

Digital Systems Design with
FPGAs and CPLDs

This page intentionally left blank

Digital Systems Design with
FPGAs and CPLDs

Ian Grout

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Newnes is an imprint of Elsevier

Newnes is an imprint of Elsevier

30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright � 2008, Elsevier Ltd. All rights reserved.

Material in Chapter 6 is reprinted, with permission, from IEEE Std 1076–2002 for VHDL Language Reference Manual, by IEEE.

The IEEE disclaims any responsibility or liability resulting from placement and use in the manner described.

MATLAB� and Simulink� are trademarks of The MathWorks, Inc. and are used with permission. The MathWorks does not

warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB� and Simulink�

software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical

approach or particular use of the MATLAB� and Simulink� software.

Figures based on or adapted from figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright � Xilinx, Inc.,

1995–2005. All rights reserved.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK:

phone: (þ44) 1865 843830, fax: (þ44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request

online via the Elsevier homepage (http://elsevier.com), by selecting ‘‘Support & Contact’’ then ‘‘Copyright and Permission’’

and then ‘‘Obtaining Permissions.’’

Recognizing the importance of preserving what has been written, Elsevier prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data

Grout, Ian.

Digital systems design with FPGAs and CPLDs / Ian Grout.

p. cm.

Includes bibliographical references and index.

ISBN-13: 978-0-7506-8397-5 (alk. paper) 1. Digital electronics. 2. Digital circuits — Design

and construction. 3. Field programmable gate arrays. 4. Programmable logic devices. I. Title.

TK7868.D5.G76 2008

621.381—dc22

2007044907

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

For information on all Newnes publications

visit our Web site at www.books.elsevier.com

Printed in the United States of America

08 09 10 11 12 13 10 9 8 7 6 5 4 3 2 1

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

To my family, but especially to my parents and to Jane.

This page intentionally left blank

Table of Contents

Preface ...xvii

Abbreviations ...xxiii

Chapter 1: Introduction to Programmable Logic ... 1
1.1 Introduction to the Book ..1
1.2 Electronic Circuits: Analogue and Digital ..10

1.2.1 Introduction ..10
1.2.2 Continuous Time versus Discrete Time...10
1.2.3 Analogue versus Digital ..12

1.3 History of Digital Logic ..14
1.4 Programmable Logic versus Discrete Logic ..17
1.5 Programmable Logic versus Processors ..21
1.6 Types of Programmable Logic ..24

1.6.1 Simple Programmable Logic Device (SPLD)24
1.6.2 Complex Programmable Logic Device (CPLD)27
1.6.3 Field Programmable Gate Array (FPGA).......................................28

1.7 PLD Configuration Technologies ...29
1.8 Programmable Logic Vendors...32
1.9 Programmable Logic Design Methods and Tools.....................................33

1.9.1 Introduction ..33
1.9.2 Typical PLD Design Flow...35

1.10 Technology Trends ..36
References ...38
Student Exercises ..40

Chapter 2: Electronic Systems Design ... 43
2.1 Introduction ..43
2.2 Sequential Product Development Process versus Concurrent

Engineering Process...52

www.newnespress.com

2.2.1 Introduction ..52
2.2.2 Sequential Product Development Process53
2.2.3 Concurrent Engineering Process..54

2.3 Flowcharts...56
2.4 Block Diagrams...58
2.5 Gajski-Kuhn Chart ...61
2.6 Hardware-Software Co-Design ...62
2.7 Formal Verification...65
2.8 Embedded Systems and Real-Time Operating Systems66
2.9 Electronic System-Level Design ..67
2.10 Creating a Design Specification...68
2.11 Unified Modeling Language..70
2.12 Reading a Component Data Sheet..72
2.13 Digital Input/Output ...75

2.13.1 Introduction...75
2.13.2 Logic-Level Definitions ...79
2.13.3 Noise Margin...81
2.13.4 Interfacing Logic Families ...83

2.14 Parallel and Serial Interfacing ...89
2.14.1 Introduction...89
2.14.2 Parallel I/O ..95
2.14.3 Serial I/O ...97

2.15 System Reset.. 102
2.16 System Clock ...105
2.17 Power Supplies ..107
2.18 Power Management...109
2.19 Printed Circuit Boards and Multichip Modules 110
2.20 System on a Chip and System in a Package.. 112
2.21 Mechatronic Systems... 113
2.22 Intellectual Property .. 115
2.23 CE and FCC Markings ...116

References..118
Student Exercises ... 121

Chapter 3: PCB Design ... 123
3.1 Introduction .. 123
3.2 What Is a PCB?...125

3.2.1 Definition .. 125
3.2.2 Structure of the PCB ... 127
3.2.3 Typical Components.. 139

3.3 Design, Manufacture, and Testing .. 144
3.3.1 PCB Design ... 144

viii Table of Contents

www.newnespress.com

3.3.2 PCB Manufacture.. 150
3.3.3 PCB Testing... 151

3.4 Environmental Issues .. 152
3.4.1 Introduction .. 152
3.4.2 WEEE Directive .. 153
3.4.3 RoHS Directive ... 153
3.4.4 Lead-Free Solder ... 154
3.4.5 Electromagnetic Compatibility .. 154

3.5 Case Study PCB Designs... 155
3.5.1 Introduction .. 155
3.5.2 System Overview ... 157
3.5.3 CPLD Development Board ... 158
3.5.4 LCD and Hex Keypad Board ...160
3.5.5 PC Interface Board.. 163
3.5.6 Digital I/O Board .. 166
3.5.7 Analogue I/O Board.. 168

3.6 Technology Trends.. 171
References ... 173
Student Exercises ..175

Chapter 4: Design Languages... 177
4.1 Introduction .. 177
4.2 Software Programming Languages ... 177

4.2.1 Introduction .. 177
4.2.2 C.. 179
4.2.3 Cþþ .. 181
4.2.4 JAVATM .. 183
4.2.5 Visual BasicTM... 186
4.2.6 Scripting Languages .. 189
4.2.7 PHP ...191

4.3 Hardware Description Languages ...193
4.3.1 Introduction .. 193
4.3.2 VHDL ... 194
4.3.3 Verilog�-HDL ... 196
4.3.4 Verilog�-A... 199
4.3.5 VHDL-AMS.. 202
4.3.6 Verilog�-AMS ... 205

4.4 SPICE.. 205
4.5 SystemC� ..208
4.6 SystemVerilog..209
4.7 Mathematical Modeling Tools ..210

References ... 214
Student Exercises ... 216

www.newnespress.com

Table of Contents ix

Chapter 5: Introduction to Digital Logic Design ... 217
5.1 Introduction .. 217
5.2 Number Systems.. 222

5.2.1 Introduction .. 222
5.2.2 Decimal–Unsigned Binary Conversion.. 224
5.2.3 Signed Binary Numbers... 226
5.2.4 Gray Code ... 231
5.2.5 Binary Coded Decimal .. 232
5.2.6 Octal-Binary Conversion ... 233
5.2.7 Hexadecimal-Binary Conversion ... 235

5.3 Binary Data Manipulation.. 240
5.3.1 Introduction .. 240
5.3.2 Logical Operations .. 241
5.3.3 Boolean Algebra.. 242
5.3.4 Combinational Logic Gates ..246
5.3.5 Truth Tables .. 248

5.4 Combinational Logic Design ..256
5.4.1 Introduction .. 256
5.4.2 NAND and NOR logic ... 269
5.4.3 Karnaugh Maps .. 271
5.4.4 Don’t Care Conditions...277

5.5 Sequential Logic Design.. 277
5.5.1 Introduction .. 277
5.5.2 Level Sensitive Latches and Edge-Triggered

Flip-Flops .. 282
5.5.3 The D Latch and D-Type Flip-Flop ... 283
5.5.4 Counter Design.. 288
5.5.5 State Machine Design.. 305
5.5.6 Moore versus Mealy State Machines .. 316
5.5.7 Shift Registers.. 317
5.5.8 Digital Scan Path... 319

5.6 Memory...322
5.6.1 Introduction .. 322
5.6.2 Random Access Memory .. 324
5.6.3 Read-Only Memory... 325
References..327
Student Exercises ... 328

Chapter 6: Introduction to Digital Logic Design with VHDL.......................... 333
6.1 Introduction .. 333
6.2 Designing with HDLs ... 334

x Table of Contents

www.newnespress.com

6.3 Design Entry Methods .. 338
6.3.1 Introduction .. 338
6.3.2 Schematic Capture... 338
6.3.3 HDL Design Entry.. 339

6.4 Logic Synthesis..341
6.5 Entities, Architectures, Packages, and Configurations............................344

6.5.1 Introduction .. 344
6.5.2 AND Gate Example .. 346
6.5.3 Commenting the Code...353

6.6 A First Design... 355
6.6.1 Introduction .. 355
6.6.2 Dataflow Description Example ... 356
6.6.3 Behavioral Description Example ... 357
6.6.4 Structural Description Example ..359

6.7 Signals versus Variables .. 366
6.7.1 Introduction .. 366
6.7.2 Example: Architecture with Internal Signals 368
6.7.3 Example: Architecture with Internal Variables 372

6.8 Generics...374
6.9 Reserved Words .. 380
6.10 Data Types ..380
6.11 Concurrent versus Sequential Statements.. 383
6.12 Loops and Program Control ... 383
6.13 Coding Styles for VHDL... 385
6.14 Combinational Logic Design... 387

6.14.1 Introduction... 387
6.14.2 Complex Logic Gates .. 388
6.14.3 One-Bit Half-Adder ... 388
6.14.4 Four-to-One Multiplexer ...389
6.14.5 Thermometer-to-Binary Encoder... 397
6.14.6 Seven-Segment Display Driver ..398
6.14.7 Tristate Buffer ... 409

6.15 Sequential Logic Design .. 414
6.15.1 Introduction... 414
6.15.2 Latches and Flip-Flops..416
6.15.3 Counter Design.. 422
6.15.4 State Machine Design.. 426

6.16 Memories...440
6.16.1 Introduction... 440
6.16.2 Random Access Memory...441
6.16.3 Read-Only Memory... 444

6.17 Unsigned versus Signed Arithmetic... 447
6.17.1 Introduction... 447

Table of Contents xi

www.newnespress.com

6.17.2 Adder Example.. 448
6.17.3 Multiplier Example.. 449

6.18 Testing the Design: The VHDL Test Bench.. 453
6.19 File I/O for Test Bench Development ...459

References..471
Student Exercises... 472

Chapter 7: Introduction to Digital Signal Processing 475
7.1 Introduction .. 475
7.2 Z-Transform.. 496
7.3 Digital Control ..509
7.4 Digital Filtering...524

7.4.1 Introduction .. 524
7.4.2 Infinite Impulse Response Filters .. 532
7.4.3 Finite Impulse Response Filters ..534
References..535
Student Exercises... 536

Chapter 8: Interfacing Digital Logic to the Real World: A/D Conversion,
D/A Conversion, and Power Electronics .. 537

8.1 Introduction .. 537
8.2 Digital-to-Analogue Conversion ... 543

8.2.1 Introduction .. 543
8.2.2 DAC Characteristics.. 548
8.2.3 Types of DAC ... 555
8.2.4 DAC Control Example.. 559

8.3 Analogue-to-Digital Conversion ... 565
8.3.1 Introduction .. 565
8.3.2 ADC Characteristics.. 568
8.3.3 Types of ADC ... 572
8.3.4 Aliasing..577

8.4 Power Electronics ..580
8.4.1 Introduction .. 580
8.4.2 Diodes ... 581
8.4.3 Power Transistors.. 585
8.4.4 Thyristors .. 593
8.4.5 Gate Turn-Off Thyristors.. 603
8.4.6 Asymmetric Thyristors .. 604
8.4.7 Triacs...604

8.5 Heat Dissipation and Heatsinks..606
8.6 Operational Amplifier Circuits..610

xii Table of Contents

www.newnespress.com

References..612
Student Exercises... 613

Chapter 9: Testing the Electronic System .. 615
9.1 Introduction .. 615
9.2 Integrated Circuit Testing ...621

9.2.1 Introduction .. 621
9.2.2 Digital IC Testing.. 624
9.2.3 Analogue IC Testing ... 629
9.2.4 Mixed-Signal IC Testing.. 633

9.3 Printed Circuit Board Testing ...633
9.4 Boundary Scan Testing ...636
9.5 Software Testing.. 642

References.. 645
Student Exercises... 646

Chapter 10: System-Level Design ... 647
10.1 Introduction .. 647
10.2 Electronic System-Level Design ..654
10.3 Case Study 1: DC Motor Control ...661

10.3.1 Introduction... 661
10.3.2 Motor Control System Overview... 662
10.3.3 MATLAB�/Simulink� Model Creation

and Simulation .. 665
10.3.4 Translating the Design to VHDL.. 666
10.3.5 Concluding Remarks ...674

10.4 Case Study 2: Digital Filter Design... 686
10.4.1 Introduction... 686
10.4.2 Filter Overview .. 688
10.4.3 MATLAB�/Simulink� Model Creation

and Simulation .. 690
10.4.4 Translating the Design to VHDL.. 692
10.4.5 Concluding Remarks ...698

10.5 Automating the Translation ..702
10.6 Future Directions ..703

References.. 704
Student Exercises ... 705

Additional References ... 707

Index .. 717

Table of Contents xiii

www.newnespress.com

This page intentionally left blank

system

• noun 1 A set of things working together as parts of a mechanism or an

interconnecting network.

Oxford Dictionary of English

This page intentionally left blank

Preface

In days gone by, life for the electronic circuit designer seems to have been easier.

Designs were smaller, ran at a slower speed, and could easily fit onto a single small

printed circuit board. An individual designer could work on a problem and designs

could be specified and developed using paper and pen only. The circuit schematic

diagrams that were required could be rapidly drawn on the back of an envelope.

Struck by the success of the early circuit designs, customers started to ask for smaller,

faster, and more complex circuits—and at a lower cost. The designers started to work

on solving such problems, which has led to the rapidly expanding electronics industry

that we have today. Driven by the demand from the customer, new materials and

fabrication processes have been developed, new circuit design methodologies and

design architectures have taken over many of the early traditional design approaches,

and new markets for the circuits have evolved.

So how is the design problem tackled today? This is not an easy question to answer, and

there is more than one way to develop an electronic circuit solution to any given

problem. However, the design process is no longer the activity of a single individual.

Rather, a team of engineers is involved in the key engineering activities of design,

fabrication (manufacture), and test. All activities now involve the extensive use of

computing resources, requiring the efficient use of software tools to aid design

(electronic design automation, EDA and computer aided design, CAD), fabrication

(Computer Aided Manufacture, CAM), and test (Computer Aided Test, CAT). The

circuit is no longer a unique and isolated entity. Rather, it is part of a larger system.

Increasingly, much of the design work is undertaken at the system level . . . at a suitably

high level of design abstraction required to reduce design time and increase the designer

efficiency. However, when it comes to the design detail, the correctly specified system

must also work at the basic electric voltage and current level. How to go from an

www.newnespress.com

effective system-level specification to an efficient and working circuit implementation

requires the skills of good designers who are aided by good design tools.

For the electronic circuit designer at an early stage in the design process, whether to

implement the required circuit functionality using analogue circuit techniques or digital

circuit techniques must be decided. However, sometimes the choice will have already been

made, and increasingly a digital solution is the preferred choice. The wide use of digital

signalprocessing (DSP) techniques facilitates complexoperations that canprovide superior

performance to an analogue circuit equivalent; indeed some cannot be performed in

analogue. Traditionally, DSP functions have been implemented using software programs

written to operate on a target processor. The microprocessor (mP), microcontroller (mC),
and digital signal processor provide the necessary digital circuits, in integrated circuit (IC)

form, to implement the required functions. In fact, these processors are tobe found inmany

everyday embedded electronics that we take for granted. This book could not have been

written without the aid of an electronic system incorporating a microprocessor running a

software operating system that in turn runs the word processor software.

Increasingly, the functions that have been traditionally implemented in software

running on a processor-based digital system in the DSP world and many control

applications are being evaluated in terms of performance that can be achieved in

software. In many cases, the software solution will be slower than is desired, and the

basic nature of the software programmed system means that this speed limitation

cannot be overcome. The way to overcome the speed limitation is to perform the

required operations in hardware designed for a particular application. However,

custom hardware solutions will be expensive to acquire.

If there were a way to obtain the power of programmability with the power of

hardware speed, then this would be provide a significant way forward.

Fortunately, programmable logic provides the power of programmability with the

power of hardware speed by providing an IC with built-in digital electronic circuitry

that is configured by the user for a particular application. Many devices can be

reconfigured for different applications. Today, two main types of programmable logic

ICs are commonly used: the field programmable gate array (FPGA) and complex

programmable logic device (CPLD).

Therefore, it is possible to implement a complex digital system that can be developed

and the functionality changed or enhanced using either a processor running a

software program or programmable logic with a specific hardware configuration.

xviii Preface

www.newnespress.com

For an end-user, the functionality of both types of system will be the same—the

design details are irrelevant to the end-user as long as the functionality of the unit

is correct. In this book, to provide consistency and to differentiate between the

processor and programmable logic, the following terminology will be used:

• A processor (microprocessor, mP; microcontroller, mC; or digital signal
processor, DSP) will be programmed for a particular application using a

software programming language (SPL).

• Programmable logic (field programmable gate array, FPGA; simple

programmable logic device, SPLD; or complex programmable logic device,

CPLD) will be configured using a hardware description language (HDL).

The aim of this book is to provide a reference source with worked examples in

the area of electronic circuit design using programmable logic. In particular, field

programmable gate arrays and complex programmable logic devices will be presented

and examples of such devices provided.

The choice whether to use a software-programmed processor or hardware-configured

programmable logic device is not a simple one, and many decisions figure into evaluating

the pros and cons of a particular implementation prior to making a final decision. This

book will provide an insight into the design capabilities and aspects relating to the design

decisions for programmable logic so that an informed decision can be made.

The book is structured as follows:

Chapter 1 will introduce the types of programmable logic device that are available

today, their differing architectures, and their use within electronic system design.

Additionally, the terminology used in this area will be presented with the aim of

demystifying the jargon that has evolved.

Chapter 2 will provide a background into the area of electronic systems design, the

types of solutions that may be developed, and the decisions that will need to be

made in order to identify the right technology choice for the design implementation.

Typical design flows will be introduced and discussed for the different technologies.

Chapter 3 will introduce the design of printed circuit boards (PCBs). These provide the

mechanical and electrical base onto which the electronic components will be mounted. The

correct design of the PCB is essential to ensure that the electronic circuit can be realized

(implemented) to operate to the correct specification (power supply voltage, thermal [heat]

dissipation, digital clock frequency, analogue and digital circuit elements, etc.) and to

Preface xix

www.newnespress.com

ensure that the different electronic circuit components interact with each other correctly

and do not provide unwanted effects. A correctly designed PCB will allow the circuit to

perform as intended. A badly designed PCB will prevent the circuit from working

altogether.

Chapter 4 will discuss the different programming languages that are used to develop

digital designs for implementation in either a processor (software-programmed

microprocessor, microcontroller, or digital signal processor) or in programmable

logic (hardware-configured FPGA or CPLD). The main languages used will be

introduced and examples provided. For programmable logic, the main hardware

description languages used are Verilog�-HDL and VHDL (VHSIC Hardware

Description Language). These are IEEE (Institute of Electrical and Electronics

Engineers) standards, universally used in both education and industry.

Chapter 5 will introduce digital logic design principles. A basic understanding of the

principles of digital circuit design, such as Boolean Logic, Karnaugh maps, and

counter/state machine design will be expected. However, a review of these principles

will be provided for designs in schematic diagram form and presented such that the

design functionality may be mapped over a VHDL description in Chapter 6.

Chapter 6 will introduce VHDL as one of the IEEE standard hardware description

languages available to describe digital circuit and system designs in an ASCII

text-based format. This description can be simulated and synthesized. (Simulation

will validate the design operation, and synthesis will translate the text-based

description into a circuit design in terms of logic gates and the interconnections

between the basic logic gates. The gates and gate connections are commonly referred to

as the netlist.) The design examples provided in schematic diagram form in Chapter 5

will be revisited and modeled in VHDL.

Chapter 7 will introduce the development of digital signal processing algorithms in

VHDL and the synthesis of the VHDL descriptions to target programmable logic

(both FPGA and CPLD). Such algorithms include digital filters (low-pass, high-pass,

and band-pass), digital PID (proportional plus integral plus derivative) control

algorithms, and the FFT (fast Fourier transform, an efficient implementation of the

discrete Fourier transform, DFT).

Chapter 8 will discuss the interfacing of programmable logic to what is commonly

referred to as the real world. This is the analogue world that we live in, and such

interfacing requires both the acquisition (capture) and the generation of analogue

xx Preface

www.newnespress.com

signals. To enable this, the digital programmable logic device will require an interface to

the analogue world. For analogue signals to be captured and analyzed in digital, an

analogue-to-digital converter (ADC) will be required. For analogue signals to be

generated from the digital, a digital-to-analogue converter (DAC) will be required.

In this book, the convention used for the word analogue will use the -ue at the end of

the word, unless a particular name already in use is referred to spelled as analog.

Chapter 9 will introduce the testing of the electronic system. In this, failure mechanisms

in hardware and software will be introduced, and the need for efficient and

cost-effective test programs from the prototyping phase of the design through

high-volume manufacture and in-system testing.

Chapter 10 will introduce the increasing need to develop programmable logic–based

designs at a high level of abstraction using behavioral descriptions of the system

functionality, and the increasing requirements to enable the synthesis of these

high-level designs into logic. With reference to a design flow taking a digital design

developed in MATLAB� or Simulink� through a VHDL code equivalent for

implementation in FPGA or CPLD technology, the synthesis of digital control system

algorithms modeled and simulated in Simulink� will be translated into VHDL for

implementation in programmable logic.

Throughout the book, the HDL examples provided and evaluated can be implemented

within programmable logic–based circuits that may be designed by the user in addition

to the PCB design examples that are provided. These examples have been developed to

form the basis of laboratory experiments that can be used to accompany the text.

With the broad range of subject material and examples, a feature of the book is its

potential for use in a range of learning and teaching scenarios. For example:

1. As an introduction to design of electronic circuits and systems using

programmable logic. This would allow for the design approaches,

programmable logic architectures, simulation, synthesis, and the final

configuration of an FPGA or CPLD to be undertaken. It would also allow

for investigation into the most appropriate HDL coding styles and device

implementation constraints to be undertaken.

2. As an introduction to hardware description languages, in particular VHDL,

allowing for case study designs to be developed and implemented within

programmable logic. This would allow for VHDL code developers to see the

Preface xxi

www.newnespress.com

code working on real devices and to enable additional testing of the electronic

circuit with such equipment as oscilloscopes and spectrum analyzers.

3. As an introduction to the design of printed circuit boards, in particular

mixed-signal designs (mixed analogue and digital). This would allow issues

relating to the design of the printed circuit board to be investigated and

designs developed, fabricated, and tested.

4. As an introduction to digital signal processing algorithm development. This

would allow the basics of DSP algorithms and their implementation in

hardware on FPGAs and CPLDs to be investigated through the medium of

VHDL code development, simulation, and synthesis.

The VHDL examples can be downloaded and run on the hardware prototyping

arrangement that can be built by the reader using the designs provided in the book.

This hardware arrangement is centered on a Xilinx� CoolrunnerTM-II CPLD on

which to prototype the digital logic ideas, along with a set of input/output (I/O)

boards. The full set of boards is shown in the figure below.

This arrangement consists of five main system boards and an optional seven-

segment display board. The appendices and design schematics are available at the

author’s Web site for this book (refer to http://books.elsevier.com/companions/

9780750683975 and follow the hyperlink to the author’s site).

www.newnespress.com

xxii Preface

Abbreviations

A
AC alternating current

ADC analogue-to-digital converter

ALU arithmetic and logic unit

AM amplitude modulation

AMD advanced micro devices

AMS analogue and mixed-signal

AND logical AND operation on two or more digital signals

ANSI American National Standards Institute

AOI automatic optical inspection

ASCII American Standard Code for Information Interchange

ASIC application-specific integrated circuit

ASP analogue signal processor

ASSP application-specific standard product

ATA AT attachment

ATE AT equipment

ATPG AT program generation

AWG arbitrary waveform generator

American wire gauge

AXI automatic X-ray inspection

B
BASIC Beginner’s All-purpose Symbolic Instruction Code

BCD binary coded decimal

BGA ball grid array

BiCMOS bipolar and CMOS

BIST built-in self-test

www.newnespress.com

bit binary digit

BJT bipolar junction transistor

BNC bayonet Neill-Concelman connector

BPF band-pass filter

BSDL boundary scan description language

BS(I) British Standards (Institution)

BST boundary scan test

C
CAD computer-aided design

CAE computer-aided engineering

CAM computer-aided manufacture

CAT computer-aided test

CBGA ceramic BGA

CD compact disk

CE chip enable

CERDIP ceramic DIP

CERQUAD ceramic quadruple side

CIC cascaded integrator comb

CISC complex instruction set computer

CLB configurable logic block

CLCC ceramic leadless chip carrier

ceramic leaded chip carrier

CMOS complementary metal oxide semiconductor

COTS commercial off-the-shelf

CPGA ceramic PGA

CPLD complex PLD

CPU central processing unit

CQFP ceramic quad flat pack

CS chip select

CSOIC ceramic SOIC

CSP chip scale packaging

CSSP customer specific standard product

CTFT continuous-time Fourier transform

CTS clear to send

CUT circuit under test

xxiv Abbreviations

www.newnespress.com

D
DAC digital-to-analogue converter

DAE differential and algebraic equation

DAQ data acquisition

dB decibel

DBM digital boundary module

DC direct current

DCD data carrier detected

DCE data communication equipment

DCI digitally controlled impedance

DCPSS DC power supply sensitivity

DDC direct digital control

DDR double data rate

DDS direct digital synthesis

DfA design for assembly

DfD design for debug

DFF D-type flip-flop

DfM design for manufacturability

DfR design for reliability

DfT design for testability

DFT discrete Fourier transform

DfX design for X

DfY design for yield

DIB device interface board

DIL dual in-line

DIMM dual in-line memory module

DIP dual in-line package

DL defect level

DMM digital multimeter

DNL differential nonlinearity

DoD U.S. Department of Defense

DPLL digital PLL

dpm defects per million

DR data register

DRAM dynamic RAM

DRC design rules checking

Abbreviations xxv

www.newnespress.com

DRDRAM direct Rambus DRAM

DSM deep submicron

DSP digital signal processing

digital signal processor

DSR data set ready

DTE data terminal equipment

DTFT discrete-time Fourier transform

DTR data terminal ready

DUT device under test

DVD digital versatile disk

E
EC European Commission

ECL emitter coupled logic

ECU electronic control unit

EDA electronic design automation

EDIF electronic design interchange format

EHF extremely high frequency

EIAJ Electronic Industries Association of Japan

ELF extremely low frequency

EMC electromagnetic compatibility

EMI electromagnetic interference

ENB effective number of bits

EOC end of conversion

EOS electrical overstress

EEPROM electrically erasable PROM

E2EPROM electrically erasable PROM

EPROM erasable PROM

ERC electrical rules checking

ESD electrostatic discharge

ESIA European Semiconductor Industry Association

ESL electronic system level

ESS environmental stress screening

EU European Union

EX-NOR NOT-EXCLUSIVE-OR

EX-OR logical EXCLUSIVE-OR operation on two or more digital

signals

xxvi Abbreviations

www.newnespress.com

F
F Farad

FA failure analysis

FBGA (FPBGA) fine pitch ball grid array

FCC Federal Communications Commission (USA)

FET field effect transistor

FFT fast Fourier transform

FIFO first-in, first-out

FIR finite impulse response

FM frequency modulation

FPAA field programmable analogue array

FPGA field programmable gate array

FPT flying probe tester

FR-4 flame retardant with approximate dielectric constant of 4

FRAM ferromagnetic RAM

FSM finite state machine

FT functional tester

G
GaAs gallium arsenide

GAL generic array of logic

GDSII Graphic Data System II stream file format

GND ground

GPIB general purpose interface bus

GTL Gunning transceiver logic

GTO gate turn-off thyristor

GUI graphical user interface

H
HBM human body model

HBT heterojunction bipolar transistor

HDIP hermetic DIP

HDL hardware description language

HF high frequency

HPF high-pass filter

HSTL high-speed transceiver logic

HTML hyphertext markup language

Abbreviations xxvii

www.newnespress.com

HVI human visual inspection

HW hardware

Hz Hertz

I
IB base current

IBM base peak current

IC collector current

ICC power supply current (into VCC pin for bipolar circuits)

ICM collector peak current

IDD power supply current (into VDD pin for CMOS circuits)

IDDQ quiescent power supply current (IDD)

IEE power supply current (out of VEE pin for bipolar circuits)

IFS full-scale current

IGND ground current per supply pin

IIH high-level input current

IIL low-level input current

ILSB minimum output current change

IO output current

IOH high-level output current (logic 1 output)

IOL low-level output current (logic 0 output)

IOS offset current

IOUT output current

IREF reference current

ISS power supply current (out of VSS pin for CMOS circuits)

ISSQ quiescent power supply current (ISS)

IC integrated circuit

I2C (IIC) inter-integrated circuit (inter-IC) bus

I2S inter-IC sound bus

ICT in-circuit test

in-circuit tester

IDC insulation displacement connector

IDE integrated design environment

integrated drive electronics

IEC International Electrotechnical Commission

IEE Institution of Electrical Engineers

IEEE Institute of Electrical and Electronics Engineers

xxviii Abbreviations

www.newnespress.com

IET Institution of Engineering and Technology

IIR infinite impulse response

IMAPS International Microelectronics and Packaging Society

INL integral nonlinearity

I/O input/output

IP intellectual property

IR instruction register

infrared

ISO International Organization for Standardization

ISP in-system programmable

ISR in-system reprogrammable

IT information technology

ITRS International Technology Roadmap for Semiconductors

I-V current-to-voltage

J
JDK JAVATM Development Kit

JEDEC Joint Electron Device Engineering Council

JEITA Japan Electronics and Information Technology Industries

Association

JETAG Joint European Test Action Group

JETTA Journal of Electronic Testing, Theory, and Applications

JFET junction FET

JLCC J-leaded chip carrier

JTAG Joint Test Action Group

K
KGD known good die

KSIA Korean Semiconductor Industry Association

L
LAN local area network

LC logic cell

LC2MOS linear compatible CMOS

LCC leaded chip carrier

leadless chip carrier

LCCMOS leadless chip carrier metal oxide semiconductor (also LC2MOS)

LCD liquid crystal display

LED light-emitting diode

Abbreviations xxix

www.newnespress.com

LF low frequency

LFSR linear feedback shift register

LIFO last-in, first-out

Linux� Linux is not Unix

LPF low-pass filter

LSB least significant bit

LSI large-scale integration

LUT look-up table

LVCMOS low-voltage CMOS

LVDS low-voltage differential signaling

LVS layout versus schematic

LVTTL low-voltage TTL

M
mBGA micro ball grid array

mC microcontroller

mP microprocessor

MATLAB� Matrix Laboratory (from The Mathworks, Inc.)

MAX maximum

MCM multichip module

MCU microcontroller unit

MEMs micro electro-mechanical systems

MF medium frequency

MIL military

MIN minimum

MISR multiple-input signature register

MM machine model

MOS metal oxide semiconductor

MOSFET metal oxide semiconductor field effect transistor

MPGA mask programmable gate array

MS Microsoft�

MSAF multiple stuck-at-fault

MSB most significant bit

MSI medium-scale integration

MSOP mini-small outline package

MUX multiplexer

MVI manual visual inspection (i.e., HVI)

xxx Abbreviations

www.newnespress.com

N
NAND NOT-AND

NDI normal data input

NDO normal data output

NDT nondestructive test

NMH noise margin for high levels

NML noise margin for low levels

nMOS n-channel MOS

NOR NOT-OR

NOT logical NOT operation on a single digital signal

NRE nonrecurring engineering

NVM nonvolatile memory

NVRAM nonvolatile RAM

O
OE output enable

OEM original equipment manufacturer

ONO oxide-nitride-oxide

OOP object-oriented programming

op-amp operational amplifier

OR logical OR operation on two or more digital signals

OS operating system

OSR oversampling ratio

OTP one-time programmable

OVI Open Verilog International

P
Ptot total dissipation

PAL� programmable array of logic

PBGA plastic BGA

PC personal computer

program counter

PCB printed circuit board

PCBA printed circuit board assembly

PCI PC interface

PDA personal digital assistant

Abbreviations xxxi

www.newnespress.com

PDF portable document format

PDIL plastic DIL

PDIP plastic DIP

PERL practical extraction and report language

PGA pin grid array

PI primary input

proportional plus integral

PID proportional plus integral plus derivative

PIPO parallel in, parallel out

PLA programmable logic array

PLCC plastic leadless chip carrier

plastic leaded chip carrier

PLD programmable logic device

PLL phase-locked loop

PM phase modulation

pMOS p-channel MOS

PMU precision measurement unit

PO primary output

PoC proof of concept

PoP package on package

POR power-on reset

PPGA plastic PGA

ppm parts per million

PQFP plastic QFP

PROM programmable ROM

PRPG pseudorandom pattern generator

PSOP plastic SOP

PWB printed wiring board

PWM pulse width modulation

pulse width modulated

PXI PC extensions for instrument bus

Q
QFJ quad flat pack (J-lead)

QFP quad flat pack

QSOP quarter-size SOP

QTAG Quality Test Action Group

xxxii Abbreviations

www.newnespress.com

R
� trademark (registered; TM for unregistered)

RAM random access memory

RC resistor-capacitor

RD read

received data

RF radio frequency

RI ring indicator

RISC reduced instruction set computer

RMS root mean squared

RoHS return of hazardous substances

ROM read-only memory

RTL register transfer level

RTOS real-time operating system

RTS ready to send

RWM read-write memory (also referred to as RAM)

Rx receiver

S
�D sigma-delta

SA0 stuck-at-0

SA1 stuck-at-1

SAF stuck-at-fault

SAR successive approximation register

SCR silicon-controlled rectifier

SCSI small computer system interface

SDRAM synchronous DRAM

SDI scan data input

SDO scan data out

SE scan enable

SFDR spurious free dynamic range

SG signal ground

SHF super high frequency

SI signal integrity

SIA Semiconductor Industries Association

Abbreviations xxxiii

www.newnespress.com

SiGe silicon germanium

SIM subscriber identity module

SINAD signal to noise plus distortion (SNRþTHD)

SiP system in a package

SIP single in-line package

SIPO serial in, parallel out

SISO Serial in, serial out

Single input, single output

SISR serial input signature register

SLDRAM synchronous-link DRAM

SMT surface mount technology

SNR signal-to-noise ratio

S/(NþTHD) signal to noise plus total harmonic distortion

SOAR safe operating region

SoB system on board

SoC system on a chip

SOC start of conversion

SOI silicon on insulator

SOIC small outline IC

SOJ small outline J-lead package

SOP small outline package

SPGA staggered PGA

SPI serial peripheral interface

SPICE simulation program with integrated circuit emphasis

SPL software programming language

SPLD simple PLD

SQFP shrink quad flat pack

SRAM static RAM

SRBP synthetic resin-bonded paper

SSAF single stuck-at-fault

SSI small-scale integration

SSOP small shrink outline package

SSTL stub series terminated logic

STC Semiconductor Test Consortium

STD standard

STIL standard test interface language

SW software

xxxiv Abbreviations

www.newnespress.com

T
TL lead temperature

Tstg storage temperature

TAB tape automated bonding

TAP test access port

TCE thermal coefficient of expansion

TCK test clock

Tcl tool command language

TD transmitted data

TDI test data input

TDO test data output

THD total harmonic distortion
TM trademark (unregistered, � for registered)

TMS test mode select

TO transistor outline package (single transistor)

TPG test program generation

TQFP thin QFP

TRST test reset

TSIA Taiwan Semiconductor Industry Association

TSMC Taiwan Semiconductor Manufacturing Company

TSOP thin SOP

TSSOP thin shrink SOP

TVSOP thin very SOP

TTL transistor-transistor logic

TTM time to market

TYP typical

Tx transmitter

U
UART universal asynchronous receiver/transmitter

UHF ultra high frequency

UJT unijunction transistor

ULSI ultra large-scale integration

UML unified modeling language

UNIXTM Uniplexed Information and Computing System (originally

Unics, later renamed Unix)

USB universal serial bus

Abbreviations xxxv

www.newnespress.com

UTP unit test period

UUT unit under test

UV ultraviolet

V
VCB collector-base voltage

VCC power supply voltage (positive, for bipolar circuits)

VCE0 collector-emitter voltage (IE = 0)

VCEV collector-emitter voltage (VBE = �1.5)

VDD power supply voltage (positive, for CMOS circuits)

VEB emitter-base voltage

VEE power supply voltage (negative, for bipolar circuits)

VFS full-scale voltage

VFSR full-scale range of voltage

VI input voltage

VIH minimum input voltage that can be interpreted as a logic 1

VIL maximum input voltage that can be interpreted as a logic 0

VLSB minimum output voltage change

VO output voltage

VOH minimum output voltage when the output is a logic 1

VOL maximum output voltage when the output is a logic 0

VOS offset voltage

VOUT output voltage

VREF reference voltage

VSS power supply voltage (negative, for CMOS circuits)

VASG VHDL Analysis and Standardization Group

VB Visual BasicTM

VBA Visual BasicTM for Applications

VCO voltage-controlled oscillator

VDSM very deep submicron

VDU visual display unit

VF voice frequency

VHDL VHSIC hardware description language

VHF very high frequency

VHSIC very high-speed integrated circuit

VLF very low frequency

xxxvi Abbreviations

www.newnespress.com

VLSI very large-scale integration

VQFP very thin quad flat pack

W
WE write enable

WEEE waste electrical and electronic equipment

WR write

WSI wafer-scale integration

X
XNF Xilinx Netlist format

Z
ZIF zero insertion force socket

ZIP zig-zag in-line package

Abbreviations xxxvii

www.newnespress.com

This page intentionally left blank

CHA P T E R 1

Introduction to Programmable Logic

1.1 Introduction to the Book

Increasingly, electronic circuits and systems are being designed using technologies

that offer rapid prototyping, programmability, and re-use (reprogrammability and

component recycling) capabilities to allow a system product to be developed in a

minimal time, to allow in-service reconfiguration (for normal product upgrading to

improve performance, to provide design debugging capabilities, and for the inevitable

requirement for design bug removal), or even to recycle the electronic components for

another application. These aspects are required by the reduced time-to-market and

increased complexities for applications—from mobile phones through computer and

control, instrumentation, and test applications. So, how can this be achieved using the

range of electronic circuit technologies available today? Several avenues are open.

The main focus of developing electronics with the above capabilities has been in the

digital domain because the design techniques and nature of the digital signals are well

suited to reconfiguration.

In the digital domain, the choice of implementation technology is essentially whether to

use dedicated (and fixed) functionality digital logic, to use a software-programmed,

processor-based system (designed based on amicroprocessor, mP; microcontroller, mC; or
digital signal processor, DSP), or to use a hardware-configured programmable logic

device (PLD), whether simple (SPLD), complex (CPLD), or the field programmable gate

array (FPGA). Memory used for the storage of data and program code is integral to

many digital circuits and systems. The choices are shown in Figure 1.1.

In Figure 1.1, the electronic components used are integrated circuits (ICs). These are

electronic circuits packaged within a suitable housing that contain complete circuits

ranging from a few dozen transistors to hundreds of millions of transistors, the

www.newnespress.com

complexity of the circuit depending on the designed functionality. Examples of

packaged ICs are shown in Figure 1.2.

In many circuits, the underlying technology will be based on IC, and a complete

electronic circuit will consist of a number of ICs, together with other circuit

Digital Circuit
Requirements

Standard
Product IC

ASIC

PLD

Fixed
Functionality

Processor

Microprocessor

Microcontroller

Digital Signal
Processor

Simple PLD

Complex PLD

Field
Programmable

Gate Array

PLD

Processor

Fixed
Functionality

Memory

Memory

ROM

RAM

Figure 1.1: Technology choices for digital circuit design

2 Chapter 1

www.newnespress.com

components such as resistors and capacitors. In this book, the generic word

technology will be used throughout. The Oxford Dictionary of English defines

technology as ‘‘the application of scientific knowledge for practical purposes,

especially in industry’’ [1].

For us, this applies to the underlying electronic hardware and software that can be

used to design a circuit for a given requirement. For the arrangement identified in

Figure 1.1, a given set of digital circuit requirements are developed, and the role of the

designer is to come up with a solution that meets ideally all of the requirements.

Typical requirements include:

• Cost restraints: The design process, the cost of components, the manufacturing

costs, and the maintenance and future development costs must be within

specific limits.

• Design time: The design must be generated within a certain time limit.

Figure 1.2: Examples of IC packageswith the tops removed and the silicon dies exposed

Introduction to Programmable Logic 3

www.newnespress.com

• Component supply: The designer might have a free hand in choosing the

components to use, or restrictions may be set by the company or project

management requirements.

• Prior experience: The designer may have prior experience in using a particular

technology, which might or might not be suitable to the current design.

• Training: The designer might require specific training to utilize a specific

technology if he or she does not have the necessary prior experience.

• Contract arrangements: If the design is to be created for a specific customer,

the customer would typically provide a set of constraints that would be set

down in the design contract.

• Size/volume constraints: the design would need to be manufactured to fit into a

specific size/volume,

• Weight constraints: the design would need to be manufactured to be within

specific weight restrictions (e.g. for portable applications such as mobile

phones),

• Power source: the electronic product would be either fixed (in a single location

so allowing for the use of a fixed power source) or portable (to be carried to

multiple places requiring a portable power source (such as battery or solar cell),

• Power consumption constraints: The power consumption should be as low as

possible in order to (i) minimise the power source requirements, (ii) be

operable for a specific time on a limited power source, and (iii) be compatible

with best practice in the development of electronic products that are conscious

of environmental issues.

The initial choice for implementing the digital circuit is between a standard product

IC and an ASIC (application-specific integrated circuit) [2]:

• Standard product IC: This is an off-the-shelf electronic component that has been

designed and manufactured by a company for a given purpose, or range of use,

and that is commercially available for others to use. These would be purchased

either from a component supplier or directly from the designer or manufacturer.

• ASIC: This is an IC that has been specifically designed for an application.

Rather than purchasing an off-the-shelf IC, the ASIC can be designed and

manufactured to fulfil the design requirements.

4 Chapter 1

www.newnespress.com

For many applications, developing an electronic system based on standard product

ICs would be the approach taken as the time and costs associated with ASIC design,

manufacture, and test can be substantial and outside the budget of a particular design

project. Undertaking an ASIC design project also requires access to IC design

experience and IC CAD tools, along with access to a suitable manufacturing and test

capability. Whether a standard product IC or ASIC design approach is taken, the

type of IC used or developed will be one of four types:

1. Fixed Functionality: These ICs have been designed to implement a specific

functionality and cannot be changed. The designer would use a set of these

ICs to implement a given overall circuit functionality. Changes to the circuit

would require a complete redesign of the circuit and the use of different fixed

functionality ICs.

2. Processor: The processor would be more familiar to the majority of people as

it is in everyday use (the heart of the PC is a microprocessor). This component

runs a software program to implement the required functionality. By

changing the software program, the processor will operate a different

function. The choice of processor will depend on the microprocessor (mP),
the microcontroller (mC), or the digital signal processor (DSP).

3. Memory: Memory will be used to store, provide access to, and allow

modification of data and program code for use within a processor-based

electronic circuit or system. The two basic types of memory are ROM

(read-only memory) and RAM (random access memory). ROM is used for

holding program code that must be retained when the memory power is

removed. It is considered to provide nonvolatile storage. The code can either

be fixed when the memory is fabricated (mask programmable ROM) or

electrically programmed once (PROM, Programmable ROM) or multiple

times. Multiple programming capacity requires the ability to erase prior

programming, which is available with EPROM (electrically programmable

ROM, erased using ultraviolet [UV] light), EEPROM or E2PROM

(electrically erasable PROM), or flash (also electrically erased). PROM is

sometimes considered to be in the same category of circuit as programmable

logic, although in this text, PROM is considered in the memory category only.

RAM is used for holding data and program code that require fast access and

the ability to modify the contents during normal operation. RAM differs

from read-only memory (ROM) in that it can be both read from and written

Introduction to Programmable Logic 5

www.newnespress.com

to in the normal circuit application. However, flash memory can also be

referred to as nonvolatile RAM (NVRAM). RAM is considered to provide a

volatile storage, because unlike ROM, the contents of RAM will be lost when

the power is removed. There are two main types of RAM: static RAM

(SRAM) and dynamic RAM (DRAM).

4. PLD: The programmable logic device is the main focus of this book; these are

ICs that contain digital logic cells and programmable interconnect [3, 4]. The

basic idea with these devices is to enable the designer to configure the logic

cells and interconnect to form a digital electronic circuit within a single

packaged IC. In this, the hardware resources will be configured to implement

a required functionality. By changing the hardware configuration, the PLD

will operate a different function. Three types of PLD are available: the simple

programmable logic device (SPLD), the complex programmable logic device

(CPLD), or the field programmable gate array (FPGA). Figure 1.3 shows

sample packaged CPLD and FPGA devices.

Figure 1.3: Sample FPGA and CPLD packages

6 Chapter 1

www.newnespress.com

Both the processor and PLD enable the designer to implement and change the

functionality of the IC by changing either the software program or the hardware

configuration. Because these two different approaches are easily confused, in this

book the following terms will be used to differentiate the PLD from the processor:

• The PLD will be configured using a hardware configuration.

• The processor will be programmed using a software program.

An ASIC can be designed to create any one of the four standard product IC forms

(fixed functionality, processor, memory, or PLD). An ASIC would be designed in the

same manner as a standard product IC, so anyone who has access to an ASIC design,

fabrication, and test facility can create an equivalent to a standard product IC (given

that patent and general legal issues around IP [intellectual property] considerations

for existing designs and devices are taken into account). In addition, an ASIC might

also incorporate a programmable logic fabric alongside the fixed logic hardware.

Figure 1.1 shows what can be done with ASIC solution, but not how the ASIC

would achieve this. Figure 1.4 shows the (i) four different forms of IC (i.e., what the

IC does) that can be developed to emulate a standard product IC equivalent, and

(ii) the three different design and implementation approaches.

In a full-custom approach, the designer would be in control of every aspect of

ASIC design and layout—the way in which the electronic circuit is laid out on the

die, which is the piece of rectangular or square material (usually silicon) onto

(i) What the ASIC does (ii) How the ASIC does it

ASIC Standard cell

Full custom

Mask
programmable

gate array

Semi-
custom

ASIC

Memory

Processor

Fixed
Functionality

PLD

Figure 1.4: ASICs, what and how

Introduction to Programmable Logic 7

www.newnespress.com

which the circuit components are manufactured. This would give the best circuit

performance, but would be time consuming and expensive to undertake. Full-

custom design is predominantly for analogue circuits and the creation of libraries

of components for use in a semi-custom, standard cell design approach. An

alternative to the full-custom approach uses a semi-custom approach. This is

subdivided into a standard cell approach or mask programmable gate array

(MPGA) approach. The standard cell approach uses a library of predesigned basic

circuit components (typically digital logic cells) that are connected within the IC to

form the overall circuit. In a simplistic view, this would be similar to creating a

design by connecting fixed functionality ICs together, but instead of using multiple

ICs, a single IC is created. This approach is faster and lower cost than a full-custom

approach but would not necessarily provide the best circuit performance. Because

only the circuits required within the design would be manufactured (fabricated), there

would be an immediate trade-off between circuit performance, design time, and design

cost (a trade-off that is encountered on a daily basis by the designer). The MPGA

approach is similar to a standard cell approach in that a library of components is

available and connected, but the layout on the (silicon) die is different. An array of

logic gates is predetermined, and the circuit is created by creating metal interconnect

tracks between the logic gates. In the MPGA approach, not necessarily all of the logic

gates fabricated on the die would be used. This would use a larger die than in a

standard cell approach, with the inclusion of unused gates, but it has the advantage of

being faster to fabricate than a standard cell approach.

A complement to the ASIC is the structured ASIC [16, 17]. The structured ASIC is

seen to offer a promising alternative to standard cell ASICs and FPGAs for the mid

and high volume market. Structured ASICs are similar to the mask programmable

gate array in that they have customisable metal interconnect layers patterned on top

of a prefabricated base. Either standard logic gates or look-up tables (LUTs) are

fabricated in a 2-dimensional array that forms the underlying pattern of logic gates,

memory, processors and IP blocks. This base is programmed using a small number of

metal masks. The purpose of this is to reduce the non-recurring engineering (NRE)

costs when compared to a standard cell ASIC approach and to bridge the gap that

exists between the standard cell ASIC and FPGA where:

1. Standard cell ASICs provide support for large, complex designs with high

performance, low cost per unit (if produced in volume), but at the cost of long

8 Chapter 1

www.newnespress.com

development times, high NRE costs and long fabrication times when

implementing design modifications,

2. FPGAs provide for short development times, low NRE costs and short times

to implement design modifications, but at the cost of limited design

complexities, performance limitations and high cost per unit.

NRE cost reductions using Structured ASICs are considered with a reduction in

manufacturing costs and reducing the design tasks. They can also offer mixed-

signal circuit capability, a potential advantage when compared to digital only

FPGAs.

Hardware configured devices (i.e., PLDs) are becoming increasingly popular

because of their potential benefits in terms of logic replacement potential

(obsolescence), rapid prototyping capabilities, and design speed benefits in which

PLD-based hardware can implement the same functions as a software-programmed,

processor-based system, but in less time. This is particularly important for

computationally expensive mathematical operations such as the fast Fourier

transform (FFT) [5].

The aim of this book is to provide a reference text for students and practicing

engineers involved in digital electronic circuit and systems design using PLDs. The

PLD is digital in nature and this type of device will be the focus of the book.

However, it should also be noted that mixed-signal programmable devices have also

been developed and are available for use within mixed-signal circuits that require

programmable analogue circuit (e.g. programmable analogue amplifier)

components. Whilst this technology is not covered in this book, the reader is

recommended to undertake their own research activities to (i) identify the

programmable mixed-signal devices currently available (such as the Lattice�

Semiconductor Corporation ispPAC and AnadigmTM FPAA (Field Programmable

Analog Array)), and also (ii) the history of programmable mixed-signal and devices

that have been available in the past but no longer available. The text will introduce

the basic concepts of programmable logic, along with case study designs in a range

of electronic systems that target signal generation and data acquisition systems for a

variety of applications from control and instrumentation through test equipment

systems. To achieve this, a range of FPGA and CPLD device types will be

considered. The text will also act as a reference from which the sources of additional

information can be acquired.

Introduction to Programmable Logic 9

www.newnespress.com

1.2 Electronic Circuits: Analogue and Digital

1.2.1 Introduction

Before looking into detail of what the PLD is and how to use it, it is important to

identify that the PLD is digital in nature, and digital circuits and signals are different

from analogue circuits and signals. This section will provide an overview of the main

characteristics and differences between the continuous- and discrete-time, and the

analogue and digital, worlds.

1.2.2 Continuous Time versus Discrete Time

Electronic circuits will receive electrical signals (voltages and/or currents) and modify

these to produce a response, which will be a voltage and/or current that is a modified

version of the input signal (see Figure 1.5). The signal will be electrical in nature and will

convey information concerning the behavior of the related system. The input to the

system will typically be created by a variation of a measurable quantity by the use of a

suitable sensor. The response will be a modified version of the input that is in a form that

can be used. In Figure 1.5, an electronic system receives an input, x, and produces a

response (output), y. The system implements a certain function that is designed to

undertake an operation that is of a particular use within the context of the overall system.

Here, the system receives a single input and produces a single response. The term

system is another generic term which is defined in the Oxford Dictionary of English as

‘‘a set of things working together as parts of a mechanism or an interconnecting

network’’ [1].

For us, this applies to the overall set of electronic components and software programs

that work together to perform the particular set of requirements. In general, there may

be one or more inputs and one or more outputs. The system is shown as a black box in

that the details of its internal operation are hidden andonly the input-output relationship

is known. This black box creates a signal processor, and the designer is tasked with

System
Input

x
Response
y

Figure 1.5: Electronic system block diagram

10 Chapter 1

www.newnespress.com

creating the internal details using a suitable electronic circuit technology. The input-

output relationship will normally be modeled by a suitable mathematical algorithm.

The type of signal [6, 7] that the signal processor accepts and responds to will vary in

time but will be classified as either a continuous-time or a discrete-time signal.

A continuous-time signal can be represented mathematically as a function of a

continuous-time variable. The signal varies in time but is also continuous in time.

Figure 1.6 provides four examples of continuous-time signals: (i) a constant value,

(ii) a sine wave, (iii) a square wave, and (iv) an arbitrary waveform. Waveforms (i),

(ii), and (iv) are continuous in both time and amplitude; (iii) is continuous in time but

discontinuous in amplitude. All signals are classified as continuous-time signals.

A discrete-time signal is defined only by values at set points in time, referred to as the

sampling instants. It is normal to set the time spacing between the sampling instants to a

fixed value, T, referred to as the sampling interval. The sampling frequency is fS= 1/T,

where T is seconds and fS is Hertz (Hz). When a signal is sampled at a fixed rate, this

is referred to as periodic sampling. Figure 1.7 provides examples of discrete-time

signals that are sampled values of the continuous time signals shown in Figure 1.6.

When a discrete-time signal is expressed, it will normally be expressed by the sample

number (n) where n= 0 denotes the first sample, n=p denotes the pth sample, and

n increments in steps of 1. For a signal x, then, the samples will be x[0], x[1], x[2],

x[3], . . . , x[p]. A discrete-time signal would represent a sampled analogue signal.

Hence, an electronic circuit would have continuous-time or discrete-time inputs and

continuous-time or discrete-time outputs as represented in Table 1.1.

time (t)

time (t) time (t)

(i) Constant

(iii) Square wave

(ii) Sine wave

(iv) Arbitrary waveform

time (t)

Figure 1.6: Examples of continuous-time signals

Introduction to Programmable Logic 11

www.newnespress.com

1.2.3 Analogue versus Digital

The electronic system as shown in Figure 1.8 will perform its operations on signals

that are either analogue or digital in nature, using either analogue or digital electronic

circuits. Hence, a signal may be of one of two types, analogue or digital.

An analogue signal is a continuous- or discrete-time signal whose amplitude is

continuous in value between a lower and upper limit, but may be either a continuous

time or discrete time.

Table 1.1: Signal types (continuous- and discrete-time)

Input signal type Response signal type

Continuous-time ! Continuous-time
Continuous-time ! Discrete-time
Discrete-time ! Discrete-time
Discrete-time ! Continuous-time

(i) Constant

(iii) Square wave

(ii) Sine wave

(iv) Arbitrary waveform

time (t)

time (t)

time (t)

time (t)

Amplitude Amplitude

AmplitudeAmplitude

Figure 1.7: Examples of discrete-time signals

System
Input

x
Response
y

Figure 1.8: Electronic system block diagram

12 Chapter 1

www.newnespress.com

A digital signal is a continuous or discrete-time signal with discrete values between a

lower and upper limit. These discrete values will be represented by numerical values

and be in a form suitable for digital signal processing. If the discrete-time signal has

been derived from a continuous-time signal by sampling, then the sampled signal is

converted into a digital signal by quantization, which produces a finite number of

values from a continuous amplitude signal. It is common to use the binary number

(i.e., two values, 0 or 1) system to represent a number in a digital representation.

An electronic circuit would have analogue or digital inputs and analogue or digital

outputs as represented in Table 1.2. When an analogue signal is sampled and

converted to digital, this is undertaken using an analogue-to-digital converter (ADC)

[8]. When a digital signal is converted back to analogue, this is undertaken using a

digital-to-analogue converter (DAC).

An example of both analogue and digital signals and circuits is shown in

Figure 1.9. This electronic temperature controller, as might be used in a home

Table 1.2: Signal types (analogue and digital)

Input signal type Response signal type

Analogue ! Analogue
Analogue ! Digital
Digital ! Digital
Digital ! Analogue

Sensor Sensor signal
conditioning circuit

Analogue-
to-Digital
Converter

Temperature Digital
signal

processing

Digital-to-
Analogue
Converter

Controller
Signal conditioning

circuit

Heat

Analogue Analogue Analogue Digital

DigitalAnalogueAnalogueAnalogue

Figure 1.9: Heating control system block diagram

Introduction to Programmable Logic 13

www.newnespress.com

heating system, uses digital signal processing. The system is shown as a block

diagram in which each block represents a major operation. In a design each block

would be represented by its own block diagram, going into evermore detail until the

underlying circuit hardware (and software) details are identified. The block

diagram provides a convenient way to represent the major system operations called

a top-down design approach, starting at a high level of design abstraction (initially

independent of the final design implementation details) and working down to the

final design implementation details.

Here, the room temperature is sensed as an analogue signal, but must be processed by a

digital signal processing circuit, so it must be sensed and converted to an analogue

voltage or current. This is then applied to a sensor signal conditioning circuit that is used

to connect the sensor to the ADC. The ADC samples the analogue signal at a chosen

sampling frequency. Once a temperature sample has been obtained by the digital signal

processing circuit, it is then processed using a particular algorithm, and the result is

applied to a DAC. The DAC output is a voltage or current that is used to drive a

controller (heat source). The DAC is normally connected to the controller via a signal

conditioning circuit. This circuit acts to interface the DAC to the controller in order for

the controller to receive the correct voltage and current levels. This particular system is

also an example of a closed-loop control system using an electronic controller. The

control system is generalized as shown in Figure 1.10 [9, 10].

1.3 History of Digital Logic

Early electronic circuits were analogue, and before the advent of digital logic,

signal processing was undertaken using analogue electronic circuits. The

invention of the semiconductor transistor in 1947 at Bell Laboratories [11] and

Controller Plant
Plant output
(heat)

+

Temperature
Sensor

–

Required
temperature

Figure 1.10: General control system

14 Chapter 1

www.newnespress.com

the improvements in transistor characteristics and fabrication during the 1950s

led to the introduction of linear (analogue) ICs and the first transistor-transistor

logic (TTL) digital logic IC in the early 1960s, closely followed by complementary

metal oxide semiconductor (CMOS) ICs. The early devices incorporated a small

number of logic gates. However, rapid growth in the ability to fabricate an

increasing number of logic gates in a single IC led to the microprocessor in the

early 1970s. This, with the ability to create memory ICs with ever increasing

capacities, laid the foundation for the rapid expansion in the computer industry

and the types of complex digital systems based on the computer architecture that we

have available today. The last fifty years have seen a revolution in the electronics

industry.

Fundamentally, a digital circuit will be categorized into one of three general types,

each of which is created and fabricated within an integrated circuit:

• Combinational logic, in which the response of the circuit is based on a Boolean

logic expression of the input only and the circuit responds immediately to a

change in the input.

• Sequential logic, in which the response of the circuit is based on the current

state of the circuit and the sometimes the current input. This may be

asynchronous or synchronous. In synchronous sequential logic, the logic changes

state whenever an external clock control signal is applied. In asynchronous

sequential logic, the logic changes state on changes of the input data (the

circuit does not utilize a clock control signal).

• Memory, in which digital values can be stored and retrieved some time later. For

a user, memory can be either read-only (ROM) or random-access (RAM). In

ROM, the data stored in the memory are initially placed in the memory and can

only be read by the user. Data cannot normally be altered in the

circuit application. In RAM (also referred to as read-write memory, RWM), the

user can write data to the memory and read the data back from the memory.

The digital IC consists of a number of logic gates, which are combinational or

sequential circuit elements. The logic gates may be implemented using different

fabrication processes and different circuit architectures:

• TTL, transistor-transistor logic (bipolar)

• ECL, emitter-coupled logic (bipolar)

Introduction to Programmable Logic 15

www.newnespress.com

• CMOS, complementary metal oxide semiconductor

• BiCMOS, bipolar and CMOS

The material predominantly used to fabricate the digital logic circuits is silicon.

However, silicon-based circuits are complemented with the digital logic capabilities of

circuits fabricated using gallium arsenide (GaAs) and silicon germanium (SiGe)

technologies. Today, silicon-based CMOS is by far the dominant process used for

digital logic.

The digital logic gate is actually an abstraction of what is happening within the

underlying circuit. All digital logic gates are made up of transistors. The logic gates

may take one of a number of different circuit architectures (the way in which the

transistors are interconnected) at the transistor level:

• static CMOS

• dynamic CMOS

• pass transistor logic CMOS

Today, static CMOS logic is by far the dominant logic cell design structure used. The

number of logic gates within a digital logic IC will range from a few to hundreds of

thousands and ultimately millions for the more complex processors and PLDs. In

previous times, when the potential for higher levels of integration was far less than is

now possible, the digital IC was classified by the level of integration—that is, the

number of logic gate equivalents per IC (see Table 1.3). With increasing levels of

integration, the following levels were identified as follow-on descriptions from VLSI,

but these are not in common usage:

• ULSI, ultra-large-scale integration

• WSI, wafer scale integration

Table 1.3: Levels of integration

Level of integration Acronym Number of gate equivalents per IC

Small-scale integration SSI <10
Medium-scale integration MSI 10–100
Large-scale integration LSI 100–10,000
Very large-scale integration VLSI >10,000

16 Chapter 1

www.newnespress.com

The equivalent logic gate consists of four transistors. In static CMOS logic, the

2-input NAND and 2-input NOR are four transistor logic gate structures (2 nMOS

+2 pMOS transistors). Figure 1.11 shows the 2-input NAND and NOR gate in

static CMOS with both the digital logic gate symbol and the underlying transistor

level circuit. At the transistor level, the circuit is connected to a power supply

(VDD=positive power supply voltage and VSS=negative power supply voltage).

The nMOS transistors are connected toward VSS and the pMOS transistors

toward VDD.

1.4 Programmable Logic versus Discrete Logic

When designing a digital circuit or system, there will be the need to develop digital

logic designs. One of the initial decisions will be whether to use discrete logic devices

(the fixed functionality ICs previously identified) or to use a PLD. This choice will

depend on the particular design requirements as detailed in the design specification.

In some applications, the choice might be obvious; for other applications, the choice

would require careful consideration. For example, if a digital circuit only needs a few

logic gates, then a discrete logic implementation would be more probable. However, if

a complex digital circuit such as a digital filter design is to be developed, then with the

Z
A

B
Z

A

B

NAND Gate Logic Symbol NOR Gate Logic Symbol

Z

A

A

B

B

VDD

VSS

Z

A

A

B

B

VDD

VSS

NAND Transistor Level Schematic NOR Transistor Level Schematic

Figure 1.11: Two-input NAND and NOR gates

Introduction to Programmable Logic 17

www.newnespress.com

complexity of the resulting logic hardware, a PLD would be the logical choice. These

are the characteristics and aptitudes of each:

Discrete logic:

• Suited for small designs that will not require modification

• Can be used for prototyping designs as well as for the final application

• Can be designed by hand using Boolean logic and Karnaugh map techniques

• Suited for combinational, sequential logic designs and memory

• Any change to the design will require the redesign of the circuit hardware

and wiring

• No need to know how to design and configure PLDs

• For a particular family of devices, the I/O standard is fixed

• The logic gates may be implemented using different fabrication processes and

different circuit architectures: TTL, ECL, CMOS, and BiCMOS.

Table 1.4 identifies selected TTL device family variants in use, Table 1.5 identifies

selected CMOS device family variants in use, and Table 1.6 identifies selected low-

voltage CMOS device family variants in use.

Programmable logic:

• Suited for all designs from small to large

• Can be used for prototyping designs as well as for the final application

• Suited for designs that might require modification

• Easy to change designs without changing the circuit hardware and wiring that

the PLD is connected to by altering the internal PLD circuit configuration

• CanbedesignedbyhandusingBooleanlogicandKarnaughmaptechniques,along

with hardware description languages (HDLs) such as VHDL andVerilog�-HDL

• Suited for combinational, sequential logic designs and memory

• The need to know how to design and configure PLDs

18 Chapter 1

www.newnespress.com

Table 1.4: Selected TTL family variants

TTL family variant Description

74 Standard TTL
74AS Advanced Schottky
74ALS Advanced low-power Schottky
74F Fast
74H High-speed
74L Low-power
74LS Low-power Schottky
74S Schottky
LVTTL Low-voltage

Table 1.5: Selected CMOS family variants

CMOS family variant Description

4000 True CMOS (non-TTL levels)
74C CMOS with pin compatibility to TTL with same number
74HC Same as 74C but with improved switching speed
74HCT As with 74HC but can be connected directly to TTL
74AC Advanced CMOS
74ACT As with 74AC but can be connected directly to TTL
74AHC Advanced high-speed CMOS
74AHCT As with 74AHC but can be connected directly to TTL
74FCT Fast CMOS TTL inputs
LVCMOS Low-voltage CMOS

Table 1.6: Selected low-voltage (LV) CMOS family variants

Low-voltage
CMOS variant

Description

74LV Low-voltage CMOS Low-speed operation, 1.0–3.6 V power supply (some
functions up to 5.5 V power supply)

74LVC Low-voltage CMOS Medium-speed operation, 1.2–3.6 V power supply
(5 V tolerant I/O)

74ALVC Advanced low-
voltage CMOS

High-speed operation, 1.2–3.6 V power supply (5 V
tolerant I/O on bus hold types)

74AVC Advanced very low-
voltage CMOS

Very high-speed operation, 1.2–3.6 V power supply
(3.6 V tolerant I/O)

Introduction to Programmable Logic 19

www.newnespress.com

• Many PLDs will provide a capability for the designer to set the particular I/O

standard to use from those standards supported by the device

• Many PLD vendors provide IP circuit blocks that can be used by the designer

within the vendor’s PLD, whether free or through royalty payments

depending on the licensing arrangement.

Table 1.7 shows example I/O standards that are supported by the Xilinx� [12]. PLDs

are configured by the designer. With such programmable I/O capability before the

device has been configured with the appropriate standard, the device will default to

one of the standards. It is important for the designer to identify the default standard

and the implications of using a particular standard on the overall circuit operation.

Early uses of the PLD were for the replacement of standard product discrete logic

ICs with a single PLD (see Figure 1.12), allowing for a digital logic circuit to be

Table 1.7: Example I/O standards supported by the Xilinx� PLDs

Standard Standard description

LVTTL Low-voltage transistor-transistor logic (3.3 V level)
LVCMOS33 Low-voltage CMOS (3.3 V level)
LVCMOS25 Low-voltage CMOS (2.5 V level)
LVCMOS18 Low-voltage CMOS (1.8 V level)
1.5 V I/O (1.5 V levels) 1.5V level logic (1.5 V level)
HSTL-1 High-speed transceiver logic
SSTL2-1 Stub series terminated logic (2.5 V level)
SSTL3-1 Stub series terminated logic (3.3 V level)

PLD

Standard
Product ICs

Standard
Product ICs

Figure 1.12: Using a PLD to reduce the number of digital logic ICs

20 Chapter 1

www.newnespress.com

implemented in a smaller physical size and therefore reducing the size and cost of the

printed circuit board (PCB) on which the logic ICs were to be mounted.

This then led to the use of PLDs for prototyping digital ASIC designs, allowing for

real hardware emulation of the ASIC prior to fabricating the ASIC itself. This was

useful for design verification and design debugging purposes, but with the early

PLDs, the limited speed of operation and size limitations meant that the PLD-based

hardware emulation of the ASIC was physically large and slower than the resulting

ASIC. Hence, it was not always possible to test the operation of the ASIC hardware

emulator at the intended speed of operation of the ASIC.

However, with the high speed and ability to perform complex digital signal

processing operations within a single PLD, the PLD itself is becoming in many cases

the choice for design prototyping and for use in the final application.

1.5 Programmable Logic versus Processors

The processor is more familiar to the majority of people because it is in everyday

use (the heart of the PC is a microprocessor). This component runs a software

program to implement required functionality. By changing the software program,

the processor will operate a different function. The choice of processor to use will

be based on

1. Microprocessor (mP), an integrated circuit that is programmable by the use of

a software program. This will be based on an instruction set that the software

program uses to perform a set of required tasks. The processor with be based

on one of two types of instruction set: a CISC (complex instruction set

computer) or a RISC (reduced instruction set computer). The microprocessor

is a general purpose processor in that it is designed to undertake a wide range

of tasks. Its architecture would be developed for this purpose and would

not necessarily be optimized for specific tasks. The central part of the

microprocessor is the central processing unit (CPU) to which external circuits

such as memory and I/O interfaces must be added. The CPU has the task of

fetching the instructions to be performed from the memory, interpreting the

instructions, acting on the instructions, and generating the necessary control

signals to fetch, interpret, and act on the instructions. The instructions will be

based on arithmetic, logic, and data transfer operations.

Introduction to Programmable Logic 21

www.newnespress.com

2. Microcontroller (mC), a type of microprocessor that contains additional

circuitry such as memory and communications ports (such as a UART,

universal asynchronous receiver transmitter, for RS-232 communications)

along with the CPU, and is aimed at embedded system applications. It would

not have the flexibility of the general purpose microprocessor, but instead is

aimed at being a self-contained ‘‘computer on a chip’’ with low cost one of the

important considerations. The integration of functions that would be in a

chip-set mounted on a PCB reduces the design and size requirements on the

PCB. The microcontroller is also sometimes referred to as a microcontroller

unit (MCU).

3. Digital signal processor (DSP), a specialized form of microprocessor aimed

at real-time digital signal processing operations such as digital filtering [13]

and fast Fourier transforms (FFTs). Although such operations can be

performed on a microprocessor, the DSP has an architecture that is

optimized for fast computations typically undertaken. For example, a DSP

would include a fast hardware multiplier cell that is accessed from the software

program that the DSP is running. This allows multiplications to be undertaken

on digital data using the fast hardware that would not be possible on a general

purpose microprocessor without a hardware multiplier. (A general purpose

microprocessor would perform a multiplication in software using shift

operations and additions using looping operations that would be slow to

undertake.)

The choice of a particular processor to use is based on a number of considerations

including:

• final application requirements

• capabilities of the processor

• limitations of the processor

• knowledge and prior experience of the designer

• availability of tools for designing and debugging software applications for the

processor

Example processor vendors and products are shown in Table 1.8. This provides a

snapshot of the main current companies involved in the processor area. Further

information on the range of processors can be obtained from the company web sites.

22 Chapter 1

www.newnespress.com

For designers of processor-based systems, the one concern is the possibility of

processor obsolescence. Here, if a vendor decides to discontinue a processor product

or family of products, this would have a major impact on the designer of electronic

systems using the particular processor. The designer (and organization that the

designer is working in) would potentially have invested a great deal of time and

resources in learning and using the processor, associated EDA tools, and design

flows—all of which would require reinvestment. A PLD, however, could be used as an

alternative to a processor IC purchased from a vendor. With the PLD, it would be

possible to implement a processor within the PLD itself. The processor design would

be obtained as either a schematic or, more probably, as an HDL description. This

HDL description would then be synthesised to map onto the PLD; the PLD would be

configured with the same operations as the original processor. This description would

not change and would be available for as long as the designer would require it. With

this, the processor would be a core (i.e., a block of logic that would be placed within

the PLD) and would be provided to the designer as either hard core or soft core. The

hard core would be provided as logic gates and interconnect for a particular PLD.

A soft core would be provided as HDL code describing the processor in terms of

functionality, rather than logic gates and interconnect, and would then be synthesised

to the required PLD.

An alternative to the predesigned processor architecture is to design the architecture

for a specific requirement. This would enable the designer to develop the best

architecture for the particular application and not be potentially limited in

Table 1.8: Main processor vendors

Company Example product Homepage URL

Intel� Intel CoreTM 2 Duo http://www.intel.com/
Advanced Micro Devices (AMD) AMD AthonTM 64 FX http://www.amd.com
Zilog� Z80180 http://www.zilog.com/
Motorola� MPC7457 http://www.motorola.com
ARM� ARM Cortex-A8 http://www.arm.com/
Microchip PIC 24F MCU http://www.microchip.com
Texas Instruments, Inc. TMS320TM http://www.microchip.com
IBM� PowerPC� http://www.ibm.com
MIPS Technologies, Inc. MIPS32� 74KTM http://www.mips.com
Analog Devices, Inc. ADSP-21262 http://www.analog.com
Freescale Semiconductor, Inc. MCF5373 ColdFire� http://www.freescale.com/
Atmel� AT572D740 http://www.atmel.com

Introduction to Programmable Logic 23

www.newnespress.com

performance by the availability of an existing processor. Hence, with PLDs, the

ability to develop application-specific processors is realistic. This would enable the

designer to develop PLD-based systems that can utilize both a processor (running a

software application) and dedicated, optimized hardware (for maximum speed of

operation) within a single device.

Although there are many potential advantages to using PLDs rather than

processors, the design paradigms are different and the need to consider the benefits

versus the costs, and the need to learn new design techniques (predominantly

hardware rather than software), cannot be underestimated. However, the ability for

the designer to choose a solution that provides him or her with the maximum

benefit for the particular application is something that cannot be overlooked. It is

common to consider the PROM as an SPLD, alongside the PLA, PAL� and GAL

(see below), although in this text, only the PLA, PAL� and GAL are only

considered in detail.

1.6 Types of Programmable Logic

1.6.1 Simple Programmable Logic Device (SPLD)

The SPLD was introduced before the CPLD and FPGA. The three main types of

SPLD architecture—programmable logic array (PLA), programmable array of logic

(PAL), and generic array of logic (GAL)—are described below.

The PLA

The PLA consists of two programmable planes AND and OR (see Figure 1.13). The

AND plane consists of programmable interconnect along with AND gates. The OR

plane consists of programmable interconnect along with OR gates.

In this view, there are four inputs to the PLA and four outputs from the PLA. Each of

the inputs can be connected to an AND gate with any of the other inputs by

connecting the crossover point of the vertical and horizontal interconnect lines in the

AND gate programmable interconnect. Initially, the crossover points are not

electrically connected, but configuring the PLA will connect particular crossover

points together. In this view, the AND gate is seen with a single line to the input. This

view is by convention, but this also means that any of the inputs (vertical lines) can be

24 Chapter 1

www.newnespress.com

connected. Hence, for four PLA inputs, the AND gate also has four inputs. The single

output from each of the AND gates is applied to an OR gate programmable

interconnect. Again, the crossover points are initially not electrically connected, but

configuring the PLA will connect particular crossover points together. In this view,

the OR gate is seen with a single line to the input. This view is by convention, but this

also means that any of AND gate outputs can be connected to the OR gate inputs.

Hence, for four AND gates, the OR gate also has four inputs.

The PAL�

The PAL� is similar to the PLA architecture, but now there is only one

programmable plane, the AND plane, and the AND gate programmable plane is

retained (see Figure 1.14). This architecture is simpler than the PLA and removes

the time delays associated with the programmable OR gate plane interconnect,

hence producing a faster design. However, this comes at a cost of flexibility—the

PAL� is less flexible in the ways in which a digital logic design can be implemented

than the PLA.

Inputs

Outputs

AND plane
(Programmable
interconnect)

OR plane
(Programmable interconnect)

Figure 1.13: PLA architecture

Introduction to Programmable Logic 25

www.newnespress.com

The PLA and PAL� architectures as shown allow combinational logic designs to be

implemented. If the design provides for feedback of the outputs to the inputs, then it

is possible to implement latches and bistables, thereby also allowing sequential logic

circuits to be implemented. This is possible on some commercially available PAL

devices. Additionally, some PAL devices also provide the output to be made

available from the OR gate output or via an additional bistable connected to the

OR gate output. Hence, the types of sequential logic circuits that can be

implemented increase and therefore the usefulness of the particular PAL� device

increases.

The GAL

PAL and PLA devices are one-time programmable (OTP) based on PROM, so the

PAL or PLA configuration cannot be changed after it has been configured. This

limitation means that the configured device would have to be discarded and a new

device configured. The GAL, although similar to the PAL� architecture, uses

EEPROM and can be reconfigured.

Inputs

Outputs

AND plane
(Programmable

interconnect)

OR gate inputs will be connected to the specific
AND gate outputs: FIXED connections when the

device is manufactured

Figure 1.14: PAL� architecture

26 Chapter 1

www.newnespress.com

1.6.2 Complex Programmable Logic Device (CPLD)

The CPLD is a step up in complexity from the SPLD; it builds on SPLD

architecture and creates a much larger design. Consequently, the SPLD can be used

to integrate the functions of a number of discrete digital ICs into a single device and

the CPLD can be used to integrate the functions of a number of SPLDs into a single

device. The CPLD architecture is based on a small number of logic blocks and a

global programmable interconnect. A generic CPLD architecture is shown in

Figure 1.15.

The CPLD consists of a number of logic blocks (sometimes referred to as functional

blocks), each of which contains a macrocell and either a PLA or PAL� circuit

arrangement. In this view, eight logic blocks are shown. The macrocell provides

additional circuitry to accommodate registered or nonregistered outputs, along

with signal polarity control. Polarity control provides an output that is a true signal

or a complement of the true signal. The actual number of logic blocks within a

CPLD varies; the more logic blocks available, the larger the design that can be

configured. In the center of the design is a global programmable interconnect. This

interconnect allows connections to the logic block macrocells and the I/O cell

I/O block

I/O block

Macrocell

PLA or PAL

Macrocell

PLA or PAL

Macrocell

PLA or PAL

Macrocell

PLA or PAL

Programmable interconnect

PLA or PAL

Macrocell

PLA or PAL

Macrocell

PLA or PAL

Macrocell

PLA or PAL

Macrocell

Logic
Block

Figure 1.15: Generic CPLD architecture

Introduction to Programmable Logic 27

www.newnespress.com

arrays (the digital I/O cells of the CPLD connecting to the pins of the CPLD

package).

The programmable interconnect is usually based on either array-based interconnect

or multiplexer-based interconnect:

• Array-based interconnect allows any signal within the programmable

interconnect to connect to any logic block within the CPLD. This is achieved

by allowing horizontal and vertical routing within the programmable

interconnect and allowing the crossover points to be connected or

unconnected (the same idea as with the PLA and PAL�), depending on the

CPLD configuration.

• Multiplexer-based interconnect uses digital multiplexers connected to each

of the macrocell inputs within the logic blocks. Specific signals within

the programmable interconnect are connected to specific inputs of the

multiplexers. It would not be practical to connect all internal signals within

the programmable interconnect to the inputs of all multiplexers due to size

and speed of operation considerations.

1.6.3 Field Programmable Gate Array (FPGA)

Like the CPLD, the FPGA is a step up in complexity from the SPLD by creating a

much larger design; unlike the CPLD architecture, the FPGA architecture was

developed using a different basic concept. The architecture is based on a regular array

of basic programmable logic cells (LC) and a programmable interconnect matrix

surrounding the logic cells (see Figure 1.16).

The array of basic programmable logic cells and programmable interconnect matrix

form the core of the FPGA. This is surrounded by programmable I/O cells. The

programmable interconnect is placed in routing channels. The specific design details

within each of the main functions (logic cells, programmable interconnect, and

programmable I/O) will vary among vendors. For example, Xilinx�. utilizes the logic

block as a configurable logic block (CLB) in their FPGAs. The CLB is based on one

or more look-up tables (LUT) and bistables. The LUT is made from memory cells

(SRAM cells).

28 Chapter 1

www.newnespress.com

1.7 PLD Configuration Technologies

The PLD is configured by downloading a particular circuit configuration as a

sequence of binary logic values (sequence of 0s and 1s). The configuration will be held

in a configuration file on the PC or workstation that the design was created on

using the required EDA tools. A downloader software application will read the

configuration file and download the contents to the PLD. These values are stored in

memory within the device, where the memory may be volatile or nonvolatile:

• Volatile memory: When data is stored within the memory, the data is retained

in the memory as long as the memory is connected to a power supply. Once the

power supply has been removed, then the contents of the memory (the data) is

lost. The majority of FPGAs utilize volatile SRAM-based memory. Hence,

whenever the power supply is removed from the FPGA, then the FPGA

configuration is lost and when the power supply is reapplied, then the

configuration must be reloaded into the SRAM.

LC LC LC LC

LC LC LC LC

LC LC LC LC

LC LC LC LC

Logic cell

Programmable
interconnect

Programmable
I/O cells

Figure 1.16: Generic FPGA architecture

Introduction to Programmable Logic 29

www.newnespress.com

• Nonvolatile memory: When data is stored within the memory, the data is

retained in the memory even when the power supply has been removed. Some

FPGAs utilize antifuse technology to store the FPGA configuration; new

generation FPGAs will also utilize flash memory. CPLDs utilize nonvolatile

memory such as EPROM, EEPROM, and flash memory.

SRAM-based configuration is based on the use of multiple 1-bit memory cells (see

Figure 1.17). The cell has write and read modes. In write mode, a data bit (0 or 1) to

store in the memory is applied to the bit line. The switch transistor is closed (by

applying a logic 1 to the transistor gate) on the word line. When the switch is closed,

the logic value on the bit line is applied to the input of the top inverter. The inverted

output is applied to the input of the bottom inverter, and the output of this inverter

is the same logic value as applied on the bit line. When the switch transistor is opened,

the inverter arrangement retains the logic value due to the feedback arrangement

of the two inverters.

When the value is to be read from the memory cell, the switch transistor is again

closed (by applying a logic 1 to the transistor gate) on the word line. The logic value

output from the bottom inverter is then applied to the bit line. Each of the inverters

contains two transistors (in static CMOS, one nMOS and one pMOS transistor).

Hence, the memory cell contains five transistors overall, compared to six transistors in

the memory cell of an SRAM memory IC; a second switch transistor is used at the

output of the top inverter and creates an output that is the inverse of the bit line value.

Antifuse based configuration uses a two terminal device that is electrically programmed

to change from an electrical open circuit to an electrical short circuit. The operation is

Switch (Control)
transistor

Gate

Bit line

Word line

Figure 1.17: SRAM cell based on five transistors

30 Chapter 1

www.newnespress.com

the inverse to that of the fuse. Initially, there is no connection between the two terminals

(there is a high resistance). When programmed (blown), a connection (low resistance) is

made between the two terminals. This is a one-time process (i.e., permanent) and once

blown, cannot be undone. The antifuse will be one of two types, amorphous-silicon

antifuse or oxide-nitride-oxide (ONO) antifuse.

Figure 1.18 shows the principle of operation. The antifuse material is placed in a via

between two metal layers in the circuit (vertical layers). Initially (i), the no connection

exists between the two metal layers. Once programmed, a low-resistance link (ii) exists

between the metal layers and connects them together.

Configurations based on EPROM, EEPROM, and flash memory use a floating gate

transistor. Figure 1.19 shows the basic arrangement for a 1-bit EPROMmemory. The

transistor acts as a switch. In EEPROM and Flash memories, a second transistor is

also used. A more comprehensive description of these memory cells can be found in

references [2] and [3].

The switch is closed by the application of a logic 1 on the word line to the control gate of

the transistor. However, by applying high voltage during configuration to the control

gate of the transistor, a charge is injected into the floating gate and stored on the gate

capacitance. When the high voltage is removed, the charge is stored. The effect of this

charge is to make the transistor permanently switched off even when the word line

signal is applied. (The effect of the stored charge is to increase the threshold voltage of

the transistor so that the transistor can never switch on.)

Antifuse-based configuration is a one-time process. That is, once the antifuse has been

blown to form the circuit configuration, this cannot be undone. If the design is wrong

or requires modification, then the device has to be thrown away and a new device

Silicon Dioxide (SiO2)

Metal

Via

Metal

Link

(i) Prior to antifuse blowing (i) After antifuse blowing

SiO2SiO2

Silicon Dioxide (SiO2)

Metal

Via

Metal
SiO2SiO2

Figure 1.18: Antifuse cell-based configuration (amorphous-silicon antifuse structure)

Introduction to Programmable Logic 31

www.newnespress.com

loaded with the new configuration. SRAM-, EPROM-, EEPROM-, and flash-based

configurations, however, allow the device to be reconfigured many times.

Electrically programmable (configurable) and erasable PLD configuration allows for

the potential for in-system programming (ISP). This means that the PLD can be

physically located on its final circuit board (i.e., within a socket or soldered into place

onto the board) and via a programming port on the PLD, the configuration data can

be loaded into the PLD. The JTAG (Joint Test Action Group) standard is typically

used for this purpose. Additionally, for those PLDs that can be reconfigured, the

device allows for in-system reprogramming (ISR), meaning that the PLD

configuration can be changed while the PLD is located on its final circuit board.

1.8 Programmable Logic Vendors

PLDs are available from a range of vendors, each of which provides a family of PLDs

based on the SPLD, CPLD, or FPGA. They will also provide a set of EDA tools to

aid in the design creation process from design entry through simulation and design

verification to device configuration.

Table 1.9 identifies the main programmable logic companies today.

Refer to Appendix B for a summary reference of the main PLD vendors, selected

electronic design companies, electronic component vendors, test equipment vendors, and

Memory
Transistor

Control
Gate

Word line

Bit line

Floating
Gate

Figure 1.19: EPROM-based configuration

32 Chapter 1

www.newnespress.com

EDAcompanies. Details on each PLD can be foundon the vendor’s Internet home page;

other useful information usually provided includes:

• device data sheets

• application notes (on how to use the devices)

• white papers (on applications that have been developed with the PLDs)

• audiovisual aids such as tutorial videos and web casts

• vendor EDA tool user guides and tutorials and software download areas

1.9 Programmable Logic Design Methods and Tools

1.9.1 Introduction

To design with a particular PLD, the appropriate design tools are required. In

general, free versions of the tools with limited capabilities are available, as well as

full versions for purchase. Table 1.10 identifies the tools for each of the main

vendors.

Although each software design tool differs in appearance and the manner in which the

designer interacts with it, all have a common set of basic features required to create

and implement designs within a particular tool. These features are:

• Project management: the ability to set up design projects and to manage the

design data in a user-friendly manner

Table 1.9: Main programmable logic vendors

Company Homepage URL

Achronix Semiconductor Corporation http://www.achronix.com
Actel� Corporation http://www.actel.com
Altera Corporation http://www.altera.com
Atmel� Corporation http://www.atmel.com
Cypress Semiconductor http://www.cypress.com
Lattice� Semiconductor Corporation http://www.latticesemi.com
Quicklogic� Corporation http://www.quicklogic.com
Xilinx� http://www.xilinx.com

Introduction to Programmable Logic 33

www.newnespress.com

• Design entry: entering the design into the tools using a combination of

schematic capture, HDL design entry, state machine flow diagrams

• Design simulation: Once the design has been entered, the design can be

simulated to check that it performs as required.

• Design synthesis: For HDL design entry, typically at the register transfer level

(RTL), the HDL description is to be synthesized to produce the digital logic

circuit in terms of logic gates and interconnect (netlist).

• Place and route: taking the design that has been entered and/or synthesized,

and mapping it to the hardware resources on the PLD. This defines which

parts of the PLD will contain which functions in the design and how the

different parts of the PLD are interconnected.

• Post-layout delay extraction: takes the information on the placed and routed

design, and extracts timing delays due to the logic gates and interconnect used

• Post-layout simulation: Using the layout timing delays, the design is

resimulated with these delays included to determine whether the design still

functions correctly.

• Configuration file generation: creates the PLD configuration data

• PLD configuration: downloads the configuration data to the PLD and enables

the configuration on the PLD to be verified for correctness

• Interfacing to external tools: allows for third-party tools such as simulation

and synthesis tools to be interfaced to the main design tools

Table 1.10: PLD design tool by vendor

Company Design tool

Actel� Corporation Libero� IDE
Altera Corporation Quartus� II
AltiumTM Altium Designer
Atmel� Corporation Integrated Development System (IDS)
Cypress Semiconductor Warp
Lattice� Semiconductor Corporation ispLEVER�

Mentor Graphics� FPGA Advantage�

Quicklogic� Corporation QuickWorks�

Synplicity� Synplify Pro�

Xilinx� ISETM

34 Chapter 1

www.newnespress.com

1.9.2 Typical PLD Design Flow

Whether a CPLD or FPGA is to be used, the designer follows a common design flow

for the major stages in the design entry, verification, and device configuration.

However, there will be differences in the fine detail between the CPLD and FPGA.

Figure 1.20 shows a typical PLD design flow.

Design entry

Schematic capture

HDL

Device selection

EDA tool
configuration

Simulation

HDL code synthesis

Fit or Place & Route

HDL test bench
(test fixture)Simulation tool

Design entry tool
State transition

diagram

Synthesis tool

Synthesis directives

Configuration file
generation

User constraints

Download
configuration to

PLD

Generator tool

PLD Configuration tool

Extract layout delays

Simulation

Postsynthesis
simulation model

Simulation

Configure

Verify

PLD

Figure 1.20: Typical PLD design flow

Introduction to Programmable Logic 35

www.newnespress.com

The first step is to enter the design into the appropriate EDA tool, typically using

a combination of schematic capture, HDL descriptions, and state transition

diagrams (for state machine design). The designs will be added to a design

project, and within this project, the target PLD will also be identified, although

the target PLD can be changed at a later date. When the designs have been

entered, the operation of each design part and then the overall design will be

validated through simulation. This will use a suitable simulation tool and test

bench (test fixture).

When the design, prior to HDL code synthesis, has been validated, the HDL designs

are synthesized into logic. Synthesis will use a suitable synthesis tool and user-

generated synthesis directives (e.g., size [area] and power constraints). A postsynthesis

simulation model of the design is generated and simulated. Normally, the same

test bench as used before would be used and the simulation results on both designs

compared to ensure that the postsynthesis design operation is equivalent to the

presynthesis design operation.

On successful completion of this stage, the design is either fitted to a CPLD or placed

and routed to an FPGA. This will use a suitable layout tool and user-generated

constraints (e.g., device pins and the I/O cell configuration). A post-layout simulation

is then run on the design and additional timing delays resulting from the logic gates

and interconnect used. This simulation ensures that the design at the PLD layout level

will operate at the required speed and that the layout delays are not large enough

to impede circuit operation.

Finally, the configuration file is generated as a bitstream file or JEDEC format file, then

the configuration is downloaded to the PLD. Normally, the configuration tool allows

for the configuration within the PLD to be verified by comparing the configuration

actually within the PLD to the required configuration (by reading the PLD

configuration and comparing this with the original bitstream or JEDEC file [14]).

1.10 Technology Trends

The early SPLDs were, by today’s standards, simple and contained few logic gates.

They are still used for small designs. For many applications, though, the choice now is

whether to use CPLD or FPGA, so the focus of research and product development is

on those two. Key technology trends for programmable logic include the following as

identified in Table 1.11.

36 Chapter 1

www.newnespress.com

Table 1.11: Technology trends

More functionality per IC The end-user demands for more functionality within the PLD to
enable increased digital signal processing capabilities,
as required, for example, in communication systemapplications.

Emphasis on electronic system
level (ESL) design

The majority of design work using HDLs involves writing HDL
code at a level referred to as register transfer level (RTL). This
level describes the movement and storage of data around
the digital system, and synthesis tools have been developed
to synthesize RTL-level HDL code into logic gates and
interconnect (netlists). As design complexities increase, there
is a need for the designer to describe at more abstract
levels of description—to describe the behavior of the system
and to let the synthesis tool take care of the details. ESL
design refers to the design and verification methodologies at
higher levels of abstraction from traditional RTL.

Inclusion of hardware macros
with programmable logic

Many FPGAs today include dedicated hardware macros such
as RAM, hardware multipliers, and processor cores that are
seen as resources alongside the programmable logic. When a
design is synthesized to a particular PLD, the synthesis tool
would know about the available macros and use them
appropriately. In addition, the move toward including
mixed-signal macros such as ADCs and DACs increases the
usefulness of the PLD.

High-level behavioral synthesis The description of system behavior and the ability to
synthesize behavioral descriptions to logic and interconnect,
as described above in ESL.

Seamless codesign of hardware-
software systems

The ability to design and develop designs based on software
operations and hardware operations within a single design
environment that seamlessly allows the overall design to be
undertaken in a single step.

Increased need for design debug
tools

As the types of digital systems being developed increase in
complexity, the potential for errors (bugs) increases. The
ability to debug PLD designs once configured enables the
designer to identify the cause of errors and to remove them—
in a similar manner to the debugging arrangements within
processor-based designs. The need for more comprehensive
design debug tools is increasing.

Higher operating frequencies As the complexities of the types of digital signal processing
algorithms increases, there is a need to perform the
algorithm calculations more quickly. This requires faster logic
gates, so the PLD can work at higher operating frequencies to
enable real-time digital signal processing.

(continued)

Introduction to Programmable Logic 37

www.newnespress.com

References

[1] Oxford Dictionary of English, Second Edition, Revised, eds. C. Soanes and

A. Stevenson, Oxford University Press, 2005, ISBN 0-19-861057-2.

[2] Smith, M., Application Specific Integrated Circuits, Addison-Wesley, 1999,

ISBN 0-201-50022-1.

[3] Skahill, K., VHDL for Programmable Logic, Addison-Wesley, 1996, ISBN

0-201-89573-0.

[4] Maxfield, C., The Design Warrior’s Guide to FPGAs, Elsevier, 2004, ISBN

0-7506-7604-3.

[5] Cooley, J. W., and Tukey, J. W., ‘‘An Algorithm for the Machine Computation

of the Complex Fourier Series,’’ Mathematics of Computation, Vol. 19, April

1965, pp. 297–301.

[6] Meade, M., and Dillon, C., Signals and Systems, Models and Behaviour, Second

Edition, Chapman and Hall, 1991, ISBN 0-412-40110-x.

Table 1.11 (Continued)

Finer fabrication process
geometries

To provide for more circuitry within a single device, the size of
each of the logic gates and of the interconnect within the
device must be reduced. This is achieved by utilizing finer
geometry processes. Each process is defined by a technology
node that defines the geometries of a particular fabrication
process. This is defined by the International Technology
Roadmap for Semiconductors (ITRS) [15].

Lower power supply voltages When the speed of operation of a CMOS design increases,
the power consumption increases, and the temperature in
turn increases. To reduce power consumption, excessively
high operating temperatures, and allow for portable, battery-
operated electronics, the power supply voltage is reduced.
This reduction in power supply voltage is also required for
reliability reasons when using the finer fabrication process
geometries.

Newer and faster device test
methods

Whenever a PLD is fabricated, the PLD must be tested to
ensure that the device was fabricated correctly and without
circuit faults. With an ever-increasing device design
complexity, the test problem increases. Effective tests are
needed to set quality levels at the lowest possible cost.

Lower costs Driven by the end-user requirements for devices with more
functionality but at a lower cost.

38 Chapter 1

www.newnespress.com

[7] Parhi, K., VLSI Digital Signal Processing Systems, Design and Implementation,

John Wiley & Sons, Inc., 1999, ISBN 0-471-24186-5.

[8] Jespers, P., Integrated Converters D to A and A to D Architectures, Analysis and

Simulation. Oxford University Press, 2001, ISBN 0-19-856446-5.

[9] Astrom, K., and Wittenmark, B., Computer-Controlled Systems, Theory and

Design, Second Edition, Prentice-Hall International Editions, 1990, ISBN

0-13-172784-2.

[10] Golden, J., and Verwer, A., Control System Design and Simulation, McGraw-

Hill, 1991, ISBN 0-07-707412-2.

[11] Bell Laboratories (Bell Labs), http:www.bell-labs.com/

[12] Xilinx Inc., USA, http://www.xilinx.com

[13] Ifeachor, E., and Jervis, B., Digital Signal Processing, A Practical Approach,

Second Edition, Prentice Hall, 2002, ISBN 0-201-69619-9.

[14] Joint Electronic Device Engineering Council (JEDEC), http://www.jedec.org/

[15] International Technology Roadmap for Semiconductors, 2006 Edition.

[16] Zahiri, B., Structured ASICs: Opportunities and Challenges, Proceedings of the

21st International Conference on Computer Design, Oct. 2003, pp. 404–409.

[17] Ran, Y., and Marek-Sadowska, M., Designing Via Configurable Logic Blocks

for Regular Fabric, IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Jan. 2006, pp. 1–14.

Introduction to Programmable Logic 39

www.newnespress.com

Student Exercises

The following exercises will involve the use of suitable reference text books and

Internet resources in order to answer.

1.1 The 74LS family of digital logic ICs provides a set of fixed functionality

logic gates. For the following logic gates:

• 2-input NAND gate

• 2-input AND gate

• 2-input NOR gate

• 2-input NAND gate

• buffer

• inverter

identify the following characteristics:

• the power supply voltage requirements

• the power supply current requirements

• the number of pins dedicated to the power supply or supplies

• the package type(s) that the IC is available in

• the number of logic gates that a designer has access to use

• the number of I/Os that a designer has access to use

1.2 The 74HC family of digital logic ICs provides a set of fixed functionality logic

gates. What are the main differences between 74LS and 74HC logic gates?

1.3 Repeat Question 1.1 using 74HC logic.

1.4 What is an application-specific standard product (ASSP)?

1.5 The majority of integrated circuits are fabricated using silicon-based

technology. A particular IC fabrication process will be based on a

particular technology node. What is meant by the term technology node?

1.6 For the following PLDs:

• Xilinx� SpartanTM-3 XC3S1000

• Xilinx� CoolrunnerTM-II XC2C256-144

• Lattice� Semiconductor MACH4A5-64/32

• Lattice� Semiconductor ispLSI2064E

identify the following from the device datasheets:

• whether the device is a CPLD or FPGA

40 Chapter 1

www.newnespress.com

• the power supply voltage requirements

• the power supply current requirements

• the number of pins dedicated to the power supply or supplies

• the maximum digital clocking frequency

• the package type(s) that the IC is available in

• the number of I/Os that a designer has access to use

• the I/O standards that the designer can set for the I/Os

• the cost of each PLD

• the CAD tools used in the design of circuits and systems with each PLD

• the role of each of the CAD tools used in the design of circuits and

systems with each type of PLD

1.7 What is the main difference between a PAL- and a GAL-based SPLD?

1.8 What processors are commonly used in the following:

• desktop PCs

• laptop PCs

• personal digital assistants (PDAs)

Which companies provide these processors?
1.9 Considering the Xilinx� CoolrunnerTM-II CPLD family, from the

datasheet, identify the CPLD architecture used. What is the functional

block and what does it do? How does the specific architecture compare to

or differ from the generic CPLD architecture identified in this chapter?

1.10 Considering the FPGA, for each of the main PLD vendors who provide

FPGA devices, choose one small FPGA and identify:

• the architecture of the particular FPGA

• the particular configuration technology (technologies) used with this

device

• the time required to load the configuration into the FPGA

1.11 What are the advantages of using programmable logic over discrete digital

logic ICs? Give two examples of where it would be more beneficial to use

a PLD.

1.12 Give two examples of where it would not necessarily be beneficial to use

a PLD over discrete digital logic ICs.

1.13 What is a structured ASIC? How does this compare and differ from the

traditional ASIC and the PLD?

Introduction to Programmable Logic 41

www.newnespress.com

This page intentionally left blank

CHA P T E R 2

Electronic Systems Design

2.1 Introduction

In this chapter, the design of electronic systems will be introduced by looking at the

different parts (subsystems) that are brought together to form the overall system.

However, before considering any design three points should always be noted:

1. Always use common sense. If something does not seem right, then it probably

isn’t.

2. Never leave anything to chance. What can go wrong will go wrong.

3. There is almost always more than one way to solve a problem. The choice for

the designer is to determine the most appropriate solution. The first solution

developed might not necessarily be the best.

Within the context of this book, the interest lies in the ability to design electronic

circuits and systems that can have a wide range of required functions, be practical

and useful, and will ultimately use analogue, digital, or mixed-signal circuits. The

advantage of each type of circuitry is:

• Analogue circuits manipulate electrical signals (voltages and/or currents)

that will vary continuously in amplitude between lower and upper limits.

Theoretically, the analogue signal is capable of changing by infinitesimally

small amounts. Examples of analogue circuits include operational amplifiers,

(voltage, current, audio, and power), and analogue filters (low-pass, high-pass,

band-pass, band-reject).

