compiler directive:
1364_1995
m 1364 2001

m 1364 _2001-noconfig
Disables confi g, | i brary, and other configuration-related keywords
m 1364 2005

= 1800 2005
In the - sv mode, the default is1800- 2005. In the - v2001 mode, the default is1364-2001.

In the -v1995 mode, which is the default for the r ead_hdl command, the default is 364-
1995.
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Synthesizing VHDL Designs

s Overview on page 176

=  Modeling VHDL Designs on page 176

m  Synthesis Pragmas on page 176

m  Using HDL Commands and Attributes on page 177

m  Supported VHDL Constructs on page 178
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Overview

This chapter is organized for synthesizing VHDL RTL designs and provides links to the
corresponding VHDL sections throughout the manual.

For mixed Verilog and VHDL usage, Chapter 1, “Modeling HDL Designs” provides modeling
guidelines in both languages in one convenient location.

Modeling VHDL Designs

m  Modeling Arithmetic Components (Verilog and VHDL) on page 47

m  Modeling Combinational Logic in VHDL on page 44

m  Modeling Latches in VHDL on page 39

= Modeling Latches in VHDL on page 39

= Modeling Flip-Flops in VHDL on page 31

m  Using Case Statements in VHDL on page 70

m Using a for Statement in VHDL on page 75

m Inferring a Logic Abstract From the RTL in VHDL on page 78

m  Interpreting a Logic Abstract in Verilog or VHDL on page 82

Synthesis Pragmas

s VHDL Supported Synopsys Pragmas on page 91

m  Specifying Synthesis Pragma Keywords on page 92

s VHDL translate_on and translate_off Pragmas on page 95

m VHDL Set and Reset Synthesis Pragmas on page 103

s VHDL Signal Pragmas on page 106

s  VHDL Multiplexer Mapping Pragma on page 116

m  Function and Task Mapping Pragmas (Verilog and VHDL) on page 120

m  Template Pragma (Verilog and VHDL) on page 122

m  Enumeration Encoding Pragma (VHDL) on page 123
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m  Resolution Function Pragmas (VHDL) on page 124

m  Resolution Function Pragmas (VHDL) on page 124

Using HDL Commands and Attributes

s  HDL-Related Commands on page 126

m  HDL-Related Attributes on page 127

m  VHDL-Specific Attributes on page 144

Supported VHDL Constructs on page 178
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Supported VHDL Constructs

= Notes on Supported Constructs on page 183

s VHDL Predefined Attributes on page 188

Table 5-1 lists the VHDL constructs supported by RTL Compiler. See Notes on Supported
Constructs on page 183 for more information and license requirements. Both VHDL87 and
VHDL93 style descriptions are supported. The constructs are classified by one of the
following four categories:

m  Synthesized fully (Full)
m  Synthesized partially or in specific contexts (Partial)
m  Construct is ignored and a warning is generated (Ignored)

m  Construct is unsupported and an error message is generated (No)

Table 5-1 VHDL Constructs Supported in RTL Compiler

Construct Support

Design Entity and Entity Declaration Entity header Full

Configuration Entity declarative part Full
Entity statement part Ignored

Architecture Body Architecture declarative part Full

Architecture statement part Full
Configuration Configuration declarative part | Partial
Declaration Block configuration Full

Component configuration Full
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Table 5-1 VHDL Constructs Supported in RTL Compiler , continued

Construct Support
Subprogram and Subprogram Full
Packages Declaration
Subprogram Body Subprogram declarative part Full
Subprogram statement part Full
Subprogram Full
Overloading
Resolution Function Partial
Package. Package declarative part Full
Declaration Deferred constants Full
Package Body Full
Types Scalar Type Enumeration type Full
Definition Integer Full
Physical Ignored
Floating Ignored
Cor_npc_)site Type Array Full
Definition Record Eul
Access Type Ignored
Definition
File Type Definition Ignored
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Table 5-1 VHDL Constructs Supported in RTL Compiler , continued