• Digital circuitsmanipulate signals that are quantized—that is, using signals that

will vary at discrete values between lower and upper limits. Binary (two-level logic,

www.newnespress.com

0 and 1) is most commonly used and is the basis of the majority of computing

applications today. Examples of digital circuits include microprocessors,

microcontrollers, digital signal processors, digital filters, and programmable logic.

• Mixed-signal circuits manipulate both analogue and digital signals and are

typically used to interface digital circuits to analogue input and output.

Examples of mixed-signal circuits include analogue to digital converters (ADC),

digital to analogue converters (DAC), digital processors with on-chip (on-

board) ADCs and DACs, comparators, and programmable analogue arrays.

The terms electronic circuit and electronic system are commonly used and are used

throughout this text. The Oxford Dictionary of English [1] defines circuit as ‘‘a complete

and closed path aroundwhich a circulating electric current can flow: a systemof electrical

conductors and components forming an electrical circuit,’’ and defines system as ‘‘a set of

things working together as parts of a mechanism or an interconnecting network.’’

In electronics, there is no clear point at which a circuit becomes a system; a number of

different criteria could be found and would make for interesting debate. However, in the

context of this book, the distinction is this: an electronic systemwill be designed to perform

a complex function or range of functions andwill consist of one ormore electronic circuits.

For example, consider the desktop PC in everyday use, as shown in Figure 2.1. This

would be considered an electronic system consisting of a number of subsystems, each

Figure 2.1: Image of a desktop PC

44 Chapter 2

www.newnespress.com

in turn consisting of a number of individual electronic circuits. At the initial visual

appearance, the PC consists of a small number of larger units, including:

• case containing the computer electronics

• the visual display unit (VDU)

• the keyboard

• the mouse

The case contains the electronics, which include the following basic subsystems:

• motherboard

• power supply

• hard disk

• floppy disk

• CD-ROM reader

• CD-ROM writer

• DVD reader

• DVD writer

• Input/output (I/O) ports: parallel port (Centronics), serial port (RS-232C),

universal serial bus (USB), firewire, local area network (LAN), modem

These are designed to perform specific functions for the manipulation of data and

for efficient user interaction. PCs will be available from a number of different

manufacturers, with each manufacturer offering their own set of advantages over the

competitors (cost, ease of use, etc.). Company and product branding in this highly

competitive market is extremely important.

Although the appearance of each PC might vary, the internal arrangement within

every PC is basically the same; that is, the architecture of the computer is based on

a common architecture. With the side cover taken off the PC, then these internal

subsystems will be exposed. Figure 2.2 shows the internal arrangement for an

example PC. Here, the PC motherboard is housed vertically and secured to one

side of the PC case. Connectors are mounted on the PC motherboard to allow for

other subsystems to be connected, for example, the power supply (bottom right)

Electronic Systems Design 45

www.newnespress.com

and disk drives. The disk drives here are placed in slots at the bottom left of the

case (empty in this image).

Themotherboard is of interest here as it is a printed circuit board (PCB) that houses the

main electronic components, including:

• microprocessor

• memory: ROM and RAM

• clocks, counters, and timers

• miscellaneous logic

• I/O circuitry

The main circuitry is in the form of an integrated circuit (IC). This is shown in Figure 2.3.

Figure 2.2: Inside a desktop PC

46 Chapter 2

www.newnespress.com

The microprocessor runs a software program that will enable the microprocessor to

undertake a number of actions (operations). Read-only memory (ROM) will be used to

hold program code. Random access memory (RAM) will be used for temporary storage

of data (both program code and variable data). Clocks are used to provide the necessary

timing to control the operation of the sequential logic parts of the circuits. Counters and

timers are used to provide specific timing signals. The I/O circuitry provides the interfacing

between the electronics and the rest of the electronic system. The miscellaneous logic

provides specific hardware interfacing between ICs within the overall electronic system.

The software code that the microprocessor runs will be based on the internal

instruction set of the microprocessor. This defines what operations the

microprocessor can undertake. When a program is written to run on a

microprocessor, the programmer uses one of two approaches:

1. High-level languages (such as C or Java) are suited for general-purpose

programming tasks for which the programmer does not need to understand

the details of the target computing hardware. This is an efficient use of the

programmer’s time but may not produce the most efficient code (in terms of

the size of the program code and the time required to execute commands).

The high-level program is then compiled into the machine-code form that the

microprocessor then uses.

2. Machine-code is low-level code that works at the computing hardware level.

The programmer must have a good understanding of the internal structure of

RAM

ROM

I/O

Miscellaneous
Logic

Microprocessor

Clocks, Counters,
and Timers

Figure 2.3: PC motherboard electronics (simplified view)

Electronic Systems Design 47

www.newnespress.com

the microprocessor and its fundamental instruction set. This is time consuming

but can produce efficient code (in terms of the size of the program code and the

time required to execute commands). When a program is written in machine-

code form, the program is firstly written in the form of standard instruction

mnemonics that are then converted to the machine-code form. The process of

converting the instruction mnemonics to machine-code is referred to as assembly.

Software programs that undertake this task are referred to as assemblers.

Today, most programming is undertaken using a suitable high-level language.

Aside: An interesting read on how the global computer industry developed from the early
days in Silicon Valley during the 1970s is the book Accidental Empires by Robert Cringley
(Harper and Brothers, 1996).

The previous PC example is only one example of how an electronic system utilizes a

processor. Increasingly, many other systems utilize programmable logic at the center

of the electronics. All designs of this size and complexity need to consider a large

number of issues relating to the design, manufacture, and test of the electronic

system [2]. The chosen design approach will ultimately be a trade-off in resolving often

conflicting requirements, such as performance versus cost. The choices will include:

• Generating the initial idea: What must be designed? What functions are to be

included? Why? How are ideas to be generated and captured (documented)?

• Market requirements: Successful products fulfill a set of market requirements.

Identifying what the market requirements are and what the steps are required

to develop a product that will be a commercial success are essential.

• Cost to design, manufacture, and test: What is the cost to design, manufacture,

and test the design?

• Sales price: What can the sale price be?

• Converting the idea into a specification, or family of specifications: How will the

design requirements be captured into a formal document so that the designers

and the end users will have a common set of documentation relating to the

system? Typically one or more specification documents are created, depending

on the type of system to be created and the need for particular types of

specification documents (for example, documents to be generated and made

available for specific contract requirements).

48 Chapter 2

www.newnespress.com

• Following a design process: How will the design be created from the initial idea

through to production level manufacture? (Sequential and concurrent design

processes are discussed in the next section.)

• The need for teamwork: The creation of any system of design complexity

requires skills from a number of people who will be formed into teams, each

responsible for a specific design task.

• Choosing the right implementation technology: Most designs can be

implemented in a number of different ways. The choices available can initially

be overwhelming, but by suitable care and thought about what exactly is

required and how these requirements can be realized in electronic hardware

and software, a small number of appropriate choices emerges. There might not

necessarily be a right or wrong choice, rather a better or worse choice for the

particular design scenario.

• Incorporating testing and design for testability (DfT): During the design and

production manufacture of a system, testing ensures that the design itself is

correct and that the manufacture of the design has not created defects that

result in a faulty operation. To demonstrate the importance of testing and

the discovering of faults in an electronic circuit or system after fabrication

and before use is referred to as the Rule of Ten: the cost multiplies by a

factor of ten every time an undetected fault is used to form a large electronic

circuit or system (Figure 2.4). Here, if the cost of detecting a faulty device

(component) when it is produced is one unit; the cost to detect that faulty

device when used at the board level (PCB) is 10 units; and the cost to detect

that faulty board when inserted in its system is 100 units, and so on.

• Setting up and using quality control mechanisms: Determine the level of quality

required of the final system, then adopt the appropriate approach to each

stage in design, manufacture, and testing to ensure that the right level of

product quality is achieved and maintained. Quality control mechanisms

are outside the scope of this text book and so are not considered further.

• Product branding: Does the company producing the system and/or the product

have a specific and identifiable brand? Does the potential customer associate

the company and/or product with price, quality, and reliability?

• Time to market (TTM): How long will it take to get the product into the

market so that sales income can be generated?

Electronic Systems Design 49

www.newnespress.com

• Design simulation: During the design process and prior to building the

prototype, the operation of the design will be simulated. At this stage, many of

the bugs in the design can be removed, although care must always be taken

because the results of a simulation study are only as good as the simulation

set-up (the test stimulus to apply) and the analysis of the simulation results.

• Design prototyping: What steps are required to take the initial design idea to a

prototyping stage in order (i) to identify the correct operation and that it meets

the required specifications, and (ii) where the design does not work correctly,

to identify the problem and the correction, whether in the design itself or in the

manufacturing. Design prototyping will be undertaken on a physical system

that has been built.

• Design debug: Debugging is undertaken during design simulation and design

prototyping to remove bugs in the design that prevent correct design operation.

• Production level manufacture: Once the design prototyping stage has been

successfully completed and the design is correct, then the full-scale manufacture

of the design can be undertaken. The design is then assumed to be correct.

Device (×1)

Board (×10)

System (×100)

Cost to
test

Production Stage

Figure 2.4: Rule of Ten

50 Chapter 2

www.newnespress.com

• Production level testing: Testing is undertaken on the systems that have been

manufactured to determine that the system has been manufactured without

defects that cause faults in the system operation.

• Future-proofing the design: Developing a design that is capable of being

modified and its operation enhanced in the future according to the market

requirements.

• Aesthetics: What concerns must be given to the appealing appearance of the

product? For example, if the system is to be embedded within a motor car and

will not be seen by the user of the motor car (or others), then the appearance is

not necessarily of concern. However, if the product is to be used in the home

and will be on display, then the aesthetics will be of great concern.

• Ergonomics: How will the product be used? Will there need to be a great

amount of interaction with the user and so how will the product be designed to

make the system both intuitive and easy to use?

The design process itself will not be an isolated activity. It must consider also the need to

manufacture the design and the need for testing the design. In recent years, significant

emphasis has been placed on the interaction between design and test, leading to the

concept of design for testability (DfT). However, DfT is just one example of DfX

(design for X). In general the following are also considered and approaches developed:

• DfA, design for assembly

• DfD, design for debug

• DfM, design for manufacturability

• DfR, design for reliability

• DfT, design for testability

• DfY, design for yield

The differentiation between a circuit and a system is further complicated by the

increased demands and ability to provide electronic components with ever higher

levels of integration—that is, more circuitry placed within individual components.

This is leading to the situation in which individual ICs, normally used in an electronic

circuit, would themselves be a complete electronic system. Such an IC with a high

level of circuit integration is commonly referred to as a system on a chip (SoC).

Electronic Systems Design 51

www.newnespress.com

Given the complexities in the circuitry that exists in a modern microprocessor, such

a device might be referred to as a System on a Chip. However, this could be argued

as not being the case. The modern microprocessor might be seen as just a complex

integrated circuit which still requires external circuitry in a similar way as to older

generation microprocessors. Therefore it would not be seen as an SoC as it is not

a complete system within a single integrated circuit. The definition of the SoC is

therefore something that needs to be considered carefully. This results in different

forms of electronic circuits or systems being available:

• Integrated circuit (IC): An electronic circuit fabricated on a die of semiconductor

material, usually silicon based. The die is normally housed within a package

although individual bare dies are available.

• Printed circuit board (PCB): An insulating material (substrate) with integrated

metal interconnect tracks that is used to mechanically secure and electrically

connect electronic components.

• Multichip module (MCM): An insulating material (substrate) smaller than

a PCB in size, with metal interconnect tracks that mechanically

secure and electrically connect individual ICs (either packaged ICs or

bare dies). The MCM was originally referred to as a hybrid circuit.

• System on a chip (SoC): A large integrated circuit that contains a complete

electronic system.

• System in a package (SiP): An extension to the idea of the MCM, but with the

capability of higher levels of integration and three-dimensional (3-D) packaging.

2.2 Sequential Product Development Process
versus Concurrent Engineering Process

2.2.1 Introduction

The process undertaken to develop a product is the means by which a design can be

developed from an initial concept through to realization as a (commercial or

noncommercial) product.One of twoapproaches canbeundertaken to realize the product:

• sequential product development process

• concurrent engineering process

52 Chapter 2

www.newnespress.com

Essentially, these will identify the main steps involved in the development and

production of a product and how these steps will interact with each other.

2.2.2 Sequential Product Development Process

In a sequential design process, each of the steps involved in the design process—from

design concept through to production and testing—is completed before the next step

begins. This traditional approach is shown in Figure 2.5.

Create Initial Design

Validate/Verify

Prototype

Review
(Results of Prototype)

Redesign

Re-validate/Re-verify

Produce (Final Design)

Test (Production Test)

One step after
another –
activities run in a
sequential order

Figure 2.5: Sequential design process [3]

Electronic Systems Design 53

www.newnespress.com

Here, the main steps are:

1. Design: Create the initial design.

2. Validate/Verify: Check the initial design for functional correctness.

3. Prototype: Create a physical prototype of the design and test the functionality

of the design.

4. Review: Identify whether the design functions as expected and identify

any issues raised and/or problems with the design that need to be resolved.

5. Redesign: Based on the issues and problems identified, undertake a product

redesign to address them.

6. Revalidate/Reverify: Check the new product design for functional correctness.

7. Produce: Once the design has been passed as functionally correct, then it is

produced (manufactured) in volume.

8. Test: The manufactured product is tested to identify any failures created by

the manufacturing process.

Although this approach appears to be simple, easy to understand, and initially easy to

manage, its sequential nature was inefficient. It does not allow for a step to interact with

any other step except those immediately prior and after; for example, the prototyping step

does not interact with the production step. This in-built restriction can create problems as

issues identified in the prototyping step might have an effect on the production step.

The important information generated in the prototyping step is therefore lost.

2.2.3 Concurrent Engineering Process

In a concurrent engineering process, each of the steps from concept through to

production and testing is interlinked, allowing information to be passed among

the steps. This idea is shown in Figure 2.6. Here, the different steps in the

process appear at different times. The overall process has a flatter structure—in

contrast to the previous sequential approach, activities occur in parallel—allowing

any issues and/or problems to be dealt with together. This allows for all stakeholders

in the development of the product to have the relevant information and assess

the impact of design issues and changes on their part of the product development.

54 Chapter 2

www.newnespress.com

Requirements Definition

Design
concept

DfX [1]

[1] DfX:
DfA Design for Assembly
DfD Design for Debug
DfM Design for Manufacturability
DfR Design for Reliability
DfT Design for Testability
DfY Design for Yield

Market
requirements

Quality
mechanisms

Service and
support systems

Design
embodiment

Manufacturing
processes

Manufacture

Product

Figure 2.6: Concurrent engineering process (after [3])

Electronic Systems Design 55

www.newnespress.com

2.3 Flowcharts

A flowchart [4] is a graphical or schematic representation of a process or algorithm. It

is used to show the intended operation of either a software program or a hardware

circuit. The flowchart is made up of connecting standard symbols together with

straight lines. The direction of the line is denoted by an arrow. Figure 2.7 shows the

commonly used symbols in the flowchart.

Terminal (Start/Stop)

Rectangle—Internal action

Rhomboid (parallelogram)—I/O device action

Diamond—Decision

Manual input

Flow line

Document

Manual operation

Off-page connector

Display

Magnetic disk

Circle—Connector

Figure 2.7: Flowchart symbols

56 Chapter 2

www.newnespress.com

The terminal symbol identifies the start and end of the flowchart. The rectangle (internal

action) symbol identifies an internal action to be undertaken. The rhomboid (I/O device

action) symbol identifies an action to be undertaken by an input or output device. The

diamond symbol identifies a decision (or branch) to be made. One of two routes out of

the diamond symbol will be undertaken depending on the result of the decision. The

document symbol identifies a document media. Themanual operation symbol identifies

an off-line process to be undertaken by a person at a ‘‘human speed.’’ Themanual input

symbol identifies the need for a manual input from a person using a device such as a

keyboard or pushbuttons. The off-page connector symbol links a flowchart that is

drawn on two or more pages. The display symbol identifies an output to an online

display. The magnetic disk symbol identifies an input or output from magnetic disk

storage (i.e., data file I/O). The flow line identifies the flow of the flowchart based on the

actions and decisions. The circle symbol identifies a connection of flow lines.

An example flowchart is shown in Figure 2.8. Here, a software program

detects an input that is a serial bitstream. The pattern to detect is a ‘‘101’’

Start

Read input

Is input
‘1’?

No

Yes

Read input

Is input
‘0’?

No

Yes

Read input

Is input
‘1’?

No

Yes

Stop

Turn light
ON

Is light
ON?

No

Turn light
OFF

Yes

Figure 2.8: Example flowchart

Electronic Systems Design 57

www.newnespress.com

sequence. When this sequence is detected, a light is turned on and the program

stops.

2.4 Block Diagrams

A block diagram is a circuit or system drawing that identifies major functions and

the interconnections between the functions, rather than showing a detailed

implementation. Its purpose is to represent graphically a system consisting of

subsystems or a subsystem consisting of components. It helps in the creation and

interpretation of a design by

• allowing a design concept to be developed in order to identify the required

arrangement prior to any detailed design process

• allowing a simplified view of a designed system to be viewed and

interpreted

As an example, consider the block diagram for a basic central processing unit (CPU)

for a microprocessor as shown in Figure 2.9.

The microprocessor will also contain ROM (holding specific program code for

the microprocessor to work), RAM (for temporary storage of data), and

a port (for data I/O between the microprocessor and the external electronic

system).

The block diagram is a representation of the CPU system. The system itself consists of

a number of subsystems. These are modeled by boxes with a text identifier. The

identified blocks are:

• Arithmetic and logic unit (ALU): Provides a set of arithmetic and logic

functions.

• Accumulator: A register used to hold one of the inputs to the ALU and the

results of an ALU operation. This is used for temporary storage and is one of

the most used registers within the CPU.

• Program counter (PC): This is a counter that increments after each instruction

and tracks program execution to ensure that the program executes in the

correct sequence.

58 Chapter 2

www.newnespress.com

• Store address register: A register that can be loaded with a single address in

memory that might be required by the program.

• Status register: Also referred to as a flag register, it is used to store information

relating to the last operation undertaken by the ALU.

• Instruction decode, control, and timing: Used for organizing the data flow

between the different parts of the CPU.

• Instruction register (IR): Used to store an instruction that the microprocessor

is to decode and act upon.

ALU

Accumulator

Status Register

Program
Counter (PC)

Store Address
Register

In
te

rn
al

 A
dd

re
ss

 B
us

Instruction
Register (IR)

External Data Bus

Instruction
Decode,

Control and
Timing

External Control
Signals

 In
te

rn
al

 D
at

a
B

us
External
Address

Bus

Figure 2.9: Basic CPU block diagram

Electronic Systems Design 59

www.newnespress.com

Each subsystem is identified by a single block. Where functions are related, there may

be a hierarchical block diagram in which blocks are grouped within larger blocks.

Connecting the blocks will be buses of three types:

1. Data bus transfers data within the microprocessor and externally.

2. Address bus sets the address of the memory or port to access within the

microprocessor and externally.

3. Control bus controls the blocks within the microprocessor and for external

control lines.

The interconnection lines mark the direction of data or information with the direction

of the arrow. This can be one-way or two-way in direction.

A second example for a block diagram is the heating control system identified in

Chapter 1. This is shown again in Figure 2.10. Here, the room temperature is

sensed as an analogue signal but must be processed by a digital signal processing

circuit. So the temperature is converted to an analogue voltage or current. This

is then applied to a sensor signal conditioning circuit that is used to connect

the sensor to the ADC. The ADC samples the analogue signal at a chosen

sampling frequency. Once a temperature sample has been obtained by the digital

signal processing circuit, it is then processed using a particular algorithm, and

the result is applied to a DAC. The DAC output is a voltage or current, which

is used to drive a controller (heat source). The DAC is normally connected to

the controller via a signal conditioning circuit. This circuit acts to interface the

DAC to the controller so the controller can receive the correct voltage and current

levels.

Sensor Sensor signal
conditioning circuit

Analogue
to Digital
Converter

Temperature
Digital
signal

processing

Digital to
Analogue
Converter

Controller
Signal conditioning

circuitHeat

Figure 2.10: Heating control system block diagram

60 Chapter 2

www.newnespress.com

2.5 Gajski-Kuhn Chart

The Gajski-Kuhn chart [5, 6] is commonly referred to in the EDA industry [7] in

relation to categorizing the different design abstraction levels and design synthesis. As

shown in Figure 2.11, the chart takes the form of five concentric circles and three

partitions or domains.

The five concentric circles characterize the hierarchical levels of the design process,

with increasing abstraction from the inner to the outer circle. Each circle

characterizes a model, and the models thus characterized are specific to the three

domains.

Structural
domain

Behavioral
domain

Physical domain

Subsystem

IPs, memories

Gate, bistable

Transistor

ALU, registers, mux

Shapes: (rectangles, polygons)

Standard cell

Macrocell

Block

SoC/Board

Specification

Algorithm

RTL

Boolean logic

Transfer function

Figure 2.11: Gajski-Kuhn chart

Electronic Systems Design 61

www.newnespress.com

• Behavior: describes the functional behavior of the system

1. Specification

2. Algorithm

3. RTL

4. Boolean logic

5. Transfer function

• Structure: describes the circuits and subsystems that will be connected together

to form the required system

1. Subsystem

2. IPs (IP blocks) and memories

3. ALUs, registers, and multiplexers (MUX)

4. Gates and bistables

5. Transistors

• Physical domain: describes the underlying implementation of the system

1. Shapes (rectangles and polygons)

2. Standard cells

3. Macrocells

4. Blocks

5. SoC and board

2.6 Hardware-Software Co-Design

Many digital circuits and systems are based on digital logic hardware only. However,

many other digital circuits and systems are based on processors running a software

program. These processors will then interface to external hardware circuitry. For such

hardware (HW) and software (SW) designs, it is necessary to design the hardware and

software parts together to create

62 Chapter 2

www.newnespress.com

• a working design (Designing a software program without knowing the

hardware it will run on will ultimately result in a failure.)

• a design that uses the best set of hardware components

• a design that efficiently uses the available hardware

• a design that runs an efficient software program

• a design that is maintainable and can be upgraded

• a design that is cost-effective

Hardware-software co-design [8–10] is an idea that has been around for a long time,

being continually refined and updated to adapt to emerging technologies. However,

the fundamental basis remains the same: to provide an approach for the cooperative

or collaborative design of electronic systems with hardware and software parts.

An approach to hardware-software co-design is shown in Figure 2.12. The design

approach initially starts with the system specification, which contains a document

or set of documents that define what exactly the system is intended to do. The design

choices are then made to identify which parts are to be undertaken in hardware and

which parts are to be undertaken in software. This is followed by the partitioning of

the design into the hardware parts and software parts, along with the parts that

provide the interface between them. It is at this point that the design implementation

typically comes to the hardware and software designers. Given that this initial

partitioning of the design has been completed, then the system design is refined to

develop the specifications for the hardware and software parts.

When those specifications have been developed and formally agreed on, the design can

be undertaken. Specific EDA tools relevant to the electronics or the software

programming are used. When hardware and software designers work in close

co-operation, EDA tools that support an integrated hardware-software co-design

approach can be used. Simulation (validation) and formal verification support the

design process. On integration of hardware and software, a hardware-software

co-simulation might be undertaken that will simulate the operation of the software

program on the actual hardware. Design prototyping creates a physical prototype of

the overall system that allows the operation of the real design to be evaluated. On

successful completion of the design prototyping, the final design would be ready for

design production. Depending on the required application, the number of systems to be

produced can range from one to millions.

Electronic Systems Design 63

www.newnespress.com

System specification

Design choices

HW/SW partitioning

Interfacing Software partHardware part

System design refinement

Software specificationHardware specification

Hardware design

Cosimulation

Design prototyping

Design production

Software
simulation

Hardware
simulation

Software design

Figure 2.12: Hardware-software co-design

64 Chapter 2

www.newnespress.com

2.7 Formal Verification

Formal verification is essentially concerned with identifying the correctness of

hardware [11] and software design operation. Because verification uses formal

mathematical proofs, a suitable mathematical model of the design must be created.

Today, both verification and validation processes are typically undertaken to analyze

a design implementation. Verification differs from validation in that:

• Validation seeks to examine the correctness in the operation of the electronic

circuit or software program implementation by examining its behavior (e.g.,

through simulation or prototype evaluation).

• Verification seeks to examine the correctness in the operation of the electronic

circuit or software program implementation by a mathematical proof.

An example where both verification and validation can be undertaken is during the

design of digital circuits and systems using hardware description languages (HDLs).

This idea is shown in Figure 2.13. Here, the process starts with an RTL (register

RTL design

Logic design

Synthesis

Post-synthesis
actions

Optimization

Post-processed
logic design

Optimized
logic design

1. Validation – simulation
2. Verification

1. Validation – simulation
2. Verification

1. Validation – simulation
2. Verification

Figure 2.13: Verification and validation of an RTL design

Electronic Systems Design 65

www.newnespress.com

transfer level) description of a digital circuit. This is synthesized using a suitable

synthesis tool.

After the design has been synthesized into a netlist, postsynthesis actions are

undertaken on the design such as clock tree insertion and testability (typically a scan

path test). The design is then optimized to form the final design, then simulated.

Validation is undertaken via simulation, and verification is undertaken using a

mathematical model of the design.

2.8 Embedded Systems and Real-Time
Operating Systems

A real-time operating system (RTOS) is a software operating system that is intended

for use in real-time applications such as:

• consumer electronics—household appliances, cameras, audio equipment

• telecommunications—mobile phones

• automotive—electronic control unit (ECU) and antilock brakes

• aerospace

• spacecraft

• plant control—industrial robots

These are generally referred to as embedded systems [12, 13] because they include

computing functions and are dedicated to a particular application. An obvious aspect

of an embedded system is that it would not necessarily look like a computer, but

instead are enclosed within the everyday items that we use.

An embedded system is evaluated on technical and economical merits:

• Technical merits:

� Performance: the execution time of the required tasks

� Energy efficiency: the amount of power consumed by the system

� Size: specific measurements of the system to meet particular size

constraints for the application

66 Chapter 2

www.newnespress.com

� Flexibility: the ability to reconfigure the system for different applications

� Deterministic operation: the system performs tasks within a guaranteed

time period.

• Economical merits:

� Unit cost: cost to manufacture a unit, excluding nonrecurring engineering

(NRE) costs

� Nonrecurring engineering (NRE) costs: costs to design and manufacture

the system. For example, if an ASIC is to be part of the system, then there

would be NRE costs associated with designing and manufacturing the

mask sets required in the lithographic steps in the ASIC wafer fabrication.

� Flexibility: the ability to redesign the system, or parts of the system,

without incurring high NRE costs

� Time to market (TTM): the time required to develop the system so that it is

in a state that can be sold to the customer

The operating system running on the embedded system processor is a multitasking

operating system in that it is required to execute multiple processes concurrently by

multitasking the CPU of the processor used within the embedded system. Tasks

would be executed using one of two basic design approaches:

1. Event-driven: The CPU switches to a particular task when the task itself

requests servicing (via interrupts on the CPU). Tasks are prioritized, and a

task with a higher priority will be serviced before a task with a lower priority.

2. Time-sharing: The CPU switches to between tasks on a time-sharing basis.

An important aspect of the embedded system would be that its operation is deterministic.

This means that, if designed correctly, it can undertake specific tasks within a specific,

guaranteed time period. This feature differs from the general purpose computer (such as

a desktop or laptop computer), whose operation would not be deterministic.

2.9 Electronic System-Level Design

With the increasing complexities of digital systems to be created today, particularly for

applications such as communications, there is a need to enable the designer to work at

higher levels of design abstraction and away from the detailed design aspects. Designing

Electronic Systems Design 67

www.newnespress.com

at such high levels is referred to as electronic system-level (ESL) design [14, 15]. ESL

design is an emerging area for the design community and is a response to the emerging

needs of the designers (both hardware and software) to support their need to develop

more complex systems designs but in a reduced time. This allows the designer to:

• raise the design entry point to a design abstraction level to make the complex

design problem manageable

• concentrate on high-level design concept issues rather than low-level design

implementation issues

• reduce design time by automating specific time-consuming tasks that are

suited to automation

• explore the design space at the abstraction level and explore trade-offs (in size,

performance, power consumption) in the design decisions

ESL design is a response to designers working at a behavioral level, as has become

more prevalent in recent years, with behavioral-level modeling of designs being

developed for synthesis into logic. However, ESL design is required to overcome

limitations with working at design behavioral level and considers higher levels of

design abstraction and complexity.

To facilitate this design approach, then, the designer requires:

• design entry tools to support ESL design

• design languages (either textural or graphical) that effectively model the wide

range of designs to be encountered and the different levels of design abstraction

• design simulation tools to simulate complete systems at different levels of

design abstraction

For ESL design, suitable EDA tools are required to enable high-level designs to be

automatically translated to HDL code, which can then be synthesized in the normal

manner.

2.10 Creating a Design Specification

A design specification describes the detailed operation and attributes of a system and

is used as the basis of the design concept. With small designs, developing a clear and

concise design specification is a relatively straightforward task. However, as designs

68 Chapter 2

www.newnespress.com

become more complex, with increased functionality and more customer requirements,

then the task of writing a design specification becomes more complex.

In most cases, a specification is a document that can be referred to by all or some of

the stakeholders (active participants—the designers and the customers) involved in

the design process. Normally two or more specification documents are required for

internal use (by the designers only) and for external use (by the designers and the

customer). The purposes of the design specification are to:

• involve all stakeholders in the plans for the system development—the

specification should be written for the particular audience (technical,

nontechnical, management, etc.)

• identify potential problems and risks before they are encountered to save time

and money

• be used as the basis for project planning and review

• be used as the basis for the design itself

Whatever the use of the design specification, it follows the same set of requirements:

1. Be clear.

2. Be concise.

3. Avoid general statements and be specific.

4. Avoid statements that are open to multiple interpretations.

5. Be accurate.

6. Be available in a format that is agreed by its users.

7. Adhere to specific requirements and standards adopted by the organizations

involved.

8. Be readable.

When considering the creation of a design specification, it is sometimes easier to

identify what not to do rather than what to do. For example avoid using statements

such as ‘‘The user interface should be user friendly.’’ After all, what is actually meant by

user friendly? An interface that appears user friendly to one person may be impossible

Electronic Systems Design 69

www.newnespress.com

to use by someone else! For example, a software programmer who works at a UNIXTM

or Linux command line and never touches a graphical user interface (GUI) would not

necessarily appreciate a highly complex GUI with many unnecessary options. Hence,

the requirements of end-user must always be considered.

Aside: A humorous read on how engineers, scientists, and software programmers think is in
‘‘The Dilbert Principle’’ by Scott Adams (Boxtree, 1997). Particularly illuminating is
Chapter 14, ‘‘Engineers, Scientists, Programmers, and Other Odd People’’!

Although a design specification is generally a document, it can also take other forms:

diagrams, charts, tables, databases, prototypes, or mock-ups. Mock-ups are different

from prototypes in that mock-ups are scaled models to show what the system would

look like, whereas the prototype is a fully functional system used for evaluating the

system prior to manufacture.

2.11 Unified Modeling Language

UML (unified modeling language) [16] is a standardized specification language used

in software engineering for object modeling—specifically, for software specification,

visualization, construction, and documentation of the software system and its

component parts. UML was conceived with the aims to:

• provide software developers with a visual programming language with which

to develop models of the software

• provide a means to extend the core concepts

• be independent of any particular programming language and software

development process

• provide a basis on which to formally understand the modeling language

• integrate best practices in software development

• support high-level software development concepts

Although conceived for software engineering, UML is not restricted to modeling

software, but also has applications in such areas as systems engineering modeling and

process modeling. When a model is developed in UML, the UML model forms the

basis to translate the UML model to other languages such as JavaTM.

70 Chapter 2

www.newnespress.com

Because UML is a visual language, a UML diagram is created to allow

developers and customers to view the software system from their different

perspectives and at different levels of abstraction. UML diagrams commonly

include the following:

• Use case diagram. This displays the relationship between actors and use cases.

An actor is a user of the system who applies a stimulus to the system and

cannot be controlled by the system itself. The actor is seen as a role rather than

a physical person. Use cases are services that the system knows how to

perform. Figure 2.14 shows an example case diagram for a user of a bank

ATM machine. The actor is drawn as a stick figure, and the use case is drawn

as an ellipse. The lines show the interactions.

• Class diagram. This display provides a static view of the classes in a model. It

also shows the relationships such as containment, inheritance, and associations.

• Interaction diagram. The two types of interaction diagram are the sequence

diagram and the collaboration diagram:

� The sequence diagram displays the time sequence of the objects participating

in a particular interaction. The objects will interact by passing messages

among themselves. On the diagram, the vertical direction represents the

time, and the horizontal direction represents the different objects.

Withdraw
cash

Check
balance

Order
statement

Pay bill

Bank
Customer

Figure 2.14: Example case diagram for a bank ATM machine

Electronic Systems Design 71

www.newnespress.com

� The collaboration diagram displays the interaction among objects and the

links between objects. Numbers are used to show the sequence of messages

passed among objects.

• Activity diagram. This displays a state diagram that focuses on flows driven by

internal object processing. This provides a means to describe workflow.

• Statechart diagram. This displays the sequences of states that an object will go

through during an interactionwith a received stimulus and the object’s responses

and actions. This diagram is closely related to the activity diagram. Statechart

diagrams provide a means to describe the behavior of dynamic model elements.

• Implementation diagram. The two types of implementation diagram are the

component diagram and the deployment diagram:

� The component diagram displays the relationships among the software

components in the system.

� The deployment diagram displays the hardware configuration used to

implement the system and the links between the hardware components.

2.12 Reading a Component Data Sheet

All components that are available to purchase for use within an electronic circuit or

system will have an associated data sheet. The data sheet provides the necessary

information for the designer of an electronic circuit to determine whether the

component is suitable for the particular application. The data sheet (see Figure 2.15)

Developer 1

Developer 2

Developer n

Data SheetDeveloper User

User 2

User 1

User n

Figure 2.15: Data sheets

72 Chapter 2

www.newnespress.com

should be presented in a style that is quick and easy to read, and allows the designer to

evaluate the information to determine component suitability. Reading a component

datasheet takes practice and familiarity with the typical style of presentation [17].

Writing a data sheet takes much more practice.

There is no single style to the presentation of information within the datasheet, but

the following style for a digital IC is a good generic model:

• Company logo and part number (and name)

• Features: the general electrical and thermal features to be found within the

component

• Description: an introduction to the component

• Package types and pinout: the package types that the IC can be obtained in

and the pin designation (pinout) for each package type. Appendix C identifies

the main IC packages commonly used (see the last paragraph of the Preface

for instructions regarding how to access this online content).

• Functional block diagram: a block diagram of the internal architecture of the IC

• Absolute maximum ratings: the absolute maximum ratings give the values of

voltage, current, and temperature that, if exceeded, could cause permanent

damage to the component. Table 2.1 provides example absolute maximum

ratings for an example digital IC.

• ESD warning: a warning logo and description to identify the potential damage

to the component from electrostatic discharge (ESD)

• Terminology: identifies the terminology and abbreviations used in the data

sheet and their meaning

Table 2.1: Example absolute maximum ratings for a digital IC

Symbol Parameter Value Unit

VCC D.C. power supply voltage �0.5 to þ7.0 V
VI D.C. input voltage �0.5 to þ7.0 V
VO D.C. output voltage �0.5 to þ7.0 V
IO D.C. output current �50 mA
ICC D.C. output current per supply pin �100 mA
IGND D.C. ground current per supply pin �100 mA
Tstg Storage temperature �65 to þ150 �C
TL Lead temperature (10 sec) 300 �C

Electronic Systems Design 73

www.newnespress.com

• Thermal information: temperature range and package thermal resistance

information

• Operating conditions: The D.C. power supply voltage and D.C. input voltage

range (minimum and maximum) expected for normal operation

• Static electrical specifications: voltage and current specifications—minimum

(MIN), typical (TYP) and maximum (MAX), or a subset of these—that must

be applied to the IC, or that will be guaranteed by the IC, for correct

operation. In addition, input and output capacitance of the inputs and outputs

would normally be provided.

• Description of operation: a detailed description of the operation of the IC,

including how the designer would use the features of the IC in his or her own

application

• Function pin definition: identification of the name and description of

operation for each pin on the IC in a table format

• Dynamic electrical specifications: timing information for the system timing

waveforms

� System timing waveforms: timing diagrams showing the required digital

timing for operation of the IC

� Example use: also shows how they can be interfaced to other electronic circuits

� Package dimensions: for the different packages in which the component is

available

The parameters for the device will be taken for specific test conditions, such as

ambient temperature and power supply voltage. These conditions should be

noted with care as the quoted parameters are only valid at these operating conditions.

Tstg identifies the storage temperature for the IC. However, the IC will have

temperature ratings for different scenarios:

• Storage: the range in temperature that the IC can handle without damage

during component storage (before power is applied to the IC)

• Lead: the absolute maximum temperature (for a given duration) that the IC

can handle at the IC lead (pin) without damage during component soldering to

a PCB

74 Chapter 2

www.newnespress.com

• Junction: the maximum temperature that the die within the IC can reach under

any condition without damage

• Operating: the range in temperature that the IC can handle without damage

during component use. This will depend on the application, and the IC will be

one of the following types:

� Commercial: 0�C to +70�C

� Industrial: –40�C to +85�C

� Military: –55�C to +125�C

2.13 Digital Input/Output

2.13.1 Introduction

When preparing to transmit digital data in the electronic system, these questions need

to be asked:

• What is a logic level (0 or 1) in terms of the voltage levels in the circuit?

• How is the digital data to be transmitted? What is the communications

channel?

• What preprocessing must the data undergo before it can be transmitted, and

what postprocessing must the data undergo after it has been received?

• What effect does the communications channel have on the signal?

Data transmission can take a number of forms and serve different purposes; an

example of this is shown in Figure 2.16. Here, a number of PCs are locally connected

on a LAN and connected to the external world using the telephone line (modem), the

Internet (telephone or dedicated lines), and satellite.

Figure 2.16 shows the communications between large electronic systems.

Communications will also occur locally within the system itself, whether within

individual ICs, between ICs on a PCB, or between subsystems (e.g., between separate

PCBs). Whatever the purpose of the communications is, there will be a need to

design to particular standards for the correct transmission and receipt of data at various

speeds of data transmission. Each digital IC will have pins to be used for creating

(transmitting) and capturing (receiving) digital data. The digital inputs to an IC and

Electronic Systems Design 75

www.newnespress.com

the digital outputs from an IC will adhere to particular standards. A number of the main

standards will be identified and discussed in Section 2.14, ‘‘Parallel and Serial

Interfacing.’’

The I/O signals will be either single ended or differential depending on the particular

standard. A digital IC will adhere to one or a number of standards. For example,

the Xilinx� range of field programmable gate arrays (FPGAs) and complex

programmable logic devices (CPLDs) can be configured by the user to adhere to one

of a number of standards. Table 2.2 shows example I/O standards that are supported

by the Xilinx� PLDs and configured by the designer. With such a programmable I/O

Satellite

Local PC Local PC

Modem

LAN

Internet

Figure 2.16: Data communication examples

Table 2.2: Example I/O standards supported by the Xilinx� PLDs

Standard Standard Description

LVTTL Low-voltage transistor-transistor logic (3.3 V level)
LVCMOS33 Low-voltage CMOS (3.3 V level)
LVCMOS25 Low-voltage CMOS (2.5 V level)
LVCMOS18 Low-voltage CMOS (1.8 V level)
1.5 V I/O (1.5 V levels) 1.5 V level logic (1.5 V level)
HSTL-1 High-speed transceiver logic
SSTL2-1 Stub series terminated logic (2.5 V level)
SSTL3-1 Stub series terminated logic (3.3 V level)

76 Chapter 2

www.newnespress.com

capability, before the device has been configured with the appropriate standard, the

device will default to one of the standards. It is therefore important for the designer to

identify the default standard and the implications of using a particular standard on

the overall circuit operation.

A single-ended signal is a single signal on a single wire that creates a voltage that is

referenced to a common point in the circuit (usually the 0V common connection).

Differential signals utilize two wires to carry complementary signals, and the signal

is the difference in voltage between the two wires (Figure 2.17). Differential

signaling is suitable for use with low-voltage electronics (such as mobile devices

that obtain power from batteries) and is robust against noise added during data

transmission.

Two important points to note with digital logic ICs are:

1. No input to an IC input is to be left unconnected (referred to as floating

input). If an input to an IC is not required, then it must be tied to logic level

(0 or 1). This is usually achieved by connecting a high-resistance value resistor

(typically 10 to 100 k� in value) between the unused input and one of the power

supply connections (VDD for logic 1, VSS or GND for logic 0). In some ICs,

specific inputs might be designed to be used only for specific circumstances and

Signal
source

Signal
destination

Signal
source

Signal
destination

VSIGNAL

VSIGNAL

(a) Single-ended signaling

(b) Differential signaling

Figure 2.17: Single-ended versus differential signals

Electronic Systems Design 77

www.newnespress.com

will have integrated into the IC input pin circuitry a pull-up (to logic 1) or

pull-down (to logic 0) component. Such integrated pull-up or pull-down

components alleviate the need for the designer to place resistors on the PCB

and so reduce the PCB design requirements.

2. Where a logic gate only produces a logic 0 or 1 output, then no two or more

logic gate outputs are to be connected together unless the implementation

technology (the circuitry within the logic gate) allows this. Certain logic gate

outputs can be put into a high-impedance state, which stops the output from

producing a logic output and instead turns the output into a high-impedance

electrical load. Circuits with a high-impedance output are used where multiple

devices are to be connected to a common set of signals (a bus) such as a

microprocessor data bus.

Whenever an FPGA or CPLD is used, there may be situations where not all of the

available digital I/O pins are used. In this case, the unused pins are not connected

to any circuitry and would be left unconnected on the PCB. However, internally

within the FPGA or CPLD, the pin circuitry would be arranged so that it would

not be left floating. The designer of a system using FPGAs or CPLDs should check

what happens when the pin is not used (i.e, not configured) given the particular

arrangement of the device.

In telecommunications systems, the transmission of high-speed digital data is often

tested using an eye diagram (or eye pattern). Essentially, this is an oscilloscope display

where the received data is sampled at a fixed rate and applied to the vertical input of

the oscilloscope. The data rate is then used to trigger the horizontal sweep of the

oscilloscope. The eye diagram is so called because, for several types of signal, the

pattern looks like a series of eyes. In Figure 2.18, the top eye diagram is for an

undistorted signal, and the bottom eye diagram includes the noise in the signal and

signal timing errors.

Analysis of the eye diagram can identify issues such as:

• signals that are poorly synchronized to the system clock

• noise

• overshoot and undershoot

• signal jitter (variance in signal transmission timing)

78 Chapter 2

www.newnespress.com

2.13.2 Logic-Level Definitions

When designing with logic gates, the primary concern is to consider the logic levels

(logic 0 and logic 1) and ensure that the correct logic levels appear at the required

nodes in the circuit at the right time. However, the underlying circuitry within the

logic gates is analogue (using transistors), so the voltages and currents in the design

must be considered. Shown in Figure 2.19 is a two-input AND gate with voltage

signal generators connected to the inputs A and B, and the resulting voltage is

monitored at the output Z.

Distorted signal:
Voltage variation
observed

Distorted signal: Timing
variation observed

Signal amplitude

Time

Undistorted signal:
known signal voltage
range and timing

Figure 2.18: Eye diagram: undistorted signal (top) and distorted signal (bottom)

VZVBVA

A

B

Z

Figure 2.19: Two-input AND gate with voltage sources

Electronic Systems Design 79

www.newnespress.com

When the voltages and currents are considered, the two values in the digital world (0 or 1)

become, in the analogue world, continuously varying signal levels between a lower and

upper limit. A logic level would be defined by a band of voltage levels from a predefined

minimum level to apredefinedmaximum level. For each voltage, the following are defined:

• VIL

Maximum input voltage that can be interpreted as a logic 0

• VIH

Minimum input voltage that can be interpreted as a logic 1

• VOL

Maximum output voltage when the output is a logic 0

• VOH

Minimum output voltage when the output is a logic 1

These voltage levels are discussed in the next section.

In addition to the voltages defined above, the logic gate will also have low-level and

high-level input and output currents as shown in Figure 2.20:

• IIH
High-level input current: the current that flows into an input when a high-level

voltage (value to be specified) is applied

• IIL
Low-level input current: the current that flows out of an input when a low-

level voltage (value to be specified) is applied

A

B

Z

IIH

IIL

IIH

IIL

Input A

Input B

IOH

IOL
Output Z

Figure 2.20: Two-input AND gate with current definitions

80 Chapter 2

www.newnespress.com

• IOH

High-level output current: the current that flows out of an output when a

high-level voltage (logic 1 output) is created. The output load conditions will

need to be specified.

• IOL

Low-level output current: the current that flows into an output when a low-

level voltage (logic 0 output) is created. The output load conditions will need

to be specified.

When designing with digital ICs, these voltage and current figures should be provided

in the particular device data sheet.

2.13.3 Noise Margin

In digital logic, two logic levels are defined: logic 0 and logic 1. Each logic level

will represent a voltage the analogue circuit level (the transistor operation within

the digital logic gate). In the digital logic inverter, the input and output voltages

and how they will create the required logic levels can be considered. Consider the

static CMOS inverter, which uses one nMOS and one pMOS transistor as shown

in Figure 2.21. Here, the logic symbol and the transistor level connections are

shown.

The circuit requires a DC power supply voltage (VDD/VSS) to operate. Here, two

signal voltages are identified (VIN and VOUT), which represent the input and output

voltages. A logic 0 will be considered as an input voltage at the VSS (0V) level, and a

logic 1 will be considered an input voltage at the VDD (+3.3V) level. For each voltage,

the following are defined:

• VIL

Maximum input voltage (VIN) that can be interpreted as a logic 0

• VIH

Minimum input voltage (VIN) that can be interpreted as a logic 1

• VOL

Maximum output voltage (VOUT) when the output is a logic 0

• VOH

Minimum output voltage (VOUT) when the output is a logic 1

Electronic Systems Design 81

www.newnespress.com

This means that the input and output voltages will not be a single value, but rather the

logic level will represent a band of voltage levels from a predefined minimum level to a

predefined maximum level. Two values for noise margin are then identified:

• NML

Noise margin for low levels: NML=VIL – VOL

• NMH

Noise margin for high levels: NMH=VOH – VIH

Figure 2.22 graphically displays the noise margin and hence the tolerance of the

circuit to variations in voltage level so the logic levels can be viewed. The noise margin

for a circuit becomes increasingly important for low-voltage systems (moving down to

and below 1.0V VDD) as the noise margin decreases and the potential for noise to

corrupt values can increase (a logic 0 level becomes a logic 1, and vice versa).

Table 2.3 provides the VIL, VIH, VOL, and VOH voltage levels for several TTL and

CMOS family variants [18] when VDD/VCC is +5.0V.

ZA Inverter logic symbol

Inverter
transistor
connections

pMOS
transistor

Z

VSS
(e.g., + 0V)

VDD
(e.g., + 3.3V)

A

nMOS
transistor VOUTVIN

Figure 2.21: Static CMOS inverter

82 Chapter 2

www.newnespress.com

2.13.4 Interfacing Logic Families

In an electronic system, ICs must be connected at the PCB level. When using digital

logic ICs, the designer may need to interface ICs that are based on different circuit

architectures (basically the different variants of TTL and CMOS logic), and that may

also operate at different power supply voltage levels. In such situations, the designer

will need to ensure that the device providing a signal can meet the voltage and current

VOUT

Transition region

NML

NMH

VOL

VSS

VIL

VIH

VDD

VIN

VOH

Figure 2.22: Noise margin definitions

Table 2.3: TTL and CMOS family variants

Parameter/Device VIL (max) VIH (min) VOL (max) VOH (min)

CMOS
4000B 1.5 3.5 0.05 4.95
74HC 1.0 3.5 0.1 4.9
74HCT 0.8 2.0 0.1 4.9
74AC 1.5 3.5 0.1 4.9
74ACT 0.8 2.0 0.1 4.9

TTL
74LS 0.8 2.0 0.5 2.7
74AS 0.8 2.0 0.5 2.7

Electronic Systems Design 83

www.newnespress.com

requirements of the device or devices being driven. Two figures are normally quoted

for fan-in and fan-out, where:

• Fan-in is the number of logic outputs that can be connected to a logic gate

input. Standard TTL and CMOS logic outputs (providing logic levels 0 and 1)

should not be connected together. However, certain digital ICs provide

for open-collector (TTL) and open-drain (CMOS) outputs as shown in

Figure 2.23. External to the IC is a resistor connected to VCC (TTL) or

VDD (CMOS). Open-collector and open-drain outputs can be connected

together.

• Fan-out is the number of logic inputs that can be driven from a logic gate

output.

VCC
VCC

VEE

VEE

Output

R

Output

VDD
VDD

VSS

VSS

Output

R

Output

(a) TTL open
 collector output

(b) CMOS open
 drain output

Figure 2.23: Open-collector and open-drain outputs

84 Chapter 2

www.newnespress.com

TTL Logic IC Driving a CMOS Logic IC

Considering both digital logic ICs operating on the same power supply voltage,

then with a CMOS logic gate input, the current that would flow into an input

would be low and a TTL device would be able to provide the necessary current

to drive one or more CMOS logic IC inputs. However, problems will occur when

considering the voltage levels required by the different technologies (VIL, VIH, VOL,

and VOH). Table 2.3 shows several examples. Some CMOS family variant devices

(e.g., 4000B, 74HC, and 74AC series) have VIL, VIH, VOL, and VOH levels different

than TTL, whereas other family variant devices (e.g., 74HCT and 74ACT series)

have VIL, VIH, VOL, and VOH levels compatible with TTL. A common solution to

overcoming the problem for non-TTL level CMOS devices is to use an external

pull-up resistor as shown in Figure 2.24. Here, the power supply voltage is +5.0V.

A typical value would be 10 k�.

When the TTL output is a logic 1, then the pull-up resistor will pull the voltage to

approximately +5.0V, which produces a voltage high enough for the CMOS input to

receive a logic 1 input.

VSS (0 V)

VDD (+5.0 V)

10 kΩ

TTL IC CMOS IC
(4000B,
74HC,
74AC)

Figure 2.24: TTL driving a non-TTL level CMOS logic IC

Electronic Systems Design 85

www.newnespress.com

An alternative interfacing method, as shown in Figure 2.25, is to use a 74HCT

or 74ACT device as a buffer between the TTL and non-TTL level CMOS

devices.

CMOS Logic IC Driving a TTL Logic IC

When a CMOS logic IC is to drive a TTL logic IC (+5.0V power supply),
then:

• A 74HCT or 74ACT IC can be connected directly to a TTL IC.

• A 74HC, 74AC, or 4000B IC can be connected directly to a TTL IC.

Lower Power Supply Voltages

In past times, the þ5.0V DC power supply was commonly used. Now,

however, many digital ICs operate at þ3.3V, þ2.5V, or þ1.8V, with some

operating as low as þ1.0V. In this case, care is needed when using different

power supply voltages, particularly in many microprocessors, FPGAs, and

CPLDs that operate on a dual power supply (one power supply for the

core of the IC and a second for the I/O circuitry). The I/O power supply

tends to be higher than the core power supply to enable connections

to other ICs.

In some cases, an IC would operate at a power supply of þ3.3V, with the digital logic

levels created by 0V (logic 0) and þ3.3V (logic 1), but would also be capable of

accepting a higher input voltage (þ5.0V tolerant) to enable direct connections to

þ5.0V logic devices.

TTL
74HCT
74ACT

4000B
74HC
74AC

Figure 2.25: TTL to CMOS using an HCT or ACT interface IC

86 Chapter 2

www.newnespress.com

Where mixed power supply voltages are to be used in a circuit, and the ICs working at

different power supply voltage levels and signals are to be connected, this is typically

achieved by:

1. Direct connection, if the ICs allow for this capability

2. Using a pull-up resistor where a lower-voltage device is to drive a

higher-voltage device

3. By using a special level translator IC

4. By configuring the I/O pin to the required standard (if possible)

Techniques 1 to 3 are shown in Figure 2.26 and Figure 2.27 in relating þ2.5V logic

to þ3.3V logic. A similar approach would be taken for interfacing þ3.3V logic to

þ5.0V logic. Technique 4 would be identified in the particular IC data sheet.

+3.3 V
logic

+2.5 V
logic

+3.3 V
tolerant
inputs

VSS (0 V)

VSS (0 V)

+3.3 V +2.5 V
Direct

connection

+3.3 V
logic

+2.5 V
logic

+3.3 V +2.5 V

Level
translator

Figure 2.26: +3.3V to +2.5V interface

Electronic Systems Design 87

www.newnespress.com

+2.5 V
logic

+3.3 V
logic

If high-level output
from +2.5 V IC is

sufficient to drive a
logic 1 into the

+3.3 V IC

VSS (0 V)

+2.5 V +3.3 V

+2.5 V
logic

+3.3 V
logic

VSS (0 V)

+2.5 V +3.3 V

+2.5 V
logic

+3.3 V
logic

VSS (0 V)

+2.5 V +3.3 V

Direct
connection

Level
translator

Using
pull-up

R

Figure 2.27: +2.5V to +3.3V interface

88 Chapter 2

www.newnespress.com

2.14 Parallel and Serial Interfacing

2.14.1 Introduction

Interfacing the electronic system allows the electronic circuit or system to

communicate internally and externally. The communications interface allows the

transmission of either analogue signals or digital data. A system that transmits data to

and receives data from an external source is shown in Figure 2.28.

Each electronic system communicates with other systems by transmitting data via a

transmitter (Tx) subsystem and receives data via a receiver (Rx) subsystem. The medium

between the two systems is the communications channel. However, when analogue

signals or digital data are transmitted through the communications channel, noise

might be added to the signal, potentially corrupting the data. A great deal of care must

be taken to ensure that the electronic systems do not use corrupted information.

Although information can be sent or received as analogue signals or digital data,

digital data transmission is increasingly common and occurs as either parallel or serial

data transmission:

• Parallel data transmission. Multiple bits of data are transferred

simultaneously, allowing high-speed data transfer.

• Serial data transmission. One bit of data is transferred at a time (a serial

bitstream). Serial data transmission takes longer, but when the data is

transmitted on electrical wires (typically copper wires), fewer wires are

required than with the parallel data transmission. Serial data transmission also

lends itself to data transmission via optical fibers and wireless methods.

Electronic
system 1

Transmitter
(Tx)

Receiver
(Rx)

Electronic
system 2Transmitter

(Tx)

Receiver
(Rx)

Communications
channel

Noise

Figure 2.28: Data transmission and receipt

Electronic Systems Design 89

www.newnespress.com

Many systems allow several parallel and serial communications standards. The PC is a

good example. Figure 2.29 shows the rear view of a PC, with several connections

identified.

When the data are transmitted, they must be received and stored for use. Data

transmission will be either synchronous or asynchronous:

• Synchronous, in which a continuously running clock is carried along with the

data, and the data are synchronized with the clock. Both of these signals are

received by the receiver circuit, and the receiver uses both the clock and the

data inputs to capture and store the data for use.

• Asynchronous, in which only the data are transmitted. An internal clock within

the receiver is used to synchronize the receiver with the data in order to

capture and store the data for use.

The basic idea is shown in Figure 2.30.

For the synchronous data transfer, a separate clock is shown for the transmitter and

receiver. In practice, there might only be one common clock for the transmitter and

receiver.

During data transmission, errors can occur when noise is added to the signal and

when the noise is large enough to corrupt the data being transmitted. The transmitter

circuit can include the ability to add information to the data before they are

transmitted, and the receiver circuit can include the ability to identify whether the

data it has received appears to be OK or has been corrupted. A simple method for

error checking is to use parity checking, in which a bit is added and transmitted with

LAN

VDU

USB
(x2)

Modem

Parallel
port

Serial
port

VDU

External
power

Figure 2.29: Rear view of laptop identifying PC connections

90 Chapter 2

www.newnespress.com

the data. Considering a byte of data (8 bits) as an example, parity checking is of two

types:

• Odd parity coding will set the parity bit to a logic 1 if the number of logic 1s in

the byte is even, so that the total number of logic 1s is an odd number. If the

receiver receives an odd number of logic 1s, then it will identify that the byte

was transmitted correctly.

• Even parity codingwill set the parity bit to a logic 1 if the number of logic 1s in the

byte is odd, so that the total number of logic 1s is an even number. If the receiver

receives an even number of logic 1s, then it will identify that the byte was

transmitted correctly.

Parity checking is a rudimentary method, and most communications systems include

more sophisticated capabilities.

The characteristics of the channel must also be considered, the data may need to be

modulated before transmission. Modulation takes either of two forms:

• Baseband signals in digital are the 1s and 0s being generated. On a PCB and

communicating between ICs on the PCB, baseband signals are used. These

signals cover a frequency range from DC to an upper frequency value.

Electronic
system 1

Transmitter
(Tx)

Receiver
(Rx)

Electronic
system 2

Transmitter
(Tx)

Receiver
(Rx)

Clock

Data

Clock

Data

(a) Synchronous data transmission

Electronic
system 1

Transmitter
(Tx)

Receiver
(Rx)

Electronic
system 2

Transmitter
(Tx)

Receiver
(Rx)

Data

Data

(b) Asynchronous data transmission

Figure 2.30: Synchronous and asynchronous data transfer

Electronic Systems Design 91

www.newnespress.com

• Modulated signals are baseband signals that have been modulated by a carrier

signal so that the entire signal is now at some higher frequency. Modulation

allows the baseband signals to be transmitted through a particular

communications channel. When modulated signals are transmitted and

received, the electronic system must include a modulator and a demodulator.

The transmission of the signal through the communications channel can be either

one-way or two-way, so the designer must decide whether the communication is to be

simplex, half-duplex, or full-duplex:

• Simplex, in which data transmission is one-way on a single channel.

• Half-duplex, in which data transmission is two-way on a single channel. This

means that the direction of data transmission alternates, so that the system

would be able to receive or transmit, but not both at the same time.

• Full-duplex, in which data transmission is two-way on two channels. This means

that an electronic system would be able to receive or transmit at the same time.

This idea is shown in Figure 2.31.

Finally, the signal will be transmitted through the communications channel via

electrical wires, optical fibers, or using wireless methods.

• Wired, in which metal wires, typically copper, are used to transmit the

electrical signal.

• Optical fiber, in which an electrical signal is converted to an optical (light)

signal and transmitted along the optical fiber. This allows high transmission

rates and low loss, so that signals can be transmitted over long distances, and a

low bit error rate. The electrical signal is generated either by a light-emitting

diode (LED) creating noncoherent light or by a laser creating coherent light.

At the receiver end, the signal is converted back to an electrical signal using a

photodiode or phototransistor.

• Wireless, in which an electrical signal is modulated and applied to an antenna.

The more popular modulation methods are AM (amplitude modulation),

FM (frequency modulation), and PM (phase modulation). The signal is

transmitted through free space, and at the receiver, another antenna picks

up the transmitted signal, demodulates it, and restores it. It must then be

amplified before it can be used.

92 Chapter 2

www.newnespress.com

For wired communications, two example cable assemblies are shown in Figure 2.32.

The cable assembly on the left consists of a ribbon cable with IDC (insulation

displacement connector) terminations. The assembly on the right consists of a multicore

cable terminated at each end with a nine-way D-type connector (female); this type would

be used to connect an external electronic circuit to a PC via the RS-232C standard.

Electronic
system

1

Transmitter
(Tx) Electronic

system
2

Receiver
(Rx)

Communications
channel

(a) Simplex communications

(b) Half-duplex communications

Electronic
system

1

Transmitter
(Tx)

Receiver
(Rx)

Electronic
system

2

Communications
channel

(c) Full-duplex communications

Electronic
system

1

Transmitter
(Tx)

Receiver
(Rx)

Electronic
system

2Transmitter
(Tx)

Receiver
(Rx)

Communications
channel

Receiver
(Rx)

Transmitter
(Tx)

Figure 2.31: Simplex, half-duplex, and full-duplex communications

Electronic Systems Design 93

www.newnespress.com

Both optical fiber transmission and wireless use the electromagnetic spectrum in the

transmission of signals [19]. Wireless transmission occurs at the lower frequencies,

and optical communications use infrared and visible light at the higher frequencies.

Wireless transmission frequencies fall into bands within the radio spectrum, from

3Hz to 300 GHz. Table 2.4 shows the radio spectrum and the corresponding bands.

Figure 2.32: Example cable assemblies: IDC connector (left),
nine-way D-type connectors (right)

Table 2.4: Radio spectrum

Frequency Band

From To

3 300 Extremely low frequency (ELF)
300 3 kHz Voice frequency (VF)
3 kHz 30 kHz Very low frequency (VLF)
30 kHz 300 kHz Low frequency (LF)
300 kHz 3 MHz Medium frequency (MF)
3 MHz 30 MHz High frequency (HF)
30 MHz 300 MHz Very high frequency (VHF)
300 MHz 3 GHz Ultra high frequency (UHF)
3 GHz 30 GHz Super high frequency (SHF)
30 GHz 300 GHz Extremely high frequency (EHF)

94 Chapter 2

www.newnespress.com

An example of a low-frequency antenna, consisting of an inductor wound on a ferrite

core with a parallel capacitor to form a 60 kHz tuned circuit, is shown in Figure 2.33.

This antenna is secured to a PCB.

2.14.2 Parallel I/O

Parallel I/O allows groups of data bits to be transmitted simultaneously. In early

versions of the microprocessor, data was grouped into bytes (8 bits). Today,

microprocessors work with 8, 16, 32, 64, and 128 bits of data. Access to more memory

requires address buses with an increased number of bits and the required control

signals. The variety of parallel I/O standards available for use today include:

• Centronics (PC printer port)

• IEEE 488-1975 (also known as GPIB, general purpose instrument bus)

• SCSI (small computer system interface)

• IDE (integrated drive electronics)

• ATA (AT attachment)

PC Parallel Port (Centronics)

The PC parallel port (by Centronics) was until recently the port used primarily to

connect the PC [20, 21] to a printer device, as shown in Figure 2.34.Here, each device is

fitted with a 36-pin connector, and byte-wide data are sent from the PC to the printer

(the peripheral) with handshaking—i.e., both the PC and the peripheral communicate

with each other to control data transmission to be at a time suitable for both.

Figure 2.33: Example antenna (60 kHz)

Electronic Systems Design 95

www.newnespress.com

Table 2.5 identifies the cable connections for the Centronics printer port. Signals are

transmitted on a twisted-pair (i.e., two wires twisted together) with its own common

connection. Signal directions are shown from the perspective of the PC rather than

the peripheral.

Today, the parallel port connection to the printer is usually replaced by a USB

interface.

36-pin connector
PC Printer

Figure 2.34: Connecting a PC to a printer using the parallel port

Table 2.5: Centronics (printer) port signals (PC connector)

Name Pin Number Direction (PC) Meaning

Signal Common

STROBE 1 19 OUT Data strobe
D0 2 20 OUT Data bit 0 (LSB)
D1 3 21 OUT Data bit 1
D2 4 22 OUT Data bit 2
D3 5 23 OUT Data bit 3
D4 6 24 OUT Data bit 4
D5 7 25 OUT Data bit 5
D6 8 26 OUT Data bit 6
D7 9 27 OUT Data bit 7 (MSB)
ACKNLG 10 28 IN Finished with last character
BUSY 11 29 IN Not ready
PE 12 30 IN No paper
SLCT 13 – IN Pulled high
AUTO FEED XT 14 – OUT Auto LF
INIT 31 16 OUT Initialise printer
ERROR 32 – IN Can’t print
SLCT IN 36 – OUT Deselect protocol
GND – 33 – Additional ground
CHASSIS GND 17 – – Chassis ground

96 Chapter 2

www.newnespress.com

2.14.3 Serial I/O

To connect an electronic system to an external device such as a PC or

instrumentation, serial I/O is often preferred because it reduces the amount of

wiring required. This is particularly important when dealing with large data and

address buses, as when parallel I/O is used, and the IC and wiring connectors need

to have more pins. This leads to larger IC packages and the need to route a large

number of tracks on the PCB. Many digital ICs (such as memories) now provide

serial I/O rather than parallel I/O to reduce the package requirements. In the circuits

within such serial ICs, however, data serial-to-parallel and parallel-to-serial

conversion capabilities are needed. Among the serial I/O standards available for

use today are:

• RS-232C

• RS-422

• RS-423

• RS-485

• Ethernet

• USB

• I2S (inter-IC sound bus)

• I2C (inter-IC bus)

• SPI (serial peripheral interface)

• Firewire (IEEE Std 1394a-2000)

• Serial ATA

• Bluetooth (wireless)

• Wi-Fi (wireless, based on IEEE Std 802.11)

• Zigbee (wireless, IEEE Std 802.15.4).

For serial data transmission, each bit is sent one at a time. The bit rate is the number

of bits sent per second. For serial data transmission, the baud rate is the same as the

bit rate.

Electronic Systems Design 97

www.newnespress.com

RS-232C

This has been a serial I/O available on PCs until the last couple of years, when it has been

replaced by a USB. However, it is an important standard and provides an important

introduction to serial communications. Bytes of data are sent as a serial bitstream

asynchronously between terminals (such as between a PC and another PC or a modem),

as shown in Figure 2.35, first the LSB (least significant bit) then the MSB (most

significant bit). Typical baud rates for RS-232C used for data transmission on PCs are:

• 9,600 baud

• 19,200 baud

• 38,400 baud

• 115,200 baud

Serial data is transmitted and received via a circuit called a UART (universal

asynchronous receiver transmitter). One example is the CDP6402 CMOS Universal

PC PC

PC
Modem

(a) PC to PC data transmission

(b) PC to modem data transmission

Tx

Rx

Rx

Tx

Common

Figure 2.35: Uses for RS-232C

98 Chapter 2

www.newnespress.com

Asynchronous Receiver/Transmitter (UART) [22] from Harris Semiconductor. This

circuit provides a 40-pin DIP device with internal serial-to-parallel, parallel-to-serial

conversion and control logic.

RS-232C provides a means to send bytes of ASCII data between devices. ASCII is the

most widely used alphanumeric code in use and stands for American Standard Code

for Information Interchange. The ASCII code is a seven-bit code, so there are

27= 128 possible codes. The first 32 are control codes (nonprintable), and the

remaining 96 character codes are printable characters. Table 2.6 shows the ASCII

character set. This contains columns (0–F) and rows (0–7).

This panel is organized as follows: the code is presented in hexadecimal number

format with:

• row numbers representing the first digit (0–7), 3 bits

• column numbers representing the second digit (0–F), 4 bits

For example, the letter A is ASCII code 4116 (6410).

A byte of data is sent serially in the form shown in Figure 2.36. Here, when data is not

being sent, the level is a logic 1. A start bit (logic 0) indicates the start of the byte

transmission. Eight data bits (or seven data bits and a parity bit) are then sent,

beginning with the LSB (data bit 0). A logic 1 indicates a stop bit, and the signal then

remains at a logic 1 until the next start bit occurs.

Within an electronic system, the logic levels are generated by a digital IC typically

operating on a þ5.0V or þ3.3V power supply. For transmission, these voltage levels

must be increased to achieve the voltage limits set by the standard. A logic 0 is a voltage

between þ3V and þ15V (also referred to as the space), whereas a logic 1 is a voltage

between –3V and –15V (also referred to as themark). This idea is shown in Figure 2.37,

where a digital signal is shown with the voltage levels for signal transmission.

The last bit of data (data bit 7), noted as the MSB, can also be used as a parity bit. If

the MSB is used as a parity bit, then the data is reduced to 7 bits. As the data is sent

asynchronously, the receiver and transmitter must create their own internal clocks.

With the UART, this clock is set to be sixteen times that of the baud rate. Table 2.7

shows the UART clock frequencies required for different baud rates.

To translate the voltage levels generated by a digital IC with those required

for transmission, a suitable transceiver such as the MAX-232CPE [23] (3.0V

Electronic Systems Design 99

www.newnespress.com

Table 2.6: ASCII codes

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS TAB LF VT FF CR SO SI
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2 SP ! " # $ % & ’ () * + , - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [\] ˆ _
6 ` a b c d e f g h i j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

w
w
w
.n

e
w
n
e
s
p
re

s
s
.c
o
m

1
0
0

C
hapter

2

power supply version) from Maxim Integrated Products is typically used. This

accommodates an IC (in a 16-pin DIL package) with external capacitors, thereby

providing the necessary circuitry to connect devices such as FPGAs and CPLDs to

transmit and receive RS-232C level signals.

The connector for the RS-232C wiring is either a 25-pin or a 9-pin D-type connector.

Both male (plug) and female (socket) connectors are used. Figure 2.38 shows PCB

Data bit 0
(LSB)

Data bit 7
(MSB)

Start
bit

Stop
bit

8 data bits

Figure 2.36: RS-232 timing waveform (logic levels)

+15 V

+3 V

0 V

–3 V

–15 V

time

Logic 0

Logic 1

Figure 2.37: RS-232 timing waveform (voltage levels)

Table 2.7: Baud rate and UART clock frequency

Baud Rate UART Clock Frequency (Hz)

9,600 baud 153.6 k
19,200 baud 307.2 k
38,400 baud 614.4 k
115,200 baud 1.8432 M

Electronic Systems Design 101

www.newnespress.com

mount 9-pin D-type plug and socket. In the standard, two types of equipment were

originally considered, data terminal equipment (DTE) and data communication

equipment (DCE). Care must be taken when connecting equipment together to ensure

that the right connections are established.

Table 2.8 identifies the connections for the 9-way connector for data terminal

equipment. Because signals will be transmitted both ways, care must be taken to

ensure that the correct connections are established. In a minimal form, with no

handshaking needed, only the TD, RD, and SG connections are needed.

2.15 System Reset

At some point during the operation of a digital circuit or system, there will be the need

to reset the circuit into a known state. This is particularly important when the power

supply is first switched on to an electronic circuit as the state of the circuit is not then

known. Circuits typically include a reset input connection in the pins of their ICs to

Figure 2.38: Nine-way PCB mount D-socket (left) and D-plug (right)

Table 2.8: Nine-way connector pin-out (from DTE)

Name Pin Number Direction Function

DCD 1 IN Data carrier detected
RD 2 IN Received data
TD 3 OUT Transmitted data
DTR 4 OUT Data terminal ready
SG 5 — Signal ground
DSR 6 IN Data set ready
RTS 7 OUT Ready to send
CTS 8 IN Clear to send
RI 9 IN Ring indicator

102 Chapter 2

www.newnespress.com

reset internal connections (on the bistables) within the design. The reset signal will be

designed to occur (be asserted) when:

• the power supply is initially switched on

• some time during the normal circuit operation when the circuit must be reset

for normal circuit operation.

When the power supply is initially switched on, the power supply voltage at the power

supply pins of the ICs in the circuit will take a finite time to increase from 0V to the

normal operating voltage (e.g., þ3.3V). During this power supply voltage rise time,

the power supply voltage of the ICs increases to the normal operating voltage of the

power supply, which will be sufficient to operate the ICs:

• The power supply voltage is designed to have a typical value (e.g.,þ3.3V) with a

tolerance (e.g., –10%). If a tolerance of –10% is set for a nominalþ3.3V power

supply, then the power supply voltage would be in the range þ3.0 to þ3.6V.

• The ICs used in the circuit have a typical power supply voltage value (e.g.,þ3.3 V),

but with a tolerance over which the operation of the IC is guaranteed.

The tolerance of the power supply voltage must be such that all components in the

circuit will operate correctly over the normal power supply voltage range variance.

When the power supply is initially switched on, the power supply voltage will rise to a

level at which the IC will start to operate correctly (the power supply threshold voltage), as

shown in Figure 2.39. When this threshold voltage has been reached, the circuit will

operate correctly. During the device power-up, the device should be held in its reset state

(i.e., the reset input is asserted). After the threshold voltage has been reached, the reset

should be removed. The top graph of Figure 2.39 identifies the power supply voltage rise

(in time), and the bottom graph identifies the reset (/reset as it is active low here) signal

being asserted (logic 0) and removed (logic 1).

The reset signal can be generated in one of three ways:

1. by using a discrete RC (resistor-capacitor) network

2. by using a discrete power-on reset (POR) circuit

3. by using an integrated POR circuit

In a discrete RC network, the resistor and capacitor are connected in series across the

power supply. Initially the voltage across the capacitor is zero, andwhen the power supply

Electronic Systems Design 103

www.newnespress.com

is switched on, the capacitor starts to charge (an exponential rise in voltage) with a time

constant set by (R.C). This is the reset voltage and can be applied directly to the reset pin

of the IC. Although this is a simple circuit to implement, it is limited by the rise time of this

signal, particularly for high-speed logic. The input to the IC should be a Schmitt Trigger

input rather than a simple digital input buffer. Figure 2.40(a) shows an addition to this

circuit, a push-switch across the capacitor to allow for a manual (user) reset.

In a discrete POR circuit, an external IC acts to create the reset signal for the circuit.

An example arrangement with a manual reset switch input is shown in Figure 2.40(b).

The choice of which POR circuit to use, discrete or integrated, depends on the

threshold required [24]:

1. The power supply voltage has a nominal value with a tolerance.

2. The IC to be reset requires a nominal power supply voltage with a tolerance

to operate correctly.

3. The circuit is designed so that it will tolerate short power supply glitches, and

the POR does not assert a reset signal if a short power supply glitch occurs

but would not affect circuit operation.

Where multiple ICs are to be reset, the order in which the resets are to be asserted and

removed is a consideration. Additionally, the circuit may contain ICs operating on

different power supply voltages, and so multiple reset signals will be needed.

Voltage

Time

Power supply voltage

Threshold voltage

Voltage

(b) /Reset signal

/Reset voltage

(a) Power supply

Delay

Time

Figure 2.39: Power supply threshold voltage

104 Chapter 2

www.newnespress.com

2.16 System Clock

In many electronic circuits and systems, one or more clock signals are required to

control the timing of circuit operations. These clock signals are needed to generate the

required clock frequencies and to operate at the required power supply voltage levels,

and must remain stable (in the generated frequency) over variations in the power

supply voltage, over the operating temperature range, and over time.

VDD

R

C

/Reset

VSS

VSS

VDD

Push to
manually
reset the

IC

(a) Discrete RC network

(b) Discrete POR circuit

VDD

VDD

VSS

VSSVSS

VDD

/Reset/Reset

/Reset

Push to
manually
reset the

IC

POR
Digital

IC

Digital
IC

/MR

Figure 2.40: Different circuit reset methods

Electronic Systems Design 105

www.newnespress.com

A clock is generated using one of four types of circuit:

1. RC network

2. Quartz crystal

3. Through-hole-mounted oscillator modules

4. Surface-mount oscillator modules

For simple clocks, then an RC network connected to suitable circuitry within the IC is

sufficient (a simple example of thiswouldbe the 555 timer IC).However, accurate timing can

be difficult because of tolerances in the values for the resistor and the capacitor. A quartz

crystal (available in either a through-hole or surface-mount package) connected to suitable

circuitrywithin the ICprovides amore accurate clock. This two-terminal device is connected

to circuitry internal to the IC so that the crystal creates an oscillatory electrical signal.

Oscillator modules, which are complete clock signal generators, are available in either

through-hole or surface-mount packages. Figure 2.41 shows an example of a through-

hole-mounted4MHzoscillatormodule inametal case.This is inametal 14-pinDIPpackage

with four pins: two for the power supply, one for the oscillator output, and onewhichwould

either be unused (not connected) or used in some modules for a clock enable signal.

Not
connected or
enable output

VDD

VSS Output

14

8

1

7

Package top view

Figure 2.41: Four-MHz oscillator module in 14-DIP package: top
and bottom views (top) and typical pin-outs (bottom)

106 Chapter 2

www.newnespress.com

2.17 Power Supplies

Whether AC or DC, the power supply provides the necessary power to operate the

circuit. It requires an energy source and will modify the energy to provide the necessary

voltages and currents required by the circuit, as shown in Figure 2.42. This power

supply must guarantee circuit operation within a set range (a nominal value with a

tolerance), be stable over the operating temperature range, be stable over time, and

provide the necessary voltages and currents required by the electronic circuit or system.

The choice of power supply is concerned with:

• the means by which to obtain the energy input

• the required AC and DC voltage and current outputs

• the size and weight of the power supply

• whether the electronics are static (located in a single location) or portable

(mobile)

• the length of time that the power supply is required to operate before it must

be recharged or replaced

A fixed power supply that is to operate indefinitely without being recharged or

replaced will operate from either the domestic or industrial mains power supply or

from a generator (such as a wind turbine or solar panel). A portable power supply

utilizes batteries, whether disposable or rechargeable (from a fixed power supply).

In addition, voltage must be converted from AC input to DC output (using a

transformer and diode-based rectifier circuit or a switched-mode power supply), or

from DC input to AC output (using an inverter, for example, to operate mains

powered electronic equipment from a car battery).

Energy source

Voltage output
power supply

Current output
power supply

Voltage output 1

Voltage output n

Current output 1

Current output n

Figure 2.42: Power supply generating multiple voltage and current power supplies

Electronic Systems Design 107

www.newnespress.com

Figure 2.43 shows the example of a mobile phone (specifically, the NEC e228). This

is a third generation (3G) mobile phone for use with the 3G mobile phone standards

and technology. Such devices provide for a wide range of services for individuals to

effectively communicate with each other using voice, text and video

communications means. The left view shows the front of the phone (the user

interface). Because this is a portable device, the phone will operate on a rechargeable

battery (3.7 V DC and 1,100 mAh rated lithium-ion) with a charge lifetime in hours.

The battery location is shown in the right view, housed in the rear of the mobile

phone with the back removed.

The battery is recharged using a battery charger that operates from a domestic

electricity connection. A battery consists of one or more electrochemical cells that

converts chemical energy to electrical energy. Batteries will be classed as either

disposable or rechargeable, where:

1. Disposable batteries transform chemical energy into electrical energy and

when the energy has been taken from the battery it cannot be restored.

These are ‘‘use once’’ batteries and are carefully disposed of (in accordance

with the required legislation) when the battery can no longer provide

electrical energy. A range of battery types is available and the type of battery

would be chosen for the required application. Battery types include alkaline

and silver-oxide.

Battery

Battery charger connection
(on side of phone casing)

Figure 2.43: Mobile phone (portable electronics using a battery power supply)
Images courtesy of NEC, � NEC 2001–2004, no longer in stock

108 Chapter 2

www.newnespress.com

2. Rechargeable batteries also transform chemical energy into electrical

energy, but the energy can be restored by the supply of electrical energy to

the battery. These batteries can be recharged and so can be used multiple

times. A range of battery types is available and the type of battery would

be chosen for the required application. Battery types include nickel-

cadmium (NiCd), nickel-metal hydride (NiMH) and Lithium-ion.

2.18 Power Management

When an electronic circuit or system is operating, it will consume power from either

a fixed or portable power supply. The power consumption for some circuits can be

large, so any reduction in the power consumption of the circuit is beneficial:

• It will consume less power and so be cheaper to operate.

• It will be suitable for portable, battery-operated systems required to operate

for long durations between charges.

• It will require less heat removal (some ICs such as the microprocessor will

generate heat, which must be removed so the microprocessor can operate

without failure), and so the heat removal system would be smaller and

cheaper.

• The power supply would be smaller, lighter, and cheaper.

Power consumption can be considered by looking at all stages in the creation and use

of the design, in particular by considering:

1. Design architecture. Design circuits using circuit architectures that will

consume less power.

2. Fabrication process. Within an IC the circuits consist of transistors, resistors, and

capacitors. Most ICs are silicon based, and the circuits are bipolar and MOS

transistors. CMOS is suited for low-power, low-voltage circuits, and static

CMOS circuits provide low-power consumption when the circuit activity is low.

3. Reduced power supply voltage. Using electronic components that can operate

at low power.

4. Minimized circuit activity, keeping signal logic transitions from 0 to 1 and

1 to 0. In static CMOS logic gates, current flows when nodes in a digital logic

Electronic Systems Design 109

www.newnespress.com

design change their logic levels, which happens when the transistor switches

move from closed to open and open to closed positions. If this activity is

reduced, then less current would be required to flow from the power supply.

5. Power management features. Some ICs provide the ability to shut down parts of

the circuit when they are not used. (For example, RF transmitters consume

considerable power when the RF circuitry is active, but this circuitry might only

be required to be operational for short periods of time.) Additionally, some

microprocessors allow reduced clock frequency within the microprocessor itself

when the required activity of the microprocessor is low.

2.19 Printed Circuit Boards and Multichip Modules

An electronic system consists of a number of subsystems and components that are

connected together to form the required overall system. In many cases, the main

functions of the system are created using integrated circuits mounted onto a PCB.

There are four package levels between a circuit die (within a package) and the PCB [25]:

1. Die level—Bare die (predominantly based on silicon).

2. Single IC level—Packaged silicon die (considering a single packaged die).

3. Intermediate level—Silicon dies (die level) and/or packaged dies (single IC level)

are mounted onto a suitable substrate that may ormay not be further packaged.

4. PCB level—Printed circuit board level.

Combining these four levels creates four types of packaged electronics:

1. Type 1—Packaged silicon die mounted onto a PCB.

2. Type 2—Packaged silicon die mounted onto an intermediate substrate that is

then mounted onto a PCB.

3. Type 3—A bare silicon die mounted onto an intermediate substrate that is

then mounted onto a PCB.

4. Type 4—A bare die mounted directly onto a PCB.

Many semiconductor devices contain a circuit fabricated on a single die (as in the

single IC level). However, sometimes multiple dies are housed within the package,

110 Chapter 2

www.newnespress.com

such as a device that contains a sensor (e.g., accelerometer) along with sensor signal

conditioning circuitry and a communications interface. For either technical or cost

reasons, the sensor and circuitry cannot be fabricated on a single die. Where multiple

dies will be housed within the package, this device is referred to as a multichip module

(MCM, originally referred to as a hybrid circuit). The MCM consists of two or more

integrated circuits and passive components on a common circuit base (substrate), and

interconnected by conductors fabricated within the substrate. The ICs may be either

packaged dies or bare dies (an unpackaged known good die, KGD).

The MCM was developed to address a number of issues relating to the need to reduce

the size of increasingly complex electronic circuits and to the degradation of signals

passing through the packaging and interconnect on a PCB. The MCM can provide

advantages in certain electronic applications over a conventional IC on a PCB

implementation such as:

• increased system operating speed

• reduced overall physical size

• ability to handle ICs with a large number of I/Os

• increased number of interconnections in a given area (higher levels of

interconnect density)

• reduced number of external connections for a given functionality (as the

majority of the interconnect is within the MCM itself)

In addition, an MCM may contain dies produced with different fabrication processes

within a single packaged solution (e.g., mixing low-power CMOS with high-power

bipolar technologies). There are a number of types of MCMs that can be realized:

• MCM-D—MCMs whose interconnections are formed by thin film deposition

of metals on deposited dielectrics. The dielectrics may be polymers or

inorganic dielectrics.

• MCM-L—MCMs using advanced forms of PCB technologies, forming copper

conductors on laminate-based dielectrics.

• MCM-C—MCMs constructed on co-fired ceramic substrates using thick film

(screen printing) technologies to form conductor patterns. The term co-fired relates

to the fact that the ceramic and conductors are heated in the oven at the same time.

Electronic Systems Design 111

www.newnespress.com

• MCM-D/C—MCMs using a deposited dielectric on co-fired ceramic.

• MCM-Si—MCMs using a silicon-based substrate similar to conventional

silicon ICs.

The MCM typically uses a similar package as that used for the integrated circuit, so

it is not obvious that the package contains multiple dies and sensors unless the

structure and operation of the packaged device is known. Figure 2.44 shows the

cross-section of a MCM in which the dies are mounted onto a substrate and

electrically connected to the substrate using bond wires. This MCM is mounted

directly to the PCB. The substrate contains additional interconnect in a similar way

to the PCB.

2.20 System on a Chip and System in a Package

An extension to the basic integrated circuit is the system on a chip (SoC) [26]. This is

essentially a complex (mainly digital) IC that can be considered as a complete

electronic system in a single IC. Modern communications ICs are examples of SoC

design. The need to develop such complex ICs has been in response to the end-user

requirements, who need:

• increased device functionality (more circuitry per mm2 of silicon area)

• higher operating frequencies

• reduced physical size (more circuitry in a smaller package)

• lower cost

Substrate

Printed Circuit Board

MCM PackageBare Die

Bond Wire
Package Pin

Figure 2.44: Example MCM structure

112 Chapter 2

www.newnespress.com

The ability to integrate complex digital circuits and systems on a single circuit die has led

to incorporating the functionality that was once manufactured as a discrete chip-set

within the single IC itself. The SoC includes a number of interconnected circuits:

• one or more processor cores

• one or more embedded memory macros (RAM and ROM)

• dedicated graphics hardware

• dedicated arithmetic hardware (e.g., adder, multiplier) for high-speed

arithmetic

• bus control circuitry for data, addresses, and control signals between the main

circuit blocks

• serial and parallel I/Os

• glue logic—miscellaneous logic for subsystem interfacing purposes

• data converters, ADCs and DACs

• Phase-locked loop (PLL)

An extension to the multichip module is the system in a package (SiP) [27]. The ITRS

[28] definition for the SiP is ‘‘any combination of semiconductors, passives, and

interconnects integrated into a single package.’’ SiP designs extend the concept of the

MCM from devices placed horizontally side-by-side and bonded to a substrate to

include the ability to vertically stack dies with bonding to the substrate.

2.21 Mechatronic Systems

Mechatronics [3, 29, 30]—mechanical and electronics—is the combined design of

products and processes containing mechanical, electrical or electronic software, and

information technology parts. Systems that contain these parts are referred to as

mechatronic systems. The concept is shown in the Venn diagram in Figure 2.45. The

computer science set encompasses software engineering and information technology.

The union of the three sets is the mechatronic domain.

Mechatronics provides the focus required to bring together different disciplines and

create mixed-technology design. Traditionally, these have been housed in separate

departments within an organization, which has blocked effective communications in

Electronic Systems Design 113

www.newnespress.com

the design process, with each discipline providing its own set of terminology and

competition instead of collaboration. The combined approach naturally removes

barriers and allows effective communications, thereby leading to an improved design

process and a higher-quality end product.

Example application areas of mechatronics include automotive, aerospace, space,

biomedical, and industrial control. Consider the motor control example shown in

Figure 2.46. Here, a DC electric motor is to be controlled by a CPLD, the heart of the

electronic controller, which is configured to provide the closed loop control. A

number of subsystems are required to implement the overall system design, with each

subsystem drawing on the expertise of one or more engineering disciplines, including:

• Electronic engineer to design the CPLD configuration (digital logic), power

electronics, and sensor interface electronics

• Communications engineer to design the communications interface (wired,

optical fiber, or wireless)

• Software engineer to design the software application to run on the PC required

to interface to the controller

• Control engineer to design the underlying closed-loop control algorithm to

control the electric motor to given design requirements

• Mechanical engineer to design the mechanical load

Mechanical
engineering

Computer
Science

Electronic
engineering

Mechatronics

Figure 2.45: Mechatronics, combining the disciplines

114 Chapter 2

www.newnespress.com

2.22 Intellectual Property

Intellectual property (IP) allows people to own things that they have created, similar

to owning a physical item, so they can control their use and reap the rewards [31].

There are five types of IP:

• Copyright protects material such as literature, art, music, sound recordings,

films, and broadcasts. It can also cover software. Copyright allows the right

for someone to reproduce their own original work.

• Design rights protect the visual (aesthetic) appearance of a product. Design

rights may be unregistered or registered.

Opto-
isolator

CPLD (digital
controller)

Communications
interface

Power
electronics

Sensor
interface

electronics

Mechanical
load

Sensor

DC motor

Host PC

Figure 2.46: CPLD control of a motor in a mechatronic system

Electronic Systems Design 115

www.newnespress.com

• Patents protect the technical and functional aspects of both products and

processes. The patent is a monopoly granted by a government to the first

inventor of a new invention for a fixed period of time. In return for this

monopoly, the inventor is required to make a full disclosure of the invention.

This information is available to anyone who might wish to view the invention

details. To be patentable, the invention must be new, be capable of industrial

application, and involve an inventive step.

• Trademarks protect signs that distinguish a company or goods of one

trader from other traders. Trademarks can be either unregistered (TM) or

registered (�).

• Know-how, also known as trade secrets, refers to secret (or proprietary)

information. It is not protected by any of the above means, but only by being

kept secret.

Table 2.9 identifies a number of the existing patent offices and their websites. These

offices provide further information on how to apply for patents and also search

engines for finding existing patents.

2.23 CE and FCC Markings

For electronic circuits and systems to be available for commercial sale, they must meet

the requirements of specific legislation. If electronic products meet the requirements,

they will have a verifying marking on the outside, usually either CE or FCC.

Figure 2.47 shows part of an electronic product (in this case a power supply) with

both CE and FCC markings.

The CE marking is a declaration by a product manufacturer that the product meets all

of the appropriate provisions of the relevant legislation required to implement specific

Table 2.9: Example patent offices

Patent Office URL

European Patent Office http://www.epo.org/
Irish Patents Office http://www.patentsoffice.ie/
United Kingdom Intellectual Property Office http://www.ipo.gov.uk/
United States Patent and Trademark Office http://www.uspto.gov/

116 Chapter 2

www.newnespress.com

European Directives [32, 33]. CE is not an abbreviation for any specific words, nor is

it meant to be a mark of product quality.

The FCC marking is for commercial electronic devices for sale in the United States

that are unintentional radio-frequency radiators intended for operation without an

individual broadcast license [34]. It covers devices that use clocks or oscillators,

operate above a frequency of 9 kHz, and use digital techniques. The specific

requirements are set down in the FCC Rules and Regulations, Title 47 CFR Part 15

Subpart B. Most processor-based systems, for example, fall into this category. This is

regulated by the Federal Communications Commission (FCC) and categorizes the

parts into one of two classes:

• Class A: A device intended for an industrial or business environment and not

intended for use in a home or a residential area

• Class B: A device intended for use in a home or a residential area

Area for the
product
description
and marking
on external
surface of
product

Figure 2.47: Electronic product with CE and FCC marking

Electronic Systems Design 117

www.newnespress.com

References

[1] Oxford Dictionary of English, Second Edition, Revised, eds. C. Soanes and

A. Stevenson, Oxford University Press, 2005, ISBN 0-19-861057-2.

[2] MacMillen, D., et al. ‘‘An Industrial View of Electronic Design Automation,’’

IEEE Transactions on Computer Aided Design of Integrated Circuits and

Systems, Vol. 19, No. 12, December 2000, pp. 1428–1448.

[3] Bradley, D., Seward, D., Dawson, D., and Burge, S., Mechatronics and

the Design of Intelligent Machines and Systems, Stanley Thornes, 2000,

ISBN 0-7487-5443-1.

[4] ‘‘Flowcharting With the ANSI Standard: A Tutorial,’’ ACM Computing

Surveys (CSUR), Vol. 2, Issue 2, June 1970, pp. 119–146.

[5] Gajski, D. D., and Ramachandran, L., ‘‘Introduction to high-level synthesis,’’

IEEE Design & Test of Computers, Vol. 11, Issue 4, Winter 1994, pp. 44–54.

[6] Gajski, D. D., and Kuhn, R. H., ‘‘New VLSI Tools,’’ Computer, Vol. 16,

Issue 12, December 1983, pp. 11–14.

[7] Hemani, A., ‘‘Charting the EDA roadmap,’’ IEEE Circuits and Devices

Magazine, Vol. 20, Issue 6, November–December 2004, pp. 5–10.

[8] Wolf,W.H., ‘‘Hardware-Software co-design of embedded systems,’’Proceedings

of the IEEE, Vol. 82, Issue 7, July 1994, pp. 967–989.

[9] Balarin, F., et al.Hardware-software Co-design of Embedded Systems: The Polis

Approach, Kluwer Academic Publishers, 1997, ISBN 079239936.

[10] Gajski, D. D., and Vahid, F., ‘‘Specification and design of embedded hardware-

software systems,’’ IEEE Design & Test of Computers, Vol. 12, Issue 1, Spring

1995, pp. 53–67.

[11] Kropf, T., Introduction to Formal Hardware Verification, Springer, 1999,

ISBN 3-540-65445-3.

[12] Marculescu, R., and Eles, P., ‘‘Guest Editors’ Introduction: Designing Real-

Time Embedded Multimedia Systems,’’ IEEE Design & Test of Computers,

September–October 2004, pp. 354–356.

[13] Edwards, S. A., ‘‘The Challenges of Synthesizing Hardware from C-Like Lan-

guages,’’ IEEE Design & Test of Computers, September–October 2006,

pp. 375–386.

[14] Grant, M., Bailey, B., and Piziali, A., ESL Design and Verification: A Prescrip-

tion for Electronic System Level Methodology, Morgan Kaufmann Publishers

Inc., 2007, ISBN 0123735513.

118 Chapter 2

www.newnespress.com

[15] Densmore, D., et al. ‘‘A Platform-Based Taxonomy for ESL Design,’’ IEEE

Design & Test of Computers, September–October 2006, pp. 359–374.

[16] Bennett, S., Skelton, J., and Lunn, K., UML, McGraw-Hill, 2001,

ISBN 0-07-709673-8.

[17] Mancini, R., ‘‘How to read a semiconductor datasheet,’’ EDN, April 14, 2005,

pp. 85–90, http://www.edn.com

[18] Tocci, R. J., Widmer, N. S., and Moss, G. L. K., Digital Systems, Ninth

Edition, Pearson Education International, USA, 2004, ISBN 0-13-121931-6.

[19] Sears, F., Zemansky, M., and Young, H., University Physics, Seventh Edition,

Addison-Wesley, 1987, ISBN 0-201-06694-7.

[20] Mueller, S., Upgrading and Repairing PCs, Sixteenth Edition, Que Publishing,

2005, ISBN 0-7897-3210-6.

[21] Horowitz, P., and Hill, W., The Art of Electronics, Second Edition, Cambridge

University Press, 1989, ISBN 0-521-37095-7.

[22] Harris Semiconductor, ‘‘CDP6402, CDP6402C CMOS Universal Asynchro-

nous Receiver/Transmitter (UART),’’ product datasheet, March 1997.

[23] Maxim Integrated Products, ‘‘MAX232-CPE RS-232 Transceiver,’’ product

datasheet, 2000.

[24] Maxim Integrated Products, ‘‘Power-on Reset and Related Supervisory Func-

tions,’’ application note 3227, May 11, 2004.

[25] Doane, D. A., and Franzon, P. D., Multichip Module Technologies and Alter-

natives, The Basics, Van Nostrand Reinhold, New York, 1993, ISBN 0-442-

01236-5.

[26] Rajsuman, R., System-on-a-Chip Design and Test, Artech House Publishers,

USA, 2000, ISBN 1-58053-107-5.

[27] Rickett, P., ‘‘Cell Phone Integration: SiP, SoC and PoP,’’ IEEE Design & Test of

Computers, May–June 2006, pp. 188–195.

[28] International Technology Roadmap for Semiconductors (ITRS), 2003 Edition,

‘‘Assembly and Packaging.’’

[29] Bolton, W., Mechatronics: Electronic Control Systems in Mechanical Engineer-

ing, Second Edition, Longman, 1999, ISBN 0582357055.

[30] Walters, R. M., Bradley, D. A., and Dorey, A. P., ‘‘The High Level Design of

Electronic Systems for Mechatronic Applications,’’ IEE Colloquium on Struc-

tured Methods for Hardware Systems Design, 1994, pp. 1/1–1/4.

[31] Wilson, C., Intellectual Property Law, Second Edition, Sweet & Maxwell, 2005,

ISBN 0-421-89150-5.

Electronic Systems Design 119

www.newnespress.com

[32] Department for Trade and Industry (United Kingdom), http://www.dti.gov.

uk/innovation/strd/cemark/page11646.html

[33] European Commission, Guide to the Implementation of Directives Based on New

Approach and Global Approach, http://ec.europa.eu/enterprise/newapproach/

legislation/guide/

[34] Federal Communications Commission (United States of America), http://

www.fcc.gov/

120 Chapter 2

www.newnespress.com

Student Exercises

1.1 Draw a flowchart for the following processes:

a. Changing a broken light bulb in a home

b. Changing the tire of a car

c. Driving correctly through a crossroad with a set of traffic lights

d. Making a cup of tea

1.2 Consider the following scenario:

A user of an electronic system enters three different integer numbers from a

keypad (possible numbers are 0 to 9). The electronic system determines which

number is the highest in value and displays this on a two-line LCD display.

Draw a flowchart for the operation of this electronic system function.

Write a design specification for this electronic system.

1.3 Consider the following scenario:

A software program running on a PC is to open a text file and read the contents

of the file character by character until the end of the file is reached. If the

character is upper case (A–Z), then it is displayed on the computer VDU.

Draw a flowchart for the operation of this electronic system function.

Write a design specification for this software program.

1.4 Modify the operation of the software program in Exercise 1.3 so that it now

also writes the uppercase character (A–Z) to a second text file.

Draw a flowchart for the operation of this electronic system function.

Write a design specification for this software program.

1.5 Identify the types of batteries available for use. For each type of battery,

identify its output voltage level and its ampere-hour rating. How does

battery operation vary with temperature?

1.6 Identify the principle of operation of the switched-mode power supply.

Electronic Systems Design 121

www.newnespress.com

This page intentionally left blank

CHA P T E R 3

PCB Design

3.1 Introduction

Within an electronic system, the printed circuit board (PCB) fulfils an essential role in

which to mount the main electronic components, whether by soldering or by the use

of fixing aids such as screws, and the means by which the electronic components are

electrically connected to form the required electrical circuit, using metal tracks

patterned onto the PCB and solder joints.

Figure 3.1 shows a 3-D graphical representation of an example PCB with models for

the components placed on the PCB in their intended positions. A number of PCB

design tools (for example, the AltiumTM Protel PCB design software) provide for a

3-D viewing capability that enables the designer to view the PCB as it would appear in

the final fabricated PCB with components inserted prior to PCB fabrication. The

main base (commonly referred to as the substrate) is the insulating material, and

tracks are patterned into it. Here, the electronic components are mounted to the top

of the board, although components may also be mounted to both the top and bottom.

In this example, the board is rectangular and 1.6mm thick; actually this PCBwas designed

to be Eurocard size (160 mm� 100 mm [6.300 � 3.9400]). However, the actual shape of the

PCB can be decided by the designer (restricted only by the manufacturing capabilities and

cost to manufacture) to fit into the appropriate housing requirement for the electronics.

To develop a working PCB that operates according to the required functionality,

three key steps must be successfully completed:

• Design. First develop a suitable design specification for the required circuit [1],

then develop the circuit schematic (the components to use and interconnect

www.newnespress.com

between the components) to meet the initial design specification, and finally

develop the PCB layout (the actual representation of the design that will be

manufactured). The designer will work with different design representations

(in which to view the design and understand the design functionality) to arrive

at a solution that can work.

• Manufacture. The manufacture, or fabrication, of the printed circuit board

itself must adhere to the design details. The two main steps are manufacturing

the PCB base (insulating base with metal interconnect), and electrically and

mechanically connecting the electronic components to the PCB base.

Connecting the components to the PCB base is commonly referred to as

populating the board.

• Test. The purpose of testing the design and manufactured PCB is to ascertain

whether or not the design is working [2, 3]. Testing is undertaken at a number

of points during the design and manufacture. Testing includes both simulation

testing of a model of the PCB design prior to manufacture to determine the

functional correctness of the design and physical testing of the manufactured

PCB to take electrical measurements to determine the functional correctness

of the manufactured design.

PCB design can take a number of different approaches, which initially arose from the

lack of a suitable standard adopted by all PCB designers. More recently, there has

been a move to standardize PCB design approaches and terminology used by the

design community, in particular the activities of the IPC Designers Council. In this

text, the descriptions presented in the next section are used to identify the approaches

and terminology commonly used.