Construct Support
Declarations Subprogram Full
Declaration
Subprogram Body Full
Type Declaration Full
Subtype Full
Declaration
Object Declaration | Constant Full
Signal Full
Variable Full
Shared variable No
File No
Alias Declaration Full
Attribute Full
Declaration
Component Full
Declaration
Group Template No
Declaration
Group Declaration No
Specifications Attribute Full
Specification
Configuration Full
Specification
Disconnection No
Specification
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Construct Support
Expressions Logical Operators and, or, nand, nor, xor, xnor 1993
Relational =, /=, >, <, >=, <= Full
Operators
Shift Operators sll (shift left logical) Full
srl (shift right logical)
sra (shift right arithmetic)
sla (shift left arithmetic)
ror, rol Full
Arithmetic + -, & Full
Operators
Sign Operators +, - Full
Multiplying * Full
Operators mod Eull
/, rem Full
Miscellaneous ** Partial
Operators abs Eull
not Full
Operands Integer literal Full
Real literal Ignore
Physical literal Ignore
Enumeration literal Full
String literal Full
Bit string literal Full
Null literal No
Aggregates Record aggregates Full
Array aggregates Full
Function calls Qualified expression Full
Type conversion Full
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Table 5-1 VHDL Constructs Supported in RTL Compiler , continued

Construct Support
Sequential
Statements Wait Sensitivity clause Partial
Condition clause Partial
Timeout clause Ignored
Assertion Ignored
Report Ignored
Signal Assignment Full
Variable Full
Assignment
Procedure Call Full
If Full
Case Full
Loop Unconditional loop No
while loop Partial
for loop Full
Next Full
Exit Full
Return Full
Null Full
Concurrent
Statements
Block Guard No
Block header No
Block declarative part Full
Block statement part Full
Timeout clause Ignored
June 2006 182 Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Synthesizing VHDL Designs

Table 5-1 VHDL Constructs Supported in RTL Compiler , continued

Construct Support
Concurrent Process Full
Statements, cont.
Concurrent Full
Procedure Call
Concurrent Ignored
Assertion

Concurrent Signal Conditional signal assignment | Full

Assignment : ,

g Selected signal assignment Full
Component Full
Instantiation
Generate if generate Full
Statement

for generate Full

Notes on Supported Constructs

Design Entities and Configurations

Generics and ports in an entity header can be of any allowable synthesizable type in an
interface object, such as bi t, bool ean, bit_vector, andi nt eger. See Types on
page 184 for more information.

Generics must have a default value specified, unless the entity has a TEMPLATE attribute
settot rue. See Chapter 2, “Synthesis Pragmas” for more information.

Declarations in an entity or architecture declarative part must be supported declarations.
See Declarations on page 185 for more information.

Configuration declarations and configuration specifications are supported with the
restriction that only one unique architecture is bound to an entity throughout the design.

Nested VHDL configurations are supported.
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Subprograms and Packages

Impure functions are unsupported.
Recursive subprograms are supported.

Formal parameters in a subprogram declaration can be of any synthesizable type
allowed for an interface object (for example, bi t , bool ean, bi t _vect or, i nt eger).
See Types below for more information.

Declarations in a subprogram declarative part, package declarative part, or package
body declarative part must be a supported declaration. See Declarations on page 185
for more information.

The r esol ved function defined in package | EEE. STD LOGd C 1164 is the only
supported resolution function. Annotate user-defined resolution functions with the
RESCLUTI ON attribute to force a W RED_AND, W RED_OR, or W RED_TRI behavior.
Refer to Chapter 2, “Synthesis Pragmas” for further information.

Types

Objects, such as constants, signals, and variables declared with a subtype that is an
ignored type or derived from an ignored type are unsupported. For example, floating type
definitions are ignored but a signal of that floating type is flagged as an error, as shown
in Example 5-1.

Example 5-1 Declaring an Object with an Unsupported Subtype Results in Error

type GET_REAL is 2.4 to 3.9; --lgnored type definition
signal S GET_REAL; <--Error!

Use the ENUM_ENCODI NG attribute to override the default mapping between an
enumerated type and the corresponding encoding value. See Chapter 2, “Synthesis
Pragmas” for further information.

Array type definitions are supported, as shown in Example 5-2.

June 2006 184 Product Version 6.1



HDL Modeling in Encounter RTL Compiler
Synthesizing VHDL Designs

Example 5-2 Supported Array Type Definitions

subtype BYTE is bit_vector(7 downto 0);

type COLORS is (SAFFRON, WHI TE, GREEN, BLUE);
type BIT 2D is array (0 to 255, to 7) of bit;
type ANOTHER BIT 2D is array (0O to 10) of BYTE;
type BITVECTOR 1D is array (O to ) of BYTE;
type INTECER 1D is array (O to ) of integer;
type ENUM 1D is array (O to ) of COLOR;
type BOOL_1D is array (COLORS) of bool ean;

-- a three dinmensional bit

type BIT 3D is array (0 to 10) of BIT_2D;

-- a two dinmensional integer

type INTECER 2D is array (0 TO 10, TO 10) of integer;

Interface objects (formal ports of an entity or a component, formal parameters of a
subprogram) can be of any supported type.

Null ranges are not supported.

Declarations

Initial values are supported for variables in a subprogram body.
Deferred constants are supported.
User-defined attribute declarations and specifications are supported.

All type declarations can be read in, but only objects of supported types described in the
types section are declared.

Signal kinds (bus and register) are unsupported.

Mode | i nkage in interface objects is unsupported.

Names

Selected names that refer to elements of a record are supported.

Selected names used as expanded names are supported. An expanded name is used
to denote a declaration from a library, package, or other named construct.

The following predefined attributes are supported: "base, 'l eft,’ ri ght,"hi gh,"l ow
‘range, 'reverse, 'range, 'l ength,’ Succ,’ Pred,’ Leftof,’ Ri ght of
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m  Theevent and st abl e predefined attributes are only supported in the context of clock
edge specifications.

m  User defined attribute names are supported.
m Indexing and slicing of function return values is supported.

m  Expressions in attribute names are unsupported.

Expressions
m  Signed arithmetic is supported.

m  The following operators are only supported in the VHDL IEEE 1076-1993 standard
mode:’ xnor,'sl|,"'srl,’sla,sra,’rol,"ror

m  The ** operator is only supported when both the operands are constants or when the
left operand is a power of 2.

m  Real and physical literals may only exist in after clauses, where they are ignored.

= The TYPE_CONVERSI ON pragmas may be used to tag user-defined functions as having
a type conversion behavior. Refer to Chapter 2, “Synthesis Pragmas” for further
information.

m  Slices of array objects are supported. Similarly, direct indexing of a bit within an array is
supported, as shown in Example 5-3.

Example 5-3 Direct Indexing of a Bit Within an Array

subtype BYTE is bit_vector(3 downto 0);

type MEMIYPE is array ( downto 0) of BYTE;
vari abl e MEM MEMIYPE;

variable Bl: bit;

MEM 3 downto 0):= X; -- supported nmulti-word slice
Bl:= MEM 3) (0); -- supported reference to bit

m  Slices whose ranges cannot be determined statically are not supported.

m ror androl operators are available with Datapath Synthesis in Encounter RTL
Compiler.
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Sequential Statements

When an explicit wai t statement is used, it must be the first statement of a process. The
condition clause must represent the clock edge specification. The sensitivity clause, if
any, must only contain the clock signal specified in the condition clause.

Multiple wait statements in a process (implicit state machines) are unsupported.

Assignments that involve multiple “words” of two-dimensional or higher objects are
supported.

The range in a f or loop must be statically computable.
Delay mechanisms in signal assignments are ignored.
Multiple waveforms in signal assignments are unsupported.

whi | e loops are supported with the restriction that looping behavior is statically
determined.

Concurrent Statements

Postponed processes including postponed concurrent procedure calls and postponed
concurrent signal assignments are unsupported.

Signal assignments that involve multiple “words” of 2-dimensional (or higher) objects are
supported.

Delay mechanisms in signal assignments are ignored.

Multiple waveforms in signal assignments are unsupported.

Guarded signal assignments are unsupported.

The range in a f or - gener at e statement must be statically computable.

Declarations in a generate statement are only supported in the VHDL IEEE 1076-1993
standard mode.
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VHDL Predefined Attributes

Table 5-2 VHDL Predefined Attributes

Pre-defined Attribute Support
' base Partial
"left Full
"right Full
"hi gh Full

"1 ow Full
"ascendi ng Partial
"1 mage No
"val ue No

' pos Partial
" val Partial
'succ Full

" pred Full

"I ef t of Full
"ri ght of Full

' range Full
'reverse_range Full

"l ength Full

" del ayed No
"stabl e Partial
" qui et No
"transaction No
"event Partial
"active No

"l ast _event No
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Table 5-2 VHDL Predefined Attributes

Pre-defined Attribute Support
"l ast _active No
"l ast _val ue No
"driving No
"driving_val ue No
" si npl e_nane No
"instance_nane No
' pat h_nane No