Figure 3.1: Graphical representation of an example PCB (top view)

124 Chapter 3

www.newnespress.com

3.2 What Is a PCB?

3.2.1 Definition

A printed circuit board (PCB) is an electrical component [4, 5] made up of one or

more layers of electrical conductors that are separated by insulating material. Other

electrical components are secured to the top and bottom of the PCB to create a

complete electrical circuit. An example PCB with components soldered to the top

is shown in Figure 3.2.

Here, five connectors are used to connect the board to the remainder of the electronic

system (the board here is only a small part of a larger electronic system). Four D-type

connectors are placed along the bottom edge of the PCB and a single IDC (insulation

displacement connector) is placed on the left edge of the board. Along the right edge

of the board are small terminals to connect test equipment to electrical signals

generated on the board for test and evaluation purposes. The main circuit is in the

center the board, with three integrated circuit (IC) sockets (the ICs themselves are not

yet placed in the sockets) [6], seven light-emitting diodes (LEDs), fifteen capacitors,

seven resistors, and one diode. The patterned metal tracks can be seen as narrow lines

on the top of the board. The thickness of the board is 1.6 mm, and the thickness of the

copper tracks is 35 mm (0.035 mm).

Figure 3.2: Manufactured PCB (top)

PCB Design 125

www.newnespress.com

This circuit will be discussed in further detail in Section 3.5 (case study design), but

four key things can be immediately noted from this board:

1. All components are through-hole mounted; that is, they are placed on the top

of the board, their electrical connections (legs) pushed through holes in the

PCB, and then soldered from the bottom of the board. The bottom of this

board is shown in Figure 3.3. The patterned metal tracks can be seen as

narrow lines on the bottom of the board. There are two thicknesses of track:

the thin tracks are used for signals requiring little current flow, and the

thicker tracks are used for the component power supply (positive and

negative) that requires a greater current flow.

2. The tracks on the bottom of the board are connected to the top of the board

through metal-plated holes (vias) drilled into the base insulation.

3. The color of the board is green in appearance. This results from the solder mask

material covering the entire board. The base insulator is made of FR-4 material,

which is typically yellow in color.

4. This particular board does not havemany components, and they are not densely

packed; that is, the few components on the board are not placed close to eachother.

This eases physical access to the components for probingwith test equipment.

Figure 3.3: Manufactured PCB (bottom)

126 Chapter 3

www.newnespress.com

In some texts, the PCB is referred to as a PWB (printed wiring board) [7], however in

this text, the term PCB will be used throughout.

3.2.2 Structure of the PCB

Overview

A PCB consists of an electrically insulating base onto which conducting metal tracks

are patterned to form electrical connections for electronic components mounted to the

top, and sometimes the bottom, of the insulating based. The PCB has electrical,

mechanical, and thermal properties that must be considered when creating a design

for a particular application.

The insulating material commonly used is FR-4 (flame retardant with a dielectric

constant of approximately 4), also referred to as the dielectric. FR-4 is usually preferred

over cheaper alternatives such as synthetic resin bonded paper (SRBP) as it can operate

at higher electrical frequencies (important for high frequency applications), is

mechanically stronger, absorbs less moisture (any moisture from the surrounding

ambient conditions), and is highly flame resistant. However, note that the choice of

material for the PCB will depend on the final application requirements and cost.

Simple Single-Sided PCB

The simplest type of PCB consists of a square or rectangle of insulating material with

patterned metal tracks on one side only. The metal is usually copper. This is suitable

for the simplest of circuits but cannot hold a larger number of components because all

of the tracks cannot be physically routed on one side of the board. The electronic

components are placed on the opposite side of the board, and holes (called vias)

drilled through the board allow for the ends of the electronic component legs to be

located on the same side of the board as the metal tracks.

When the leg of the component passes through the board, the component is referred to

as a through-hole component. Where the legs are to be in contact with the tracks, the

tracks are shaped to form pads that are normally larger than the tracks and allow the

component leg to be soldered to a suitably large amount of metal track material.

Figure 3.4 illustrates the placement and soldering of a component. Traditional solder is

an alloy of tin and lead (typically 60–40), which melts at a temperature of about 200�C.
(Coating a surface with solder is called tinning because of the tin content of solder.)

PCB Design 127

www.newnespress.com

However, as lead is poisonous, the solder in use today does not contain lead, and

alternative alloys are used. The solder used for electronic circuit manufacture also

contains tiny cores of flux. The flux cleans the metal surfaces as the solder melts.

Without the flux, most solder joints would probably fail because the metals quickly

oxidize, and the solder itself will not flow properly onto a dirty, oxidized, metal surface.

Two-Sided PCB

A more sophisticated and more common PCB has metal tracks on both sides of the

board. This allows twice the area to pattern the tracks, and the electrical connections

formed by the tracks can move between the top and bottom of the board through

holes (vias) drilled in the board. Vias are of two types, plated through-hole and

nonplated through-hole. A nonplated through-hole via is simply the hole that was

drilled. To make an electrical connection through the hole, a piece of metal wire is

soldered top and bottom. The plated through-hole via has a metal plating connecting

the top and bottom track pads formed during the PCB base manufacture (Figure 3.5).

Insulating base

Metal track

Track pad areaTrack pad area

Component
leg

Solder joint

Electronic component
with 2 legs

Figure 3.4: Single-sided PCB

Nonplated
through-hole via

Nonplated through-hole
via with soldered wire to

form electrical connection

Plated
through-hole

Insulating base
Metal track

Figure 3.5: Through-hole vias

128 Chapter 3

www.newnespress.com

PCB Pads

The shapes of the pads are typically round, oval, square, rectangular, or octagonal,

shown in three different sizes in Figure 3.6. The round center of each pad is sized to

the hole that is to be drilled to fit the component leg; different components require

legs of different sizes, which should be specified on the data sheet for the component.

The outside part of the pad is the metal (track material) to which the solder adheres.

The different shapes signify different pins. For example, in Figure 3.7, a 14-pin DIP

(dual in-line package) IC pad placement is shown. The number 1 pin is shown on the

Round

Square

Octagonal

Oval

RectangularPad metal area

Track

Hole drilled through
board insulator

Figure 3.6: Pad shapes and sizes

Pin 8

Pin 14 Pin 1

Pin

1

2

3

4

5

6

7

14

13

12

11

10

9

8 Pin 1

Figure 3.7: 14-pin DIP pad placement (through-hole component)
and image of DIP package

PCB Design 129

www.newnespress.com

top left of the image and is signified by a rectangular shape. The other 13-pin pads are

oval in shape. Here, the pad metal is placed on both sides of the board (top and

bottom). For a through-hole component, the pad need only be on the bottom side

of the board where the leg of the component is to be soldered to the pad. However, if

the pad is placed on both sides of the board, and the via is a plated through-hole via,

then tracks can connect to the bottom and top sides of the pad. This will provide a

benefit for track routing in that both the bottom and top of the board can be used for

routing the required power and signal tracks.

Tracks

The metal tracks connecting the pads and hence the components are for two types

of electrical use:

1. Signal provides the necessary electrical connections for signals (voltage and

current) to flow between components. Unless the signals require high current

levels or the track carrying the signal is very low resistance, the signal track widths

are normally small to allow many signal tracks to be patterned on the PCB.

2. Power provides the required voltage and current to the components. In

general, they are wider than the signal tracks to provide low-resistance paths.

A track will have a certain resistance (due to the resistivity of the metal and

the size of the metal), and when currents flow in the track, voltage will

drop. Care must be taken so that this does not interfere with or degrade

the operation of the circuit.

Components on Two Sides

When a two-sided board is used, tracks can be created on the top and bottom of

the board. Components are usually mounted only on the top side of the board, but

they can be mounted on both top and bottom, as shown in Figure 3.8.

Through-Hole versus Surface Mount

The earliest components, and those still in many everyday electronic circuits, are

through-hole components, as previously discussed. However, the space requirements

for the legs and the need to fit the legs through the PCB itself for soldering has created

the need for considerable surface area and physically large PCBs. The lengths of the

130 Chapter 3

www.newnespress.com

leads also add parasitic circuit elements (resistance, capacitance, and inductance) that

can seriously affect high-frequency performance. An alternative to through-hole

components are surface mount components. (The technology associated with surface

mount components is generically referred to as surface mount technology, SMT.)

Rather than having legs that are pushed through the board, the connections for

soldering the component to the PCB pads are on the same side of the PCB as the

component itself (Figure 3.9), allowing physically smaller components that can be

mounted onto smaller PCBs, with superior high-frequency performance when

compared to a through-hole equivalent.

Electronic component
with 2 legs on top side

Insulating base

Metal track

Track
leg

Solder joint

Electronic component
with 2 legs on bottom side

Figure 3.8: Two-sided board with components on top and bottom

Figure 3.9: Surface mount component (eight-pin surface mount MSOP,
mini-small outline package)

PCB Design 131

www.newnespress.com

Multilayer PCBs

Some fabrication facilities can manufacture PCBs with more than two layers of metal

interconnect, and typically up to six layers are possible. This can dramatically increase

the ability to route a large number of tracks, typically for applications such as

computer motherboards. Where three or more layers are used, the vias will be one of

three types: through-hole, blind, or buried via. Figure 3.10 illustrates this idea. The

through-hole via will extend through the board from top to bottom. A blind via will

extend only from a surface (top or bottom) into the board. A buried via will be buried

within the structure of the PCB.

Ground and Power Planes

Ametal layer within the PCB structure can be used as a ground or a power plane. These

are large areas of metal that can span all, or nearly all, of a metal layer to provide a

large area for current to flow, accommodating the power supply connections (positive

and negative) and the common connection (ground for both analogue and digital

circuitry). This creates a low-resistance path for the current and allows for substantially

more current than would be possible in a thin track. One or more of the metal layers

can be used for a power or ground plane. When one layer is used for a single power or

ground plane, this is referred to as a single plane. However, a single layer can be used for

multiple power or ground planes, where the metal is separated into different areas,

one for each connection; this is referred to as a split plane.

Protective Coating

A protective coating is normally applied to the surface of the PCB to prevent damage

from the environment in which it will be used. This protective coating can be applied

Top Metal
Insulation
Internal Metal 1
Insulation
Internal Metal 2
Insulation
Bottom Metal

Through-hole via Blind via Buried via

Figure 3.10: Via types in a four-layer board

132 Chapter 3

www.newnespress.com

after manufacture and either before or after the electronic components have been

soldered on. The protective coating protects in several different ways:

• The copper commonly used for the tracks will be corroded by exposure to

oxygen in the air, and the protective coating (a passivation layer) puts a barrier

between the oxygen and the metal):

s If the copper must be accessible, either for soldering (on to pads) or

for electrical contact (such as edge connectors off the PCB), then the

copper is plated with another metal such as tin or nickel. This additional

metal forms a passivation layer that protects the copper from oxidation.

s Where the copper need not be accessible, then an electrically insulating

protective coating is applied over the metal. This has the additional

advantage of preventing dirt and moisture from reducing the insulation

resistance between the tracks.

• The insulating material used in the substrate (e.g., FR-4) will readily absorb

moisture from the air, thereby reducing the electrical properties of the

substrate. The protective coating puts a barrier between the substrate and the

moisture in the air.

• The protective coating also controls the flow of solder during the soldering

process. This prevents solder from jumping across tracks and causing

short circuits.

When a protective coating is applied prior to soldering the components onto the

board, it is usually referred to as a solder mask. When applied after the components

have been soldered, it is usually referred to as a conformal coating.

Silk Screen

Screen printing techniques using a silk screen can be used to apply solder paste to the

PCB for the attachment of the electronic components when board assembly is

automated. Here, the solder paste is applied only to the places on the PCB on which

solder is required. Additionally, a silk screen is used to create legends, text or shapes,

on top of the protective coating (sometimes referred to as a top overlay). Figure 3.11

shows the legends for four capacitors and one IC created in white ink on the top layer

of a PCB.

PCB Design 133

www.newnespress.com

Track Thickness

The thickness of the copper track is normally specified in ounces per square foot,

which refers to the weight if the copper were laid out flat in one square foot of area.

Most common is 1 oz copper, although increased metal thicknesses such as 0.5 oz,

2 oz, and 4 oz are possible. Table 3.1 identifies the resulting thicknesses of the

common specified values.

Thicker copper PCBs are usually for high-current circuits. Calculations for track

width based on a particular track thickness are usually made by considering the

maximum current flow and maximum rise in temperature of the board. The IPC

provides a detailed method to calculate the required track width for given circuit

requirements [8].

Track Resistance

Metal tracks have electrical resistance, determined by both the metal resistivity (r) [9]
and the track dimensions. Example resistivity values for different metals and alloys

are identified in Table 3.2. The units for resistivity are �.m (ohm.meter).

Figure 3.11: Silk screen, top overlay

Table 3.1: Common copper track thickness values

oz/ft2 Thickness

mm inches mils

0.5 17.5 0.0007 0.7
1 35 0.0014 1.4
2 70 0.0028 2.8
3 105 0.0042 4.2

134 Chapter 3

www.newnespress.com

When a track is formed on the PCB insulating substrate, it will have a cross-sectional

area and length (Figure 3.12). The resistance of the track (�) from end to end (A to B)

is given by:

R ¼ r:L
A

where:

r is the resistivity of the metal (�.m)

R is the resistance of the track (�)

L is the length of the track (m)

A is the cross-sectional area of the track, width (W)� thickness (T) (m2).

Table 3.2: Metal and alloy resistivity values

Metal Resistivity (r) – W.m

Aluminum 2.63 � 10�8

Copper 1.72 � 10�8

Iron 1.0 � 10�7

Gold 2.44 � 10�8

Lead 2.08 � 10�7

Platinum 1.1 � 10�7

Silver 1.47 � 10�8

Tin 1.15 � 10�7

Tungsten 5.51 � 10�8

Alloy Resistivity (r) – W.m

Brass (an alloy of zinc and copper) 0.8 � 10�7

Steel (alloy of iron and carbon) 1.0 � 10�7

L

W

T

B

A

Figure 3.12: Metal track resistance calculation

PCB Design 135

www.newnespress.com

The thickness of the track material is a fixed value set by the PCB manufacturing

process, so the resistance will be set by the designer from the given track length

and width. For a given length of track, a wide track will have less resistance than a

narrow track.

For example, a track is created using copper, with a length of 100 mm and a width of

0.25 mm. The track thickness is 17.5 mm (i.e., 1 oz copper). What is the resistance

of the track?

R ¼ r:L
A

R ¼ ð1:72� 10�8Þ � ð0:1Þ
ð25� 10�5Þ � ð17:5� 10�6Þ ¼ 0:393W

Electromigration

A phenomenon known as electromigration can occur when a high current level

flows in a track. If the current density (amount of electrical current flowing per

cross-sectional area, A/m2) is high, then electromigration is the gradual movement

of the ions in a conductor due to the momentum transfer between conducting

electrons and diffusing metal atoms. The effect is for the metal to move, causing a

reduction in the width of one part of the metal as the metal atoms “flow.” Eventually,

the track width reduces to a narrow enough cross-section for the metal to “fuse.” That

is, it becomes an open circuit, in the same manner as a fuse would be designed to

intentionally fuse (or “blow”) when the current passing through the fuse exceeds

a maximum permitted value.

Insulation Capacitance

When a track is patterned in the PCB, and a second track, either above or below,

crosses the first track, then the area created by the combination of the tracks and

insulation between them creates a capacitor. If the overlap area and the capacitance

per unit area of the insulation is known, then the value of the capacitance (a parasitic

[i.e., unwanted] capacitance) can be calculated. At low signal frequencies, this

capacitance does not necessary affect the operation of the circuit. However, as the

136 Chapter 3

www.newnespress.com

signal frequency increases, the effect of the capacitance also increases (as its

impedance decreases), which can have a serious effect on circuit operation.

Capacitance value (Figure 3.13) is calculated by:

C ¼ eo:eins:A
D

where:

C is the value of the capacitance of the overlapping area of the two tracks A and B

(in Farads, F)

A is the area of overlap of the two tracks, width (W)� length (L) (cm2)

D is the thickness of the insulator (dielectric) (cm)

eo is the relative permittivity of the insulating material (for FR-4, this is

approximately 4)

eins is the permittivity of free space (�8.85� 10�14 F/cm).

Signal Integrity

Signal integrity affects the electrical signals as they pass through the tracks in the

PCB. Ideally, the signal should not be altered by the electrical properties of the track.

However, a real track will alter the shape of the signal and so corrupt its integrity.

WA

B

L

t Capacitor
Dielectric

Figure 3.13: Track-track capacitance calculation

PCB Design 137

www.newnespress.com

If care is not taken to ensure a high level of signal integrity when designing the PCB

layout, then manufacturing problems can occur in that:

• It will cause the design to work incorrectly in some cases, but not all cases.

• The design might actually fail completely.

• The design might operate slower than expected (and required).

Signal integrity problems can be created by a number of problems, including:

• The tracks’ own parasitic resistance, capacitance, and inductance will be altered.

• Cross-talk between two or more different tracks will occur because of a

capacitive coupling between the tracks resulting from the PCB substrate

insulation.

• For high-frequency signals, the characteristic impedance of the transmission

line that the track creates does not match the signal source and destination.

An example where the track resistance and capacitance can create a parasitic resistor-

capacitor (RC) network that is modeled as a single resistor and capacitor is shown in

Figure 3.14. Applying a digital clock signal, a square wave voltage waveform, to the

RC network causes a change in the observed waveform at the output. The output

becomes an exponential waveform with a time constant � =R.C. Such an effect can

cause circuit failure.

Drawing Units

When designing the PCB layout, considering both the component placement

and the interconnect placement, the designer is working with physical

dimensions. Component placement and routing depends on a number of

R

CVin

Vin

Vout

Vout

time

Figure 3.14: RC time constant effect

138 Chapter 3

www.newnespress.com

considerations. The particular PCB manufacturer will provide the necessary

minimum (and possibly maximum) dimensions that can be used for their

manufacturing process.

The dimensions will be provided in either Imperial measurements (using mils) or

metric (using mm). There are 1,000 mils and 25.4 mm in 1 inch. Table 3.3 is a

conversion chart.

3.2.3 Typical Components

The PCB will be populated with a number of components, using both

through-hole and surface mount packages. Component location on the PCB

is critical for:

1. Efficiently routing the PCB tracks (signal and power)

2. Accounting for thermal effects when components heat up during normal

operation. The temperature rise must not be too large on any single part of

the board. Suitable placement of components and the addition of heat sinks

(components that absorb heat and allow it to be dissipated away from the

component that generated it).

3. Ergonomic considerations where a user may need to access part of the PCB to

control components (e.g., switches) or for test and evaluation purposes.

Table 3.4 identifies some of the electronic components more commonly found on

typical PCBs.

Table 3.3: Imperial-to-metric conversion

Imperial (mils) Metric (mm)

1,000 25.4
100 2.54
10 0.254
1 0.0254

Eurocard size PCB
3937 � 6299 (3.94” � 6.3”) 100 � 160 (0.1m � 0.16 m)

PCB Design 139

www.newnespress.com

Table 3.4: Typical components on a PCB

Component Description

Resistor The resistor is a 2-terminal
electronic component that resists
the flow of current and produces
a voltage drop across the
component that is proportional
to the current flow as given by
Ohms Law.

The image to the right shows a
single resistor and a resistor array
(in a14-pin DIL package).

Variable resistor The variable resistor
(potentiometer or preset) is a
3-terminal device that acts to vary
the resistance between two
connections as a mechanical
screw is rotated.

The image to the right shows
three different preset packages.

Capacitor The capacitor is a 2-terminal
device that consists of two
metal plates separated by a
dielectric material that creates a
specific value of capacitance. A
range of materials are used as
the dielectric. Specific capacitors
are used for particular
requirements within the circuit,
and specific capacitor types are
polarized; that is, one connection
has a positive potential to the
other connection.

The image to the right shows
four different capacitor types and
packages.

(continued)

140 Chapter 3

www.newnespress.com

Table 3.4 (Continued)

Component Description

Inductor The inductor is a 2-terminal
device that consists of a winding
of metal that creates a specific
value of inductance.

The image to the right shows an
inductor that is created in a
package similar in size and shape to
a through-hole resistor package.

Diode The diode is a 2-terminal
semiconductor device that allows
current to flow in one direction
through the device but blocks the
flow of current in the opposite
direction.

The image to the right shows a
through-hole package diode.

Transistor The transistor is a 3-terminal
semiconductor device that is either
use to amplify a signal (voltage or
current) in analogue circuits or acts
as an electronic switch in digital
circuits. Both bipolar (npn and
pnp) and CMOS (nMOS and
pMOS) transistors, along with
unijunction and JFET transistor
structures, can be created.

The image to the right shows three
of the different package sizes and
shapes that are available.

Integrated
circuit

The integrated circuit is a
semiconductor device that consists
of a packaged circuit die (silicon,
silicon germanium, or gallium
arsenide semiconductor material)
that contains an electronic circuit
consisting of transistors, resistors,
capacitors, and possibly inductors.

The image to the right shows a
surface mount package.

(continued)

PCB Design 141

www.newnespress.com

Table 3.4 (Continued)

Component Description

Switch The switch is a device that
mechanically opens or closes
metal contacts to connect or
disconnect parts of an electrical
or electronic or circuit.

The image to the right shows a
PCB mount toggle switch.

Connector The connector provides a
mechanism to connect different
electronic circuits together using
wires.

The image to the right shows
three of the different package
sizes and shapes that are
available.

Transformer The transformer is a device
consisting of two sets of wire coils
to form a mutual inductance. The
transformer is used to step up
(increase) or step down
(decrease) an AC voltage.

The image to the right shows an
example transformer package.

Light emitting
diode (LED)

Available colors
are red, yellow,
green, blue,
white

The light emitting diode is a 2-
terminal semiconductor device
that produces light when a
current is passed through it.

The image to the right shows two
LED, for soldering to a PCB. The
LED can be obtained in various
shapes and sizes and also as
7-segment displays.

(continued)

142 Chapter 3

www.newnespress.com

Table 3.4 (Continued)

Component Description

Liquid crystal
display (LCD)

The liquid crystal display is a
device that is used to present
either images or text.

The image to the right shows a
2-line, 16-character LCD display.

Test probe point The test probe point is a
1-terminal device that allows
external text and measurement
equipment to be connected to a
point in an electronic circuit for
test and evaluation purposes.

The image to the right shows
eyelet probes that allow for test
equipment probes to be hooked
to the test probe point.

Crystal
oscillator

The crystal oscillator is a device
that produces an oscillating signal
at a particular frequency for the
generation of clock signals within
a digital circuit.

The image to the right shows an
example oscillator module that is
housed in a 14-pin DIL package.

Jumper terminal The jumper terminal is a
2-terminal device that connects
two points of a circuit together
when a metal header is placed
across the terminals, or
disconnects two points of a
circuit together when the header
is physically removed by a user.

The image to the right shows a
jumper terminal (+ header)
mounted to a PCB.

PCB Design 143

www.newnespress.com

3.3 Design, Manufacture, and Testing

3.3.1 PCB Design

Overview

PCB design begins with an insulating base and adds metal tracks for electrical

interconnect and the placement of suitable electronic components to define and create

an electronic circuit that performs a required set of functions. The key steps in

developing a working PCB are shown in Figure 3.15 and briefly summarized below:

• Initially, a design specification (document) is written that identifies the

required functionality of the PCB. From this, the designer creates the circuit

design, which is entered into the PCB design tools.

• The design schematic is analyzed through simulation using a suitably defined

test stimulus, and the operation of the design is verified. If the design does not

meet the required specification, then either the design must be modified, or in

extreme cases, the design specification must be changed.

• When the design schematic is complete, the PCB layout is created, taking

into account layout directives (set by the particular design project) and the

manufacturing process design rules.

• On successful completion of the layout, it undergoes analysis by

(i) resimulating the schematic design to account for the track parasitic

components (usually the parasitic capacitance is used), and (ii) using specially

designed signal integrity tools to confirm that the circuit design on the PCB

will function correctly. If not, the design layout, schematic, or specification

will require modification.

When all steps to layout have been completed, the design is ready for submission for

manufacture.

PCB Design Tools

A range of design tools are available for designing PCBs, running on the main

operating systems (Windows�, Linux, UNIXTM). The choice of tool depends on the

actual design requirements, but must consider:

• Schematic capture capabilities: the ability to create and edit schematic

documents representing the circuit diagram

144 Chapter 3

www.newnespress.com

Design entry
(schematic capture)

Design specification
interpretation

Design simulation Test
stimulus

Simulation
results OK?

Design layout

Extraction of layout
parasitics

Signal Integrity (SI) checks

Post-layout circuit simulation

No

Yes

Design
Specification

Layout
parasitics

Simulation
results OK?

No

Yes

SI results
OK?

NoYesDesign ready
for submission
to manufacture

Activities using
a PCB design

tool

Layout
directives

Layout
Design Rules

Signal integrity
directives

Figure 3.15: Steps to PCB design

PCB Design 145

www.newnespress.com

• Layout generation capabilities: the ability to create the PCB layout either

manually or using automatic place and route tools. Some design tools will link

the schematic to the layout so that changes in the schematic are reflected as

changes in the layout (and vice versa).

• Circuit simulation capabilities: the ability to simulate the design functionality

using a suitable simulator such as a simulator based on SPICE.

• Supported operating systems: What PC or workstation operating systems are

needed for the software tool to operate?

• Company support: What support is available from the company if problems

are encountered using the design tools?

• Licensing requirements and costs: What are the licensing arrangements for the

software, and is there an annual maintenance fee?

• Ease of use and training requirements: How easy is the design tool to use, and

what training and/or documentation is available to the user?

Table 3.5 shows the main PCB design tools currently used.

LVS

Layout versus schematic (LVS) checking is a process by which the electronic circuit

created in the final PCB layout is compared to the original schematic circuit diagram.

This check is undertaken to ensure that the PCB layout is electrically the same as the

original schematic, and errors have not been introduced. LVS can take a manual

approach, in which the designer manually checks the connections in the layout and

compares them to the schematic connections, or it can be automated using an

LVS software tool.

Table 3.5: Example PCB design tools

Design Tool Name Company

Allegro� CadenceTM Design Systems Inc.
Board System� Mentor Graphics�

Eagle CadSoft
Easy-PC Number One Systems
Orcad� CadenceTM Design Systems Inc.
Protel AltiumTM

146 Chapter 3

www.newnespress.com

DRC

Design rules checking (DRC) is a process bywhich the PCB layout is checked to confirm

that it meets manufacturing requirements. Each manufacturing process has a set of

design rules that identifies the limitations of the manufacturing process and ensures a

high manufacturing yield. Design rules are rarely violated, and only then if clearance is

given by the manufacturer and the designer is aware of and accepts any inherent risks.

Layout Design Rules and Guidelines

To produce a well-designed and working PCB, design guidelines (should be followed

but are not mandatory) and rules (must be followed to avoid manufacturing

problems) are to be followed. For example:

• Do not violate the minimum track widths, track spacing, and via sizes set by

the PCB manufacturer. Table 3.6 provides a set of minimum dimension

constraint examples.

• Avoid exposed metal under component packages. Any metal under a package

should be covered with solder mask.

• Make the pads for soldering the electronic components to the board as large as

possible to aid component soldering.

• Avoid the placement of components and tracks (and ground and power

planes) that will require the removal of a great amount of copper from parts of

Table 3.6: Layout design considerations

Layout
consideration

Meaning

Internal line width Minimum the width of a metal track inside the PCB structure.
Internal line spacing Minimum the distance between two metal tracks inside the PCB structure.
External line width Minimum the width of a metal track on an outside surface (top or

bottom) of the PCB.
External line spacing Minimum the distance between two metal tracks on an outside surface

of the PCB.
Minimum via size The minimum size allowable for a via.
Hole to hole The minimum distance between adjacent holes in the PCB insulating

material.
Edge to copper The minimum distance from the edge of the PCB to the copper that is

designed for use.

PCB Design 147

www.newnespress.com

the board, and leaving large amounts of copper in the remainder of the board.

Where possible, have an even spread of tracks and gaps between the tracks

across the entire board. (The copper layer starts as a sheet of metal covering

the entire surface, and an etching process removes the unwanted copper to

pattern the tracks.)

• Use ground (and power) planes for the component power supplies. Where

possible, dedicate a layer to a particular power level (e.g., 0V as ground). Use

split planes if necessary; these are multiple planes on a layer where a part of

the layer is dedicated to a particular power level.

• Use power supply decoupling capacitors for each power pin on each

component. Place the decoupling capacitor as close as possible to its component

pin. For example, data converter data sheets normally provide information

for the PCB designer in relation to the decoupling capacitor requirements.

• Use decoupling capacitors for each DC reference voltage used in the circuit

(e.g., reference voltages for data converters). For example, data converter data

sheets normally provide information for the PCB designer in relation to the

decoupling capacitor requirements.

• Use separate digital and analogue power supply planes and connect at only

one point in the circuit. For example, a data converter package normally has

separate power (VDD and GND) pins for the analogue and digital circuitry.

The device analogue and digital power will be provided by connecting the IC

to separate power planes. The GND connection is connected at one point only

underneath the IC (see Figure 3.16). Data converter datasheets normally

Data Converter
Digital VDD

Digital GND Analogue GND

Analogue VDD

Connecting the analogue and digital GND
connections under the IC at one point only

Digital
power

decoupling
capacitor

Analogue
power

decoupling
capacitor

Figure 3.16: Example data converter GND (“common”) connection (top down)

148 Chapter 3

www.newnespress.com

provide information for the PCB designer relating to the placement of signal

and power connections.

• Minimize the number of vias required.

• Avoid ground loops, which can form when the ground connections on the

electronic components are laid out to the common track (or plane) so

that loops of metal are formed. They can cause noise problems in analogue

signals.

• For the particular PCB, consider which is more important, the placement of

the components or the routing of the tracks? Adopt a layout design procedure

to reflect this.

• Separate the digital and analogue components and tracks to avoid or

reduce the effects of cross-talk between the analogue signals and digital

signals.

Ground Planes

Ground (GND) and power planes on the PCB are large areas of metal that are

connected to either a power supply potential (e.g., VDD) or the common (0V)

connection (commonly referred to as ground). They appear as low-impedance

paths for signals and are used to reduce noise in the circuit, particularly for the

common signal. In a multilayer PCB, one or more of the layers can be dedicated to

a plane. Any given metal layer can have a single plane or multiple planes (split

plane), shown in Figure 3.17. Signals will pass through the plane where the

metal is etched away at specific points only, signified by the white dots in the

illustration.

PCBs for Different Applications

Certain PCB manufacturers will provide a range of different PCB fabrication facilities

to support different applications including:

• High-frequency circuits: Specific materials will be required for the insulating

base and the track metal for the circuit to operate at the required frequencies

[10, 11].

PCB Design 149

www.newnespress.com

• Power supplies: Power supplies may be required to operate at high voltages

and high currents to meet performance requirements.

• Controlled impedance: This is required in applications in which the

interconnecting track acts as a transmission line and must have a known

and controlled impedance. Such applications include radio frequency (RF)

circuits and high-speed digital switching circuits.

3.3.2 PCB Manufacture

When the design layout has been completed, it is submitted for manufacture.

Depending on the manufacturer and design project requirements, either one or several

prototype PCBs will be manufactured and populated for design debug and

verification purposes prior to a full-scale production run.

The design layout will normally be submitted in electronic format using one of the

PCB layout file tools supported by the manufacturer.

Figure 3.18 shows the different layers that are used to make a two-sided PCB

with through-hole plated vias and top overlay layers for information text (and

graphics). This is the board shown in Figure 3.2.

Figure 3.17: Single (left) and split (right) planes

150 Chapter 3

www.newnespress.com

3.3.3 PCB Testing

To verify that the circuit design is functionally correct, the design is tested both

prior to and after manufacturing. Prior to manufacturing, the design is simulated

using an appropriate simulation model of the circuit and a suitable test stimulus.

Simulation is undertaken twice:

• prior to creating the PCB layout, to verify the correct electrical functionality

of the circuit schematic diagram

All layers Top metal layer tracks

Pads– top and bottom metal layers Bottom metal layer tracks

Top overlay layer

Figure 3.18: PCB layers

PCB Design 151

www.newnespress.com

• after the PCB layout, by extracting layout information and (i) resimulating the

design with layout (track) parasitics included, and (ii) using signal

integrity tools

After manufacturing, the PCB is physically tested for electrical and nonelectrical

properties:

• Electrical test. By applying appropriate analogue and digital signals, the

correct electrical operation of the PCB can be ascertained [12, 13]. These will

be compared both to the initial circuit simulation results (for comparison of

the design operation) and to the initial design specification (to ascertain that

the circuit meets the required electrical specifications). These tests will include

EMC/EMI (electromagnetic compatibility/electromagnetic interference)

testing [14, 15].

• Optical test. Optical tests are carried out to inspect the board for the correct

placement of the correct components and for defects in the manufacturing

process (e.g., mechanical damage to the components). Both manual

visual inspection (MVI, also referred to as human visual inspection, HVI)

and automated optical inspection (AOI) techniques will be used.

• Mechanical test. Mechanical testing is undertaken to ensure that the PCB

meets the required mechanical strength for the end application (e.g., it can

withstand a set level of vibrations) and to determine the mechanical strength

of the solder joints [16]. For destructive tests (those that stress the PCB until it

breaks), a set of samples from the main manufacturing run are used.

• Thermal test. Thermal testing ensures that the PCB will operate over the

required operating temperature range without failure.

• WEEE and RoHS compliance. Tests undertaken to ensure that the PCB

is compliant with the required legislation (discussed further in the next section).

3.4 Environmental Issues

3.4.1 Introduction

Increasingly, the whole process of design, manufacture, and test is required to

consider their impact on the environment. There is a need, guided by legislation,

to reduce that environmental impact.

152 Chapter 3

www.newnespress.com

3.4.2 WEEE Directive

The WEEE Directive (waste electrical and electronic equipment) was introduced

by the European Union (EU) to increase the electrical and electronic equipment

recycling [17]. A key part of this is to make manufacturers and importers (also

referred to as producers) responsible for meeting the costs of the collection,

treatment, and recovery of equipment that has come to the end of its life span.

This encourages the designers of such equipment to create products with recycling

in mind.

The WEEE Directive covers a number of items, such as:

• small and large household appliances

• Information technology (IT) and telecommunications equipment

• consumer equipment

• lighting

• electrical and electronic tools (except large-scale stationary industrial tools)

• toys, leisure, and sports equipment

• medical devices (with exceptions)

• monitoring and control instruments

• automatic dispensers

3.4.3 RoHS Directive

The RoHS Directive (return of hazardous substances) supports the WEEE

directive by covering the use of certain hazardous substances used in electrical and

electronic equipment [18]. The European Union directive, effective July 1, 2006, limits

the use of certain substances to prescribed maximum concentration levels in electrical

and electronic equipment unless the equipment is exempt from the directive. The

banned substances are:

• lead

• cadmium

PCB Design 153

www.newnespress.com

• mercury

• hexavalent chromium

• polybrominated biphenyl ethers

• polybrominated diphenyl ethers

Equipment is categorized as RoHS compliant, not RoHS compliant, or RoHS

compliant by exemption. Equipment that is required to be compliant must have a

Certificate of RoHS compliance.

3.4.4 Lead-Free Solder

In electronic circuits, traditional (lead) solder was comprised of 60% tin and 40%

lead (Sn60/Pb40) by mass to produce a near-eutectic mixture. (A eutectic or

eutectic mixture is a mixture of two or more phases at a particular composition

of materials that have the lowest melting point, at which temperature the

phases will simultaneously crystalize.) For Sn60/Pb40, the lowest melting point is

below 190�C.

Since the introduction of the WEEE directive and RoHS, lead has been removed from

electrical and electronic equipment. The resulting lead-free solders contain other

metals such as tin, copper, and silver [19]. Lead-free solders have higher melting

points, which has necessitated re-engineering the electronic components to withstand

the higher solder melting points.

3.4.5 Electromagnetic Compatibility

When an electronic circuit is to operate in a particular environment, it will be required

to operate:

• without producing any interference to the operation of any other electronic

circuit

• without itself being interfered to by any other electronic circuit

Electromagnetic noise is produced when an electronic source produces rapidly

changing current and voltage. Nearby electronic circuits that are coupled to the

154 Chapter 3

www.newnespress.com

source (by conductive, radiative, capacitive, or inductive coupling) can receive

noise through this coupling mechanism, and electromagnetic interference (EMI) will

occur. Electromagnetic compatibility (EMC) is the ability of an electronic circuit to

function in its operating environment without causing or experiencing performance

degradation resulting from unintentional EMI.

Unless circuits are designed to be coupled, circuit designs can be made to reduce the

noise effect by any of several means:

• reducing any signal switching frequency to as low as possible to maintain the

circuit operation

• physically separating the circuits

• suitably shielding the circuit using shielding material and enclosures

3.5 Case Study PCB Designs

3.5.1 Introduction

The case study designs presented within the book are based on the development

of a complete mixed-signal electronic system, as shown in Figure 3.19, using

a complex programmable logic device (CPLD) development board with plug-in

modules (Eurocard-sized PCBs). As such, the modules can be developed

on a need-to-use basis. With this arrangement, the single experimentation

arrangement will enable a wide range of designs to be designed, developed,

and tested.

Each of the boards can be designed and manufactured as and when required,

depending on the type of system to develop and experiments to undertake.

The core of the system is the CPLD development board, containing a XC2C256

CoolrunnerTM-II CPLD, SRAM (static RAM) memory, and connectors for

connecting the other boards. Hence, the development board must be designed and

manufactured first. The board operates on a single þ3.3V power supply for both

the CPLD and SRAM. Additionally, a þ1.8V power supply is derived from the

þ3.3V input power to provide the necessary power to the CPLD; this particular

CPLD requires a þ1.8V power supply for the core and a þ3.3V periphery

interface level to the external circuitry.

PCB Design 155

www.newnespress.com

Analogue I/O Board

Digital I/O Board

ADC

DAC

Analogue Power
Supply

Digital Power
Supply

LCD and Hex Keypad Board

PC Interface Board

Main User PC

CPLD Development Board

JTAG Interface for CPLD configuration

A
B

C

D

Figure. 3.19: Case study board set-up

1
5
6

C
hapter

3

w
w
w
.n

e
w
n
e
s
p
re

s
s
.c
o
m

Aside: In this section, the PCB board operation and connections are identified, along with
the potential uses. The circuit schematics are not provided here, but are available in
Appendix F, Case Study PCB Designs (see the last paragraph of the Preface for instruc-
tions regarding how to access this online content).

The digital logic uses LVCMOS standard (logic 1=þ3.3V, logic 0=0V), and the

analogue circuits operate on a þ/�5.0V dual rail power supply. The digital logic

power supply for all boards is derived from the CPLD development board, but the

analogue I/O board requires a separate dual rail power supply for the analogue parts.

Hence, the circuit is designed to operate at the lower voltage levels.

If signal voltage levels exceeding the designed levels are required, they must be

generated externally. The external circuit levels must be compatible with the

designed levels for the system and must not under any circumstances exceed the

absolute maximum ratings for each component in the circuit. Absolute maximum

ratings for each component are identified in the datasheet for the particular

component.

3.5.2 System Overview

Once the CPLD development board has been designed, manufactured, and

successfully tested, it can be used for developing digital circuit and systems designs.

Those designs are developed based on logic schematic diagrams and/or hardware

description language (HDL) and using an appropriate CPLD design tool. (The

Xilinx� ISETM tools available from the company will be required.) It is possible to use

both VHDL (VHSIC hardware description language) and Verilog�-HDL to develop

the digital designs, and synthesizing the resulting HDL RTL (register transfer level)

code into a netlist targeting the CPLD, but in this book, only VHDL will be

considered. Attached to the CPLD development board (the motherboard) will be four

daughter boards, each with a different function as follows:

1. LCD (liquid crystal display) and hex keypad board

2. PC interface board

3. digital I/O board

4. analogue I/O board

PCB Design 157

www.newnespress.com

With this arrangement, it is possible to develop a wide range of digital and

mixed-signal electronic circuits based on a central digital core, for applications

such as:

• general computing

• communications

• digital signal processing (DSP)

• digital control

• security and alarm systems

• instrumentation

• environmental monitoring

• mixed-signal electronic circuit test equipment

• analogue signal generation (using an arbitrary waveform generator, AWG)

• direct digital synthesis (DDS)

The CPLD I/O connections will be configured to adhere to the LVCMOS (3.3 V level)

standard so that the I/O will interface to the digital circuitry it is attached to.

However, the digital circuitry will be required to adhere to the LVCMOS (3.3 V level)

standard for compatibility, unless suitable level shifting circuitry is utilised to

interface the CPLD to the digital circuitry.

3.5.3 CPLD Development Board

The CPLD development board is the heart of the electronic system. This contains a

XC2C256 CoolrunnerTM-II CPLD, SRAM memory, and connectors for connecting

the other boards. The CPLD development board operates on a single þ3.3V power

supply, used to power both the CPLD and SRAM. Additionally, a þ1.8V power

supply is derived from the þ3.3V input power to provide the necessary power to the

CPLD; this particular CPLD requires a þ1.8V power supply for the core and

a þ3.3 V periphery interface level to the external circuitry.

The CPLD operates using a 50 MHz crystal oscillator IC and has a power-on reset

circuit (with additional manual reset switch).

158 Chapter 3

www.newnespress.com

The CPLD is programmed from a PC using its built-in JTAG (Joint Test

Action Group) interface. The ISETM tool is to be used for CPLD design entry,

simulation, layout, and configuration. An introduction to the design tool used is

provided in Appendix E, Introduction to the Design Tools (see the last paragraph of

the Preface for instructions regarding how to access this online content).

The CPLD I/O connections are configured to adhere to the LVCMOS (3.3V level)

standard. However, the CPLD I/O can be configured to operate with the

following digital logic standards:

• LVTTL, Low-voltage transistor-transistor logic (3.3V level)

• LVCMOS33, Low-voltage CMOS (3.3V level)

• LVCMOS25, Low-voltage CMOS (2.5V level)

• LVCMOS18, Low-voltage CMOS (1.8V level)

• 1.5V I/O (1.5 V levels), 1.5 V level logic (1.5V level)

• HSTL-1, High-speed transceiver logic

• SSTL2-1, Stub series terminated logic (2.5V level)

• SSTL3-1, Stub series terminated logic (3.3V level)

The I/O standard is set during the design entry within the CPLD design tools and

is one of the design constraints that the user will set.

The CPLD development board (see Figure 3.20) is based around the use of the

CoolrunnerTM-II CPLD (XC2C256-144) device using a 144-pin package (in a

TQFP [thin quad flat pack]) package, connected to IDC connectors to interface the

CPLD to the daughter boards. The board also houses a Cypress Semiconductor

CYC1049CV33 512x8 SRAM IC that can be used for temporary data storage

whenever the CPLD is configured to undertake either digital signal processing or data

capture operations.

The CPLD is automatically reset whenever the power is applied using

a power-on reset circuit. (The configuration is held in nonvolatile memory so that

whenever the power is removed from the CPLD, the last configuration is retained.)

This reset can also be manually applied using a push-switch at any time by the

user. This circuit uses the Maxim MAX811-S voltage monitor IC with manual

reset input.

PCB Design 159

www.newnespress.com

The IDC connector pin allocation for the CPLD development board to connect to the

four daughter boards is the same as for each of the daughter boards.

The circuit diagram for this PCB is provided in Appendix F, Case Study PCB Designs

(see the last paragraph of the Preface for instructions regarding how to access this

online content).

Table 3.7 identifies the component list for the CPLD development board.

3.5.4 LCD and Hex Keypad Board

A 12-key hex keypad is used for data entry into the CPLD (whether at a data entry

terminal, security keypad, telephone keypad, for instance), and data is displayed on a

MDLS162653V 2-line, 16-digit LCD (see Figure 3.21). The LCD can be used for a

range of scenarios such as message boards and prompts for the user to take specific

actions. This user I/O mechanism is based on typical portable electronics used today

(e.g., the mobile phone). The circuit is designed to operate with a logic 1 value of

þ3.3V and a logic 0 value of 0V, and the LCD display is designed for 3.3V

XC2C256-144
CoolrunnerTM-II

CPLD

PC Interface
Board

Connector

LCD and
Display Board

Connector

Digital I/O
Board

Connector

Analogue I/O
Board

Connector

CYC1049CV33
512x8 SRAM

Voltage Monitor
IC

Reset
push button

+1.8 V
Regulator

+3.3 V Power

7-Segment
Display

Extension

Figure 3.20: CPLD development board

160 Chapter 3

www.newnespress.com

operation. The data sheet for the MDLS162653V display obtained from the

appropriate manufacturer can be referred to for precise logic I/O specifications

(power supply operation, logic I/O voltage levels, and speed of operation).

A preset (variable resistor) is connected to the LCD display to allow the user to adjust

the display contrast. The free space on the PCB (i.e., the area not used by the

components and interconnect track) is filled with a prototyping area consisting of

through-hole plated vias spaced at 2.54 mm in a 24� 12 array. The via spacing is set

Table 3.7: CPLD development board component list

Component no. Component description Quantity

1 XC2C256-144 CoolrunnerTM-II CPLD 1
2 CYC1049CV33 512x8 SRAM 1
3 PCB mount Push-switch 1
4 1N4001 diode 1
5 150� resistor (0.6 W, –1% tolerance) 1
6 Blue LED (20 mA) 1
7 20-way IDC connector 4
8 2.1 mm power connector 1
9 50 MHz crystal oscillator (8-pin DIP) 1

10 REG1117 +1.8V voltage regulator 1
11 MAX811-S voltage monitor IC 1
12 14-way connector (specific to JTAG programmer cable) 1
13 16-way connector (for LED display board extension) 1
14 100 nF capacitor 13
15 10 mF electrolytic capacitor 1
16 Eyelet test probe point 8

MDLS162653V
LCD Display

20-way IDC Connector (to/from CPLD Development Board

ECO 12150 06 SP
Hex Keypad

Prototyping
Area

Display contrast
adjust preset

Figure 3.21: LCD and hex keypad board

PCB Design 161

www.newnespress.com

to that of through-hole DIL (dual in-line) packages. The circuit diagram for this PCB

is provided in Appendix F, Case Study PCB Designs (see the last paragraph of the

Preface for instructions regarding how to access this online content).

Table 3.8 identifies the component list for the LCD display and hex keypad board.

Table 3.9 identifies the 20-way IDC connector pin allocation for the LCD display and

hex keypad board.

Table 3.8: LCD and Hex keypad board component list

Component no. Component description Quantity

1 20 way IDC plug (PCB mount) 1
2 1N4001 diode 1
3 150 � resistor (0.6 W, –1% tolerance) 1
4 Blue LED (20 mA) 1
5 10 k� preset 1
6 LCD display (16 character, 2 line), MDLS162653V 1
7 12-key hex keypad – ECO 12150 06 SP 1
8 10 k� resistor (0.6 W, –1% tolerance) 7

Table 3.9: LCD and hex keypad board 20-way IDC connector pin allocation

Pin no. Identifier Function Direction

1 VDD +3.3 V DC Power supply
2 DB0 LCD display data bit 0 (LSB) Input
3 D Hex keypad (D) Input/output
4 DB1 LCD display data bit 1 Input
5 E Hex keypad (E) Input/output
6 DB2 LCD display data bit 2 Input
7 F Hex keypad (F) Input/output
8 DB3 LCD display data bit 3 Input
9 G Hex keypad (G) Input/output

10 DB4 LCD display data bit 4 Input
11 H Hex keypad (H) Input/output
12 DB5 LCD display data bit 5 Input
13 J Hex keypad (J) Input/output
14 DB6 LCD display data bit 6 Input
15 K Hex keypad (K) Input/output
16 DB7 LCD display data bit 7 Input
17 RS LCD register select control Input
18 Enable LCD enable control Input
19 R/W LCD read/write control Input
20 VSS 0 V DC Power supply

162 Chapter 3

www.newnespress.com

The CPLD must be configured so that it will suitably access the keypad. This

involves providing output logic levels to specific connections on the keypad and

reading in from the remaining connections. This is a common technique adopted

when using hex keypads of this type. Figure 3.22 shows the keypad pin

identification.

3.5.5 PC Interface Board

The PC interface board (Figure 3.23) uses RS-232 communications protocol, which

allows digital circuits to communicate with each other using a UART (universal

asynchronous receiver transmitter) circuit. The board contains three-level shifting ICs

(the MAX3232CPE) to provide four serial links (COM links 1 to 4) that can be

connected to the CPLD board. The MAX2323CPE level shifting ICs (IC pin

connections) translate the PC UART output levels to þ3.3V/0V levels compatible

K
K

1 2 3

4 5 6

7 8

KeyPad1

ECO_12150_06_SP

9

* 0 #

J
J

H
H

G
G

F
F

1 2 3 4 5 6 7
D

D

E
E

Figure 3.22: Hex keypad pin identification

PCB Design 163

www.newnespress.com

with the CPLD board (Figure 3.24). The datasheet for the MAX3232CPE obtained

from the appropriate manufacturer provides precise logic I/O specifications (power

supply operation, logic I/O voltage levels, and speed of operation).

The circuit diagram for this PCB is provided in Appendix F, Case Study PCB Designs

(see the last paragraph of the Preface for instructions regarding how to access this

online content).

Table 3.10 identifies the component list for PC interface board.

Table 3.11 identifies the 20-way IDC connector pin allocation for the PC

interface board.

20-way IDC Connector (to/from CPLD Development Board

MAX3232CPE

9-way D-plug
(COM 2)

9-way D-plug
(COM 3)

9-way D-plug
(COM 4)

9-way D-plug
(COM 1)

MAX3232CPE MAX3232CPE

Figure 3.23: PC interface board

R1OUT

R2INR1IN

T2INT1IN

T2OUTT1OUT

To/From CPLD

To/From PC

R2OUT

Figure 3.24: MAX3232CPE circuit with pin identifiers

164 Chapter 3

www.newnespress.com

There are four possible COM ports, using the following connections:

• COM 1—Tx, Rx, CTS, and RTS signals

• COM 2—Tx, Rx, CTS, and RTS signals

Table 3.10: PC interface board component list

Component no. Component description Quantity

1 20 way IDC plug (PCB mount) 1
2 1N4001 diode 1
3 150 � resistor (0.6 W, –1% tolerance) 7
4 Blue LED (20 mA) 1
5 Red LED (20 mA) 2
6 Yellow LED (20 mA) 4
7 MAX3232CPE Level-Shifter IC 3
8 10 mF electrolytic capacitor 15
9 PCB mount D-connector (plug) 4

10 Eyelet test probe point 14

Table 3.11: PC interface board 20-way IDC connector pin allocation

Pin no. Identifier Function Direction

1 VDD þ3.3 V DC Power supply
2 Tx_LED Transmitter indicator LED Input
3 COM1_Rx COM 1 data receiver Input Output
4 Rx_LED Receiver indicator LED Input
5 COM1_Tx COM 1 data transmitter output Input
6 COM4_LED COM 4 selected indicator LED Input
7 COM1_CTS COM 1 clear to send Output
8 COM3_LED COM 4 selected indicator LED Input
9 COM1_RTS COM 1 ready to send Input

10 COM2_LED COM 4 selected indicator LED Input
11 COM2_Rx COM 2 data receiver input Output
12 COM1_LED COM 4 selected indicator LED Input
13 COM2_Tx COM 2 data transmitter output Input
14 COM4_Tx COM 4 data transmitter output Input
15 COM2_CTS COM 2 clear to send Output
16 COM4_Rx COM 4 data receiver input Output
17 COM2_RTS COM 2 ready to send Input
18 COM3_Tx COM 3 data transmitter output Input
19 COM3_Rx COM 3 data receiver input Output
20 VSS 0 V DC Power supply

PCB Design 165

www.newnespress.com

• COM 3—Tx and Rx signals

• COM 4—Tx and Rx signals

The CPLD can identify which COM port it is currently accessing using the four

yellow LEDs on the PC interface board (where a logic 1 output from the CPLD turns

ON the LED and a logic 0 output from the CPLD turns OFF the LED). The CPLD

can also identify Tx and Rx signal activity by using the two red LEDs on the PC

interface board.

3.5.6 Digital I/O Board

The digital I/O board (Figure 3.25) uses octal three-state (tri-state) buffers using

74HC240 logic ICs that provide a digital buffer between the CPLD and external

digital logic circuitry. This both allows the CPLD logic outputs to be applied to

external circuitry and provides protection; if a fault in the external circuitry causes a

situation that can damage the CPLD (e.g., electrical overstress), then the 74HC240

logic ICs will be damaged before the CPLD. The 74HC240 logic ICs (IC pin

connections, Figure 3.26) are cheaper to replace and will be mounted in sockets,

thereby avoiding the need to unsolder the CPLD surface mount package. The circuit

is designed to operate with a logic 1 value of þ3.3V and a logic 0 value of 0V.

20-way IDC Connector (to/from CPLD Development Board)

+3.3V
(Power)

0V
(Power)

Digital logic outputs
to external circuitry

Digital logic inputs from
external circuitry

Output Enable
(active low)

Input Enable
(active low)

Figure 3.25: Digital I/O board block diagram

166 Chapter 3

www.newnespress.com

The data sheet for the 74HC240 IC obtained from the appropriate manufacturer

provides the precise logic I/O specifications (power supply operation, logic I/O

voltage levels, and speed of operation).

The circuit diagram for this PCB is provided in Appendix F, Case Study PCB Designs

(see the last paragraph of the Preface for instructions regarding how to access this

online content).

Table 3.12 identifies the component list for the digital I/O board.

Table 3.13 identifies the 20-way IDC connector pin allocation for the digital I/O board.

The circuit requires a þ3.3V power supply via the IDC connector from the

CPLD development board to provide the necessary power to the buffer ICs.

A protection diode (1N4001) is reversed-biased across the power supply so that

when the power supply is connected in the correct orientation, the diode does not

1OE

1A1

1A2

1A3

1A4

1Y1

1Y2

1Y3

1Y4

2OE

2A1

2A2

2A3

2A4

2Y1

2Y2

2Y3

2Y4

Figure 3.26: 74HC240 octal buffer circuit schematic with pin identifiers

Table 3.12: Digital I/O board component list

Component no. Component description Quantity

1 20 way IDC plug (PCB mount) 1
2 74HC240 (Octal buffer with 3-state outputs) 2
3 Blue LED (20 mA) 1
4 Yellow LED (20 mA) 2
5 150 � resistor (0.6 W, –1% tolerance) 3
6 1N4001 diode 1
7 9-way terminal block 2
8 100 nF ceramic capacitors 2
9 Eyelet test probe point 18

PCB Design 167

www.newnespress.com

have any effect. If, however, the power supply orientation is reversed (i.e., þ3.3V and

0V are connected the wrong way around), then the diode will conduct for a short time

until it is damaged, then the IC VDD will be limited to approximately �0.6V (because

of the forward-biased diode voltage drop), and during this time, the ICs will be

protected from damage resulting from electrical overstress.

Three LEDs are also included on the board: one blue to indicate the power supply is

connected, and two yellow to indicate that the buffers are enabled (LED is OFF) or

disabled (LED is ON).

3.5.7 Analogue I/O Board

The analogue I/O board generates and samples analogue voltages under the control

of the CPLD (Figure 3.27).

A stereo DAC (digital-to-analogue converter) provides two analogue output voltages

digitally generated by the CPLD. The DAC is a Wolfson� Microelectronics WM8725

Table 3.13: Digital I/O board 20-way IDC connector pin allocation

Pin no. Identifier Function Direction

1 VDD þ3.3 V DC Power supply
2 OE1 Output buffer enable Input
3 A0 Output buffer (A), bit 0 (LSB) Input
4 A1 Output buffer (A), bit 1 Input
5 A2 Output buffer (A), bit 2 Input
6 A3 Output buffer (A), bit 3 Input
7 A4 Output buffer (A), bit 4 Input
8 A5 Output buffer (A), bit 5 Input
9 A6 Output buffer (A), bit 6 Input

10 A7 Output buffer (A), bit 7 (MSB) Input
11 OE2 Input buffer enable Input
12 B0 Input buffer (B), bit 0 (LSB) Output
13 B1 Input buffer (B), bit 1 Output
14 B2 Input buffer (B), bit 2 Output
15 B3 Input buffer (B), bit 3 Output
16 B4 Input buffer (B), bit 4 Output
17 B5 Input buffer (B), bit 5 Output
18 B6 Input buffer (B), bit 6 Output
19 B7 Input buffer (B), bit 7 (MSB) Output
20 VSS 0 V DC Power supply

168 Chapter 3

www.newnespress.com

stereo DAC with a serial interface, which requires seven digital signals for control and

data, analogue and digital power supplies, and an analogue reference voltage. A

stereo ADC (analogue-to-digital converter) is used to sample two analogue input

voltages into the CPLD. The ADC is a Wolfson� Microelectronics WM8738 stereo

ADC with a serial interface, which requires six digital signals for control and data,

analogue and digital power supplies, and an analogue reference voltage.

Table 3.14 identifies the component list for the analogue I/O board.

Table 3.15 identifies the 20-way IDC connector pin allocation for the analogue I/O board.

Both the DAC and the ADC require a reference voltage to operate. This is externally

generated using a Reference Voltage IC (REF3230), which provides an accurate

þ3.0V voltage to supply the analogue power to both the DAC and ADC, which in

turn internally generates the required reference voltage.

Each of the analogue inputs and outputs to and from the board are connected via

an op-amp operating as a unity gain buffer to BNC connectors on the board. The

output voltage range is set by the output range of the DAC (minimum to maximum

output voltage values) and the input range of the ADC (minimum to maximum input

voltage values). The outputs and inputs are also unipolar (positive voltages only).

20-way IDC Connector (to/from CPLD Development Board)

+3.3V
(Power)

0V
(Power)

Analogue
O/P 1

3.0V
Reference

Analogue
O/P 1

Analogue
I/P 1

Analogue
I/P 1

WM8725
DAC

WM8738
ADC

Figure 3.27: Analogue I/O board block diagram

PCB Design 169

www.newnespress.com

Table 3.14: Analogue I/O board component list

Component no. Component description Quantity

1 20-way IDC plug (PCB mount) 1
2 150 W resistor (0.6 W, –1% tolerance) 5
3 1 MW resistor (0.6 W, –1% tolerance) 2
4 Blue LED (20 mA) 1
5 Red LED (20 mA) 2
6 Green LED (20 mA) 2
7 1N4001 diode 5
8 WM8725 stereo DAC 1
9 WM8738 stereo ADC 1

10 REF3230 (3.0 V) voltage reference IC 1
11 LM324 quad op-amp 1
12 PCB mount BNC connector 4
13 PCB mount screw terminal (3-way) 1
14 10 mF electrolytic capacitor 5
15 100 nF ceramic capacitor 6
16 Eyelet test probe point 6

Table 3.15: Analogue I/O board 20-way IDC connector pin allocation

Pin no. Identifier Function Direction

1 VDD þ3.3 V DC Power supply
2 ADC_FMT WM8738 ADC signal FMT Input
3 ADC_NOHP WM8738 ADC signal NOHP Input
4 ADC_SDATO WM8738 ADC signal SDATO Output
5 ADC_LRCLK WM8738 ADC signal LRCLK Input
6 ADC_BCLK WM8738 ADC signal BCLK Input
7 ADC_MCLK WM8738 ADC signal MCLK Input
8 DAC_FORMAT WM8725 DAC signal FORMAT Input
9 DAC_SCKI WM8725 DAC signal SCKI Input

10 DAC_LRCIN WM8725 DAC signal LRCIN Input
11 DAC_DIN WM8725 DAC signal DIN Input
12 DAC_BCKIN WM8725 DAC signal BCKIN Input
13 DAC_DEEMPH WM8725 DAC signal DEEMPH Input
14 DAC_MUTE WM8725 DAC signal MUTE Input
15 — — —
16 ADC_1_LED ADC input 1 selected indicator LED Input
17 ADC_2_LED ADC input 2 selected indicator LED Input
18 DAC_1_LED DAC input 1 selected indicator LED Input
19 DAC_2_LED DAC input 2 selected indicator LED Input
20 VSS 0 V DC Power supply

170 Chapter 3

www.newnespress.com

Therefore, for bipolar (positive and negative voltages) and for a wider range of I/O

voltages, external circuitry is required to appropriately condition the signals.

Four yellow LEDs are also mounted on the PCB so the CPLD can indicate which

DAC or ADC is actually selected at any one time.

The circuit requires a þ3.3V digital power supply via the IDC connector from the

CPLD development board to provide the necessary power to the buffer ICs. A

protection diode (1N4001) is reversed-biased across the power supply so that when

the power supply is connected in the correct orientation, the diode does not have any

effect. If, however, the power supply orientation is reversed (i.e., þ3.3V and 0V are

connected the wrong way around), then the diode will conduct and for a short time

until it is damaged, then the IC VDD will be limited to approximately �0.6V (because

of the forward-biased diode voltage drop), and during this time, the ICs will be

protected from damage resulting from electrical overstress.

The analogue power for the op-amps is provided by a separate screw terminal

connector. This additional power supply also incorporates protection diodes.

3.6 Technology Trends

The areas of PCB design, manufacture, and test are taking on an increasingly

important role in ensuring that a circuit design will operate correctly once

manufactured. Among the technological and commercial drivers requiring these

improvements are:

• Cost reduction: End users requiring more product for less cost

• Higher quality levels: The need to continually improve the quality of the

manufactured PCB

• Adherence to legislation directives: Increased implementation of legislation that

requires particular design, manufacture, and test specifications

• Adherence to standards: The development of standards by organizations to

ensure consistency in the design, manufacture, and testing of PCBs

• Higher density interconnect: Reduced interconnect track widths and spacing

between the tracks to provide more interconnect on the PCB—particularly

important for computer and communications applications

PCB Design 171

www.newnespress.com

• Higher density of electronic components: Reduced spacing between the

electronic components to provide more circuit functionality on the PCB—

particularly important for computer and communications applications

• Reduced electronic component package size (the “footprint” on the PCB):

Reduced packaging dimensions for the electronic components to provide more

circuit functionality on the PCB—particularly important for computer and

communications applications

• Increased use of surface mount technology

• Less empty space: A reduction in the amount of PCB surface area left unused

to provide more functionality for the PCB and to reduce overall production

costs

• Higher operating frequencies: Driven by computer and communications

applications so the electronic circuit can undertake more operations in a

reduced time: for computer applications, the need for high-speed digital data

transfer; for communications applications, both high-speed digital data

transfer, wired and wireless data transfer (RF)

172 Chapter 3

www.newnespress.com

References

[1] Horowitz, P., and Hill, P., The Art of Electronics, Second Edition, Cambridge

University Press, 1989, ISBN 0-521-37095-7.

[2] O’Connor, P., Test Engineering, A Concise Guide to Cost-effective Design,

Development and Manufacture, John Wiley & Sons, Ltd., 2001, ISBN 0-471-

49882-3.

[3] Bushnell, M., and Agrawal, V., “Essentials of Electronic Testing for Digital,

Memory & Mixed-Signal VLSI Circuits,” Kluwer Academic Publishers, 2000,

ISBN 0-7923-7991-8.

[4] Hughes, E., Electrical and Electronic Technology, Ninth Edition, Pearson

Education, 2005, ISBN 0-13-114397-2.

[5] Floyd, T., Electronics Fundamentals, Circuits, Devices, and Applications, Fifth

Edition, 2001 Prentice Hall, ISBN 0-13-085236-8.

[6] Smith, M., Application Specific Integrated Circuits, Addison-Wesley, 1999,

ISBN 0-201-50022-1.

[7] Doane, D., and Franzon, P., Multichip Module Technologies and Alternatives,

The Basics, Van Nostrand Reinhold, 1993, ISBN 0442091236-5.

[8] IPC, http://www.ipc.org

[9] Sears, F., Zemansky, M., and Young, H., University Physics, Seventh Edition,

Addison-Wesley, 1987, ISBN 0-201-06694-7.

[10] Smithson, G., “Practical RF printed circuit board design,” IEE Training

Course: “How to Design RF Circuits” (Ref. No. 2000/027), IEE, 5 April

2000, pp. 11/1–11/6.

[11] Sharawi, M. S., “Practical issues in high speed PCB design,” IEEE Potentials,

Vol. 23, Issue 2, April–May 2004, pp. 24–27.

[12] Verma, A., “Optimizing test strategies during PCB design for boards with

limited ICT access,” 27th International IEEE/SEMI Annual Electronics

Manufacturing Technology Symposium (IEMT 2002), 17–18 July 2002,

pp. 364–371.

[13] Reeser, S., “Design for in-circuit testability,” 11th International IEEE/CHMT

Electronics Manufacturing Technology Symposium, 16–18 September 1991,

pp. 325–328.

[14] Ghose, A. K., Mandal, S. K., and Deb, G. K., “PCB Design with Low EMI,”

Proceedings of the International Conference on Electromagnetic Interference and

Compatibility, 6–8 December 1995, pp. 69–76.

PCB Design 173

www.newnespress.com

[15] John, W., “Remarks to the solution of EMC-problems on printed-circuit-

boards,” Proceedings of the 7th International Conference on Electromagnetic

Compatibility, 28–31 August 1990, pp. 68–72.

[16] XiaoKun Zhu, Bo Qi, Xin Qu, JiaJi Wang, Taekoo Lee, and Hui Wang,

“Mechanical test and analysis on reliability of lead-free BGA assembly,” Pro-

ceedings of the 6th International Conference on Electronic Packaging Technol-

ogy, 20 Aug.–2 Sept. 2005, pp. 498–502.

[17] European Union, Directive 2002/96/EC on Waste Electrical and Electronic

Equipment (WEEE).

[18] European Union, Directive 2002/95/EC on the Restriction of Use of Certain

Hazardous Substances.

[19] Deubzer, O., Hamano, H., Suga, T., and Griese, H., “Lead-free soldering-

toxicity, energy and resource consumption,” Proceedings of the 2001 IEEE

International Symposium on Electronics and the Environment, 7–9 May 2001,

pp. 290–295.

174 Chapter 3

www.newnespress.com

Student Exercises

The exercises for this chapter are based on the PCB case study designs. The aim will be

to design, manufacture, and test these PCBs, both separately and as a complete

system. To achieve this goal, it will be necessary to act as a team. The structure of the

team can be decided upon as considered most appropriate, but the following roles

should be adopted:

• Project management: Coordinating the team to develop and administer the

processes to obtain a working PCB design.

• Schematic entry: Using the circuit designs provided in Appendix F (see the last

paragraph of the Preface for instructions regarding how to access this online

content). Develop the circuit schematics in the PCB design tool of choice.

• Layout: Develop the PCB layout from the circuit schematic. This step also

includes the manufacture of the PCB.

• Simulation and test: Developing a suitable test procedure (using simulation if

possible), and using suitable test equipment on the manufactured PCB.

• System interfacing: Developing a test procedure to test the PCB when

integrated into the overall electronic circuit. (This role is to be taken into

Question 3 of the exercise.)

1. Identify the possible routes to manufacturing the required PCBs for both

one-off prototypes. For the chosen manufacturing process, identify the

materials used and the required layout design rules.

2. For the circuit designs identified in the case studies, obtain the following

information:

• User guides and relevant information on the PCB design tools to be used

• Component datasheets

• Relevant information on the PCB manufacturing facility to be used.

Using this information, create a suitable information resource center based on

HTML pages to operate on a local intranet site. The site is to be readily

accessible by those requiring the information.

3. For each PCB: Working in teams, design, fabricate, and test each PCB in

turn to create the required overall system. Team members should change roles

for each PCB so that each member can practice each step.

4. For the overall system: When integrating all PCBs into the overall system,

assign one person to develop and run board integration tests. Do not assign

PCB Design 175

www.newnespress.com

a project manager; instead, so each team member is to take on one or more

specific roles of a project manager, listed below:

• CPLD development board integration test

• LCD display and keypad board integration test

• PC interface board integration test

• digital I/O board integration test

• analogue I/O board integration test

• overall system test

5. Develop a new PCB design that replaces the digital I/O board with a board

that uses suitably placed LEDs (yellow, red, green, blue) to create the lights

on a Christmas tree. The CPLD is to be used to switch the LEDs ON and

OFF, and to enable a user to set different lighting arrangements from a PC.

An example board arrangement is shown in the following figure.

Figure: Example Christmas tree lights board

176 Chapter 3

www.newnespress.com

CHA P T E R 4

Design Languages

4.1 Introduction

Design languages provide the means by which to describe the operation of both

software programs and hardware. These descriptions, usually text based, are

developed and stored as ASCII text files within the computer on which the

descriptions are being developed. Over the years, a large number of languages have

been developed. Some are still in use today, while others have become obsolete.

Design languages are of two types, software programming languages (SPL) and

hardware description languages (HDL). At one time, designers were either software

or hardware designers, and design teams were clearly distinguished by these separate

roles. Today, however, designers are involved in both software and hardware design

and need skills in both areas, although they may be specialized.

Attempting to identify and introduce all the design languages developed and in use

would be a book in its own right. This chapter will identify and introduce a number of

key languages used in both hardware and software design. Figure 4.1 identifies the

languages to be identified and discussed.

4.2 Software Programming Languages

4.2.1 Introduction

Software programming languages (SPLs) allow a software designer to create

executable software applications that will operate on a suitable processor. The target

processor will be one of three types: microprocessor (mP), microcontroller (mC), or
digital signal processor (DSP).

www.newnespress.com

The microprocessor is a software-programmable, integrated circuit built around a

central processing unit (CPU) and based on an instruction set that the software

program uses to perform a set of required tasks. The instruction set is one of two types:

CISC (complex instruction set computer) or a RISC (reduced instruction set computer).

As a general-purpose processor that can be designed to undertake a wide range of tasks,

the microprocessor architecture is not necessarily optimized for specific tasks.

The microcontroller is a type of microprocessor that contains additional circuitry such

as memory and communications ports (such as a UART, universal asynchronous

receiver transmitter, for RS-232 communications) along with the CPU, and is used in

embedded system applications. It does not have the generality of the general-purpose

microprocessor, but rather is a self-contained, low-cost ‘‘computer on a chip.’’

System
(digital) SystemVerilog

SystemC®

Design Requirement

Software
implementation

Hardware
implementation

C

C++

Visual
BasicTM

JAVATM

Scripting
Languages

Digital

Mixed-
Signal

Analogue

VHDL

Verilog®-HDL

Verilog®-AMS

Verilog®-A

VHDL-AMS

SPICE

Figure 4.1: Design languages

178 Chapter 4

www.newnespress.com

The digital signal processor is a specialized form of microprocessor used in real-time

digital signal processing operations. Although such operations can be performed on a

microprocessor, DSP architecture is optimized for the fast computations typically

undertaken.

Essentially, software is developed for one of two target areas:

• as a software application to run on a workstation or PC, executing on a

suitable operating system (UNIXTM, Windows�, Mac OS� or Linux�)

• as embedded software to run on a processor within an embedded system.

Examples of embedded systems include control, automotive, and aerospace

applications. The processor runs the embedded software programas a stand-alone

entity rather than through one of the above software operating systems.

For software applications to run on workstations or PCs, there are a number of

software programming languages and supporting development environments to aid

the designer. Some supporting development environments are a collection of separate

software tools that are executed by the designer separately, others are a collection of

software tools contained within a single integrated design environment (IDE).

For embedded software to run on a processor within an embedded system, the choice

of programming language and supporting development environments reduces. The C

language is most commonly used for embedded software development.

4.2.2 C

TheC programming language evolved from two previous programming languages, BCPL

and B [1]. BCPL was developed by Martin Richards in 1967. B was then developed by

Ken Thompson using many of the features found in BCPL. C evolved from B, and was

developed by Dennis Ritchie at Bell Laboratories (USA) and originally implemented in

1972. Initially designed for the UNIXTM operating system, C can now be compiled on

almost any computer (UNIXTM,Windows�, and Linux� operating systems) and is one of

the most commonly used programming languages. Most operating systems, including

Microsoft� Windows�, are written in C and/or its extension Cþþ. C is also used to

develop the software code run on the majority of processors for use in embedded system

applications. The standard for C is the ANSI/ISO Standard C [2]. The standard was first

introduced in 1989 and updated in 1999. C is hardware independent, and with careful

code design, the same source code can be portable to most computers.

Design Languages 179

www.newnespress.com

Consider an example of the ‘‘Hello World’’ program written in C. Figure 4.2 shows

the program source code and the corresponding line numbers are added for

information purposes only.

This program introduces a number of features of C. The first three lines are

comments. A comment is a piece of code that is ignored by the C compiler. Comments

are used to add useful descriptions of the functionality of the source code, and enable

easier reading of the source code by the author as well as by readers. Careful and

comprehensive commenting of the program source code is essential to good

programming practice.

The fourth, sixth, and tenth lines are left blank for readability purposes.

The fifth line is a directive to the C preprocessor. Lines that begin with the number

sign, # (also called a hash character), are processed by the C preprocessor before the

program is compiled.

The seventh line is the beginning of the program and is known as the main function.

A C program is essentially a number of functions that interact with each other in a

predefined manner. At the end of this line is an opening curly bracket, {, and on the

last line is a closing curly bracket, }. Curly brackets are used to group a number of

statements together. In this case, they are used to mark the beginning and the end of

the program, but they can also be used to group statements that are part of other

statements such as an if statement or a while statement.

The eighth line is the statement that outputs information using the printf statement.

Any text that appears between the quotation marks, ‘‘ ’’, will be printed to the

1
2
3
4
5
6
7
8
9
10
11
12
13

/**/
/* This program simply outputs a line of arbitrary text */
/**/

#include <stdio.h>

void main (void) {
 printf(“Hello World\n”);
}

/**/
/* End of File */
/**/

Figure 4.2: ‘‘Hello World’’ program in C

180 Chapter 4

www.newnespress.com

standard output (i.e., the computer display screen). The last two characters of

the printf statement are \n. This indicates a new line.

The last three lines are comments.

C program development requires a program development environment, the language,

and a C standard library. The program development environment provides the

software toolset to allow the designer to enter the design software source code, to

undertake the phases necessary for the source code to the executed, to accommodate

project management, and to enable suitable software code debugging tools.

C programs are executed in six phases:

1. Source code editing, in which the designer creates and edits the C source code

file using a suitable stand-alone text editor or an editor built into an IDE,

such as Microsoft� Visual Cþþ [3].

2. Preprocessing is undertaken prior to program compilation and uses specific

preprocessor directives that identify needed actions. Such actions include the

replacement of specific text characters within the source code and the

inclusion of other files include the source code file.

3. Compilation uses a compiler program to translate the C source code into

machine language code (also called object code) for the particular processor

used in the computer system on which the program will run.

4. Linking: C programs usually include references to functions defined elsewhere

within libraries of functions created elsewhere. The object code created by

the C compiler, then, contain gaps for the referenced functions. A linker links

the object code with the code for the referenced functions to create an

executable image that can then be run.

5. Loading places the executable image in memory for execution.

6. Execution runs (executes) the executable image on the processor used in the

computer system on which the program will run.

A C source code file carries the file extension ‘‘.c.’’

4.2.3 Cþþ

Cþþ is an extension to the C language that allows an object-oriented programming

approach to application development [1]. Cþþ uses the concepts classes and objects.

Unlike software programming languages such as ANSI standard C, which are procedural

Design Languages 181

www.newnespress.com

in nature, object-oriented programming (OOP) languages such as Cþþ (and JAVATM)

are based on objects. OOP is a design philosophy that identifies and uses the relationship

between data (variables, constants, and types) and processes (procedures and functions).

Object-oriented design identifies objects, data, and processes that relate to these objects.

Objects can be seen in everyday life and surround us. For example, a motor car that

someone owns is an object that is used for a particular purpose. It has particular

attributes that are specific to the car (such as the color and mileage), but it also has

attributes that are common to all other cars of the make and model (such as

manufacturer, engine, fuel requirements).

A vast number of attributes can be identified for any given motor car. In fact, any

object is made up of smaller objects that combine to enable its functionality.

For the purpose of this explanation (only), people can also be considered as objects in

the world, in that we all have individual attributes (height, age, hair color), and

common attributes (one head, two arms, opposable thumbs). In general, then:

• An object can undertake a number of operations, referred to as methods.

• An object has an internal state that might or might not be available to the user

of the object, either directly or through the use of the methods.

• An object is to be considered as a black box, which means its internal details

are hidden from the user. The user will use the object by applying an input

and then receiving an output. How the input is manipulated to form the

output is hidden from the user.

• An object is created from a class. The class defines the actions that the object can

undertakeand the states it canmaintain.Aclass is a templateused tocreateanobject.

• An object will have a set of attributes that are particular to the object.

Because Cþþ is a superset of C, C programs are compiled with a Cþþ compiler.

There are two points to note about Cþþ:

1. Some language additions allow programs to be written in the same manner as

a standard C program (i.e., procedural) but they must be kept in mind. The

key points are:

• single-line comments

• I/O streams

• declarations in Cþþ

182 Chapter 4

www.newnespress.com

• creating new data types in Cþþ
• function prototypes and type checking

• inline functions

• function overloading

2. Some language additions allow an OOP approach using classes and objects.

The most noticeable aspect of Cþþ programming are the comments. Both single- and

multiline comments commence with a /* and end with a */. In Cþþ, single-line

comments can also commence with a //. The second most noticeable aspect of Cþþ
programming is the manner in which input to the file and output from the program is

dealt with in the code. In C, input and output is provided with scanf and printf. In

Cþþ, streams are used to handle the input (cin) and output (cout). These aspects are

shown in the sample Cþþ source code shown in Figure 4.3. This program prompts

the user to enter two integer numbers and calculates the sum and difference. A Cþþ
source code carries the a file extension ‘‘.cc.’’

4.2.4 JAVATM

JavaTMwas developed in themid-1990s by developers at SunMicrosystems andwas first

released in 1995 [1, 4]. The software development kit (the JavaTMDevelopment Kit, JDK)

is freely available for download via the Internet from the Sun Microsystems [5]. The

current release is Java 2 version 5.0, but both Java 2 and Java 1.1 remain in common use.

The development of this object-oriented language was undertaken to overcome the

limitations posed by the Cþþ object-oriented language. It is now widely used in a

range of computing applications, in particular for Internet-based software systems. It

is an object-oriented and platform neutral language in that:

• Object-oriented allows a programmer to follow an object-oriented programming

(OOP) approach to software development in which objects are used and work

together in the overall system and are created from templates referred to as

classes.

• Platform neutral allows a program written on one operating system to be run

on any other operating system without modification. The source code is

compiled into a format referred to as bytecode, and this bytecode is then run

using a Java interpreter.

Design Languages 183

www.newnespress.com

The JavaTM language can be used to develop programs for two types of use:

• when used as an application running on an operating system (Microsoft�

Windows�, Mac OS�, UNIXTM, and LINUX�)

• when used within an Internet browser (such as Microsoft� Internet Explorer),

referred to as applets and called fromwithinHTML code viewed in the browser

//---
// C++ source code to prompt a user to enter two integer numbers, calculate
// the sum and difference and to display the results to the standard output.
//---
#include <iostream.h>

void message1();
void message2(void);

int sumFunction(int x, int y);
int diffFunction(int x, int y);

int a = 0;
int b = 0;
int sum = 0;

main() {

 cout << "\n--\n\n";
 message1();
 cin >> a;
 message2();
 cin >> b;
 cout << "\n--\n\n";
 sum = sumFunction(a, b);
 cout << "The sum of " << a << " and " << b << " is\t\t\t" << sum << "\n";
 cout << "The difference between " << a << " and " << b << " is\t" << diffFunction(a, b) << "\n";
 cout << "\n--\n";
 return 0;
}
//---
// Function prototype to prompt the user to input 'a'
void message1() {
 cout << "Enter an integer number for a ...";
}
//---
// Function prototype to prompt the user to input 'b'
void message2(void) {
 cout << "Enter an integer number for b ...";
}
//---
// Function prototype to calculate the sum of two numbers
int sumFunction(int x, int y) {
 return(a + b);
}
//---
// Function prototype to calculate the difference betweem two numbers
int differenceFunction(int x, int y) {
 return(a - b);
}
//---
// End of File
//---

Figure 4.3: Cþþ source code for input to and output from a program

184 Chapter 4

www.newnespress.com

Consider an example of the ‘‘Hello World’’ program (application) written in JavaTM.

Figure 4.4 shows the program source code (in the right column of the table),

with the corresponding line numbers (in the left column of the table) added for

informational purposes only.

This contains a single class called HelloWorld, and within this class is a single method

called main. Before the class is written, a package called java.lang is imported. This

package contains all of the classes for creating user interfaces and for painting

graphics and images. It is not strictly required for the above source code to work, but is

included to identify the use of predeveloped classes. The program could be written

without this line. In this program source code, then:

• The first line

import java.lang.*;

imports a package called java.lang.The .*means to import all classes within

the package. This is used to import packages (groups of classes) as well as

individual classes. It is not strictly required for the above source code to work as

this package is automatically available, but is included to identify the use of

predeveloped classes. The program could be written without this line.

• The second, fourth, sixth, and eighth lines are blank lines used to aid

readability.

• The third line

public class HelloWorld {

is the start of the class declaration. The class name HelloWorld matches the

file name (without the extension). It is a public class. There may be only

1
2
3
4
5
6
7
8
9
10

import java.lang.*;

public class HelloWorld {

 public static void main(String[] arguments) {

 System.out.println("Hello World");

 }
}

Figure 4.4: ‘‘Hello World’’ program in JavaTM

Design Languages 185

www.newnespress.com

one public class, which may contain a number of inner private classes.

A class is a collection of methods and properties.

• The fifth line

public static void main(String[] arguments) {

is the first line of a method called main. A class must contain a main method

in a Java application for the Java interpreter to run. A static main method

is first called when an object is created.

• The seventh line is a statement to output a string of text to the system display

(the monitor).

• The ninth line is a closing bracket around the main method.

• The tenth line is a closing bracket around the HelloWorld class.

The basic procedure for creating and running a JavaTM application includes three steps:

1. Create the JavaTM source code using a suitable text editor. The source code

file should have the file extension .java.

2. Compile the JavaTM source code into JavaTM bytecode using javac. This

bytecode is machine independent and may be run on Windows�, Linux, Mac

OS�, or UNIXTM operating systems. Theoretically, then, all the features used

on one operating system should work on the other operating systems,

although in practice one must identify any differences between the operating

systems. The bytecode carries the file extension .class signifying the JavaTM

class file that contains it.

3. Run the JavaTM bytecode. This action runs the class file (note that the .class

extension is not included). The command java <class file> runs the JavaTM

interpreter on the identified file.

4.2.5 Visual BasicTM

Visual BasicTM (VB) is a programming language developed by Microsoft� for

Windows�-based software applications [6]. Visual BasicTM is also the name of the

programming environment. This modern version of the BASIC (Beginner’s All-

purpose Symbolic Instruction Code) programming language allows developers to use

the Visual BasicTM programming environment to create applications with a graphical

186 Chapter 4

www.newnespress.com

user interface (GUI) and to take advantage of the language’s OOP features. Visual

BasicTM is part of the Microsoft� Visual Studio suite of development tools; in Visual

Studio 6.0, the tools available are Visual BasicTM 6.0, Visual Cþþ 6.0, Visual FoxPro

6.0, and Visual InterDev 6.0.

The widely used version of VB is version 6.0, although VB.net has been developed to

replace version 6.0. Additionally, VBA (Visual BasicTM for Applications) is a

modified version of VB designed as a macro language for the development of macros

in software applications such as Microsoft� Word and Excel.

Visual BasicTM applications are designed in three stages:

1. Identify the appearance of the user interface by choosing the required

items from a collection of components such as menus, buttons, text boxes, etc.

2. Write the associated scripts with each of the items in the user interface that

defines the behavior of the application.

3. Execute the program. This is undertaken from within the programming

environment during design development and debugging, and then by creating

a stand-alone executable (.exe) file.

Consider an example of an application that prints the ‘‘Hello World’’ message

written in Visual BasicTM. Figure 4.5 shows the program development within

the programming environment The center windows show the user interface as

it appears in the programming environment (top) and the associated scripts

(bottom).

Figure 4.6 shows the window that appears when the program is executed. This

application has one label (center of window) to display messages and a single item

in a pull-down menu (top of window). The script for this example is held in a

single form (.frm) file.

The script code created by the designer is shown in Figure 4.7. This consists of two

private subroutines:

1. Private Sub Form_Load()

2. Private Sub FileClose_Click()

The form name is Form1. The first subroutine (Form_Load()) identifies the actions

to be undertaken when the program initially starts. In this application, two actions

are taken. The first centers the window on the computer display screen, and the

Design Languages 187

www.newnespress.com

second updates the label (Form1.label1) with the required ‘‘Hello World’’ message.

The second subroutine identifies the actions when the menu (Figure 4.6, top of

window) action (FileClose_Click()) is performed. This ends the application and

closes the window.

Figure 4.5: ‘‘Hello World’’ program in Visual BasicTM

Figure 4.6: ‘‘Hello World’’ program as it appears to the user

188 Chapter 4

www.newnespress.com

4.2.6 Scripting Languages

Scripting languages provide a high-level application programming interface that

enables applications to be created and tested quickly [7]. Unlike languages

such as C and Cþþ that are compiled before an executable image of the

program is run, programs written in a scripting language are interpreted as they

run, thereby removing the step of having to compile a program whenever a

change is made. Programs using scripting languages can be found in many

workstation or PC applications, as well as Internet-based applications. For

example, scripting language applications are commonly used to glue together

other applications to form a single user interface for a range of existing

applications.

Private Sub FileClose_Click()

'''
' Quit the application
'''

 End
'''

End Sub

Private Sub Form_Load()

'''
' Automatically centre the form on the screen
'''

 Left = (Screen.Width - Width) \ 2
 Top = (Screen.Height - Height) \ 2

'''
' Update label1 with the required text
'''

 Form1.Label1 = "Hello World"

'''

End Sub

Figure 4.7: ‘‘Hello World’’ program script

Design Languages 189

www.newnespress.com

The main scripting languages in use today are described below:

• Javascript was created by Brendan Eich in 1995 as a Web scripting language

for creating interactive web pages on via a suitable Internet browser tool. It

was originally called LiveScript and was incorporated into the Netscape

Internet browser. Javascript runs on the user’s machine (client-side scripting)

and allows more operations than possible with HTML alone; the Javascript is

placed within the HTML document [7].

• PERL (Practical Extraction and Report Language) was developed in the late

1980s by Larry Wall as a simple text processing language. It is also used

in a wide range of applications such as file manipulation and processing,

interacting with the operating system, and establishing network connections.

It originated on the UNIXTM operating systems but is now available on all

major operating systems and includes OOP coding capabilities [7].

• Python is a high-level object-oriented scripting language. Python was invented

in 1990 by Guido van Rossum and first appeared in 1991. It has a wide range

of applications from system utility actions through Internet scripting and

database access [8].

• Tcl/Tk is the tool command language (Tcl) commonly used with an

associated toolkit called Tk. This high-level scripting language was created

by Professor John Ousterhout and runs on the Windows�, Linux�, Mac

OS�, and UNIXTM operating systems. It is machine independent in that the

same code (which is stored in an ASCII text file) can be transported across

platforms [9].

• PHP is a recursive acronym that stands for hypertext preprocessor. It is a

server-side scripting language used for creating dynamic web pages. Server-

side scripting means that the execution of all PHP source code takes place on

the server on which the PHP file is hosted. The output after the PHP source

code has been executed is HTML on the user’s web browser [10].

• VBA (Visual BasicTM for Applications) is a modified version of Visual

BasicTM designed as a macro language for the development of macros in

software applications such as Microsoft� Word and Excel.

• VBScript was developed by Microsoft� as an alternative to Javascript. It runs

on the client-side computer and only with Microsoft� Internet Explorer.

190 Chapter 4

www.newnespress.com

4.2.7 PHP

A PHP file can be created using any text editor and saving the file with the extension

:php. A PHP file can contain text as well as HTML tags and scripts. When a PHP

file is parsed, the PHP parser looks for opening and closing tags indicating that

everything between them is to be executed as PHP code. Everything that appears

outside of these tags is ignored. The most common, and recommended, syntax for the

opening tag is <?php. The syntax for the closing tag in PHP is ?> . Every command in

PHP must end with a semicolon, ;. The most basic command in PHP is the echo

command, used in the following manner: echo ‘‘some text’’. The echo command

simply outputs whatever text is placed within the quotation marks (single or double).

Comments can be made in PHP using either of two methods.

1. A single line comment is made by using two forward slashes, //. Everything

after this and until the end of the line will be a comment.

2. A multiline comment is made by beginning with /* and ending with */.

Everything that appears between these delimiters is a comment.

Consider an example of the ‘‘Hello World’’ application written in PHP. Figure 4.8

shows the program source code (in the right column of the table) and the

corresponding line numbers (in the left column of the table) added for informational

purposes only. The PHP code here is embedded within an HTML document for

browsing on a suitable Internet browser tool such as Micosoft� Internet Explorer.

In Figure 4.8, normal HTML tags are used. As these are not within the opening

and closing PHP tags, PHP simply ignores them. Then the opening tag is used on

1
2
3
4
5
6
7
8
9
10
11
12
13

<html>
<head>
<title>PHP Example 1</title>
</head>

<body>

<?php
 echo 'Hello World';
?>

</body>
</html>

Figure 4.8: ‘‘Hello World’’ using a PHP script

Design Languages 191

www.newnespress.com

line 8, and the echo statement is used to output the text Hello World on line 9. The

closing tag on line 10 concludes the PHP section of the code. Figure 4.9 shows the file

viewed in Micosoft� Internet Explorer.

Another way to create a PHP file is to output every element of the HTML file using

echo statements. This can be useful if the need arose to create totally different pages

depending on a certain event. Figure 4.10 shows a PHP file written in this way; this

file outputs the same page as the file in Figure 4.8.

Figure 4.9: ‘‘Hello World’’ using a PHP script viewed in Micosoft� Internet Explorer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

<?php

/* This is a multi-line comment.
 It only ends when the closing delimiter
 is used.
*/

 echo '<html>';

 echo '<head><title> PHP Example 2</title></head>';
 echo '<body>';

// This is a single line comment
 echo 'Hello World';

 echo '</html>';
?>

Figure 4.10: Alternative ‘‘Hello World’’ using a PHP script

192 Chapter 4

www.newnespress.com

4.3 Hardware Description Languages

4.3.1 Introduction

Hardware description language (HDL) design is based on the creation and use of

textural based descriptions of a digital logic circuit or system. By using a particular HDL

(the two IEEE standards in common use in industry and academia are Verilog�-HDL

[11] and VHDL [12]), the description of the circuit can be created at different levels of

abstraction from the basic logic gate description according to the language syntax

(the grammatical arrangement of the words and symbols used in the language) and

semantics (the meaning of the words and symbols used in the language).

Hardware circuit or system designs created using HDL is generated at different levels

of abstraction. Starting at the highest level (i.e., furthest from the circuit detail), the

system idea or concept is the initial high-level description of the design that provides

the design specification. The algorithm level describes the behavioral of the design in

mathematical terms. Neither the system idea nor the algorithm describes how the

behavior of the design is to be implemented. The algorithm structure in hardware is

described by the architecture, which identifies the high-level functional blocks to use

and how the functions are connected. The algorithm and architecture levels describe

the behavior of the design to be verified in simulation.

The next level down from the architecture is the register transfer level (RTL), which

describes the storage (in registers) and flow of data around a design, along with logical

operations performed on the data. This level is usually used by synthesis tools that

describe the design structure (the netlist of the design in terms of logic gates and

interconnect wiring between the logic gates). The logic gates are themselves

implemented using transistors. The HDL may also support switch level descriptions

that model the transistor operation as a switch (ON/OFF).

When designing with HDLs, the designer chooses what language to use and at what

level of design abstraction to work. When choosing language, the following aspects

must be considered:

• the availability of suitable electronic design automation (EDA) tools to

support the use of the language (including design management capabilities and

availability of tool use within a project)

• previous knowledge

• personal preferences

Design Languages 193

www.newnespress.com

• availability of simulation models

• synthesis capabilities

• commercial issues

• design re-use

• requirements to learn a new language and the capabilities of the language

• supported design flows within an organization

• existence of standards for the language

• access to the standards for the language

• readability of the resulting HDL code

• ability to create the levels of design abstraction required and language or EDA

tool support for these abstraction levels

• access to design support tools for the language, such as the existence of

automatic code checking tools and documentation generation tools

4.3.2 VHDL

Very high-speed integrated circuit hardware description language—VHSIC HDL or

VHDL—began life in 1980 under a United States Department of Defense (DoD)

requirement for the design of digital circuits following a common design

methodology, providing the ability for self-documentation and re-use with new

technologies. VHDL development commenced in 1983, and the language became an

IEEE standard in 1987 (IEEE Std 1076-1987). The language was revised in 1993,

2000, and 2002, the latest release being 1076-2002. VHDL also has a number of

associated standards relating to modeling and synthesis.

The HDL code is contained in an ASCII text file and therefore is transportable between

EDA tools on the same computing system, between computers, between different versions

of the EDA tools and between the different engineers within the particular design team.

The HDL code is written to conform to one of three styles:

1. A structural description describes the circuit structure in terms of the logic gates

used and the interconnect wiring between the logic gates to form a circuit netlist.

194 Chapter 4

www.newnespress.com

2. A dataflow description describes the transfer of data from input to output and

between signals.

3. A behavioral description describes the behavior of the design in terms of the

circuit and system behavior using algorithms. This high-level description uses

language constructs that resemble a high-level software programming language.

Both the dataflow description and behavioral description use similar language

constructs, but in VHDL they differ: a behavioral description uses the language

process statements, whereas a dataflow description does not.

In VHDL, a design is created initially as an entity declaration and an architecture

body. The entity declaration describes the design I/O and includes parameters that

customize the entity. The entity can be thought of as a black box with visible I/O

connections. The architecture body describes the internal working of the entity and

contains any combination of structural, dataflow, or behavioral descriptions used to

describe the internal working of the entity.

For example, consider a dataflow level description of a two-input AND gate. This is

shown in the right column of Figure 4.11, and the corresponding line numbers are in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

--
-- And_Gate: Implements a 2-input AND gate.
--

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY And_Gate IS
 Port (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY And_Gate;

ARCHITECTURE Dataflow OF And_Gate IS

BEGIN

 Z <= (A AND B);

END ARCHITECTURE Dataflow;

--
-- End of File
--

Figure 4.11: Two-input AND gate description in VHDL

Design Languages 195

www.newnespress.com

the left column for informational purposes only. The design has two inputs (A and B)

and one output (Z). The code has three main parts:

1. Top part identifies the reference libraries to use within the design

2. Middle part identifies the design entity

3. Bottom part identifies the design architecture.

Comments in VHDL start with --. Lines 1 to 3 and 22 to 24 are comments at the

beginning and ending of the file (with a .vhd extension) containing the VHDL code.

• Line 5 identifies the reference library to use in this design (IEEE), and line 6

identifies and the part(s) of the library to use.

• Lines 8 to 12 declare the entity (with a name And_Gate) and the I/O

connections (ports).

• Lines 14 to 20 identify the architecture body, using the built-in logical AND

operator to define the operation of the design within the architecture.

• Lines 4, 7, 13, 15, 17, 19, and 21 are blank lines to aid code readability.

An example test bench used to simulate the design is shown in Figure 4.12. The

structure of the test bench is the same as for a circuit design, except that there are

no inputs to or outputs from the test bench. The stimulus to apply to the circuit is

defined within the test bench, and an instance of the circuit is placed within the test

bench.

4.3.3 Verilog�-HDL

Verilog�-HDL was released in 1983 by Gateway Design System Corporation, together

with a Verilog�-HDL simulator. In 1985, the language and simulator were enhanced

with the introduction of the Verilog-XL� simulator. In 1989, Cadence Design Systems,

Inc. bought the Gateway Design System Corporation, and in early 1990, Verilog�-

HDL and Verilog-XL� were separated into two products. Verilog�-HDL, until

then a proprietary language, was released into the public domain to facilitate the

dissemination of knowledge relating to Verilog�-HDL and to allow Verilog�-HDL to

compete with VHDL, which already existed as a nonproprietary language. In 1990,

Open Verilog International (OVI) was formed as an industry consortium consisting of

computer-aided engineering (CAE) vendors and Verilog�-HDL users to control the

196 Chapter 4

www.newnespress.com

--
-- Test bench for And_Gate: Implements a 2-input AND gate.
--

--
-- Libraries and packages to use
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned_all;

--
-- Test bench Entity
--

ENTITY Test_And_Gate_vhd IS
END Test_And_Gate_vhd;

--
-- Test bench Architecture
--

ARCHITECTURE Behavioural OF Test_And_Gate_vhd IS

 COMPONENT And_Gate
 PORT(
 A : IN std_logic;
 B : IN std_logic;
 Z : OUT std_logic
);
 END COMPONENT;

 SIGNAL A : std_logic := '0';
 SIGNAL B : std_logic := '0';
 SIGNAL Z : std_logic;

BEGIN

uut: And_Gate PORT MAP(
 A => A,
 B => B,
 Z => Z
);

Testbench_Process : PROCESS
 BEGIN

 Wait for 0 ns; A <= '0'; B <= '0';
 Wait for 10 ns; A <= '1'; B <= '0';
 Wait for 10 ns; A <= '0'; B <= '1';
 Wait for 10 ns; A <= '1'; B <= '1';
 Wait;

 END PROCESS;

END ARCHITECTURE Behavioural;

--
-- End of File
--

Figure 4.12: VHDL test bench for a two-input AND gate description

www.newnespress.com

Design Languages 197

language specification. In 1995, Verilog�-HDL was reviewed and adopted as IEEE

Standard 1364 (becoming IEEE Std 1364-1995). In 2001, the standard was reviewed,

the latest version of the standard now being IEEE Std 1364-2001.

As an example, consider a structural level description of a full-adder design. This is

shown in the right column of Figure 4.13 m with the corresponding line numbers in

the left column for informational purposes only.

The design is created within a design module, which contains the design defined in

terms of logic gate primitives (AND, OR, XOR) and interconnections between the

logic gates. These logic gate primitives are defined within the language. The design has

three inputs (A, B, and Cin), and 2 outputs (Sum and Cout).

• Comments in the code start with a // on lines 1 to 4 and 21 to 23.

• The module starts on line 6 and finishes on line 19.

• Line 8 defines the module inputs, and line 9, the module output.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

///
// Module definition for full-adder.
// Design modelled using logic gates
///

module fulladder (A, B, Cin, Sum, Cout);

input A, B, Cin;
output Sum, Cout;

xor g1 (X1, B, Cin);
xor g2 (Sum, X1, A);

and g3 (X2, A, B);
and g4 (X3, B, Cin);
and g5 (X4, A, Cin);
or g6 (Cout, X2, X3, X4);

endmodule

///
// End of File
///

Figure 4.13: Full-adder description in Verilog�-HDL

198 Chapter 4

www.newnespress.com

• Lines 11, 12, and 14 to 17 define the circuit in terms of logic gate primitives

and the interconnections between the logic gates.

• Lines 5, 7, 10, 13, 18, and 20 are left blank for readability purposes.

An example test fixture for simulating the operation of the full-adder design is shown

in Figure 4.14.

4.3.4 Verilog�-A

Verilog�-HDL (sometimes referred to as Verilog�-D for digital) was originally

developed to model digital circuits and systems. The need to model analogue circuit

behavior led to the development of Verilog�-A, an analogue-only specification

providing a unique set of features over the digital modeling language [13]. Features of

the language include:

• analogue behavioral descriptions contained in separate analogue blocks

• circuit parameters that can be specified with valid range limits

• control of the simulation time step for accurate simulation

• a full set of mathematical functions and operators describe analogue circuit

behavior

• time derivative and integral operators

• circuit noise modeling

• the description of sampled data systems with Z-domain filters and linear

continuous time filters with Laplace transforms.

As an example of a Verilog�-A description for an analogue circuit, consider an

analogue voltage amplifier with a gain of þ2.0. The amplifier is modeled within

a module as an ideal amplifier (i.e., infinite input impedance and zero output

impedance, along with frequency independence). Figure 4.15 shows a graphical view

of the amplifier with input and output voltages. This is a single-ended input, single-

ended output voltage amplifier. (No circuit implementation details are included.)