Notes on Pre-defined Attributes

m  The following pre-defined attributes are supported only when the prefix is a static type
mark: ' base, 'ascendi ng, ' pos, 'val , 'succ, 'pred, 'leftof, 'right of

m  The following pre-defined attributes are supported only in the context of clock edge

specifications: Event , St abl e

m  Expressions in attribute names are not supported.
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Index
A latch 128
hdl_auto_sync_set_reset
abstracts implements logic using synchronous
logic 77 set and reset pins on a flip-

always block 30
architecture

VHDL entity 27
array

definitions 184

multidimensional 154
slices 186
asynchronous operation
VHDL 35
Attributes
hdl_infer_unresolved_from_logic_abstra
ct

use an empty module as a place-
holder for an unresolved
reference 85
hdl_use_techelt_first 82
input_pragma_keyword 92
write_vlog_empty_module_for_logic_ab
stract 85
write out an unresolved reference as
an empty module 83
attributes
Boolean-valued 104, 106
predefined VHDL 185, 188
Attributes (set_attribute)
hdl_allow_inout_const_port_connect
iIssue an error message if an output or
inout port of an instantiated
submodule is connected to a
constant value 127
hdl_array_naming_style
name individual bits of array ports and
registers 127
hdl_async_set_reset
implements the listed signals using
asynchronous set and reset
pins on a latch if that logic
controls an asynchronous
assignment 127
hdl_auto_async_set_reset
implements logic using asynchronous
set and reset pins on a
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flop 128
hdl_bit_blast_threshold
control bit-blasting of vector
variables 129
hdl_delete_transparent_latches
control whether transparent latches
are preserved or deleted
during elaboration 130
hdl_enable_proc_name
update the value of the
hdl_proc_name instance
attribute for sequential
elements during
elaboration 130
hdl_error_on_blackbox
issue an error messages on an
unresolved reference (black-
box) during elaboration 130
hdl_error_on_latch
iIssues an error message if a latch is
inferred for a design 130
hdl_ff_keep_explicit_feedback
controls how flip-flop stable states are
implemented for feedback
assignments that are explicitly
specified in the RTL 132
hdl_ff_keep_feedback
control how flip-flop stable states are
implemented 130

hdl_filelist
keep track of which files are read into
the tool 134
hdl_language

handle potential incompatibilities with
modes of parsing 149

specify the default HDL language
mode assumed when you use
theread_hdl command without
specifying the language
mode 134, 143

hdl_latch_keep_feedback
controls how specified latch enable
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states are implemented 134
hdl_max_loop_limit
determines the maximum number of
iterations for unfolding a loop
construct of any type 136
hdl_max_recursion_limit
sets the maximum number of
elaborations for recursive
instantiations to prevent
possible infinite
recursions 136
hdl_parameter_naming_style
specifies the format of the suffix
added to the original module
name for each parameter
overwrite 137
hdl_preserve_dangling_output_nets
preserve the names of dangling
output nets in designs 137
hdl_preserve_unused_registers
preserves registers that do not affect
any outputs 137
hdl_record_naming_style
chooses a scheme to name individual
bits of record ports and
registers 138
hdl_reg_naming_style
specifies the format in which flops of
vectored variables and latches
of scalar variables are printed
out 138
hdl_search_path
specifies a list of UNIX directories to
search for files associated with
the read_hdl command and
'include files 138
hdl_sync_set reset
implements the listed signals using
synchronous set and reset
pins on a flip-flop 138
hdl_track_filename_row_col
enables or disables file/row/col
information tracking 140
hdl_trim_target_index
affects how logic is generated to
implement the index of an
array assignment when the
index has more bits than
necessary 141
hdl_unconnected_input_port_value
connects undriven input pins in a
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module or cell instantiation to
the specified value 141
hdl_undriven_output_port_value
connects undriven output ports in a
module to the specified
value 141
hdl_undriven_signal_value
connect each undriven signal to the
specified value 141
hdl_use_default_parameter_values_in_
name
shortens the name of a
parameterized module 141
hdl_use_parameterized_module_by na
me
bind a module or architecture named
with the generated
parameterized name 141
hdl_use_port_default_value
honor default initial values of input
ports in a component
declaration or entity
declaration 142
hdl_use_techelt_first
bind a gate from a technology
library 142
hdl_vector_naming_style
specifies the format in which flatten
elements of array variables are
printed out 142
hdl_vhdl_case
store VHDL identifiers and operators
in lower, upper, or the case
given in source file 144
hdl_vhdl_environment
specifies selection of predefined
arithmetic libraries 144
hdl_vhdl_Irm_compliance
enforces a strict interpretation of the
VHDL LRM 144
hdl_vhdl_preferred_architecture
specifies name of the preferred
architecture used with an
entity 144
hdl_vhdl_read_version
specifies the VHDL version when files
are analyzed using
read_hdl 144
input_pragma_keyword 142
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B