The Verilog�-A description is shown in Figure 4.16. The functionality is the line:

V(sigout) <þ 2 * V(sigin);{, which states that the output voltage is twice

(�2) the input voltage. This operation is verified through time domain simulation.

Design Languages 199

www.newnespress.com

///
// Module definition for full-adder test fixture
///

module test;

reg A, B, Cin;
wire Sum, Cout;

fulladder I1 (A, B, Cin, Sum, Cout);

initial

begin

$display("\n--Start of simulation\n");

Cin = 1'b0; B = 1'b0; A = 1'b0;
#5 $display(A, " ", B, " ", Cin, " ", Sum, " ", Cout);

#5 Cin = 1'b1; B = 1'b0; A = 1'b0;
#5 $display(A, " ", B, " ", Cin, " ", Sum, " ", Cout);

#5 Cin = 1'b0; B = 1'b1; A = 1'b0;
#5 $display(A, " ", B, " ", Cin, " ", Sum, " ", Cout);

#5 Cin = 1'b1; B = 1'b1; A = 1'b0;
#5 $display(A, " ", B, " ", Cin, " ", Sum, " ", Cout);

#5 Cin = 1'b0; B = 1'b0; A = 1'b1;
#5 $display(A, " ", B, " ", Cin, " ", Sum, " ", Cout);

#5 Cin = 1'b1; B = 1'b0; A = 1'b1;
#5 $display(A, " ", B, " ", Cin, " ", Sum, " ", Cout);

#5 Cin = 1'b0; B = 1'b1; A = 1'b1;
#5 $display(A, " ", B, " ", Cin, " ", Sum, " ", Cout);

#5 Cin = 1'b1; B = 1'b1; A = 1'b1;
#5 $display(A, " ", B, " ", Cin, " ", Sum, " ", Cout);

$display("\n--End of simulation\n");

#10 $finish;

end

endmodule

///
// End of File
///

Figure 4.14: Verilog�-HDL test fixture for a full-adder description

www.newnespress.com

200 Chapter 4

Such a description is used for simulation purposes rather than attempting to

synthesize the design into analogue circuitry. To simulate the Verilog�-A description,

the Spectre� simulator is used [14]. The amplifier design module is instantiated within

the Spectre� netlist. In this design, a sine wave input voltage is applied to the

amplifier.

Input
voltage

Output
voltage

x2

Figure 4.15: Analogue voltage amplifier design with a voltage gain of +2.0

//***
// Verilog-A module for x2 voltage amplifier design
//***

`include "constants.h"
`include "discipline.h"

module plant_ahdl(sigin, sigout);

input sigin;
output sigout;

electrical sigin, sigout;

analog begin

V(sigout) <+ 2 * V(sigin);

end

endmodule

//***
// End of File
//***

Figure 4.16: Verilog�-A amplifier description

Design Languages 201

www.newnespress.com

Figure 4.17 shows an example Spectre� netlist for simulating the design. Spectre is an

analogue and mixed-signal modeling language that provides constructs for DC, AC,

transient, and noise analysis in analogue circuits and has a number of features superior

to SPICE-based simulation. It provides the features found in SPICE, and the Spectre

simulator can simulate designs developed in the native language, along with designs

written using SPICE syntax. (SPICE is discussed in detail later in this chapter.)

4.3.5 VHDL-AMS

Two modeling languages are emerging for mixed-signal (analogue and digital)

electronic and mixed-technology system modeling, these being Verilog�-AMS [15] and

VHDL-AMS [16]. These are extensions to the digital HDL Verilog�-HDL and VHDL,

which are widely used as means to model and allow for simulation, documentation, and

synthesis of digital circuits and systems from simple Boolean Logic to complex signal

processing functions. These extensions from the digital domain are generally referred to

as analogue and mixed-signal (AMS) languages for electronic circuits, but the manner

//++
// Example Verilog-A design of an analogue amplifier.
// This is simulated using the Spectre simulator.
//++

global 0
simulator lang=spectre

//++

adhl_include "/Models/ahdl/veriloga.va"

//++
// Plant Model

I0 (a b) plant_ahdl

//++
// Sine wave input

Vin (a 0) vsource dc=0 type=sine fundname="input1" delay=10m \
 sinedc=2.5 ampl=0.5 freq=2 sinephase=0 mag=1 phase=0

//++
tran tran stop=1 maxstep = 1m
//++

Figure 4.17: Spectre� simulation file for a Verilog�-A amplifier description

202 Chapter 4

www.newnespress.com

in which nondigital electronics are modeled leads to the modeling of nonelectrical and

electronic parts using the same model constructs. This provides a common means by

which to model mixed-nature, mechatronic systems [17].

VHDL-AMS is the AMS extension to VHDL. This was adopted as a standard in 1999

as IEEE Standard 1076.1-1999. This superset of VHDL supports the description

and simulation of continuous and mixed-continuous or discrete time systems. With

the ability to model digital, analogue, and mixed-signal electrical and electronic

circuits, along with nonelectrical parts, it allows the modeling of mixed-technology,

mechatronic systems. Continuous time parts of the system are modeled using

ordinary differential and algebraic equations (DAE), in which both conservative and

nonconservative systems may be modeled:

• Conservative systems use conservation semantics, such as electrical systems

obeying Kirchoff’s Laws.

• Nonconservative systems do not use conservation semantics.

As with VHDL, designs are modeled using entities and architectures. Considering the

analogue connections and signals, analogue ports are declared with a simple nature

(e.g., electrical) and with any associated quantities (e.g., voltage across the port to a

reference point and currents through the port).

Consider a simple electrical resistor-capacitor (RC)networkdrivenbya stepvoltage source

as shown in Figure 4.18. The voltage source (Vsrc) is connected between two nodes in the

circuit (the node x1 and the common node). The resistor (R1) is connected between nodes

x1 and x2. The capacitor (C1) is connected between nodes x2 and the common node.

The voltage source, resistor, and capacitor used in the design are defined in Figure 4.19.

The voltage source produces a step change voltage input that changes at 50ms and 100ms.

R1 10 kΩ

C1 1 μF Vx2Vsrc

x1 x2

Figure 4.18: RC network

Design Languages 203

www.newnespress.com

-- Step voltage source

LIBRARY DISCIPLINES;
USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;

ENTITY Source IS
 PORT(TERMINAL pos,neg: ELECTRICAL);
END Source;

ARCHITECTURE behav OF Source IS
 QUANTITY Vsource ACROSS Isource THROUGH pos TO neg;
BEGIN

IF now < 50 ms or now > 100 ms USE
 Vsource==0.0;

 ELSE
 Vsource==1.0;
 END USE;
END ARCHITECTURE behav;

-- 10 kohm resistor

LIBRARY DISCIPLINES;
USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;

ENTITY Resistor IS
 PORT (TERMINAL pos,neg : ELECTRICAL);
END Resistor;

ARCHITECTURE behav OF Resistor IS
 QUANTITY Vr ACROSS Ir THROUGH pos TO neg;
BEGIN Ir == Vr/10000.0;
END behav;

-- 1 uF capacitor

LIBRARY DISCIPLINES;
USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;

ENTITY Capacitor IS
 PORT (TERMINAL pos,neg : ELECTRICAL);
END Capacitor;

ARCHITECTURE behav OF Capacitor IS

 QUANTITY Vc ACROSS Ic THROUGH pos TO neg;

BEGIN
 Ic==1.0e-6 * Vc'dot;
END behav;

--

Figure 4.19: Component descriptions

204 Chapter 4

www.newnespress.com

These three components are placed within a test bench for simulation purposes. The

test bench code is shown in Figure 4.20.

4.3.6 Verilog�-AMS

Verilog�-AMS is the AMS extension to Verilog�-HDL [18]. It provides the

extensions to Verilog�-HDL to model mixed-signal (mixed analogue and digital)

electronics and mixed-technology (electrical/electronic and nonelectrical/electronic)

systems. It encompasses the features of Verilog�-D and Verilog�-A.

4.4 SPICE

Simulation techniques are an essential part of electrical and electronic circuit design,

providing an insight into the operation of a designed circuit prior to its being built.

This allows circuit design changes and device optimization, along with ‘‘what if ’’

scenarios that would be difficult or impossible to undertake on a real circuit. One

-- VHDL-AMS test bench for the RC network

LIBRARY DISCIPLINES;
USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;

ENTITY TestBench IS
END;

ARCHITECTURE Structure OF TestBench IS
 TERMINAL x1,x2: ELECTRICAL;
BEGIN
 Vsrc: ENTITY Source (behav) PORT MAP (x1, electrical_ground);
 R1: ENTITY Resistor (behav) PORT MAP (x1,x2);
 C1: ENTITY Capacitor (behav) PORT MAP (x2, electrical_ground);
END Structure;

-- End of VHDL-AMS test bench

Figure 4.20: VHDL-AMS test bench for the RC circuit

Design Languages 205

www.newnespress.com

example is investigating the effects on an analogue amplifier design if transistor

parameters were to change because of processing variations.

Electronic circuits and systems can be implemented as:

• printed circuit board (PCB)

• integrated circuit (IC)

• multichip module (MCM)

On a PCB design, simulation is an invaluable input to design verification and can

highlight problems that result from component and interconnect placement (e.g.,

ensuring that signal integrity is maintained). On IC and MCM designs, with complex

circuits and systems implemented on (typically) silicon dies and housed within a

suitable package, simulation is essential due to the nature of the circuits and the

limited ability to access specific parts of the design, with access only via package pins

and with potentially hundreds of thousands or millions of transistors within the IC or

MCM.

For analogue circuit simulation, SPICE (Simulation Program with Integrated

Circuit Emphasis) is the main form of analogue circuit simulation adopted [19, 20].

A range of circuit simulators based on SPICE are available for use (e.g., PSpice and

HSPICE). SPICE allows a range of circuit elements to be modeled, connected, and

analyzed. The basic analysis methods are:

• DC by DC operating point analysis

• transient by time domain simulation

• AC by frequency domain analysis

• noise by circuit noise analysis over a frequency range (used in conjunction

with AC analysis)

The basic (primitive) passive and active circuit elements include:

• resistor

• capacitor

• inductor

• magnetic elements

206 Chapter 4

www.newnespress.com

• bipolar junction transistor (BJT)

• metal oxide semiconductor field effect transistor (MOSFET)

• junction field effect transistor (JFET)

In addition, signal source (voltage and current) and behavioral models (analogue and

to a certain extent, digital) circuit elements are utilized.

Consider a resistor. This is defined in SPICE as: Rname þnode �node [model name]

value [TC=TC1, [, TC2]]

which defines the resistor device (R) with a unique identifier (name) and with two

nodes (þnode, �node), an optional model to use ([model name]) to modify the

resistance calculation value, a resistance value in ohms (value) and optional

temperature coefficients ([TC=TC1, [, TC2]]).

Note also that SPICE syntax is not case sensitive. A simple 10 k� resistor (with

a name input) connected between two nodes (A and B) is defined as: Rinput

A B 10k.

A SPICE netlist is created to define the circuit and control the simulation. As an

example, consider a simple electrical RC network driven by a step voltage source as

shown in Figure 4.21. The voltage source (Vsrc) is connected between two nodes in

the circuit (the node x1 and the common node). The resistor (R1) is connected

between nodes x1 and x2. The capacitor (C1) is connected between nodes x2 and the

common node.

The voltage source produces a step change voltage input that changes at 50ms and

100ms. The SPICE netlist for simulation purposes is shown in Figure 4.22.

R1 10 kΩ

C1 1 μF Vx2 Vsrc

x1 x2

Figure 4.21: RC network

Design Languages 207

www.newnespress.com

4.5 SystemC�

SystemC� [27] is an ANSI standard C++ class library for supporting the

development of electronic systems that are a hybrid of hardware and software. As

such, it is used by the developers of complex electronic systems. SystemC� is closely

related to the C++ programming language and adheres to terminology used in the

ISO/IEC 14882:2003 international standard for the C++ programming

language [28]. It is a single unified design and verification language using open-source

C++ classes to describe system architectural and other attributes. SystemC� [29] is

used for both simulation of hardware providing for simulation performance benefits

over RTL level Verilog�-HDL or VHDL design descriptions and for functional

verification. In functional verification, then the same platform is used for verification

of the software and the entire system.

* SPICE netlist for RC network

**
* Set the circuit temperature
**
.temp 25
**
* Circuit components
**
Vin x1 0 PWL(0,0 50m,0 51m,5 100m,5, 101m,0)
R1 x1 x2 10k
C1 x2 0 1uF
**
* Run transient analysis
**
.tran 1ms 200ms
**
* End simulation
**
.end
**
* End of File
**

Figure 4.22: SPICE netlist for RC network

208 Chapter 4

www.newnespress.com

Early work on SystemC� was undertaken by a number of companies and

organisations and is now covered by the IEEE standard 1666TM-2005 [30].

This standard provides the definition of the SystemC� class library so that

a SystemC� implementation could be developed with reference solely to the

standard.

4.6 SystemVerilog

SystemVerilog [27] is a unified hardware description language for design, specification

and verification that is used for complex digital ICs that form IC based systems

(i.e. system on a chip (SoC) designs) that:

• Have a large number of logic gates (a large gate count),

• Are IP based (use IP blocks from one or more sources that are connected to

form the overall system),

• Require the use of internal bus arrangements for extensive signal movement

around the IC.

With such designs, the verification [28] of such designs starts to dominate the overall

system development process.

SystemVerilog [29] was originally developed by Accellera [30] and is now covered

by the IEEE standard 1800TM-2005 [31]. The motivation for the development of

SystemVerilog came from the need to improve the productivity in the design of

complex digital ICs that form IC based systems with the above three

characteristics. This unified hardware description language forms a major

extension to the Verilog� -HDL standard (IEE Std 1364 TM-2005) [32]. It is

primarily aimed at IC level design implementation and verification, but includes

links into system-level design flow. Through a direct programming interface

(DPI), there is a two-way interface between SystemVerilog and C/C++/SystemC

functions. Therefore, SystemVerilog designs can be co-simulated with SystemC

blocks. This enables a link between system level design and IC implementation/

verification. It also provides features that support the development of hardware

models and test fixtures (test benches) using object oriented programming

techniques.

Design Languages 209

www.newnespress.com

4.7 Mathematical Modeling Tools

Mathematical modeling and simulation tools are increasingly used in designing

hardware circuits and systems because they allow fast development and interpretation

of the algorithms that the hardware is to implement. A number of mathematical tools

exist:

• MATLAB� [21, 22]

• Mathematica [23]

• Modelica [24]

• Maple [25]

• Scilab [26]

As an example of such a tool, consider MATLAB� from The Mathworks Inc. It

integrates mathematical computing and data visualization tasks that are underpinned

with the tool using its own modeling language. MATLAB� is accompanied with a

range of toolboxes, blocksets, and other tools that allow a range of engineering and

scientific applications. In such an approach, various ideas can be investigated as part

of an overall design process to arrive at a final and optimal solution. The toolboxes

and blocksets are utilized for:

• data acquisition

• data analysis and exploration

• visualization and image processing

• algorithm prototyping and development

• modeling and simulation

• programming and application development

Examples of the currently available toolboxes and blocksets are shown in

Table 4.1.

Simulink� is commonly used by control system designers and increasingly by

electronic circuit designers to model the operation of the required circuit or system in

a block diagram format. As an example of this, consider a SISO (single input, single

210 Chapter 4

www.newnespress.com

output) closed-loop DCmotor control system. Here, speed control is required with no

steady-state error. The motor is modelled as a first-order system with a Laplace

transform and is controlled by a PI (proportional plus integral) controller. Figure 4.23

shows the motor control system block diagram with a PI controller.

An example Simulink� model for this system is shown in Figure 4.24.

Table 4.1: Example toolboxes within MATLAB�

Communications
Blockset

A blockset that builds on the Simulink� system level design environment for
modeling the physical layer of a communication system.

Communications
Toolbox

A library of MATLAB� functions that supports the design of communication
system algorithms and components. It builds on the powerful capabilities
of MATLAB� and the Signal Processing Toolbox by providing functions to
model the physical layer of a communication system.

Control System
Blockset

A collection of algorithms that implement common control system design,
analysis, and modeling techniques.

Filter Design HDL
Coder

Filter Design HDL Coder allows for the generation of synthesisable and
portable HDL code for fixed-point filters that have been designed using
the Filter Design toolbox. Both Verilog� -HDL and VHDL code can be
generated. It also automatically creates VHDL and Verilog� -HDL test
fixtures/test benches for simulating, testing, and verifying the generated
HDL code.

Filter Design
Toolbox

The Filter Design Toolbox extends the Signal Processing Toolbox. It is a
collection of tools that provide techniques for designing, simulating and
analysing digital filters with filter architectures and design methods for
complex real-time DSP applications

Fuzzy Logic
Toolbox

Provides a graphical user interface to support the steps involved in fuzzy
logic design.

Signal Processing
Toolbox

A collection of MATLAB� functions that provides a customizable framework
for analogue and digital signal processing.

Simulink� An interactive tool for modeling, simulation, and analysis of dynamic,
multidomain systems using a graphical, block diagram approach.

Simulink� Fixed
Point

Simulink� Fixed Point allows for the design of control and signal processing
systems using fixed-point arithmetic.

Simulink� HDL
Coder

Simulink�HDL Coder allows for the generation of synthesisable and
portable HDL code from Simulink� models, Stateflow� charts and
Embedded MATLAB� code. Both Verilog�-HDL and VHDL code can be
generated.

Stateflow� Stateflow�extends Simulink� for developing state machines and flow charts
through a design environment. It provides language elements required to
describe complex logic in a natural, readable, and understandable form.

Design Languages 211

www.newnespress.com

Therefore, in this model:

• The motor is modeled as a Laplace transform with the transfer function
1/(1 þ 0.1s).

• The proportional gain is 2, and the integral gain is 8 (not optimized).

• This is a high-level behavioral model and does not take into account aspects

such as value limits, slew rate, and dead-zones.

P
+

+

+
–

I

Motor

Tachogenerator

Command Input
(Desired Speed)

Motor Shaft
Speed

Figure 4.23: Motor control system example with PI control

Figure 4.24: Simulink� model for the motor control system example

212 Chapter 4

www.newnespress.com

• The motor model contains the tachogenerator.

• The command input (required speed) and actual motor speed outputs here are

considered to be voltages, and the motor shaft speed uses suitable units (e.g.,

rads/sec).

• The model uses the built-in Simulink� library blocks, and no design hierarchy

has been developed.

The motor model is a simple first-order Laplace transform that models the motor and

tachogenerator as a single unit. It was created by monitoring the tachogenerator

output voltage to a step change in motor speed command input voltage. This is

reasonably representative of the motor reaction to larger step changes in command

input, but does not model nonideal characteristics such as a motor dead-zone around

a null (zero) command input and the need for a minimum command input voltage

required for the motor to react to a command input change.

Design Languages 213

www.newnespress.com

References

[1] Deitel, H. M., and Deitel, P. J., C, How to Program, Fourth Edition, Prentice

Hall, 2004, ISBN 0-13-122543-X.

[2] American National Standards Institute, INCITS/ISO/IEC 9899-1999 (R2005),

Programming languages – C (formerly ANSI/ISO/IEC 9899-1999), http://

www.ansi.org

[3] Microsoft� Corporation, Microsoft� Visual Cþþ�, http://www.microsoft.com

[4] Sun Microsystems, Java Platform, Standard Edition (J2SE) http://java.sun.com/

j2se/

[5] Cadenhead, R., and Lemay, L., SAMS Teach Yourself JavaTM 2 in 21 days,

SAMS, 2004, ISBN 0-672-32628-0.

[6] Microsoft� Corporation, Microsoft� Visual BasicTM, http://www.microsoft.com

[7] Barron, D., TheWorld of Scripting Languages, Wiley, 2000, ISBN 0-471-99886-9.

[8] Lutz, M., Programming Python, Second Edition, O’Reilly, ISBN 0-596-00085-5.

[9] Sastry, V., and Sastry, L., SAMS Teach Yourself Tcl/Tk in 24 Hours, SAMS,

2000, ISBN 0-672-31749-4.

[10] Meloni. J. C., SAMS Teach Yourself PHP, MySQLTM and Apache in 24 Hours,

2003, ISBN 0-672-32489-X.

[11] The Institute of Electrical and Electronics Engineers, IEEE Std 1364-2001,

IEEE Standard VHDL Language Reference Manual,http://www.ieee.org

[12] The Institute of Electrical and Electronics Engineers, IEEE Std 1076-2002,

IEEE Standard Verilog Hardware Description Language,http://www.ieee.org

[13] Open Verilog International, Verilog-A Language Reference Manual Analog

Extensions to Verilog HDL ,Version 1.0, August 1996, http://www.verilog.org/

[14] Cadence Design Systems Inc., USA, http:://www.cadence.com

[15] Accelera Verilog Analog Mixed-Signal Group, http://www.verilog.org/verilog-

ams/

[16] The Institute of Electrical and Electronics Engineers, IEEE Std 1076.1-1999.

IEEE Standard VHDL Analog andMixed-Signal Extensionshttp://www.ieee.org

[17] Bradley, D., Seward, D., Dawson, D., and Burge, S., Mechatronics and the Design

of Intelligent Machines and Systems. Stanley Thornes, 2000, ISBN 0-7487-5443-1.

[18] Pecheux, F., Lallement, C., and Vachoux, A., ‘‘VHDL-AMS and Verilog-AMS

as Alternative Hardware Description Languages for Efficient Modeling of

Multidiscipline Systems,’’ IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 24, No. 2, February 2005.

214 Chapter 4

www.newnespress.com

[19] SPICE: Simulation Program with Integrated Circuit Emphasis, Version 3f5,

University of California, Berkeley, USA.

[20] Tuinenga, P., SPICE, A Guide to Circuit Simulation and Analysis Using Pspice.

Third Edition, Prentice Hall, 1995, ISBN 0-13-158775-7.

[21] The Mathworks Inc., http://www.themathworks.com

[22] Hanselman, D., and Littlefield, B., Mastering Matlab 6—A Comprehensive

Tutorial and Reference, Prentice Hall, USA, 2001, ISBN 0-13-019468-9.

[23] Wolfram Research, http://www.wolfram.com/

[24] Modelica Association, http://www.modelica.org/

[25] Maplesoft, http://www.maplesoft.com

[26] Scilab, http://www.scilab.org

[27] SystemC, http://www.systemc.org

[28] American National Standards Institute, INCITS/ISO/IEC 14882-2003, Program-

ming languages - C++, http://www.ansi.org

[29] Grotker T. et al., ‘‘System Design with SystemC’’, Kluwer Academic Publishers,

2004, ISBN 1-4020-7072-1

[30] IEEE Std 1666TM-2005, IEEE Standard SystemC� Language Reference

Manual, IEEE, http://www.ieee.org

[31] SystemVerilog, http://www.systemverilog.org

[32] Mintz M. and Ekendahl R., ‘‘Hardware Verification with System Verilog:

An Object-Oriented Framework’’, Springer-Verlag New York, May 2007,

ISBN 9780387717388

[33] Sutherland S., Davidmann S. and Flake P., ‘‘SystemVerilog for Design:

A Guide to Using SystemVerilog for Hardware Design and Modeling’’, Second

Edition, Springer, 2006, ISBN 0-387-3399-1

[34] Accellera, http://www.accellera.org

[35] IEEE Std 1800TM-2005, IEEE Standard for SystemVerilog - Unified Hardware

Design, Specification, and Verification Language, IEEE, http://www.ieee.org

[36] IEEE Std 1364TM-2005, IEEE Standard for Verilog� Hardware Description

Language, IEEE, http://www.ieee.org

Design Languages 215

www.newnespress.com

Student Exercises

4.1 Consider the VHDL design description shown in Figure 4.11. This description

is to be placed within a text file on the particular PC or workstation used.

Using the C programming language, write a program that will read in this

design description and identify the number of inputs and outputs that the

design has. This information is to be presented to the user of the program

using both the computer visual display unit and as an output text file. Suitably

format the information to aid the user of the program.

4.2 Repeat question 4.1, but now use JAVATM.

4.3 Repeat question 4.1, but now use Visual BasicTM.

4.4 Consider the Verilog�-HDL design description shown in Figure 4.13.

This description is to be placed within a text file on the particular PC or

workstation used. Using the C programming language, write a program

that will read in this design description and identify the number of inputs

and outputs that the design has, along with the number of each type of

logic gate used. This information is to be presented to the user of the

program using both the computer visual display unit and as an output text

file. Suitably format the information to aid the user of the program.

4.5 Repeat question 4.4, but now use JAVATM.

4.6 Repeat question 4.4, but now use Visual BasicTM.

4.7 Consider the SPICE design description shown in Figure 4.22. This description

is to be placedwithin a text file on the particular PC orworkstation used.Using

the C programming language, write a program that will read in this design

description and identify the number of circuit nodes that the design has, along

with the number of each type of electrical component (resistor, capacitor, etc.)

used. This information is to be presented to the user of the program using both

the computer visual display unit and as an output text file. Suitably format the

information to aid the user of the program.

4.8 Repeat question 4.7, but now use JAVATM.

4.9 Repeat question 4.7, but now use Visual BasicTM.

4.10 Consider the Simulink� model of the closed-loop control system identified

in Figure 4.24. Using this model as a starting point, identify the overall

system transfer function (i.e., output / input) using Laplace transforms.

4.11 Using the system transfer function derived in question 4.10, identify

the poles and zeros of the system. Comment on the stability of the overall

system with the values used for the proportional and integral gains.

216 Chapter 4

www.newnespress.com

CHA P T E R 5

Introduction to Digital Logic
Design

5.1 Introduction

Although the world that we live in is analogue in nature, in electronic circuits and

systems digital circuits are widely used and can be designed to perform many actions

that were originally undertaken in analogue circuitry, as well as providing potential

benefits over analogue circuit operation. The electronic system shown in Figure 5.1

will perform its operations on signals that are either analogue or digital in nature,

using either analogue or digital electronic circuits [1]. Hence, a signal may be one of

two types: analogue or digital.

An analogue signal is a continuous or discrete-time signal with an amplitude that is

continuous in value between a lower and upper limit, but may be either a continuous-

time or discrete-time signal.

A digital signal is a continuous or discrete-time signal with discrete values between a

lower and upper limit. These discrete values are represented by numerical values and

are suitable for digital signal processing. If the discrete-time signal has been derived

from a continuous-time signal by sampling, then the sampled signal is converted into

a digital signal by quantization: quantization produces a finite number of values from

a continuous amplitude signal. It is common to use the binary number (i.e., two

values, 0 or 1) system to represent a number digitally.

www.newnespress.com

In the digital domain, the choice of implementation technology is essentially whether to

use dedicated- (and fixed-) functionality digital logic, to use a software-programmed

processor based system (microprocessor, mP; microcontroller, mC; or digital signal
processor, DSP), or to use a hardware-configured programmable logic device (PLD)

such as the simple programmable logic device (SPLD), complex programmable logic

device (CPLD), or the field programmable gate array (FPGA). Memory—random

access memory (RAM) or read-only memory (ROM)—is also widely used in many

digital electronic circuits and systems. The choices are shown in Figure 5.2.

The initial choice for implementing the digital circuit is between a standard

product IC (integrated circuit) and an ASIC (application-specific integrated

circuit) [2]:

• Standard product IC: an off-the-shelf electronic component that has been

designed and manufactured for a given purpose, or range of use, and that is

commercially available. It is purchased either from a component supplier or

directly from the designer or manufacturer.

• ASIC: an integrated circuit that has been specifically designed and

manufactured for a particular application.

For many applications, developing an electronic system based on standard product

ICs is more cost effective than ASIC design. Undertaking an ASIC design project

also requires access to IC design experience, IC computer-aided design (CAD)

tools, and a suitable manufacturing and test capability. Whether a standard

product IC or ASIC design approach is taken, the type of IC used or developed

will be one of four types:

1. Fixed-functionality: These ICs have been designed to implement a specific

functionality and cannot be changed. The designer uses a set of these ICs to

implement a given overall circuit functionality. Changes to the circuit

requires a complete redesign of the circuit and the use of different fixed-

functionality ICs.

System Input x Response y

Figure 5.1: Electronic system block diagram

218 Chapter 5

www.newnespress.com

2. Processor: Most people are familiar with processors in everyday use; the heart

of the PC is a microprocessor. This component runs a software program to

implement a required functionality. By changing the software program, the

processor will operate a different function. The three types of processor

Digital Circuit
Requirements

Standard
Product IC

ASIC

PLD

Fixed
Functionality

Processor

Microprocessor

Microcontroller

Digital Signal
Processor

Simple PLD

Complex PLD

Field
Programmable

Gate Array

PLD

Processor

Fixed
Functionality

Memory

Memory

ROM

RAM

Figure 5.2: Technology choices for digital circuit design

Introduction to Digital Logic Design 219

www.newnespress.com

are microprocessor (mP), microcontroller (mC), and digital signal

processor (DSP).

3. Memory: Memory is used to store, provide access to, and allow modification

of data and program code for use within a processor-based electronic circuit/

system. The two types of memory are ROM (read-only memory) and RAM

(random access memory). ROM is used for holding program code that

must be retained when the memory power is removed; this is nonvolatile

storage. The code can either be fixed when the memory is fabricated (mask

programmable ROM), electrically programmed once (PROM, programmable

ROM) or electronically programmed multiple times. Multiple programming

capacity requires the ability to erase prior programming, which is available

with EPROM (electrically programmable ROM, erased using ultraviolet

[UV] light), EEPROM or E2PROM (electrically erasable PROM), or flash

(also electrically erased). PROM is sometimes considered to be in the same

category of circuit as simple programmable logic device (SPLD), although in

this text, PROM is considered in the memory category only. RAM is used for

holding data and program code that require fast access and the ability to

modify the contents during normal operation. RAM differs from read-only

memory (ROM) in that it can be both read from and written to in the normal

circuit application. However, flash memory can also be referred to as

nonvolatile RAM (NVRAM). RAM is considered to provide a volatile

storage since, unlike ROM, the contents of RAM are lost when the power is

removed. There are two main types of RAM: static RAM (SRAM) and

dynamic RAM (DRAM).

4. PLD: The programmable logic device, the main focus of this book, is an IC

that contains digital logic cells and programmable interconnect [3, 4] to enable

the designer to configure the logic cells and interconnect within the IC itself to

form a digital electronic circuit within a single packaged IC. In this, the hardware

resources (the available hardware for use) are configured to implement the

required functionality. By changing the hardware configuration, the PLD

performs a different function. Three types of PLD are available: the simple

programmable logic device (SPLD), the complex programmable logic device

(CPLD), and the field programmable gate array (FPGA).

Both the processor and PLD enable the designer to implement and change the

functionality of the IC by either changing the software program or the hardware

220 Chapter 5

www.newnespress.com

configuration. To avoid potential confusion, in this book the following terms will be

used to differentiate the PLD from the processor:

• The PLD will be configured using a hardware configuration.

• The processor will be programmed using a software program.

An ASIC can be designed to create any one of the four standard product IC forms

(fixed-functionality, processor, memory, or PLD). A standard product IC is designed

in the same manner as an ASIC, so anyone who has access to an ASIC design,

fabrication, and test facility can create an equivalent to a standard product IC (given

that patent and legal issues of IP [intellectual property] for existing designs and

devices are taken into account).

No matter how complex the digital circuit design, and the types of operations

it is required to undertake, the operation is based on a small number of basic

combinational and sequential logic circuit elements that are connected to form

the required circuit operation:

• Combinational logic: A combinational logic circuit is defined by a Boolean

expression, and the output from the circuit (in logic terms) is a function of

the logic input values, the logic gates used (AND, OR, etc.), and the way in

which the logic gates are connected [5, 6]. The output becomes a final value

when the inputs change after a finite time, which is the time required for the

logic values to propagate through the circuit given signal propagation delays

in each of the logic gates and any delays in the interconnections between

the logic gates. The basic combinational logic circuit elements (gates) are:

* AND gate

* NAND gate

* OR gate

* NOR gate

* exclusive-OR (EX-OR) gate

* exclusive-NOR (EX-NOR) gate

* inverter

* buffer

Introduction to Digital Logic Design 221

www.newnespress.com

• Sequential logic: In a sequential logic circuit, the output from the circuit becomes

a value based on the logic input values, the logic gates used, the way in which the

logic gates are connected, and on the current state of the circuit [5, 6]. In a

synchronous sequential logic circuit, the output change occurs either on the edge of

a clock signal change (from 0 to 1 or from 1 to 0) or on a clock signal level (logic 0

or 1). However, an asynchronous sequential logic circuit does not use a clock

input. In the sequential logic circuit, the circuit will hold or remember its current

value (state) and will change state only on clock or data changes. A sequential

logic circuit might also contain additional control signals to reset or set the circuit

into a known state either when the circuit is initially turned on or during normal

circuit operation. The basic sequential logic circuit elements (gates) are:

* S-R flip-flop

* J-K flip-flop

* toggle flip-flop

* D-latch

* D-type flip-flop

5.2 Number Systems

5.2.1 Introduction

In everyday life, we use the decimal number system (base, or radix, 10), which allows

the creation of numbers with digits in the set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The ten possible

digits are combined to create integer and real numbers. However, base 10 is not the

only number system. Digital circuits and systems use the binary (base, or radix, 2)

number system, which allows for the creation of numbers with digits in the set: 0, 1.

The 0 and 1 numbers are logic levels (0=logic 0, 1=logic 1), which are created by

voltages in a circuit:

• In positive logic, 0 is formed by a low voltage level, and 1 is formed by a high

voltage level.

• In negative logic, 0 is formed by a high voltage level, and 1 is formed by a low

voltage level.

In this text, only positive logic will be used and will use the voltage levels shown in

Table 5.1.

222 Chapter 5

www.newnespress.com

Decimal and binary number systems are only two of four number systems used in

digital circuits and systems:

1. decimal (base 10)

2. binary (base 2)

3. octal (base 8)

4. hexadecimal (base 16)

As some point in the design and analysis of a digital circuit, it will be necessary to

convert between the different number systems to view and manipulate values

propagating through the design. Such conversion is typically undertaken to aid the

interpretation and understanding of the design operation.

In addition, a binary number can have different meanings as different binary coding can

be chosen for different design requirement. The main binary coding schemes used are:

1. unsigned (or straight) binary

2. signed binary (1s complement or 2s complement)

3. Gray code

4. binary coded decimal (BCD)

Unsigned binary numbers are used to represent positive numbers only. Signed binary

numbers are used to represent positive and negative numbers that are coded to allow

arithmetic using either 1s complement or 2s complement notation. Twos complement

notation is more commonly used and will be considered in this text. Gray code allows

for a one-bit change when moving from one value to the next (or previous) value.

BCD provides a simple conversion between binary and decimal numbers.

All four binary coding schemes are fully discussed in the following sections.

Table 5.1: Typical voltage levels
representing positive logic

Logic level +5V logic +3.3 V logic

0 +5.0 V +3.3 V
1 0 V 0 V

Introduction to Digital Logic Design 223

www.newnespress.com

5.2.2 Decimal–Unsigned Binary Conversion

The conversion between decimal and binary involves identifying the particular

decimal value for the particular binary code (or vice versa). Both decimal-to-binary

and binary-to-decimal conversion is common and a binary number will be needed

to represent each decimal number. If both the decimal and binary numbers are

unrestricted in size, then an exact conversion is possible.

In unsigned (or straight) binary, the numbers represented by the binary code will be

positive numbers only. Each digit in the binary number will contribute to the

magnitude of the value. For example, consider the decimal value 810. In unsigned

binary, this is represented by 10002. Each digit in the decimal number has a value in

the set of (0, 1, 2, 3, 4, 5, 6, 7, 8, 9). Each digit in the binary number is in the

set of (0, 1). A binary digit is referred to as a bit (binary digit).

The magnitude of the decimal number is the sum of the product of the value

of each digit in the number (d) and its position (n). The position immediately

to the left of the decimal point is position zero (0). The value of the digit has

a weight of 2n where n is the position number. Moving left from position 0

(in the integer part of the number), the position increments by 1. Moving right

from position zero (into the fractional part of the number), the position

decrements by 1. Therefore, the magnitude of the number is given by:

Magnitude = (dn.10
n) + (dn�1.10

n–1) + (dn–2.10
n–2) +� � �+ (d0.10

0) + (d–1.10
–1)

+� � �+ (d–n.10
–n)

Here, the decimal number is written as:

dndn�1dn�2 . . . d0.d�1 d�n

Some example decimal numbers are:

810 is [(8� 100)]10

1810 is [(1� 101) + (8� 100)]10

21810 is [(2� 102) + (1� 101) + (8� 100)]10

218.310 is [(2� 102) + (1� 101) + (8� 100) + (3� 10–1)]10

218.3710 is [(2� 102) + (1� 101) + (8� 100) + (3� 10–1) + (7� 10–2)]10.

224 Chapter 5

www.newnespress.com

The binary number is a base 2 number whose magnitude is the sum of the

product of the value of each digit in the number (b) and its position (n). Moving

left from position 0 (in the integer part of the number), the position increments

by 1. The value of the digit has a weight of 2n where n is the position number.

Moving right from position zero (into the fractional part of the number), the

position decrements by 1. This allows the creation of numbers with digits in the

set: 0, 1. Therefore, in general the magnitude of the number (as a decimal number)

is given by:

Magnitude = (bn.2
n) + (bn–1.2

n–1) + (bn–2.2
n–2) +� � �+ (b0.2

0) + (b–1.2
–1) +� � �

+ (b–n.2
–n)

Here, the binary number is written as bnbn�1bn�2 . . .b0.b�1 b�n. Some example

binary numbers are:

12

102

1012

101.12

101.012

The decimal number equivalent for a binary number can be created by taking the

binary number and calculating its magnitude (as a decimal number):

Magnitude = (bn.2
n) + (bn–1.2

n–1) + (bn–2.2
n–2) +� � �+ (b0.2

0) + (b–1.2
–1) +� � �

+(b–n.2
–n)

Some example binary numbers are:

110 is [(1� 20)]10 = 110

1010 is [(1� 21) + (0� 20)]10 = 210

10110 is [(1� 22) + (0� 21) + (1� 20)]10 = 510

101.110 is [(1� 22) + (0� 21) + (1� 20) + (1� 2–1)]10 = 5.510

101.0110 is [(1� 22) + (0� 21) + (1� 20) + (0� 2–1) + (1� 2–2)]10 = 5.2510.

Introduction to Digital Logic Design 225

www.newnespress.com

The binary number equivalent of a decimal number is created by dividing the decimal

number by 2 until the result of the division is 0. The remainder of the total division

forms the binary number digits, the remainder from the first division forms the least

significant bit (LSB) of the binary number, and the remainder from the last division

forms the most significant bit (MSB) of the binary number.

Consider the number 810. The conversion procedure is:

Action Division Remainder Binary number digit

Start with the decimal number (d = 8)
Divide by 2 d/2 = 8/2 = 4 0 b0 = 0
Divide by 2 d/2 = 4/2 = 2 0 b1 = 0
Divide by 2 d/2 = 2/2 = 1 0 b2 = 0
Divide by 2 d/2 = 1/2 = 0 1 b3 = 1

The binary number can be read as: 810=(b3b2b1b0)2=10002.

Consider now the number 21810. The conversion procedure is:

Action Division Remainder Binary number
digit

Start with the decimal number (d = 218)
Divide by 2 d/2 = 218/2 = 109 0 b0 = 0
Divide by 2 d/2 = 109/2 = 54 1 b1 = 1
Divide by 2 d/2 = 54/2 = 27 0 b2 = 0
Divide by 2 d/2 = 27/2 = 13 1 b3 = 1
Divide by 2 d/2 = 13/2 = 6 1 b4 = 1
Divide by 2 d/2 = 6/2 = 3 0 b5 = 0
Divide by 2 d/2 = 3/2 = 1 1 b6 = 1
Divide by 2 d/2 = 1/2 = 0 1 b7 = 1

The binary number can be read as: 21810=(b7b6b5b4b3b2b1b0)2=110110102.

5.2.3 Signed Binary Numbers

Unsigned (or straight) binary numbers are used when the operations use only positive

numbers and the result of any operations is a positive number. However, in most DSP

tasks, both the number and the result can be either positive or negative, and the

unsigned binary number system cannot be used. The two coding schemes used to

achieve this are the 1s complement and 2s complement.

226 Chapter 5

www.newnespress.com

The 1s complement of a number is obtained by changing (or inverting) each of the bits

in the binary number (0 becomes a 1 and a 1 becomes a 0):

Original binary number: 10001100

1s complement: 01110011

The 2s complement is formed by adding 1 to the 1s complement:

Original binary number: 10001100

1s complement: 01110011

2s complement: 01110100

TheMSB of the binary number is used to represent the sign (0=positive, 1=negative)

of the number, and the remainder of the number represents the magnitude. It is

therefore essential that the number of bits used is sufficient to represent the required

range, as shown in Table 5.2. Here, only integer numbers are considered.

Twos complement number manipulation is as follows:

• To create a positive binary number from a positive decimal number, create the

positive binary number for the magnitude of the decimal number where the

MSB is set to 0 (indicating a positive number).

• To create a negative binary number from a negative decimal number, create

the positive binary number for the magnitude of the decimal number where

the MSB is set to 0 (indicating a positive number), then invert all bits and add

1 to the LSB. Ignore any overflow bit from the binary addition.

• To create a negative binary number from a positive binary number, where the

MSB is set to 0 (indicating a positive number), invert all bits and add 1 to the

LSB. Ignore any overflow bit from the binary addition.

• To create a positive binary number from a negative binary number, where the

MSB is set to 1 (indicating a negative number), invert all bits and add 1 to the

LSB. Ignore any overflow bit from the binary addition.

The 2s complement number coding scheme is widely used in digital circuits and

system design and so will be explained further. Table 5.3 shows the binary

representations of decimal numbers for a four-bit binary number. In the unsigned

binary number coding scheme, the binary number represents a positive decimal

Introduction to Digital Logic Design 227

www.newnespress.com

number from 010 to +1510. In the 2s complement number coding scheme, the decimal

number range is –810 to +710.

In this, the most negative 2s complement number is 110 greater in magnitude than the

most positive 2s complement number. The number range for an n-bit number is: –2N

to +(2N – 1).

Table 5.3: Decimal to binary conversion

Decimal number 4-bit unsigned binary number 4-bit 2s complement signed binary number

+15 1111 —
+14 1110 —
+13 1101 —
+12 1100 —
+11 1011 —
+10 1010 —
+9 1001 —
+8 1000 —
+7 0111 0111
+6 0110 0110
+5 0101 0101
+4 0100 0100
+3 0011 0011
+2 0010 0010
+1 0001 0001
0 0000 0000
–1 — 1111
–2 — 1110
–3 — 1101
–4 — 1100
–5 — 1011
–6 — 1010
–7 — 1001
–8 — 1000

Table 5.2: Number range

Number of bits Unsigned binary range 2s complement number range

4 010 to +1510 –810 to +710
8 010 to +25510 –12810 to +12710

16 010 to +65,53510 –32,76810 to +32,76710

228 Chapter 5

www.newnespress.com

Addition and subtraction are undertaken by addition and if necessary inversion

(creating a negative number from a positive number and vice versa). Table 5.4 shows

the cases for addition and subtraction of two numbers (A and B). It is essential

to ensure that the two numbers have the same number of bits, the MSB represents

the sign of the binary number, and the number of bits used is sufficient to represent

the range of possible inputs and the range of possible outputs.

Figure 5.3 shows an arrangement where two inputs are either added or subtracted,

depending on the logic level of a control input. This arrangement requires an adder, a

Table 5.4: 2s complement addition and subtraction

Arithmetic
operation

Polarity
of input A

Polarity of
input B

Action

Augend Addend
Addition(A + B) Positive Positive Add the augend to the addend and disregard

any overflow.Positive Negative
Negative Positive
Negative Negative
Minuend Subtrahend

Subtraction(A � B) Positive Positive Negate (invert) the subtrahend, add this to the
minuend, and disregard any overflow.Positive Negative

Negative Positive
Negative Negative

A Result

Complement
(invert and add 1)

B

+

+

Adder

Digital switch (multiplexer)

Control (0 = add, 1 = subtract)

1

0

Figure 5.3: Addition and subtraction (2’s complement arithmetic)

Introduction to Digital Logic Design 229

www.newnespress.com

complement (a logical inversion of the inputs bits and add 1, disregarding any

overflow), and a digital switch (multiplexer).

Input numbers in the range –810 to +710 are represented by four bits in binary.

However, the range for the result of an addition is –1610 to +1410, and the range for

the result of a subtraction is –1510 to +1510. The result requires five bits in binary to

represent the number range (one bit more than the number of bits required to

represent the inputs), so the number of bits to represent the inputs will be increased by

one bit before the addition or subtraction:

• In an unsigned binary number, to increase the wordlength (number of bits) by

one bit, append a 0 to the number as the new MSB:

00102 = 000102

10102 = 010102

• In a 2s complement number, to increase the wordlength by one bit, then append

a bit with the same value as the original MSB to the number as the new MSB:

00102 = 000102

10102 = 110102

Consider the addition of +210 to +310 using 2s complement numbers. The result

should be +510. The two input numbers can be represented by three bits, but if 3-bit

addition is undertaken, the result will be in error:

0 1 0 +210
0 1 1 + +310

1 0 1 -310 INCORRECT RESULT

If, however, the input wordlength is increased by one bit, then the addition is

undertaken, the result becomes:

0 0 1 0 +210
0 0 1 1 + +310

0 1 0 1 +510 CORRECT RESULT

230 Chapter 5

www.newnespress.com

Consider the subtraction of +310 from –210. The result should be –510. The two input

numbers can be represented by three bits, but if 3-bit addition is undertaken, then

the result will be in error:

Overflow is ignored

 1 1 0 -210
 1 0 1 + -310 (Subtrahend is complemented)

1 0 1 1 +310 INCORRECT RESULT

If, however, the input wordlength is increased by one bit, then the addition is

undertaken, the result becomes:

Overflow is ignored

 1 1 1 0 -210
 1 1 0 1 + -310 (Subtrahend is complemented)

1 1 0 1 1 -510 CORRECT RESULT

5.2.4 Gray Code

The Gray code provides a binary code that changes by one bit only when it changes

from one value to the next. The Gray code and the decimal number equivalent of the

binary number (in unsigned binary) are shown in Table 5.5. This is no longer a

straight binary count sequence.

The Gray code is often used in position control systems which represent either a rotary

position as in the output shaft of an electric motor or a linear position as in the position

of a conveyor belt. Figure 5.4 shows the Gray code used on a sensor to identify the

position of an object that can move left and right. Each code represents a point of

position or span of distance in length. The Gray code removes the potential for errors

when changing from sensing one position to the next position that could occur in a

binary code when more than one bit could change. If there is a time delay in the

circuitry that senses the individual bits, and the delay for sensing each bit is different,

the result will be a short but finite time during which the position code would be wrong.

If the circuitry that uses this position signal detects this wrong position code, it will react

to a wrong position, and the result would be an erroneous operation of the circuit.

Introduction to Digital Logic Design 231

www.newnespress.com

5.2.5 Binary Coded Decimal

Binary coded decimal (BCD) provides a simple conversion between a binary number

and the decimal number. For a decimal number, each digit is represented by four bits.

For example, the number 1210 is represented by 000100102.

000100102 = 00012/00102

= (12)10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Linear motion
(left–right)

d0

d1

d2

d3

Position (decimal count, not the Gray code value)

Figure 5.4: Gray code position sensing example

Table 5.5: Gray code

Decimal number 4-bit Gray code (d3d2d1d0)

0 0000
1 0001
3 0011
2 0010
6 0110
7 0111
5 0101
4 0100
12 1100
13 1101
15 1111
14 1110
10 1010
11 1011
9 1001
8 1000

232 Chapter 5

www.newnespress.com

If the MSBs are 0, they might also be left out, so the BCD number could also be

represented as 100102. This particular BCD code is referred to as 8421 BCD (or

straight binary coding) because the binary number is a direct representation of the

decimal value for decimal values 010 to 910. Decimal values 1010 to 1510 are not

represented in the four bits. Other BCD codes can also be implemented.

It is important to understand that a BCD is not the same as a straight binary

(unsigned binary) count. For example, consider the number 1210:

1210 = 100102, BCD

1210 = 11002, straight binary

5.2.6 Octal-Binary Conversion

The octal number is a number to the base (or radix) 8, and the magnitude of the number

is the sum of the product of the value of each digit in the number (o) and its position (n).

This allows the creation of numbers with digits in the set: 0, 1, 2, 3, 4, 5, 6, 7.

The position immediately to the left of the decimal point is zero (0). Moving left from

position 0 (in the integer part of the number), the position increments by 1. The value

of the digit has a weight of 8n where n is the position number. Moving right from

position 0 (into the fractional part of the number), the position decrements by 1. The

eight possible digits are combined to create integers and real numbers. Table 5.6

shows the conversion table.

The magnitude of the number (as a decimal number) is given by:

Magnitude = (on.8
n) + (on–1.8

n–1) + (on–2.8
n–2) +� � �+ (o0.8

0) + (o–1.8
–1) +� � �

+ (o–n.8
–n)

Here, the octal number is written as onon�1on�2 . . .o0.o�1 o�n (using the decimal

equivalent of the octal number).

Some example octal numbers are:

78 is [(7� 80)]10

178 is [(1� 81) + (7� 80)]10

2678 is [(2� 82) + (6� 81) + (7� 160)]10

Introduction to Digital Logic Design 233

www.newnespress.com

217.58 is [(2� 82) + (1� 81) + (7� 80) + (5� 8–1)]10

217.578 is [(2� 82) + (1� 81) + (7� 80) + (5� 8–1) + (7� 8–2)]10.

For binary numbers, each octal number represents three bits. Therefore a 6-bit binary

number is represented by two octal numbers, an 8-bit binary number is represented

by three octal numbers, a 9-bit binary number is also represented by three octal

numbers, a 16-bit binary is represented by six octal numbers, and so on. For example,

78 is 1112 and 178 is 0011112:

0 0 1 1 1 12

1 78

Some example octal numbers are:

78 is 1112

178 is 0011112

2678 is 0101101112

Table 5.6: Octal–decimal–unsigned 4-bit binary conversion

Octal number Decimal number 4-bit unsigned binary number

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111

10 8 1000
11 9 1001
12 10 1010
13 11 1011
14 12 1100
15 13 1101
16 14 1110
17 15 1111

234 Chapter 5

www.newnespress.com

217.58 is 010001111.1012

217.578 is 010001111.1011112.

The decimal number equivalent for an octal number is created by calculating the

magnitude of the octal number as a decimal number:

Magnitude = (on.8
n) + (on–1.8

n–1) + (on–2.8
n–2) +� � �+ (o0.8

0) + (o–1.8
–1) +� � �

+ (o–n.8
–n)

Converting from decimal to octal is accomplished in a similar manner as converting

from decimal to binary, except now dividing by 8 rather than 2. Consider the number

710. The conversion procedure is:

Action Division Remainder Octal number digit

Start with the decimal number (d = 7)
Divide by 8 d/2 = 7/8 = 0 7 o0 = 7

The octal number can be read as: 710 = (o0)8 = 78.

Consider the number 10010. The conversion procedure is:

Action Division Remainder Octal number digit

Start with the decimal number (d = 100)
Divide by 8 d/2 = 100/8 = 12 4 o0 = 4
Divide by 8 d/2 = 12/8 = 1 4 o1 = 4
Divide by 8 d/2 = 1/8 = 0 1 o2 = 1

The octal number can be read as: 10010 = (o2o1o0)8 = 1448.

5.2.7. Hexadecimal-Binary Conversion

The hexadecimal number is a number to the base (or radix) 16, and its magnitude

is the sum of the product of the value of each digit in the number (h) and its

position (n). This allows the creation of numbers with digits in the set: 0, 1, 2, 3, 4, 5,

6, 7, 8, 9, A, B, C, D, E, F.

The position immediately to the left of the decimal point is zero (0). Moving

left from position 0 (in the integer part of the number), the position increments

by 1. The value of the digit has a weight of 16n where n is the position number.

Moving right from position zero (into the fractional part of the number), the

Introduction to Digital Logic Design 235

www.newnespress.com

position decrements by 1. The sixteen possible digits are combined to create

integers and real numbers. In a decimal equivalent number, the hexadecimal

digits A16 to F16 are the numbers 1010 to 1510. Table 5.7 shows the conversion

table.

The magnitude of the number (as a decimal number) is given by:

Magnitude = (hn.16
n)+(hn–1.16

n–1)+(hn–2.16
n–2)+� � �+(h0.16

0)+(h–1.16
–1)+� � �

+(h–n.16
–n)

Here, the hexadecimal number is written as hnhn�1hn�2 . . .h0.h�1 h�n (using the

decimal equivalent of the hexadecimal number).

Some example hexadecimal numbers are:

816 is [(8� 160)]10

A816 is [(10� 161) + (8� 160)]10

2A816 is [(2� 162) + (10� 161) + (8� 160)]10

218.F16 is [(2� 162) + (1� 161) + (8� 160) + (15� 16–1)]10

218.F716 is [(2� 162) + (1� 161) + (8� 160) + (15� 16–1) + (7� 16–2)]10.

Table 5.7: Hexadecimal–decimal–unsigned four-bit binary conversion

Hexadecimal number Decimal number 4-bit unsigned binary number

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

236 Chapter 5

www.newnespress.com

For binary numbers, each hexadecimal number represents four bits. Therefore, an

8-bit binary number is represented by two hexadecimal numbers, a 16-bit binary is

represented by four hexadecimal numbers, and so on. For example, 816 is 10002 and

A816 is 101010002.

1 0 1 0 1 0 0 02

A 816

Some example hexadecimal numbers are:

816 is 10002

A816 is 101010002

2A816 is 0010101010002

218.F16 is 001000011000.11112

218.F716 is 001000011000.111101112.

The decimal number equivalent for a hexadecimal number is created by calculating

the magnitude of the hexadecimal number, using the decimal equivalent for

hexadecimal numbers A to F, as a decimal number:

Magnitude = (hn.16
n)+(hn–1.16

n–1)+(hn–2.16
n–2)+� � �+(h0.16

0)+(h–1.16
–1)+� � �

+(h–n.16
–n)

Converting from decimal to hexadecimal is accomplished in a similar manner to

converting from decimal to binary, except now dividing by 16 rather than 2, and using

the letters A to F for decimal remainder values of 10 to 15. Consider the number 710.

The conversion procedure is:

Start with the number (d) Division Remainder Hexadecimal number
digit

Start with the decimal number
(d = 7)
Divide by 16 d/16 = 7/16 = 0 7 h0 = 7

Introduction to Digital Logic Design 237

www.newnespress.com

The hexadecimal number can be read as: 710 = (h0)16 = 716.

Consider the number 10010. The conversion procedure is:

Action Division Remainder Hexadecimal number
digit

Start with the decimal number
(d = 100)
Divide by 16 d/16 = 100/16 = 6 4 h0 = 4
Divide by 16 d/16 = 6/16 = 0 6 h1 = 6

The hexadecimal number can be read as: 10010 = (h1h0)16 = 6416.

Consider the number 25510. The conversion procedure is:

Start with the number (d) Division Remainder Hexadecimal number
digit

Start with the decimal number
(d = 255)
Divide by 16 d/16 = 255/16

= 15
15 h0 = F

Divide by 16 d/16 = 15/16 = 0 15 h1 = F

The hexadecimal number can be read as: 25510 = (h1h0)16 = FF16.

Converting from hexadecimal to octal, or vice-versa, is accomplished by converting

the number to either a binary or decimal equivalent and from that to the octal to

hexadecimal number.

A summary table for the number systems is shown in Table 5.8. Here, unsigned

decimal numbers from 010 to 1510 are considered.

Both binary and decimal numbers can only be integers or real numbers. Table 5.9

shows the binary and decimal numbers for a real number represented by 40 bits in

binary, with 24 bits representing the integer part of the number and 16 bits

representing the fractional part of the number.

238 Chapter 5

www.newnespress.com

Table 5.8: Number systems summary

Decimal Unsigned binary Octal Hexadecimal BCD

0 0000 0 0 0000
1 0001 1 1 0001
2 0010 2 2 0010
3 0011 3 3 0011
4 0100 4 4 0100
5 0101 5 5 0101
6 0110 6 6 0110
7 0111 7 7 0111
8 1000 10 8 1000
9 1001 11 9 1001

10 1010 12 A 00010000
11 1011 13 B 00010001
12 1100 14 C 00010010
13 1101 15 D 00010011
14 1110 16 E 00010100
15 1111 17 F 00010101

Table 5.9: Decimal-binary conversion table, with the positive position to the left of
the decimal point and the negative position to the right of the decimal point

Binary
location

Unsigned binary number Binary
weighting

Decimal value

23 100000000000000000000000.0000000000000000 223 8,388,608
22 010000000000000000000000.0000000000000000 222 4,194,304
21 001000000000000000000000.0000000000000000 221 2,097,152
20 000100000000000000000000.0000000000000000 220 1,048,576
19 000010000000000000000000.0000000000000000 219 524,288
18 000001000000000000000000.0000000000000000 218 262,144
17 000000100000000000000000.0000000000000000 217 131,072
16 000000010000000000000000.0000000000000000 216 65,536
15 000000001000000000000000.0000000000000000 215 32,768
14 000000000100000000000000.0000000000000000 214 16,384
13 000000000010000000000000.0000000000000000 213 8,192
12 000000000001000000000000.0000000000000000 212 4,096
11 000000000000100000000000.0000000000000000 211 2,048
10 000000000000010000000000.0000000000000000 210 1,024
9 000000000000001000000000.0000000000000000 29 512
8 000000000000000100000000.0000000000000000 28 256
7 000000000000000010000000.0000000000000000 27 128

(continued)

Introduction to Digital Logic Design 239

www.newnespress.com

5.3 Binary Data Manipulation

5.3.1 Introduction

A digital circuit or system utilizes and manipulates binary data to perform a

required operation. Essentially, groups of bits of data are converted from one value to

another at a particular point in time. Software-programmed processors typically

manipulate groups of 8, 16, 32, 64, or 128 bits of data, although a custom design could

manipulate as many bits as required.

Table 5.9 (Continued)

Binary
location

Unsigned binary number Binary
weighting

Decimal value

6 000000000000000001000000.0000000000000000 26 64
5 000000000000000000100000.0000000000000000 25 32
4 000000000000000000010000.0000000000000000 24 16
3 000000000000000000001000.0000000000000000 23 8
2 000000000000000000000100.0000000000000000 22 4
1 000000000000000000000010.0000000000000000 21 2
0 000000000000000000000001.0000000000000000 20 1

Decimal point (.)

–1 000000000000000000000000.1000000000000000 2–1 0.5
–2 000000000000000000000000.0100000000000000 2–2 0.25
–3 000000000000000000000000.0010000000000000 2–3 0.125
–4 000000000000000000000000.0001000000000000 2–4 0.0625
–5 000000000000000000000000.0000100000000000 2–5 0.03125
–6 000000000000000000000000.0000010000000000 2–6 0.015625
–7 000000000000000000000000.0000001000000000 2–7 0.0078125
–8 000000000000000000000000.0000000100000000 2–8 0.00390625
–9 000000000000000000000000.0000000010000000 2–9 0.001953125

–10 000000000000000000000000.0000000001000000 2–10 0.0009765625
–11 000000000000000000000000.0000000000100000 2–11 0.00048828125
–12 000000000000000000000000.0000000000010000 2–12 0.00024414063
–13 000000000000000000000000.0000000000001000 2–13 0.00012207031
–14 000000000000000000000000.0000000000000100 2–14 0.000061035156
–15 000000000000000000000000.0000000000000010 2–15 0.000030517578
–16 000000000000000000000000.0000000000000001 2–16 0.000015258789

240 Chapter 5

www.newnespress.com

Binary data is manipulated using the following:

• Boolean logic provides a means to display the operations on input signals and

produce a result in mathematical terms using AND, NAND, OR, NOR, EX-

OR, EX-NOR, and NOT logical operations.

• Truth tables provide a means to display the operations on input signals and

produce a result in table format.

• Karnaugh maps provide a means to display the operations on input signals and

produce a result on a K-map, which allows logic values to be grouped together

with loops.

• Circuit schematics provide a graphical representation of the Boolean logic

expression using logic gate symbols for the logical operations and the

connections between the terminals.

Boolean logic, truth tables, Karnaugh maps, and circuit schematics are used in the

design and analysis of digital circuits and systems, and the designer must move

between these different representations of circuit and system operation many times

during the design process. However, these tools are really only suited for design by

hand (as it were) for small circuits; for more complex circuits and systems, hardware

description languages (HDL) are more commonly used. Understanding Boolean

logic, truth tables, and Karnaugh maps, however, will provide the designer with the

necessary skills to design, develop, and debug circuit and system designs of any size

and complexity.

5.3.2 Logical Operations

A digital circuit or system will consist of a number of operations on logic values. The

basic logical operators are the:

• AND

• NAND

• OR

• NOR

Introduction to Digital Logic Design 241

www.newnespress.com

• exclusive-OR (EX-OR)

• exclusive-NOR (EX-NOR)

• NOT

Considering two inputs (here called A and B) to a logical operator, the AND, OR,

and EX-OR operators provide different results:

• The AND operator provides an output when both A and B are at the

required values.

• The NANDoperator provides an output that is the inverse of the AND operator.

• The OR operator provides an output when either or both A and B are at

the required values.

• The NOR operator provides an output that is the inverse of the OR operator

• The EX-OR operator provides an output when either but not both A and B

are at the required values.

• The EX-NOR (or equivalence) operator provides an output that is the

inverse of the EX-OR operator.

The NOT operator provides an output that is the logical inverse of the input.

In addition, the BUFFER will provide an output that is the same logic level value as

the input. The BUFFER is essentially two NOT gates in series.

These logical operators function in electronic hardware as logic gates. Two inputs

(A and B) to the logic gate were considered above, but more inputs are possible to

certain logic gates.

5.3.3 Boolean Algebra

Boolean algebra (developed by George Boole and Augustus De Morgan)

forms the basic set of rules that regulate the relationship between true-false

statements in logic. Applied to digital logic circuits and systems, the true-false

statements regulate the relationship between the logic levels (logic 0 and 1) in

242 Chapter 5

www.newnespress.com

digital logic circuits and systems. The relationships are based on variables and

constants:

• The identifier for the AND logical operator is . (the dot).

• The identifier for the OR logical operator is + (the mathematical addition

symbol).

• The identifier for the NOT logical operator is � (a bar across the expression).

• The identifier for the EX-OR logical operator is � (an encircled addition

symbol).

Figure 5.5 shows the Boolean logic expression for each of these operators.

Each of the operators can be combined to create more complex Boolean logic

expressions. For example, if a circuit has four inputs (A, B, C, and D) and one output

(Z), then if Z is a logic 1 when (A and B) is a logic 1 or when (C andD) is a logic 1, the

Boolean expression is:

Z ¼ ðA:BÞ þ ðC:DÞ
Here, parentheses are used to group the ANDed variables and to indicate precedence
among various operations—similar to their use in other mathematical expressions.
The AND logical operator has a higher precedence than the OR logical operator and
so would be naturally grouped together in this way.

Boolean expression Meaning

Z = A . B Z is A AND B

Z = A . B Z is A NAND B

Z = A + B Z is A OR B

Z = A + B Z is A NOR B

Z = A ⊕ B Z is A XOR B

Z = A ⊕ B Z is A XNOR B

Z = A Z is NOT A

Figure 5.5: Boolean expressions for the basic logic operators

Introduction to Digital Logic Design 243

www.newnespress.com

A Boolean expression written using Boolean algebra can be manipulated according to

a number of theorems to modify it into a form that uses the right logic operators (and

therefore the right type of logic gate) and to minimize the number of logic gates. The

theorems of Boolean algebra fall into three main categories:

1. Logical operations on constants

2. Logic operations on one variable

3. Logic operations on two or more variables.

Table 5.10 summarizes the logical operations on constants. Each constant value can

be either a logic 0 or 1. The result is either a logic 0 or 1 according to the logic

operator. A bar above the constant indicates a logical inversion of the constant.

Table 5.10: Logical operations
on constants

0 = 1

1 = 0

NOT AND OR

0.0 = 0

0.1 = 0

1.0 = 0

1.1 = 1

0+0 = 0

0+1 = 1

1+0 = 1

1+1 = 1

Table 5.11 summarizes the logical operations on one variable (A). The operation is

performed on the variable alone or on a variable and a constant value. Each variable

and constant value can be either a logic 0 or 1. The result is either a logic 0 or 1

according to the logic operator.

Table 5.11: Logical operations
on one variable

A.0 = 0

A.1 = A

A.A = A

A.A = 0

A+0 = A

A+1 = 1

A+A = A

A+A = 1

A = A

NOT AND OR

244 Chapter 5

www.newnespress.com

A bar above the variable indicates a logical inversion of the variable. A double bar

indicates a logical inversion followed by another logical inversion. Using the circuit

symbol for the NOT gate (the symbol is a triangle with a circle at the end—see

Figure 5.8), this effect is shown in Figure 5.6. Logically, a double inversion of a

signal has no logical effect.

In practice, the logic gates used to create each of the inversions would create a

propagation delay of the value of the variable as it passes through each logic gate.

However, a double inversion produces a logic buffer, as shown in Figure 5.7.

The buffer can be used to allow for a signal to drive a large electrical load.

Table 5.12 summarizes the logical operations on two or more variables. Here, two

(A and B) or three variables (A, B, and C) are considered. Each variable value can be

either a logic 0 or 1. The result is either a logic 0 or 1 according to the logic operator.

Table 5.12: Logical operations on two or three variables

(A+B).(A+B) = A

Commutation Rule

Absorption Rule

Association Rule

De Morgan’s
Theorems

A+B = B+A
A.B = B.A

Distributive Laws

Minimization
Theorems

A+(B+C) = (A+B)+C = (A+C)+B = A+B+C
A.(B.C) = (A.B).C = (A.C).B = A.B.C

A+B = A.B
A.B = A+B

A.(B+C) = A.B + A.C
A+(B.C) = (A+B).(A+C)

A + A.B = A + B
A.(A+B) = A.B

A + A.B = A
A.(A+B) = A

A.B + A.B = A

Introduction to Digital Logic Design 245

www.newnespress.com

The commutation rule states that there is no significance in the order of placement of

the variables in the expression. The absorption rule is useful for simplifying Boolean

expressions, and the association rule allows variables to be grouped together in any

order. De Morgan’s theorems are widely used in digital logic design as they allow for

AND logical operators to be related to NOR logical operators and OR logical

operators to be related to NAND logical operators, which allows Boolean expressions

to take different forms and thereby be implemented using different logic gates. The

distributive laws allow a process similar to factorization in arithmetic, and the

minimization theorems allow Boolean expressions to be reduced to a simpler form.

5.3.4 Combinational Logic Gates

Each logic gate that implements the logical operators is represented by a circuit

symbol. The commonly used symbols are shown in Figure 5.8. Here, for each logic

gate, the inputs are A or A and B, and the output is Z.

An alternative set of logic symbols, IEEE/ANSI standard 91-1984 (Graphics Symbols

for Logic Functions [7, 8]), is shown in Figure 5.9.

Figures 5.8 and 5.9 use only two-input logic gates for the AND, NAND, OR, and

NOR gates, but it is common to use these logic gates with more than two inputs. For

example, up to six inputs are available for use in many PLD and ASIC design libraries.

A

A

A

Figure 5.6: Inverting a variable

A A

Figure 5.7: Logic buffer schematic symbol

246 Chapter 5

www.newnespress.com

AND gate Z

A

B

OR gate Z

A

B

NAND gate Z

A

B

NOR gate Z

A

B

Ex-OR gateZ

A

B

Ex-NOR gateZ

A

B

NOT gate ZA

BufferZA

Figure 5.8: Logical operator circuit symbols

Introduction to Digital Logic Design 247

www.newnespress.com

5.3.5 Truth Tables

The truth table displays the logical operations on input signals in a table format.

Every Boolean expression can be viewed as a truth table. The truth table identifies all

possible input combinations and the output for each. It is common to create the table

so that the input combinations produce an unsigned binary up-count.

1 ZA NOT gate

& Z
A

B
AND gate

& Z
A

B
NAND gate

≥1 Z
A

B
OR gate

≥1 Z
A

B
NOR gate

=1 Z
A

B
EXOR gate

=1 Z
A

B
EXNOR gate

Figure 5.9: Sample IEEE/ANSI standard logic symbols

248 Chapter 5

www.newnespress.com

The truth table for the AND gate is shown in Table 5.13. Here, the output Z is a logic

1 only when both inputs A and B are logic 1.

The truth table for the NAND gate is shown in Table 5.14. Here, the output Z is a

logic 0 only when both inputs A and B are logic 1. This is the logical inverse of the

AND gate.

The truth table for the OR gate is shown in Table 5.15. Here, the output Z is a logic 1

when either or both inputs A and B are logic 1.

The truth table for the NOR gate is shown in Table 5.16. Here, the output Z is a logic 0

when either or both inputs A and B are logic 1. This is the logical inverse of the OR gate.

The truth table for the EX-OR gate is shown in Table 5.17. Here, the output Z is a

logic 1 when either but not both inputs A and B are logic 1.

Table 5.13: AND gate truth table

A B Z

0 0 0
0 1 0
1 0 0
1 1 1

Table 5.14: NAND gate truth table

A B Z

0 0 1
0 1 1
1 0 1
1 1 0

Table 5.15: OR gate truth table

A B Z

0 0 0
0 1 1
1 0 1
1 1 1

Introduction to Digital Logic Design 249

www.newnespress.com

The truth table for the EX-NOR gate is shown in Table 5.18. Here, the output Z is a

logic 0 when either but not both inputs A and B are logic 1. This is the logical inverse of

the EX-OR gate.

The truth table for the NOT gate (inverter) is shown in Table 5.19. This gate has one

input only. The output Z is the logical inverse of the input A.

The truth table for the BUFFER is shown in Table 5.20. This gate has one input only.

The output Z is the same logical value as that of the input A.

Another way to describe a digital circuit or system is by using a suitable HDL such as

VHDL [9, 10]. This describes the operation of the circuit or system at different levels

Table 5.16: NOR gate truth table

A B Z

0 0 1
0 1 0
1 0 0
1 1 0

Table 5.17: EX-OR gate truth table

A B Z

0 0 0
0 1 1
1 0 1
1 1 0

Table 5.18: EX-NOR gate truth table

A B Z

0 0 1
0 1 0
1 0 0
1 1 1

Table 5.19: NOT gate truth table

A Z

0 1
1 0

250 Chapter 5

www.newnespress.com

of design abstraction. An example VHDL description for each of the basic logic gates

using the built-in logical operators in VHDL is shown in Figure 5.10. The syntax and

semantics of the language will be provided in Chapter 6. It is sufficient at this point to

Table 5.20: BUFFER truth table

A Z

0 0
1 1

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;
ENTITY And_Gate IS
 PORT(A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY And_Gate;

ARCHITECTURE Dataflow OF And_Gate IS

BEGIN
Z <= A AND B;

END ARCHITECTURE Dataflow;

AND gate

Z = (A.B)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Nand_Gate IS
 PORT(A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY Nand_Gate;

ARCHITECTURE Dataflow OF Nand_Gate IS

BEGIN

Z <= A NAND B;

END ARCHITECTURE Dataflow;

NAND gate

Z = /(A.B)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Or_Gate IS
 PORT(A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY Or_Gate;

ARCHITECTURE Dataflow OF Or_Gate IS

BEGIN

Z <= A OR B;

END ARCHITECTURE Dataflow;

OR gate

Z = (A+B)

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Nor_Gate IS
 PORT(A : IN STD_LOGIC;
 B : IN STD_LOGIC;

 Z : OUT STD_LOGIC);
END ENTITY Nor_Gate;

ARCHITECTURE Dataflow OF Nor_Gate IS

BEGIN

Z <= A NOR B;

END ARCHITECTURE Dataflow;

NOR gate

Z = /(A+B)

Figure 5.10: VHDL code examples for the logic gates in Figure 5.8

Introduction to Digital Logic Design 251

www.newnespress.com

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Xor_Gate IS
 PORT(A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY Xor_Gate;

ARCHITECTURE Dataflow OF Xor_Gate IS

BEGIN

Z <= A XOR B;

END ARCHITECTURE Dataflow;

EX-OR gate

Z = (A ⊕ B)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Xnor_Gate IS
 PORT(A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY Xnor_Gate;

ARCHITECTURE Dataflow OF Xnor_Gate IS

BEGIN

Z <= A XNOR B;

END ARCHITECTURE Dataflow;

EX-NOR gate

Z = /(A ⊕ B)

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Buffer_Gate IS
 PORT(A : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY Buffer_Gate;

ARCHITECTURE Dataflow OF Buffer_Gate IS

BEGIN

Z <= A;

END ARCHITECTURE Dataflow;

Buffer

Z = A

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY Not_Gate IS
 PORT(A : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY Not_Gate;

ARCHITECTURE Dataflow OF Not_Gate IS

BEGIN

Z <= NOT A;

END ARCHITECTURE Dataflow;

NOT gate

Z = /A

Figure 5.10: (Continued)

252 Chapter 5

www.newnespress.com

note that HDLs exist and for VHDL the basic structure of a VHDL text based

description is of the form shown in Figure 5.10.

The EX-OR gate has the Boolean expression:

Z ¼ A� B

From the truth table for the EX-OR gate, then, a Boolean expression in the first

canonical form (the first canonical from is a set of minterms that are AND logical

operators on the variables within the expression with the output of the AND logical

operators being logically ORed together) can be written as:

Z ¼ ðA:BÞ þ ðA:BÞ
Therefore, the EX-OR gate can be made from AND, OR, and NOT gates as shown in

Figure 5.11.

The truth table can be created to identify the input-output relationship for any logic

circuit that consists of combinational logic gates and that can be expressed by

Boolean logic. It is therefore possible to move between Boolean logic expressions and

truth tables. Consider a three-input logic circuit (A, B, and C) with one output (Z), as

shown in the truth table in Table 5.21. The inputs are written as a binary count

starting at 010 and incrementing to 710. The output Z is only a logic 1 when inputs A,

B, and C are logic 1. This can be written as a Boolean expression

Z ¼ A:B:C

Here, where the output Z is a logic 1, the values of inputs A, B, and C are ANDed

together. Where a variable is a logic 1, then the variable is used. When the variable is a

logic 0, then the inverse (NOT) of the variable is used.

Z

A

B

A

B

Figure 5.11: EX-OR gate using discrete logic gates

Introduction to Digital Logic Design 253

www.newnespress.com

Consider now another three-input logic circuit (inputs A, B, and C) with one output

(Z), shown in Table 5.22. The inputs are written as a binary count starting at 010 and

incrementing up to 710. The output Z is only a logic 1 when inputs A, B, and C are

logic 0. This can be written as a Boolean expression

Z = A.B.C

Here, where the output Z is a logic 1, the values of inputs A, B, and C are ANDed

together. Where a variable is a logic 1, then the variable is used. When the variable is a

logic 0, then the inverse (NOT) of the variable is used. The expression identified for the

truth table in Table 5.22 can be modified using rules and laws identified in Table 5.12:

Z = A+B+C

Z = A+B+C

Z = A . B . C

Z = A . B . C

Table 5.21: Three-input logic circuit truth table: Z = A.B.C

A B C Z

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Table 5.22: Three-input logic circuit truth table: Z = NOT (A+B+C)

A B C Z

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

254 Chapter 5

www.newnespress.com

The original expression was manipulated by first double-inverting the expression

(which logically makes no change), then breaking one of the inversions (the inversion

closest in space to the variables) and changing the AND operator to an OR operator

(the second DeMorgan theorem). This leaves a NOR expression with double-inverted

variables. The double-inversion on each input is then dropped.

Now, combining the operations in Table 5.21 and Table 5.22 produces a more

complex operation as shown in Table 5.23.

The Boolean expression for this is:

Z ¼ ðA:B:CÞ þ ðAþ Bþ CÞ

Each of the ANDed expressions is ORed together. Parentheses group each expression

to aid readability of the expression. In this form of expression, the first canonical

form, a set of minterms (minimum terms) that are AND logical operators are created

(one for each line of the truth table where the output is a logic 1). The outputs for

each of the AND logical operators are ORed together. This is also referred to as a sum

of products. A circuit schematic for this circuit is shown in Figure 5.12.

The second canonical form is an alternative to the first canonical form. In the second,

a set of maxterms that are OR logical operators on the variables within the expression

are created (one for each line of the truth table where the output is a logic 0). The

outputs for each of the OR logical operators are ANDed together. This is also

referred to as a product of sums.

Using these approaches, any Boolean logic expression can be described, analyzed,

and possibly minimized.

Table 5.23: Three-input logic circuit truth table: complex logic gate

A B C Z

0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Introduction to Digital Logic Design 255

www.newnespress.com

5.4 Combinational Logic Design

5.4.1 Introduction

Using the previous ideas, combinational logic circuits can be combined using either

the first canonical form (sum of products) or the second canonical form (product of

sums). However, in this text only the first canonical form only will be considered,

taking into account logic level 0 or 1 and propagation (time) delays in the cells.

Within a logic gate is an analogue circuit consisting of transistors—either bipolar,

using NPN and PNP bipolar junction transistors, or CMOS (complementary metal

oxide semiconductor), using n-channel MOS and p-channel MOS transistors. Logic

gates in CMOS are of three different circuit architectures at the transistor level [11]:

static CMOS, dynamic CMOS, and pass transistor logic CMOS. Today, static CMOS

logic is by far the dominant type used. It is built on a network of pMOS and nMOS

transistors connected between the power supplies, as shown in Figure 5.13.

The input signals are connected to the gates of the transistors, and the output is taken

from the common connection between the transistor networks. The transistors will

act as switches, with the switch connections between the drain and source of the

transistor. Switch control is via a gate voltage:

• An nMOS transistor will be switched ON when high voltage (logic 1) is

applied to the transistor gate. Low voltage (logic 0) will turn the switch OFF.

• A pMOS transistor will be switched ON when low voltage (logic 0) is applied

to the transistor gate. High voltage (logic 1) will turn the switch OFF.

Z

A

B

C

A

B

C

Figure 5.12: Circuit schematic for Boolean expression in Table 5.23

256 Chapter 5

www.newnespress.com

In the transistor network, a series connection of nMOS transistors will produce an

AND effect (i.e., both transistors must be switched ON for the combined effect to be

ON). A parallel connection of nMOS transistors will produce an OR effect (i.e., any

single transistor must be switched ON for the combined effect to be ON). For the

pMOS transistor network, a series connection of nMOS transistors requires a parallel

connection of pMOS transistors. A parallel connection of nMOS transistors requires

a series connection of pMOS transistors.

The inverter is the most basic logic gate and, in static CMOS, consists of one nMOS

and one pMOS transistor. The basic arrangement is shown in Figure 5.14.

The logic gate has both static (DC) and dynamic (time-related) characteristics. Both

the voltage (at the different points in the circuit with reference to the common, 0V,

node) and the currents (in particular the power supply current) must be considered.

The static characteristics of the inverter are shown in Figure 5.15; in this case, the

static (DC) voltages are not time related. Two graphs are shown. The top graph

plots the input voltage (VIN) against the output voltage (VOUT). This shows the

operating regions (off, saturation, linear) that each transistor will go through

during the input and output voltage changes. A logic 0 is a voltage level of VSS,

and a logic 1 is a voltage level of VDD. The bottom graph plots the input voltage

(VIN) against the current drawn from the power supply (IDD), showing that the

current drawn from the power supply peaks during changes in the input and

output voltages.

pMOS transistor
network

nMOS transistor
network

Logic gate
output

Logic gate
input(s)

VDD
(e.g., +3.3 V)

VSS
(e.g., + 0 V)

Figure 5.13: Static CMOS logic gate architecture

Introduction to Digital Logic Design 257

www.newnespress.com

The dynamic characteristics of the inverter are shown in Figure 5.16. These show the

operation of the inverter to changes of the inputs and outputs in time. The top graph shows

the input test signal, which in this case is a step change for a 0-1-0 logic level change with an

instantaneous change in logic value in time. The two voltage levels are VOL and VOH:

• VOL defines the maximum output voltage from the logic gate that would

produce a logic 0 output.

• VOH defines the minimum output voltage from the logic gate that would

produce a logic 1 output.

• Themiddle graph shows the output, which changes from a 1 to a 0 and a 0 to a 1 in

a finite time. Two values for the propagation time delay are defined, tPHL and tPLH:

* tPHL defines a propagation time delay from a high level (1) to a low level (0)

between the start of the input signal change and the 50 percent change in

output.

* tPLH defines a propagation time delay from a low level (0) to a high level (1)

between the start of the input signal change and the 50 percent change in

output.

ZA Inverter logic symbol

Inverter
transistor
connections

pMOS
transistor

ZA

nMOS
transistor

VDD
(e.g., +3.3 V)

VSS
(e.g., + 0 V)

Figure 5.14: Static CMOS inverter

258 Chapter 5

www.newnespress.com

• The bottom graph shows the output, which changes from a 1 to a 0 and a 0 to

a 1 in a finite time. Two values for the rise and fall times are defined, tFALL and

tRISE:

* tFALL defines a fall time from a high level (1) to a low level (0) between the

90 percent and 10 percent levels between the high and low levels.

* tRISE defines a rise time from a low level (0) to a high level (1) between the

10 percent and 90 percent levels between the low and high levels.

Output voltage
(Vout)

Input voltage
(Vin)

Input voltage
(Vin)

Power supply
current (IDD)

A B C ED

Region nMOS pMOS
A
B
C
D
E

Cut-off
Saturation
Saturation

Linear
Linear

Linear
Linear

Saturation
Saturation

Cut-off

VDD

VDD

Figure 5.15: Static CMOS inverter—static characteristics

Introduction to Digital Logic Design 259

www.newnespress.com

Having considered the static CMOS inverter operation, the logical operation of more

complex logic gates will be considered through the following four examples:

1. Two-input multiplexer

2. One-bit half-adder

3. One-bit full-adder

4. Partial odd/even number detector

Example 1: Two-Input Multiplexer

Consider a circuit that has two data inputs (A and B) and one data output (Z). An

additional control input, Select, is used to select which input appears at the output,

such that:

• when Select = 0, A ! Z

• when Select = 1, B ! Z

time

time

time

Vin

VOH

VOH

VOL

VOL

Vout

Vout τPHL

τPLH

τRISEτFALL

V50%

V90%

V10%

Figure 5.16: Static CMOS inverter—dynamic characteristics

260 Chapter 5

www.newnespress.com

This circuit is the multiplexer, and the circuit symbol is shown in Figure 5.17.

In general, the multiplexer can have as many data inputs as required, and the number

of control signals required will reflect the number of data inputs. For the two-input

multiplexer, the truth table has three inputs (for eight possible combinations) and the

output as shown in Table 5.24. The Boolean expression can be created for this and a

reduced form would be:

Z ¼ ðSelect:AÞ þ ðSelect:BÞ

Digital switch (multiplexer)
operation

Select (0 = (A –> Z), 1 = (B –> Z))

0

1

Multiplexer circuit symbol

A

B

Z

Select

A

B

Z

Figure 5.17: Two-input multiplexer

Table 5.24: Two-input multiplexer truth table

Select A B Z

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Introduction to Digital Logic Design 261

www.newnespress.com

Although the multiplexer is normally available as a single logic gate in an ASIC or

PLD reference library, the circuit could be created using discrete logic gates. The

circuit schematic for this is shown in Figure 5.18. The inverse operation of the

multiplexer (mux) is the demultiplexer (demux). This has one data input and multiple

data outputs. The additional control inputs will select one output to be active and will

pass the input data logic value to the particular output. As there are multiple outputs

in the demultiplexer, the remaining outputs (those outputs which have not been

selected) will output a logic ‘0’ value.

Example 2: One-Bit Half-Adder

The half-adder is an important logic design created from basic logic gates, as shown in

Figure 5.19. This is a design with two inputs (A and B) and two outputs (Sum and

Carry-out, Cout). This cell adds the two binary input numbers to produce sum and

carry-out terms.

The truth table for this design is shown in Table 5.25.

From viewing the truth table, the Sum output is only a logic 1 when either but not both

inputs are logic 1:

Sum ¼ ðA:BÞ þ ðA:BÞ

Z

Select

A

B

Select

Figure 5.18: Two-input multiplexer using discrete logic gates

A

B

Cout

Sum

Figure 5.19: One-bit half-adder cell

262 Chapter 5

www.newnespress.com

This is actually the EX-OR function, so:

Sum ¼ ðA� BÞ
From viewing the Cout output in the truth table, the output is logic 1 only when both
inputs are logic 1 (i.e., A AND B):

Cout ¼ ðA:BÞ
This can be drawn as a circuit schematic as shown in Figure 5.20.

Example 3: One-Bit Full-Adder

The full-adder extends the concept of the half-adder by providing an additional

carry-in (Cin) input, as shown in Figure 5.21. This is a design with three inputs (A, B,

and Cin) and two outputs (Sum and Cout). This cell adds the three binary input

numbers to produce sum and carry-out terms.

A

B
Cout

Sum

Figure 5.20: One-bit half-adder circuit schematic

A

B

Cin

Cout

Sum

Figure 5.21: One-bit full-adder cell

Table 5.25: One-bit half-adder cell truth table

A B Sum Cout

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Introduction to Digital Logic Design 263

www.newnespress.com

The truth table for this design is shown in Table 5.26.

From viewing the truth table, the Sum output is only a logic 1 when one or three (but

not two) of the inputs is logic 1. The Boolean expression for this is (in reduced form):

Sum ¼ Cin� ðA� BÞ

From viewing the truth table, the Cout output is only a logic 1 when two or three of

the inputs is logic 1. The Boolean expression for this is (in reduced form):

Cout ¼ ðA:BÞ þ ðCin:ðA� BÞÞ

This can be drawn as a circuit schematic as shown in Figure 5.22.

Table 5.26: One-bit full-adder cell truth table

A B Cin Sum Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

A

B

Cin

Cout

Sum

Figure 5.22: One-bit full-adder circuit schematic

264 Chapter 5

www.newnespress.com

Any number of half- and full-adder cells can be connected together to form an n-bit

addition. Figure 5.23 shows the connections for a four-bit binary adder. In this

design, there is no Cin input. Inputs A and B are four bits wide, and bit 0 (A(0) and

B(0)) are the LSBs.

A(3)

B(3)

Carry-Out

Sum(3)

A(2)

B(2)
Sum(2)

A(1)

B(1)
Sum(1)

A(0)

B(0) Sum(0)

A

B

Cin

Cout

Sum

A

B

Cin

Cout

Sum

A

B

Cin

Cout

Sum

Cout

Sum

A

B

 A(3) A(2) A(1) A(0)
 B(3) B(2) B(1) B(0) +

Carry-Out Sum(3) Sum(2) Sum(1) Sum(0)

4-bit binary addition

Figure 5.23: Four-bit binary adder

Introduction to Digital Logic Design 265

www.newnespress.com

Example 4: Partial Odd/Even Number Detector

Consider a circuit that receives a three-bit unsigned binary number (A, B, and C

where A is the MSB and C is the LSB) and is to detect when the number is ODD or

EVEN. The circuit will have two outputs (Odd and Even), as shown in Figure 5.24.

The Odd output is a logic 1 when the input number (in decimal) is 1, 3, or 5 but not 7.

The input 7 is to be considered a forbidden input in this circuit. The Even output is a

logic 1 when the input number (in decimal) is 0, 2, 4, 6.

The truth table for this circuit is shown in Table 5.27.

A Boolean expression for each of the outputs can be created. However, because the Odd

and Even outputs are inversions of each other (except in the forbidden state), a circuit

can be created whereby the Boolean expression for one output is created and the

second output is the inverse (NOT) of this output. Considering the Odd output (with

A

B

C

Odd

Even

Figure 5.24: Number detector circuit block diagram

Table 5.27: Three-input logic circuit truth table

A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Odd Even

0 1
1 0
0 1
1 0
0 1
1 0
0 1
0 1 Forbidden input

266 Chapter 5

www.newnespress.com

three 1s, compared to four in the Even output, making it a smaller Boolean

expression), then the Boolean expression for the Odd and Even outputs would be:

Odd = (A.B.C) + (A.B.C) + (A.B.C)

Odd = (A.B.C) + C.((A.B) + (A.B))

Odd = (A.B.C) + C.(A ⊕ B)

Odd = C.((A.B) + (A ⊕ B))

Even = Odd

The circuit schematic for this design is shown in Figure 5.25.

A problem with this circuit is that when the odd number input 7 is applied, the

circuit produces a logic 0 on Odd and a logic 1 on Even, which is incorrect. If this

circuit is to be used, then the input 7 must be taken into account and the circuit

redesigned, or the input 7 must never be applied by design.

If the input 7 is considered in the creation of the Boolean logic expression for

the Odd output, then the logic for the Odd output simply becomes the value for

Odd

C

A

B

A

B

Even

Figure 5.25: Circuit schematic for odd/even number detector

Introduction to Digital Logic Design 267

www.newnespress.com

the C input. This design can be implemented in the CPLD development system

(refer to Chapter 3 and Appendix F—See the last paragraph of the Preface for

instructions regarding how to access this online content) using a CPLD

development board and a digital I/O board.

The basic arrangement is shown in Figure 5.26. Here, the CoolrunnerTM-II CPLD on

the CPLD development board is configured with the digital logic circuit, and the

digital I/O board is interfaced to external test and measurement equipment. The

CPLD is configured using the pins identified in Table 5.28.

Table 5.28: Odd/even number detector CPLD pin assignment

Signal name CPLD pin
number

Digital I/O board
identifier

Comment

A 13 B0 (input bit 0) CPLD input, design A input
B 14 B1 (input bit 1) CPLD input, design B input
C 15 B2 (input bit 2) CPLD input, design C input
Odd 3 A0 (output bit 0) CPLD output, design Odd output
Even 4 A1 (output bit 1) CPLD output, design Even output
Input buffer

enable
12 OE2 (input enable) CPLD output, tie to logic 0 in

CPLD design
Output buffer

enable
2 OE1(output enable) CPLD output, tie to logic 0 in

CPLD design

+3.3V DC power supply

Digital I/O board

CPLD development board

Xilinx Inc. JTAG programmer

Digital input Digital output

Figure 5.26: Odd/even number detector implementation using the CPLD
development board

268 Chapter 5

www.newnespress.com

Here, the five design I/Os are defined and are connected to the relevant CPLD pins to

connect to Header A for the digital I/O board. In addition, the CPLD design must

also incorporate two additional outputs to enable the tristate buffers used on the

digital I/O board. Here, the enable (OE, output enable) pins on the tristate buffers

must be tied to logic 0 to enable the buffers.

External circuitry is connected to the digital I/O board to provide the logic levels for

inputs A, B, and C and to monitor the outputs Odd and Even where:

• logic 0 = 0V

• logic 1 = +3.3V

The CPLD is programmed from using an appropriate JTAG (Joint Test Action

Group) programmer.

5.4.2 NAND and NOR logic

Logical operations using AND, OR, and NOT logic gates can also be undertaken

using either NAND or NOR logic gates. A Boolean expression using AND, OR, and

NOT logic can be manipulated to produce NAND and NOR logic. For example, the

Boolean expression:

Z ¼ ðA:BÞ
can also be expressed as:

Z = (A + B)

Figure 5.27 shows the two logic gate implementations for these Boolean expressions.

Similarly, the Boolean expression:

Z ¼ ðAþ BÞ
can also be expressed as:

Z = (A . B)

Introduction to Digital Logic Design 269

www.newnespress.com

Figure 5.28 shows the two logic gate implementations for these Boolean expressions.

If only NAND and NOR gates are available, any Boolean logic expression can be

implemented through such manipulation.

A

B

Z

Z

A

B

Figure 5.27: NOR implementation for the AND gate

A

B

Z

Z

A

B

Figure 5.28: NAND implementation for the OR gate

270 Chapter 5

www.newnespress.com

5.4.3 Karnaugh Maps

The Karnaugh map (or K-map) provides a means to display logical operations on

input signals as a map showing the output values for each of the input values. This

allows groups of logic values to be looped together with suitably sized loops to

minimize the resulting Boolean logic expression. The size of the Karnaugh map

depends on the number of inputs to the combinational logic circuit. Karnaugh maps

for two-, three-, and four-input circuits are shown in Figure 5.29:

• A two-input Karnaugh map contains four cells, one cell for each possible input

combination (2n where n is the number of inputs). Here, the inputs are named

A and B.

• A three-input Karnaugh map contains eight cells, one cell for each possible

input combination (2n where n is the number of inputs). Here, the inputs are

named A, B, and C.

• A four-input Karnaugh map contains sixteen cells, one cell for each possible

input combination (2n where n is the number of inputs). Here, the inputs are

named A, B, C, and D.

2-input Karnaugh map

3-input Karnaugh map

4-input Karnaugh map

0 2

1 3

0

1

A

B

0 2

1 3

6 4

7 5

0

1
C

AB

0 4

1 5

12 8

13 9

3 7

2 6

15 11

14 10

00

00

01

11

10

AB

CD

01 11 10

00 01

0 1

11 10

Figure 5.29: Two-, three-, and four-input Karnaugh maps

Introduction to Digital Logic Design 271

www.newnespress.com

The Karnaugh map has a direct correspondence with the truth table for a Boolean

logic expression. Each K-map cell is filled with the logic value of the output (0 or 1)

for the corresponding input combination. In Figure 5.29, the cells are filled with (for

reference purposes) the decimal number equivalent for the unsigned binary value of

the input combination (A is the MSB of the binary input value). Note the values and

locations of the values within the cells.

The Karnaugh maps for the two-input logic gates in Figure 5.8 are shown in

Figure 5.30.

2-input AND gate
0 0

0 1

0

1

0
A

B

2-input NAND gate
1 1

1 0

0

1

A

B

2-input OR gate
0 1

1 1

0

1

A

B

2-input NOR gate
1 0

0 0

0

1

A

B

2-input EX-OR gate
0 1

1 0

0

1

A

B

2-input EX-NOR gate
1 0

0 1

0

1

A

B

Z

Z

Z

Z

Z

Z
1

0 1

0 1

0 1

0 1

0 1

Figure 5.30: Truth table for two-input logic gates

272 Chapter 5

www.newnespress.com

The Karnaugh map can then be analyzed, and loops of output logic levels within the

cells can be created. In the first canonical form, logic 1s are grouped together. In the

second canonical form, logic 0s are grouped together. In this text, the first canonical

form will be considered, so in the Karnaugh map, logic 1s are grouped together.

The larger the loop, the smaller the resulting Boolean logic expression (with fewer

variables to be considered). The variables in the loop will be ANDed together, and

each group will be ORed together.

For a two-input Karnaugh map, then:

• A group of one logic 1 will result in the ANDing of two variables.

• A group of two logic 1s will result in one variable.

• A group of four logic 1s will result in a constant logic 1.

For a three-input Karnaugh map, then:

• A group of one logic 1 will result in the ANDing of three variables.

• A group of two logic 1s will result in the ANDing of two variables.

• A group of four logic 1s will result in one variable.

• A group of eight logic 1s will result in a constant logic 1.

For a four-input Karnaugh map, then:

• A group of one logic 1 will result in the ANDing of four variables.

• A group of two logic 1s will result in the ANDing of three variables.

• A group of four logic 1s will result in the ANDing of two variables.

• A group of eight logic 1s will result in one variable.

• A group of sixteen logic 1s will result in a constant logic 1.

Consider the two-input AND gate: it has only one logic 1, so only a loop of 1 can be

created, as shown in Figure 5.31. Where the input variable is a logic 1, the variable is

used. When the input variable is a logic 0, the inverse (NOT) of the variable is used.

Consider now the two-input OR gate: it has three logic 1s, two loops of two can be

created, as shown in Figure 5.32. Where the input variable is a logic 1, the variable is

used. When the input variable is a logic 0, the inverse (NOT) of the variable is used.

Introduction to Digital Logic Design 273

www.newnespress.com

When a group of two is created, one of the variables can be a logic 0 or a logic 1 and

so can be dropped from the resulting Boolean logic expression. The vertical group of

two retains the variable A but drops the variable B. The horizontal group of two

retains the variable B but drops the variable A.

The grouping of logic 1s follows the following rules:

1. Loops of 2n adjacent cells can be made where n is an integer number starting at 0.

2. All cells containing a 1 (first canonical form; or 0 in the second canonical

form) must be covered.

3. Loops can overlap provided they contain at least one unlooped cell.

4. Loops must be square or rectangular (diagonal or L-shaped loops are not

permitted).

5. Any loop that has all of its cells included in other loops is redundant.

6. The edges of a map are considered to be adjacent—a loop can leave the

side of the Karnaugh map and re-enter at the other side, or leave from the top

of the Karnaugh map and return at the bottom, as shown in Figure 5.33.

One potential problem with combinational logic arises from hazards. Here, because of

the finite time for a signal change to propagate through the combinational logic (due

to any logic gate delays and interconnect delays), there is potential for erroneous

2-input AND gate
0 0

0 1

0

1

0 1

A

B

Z = (A.B)

Z

Figure 5.31: Two-input AND gate

2-input OR gate
0 1

1 1

0

1

0 1

A

B

Z = (A + B)

Z

Figure 5.32: Two-input OR gate

274 Chapter 5

www.newnespress.com

output during the time that the change occurs. This results from different time delays

in different paths within the combinational logic. Although the final output would be

correct, an erroneous output (i.e., wrong logic level) can occur during the change,

which would cause problems if detected and used.

If the digital circuit or system can be designed so that the output from the

combinational logic with a hazard is only used after it is guaranteed correct, then

the hazard, although not eliminated, will not cause a problem in the design.

A way to eliminate hazards using the Karnaugh map is to ensure that all loops are

joined together. Although this will introduce a redundant term (see Figure 5.34), the

4-input Karnaugh map

0 0

1 0

1 1

1 0

0 1

1 0

1 0

1 1

00 01 11 10

00

01

11

10

AB

CD

Z

Z = (A.B.C.D) + (A.B) + (B.C.D) + (B.C.D) + (A.B.D)

Figure 5.33: Adjacent cells in a Karnaugh map

3-input Karnaugh map with
hazard

1 1

0 0

1 0

1 0

0

1
C

AB

1 1

0 0

1 0

1 0

00 01 11 10

00 01 11 10

C
0

1

AB

3-input Karnaugh map with
hazard removed

Z = (A.C) + (A.B)

Z = (A.C) + (A.B) + (B.C)

Z

Z

Figure 5.34: Eliminating hazards

Introduction to Digital Logic Design 275

www.newnespress.com

hazard will be removed. However, this is at the expense of using additional logic and

introducing potential problems with testing the design [12].

Two important points to note with logic gates are:

1. No input to a logic gate may be left unconnected. If an input to a logic gate

is not required, then it must be tied to logic level (0 or 1). This is usually achieved

by connecting a high-resistance value resistor (typically 10 to 100 k�) between

the unused input and one of the power supply connections (VDD for logic 1,

VSS or GND for logic 0). In some ICs, specific inputs might be designed for

use only under specific circumstances and with a pull-up (to logic 1) or pull-

down (to logic 0) component integrated into the IC circuitry. Such integrated

pull-up or pull-down components alleviate the need for the designer to place

resistors on the PCB and so reduce the PCB design requirements.

2. Where a logic gate only produces a logic 0 or 1 output, then no two or more logic

gate outputs are to be connected unless the implementation technology (circuitry

within the logic gate) allows it. Certain logic gate outputs can be put into a high-

impedance state, which stops the output from producing a logic output and

instead turns the output into a high-impedance electrical load. Circuits with a

high-impedance output are used where multiple devices are to be connected to a

common set of signals (a bus) such as a microprocessor data bus.

Whereas the previous logic gates considered in the design of digital circuits

using Boolean logic expressions, truth tables, and Karnaugh maps provided only

a logic 0 or 1 output, in many computer architectures, multiple devices share a

common set of signals—control signals, address lines, and data lines. In a computer

architecture where multiple devices share a common set of data lines, these devices

can either receive or provide logic levels when the device is enabled (and all other

devices are disabled). However, multiple devices could, when enabled, provide logic

levels at the same time; these logic levels typically conflict with the logic levels

provided by the other devices. To prevent this, rather than producing a logic level

when disabled, a device would be put in a high-impedance state (denoted by the

character Z). The tristate buffer, when enabled, passes the logic input level to the

output; when disabled, it blocks the input, and the output is seen by the circuit that

it is connected to as a high-impedance electrical load. This operation is shown in

Figure 5.35, in which the enable signal may be active high (top, 1 to enable the buffer)

or active low (bottom, 0 to enable the buffer).

276 Chapter 5

www.newnespress.com

5.4.4 Don’t Care Conditions

In some situations, certain combinations of input might not occur, so the designer

could consider that these conditions are not important. They are referred to as Don’t

care conditions. As such, the output in these conditions could be either a logic 0 or a

logic 1, so the designer is free to choose the output value that results in the simpler

output logic (i.e., using fewer logic gates).

5.5 Sequential Logic Design

5.5.1 Introduction

Sequential logic circuits are based on combinational logic circuit elements (AND,

OR, etc.) working alongside sequential circuit elements (latches and flip-flops). A

generic sequential logic circuit is shown in Figure 5.36. Here, the circuit inputs are

applied to and the circuits outputs are derived from a combinational logic block. The

sequential logic circuit elements store an output from the combinational logic that is

fed back to the combinational logic input to constitute the present state of the circuit.

The output from the combinational logic that forms the inputs to the sequential logic

circuit elements constitutes the next state of the circuit. These sequential logic circuit

Enable

A B

A B

Enable

A BEnable

0 Z0

1 Z0

0 01

1 11

A BEnable

0 00

1 10

0 Z1

1 Z1

The bar above the Enable input name
indicates that the input is active low

Figure 5.35: Tristate buffer symbol

Introduction to Digital Logic Design 277

www.newnespress.com

elements are grouped together to form registers. The circuit changes state from

the present state to the next state on a clock control input (as happens in a

synchronous sequential logic circuit). Commonly the D-latch and D-type flip-flop

are used (rather than other forms of latch and flip-flop such as the S-R, toggle, and

J-K flip-flops), and they will be discussed in this text. The output from the circuit

is taken from the output of the combinational logic circuit block.

In general, sequential logic circuits may be asynchronous or synchronous:

1. Asynchronous sequential logic. This form of sequential logic does not use a

clock input signal to control the timing of the circuit. It allows very fast

operation of the sequential logic, but its operation is prone to timing

problems where unequal delays in the logic gates can cause the circuit to

operate incorrectly.

2. Synchronous sequential logic. This form of sequential logic uses a clock

input signal to control the timing of the circuit. The timing of changes in

states in the sequential logic is designed to occur either on the edge of the

clock input when flip-flops are used, or at a particular logic level, as when

latches are used. State changes that occur on the edge of the clock input, as

when flip-flops are used, occur either on a 0 to 1 rise, referred to as positive

edge triggered, or on a 1 to 0 fall, referred to as negative edge triggered.

In this text, only synchronous sequential logic will be considered.

An alternative view for the generic sequential logic circuit in Figure 5.36, is shown in

Figure 5.37. Here, the combinational logic is separated into input and output logic.

Both views are commonly used in the description of sequential logic circuits.

Combinational
logic circuit
elements

Sequential logic
circuit elements

(registers)

Inputs Outputs

Next
state

Present
state

Figure 5.36: Generic sequential logic circuit (counter or state machine)

278 Chapter 5

www.newnespress.com

In designing the synchronous sequential logic circuit (from now on simply

referred to as the sequential logic circuit), the designer must consider both the

type of sequential logic circuit elements (latch or flip-flop) and the combinational

logic gates. The design uses the techniques previously discussed—Boolean logic

expressions, truth tables, schematics, and Karnaugh maps—to determine the

required input combinational logic (the next state logic) and determine the

required output combinational logic.

The sequential logic circuit will form one of two types of machines:

1. In the Moore machine, the outputs are a function only of the present state

only.

2. In the Mealy machine, the outputs are a function of the present state and the

current inputs.

In addition, the sequential logic circuit will be designed either to react to an input or

to be autonomous. In an autonomous sequential logic circuit, there are no inputs

(apart from the clock and reset/set) to control the operation of the circuit, so the

circuit moves through states under the control of only the clock input. An example of

an autonomous sequential logic circuit is a straight binary up-counter that moves

through a binary count sequence taking the outputs directly from the sequential logic

circuit element outputs. A sequential logic circuit can also be designed to react to an

input: a sequential logic circuit that reacts to an input is called a state machine in

this text.

Output
combinational

logic

Sequential logic
circuit elements

(registers)

Inputs
Outputs

Present
state

Next
state

Input
combinational

logic

Next
state
logic

Figure 5.37: Alternative view for the generic sequential logic circuit

Introduction to Digital Logic Design 279

www.newnespress.com

Sequential logic circuit design follows a set design sequence aided by:

• state transition diagram, which provides a graphical means to view the states

and the transitions between states

• state transition table, similar in appearance to a combinational logic truth

table, which identifies the current state outputs and the possible next state

inputs to the sequential logic circuit elements.

As an example, consider a circuit that is to detect the sequence 1001 on a serial bit-

stream data input and produce a logic 1 output when the sequence has been detected, as

shown in Figure 5.38. The statemachine will have three inputs—one Data_In that is to be

monitored for the sequence and two control inputs, Clock and Reset—and one output,

Detected. Such a state machine could be used in a digital combinational lock circuit.

An example state transition diagram for this design is shown in Figure 5.39. The

circuit is to be designed to start in State 0 and has five possible states. With these five

states, if D-type flip-flops are to be used, then there will need to be a need for three

flip-flops (producing eight possible states although only five will be used when each

state is to be represented by one value of a straight binary count sequence 0, 1, 2, 3, 4,

0, etc.). The arrangement for the state transition diagram is:

1. The circles identify the states. The name of the state (the state identifier) and

the outputs for each state are placed within the circle. Each state is referred to

as a node.

2. The transition between states uses a line with the arrow end identifying the

direction of movement. Each line starts and ends at a node.

Data_In

Clock

Reset

Detected

Figure 5.38: 1001 sequence detector

280 Chapter 5

www.newnespress.com

3. Each line is accompanied by an identifier that identifies the logical value of

the input (here Data_In) that controls the state machine to go to the next

particular state.

This form of the state transition diagram is for a Moore machine and in this form the

outputs for each state are identified within the circles. The alternative to the Moore

machine is theMealy machine. In theMealy machine, the outputs for a particular state

are identified on the lines connecting the states along with the identifier.

The state transition table (also referred to as a present state/next state table) for the

1001 sequence detector state diagram is shown in Table 5.29. Each possible input

State 0 is the
reset state

0

1

1

0

1

0

1

0

1

0

Input: Data_In

State 2

0

State 3

0

State 4

1 State 1

0

State 0

0

State
identifier

Output:
Detected

Figure 5.39: ‘‘1001’’ sequence detector state transition diagram (Moore machine)

Table 5.29: State transition table for the 1001 sequence detector

Data_In = 0 Data_In = 1

Present state Next state Next state

State 0 State 0 State 1
State 1 State 1 State 2
State 2 State 3 State 1
State 3 State 0 State 4
State 4 State 0 State 1

Introduction to Digital Logic Design 281

www.newnespress.com

condition has its own column, and each row contains the present state and the next

state for each possible input condition.The Detected output is defined in the truth

table shown in Table 5.30.

Using the circuit architecture shown in Figure 5.37, the input and output

combinational logic blocks are created. Each state is created using the outputs from

the sequential logic circuit element block. Flip-flops form a register whose outputs

produce a binary value that defines one of the states. It is common to create the

states as a straight binary count. Using n-flip-flops, 2n states are possible in the

register output. However, any count sequence could be used. For example, one-hot

encoding uses n-flip-flops to represent n states. In the one-hot encoding scheme, to

change from one state to the next, only two flip-flop outputs will change (the first

from a 1 to a 0, and the second from a 0 to a 1). The advantage of this scheme is

less combinational logic to create the next state values.

5.5.2 Level Sensitive Latches and Edge-Triggered Flip-Flops

The two sequential logic circuit elements are the latch and the flip-flop. These

elements store a logic value (0 or 1). The basic latches and flip-flops are:

Latches:

• D-latch

• S-R latch (set-reset latch)

Flip-flops:

• S-R flip-flop (set-reset flip-flop)

• J-K flip-flop

Table 5.30: Detected output for
the 1001 sequence detector

State Detected

State 0 0
State 1 0
State 2 0
State 3 0
State 4 1

282 Chapter 5

www.newnespress.com

• T-flip-flop (toggle flip-flop)

• D-type flip-flop

Each latch and flip-flop has its own particular characteristics and operation

requirements. In this text, only the D-latch and the D-type flip-flop will be considered.

5.5.3 The D Latch and D-Type Flip-Flop

The basic D latch circuit symbol, shown in Figure 5.40, includes two inputs, the

data input (D, value to store) and the control input (C). There is one output (Q).

In the D latch, when the C input is at a logic 1, the Q output is assigned the

value of the D input. When the C input is a logic 0, the Q output holds its current

value even when the D input changes. In addition, many D latches also include a

logical inversion of the Q output (the NOT-Q output) as an additional output.

Latches are normally designed as part of normal circuit operation. However, a

problem can occur when writing HDL code in that a badly written design will create

unintentional latches. When a design description is synthesized, the synthesis tool

will infer latches. In VHDL, two common coding mistakes that result in inferred

latches are:

• an If statement without an Else clause

• a register description without a clock rising or falling edge construct

An example of an If statement without an Else clause in VHDL is shown in

Figure 5.41. Here, a circuit has two input signals (Data_In and Enable) and one

output signal (Data_Out). The output is the logical value of the Data_In input when

the Enable input is a logic 1. The operation of the circuit is defined on lines 20 to 30

of the code.

D

C

D QQ

C

Figure 5.40: D latch

Introduction to Digital Logic Design 283

www.newnespress.com

The RTL schematic for this design, as synthesized and viewed as a schematic within

the Xilinx� ISETM tools, is shown in Figure 5.42. The latch is the LD symbol in the

middle of the schematic view.

This unintentional latch can be removed by including the Else clause, as shown in

Figure 5.43. Here, when the Enable input is a 0, then the Data_Out output is a logic 0

also. The schematic for this design, as synthesized and viewed as a RTL schematic

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

--

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

--

ENTITY Inferred_Latch is
 PORT (Enable : IN STD_LOGIC;
 Data_In : IN STD_LOGIC;
 Data_Out : OUT STD_LOGIC);
END Inferred_Latch;

--

ARCHITECTURE Behavioural OF Inferred_Latch IS

BEGIN

Enable_Process: PROCESS (Enable, Data_In)

BEGIN

IF (Enable = '1') THEN

Data_Out <= Data_In;

 END IF;

END PROCESS Enable_Process;

END Behavioural;

--

Figure 5.41: If statement without an Else clause

284 Chapter 5

www.newnespress.com

Data_In Data_Out
OBUF

D

G

Q

LD

IBUF

IBUF
Enable

Figure 5.42: Schematic of inferred latch design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

--

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

--

ENTITY Inferred_Latch is
 PORT (Enable : IN STD_LOGIC;
 Data_In : IN STD_LOGIC;
 Data_Out : OUT STD_LOGIC);
END Inferred_Latch;

--

ARCHITECTURE Behavioural OF Inferred_Latch IS

BEGIN

Enable_Process: PROCESS(Enable, Data_In)

BEGIN

IF (Enable = '1') THEN

Data_Out <= Data_In;

ELSE

Data_Out <= '0';

 END IF;

END PROCESS Enable_Process;

END Behavioural;

--

Figure 5.43: If statement with an Else clause

Introduction to Digital Logic Design 285

www.newnespress.com

within the Xilinx� ISETM tools, is shown in Figure 5.44. This forms a circuit with a

single two-input AND gate. The operation of the circuit is defined on lines 20 to 34 of

the code.

The basic D-type flip-flop circuit symbol is shown in Figure 5.45, with two inputs—

the data input (D, value to store) and the clock input (CLK)—and one output (Q).

In the D-type flip-flop, when the CLK input changes from a 0 to a 1 (positive edge

triggered) or from a 1 to a 0 (negative edge triggered), the Q output is assigned the

value of the D input. When the CLK input is steady at a logic 0 or a 1, the Q output holds

its current value even when the D input changes.

It is common, however, for the flip-flop to have a reset or set input to initialize the

output Q to either logic 0 (reset) or logic 1 (set). This reset/set input can either be

asynchronous (independent of the clock input) or synchronous (occurs in a clock

edge) and active high (reset/set occurs when the signal is a logic 1) or active low (reset/

set occurs when the signal is a logic 0). The circuit symbol for the D-type flip-flop with

active low reset is shown in Figure 5.46.

The circle on the reset input indicates an active low reset: if no circle is used, then the

flip-flop is active high reset. Many D-type flip-flops also include a logical inversion of

the Q output (the NOT-Q output) as an additional output. The circuit symbol for

the D-type flip-flop with a NOT-Q output is shown in Figure 5.47.

Data_In Data_Out

OBUF
AND2

IBUF

IBUF
Enable

Figure 5.44: Schematic of the design with an Else clause

D

CLK

D QQ

Figure 5.45: D-type flip-flop

286 Chapter 5

www.newnespress.com

When a D-input change is to be stored in the flip-flop, specific timing requirements

must be considered for the inputs of the flip-flop in both set-up (how long before the

clock input must the D input be static?) and hold (how long after the clock input must

the D input be static?). This is shown in Figure 5.48. If these times are violated, then

problems with the flip-flop operation will occur.

D

CLK

D QQ

RESET

Figure 5.46: D-type flip-flop with active low reset

CLK

D Q

RESET

Q

D

Q

Q

Figure 5.47: D-type flip-flop with active low reset and not-Q output

CLK

D

Q

Hold Time (thold)Set-Up Time (tsetup)

D Input may
change

D Input must be stable

Propagation delay from
D input to Q output

Time

Figure 5.48: D-type flip-flop set-up and hold times

Introduction to Digital Logic Design 287

www.newnespress.com

A potential problem known as metastability can occur when flip-flop set-up and hold

times are violated. The flip-flop enters a metastable state in which the output is

unpredictable until, after some time, the output becomes a logic 0 or 1. In the

metastable state, the flip-flop output oscillates between 0 and 1. A simple way to design

a circuit that avoids this problem is to ensure that the clock period is long enough to

allow the metastable state to resolve itself and to account for signal delays (resulting

from logic gates and interconnect) in the path of the next flip-flop in the circuit.

5.5.4 Counter Design

The counter is a sequential logic circuit that acts autonomously to perform the

functions of a number counter changing its count state (value) on a clock edge. In the

following discussions, then:

• Positive edge triggered, asynchronous active low or high D-type flip-flops will

be used.

• All flip-flops will have a common reset input.

• All flip-flops will have a common clock input.

In addition, the output from the counter either can be taken directly from the Q

outputs of each flip-flop, or can be decoded using output combinational logic to form

specific outputs for specific states of the counter.

Because the counter uses flip-flops, for n-flip-flops, there will be 2n possible

combinations of output for the flip-flops. A counter might use all possible states or

might use only a subset of the possible states. When a subset is used, the counter

should be designed so that it will not enter unused states during normal operation.

In addition, it is good practice to design the circuit so that if it does enter one of

the unused states, it will have a known operation. For example, if an unused state

is entered, the next state would always be the reset state for the counter.

Example 1: Three-Bit Straight Binary Up-Counter

Consider a three-bit straight binary up-counter as shown in Figure 5.49, using two

inputs, clock and reset, and three outputs. The counter outputs are taken directly

from the Q outputs of each flip-flop (Q2, Q1, and Q0), where Q2 is the MSB and Q0 is

the LSB.

288 Chapter 5

www.newnespress.com

The design process begins by creating the state transition diagram (Figure 5.50) and

the state transition table. The counter is designed to reset (i.e., when reset is a logic 0)

to a count of 0002 (010), which will be state 0. When the reset is removed (i.e., when

reset becomes a logic 1), then the counter will count through the sequence 0, 1, 2, 3, 4,

5, 6, 7, 0, etc. This means that when the counter output reaches 1112 (state 7), it will

automatically wrap around back to 0002.

Each state in the counter will be encoded by the Q outputs of the D-type flip-flops, as

shown in Table 5.31, so that it produces the required straight binary count sequence.

State 0

State 0 is the
reset state

State 2

State 3

State 4State 5

State 6

State 7

State 1

Figure 5.50: Three-bit straight binary up-counter state transition diagram

Q2

Q1

Q0

Clock

Reset

Figure 5.49: Three-bit straight binary up-counter

Introduction to Digital Logic Design 289

www.newnespress.com

The state transition table for the counter can then be created (Table 5.32). For the

next state logic, the Q output for each flip-flop in the next state is actually the D input

for each flip-flop in the current state. In this view of the state transition table, the

current Q outputs and the current D inputs (next state Q outputs) are defined.

The Boolean logic expression can be created for each of the D inputs so that the

counter of the form shown in Figure 5.51 is created. Here, the next state logic for each

flip-flop (Dffn) uses a combination of the Q and NOT-Q outputs from each flip-flop.

Manipulation of the Boolean logic expression, the use of truth tables, and Karnaugh

maps allow the designer to create a Boolean logic expression of a required form.

An example of the logic for each flip-flop D input developed using the Karnaugh map

is shown in Figure 5.52. Figure 5.53 shows the schematic developed for the counter in

which each D-type flip-flop only has a Q output, and the NOT-Q output is created

Table 5.31: Three-bit straight binary up-counter state encoding

State Q2 Q1 Q0

State 0 0 0 0
State 1 0 0 1
State 2 0 1 0
State 3 0 1 1
State 4 1 0 0
State 5 1 0 1
State 6 1 1 0
State 7 1 1 1

Table 5.32: Three-bit straight binary up-counter state transition table

Present state Next state

State name Current Q outputs Current D inputs

Q2 Q1 Q0 D2 D1 D0

State 0 0 0 0 0 0 1
State 1 0 0 1 0 1 0
State 2 0 1 0 0 1 1
State 3 0 1 1 1 0 0
State 4 1 0 0 1 0 1
State 5 1 0 1 1 1 0
State 6 1 1 0 1 1 1
State 7 1 1 1 0 0 0

290 Chapter 5

www.newnespress.com

Q Q Q

Dff2 next
state logic

Dff1 next
state logic

Dff0 next
state logic

Q2

Q2

Q1

Q1

Q0

Q0

Clock
Reset

O/Ps from
flip-flops

O/Ps from
flip-flops

O/Ps from
flip-flops

D2

D Q D Q D Q

Dff2 Dff1 Dff0
D1 D0

Figure 5.51: Three-bit counter structure

0 0

0 1

1 1

0 1

0

1
Q0

D2 = (Q2.Q1.Q0) + (Q2.Q0) + (Q2.Q1)

D2

0 1

1 0

1 0

0 1

0

1
Q0

D1 = Q1 ⊕ Q0

D1

1 1

0 0

1 1

0 0

0

1
Q0

00 01 11 10
Q2 Q1

00 01 11 10

Q2 Q1

00 01 11 10

Q2 Q1

D0 = Q0

D0

Figure 5.52: Three-bit up-counter D-input Boolean expressions

Introduction to Digital Logic Design 291

www.newnespress.com

using a discrete inverter. Additionally, each D-type flip-flop has an asynchronous

active high reset that must be initially inverted so that the design reset input sees an

asynchronous active low reset circuit.

This design can be implemented in the CPLD development system (refer to Chapter 3

and Appendix F—See the last paragraph of the Preface for instructions regarding

how to access this online content) using a CPLD development board and a digital I/O

board. The basic arrangement is shown in Figure 5.54. Here, the CoolrunnerTM-II

CPLD on the CPLD development board is configured with the digital logic circuit,

and the digital I/O board is an interface to external test and measurement equipment.

The CPLD is configured using the pins identified in Table 5.33.

Here, the five design I/Os are defined and connected to the relevant CPLD pins to

connect to Header A for the digital I/O board. In addition, the CPLD design

must also incorporate two additional outputs to enable the tristate buffers used

on the digital I/O board. The enable (OE, output enable) pins on the tristate

buffers must be tied to logic 0 to enable the buffers.

QD

C

CLR

QD

C

CLR

QD

C

CLR

Clock

Reset

Q1

Q1n

Q2

Q2n

Q0

Q0n

Q0n

Q1

Q0

Q2n
Q1
Q0
Q2
Q0n
Q2
Q1n

FDCFDCFDC

D1D2

Figure 5.53: Circuit schematic for three-bit up-counter

292 Chapter 5

www.newnespress.com

An alternative to using the digital I/O board for the clock and reset inputs is to use the

clock and reset inputs available on the CPLD development board:

• Clock—a 50 MHz clock connected to CPLD pin 38

• Reset—a reset push switch (SW1) that produces a low signal when activated

(pressed) via the MAX811-S voltage monitor IC connected to CPLD pin 143.

+3.3V DC power supply

Digital I/O board

CPLD development board

Xilinx Inc. JTAG programmer

Digital input Digital output

Figure 5.54: Three-bit up-counter implementation using the CPLD
development board

Table 5.33: Three-bit up-counter CPLD pin assignment

Signal name CPLD pin
number

Digital I/O board
identifier

Comment

Clock 13 B0 (input bit 0) CPLD input, design Clock input
Reset 14 B1 (input bit 1) CPLD input, design Reset input
Q0 3 A0 (output bit 0) CPLD output, design Q0 output
Q1 4 A1 (output bit 1) CPLD output, design Q1output
Q2 5 A2 (output bit 2) CPLD output, design Q2 output
Input buffer

enable
12 OE2 (input enable) CPLD output, tie to logic 0 in

CPLD design
Output buffer

enable
2 OE1 (output enable) CPLD output, tie to logic 0 in

CPLD design

Introduction to Digital Logic Design 293

www.newnespress.com

This removes the need to generate external clock and reset inputs. If the 50MHz clock

is used, a clock divider circuit will probably be needed to produce a lower frequency

clock to the counter that will:

• operate within the CPLD without timing errors

• operate correctly with the interconnect between the CPLD and the I/O buffers

• operate correctly with the I/O buffers

• operate correctly with the test and measurement equipment used

External circuitry is connected to the digital I/O board to provide the logic levels

for inputs clock and reset, and to monitor the outputs Q2, Q1, and Q0 where logic

0=0V and logic 1=+3.3V.

Example 2: Three-Bit Straight Binary Down-Counter

Consider a three-bit straight binary down-counter, as shown in Figure 5.55 with two

inputs, clock and reset. The counter outputs are taken directly from the Q outputs of

each flip-flop (Q2, Q1, and Q0), where Q2 is the MSB and Q0 is the LSB. This is

similar to the up-counter, except now the binary count is downward.

The design process begins by creating the state transition diagram (Figure 5.56) and

the state transition table. The counter is designed to reset to a count of 0002 (010).

When the reset is removed (i.e., becomes a logic 1), the counter will count through the

sequence 0, 7, 6, 5, 4, 3, 2, 1, 0, etc. This means that when the counter output reaches

0002, it will automatically wrap around back to 1112.

Each state in the counter is encoded by the Q outputs of the D-type flip-flops, as

shown in Table 5.34.

Q2

Q1

Q0

Clock

Reset

Figure 5.55: Three-bit straight binary down-counter

294 Chapter 5

www.newnespress.com

The state transition table for the counter can then be created (Table 5.35). For the

next state logic, the Q output for each flip-flop is actually the D input for each flip-

flop in the current state. In this view of the state transition table, the current Q

outputs and the current D inputs (next state Q outputs) are defined.

The Boolean logic expression can be created for each of the D inputs so that the

counter of the form shown in Figure 5.51 is created. The next state logic for each

flip-flop uses a combination of the Q and NOT-Q outputs from each flip-flop.

State 0State 0 is the
reset state

State 6

State 5

State 4State 3

State 2

State 1

State 7

Figure 5.56: Three-bit straight binary down-counter state transition diagram

Table 5.34: Three-bit straight binary down-counter state encoding

State Q2 Q1 Q0

State 0 0 0 0
State 1 0 0 1
State 2 0 1 0
State 3 0 1 1
State 4 1 0 0
State 5 1 0 1
State 6 1 1 0
State 7 1 1 1

Introduction to Digital Logic Design 295

www.newnespress.com

Manipulation of the Boolean logic expression, use of truth tables, and Karnaugh

maps allows the designer to create a Boolean logic expression of a required form.

An example of the logic for each flip-flop D input developed using the Karnaugh

map is shown in Figure 5.57; Figure 5.58 shows a schematic for the counter. Each

Table 5.35: Three-bit straight binary down-counter state transition table

Present state Next state

State name Current Q outputs Current D inputs

Q2 Q1 Q0 D2 D1 D0

State 0 0 0 0 1 1 1
State 1 0 0 1 0 0 0
State 2 0 1 0 0 0 1
State 3 0 1 1 0 1 0
State 4 1 0 0 0 1 1
State 5 1 0 1 1 0 0
State 6 1 1 0 1 0 1
State 7 1 1 1 1 1 0

1 0

0 0

1 0

1 1

0

1
Q0

Q2 Q1

D2 = (Q2.Q1.Q0) + (Q2.Q1) + (Q2.Q0)

D2

1 0

0 1

0 1

1 0

0

1
Q0

Q2 Q1

D1 = Q1 ⊕ Q0

D1

1 1

0 0

1 1

0 0

00 01 11 10

00 01 11 10

00 01 11 10

0

1
Q0

Q2 Q1

D0 = Q0

D0

Figure 5.57: Three-bit down-counter D input Boolean expressions

296 Chapter 5

www.newnespress.com

D-type flip-flop has only a Q output, and the NOT-Q output is created using a

discrete inverter. Additionally, each D-type flip-flop has an asynchronous active high

reset that must be initially inverted so that the design reset input sees an asynchronous

active low reset circuit.

This design can be implemented in the CPLD development system (refer to Chapter 3

and Appendix F—See the last paragraph of the Preface for instructions regarding

how to access this online content) using a CPLD development board and a digital I/O

board. The basic arrangement is shown in Figure 5.59. Here, the CoolrunnerTM-II

CPLD on the CPLD development board is configured with the digital logic circuit,

and the digital I/O board interfaces to external test and measurement equipment. The

CPLD is configured using the pins identified in Table 5.36.

The five design I/Os are defined and connected to the relevant CPLD pins to connect

to Header A for the digital I/O board. In addition, the CPLD design must also

incorporate two additional outputs to enable the tristate buffers used on the digital

I/O board. The enable (OE, output enable) pins on the tristate buffers must be tied

to logic 0 to enable the buffers.

QD

C

CLR

QD

C

CLR

QD

C

CLR

Clock

Reset

Q1

Q1n

Q2

Q2n

Q0

Q0n

Q0n

Q1

Q0

Q2n
Q1n
Q0n
Q2
Q1
Q2
Q0

FDCFDCFDC

D1D2

Figure 5.58: Xilinx ISETM schematic for three-bit down-counter

Introduction to Digital Logic Design 297

www.newnespress.com

An alternative to using the digital I/O board for the clock and reset inputs is to use the

clock and reset inputs available on the CPLD development board:

• Clock—a 50 MHz clock connected to CPLD pin 38

• Reset—a reset push switch (SW1) that produces a low signal when activated

(pressed) via the MAX811-S voltage monitor IC connected to CPLD pin 143.

+3.3V DC power supply

Digital I/O board

CPLD development board

Xilinx Inc. JTAG programmer

Digital input Digital output

Figure 5.59: Three-bit up-counter implementation using the CPLD
development board

Table 5.36: Three-bit up-counter CPLD pin assignment

Signal name CPLD pin
number

Digital I/O board
identifier

Comment

Clock 13 B0 (input bit 0) CPLD input, design Clock input
Reset 14 B1 (input bit 1) CPLD input, design Reset input
Q0 3 A0 (output bit 0) CPLD output, design Q0 output
Q1 4 A1 (output bit 1) CPLD output, design Q1output
Q2 5 A2 (output bit 2) CPLD output, design Q2 output
Input buffer

enable
12 OE2 (input enable) CPLD output, tie to logic 0 in

CPLD design
Output buffer

enable
2 OE1 (output enable) CPLD output, tie to logic 0 in

CPLD design

298 Chapter 5

www.newnespress.com

This removes the need to generate external clock and reset inputs. If the 50MHz clock

is used, then a clock divider circuit is probably needed to produce a lower frequency

clock to the counter that will:

• operate within the CPLD without timing errors

• operate correctly with the interconnect between the CPLD and the I/O buffers

• operate correctly with the I/O buffers

• operate correctly with the test and measurement equipment used

External circuitry is connected to the digital I/O board to provide the logic levels for

inputs clock and reset, and to monitor the outputs Q2, Q1, and Q0 where logic

0=0V and logic 1=+3.3V.

Example 3: Divide-by-5 Circuit

Consider a circuit that receives a clock signal and produces a single output pulse on

every fifth clock input pulse. This simple divide-by-5 circuit, shown in Figure 5.60, can

be used in a clock divider circuit.

Clock

Counter
state

Time

Divided_Clock

Time

0 1 2 3 4 0

Time

Figure 5.60: Divide-by-5 circuit I/O

Introduction to Digital Logic Design 299

www.newnespress.com

To create this output signal (Divided_Clock), a counter with five count states (0, 1, 2,

3, 4) is created and the output decoded using combinational logic so that on state 4 of

the count, the output is a logic 1 only. This ensures that when the counter is reset

(either at power on or by an external circuit), the output will be a logic 0. This

arrangement is shown in Figure 5.61.

The design process begins by creating the state transition diagram (Figure 5.62) and

the state transition table. The counter is designed to reset (into state 0) to a count

value of 0002 (010). When the reset is removed (i.e., becomes a logic 1), then the

counter will count through the sequence 0, 1, 2, 3, 4, 0, etc. When the counter output

reaches 1002, it will automatically wrap around back to 0002.

Each state in the counter is encoded by the Q outputs of the D-type flip-flops, as

shown in Table 5.37.

The state transition table for the counter can then be created (Table 5.38). For the

next state logic, the Q output for each flip-flop in the next state is actually the D input

Q2

Q1

Q0

Clock

Reset

Divided_Clock3-bit counter
Output

combinational
logic

Figure 5.61: Divide-by-5 circuit

State 0State 0 is the
reset state

State 2

State 3

State 4

State 1

Figure 5.62: Divide-by-5 circuit state transition diagram

300 Chapter 5

www.newnespress.com

for each flip-flop in the current state. In this view of the state transition table, the

current Q outputs and the current D inputs (next state Q outputs) are defined. The

unused states are also shown and are set so that if they are entered, the next state will

be state 0.

A Boolean logic expression can be created for each of the D inputs so that a counter

of the form shown in Figure 5.51 is created. Here, the next state logic for each flip-flop

uses a combination of the Q and NOT-Q outputs from each flip-flop. Manipulation

of the Boolean logic expression, the use of truth tables, and Karnaugh maps allow the

designer to create a Boolean logic expression of a required form.

An example of the logic for each flip-flop D input developed using the Karnaugh map

is shown in Figure 5.63. Figure 5.64 shows the schematic developed for the counter, in

Table 5.37: Divide-by-5 circuit state encoding

State Q2 Q1 Q0

State 0 0 0 0
State 1 0 0 1
State 2 0 1 0
State 3 0 1 1
State 4 1 0 0
Unused states
State 5 1 0 1
State 6 1 1 0
State 7 1 1 1

Table 5.38: Divide-by-5 circuit state transition table

Present state Next state

State name Current Q outputs Current D inputs

Q2 Q1 Q0 D2 D1 D0

State 0 0 0 0 0 0 1
State 1 0 0 1 0 1 0
State 2 0 1 0 0 1 1
State 3 0 1 1 1 0 0
State 4 1 0 0 0 0 0
Unused states
State 5 1 0 1 0 0 0
State 6 1 1 0 0 0 0
State 7 1 1 1 0 0 0

Introduction to Digital Logic Design 301

www.newnespress.com

0 0

0 0

0 0

1 0

0

1
Q0

Q2 Q1

D2 = (Q2.Q1.Q0)

D2

0 1

1 0

0 0

0 0

0

1
Q0

Q2 Q1

D1 = (Q2.Q1.Q0) + (Q2.Q1.Q0)

D1

1 1

0 0

0 0

0 0

00 01 11 10

00 01 11 10

00 01 11 10

0

1
Q0

Q2 Q1

D0 = (Q2.Q0)

D0

Figure 5.63: Divide-by-5 D input Boolean expressions

QD

C

CLR

QD

C

QD

C

Clock

Reset

Q1

Q2n Q1n Q0n

FDC FDC FDC

D2 D1

Divided Clock

Q2n

Q2n

Q0n

Q0n

Q0n

Q0

Q2n

Q2n
Q1n

Q1n

Q0

Q2Q1

Q2

Q1
Q0

CLR CLR

Figure 5.64: Xilinx ISETM schematic for the divide-by-5 circuit

302 Chapter 5

www.newnespress.com

which each D-type flip-flop only has a Q output, and the NOT-Q output is created

using a discrete inverter. Additionally, each D-type flip-flop has an asynchronous

active high reset that must be initially inverted so that the design reset input sees an

asynchronous active low reset circuit.

The output combinational logic is provided in the truth table shown in Table 5.39.

The output is a logic 1 only when the counter is in state 4.

The Boolean logic expression for the Divided_Clock output is given as:

Divided_Clock = (Q2.Q1.Q0)

This design can be implemented in the CPLD development system (refer to

Chapter 3 and Appendix F—See the last paragraph of the Preface for instruction

regarding how to access this online content) using a CPLD development board and

a digital I/O board. The basic arrangement is shown in Figure 5.65. Here, the

CoolrunnerTM-II CPLD on the CPLD development board is configured with the

digital logic circuit, and the digital I/O board interfaces to external test and

measurement equipment. The CPLD is configured using the pins identified in

Table 5.40.

The three design I/Os are defined and are connected to the relevant CPLD pins

to connect to Header A for the digital I/O board. The CPLD design must also

incorporate two additional outputs to enable the tristate buffers used on the

digital I/O board. The enable (OE, output enable) pins on the tristate buffers

must be tied to logic 0 to enable the buffers.

Table 5.39: Three divide-by-5 circuit output logic decodings

State Q2 Q1 Q0 Divided_Clock

State 0 0 0 0 0
State 1 0 0 1 0
State 2 0 1 0 0
State 3 0 1 1 0
State 4 1 0 0 1
Unused states
State 5 1 0 1 0
State 6 1 1 0 0
State 7 1 1 1 0

Introduction to Digital Logic Design 303

www.newnespress.com

An alternative to using the digital I/O board for the clock and reset inputs is to use the

clock and reset inputs available on the CPLD development board:

• Clock—a 50 MHz clock connected to CPLD pin 38

• Reset—a reset push switch (SW1) that produces a low signal when activated

(pressed) via the MAX811-S voltage monitor IC connected to CPLD pin 143.

+3.3 V DC power supply

Digital I/O board

CPLD development board

Xilinx Inc. JTAG programmer

Digital input Digital output

Figure 5.65: Divide-by-5 circuit implementation using the CPLD development board

Table 5.40: Divide-by-5 circuit CPLD pin assignment

Signal name CPLD pin
number

Digital I/O board identifier Comment

Clock 13 B0 (input bit 0) CPLD input, design Clock input
Reset 14 B1 (input bit 1) CPLD input, design Reset input
Divided_Clock 3 A0 (output bit 0) CPLD output, design Q0 output
Input buffer
enable

12 OE2 (input enable) CPLD output, tie to logic 0 in
CPLD design

Output buffer
enable

2 OE1 (output enable) CPLD output, tie to logic 0 in
CPLD design

304 Chapter 5

www.newnespress.com

This removes the need to generate external clock and reset inputs. If the 50 MHz

clock is used, a clock divider circuit will probably be necessary to produce a lower

frequency clock to the counter that will:

• operate within the CPLD without timing errors

• operate correctly with the interconnect between the CPLD and the I/O buffers

• operate correctly with the I/O buffers

• operate correctly with the test and measurement equipment used

External circuitry is connected to the digital I/O board to provide the logic levels

for inputs clock and reset, and to monitor the outputs Q2, Q1, and Q0 where logic

0=0V and logic 1=+3.3V.

5.5.5 State Machine Design

The sequential logic circuit is designed either to react to an input, called a state

machine in this text, or to be autonomous, in which no inputs control circuit

operation. Figure 5.66 shows the basic structure of the state machine.

In the following discussions, then:

• Positive edge triggered, asynchronous active low or high D-type flip-flops will

be used.

• All flip-flops will have a common reset input.

• All flip-flops will have a common clock input.

Output
combinational

logic

Sequential logic
circuit elements

(registers)

Inputs
Outputs

Present
state

Next
state

Input
combinational

logic

Figure 5.66: State machine structure

Introduction to Digital Logic Design 305

www.newnespress.com

In addition, the output from the state machine either can be taken directly from the

Q outputs of each flip-flop or can be decoded using output combinational logic to

form specific outputs for specific states of the counter.

The state machine uses flip-flops, so for n-flip-flops, there are 2n possible

combinations of output. A state machine might use all possible states or might use

only a subset of the possible states. When a sub-set is used, the state machine should

be designed so that in normal operation, it will not enter the unused states. However,

it is good practice to design the circuit so that if it did enter one of the unused states, it

will have a known operation. For example, if an unused state is entered, the next state

would always be the reset state for the state machine.

The state machine will be based on either a Moore machine or Mealy machine. In

the Moore machine, the outputs will be a function of the present state only. As such,

the outputs will be valid whilst the state machine is within this state and will not be

valid during state transitions. In the Mealy machine, the output is a function of the

present state and current inputs. As such, the output of the Mealy machine will

change immediately whenever there is a change on the input whilst the output of

the Moore machine would be synchronised to the clock.

Example 1: Traffic Light Sequencer

Consider a state machine design to control a set of traffic lights that moves from

green to amber to red and back to green whenever a person pushes a button. This

is shown in Figure 5.67. There are three inputs—clock, reset, and change—and

three outputs—red, amber, and green.

The light begins on green (when the circuit is reset) and stays in the green state

when change is a logic 0. When change becomes a 1 (for a duration of 1 clock

cycle), the lights will change according to the following sequence:

Green� > Amber� > Red� > Red Amber� > Green

Red

Amber

Green

Clock

Reset

Change

Red

Amber

Green

Figure 5.67: Three-bit straight binary up-counter

306 Chapter 5

www.newnespress.com

The four states and their corresponding outputs (ON = logic 1, OFF = logic 0)

are defined in Table 5.41.

The state machine is designed so that when a change input is detected, the lights

will change from green to red and back to green. It will then wait for another

change input to be detected. During the light changes, the value of change is

considered a Don’t care condition (i.e., it could be a logic 0 or 1).

The design process begins by creating the state transition diagram (Figure 5.68)

and the state transition table. There are four distinct states, so two D-type

flip-flops are used (where n=2, giving 2n=4 possible states). The state machine is

designed to reset (i.e., when reset is a logic 0) to a count of 002 (010), which is the

green state. When the reset is removed (i.e., when reset becomes a logic 1), the

Table 5.41: Traffic light sequence

State Green Amber Red

Green ON OFF OFF
Amber OFF ON OFF
Red OFF OFF ON
Red_Amber ON ON OFF

Green is the
reset state

0 1x indicates a
don’t care

input: the input
can be either a

0 or 1

x

xx

Change

Green

001

Red_Amber

110

Red

100

Amber

010

Red Amber Green

State identifier

Figure 5.68: Traffic light controller circuit state transition diagram (Moore machine)

Introduction to Digital Logic Design 307

www.newnespress.com

state will count through the sequence Green, Amber, Red, Red_Amber, Green, etc.

when the Change button is pushed, and when the state machanic output reaches 112
(state Red_Amber), it will automatically wrap around back to Green. State machine

changes are summarized below:

• State is green and input (change) is a logic 0: state remains green.

• State is green and input (change) is a logic 1: state changes to amber.

• State is amber and input (change) is a logic 0 or 1: state changes to red.

• State is red and input (change) is a logic 0 or 1: state changes to red_amber.

• State is red_amber and input (change) is a logic 0 or 1: state changes to green.

Each state in the state machine will be encoded by the Q outputs of the D-type flip-

flops, as shown in Table 5.42.

The state transition table for the counter can then be created, as shown in Table 5.43.

For the next state logic, the Q output for each flip-flop in the next state is actually

the D input for each flip-flop in the current state. In this view of the state transition

Table 5.42: Divide-by-5 circuit state encoding

State Q1 Q0

Green 0 0
Amber 0 1
Red 1 0
Red_Amber 1 1

Table 5.43: Traffic light controller state transition table

Change = 0 Change = 1

Present state Next state Next state

State name Current Q outputs Current D inputs Current D inputs

Q1 Q0 D1 D0 D1 D0
Green 0 0 0 0 0 1
Amber 0 1 1 0 1 0
Red 1 0 1 1 1 1
Red_Amber 1 1 0 0 0 0

308 Chapter 5

www.newnespress.com

table, the current Q outputs and the current D inputs (next state Q outputs) are

defined. The change input is included in the state transition table, and the state

machine moves into one of two possible next states.

The Boolean logic expression can be created for each D input so that a state machine

like that shown in Figure 5.66 is created. The next state logic for each flip-flop uses a

combination of the Q and NOT-Q outputs from each flip-flop along with the change

input. Manipulation of the Boolean logic expression, the use of truth tables, and

Karnaugh maps allow the designer to create the required Boolean logic expression.

The logic for each flip-flop D input can be developed using the truth table.

As there is only one D input to each flip-flop, but two possible input conditions

(depending on the value of change), Boolean logic expressions for each possible

input are created and the results ORed together to determine the D input of

each flip-flop. This idea is shown in Figure 5.69 The resulting Boolean logic

expression should then be minimized.

D Q

Q

Dffn

Dffn next state
logic

(Change = 1)

Qn

Qn

Dn

O/Ps from
flip-flops

Dffn next state
logic

(Change = 0)

O/Ps from
flip-flops

Change

Clock
Reset

Figure 5.69: ORing the logic expressions to form the flip-flop D input

Introduction to Digital Logic Design 309

www.newnespress.com

An example for the Boolean logic expressions for each of the flip-flops is as follows:

D1 = (Q1 ⊕ Q0)

D0 = Change.(Q1.Q0) + (Change.Q0)

This shows that the D1 input is actually independent of the change input logic value.

The output combinational logic is provided in the truth table shown in Table 5.44.

The Boolean logic expressions for the outputs are given as:

Green = (Q1.Q0)

Amber = (Q0)

Red = (Q1)

Figure 5.70 shows a schematic developed for the counter in which each D-type

flip-flop has only a Q output and the NOT-Q output is created using a discrete

inverter. Additionally, each D-type flip-flop has an asynchronous active high reset

that must be initially inverted so that the design reset input sees an asynchronous

active low reset circuit.

This design can be implemented in the CPLD development system (refer to Chapter 3

and Appendix F—See the last paragraph of the Preface for instructions regarding how

to access this online content) using a CPLD development board and a digital

I/O board. The basic arrangement is shown in Figure 5.71. Here, the CoolrunnerTM-II

CPLD on the CPLD development board is configured with the digital logic circuit,

and the digital I/O board is interfaced to external test and measurement equipment.

The CPLD is configured using the pins identified in Table 5.45.

Here, the three design I/Os are defined and connected to the relevant CPLD pins to

connect to Header A for the digital I/O board. In addition, the CPLD design must

Table 5.44: Traffic light controller output logic decoding

State Q1 Q0 Red Amber Green

Green 0 0 0 0 1
Amber 0 1 0 1 0
Red 1 0 1 0 0
Red_Amber 1 1 1 1 0

310 Chapter 5

www.newnespress.com

QD

C

QD

C

CLRCLR

Clock

Reset

Q1

Q1n

Q0

Q0n

FDC FDC
D1

Q1n

Q0n
Green

Amber

Red

Q0

Q1

Q1

Q0

ChangeNChange

Q1

Q0n

D0

Change

Q0n

ChangeN

Figure 5.70: Circuit schematic for the traffic light controller

+3.3V DC power supply

Digital I/O board

CPLD development board

Xilinx Inc. JTAG programmer

Digital input Digital output

Figure 5.71: Traffic light controller implementation using the CPLD
development board

Introduction to Digital Logic Design 311

www.newnespress.com

also incorporate two additional outputs to enable the tristate buffers used on the

digital I/O board. The enable (OE, output enable) pins on the tristate buffers must

be tied to logic 0 to enable the buffers.

An alternative to using the digital I/O board for the clock and reset inputs is to use

the clock and reset inputs available on the CPLD development board:

• Clock—a 50 MHz clock connected to CPLD pin 38

• Reset—a reset push switch (SW1) which produces a low signal when activated

(pressed) via the MAX811-S voltage monitor IC connected to CPLD pin 143.

This removes the need to generate external clock and reset inputs. If the 50 MHz

clock is used, clock divider circuit will likely be needed to produce a lower

frequency clock to the counter that will:

• operate within the CPLD without timing errors

• operate correctly with the interconnect between the CPLD and the I/O

buffers

• operate correctly with the I/O buffers

• operate correctly with the test and measurement equipment used

External circuitry is connected to the digital I/O board to provide the logic levels

for inputs clock, reset, and change, and to monitor the outputs red, amber, and

green where logic 0=0V and logic 1=+3.3V.

Table 5.45: Traffic light controller CPLD pin assignment

Signal name CPLD pin
number

Digital I/O board
identifier

Comment

Clock 13 B0 (input bit 0) CPLD input, design Clock input
Reset 14 B1 (input bit 1) CPLD input, design Reset input
Red 3 A0 (output bit 0) CPLD output, design Red output
Amber 4 A0 (output bit 1) CPLD output, design Amber output
Green 5 A0 (output bit 2) CPLD output, design Green output
Input buffer

enable
12 OE2 (input enable) CPLD output, tie to logic 0 in

CPLD design
Output buffer

enable
2 OE1 (output enable) CPLD output, tie to logic 0 in

CPLD design

312 Chapter 5

www.newnespress.com

Example 2: 1001 Sequence Detector

Consider the circuit that is to detect the sequence ‘‘1001’’ on a serial bit-stream

data input and produce a logic 1 output when the sequence has been detected, as

shown in Figure 5.72. The state machine will have three inputs—one Data_In to be

monitored for the sequence and two control inputs, Clock and Reset—and one

output, Detected. Such a state machine could be used in a digital combinational

lock circuit.

The design process begins by creating the state transition diagram (Figure 5.73) and

the state transition table. There are five distinct states, so three D-type flip-flops are

used (where n=3, giving 2n=8 possible states, although only five states are used).

The state machine is designed to reset (i.e., when Reset is a logic 0) to a count of

0002 (010), which will be the state 0 state. When the reset is removed (i.e., when reset

becomes a logic 1), then the state machine becomes active. State machine changes

are summarized below:

• At state 0 and input (Data_In) is a logic 0: state remains in state 0.

• At state 0 and input (Data_In) is a logic 1: state changes to state 1.

• At state 1 and input (Data_In) is a logic 0: state changes to state 2.

• At state 1 and input (Data_In) is a logic 1: state remains in state 1.

• At state 2 and input (Data_In) is a logic 0: state changes to state 3.

• At state 2 and input (Data_In) is a logic 1: state changes back to state 1.

Data_In

Clock

Reset

Detected

Figure 5.72: 1001 sequence detector

Introduction to Digital Logic Design 313

www.newnespress.com

• At state 3 and input (Data_In) is a logic 0: state changes back to state 0.

• At state 3 and input (Data_In) is a logic 1: state changes to state 4.

• At state 4 and input (Data_In) is a logic 0: state changes back to state 0.

• At state 4 and input (Data_In) is a logic 1: state changes back to state 1.

Whenever an unused state is encountered, the state machine is designed to enter

state 0 on the next clock rising edge.

Each state in the counter is encoded by the Q outputs of the D-type flip-flops, as

shown in Table 5.46.

The state transition table for the counter can then be created, as shown in Table 5.47.

For the next state logic, the Q output for each flip-flop in the next state is actually the

D input for each flip-flop in the current state. In this view of the state transition table,

the current Q outputs and the current D inputs (next state Q outputs) are defined. The

change input is included in the state transition table, and the state machine can move

into one of two possible next states.

State 0 is the
reset state

0

1

1

0

1

0

1

0

1

0

Input: Data_In

State 2

0

State 3

0

State 4

1 State 1

0

State 0

0

State
identifier

Output:
Detected

Figure 5.73: 1001 sequence detector state transition diagram (Moore machine)

314 Chapter 5

www.newnespress.com

An example for the Boolean logic expressions for each of the flip-flops is as follows:

D2 = Data_In.(Q2.Q1.Q0)

D1 = Data_In.Q2.(Q1 ⊕ Q0)

D0 = Data_In.(Q2.Q1.Q0) + Data_In.((Q2.Q1) + (Q1.Q0))

The output combinational logic is provided in the truth table shown in Table 5.48.

Table 5.46: 1001 sequence detector state encoding

State Q2 Q1 Q0

State 0 0 0 0
State 1 0 0 1
State 2 0 1 0
State 3 0 1 1
State 4 1 0 0
Unused states
State 5 1 0 1
State 6 1 1 0
State 7 1 1 1

Table 5.47: 1001 sequence detector state transition table

Data_In = 0 Data_In = 1

Present state Next state Next state

State name Current Q outputs Current D inputs Current D inputs

Q2 Q1 Q0 D2 D1 D0 D2 D1 D0

State 0 0 0 0 0 0 0 0 0 1
State 1 0 0 1 0 1 0 0 0 1
State 2 0 1 0 0 1 1 0 0 1
State 3 0 1 1 0 0 0 1 0 0
State 4 1 0 0 0 0 0 0 0 1
Unused states
State 5 1 0 1 0 0 0 0 0 0
State 6 1 1 0 0 0 0 0 0 0
State 7 1 1 1 0 0 0 0 0 0

Introduction to Digital Logic Design 315

www.newnespress.com

The Boolean logic expressions for the output is given as:

Detected ¼ ðQ2:Q1:Q0Þ
Figure 5.74 shows a schematic developed for the counter in which each D-type

flip-flop has only a Q output and the NOT-Q output is created using a discrete

inverter. Additionally, each D-type flip-flop has an asynchronous active high

reset that must be initially inverted so that the design reset input sees an

asynchronous active low reset circuit.

5.5.6 Moore versus Mealy State Machines

Sequential logic circuit designs create counters and state machines. The state machines

are based on either the Moore machine or the Mealy machine, shown in Figure 5.75.

The diagrams shown in Figure 5.75 are a modification of the basic structure identified

in Figure 5.36 by separating the combinational logic block into two blocks, one to

create the next state logic (inputs to the state register that store the state of the circuit)

and the output logic:

• In the Moore machine, the outputs are a function only of the present state only.

• In the Mealy machine, the outputs are a function of the present state and the

current inputs.

The types of circuits considered here will be synchronous circuits in that

activity occurs under the control of a clock control input, these are synchronous

circuits. A number of possible circuits can be formed to produce the required

circuit functionality.

Table 5.48: 1001 sequence detector output logic decoding

State Q2 Q1 Q0 Detected

State 0 0 0 0 0
State 1 0 0 1 0
State 2 0 1 0 0
State 3 0 1 1 0
State 4 1 0 0 1
Unused states
State 5 1 0 1 0
State 6 1 1 0 0
State 7 1 1 1 0

316 Chapter 5

www.newnespress.com

5.5.7 Shift Registers

The D-type flip-flops can be connected so that the Q output of one flip-flop is connected

to the D input of the next flip-flop, as shown in Figure 5.76. With a single input

(Data_In), a serial bit-stream can be applied to the circuit. Whenever a clock edge occurs,

the D input of a flip-flop is stored and presented as the Q output of that flip-flop.

If there are n-flip-flops in the circuit, the serial bitstream applied at the input

appears at the output (as Data_Out) after n clock cycles. The serial bitstream input

is available as a serial bitstream output, which is referred to as a serial-in, serial-out shift

register because the input is shifted by the clock signal to become the output.

Modifications to this circuit allow parallel input to the shift register (a parallel data

load, rather than a serial data load) and parallel output. A shift register that provides

for serial input along with serial and parallel output is shown in Figure 5.77.

Data_In
Q2n

Q1
Q0

Clock

Reset

Q1

Q1n

Q0

Q0n

D1

Data In Data_inN

Q2
Q1n
Q0n

D0

Detected

D Q

C

CLR

D Q

C

CLR

D Q

C

CLR

Q2

Q2

FDC FDC FDC
D2

Data_InN
Q2n

Q1

Q0

Data_InN
Q2n
Q1

Q0n Data_In

Q2n

Q1n

Q1

Q0n

Figure 5.74: Circuit schematic for the 1001 sequence detector

Introduction to Digital Logic Design 317

www.newnespress.com

Next state
logic

State
register Outputs

Inputs Output
logic

(a) Moore machine

Next state
logic

State
register

Outputs

Inputs

Output
logic

(b) Mealy machine

0

1

10

0

01

1 Example
Moore
machine
state
transition
diagram

Example
Mealy
machine
state
transition
diagram

InputState
identifier

Outputs in
present state

State1 State2

State4 State3

0/001

1/100

1/0100/000

0/001

0/0101/100

1/000

Input / outputs in present state

x

State
identifier

X

Y

State1

000

State2

001

State3

010

State4

100

Figure 5.75: Moore and Mealy state machines

318 Chapter 5

www.newnespress.com

5.5.8 Digital Scan Path

The shift register is used to support circuit and system testing. This arrangement forms a

scan path [12]. Scan path testing is the main method to provide access for internal node

controllability and observability of digital sequential logic circuits, where:

• controllability is the ability to control specific parts of a design to set

particular logic values at specific points.

• observability is the ability to observe the response of a circuit to a

particular circuit stimulus.

In scan path, the circuit is designed for two modes of operation:

• normal operating mode, in which the circuit is running according to its

required end-user function

• scan test mode, in which logic values are serially clocked into circuit flip-flop

elements from an external signal source, and the results are serially clocked

out for external monitoring.

CLK

Data_In

RESET

D QD Q D Q D Q Data_Out

Figure 5.76: Four-bit shift register (serial in, serial out)

CLK

Data_In

RESET

D Q D Q D Q D Q Data_Out

Q0 Q1 Q2 Q3

Figure 5.77: Four-bit shift register (serial in, parallel and serial out)

Introduction to Digital Logic Design 319

www.newnespress.com

The incorporation of a scan path into a design requires additional inputs and

outputs specifically used for the test procedure. These inputs and outputs, and the

scan test circuitry, are not used by the end user.

Scan test inputs:

• Scan data input (SDI) scans the data to clock serially into the circuit.

• Scan enable (SE) enables the scan path mode.

Scan test output:

• Scan data out (SDO) scans the data (results) that are serially clocked out

of the scan path for external monitoring.

Using the basic circuit arrangement shown in Figure 5.77, the D-type flip-flops

within the sequential logic circuit are put into a serial-in, serial-out shift register as

shown in Figure 5.78, showing SDI and SDO. The parallel outputs (Q0, Q1, Q2,

and Q3) form inputs to the combinational logic within the design.

A typical scan path test arrangement is shown in Figure 5.79, including the

combinational logic block and D-type flip-flops. Each flip-flop has a common

clock and reset input. Between the flip-flop D input and the combinational logic

(the next state logic), a two-input multiplexer is inserted. The first data input to

the multiplexer is the output from the next state logic. The second data input comes

from the Q output of a flip-flop. This allows either of these signals to be

applied to the D input of the flip-flop using the select input on the multiplexer

(connected to SE).

SDO

CLK

SDI

RESET

D Q D Q D Q D Q

Q0 Q1 Q2 Q3

Figure 5.78: Scan test shift register

320 Chapter 5

www.newnespress.com

In normal operating mode, the next state logic is connected to the flip-flop D input.

In scan test mode, the Q output from a previous flip-flop is connected to the

flip-flop D input. This isolates the flip-flop from the next state logic, and the flip-flops

form a shift register of the form shown in Figure 5.78. Test data can therefore be

scanned in (using the SDI input), and test results can be scanned out (using the

SDO output). An example operation of this scan path follows:

1. The circuit is put into scan test mode (by control of the SE). The test data is serially

scanned into the design to set the flip-flop Q outputs to known values (i.e., to put

the circuit into a known, initial state) by applying the test data to the SDI pin.

2. The circuit is put back into its normal operating mode and operated for a

set number of clock cycles.

3. The circuit is again put into scan test mode. The results of the test are stored on the

Qoutputs of the flip-flops and serially scanned out andmonitored on the SDOpin.

4. The monitored values are compared with the expected values, and the

circuit is then checked to see if it has passed (expected values received) or

failed (the circuit output is not as expected) the test.

Combinational
logic

Circuit
Inputs

Circuit
Outputs

Clock Reset

Flip-flop

State
variables

SDI

SDO

SE

Flip-flop

Flip-flop

Figure 5.79: Scan path insertion using D-type flip-flops and multiplexers

Introduction to Digital Logic Design 321

www.newnespress.com

The arrangement shown in Figure 5.79 uses a discrete multiplexer and D-type

flip-flop to create the scan path. In many circuits, these functions are combined into

a single scan D-type flip-flop circuit element, as shown in Figure 5.80. This has the

same logic functionality as a discrete flip-flop and multiplexer arrangement, but is

optimized for size and speed of operation. It has two data inputs (D, normal data,

and SD, scan data input) and a scan enable (SE) control input to select between

normal and scan test modes, in addition to the clock, reset (and/or set) inputs and

Q/NOT-Q outputs.

5.6 Memory

5.6.1 Introduction

Memory is used to store, provide access to, and allow modification of data and

program code for use within a processor-based electronic circuit or system. The two

basic types of memory are ROM (read-only memory, and RAM (random access

memory). Memory can be considered for use for one of the following three data or

program storage purposes:

1. Permanent storage for values that are normally only read within the

application and can be changed (if at all) only by removing the memory

from the application and reprogramming or replacing it.

D Q

SD

SE

Q

Reset

(a) Circuit symbol (b) Logical operation

D Q

Q

Reset

D

SD

SE

CLK

Reset

Q

Q

Figure 5.80: Scan D-type flip-flop

322 Chapter 5

www.newnespress.com

2. Semi-permanent storage for values that can be read only within the

application (as with permanent storage). However, stored values can be

modified by reprogramming while the memory remains in the circuit.

3. Temporary storage for values needed only for temporary use and requiring

fast access or modification (such as data and program code within a computer

system that can be removed when no longer needed).

These memories are typically used within a computer architecture of the form shown

in Figure 5.81. Here, the ROM and RAM are connected to the other computer

functional blocks:

• ALU, arithmetic and logic unit

• I/O, input/output to external circuitry

• controller to provide the necessary timing for the circuitry.

Each of the functional blocks is connected to a common set of data, address, and

control lines required to access and manipulate the digital data at specific points in

time. Also needed is a power supply for each circuit to implement the functional

blocks within the computer.

ROM RAMALU I/O

External circuitry

Controller

Data bus

Address bus

Control bus

Figure 5.81: Basic computer architecture

Introduction to Digital Logic Design 323

www.newnespress.com

The key drivers for memory development are driven by the end-user, who is

constantly demanding more functionality at a lower cost. Hence, the key drivers

for memory development are:

1. Increased capacity—the amount of data that can be stored within a single

memory circuit

2. Increased operating speed—to reduce time to write data to and read data

from the memory

3. Lower cost

Memory bandwidth, the amount of information that can be transferred to and from

memory per unit time, is an increasingly important aspect to memory design and

choice for use. This is driven by the increase in processor performance and demanding

applications such as multimedia and communications.

5.6.2 Random Access Memory

RAM (also referred to as read-write memory, RWM) is considered volatile storage

because its contents are lost when the power is removed. There are two main

types of RAM, static RAM (SRAM) and dynamic RAM (DRAM). In addition,

ferromagnetic RAM (FRAM) is also available.

A view of SRAM connections where the SRAM is provided in a dual in-line package

(DIP) is shown in Figure 5.82. Here, the SRAM consists of the following connections:

• Address lines define the memory location to be selected for reading or writing.

• Input/output data lines define the data to write to or read from memory.

• Write enable (WE) is a control input that selects between the memory read and

write operations (usually active low).

• Output enable (OE) is a control input that enables the output buffer for

reading data from the memory (usually active low).

• Chip select (CS) selects the memory (usually active low).

• Power supply provides the necessary power to operate the circuit.

324 Chapter 5

www.newnespress.com

Where the SRAM is provided as a discrete packaged device, a suitable power supply

(VDD/VSS) along with power supply decoupling (capacitors) on the PCB will be

needed. Increasingly, SRAMs are provided as macro cells within ICs (such as in the

Xilinx� SpartanTM-3 FPGA), in which the power supply has already been routed and

the SRAM is ready for use.

In some RAM designs, the two write enable (WE) and output enable (OE) control

signals identified above are combined into a single read/write (R/W) control signal.

This reduces the pin count by one and the logic level of the R/W input will determine

if the RAM is written to, or read from.

5.6.3 Read-Only Memory

ROM is used for holding program code that must be retained when the memory

power is removed, so it is considered nonvolatile storage. The code can take one of

three forms:

1. Fixed when the memory is fabricated—mask-programmable ROM

2. Electrically programmed once—PROM, programmable ROM

3. Electrically programmed multiple times—EPROM (electrically

programmable ROM) erased using ultraviolet (UV) light; EEPROM

or E2PROM (electrically erasable PROM); and flash (also electrically

erased).

Power

Control
signals

Address bus

Data bus

Figure 5.82: SRAM in a DIL package

Introduction to Digital Logic Design 325

www.newnespress.com

PROM is sometimes considered in the same category of circuit as

programmable logic, although in this text, PROM is discussed only in the

memory category.

RAM is used for holding data and program code that must be accessed quickly

and modified during normal operation. RAM differs from read-only memory (ROM)

in that it can be both read from and written to in the normal circuit application.

However, flash memory is also referred to as nonvolatile RAM (NVRAM).

A basic ROM design in which ROM is provided in a dual in-line package is shown

in Figure 5.83. Here, the ROM consists of the following connections:

• Address lines define the memory location to be selected for reading or

writing.

• Output data lines access the data from memory.

• Output enable (OE) is a control input that enables the output buffer for

reading data from the memory (usually active low).

• Chip select (CS) selects the memory (usually active low).

• Power supply provides the necessary power to operate the circuit.

In this view, the data bus is considered to be unidirectional (i.e., output only).

Where the ROM may be electrically programmed, then the data and control line

arrangement will be more complex.

Power

Control
signals

Address bus

Data bus

Figure 5.83: Basic ROM in a DIL package

326 Chapter 5

www.newnespress.com

References

[1] Meade, M., and Dillon, C., Signals and Systems, Models and Behaviour, Second

Edition, Chapman and Hall, 1991, ISBN 0-412-40110-x.

[2] Smith, M., Application Specific Integrated Circuits, Addison-Wesley, 1999,

ISBN 0-201-50022-1.

[3] Skahill, K., VHDL for Programmable Logic, Addison-Wesley, 1996, ISBN

0-201-89573-0.

[4] Maxfield, C., The Design Warrior’s Guide to FPGAs, Newnes, 2004, ISBN

0-7506-7604-3.

[5] Stonham, T. J., Digital Logic Techniques: Principles and practice, Second

Edition, Van Nostrand Reinhold, UK, 1988, ISBN 0-278-00011-8.

[6] Tocci, R. J., Widmer, N. S., and Moss, G. L. K., Digital Systems, Ninth

Edition, Pearson Education International, USA 2004, ISBN 0-13-121931-6.

[7] The Institute of Electrical and Electronics Engineers, IEEE Standard, 91-1984,

Graphics Symbols for Logic Functions, IEEE, USA.

[8] Overview of IEEE Standard 91-1984, Explanation of Logic Symbols, 1996,

Texas Instruments, USA.

[9] The Institute of Electrical and Electronics Engineers, IEEE Standard 1076-

2002, IEEE Standard VHDL Language Reference Manual, IEEE, USA.

[10] Zwolinski, M., Digital System Design with VHDL, Pearson Education Limited,

2000, England, ISBN 0-201-36063-2.

[11] Kang, S., and Leblebici, Y., CMOS Digital Integrated Circuits Analysis and

Design. McGraw-Hill International Editions, Singapore, 1996, ISBN 0-07-

114423-4.

[12] Grout, I. A., Integrated Circuit Test Engineering Modern Techniques, Springer,

2006, ISBN 1-84628-023-0.

Introduction to Digital Logic Design 327

www.newnespress.com

Student Exercises

5.1 Convert the following decimal numbers to unsigned binary:

• 14510
• 1010
• 21.7510
• 1,256.12510

5.2 Convert the following decimal numbers to 2s complement signed binary:

• 14510
• –1010
• 21.7510
• –1,256.12510

5.3 Convert the following unsigned binary numbers to decimal:

• 101010102
• 010101012
• 1100.00110110
• 1111000011110000.0000111110

5.4 Convert the following unsigned binary numbers to octal:

• 1010100102
• 1010101012
• 100.0011012
• 111100001111.0001112

5.5 Convert the following unsigned binary numbers to hexadecimal:

• 101010102
• 1010101011112
• 1100.00112
• 111100001111.000011112

5.6 Consider the Boolean logic expression:

Z ¼ ððAþ BÞ:CÞ:D

328 Chapter 5

www.newnespress.com

Draw the logic level schematic for this design:

• As it is presented.

• Using two-input NAND logic gates only.

• Using two-input NOR logic gates only.

5.7 Consider the Boolean logic expression:

z ¼ Aþ ðB:CÞ

Draw the logic level schematic for this design:

• As it is presented.

• Using two-input NAND logic gates only.

• Using two-input NOR logic gates only.

5.8 Consider the Boolean expression:

z ¼ ðA:BÞ þ B:CÞ

Draw the logic level schematic for this design:

• As it is presented.

• Using two-input NAND logic gates only.

• Using two-input NOR logic gates only.

5.9 Design a circuit using combinational logic that will convert a four-bit

unsigned binary into Gray code.

5.10 Create the truth table for a five-bit Gray code count.

5.11 Design a circuit using combinational logic that will implement parity

checking on a four-bit input. The circuit is to use even parity coding.

5.12 Design a circuit using combinational logic that will implement parity

checking on a four-bit input. The circuit is to use odd parity coding.

5.13 Design a synchronous sequential circuit that will produce a four-bit

straight binary up-count. The counter is to use positive edge triggered

active low asynchronous reset D-type flip-flops.

5.14 Design a synchronous sequential circuit that will produce a four-bit

straight binary down-count. The counter is to use positive edge triggered

active low asynchronous reset D-type flip-flops.

Introduction to Digital Logic Design 329

www.newnespress.com

5.15 Design a synchronous sequential circuit that will produce a four-bit

straight binary up/down-count. When a direction input is 0, the counter

will count up. When the direction input is 1, the counter will count down.

The counter is to use positive edge triggered active low asynchronous

reset D-type flip-flops.

5.16 For the range of Xilinx� FPGAs, identify which FPGAs contain

the following:

• Hardware multiplier.

• SRAM.

If these resources are available for the designer to use, identify the

number and size of each macro within each type of FPGA.

5.17 For the range of Xilinx� CPLDs, identify which CPLDs contain

the following:

• Hardware multiplier.

• SRAM.

If these resources are available for the designer to use, identify the

number and size of each macro within each type of FPGA.

5.18 For the range of Lattice� Semiconductor FPGAs, identify which

FPGAs contain the following:

• Hardware multiplier.

• SRAM.

If these resources are available for the designer to use, identify the

number and size of each macro within each type of FPGA.

5.19 For the range of Lattice� Semiconductor CPLDs, identify which

CPLDs contain the following:

• Hardware multiplier.

• SRAM.

If these resources are available for the designer to use, identify the

number and size of each macro within each type of FPGA.

5.20 Design a synchronous counter that will produce a four-bit Gray code

count. The counter is to use active low asynchronous reset D-type flip-flops.

330 Chapter 5

www.newnespress.com

5.21 Design a synchronous counter that will produce a four-bit BCD count.

The counter is to use active low asynchronous reset D-type flip-flops.

5.22 Design a combinational logic circuit that will accept an eight-bit BCD

value and produce the outputs to display the BCD count on two seven-

segment displays (using common cathode displays).

5.23 Design a counter that will control the lights for a traffic light system at

the crossroads of two roads. The counter will automatically cycle through

each road from red to green for each road in turn.

5.24 Modify the traffic light control system so that now each road will become

green if a car is detected on that road. What are the limitations of the

implemented system?

Introduction to Digital Logic Design 331

www.newnespress.com

This page intentionally left blank

CHA P T E R 6

Introduction to Digital Logic Design
with VHDL

6.1 Introduction

In the past, digital circuits were designed by hand on paper using techniques such as

Boolean expressions, circuit schematics, Karnaugh maps, and state transition

diagrams. With the increasing use of computer-based design methods and tools, the

design process migrated to the computer using electronic design automation (EDA)

tools [1]. These are computer-aided design (CAD) tools developed to support the

designers of electronic hardware and software systems. Circuit schematic design

entry, supported with design simulation tools, became the design entry and validation

(through simulation) method available. With the subsequent development and

standardization of hardware description languages (HDL), the HDL design entry

method using text-based descriptions of circuits is now often the preferred choice of

designers [2–4]. HDL design is supported with simulation, as with circuit schematic

design entry, and with logic synthesis (normally referred to simply as synthesis), which

converts (synthesizes) the HDL design description into a circuit netlist consisting of

the required logic gates and interconnection wiring [5, 6]. Many EDA tools also

provide a means by which to view the HDL code as a circuit schematic, thereby

providing a graphical view of the design hardware. Such graphical views can aid

the designer in understanding the circuit operation and for design debugging

purposes.

This chapter provides an introduction to design with HDLs, with particular emphasis

on the VHDL language. As such, all examples in this chapter and this text book are

provided in VHDL.

www.newnespress.com

6.2 Designing with HDLs

Hardware description language (HDL) design entry is based on the creation and use

of text-based descriptions of a digital logic circuit or system. Here, using a particular

HDL (the two IEEE standards in common use in industry and academia are

Verilog�-HDL [7] and VHDL [8]), the description of the circuit can be created at

different levels of abstraction from the basic logic gate description according to

the language syntax (the grammatical arrangement of the words and symbols used

in the language) and semantics (the meaning of the words and symbols used in the

language).

Verilog�-HDL and VHDL are both set in the IEEE standards [9]:

• Verilog�-HDL, IEEE Std 1364TM-2005

• VHDL, IEEE Std 1076TM-2002

Verilog�-HDL was released in 1983 by Gateway Design System Corporation,

together with a Verilog�-HDL simulator. In 1985, the language and simulator were

enhanced with the introduction of the Verilog-XL� simulator. In 1989, Cadence

Design Systems, Inc. brought the Gateway Design System Corporation, and early in

1990, Verilog�-HDL and Verilog-XL� were separated to become two separate

products. Verilog�-HDL, until then a proprietary language, was released into the

public domain to facilitate the dissemination of knowledge relating to Verilog�-HDL

and to allow Verilog�-HDL to compete with VHDL, already existing as a

nonproprietary language. Also in 1990, Open Verilog International (OVI) [10] was

formed as an industry consortium consisting of computer-aided engineering (CAE)

vendors and Verilog�-HDL users to control the language specification. In 1995,

Verilog�-HDL was reviewed and adopted as IEEE standard (Std) 1364 (becoming

IEEE Std 1364-1995). In 2001 and 2005, the standard was reviewed and the current

version is the IEEE Std 1364TM-2005.

VHDL (VHSIC HDL, very high-speed integrated circuit hardware description

language) began life in 1980 under a United States Department of Defense (DoD)

requirement for the design of digital circuits following a common design methodology

to provide the ability for self-documentation and reuse with new technologies. VHDL

development commenced in 1983, and the language was reviewed in 1987 to become

IEEE Std 1076-1987. The language has been revised since in 1993, 2000, and 2002, the

latest release being 1076-2002. VHDL also has a number of associated standards

relating to modeling and synthesis.

334 Chapter 6

www.newnespress.com

When designing with HDLs, the designer must decide what language to use and at

what level of design abstraction to work. When considering the choice of language, a

number of factors come into play, including:

• the availability of suitable EDA tools to support the use of the language

(including design management capabilities and availability of tool use within a

project)

• previous knowledge

• personal preferences

• availability of simulation models

• synthesis capabilities

• commercial issues

• design re-use

• requirements to learn a new language and the capabilities of the language

• supported design flows within an organization

• existence of standards for the language

• access to the standards for the language

• readability of the resulting HDL code

• ability to create the levels of design abstraction required, and language and/or

EDA tool support for these abstraction levels

• access to design support tools for the language (such as the existence of

automatic code checking tools and documentation generation tools)

Figure 6.1 shows the different levels of design abstraction that are used. One or more

levels of abstraction are used in a typical design project.

Starting at the highest level of abstraction (furthest from the circuit detail), the system

idea or concept is the initial high-level description of the design that provides the

design specification. The algorithm level describes a high-level behavioral description

of the design operation at a mathematical description level of behavior. Neither the

system idea nor the algorithm describes the way in which the behavior of the design

is to be implemented. The algorithm structure in hardware is described

Introduction to Digital Logic Design with VHDL 335

www.newnespress.com

by the architecture, identifying the high-level functional blocks to use and the way in

which the functions are connected together. The algorithm and architecture levels

describe the behavior of the design to be verified in simulation.

The next level down from the architecture is the register transfer level (RTL), which

describes the storage (in registers) and flow of data around a design, along with logical

operations performed on the data. It is this level that is usually used by synthesis tools

to convert the design description into a structural level (the netlist of the design in

terms of logic gates and interconnect wiring between the logic gates). The logic gates

are themselves implemented using transistors. The HDLmay also support switch level

descriptions that model the transistor operation as a switch (ON/OFF).

A typical design flow for a digital circuit or system using VHDL is shown in

Figure 6.2. From the initial design idea, a behavioral description of the design is

written in VHDL. This is simulated to verify its operation and determine that the

description matches the design idea (with the design idea in the form of a design

specification).

Both Verilog�-HDL and VHDL could be used, the choice depending on a number

of considerations given for a particular design project. A combination of both

languages within a single design project is also common.

In VHDL, the simulation control and test stimulus to apply is created within the

test bench. In Verilog�-HDL, the simulation control and test stimulus to apply is

created within the test fixture.

When the behavioral level design description has been successfully validated through

simulation, the design is translated to RTL code. This might be undertaken manually

or automatically, if a suitable behavioral synthesis tool is available. The resulting

System idea (concept)

Algorithm

Architecture

Register Transfer Level (RTL)

Structural Level (Logic gate)

Transistor (Switch level)

Toward design
detail and

implementation

Toward
behavioral
description

Figure 6.1: Levels of design description abstraction

336 Chapter 6

www.newnespress.com

RTL VHDL code is then synthesized using the same set of criterion as the behavioral

level design, and the results of the simulation are compared for equivalence to prove

that the RTL code performs in the same manner as the behavioral level code. If

differences are noted, then the RTL code is modified to ensure equivalence.

To summarize: the design entry point is the design idea. In Figure 6.2, the idea is

then coded in VHDL as a behavioral description. This is one approach. In many

situations, the RTL level code is generated directly from the idea, skipping the

behavioral description stage.

The next step is to perform RTL synthesis on the code to produce a design netlist for

the target technology (ASIC or PLD). Information about the target technology and

user set synthesis directives is required to control the synthesis operation. The pre-

and postsynthesis designs are then compared by simulating the postsynthesis netlist

Behavioral
level

simulation

VHDL RTL
description

RTL synthesis

Design idea
(specification)

VHDL
behavioral
description

Behavioral
to RTL

translation

VHDL
structural

description
(netlist)

Structural
level

simulation

Comparison

Technology
information

Comparison

RTL
level

simulation

Design
database

Equivalence
checking
results

Equivalence
checking
resultsSynthesis

directives

Starting at the
behavioral level

Starting at the RTL level

Figure 6.2: Typical design flow using HDLs

Introduction to Digital Logic Design with VHDL 337

www.newnespress.com

and checking this against the RTL level code for equivalence. On successful

completion of this step, the netlist is stored in the design database for use.

6.3 Design Entry Methods

6.3.1 Introduction

To enter a design into an EDA tool, a suitable design entry method is required.

Typically, tools will allow the following design entry methods:

1. Circuit schematics present a graphical view of the design using logic gate

symbols and interconnect wiring.

2. Boolean expressions can be entered as a text-based description in

combinational logic designs.

3. HDL design entry allows a description of the digital logic circuit or system

operation to be entered in text form using a suitable language.

4. State transition diagrams present a graphical view of state machines that

identifies the design states and the transitions between states.

The availability of a particular design entry method depends on the EDA tool used.

6.3.2 Schematic Capture

Schematic capture is undertaken by creating a circuit diagram (schematic) showing

the logic gate symbols and the interconnections between the symbols. Figure 6.3

shows an example of a circuit schematic.

A

B

C Z

D

E

F

G

I

H

Figure 6.3: Example circuit schematic

338 Chapter 6

www.newnespress.com

This combinational logic circuit includes three primary inputs (A, B, and C), one

primary output (Z), and six internal nodes (D, E, F, G, H, and I), as well as seven

logic gates (three inverters, two two-input AND gates, one three-input AND gate,

and one three-input OR gate). The circuit is represented by the following Boolean

expression:

For a small circuit of this form, creating a circuit schematic (initially on paper, then

within an EDA tool) is a straightforward task. However, consider a design with

hundreds or thousands of logic gates and interconnect wiring: the task of creating,

debugging, modifying, and maintaining the schematic becomes immense. Additionally,

the schematic is created for a particular implementation technology and is therefore

technology dependent. An example of a complex logic schematic is shown in Figure 6.4.

In this view, it is not possible to identify particular logic gates, and navigating through

the design to identify particular logic gates and interconnect wires would be a time-

consuming task. A design description that was initially technology independent would

therefore be of greater use as the same description could be used to target a range of

implementation technologies. Complex designs also commonly implement a

hierarchical design approach in which symbols identifying the input and output

connections of blocks of circuitry are connected together in a schematic, and other

schematics contain the detailed circuits for the symbols used. In this way, complex

designs can be created and validated for use multiple times in a structured manner

by multiple designers.

6.3.3 HDL Design Entry

Hardware description language (HDL) design entry is based on the creation and use

of text-based descriptions of a digital logic circuit or system using a particular HDL

(the two IEEE standards in common use are Verilog�-HDL and VHDL). It is

common to adopt a hierarchical design approach to keep a project manageable. The

HDL code is written to conform to one of three styles:

1. A structural description describes the circuit structure in terms of the logic

gates used and the interconnect wiring between the logic gates to form a

circuit netlist.

Z = (A . B) + (A . C) + (A . B . C)

Introduction to Digital Logic Design with VHDL 339

www.newnespress.com

A(3:0)

???

????

OBUF

AND2

AND2

AND2

AND2AND2

AND2

AND2

AND2

AND2

IBUF

OR2OR2

OR2

AND2

AND2

AND2AND2AND2

IBUF

AND2

AND2

AND2

OR2

AND2

AND2

AND2

AND2

OR2

AND2

AND2

IBUF

AND2

AND2

AND2

AND2

AND2AND2

AND2

AND2

OR2

OR2

IBUF

AND2

OR2OR2

OR2

AND2

OR2

OR2AND2

AND2

OR2

AND2

AND2

AND2

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

ResultData(0)

IBUF

IBUF

IBUF

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OR3

B(3:0)

P (7:0)

Figure 6.4: Example complex circuit schematic

2. A dataflow description describes the transfer of data from input to output and

between signals.

3. A behavioral description describes the behavior of the design in terms of circuit

or system behavior using algorithms. This high-level description uses language

constructs that resemble a high-level software programming language.

Both the dataflow and behavioral descriptions can use similar language

constructs. They differ in VHDL in that a behavioral description uses language

process statements, whereas a dataflow description does not.

6.4 Logic Synthesis

An important feature of designwithHDLs is the need for logic synthesis, hereafter called

simply synthesis. Synthesis is the means by which an HDL description is converted

(translated) to a circuit netlist that identifies the logic gates used and the interconnection

wiring. In the process of synthesis, an initial HDL-based design that is technology

independent (i.e., does not describe anything relating to the final implementation

technology) is converted to a technology dependent netlist. As such, only at the synthesis

stage is the design fixed to a particular implementation technology. This is an advantage

to the designer as the same initial HDL code can be used to target different technologies,

particularly important if a design is to be migrated to a new implementation technology,

as often happens in design projects.

The basic synthesis process is shown in Figure 6.5. A synthesis tool requires specific

information such as tool set-up routines, technology libraries, and synthesis directives.

The tool set-up routines configure the synthesis tool to the particular computing

platform on which it is installed. The technology libraries provide specific information

relating to the target implementation technology. The synthesis directives are applied by

the user to direct the synthesis tool during the design synthesis operation.

Synthesis consists of seven steps, identified in Figure 6.5. The initial HDL description is

translated (1) to anRTL level description. This form is optimized (2) and then translated

(3) into a logic level description. This is optimized (4) and translated (mapped) to a gate

level description (5). This is optimized (6), and the result is translated to the final netlist

(7). At each step, the description created is closer to the final netlist. The designer sets up

specific synthesis directives to direct the synthesis tool in creating the design netlist.

Constraints are typically size, speed, and power consumption. Applying different

synthesis constraints typically result in different final netlists.

Introduction to Digital Logic Design with VHDL 341

www.newnespress.com

These considerations apply to logic synthesis (commonly referred to as synthesis).

However, there is also physical synthesis which relates to the automatic synthesis

of design layouts in integrated circuit (IC) design at the silicon level. However,

physical synthesis will not be considered further in this text.

When RTL code is synthesized, this is referred to as RTL synthesis. When behavioral

level HDL code is synthesized, this is referred to as behavioral synthesis. Additionally,

the initial HDL code must be created so that it is synthesizable. An HDL design

description can be created as simulated and the correct operation ascertained, but in

certain circumstances the HDL code written like this will be unsynthesizable.

As an example of synthesis, Figure 6.6 shows an example VHDL description for a

digital circuit. This is written in the dataflow style and adds two numbers (A and B) to

form a third number (Z). All numbers are eight bits wide.

The code has three main parts:

1. Top part identifies the reference libraries and packages to use within the design.

2. Middle part identifies the design entity.

3. Bottom part identifies the design architecture.

Initial HDL description
(technology independent)

RTL level

Final HDL description
(technology dependent netlist)

ASIC

PLD

Optimization

Logic level Optimization

Gate level Optimization

Synthesis
directives

1

3

5

7

2

4

6

Figure 6.5: Basic synthesis process

342 Chapter 6

www.newnespress.com

The design entity has the general declaration of the form as shown in Figure 6.7.

The items enclosed within the square brackets are optional. The SIGNAL preceding

the identifier is often omitted in VHDL design descriptions, although care must

be taken when creating VHDL-AMS (for mixed-signal and mixed-technology

design) descriptions because SIGNAL identifies digital signals and would be

used then.

For VHDL-based designs, note that VHDL is not a case-sensitive language and as

such both lower- and uppercase letters can be used. However, it is wise to adopt a

consistent style (e.g., that uppercase letters have particular meanings).

ENTITY Entity_Name IS
PORT(

SIGNAL Signal_Identifier_1 : Mode Signal_Type;
 SIGNAL Signal_Identifier_2 : Mode Signal_Type;
 SIGNAL Signal_Identifier_3 : Mode Signal_Type;
 SIGNAL Signal_Identifier_4 : Mode Signal_Type);

END ENTITY Entity_Name;

Figure 6.7: General entity declaration used within the VHDL code examples

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY Design1 IS
 PORT (A : IN STD_LOGIC_VECTOR (7 downto 0);
 B : IN STD_LOGIC_VECTOR (7 downto 0);
 Z : OUT STD_LOGIC_VECTOR (7 downto 0));
END ENTITY design1;

ARCHITECTURE Dataflow OF Design1 IS

BEGIN

Z (7 downto 0) <= A (7 downto 0) + B (7 downto 0);

END ARCHITECTURE Dataflow;

Figure 6.6: Eight-bit adder design in VHDL

Introduction to Digital Logic Design with VHDL 343

www.newnespress.com

The architecture body has the general form as shown in Figure 6.8.

This VHDL description does not describe anything relating to the circuit netlist.

This description can be synthesized into the netlist (structural level) description

and viewed as a schematic. For the above adder design, the resulting

technology schematic created using the Xilinx� ISETM tools is shown in

Figure 6.9.

6.5 Entities, Architectures, Packages,
and Configurations

6.5.1 Introduction

In VHDL, a design is created initially as an entity declaration and an architecture

body. The entity declaration describes the design I/O and includes parameters that

customize the design. The entity can be thought of as a black box with the I/O

connections visible. The architecture body describes the internal working of the entity

and contains any combination of structural, dataflow, or behavioral descriptions

needed to describe the internal working of the entity.

ARCHITECTURE Architecture_Name OF Entity_Name IS

Signal_Declaration

Constant_Declaration

Component_Declaration

BEGIN

Process_Statement

Concurrent_Signal_Assignment_Statement

Component_Instantiation_Statement

END ARCHITECTURE Architecture_Name;

Figure 6.8: General architecture declaration used within the VHDL code examples

344 Chapter 6

www.newnespress.com

OBUF

AND2

AND2

AND2

AND2

OR2

OR2

AND2

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

OR2OR2

OR2 OR2

AND2

AND2

AND2

AND2

IBUF

OR2

AND2

AND2

IBUF

IBUF IBUF

IBUF

AND2

OR2

OR2

IBUF IBUF

IBUF

AND2

AND2

OR2

OR2

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

Data(0)

Data(1)

Result

IBUF

IBUF

Data(0)

Data(1)

Result

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

B(7:0)

A(7:0)

Z (7:0)

Figure 6.9: Synthesized design schematic for the eight-bit adder design

6.5.2 AND Gate Example

As an example, consider a two-input AND gate, with two inputs (A and B) and one

output (Z), as shown in Figure 6.10. A VHDL description of this gate is shown in

Figure 6.11.

The entity declaration starts on line 1 with the keyword ENTITY followed by the

entity name and the keyword IS. The entity declaration completes on line 5 with

the keyword END followed by the keyword ENTITY, the entity name and a

semicolon.

Within the entity, the entity I/O connections—ports—are described. The port

description starts on line 2 with the keyword PORT and an open parenthesis (. The port

description completes on line 4 with);. Within the parentheses, the name for each of

the I/O connections is stated, and its mode (direction of data transfer) and type of

connection identified. The port will be one of the following five types, named for the

direction of data transfer:

A

B
Z

Figure 6.10: Two-input AND gate symbol

1
2
3
4
5
6
7
8
9
10
11
12
13

ENTITY And_Gate IS
 PORT(A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY And_Gate;

ARCHITECTURE Dataflow OF And_Gate IS

BEGIN

Z <= A AND B;

END ARCHITECTURE Dataflow;

Figure 6.11: Two-input AND gate VHDL entity and architecture

346 Chapter 6

www.newnespress.com

1. IN. This port can be read but not updated. The driver for the port is

external to the entity. IN ports are primarily used for control signals and

unidirectional data signals.

2. OUT. This port may be updated (assigned a value) but not read. The driver for

the port is from within the entity. Because OUT ports cannot be read, they are

used as outputs from the entity, but not for internal feedback within the entity.

3. INOUT. This bidirectional port may be read (from an external driver) and

updated (from an internal driver). It also allows internal feedback of signals

within the entity. Specific attributes may also be read.

4. BUFFER. This port may be read and updated. BUFFER ports are used when

an output from the entity is also used for internal feedback within the entity.

They do not allow for bidirectional ports. Attributes may also be read.

BUFFER ports will not be considered in this text.

5. LINKAGE. This port may be read and updated. LINKAGE ports will not be

considered in this text.

Note that blank lines and text indentation is used in the VHDL code to aid

readability. The code shown in Figure 6.11 can be abbreviated by removing the

optional words in the entity declaration and architecture body. Figure 6.12 shows the

same code but with the optional words removed.

A benefit of incorporating the optional words is that the code can be more readable to

another person, or even to the designer after some time has elapsed. If the code is

1
2
3
4
5
6
7
8
9
10
11
12
13

ENTITY And_Gate IS
 PORT(A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END;

ARCHITECTURE Dataflow OF And_Gate IS

BEGIN

Z <= A AND B;

END;

Figure 6.12: Two-input AND gate VHDL entity and architecture

Introduction to Digital Logic Design with VHDL 347

www.newnespress.com

automatically generated, then the addition of these words is automatic and this aspect

of code generation is transparent to the user of the code. However, for handwritten

code, the addition of the optional words requires a bit more effort to create the code.

The architecture body identifies the functionality internal to the entity and the

relationship between the entity ports. VHDL allows multiple architectures to be

defined for a single entity, each of which is identified by a unique name. However,

only one of the available architectures can be associated with an entity at any one

time. In Figure 6.11, the architecture body is defined between lines 7 and 13.

The architecture body starts on line 7 with the keyword ARCHITECTURE, followed by the

architecture name, the keyword OF, the entity name (with which the architecture is

associated), and the keyword IS. The architecture body is completed on line 13 with the

keyword END, followed by the keyword ARCHITECTURE, the architecture name and a

semicolon. The details within the architecture are placed after the keyword BEGIN

on line 9. The operation of this design appears on one line only, line 11:

Z <¼ A AND B;

This line assigns the signal Z with a value (A AND B). AND is the logical AND operator

in VHDL. No time delay is associated with this; that is, the logic gate has zero time

delay as far as the logic gate is concerned. However, for actual signal assignments

in VHDL without the AFTER clause, the right-hand side of the assignment is

assigned to the left-hand side after delta time interval. In a physical sense, this is zero

time, but for signal scheduling, this delta time is significant. A signal assignment

that is scheduled to occur one delta time later will happen before a signal assignment

that is scheduled to occur two delta times later. The later signal assignment is not

available for use by the earlier signal assignment. However, both signal assignments

will occur before the smallest physical time unit used.

For an entity–architecture pair to be used for simulation and synthesis, the reference

libraries used within the design must be identified before the entity declaration. In the

design shown in Figure 6.11, one reference library is also required:

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

The first line of the above code identifies the reference library to use with the keyword

LIBRARY followed by the library name IEEE and a semicolon. This clause makes the

library accessible. The IEEE library contains IEEE standard design units such as the

348 Chapter 6

www.newnespress.com

packages std_logic_1164, numeric_std, and numeric_bit. However, the design units

contained within the library are not immediately made accessible. The designer must

make the design units (components, declarations, functions, procedures, etc.) visible

by using the USE clause. This is done on the second line:

USE IEEE.STD_LOGIC_1164.ALL;

The line starts with the keyword USE followed by the library IEEE, then package

std_logic_1164, all definitions within the package (ALL), and a semicolon. Each part

of the statement separated with a full-stop. The package STD_LOGIC_1164 contains a

nine value type called STD_LOGIC and STD_LOGIC_VECTOR, along with simple operators

such as AND, NOT, etc.

Table 6.1 identifies a number of key libraries and packages required for basic operations.

The libraries and packages to be used by an entity will appear immediately before the

particular entity declaration. Therefore the libraries and packages to be used by an entity

will need to appear before each entity declaration.

Table 6.1: Key libraries and packages

Library Package Required for

IEEE STD_LOGIC_1164 Defines the standard for describing the interconnection
data types used in the VHDL language, along with the
STD_LOGIC and STD_LOGIC_VECTOR types.

STD_LOGIC_ARITH Defines UNSIGNED and SIGNED types, conversion
functions, and arithmetic/comparison operations for use
with the UNSIGNED and SIGNED types.

STD_LOGIC_UNSIGNED Functions to allow the use of STD_LOGIC_VECTOR types
as if they were UNSIGNED types.

STD_LOGIC_SIGNED Functions to allow the use of STD_LOGIC_VECTOR types
as if they were SIGNED types.

NUMERIC_STD Arithmetic operations following the IEEE standard. For
unsigned and signed arithmetic operations, this is the
preferred package in many scenarios to using the
STD_LOGIC_ARITH, STD_LOGIC_UNSIGNED and
STD_LOGIC_SIGNED packages.

STD STANDARD Predefined definitions for the types and functions of the
VHDL language

TEXTIO File I/O operations

WORK <SET BY USER> Current work library

Introduction to Digital Logic Design with VHDL 349

www.newnespress.com

The names given to libraries are logical names rather than physical files and

directories on the host computer system. Different EDA tools implement the physical

file and directory structures on the host computer system differently.

Every VHDL design unit except for the STANDARD package is assumed automatically

to contain the following as part of its context clause:

LIBRARY STD, WORK;

USE STD.STANDARD.ALL;

Therefore, these need not be explicitly stated by the designer.

The code identified in Figure 6.11 now becomes the code shown in Figure 6.13.

Within VHDL, entity and architecture descriptions (design units) are placed within

libraries. These may be either working or resource libraries. In the VHDL standard,

these are both referred to as design libraries, where:

• A working library contains a particular design that is being created, analyzed

or modified by the designer. These are editable (i.e., can be read from and

written to). Only one library can be the current working library.

• A resource library contains existing designs that can be used. These would

normally be accessible for read only by the designer and would not be

modified except by the library designer.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY And_Gate IS
 PORT(A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY And_Gate;

ARCHITECTURE Dataflow OF And_Gate IS

BEGIN

Z <= A AND B;

END ARCHITECTURE Dataflow;

Figure 6.13: Two-input AND gate VHDL entity and architecture

350 Chapter 6

www.newnespress.com

This compares with generally used library definitions for EDA/CAD tools that also

utilise libraries in the creation and management of designs, where the libraries can be

referred to as either a design library or reference library, where:

• A design library would contain a particular design that is being created,

analyzed, or modified. These libraries are editable (i.e., they can be read

from and written to). A design library used by another designer would be

a reference library for the other person.

• A reference library would contain existing designs that can be used. These

libraries are normally read only access and would not be editable except by

the library designer.

Entities and architectures are also referred to as design units. A VHDL design will

consist of a number of these design units. When a VHDL design unit has been created

as a text file, it must be analyzed (or compiled) before it can be used. When a design

unit has been analyzed and found to be error-free, an entry for this design unit is made

within a VHDL design library. The work library is the name given to the current

working library; it is a design library. Previously analyzed design units are placed

within reference libraries and may be accessed by the designer.

Packages and configurations are also design units. Packages are VHDL design units

that are used to group certain components based on specific design requirements.

Configurations are VHDL design units that allow generic components to be configured

with specific parameters when the components are used. For example, if a design entity

has two or more architectures, a configuration identifies which architecture is to be used.

Aside: In VHDL code examples presented in this text, the IEEE library is used with the
following packages made accessible (depending on the particular example):

USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;
USE IEEE.NUMERIC_STD.ALL;

Most of the examples only require the use of the STD_LOGIC_1164 package, but the other
packages are included. The reader is encouraged to identify when particular packages are
required in which examples, and to include or remove the packages as and when required.
The above packages however are included in the examples for reference. In many instances,
then the NUMERIC_STD package is preferred for arithmetic operations.

Introduction to Digital Logic Design with VHDL 351

www.newnespress.com

In Figure 6.13, the logical AND operator is used. Within VHDL, no logical operator

has precedence over another logical operator and so parentheses are required to

group logical operations together within a Boolean expression. Table 6.2 shows the

available logical operators available in VHDL, using parentheses to aid readability.

In addition to logical operators, relational operators are also available in VHDL, as

shown in Table 6.3.

Table 6.4 shows the arithmetic operators available in VHDL.

Table 6.2: Logical operators in VHDL

Logical operation Operator Example

AND AND Z <= (A AND B);
NAND NAND Z <= (A NAND B);
NOR NOR Z <= (A NOR B);
NOT NOT Z <= NOT (A);
OR OR Z <= (A OR B);
XNOR XNOR Z <= (A XNOR B);
XOR XOR Z <= (A XOR B);

Table 6.3: Relational operators in VHDL

Relational operation Operator Example

Equal to = If (A = B) Then
Not equal to /= If (A /= B) Then
Less than < If (A < B) Then
Less than or equal to <= If (A <= B) Then
Greater than > If (A > B) Then
Greater than or equal to >= If (A >= B) Then

Table 6.4: Arithmetic operators in VHDL

Arithmetic operation Operator Example

Addition + Z <= A + B;
Subtraction - Z <= A - B;
Multiplication * Z <= A * B;
Division / Z <= A / B;
Exponentiating ** Z <= 4 ** 2;
Modulus MOD Z <= A MOD B;
Remainder REM Z <= A REM B;
Absolute value ABS Z <= ABS A;

352 Chapter 6

www.newnespress.com

A single concatenation operator is also available in VHDL, shown in Table 6.5.

Finally, the shift operators available in VHDL are shown in Table 6.6.

The shift right logical operation shifts an array to the right, drops the rightmost value,

and fills the leftmost value with a fill value. The shift left logical operation shifts an

array to the left, drops the leftmost value, and fills the rightmost value with a fill value.

The shift right arithmetic operation shifts an array to the right and uses the leftmost

element for the left fill. The shift left arithmetic operation shifts an array to the left

and uses the rightmost element for the right fill.

Note that in the VHDL reference manual, the **, ABS, and NOT operators are noted as

miscellaneous operators, but are placed in the above tables in this text.

6.5.3 Commenting the Code

In the code shown in Figure 6.13, an obvious part missing is the code commenting.

Comments in VHDL are included after a double dash (--) either at the beginning of a

line or in-line (after) the main code. Note that VHDL is not case sensitive, but using

lower- and uppercase characters aids readability.

Figure 6.14 is the code from Figure 6.13, but now with comments added.

Table 6.6: Shift operators in VHDL

Shift operation Operator Example

Rotate left logical rol Z <= a rol 2;
Rotate right logical ror Z <= a ror 2;
Shift left arithmetic sla Z <= a sla 2;
Shift left logical sll Z <= a sll 2;
Shift right arithmetic sra Z <= a sra 2;
Shift right logical srl Z <= a srl 2;

Table 6.5: Concatenation operator in VHDL

Concatenation operation Operator Example

AND & Z <= A & B;

Introduction to Digital Logic Design with VHDL 353

www.newnespress.com

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

-- 2-input AND gate design

-- Dataflow description

-- Libraries and packages to use

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

-- Entity declaration

ENTITY And_Gate IS

 PORT(A : IN STD_LOGIC; -- Input A

 B : IN STD_LOGIC; -- Input B

 Z : OUT STD_LOGIC); -- Output Z

END ENTITY And_Gate;

-- Architecture body

ARCHITECTURE Dataflow OF And_Gate IS

BEGIN

--

-- Z becomes A AND B

--

Z <= A AND B;

END ARCHITECTURE Dataflow;

-- End of File

Figure 6.14: Two-input AND gate VHDL entity and architecture with commenting

354 Chapter 6

www.newnespress.com

6.6 A First Design

6.6.1 Introduction

As a first design exercise, a 2-to-1 multiplexer design will be created. The

multiplexer is a multiple-input, single-output circuit whose function is to provide a

selection of an input: it is also considered to provide a parallel-to-serial conversion.

Each input is selected, and using additional control inputs, the actual signal

selected depends on the value of the control signal. Figure 6.15 shows a 2-to-1

multiplexer symbol.

A and B are the logic data inputs, and F is the logic data output. Sel0 is the control

logic input. The truth table for this is shown in Figure 6.16.

Sel0 F

0 F = A
1 F = B

Sel0 A B F

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Figure 6.16: Two-to-one multiplexer operation

F

A

B

Sel0

Figure 6.15: Two-to-one multiplexer

Introduction to Digital Logic Design with VHDL 355

www.newnespress.com

The Boolean expression for this in terms of basic logic gates is:

F¼ðA � Sel0Þþ ðB � Se10Þ

The multiplexer design can be created in VHDL in a number of ways. For the same

combinational logic design, the following coding styles will be considered:

• Dataflow describes the transfer of data from input to output and between signals.

• Behavioral describes the behavior of the design in terms of circuit or system

behavior using algorithms.