begin_keywords 173
black box 85
block pragmas 101

C

cadence.attributes package 104
case statement
generate 151

infer a latch
Verilog 64
VHDL 70

multi-way branching in Verilog 64
prevent a latch in VHDL 70
Verilog synthesis pragma 96
casex statement
model dont care conditions 68
Verilog 67
clock
edges
specify in VHDL 32
signals
specify in VHDL 3
clock gating
Verilog modeling 42
combinational
logic
Verilog 40
compiler directives
begin_keywords 173
Verilog 162
Verilog 2001 159
concurrent conditional signal
assignment 32
conditional signal assignment 33
constant
functions 158

~N N

constructs
Verilog 163
VHDL 178

continuous assignment 41

D

declare

ports and parameters 157
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default value
assign in next_state
Verilog 65
directives
Verilog
compiler 162
preprocessor
dont care conditions
model in Verilog 67

159

E

elsif directive 161
empty module
representing as a black box 85
representing as a technology cell
extensions

Verilog-2001 148

F

flip-flop
modeling 28
specify clock signals in VHDL 32

synthesize asynchronous set and reset

VHDL 35
for
generate statement
statement
describe repetitive operations
Verilog 73
supported forms
Verilog 74
VHDL 75
full case 96
functions and tasks
automatic 155
mapping
Verilog 120

152

G

generate statements 149
case 149
for 149
if 149

genvar 152
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H

hierarchical
names 169

references 16

IEEE
Language Reference Manual
(LRM) 148
resolution function 184
Standard Verilog Language Reference

Manual 27
Standard VHDL Language Reference
Manual 27

if

generate statement 150
if statement 32
ifndef directive 159
infer_mux (map_to_mux) 112
input pragmas

keyword marking 142

K
keywords
pragma
specifying 92
L
latch
infer
Verilog 38
VHDL 70
model a state transition table
Verilog 64
VHDL 70
prevent
Verilog 65, 66
VHDL 70

stable states
implementing feedback path 134
suppress
Verilog 96
line directive 160
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logic abstract

inferring from RTL 77
writing out
Verilog 83

map_to_mux (infer_mux) 112

modeling for named blocks 115

meta-comment

VHDL 89

modeling

asynchronous set and reset signals
VHDL 35
clock edges for flip-flops
VHDL 32
combinational logic
Verilog 40
dont care conditions
Verilog 67, 69
flip-flop
Verilog 28
for statement
Verilog 73
VHDL 75
if statement
VHDL 32
latch using an incomplete case statement
Verilog 64
VHDL 70
register as a latch
Verilog 38
set and reset control logic
VHDL 103
state transition table
Verilog 64
VHDL 70
synchronous set and reset signals
VHDL 33
Verilog styles
supported constructs 16
VHDL styles
supported constructs 17

[6V)

[o¢]

multidimensional arrays 154
multiplexer

mapping
Verilog 11
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P

parallel case

Verilog synthesis pragma 97

parameter
passing by name
defparam statement 156
redefinition 156

pragma keywords
specifying 92

pragmas
Synopsys 90

predefined
VHDL

attributes 185, 188
procedural assignments
Verilog 40

VHDL 31

R

register
infer
as a latch
Verilog 38

S

signal
comma-separated list 156
pragmas
Verilog 99
state transition table
model in VHDL 70
supported
Synopsys pragmas 90
Verilog
modeling constructs
VHDL
modeling constructs
Synopsys
supported pragmas 90
synthesis pragmas 89
Verilog
case statement 96
full case 96
function and task mapping
map_to_mux 112

= =
o o
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parallel case 97

setand reset 98
verilog

entity template 122
VHDL

enumeration encoding 123

process 104

resolution function 124

set and reset 103

signal pragma 106

signed type 121

T

technology cell 85
template pragma
Verilog entity 122

V
variable

part select 158
Verilog

1995 149

2001 extensions 148
compiler directives 162
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