• Structural describes the circuit structure in terms of the logic gates and

interconnect wiring between the logic gates to form a circuit netlist.

6.6.2 Dataflow Description Example

In this example, the built-in logical operators AND, OR, and NOT are used to create

the Boolean expression. Figure 6.17 provides an example VHDL code.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Two_To_One_Mux_DataFlow is
 PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Sel0 : IN STD_LOGIC;
 F : OUT STD_LOGIC);
END ENTITY Two_To_One_Mux_DataFlow;

ARCHITECTURE DataFlow OF Two_To_One_Mux_DataFlow IS

BEGIN

F <= ((A AND NOT(Sel0)) OR (B AND Sel0));

END ARCHITECTURE DataFlow;

Figure 6.17: Two-to-one multiplexer dataflow description

www.newnespress.com

356 Chapter 6

The Boolean expression is placed after the BEGIN within the ARCHITECTURE body on

line 17:

F<¼ððA AND NOTðSel0ÞÞ OR ðB AND Sel0ÞÞ;

Parentheses are used to group the AND operators together and to group the result of

the AND operators being ORed together.

In the dataflow description, operations are performed concurrently; that is, all

operations are performed at the same time, called concurrent signal assignment. The

dataflow description does not use processes (unlike a behavioral description) and

their sequential signal assignment statements. Concurrent signal assignment

statements are placed outside of process statements.

An example VHDL test bench for this design is shown in Figure 6.18. Here, all

possible input combinations are applied changing every 10 ns.

6.6.3 Behavioral Description Example

In this example, the dataflow description is modified to place the Boolean logic

expression within a process statement and the two inputs in the sensitivity list.

Figure 6.19 provides an example behavioral description for the multiplexer

design.

In this example, the difference between the dataflow and behavioral descriptions is

that the behavioral description uses the PROCESS statement.

The PROCESS statement starts on line 17 with an optional name for the process

(Mux_Process) followed by a colon, then the keyword PROCESS, and in parentheses,

the signals that are in the sensitivity list. The process will react to changes in these

signals, so it is essential that the sensitivity list contain all signals that will affect the

process behavior.

The process finishes on line 23 with the keywords END and PROCESS, followed by a

semicolon.

Within the process the behavior of the process is described using sequential statements

to be executed in turn. Therefore, the ordering of sequential statements within the

process is important because they are executed as they appear.

Introduction to Digital Logic Design with VHDL 357

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Two_To_One_Mux_DataFlow_vhd IS
END Test_Two_To_One_Mux_DataFlow_vhd;

ARCHITECTURE Behavioural OF Test_Two_To_One_Mux_DataFlow_vhd IS

COMPONENT Two_To_One_Mux_DataFlow
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
Sel0 : IN STD_LOGIC;
F : OUT STD_LOGIC);

END COMPONENT;

SIGNAL A : STD_LOGIC := '0';
SIGNAL B : STD_LOGIC := '0';
SIGNAL Sel0 : STD_LOGIC := '0';

SIGNAL F : STD_LOGIC;

BEGIN

--
-- Instantiate the Unit Under Test (UUT)
--

uut: Two_To_One_Mux_DataFlow PORT MAP(
A => A,
B => B,
Sel0 => Sel0,
F => F);

Test_Bench_Process : PROCESS

BEGIN

wait for 0 ns; Sel0 <= '0'; A <= '0'; B <= '0';
wait for 10 ns; Sel0 <= '0'; A <= '0'; B <= '1';
wait for 10 ns; Sel0 <= '0'; A <= '1'; B <= '0';
wait for 10 ns; Sel0 <= '0'; A <= '1'; B <= '1';
wait for 10 ns; Sel0 <= '1'; A <= '0'; B <= '0';
wait for 10 ns; Sel0 <= '1'; A <= '0'; B <= '1';
wait for 10 ns; Sel0 <= '1'; A <= '1'; B <= '0';
wait for 10 ns; Sel0 <= '1'; A <= '1'; B <= '1';
wait for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.18: Two-to-one multiplexer dataflow description test bench

www.newnespress.com

Within an architecture are typically two or more processes that operate concurrently

and can be thought of a blocks of hardware circuitry running in parallel.

An example VHDL test bench for this design is shown in Figure 6.20. Here, all

possible input combinations are applied changing every 10 ns.

6.6.4 Structural Description Example

Structural descriptions are based on VHDL netlists and describes the instantiation

of components and the interconnections between components. Components range

from basic logic gates to complex subsystems of large digital systems designs.

Structural designs are therefore hierarchical.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Two_To_One_Mux_Behavioural is
 PORT (A : IN STD_LOGIC;

B : IN STD_LOGIC;
 Sel0 : IN STD_LOGIC;
 F : OUT STD_LOGIC);
END ENTITY Two_To_One_Mux_Behavioural;

ARCHITECTURE Behavioural OF Two_To_One_Mux_Behavioural IS

BEGIN

Mux_Process: PROCESS(A, B, Sel0)

BEGIN

F <= ((A AND NOT(Sel0)) OR (B AND Sel0));

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.19: Two-to-one multiplexer behavioral description

Introduction to Digital Logic Design with VHDL 359

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Two_To_One_Mux_Behavioural_vhd IS
END Test_Two_To_One_Mux_Behavioural_vhd;

ARCHITECTURE Behavioural OF Test_Two_To_One_Mux_Behavioural_vhd IS

COMPONENT Two_To_One_Mux_Behavioural
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
Sel0 : IN STD_LOGIC;
F : OUT STD_LOGIC);

END COMPONENT;

SIGNAL A : STD_LOGIC := '0';
SIGNAL B : STD_LOGIC := '0';
SIGNAL Sel0 : STD_LOGIC := '0';

SIGNAL F : STD_LOGIC;

BEGIN

uut: Two_To_One_Mux_Behavioural PORT MAP(
A => A,
B => B,
Sel0 => Sel0,
F => F);

Test_Bench_Process : PROCESS

BEGIN

wait for 0 ns; Sel0 <= '0'; A <= '0'; B <= '0';
wait for 10 ns; Sel0 <= '0'; A <= '0'; B <= '1';
wait for 10 ns; Sel0 <= '0'; A <= '1'; B <= '0';
wait for 10 ns; Sel0 <= '0'; A <= '1'; B <= '1';
wait for 10 ns; Sel0 <= '1'; A <= '0'; B <= '0';
wait for 10 ns; Sel0 <= '1'; A <= '0'; B <= '1';
wait for 10 ns; Sel0 <= '1'; A <= '1'; B <= '0';
wait for 10 ns; Sel0 <= '1'; A <= '1'; B <= '1';
wait for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.20: Two-to-one multiplexer behavioral description test bench

www.newnespress.com

360 Chapter 6

The two-to-one multiplexer uses four logic gates in the circuit:

• two-input AND gate (two)

• two-input OR gate

• inverter (NOT gate)

In a structural description, these basic logic gates are first created, then instantiated.

Figure 6.21 provides a behavioral description of these logic gates.

These logic gates are used within the multiplexer design by instantiating the gates.

Figure 6.22 provides a structural description for the multiplexer design. Within the

architecture, and before the BEGIN, the following are declared:

• Internal signals, X1, X2, and X3. The type of signal is STD_LOGIC, which

represents signals that are internal to the design architecture and are not

listed in the entity port declaration. The internals have a type but not a

mode.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY And_Gate is
 PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY And_Gate;

ARCHITECTURE Behavioural OF And_Gate IS

BEGIN

AndGate_Process: PROCESS(A, B)

BEGIN

Z <= (A AND B);

END PROCESS AndGate_Process;

END ARCHITECTURE Behavioural;

2-Input AND gate

Figure 6.21: Basic logic gate entity and architecture

www.newnespress.com

Introduction to Digital Logic Design with VHDL 361

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Inverter is
 PORT (A : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY Inverter;

ARCHITECTURE Behavioural OF Inverter IS

BEGIN

InverterGate_Process: PROCESS(A)

BEGIN

Z <= NOT A;

END PROCESS InverterGate_Process;

END ARCHITECTURE Behavioural;

Inverter

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Or_Gate is
 PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY Or_Gate;

ARCHITECTURE Behavioural OF Or_Gate IS

BEGIN

OrGate_Process: PROCESS(A, B)

BEGIN
Z <= (A OR B);

END PROCESS OrGate_Process;

END ARCHITECTURE Behavioural;

2-Input OR gate

Figure 6.21: (Continued)

www.newnespress.com

362 Chapter 6

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Two_To_One_Mux_Structural is
 PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Sel0 : IN STD_LOGIC;

 F : OUT STD_LOGIC);
END ENTITY Two_To_One_Mux_Structural;

ARCHITECTURE Structural OF Two_To_One_Mux_Structural IS

SIGNAL X1 : STD_LOGIC;
SIGNAL X2 : STD_LOGIC;
SIGNAL X3 : STD_LOGIC;

COMPONENT And_Gate
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
Z : OUT STD_LOGIC);

END COMPONENT;

COMPONENT Or_Gate
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
Z : OUT STD_LOGIC);

END COMPONENT;

COMPONENT Inverter
PORT(

A : IN STD_LOGIC;
Z : OUT STD_LOGIC);

END COMPONENT;

BEGIN

I1: And_Gate
PORT MAP(A => A, B => X1, Z => X2);

I2: And_Gate
PORT MAP(A => Sel0, B => B, Z => X3);

I3: Or_Gate
PORT MAP(A => X2, B => X3, Z => F);

I4: Inverter
PORT MAP(A => Sel0, Z => X1);

END ARCHITECTURE Structural;

Figure 6.22: Two-to-one multiplexer structural description

www.newnespress.com

Introduction to Digital Logic Design with VHDL 363

• Components. Each component to be used in the structural description netlist

must be declared. This has the same format as the component entity, except now

the keyword ENTITY is replaced with the keyword COMPONENT. A component

is an entity used within another entity.

After the BEGIN, each of the components placed in the structural design is instantiated.

Each instance has a unique name; for example, the first instance is:

I1: And_Gate

PORT MAP(A => A, B => X1, Z => X2);

The first line commences with the instance name (I1) followed by a colon and the

component name (And_Gate).

The second line, Port Map, identifies how the component is to be connected within

the design netlist. This starts with the keywords Port Map, followed by an open

parenthesis. The mapping of the component port to the design signals is then

declared, and at the end, the line is finished with);. Note that everything is

placed, in this example, on one line to save space. A semicolon indicates a new

line, so another way of writing this case would be:

I1: And_Gate

PORT MAP(A => A,

B => X1,

Z => X2

);

Instantiation and port mapping is shown for the AND gate in Figure 6.23.

An example VHDL test bench for this design is shown in Figure 6.24. Here, all

possible input combinations are applied changing every 10 ns.

X2

A

X1

A

B

Z

I1: And_Gate PORT MAP(
A => A,
B => X1,
Z => X2);

Figure 6.23: Component instantiation and port mapping

364 Chapter 6

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Two_To_One_Mux_Structural_vhd IS
END Test_Two_To_One_Mux_Structural_vhd;

ARCHITECTURE Behavioural OF Test_Two_To_One_Mux_Structural_vhd IS

COMPONENT Two_To_One_Mux_Structural
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
Sel0 : IN STD_LOGIC;
F : OUT STD_LOGIC);

END COMPONENT;

SIGNAL A : STD_LOGIC := '0';
SIGNAL B : STD_LOGIC := '0';
SIGNAL Sel0 : STD_LOGIC := '0';

SIGNAL F : STD_LOGIC;

BEGIN

uut: Two_To_One_Mux_Structural PORT MAP(
A => A,
B => B,
Sel0 => Sel0,
F => F);

Test_Bench_Process : PROCESS

BEGIN

wait for 0 ns; Sel0 <= '0'; A <= '0'; B <= '0';
wait for 10 ns; Sel0 <= '0'; A <= '0'; B <= '1';
wait for 10 ns; Sel0 <= '0'; A <= '1'; B <= '0';
wait for 10 ns; Sel0 <= '0'; A <= '1'; B <= '1';
wait for 10 ns; Sel0 <= '1'; A <= '0'; B <= '0';
wait for 10 ns; Sel0 <= '1'; A <= '0'; B <= '1';
wait for 10 ns; Sel0 <= '1'; A <= '1'; B <= '0';
wait for 10 ns; Sel0 <= '1'; A <= '1'; B <= '1';
wait for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.24: Two-to-one multiplexer structural description test bench

www.newnespress.com

Introduction to Digital Logic Design with VHDL 365

6.7 Signals versus Variables

6.7.1 Introduction

A carrier of values in VHDL can be declared as either a signal or a variable, and this

declaration must be carefully made. Signals are declared when a design is intended

for simulation and synthesis purposes, whereas variables are mainly used for

behavioral modeling and for simulation purposes. The reason for this is that

synthesis of variables in not always well defined in synthesis tools, and although

possible, attempting to synthesize designs that use variables might result in different

results for different synthesis tools.

Signals are used to connect components within a design and to carry information.

Signals have hardware significance in that particular timing components are

associated with them. The assignment symbol for signals is <=, which has a non-zero

time component. Signals can be used in sequential (sequential statements inside

processes) and concurrent bodies of VHDL, but can only be declared within

concurrent bodies of VHDL.

The <= signal assignment symbol can be scheduled (in time) by the use of the AFTER

clause. The delay is either an inertial delay or a transport delay, whose differences are

explained by B<= A ; and illustrated in Figure 6.25.

A

C

B

D

3 ns 6 ns

5 ns

6 ns

5 ns

5 ns

Figure 6.25: Inertial and transport delays

366 Chapter 6

www.newnespress.com

This means B is assigned the value of A after a zero time delay. Note that, for

scheduling purposes, this is a delta delay.

C<= A AFTER 5 NS;
C<=INERTIAL A AFTER 5 NS;

This means C is assigned the value of A after a time delay of 5 ns. This, for example,

can be used to model the propagation delay of signals within logic gates or within

the interconnect between logic gates. It is useful for simulation purposes. However,

a synthesis tool would not be able to understand this time delay (what type of

circuit would implement such a delay time?). It is also referred to as an inertial

delay. In addition to the 5 ns delay, any input signal pulse of less than 5 ns is

suppressed. The reserved INERTIAL is optional and in many cases is omitted by code

developers.

D<= TRANSPORT A AFTER 5 NS;

This means D is assigned the value of A after a time delay of 5 ns. This, can also be

used to model the propagation delay of signals within logic gates or within the

interconnect between logic gates. It is useful for simulation purposes. However, a

synthesis tool would not be able to understand this time delay (what type of circuit

would implement such a delay time?). It is referred to as a transport delay. The signal

is simply delayed by 5 ns. Pulse widths of less than 5 ns are passed.

The differences between the inertial and transport delays are shown in Figure 6.25.

Delays using the AFTER clause are not used where the delay is integral to the operation

of the design after design synthesis. In such cases, a design is based on clocks to create

designs with a determinable delay or occasionally by creating a string of logic gates

where the delays within the logic gates combine to produce a delay. (This is not a well-

defined time delay due to manufacturing process variations and because creating

designs are difficult to test.)

The operation of the different types of delay can be seen in the VHDL code

example shown in Figure 6.26. Here, the design has one input (A) and three outputs

(B, C, and D). Each output becomes the value of the input after a time delay. For the

inertial delay (output C), an input pulse width of less than 5 ns will be suppressed.

An example VHDL test bench for the design is shown in Figure 6.27.

Variables are used within processes to compute values. Unlike signals, variables do

not have an associated time component. They are used to hold immediate values, in

Introduction to Digital Logic Design with VHDL 367

www.newnespress.com

the same sense as software programming languages do. The assignment symbol for

variables is :=, which has a zero time component. Variables can only be declared and

used in sequential bodies of VHDL (including processes, functions, and procedures)

and are local to the body in which they are declared.

6.7.2 Example: Architecture with Internal Signals

Signals internal to the design can be created to allow the output from some parts of the

architecture to be used as inputs to other parts of the architecture, and to allow signals that

drive ports of mode direction OUT to be used within the architecture itself. Consider the

combinational logic circuit shown in Figure 6.28.

The output from the two-input OR gate is used for two purposes:

1. To drive the entity port (of mode OUT)

2. To drive the input of the inverter gate.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- Example design incorporating “numeric_std” package
USE ieee.numeric_std.ALL;

ENTITY Design1 is
 PORT (A : IN STD_LOGIC;
 B : OUT STD_LOGIC;
 C : OUT STD_LOGIC;
 D : OUT STD_LOGIC);
END ENTITY Design1;

ARCHITECTURE DataFlow OF Design1 IS

BEGIN

B <= A;
C <= A AFTER 5 NS;
D <= TRANSPORT A AFTER 5 NS;

END ARCHITECTURE DataFlow;

Figure 6.26: VHDL dataflow description showing inertial and transport delays

www.newnespress.com

368 Chapter 6

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
-- Example incorporating “numeric_std” package
USE ieee.numeric_std.ALL;

ENTITY Test_Design1_vhd IS
END ENTITY Test_Design1_vhd;

ARCHITECTURE Behavioural OF Test_Design1_vhd IS

COMPONENT Design1
PORT(

A : IN STD_LOGIC;
B : OUT STD_LOGIC;
C : OUT STD_LOGIC;
D : OUT STD_LOGIC);

END COMPONENT;

SIGNAL A : STD_LOGIC := '0';

SIGNAL B : STD_LOGIC;
SIGNAL C : STD_LOGIC;
SIGNAL D : STD_LOGIC;

BEGIN

uut: Design1 PORT MAP(
A => A,
B => B,
C => C,
D => D);

Test_Bench_Process : PROCESS

BEGIN

wait for 0 ns; A <= '0';
wait for 5 ns; A <= '1';
wait for 3 ns; A <= '0';
wait for 6 ns; A <= '1';
wait for 6 ns; A <= '0';
wait for 20 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.27: Inertial and transport delays test bench

www.newnespress.com

Introduction to Digital Logic Design with VHDL 369

As the port with a mode OUT cannot be read (i.e., within the architecture), a way to use

this signal is to create an internal signal that drives both the port and the inverter gate.

An example VHDL code for this design is shown in Figure 6.29.

Here, an internal signal (Out1_Internal) of type STD_LOGIC is created within the

architecture body on line 16 before the BEGIN keyword. This internal signal is assigned

A

B

C

Out1

Out2

Figure 6.28: Example combinational logic circuit

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Signals_1 IS
 PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 C : IN STD_LOGIC;
 Out1 : OUT STD_LOGIC;
 Out2 : OUT STD_LOGIC);
END ENTITY Signals_1;

ARCHITECTURE DataFlow OF Signals_1 IS

SIGNAL Out1_Internal : STD_LOGIC;

BEGIN

Out1_Internal <= (A AND B) OR C;

Out1 <= Out1_Internal;

Out2 <= NOT(Out1_Internal);

END ARCHITECTURE DataFlow;

Figure 6.29: VHDL dataflow description for the combinational logic circuit

370 Chapter 6

www.newnespress.com

the output of the AND-OR logic combination. The entity output Out1 is assigned the

value of the internal signal, and the entity output Out2 is assigned the inverse logic

level (NOT) of the internal signal.

An example test bench for this design is shown in Figure 6.30. This applies all possible

input codes, changing values every 10 ns.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Signals_1_vhd IS
END ENTITY Test_Signals_1_vhd;

ARCHITECTURE behavioural OF Test_Signals_1_vhd IS

COMPONENT Signals_1
PORT(

A : IN std_logic;
B : IN std_logic;
C : IN std_logic;
Out1 : OUT std_logic;
Out2 : OUT std_logic);

END COMPONENT;

SIGNAL A : STD_LOGIC := '0';
SIGNAL B : STD_LOGIC := '0';
SIGNAL C : STD_LOGIC := '0';

SIGNAL Out1 : STD_LOGIC;
SIGNAL Out2 : STD_LOGIC;

BEGIN

uut: Signals_1 PORT MAP(
A => A,
B => B,
C => C,
Out1 => Out1,
Out2 => Out2);

Test_Bench_Process : PROCESS

BEGIN

Wait for 0 ns; A <= '0'; B <= '0'; C <= '0';
Wait for 10 ns; A <= '0'; B <= '0'; C <= '1';
Wait for 10 ns; A <= '0'; B <= '1'; C <= '0';
Wait for 10 ns; A <= '0'; B <= '1'; C <= '1';
Wait for 10 ns; A <= '1'; B <= '0'; C <= '0';
Wait for 10 ns; A <= '1'; B <= '0'; C <= '1';
Wait for 10 ns; A <= '1'; B <= '1'; C <= '0';
Wait for 10 ns; A <= '1'; B <= '1'; C <= '1';
Wait for 10 ns;

END PROCESS;

END ARCHITECTURE behavioural;

Figure 6.30: Example combinational logic circuit test bench

www.newnespress.com

Introduction to Digital Logic Design with VHDL 371

6.7.3 Example: Architecture with Internal Variables

Variables are used within processes to compute values. Unlike signals, variables do

not have an associated time component. A design can be created using variables

rather than signals. For example, consider the two-input AND gate. A behavioral

description for the AND gate is shown in Figure 6.31. Here, the description for AND

gate behavior is placed within a process.

The process is located between lines 16 and 25. With this design, an internal variable

(Tmp) is created within the process itself, and the output of the AND operation on

the two inputs (A and B) is held in this variable. The value of the variable is then

assigned to the output (Z). The variable assignment symbol (:=) is used rather than the

signal assignment symbol (<=).

An example test bench for this design is shown in Figure 3.32.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY And_Gate_Variables is
 PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY And_Gate_Variables;

ARCHITECTURE Behavioural OF And_Gate_Variables IS

BEGIN

AndGate_Process: PROCESS(A, B)

VARIABLE Tmp: STD_LOGIC;

BEGIN

Tmp := (A AND B);
Z <= Tmp;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.31: AND gate with internal variable

372 Chapter 6

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_And_Gate_Variables_vhd IS
END ENTITY Test_And_Gate_Variables_vhd;

ARCHITECTURE Behavioural OF Test_And_Gate_Variables_vhd IS

COMPONENT And_Gate_Variables
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
Z : OUT STD_LOGIC);

END COMPONENT;

SIGNAL A : STD_LOGIC := '0';
SIGNAL B : STD_LOGIC := '0';

SIGNAL Z : STD_LOGIC;

BEGIN

uut: And_Gate_Variables PORT MAP(
A => A,
B => B,
Z => Z);

Test_Bench_Process : PROCESS

BEGIN

Wait for 0 ns; A <= '0'; B <= '0';
Wait for 10 ns; A <= '0'; B <= '1';
Wait for 10 ns; A <= '1'; B <= '0';
Wait for 10 ns; A <= '1'; B <= '1';
Wait for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.32: AND gate with internal variable test bench

Introduction to Digital Logic Design with VHDL 373

www.newnespress.com

6.8 Generics

Generics are used where a value required for use within a design may need to be

changed whenever the design is used. For example, an AND gate might be defined

with an inertial time delay, but among the family of available AND gates, each

might have a different delay. It would be possible to create VHDL entity–architecture

pairs for each AND gate, where different entity names and delays would be

required. It would be possible, however, to create a single AND gate entity–

architecture pair and for a delay to be changed whenever the AND gate is to be

used. A generic could then be defined within the design entity and used within the

design architecture. The value for this generic would be set whenever the AND gate

is used.

If an AND gate has an inertial delay of 5 ns, this is written as:

C<=(A AND B)AFTER 5 NS;

The time delay is replaced using a generic:

C<=(A AND B) AFTER delay time;

The generic delay_time is used, and its value is set elsewhere. The use of generics is

shown in Figure 6.33. Here, the design contains two two-input AND gates, each

with a delay. These are placed within process statements. The first process (Delay1)

has a delay of 5 ns explicitly stated within the process. The second process (Delay2)

uses a generic (delay_time). This GENERIC is declared in the entity declaration

(placed immediately before the PORT declaration). The generic name is delay_time

and its type is TIME (for a time delay). Also in the declaration is the default value

of 5 ns, although it need not be included if the value for the generic is to be

passed to the design when the design is used within a structural style VHDL

description.

An example test bench to simulate the design is shown in Figure 6.34. When

simulated, the outputs are initially unknown (shown as a U value) until the delay time

has passed.

The usefulness of using generics is apparent when a logic gate with a generic delay is

used to set the parameter for a logic gate that is used multiple times. Figure 6.35

shows an example three-input AND gate using a generic delay time (delay_time).

374 Chapter 6

www.newnespress.com

This has three inputs (A, B, and C), and one output (Z). A default delay time of 5 ns is

defined in the generic declaration.

This AND gate is placed within a hierarchical design, and three instances of the

AND gate are created. The structural VHDL code for this is shown in Figure 6.36

with three inputs (Ain, Bin, and Cin), and three outputs (Z1, Z2, and Z3).

Instance I1 has a delay of 1ns, instance I2 has a delay of 5 ns, and instance I3 has a

delay of 10ns. These are all inertial delays that will override the default value of 5 ns.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY AND_Gate IS

 GENERIC(delay_time : TIME := 5 ns);

 PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Z1 : OUT STD_LOGIC;
 Z2 : OUT STD_LOGIC);
END ENTITY AND_Gate;

ARCHITECTURE Behavioural OF AND_gate IS

BEGIN

Delay1: PROCESS(A, B)
BEGIN

Z1 <= A AND B AFTER 5 NS;
END PROCESS;

Delay2: PROCESS(A, B)
BEGIN

Z2 <= A AND B AFTER delay_time;
END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.33: AND gate using generic time delay

Introduction to Digital Logic Design with VHDL 375

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_AND_Gate_vhd IS
END Test_AND_Gate_vhd;

ARCHITECTURE Behavioural OF Test_AND_Gate_vhd IS

COMPONENT AND_gate
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
Z1 : OUT STD_LOGIC;
Z2 : OUT STD_LOGIC);

END COMPONENT;

SIGNAL A : STD_LOGIC := '0';
SIGNAL B : STD_LOGIC := '0';

SIGNAL Z1 : STD_LOGIC;
SIGNAL Z2 : STD_LOGIC;

BEGIN

uut: AND_gate PORT MAP(
A => A,
B => B,
Z1 => Z1,
Z2 => Z2);

Input_Process : PROCESS

BEGIN

Wait for 0 ns; A <= '0'; B <= '0';
Wait for 10 ns; A <= '0'; B <= '1';
Wait for 10 ns; A <= '1'; B <= '0';
Wait for 10 ns; A <= '1'; B <= '1';
Wait for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.34: AND gate using generic time delay test bench

376 Chapter 6

www.newnespress.com

In I1, the top level design, the value for the generic is defined within the GENERIC MAP

for the logic gate when it is instantiated. For example,

GENERIC MAP(delay time =>1ns)

The delay_time here is set to 1ns. Note the use of the symbol => to set the value.

A test bench for this design is shown in Figure 6.37. Here, the top level design inputs

(Ain, Bin, and Cin) are changed every 20 ns. This value was set to allow the effect of

the gate delays to be seen in a reasonably short simulation time, while preventing

timing problems that might arise when the inputs change too quickly and confuse the

interpretation of the simulation results.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned_all;

ENTITY Three_Input_AndGate IS

GENERIC(delay_time : TIME := 5 ns);

 PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;

 C : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY Three_Input_AndGate;

ARCHITECTURE Behavioural OF Three_Input_AndGate IS

BEGIN

Delay_Process: PROCESS(A, B, C)

BEGIN

Z <= (A AND B AND C) AFTER delay_time;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.35: Three-input AND gate using generic time delay

Introduction to Digital Logic Design with VHDL 377

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Top_Design IS
Port (Ain : IN STD_LOGIC;
 Bin : IN STD_LOGIC;
 Cin : IN STD_LOGIC;
 Z1 : OUT STD_LOGIC;
 Z2 : OUT STD_LOGIC;
 Z3 : OUT STD_LOGIC);
END ENTITY Top_Design;

ARCHITECTURE Structural OF Top_Design IS

COMPONENT Three_Input_AndGate
GENERIC(delay_time : TIME);
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
C : IN STD_LOGIC;
Z : OUT STD_LOGIC);

END COMPONENT;

BEGIN

I1: Three_Input_AndGate
GENERIC MAP (delay_time => 1 ns)
PORT MAP(A => Ain, B => Bin, C => Cin, Z => Z1);

I2: Three_Input_AndGate
GENERIC MAP (delay_time => 5 ns)
PORT MAP(A => Ain, B => Bin, C => Cin, Z => Z2);

I3: Three_Input_AndGate
GENERIC MAP (delay_time => 10 ns)
PORT MAP(A => Ain, B => Bin, C => Cin, Z => Z3);

END ARCHITECTURE Structural;

Figure 6.36: Structural design using AND gates

378 Chapter 6

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Top_Design_vhd IS
END ENTITY Test_Top_Design_vhd;

ARCHITECTURE Behavioural OF Test_Top_Design_vhd IS

COMPONENT Top_Design
PORT(

Ain : IN STD_LOGIC;
Bin : IN STD_LOGIC;
Cin : IN STD_LOGIC;
Z1 : OUT STD_LOGIC;
Z2 : OUT STD_LOGIC;
Z3 : OUT STD_LOGIC);

END COMPONENT;

SIGNAL Ain : STD_LOGIC := '0';
SIGNAL Bin : STD_LOGIC := '0';
SIGNAL Cin : STD_LOGIC := '0';

SIGNAL Z1 : STD_LOGIC;
SIGNAL Z2 : STD_LOGIC;
SIGNAL Z3 : STD_LOGIC;

BEGIN

uut: Top_Design PORT MAP(
Ain => Ain,

 Bin => Bin,
 Cin => Cin,
 Z1 => Z1,
 Z2 => Z2,

Z3 => Z3);

Test_Bench_Process : PROCESS

BEGIN

Wait for 0 ns; Ain <= '0'; Bin <= '0'; Cin <= '0';
Wait for 20 ns; Ain <= '0'; Bin <= '0'; Cin <= '1';
Wait for 20 ns; Ain <= '0'; Bin <= '1'; Cin <= '0';
Wait for 20 ns; Ain <= '0'; Bin <= '1'; Cin <= '1';
Wait for 20 ns; Ain <= '1'; Bin <= '0'; Cin <= '0';
Wait for 20 ns; Ain <= '1'; Bin <= '0'; Cin <= '1';
Wait for 20 ns; Ain <= '1'; Bin <= '1'; Cin <= '0';
Wait for 20 ns; Ain <= '1'; Bin <= '1'; Cin <= '1';
Wait for 20 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.37: Structural design test bench

www.newnespress.com

6.9 Reserved Words

As with all software programming and hardware configuration languages, VHDL includes

a number of reserved words. Reserved words cannot be used by the designer for identifiers

such as signal names. As VHDL is not case sensitive, the case of the letters within the

reserved word is not important. For example, ELSE is the same as Else is the same as else.

Table 6.7 shows the reserved words with special meanings in VHDL.

6.10 Data Types

All objects—ports, signals, variables, and so forth—within VHDL have an associated

type. A VHDL type specifies the values that the object may take and determines

Table 6.7: Reserved words in VHDL (identifying only the
reserved words used in the VHDL code examples)

abs file of then
after for open to
all or transport
and generic others type
architecture out
array if until

in package use
begin inertial port

inout process variable
case is
component rem wait
configuration library report when
constant linkage rol while

loop ror with
downto

mod select xnor
else signal xor
elsif nand sla
end next sll
entity nor sra

not srl

Note: This is not a comprehensive list of reserved words. There are
one hundred reserved words in the standard. Refer to the IEEE Std
1076TM-2002 standard document for the full set of reserved words
in VHDL.

380 Chapter 6

www.newnespress.com

the operations that can be performed on the objects of that particular type. In this

book, types STD_LOGIC and STD_LOGIC_VECTOR are mainly used.

VHDL puts strictly enforced constraints on the data types. Any operation to be

performed on the object of a particular type is restricted to the types of operation that

are permissible for that type.

VHDL has four classes of data type:

1. scalar

2. composite

3. access

4. file

A scalar type has a value that is a single entity (e.g., a logic 0 or logic 1 on a single signal

line), and it can hold only one value at a time. Scalar types include all the simple data types

in VHDL such as integer, real, physical, and enumerated. Integer types are integer numbers

set between limits (�ve to þve). Real types are used to hold floating point numbers. The

physical type is a numeric data type that is used to describe physical quantities such as time

and voltage. An enumerated type defines the values of the type by listing them within an

ordered list. The elements within an enumerated type can be identifiers or character literals.

In many designs, the enumerated types used are BIT and STD_ULOGIC. STD_ULOGIC

allows only one value to be put onto a signal. If more than value is put onto a signal,

then a conflict occurs.

The IEEE Standard 1164 (in the IEEE.STD_LOGIC_1164 package) defines an

enumerated type with nine possible values:

• U, uninitialized

• X, forcing unknown (strong)

• 0, forcing 0

• 1, forcing 1

• Z, high impedance

• W, weak unknown

• L, weak 0

Introduction to Digital Logic Design with VHDL 381

www.newnespress.com

• H, weak 1

• -, don’t care

An enumerated standard logic type (STD_ULOGIC) is defined by:

type std_ulogic is (‘U’, ‘X’, ‘0’, ‘1’, ‘Z’, ‘W’, ‘L’, ‘H’, ‘-’);

A composite type allows objects to have more than one value. Composite types include

arrays and records. Arrays group together elements of the same type as a single object.

Elements of the array can be any VHDL data type, including other arrays. In addition,

constants can be used to initialize the elements of an array to known values. Records

are collections of named elements. These are used to model data structures, which

consist of closely related items of potentially different data types.

In many designs, the composite types (vectors) used are BIT_VECTOR and

STD_ULOGIC_VECTOR.

An access type is equivalent to pointers in a software programming language.

A file type is used for file access (read and write).

In addition to these four VHDL data types, there are subtypes. Subtypes are used when

an object is known only to take on a restricted subset of values from the existing type.

STD_ULOGIC has a subtype STD_LOGIC that allows more than one value to be placed on a

signal. It has the same set of values as STD_ULOGIC. However, if more than value is put

onto a signal, then a resolution function defines the actual state of the signal. The

resolution function is named resolved, and the subtype declaration for STD_LOGIC is:

subtype std_logic is resolved std_ulogic;

The values 0, 1, L, and H are supported by synthesis. The value Z is supported by

synthesis for tristate drivers. The value - is supported by synthesis for Don’t care

conditions. The values U, X, and W are not supported by synthesis.

In this text, only STD_LOGIC and STD_LOGIC_VECTOR will be used.

As VHDL is a strongly typed language, operations on an object of any type are

restricted. In some cases, it may be necessary to convert the object from one type to

another type. This is possible with type conversion. In addition to explicitly

undertaking type conversion within the design architecture body, the use of overloaded

operators (such as the + operator) allows for these overloaded operators to be used

on mixed operand types (such as adding an integer number to a STD_LOGIC_VECTOR).

382 Chapter 6

www.newnespress.com

6.11 Concurrent versus Sequential Statements

VHDL architecture supports design descriptions written as concurrent statements

and sequential statements.

• Concurrent statements include concurrent signal assignment, concurrent

process, and component instantiations. They are written within the body of an

architecture and lie outside of a process. The statements conceptually execute

concurrently (at the same time), so their order of placement within the VHDL

code is not important.

• Sequential statements are written within a process statement, function, or

procedure. Sequential statements include:

� Case statement

� If-then-else statement

� Loop statement

6.12 Loops and Program Control

As in software programming languages, looping statements and program control

statements are also available in VHDL. These are:

1. If-then-else, which takes the form:

IF (Reset = ’0’) THEN

Q(7 downto 0) <= "00000000";

ELSIF (Clk’EVENT AND Clk = ’1’) THEN

Q(7 DOWNTO 0) <= D(7 DOWNTO 0);

ELSE

END IF;

2. Case-when, which takes the form:

CASE Control IS

WHEN "00" => Z <= A;

WHEN "01" => Z <= B;

WHEN OTHERS => Z <= C;

END CASE;

Introduction to Digital Logic Design with VHDL 383

www.newnespress.com

3. When-else, which takes the form:

Z <= A WHEN (Control = "00") ELSE

Z <= B WHEN (Control = "01") ELSE

Z <= C;

4. With-select-when, which takes the form:

WITH Control SELECT

Z <= A WHEN "00",

Z <= B WHEN "01",

Z <= C WHEN OTHERS;

5. While-loop, which takes the form:

While_Loop_Example:

WHILE (Control > 0) LOOP

Control := Control - 1;

Z <= A + B;

END LOOP While_Loop_Example;

6. For-loop, which takes the form:

For_Loop_Example:

FOR i IN (1 DOWNTO 0) LOOP

IF (Control(i) = ’0’) THEN

Z := A + B;

END IF;

END LOOP For_Loop_Example;

The ability to develop repetitive operations is achieved using both the for loop and

while loop statements. Loop statements have many uses in hardware designs in

executing a particular operation a set number of times or executing a particular

operation until a certain condition is attained. The basic loop statement identified

above can be extended so that they are executed conditionally by incorporating

NEXT and/or EXIT statements within the loop itself. For example:

1. EXIT loop_label WHEN y = 20;

This will exit (terminate) the loop when the condition (y = 20) is attained.

384 Chapter 6

www.newnespress.com

2. NEXT loop_label WHEN condition;

This causes the remainder of the loop to be skipped and for the loop to immediately

return to the start when a condition is reached.

The loop_label is optional. If the loop_label is included, then the NEXT or EXIT

statements apply to that loop. If the loop_label is not included, then the NEXT or EXIT

statements will apply to the innermost enclosing loop.

6.13 Coding Styles for VHDL

VHDL design can be written for the following purposes:

• To simulate the design description.

• To synthesize the design description. (This implies that the design has been

successfully simulated prior to synthesis as it would be pointless to synthesize

a design that does not work.)

• For documentation purposes.

Each of these purposes can be treated as separate or as parts of a whole. When writing

VHDL code, the best practice in software design should be adopted:

1. Develop and use a statement of requirements. This document is written

by the customer at the beginning of a project and can range from a

minimal handwritten note to a detailed document that could run into

volumes of text.

2. Develop and use a system specification. This document is developed from the

statement of requirements and describes how the system will function and

constraints put on the designer. Such constraints will be process constraints on

how code development is to be undertaken and/or product constraints on the

features of the code.

3. System design refers to developing the architecture of the code as a collection

of blocks to meet the system specification.

4. Detailed design refers to defining the algorithms that make up the blocks

identified in the system design.

Introduction to Digital Logic Design with VHDL 385

www.newnespress.com

5. Programming refers to the stage at which the code for the individual blocks

and the overall design is written, and includes:

a. Validation and verification. Validation is a process that ensures that the

developed (or developing, if coding is in progress) system matches the

user requirements. Verification is a process of checking that the system is

a correct reflection of the system specification.

b. Integration testing. This testing refers to the overall design to ensure that

the blocks operate together correctly.

How these steps are undertaken depends on the size of the design. For example, a

simple design will not require much effort in steps 1 through 4, with most of the effort

in step 5. However, for large projects, steps 1 to 4 take a higher priority, and step 5

would require less time.

Whenever any VHDL code is to be written, the designer should consider the layout

of the code (its appearance) as well as the correctness of the code. Care should be

taken to consider:

• use of a suitable amount of commenting to ensure readability of the code

• use of suitable information concerning the design creation such as:

� organization name

� designer name

� design project name

� name of the design and intended functionality

� date of creation and/or last modification

� code modification history

� target technology

� tools used and their versions

• use of spaces and blank lines

An important aspect to consider when writing the VHDL code is its intended use. For

example, is the intention to develop a high-level behavioral model for use in

simulation studies to verify the operation of the design, but with no intention or

386 Chapter 6

www.newnespress.com

attempt to synthesize the design? In this case, the code could be developed using

behavioral descriptions that would not be synthesizable but can be quickly developed

and simulated. Or is the intention to develop VHDL code that can be simulated but

also can be synthesized into logic?

It is possible to develop VHDL code that can be simulated but cannot be synthesized.

VHDL code can be either synthesizable or nonsynthesizable. Examples of VHDL

code that cannot be synthesized, and so must be avoided if the design is to be

synthesized, include:

• The use of the AFTER reserved word to define INERTIAL and TRANSPORT time

delays. The AFTER reserved word is useful for simulation (i.e., to define the test

stimulus timing in the VHDL test bench), but such time delays have no

meaning in actual logic hardware.

• The use of the WAIT reserved word, since this also is associated with time delays.

• The use of file I/O operations for reading from and writing to text files when

simulating the operation of the VHDL code design. File I/O operations have

no meaning in actual logic hardware.

The use of any initial values for signals and variables, such as these, will be ignored. If

values are to be initialized in a circuit, then they must be set using flip-flops with set or

reset inputs.

6.14 Combinational Logic Design

6.14.1 Introduction

A logic circuit consists of combinational logic and sequential logic circuit elements.

The combinational logic is defined by a Boolean logic expression (refer to

Chapter 5 for an introduction to digital logic techniques) made up of the basic logic

gates (AND, OR, etc.) whose meanings in VHDL are shown in Table 6.2. The logic

operators can be used as they are, or they can be combined into expressions such as

Z1 <= ðA AND BÞ OR ðC AND DÞ;
Z2 <= NOTðAÞ AND D;

Z3 <= NOTðA XOR BÞ;

Note the use of parentheses to group expressions and to set the order in which the

expressions are to be evaluated.

Introduction to Digital Logic Design with VHDL 387

www.newnespress.com

6.14.2 Complex Logic Gates

The complex logic gate shown in Figure 6.38 consists of the functions of three

two-input logic gates with the Boolean expression given by:

OUTPUT ¼ ððAþBÞ � CÞ �D

Such a logic expression could be implemented in logic as three interconnected two-

input logic gates or as a single complex logic gate consisting of transistors connected

to form the function of the expression.

6.14.3 One-Bit Half-Adder

An important logic design created from the basic logic gates is the half-adder, shown in

Figure 6.39,which has two inputs (AandB) and twooutputs (SumandCarry-Out (Cout)).

This cell adds the two binary input numbers and produces sum and carry-out terms.

The truth table for this design is shown in Table 6.8.

The Sum output is only a logic 1 when either but not both inputs are

logic 1: Sum ¼ ðA : BÞ þ ðA : BÞ

A

B

Cout

Sum

Figure 6.39: Half-adder cell

OUTPUT
D

C

A

B

Figure 6.38: Example complex logic gate schematic

388 Chapter 6

www.newnespress.com

This is actually the Exclusive-OR function, so:

Sum ¼ A� B

The Cout output is logic 1 only when all two inputs are logic 1 (i.e., A AND B):

Cout ¼ A : B

This can be drawn as a logic diagram as shown in Figure 6.40.

A dataflow VHDL description for the one-bit half-adder that uses the two logic

expressions is shown in Figure 6.41. Here, two expressions are placed in the

architecture body (one expression for the Sum output on line 17, the second for the

Cout output on line 18).

An example VHDL test bench for this design is shown in Figure 6.42.

6.14.4 Four-to-One Multiplexer

The multiplexer is a many-input-to-one-output circuit that allows one of many

signals to be digitally switched (selected or multiplexed) to a single output under

the control of additional control signals. Figure 6.43 shows an example of a

four-to-one multiplexer that has four input signals (single bit), any one of which

can be selected to become the output. The truth table included in the figure

identifies the selected input for each combination of the control inputs C1 and C2.

Table 6.8: Half-adder cell truth table

A B Sum Cout

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

A

B
Cout

Sum

Figure 6.40: Half-adder logic diagram

Introduction to Digital Logic Design with VHDL 389

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Half_Adder IS
 PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 Sum : OUT STD_LOGIC;
 Cout : OUT STD_LOGIC);
END ENTITY Half_Adder;

ARCHITECTURE Behavioural OF Half_Adder IS

BEGIN

Sum <= (A XOR B);
Cout <= (A AND B);

END ARCHITECTURE Behavioural;

Figure 6.41: VHDL code for a one-bit half-adder

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Half_Adder_vhd IS
END Test_Half_Adder_vhd;

ARCHITECTURE behavioural OF Test_Half_Adder_vhd IS

COMPONENT Half_Adder
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
Sum : OUT STD_LOGIC;
Cout : OUT STD_LOGIC);

END COMPONENT;

Figure 6.42: VHDL test bench for a one-bit half-adder

390 Chapter 6

www.newnespress.com

The multiplexer can be created in VHDL using the If-then-else statement, as shown

in Figure 6.44. Lines 1 to 4 identify the libraries to use. Lines 6 to 14 identify the design

entity (Four_To_One_Mux) with four input signals (A, B, C, D), one output signal (Z),

and two control input (C1, C2). Lines 16 to 36 identify the design architecture.

A

B

C

D

Z

C1 C2

C1 C2 Z

0 0 Z <= A

0 1 Z <= B

1 0 Z <= C

1 1 Z <= D

Figure 6.43: Four-to-one multiplexer

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

SIGNAL A : STD_LOGIC:= '0';
SIGNAL B : STD_LOGIC:= '0';

SIGNAL Sum : STD_LOGIC;
SIGNAL Cout : STD_LOGIC;

BEGIN

uut: Half_Adder PORT MAP(
A => A,
B => B,
Sum => Sum,
Cout => Cout);

Test_Bench_Process : PROCESS
BEGIN

Wait for 0 ns; A <= '0'; B <= '0';
Wait for 10 ns; A <= '0'; B <= '1';
Wait for 10 ns; A <= '1'; B <= '0';
Wait for 10 ns; A <= '1'; B <= '1';
Wait for 10 ns;

END PROCESS;

END ARCHITECTURE behavioural;

Figure 6.42: (Continued)

Introduction to Digital Logic Design with VHDL 391

www.newnespress.com

The design operation is defined within a single process in lines 20 to 34. This has a

sensitivity list with all inputs to enable the process to react to changes in both the

signal and control inputs.

An example test bench to simulate the buffer design is shown in Figure 6.45. The

inputs change every 10 ns; there is zero time delay in the operation of the design, so this

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Four_To_One_Mux is
PORT (A : IN STD_LOGIC ;
 B : IN STD_LOGIC;
 C : IN STD_LOGIC;
 D : IN STD_LOGIC;
 C1 : IN STD_LOGIC;
 C2 : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END ENTITY Four_To_One_Mux;

ARCHITECTURE Behavioural OF Four_To_One_Mux IS

BEGIN

PROCESS (A, B, C, D, C1, C2)

BEGIN

If (C1 = '0' AND C2 = '0') Then
Z <= A;

ElsIf (C1 = '0' AND C2 = '1') Then
Z <= B;

ElsIf (C1 = '1' AND C2 = '0') Then
Z <= C;

Else
Z <= D;

End If;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.44: Four-to-one multiplexer using the If-then-else statement

392 Chapter 6

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Four_To_One_Mux_vhd IS
END ENTITY Test_Four_To_One_Mux_vhd;

ARCHITECTURE Behavioural OF Test_Four_To_One_Mux_vhd IS

COMPONENT Four_To_One_Mux
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
C : IN STD_LOGIC;
D : IN STD_LOGIC;
C1 : IN STD_LOGIC;
C2 : IN STD_LOGIC;
Z : OUT STD_LOGIC);

END COMPONENT;

SIGNAL A : STD_LOGIC := '0';
SIGNAL B : STD_LOGIC := '0';
SIGNAL C : STD_LOGIC := '0';
SIGNAL D : STD_LOGIC := '0';
SIGNAL C1 : STD_LOGIC := '0';
SIGNAL C2 : STD_LOGIC := '0';

SIGNAL Z : STD_LOGIC;

BEGIN

uut: Four_To_One_Mux PORT MAP(
A => A,
B => B,
C => C,
D => D,
C1 => C1,
C2 => C2,
Z => Z);

Test_Bench_Process : PROCESS

BEGIN

Wait for 0 ns; A <= '0'; B <= '0'; C <='0'; D <= '0'; C1 <= '0'; C2 <='0';
Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '1'; C1 <= '0'; C2 <='0';
Wait for 10 ns; A <= '0'; B <= '0'; C <='1'; D <= '0'; C1 <= '0'; C2 <='0';
Wait for 10 ns; A <= '0'; B <= '1'; C <='0'; D <= '0'; C1 <= '0'; C2 <='0';
Wait for 10 ns; A <= '1'; B <= '0'; C <='0'; D <= '0'; C1 <= '0'; C2 <='0';

Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '0'; C1 <= '0'; C2 <='1';
Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '1'; C1 <= '0'; C2 <='1';
Wait for 10 ns; A <= '0'; B <= '0'; C <='1'; D <= '0'; C1 <= '0'; C2 <='1';
Wait for 10 ns; A <= '0'; B <= '1'; C <='0'; D <= '0'; C1 <= '0'; C2 <='1';
Wait for 10 ns; A <= '1'; B <= '0'; C <='0'; D <= '0'; C1 <= '0'; C2 <='1';

Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '0'; C1 <= '1'; C2 <='0';
Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '1'; C1 <= '1'; C2 <='0';
Wait for 10 ns; A <= '0'; B <= '0'; C <='1'; D <= '0'; C1 <= '1'; C2 <='0';
Wait for 10 ns; A <= '0'; B <= '1'; C <='0'; D <= '0'; C1 <= '1'; C2 <='0';
Wait for 10 ns; A <= '1'; B <= '0'; C <='0'; D <= '0'; C1 <= '1'; C2 <='0';

Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '0'; C1 <= '1'; C2 <='1';
Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '1'; C1 <= '1'; C2 <='1';
Wait for 10 ns; A <= '0'; B <= '0'; C <='1'; D <= '0'; C1 <= '1'; C2 <='1';
Wait for 10 ns; A <= '0'; B <= '1'; C <='0'; D <= '0'; C1 <= '1'; C2 <='1';
Wait for 10 ns; A <= '1'; B <= '0'; C <='0'; D <= '0'; C1 <= '1'; C2 <='1';

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.45: Four-to-one multiplexer test bench for the If-then-else statement

www.newnespress.com

short time between input signal changes would not cause any timing problems. The

input signal is toggled between logic 0 and 1 for each state of the two control signals.

This design can also be configured using the Case-when statement, shown in

Figure 6.46, which can be simulated with the test bench identified in Figure 6.47.

In this design, however, the multiplexer input select control signal is applied as a

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Mux_Case_When IS
PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 C : IN STD_LOGIC;
 D : IN STD_LOGIC;
 Control : IN STD_LOGIC_VECTOR(1 downto 0);
 Z : OUT STD_LOGIC);
END ENTITY Mux_Case_When;

ARCHITECTURE Behavioural OF Mux_Case_When IS

BEGIN

PROCESS (A, B, C, D, Control)

BEGIN

CASE Control IS

When "00" => Z <= A;
When "01" => Z <= B;
When "10" => Z <= C;
When "11" => Z <= D;

When OTHERS => Z <= A;

END CASE;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.46: Four-to-one multiplexer using the Case-when statement

394 Chapter 6

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Mux_Case_When_vhd IS
END ENTITY Test_Mux_Case_When_vhd;

ARCHITECTURE Behavioural OF Test_Mux_Case_When_vhd IS

COMPONENT Mux_Case_When
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
C : IN STD_LOGIC;
D : IN STD_LOGIC;
Control : IN STD_LOGIC_VECTOR(1 downto 0);
Z : OUT STD_LOGIC);

END COMPONENT;

SIGNAL A : STD_LOGIC := '0';
SIGNAL B : STD_LOGIC := '0';
SIGNAL C : STD_LOGIC := '0';
SIGNAL D : STD_LOGIC := '0';
SIGNAL Control : STD_LOGIC_VECTOR(1 downto 0) := (others=>'0');

SIGNAL Z : STD_LOGIC;

BEGIN

uut: Mux_Case_When PORT MAP(
A => A,
B => B,
C => C,
D => D,
Control => Control,
Z => Z);

Test_Bench_Process : PROCESS

BEGIN

Wait for 0 ns; A <= '0'; B <= '0'; C <='0'; D <= '0'; Control(1 downto 0) <= "00";
Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '1'; Control(1 downto 0) <= "00";
Wait for 10 ns; A <= '0'; B <= '0'; C <='1'; D <= '0'; Control(1 downto 0) <= "00";
Wait for 10 ns; A <= '0'; B <= '1'; C <='0'; D <= '0'; Control(1 downto 0) <= "00";
Wait for 10 ns; A <= '1'; B <= '0'; C <='0'; D <= '0'; Control(1 downto 0) <= "00";

Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '0'; Control(1 downto 0) <= "01";
Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '1'; Control(1 downto 0) <= "01";
Wait for 10 ns; A <= '0'; B <= '0'; C <='1'; D <= '0'; Control(1 downto 0) <= "01";
Wait for 10 ns; A <= '0'; B <= '1'; C <='0'; D <= '0'; Control(1 downto 0) <= "01";
Wait for 10 ns; A <= '1'; B <= '0'; C <='0'; D <= '0'; Control(1 downto 0) <= "01";

Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '0'; Control(1 downto 0) <= "10";
Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '1'; Control(1 downto 0) <= "10";
Wait for 10 ns; A <= '0'; B <= '0'; C <='1'; D <= '0'; Control(1 downto 0) <= "10";
Wait for 10 ns; A <= '0'; B <= '1'; C <='0'; D <= '0'; Control(1 downto 0) <= "10";
Wait for 10 ns; A <= '1'; B <= '0'; C <='0'; D <= '0'; Control(1 downto 0) <= "10";

Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '0'; Control(1 downto 0) <= "11";
Wait for 10 ns; A <= '0'; B <= '0'; C <='0'; D <= '1'; Control(1 downto 0) <= "11";
Wait for 10 ns; A <= '0'; B <= '0'; C <='1'; D <= '0'; Control(1 downto 0) <= "11";
Wait for 10 ns; A <= '0'; B <= '1'; C <='0'; D <= '0'; Control(1 downto 0) <= "11";
Wait for 10 ns; A <= '1'; B <= '0'; C <='0'; D <= '0'; Control(1 downto 0) <= "11";

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.47: Four-to-one multiplexer test bench for the Case-when statement

www.newnespress.com

two-bit-wide STD_LOGIC_VECTOR named Control. All four possible inputs for the

combinations of logic levels 0 and 1 are defined in the CASE statement (in lines 23

to 32). Line 30 is a Catch all others statement that sets the output to input A for all

other (if any) possible input combinations! This can be left out (if the results would be

the same) or set to a Don’t care condition with ‘--’ rather than to A.

Another alternative is to configure the multiplexer using the When-else statement.

This statement is placed in a dataflow description rather than within a behavioral

description process, because only sequential statements may be placed within the

statement part of a process. An example is shown in Figure 6.48 and can be simulated

with the test bench identified in Figure 6.47 (if the reference to Mux_Case_When is

replaced with Mux_When_Else).

A final possible configuration uses the With-select-when statement. This statement is

placed in a dataflow description rather than within a behavioral description process.

An example of this is shown in Figure 6.49 and can be simulated with the test bench

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Mux_When_Else IS
PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 C : IN STD_LOGIC;
 D : IN STD_LOGIC;
 Control : IN STD_LOGIC_VECTOR(1 downto 0);
 Z : OUT STD_LOGIC);
END ENTITY Mux_When_Else;

ARCHITECTURE Dataflow OF Mux_When_Else IS

BEGIN

Z <= A WHEN (Control(1 downto 0) = "00") ELSE
B WHEN (Control(1 downto 0) = "01") ELSE
C WHEN (Control(1 downto 0) = "10") ELSE
D WHEN (Control(1 downto 0) = "11") ELSE
A;

END ARCHITECTURE Dataflow;

Figure 6.48: Four-to-one multiplexer using the When-else statement

396 Chapter 6

www.newnespress.com

identified in Figure 6.47 (if the reference to (Mux_Case_When is replaced with

Mux_With_Select_When).

6.14.5 Thermometer-to-Binary Encoder

The thermometer-to-binary encoder circuit is used in a number of applications where

a circuit produces an output that is a binary representation of a thermometer code

input. An example is the flash analogue-to-digital converter (ADC). The basic idea is

shown in Table 6.9 with reference to a three-bit binary output. The input code starts

with all 0s, and then from the LSB (here X0), each bit becomes a logic 1 until all

the inputs are at a logic 1 level.

This circuit has seven inputs (X6 to X0) and three outputs (d2 to d0) and can be

implemented in VHDL code using the conditional statements. An example using the

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Mux_With_Select_When IS
PORT (A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 C : IN STD_LOGIC;
 D : IN STD_LOGIC;
 Control : IN STD_LOGIC_VECTOR(1 downto 0);
 Z : OUT STD_LOGIC);
END ENTITY Mux_With_Select_When;

ARCHITECTURE Dataflow OF Mux_With_Select_When IS

BEGIN

WITH Control(1 downto 0) SELECT

Z <= A WHEN "00",
B WHEN "01",
C WHEN "10",
D WHEN "11",
'-' WHEN OTHERS;

END ARCHITECTURE Dataflow;

Figure 6.49: Four-to-one multiplexer using the With-select-when statement

Introduction to Digital Logic Design with VHDL 397

www.newnespress.com

Case-when statement within a process is shown in Figure 6.50. In this, the inputs and

outputs are declared each as a STD_LOGIC_VECTOR.

An example VHDL test bench for this design is shown in Figure 6.51.

6.14.6 Seven-Segment Display Driver

Consider the seven-segment display, a commonly used display device consisting of

eight LED segments, each of which can be switched ON or OFF independently.

The display is available as either a common cathode (where all the LED cathode

connections are connected together) or a common anode (where all the LED anode

connections are connected together) device. The display is shown in Figure 6.52. Each

segment has a letter identifier (a through f for the character display and dp for the

decimal point for number displays).

The idea is to turn the individual LED segments ON or OFF to create letters or

numbers. When two or more displays are placed side by side, then messages consisting

of words and numbers are created. In digital logic terms, and considering a common

cathode display, applying a logic 1 (i.e., high voltage) will turn the LED segment ON.

It is common to create numbers 0 to 9 and letters A to F, as shown in Table 6.10.

A logic 0 (i.e., low voltage) represents the LED segment OFF.

The display segments ON and OFF for each of the characters in Table 6.10 is shown

in Figure 6.53. Where the segment is black, the segment is ON. Where the segment

is white, the segment is OFF.

Table 6.10 shows sixteen possible combinations with the characters representing the

hexadecimal equivalent of a four-bit binary number. A byte of data (i.e., eight bits)

Table 6.9: Thermometer code to three-bit binary encoder

X6 X5 X4 X3 X2 X1 X0 d2 d1 d0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 1 1 1 0 1 1
0 0 0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

398 Chapter 6

www.newnespress.com

can be viewed in hexadecimal format on two seven-segment displays as the upper

nibble and lower nibble, shown in Figure 6.54.

Circuit implementation must incorporate current-limiting resistors in series with each

LED segment, with the value of resistance dependent on the voltage level representing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Thermometer_Case_When IS
PORT (X : IN STD_LOGIC_VECTOR(6 downto 0);
 d : OUT STD_LOGIC_VECTOR(2 downto 0));
END ENTITY Thermometer_Case_When;

ARCHITECTURE Behavioural OF Thermometer_Case_When IS

BEGIN

PROCESS(X)

BEGIN

CASE (X) IS

When "0000000" => d(2 downto 0) <= "000";
When "0000001" => d(2 downto 0) <= "001";
When "0000011" => d(2 downto 0) <= "010";
When "0000111" => d(2 downto 0) <= "011";
When "0001111" => d(2 downto 0) <= "100";
When "0011111" => d(2 downto 0) <= "101";
When "0111111" => d(2 downto 0) <= "110";
When "1111111" => d(2 downto 0) <= "111";

When OTHERS => d(2 downto 0) <= "000";

END CASE;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.50: Thermometer code to three-bit binary encoder using the
Case-when statement

Introduction to Digital Logic Design with VHDL 399

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Thermometer_Case_When_vhd IS
END ENTITY Test_Thermometer_Case_When_vhd;

ARCHITECTURE Behavioural OF Test_Thermometer_Case_When_vhd IS

COMPONENT Thermometer_Case_When
PORT(X : IN STD_LOGIC_VECTOR(6 downto 0);

d : OUT STD_LOGIC_VECTOR(2 downto 0));
END COMPONENT;

SIGNAL X : STD_LOGIC_VECTOR(6 downto 0) := (others=>'0');

SIGNAL d : STD_LOGIC_VECTOR(2 downto 0);

BEGIN

uut: Thermometer_Case_When PORT MAP(
X => X,
d => d);

Test_Bench_Process : PROCESS

BEGIN

Wait for 0 ns; X <= "0000000";
Wait for 10 ns; X <= "0000001";
Wait for 10 ns; X <= "0000011";
Wait for 10 ns; X <= "0000111";
Wait for 10 ns; X <= "0001111";
Wait for 10 ns; X <= "0011111";
Wait for 10 ns; X <= "0111111";
Wait for 10 ns; X <= "1111111";
Wait for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.51: Test bench for the thermometer code to a three-bit binary encoder

400 Chapter 6

www.newnespress.com

the logic level (e.g.,þ3.3 V=logic 1), the current required by the LED to provide

illumination, and the voltage drop across the LED when illuminated. In Figure 6.55, a

voltage (VIN) ofþ5.0 V represents a logic high level used to illuminate an LED. The LED

requires a current of 20 mA to illuminate, and when operating, a voltage drop ofþ2.0 V

is across theLED.A current-limiting resistor drops the difference voltage betweenVIN and

VD (i.e.,þ3.0V). FromOhm’s Law, then, the value of resistance (150�) can be calculated.

a

g

d

b

ce

f

dp

Figure 6.52: Seven-segment display: component (left), segment assignments (right)

Table 6.10: Creating numbers and letters

Character to create a b c d e f g

0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 0
2 1 1 0 1 1 0 1
3 1 1 1 1 0 0 1
4 0 1 1 0 0 1 1
5 1 0 1 1 0 1 1
6 1 0 1 1 1 1 1
7 1 1 1 0 0 0 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 1
A 1 1 1 0 1 1 1
B 0 0 1 1 1 1 1
C 1 0 0 1 1 1 0
D 0 1 1 1 1 0 1
E 1 0 0 1 1 1 1
F 1 0 0 0 1 1 1

Introduction to Digital Logic Design with VHDL 401

www.newnespress.com

0 1 2 3

4 5 6 7

8 9 A b

C d E F

Figure 6.53: Seven-segment display illumination for different characters

4-bit binary to
seven segment
display encoder

7d7
d6
d5
d4

4-bit binary to
seven segment
display encoder

7d3
d2
d1
d0

Figure 6.54: Viewing a byte of data on two seven-segment displays

402 Chapter 6

www.newnespress.com

If a seven-segment display is to display the hexadecimal value of a four-bit input, then

a combinational logic circuit is required. The following example designs VHDL code

use the following statements:

• Case-when statement

• If-then-else statement

In this example, the dp (decimal point) segment is ignored (and in the circuit would be

connected to 0 V).

Case-when Statement

A design based on a Case-when statement is shown in Figure 6.56. Here, the

architecture contains a single process with one item in the sensitivity list. Data_In is a

four-bit STD_LOGIC_VECTOR and applies the four bits of input data to the entity. The

case statement within the process is of the form:

CASE Control IS

WHEN "00" => Z <= A;

WHEN "01" => Z <= B;

WHEN OTHERS => Z <= C;

END CASE;

In this example, the case statement starts with: CASE Data_In IS

The keyword CASE is followed by the expression to use (the input signal Data_In) and

the keyword IS.

R VR

VD

I

VIN

If
VDD = +5.0V
I = 20 mA
VD = 2.0V

Then
R = 150 Ω

Figure 6.55: LED current-limiting resistor calculation

Introduction to Digital Logic Design with VHDL 403

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Hex_Converter IS

PORT(
Data_In : IN STD_LOGIC_VECTOR(3 downto 0);
a : OUT STD_LOGIC;
b : OUT STD_LOGIC;
c : OUT STD_LOGIC;
d : OUT STD_LOGIC;
e : OUT STD_LOGIC;
f : OUT STD_LOGIC;
g : OUT STD_LOGIC);

END ENTITY Hex_Converter;

--
-- Hex_Converter Architecture
--

ARCHITECTURE Behavioural OF Hex_Converter IS

BEGIN

-- Process to perform display encoding

PROCESS(Data_In)

BEGIN

CASE Data_In IS

When "0000" => a <= '1'; b <= '1'; c <= '1'; d <= '1'; e <= '1'; f <= '1'; g <= '0';
When "0001" => a <= '0'; b <= '1'; c <= '1'; d <= '0'; e <= '0'; f <= '0'; g <= '0';
When "0010" => a <= '1'; b <= '1'; c <= '0'; d <= '1'; e <= '1'; f <= '0'; g <= '1';
When "0011" => a <= '1'; b <= '1'; c <= '1'; d <= '1'; e <= '0'; f <= '0'; g <= '1';
When "0100" => a <= '0'; b <= '1'; c <= '1'; d <= '0'; e <= '0'; f <= '1'; g <= '1';
When "0101" => a <= '1'; b <= '0'; c <= '1'; d <= '1'; e <= '0'; f <= '1'; g <= '1';
When "0110" => a <= '1'; b <= '0'; c <= '1'; d <= '1'; e <= '1'; f <= '1'; g <= '1';
When "0111" => a <= '1'; b <= '1'; c <= '1'; d <= '0'; e <= '0'; f <= '0'; g <= '0';
When "1000" => a <= '1'; b <= '1'; c <= '1'; d <= '1'; e <= '1'; f <= '1'; g <= '1';
When "1001" => a <= '1'; b <= '1'; c <= '1'; d <= '0'; e <= '0'; f <= '1'; g <= '1';
When "1010" => a <= '1'; b <= '1'; c <= '1'; d <= '0'; e <= '1'; f <= '1'; g <= '1';
When "1011" => a <= '0'; b <= '0'; c <= '1'; d <= '1'; e <= '1'; f <= '1'; g <= '1';
When "1100" => a <= '1'; b <= '0'; c <= '0'; d <= '1'; e <= '1'; f <= '1'; g <= '0';
When "1101" => a <= '0'; b <= '1'; c <= '1'; d <= '1'; e <= '1'; f <= '0'; g <= '1';
When "1110" => a <= '1'; b <= '0'; c <= '0'; d <= '1'; e <= '1'; f <= '1'; g <= '1';
When "1111" => a <= '1'; b <= '0'; c <= '0'; d <= '0'; e <= '1'; f <= '1'; g <= '1';

When OTHERS => a <= '0'; b <= '0'; c <= '0'; d <='0'; e <= '0'; f <= '0'; g <= '0';

END CASE;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.56: Case-when statement example

www.newnespress.com

The case statement ends with the line END CASE;. Within the case statement, each case

for the expression is identified and the outputs set for each case. The first case is:

When "0000" => a <= ‘1’ b <= ‘1’; c <= ‘1’;

d <= ‘1’; e <= ‘1’; f <= ‘1’; g <= ‘0’;

This states that when Data_In is ‘‘0000’’, then (=>) the outputs will all be set to logic 0

or 1 to create the number 0. Note that everything is placed on one line to save space. A

semicolon indicates a new line, so another way of writing this case would be:

When "0000" =>

a <= ’1’;

b <= ’1’;

c <= ’1’;

d <= ’1’;

e <= ’1’;

f <= ’1’;

g <= ’0’;

The designer can use spaces, line indentation, multiple lines, and blank lines to aid

readability. It is important to ensure that all possible cases of the input signal values

are covered in the case statement. This will ensure that when the design is synthesized,

the output of the synthesis will produce a known result. Otherwise, if some states

are omitted from the case statement, the synthesis tool will decide what the result of the

synthesis should be, and the result might be a circuit that uses more logic than otherwise

required. In Figure 6.56, the last line within the case statement is incorporated:

When OTHERS => a <= ’0’; b <= ’0’; c <= ’0’;

d <=’0’; e <= ’0’; f <= ’0’; g <= ’0’;

This line uses the keyword OTHERS, which states that any cases for the expression that

have not been previously defined sets all the outputs to logic 0.

Figure 6.57 shows an example VHDL test bench for the design. This will run through

each possible input state for the input signal, changing values every 10 ns.

If-then-else Statement

An alternative to the case statement is the If-then-else statement, shown in

Figure 6.58. Here, the architecture contains a single process with one item in

the sensitivity list. Data_In is a four-bit STD_LOGIC_VECTOR and applies the four

Introduction to Digital Logic Design with VHDL 405

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Hex_Converter_vhd IS
END ENTITY Test_Hex_Converter_vhd;

ARCHITECTURE Behavioural OF Test_Hex_Converter_vhd IS

COMPONENT Hex_Converter
PORT(

Data_In : IN STD_LOGIC_VECTOR(3 downto 0);
a : OUT STD_LOGIC;
b : OUT STD_LOGIC;
c : OUT STD_LOGIC;
d : OUT STD_LOGIC;
e : OUT STD_LOGIC;
f : OUT STD_LOGIC;
g : OUT STD_LOGIC);

END COMPONENT;

SIGNAL Data_In : std_logic_vector(3 downto 0) := (others=>'0');

SIGNAL a : std_logic;
SIGNAL b : std_logic;
SIGNAL c : std_logic;
SIGNAL d : std_logic;
SIGNAL e : std_logic;
SIGNAL f : std_logic;
SIGNAL g : std_logic;

BEGIN

uut: Hex_Converter PORT MAP(
Data_In => Data_In,
a => a,
b => b,
c => c,
d => d,
e => e,
f => f,
g => g);

Test_Bench_Process : PROCESS

BEGIN

wait for 0 ns; Data_In <= "0000";
wait for 10 ns; Data_In <= "0001";
wait for 10 ns; Data_In <= "0010";
wait for 10 ns; Data_In <= "0011";
wait for 10 ns; Data_In <= "0100";
wait for 10 ns; Data_In <= "0101";
wait for 10 ns; Data_In <= "0110";
wait for 10 ns; Data_In <= "0111";
wait for 10 ns; Data_In <= "1000";
wait for 10 ns; Data_In <= "1001";
wait for 10 ns; Data_In <= "1010";
wait for 10 ns; Data_In <= "1011";
wait for 10 ns; Data_In <= "1100";
wait for 10 ns; Data_In <= "1101";
wait for 10 ns; Data_In <= "1110";
wait for 10 ns; Data_In <= "1111";
wait for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.57: Case-when statement example test bench

www.newnespress.com

406 Chapter 6

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Hex_Converter IS

PORT(
Data_In : IN STD_LOGIC_VECTOR(3 downto 0);
a : OUT STD_LOGIC;
b : OUT STD_LOGIC;
c : OUT STD_LOGIC;
d : OUT STD_LOGIC;
e : OUT STD_LOGIC;
f : OUT STD_LOGIC;
g : OUT STD_LOGIC);

END ENTITY Hex_Converter;

ARCHITECTURE Behavioural OF Hex_Converter IS

BEGIN

PROCESS(Data_In)

BEGIN

IF (Data_In = "0000") THEN
a <= '1'; b <= '1'; c <= '1'; d <= '1'; e <= '1'; f <= '1'; g <= '0';

ELSIF (Data_In = "0001") THEN
a <= '0'; b <= '1'; c <= '1'; d <= '0'; e <= '0'; f <= '0'; g <= '0';

ELSIF (Data_In = "0010") THEN
a <= '1'; b <= '1'; c <= '0'; d <= '1'; e <= '1'; f <= '0'; g <= '1';

ELSIF (Data_In = "0011") THEN
a <= '1'; b <= '1'; c <= '1'; d <= '1'; e <= '0'; f <= '0'; g <= '1';

ELSIF (Data_In = "0100") THEN
a <= '0'; b <= '1'; c <= '1'; d <= '0'; e <= '0'; f <= '1'; g <= '1';

ELSIF (Data_In = "0101") THEN
a <= '1'; b <= '0'; c <= '1'; d <= '1'; e <= '0'; f <= '1'; g <= '1';

ELSIF (Data_In = "0110") THEN
a <= '1'; b <= '0'; c <= '1'; d <= '1'; e <= '1'; f <= '1'; g <= '1';

ELSIF (Data_In = "0111") THEN
a <= '1'; b <= '1'; c <= '1'; d <= '0'; e <= '0'; f <= '0'; g <= '0';

ELSIF (Data_In = "1000") THEN
a <= '1'; b <= '1'; c <= '1'; d <= '1'; e <= '1'; f <= '1'; g <= '1';

ELSIF (Data_In = "1001") THEN
a <= '1'; b <= '1'; c <= '1'; d <= '0'; e <= '0'; f <= '1'; g <= '1';

ELSIF (Data_In = "1010") THEN
a <= '1'; b <= '1'; c <= '1'; d <= '0'; e <= '1'; f <= '1'; g <= '1';

ELSIF (Data_In = "1011") THEN
a <= '0'; b <= '0'; c <= '1'; d <= '1'; e <= '1'; f <= '1'; g <= '1';

ELSIF (Data_In = "1100") THEN
a <= '1'; b <= '0'; c <= '0'; d <= '1'; e <= '1'; f <= '1'; g <= '0';

ELSIF (Data_In = "1101") THEN
a <= '0'; b <= '1'; c <= '1'; d <= '1'; e <= '1'; f <= '0'; g <= '1';

ELSIF (Data_In = "1110") THEN
a <= '1'; b <= '0'; c <= '0'; d <= '1'; e <= '1'; f <= '1'; g <= '1';

ELSIF (Data_In = "1111") THEN

a <= '1'; b <= '0'; c <= '0'; d <= '0'; e <= '1'; f <= '1'; g <= '1';

a <= '0'; b <= '0'; c <= '0'; d <= '0'; e <= '0'; f <= '0'; g <= '0';
END IF;

ELSE

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.58: If-then-else statement example

www.newnespress.com

bits of input data to the entity. The If-then-else statement within the process is

of the form:

IF (Reset = ’0&’) THEN

Q(7 downto 0) <= "00000000";

ELSIF (Clk’EVENT AND Clk = ’1’) THEN

Q(7 DOWNTO 0) <= D(7 DOWNTO 0);

ELSE

END IF;

In this example, the If-then-else statement starts with:

IF (Data_In = "0000") THEN

The keyword IF is followed by the condition (Data_In = "0000") and the keyword THEN.

On the next line, then the outputs for this condition are set:

a <= ’1’; b <= ’1’; c <= ’1’; d <=’1’; e <= ’1’;

f <= ’1’; g <= ’0’;

The outputs for the other conditions are set using the Elsif conditions. The final Else

condition catches any states that have not been previously defined.

Each condition and its resulting output in this example is created as follows:

ELSIF (Data_In = "0001") THEN

a <= ’0’; b <= ’1’; c <= ’1’; d <= ’0’;

e <= ’0’; f <= ’0’; g <= ’0’;

This is for space saving purposes. A semicolon indicates a new line, so another way of

writing this case would be:

ELSIF (Data_In = ‘‘0001’’) THEN

a <= ‘0’;

b <= ‘1’;

c <= ‘1’;

d <= ‘0’;

e <= ‘0’;

f <= ‘0’;

g <= ‘0’;

The test bench for this design is the same as for the Case-when statement.

408 Chapter 6

www.newnespress.com

6.14.7 Tristate Buffer

In many computer architectures, multiple devices share a common set of signals—

control signals, address lines, and data lines. In a computer architecture where

multiple devices share a common set of data lines, these devices can either receive

or provide logic levels when the device is enabled (and all other devices are

disabled). However, multiple devices could, when enabled, provide logic levels that

would typically conflict with the logic levels provided by other devices. To prevent

this happening, when a device is disabled, it would not produce a logic level, but

would instead be put in a high-impedance state (denoted by the character Z). When

enabled, the buffer passes the input to the output. When disabled, it blocks the

input and the output is seen by the circuit that it is connected to as a

high-impedance electrical load. The operation is shown in Figure 6.59. Here, the

enable signal may be active high (top, 1 to enable the buffer) or active low

(bottom, 0 to enable the buffer).

Enable

A B

A B

Enable

A BEnable

0 Z0

1 Z0

0 01

1 11

A BEnable

0 00

1 10

0 Z1

1 Z1

Figure 6.59: Tristate buffer symbol

Introduction to Digital Logic Design with VHDL 409

www.newnespress.com

The tristate buffer can be created in VHDL using the If-then-else statement, as shown

in Figure 6.60. Lines 1 to 4 identify the libraries and packages to use. Lines 6 to 10

identify the design entity (One_Bit_Buffer) with a signal input (Signal_In) and an

enable control input (Enable). Lines 12 to 26 identify the design architecture.

The design operation is defined within a single process in lines 16 to 24. This has a

sensitivity list with both inputs to enable the process to react to changes in both the

signal and control inputs. The tristate buffer is set to be active high so that when Enable

is a 1, the input signal value is passed to the output signal. When Enable is a 0, the

output is held in a high impedance state (Z) irrespective of the value on the input signal.

An example test bench to simulate the buffer design is shown in Figure 6.61. Here,

the inputs change every 10 ns; there is zero time delay in the operation of the design,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY One_Bit_Buffer is
PORT (Signal_In : IN STD_LOGIC;
 Enable : IN STD_LOGIC;
 Signal_Out : OUT STD_LOGIC);
END ENTITY One_Bit_Buffer;

ARCHITECTURE Behavioural OF One_Bit_Buffer IS

BEGIN

PROCESS (Signal_In, Enable)

BEGIN
If (Enable = '1') Then

Signal_Out <= Signal_In;
Else

Signal_Out <= 'Z';
End If;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.60: One-bit tristate buffer

410 Chapter 6

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_One_Bit_Buffer_vhd IS
END ENTITY Test_One_Bit_Buffer_vhd;

ARCHITECTURE Behavioural OF Test_One_Bit_Buffer_vhd IS

COMPONENT One_Bit_Buffer
PORT(

Signal_In : IN STD_LOGIC;
Enable : IN STD_LOGIC;
Signal_Out : OUT STD_LOGIC);

END COMPONENT;

SIGNAL Signal_In : STD_LOGIC := '0';
SIGNAL Enable : STD_LOGIC := '0';

SIGNAL Signal_Out : STD_LOGIC;

BEGIN

UUT: One_Bit_Buffer PORT MAP(
 Signal_In => Signal_In,
 Enable => Enable,
 Signal_Out => Signal_Out);

Test bench_Process : PROCESS

BEGIN

wait for 0 ns; Signal_In <= '0'; Enable <= '0';
wait for 10 ns; Signal_In <= '1'; Enable <= '0';
wait for 10 ns; Signal_In <= '0'; Enable <= '1';
wait for 10 ns; Signal_In <= '1'; Enable <= '1';
wait for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.61: One-bit tristate buffer test bench

Introduction to Digital Logic Design with VHDL 411

www.newnespress.com

so this short time between input signal changes would not cause any timing problems.

The input signal is toggled between logic 0 and 1 for each state of the enable signal.

The one-bit tristate buffer description in VHDL can be readily modified to

produce the multibit tristate buffer commonly used in computer architectures. For

example, if a device is to be connected to an eight-bit-wide data bus, the one-bit

tristate buffer description in VHDL can be readily modified to allow for this.

Figure 6.62 shows a code example where both input and output signals are

eight-bit-wide STD_LOGIC_VECTORS.

An example test bench for this design is shown in Figure 6.63.

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Eight_Bit_Buffer is
PORT (Signal_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Enable : IN STD_LOGIC;
 Signal_Out : OUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY Eight_Bit_Buffer;

ARCHITECTURE Behavioural OF Eight_Bit_Buffer IS

BEGIN

PROCESS (Signal_In, Enable)

BEGIN

If (Enable = '1') Then
Signal_Out(7 downto 0) <= Signal_In(7 downto 0);

Else
Signal_Out <= "ZZZZZZZZ";

End If;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.62: Eight-bit tristate buffer using the If-then-else statement

412 Chapter 6

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Eight_Bit_Buffer_vhd IS
END ENTITY Test_Eight_Bit_Buffer_vhd;

ARCHITECTURE behavioural OF Test_Eight_Bit_Buffer_vhd IS

COMPONENT Eight_Bit_Buffer
PORT(

Signal_In : IN STD_LOGIC_VECTOR(7 downto 0);
Enable : IN STD_LOGIC;
Signal_Out : OUT STD_LOGIC_VECTOR(7 downto 0));

END COMPONENT;

SIGNAL Signal_In : STD_LOGIC_VECTOR(7 downto 0) := "00000000";
SIGNAL Enable : STD_LOGIC := '0';

SIGNAL Signal_Out : STD_LOGIC_VECTOR(7 downto 0);

BEGIN

UUT: Eight_Bit_Buffer PORT MAP(
 Signal_In(7 downto 0) => Signal_In(7 downto 0),
 Enable => Enable,
 Signal_Out(7 downto 0) => Signal_Out(7 downto 0));

Test bench_Process : PROCESS

BEGIN

wait for 0 ns; Signal_In <= "00000000"; Enable <= '0';
wait for 10 ns; Signal_In <= "11111111"; Enable <= '0';
wait for 10 ns; Signal_In <= "00000000"; Enable <= '1';
wait for 10 ns; Signal_In <= "11111111"; Enable <= '1';
wait for 10 ns;

END PROCESS;

END ARCHITECTURE behavioural;

Figure 6.63: Eight-bit tristate buffer test bench using the If-then-else statement

Introduction to Digital Logic Design with VHDL 413

www.newnespress.com

The tristate buffer can also be created using the When-else statement, as shown in

Figure 6.64. In this design, a dataflow description is used.

6.15 Sequential Logic Design

6.15.1 Introduction

Sequential logic circuits are based on combinational logic circuit elements (AND,

OR, etc.) working alongside sequential circuit elements (latches and flip-flops that will

be grouped together to form registers). A generic sequential logic circuit is shown in

Figure 6.65. Here the circuit inputs to the circuit are applied to the combinational

logic, and the circuit outputs are derived from this combinational logic block. The

sequential logic circuit elements store an output from the combinational logic, and

this is fed back to the combinational logic to form the present state of the circuit. The

output from the combinational logic forming the inputs to the sequential logic circuit

elements in turn forms the next state of the circuit. The circuit changes from the

present state to the next state on a clock control input. Commonly the D latch and

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

--
-- One_Bit_Buffer Entity
--

ENTITY Eight_Bit_Buffer is
PORT (Signal_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Enable : IN STD_LOGIC;
 Signal_Out : OUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY Eight_Bit_Buffer;

--
-- One_Bit_Buffer Architecture
--

ARCHITECTURE DataFlow OF Eight_Bit_Buffer IS

BEGIN

Signal_Out(7 downto 0) <= Signal_In(7 downto 0) When Enable = '1' Else "ZZZZZZZZ";

END ARCHITECTURE DataFlow;

Figure 6.64: Eight-bit tristate buffer using the When-else statement

414 Chapter 6

www.newnespress.com

D-type flip-flop are used, and these sequential circuit elements will be used in this

text (rather than other forms of latch and flip-flop such as the S-R, toggle, and J-K

flip-flops).

Such sequential logic circuit designs create counters and state machines. The state

machines are based on either the Moore machine or Mealy machine, as shown in

Figure 6.66.

The diagrams shown in Figure 6.66 are a modification of the basic structure identified

in Figure 6.65 by separating the combinational logic block into two blocks, one to

create the next state logic (inputs to the state register, an array of flip-flops, that store

the state of the circuit) and the output logic. In the Moore machine, the outputs

Combinational
logic circuit
elements

Sequential logic
circuit elements

(registers)

Inputs Outputs

Next
state

Present
state

Figure 6.65: Generic sequential logic circuit (counter or state machine)

Next state
logic

State
register Outputs

Inputs Output
logic

(a) Moore machine

Next state
logic

State
register

OutputsInputs Output
logic

(b) Mealy machine

Figure 6.66: Moore and Mealy state machines

Introduction to Digital Logic Design with VHDL 415

www.newnespress.com

are a function of only the current state (the outputs from the state register), whereas in

the Mealy machine, the outputs are a function of the current state and the current

inputs.

The types of circuits considered here are synchronous circuits in that activity will

occur under the control of a clock control input. All of the circuit operation will be

tied to this clock input. A number of possible circuits can be formed to produce the

required circuit functionality.

6.15.2 Latches and Flip-Flops

The two sequential logic circuit elements used are the latch and the flip-flop. The

operation of these circuit elements, discussed in Chapter 5, can be modeled in VHDL,

thereby allowing the ability to model, simulate, and synthesize counters and state

machines. In this text, the D latch and the D-type flip-flop will be considered.

The basic D latch circuit symbol, shown in Figure 6.67, has two inputs—the data

input (D, value to store) and the control input (C)—and one output (Q).

In the D latch, when the CLK input is at a logic 1, the Q output is assigned the value of

the D input. When the CLK input is a logic 0, the Q output holds its current value even

when the D input changes. In VHDL, this can be written as shown in Figure 6.68

(where the latch control input C is renamed CLK within the VHDL code).

This uses the If-then-else statement on lines 20 to 22 to identify an operation to

undertake when the C input is a logic 1. At other values of the C input, there is no

action. This structure creates a latch.

An example VHDL test bench for the D latch is shown in Figure 6.69.

The one-bit D latch can be modified to create an n-bit D latch array by using

STD_LOGIC_VECTOR inputs and outputs. An eight-bit D latch array is shown in Figure 6.70.

D

C

D QQ

C

Figure 6.67: D latch circuit symbol

416 Chapter 6

www.newnespress.com

The basic D-type flip-flop circuit symbol, shown in Figure 6.71, has two inputs—the

data input (D, value to store) and the clock input (CLK)—and one output (Q).

In the D-type flip-flop, when the CLK input changes from a 0 to a 1 (positive edge

triggered) or from a 1 to a 0 (negative edge triggered), the Q output is assigned the

value of the D input. When the CLK input is steady at a logic 0 or a 1, the Q output holds

its current value even when the D input changes. In VHDL, this can be written as

shown in Figure 6.72. This code example is a modification of the basic D latch and is

for a positive edge triggered flip-flop.

This uses the If-then-else statement on lines 20 to 22 to identify an operation to

undertake when the CLK input changes. This is a positive edge triggered flip-flop in

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY D_Latch is
 PORT (D : IN STD_LOGIC;
 CLK : IN STD_LOGIC;
 Q : OUT STD_LOGIC);
END ENTITY D_Latch;

ARCHITECTURE Behavioural OF D_Latch IS

BEGIN

PROCESS(CLK, D)

BEGIN

If (CLK = '1') THEN
Q <= D;

END IF;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.68: VHDL code for the D latch

Introduction to Digital Logic Design with VHDL 417

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_D_Latch_vhd IS
END Test_D_Latch_vhd;

ARCHITECTURE Behavioural OF Test_D_Latch_vhd IS

COMPONENT D_Latch
PORT(

D : IN STD_LOGIC;
CLK : IN STD_LOGIC;
Q : OUT STD_LOGIC);

END COMPONENT;

SIGNAL D : STD_LOGIC := '0';
SIGNAL CLK : STD_LOGIC := '0';

SIGNAL Q : STD_LOGIC;

BEGIN

uut: D_Latch PORT MAP(
D => D,
CLK => CLK,
Q => Q);

CLK_Process : PROCESS

BEGIN

Wait for 0 ns; CLK <= '0';
Wait for 20 ns; CLK <= '1';
Wait for 20 ns; CLK <= '0';

END PROCESS;

D_Process : PROCESS

42
43
44
45
46
47
48
49
50
51
52
53
54

BEGIN

Wait for 0 ns; D <= '0';
Wait for 60 ns; D <= '1';
Wait for 22 ns; D <= '0';
Wait for 2 ns; D <= '1';
Wait for 2 ns; D <= '0';

 Wait for 16 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.69: VHDL test bench for the D latch

www.newnespress.com

that the clock control statement identifies that the clock is on an edge (change) and is

a logic 1 (the final value for the clock):

IF (CLK’Event AND CLK = ’1’) THEN

It is common, however, for the flip-flop to have a reset or set input to initialize the

output Q to either logic 0 (reset) or logic 1 (set). This reset/set input can be either

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY D_Latch_Array is
 PORT (D : IN STD_LOGIC_VECTOR(7 downto 0);

 CLK : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY D_Latch_Array;

ARCHITECTURE Behavioural OF D_Latch_Array IS

BEGIN

PROCESS(CLK, D)

BEGIN

If (CLK = '1') THEN
Q(7 downto 0) <= D(7 downto 0);

END IF;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.70: VHDL code for an eight-bit D latch array

D

CLK

D QQ

Figure 6.71: D-type flip-flop

Introduction to Digital Logic Design with VHDL 419

www.newnespress.com

asynchronous (independent of the clock) or synchronous (the reset/set occurs on a

clock edge), and active high (active when a logic 1) or active low (active when a logic 0).

The circuit symbol for theD-type flip-flop with active low reset is shown in Figure 6.73.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY D_Type_Flip_Flop is
 PORT (D : IN STD_LOGIC;
 CLK : IN STD_LOGIC;
 Q : OUT STD_LOGIC);
END ENTITY D_Type_Flip_Flop;

ARCHITECTURE Behavioural OF D_Type_Flip_Flop IS

BEGIN

PROCESS(CLK, D)

BEGIN

IF (CLK'EVENT AND CLK = '1') THEN
Q <= D;

END IF;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.72: VHDL code for the D-type flip-flop

D

CLK

D QQ

RESET

Figure 6.73: D-type flip-flop with active low reset

420 Chapter 6

www.newnespress.com

This idea for this design is shown in Figure 6.74. Here, eight bits of data are stored

in a register consisting of eight flip-flops, and the flip-flops are asynchronous active

low reset.

To include the reset capability, the action to undertake when the reset input (RESET)

is a logic 0 is included. The activity takes place between lines 21 and 29.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY D_Type_Register is
 PORT (D : IN STD_LOGIC_VECTOR(7 downto 0);
 CLK : IN STD_LOGIC;

RESET : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY D_Type_Register;

ARCHITECTURE Behavioural OF D_Type_Register IS

BEGIN

PROCESS(CLK, D, RESET)

BEGIN

IF (RESET = '0') THEN

Q(7 downto 0) <= "00000000";

ELSIF (CLK'EVENT AND CLK = '1') THEN

Q(7 downto 0) <= D(7 downto 0);

END IF;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.74: VHDL code for the D-type flip-flop register with active low
asynchronous reset

Introduction to Digital Logic Design with VHDL 421

www.newnespress.com

6.15.3 Counter Design

A counter is a circuit that passes through a set sequence of states on the change (edge) of

a clock signal, and the only inputs to the circuit are a clock and a reset or set. The

simplest counter is a straight binary up-counter whose output (Q outputs from the

flip-flops used in the counter) is a straight binary count. The D-type flip-flop register

design can be modified to produce this operation. If all the flip-flops can be reset, then

the initial count value after a reset has occurred is 010. The next count value will be 110,

followed by 210, and so on. The output from a four-bit counter is shown in Table 6.11.

The Q outputs from the counter, as shown in Figure 6.75, are Q3, Q2, Q1, and Q0.

Table 6.11: Four-bit counter output (reset to state 0)

State (count value) Q3 Q2 Q1 Q0

0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1

10 1 0 1 0
11 1 0 1 1
12 1 1 0 0
13 1 1 0 1
14 1 1 1 0
15 1 1 1 1

Q3 (MSB)

Q2

Q1

Q0 (LSB)

Clock

Reset

Figure 6.75: Four-bit binary counter

422 Chapter 6

www.newnespress.com

The VHDL code for this counter is shown in Figure 6.76. Here, the counter activity

within the architecture is specified between lines 18 and 34. When the Reset input is a

logic 0, the internal signal Count_Int (a four-bit-wide STD_LOGIC_VECTOR) is set to 010.

This is an asynchronous active low reset. At all other values of Reset, the value for

Count_Int increments by 1 on the edge of the Clock signal:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY Four_Bit_Counter is
 PORT (Clock : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Count : OUT STD_LOGIC_VECTOR (3 downto 0));
END ENTITY Four_Bit_Counter;

ARCHITECTURE Behavioural of Four_Bit_Counter is

SIGNAL Count_Int : STD_LOGIC_VECTOR(3 downto 0);

BEGIN

PROCESS(Clock, Reset)

BEGIN

IF (Reset = '0') THEN

Count_Int(3 downto 0) <= "0000";

ELSIF (Clock'Event AND Clock = '1') THEN

Count_Int(3 downto 0) <= Count_Int(3 downto 0) + 1;

END IF;

END PROCESS;

Count(3 downto 0) <= Count_Int(3 downto 0);

END ARCHITECTURE Behavioural;

Figure 6.76: VHDL code for the four-bit binary counter

Introduction to Digital Logic Design with VHDL 423

www.newnespress.com

ELSIF (Clock’Event AND Clock = ’1’) THEN

Count_Int(3 downto 0) <= Count_Int(3 downto 0) + 1;

When the value for Count_Int reaches 1510 (11112), the next count value will wrap

around back to 010. Outside the process, the STD_LOGIC_VECTOR output Count is

assigned the value of Count_Int. This is required so that the port signal of mode OUT

cannot be read inside from within the entity.

An example VHDL test bench for this design is shown in Figure 6.77. The two inputs

Clock and Reset are created within their own process statements.

The output from this counter was taken from the flip-flop Q outputs. However, there

are three possible ways to create the output:

1. by taking the flip-flop Q outputs directly

2. by passing the flip-flop Q outputs through combinational logic, then the

outputs of the combinational logic become the counter outputs to form a

nonregistered output

3. by passing the flip-flop Q outputs through combinational logic, then applying

these to the inputs of one or more flip-flops to form a registered output, and

the outputs of the flip-flops become the counter outputs.

These possible arrangements are shown in Figure 6.78.

A straight binary count forms the states of this counter. For n flip-flops, there are

2n possible count states. However, the number of count states could be reduced. For

example, if a counter is required to count from 010 to 410 and back to 010, this is

achieved with three flip-flops (forming a possible maximum of eight count states).

The counter must detect that from count state 4, on the next clock edge, the counter

will jump to count state 0 rather than automatically moving on to count state 5.

Although this design uses a binary count sequence, any count sequence that can be

coded in VHDL can be used. The one-hot encoding is an example of this. It uses n

flip-flops to represent n states. Table 6.12 shows this arrangement for a four-bit

counter, along with the binary count state equivalent.

In the one-hot encoding scheme, to change from one state to the next, only two

flip-flop outputs change: the first from a 1 to a 0, and the second from a 0 to a 1. The

advantage to this scheme is that the combinational logic to create the next state value

is less than required for other encoding schemes. However, it comes at the expense of

424 Chapter 6

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Four_Bit_Counter_vhd IS
END Test_Four_Bit_Counter_vhd;

ARCHITECTURE Behavioural OF Test_Four_Bit_Counter_vhd IS

COMPONENT Four_Bit_Counter
PORT(

Clock : IN std_logic;
Reset : IN std_logic;
Count : OUT std_logic_vector(3 downto 0));

END COMPONENT;

SIGNAL Clock : std_logic := '0';
SIGNAL Reset : std_logic := '0';

SIGNAL Count : std_logic_vector(3 downto 0);

BEGIN

uut: Four_Bit_Counter PORT MAP(
Clock => Clock,
Reset => Reset,
Count => Count);

Reset_Process: PROCESS

BEGIN

Wait For 0 ns; Reset <= '0';
Wait For 160 ns; Reset <= '1';
Wait;

END PROCESS;

Clock_Process: PROCESS

BEGIN

Wait For 0 ns; Clock <= '0';
Wait For 20 ns; Clock <= '1';
Wait For 20 ns; Clock <= '0';

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.77: VHDL test bench for the four-bit binary counter

Introduction to Digital Logic Design with VHDL 425

www.newnespress.com

dealing with the increase in the number of possible states (although only a small

number of the possible states would be used in normal operation). The possibility for

the counter to move into one of the unused states must be considered.

6.15.4 State Machine Design

The state machine is a circuit that reacts to one or more inputs that direct it to move

into one of a number of possible states, depending on the value of the current state

and the value of the current input. State machines are based on either the Moore or

Mealy machines. The state transition diagram is drawn to represent state machine

Counter

Combinational
logic

Combinational
logic Flip-flops

Counter

Counter
Clock

Reset

Clock

Reset

Clock

Reset

(a) Q outputs from flip-flops directly

(b) Outputs from combinational logic decoding

(c) Q outputs from output register flip-flops

Figure 6.78: Decoding the counter output

426 Chapter 6

www.newnespress.com

operation. This aid is invaluable, particularly when writing VHDL code based

descriptions of the state machine to be able to visualize its operation and relate this to

the VHDL code.

A state machine can be modeled in VHDL as a structural description, dataflow

description, or a behavioral description. In this text, the behavioral description is

considered. The structure of the behavioral description is based here on two processes

within the architecture of the design:

1. The first process describes the transition from the current state to the next state.

2. The second process describes the output values for the current state and

describes the next state.

The behavioral description uses the If-then-else and Case-when statements to achieve

the required state machine behavior. Two case study designs are presented to show

how this can be achieved: 1001 sequence detector and UART receiver.

Example 1: 1001 Sequence Detector

Consider a state machine, such as that shown in Figure 6.79, that is to detect the

sequence 1001 on a data input, then produce a logic 1 output when the sequence has

Table 6.12: One-hot encoding

State One-hot code Binary code

0 0000000000000001 0000
1 0000000000000010 0001
2 0000000000000100 0010
3 0000000000001000 0011
4 0000000000010000 0100
5 0000000000100000 0101
6 0000000001000000 0110
7 0000000010000000 0111
8 0000000100000000 1000
9 0000001000000000 1001

10 0000010000000000 1010
11 0000100000000000 1011
12 0001000000000000 1100
13 0010000000000000 1101
14 0100000000000000 1110
15 1000000000000000 1111

Introduction to Digital Logic Design with VHDL 427

www.newnespress.com

been detected. The state machine has three inputs—one Data_In to be monitored for

the sequence and two control inputs, Clock and Reset—and one output, Detected.

Such a state machine could be used in a digital combinational lock circuit.

The state transition diagram for this design is shown in Figure 6.80.

This state machine defines five states: state 0, state 1, state 2, state 3, and state 4.

The circuit is initially reset to state 0 (a design decision) and monitors the Data_In

Data_In

Clock

Reset

Detected

Figure 6.79: 1001 sequence detector

State 0 is the
reset state

0

1

1

0

1

0

1

0

1

0

Input: Data_In

State 2

0

State 3

0

State 4

1 State 1

0

State 0

0

State
identifier

Output:
Detected

Figure 6.80: 1001 sequence detector state transition diagram (Moore machine)

428 Chapter 6

www.newnespress.com

input. The Detected output is set to a logic 0. State machine changes are summarized

below:

• At state 0: When Data_In input remains at logic 0, the state remains in state 0.

When a logic 1 is detected (the start of a possible 1001 sequence), the state

changes to state 1. All state transitions will occur here on the positive edge of

the Clock input.

• At state 1: When a logic 1 is detected on the Data_In input, the state remains in

state 1 because the sequence has been broken. However, if a logic 0 is detected

(10 of the sequence), the state changes to state 2.

• At state 2: When a logic 1 is detected on the Data_In input, the state changes

back to state 1 because the sequence has been broken, but the logic 1 input

could be the start of a sequence. However, if a logic 0 is detected (100 of the

sequence), the state changes to state 3.

• At state 3: When a logic 0 is detected on the Data_In input, the state changes

back to state 0 because the sequence has been broken. However, if a logic 1

is detected (1001 of the sequence), the state changes to state 4 and sets the

Detected output to a logic 1.

• At state 4: When a logic 0 is detected on the Data_In input, the state changes

back to state 0. However, if a logic 1 is detected (the logic 1 input could be the

start of a sequence), the state changes to state 1. Whether the state is 0 or 1, the

Detected output is reset to a logic 0.

In VHDL, this sequence detector can be described using a behavioral description with

two processes. The first process describes the transition from the current state to the

next state. The second process describes the output values for the current state and

describes the next state. This is shown in Figure 6.81.

The first process has the same structure as a counter, except now the signals

are defined in the architecture as a defined type, State_Type, and with names

Current_State and Next_State (shown in lines 18 and 20). The five possible states

(State0, State1, State2, State3, and State4) relate to the names of the states given

in the state diagram.

The second process identifies the values of the outputs for each possible state

and identifies the value of the next state (Next_State) for the current state

(Current_State) and the data input (Data_In).

Introduction to Digital Logic Design with VHDL 429

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
30
41
42
43
44
45
46
47
48
49
50

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Sequence_Detector is
 PORT (Data_In : IN STD_LOGIC;
 Clock : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Q2 : OUT STD_LOGIC;
 Q1 : OUT STD_LOGIC;
 Q0 : OUT STD_LOGIC;
 Detected : OUT STD_LOGIC);
END ENTITY Sequence_Detector;

ARCHITECTURE Behavioural OF Sequence_Detector IS

TYPE State_Type IS (State0, State1, State2, State3, State4);

SIGNAL Present_State, Next_State : State_Type;

BEGIN

PROCESS(Clock, Reset)
BEGIN

 IF (Reset = '0') THEN

 Present_State <= State0;

 ELSIF (Clock'Event AND Clock = '1') THEN

 Present_State <= Next_State;

 END IF;

END PROCESS;

PROCESS(Present_State, Data_In)
BEGIN

 CASE Present_State IS

 WHEN State0 => Detected <= '0'; Q2 <= '0'; Q1 <= '0'; Q0 <= '0';

 IF (Data_In = '0') THEN
 Next_State <= State0;
 ELSE
 Next_State <= State1;

51 END IF;

Figure 6.81: VHDL code for the 1001 sequence detector

430 Chapter 6

www.newnespress.com

This design can be simulated and synthesized into logic. However, the one thing

that is not defined is the state encoding: for example, the transition from one

state to the next could be a binary count, one-hot encoding, or another form of

encoding. In this case, either the synthesis tool is configured to select automatically

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

52
53

 WHEN State1 => Detected <= '0'; Q2 <= '0'; Q1 <= '0'; Q0 <= '1';

 IF (Data_In = '0') THEN
 Next_State <= State2;
 ELSE
 Next_State <= State1;
 END IF;

 WHEN State2 => Detected <= '0'; Q2 <= '0'; Q1 <= '1'; Q0 <= '0';

 IF (Data_In = '0') THEN
 Next_State <= State3;
 ELSE
 Next_State <= State1;
 END IF;

 WHEN State3 => Detected <= '0'; Q2 <= '0'; Q1 <= '1'; Q0 <= '1';

 IF (Data_In = '0') THEN
 Next_State <= State0;
 ELSE
 Next_State <= State4;
 END IF;

 WHEN State4 => Detected <= '1'; Q2 <= '1'; Q1 <= '0'; Q0 <= '0';

 IF (Data_In = '0') THEN
 Next_State <= State0;
 ELSE
 Next_State <= State1;
 END IF;

 END CASE;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.81: (Continued)

Introduction to Digital Logic Design with VHDL 431

www.newnespress.com

a suitable form of encoding, or the user can direct the synthesis tool to use a particular

form of encoding.

An example VHDL test bench for this design is shown in Figure 6.82.

Example 2: UART Receiver

The UART (universal asynchronous receiver transmitter) is used in RS-232 serial

communications to receive and transmit serial data. It consists of a receiver circuit

and a transmitter circuit.

The UART receiver circuit receives a serial input (Rx) and requires the use of Clock

and Reset control inputs. The clock frequency is sixteen times the baud rate of the

serial data transmission. The circuit, shown in Figure 6.83, produces an eight-bit

parallel output (Data_Rx(7:0)) and provides a status output (DR) that becomes a logic

1 when a byte of data has been received.

The timing waveform for the serial data format on the Rx input is shown in Figure

6.84. Although serial data transmission protocol has a number of possible scenarios,

the following sequence of bits received will be considered here:

1. one start bit (logic 0)

2. eight data bits are transmitted (LSB first, MSB last)

3. one stop bit (logic 1)

4. no parity checking

When the receiver circuit is waiting for data, the Rx input is a logic 1. A start (of serial

data transmission by an external circuit) bit is indicated when the Rx input becomes

a logic 0. The eight data bits are then transmitted, and the data transmission

completes with a stop bit (logic 1).

The operation of the UART receiver can be developed in VHDL using a structural

description, a dataflow description, or a behavioral description. A behavioral

description for this circuit in VHDL is shown in Figure 6.85. A state machine

monitors the Rx input and remains in its initial state while the Rx input remains at a

logic 1. This sets up two processes. The first process is a binary counter controlled

(to the next count state) by the current count state and the value on the Rx input.

432 Chapter 6

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Sequence_Detector_vhd IS
END Test_Sequence_Detector_vhd;

ARCHITECTURE Behavioural OF Test_Sequence_Detector_vhd IS

COMPONENT Sequence_Detector
PORT(
 Data_In : IN STD_LOGIC;
 Clock : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Q2 : OUT STD_LOGIC;
 Q1 : OUT STD_LOGIC;
 Q0 : OUT STD_LOGIC;
 Detected : OUT STD_LOGIC);
END COMPONENT;

SIGNAL Data_In : STD_LOGIC := '0';
SIGNAL Clock : STD_LOGIC := '0';
SIGNAL Reset : STD_LOGIC := '0';

SIGNAL Q2 : STD_LOGIC;
SIGNAL Q1 : STD_LOGIC;
SIGNAL Q0 : STD_LOGIC;
SIGNAL Detected : STD_LOGIC;

BEGIN

uut: Sequence_Detector PORT MAP(
 Data_In => Data_In,
 Clock => Clock,
 Reset => Reset,
 Q2 => Q2,
 Q1 => Q1,
 Q0 => Q0,
 Detected => Detected);

Figure 6.82: VHDL test bench for the 1001 sequence detector

Introduction to Digital Logic Design with VHDL 433

www.newnespress.com

49
50
51
52
53
54
55
56
57
58
59
60
61
62

 Wait for 0 ns; Reset <= '0';
 Wait for 5 ns; Reset <= '1';
 Wait;

END PROCESS;

Clock_Process : PROCESS

BEGIN

 Wait for 0 ns; Clock <= '0';
 Wait for 10 ns; Clock <= '1';
 Wait for 10 ns; Clock <= '0';

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

END PROCESS;

Data_In_Process : PROCESS

BEGIN

 Wait for 0 ns; Data_In <= '0';

 Wait for 80 ns; Data_In <= '1';
 Wait for 20 ns; Data_In <= '0';
 Wait for 20 ns; Data_In <= '0';
 Wait for 20 ns; Data_In <= '1';

 Wait for 20 ns; Data_In <= '0';

 Wait for 80 ns; Data_In <= '1';
 Wait for 20 ns; Data_In <= '0';
 Wait for 20 ns; Data_In <= '0';
 Wait for 20 ns; Data_In <= '0';

 Wait for 20 ns; Data_In <= '0';

END PROCESS;

END ARCHITECTURE Behavioural;

45
46
47
48

Reset_Process : PROCESS

BEGIN

44

Figure 6.82: (Continued)

434 Chapter 6

www.newnespress.com

The second process uses the current count state and undertakes an action on the clock

rising edge on specific count states only. The question is, is this actually the best

approach to take, and what will happen in the other count states?

When Rx becomes a 0, then the following sequence of events happens:

1. The internal counter counts for 24 clock pulses and then stores data

bit Data_Rx(0).

2. The internal counter counts for 16 clock pulses and then stores data bit

Data_Rx(1).

3. The internal counter counts for 16 clock pulses and then stores data bit

Data_Rx(2).

Rx

Clock

Reset

DR

Data_Rx(7:0)

Figure 6.83: UART receiver circuit

Data_Rx(0)
(LSB)

Data_Rx(7)
(MSB)

Start
bit

Stop
bit

8 data bits

Figure 6.84: Serial data format

Introduction to Digital Logic Design with VHDL 435

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY Uart_Receiver is
 PORT (Rx : IN STD_LOGIC;
 Clock : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Data_Rx : OUT STD_LOGIC_VECTOR(7 downto 0);
 DR : OUT STD_LOGIC);
END ENTITY Uart_Receiver;

ARCHITECTURE Behavioural of Uart_Receiver is

SIGNAL Count : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Data_Int : STD_LOGIC_VECTOR(7 downto 0);

BEGIN

PROCESS (Clock, Reset)

BEGIN

 IF (Reset='0') then

 Count <= "00000000";

 ELSIF (Clock'Event and Clock = '1') then

 IF (Rx='1' AND (Count = "00000000" or Count = "10101011")) THEN
 Count <= "00000000";
 ELSE
 Count <= Count + 1;
 END IF;

 END IF;

END PROCESS;

PROCESS (Clock, Reset, Count)

45
46
47
48
49
50
51
52
53
54
55
56
57
58

BEGIN

 IF (Reset='0') THEN

 Data_Int(7 downto 0) <= "00000000";
 Data_Rx(7 downto 0) <= "00000000";
 DR <= '0';

 ELSIF (Clock'Event and Clock = '1') THEN

 IF (COUNT = "00000000") THEN
 DR <= '0';
 END IF;

Figure 6.85: VHDL code for a UART receiver

436 Chapter 6

www.newnespress.com

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

 END IF;

 IF (COUNT = "00011000") THEN
 Data_Int(0) <= Rx;
 END IF;

 IF (COUNT = "00101000") THEN
 Data_Int(1) <= Rx;
 END IF;

 IF (COUNT = "00111000") THEN
 Data_Int(2) <= Rx;
 END IF;

 IF (COUNT = "01001000") THEN
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

 Data_Int(3) <= Rx;
 END IF;

 IF (COUNT = "01011000") THEN
 Data_Int(4) <= Rx;
 END IF;

 IF (COUNT = "01101000") THEN
 Data_Int(5) <= Rx;
 END IF;

 IF (COUNT = "01111000") THEN
 Data_Int(6) <= Rx;
 END IF;

 IF (COUNT = "10001000") THEN
 Data_Int(7) <= Rx;
 END IF;

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

 IF (COUNT = "10011000") THEN
 Data_Rx(7 downto 0) <= Data_Int(7 downto 0);
 END IF;

 IF (COUNT = "10101000") THEN
 DR <= '1';
 END IF;

 IF (COUNT = "10101010") THEN
 DR <= '0';
 END IF;

 END IF;

END PROCESS;

END ARCHITECTURE Behavioural;

59
60

 IF (COUNT = "00000001") THEN
 DR <= '0';

Figure 6.85: (Continued)

Introduction to Digital Logic Design with VHDL 437

www.newnespress.com

4. The internal counter counts for 16 clock pulses and then stores data

bit Data_Rx(3).

5. The internal counter counts for 16 clock pulses and then stores data bit

Data_Rx(4).

6. The internal counter counts for 16 clock pulses and then stores data

bit Data_Rx(5).

7. The internal counter counts for 16 clock pulses and then stores data bit

Data_Rx(6).

8. The internal counter counts for 16 clock pulses and then stores data

bit Data_Rx(7).

9. The internal counter counts for 16 clock pulses and then outputs the byte

of data.

10. The internal counter counts for 16 clock pulses and then sets DR to

logic 1.

11. The internal counter counts for 4 clock pulses and then sets DR to

logic 0.

12. The counter returns to its initial state and waits for Rx to become logic 0,

indicating the receipt of the next byte.

The choice of which count states to act on ensures that the action will be taken in

the middle of the received bit (start, data, or stop) so that a correct value is read

from Rx.

The received data is initially stored inside the design using the Data_Int signal, which

allows the byte to be available at the output of the design at one single time. This is a

simple circuit model that decodes a counter output and produces a registered output

to store the received data byte. There are of course possible improvements to this

description.

An example VHDL test bench for this design is shown in Figure 6.86. Two points

should be noted about the code identified in Figure 6.85:

• The If-then-else statements would be formatted better as Elsif statements.

• The Case-when statement could be used instead.

438 Chapter 6

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Uart_Receiver_vhd IS
END Test_Uart_Receiver_vhd;

ARCHITECTURE Behavioural OF Test_Uart_Receiver_vhd IS

COMPONENT Uart_Receiver
PORT(
 Rx : IN std_logic;
 Clock : IN std_logic;
 Reset : IN std_logic;
 Data_Rx : OUT std_logic_vector(7 downto 0);
 DR : OUT std_logic);
END COMPONENT;

SIGNAL Rx : std_logic := '0';
SIGNAL Clock : std_logic := '0';
SIGNAL Reset : std_logic := '0';

SIGNAL Data_Rx : std_logic_vector(7 downto 0);
SIGNAL DR : std_logic;

BEGIN

29
30
31
32

uut: Uart_Receiver PORT MAP(
 Rx => Rx,
 Clock => Clock,
 Reset => Reset,

33
34
35
36
37
38
39
30
41
42
43
44
45
46
47

 Data_Rx => Data_Rx,
 DR => DR);

Reset_Process: PROCESS

BEGIN

 Wait for 0 ns; Reset <= '0';
 Wait for 5 ns; Reset <= '1';
 Wait;

END PROCESS;

Clock_Process: PROCESS

Figure 6.86: VHDL test bench for the UART receiver

www.newnespress.com

Introduction to Digital Logic Design with VHDL 439

6.16 Memories

6.16.1 Introduction

Semiconductor memories can be found inmany electronic andmicroelectronic applications

such as the personal computer (PC) and are required to store data and program code

that can be accessed and/or modified. These circuits are typically found in microprocessor

(mP), microcontroller (mC), and digital signal processor (DSP) based systems.

In general, memory can be used in these three types of data and program code storage:

1. Permanent storage for values that can be read only within the application and

can be changed (if at all) only by removing the memory from the application

and reprogramming or replacing it.

48
49
50
51
52
53
54
55

BEGIN

 Wait for 0 ns; Clock <= '0';
 Wait for 10 ns; Clock <= '1';
 Wait for 10 ns; Clock <= '0';

END PROCESS;

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Rx_Process: PROCESS

BEGIN

 Wait for 0 ns; Rx <= '1';
 Wait for 100 ns; Rx <= '0';
 Wait for 320 ns; Rx <= '1';

 Wait for 5000 ns;

 Wait for 0 ns; Rx <= '1';
 Wait for 100 ns; Rx <= '0';
 Wait for 320 ns; Rx <= '1';
 Wait for 320 ns; Rx <= '0';
 Wait for 320 ns; Rx <= '1';

 Wait for 5000 ns;

END PROCESS;

END ARCHITECTURE behavioural;

Figure 6.86: (Continued)

440 Chapter 6

www.newnespress.com

2. Semi-permanent storage for values that are normally read only within the

application (as with permanent storage). However, stored values can be

modified by reprogramming while the memory remains in the circuit.

3. Temporary storage for values needed only for temporary (immediate)

use and requiring fast access or modification (such as program code

within a computer system that can be removed when no longer needed).

The two types of memory are read-only memory (ROM) and random access memory

(RAM), which is sometimes referred to as read-write memory (RWM).

The memory is usually a fixed block of circuitry that the designer is required to

interface correctly with an existing circuit. In this case, a VHDL simulation model for

the memory is provided by the memory supplier. In other cases, a memory model

might be written by the circuit designer and, if correctly structured, synthesized.

However, care must be taken with the resulting memory operation and circuit size.

Where certain field programmable gate arrays (FPGA) incorporate memory blocks, a

synthesis tool recognizes this and synthesizes the VHDL code to utilize the memories

within the FPGA.

6.16.2 Random Access Memory

RAM can be modeled in a number of ways in VHDL. In the example RAMmodel [4]

in Figure 6.87, the address, data, and control signals are shown. Each of 16 addresses

holds eight bits of data. Data is written to the memory when the CE (chip enable)

and the WE (write enable) signals are active low, and data is read from the memory

when the CE and the OE (output enable) signals are active low. In models of this type,

care is needed to identify what will happen in the circuit if unexpected control signals

are applied on CE, WE, and OE. Line 26 in the code sets the RAM output to high

Address
(010 to +1510)

CE
WE
OE

Data(7:0)

Figure 6.87: 16 address 3 8 data bit RAM

Introduction to Digital Logic Design with VHDL 441

www.newnespress.com

impedance under other conditions. An example VHDL code implementation for this

design is shown in Figure 6.88.

In this example, the input address signal is an integer type, and the data is a

bidirectional (INOUT) standard logic vector.

An example VHDL test bench for this design is shown in Figure 6.89. As data is

written to and read from the RAM model, the applied stimulus is set to high

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY RAM_Model is
 PORT (Address : IN Integer range 0 to 15;
 CE : IN STD_LOGIC;
 WE : IN STD_LOGIC;
 OE : IN STD_LOGIC;
 Data : INOUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY RAM_Model;

ARCHITECTURE Behavioural OF RAM_Model IS

BEGIN

PROCESS(Address, CE, WE, OE) IS

TYPE Ram_Array IS ARRAY (0 to 15) OF STD_LOGIC_VECTOR(7 downto 0);

VARIABLE Mem: Ram_Array;

BEGIN

Data(7 downto 0) <= (others => 'Z');

 IF (CE = '0') THEN
 IF (WE = '0') THEN
 Mem(Address) := Data(7 downto 0);
 ELSIF (OE = '0') THEN
 Data(7 downto 0) <= Mem(Address);
 END IF;
 END IF;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.88: 16 3 8 RAM

442 Chapter 6

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_RAM_Model_vhd IS
END Test_RAM_Model_vhd;

ARCHITECTURE behavioural OF Test_RAM_Model_vhd IS

COMPONENT RAM_Model
PORT(
 Address : IN Integer range 0 to 15;
 CE : IN STD_LOGIC;
 WE : IN STD_LOGIC;
 OE : IN STD_LOGIC;
 Data : INOUT STD_LOGIC_VECTOR(7 downto 0));
END COMPONENT;

SIGNAL CE : STD_LOGIC := '0';
SIGNAL WE : STD_LOGIC := '0';
SIGNAL OE : STD_LOGIC := '0';
SIGNAL Address : Integer range 0 to 15;

SIGNAL Data : STD_LOGIC_VECTOR(7 downto 0);

BEGIN

uut: RAM_Model PORT MAP(
 Address => Address,
 CE => CE,
 WE => WE,
 OE => OE,
 Data => Data);

Test_Bench_Process : PROCESS

BEGIN

wait for 0 ns; Address <= 0; Data <= "ZZZZZZZZ";
 CE <= '1'; WE <= '1'; OE <= '1';

wait for 10 ns; Address <= 0; Data <= "10000001";
wait for 10 ns; CE <= '0'; WE <= '1'; OE <= '1';
wait for 10 ns; CE <= '0'; WE <= '0'; OE <= '1';
wait for 10 ns; CE <= '1'; WE <= '1'; OE <= '1'; Data <= "ZZZZZZZZ";

wait for 10 ns; Address <= 0; Data <= "ZZZZZZZZ";
wait for 10 ns; CE <= '0'; WE <= '1'; OE <= '1';
wait for 10 ns; CE <= '0'; WE <= '1'; OE <= '0';
wait for 10 ns; CE <= '1'; WE <= '1'; OE <= '1';

wait for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.89: VHDL test bench for the 16 3 8 RAM

Introduction to Digital Logic Design with VHDL 443

www.newnespress.com

impedance (Z) when data is to be read from the memory, and set to the logic levels

required to store when data is written to the memory. In this test bench, a value

of 12910 is written to the memory address 0 and then read back.

6.16.3 Read-Only Memory

ROM can be modeled in a number of ways in VHDL. In the simplest terms, the

ROM can be modeled as a combinational logic circuit, with the address providing

the input that creates the data output. This is achieved using statements such as

If-then-else and Case-when. Another way of considering the ROM is by creating a

look-up table. Both these models in their basic form, shown in Figure 6.90, do not

consider the control signals (ROM enable and read signals) that would normally exist

with the address and data signals.

A simple ROM design can be generated by creating an array and filling it with the

data values. In the example shown in Figure 6.91, an array type (Rom_Array) is defined

within the architecture with a size (number of elements) equal to the number of

address locations in the memory. This has sixteen address locations and eight data

bits per address.

The array is filled with values in the CONSTANT data object. The Data output is

assigned the value held within selected element of the Rom_Array. The Address input

selects the array element to access. The Address here is an INTEGER data type with

values from 010 to +1510. An example VHDL test bench for this design is shown in

Figure 6.92.

Address
(010 to +1510)

Data(7:0)

Figure 6.90: Simple read-only memory model

444 Chapter 6

www.newnespress.com

This design could be modified either by adding control signals and a tristate output

(the output being high impedance when the ROM is not selected), or by considering

the use of STD_LOGIC_VECTOR data input for the address rather than an INTEGER

data input.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY ROM is
 Port (Address : IN INTEGER Range 0 to 15;
 Data : OUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY ROM;

ARCHITECTURE Behavioural of ROM is

TYPE Rom_Array IS Array (0 to 15) of STD_LOGIC_VECTOR(7 downto 0);

CONSTANT ROM: Rom_Array := (
 "11000000",
 "00010011",
 "00100000",
 "00110000",
 "01000000",
 "01010000",
 "01100000",
 "01110000",
 "10000000",
 "10011000",
 "10100000",
 "10110000",
 "11000000",
 "11010000",
 "11100011",
 "11111111");

BEGIN

 Data <= Rom(Address);

END ARCHITECTURE Behavioural;

Figure 6.91: 16 address 3 8 data bit ROM

Introduction to Digital Logic Design with VHDL 445

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_ROM IS
END ENTITY Test_ROM;

ARCHITECTURE Behavioural OF Test_ROM IS

COMPONENT ROM
PORT(Address : IN INTEGER Range 0 to 15;
 Data : OUT STD_LOGIC_VECTOR(7 downto 0));
END COMPONENT;

SIGNAL Address : Integer range 0 to 15;
SIGNAL Data : STD_LOGIC_VECTOR (7 downto 0);

BEGIN

uut: ROM PORT MAP(
 Address => Address,
 Data => Data);

Test_Stimulus : PROCESS

BEGIN

 wait for 0 ns; Address <= 0;
 wait for 10 ns; Address <= 1;
 wait for 10 ns; Address <= 2;
 wait for 10 ns; Address <= 3;
 wait for 10 ns; Address <= 4;
 wait for 10 ns; Address <= 5;
 wait for 10 ns; Address <= 6;
 wait for 10 ns; Address <= 7;
 wait for 10 ns; Address <= 8;
 wait for 10 ns; Address <= 9;
 wait for 10 ns; Address <= 10;
 wait for 10 ns; Address <= 11;
 wait for 10 ns; Address <= 12;
 wait for 10 ns; Address <= 13;
 wait for 10 ns; Address <= 14;
 wait for 10 ns; Address <= 15;
 wait for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.92: 16 3 8 ROM test bench

446 Chapter 6

www.newnespress.com

6.17 Unsigned versus Signed Arithmetic

6.17.1 Introduction

In many applications, unsigned arithmetic is sufficient to implement the required

functionality using only positive numbers. However, for applications such as digital signal

processing, digital filtering, and digital control where positive and negative numbers must

be handled, signed arithmetic is required. VHDL can manage this in several ways.

In the examples presented so far, the designs use STD_LOGIC and STD_LOGIC_VECTOR

inputs and outputs. The arithmetic operations have used unsigned arithmetic (using

the STD_LOGIC_ARITH and STD_LOGIC_UNSIGNED packages). Alternately, the

STD_LOGIC_VECTOR signals could have been converted to UNSIGNED, the arithmetic

operation performed, and finally the UNSIGNED result converted back to

STD_LOGIC_VECTOR. Signed arithmetic operations are accomplished by either using the

STD_LOGIC_ARITH and STD_LOGIC_SIGNED packages, or by firstly converting the input

from STD_LOGIC_VECTOR to SIGNED, performing the arithmetic operations, and finally

converting the SIGNED result back to STD_LOGIC_VECTOR. This idea is shown in Figure 6.93.

STD_LOGIC_VECTOR
to

SIGNED

STD_LOGIC_VECTOR
to

SIGNED

Arithmetic operation

A B

Signed (B)Signed (A)

Signed (P)

SIGNED
to

STD_LOGIC_VECTOR

P

Figure 6.93: Internal signal conversion

Introduction to Digital Logic Design with VHDL 447

www.newnespress.com

Two STD_LOGIC_VECTOR inputs (A and B) are internally converted to signed values,

an operation performed on these internal signals, and the result converted back

to a STD_LOGIC_VECTOR for output (P). This requires the creation of three internal

signals.

This idea is shown in the following two arithmetic operation examples using an

eight-bit data 8+8 adder and an 8� 8 multiplier.

6.17.2 Adder Example

In this design, two eight-bit input numbers are added together to produce a nine-

bit output. An unsigned addition is shown in Figure 6.94. Internal to the unsigned

adder, the wordlength is increased to nine bits, and the MSB of each signal is set to

logic 0 to prevent overflow of the signal.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY Adder1 IS
 PORT (A : IN STD_LOGIC_VECTOR (7 downto 0);
 B : IN STD_LOGIC_VECTOR (7 downto 0);
 P : OUT STD_LOGIC_VECTOR (8 downto 0));
END ENTITY Adder1;

ARCHITECTURE DataFlow of Adder1 is

SIGNAL A_Int : STD_LOGIC_VECTOR(8 downto 0);
SIGNAL B_Int : STD_LOGIC_VECTOR(8 downto 0);

BEGIN

 A_Int(8) <= '0';
 A_Int(7 downto 0) <= A(7 downto 0);
 B_Int(8) <= '0';
 B_Int(7 downto 0) <= B(7 downto 0);
 P(8 downto 0) <= A_Int(8 downto 0) + B_Int(8 downto 0);

END ARCHITECTURE DataFlow;

Figure 6.94: Unsigned addition

448 Chapter 6

www.newnespress.com

The unsigned adder can be modified to become a signed adder (using 2s complement

arithmetic) as shown in Figure 6.95. Here, the wordlength is increased to nine bits,

and the MSB of each signal is set to the value of bit 7.

An example VHDL test bench for both unsigned and signed adders is shown in

Figure 6.96.

6.17.3 Multiplier Example

The multiplier is an important design in most DSP applications. The multiplier

accepts two inputs and multiplies them to produce a result. The multiplication in on

two binary numbers that can be either unsigned or signed; signed arithmetic

commonly uses 2s complement. Unsigned and signed multiplication require different

circuits. When the multiplier accepts two numbers that can vary, the circuit is created

in logic using either basic logic gates (AND, OR, etc.) with a particular algorithm, or

in some programmable logic devices (such as the Xilinx� SpartanTM-3 FPGA), the

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
-- USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY Adder2 IS
 PORT (A : IN STD_LOGIC_VECTOR (7 downto 0);
 B : IN STD_LOGIC_VECTOR (7 downto 0);
 P : OUT STD_LOGIC_VECTOR (8 downto 0));
END ENTITY Adder2;

ARCHITECTURE DataFlow of Adder2 is

SIGNAL Signed_A : SIGNED(8 downto 0);
SIGNAL Signed_B : SIGNED(8 downto 0);
SIGNAL Signed_P : SIGNED(8 downto 0);

BEGIN

 Signed_A(8) <= Signed_A(7);
 Signed_A(7 downto 0) <= Signed(A(7 downto 0));
 Signed_B(8) <= Signed_B(7);
 Signed_B(7 downto 0) <= Signed(B(7 downto 0));

 Signed_P(8 downto 0) <= Signed_A(8 downto 0) + Signed_B(8 downto 0)
 P <= STD_LOGIC_VECTOR(Signed_P(8 downto 0));

END ARCHITECTURE DataFlow;

Figure 6.95: Signed addition

Introduction to Digital Logic Design with VHDL 449

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Adder1_vhd IS
END Test_Adder1_vhd;

ARCHITECTURE Behavioural OF Test_Adder1_vhd IS

COMPONENT Adder1
PORT(
 A : IN std_logic_vector(7 downto 0);
 B : IN std_logic_vector(7 downto 0);
 P : OUT std_logic_vector(7 downto 0));
END COMPONENT;

SIGNAL A : std_logic_vector(7 downto 0) := (others=>'0');
SIGNAL B : std_logic_vector(7 downto 0) := (others=>'0');

SIGNAL P : std_logic_vector(7 downto 0);

BEGIN

uut: Adder1 PORT MAP(
 A => A,
 B => B,
 P => P);

Test_Bench_Process : PROCESS

BEGIN

WAIT for 0 ns; A <= "00000000"; B <= "00000000";
WAIT for 10 ns; A <= "00000001"; B <= "00000000";
WAIT for 10 ns; A <= "00000001"; B <= "00000001";
WAIT for 10 ns; A <= "11111111"; B <= "00000000";
WAIT for 10 ns; A <= "11111111"; B <= "00000001";
WAIT for 10 ns; A <= "11111101"; B <= "11111101";
WAIT for 10 ns; A <= "11111111"; B <= "11111111";
WAIT for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.96: Addition test bench

450 Chapter 6

www.newnespress.com

design will use one or more of the built-in hardware multipliers. When a hardware

multiplier is available, the synthesis tool will utilize the multiplier if possible.

Consider a multiplier operating on two unsigned eight-bit numbers. An example

VHDL code for this is shown in Figure 6.97. Here, two eight-bit STD_LOGIC_VECTORs

are multiplied to produce a 16-bit result.

This is an example of a dataflow description, and the multiplication is undertaken on

line 18:

P<= A * B;

As A, B, and P are STD_LOGIC_VECTORs, unsigned arithmetic is undertaken by default.

With unsigned binary arithmetic, there is no sign bit (the MSB is a value rather than

a sign), so the multiplier input signal range is 010 to +25510 and the output signal

range is 010 to +6502510.

An example VHDL test bench for this design is shown in Figure 6.98. This applies

the binary values with a decimal equivalent, as shown in Table 6.13, changing values

once every 10 ns.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY Unsigned_Multiplier is
 PORT (A : IN STD_LOGIC_VECTOR (7 downto 0);
 B : IN STD_LOGIC_VECTOR (7 downto 0);
 P : OUT STD_LOGIC_VECTOR (15 downto 0));
END ENTITY Unsigned_Multiplier;

ARCHITECTURE DataFlow of Unsigned_Multiplier is

BEGIN

 P <= A * B;

END ARCHITECTURE DataFlow;

Figure 6.97: Eight-bit unsigned multiplication

Introduction to Digital Logic Design with VHDL 451

www.newnespress.com

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY Test_Unsigned_Multiplier_vhd IS
END ENTITY Test_Unsigned_Multiplier_vhd;

ARCHITECTURE Behavioural OF Test_Unsigned_Multiplier_vhd IS

COMPONENT Unsigned_Multiplier
PORT(
 A : IN STD_LOGIC_VECTOR(7 downto 0);
 B : IN STD_LOGIC_VECTOR(7 downto 0);
 P : OUT STD_LOGIC_VECTOR(15 downto 0));
END COMPONENT;

SIGNAL A : STD_LOGIC_VECTOR(7 downto 0) := (others=>'0');
SIGNAL B : STD_LOGIC_VECTOR(7 downto 0) := (others=>'0');

SIGNAL P : STD_LOGIC_VECTOR(15 downto 0);

BEGIN

uut: Unsigned_Multiplier PORT MAP(
 A => A,
 B => B,
 P => P);

Test_Bench_Process : PROCESS

BEGIN

 wait for 0 ns; A <= "00000000"; B <= "00000000";
 wait for 10 ns; A <= "00000001"; B <= "00000001";
 wait for 10 ns; A <= "10000000"; B <= "10000000";
 wait for 10 ns; A <= "00000010"; B <= "00000010";
 wait for 10 ns; A <= "11111111"; B <= "00000001";
 wait for 10 ns; A <= "11111111"; B <= "11111111";
 wait for 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.98: Eight-bit unsigned multiplication test bench

452 Chapter 6

www.newnespress.com

Depending on the type of device chosen, the results of the synthesis step will differ. For

example, for a Xilinx� CoolrunnerTM-II CPLD, the result of synthesis as viewed in the

ISETM tools as a technology schematic, shown in Figure 6.99. The synthesis tool

understands the multiplier operator, and the resulting circuit is made up of the basic

logic gates available in the device. However, for a SpartanTM-3 device that incorporates

18� 18 signed hardware multiplier blocks, a very different technology schematic

results, as shown in Figure 6.100.

The unsigned multiplier can be modified to produce a signed adder (using 2s

complement arithmetic) as shown in Figure 6.101. Here, the output wordlength is

again increased to 16 bits.

Applying the same test bench inputs as for the unsigned multiplier gives the results

shown in Table 6.14. The decimal values shown here are the decimal equivalent of 2s

complement binary numbers.

The schematic views for the synthesised VHDL code identifies the differences in the

resulting hardware implementation for the CPLD and FPGA devices.

6.18 Testing the Design: The VHDL Test Bench

In the VHDL code examples presented in this chapter, each design has been

accompanied by a VHDL test bench to simulate the design. Simulation is an essential

part of the design process to verify the correct operation of the VHDL code prior

to and after synthesis. No design should be implemented in its target technology

unless it has been verified through simulation.

The code within the test bench is the same code that would be used within a design entity

and architecture. The main difference is that the test bench need not be synthesized and so

can use behavioral descriptions that are not necessarily synthesizable.

Table 6.13: Unsigned multiplier input and output
values from test bench

A B P

0 0 0
1 1 1
2 2 4

128 128 16384
255 1 255
255 255 65205

Introduction to Digital Logic Design with VHDL 453

www.newnespress.com

Figure 6.99: Eight-bit unsigned multiplier: synthesis results using CoolrunnerTM-II CPLD

The test bench is a VHDL design unit that creates a test stimulus that is connected to

an instance of the design to be tested. Unlike the design entity, the test bench does not

have any inputs or outputs (Figure 6.102).

IBUF

IBUF IBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

GND A[17:0]

MULT18×18

B[17:0]
P[35:0]

P[15:0]B[7:0]

A[7:0]

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

Figure 6.100: Eight-bit unsigned multiplier: synthesis results using
SpartanTM-3 FPGA

Introduction to Digital Logic Design with VHDL 455

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
-- USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY Signed_Multiplier is
 PORT (A : IN STD_LOGIC_VECTOR (7 downto 0);
 B : IN STD_LOGIC_VECTOR (7 downto 0);
 P : OUT STD_LOGIC_VECTOR (15 downto 0));
END ENTITY Signed_Multiplier;

ARCHITECTURE DataFlow of Signed_Multiplier is

SIGNAL A_Signed: SIGNED(7 downto 0);
SIGNAL B_Signed: SIGNED(7 downto 0);
SIGNAL P_Signed: SIGNED(15 downto 0);

BEGIN

 A_Signed(7 downto 0) <= SIGNED(A(7 downto 0));
 B_Signed(7 downto 0) <= SIGNED(B(7 downto 0));

 P_Signed(15 downto 0) <= A_Signed(7 downto 0) * B_Signed(7 downto 0);

 P(15 downto 0) <= STD_LOGIC_VECTOR(P_Signed(15 downto 0));

END ARCHITECTURE DataFlow;

Figure 6.101: Eight-bit signed multiplication

Table 6.14: Signed multiplier input and
output values from test bench

A B P

0 0 0
1 1 1
2 2 4

128 128 16384
255 1 65535
255 255 1

Test
Stimulus

Instance of
the design

to test

Figure 6.102: VHDL test bench

456 Chapter 6

www.newnespress.com

An example VHDL test bench is shown in Figure 6.103. This is a test bench for a two-input

AND gate with inputs A and B and an output Z. The architecture has three main parts:

1. Top part identifies the reference libraries and packages to use within the test

bench (lines 1 and 2).

2. Middle part identifies the test bench entity (lines 5 and 6).

3. Bottom part identifies the test bench architecture (lines 9 to 43).

The entity does not have any port declarations because there are no inputs to or

outputs from the test bench. The structure of the VHDL test bench architecture is

as follows:

1. The component declaration declares the design entity to test. This has the

same format as the design entity, except now the keyword ENTITY is replaced

with the keyword COMPONENT. This is seen on lines 11 to 17.

2. The input signals to the instance of the design to test are declared. These are

SIGNALs on lines 19 and 20.

3. The output signal from the instance of the design to test is declared. This is a

SIGNAL on line 22.

4. The architecture BEGIN keyword is on line 24.

5. The design to test is placed as an instance in a structural VHDL description.

This is seen on lines 26 to 29.

6. A process is created for the test stimulus. Although only one process is shown

here, two or more processes are common for signal generators operating in

parallel (as would happen in a real hardware test set-up). The process uses

WAIT FOR statements to create time delays between changes in the stimulus.

Here, the inputs A and B are applied and changed every 10 ns. When the last

statement in the process is acted on, it will loop back to the top of the process.

The process here will continually loop until the simulation comes to an end. If

the WAIT FOR statement is used (without a time) by itself (i.e., WAIT;), then the

process comes to a halt.

The simulation results from this test bench would typically be viewed using a

waveform viewer supported by the particular simulation tool. This is only one manner

in which to use the test bench.

Introduction to Digital Logic Design with VHDL 457

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY test_And_Gate_vhd IS
END ENTITY test_And_Gate_vhd;

ARCHITECTURE Behavioural OF test_And_Gate_vhd IS

COMPONENT And_Gate
 PORT(
 A : IN std_logic;
 B : IN std_logic;
 Z : OUT std_logic
);
END COMPONENT;

SIGNAL A : std_logic := '0';
SIGNAL B : std_logic := '0';

SIGNAL Z : std_logic;

BEGIN

uut: And_Gate PORT MAP(
 A => A,
 B => B,
 Z => Z);

Input_Process : PROCESS

BEGIN

 WAIT FOR 0 ns; A <= '0'; B <= '0';
 WAIT FOR 10 ns; A <= '1'; B <= '0';
 WAIT FOR 10 ns; A <= '0'; B <= '1';
 WAIT FOR 10 ns; A <= '1'; B <= '1';
 WAIT FOR 10 ns;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 6.103: Two-input AND gate test bench

458 Chapter 6

www.newnespress.com

In general there are three main test bench styles:

1. Self controlled test bench, which itself creates the test stimulus and checks the

response of the design to test for correct operation. There are no external

connections to and from the test bench.

2. File driven test bench, in which the test stimulus is held within a data file, and

the test bench will read the contents and apply them to the design to be tested.

The response of the design is written to a results data file. The user will

interact with the stimulus data file and results data file to analyze the results

of the simulation run.

3. Command oriented test bench, the operation of which is similar to the file

driven test bench, except that a command interpreter is placed between the

files and the design to be tested. For the test stimulus, commands are stored in

the file to be read and converted to test vectors within VHDL. The response

of the design is also passed through a command interpreter to create the data

to store. With this style, it is possible to reduce the amount of data to read

from, and write to files.

6.19 File I/O for Test Bench Development

In scenarios such as test bench development and use in simulation studies of

circuit designs, it is often useful to read from and write to text files. Files to be read

would typically contain the test stimulus to apply to the circuit under test. Files to be

written to would then contain the results of the simulation study. The text held within

these files can be formatted to provide for both machine-readable and human readable

file contents. In order to access file I/O operations, then the TEXTIO package is used.

This package contains the declarations and subprograms to support formatted I/O

operations on text files. In the library declaration section in the VHDL test bench

file, then the following text would be added:

USE STD.TEXTIO.ALL;

A file would initially be opened for read or write access and procedures (and functions)

would exist for reading formatted text from and writing formatted text to a text file.

The IEEE standard document for the VHDL language provides the full description

of the procedures and their associated syntax.

Introduction to Digital Logic Design with VHDL 459

www.newnespress.com

The procedures and functions to be considered here are identified in Table 6.15. Here,

there are procedures to open a file (for read or write), to read a line of text from a file

(opened for reading), to write a line of text to a file (opened for writing), to read values

from a line that has been read in from a text file, to write values to a line that is to be

written to a text file. Finally, a function is used to identify that an end of file has been

reached (for file read operations).

The standard types for read and write operations are:

• BIT,

• BIT_VECTOR,

• BOOLEAN,

• CHARACTER,

• INTEGER,

• REAL,

• STRING,

• TIME.

The READLINE and WRITELINE procedures are used to read and write entire lines of a

file of type TEXT:

Table 6.15: File I/O procedures and functions used in this text. Adapted from
IEEE Std. 1076-2002. Copyright 2002, by IEEE. All rights reserved.

Procedure or Function Example

Procedure: FILE_OPEN FILE_OPEN(Stimulus_File,
"C:\Circuit1_ Stimulus.txt", READ_MODE);

Procedure: READLINE READLINE(Stimulus_File, Input_Pattern);

Procedure: READ READ(Input_Pattern, CHAR, Read_OK);

Procedure: WRITELINE WRITELINE(Results_File, Results_Pattern);

Procedure: WRITE WRITE(Results_Pattern,
"-----------------------------");

Function: ENDFILE WHILE (NOT ENDFILE(Stimulus_File)) LOOP

Procedure: FILE_CLOSE FILE_CLOSE(Stimulus_File);

460 Chapter 6

www.newnespress.com

1. READLINE is used to read the next line from a file and returns the value to the

defined parameter,

2. WRITELINE is used to write the current line designated by the defined

parameter to the file.

The READ and WRITE procedures are used to read values from a line that has been read

in using the READLINE procedure, or write values to a line that is to be written using the

WRITELINE procedure. It is common to use whitespace characters to format the text

held in a text file in order to aid readability. However, care must be taken as to the

inclusion of whitespace characters and the meaning (both to the developer of the code

and how it is interpreted by the particular software package used (for simulation,

etc.). The whitespace characters are:

1. Space SP

2. Non-breaking space NBSP

3. horizontal tabulation character HT

As an example of how file I/O access can be achieved, then Figure 6.104 provides the

VHDL code for a dataflow description of a combinational logic circuit with three

inputs (A, B and C), and one output (Z).

This is to be simulated by applying all eight possible input codes in a binary count

sequence at a rate of 10ns. The stimulus is to be held in a separate text file with a name:

C:nCircuit1 Stimulus.txt

This is to hold the text identified in Figure 6.105. This contains lines of comments

(commencing with a ‘‘–’’) and the stimulus (logic ‘0’ and ‘1’ values) placed in a line format of:

<Horizontal tabulation character> <A> <Space> <Space> <C>

When this file is read by the VHDL test bench, then there will be the need to firstly

open the file for reading, secondly identify and discard comment lines, thirdly identify

stimulus lines and extract the relevant values from these lines, and fourthly close the

file when the end of file has been reached.

When the stimulus values have been extracted from the input lines, then they will be

applied to the circuit under test. A second file will be opened and the input stimulus

along with the output response will be written to this results file with a name:

C:nCircuit1 Results.txt

Introduction to Digital Logic Design with VHDL 461

www.newnespress.com

An example test bench for this design simulation study is shown in Figure 6.106.

The test bench structure is the same as previously used. However now, within the

single process created to apply the test stimulus to the circuit under test is additional

code to create file access operations. Everything is local to the process, and the two

files (Stimulus_File and Results_File) and variables to use are then declared within

the process (i.e. local to the process itself).

On commencing the process, the first stage is to open the two files, the Stimulus_File

in READ_MODE and the Results_File in WRITE_MODE.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

--
-- Combinational Logic Circuit Design: Dataflow Description
--

--
-- Libraries and packages to use
--

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

--
-- Top Entity
--

ENTITY Circuit1 IS

 PORT (A : IN STD_LOGIC;
B : IN STD_LOGIC;
C : IN STD_LOGIC;
Z : OUT STD_LOGIC);

END ENTITY Circuit1;

--
-- Top Architecture
--

ARCHITECTURE Behavioural OF Circuit1 IS

BEGIN

Z <= (A AND B) OR NOT((NOT(A OR B)) AND (A OR C));

END ARCHITECTURE Behavioural;

--
-- End of File
--

Figure 6.104: Combinational logic circuit description

462 Chapter 6

www.newnespress.com

In the next step, header comments are written to the Results_File.

The process then enters a loop that repeats until the end of the Stimulus_File is reached:

WHILE (NOT ENDFILE(Stimulus File)) LOOP

The first line of the Stimulus_File is read and the contents placed in the variable

Input_Pattern.

The first character of the line is read to detect whether it is a horizontal tabulation

character or not. If not, the loop starts again and the remainder of the loop is not

performed. If the first character is a horizontal tabulation character, then the contents of

the line are used noting that there is a white space character between the input values.

The values to apply to the circuit under test are then assigned the values of the variables.

A time delay of 10 ns occurs and then the results are written to the Results_File.

The loop repeats until the end of the Stimulus_File is reached, at which point footer

comments are written to the Results_File.

Both files are closed and the process then halts. If the process repeats, as would happen

if the simulation time were to be longer than the time taken for the process to run once,

the process would repeat an the Results_File contents would be overwritten.

The test bench in Figure 6.106 assumes that the values to apply to the circuit under

test (STD_LOGIC) can be assigned the values of the variables (CHARACTERS). If this

cannot happen directly, then the values of the variables can alternatively be created as

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

-- Circuit1 test stimulus input file

-- The stimulus format is:
-- A B C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

-- End of stimulus file

Figure 6.105: Combinational logic circuit test stimulus file

Introduction to Digital Logic Design with VHDL 463

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

--
-- Test bench for Circuit1
--

--
-- Libraries and packages to use
--

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;
USE ieee.numeric_std.ALL;

USE std.textio.ALL;

--
-- Test bench Entity
--

ENTITY Test_Circuit1_vhd IS
END Test_Circuit1_vhd;

ARCHITECTURE Behavioural OF Test_Circuit1_vhd IS

--
-- Component Declaration for the Unit Under Test (UUT)
--

COMPONENT Circuit1
PORT(

A : IN STD_LOGIC;
B : IN STD_LOGIC;
C : IN STD_LOGIC;
Z : OUT STD_LOGIC);

END COMPONENT;

--
-- Inputs
--

SIGNAL A : STD_LOGIC := '0';
SIGNAL B : STD_LOGIC := '0';
SIGNAL C : STD_LOGIC := '0';

--
-- Outputs
--

SIGNAL Z : STD_LOGIC;

--

BEGIN

--
-- Instantiate the Unit Under Test (UUT)
--

uut: Circuit1 PORT MAP(
A => A,
B => B,
C => C,
Z => Z);

Figure 6.106: Combinational logic circuit test bench (1)

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

-- Read from stimulus file and apply to circuit process

Process_1 : PROCESS

FILE Stimulus_File : TEXT;
FILE Results_File : TEXT;

VARIABLE Input_Pattern : LINE;
VARIABLE Results_Pattern : LINE;
VARIABLE Read_OK : BOOLEAN;
VARIABLE Char : CHARACTER;

VARIABLE A_In, B_In, C_In : STD_LOGIC;

BEGIN

-- Open files for READ and WRITE

 FILE_OPEN(Stimulus_File, "C:\Circuit1_Stimulus.txt", READ_MODE);
 FILE_OPEN(Results_File, "C:\Circuit1_Results.txt", WRITE_MODE);

-- Write header text to results file

 WRITE(Results_Pattern, "-----------------------------");
 WRITELINE(Results_File, Results_Pattern);
 WRITE(Results_Pattern, "ABC Z");
 WRITELINE(Results_File, Results_Pattern);
 WRITE(Results_Pattern, "-----------------------------");
 WRITELINE(Results_File, Results_Pattern);

-- Loop read from file and apply
-- stimulus until end of file

 WHILE (NOT ENDFILE(Stimulus_File)) LOOP

-- Read line from 'Stimulus_File' into
-- variable 'Input_Pattern'

 READLINE(Stimulus_File, Input_Pattern);

-- Read first character from
-- 'Input_Pattern'

 READ(Input_Pattern, CHAR, Read_OK);

-- If line is not good or the first
-- character is not a TAB, then
-- skip remainder of loop is not good

 IF((NOT Read_OK) OR (CHAR /=HT)) THEN NEXT;
 END IF;

-- Read first stimulus bit
-- Read second stimulus bit
-- Read third stimulus bit

 READ(Input_Pattern, A_In);
 READ(Input_Pattern, CHAR);

65 ---

Figure 6.106: (Continued)

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
185
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

 READ(Input_Pattern, CHAR);
 READ(Input_Pattern, C_In);

 A <= A_In;
 B <= B_In;
 C <= C_In;

-- Wait for time before applying next
-- test stimulus

 WAIT FOR 10 ns;

-- Write stimulus and output to output
-- file

 WRITE(Results_Pattern, A);
 WRITE(Results_Pattern, B);
 WRITE(Results_Pattern, C);
 WRITE(Results_Pattern, " ");
 WRITE(Results_Pattern, Z)

 WRITELINE(Results_File, Results_Pattern);

-- End of Loop

 END LOOP;

-- Write footer text to results file

 WRITE(Results_Pattern, "-----------------------------");
 WRITELINE(Results_File, Results_Pattern);
 WRITE(Results_Pattern, "-- Test completed");
 WRITELINE(Results_File, Results_Pattern);
 WRITE(Results_Pattern, "-----------------------------");
 WRITELINE(Results_File, Results_Pattern);

-- Close the OPENed files

 FILE_CLOSE(Stimulus_File);
 FILE_CLOSE(Results_File);

-- Stop process or it will repeat if
-- simulation time longer than a
-- single pass of the input and will
-- overwrite results file

 WAIT;

END PROCESS;

--

END ARCHITECTURE Behavioural;

--
-- End of File
--

141 READ(Input_Pattern, B_In);

Figure 6.106: (Continued)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

--
-- Test bench for Circuit1
--

--
-- Libraries and packages to use
--

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;
USE ieee.numeric_std.ALL;

USE std.textio.ALL;

--
-- Test bench Entity
--

ENTITY Test_Circuit1_vhd IS
END Test_Circuit1_vhd;

ARCHITECTURE Behavioural OF Test_Circuit1_vhd IS

--
-- Component Declaration for the Unit Under Test (UUT)
--

COMPONENT Circuit1
PORT(
 A : IN STD_LOGIC;
 B : IN STD_LOGIC;
 C : IN STD_LOGIC;
 Z : OUT STD_LOGIC);
END COMPONENT;

--
-- Inputs
--

SIGNAL A : STD_LOGIC := '0';
SIGNAL B : STD_LOGIC := '0';
SIGNAL C : STD_LOGIC := '0';

--
-- Outputs
--

SIGNAL Z : STD_LOGIC;

--

BEGIN

--
-- Instantiate the Unit Under Test (UUT)
--

uut: Circuit1 PORT MAP(
 A => A,
 B => B,
 C => C,
 Z => Z);

Figure 6.107: Combinational logic circuit test bench (2)

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

-- Read from stimulus file and apply to circuit process

Process_1 : PROCESS

FILE Stimulus_File : TEXT;
FILE Results_File : TEXT;

VARIABLE Input_Pattern : LINE;
VARIABLE Results_Pattern : LINE;
VARIABLE Read_OK : BOOLEAN;
VARIABLE Char : CHARACTER;

VARIABLE A_In, B_In, C_In : BIT;
Variable Z_Out : BIT;

BEGIN

-- Open files for READ and WRITE

 FILE_OPEN(Stimulus_File, "C:\Circuit1_Stimulus.txt", READ_MODE);
 FILE_OPEN(Results_File, "C:\Circuit1_Results.txt", WRITE_MODE);

-- Write header text to results file

 WRITE(Results_Pattern, "-----------------------------");
 WRITELINE(Results_File, Results_Pattern);
 WRITE(Results_Pattern, "ABC Z");
 WRITELINE(Results_File, Results_Pattern);
 WRITE(Results_Pattern, "-----------------------------");
 WRITELINE(Results_File, Results_Pattern);

-- Loop read from file and apply
-- stimulus until end of file

 WHILE (NOT ENDFILE(Stimulus_File)) LOOP

-- Read line from 'Stimulus_File' into
-- variable 'Input_Pattern'

 READLINE(Stimulus_File, Input_Pattern);

-- Read first character from
-- 'Input_Pattern'

 READ(Input_Pattern, CHAR, Read_OK);

-- If line is not good or the first
-- character is not a TAB, then
-- skip remainder of loop is not good

 IF((NOT Read_OK) OR (CHAR /=HT)) THEN NEXT;
 END IF;

-- Read first stimulus bit
-- Read second stimulus bit
-- Read third stimulus bit

 READ(Input_Pattern, A_In);

65 ---

Figure 6.107: (Continued)

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
185
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

 READ(Input_Pattern, B_In);
 READ(Input_Pattern, CHAR);
 READ(Input_Pattern, C_In);

-- Apply test stimulus
-- Initially convert inputs (A, B, C)
-- as BIT to STD_LOGIC – only consider
-- logic '0' or logic '1'

 IF (A_In = '1') THEN A <= '1';
 ELSE A <= '0';
 END IF;

 IF (B_In = '1') THEN B <= '1';
 ELSE B <= '0';
 END IF;

 IF (C_In = '1') THEN C <= '1';
 ELSE C <= '0';
 END IF;

-- Wait for time before applying next
-- test stimulus

 WAIT FOR 10 ns;

-- Convert 'Z' STD_LOGIC to 'Z_Out'
-- BIT – only consider logic '0' and
-- logic '1' and unknown 'X'

 IF (Z = '1') THEN Z_Out := '1';
 ELSE Z_Out := '0';
 END IF;

-- Write stimulus and output to output
-- file

 WRITE(Results_Pattern, A_In);
 WRITE(Results_Pattern, B_In);
 WRITE(Results_Pattern, C_In);
 WRITE(Results_Pattern, " ");
 WRITE(Results_Pattern, Z_Out);

 WRITELINE(Results_File, Results_Pattern);

-- End of Loop

 END LOOP;

-- Write footer text to results file

 WRITE(Results_Pattern, "-----------------------------");
 WRITELINE(Results_File, Results_Pattern);
 WRITE(Results_Pattern, "-- Test completed");
 WRITELINE(Results_File, Results_Pattern);
 WRITE(Results_Pattern, "-----------------------------");
 WRITELINE(Results_File, Results_Pattern);

-- Close the OPENed files

 READ(Input_Pattern, CHAR);

Figure 6.107: (Continued)

BIT types and then the values to apply to the circuit under test (STD_LOGIC) can be

assigned the values of the variables (BITS) using a suitable type conversion operation.

An example of how this could be achieved is shown in Figure 6.107. Here, the

difference between this test bench and the previous test bench is the type of the

variables declared and the addition of local routines to convert from BIT to STD_LOGIC

and from STD_LOGIC to BIT. Care should however be taken here as the limitation of

this is that the values are only considered as logical ‘0’ and ‘1’ values.

The contents of the results file for the simulation of the circuit using the test bench in

Figure 6.107 is shown in Figure 6.108.

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

 FILE_CLOSE(Stimulus_File);
 FILE_CLOSE(Results_File);

-- Stop process or it will repeat if
-- simulation time longer than a
-- single pass of the input and will
-- overwrite results file

 WAIT;

END PROCESS;

--

END ARCHITECTURE Behavioural;

--
-- End of File
--

Figure 6.107: (Continued)

1
2
3
4
5
6
7
8
9
10
11
12
13
14

ABC Z

000 1
001 0
010 1
011 1
100 1
101 1
110 1
111 1

Figure 6.108: Test bench simulation results file contents

www.newnespress.com

470 Chapter 6

References

[1] MacMillen, D., et al., ‘‘An Industrial View of Electronic Design Automation,’’

IEEE Transactions on Computer Aided Design of Integrated Circuits and

Systems, Vol. 19, No. 12, December 2000, pp. 1428–1448.

[2] Salcic, Z., and Smailagic, A., Digital Systems Design and Prototyping Using Field

Programmable Logic, Kluwer Academic Publishers, 1998, ISBN 0-7923-9935-8.

[3] Maxfield, C., The Design Warrior’s Guide to FPGAs, Newnes, 2004, ISBN

0-7506-7604-3.

[4] Zwolinski, M., Digital System Design with VHDL, Pearson Education Limited,

2000, England, ISBN 0-201-36063-2.

[5] Skahill, K., VHDL for Programmable Logic, Addison-Wesley, 1996, ISBN

0-201-89573-0.

[6] Navabi, Z., VHDL Analysis and Modeling of Digital Systems, McGraw-Hill

International Editions, 1993, ISBN 0-07-112732-1.

[7] The Institute of Electrical and Electronics Engineers, IEEE Standard

1364-2001, Verilog� Hardware Description Language, IEEE, USA, http://

www.ieee.org

[8] The Institute of Electrical and Electronics Engineers, IEEE Standard 1076-

2002, VHDL Language Reference Manual, IEEE, USA, http://www.ieee.org

[9] The Institute of Electrical and Electronics Engineers, http://www.ieee.org

[10] Open Verilog International, OVI.

www.newnespress.com

Introduction to Digital Logic Design with VHDL 471

Student Exercises

1.1 What are the advantages of using VHDL in the design of digital circuits

and systems for PLDs and digital ASICs?

1.2 What are the disadvantages of using VHDL in the design of digital circuits

and systems for PLDs and digital ASICs?

1.3 Why could a digital circuit design written in VHDL be simulatable but

not necessarily synthesizable?

1.4 What are the advantages of developing designs for PLDs in an HDL rather

than using schematic capture design entry methods?

1.5 Why would a designer choose to use VHDL rather than Verilog�-HDL in

the design of a digital logic circuit?

1.6 What are the main differences between a soft-core and a hard-core

intellectual property (IP) block? For the main PLD vendors, identify the

types of processors that they support as IP blocks and whether they are

provided as soft cores or hard cores.

1.7 How could a 2s complement digital hardware multiplier be designed

and implemented within a Xilinx� CoolrunnerTM-II CPLD? Compare this

implementation to that in a Xilinx� SparatanTM-3 FPGA?

1.8 What does EDIF stand for? Identify and discuss an example of an EDIF

description for:

a. A combinational logic circuit containing a maximum of five logic gates

b. A sequential logic circuit using D-type flip-flops containing a

maximum of four flip-flops.

1.9 Develop the VHDL code for an eight-bit up-counter (straight binary

count) with a synchronous load and an asynchronous reset. Data is

loaded when a load input signal is a 1; otherwise the counter acts to

increment on the positive edge of the clock input. All eight bits are to

be loaded in parallel.

1.10 Modify the design in Exercise 1.9 to implement the counter using Gray

code rather than binary.

1.11 Modify the design in Exercise 1.9 to implement the counter using one-hot

coding rather than binary.

1.12 Develop the VHDL code for a four-to-one multiplexer where each input to

the MUX is eight bits wide. Simulate the design on the CPLD and check

that the design operates as expected. Modify the code to use generics so

that an n-bit wide input four-to-one multiplexer can be created.

www.newnespress.com

472 Chapter 6

1.13 Using the CPLD development board (refer to Appendix F—see the last

paragraph of the Preface for instructions regarding how to access this

online content), develop the VHDL code to implement a checker pattern to

test the operation of the SRAM IC on the development board.

1.14 Using the CPLD design tools, enter the design for an 8� 8 Baugh Wooley

hardware multiplier design as a schematic.

a. Simulate the design on the CPLD and check that the design operates

as expected.

b. Implement the design on the CPLD and check that the design operates

as expected.

1.15 Using the CPLD development board and the seven-segment display board

(refer to Appendix F), develop the VHDL code to implement a digital clock.

When theCPLD is reset, the clock output returns to zero. The display is to read

hours (twocharacters),minutes (two characters), and seconds (twocharacters).

a. Simulate the design on the CPLD and check that the design operates as

expected.

b. Implement the design on the CPLD and check that the design operates

as expected.

1.16 Using the CPLD development board and the seven-segment display board

(refer to Appendix F), develop the VHDL code to write a message to the

six displays. The message will use all six characters, although a character may

be left blank. Each seven-segment display will be programmed to turn on

and off at the following frequencies: 1Hz, 10Hz, 100Hz, and 1kHz.

a. Simulate the design on the CPLD and check that the design operates

as expected.

b. Implement the design on the CPLD and check that the design

operates as expected.

1.17 Modify the design in Exercise 1.16 to allow a user to send the message from

a PC via a UART receiver (9600 baud rate, no parity checking). Each

character is to be sent in turn as a byte of data.

1.18 Using the CPLD development board and the seven-segment display board (refer

to Appendix F—see the last paragraph of the Preface for instructions regarding

how to access this online content), develop the VHDL code to write the

VHDL code to implement a ten-bit binary counter. The seven-segment display

board is to display each count state as an integer number (010 to +102310).

a. Simulate the design on the CPLD and check that the design operates

as expected.

www.newnespress.com

Introduction to Digital Logic Design with VHDL 473

b Implement the design on the CPLD and check that the design operates

as expected.

1.19 Modify the design in Exercise 1.18 to allow the binary output to represent

signed binary (i.e., �51210 to +51110).

1.20 Modify the design in Exercise 1.16 to allow the binary output to represent

the counter output as hexadecimal numbers.

1.21 Using the CPLD development board and the LCD and hex keypad

board (refer to Appendix F—see the last paragraph of the Preface for

instructions regarding how to access this online content), develop the

VHDL code to implement a two-line message board. The message is to

change every second, and there are to be five two-line messages. Choose

suitable messages to display.

a. Simulate the design on the CPLD and check that the design operates as

expected.

b. Implement the design on the CPLD and check that the design operates

as expected.

1.22 Modify the design in Exercise 1.21 to allow the user to enter a number

between 1 and 5 and, if entered from the hex keypad, the appropriate

message will be displayed.

1.23 Using theCPLDdevelopmentboardand theLCDandhexkeypadboard (refer

toAppendixF—see the last paragraphof thePreface for instructions regarding

how to access this online content), develop the VHDL code to implement a

four-number combinational lock. The lock code is to be hard-wired into the

design. If a user successfully enters the four numbers in the correct sequence,

a message is to be displayed on the LCD display. If any number is incorrectly

entered, a message is displayed after all four numbers have been entered.

a. Simulate the design on the CPLD and check that the design operates as

expected.

b. Implement the design on the CPLD and check that the design operates

as expected.

1.24 Modify the design in Exercise 1.23 to allow the user a maximum of four

attempts at entering a number before being locked out of the system. The

system must then be manually reset to start again.

1.25 How is file I/O dealt with in VHDL?

1.26 Develop a UART receiver design that uses the Case-when statement.

1.27 Develop a UART transmitter design that uses the If-then-else statement.

1.28 Develop a UART transmitter design that uses the Case-when statement.

www.newnespress.com

474 Chapter 6

CHA P T E R 7

Introduction to Digital Signal Processing

7.1 Introduction

The processing of analogue electrical signals and digital data from one form to

another is fundamental to many electronic circuits and systems. Both analogue

(voltage and current) signals and digital (logic value) data can be processed by many

types of circuits, and the task of finding the right design is a sometimes confusing

but normal part of the design process. It depends on identifying the benefits and

limitations of the possible implementations to select the most appropriate solution for

the particular scenario. Initial concerns are:

• Is the input analogue or digital?

• Is the output analogue or digital?

• Will signal processing use analogue or digital techniques?

This idea is shown in Figure 7.1, where signal processing uses either an analogue

signal processor (ASP) or a digital signal processor (DSP). If an analogue signal is

to be processed or output as digital data, then the analogue signal must be converted

to digital using the analogue-to-digital converter (ADC). The operation of this

circuit is discussed in Chapter 8. If a digital signal is to be processed or output as

an analogue signal, then the digital data will be converted to analogue using the

digital-to-analogue converter (DAC). The operation of this circuit is also

discussed in Chapter 8.

www.newnespress.com

ASP and DSP each has its own advantages and disadvantages:

Analogue implementation:

Advantages:

• high bandwidth (from DC up to high signal frequencies)

• high resolution

Analogue
signal input

Analogue
signal output

Analogue
signal input

Analogue
signal input

Analogue
signal input

Analogue
signal output

Analogue
signal output

Analogue
signal output

Analogue signal
processor

Analogue signal
processor ADC

Digital signal
processorADC Digital data

output

Digital data
input

Digital data
input

Digital data
input

Digital data
input

Digital data
output

Digital signal
processor

Digital signal
processor

DAC

Digital data
output

Digital signal
processorADC DAC

DAC

Analogue signal
processor

Analogue signal
processor

ADCDAC Digital data
output

Figure 7.1: Processing of analogue signals and digital data

476 Chapter 7

www.newnespress.com

• ease of design

• good approach for simpler design solutions

Disadvantages:

• component value change occurs with component aging

• component value change occurs with temperature variations

• behavior variance between manufactured circuits due to component

tolerances

• difficult to change circuit operation

Digital implementation:

Advantages:

• programmable and configurable solution (either programmed in software

on a processor or configured in hardware on a CPLD/FPGA)

• operation insensitive to temperature variations

• precise behavior (no behavior variance due to varying component

tolerances)

• can implement algorithms that cannot be implemented in analogue

• ease of upgrading and modifying the design

Disadvantages:

• implementation issues due to issues related to numerical calculations

• requires high-performance digital processing

• design complexity

• higher cost

Increasingly, digital implementations are the preferred choice because of their

advantages over analogue and because of the ability to implement advanced

Introduction to Digital Signal Processing 477

www.newnespress.com

algorithms that are only possible in the digital domain. In many cases where there

are analogue signals and also a requirement for analogue circuitry, the analogue

circuitry is kept to a minimum, and the majority of the work performed by the

circuit uses digital techniques. The two main areas for digital signal processing

considered in this text are digital filters [1–4] and digital control algorithms [5–7].

These can be implemented both in software on the microprocessor (mP),
microcontroller (mC), or the digital signal processor (DSP) and in hardware on the

complex programmable logic device (CPLD) or field programmable gate array

(FPGA). The basis for all possible implementation approaches is a circuit design that

will accept samples of digitized analogue signals or direct digital data, perform an

algorithm that uses the current sampled value and previous sampled values, and

output the digital data directly or in analogue form. The algorithm to be implemented

is typically developed using the Z-transform. This algorithm is an equation (or set of

equations) that defines a current output in terms of the sums and differences of a

current input sample and previous input samples, along with weighting factors.

However, to achieve a working implementation of the algorithm, a number of key

steps are required:

• analysis of the signal to filter or system to control

• creation of the design specification

• design of the algorithm to fulfill the design requirements

• simulation of the operation of the algorithm

• analysis of the stability of the resulting system

• implementation of the algorithm in the final system

• testing of the final system

It is not the purpose of this text to provide a comprehensive introduction to the

Z-transform, but rather to highlight its key points and how the algorithm can be

implemented in hardware within a CPLD or FPGA.

Whether digital filtering or digital control is required, a typical system for

undertaking DSP tasks is shown in Figure 7.2. Here, the digital system accepts an

analogue input and outputs an analogue response. This is undertaken on one or

more inputs and creates one or more outputs. In the view shown in Figure 7.2,

478 Chapter 7

www.newnespress.com

a DSP core contains the algorithm to implement in addition to a control unit

that creates the necessary control signals for ADC control, DAC control,

communications port control, and the correct operation of the algorithm. Also

shown is a programming/configuration port used to upload a software program

(processor-based system) or a hardware configuration (FPGA- or CPLD-based

system).

An alternative to using multiple ADCs to sample the analogue input is to use a single

ADC, then switch the different analogue inputs to the ADC in turn. The system that

utilizes individual ADCs for each analogue input has the capability to sample all

analogue inputs in parallel. A system that uses a single switched ADCmust sample each

input in series (one after another). A parallel ADC arrangement provides for a short

sampling period (compared to the serial arrangement, whose signal sampling period

Digital core
(digital signal
processing)

ADC nADC 1

DAC mDAC 1

Communications
port

Programming /
configuration

port

Digital core
control

(reset, clock,
etc.)

Analogue input 1 Analogue input n

Analogue output 1 Analogue output m

Figure 7.2: Generic digital signal processing arrangement (with analogue I/O)

Introduction to Digital Signal Processing 479

www.newnespress.com

equals the time taken to sample one analogue input multiplied by the number of

inputs). However, the need for a parallel or serial arrangement depends on the system

requirements and the signal sampling period required. Figure 7.3 shows this idea for a

system with four analogue inputs and each digital output is stored in a register.

The choice of ADC architecture determines the number of control pins required by

the ADCs and DACs and the conversion time (A/D and D/A). The choice of

ADC Digital
output 1Register

Analogue
input 1

ADC Digital
output 2Register

Analogue
input 2

ADC Digital
output 3Register

Analogue
input 3

ADC Digital
output 4

Digital
output 1

Digital
output 2

Digital
output 3

Digital
output 4

Register
Analogue

input 4

(a) Parallel sampling of analogue inputs

ADC

RegisterAnalogue
input 1

Register

Register

Register

(b) Serial sampling of analogue inputs

Analogue
switch

Analogue
input 2

Analogue
input 3

Analogue
input 4

Analogue
switch
control

Figure 7.3: Parallel or serial sampling of an analogue input

480 Chapter 7

www.newnespress.com

digital code (e.g., unsigned straight binary or 2s complement signed binary)

influences the amount of digital signal encoding and decoding required within the

digital core.

It should now be noted that integral to the design of these circuits but not shown here

are anti-aliasing filters at the system input (analogue input) to remove any high-

frequency signals that would cause aliasing problems with the sampled data.

Example 1: Single-Input, Single-Output DSP Top-Level Description

The basic design architecture shown in Figure 7.2 can be coded in VHDL for a

particular design requirement. Consider a custom digital signal processor design that

is to sample a single analogue input via an eight-bit ADC, undertake a particular

digital signal processing algorithm, and produce an analogue output via an eight-bit

DAC. The digital design is to be implemented in hardware using a CPLD or FPGA.

The timing of the digital design is to be controlled by a digital input master clock and

an active low asynchronous reset. The basic architecture for this design is shown in

Figure 7.4. Here, the DSP core:

• uses the AD7575 eight-bit LC2MOS successive approximation ADC [8]

• uses the AD7524 eight-bit buffered multiplying DAC [9]

• incorporates a simple UART (universal asynchronous receiver

transmitter) for communications between the DSP core and an

external digital system, using only the Tx (transmit) and Rx (receive)

serial data connections

The digital core contains the algorithm to implement, the necessary control unit that

will create the ADC and DAC control signals, and the UART control and data

signals. The data to pass to the UART transmitter and the data (or commands) to

be received from the UART receiver are specified in the design requirements. The

UART has a DR (data received) output used to inform the control unit that a byte

has been received from the external digital system and a Transmit input that is used to

instruct the UART to transmit a byte of data.

The set-up is shown in Figure 7.5. Here, a CPLD implements the digital actions and

interfaces directly with the ADC and DAC. All devices are considered to operate on

the same power supply voltage (e.g., þ3.3V) and use the same I/O standards. A

suitable clock frequency must be chosen to ensure that all operations can be

Introduction to Digital Signal Processing 481

www.newnespress.com

undertaken within the CPLD (or FPGA) in the required time. The CPLD interfaces

with an external system (here a PC) via the RS-232C interface. To enable this, the

voltage levels created and accepted by the CPLD must be level-shifted to those

required by the RS-232C standard.

The top-level design for the digital circuitry to be configured into the CPLD (or

FPGA) can be coded in VHDL. The VHDL structural code (the name of the top-level

design here is top) is shown in Figure 7.6. Here, the core within the CPLD or FPGA

contains two main functional blocks: the first contains the digital core (Dsp_Core),

and the second contains the UART (Uart).

The I/O pins for the design are detailed in Table 7.1.

AD7575

Analogue input

Digital core
(digital signal processing and control)

Communications
port

Rx_Int

Tx_Int

Tx

Rx

Analogue output

AD7524

Rx_Clock

Tx_Clock

Uart_Reset

ADC_Data (8-bits)

ADC_CS

ADC_BUSY

ADC_TP

ADC_RD

DAC_CS

DAC_WR Master_Clock

Master_Reset

DAC_Data (8-bits)

DR

Transmit

Figure 7.4: Custom DSP core architecture

482 Chapter 7

www.newnespress.com

The internal signals used within the design are detailed in Table 7.2.

The basic operation of the digital system is shown in the flow chart in Figure 7.7.

At the start of the circuit operation, the circuit is in a reset state. It then follows a

repetitive sequence—sample the analogue input, run the digital algorithm, and

update the analogue output—that continues until the circuit is reset back to the

reset state.

An example DSP core structure for this design is shown in Figure 7.8. The algorithm,

control unit, and I/O register functions are placed in separate blocks. The VHDL

code for this structure is shown in Figure 7.9, where the control unit is designed to

create four control signals (algorithm control (3:0)) to control the movement and

storage of data through the algorithm block. There will be as many control signals as

required for the particular algorithm.

An example UART structure for this design is shown in Figure 7.10. The receiver and

transmitter functions are placed in separate blocks. The VHDL code for this structure

is shown in Figure 7.11.

Analogue input Analogue output

CPLD

DACADC

Tx/Rx

Tx/Rx

PC

RS-232C
level shifter IC

Master clock

Master reset

ADC control
and data

DAC control
and data

DAC
reference

ADC
reference

Figure 7.5: System set-up

Introduction to Digital Signal Processing 483

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Top IS
 PORT (ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 ADC_Data : IN STD_LOGIC_VECTOR (7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC;
 DAC_Data : OUT STD_LOGIC_VECTOR (7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Rx : IN STD_LOGIC;
 Tx : OUT STD_LOGIC);
END ENTITY Top;

ARCHITECTURE Structural OF Top IS

SIGNAL Tx_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Tx_Clock : STD_LOGIC;
SIGNAL Rx_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Rx_Clock : STD_LOGIC;
SIGNAL Uart_Reset : STD_LOGIC;
SIGNAL DR : STD_LOGIC;
SIGNAL Transmit : STD_LOGIC;

COMPONENT Dsp_Core IS
 PORT (ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 ADC_Data : IN STD_LOGIC_VECTOR (7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC;
 DAC_Data : OUT STD_LOGIC_VECTOR (7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Rx : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx_Clock : OUT STD_LOGIC;

47
48
49

 Tx : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Clock : OUT STD_LOGIC;
 Uart_Reset : OUT STD_LOGIC;

Figure 7.6: Top-level structural VHDL code

484 Chapter 7

www.newnespress.com

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

 DR : IN STD_LOGIC;
 Transmit : OUT STD_LOGIC);
END COMPONENT Dsp_Core;

COMPONENT Uart IS
 PORT (Uart_Reset : IN STD_LOGIC;
 Rx_Clock : IN STD_LOGIC;
 Tx_Clock : IN STD_LOGIC;
 Rx_Int : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Int : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx : IN STD_LOGIC;
 Tx : OUT STD_LOGIC;
 DR : OUT STD_LOGIC;
 Transmit : IN STD_LOGIC);
END COMPONENT Uart;

BEGIN

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

I1 : Dsp_Core
PORT MAP(ADC_BUSY => ADC_BUSY,

 ADC_TP => ADC_TP,
 ADC_RD => ADC_RD,
 ADC_CS => ADC_CS,
 ADC_Data => ADC_Data,
 DAC_WR => DAC_WR,
 DAC_CS => DAC_CS,
 DAC_Data => DAC_Data,
 Master_Clock => Master_Clock,
 Master_Reset => Master_Reset,
 Rx => Rx_Int,
 Rx_Clock => Rx_Clock,
 Tx => Tx_Int,
 Tx_Clock => Tx_Clock,
 Uart_Reset => Uart_Reset,
 DR => DR,
 Transmit => Transmit);

I2 : Uart
 PORT MAP(Uart_Reset => Uart_Reset,
 Rx_Clock => Rx_Clock,
 Tx_Clock => Tx_Clock,
 Rx_Int => Rx_Int,
 Tx_Int => Tx_Int,
 Rx => Rx,

95
96
97
98
99

 Tx => Tx,
 DR => DR,
 Transmit => Transmit);

END ARCHITECTURE Structural;

Figure 7.6: (Continued)

Introduction to Digital Signal Processing 485

www.newnespress.com

Example 2: Switched Analogue Input

Consider now a circuit that accepts two analogue inputs and produces a single

analogue output. The basic architecture for this design is shown in Figure 7.12 where

the DSP core:

• uses the AD7575 eight-bit LC2MOS successive approximation ADC [8]

• uses the AD7524 eight-bit buffered multiplying DAC [9]

• incorporates a simple UART for communications between the DSP core and

an external digital system, with just the Tx (transmit) and Rx (receive) serial

data connections used

Table 7.1: Example I/O pins

Pin name Direction Purpose

ADC_BUSY Input ADC converts analogue input to digital
ADC_TP Output Connect to logic 1 in application (test use only)
ADC_RD Output ADC read (active low)
ADC_CS Output ADC chip select (active low)
ADC_Data Input 8-bit data from ADC
DAC_WR Output DAC write (active low)
DAC_CS Output DAC chip select (active low)
DAC_Data Output 8-bit data to DAC
Master_Clock Input Clock input
Master_Reset Input Reset control input (active low asynchronous reset)
Rx Input Serial data input to UART
Tx Output Serial data output from UART

Table 7.2: Example internal signals

Signal name Purpose

Tx_Int 8-bit data (byte) to send out via the UART
Tx_Clock UART transmitter clock (x16 baud rate)
Rx_Int 8-bit data (byte) received from the UART
Rx_Clock UART receiver clock (x16 baud rate)
Uart_Reset Reset control input (active low asynchronous reset)
DR Byte of data received on UART Rx input
Transmit Control signal to initiate the transmission of a byte

of data on the UART Tx output

486 Chapter 7

www.newnespress.com

AlgorithmInput
Register

Control Unit
UART
control
signals

ADC_Data

Output
Register

DAC_Data

Algorithm
control

Output
store

Input
store

Master clock Master reset

ADC
control
signals

DAC
control
signals

Rx_Int

Tx_Int

Note: All blocks have a common master reset input.

Figure 7.8: Example DSP core structure

Start

Take sample

Run algorithm

Update output

Figure 7.7: Overview of core operation (flow chart)

Introduction to Digital Signal Processing 487

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Dsp_Core IS
 PORT (ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 ADC_Data : IN STD_LOGIC_VECTOR (7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC;
 DAC_Data : OUT STD_LOGIC_VECTOR (7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Rx : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx_Clock : OUT STD_LOGIC;
 Tx : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Clock : OUT STD_LOGIC;
 Uart_Reset : OUT STD_LOGIC;
 DR : IN STD_LOGIC;
 Transmit : OUT STD_LOGIC);
END ENTITY Dsp_Core;

ARCHITECTURE Structural OF Dsp_Core IS

SIGNAL ADC_Data_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL DAC_Data_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Algorithm_Control : STD_LOGIC_VECTOR (3 downto 0);
SIGNAL Input_Store : STD_LOGIC;
SIGNAL Output_Store : STD_LOGIC;

COMPONENT Algorithm IS
 PORT (ADC_Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Reset : IN STD_LOGIC;

Algorithm_Control : IN STD_LOGIC_VECTOR(3 downto 0);
Tx : OUT STD_LOGIC_VECTOR(7 downto 0);
DAC_Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));

END COMPONENT Algorithm;

COMPONENT Register_8_Bit IS
 PORT (Store : IN STD_LOGIC;

Reset : IN STD_LOGIC;
Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));

END COMPONENT Register_8_Bit;

COMPONENT Control_Unit IS
 PORT (Master_Clock : IN STD_LOGIC;

Master_Reset : IN STD_LOGIC;

Figure 7.9: Example DSP core structure VHDL code

488 Chapter 7

www.newnespress.com

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

62
63
64
65
66
67
68
69

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

58
59
60
61

Rx : IN STD_LOGIC_VECTOR(7 downto 0);
Uart_Reset : OUT STD_LOGIC;
Rx_Clock : OUT STD_LOGIC;
Tx_Clock : OUT STD_LOGIC;
Transmit : OUT STD_LOGIC;
DR : IN STD_LOGIC;
ADC_BUSY : IN STD_LOGIC;
ADC_TP : OUT STD_LOGIC;
ADC_RD : OUT STD_LOGIC;
ADC_CS : OUT STD_LOGIC;
DAC_WR : OUT STD_LOGIC;
DAC_CS : OUT STD_LOGIC;
Input_Store : OUT STD_LOGIC;
Output_Store : OUT STD_LOGIC);

END COMPONENT Control_Unit;

BEGIN

I_Algorithm : Algorithm
PORT MAP(ADC_Data_In => ADC_Data_Int,

Reset => Master_Reset,
Algorithm_Control => Algorithm_Control,
Tx => Tx,
DAC_Data_Out => DAC_Data_Int);

I_ControlUnit : Control_Unit
PORT MAP (Master_Clock => Master_Clock,

Master_Reset => Master_Reset,
Rx => Rx,
Uart_Reset => Uart_Reset,
Rx_Clock => Rx_Clock,
Tx_Clock => Tx_Clock,
Transmit => Transmit,
DR => DR,
ADC_BUSY => ADC_BUSY,
ADC_TP => ADC_TP,
ADC_RD => ADC_RD,
ADC_CS => ADC_CS,
DAC_WR => DAC_WR,
DAC_CS => DAC_CS,
Input_Store => Input_Store,
Output_Store => Output_Store);

Input_Register : Register_8_Bit
PORT MAP (Store => Input_Store,

Reset => Master_Reset,
Data_In => DAC_Data_Int,
Data_Out => DAC_Data);

Outut_Register : Register_8_Bit
PORT MAP (Store => Output_Store,

Reset => Master_Reset,
Data_In => DAC_Data_Int,
Data_Out => DAC_Data);

END ARCHITECTURE Structural;

Figure 7.9: (Continued)

www.newnespress.com

UART transmitter

UART receiver

Tx_Int Tx

RxRx_Int

Uart_Reset

DR

Rx_Clock

Tx_Clock
Transmit

Figure 7.10: Example UART structure

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Uart IS
 PORT (Uart_Reset : IN STD_LOGIC;
 Rx_Clock : IN STD_LOGIC;
 Tx_Clock : IN STD_LOGIC;
 Rx_Int : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Int : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx : IN STD_LOGIC;
 Tx : OUT STD_LOGIC;
 DR : OUT STD_LOGIC;
 Transmit : IN STD_LOGIC);
END ENTITY Uart;

ARCHITECTURE Structural OF Uart IS

COMPONENT Transmitter IS
 PORT (Tx_Clock : IN STD_LOGIC;
 Reset : IN STD_LOGIC;

Figure 7.11: Example UART structure VHDL code

490 Chapter 7

www.newnespress.com

The design is basically the same as that described in Example 1, plus an additional

output (Input_Select) from the control unit that selects the analogue input using the

analogue switch such that:

• When Input_Select= 0, then analogue input 1 is selected.

• When Input_Select= 1, then analogue input 2 is selected.

The basic operation of the digital system is shown in the flowchart in Figure 7.13.

At the start of the circuit operation, the circuit is in a reset state. It then

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

 Transmit : IN STD_LOGIC;
 Tx_Int : IN STD_LOGIC_VECTOR(7 downto 0);
 Tx : OUT STD_LOGIC);
END COMPONENT Transmitter;

COMPONENT Receiver IS
 PORT (Rx_Clock : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Rx : IN STD_LOGIC;
 DR : OUT STD_LOGIC;
 Rx_Int : OUT STD_LOGIC_VECTOR(7 downto 0));
END COMPONENT Receiver;

BEGIN

I1: Transmitter
PORT MAP (Tx_Clock => Tx_Clock,

Reset => Uart_Reset,
46
47
48
49
50
51
52
53
54
55
56
57

 Transmit => Transmit,
 Tx_Int => Tx_Int,
 Tx => Tx);

I2 : Receiver
 PORT MAP (Rx_Clock => Rx_Clock,
 Reset => Uart_Reset,
 Rx => Rx,
 DR => DR,
 Rx_Int => Rx_Int);

END ARCHITECTURE Structural;

Figure 7.11: (Continued)

Introduction to Digital Signal Processing 491

www.newnespress.com

follows a repetitive sequence—sample both analogue inputs, run the digital

algorithm, and update the analogue output—until the circuit is reset back to the

reset state.

The top-level design for the digital circuitry to be configured into the CPLD (or

FPGA) can be coded in VHDL. The VHDL structural code (the name of the top-level

AD7575

Analogue input 1

Digital core
(digital signal processing and control)

Communications
port

Rx_Int

Tx_Int

Tx

Rx

AD7524

Rx_Clock

Tx_Clock

Uart_Reset

ADC_Data (8-bits)

ADC_CS
ADC_BUSY

ADC_TP

ADC_RD

DAC_CS

DAC_WR
Master_Clock

Master_Reset

DAC_Data (8-bits)

DR

Analogue input 2

Analogue output

Input_Select

Input_Select

Analogue switch

Transmit

Figure 7.12: Custom DSP core architecture

492 Chapter 7

www.newnespress.com

design here is Top) is shown in Figure 7.14.Here, the core within the CPLD or FPGA

contains two main functional blocks: the first contains the digital core (Dsp_Core),

and the second contains the UART (Uart).

The I/O pins for the design are detailed in Table 7.3.

Start

Run algorithm

Update output

Select analogue
input 1

Take sample and
store input sample

Select analogue
input 2

Take sample and
store input sample

Figure 7.13: Overview of core operation (flowchart)

www.newnespress.com

Introduction to Digital Signal Processing 493

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Top IS
 PORT (ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 ADC_Data : IN STD_LOGIC_VECTOR (7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC;
 DAC_Data : OUT STD_LOGIC_VECTOR (7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Rx : IN STD_LOGIC;
 Tx : OUT STD_LOGIC;
 Input_Select : OUT STD_LOGIC);
END ENTITY Top;

ARCHITECTURE Structural OF Top IS

SIGNAL Tx_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Tx_Clock : STD_LOGIC;
SIGNAL Rx_Int : STD_LOGIC_VECTOR (7 downto 0);
SIGNAL Rx_Clock : STD_LOGIC;
SIGNAL Uart_Reset : STD_LOGIC;
SIGNAL DR : STD_LOGIC;
SIGNAL Transmit : STD_LOGIC;

COMPONENT Dsp_Core IS
 PORT (ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 ADC_Data : IN STD_LOGIC_VECTOR (7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC;
 DAC_Data : OUT STD_LOGIC_VECTOR (7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;

46
47
48
49
50
51
52

 Rx : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx_Clock : OUT STD_LOGIC;
 Tx : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Clock : OUT STD_LOGIC;
 Uart_Reset : OUT STD_LOGIC;
 DR : IN STD_LOGIC;
 Transmit : OUT STD_LOGIC;

53 Input_Select : OUT STD_LOGIC);

Figure 7.14: Top-level structural VHDL code

494 Chapter 7

www.newnespress.com

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

BEGIN

I1 : Dsp_Core
 PORT MAP(ADC_BUSY => ADC_BUSY,
 ADC_TP => ADC_TP,
 ADC_RD => ADC_RD,
 ADC_CS => ADC_CS,
 ADC_Data => ADC_Data,
 DAC_WR => DAC_WR,
 DAC_CS => DAC_CS,
 DAC_Data => DAC_Data,
 Master_Clock => Master_Clock,
 Master_Reset => Master_Reset,
 Rx => Rx_Int,
 Rx_Clock => Rx_Clock,
 Tx => Tx_Int,
 Tx_Clock => Tx_Clock,
 Uart_Reset => Uart_Reset,
 DR => DR,
 Transmit => Transmit,
 Input_Select => Input_Select);

56
57
58
59
60
61
62
63
64
65
66
67
68

COMPONENT Uart IS
 PORT (Uart_Reset : IN STD_LOGIC;
 Rx_Clock : IN STD_LOGIC;
 Tx_Clock : IN STD_LOGIC;
 Rx_Int : OUT STD_LOGIC_VECTOR (7 downto 0);
 Tx_Int : IN STD_LOGIC_VECTOR (7 downto 0);
 Rx : IN STD_LOGIC;
 Tx : OUT STD_LOGIC;
 DR : OUT STD_LOGIC;
 Transmit : IN STD_LOGIC);
END COMPONENT Uart;

54
55

END COMPONENT Dsp_Core;

91
92
93
94
95
96
97
98
99
100
101
102

I2 : Uart
 PORT MAP(Uart_Reset => Uart_Reset,
 Rx_Clock => Rx_Clock,
 Tx_Clock => Tx_Clock,
 Rx_Int => Rx_Int,
 Tx_Int => Tx_Int,
 Rx => Rx,
 Tx => Tx,
 DR => DR,
 Transmit => Transmit);

END ARCHITECTURE Structural;

Figure 7.14: (Continued)

Introduction to Digital Signal Processing 495

www.newnespress.com

7.2 Z-Transform

The Z-transform is used in the design and analysis of sampled data systems to

describe the properties of a sampled data signal and/or a system. It is used in all

aspects of digital signal processing as a way to:

• describe the properties of a sampled data signal and/or a system

• transform a continuous time system described using Laplace transforms into a

discrete time equivalent

• mathematically analyze the signal and/or system

• view a sampled data signal and/or a system graphically as a block diagram

The Laplace transform is used in continuous time systems to describe a transfer

function (the system input-output relationship) with a set of poles and zeros.

A continuous time transfer function of a system is represented by the equation:

YðsÞ
XðsÞ ¼ GðsÞ ¼ NðsÞ

DðsÞ

Table 7.3: Example I/O pins

Pin name Direction Purpose

ADC_BUSY Input ADC converts analogue input to digital
ADC_TP Output Connect to logic 1 in application (test use only)
ADC_RD Output ADC read (active low)
ADC_CS Output ADC chip select (active low)
ADC_Data Input 8-bit data from ADC
DAC_WR Output DAC write (active low)
DAC_CS Output DAC chip select (active low)
DAC_Data Output 8-bit data to DAC
Master_Clock Input Clock input
Master_Reset Input Reset control input (active low asynchronous reset)
Rx Input Serial data input to UART
Tx Output Serial data output from UART
Input_Select Output Analogue switch control (0= analogue input 1 selected,

1= analogue input 2 selected)

496 Chapter 7

www.newnespress.com

where:

Y(s) is the output signal from the system

X(s) is the input signal to the system

G(s) is the system transfer function

N(s) is the numerator of the equation

D(s) is the denominator of the equation

This equation is then expanded to become:

YðsÞ
XðsÞ ¼

b0 þ b1sþ b2s
2 þ :::þ bm:s

m

a0 þ a1sþ a2s2 þ :::þ an:sn

The poles of the characteristic equation can be found by solving the

denominator for:

DðsÞ ¼ 0

The zeros of the characteristic equation can be found by solving the

denominator for:

NðsÞ ¼ 0

Analysis of the poles and zeros determines the performance of the system in both

the time and frequency domains. These poles and zeros are complex numbers

composed of real (Re(s)) and imaginary (Im(s)) parts. For a system to be stable, the

poles of the system must lie to the left of the imaginary axis on the graph of the

real and imaginary parts (the Argand diagram), as shown in Figure 7.15. Any pole to

the right of the axis indicates an unstable system. A pole that appears on the

imaginary axis corresponds to a marginally stable system. The available analysis

techniques are described in many DSP, digital filter design, and digital control texts,

so they will not be covered further in this text.

The Z-transform is used in discrete time systems to create a discrete time transfer

function of the system with a set of poles and zeros. It is a formal transformation for

Introduction to Digital Signal Processing 497

www.newnespress.com

discrete time signals (signals described in terms of their samples) to a new complex

variable called z. For a discrete time signal x(n), then:

xðnÞ ¼ xð0Þ; xð1Þ; xð2Þ; : : : ; etc:

Parentheses indicate the signal sample number. The Z-transform for this is written as

an infinite power series in terms of the complex variable z as:

ZfxðnÞg ¼ xð0Þ þ xð1Þz�1 þ xð2Þz�2 þ : : :

This could be also written as:

ZfxðnÞg ¼ XðzÞ ¼
X

xðnÞz�1

The pulse transfer function of a system is now defined as the Z-transform of the

output divided by the Z-transform of the input and is written as:

GðzÞ ¼ ZfyðnÞg
ZfxðnÞg ¼ YðzÞ

XðzÞ

Re(s)

Im(s)

Stable

0

Unstable

Figure 7.15: Argand diagram to analyze the stability
of a continuous-time system

498 Chapter 7

www.newnespress.com

where:

• Y(z), is the output signal from the system

• X(z), is the input signal to the system

• G(z), is the pulse transfer function

for a general discrete time transfer function written as:

GðzÞ ¼ YðzÞ
XðzÞ ¼

NðzÞ
DðzÞ

where:

• Y(z), is the output signal from the system

• X(z), is the input signal to the system

• G(z), is the system transfer function

• N(z), is the numerator of the general discrete time transfer function

• D(z), is the denominator of the general discrete time transfer function

This is then expanded to become:

YðzÞ
XðzÞ ¼

b0 þ b1zþ b2z
2 þ :::þ bm:z

m

a0 þ a1zþ a2z2 þ :::þ an:zn

The poles of the characteristic equation can be found by solving the

denominator for:

DðzÞ ¼ 0

The zeros of the characteristic equation can be found by solving the

denominator for:

NðzÞ ¼ 0

Analysis of the poles and zeros determines the performance of the system in both

the time and frequency domains. These poles and zeros are complex numbers

Introduction to Digital Signal Processing 499

www.newnespress.com

composed of real (Re(z)) and imaginary (Im(z)) parts. For a system to be

stable, the poles of the system must lie within the unit circle on the graph of

the real and imaginary parts (the Argand diagram), as shown in Figure 7.16.

Any pole outside the unit circle indicates an unstable system. A pole that

appears on the unit circle corresponds to a marginally stable system. The

available analysis techniques are described in many DSP, digital filter

design, and digital control texts, so they will not be covered further in

this text.

Comparing systems defined using the Laplace transform and the Z-transform, a

continuous time system with a pole at s will have the same dynamic characteristics as

a discrete time system with a pole at:

z ¼ esT

Here, T is the sampling period of the signal sampling. This allows a discrete-

time system to be designed initially as a continuous-time system, then to be

translated to a discrete-time implementation. The discrete-time implementation

uses signal samples (the current sample and delayed [previous] samples).

Re(z)

Im(z)

+1.0–1.0

+1.0

Stable

0

Unstable

–1.0

Figure 7.16: Argand diagram showing the unit circle to analyze
the stability of a discrete-time system

500 Chapter 7

www.newnespress.com

However, care must be taken in the implementation of the discrete-time system

to account for implementation limitations and for the effect of frequency

warping, which occurs when an analogue prototype system is translated to a

discrete-time implementation. These aspects are discussed in the next section, on

digital control.

The effect of delaying a signal by n samples is to multiply its Z-transform by z�n. This

effect is used to implement a discrete-time transfer function either in software or in

hardware by sampling and delaying signals. A delay by one sample (Z�1) is shown in

Figure 7.17,

where:

(Data Output(z)) ¼ (Data input(z))z�1

Here, D-type flip-flops with asynchronous active low resets store the input data.

The Store input is the clock input to each of the flip-flops (all flip-flops are

considered to have a common clock input) provides the control for the storage

of the data input.

A delay element design used to store a value and delay by one sample is a register. An

eight-bit data delay element design in VHDL is shown in Figure 7.18.

Figure 7.19 provides an example VHDL test bench for the delay element.

The individual delay elements can be cascaded to provide a delay-by-m output where

m is an integer number that identifies how many clock control signals are required

before the input signal becomes an output.

Z–1Data
Input

Data
Output

Store

Reset

n n

Figure 7.17: Delay element (n-bit register)

Introduction to Digital Signal Processing 501

www.newnespress.com

Example 3: Delay-by-3 Circuit

To illustrate the delay-by-m circuit, consider a delay-by-3 circuit using three delay

elements as shown in Figure 7.20, where:

(No Delay(z)) ¼ (Data input(z))
(Delay By One(z)) ¼ (Data input(z)z�1

(Delay By Two(z)) ¼ (Data input(z))z�2

(Delay By Three(z)) ¼ (Data input(z))z�3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Delay IS
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY Delay;

ARCHITECTURE Behavioural OF Delay IS

BEGIN

Store_Process: PROCESS(Store, Data_In, Reset)

BEGIN

 IF (Reset = '0') THEN

 Data_Out(7 downto 0) <= "00000000";

 ELSIF (Store'EVENT AND Store = '1') THEN

 Data_Out(7 downto 0) <= Data_In(7 downto 0);

 END IF;

END PROCESS Store_Process;

END ARCHITECTURE Behavioural;

Figure 7.18: Delay element (eight-bit register)

502 Chapter 7

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Delay_vhd IS
END Test_Delay_vhd;

ARCHITECTURE Behavioural OF Test_Delay_vhd IS

COMPONENT Delay
PORT(
 Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));
END COMPONENT;

SIGNAL Store : STD_LOGIC := '0';
SIGNAL Reset : STD_LOGIC := '0';
SIGNAL Data_In : STD_LOGIC_VECTOR(7 downto 0) := (others=>'0');

SIGNAL Data_Out : STD_LOGIC_VECTOR(7 downto 0);

BEGIN

uut: Delay PORT MAP(
 Data_In => Data_In,
 Store => Store,
 Reset => Reset,
 Data_Out => Data_Out);

Reset_Process : PROCESS

BEGIN

 Wait for 0 ns; Reset <= '0';
 Wait for 5 ns; Reset <= '1';
 Wait;

END PROCESS Reset_Process;

Store_Process : PROCESS

BEGIN

 Wait for 0 ns; Store <= '0';
 Wait for 10 ns; Store <= '1';
 Wait for 10 ns; Store <= '0';

END PROCESS Store_Process;

DataIn_Process : PROCESS

BEGIN

 Wait for 0 ns; Data_In <= "00000000";
 Wait for 60 ns; Data_In <= "11111111";
 Wait for 20 ns; Data_In <= "00000000";
 Wait for 20 ns; Data_In <= "11111111";
 Wait for 20 ns; Data_In <= "00000000";

 Wait for 20 ns;

END PROCESS DataIn_Process;

END ARCHITECTURE Behavioural;

Figure 7.19: VHDL test bench for delay element

www.newnespress.com

Here, the input data and each of the delay element outputs is also available for

monitoring signal progression through the circuit.

Such a circuit could be coded in VHDL using a dataflow, behavioral, or structural

description. Figure 7.21 shows a behavioral description for this design using two

processes. The first process is created to store the input signal in three eight-bit

registers, the outputs of which are internal signals. The second process takes the

internal signals and provides these as outputs. In the structure illustrated here, the

internal signals can be read by another process within the design if this delay-by-3

circuit is modified within a larger design.

Figure 7.22 provides an example VHDL test bench for the delay-by-3 behavioral

description.

Using the delay element shown in Figure 7.18, then a structural VHDL

description for the delay-by-3 circuit can be created. An example of this is

shown in Figure 7.23.

In this design, the outputs from the delay elements are now buffered using an

eight-bit buffer (Buffer_Cell). The VHDL code for this buffer design is shown in

Figure 7.24.

Z–1Data
Input

Delay_By_Three

Store

Reset

Z–1

Delay_By_Two

Delay_By_One

No_Delay

Z–1

Figure 7.20: Delay-by-3 circuit schematic

www.newnespress.com

504 Chapter 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Delay_By_3_Behavioural IS
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 No_Delay : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_One : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Two : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Three : OUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY Delay_By_3_Behavioural;

ARCHITECTURE Behavioural OF Delay_By_3_Behavioural IS

SIGNAL Internal_1 : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Internal_2 : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Internal_3 : STD_LOGIC_VECTOR(7 downto 0);

BEGIN

Store_Process : PROCESS(Store, Data_In, Internal_1, Internal_2, Internal_3, Reset)

BEGIN

 IF (Reset = '0') THEN

 Internal_1 (7 downto 0) <= "00000000";
 Internal_2 (7 downto 0) <= "00000000";
 Internal_3 (7 downto 0) <= "00000000";

 ELSIF (Store'EVENT AND Store = '1') THEN

 Internal_1(7 downto 0) <= Data_In(7 downto 0);
 Internal_2(7 downto 0) <= Internal_1(7 downto 0);
 Internal_3(7 downto 0) <= Internal_2(7 downto 0);

 END IF;

END PROCESS Store_Process;

Update_Outputs: PROCESS(Data_In, Internal_1, Internal_2, Internal_3)

BEGIN

No_Delay(7 downto 0) <= Data_In(7 downto 0);
Delay_By_One(7 downto 0) <= Internal_1(7 downto 0);
Delay_By_Two(7 downto 0) <= Internal_2(7 downto 0);
Delay_By_Three(7 downto 0) <= Internal_3(7 downto 0);

END PROCESS Update_Outputs;

END ARCHITECTURE Behavioural;

Figure 7.21: Delay-by-3 circuit behavioral VHDL description

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Delay_By_3_Behavioural_vhd IS
END Test_Delay_By_3_Behavioural_vhd;

ARCHITECTURE Behavioural OF Test_Delay_By_3_Behavioural_vhd IS

COMPONENT Delay_By_3_Behavioural
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 No_Delay : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_One : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Two : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Three : OUT STD_LOGIC_VECTOR(7 downto 0));

END COMPONENT;

SIGNAL Store : STD_LOGIC:= '0';
SIGNAL Reset : STD_LOGIC := '0';
SIGNAL Data_In : STD_LOGIC_VECTOR(7 downto 0) := (others=>'0');

SIGNAL Data_Out : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL No_Delay : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Delay_By_One : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Delay_By_Two : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Delay_By_Three : STD_LOGIC_VECTOR(7 downto 0);

BEGIN

uut: Delay_By_3_Behavioural PORT MAP(
 Data_In => Data_In,
 Store => Store,
 Reset => Reset,
 No_Delay => No_Delay,
 Delay_By_One => Delay_By_One,
 Delay_By_Two => Delay_By_Two,

43
44
45

 Delay_By_Three => Delay_By_Three);

Figure 7.22: VHDL test bench for delay-by-3 circuit behavioral VHDL description

www.newnespress.com

506 Chapter 7

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

Reset_Process : PROCESS

BEGIN

 Wait for 0 ns; Reset <= '0';
 Wait for 5 ns; Reset <= '1';
 Wait;

END PROCESS Reset_Process;

Store_Process : PROCESS

BEGIN

 Wait for 0 ns; Store <= '0';
 Wait for 10 ns; Store <= '1';
 Wait for 10 ns; Store <= '0';

END PROCESS Store_Process;

DataIn_Process : PROCESS

BEGIN

 Wait for 0 ns; Data_In <= "00000000";
 Wait for 60 ns; Data_In <= "11111111";
 Wait for 20 ns; Data_In <= "00000000";
 Wait for 20 ns; Data_In <= "11111111";
 Wait for 20 ns; Data_In <= "00000000";

77
78
79
80
81
82
83

 Wait for 20 ns;

END PROCESS DataIn_Process;

END ARCHITECTURE Behavioural;

Figure 7.22: (Continued)

www.newnespress.com

Introduction to Digital Signal Processing 507

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Delay_By_3_Structural IS
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 No_Delay : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_One : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Two : OUT STD_LOGIC_VECTOR(7 downto 0);
 Delay_By_Three : OUT STD_LOGIC_VECTOR(7 downto 0));
END ENTITY Delay_By_3_Structural;

ARCHITECTURE Structural OF Delay_By_3_Structural IS

SIGNAL Internal_1 : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Internal_2 : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL Internal_3 : STD_LOGIC_VECTOR(7 downto 0);

COMPONENT Delay IS
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));
END COMPONENT Delay;

COMPONENT Buffer_Cell IS
 PORT (Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0));
END COMPONENT Buffer_Cell;

BEGIN
I_Delay1 : Delay
 PORT MAP(Data_In => Data_In,
 Store => Store,
 Reset => Reset,
 Data_Out => Internal_1);

I_Delay2 : Delay
 PORT MAP(Data_In => Internal_1,
 Store => Store,
 Reset => Reset,
 Data_Out => Internal_2);

I_Delay3 : Delay
 PORT MAP(Data_In => Internal_2,
 Store => Store,
 Reset => Reset,
 Data_Out => Internal_3);

I_Buffer1 : Buffer_Cell
 PORT MAP(Data_In => Data_In,
 Data_Out => No_Delay);

I_Buffer2 : Buffer_Cell
 PORT MAP(Data_In => Internal_1,
 Data_Out => Delay_By_One);

I_Buffer3 : Buffer_Cell
 PORT MAP(Data_In => Internal_2,
 Data_Out => Delay_By_Two);

I_Buffer4 : Buffer_Cell
 PORT MAP(Data_In => Internal_3,
 Data_Out => Delay_By_Three);

END ARCHITECTURE Structural;

Figure 7.23: Delay-by-3 circuit structural VHDL description

www.newnespress.com

7.3 Digital Control

A control system is composed of two subsystems, a plant and a controller. The

plant is the object controlled by the controller. The plant and controller can be

either analogue or digital, although digital control algorithms have become more

popular because they can be quickly and cost-effectively implemented. In many

cases, digital algorithms are implemented using a software program running on a

suitable processor within a PC or processor-based embedded system, so the

implementer need not have the skills and/or tools to design controllers in

hardware on FPGAs and CPLDs. The fundamental algorithm design is however

the same, whether the implementation is in hardware or software, and a hardware

implementation using an FPGA or CPLD might in some situations be the

preferred option. A custom digital controller in hardware has several benefits over

processor-based implementation:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Buffer_Cell IS
 Port (Data_In : IN STD_LOGIC_VECTOR (7 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (7 downto 0));
END ENTITY Buffer_Cell;

ARCHITECTURE Behavioural OF Buffer_Cell IS

BEGIN

Buffer_Process: PROCESS(Data_In)

BEGIN

 Data_Out(7 downto 0) <= Data_In(7 downto 0);

END PROCESS Buffer_Process;

END ARCHITECTURE Behavioural;

Figure 7.24: Eight-bit buffer VHDL description

www.newnespress.com

Introduction to Digital Signal Processing 509

• Custom hardware can be optimized for the application.

• Any processor features not required in the application are not included

in the design.

• A software program to run on the target hardware need not be developed.

As an example, Figure 7.25 shows a basic computer-based control system with two

analogue inputs and an analogue output. The user sets the required plant output

by applying a suitable command input signal. The controller responds to the

command input and creates a plant control signal based on the difference between

the command input and a feedback signal from the plant. The control law chosen

determines how the controller and plant respond to the command input.

In Figure 7.25, then:

• This is an automatic control system in that once a user has set the command input,

the system will automatically perform to the requirements of the command input

(i.e., it will automatically set the plant to the value set by the command input).

• Using a digital controller, this is also referred to as direct digital control

(DDC).

• The first analogue input is a DC voltage (here rather than a current), which

sets the value required for the plant (the output load to be controlled). In a

motor speed control system, for example, the DC voltage represents the

required motor speed. This is the command input. Increasing the command

Plant

Plant
output

SensorADC

ADCCommand
input

Control
law

Digital controller

DAC
+

–

Figure 7.25: Basic computer-based control system

www.newnespress.com

510 Chapter 7

input in a positive direction increases the motor shaft speed in one direction

of motor shaft rotation. Increasing the command input in a negative direction

increases the motor shaft speed in the opposite direction of motor shaft

rotation. A command input of zero indicates a the motor shaft speed of zero.

• The second analogue input is a feedback voltage whose value indicates the

value attained by the plant. In a motor speed control system, for example, the

DC feedback voltage represents the actual motor shaft speed.

• The analogue output is a signal that is applied to the plant. In a motor speed

control system, for example, this is the voltage applied to the motor terminals.

This is an example of a closed-loop control system in that the feedback signal

applied to the controller is subtracted from the command input to form an error

signal. This error signal is applied to the control law (the algorithm to act on the

current sampled input and previous sampled inputs). In general, there can be one or

more inputs and one or more outputs. The plant is a continuous time plant, and the

inputs to and output from the digital controller are analogue signals.

In general, this leads to the following nine possible arrangements:

1. The control system is either an open-loop system (no feedback) or a closed-

loop system (feedback).

2. The command input can be either analogue or digital.

3. The feedback can be either analogue or digital.

4. The controller output can be either analogue or digital.

5. There can be one or more command inputs.

6. There can be one or more feedback signals.

7. There can be one or more plant control signals (outputs from the controller).

8. The controller can implement one or more control algorithms.

9. The digital control algorithm can be designed directly in digital, or it can

be created by first creating an analogue prototype, then converting the

analogue control law to a digital control law.

The digital controller (or filter) is designed to undertake the required operations using

a particular circuit architecture. This architecture is chosen to enable the required

Introduction to Digital Signal Processing 511

www.newnespress.com

operations in the required time using the minimal amount of circuitry (or size

of software program) and effectively using the available resources provided by the

target technology. The architecture might use a predefined standard computer

architecture or a custom architecture. A custom architecture either is based on a

processor architecture, or it implements the algorithm exactly as represented by the

control law or filter equation.

Standard computer architecture is based on either the Von Neumann or Harvard

computer architecture, shown in Figure 7.26. In Von Neumann architecture, the

data and instructions share memory and buses, meaning that both cannot be

read at the same time. In some applications, this sequential access of data and

instructions limits the speed of operation. The Harvard architecture separates the

data and instructions storage and buses, thereby providing higher speed of

operation than a Von Neumann computer architecture but at the price of increased

design complexity.

The processor used within the computer architecture is based on CISC

(complex instruction set computer) or RISC (reduced instruction set computer)

architecture. The CISC is designed to complete a task in as few lines of processor

CPU

(b) Harvard computer architecture

Program memory Data memory

Program
address

Program
instruction

Data
address

Data

(a) Von Neumann computer architecture

CPU
Program and
data shared

memory

Program/data
address

Program instruction
/ data

Figure 7.26: Von Neumann and Harvard computer architectures

512 Chapter 7

www.newnespress.com

assembly code as possible, which it achieves by incorporating hardware into the

processor that can understand and execute a sequence of operations. The RISC

architecture, on the other hand, uses a set of simple instructions that are

executed quickly; to perform a complex operation, those simple instructions are

combined to form the overall complex operation. Although the RISC approach

requires more lines of processor assembly code, it enables smaller and faster

processors to be designed. RISC processors are incorporated into many embedded

systems.

In a digital control or digital filtering application, a number of operations that need to

be performed are common to all applications, and the choice of which operations to

incorporate and in which order depends on the application. Table 7.4 identifies the

types of operation required.

The overflow prevention operation is required to prevent a value from exceeding its

positive and negative limits for correct operation. For example, a four-bit, 2s

complement signed number has a range from �810 (10002) to þ710 (01112). If the

number is at a value of þ710 (01112) and one is added to it, the resulting binary code

Table 7.4: Basic operations for digital control and digital filtering

Type of operation Description

Arithmetic Perform the basic operations of addition, subtraction, multiplication, and
division.

Value store Store a value in a register for use at a later time.

Wordlength
increase/decrease

Increase/Decrease the wordlength of a value to account for the value
increasing /decreasing as an arithmetic operation is performed on it.

Overflow
prevention

Prevent a value from exceeding a predefined limit (both positive and
negative values).

Value truncation Limit the wordlength of a value by truncation.

Value rounding Limit the wordlength of a value by rounding.

Conversion Convert values from one form to another (e.g., unsigned binary to 2s
complement signed binary and vice versa).

Sample input
control

Control the sampling of the analogue signal(s) to use as the input(s) to
the digital controller or filter.

Update output
control

Control the output of the analogue signal(s) result(s) as the output(s)
from the digital controller or filter.

External
communications

Communicate with external systems.

Introduction to Digital Signal Processing 513

www.newnespress.com

would be 10002. This is�810 in the number system, even though the number should be

þ810. This effect is referred to as overflow and must be prevented, either by designing

circuitry to detect the possibility of overflow and preventing it, or by ensuring that the

situation would never occur in the normal operation of the design. Figure 7.27 shows

the effect of saturation on an adder that adds 2s complement numbers where (a) there

is no overflow prevention, and (b) the output of the adder is designed to saturate

rather than overflow. The detection circuitry and saturation can be coded in VHDL.

An example schematic for such a circuit is shown in Figure 7.28. Here, the 2s

Input

Output

Positive value
output limit

Negative value
output limit

Positive value
output limit

Negative value
output limit

(a) Overflow occurs

(b) Output saturation

Input

Output

Figure 7.27: Overflow and saturation

514 Chapter 7

www.newnespress.com

complement adder receives two n-bit words and performs an n þ 1 addition. The

result of this addition is then compared to value limits (positive and negative), and

depending on the result of the comparison, the circuit will produce one of three

outputs:

1. the result of the addition (n-bits of the nþ 1 bit number)

2. the positive limit value (n-bits)

3. the negative limit value (n-bits)

This occurs in a situation where the result of an n-bit arithmetic operation remains

n-bits in size. However, in a custom architecture, the potential exists for the range

of values to increase or decrease in wordlength as it passes through the arithmetic

operations. The designer has this choice.

The choice of wordlength and the truncation or rounding of values as they pass through

a digital filter or digital control algorithm affects the result; specifically, how closely the

digital result in the implementation represents the result of the calculation if truncation

or rounding had not occurred. Additionally, the examples considered in this text apply

to fixed-point arithmetic. Designs can also accommodate floating point arithmetic.

The digital control algorithm can be designed using any of a number of possible

methods. In many cases, the proportional plus integral plus derivative (PID)

controller is used, and the implementation of this algorithm in digital will be

Input A
(n-bits)

Input B
(n-bits)

Addition result (n+1 bits)

Comparator

Addition
output
(n-bits)

Positive limit value

Negative limit value

+

+

Figure 7.28: 2s complement adder with overflow prevention

Introduction to Digital Signal Processing 515

www.newnespress.com

considered in this text. When an analogue controller is to be used as a prototype for

the digital controller, and the analogue controller is to be developed using Laplace

transforms, then the transformation between the analogue and digital will be

undertaken in three phrases:

1. Develop the initial Laplace transform equation (using the variable s).

2. Replace the variable s with one of the available approximations, so that now

the equation is in terms of the variable z; that is, create the pulse transfer

function G(z).

3. Implement the equation either using digital logic (hardware) or in software.

The pulse transfer function G(z) is created using one of the following:

• Forward difference or Euler’s method:

s ¼ z� 1

T

• Backward difference method:

s ¼ z� 1

zT

• Tustin’s approximation (also referred to as the bilinear transform):

s ¼ 2

T
:
z� 1

zþ 1

Here, T is the signal sampling period. These methods are readily applied by hand

to transform from s to z.

Example 4: Proportional (P) Control

Consider a digital controller that is to perform proportional control. The controller

will accept two inputs, the command input and feedback signals, and will output a

single controller output, the controller effort signal. The two inputs are initially

subtracted and multiplied by a gain value (the proportional gain Kp is set here to þ7).

This gain value is held in a ROM. The arrangement for this controller is shown in

516 Chapter 7

www.newnespress.com

Figure 7.29, and here, the internal wordlength increases as the values pass through

the arithmetic operations, but finally will be limited to eight bits at the controller

output (the inputs are also eight bits). The multiplication in this example is

undertaken using a digital multiplier. Figure 7.30 provides the VHDL code for the

structure of this design. In this implementation, each block will be coded as a

unique entity-architecture pair, although this might not necessarily be the best

solution. The design here is purely combinational logic and as such includes no

clock or reset inputs.

Figure 7.31 shows the schematic for the synthesized VHDL code using the Xilinx�

ISETM tools. When a digital multiplier is required and the coefficient is fixed, then an

alternative to using a digital multiplier is to use a shift-and-add operation. For

example, multiplying a value by 2 is a shift-left operation by one bit—simple and easy

to do in digital logic and avoids the need for a large digital multiplier.

Example 5: Discrete-Time Integrator

In many situations, then integral action is added to the proportional action in order to

achieve the required response from the plant. The integral action can be represented

Command input
(8-bits)

+

–

Multiplier

Output limiting

Controller_Effort
(8-bits)

Subtractor_Out
(9-bits)

Multiplier_Out
(18-bits)

Coefficient
memory

Kp
(9-bits)

Feedback
(8-bits)

Figure 7.29: Digital proportional gain

Introduction to Digital Signal Processing 517

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Proportional_Gain IS
 PORT (Command_Input : IN STD_LOGIC_VECTOR (7 downto 0);
 Feedback : IN STD_LOGIC_VECTOR (7 downto 0);
 Controller_Effort : OUT STD_LOGIC_VECTOR (7 downto 0));
END ENTITY Proportional_Gain;

ARCHITECTURE Structural OF Proportional_Gain IS

SIGNAL Subtractor_Out : STD_LOGIC_VECTOR(8 downto 0);
SIGNAL Kp : STD_LOGIC_VECTOR(8 downto 0);
SIGNAL Multiplier_Out : STD_LOGIC_VECTOR(17 downto 0);

COMPONENT Subtractor IS
 PORT (Data_In_1 : IN STD_LOGIC_VECTOR (7 downto 0);
 Data_In_2 : IN STD_LOGIC_VECTOR (7 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (8 downto 0));
END COMPONENT Subtractor;

COMPONENT Coefficient_Memory IS
 PORT (Data_Out : OUT STD_LOGIC_VECTOR (8 downto 0));
END COMPONENT Coefficient_Memory;

COMPONENT Multiplier IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (8 downto 0);
 Coefficient : IN STD_LOGIC_VECTOR (8 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (17 downto 0));
END COMPONENT Multiplier;

COMPONENT Output_Limit IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (17 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (7 downto 0));
END COMPONENT Output_Limit;

BEGIN

I1 : Subtractor
 PORT MAP (Data_In_1 => Command_Input,
 Data_In_2 => Feedback,
 Data_Out => Subtractor_Out);

I2 : Coefficient_Memory
 PORT MAP (Data_Out => Kp);

I3 : Multiplier
 PORT MAP (Data_In => Subtractor_Out,
 Coefficient => Kp,
 Data_Out => Multiplier_Out);

I4 : Output_Limit
 PORT MAP (Data_In => Multiplier_Out,
 Data_Out => Controller_Effort);

END ARCHITECTURE Structural;

Figure 7.30: Digital proportional gain VHDL structure code

www.newnespress.com

using Z-transforms. Taking an integral action represented initially using a Laplace

transform as shown in Figure 7.32, this can be translated to a Z-transform by one of a

number of transforms.

 Controller_Effort(7:0)Command_Input(7:0)

Feedback(7:0)

Data_In(17:0)
Data_Out(7:0)

Coefficient(8:0)Data_Out(17:0)

Data_In_1(7:0)Data_Out(8:0)

Data_Out(8:0)

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

Data_In_2(7:0)

Data_In(8:0)

Figure 7.31: Digital proportional gain schematic for the synthesized VHDL code

Ki
s

Integrator input
X(s)

Integrator output
Y(s)

Figure 7.32: Integral action (Laplace transform)

Introduction to Digital Signal Processing 519

www.newnespress.com

Here, Ki is the integral action gain. The (Ki/s) equation can be transformed using

Tustin’s approximation, giving:

YðzÞ ¼ Ki

2
T

� �
z � 1
z þ 1

� �
0
BB@

1
CCAXðzÞ

This can be manipulated to create:

YðzÞðz� 1Þ ¼ XðzÞ KiT

2

� �
ðzþ 1Þ

Finally, manipulating this further gives the equation in terms of the current sample

and previous (delayed) samples with the equation in terms of z�n:

YðzÞ ¼ KiT

2

� �
xðzÞ þ xðzÞz�1
� �� �

þYðzÞz�1

This can be represented by the block diagram shown in Figure 7.33. Here, each of the

operations is identified and can be implemented in hardware using any of three methods:

1. multiplication by (KiT/2)

2. two addition of two values

3. two value delays by one sample (z�1)

+

+

Y(z)

Z–1

+

+

X(z)

Z–1

X

Multiply X(z) by (KiT/2)

Store_1 Store_2

Figure 7.33: Discrete-time integral action

520 Chapter 7

www.newnespress.com

This uses the same basic building blocks as previous examples and can be

implemented in VHDL as a structural description (using discrete designs for each

of the functional blocks) or as a behavioral or dataflow description.

The multiplication is positioned before the first addition operation. However, the

multiplication can be placed after the addition, and if necessary, values can be scaled

within the design to address the potential problem of ever-increasing wordlengths due

to the range of values that could be encountered in the design.

A modification to the integrator design shown in Figure 7.33 would include an

antiwindup circuit. Integrator windup can occur when an input is of a size and

polarity that, over time, causes the integrator output to become larger and larger.

It can take a substantial amount of time for the integrator output to reduce when the

input signal reverses polarity. Additionally, as the values within the integrator become

larger, the potential for overflow occurs, which must be taken into account in the

design of the circuit.

Example 6: Discrete-Time Differentiator

In addition to the proportional and integral actions, derivative action (a

differentiator) can be added to achieve the required response from the plant. The

derivative action can be represented using Z-transforms. A derivative action

represented initially using a Laplace transform, as shown in Figure 7.34, can be

translated to a Z-transform by any of a number of transforms.

Here, Kd is the derivative action gain. The (Kd s) equation can be transformed using

Tustin’s approximation. This then gives:

YðzÞ ¼ Kdð Þ 2

T

� �
z� 1

zþ 1

� �� �
XðzÞ

Kd sDifferentiator input
X(s)

Differentiator output
Y(s)

Figure 7.34: Differential action (Laplace transform)

Introduction to Digital Signal Processing 521

www.newnespress.com

This can be manipulated to create:

YðzÞðzþ 1Þ ¼ XðzÞ 2Kd

T

� �
ðz� 1Þ

Finally, manipulating further gives the equation in terms of the current sample and

previous (delayed) samples with the equation in terms of z�n:

YðzÞ ¼ 2Kd

T

� �
xðzÞ � xðzÞz�1
� �� �

�YðzÞz�1

This can be represented by the block diagram shown in Figure 7.35. Here, each of the

operations is identified and this can be implemented in hardware using any of three

methods:

1. multiplication by (2Kd/T)

2. two subtraction of two values

3. two value delays by one sample (z�1)

This uses the same basic building blocks as previous examples and can be

implemented in VHDL as a structural description (using discrete designs for each

of the functional blocks) or as a behavioral or dataflow description.

+

–

Y(z)

Z–1

+

–

X(z)

Z–1

X

Multiply X(z) by (2Kd/T)

Store_1 Store_2

Figure 7.35: Discrete-time derivative action

522 Chapter 7

www.newnespress.com

The multiplication is positioned before the first subtraction operation. However,

the multiplication could be placed after the subtraction, and if necessary, values

can be scaled within the design to address the potential problem of ever-

increasing wordlengths due to the range of values that could be encountered

in the design.

Although this structure is similar to the discrete-time integrator, it would not suffer

from windup because the feedback signal to the second subtractor is subtracted from

the internal signal rather than added.

Example 7: PID Controller

The proportional, integral, and derivative control actions can be brought together to

create a PID controller. Figure 7.36 shows an example of how this can be created. As

the design increases in complexity, the need for more additions/subtractions and

multiplications/divisions increases. This highlights the need to develop an architecture

that uses hardware efficiently and can operate within the time constraints of the

design. The arithmetic operations to be undertaken either can be designed to be either

separate actions (each action requiring its own dedicated hardware) or can be shared

(each addition, subtraction, multiplication, or division has a single common block, as

is typical in the architecture of an arithmetic and logic unit, ALU). Hence, design

speed of operation can be considered against the size of the hardware circuit required

for a given architecture.

Command input

Feedback

+

–

P

Output limiting Controller_Effort

Subtractor_Out

Prop_Out

Coefficient
memory

I

D
Deriv_Out

Int_Out

+

+

+

Adder_Out

Figure 7.36: Digital PID controller

Introduction to Digital Signal Processing 523

www.newnespress.com

With the design shown in Figure 7.36, the actions can be implemented such that one

of the following two scenarios exists:

1. Each action identified in the block diagram can be created using its own

dedicated hardware.

2. Resources can be shared. Table 7.5 provides an example flow of actions for an

implementation using shared resources.

7.4 Digital Filtering

7.4.1 Introduction

A filter is a circuit that performs some type of signal processing on a frequency-

dependent basis. These filters can be realized in both analogue and digital circuits.

Digital filters receive one or more discrete time signals (signal samples) and modify

these signals to produce one or more outputs, and filters will pass or reject frequencies

based on their required operation:

1. Low-pass filters will pass low-frequency signals but reject high-frequency signals.

2. High-pass filters will pass high-frequency signals but reject low-frequency

signals.

Table 7.5: Shared resources for the digital PID controller

Action number Action description

1 Subtract the feedback input from the command input
2 Store result (Subtractor_Out)
3 Read Subtractor_Out and apply to proportional action
4 Store result (Prop_Out)
5 Read Subtractor_Out and apply to integral action
6 Store result (Int_Out)
7 Read Subtractor_Out and apply to derivative action
8 Store result (Deriv_Out)
9 Read Prop_Out, Int_Out, and Deriv_Out

10 Add Prop_Out, Int_Out, and Deriv_Out
11 Store result (Adder_Out)
12 Read Adder_Out
13 Apply output limiting
14 Store result (Controller_Effort)

524 Chapter 7

www.newnespress.com

3. Band-pass filters will pass a band of signal frequencies but will reject

frequencies lower than or higher than the pass range.

4. Band-reject or notch filters will reject a band of signal frequencies but will pass

frequencies lower than or higher than the pass range.

The idealized response for each of the filters is shown in Figure 7.37. On each plot,

the X-axis is the frequency (f), and the Y-axis is the magnitude (jHj) of the filter
output signal at a particular frequency. The response of an actual filter will deviate

from this idealized response. Additionally, although only the filter signal output

magnitude is shown, both the signal magnitude and phase response would need to

be considered.

f

|H|

Ideal low-pass filter

f0

f

|H|

Ideal high-pass filter

f0

f

|H|

Ideal band-pass filter

fL fH

fL fH

f

|H|

Ideal band-reject filter

Figure 7.37: Idealized filter response

Introduction to Digital Signal Processing 525

www.newnespress.com

There are four types of filter design [10]:

1. Bessel filter

2. Butterworth filter

3. Chebyshev filter

4. elliptic filter

The ideal filter response is also referred to as a brick-wall response due to its shape.

In low-pass and high-pass filters, the cut-off frequency is f0. For the band-pass filter,

two cut-off frequencies exist, lower (fL) and upper (fH), and signals are passed between

them. The center frequency is in the center of the pass-band. The frequency range

between the lower and upper cut-off frequencies is the bandwidth of the filter. The band-

reject filter is the complement of the band-pass filter. To the four responses identified in

Figure 7.37 is added a fifth, the all-pass filter. With this, all signal frequencies are passed.

Analogue filters are either passive filters (containing resistors, capacitors, and inductors)

or active filters (using active devices such as a transistor or operational amplifier).

Digital filters use DSP techniques on either software- or hardware-based systems. The

general structure for a digital filter, shown in Figure 7.38, is similar to the digital

controller previously discussed, but the architecture here is presented in a slightly

different arrangement. Only one analogue input signal is to be sampled, and the

output is a single analogue signal.

The following components are identified in Figure 7.38:

• The digital filter core contains three main blocks:

* The digital filter algorithm is responsible for implementing the algorithm

operations (add, subtract, multiply, divide, store).

* The filter coefficient memory stores the coefficients used by the digital filter

algorithm for multiplications and divisions.

* The control unit provides the necessary timing for actions to occur (ADC

input sampling, DAC output updating, filter coefficient memory access,

and digital filter algorithm operation).

• The communications port allows the filter to communicate with an external

digital system.

526 Chapter 7

www.newnespress.com

• The programming/configuration port uploads a software program (in a

processor-based system) or a hardware configuration (in an FPGA- or CPLD-

based system).

The complete system is controlled by external control signals such as a clock and reset.

This architecture can be modified to provide for different scenarios and specific

implementation requirements. In general, the choice of architecture must consider a

range of design and implementation issues that include:

1. whether to use standard processor type architecture or to develop a custom

architecture

2. available hardware resources

ADC1

DAC1

Communications
port

Programming/
configuration

port

Digital core
control

(reset, clock,
etc.)

Analogue input

Analogue output 1

Digital filter
algorithm

Filter
coefficient
memory

Control unit

ADC
control

DAC
control

Digital filter core

Figure 7.38: General digital filter architecture (with analogue I/O)

Introduction to Digital Signal Processing 527

www.newnespress.com

3. functionality possible with the target technology

4. design performance requirements

5. ability to modify and/or upgrade the design

6. power consumption of the circuit implementation

7. circuit power supply requirements

8. peripheral integration—the ability to connect peripheral devices as and

when necessary

9. cost

10. availability of suitable design tools

11. availability of a suitable design flow

12. support of DfX:

• DfA, design for assembly

• DfD, design for debug

• DfM, design for manufacturability

• DfR, design for reliability

• DfT, design for testability

• DfY, design for yield

Example 8: Digital Filter Structure

Consider the filter architecture shown in Figure 7.38. This can be coded for in VHDL as a

structural description. Consider the case where the digital filter algorithm requires four

control signals and eight fixed 16-bit coefficients. The filter coefficients are stored in a

ROMwithin the design and are set when theCPLD is configured. A structural description

for each of the main blocks within the digital filter core is shown in Figure 7.39.

The filter coefficient memory has three address lines and sixteen data lines. There are

no memory control signals, so when an address is applied to the memory, the data

stored in that address is applied to the digital filter algorithm.

The ADC used is the AD7575, and the DAC used is the AD7524.

528 Chapter 7

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Filter_Core IS
 PORT (Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 ADC_Data_In : IN STD_LOGIC_VECTOR(7 downto 0);
 ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 DAC_Data_Out : OUT STD_LOGIC_VECTOR(7 downto 0);
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC);
END ENTITY Filter_Core;

ARCHITECTURE Structural OF Filter_Core IS

SIGNAL Coefficient_Internal : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Control_Internal : STD_LOGIC_VECTOR(3 downto 0);
SIGNAL Memory_Address_Internal : STD_LOGIC_VECTOR(2 downto 0);

COMPONENT Algorithm IS
 PORT (Filter_In : IN STD_LOGIC_VECTOR (7 downto 0);
 Reset : IN STD_LOGIC;
 Coefficient : IN STD_LOGIC_VECTOR (15 downto 0);
 Filter_Control : IN STD_LOGIC_VECTOR (3 downto 0);
 Filter_Out : OUT STD_LOGIC_VECTOR (7 downto 0));
END COMPONENT Algorithm;

COMPONENT Coefficient_Memory IS
 PORT (Address : IN STD_LOGIC_VECTOR (2 downto 0);
 Data : OUT STD_LOGIC_VECTOR (15 downto 0));
END COMPONENT Coefficient_Memory;

COMPONENT Control_Unit IS
 PORT (Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Filter_Control : OUT STD_LOGIC_VECTOR (3 downto 0);
 Memory_Address : OUT STD_LOGIC_VECTOR (2 downto 0);
 ADC_BUSY : IN STD_LOGIC;
 ADC_TP : OUT STD_LOGIC;
 ADC_RD : OUT STD_LOGIC;
 ADC_CS : OUT STD_LOGIC;
 DAC_WR : OUT STD_LOGIC;
 DAC_CS : OUT STD_LOGIC);
END COMPONENT Control_Unit;

Figure 7.39: Digital filter core example

www.newnespress.com

The control unit identifies the control signals for the memory, algorithm, ADC, and

DAC, and does not include any control signals for the communications interface.

Figure 7.40 shows the schematic for the synthesized VHDL code using the Xilinx�

ISETM tools.

VHDL entity-architecture pairs can then be created to complete the design by adding

the required detail to the algorithm, memory, and control unit blocks.

Example 9: Multiply by Two

Although a digital implementation could be created to solve a given problem, it is not

always suitable. Consider the need to amplify an analogue voltage by two. This could

be implemented in analogue or digital, and Figure 7.41 shows a possible

implementation of both. The analogue circuit uses a noninverting operational

amplifier (op-amp). The digital circuit is rather more complex.

77
78
79
80
81
82
83

 ADC_TP => ADC_TP,
 ADC_RD => ADC_RD,
 ADC_CS => ADC_CS,
 DAC_WR => DAC_WR,
 DAC_CS => DAC_CS);

END ARCHITECTURE Structural;

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

BEGIN

I1 : Algorithm
 PORT MAP(Filter_In => ADC_Data_In,
 Reset => Master_Reset,
 Coefficient => Coefficient_Internal,
 Filter_Control => Control_Internal,
 Filter_Out => DAC_Data_Out);

I2 : Coefficient_Memory
 PORT MAP(Address => Memory_Address_Internal,
 Data => Coefficient_Internal);

I3 : Control_Unit
 PORT MAP(Master_Clock => Master_Clock,
 Master_Reset => Master_Reset,
 Filter_Control => Control_Internal,
 Memory_Address => Memory_Address_Internal,
 ADC_BUSY => ADC_BUSY,

Figure 7.39: (Continued)

530 Chapter 7

www.newnespress.com

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

Coefficient(15:0)Address(2:0)Data(15:0)

Filter_Control(3:0)

Filter_In(7:0)

Reset

Filter_Out(7:0)ADC_BUSY

Master_Clock

Master_Reset

ADC_CS

ADC_RD

ADC_TP

DAC_CS

DAC_WR

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

ADC_BUSY Filter_control(3:0)

Memory_Address(2:0)

Master_Reset

Master_Clock

ADC_Data_In(7:0)

ADC_CS

ADC_RD

ADC_TP

DAC_CS

DAC_WR

DAC_Data_Out(7:0)

Figure 7.40: Digital filter example schematic for the synthesized VHDL code

Which implementation would be better?

Filters are of two types: infinite impulse response (IIR) and finite impulse response

(FIR). The type of filter chosen determines the architecture of the filter and what values

are to be used in the calculations. The basic filter structures are identified below.

7.4.2 Infinite Impulse Response Filters

The infinite impulse response (IIR) filter is a recursive filter in that the output from

the filter is computed by using the current and previous inputs and previous outputs.

Analogue
signal input

Digital signal
processor

Anti-alias
filter

Digital
multiplication
by 2

Analogue
signal outputDACADC

(a) Digital implementation

(b) Analogue implementation

Analogue
signal input

Analogue
signal output

R1

R2

+

–

Figure 7.41: Amplifier implementation

532 Chapter 7

www.newnespress.com

Because the filter uses previous values of the output, there is feedback of the output in

the filter structure. The design of the IIR filter is based on identifying the pulse

transfer function G(z) that satisfies the requirements of the filter specification.

This can be undertaken either by developing an analogue prototype and then

transforming it to the pulse transfer function, or by designing directly in digital.

Figure 7.42 shows typical IIR filter architecture.

Z–1

b0

Filter output, Y(z)

Filter input, X(z)

Z–1 Z–1 Z–1

b1 b2 bn

Z–1

Z–1

Z–1

a1

+

++
+

am

–

–

Figure 7.42: Typical architecture of an IIR filter

Introduction to Digital Signal Processing 533

www.newnespress.com

7.4.3 Finite Impulse Response Filters

The finite impulse response (FIR) filter is a nonrecursive filter in that the output from

the filter is computed by using the current and previous inputs. It does not use

previous values of the output, so there is no feedback in the filter structure. The design

of the FIR filter is based on identifying the pulse transfer function G(z) that satisfies

the requirements of the filter specification. This can be undertaken either by

developing an analogue prototype and then transforming this to the pulse transfer

function, or by designing directly in digital. A nonrecursive filter is always stable, and

the amplitude and phase characteristics can be arbitrarily specified. However, a

nonrecursive filter generally requires more memory and arithmetic operations than a

recursive filter equivalent. Figure 7.43 shows typical FIR filter architecture.

Here, the filter input is applied to a sequence of sample delays (z�1), and the outputs

from each delay (and the input itself) are applied to the inputs of multipliers. Each

multiplier has a coefficient set by the filter requirements. The outputs from each

multiplier are then applied to the inputs of an adder, and the filter output is then

taken from the output of the adder.

Z–1

b0

Filter output, Y(z)

Filter input, X(z)

Z–1 Z–1 Z–1

b1 b2 bn

+

+
+

+

Figure 7.43: Typical architecture of an FIR filter

534 Chapter 7

www.newnespress.com

References

[1] Terrell, T. J., Introduction to Digital Filters, The MacMillan Press Ltd., 1980,

ISBN 0-333-24671-3.

[2] Kamen, E. W., and Heck, B. S., Fundamentals of Signals and Systems Using the

Web and MATLAB�, Pearson Education Ltd., 2007, ISBN 0-13-168737-9.

[3] Ifeachor, E. C., and Jervis, B. W., Digital Signal Processing: A Practical

Approach, Pearson Education Ltd., 2002, ISBN 0-201-59619-9.

[4] Meade, M. L., and Dillon, C. R., Signals and Systems Models and Behaviour,

Chapman & Hall, 1991, ISBN 0-412-40110-x.

[5] Hanselman, D., and Littlefield, B., Mastering MATLAB� 6—A Comprehensive

Tutorial and Reference, Prentice Hall Inc., 2001, ISBN 0-13-019468-9.

[6] Golten, J., and Verwer, A., Control System Design and Simulation, McGraw-

Hill, 1991, ISBN 0-07-707412-2.

[7] Astrom, K. J., and Wittenmark, B., Computer-Controlled Systems Theory and

Design, Second Edition, Prentice Hall International, 1990, ISBN 0-13-172784-2.

[8] Analog Devices Inc., AD7575 LC2MOS Successive Approximation ADC

datasheet.

[9] Analog Devices Inc., AD7524 CMOS 8-Bit Buffered Multiplying DAC

datasheet.

[10] Schaumann, R., and Van Valkenburg, M., Design and Analog Filters, Oxford

University Press, 2001, ISBN 0-19-511877-4.

Introduction to Digital Signal Processing 535

www.newnespress.com

Student Exercises

7.1 Develop theVHDLcode for adesign thatwill perform the following three functions:

• Sample an analogue signal from a 12-bit ADC. (Choose an ADC and

obtain the required control signals from the device data sheet.)

• Multiply the signal by 0.76 with an error of no more than 5 percent.

• Output the result to a 12-bit DAC. (Choose an DAC and obtain the

required control signals from the device data sheet.)

7.2 Modify the design in Exercise 7.1 so that the sample is multiplied by a value

set from a PC via a simple UART receiver (using the integer value of the

byte received from the UART).

7.3 From analysis of the data sheets from available ADCs, create the VHDL

code that will control the sampling from the following ADCs:

• 8-bit

• 10-bit

• 12-bit

• 14-bit

• 16-bit

• 18-bit

7.4 From analysis of the data sheets from available DACs, create the VHDL

code that will control the output of data to the following DACs:

• 8-bit

• 10-bit

• 12-bit

• 14-bit

• 16-bit

• 18-bit

7.5 Develop the VHDL code for a PID controller where each of the actions in the

controller is defined in its own entity-architecture pair. The coefficients for

each of the control actions are to be stored in a ROM. What assumptions are

made in the implementation?

7.6 Develop theVHDL code for a PID controller where the additions/subtractions

and multiplications/divisions are shared by all of the control actions. What

assumptions are made in the implementation?

536 Chapter 7

www.newnespress.com

CHA P T E R 8

Interfacing Digital Logic
to the Real World: A/D Conversion,

D/A Conversion, and Power Electronics

8.1 Introduction

Developing a digital algorithm to be implemented in hardware or software is the key

task for many designers. If they develop the required digital logic or software program

to run on an existing electronic circuit, the requirements for interfacing the algorithm to

an external system—commonly referred to as the real world—for typical applications

such as electronic circuit test, control, and instrumentation will have already been

established. The necessary digital control and data signals to access the external system

electronics will then need to be developed. In many other applications, however, the

designer must develop and implement the digital algorithm in hardware or software, as

well as the circuitry for interfacing the algorithm to an external system.

An example of interfacing a digital processor for electronic circuit test applications

is in the testing of semiconductor devices during device production [1–3].

Aside: Consider the discussions in this section as an example of how electronic circuits and
systems can be formed in order to create something useful. Consider in particular how the
system is created, the different functions it is required to undertake, the variations on the
basic idea of the semiconductor tester, and the need to carefully consider future as well as
current requirements of the system. This discussion should be read along with Chapter 9,
Testing the Electronic System.

The production testing of integrated circuits (ICs) is undertaken both at the wafer level
(prior to die packaging, see Figure 8.1) and on the final packaged devices. The wafer

www.newnespress.com

contains multiple copies of a single design (or multiple designs), as well as special drop-in
circuits used to measure specific parameters of the fabrication process.

An example set-up for testing a packaged device is shown in Figure 8.2. A typical

set-up has the tester using a PC or workstation running a Windows�-, UNIXTM-,

(a) Fabricated silicon wafer (b) Packaged ICs

Individual die to package

Bare die for placement in a
multichip modules (MCM),
A Known Good Die (KGD)

Figure 8.1: Wafer to packaged IC

Tester
PC/workstation

User

Test hardware and PC/workstation

DUT/CUT
(Device Under Test/
Circuit Under Test)

Tester interface
electronics

Test head

DIBDevice Interface Board

Figure 8.2: Semiconductor device test set-up

538 Chapter 8

www.newnespress.com

or Linux�-based operating system that runs the software test routines, user I/O, and

results analysis programs. A hardware interface (serial or parallel) from the PC or

workstation connects to the tester interface electronics via a suitable cable

arrangement. The tester interface electronics provides for analogue and digital output

(test stimulus) and analogue and digital input (results capture). Some testers include

additional processors for results analysis purposes, in particular the use of digital

signal processors for analysis routines such as fast Fourier transform (FFT).

A cable arrangement connects the tester interface electronics to the test head. The

test head is a mechanical arrangement with additional electronics built into it.

The mechanical movement capability allows it to be moved around (and away

from the tester PC or workstation) to facilitate fixing additional equipment such

as hot air blowers for burn-in device testing. Burn-in testing applies a higher

operating temperature and higher applied signal and power voltage levels to the

device than would normally be encountered in the final application. By stressing

the device electrically and thermally, any manufacturing defects will develop and

fail faster than they would in normal operation. This test is undertaken for

reliability reasons.

A device interface board (DIB), sometimes called a load board, is a custom-designed

printed circuit board (PCB) that provides local electrical connections to the pins of

the device and sometimes local (i.e., in close proximity to the device) interfacing

electronic circuits.

In general, such test equipment used may be categorized as:

• Dedicated test equipment, which is specially designed to measure specific

parameters for a device and dedicated to a particular device or small set of devices.

• General purpose testers, which are used to test a range of devices, where the

devices may have vastly different operational parameters. This type of tester is

temporarily customized to a particular IC via a software test program and a

hardware DIB.

In production test, the need is for the required tests to be undertaken in a suitably

comprehensive manner for the particular product and product application area, but

at the lowest cost possible. This means using the most cost-effective equipment and

minimizing the test time per device. The semiconductor testers used require both

hardware and software subsystems to set up and control the tester and test program

execution. During the production test stage, automatic test equipment (ATE) is used

Interfacing Digital Logic to the Real World 539

www.newnespress.com

to reduce the test time by automating as much of the test process as practical. The test

equipment used will be designed for the testing of particular types of device:

• Digital, including dedicated digital logic, memory, microprocessors, and

programmable logic

• Analogue, including operational amplifiers, filters, and amplifiers

• Mixed-Signal, including analogue-to-digital converters (ADC), digital-to-

analogue converters (DAC), phase-locked loops (PLLs), and analogue switches

Each type of test equipment has specific input/output (I/O) capabilities, suitable for

the types of devices it tests. In general, testers are categorized as:

• Digital testers are optimized for digital circuits and systems with typically a

large number of high-speed digital I/O pins and a limited analogue capability.

• Memory testers are optimized for testing of memory devices.

• Analogue testers are optimized for analogue circuits with high-performance

analogue I/O current and voltage pins and high-performance data acquisition,

but with a limited digital capability.

• Mixed-Signal testers provide a good level of both digital and analogue I/O

capabilities, but may not necessarily reach the performance levels attained by

digital or analogue testers.

• System on a Chip (SoC) testers provide specific support for complex (mainly

digital) ICs that are considered to be complete electronic systems within the

packaged device.

• Design for Testability (DfT) testers provide specific support for devices

(mainly digital) that contain structures available from the major ATE vendors.

In addition to the basic arrangement shown in Figure 8.2, it is often necessary to

utilize signal generators and results capture devices external to the basic tester itself.

This happens where the tester does not incorporate the required electronic test and

measurement equipment required for a particular test or set of tests. This is shown in

Figure 8.3.

The test set-up is modified here by typically interfacing external equipment with both

the tester computer and the DIB. Therefore, the computer needs suitable I/O ports

that are compatible with the I/O ports of the test equipment such as RS-232, USB

540 Chapter 8

www.newnespress.com

(universal serial bus), and GPIB (general purpose interface bus). The software test

programmust have suitable software drivers (programs to access the I/O) available on

the computer. The DIB must be designed so that the required signals on the DIB can

be connected to the signal sources and measurement devices via appropriate

connectors and required interface standards.

This example is only one of many possible examples of a test set-up. In applications

such as test, control, and instrumentation, the typical arrangement is to have a digital

processor at the core of the design and suitable analogue and digital I/O devices

connecting to suitable connections on the digital processing circuit. A general

arrangement for this is shown in Figure 8.4.

Here, the digital processor is chosen for the target application based on a set of

criterion (also discussed in Chapter 2):

• Software programmed processor: microprocessor (mP), microcontroller (mC),
or digital signal processor (DSP).

DUT/CUT
(Device Under Test/
Circuit Under Test)

Computer

Test Head
Fixture

Measurement
Devices

Signal
Sources

User

Tester
Hardware

Device Interface
Board

Figure 8.3: Semiconductor device hardware arrangement

Interfacing Digital Logic to the Real World 541

www.newnespress.com

• Hardware configured programmable logic device: simple programmable logic

device (SPLD), complex programmable logic device (CPLD), or field

programmable gate array (FPGA).

Theprocessor is required interfacewith the following components, systems, or subsystems:

• Control signals typically require an external signal clock for internal timing

and a reset signal for both power-on reset when the power is first applied and

user manual reset during normal operation

DIGITAL PROCESSOR

User I/O
(control and data)

User
System clock

System reset

Low-power
signal

conditioning
circuit

Low-power
signal

conditioning
circuit

High-power
actuator

driver

ActuatorSensor

DACADC

Digital
output buffer

Digital input
buffer

ActuatorSensor

Analogue actuation and sensing Digital actuation and sensing

External
communications

Communications

Control
signals

Control
signals

Data

Data Data

Data

External
load

Figure 8.4: General digital processor and interfacing hardware

542 Chapter 8

www.newnespress.com

• User I/O typically is required to input data from the user (via switches,

keypad, or keyboard) and output data to the user (via lights, light-emitting

diode [LED] displays, and liquid crystal displays [LCD]).

• Communications to an external digital system uses wired, optical fiber, or

wireless means, and follows either a standard communications protocol or a

custom protocol for the particular application.

• Digital I/O is used to create digital control and data signals to drive an external

actuator (or circuit) and to read in from a digital sensor (or circuit). Digital I/O

signals are buffered by additional logic buffers (simple logic buffers or tristate

buffers) for three reasons: (i) to protect the processor from the external actuator

(or circuit) and digital sensor (or circuit), (ii) to provide logic level translation

(the changing of the voltage levels that represent the logic 0 and 1 levels), and

(iii) to provide electrical or optical buffering required to enable correct and

robust interfacing to the external circuitry.

• Analogue I/O is used to create analogue signals to drive an external actuator

(or circuit) and to read in from an analogue sensor (or circuit).

Because the digital processor provides digital signals, in order to connect the digital to

the analogue world, both DAC and ADC devices are required. The DAC receives a

digital input signal and produces an analogue output (either a voltage or a current);

the ADC receives an analogue input (either a voltage or a current) and produces a

digital output. The analogue output from the DAC is typically applied to a low-power

analogue signal conditioning circuit that translates the DAC output signal to a signal

level (voltage and current), which in turn is either directly required by the external

actuator (or circuit) or acts as the input to a high-power actuator driver circuit such as

a power amplifier to drive an electric motor. The low-power signal conditioning

circuitry is normally based on the operational amplifier (op-amp).

8.2 Digital-to-Analogue Conversion

8.2.1 Introduction

The DAC (also called a D/A converter) is an electronic circuit that provides a link

between the digital and the analogue domains [4]. The device accepts a digital word

(group of digital bits) and outputs an analogue voltage or current. This analogue

value can be either a single-ended signal, which is a single-node connection referenced

Interfacing Digital Logic to the Real World 543

www.newnespress.com

to the common node (ground or 0V), or a differential signal, which is a two-node

connection where the difference between the two nodes is the output signal.

The basic arrangement for the DAC is shown in Figure 8.5. Here, the output is a

singled-ended signal, and all voltages are referenced to a common node.

The number of input data bits (n) is usually between 8 and 24, which produces a

number of possible codes that the DAC can accept, shown in Table 8.1. Each

individual code produces a unique analogue output level: number of codes=2n.

The number of bits to use depends on the particular application. For example, 8 to 12

bits of digital input are common for control applications, but 16 to 18 bits are typical

of test and instrumentation purposes, and 22 to 24 for audio applications. As the

Data (n – 1)

Data 0

Analogue reference signal

Analogue
output
signal

n-bit
digital

data
input

Digital control input

Figure 8.5: Basic DAC arrangement

Table 8.1: DAC input codes for number
of input data bits

Number of bits (n) Number of codes (2n)

8 256
10 1024
12 4096
14 16,384
16 65,536
18 262,144
20 1,048,576
22 4,194,304
24 16,777,216

544 Chapter 8

www.newnespress.com

number of bits increases, it becomes more important to ensure that the effects of

the manufacturing process variations are reduced or removed. The main methods

used to account for process variations are:

• Trimming. Passive components (resistors and capacitors) can be trimmed

after fabrication. Laser trimming of resistors and the switching of components

in or out of a circuit are used to trim component values.

• Dynamic element matching. Process variations are averaged out over time by

the dynamic switching of mismatched components.

• Self-calibration. Additional circuitry is included in the design, and an external

control signal causes the DAC to run through a self-calibration algorithm

automatically. It is important to understand what the self-calibration routine

does and how this affects the performance of the data converter.

In addition to the digital data inputs, the device will also accept digital control input

signals. These are used to control the operation of the DAC to enable the device to be

selected, usually with a chip select (CS) signal that will be either active high (CS) or active

low (/CS), and a data write (WR) signal, also either active high (WR) or active low (/WR).

The timing of these signals is important; violating it will cause incorrect operation of the

DAC. Timing data is identified on the device datasheet. In addition to these two basic

control signals, some DAC architectures also require additional control signals such as a

master clock signal (for control of internal sequential logic circuits within the DAC).

Another input to the DAC is the analogue reference signal. This is a DC voltage or

current that sets the output voltage or current range of the DAC. This may be a

unique input to the DAC, and the user will be able to set the value of the analogue

reference signal to fit his or her own circuit design requirements; or the reference

signal may be connected to the power supply voltage and not adjustable by the user.

The datasheet for the particular DAC provides the required information on the

creation and use of this analogue reference signal.

The final inputs to the DAC that are not shown in Figure 8.5 are the power supply

connections to provide power to both the digital and analogue circuitry within the

device. The digital and analogue circuitry may be powered from a single power supply

input, or they may have their own unique power supply pins (VDD and VSS).

Additionally, the power supply may be a single fixed value or may be adjustable

within limits by the user.

Interfacing Digital Logic to the Real World 545

www.newnespress.com

The key characteristics to consider for DAC choice and use are:

1. Output range (voltage or current). The DAC produces an analogue output

with a specific range from a minimum value (minimum input code) to a

maximum value (maximum input code) either as a unipolar output (output of

a single polarity, positive or negative) or as a bipolar output (an output

ranging from a negative value to a positive value). The output range

determines the amount of signal conditioning circuitry to be placed at the

DAC output before the signal can be used.

2. Parallel or serial load. With high-resolution (with the data converter

resolution considered here as the number of digital data inputs applied to

the DAC) data converters, the number of digital I/Os significantly increases.

Traditional DACs used parallel data transfer—that is, the applied digital

data is available at a single time, with all the data bits connected to an

external system in parallel. However, for discrete packaged ICs, each data

bit requires a device pin, which leads to physically large packages and in

turn increases package cost and introduces package level nonideal circuit

operation. An alternative to the parallel data load of the DAC is to serially

clock in (load) the data one bit at a time. This requires the use of a serial

communications protocol (in the simplest terms, the data bits are applied in

a set order) and a clock signal to load the serial data. Internal to the data

converter, this serial data is converted to parallel and applied to the data

converter circuitry. Although this requires an additional clock signal, more

complex external digital processing for the serial data transfer, and

additional time to load the data converter with the correct number of bits,

it also results in a fewer package pins (for smaller and cheaper packages)

and a smaller footprint on the final PCB application.

3. Power supply voltage. Early data converters were designed to operate

on a power supply voltage range in excess of þ5V DC. In many cases,

the DAC could be used in a range typically from þ5V to þ12V DC

(unipolar) or in bipolar operation. However, the more recent trend toward

lower power supply voltages, driven by user requirements for portable, low-

power circuit operation, has seen a reduction in the power supply voltage to

between þ5V and þ3V DC, and potentially lower. The need to run the

electronics on the available battery voltage levels of þ1.5V and þ3V DC is

driving the need for low-voltage (and also low-power) electronics.

546 Chapter 8

www.newnespress.com

4. Voltage or current output. The output signal can be either a voltage or a

current, depending on the data converter architecture. For a current

output, external circuitry (op-amp) is used to convert the current to a

voltage.

5. Signal-ended or differential output. The DAC can provide either a single-

ended output with a single signal that is referenced to the common

point (0V) in the circuit, or it can provide a differential output, providing a

signal that is measured as a difference between the two outputs.

6. DAC architecture. A range of DAC architectures are available [5, 6], including:

• resistor string DAC

• binary weighted resistor DAC

• binary weighted current DAC

• R-2R ladder DAC

• segmented resistor string DAC

• current steering DAC

• sigma-delta (�D) DAC

7. Device packaging. Devices are available in different package types (through-

hole or surface mount, refer to Appendix C, Integrated Circuit

Package Types—see the last paragraph of the Preface for instructions

regarding how to access this online content) and in package

case materials (plastic or ceramic). Figure 8.6 shows an example

DAC and the types of pin connections required in a plastic DIL

package type.

Control signals
Power Supply

Analogue Output

Digital Data Input

Analogue Reference

Figure 8.6: DAC in a DIL package

Interfacing Digital Logic to the Real World 547

www.newnespress.com

8. Operating temperature range is the range in temperature that the IC can

handle without damage during component use and depends on the

application. The IC will be one of the following types:

• commercial: 0�C to þ70�C

• industrial: �40�C to þ85�C

• military: �55�C to þ125�C

9. Performance. The performance of the DAC is considered in one of three

categories: static (DC) parameters, transfer curve parameters, and dynamic

parameters. These parameters are guaranteed for a particular device, as

defined in the device datasheet, by production testing and/or by end-user

testing. The performance also includes the time required to convert the digital

input before the analogue output appears at the DAC output. The speed of

conversion depends on the DAC architecture, so the architecture determines

the types of applications in which the converter can be used.

8.2.2 DAC Characteristics

The DAC analogue output varies from a set minimum to a set maximum value that is a

function of the reference signal and the value of the digital input code. For the DAC,

the full-scale voltage (VFS) or full-scale current (IFS) sets the limit of operation. It is

common for the DAC input to be an unsigned binary value, although (particularly

for bipolar operation) the digital input might also be provided in signed binary

(2s complement) representation or in BCD (binary coded decimal) representation.

The output of the DAC can be written mathematically. For voltage output DAC with

a reference voltage (VREF), where VFS is set by VREF:

Vout ¼ VFS � ðb1 � 2�1 þ b2 � 2�2 þ b3 � 2�3 þ � � � � � � þ bn � 2�nÞ þ VOS

And for current output DAC with a reference current (IREF), where IFS is set by IREF:

Iout ¼ IFS � ðb1 � 2�1 þ b2 � 2�2 þ b3 � 2�3 þ � � � � � � þ bn � 2�nÞ þ IOS

Here, b1 is the binary value (1 or 0) of themost significant bit (MSB) and bn is the binary

valueof the least significantbit (LSB).Achange in theLSBcreates thesmallest singlechange

in the output signal. It is common for the digital input code to be an unsigned binary count,

548 Chapter 8

www.newnespress.com

startingat 010 and incrementing inunit steps.However,with theuseof suitabledigital signal

encoding, any digital code (e.g., 2s complement signed binary) could be used. A change in

theMSBcreates the largest single change in the output signal. The above equations include

an offset voltage (VOS) or offset current (IOS) if the output signal is not zero for an input

code of 010. Therefore, the output of theDAC can be either unipolar (either a positive or

negative value only) or bipolar (both positive and negative values can be generated).

The resolution of the converter is given above as the number of digital bits at the

converter input. This is one way to define the resolution of the converter and is

independent of the analogue reference signal value. This is how the resolution of the

converter will be referred to in this text.

A second way to define the resolution of the converter is to identify the minimum

output voltage (or current) change, which occurs with a change of 1 LSB in the digital

input code. For a voltage output converter, the voltage change (VLSB) when the input

changes by 1 LSB is the LSB step size and is given by:

VLSB¼ð2�n � VFSÞvolts

The resolution of the converter in terms of the voltage change (VLSB) is the value of

the LSB step size with units of volts per bit.

Resolution ¼ ðVLSBÞvolts=bit

For example, for a unipolar eight-bit DAC with a full-scale voltage of 5.0V, VLSB=

19.53mV. For a 16-bit DAC with a full-scale voltage of 5V, then VLSB= 76.29mV.
Therefore the resolution figure given here is the value of VLSB and is dependent on

the value of the analogue reference signal value. For a voltage output DAC, this

value can also be presented as a percentage of the full-scale voltage:

Resolution ð%Þ ¼ ðVLSB=VFSÞ � 100%

The characteristics of the DAC must be considered as either ideal or real. An ideal

DAC identifies the operation of the DAC when all values are set to their designed (or

ideal) values. However, manufacturing tolerances of the DAC circuitry causes real

DAC operation to deviate from the ideal. In this case, the DAC maximum deviation

will be defined in the DAC datasheet and will be guaranteed by the manufacturer.

To understand the operation of the DAC, begin by considering the ideal DAC, then

identify how a real DAC could deviate from this.

Interfacing Digital Logic to the Real World 549

www.newnespress.com

Consider a three-bit DAC (for simplicity) that has an input code ranging from

0002 (010) to 1112 (710) and that produces an output voltage. The ideal DAC input

code�output voltage relationship, called the transfer curve, is shown in Figure 8.7.

The full-scale voltage is þ5.0V. This is a unipolar DAC with an output voltage of 0V

to þ5.0V. In this range, a change in 1 LSB of the input code creates a step change in

the output voltage. For each 1 LSB step change, the output voltage changes by the

same amount. This voltage level change is given by:

VLSB ¼ 2�n � VFSð Þ
VLSB ¼ 2�3 � 5:0

� �
VLSB ¼ 0:125� 5:0ð Þ ¼ 0:625V

The output voltage range 0 to VFS is separated into eight (2n) equal levels. In

Figure 8.7, each input code produces a unique output voltage. When these points

are drawn on the transfer curve graph, they will be joined with a straight line.

The input-code-to-output-voltage values are shown in Table 8.2. The first thing to

notice is that with this DAC, the output voltage rises only to a maximum of 1 LSB

less than the full-scale voltage. This is common of many DACs and of the types

considered here. However, some DACs are designed so that the maximum output

voltage reaches the full-scale voltage.

An actual DAC output voltage would deviate from the ideal for particular or all

input codes. Consider the DAC test results shown in Table 8.3. The table shows the

ideal and actual results taken by measuring the output of a theoretical three-bit DAC.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 2 4 6 8

Input Code

O
ut

pu
t V

ol
ta

ge

Figure 8.7: Ideal three-bit DAC transfer curve

550 Chapter 8

www.newnespress.com

The performance in this particular theoretical DAC is poor. The results for the ideal

and actual DACs are plotted in Figure 8.8.

The general shape of the graph of the real DAC results is similar to the ideal, but the

deviation is a measure of the quality of the real DAC. From this transfer curve, then

the transfer curve parameters can be identified.

As the resolution (number of bits) of the converter increases and the operating voltage

range of the DAC decreases, the LSB step size (volts or current) will decrease. The

effect of this is that the analogue signal levels become the same order of value as the

noise generated in the circuit, and the inevitable manufacturing process variations

have a more significant impact, leading to problems with design and ultimate use of

these converters. Unwanted circuit effects not seen with the lower-resolution data

converters are seen with the higher-resolution data converters.

Table 8.2: Ideal three-bit DAC input-code-to-output-
voltage mapping (1 LSB50.625V)

Input code
(binary)

Input code
(decimal equivalent)

Output voltage (V)

000 0 0.0
001 1 0.625
010 2 1.25
011 3 1.875
100 4 2.5
101 5 3.125
110 6 3.75
111 7 4.375

Table 8.3: Three-bit DAC example

Input code
(binary)

Input code
(decimal equivalent)

Ideal output voltage
(V)

Actual output voltage
(V)

000 0 0.0 0.0500
001 1 0.625 0.3125
010 2 1.25 1.2500
011 3 1.875 1.8750
100 4 2.5 2.7000
101 5 3.125 3.0000
110 6 3.75 4.0000
111 7 4.35 4.3400

Interfacing Digital Logic to the Real World 551

www.newnespress.com

The characteristics of the DAC are categorized into three types of parameters—static

(DC) parameters, transfer curve parameters, or dynamic parameters—whose details

are specified in the tables that follow.

The static (DC) parameters are identified in Table 8.4:

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Figure 8.8: Plot of DAC results: ideal (left) and actual (right)

Table 8.4: Static (DC) parameters

Parameter
number

Parameter
name

Parameter description

1 Code specific
parameters

A measure of the output signal value for specific input codes.
Typically the minimum, midpoint, and maximum input codes
are of interest.

2 Full-scale range
(VFSR)

The difference between the maximum and minimum output
analogue signal values.

3 DC gain error A measure of the deviation of the slope of the straight-line
approximation of the actual converter output from the ideal
converter straight-line output.

4 Offset error Offset of the actual converter output. The offset error may be
taken at the lowest input code, the mid-code, or the highest
input code.

5 LSB step size A measure of the average step size between input codes (quoted
in volts per bit).

6 DC PSS DC power supply sensitivity, a measure of the sensitivity of the
DAC circuitry to variations in the power supply voltage.

552 Chapter 8

www.newnespress.com

The transfer curve parameters are identified in Table 8.5:

The dynamic parameters are identified in Table 8.6.

In addition to the previously identified parameters, the DAC signal frequency response is

usually analyzed. By sampling the DAC output signal and undertaking a FFT (fast

Fourier transform) on the digitized samples, the frequency components of the DAC

output signal can be identified. This can be used to determine the correct or incorrect

operation of the DAC.Where samples of an analogue signal are taken, DSP techniques

can perform analysis of the signal in both the time and frequency domains. The FFT is

undertaken on sampled signals to identify the frequency components of a complex signal

in termsof the signalmagnitudeper rootmeansquared (RMS)valueandphase atdifferent

frequencies. The FFT is an efficient implementation of the discrete Fourier transform

(DFT), which uses samples of a signal taken at a chosen sampling frequency (fS).

By analyzing theFFTplot, it is possible to identify a number of converter characteristics:

• Signal-to-noise ratio (SNR) is the ratio of the signal power (in the

fundamental frequency when a single-frequency sine wave is applied to the

Table 8.5: Transfer curve parameters

Parameter
number

Parameter name Parameter description

1 Absolute error The difference between the ideal DAC output curve and actual
DAC output curve for each input code.

2 Monotonicity When the input code increments by 1 bit, there should be an
increment in the output signal. This situation occurs when the
DAC is monotonic. In a nonmonotonic DAC, an increase in
the input code results in a decrease in the output signal for
certain code transitions.

3 Integral
nonlinearity (INL)

The deviation of the actual converter data point from the point
on the straight-line approximation. The ideal converter, end-
points, or best-fit straight-line approximation can be used.
Where the ideal converter is used, this value will be the same as
the absolute error. This is normally quoted in LSBs.

4 Differential
nonlinearity
(DNL)

Where a binary input code change of 1 bit occurs, the output
should change by 1 LSB. The DNL is the difference between
each output step size of the converter and an ideal step size of
1 LSB. For a given input code, the output step size is taken
between the current input code and the previous code. This is
normally quoted in LSBs.

Interfacing Digital Logic to the Real World 553

www.newnespress.com

DAC) and the noise power over the frequency band of interest. For an ideal

converter, the SNR (in decibels, dB) is given by:

SNRdB ¼ 6:02Nþ 1:76

where SNRdB is the SNR quoted in dB, and N is the resolution of the

converter (number of bits). For an eight-bit DAC, the SNR is 49.92 dB. For a

16-bit DAC, the SNR is 98.08 dB. This equation links the SNR of the

converter to the number of bits.

• Spurious free dynamic range (SFDR) is the difference (in dB) between the

fundamental frequency (for a single-frequency sine wave input) and the largest

ray (of all other frequencies identified on the FFT plot). It is the usable

dynamic range of the converter before noise effects become noticeable.

• Total harmonic distortion (THD) is the ratio of the sum of the power in the

signal harmonics to the power in the fundamental signal (in dB).

• Signal-to-noise plus total harmonic distortion (S/(NþTHD)) is the plot of the

actual SNR curve versus input signal magnitude.

Table 8.6: DAC dynamic parameters

Parameter
number

Parameter name Parameter description

1 Conversion time
(settling time)

When the input changes, the output change tends to take
awhile to settle. The conversion time is the time needed for
the output to settle within a specified error band after the
input code has been set.

2 Overshoot and
undershoot

As the output change settles, it tends to overshoot (go past
and become greater than) and undershoot (go back to be less
than) the final value.

3 Rise and fall times Time needed for the output to rise or fall from 10% to 90%
between the initial and final values.

4 DAC-to-DAC skew Timing mismatch between DACs to be used in matched
groups.

5 Glitch energy Specification common to high-frequency DACs.

6 Clock and data
feedthrough

A measure of the cross-talk of the digital signals to the
analogue output signal.

554 Chapter 8

www.newnespress.com

• Signal-to-noise and distortion (SINAD) is a combination of SNR and THD.

• Effective Number of Bits (ENOB) is a measure of how close the actual

converter is to the theoretical model.

8.2.3 Types of DAC

A number of architectures have been developed for the DAC, each providing its own

unique operating characteristic and limitations. Any given DAC, regardless of

architecture, falls into one of two categories:

• Nyquist rate DAC

• oversampling DAC

With the Nyquist rate DAC, the input signal bandwidth is equal to the Nyquist

frequency. The Nyquist frequency is half the DAC update frequency (which is the

Nyquist rate).

With the oversampling DAC, the converter update frequency is much greater than the

Nyquist rate. Typical values of oversampling ratio (OSR) are 64, 128, and 256:

OSR ¼ ðfS=2 � fNÞ

where fS is the update frequency of the DAC and fN is the Nyquist frequency.

For an ADC, the Nyquist frequency is half the minimum sampling frequency of the

ADC required to reconstruct fully the original signal from the sampled signal. This

means that no information has been lost in the sampling process. The Nyquist rate is

when the sampling frequency is twice the bandwidth of the signal being sampled.

When a signal that has been sampled and converted to digital at the Nyquist rate, then

to reconstruct the analogue signal with a DAC, the DAC update frequency must also

be at the Nyquist rate.

The main available DAC architectures are:

• resistor string DAC

• binary weighted resistor DAC

• binary weighted current DAC

Interfacing Digital Logic to the Real World 555

www.newnespress.com

• R-2R ladder DAC

• segmented resistor string DAC

• current steering DAC

• sigma-delta (�D) DAC

The resistor string DAC uses a resistor string and transistor switches to select a voltage.

The basic idea is shown in the circuit diagram in Figure 8.9, where the output of the

switch array in the DAC is applied to the input of an op-amp unity gain buffer. This

buffer, with its high input impedance and low output impedance, prevents the circuit to

be connected to the DAC output from electrically loading the resistor string. With this

design for an n-bit DAC, 2n resistors are needed. In silicon, resistors require a

substantial amount of area on the die and cannot be fabricated with a low tolerance (i.e.,

they cannot be fabricated to accurate values) because of process variations. Therefore,

this type of DAC is not suited for high-resolution data converters. Digital control logic

determines which switches must be closed based on the input code applied to the DAC.

VREF

Control logic

Input data (digital input code)

Switch control

VOUT

R

R

R

R

R

+

–

Silicon switch
(transistor)

Figure 8.9: Resistor string DAC

556 Chapter 8

www.newnespress.com

The binary weighted resistor DAC uses resistors with binary weighted values (n, 2n, 4n,

8n, etc.) that must be switched between the circuit common voltage and a DC reference

voltage (VREF). The basic idea is shown in the circuit diagram in Figure 8.10, where the

common node is 0V. In this implementation, a logic 1 digital input control to the switch

connects the switch to the common node, and a logic 0 connects the switch to the VREF

node. This is essentially a summing amplifier with the currents flowing through the

binary weighted resistors and combining at the inverting input node. The feedback

resistor between the op-amp output and inverting node can be altered to provide voltage

gain. Because the op-amp is configured to be a summing amplifier, which by its

operation provides an inverted output, if the reference voltage is a positive value, then

the output voltage is a negative value and vice-versa. In this arrangement, the LSB is

controlled by switch bn and the MSB is controlled by switch b1.

A variant on this converter is the binary weighted capacitor DAC. This uses

switched capacitor techniques rather than resistors to implement the circuit resistor

function.

The binary weighted current DAC uses the same basic architecture as the binary

weighted resistor DAC, except now the resistors have been replaced with constant

current sources. The basic idea is shown in the circuit diagram in Figure 8.11. This

produces a variable input (current) to a current-to-voltage converter (I-V) converter,

which is an op-amp with a feedback resistor. The output voltage from the op-amp is

proportional to the current flowing through the resistor R. In this implementation, a

logic 1 digital input control to the switch connects the switch to the op-amp inverting

node, and a logic 0 connects the switch to the op-amp noninverting node. The constant

current source is created using a transistor currentmirror. In this arrangement, the LSB

is controlled by switch bn and the MSB is controlled by switch b1.

vout

–

+2R4R2nR

VREF

b1b2bn
0

0V

R

Figure 8.10: Binary weighted resistor DAC

Interfacing Digital Logic to the Real World 557

www.newnespress.com

TheR-2R ladderDACuses a combination of resistors in aR-2R arrangement to produce

the current input to an op-amp based I-V converter. The basic idea is shown in the circuit

diagram in Figure 8.12. This produces a variable output voltage dependent on the switch

positions. In this implementation, a logic 1 digital input control to the switch connects the

switch to the common node, and a logic 0 connects the switch to the VREF node. In this

arrangement, the LSB is controlled by switch bn and theMSB is controlled by switch b1.

The segmented resistor string DAC is a modification of the resistor string DAC. This

consists of two resistor strings, a coarse string as in the resistor string DAC and a fine

resistor string that subdivides the voltage step created by the coarse string.

The current steering DAC uses current mirrors and switches to switch a current

around the circuit. This produces an output current that can be converted to a voltage

using an I-V converter.

The sigma-delta (�D) DAC is an example of an oversamplingDAC. It uses oversampling

and interpolation to produce the requirements of an n-bit DAC. The design consists

vout

–

+2R2R2R

VREF

b1b2bn
0

0V

R

RRRR

Figure 8.12: R-2R ladder DAC

vout

–

+

VREF

b1

0V

R

b2bn

IFS/2IFS/4IFS/2n

Figure 8.11: Binary weighted current DAC

558 Chapter 8

www.newnespress.com

of a digital interpolation filter, a digital modulator, and usually a one-bit DAC to

produce the n-bit DAC. The output of the�DDAC is a bitstream pattern that then must

be low-pass filtered. A�DDAC is similar to a�DADC, except that the noise shaping in

the DAC is performed using a digital modulator rather than an analoguemodulator. The

basic architecture of a one-bit �D DAC is shown in Figure 8.13.

The input to the digital interpolation filter is at the Nyquist rate (FN), which is then

increased toproduce a digital signal at the update frequency (fS). This is applied to a digital

�Dmodulator, which produces a one-bit digital output at the update frequency (fS). The

one-bit digital output is then converted to the analogue signal levels by a one-bit DAC.

8.2.4 DAC Control Example

An FPGA or CPLD could be used to control the DAC to create an analogue output

signal. Consider the AD7524 DAC (from Analog Devices Inc.) [7]. This is an eight-bit

multiplying DAC consisting of a thin film R-2R ladder network and n-channel (nMOS

transistor) current switches in a single device. The functional diagram for this DAC is

shown in Figure 8.14. The eight digital inputs control the position of switches S1 to S8.

This is turn directs the current flow from the reference voltage (VREF) to either OUT1

or OUT2 node. The operation of the DAC is controlled by two control inputs

/CS (Chip Select, active low signal) and /WR (Write, active low signal). The switches

are used to select the appropriate node to connect the end of the appropriate 20 k�

resistor to when the particular data logic level is either 0 or 1.

The DAC has two modes of operation:

1. Hold mode, which holds the value of the last digital data input on DB7-DB0 at a

time prior to either /WR or /CS control inputs, assuming a high (logic 1) state.

The digital data input is latched, and the analogue output remains static.

Digital
interpolation

filter

Digital
ΣΔ

modulator

1-bit
DAC

Analogue
low-pass

filter

n-bit
digital

data @ fN

n-bit
digital

data @ fS

1-bit
digital

data @ fS

2-level
analogue

signal

Analogue
output

Figure 8.13: One-bit sigma-delta (SD) DAC

Interfacing Digital Logic to the Real World 559

www.newnespress.com

2. Write mode, in which, when both /WR and /CS are low, the analogue output

responds to the digital data input on DB7-DB0 and acts like a nonlatched DAC.

The timing diagram for the write mode is shown in Figure 8.15. To write a value to the

DAC, initially the /CS and /WR control signals are high and the data can change.

The /CS control signal goes low first, then the /WR signal goes low. The data input

10 kΩ 10 kΩ10 kΩ

20 kΩ 20 kΩ 20 kΩ 20 kΩ

10 kΩ

20 kΩ

VREF

OUT2
OUT1

DAC Interface Logic and Data Latches
CS

WR

S1 S2 S3 S8

RFEEDBACK

DB7 DB6 DB5 DB4 DB3 DB1 DB0B2
(MSB) (LSB)

Digital data input

Figure 8.14: AD7524 eight-bit DAC functional diagram. Figure adapted from the
AD7524 datasheet. Copyright ª Analog Devices, Inc. Used with permission.

/CS

/WR

Input data
DB7 – DB0

Data is
stable

Data can
change

Data can
change

Figure 8.15: Write mode timing diagram. Figure adapted from the AD7524
datasheet. Copyright ª Analog Devices, Inc. Used with permission.

560 Chapter 8

www.newnespress.com

must then become stable (i.e., does not change). When the /WR signal goes high,

the data is latched into the DAC. The /CS then goes high and the DAC is then ready

to latch a new data value.

With this architecture, the DAC produces two output currents that are externally

converted to a single output voltage using an op-amp (as an I-V converter). A typical

arrangement is shown in Figure 8.16. Here, both outputs are connected to the inputs

of a suitable op-amp. (The datasheet provides a choice of suitable op-amps to use with

this particular DAC.) The output OUT2 is also connected to the common (0V) node.

A CPLD could be configured to provide the data and control signals for the DAC.

The block diagram shown in Figure 8.17 has a register that stores the data to apply to

the DAC and a counter with decoded outputs to provide the DAC control signals and

an internal register Update (data store) signal. The operation of the control signals is

synchronized to the input clock signal (with a frequency suited to the update

frequency of the DAC so that the timing requirements of the DAC are not violated).

VREF

RFEEDBACK

CS WR

DB7
|
|

DB0

OUT1

OUT2

–

+

VOUT

+VS

–VS

Figure 8.16: Typical arrangement for single-ended output voltage creation. Figure adapted
from the AD7524 datasheet. Copyrightª Analog Devices, Inc. Used with permission.

8-bit
register

Controller
(counter)

Update

Data_In(7:0) Data_Out(7:0)

CS

WR

Reset

Clock

Figure 8.17: Example digital controller for the AD7524 DAC

Interfacing Digital Logic to the Real World 561

www.newnespress.com

The clock controls a counter with the states decoded to produce the control signals, as

shown in Table 8.7. The counter resets (asynchronous, active low) to state 0. When

the counter is in state 4, the next state will be state 0.

The VHDL code to achieve this is shown in Figure 8.18. This description uses

processes to create the register, counter, and counter output decoding operations.

Table 8.7: Counter decoding

Counter state Update CS WR

0 0 1 1
1 1 1 1
2 0 0 1
3 0 0 0
4 0 0 1

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY AD7524_Controller IS
 PORT (Clock : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Data_In : IN STD_LOGIC_VECTOR (7 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (7 downto 0);
 CS : OUT STD_LOGIC;
 WR : OUT STD_LOGIC);
END ENTITY AD7524_Controller;

ARCHITECTURE Behavioural OF AD7524_Controller IS

SIGNAL Count : STD_LOGIC_VECTOR(2 downto 0);
SIGNAL Update : STD_LOGIC;

BEGIN

PROCESS (Update, Reset, Data_In)
BEGIN
 If (Reset = '0') Then
 Data_Out(7 downto 0) <= "00000000";
 ElsIf (Update'event and Update = '1') Then
 Data_Out(7 downto 0) <= Data_In(7 downto 0);

 End If;

END PROCESS;

Figure 8.18: VHDL code for DAC controller

562 Chapter 8

www.newnespress.com

Figure 8.19 shows an example VHDL test bench for simulating the design. This

creates a clock signal and a reset signal. The clock signal has a period of 20 ns,

although in reality this would be too short a time for the DAC to react. However,

here with no circuit implementation (gate and interconnect) and DAC timing

PROCESS (Count)
BEGIN

 If (Count = "000") Then
 Update <='0'; CS <= '1'; WR <= '1';
 ElsIf (Count = "001") Then
 Update <='1'; CS <= '1'; WR <= '1';
 ElsIf (Count = "010") Then
 Update <='0'; CS <= '0'; WR <= '1';
 ElsIf (Count = "011") Then
 Update <='0'; CS <= '0'; WR <= '0';
 ElsIf (Count = "100") Then
 Update <='0'; CS <= '0'; WR <= '1';
 Else
 Update <='0'; CS <= '1'; WR <= '1';
 End If;

END PROCESS;

END ARCHITECTURE Behavioural;

PROCESS (Clock, Reset)
BEGIN

 If (Reset = '0') Then

 Count(2 downto 0) <= "000";

 ElsIf (Clock'event and Clock = '1') Then

 If (Count = "100") Then
 Count <= "000";
 Else
 Count <= Count + 1;
 End If;

 End If;

END PROCESS;

Figure 8.18: (Continued)

Interfacing Digital Logic to the Real World 563

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_AD7524_Controller_vhd IS
END Test_AD7524_Controller_vhd;

ARCHITECTURE Behavioural OF Test_AD7524_Controller_vhd IS

COMPONENT AD7524_Controller
PORT(
 Clock : IN STD_LOGIC;
 Reset : IN STD_LOGIC;
 Data_In : IN STD_LOGIC_VECTOR (7 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (7 downto 0);
 CS : OUT STD_LOGIC;
 WR : OUT STD_LOGIC);
END COMPONENT;

SIGNAL Clock : STD_LOGIC := '0';
SIGNAL Reset : STD_LOGIC := '0';
SIGNAL Data_In : STD_LOGIC_VECTOR (7 downto 0) := (others=>'0');

SIGNAL Data_Out : STD_LOGIC_VECTOR(7 downto 0);
SIGNAL CS : STD_LOGIC;
SIGNAL WR : STD_LOGIC;

BEGIN

uut: AD7524_Controller PORT MAP(
 Clock => Clock,
 Reset => Reset,
 Data_In => Data_In,
 Data_Out => Data_Out,
 CS => CS,
 WR => WR);

Reset_Process : PROCESS

BEGIN
 Wait for 0 ns; Reset <= '0';
 Wait for 5 ns; Reset <= '1';
 Wait;
END PROCESS;

Clock_Process : PROCESS

BEGIN
 Wait for 0 ns; Clock <= '0';
 Wait for 10 ns; Clock <= '1';
 Wait for 10 ns; Clock <= '0';
END PROCESS;

END ARCHITECTURE Behavioural;

Figure 8.19: VHDL test bench for DAC controller

564 Chapter 8

www.newnespress.com

considerations taken into account, the basic functionality of the VHDL code design

can be simulated.

The last point to note is that the AD7524 was designed to operate on a þ5V power

supply for TTL logic compatibility. As such, the choice of FPGA or CPLD requires

either a device with the same power supply and logic voltage levels or use of a

level-shifting circuit for matching the logic voltage levels.

8.3 Analogue-to-Digital Conversion

8.3.1 Introduction

The ADC, or A/D converter, is an electronic circuit that provides a link between the

analogue and digital domains. The device accepts an analogue input signal (voltage or

current) and produces a digital output. This analogue value can also be either a single-

ended signal (single-node connection referenced to the common node, a ground or 0V)

or a differential signal (two-node connection where the difference between the two

nodes is the output signal).

The basic arrangement for the ADC is shown in Figure 8.20. Here, the input is a

singled-ended signal. All voltages are referenced to a common node.

The ADC may also include input circuitry to store an analogue input (a sample-and-

hold circuit) to store a single-input signal value at a particular point in time while the

input continuously changes. The number of output data bits (n) is usually between

Data (n – 1)

Data 0

Analogue reference signal

Analogue
input

signal

n-bit
digital
data
output

Digital control input

Digital control output

Figure 8.20: Basic ADC arrangement

Interfacing Digital Logic to the Real World 565

www.newnespress.com

8 and 24 bits, which produces a number of possible codes that the ADC can produce,

as shown in Table 8.8.

The number of bits to use will depend on the particular application. For example,

8 to 12 bits of digital input are common for control applications, 16 to 24 bits for test

and instrumentation purposes, and 22 to 24 bits for audio applications. As the

number of bits increases, be careful to ensure that the manufacturing process

variations do not cause problems.

The device will also accept digital control input signals. These are used to control

ACD operation to enable the device to be selected, usually with a chip select (CS)

signal that is either active high (CS) or active low (/CS). This function may also act as

a control signal to start a conversion of the analogue input to produce the digital

output. In addition to the CS signal, a data read (RD) signal is also either active high

(RD) or active low (/RD)). The timing of these signals is important and must not be

violated, otherwise incorrect ADC operation will occur. This timing data is located in

the device datasheet. In addition to these two basic control signals, some ADC

architectures require additional control signals such as a master clock signal for

control of internal sequential logic circuits within the ADC.

Some ADCs also include digital control output signals. Typical is a digital output that

indicates that a conversion has completed. This can be used by an external digital

circuit to control the reading of the ADC digital data output.

The final input to the ADC is the analogue reference signal. This is a DC voltage or

current that sets the input voltage or current range of the ADC. This might be a

Table 8.8: ADC output codes for
number of output data bits

Number of bits (n) Number of codes (2n)

8 256
10 1024
12 4096
14 16,384
16 65,536
18 262,144
20 1,048,576
22 4,194,304
24 16,777,216

566 Chapter 8

www.newnespress.com

unique input to the ADC, in which case the user can set the value of the analogue

reference signal to fit his or her own circuit design requirements, or the reference

signal will be connected to the power supply voltage and not adjustable by the user.

The datasheet for the particular ADC will provide the required information on the

creation and use of this analogue reference signal.

Other inputs to the ADC that are not shown on the symbol are the power supply

connections. The power supply provides the power for both the digital and analogue

circuitry within the device. The digital and analogue circuitry may be powered from a

single power supply input, or may have their own unique power supply pins (VDD and

VSS). Additionally, the power supply may be a single fixed value or may be adjustable

within limits by the user.

The key characteristics to consider for DAC choice and use are:

• input range (voltage or current)

• parallel or serial data read

• power supply voltage

• voltage or current input

• signal ended or differential input

• ADC architecture

• device packaging

• operating temperature range

• performance

These requirements are the same as for the DAC, except now the input rather

than the output is an analogue signal. The performance also includes the time

required to convert the analogue input before the digital output becomes a valid

representation of the analogue input. The speed of conversion depends on the ADC

architecture, so the architecture determines the types of applications appropriate

for the converter.

As with the DAC, the ADC can be provided for in a range of packages. For example,

Figure 8.21 shows an example ADC and the types of pin connections required in a

plastic DIL package type.

Interfacing Digital Logic to the Real World 567

www.newnespress.com

8.3.2 ADC Characteristics

The ADC analogue input (voltage or current) can vary from a set minimum value to a

set maximum value to provide a valid digital output representation of the analogue

input. Any analogue input that exceeds these limits (both positive and negative

inputs) can damage the ADC as well as saturate the output at a minimum or

maximum digital output value. It is common for the ADC output to be an unsigned

binary value, although (particularly for bipolar operation) the digital output might

also be provided in signed binary (2s complement) representation.

The digital output is a discrete level signal with a value that represents a range of

analogue input signal levels. As such, there will be a quantization of the analogue input

signal. The ADC creates a quantization error that results from the conversion of

the infinitely variable analogue input signal to a discrete level output signal. This

quantization error will be important to the choice of the ADC resolution (number of

bits). The higher the resolution of the ADC for a given input signal range, the smaller

the quantization error as the number of possible output codes for the given input signal

range increases. This effect is sometimes referred to as a many-to-one mapping.

The conversion process can be considered with the generalized form shown in

Figure 8.22. In this model, two main operations are identified, the sampling operation

and the quantization operation.

The analogue input signal is sampled using an ideal sampling block at a sampling rate

(sampling frequency) of fS Hz. The process converts a continuous time signal into a

discrete time signal. The sampled signal is then fed to a quantization block that

produces the digital output x(n) where n indicates the sample number, as well as

process produces quantization noise.

Both ideal and real characteristics of the ADC must be considered. An ideal ADC

identifies the operation of the ADC when all values are set to their designed (or ideal)

Control signals

Analogue input signal

Digital output signal

Analogue
reference signal

Power supply

Figure 8.21: ADC in a DIL package

568 Chapter 8

www.newnespress.com

values. However, due to manufacturing tolerances of the ADC circuitry, real ADC

operation deviates from the ideal. In this case, the ADC maximum deviation is

defined in the ADC data sheet and guaranteed by the manufacturer. To understand

the operation of the ADC, it is common to begin by considering the ideal ADC and

then identify how a real ADC could deviate from this.

Consider a three-bit ADC (for simplicity) with an input voltage that ranges from 0V

toþ5.0Vandanunsignedbinaryoutputcode.This isaunipolarADCwhose inputvoltage

ranges from 0V to the full-scale voltage (VFS). The output code ranges from 0002 (010) to

1112 (710). The ideal ADC transfer curve, the input voltage�output code relationship, is

shown in Figure 8.23. In this view, the input signal conversion range (from the minimum

inputvoltagevalue0V to themaximuminputvoltagevalueVFS) is divided into2
n,wheren

is the ADC resolution (number of output bits) equal segments, and the point at which the

output code moves from one value to the next value falls in the middle of each segment

(except for the end points). For a three-bit ADC, the voltage range is split into eight equal

segments. For an eight-bit ADC, the voltage range is split into 256 equal segments. A

change in 1 LSB of the input voltage creates a step change in the output code of 1 bit. For

each 1 LSB step change in the input voltage, the voltage level range is given by:

VLSB ¼ 2�n � VFSð Þ
VLSB ¼ 2�3 � 5:0

� �
VLSB ¼ 0:125� 5:0ð Þ ¼ 0:625V

The width of a segment is 1 LSB. The point at which the output code changes from

one value to the next is the code transition point. When the output code is 0002,

the code changes to 0012 in the middle of the segment, and the width of this

Analogue
input
x(t)

Digital
output
x(n)

Sampling

Quantization

Sample rate fS = 1/T

Quantization noise

Figure 8.22: Generalized A/D conversion

Interfacing Digital Logic to the Real World 569

www.newnespress.com

code is ½ LSB. When the output code is 1102, the code changes to 1112 in the middle

of the segment, and the width of the final code is 1½ LSBs. For an ideal ADC, the

corner points at the code transition points can be joined with a straight line. Nonideal

converters have characteristics that deviate from this straight line.

The input voltage transition point to output code values are shown in Table 8.9.

111

110

101

100

011

010

001

000

0 VFS
/4 VFS

/2 3VFS
/4 VFS

Input voltage

Output code

Code transition point

Ideal straight line linking
transition points

Figure 8.23: ADC transfer curve

Table 8.9: Ideal three-bit ADC input voltage to output code mapping
(1 LSB50.625V)

Code transition point Input voltage at code
transition point (V)

Output code
(binary)

Output code (decimal
equivalent)

Minimum input voltage 0.0 000 0
1st code transition point 0.3125 001 1
2nd code transition point 0.9375 010 2
3rd code transition point 1.5625 011 3
4th code transition point 2.1875 100 4
5th code transition point 2.8175 101 5
6th code transition point 3.4375 110 6
7th code transition point 4.0625 111 7
Full-scale voltage 5.0 111 7

570 Chapter 8

www.newnespress.com

As the resolution (number of bits) of the converter increases and the operating voltage

range of the ADC decreases, the LSB step size (voltage or current) will decrease.

The effect of this is that the analogue signal levels become the same order of value

as the noise generated in the circuit, and the inevitable manufacturing process

variations have a more significant impact, leading to problems with design and

ultimate use of these converters. Unwanted circuit effects not seen with the lower-

resolution data converters are then seen with the higher-resolution data converters.

The characteristics of the ADC are categorized into three types of parameters—static

(DC) parameters, transfer curve parameters, or dynamic parameters—whose details

are specified in the tables that follow.

The static (DC) and transfer curve parameters are closely related and are considered

here together in Table 8.10.

Table 8.10: Static (DC) and transfer curve parameters

Parameter
number

Parameter
name

Parameter description

1 DC gain error A measure of the deviation of the slope of the straight-line
approximation of the actual converter output from the ideal
converter straight-line output. The best-fit straight-line
approximation is used for the actual converter straight-line
approximation.

2 Offset The deviation of the first code transition point from the expected.
The ideal converter or best-fit straight-line approximation is
used. This is normally quoted in LSBs.

3 Integral
nonlinearity
(INL)

A measure of the deviation of the actual converter code transition
point from the straight-line approximation for each code. The
best-fit straight-line approximation is used. This is normally
quoted in LSBs.

4 Differential
nonlinearity
(DNL)

The difference between the width (range of input signal) between
converter output code changes and an ideal step size of 1 LSB. For a
given input code, the output step size is taken between the current
input code and the previous code. This is normally quoted in LSBs.

5 Monotonicity The output code should increase with an increase in input signal;
this is a monotonic ADC. A nonmonotonic ADC has an output
code that decreases (at particular codes) as the input signal
increases.

6 Missing
codes

The converter output (digital) should generate 2n codes where n is
the resolution of the converter. Problems may occur within the
converter where certain codes are not generated.

Interfacing Digital Logic to the Real World 571

www.newnespress.com

The static and transfer curve tests do not look at the dynamic operation of the

ADC and the effects of signal changes and frequency related effects. The dynamic

parameters, identified in Table 8.11, describe these effects.

8.3.3 Types of ADC

A number of architectures have been developed for the ADC, and each of which

provides its own unique operating characteristic and limitations. Any given ADC,

regardless of architecture, falls into one of two categories:

• Nyquist rate ADC

• oversampling ADC

With the Nyquist rate ADC, the input signal bandwidth is equal to the Nyquist

frequency. The Nyquist frequency is ½ the ADC sampling frequency (the ADC

sampling frequency being the Nyquist rate).

With the oversampling ADC, the converter sampling frequency is much greater

than theNyquist rate. Typical values of oversampling ratio (OSR) are 64, 128, and 256:

OSR ¼ ðfS=2 � fNÞ

where fS is the sampling frequency of the ADC and fN is the Nyquist frequency.

Table 8.11: Dynamic parameters

Parameter
number

Parameter
name

Parameter description

1 Conversion
time

There must be a guaranteed maximum conversion time (time from
start of conversion to conversion completed).

2 Recovery
time

Some ADCs require a minimum time after a conversion has been
completed before the next conversion may start.

3 Sampling
frequency

Testing of ADC at maximum sampling frequency and ensuring that
no errors occur.

4 Aperture
jitter

Variations in the sampling period cause an error in the digitized
value. Aperture jitter will add noise to the digitized signal.

5 Sparkling Results from digital timing race conditions. The ADC occasionally
produces an output with a larger than expected offset error.

572 Chapter 8

www.newnespress.com

For an ADC, the Nyquist frequency is half the minimum sampling frequency of

the ADC required to reconstruct fully the original signal from the sampled

signal. This means that no information has been lost in the sampling process. The

Nyquist rate is when the sampling frequency is twice the bandwidth of the signal to

sample.

The main available ADC architectures are:

• successive approximation ADC

• integrating ADC

• ramp ADC

• flash ADC

• sigma-delta (�D) ADC

The successive approximation ADC, shown in Figure 8.24, is commonly found in the

implementation of 8- to 16-bit ADCs. This is for a voltage input ADC, and the

architecture for this n-bit ADC uses the following main building blocks:

1. Sample-and-hold circuit. A control signal to this circuit allows the circuit to

sample an input voltage at an instant in time and store this signal. The voltage

is stored as a charge on a capacitor.

2. Comparator. This compares the stored input voltage to a feedback voltage

created by an n-bit DAC in the feedback loop. The comparator is a logic

level, 0 or 1, dependent on whether the sampled voltage is less than or greater

than the DAC output voltage.

Successive
Approximation

Register (SAR)

Sample
and hold +

–

n-bit
DAC

VIN

Input
Voltage

Comparator EOC

Digital
output
data

Figure 8.24: Successive approximation ADC architecture

Interfacing Digital Logic to the Real World 573

www.newnespress.com

3. N-bit DAC. This uses the output of a digital logic block, the successive

approximation register, which produces the digital output from the ADC.

4. Successive approximation register (SAR). The SAR increments or decrements

the digital output data in a binary search pattern depending on the value of

the comparator output.

This ADC requires additional control input to initiate or start a conversion, along

with clock and reset inputs (to clock and reset the circuitry within the SAR). It will

typically produce an EOC (End of Conversion) signal to indicate the end of conversion

has occurred and that the digital output data is valid to read.

The integrating ADC applies the input voltage to an analogue integrator circuit, as

shown in Figure 8.25, and applies the output of the integrator to the input of a

comparator. The integrator input is actually switched between the input signal for a

set time, then to a reference voltage (�VREF) for a set time. By comparing the output

of the integrator to 0V, the comparator produces an output that is either a logic 0 or 1,

depending on the result of the comparison. This comparator output produces a

control input to a control logic block that continues to count until the integrator

output falls to zero. The result of the counter is the ADC output and is stored in an

output register.

The ramp ADC is a simple ADC with what might initially seem like a similar

architecture to the successive approximation ADC, except now the DAC input code

within the ADC is a simple ramp produced by a binary counter. The basic

architecture is shown in Figure 8.26. The counter clock is ANDed with the main clock

+
–

Comparator

VIN
IntegratorSwitch

Control
logic

Output
register

–VREF

Digital output code

Figure 8.25: Integrating ADC

574 Chapter 8

www.newnespress.com

input to control the count. As long as the input voltage is less than the DAC-

generated voltage, the comparator output is a 1 and the counter increments, thereby

incrementing the DAC output voltage. As soon as the DAC-generated voltage

exceeds the input voltage, the comparator output becomes a 0 and the counter stops

counting. The AND gate output can also be used to indicate an EOC.

The flash ADC is a fast converter in which the analogue input is applied to a resistor

string and comparator array [8]. The basic converter architecture is shown in

Figure 8.27 for an n-bit ADC. The input signal (VIN) is applied to one input of a

comparator, with the other input derived from taps from a resistor string. Each

comparator output changes at a different input voltage level set by the reference

voltage (VREF). The output from the comparator array is a thermometer code. The

comparator output (digital) is passed through a combinational logic block that

creates the binary output signal. Although this ADC is fast, suited for high-

frequency applications such as radar, it needs a large number of resistors and

comparators: for an n-bit ADC, 2n resistors and 2n�1 comparators are required.

Resistor tolerances must also be taken into account (i.e., fabrication process

variations), so flash ADCs are restricted to lower-resolution converters. The

comparator array creates a thermometer code output, which is then encoded using

combinational logic to produce a binary output. This is shown in Table 8.12 for a

three-bit ADC.

The sigma-delta (�D) ADC is an example of an oversampling ADC [9]. It uses

oversampling and decimation to produce the requirements of an n-bit ADC. The

design consists of an analogue �Dmodulator followed by a digital decimator. The �D

n-bit
binary

counter

Sample
and hold +

–

n-bit
DAC

VIN

Input
voltage

Comparator

EOC

Digital
output
data

Clock

Digital output code

Figure 8.26: Ramp ADC

Interfacing Digital Logic to the Real World 575

www.newnespress.com

modulator usually has a one-bit (two-level) output and samples the analogue signal at

the sampling frequency (fS). The basic arrangement is shown in Figure 8.28. The

analogue input to the ADC is sampled before application to the �D modulator. Here,

the �D modulator produces a one-bit digital output, and the decimator consists of

Comparator
array

Resistor
string

VREF

3R/2

R

R

R

R/2

Xm – 1

dn–1

d0

Xm – 2

Thermometer
code

to
binary

encoding

Digital
output
code

X1

X0

VIN

Figure 8.27: Flash ADC architecture

Table 8.12: Three-bit flash ADC thermometer code
to binary output

X6 X5 X4 X3 X2 X1 X0 d2 d1 d0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0 1 0
0 0 0 0 1 1 1 0 1 1
0 0 0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 1
0 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

576 Chapter 8

www.newnespress.com

a digital low-pass filter followed by sample rate reduction down to the Nyquist rate. It is

commonalso topass the analogue input througha low-pass filter to avoid aliasing effects.

8.3.4 Aliasing

When a signal is sampled by an ADC, the minimum sampling frequency (fS) required

is twice that of the maximum frequency in the signal (fO). If the signal frequency

increases above this frequency (i.e., fO> fS/2), then aliasing of the signal can occur

[10]. A sampling frequency of, for example, 48 kHz would restrict the signal frequency

range from 0Hz (DC) to 24 kHz. The effect of not sampling at a high enough

frequency is that a high-frequency input signal appears in the sampled signal as a

low-frequency signal. This problem results from undersampling the signal, when the

sampling frequency is less than twice the maximum signal frequency.

To avoid aliasing, an anti-aliasing filter is used at the analogue input of the ADC.

This arrangement is shown in Figure 8.29. Here, the anti-aliasing filter is an analogue

low-pass filter (usually an op-amp based filter) with a suitable cut-off frequency and

filter order (first order, second order, third order, etc.) to ensure that any frequencies

above half of the ADC sampling frequency are suitably attenuated.

Analogue ΣΔ
modulator

n-bit
digital

data @ fN
Analogue
Input @ fS

Decimator

1-bit
digital

data @ fS

Analogue
low-pass

filter

Sample

Analogue
Input

Sigma-Delta (ΣΔ) ADC

Figure 8.28: Sigma-delta (SD) ADC architecture

Interfacing Digital Logic to the Real World 577

www.newnespress.com

The anti-aliasing filter is an analogue low-pass filter with characteristics that are based on

the type of filter and the filter order. An ideal low-pass filter is considered to pass a signal

frequency below the filter cut-off frequency and block signal frequencies above the

cut-off frequency. The amplitude (magnitude) Vs frequency plot for this ideal filter is

shown in Figure 8.30. The transition from the passband to the stopband is at a single

frequency, commonly referred to as a brick wall response because of its shape. However,

both the output signal magnitude and phase will be of interest to the filter designer.

The amplitude axis is presented in dB with the low-frequency response at 0 dB. This

represents the output signal amplitude being the same amplitude at the input signal. A

practical low-pass filter response does not have the ideal response with a transition at

a single frequency. There will be a transition region, as shown in Figure 8.31.

The filter design must provide the necessary attenuation of the signal in the stopband

with a suitable width transition region, and will be one of the following filter

types [11]:

0 dB

Passband Stopband

Frequency

Amplitude

Figure 8.30: Ideal low-pass filter

n-bit ADC
Low-pass

filter

Digital
output
code

Analogue
input

voltage

Low-pass filtered
analogue voltage

Anti-alias filter

Figure 8.29: Anti-aliasing filter

578 Chapter 8

www.newnespress.com

• Bessel filter

• Butterworth filter

• Chebyshev filter

• elliptic filter

The choice depends on the filter design requirements and the shape of the filter

response (in both the passband and stopband), as well as ensuring that the resulting

size of filter (typically implemented using op-amps, resistors, and capacitors) is not

too large and costly. An example of a filter commonly used for anti-aliasing is the

second-order Sallen & Key filter. This uses one op-amp, four resistors, and two

capacitors, as shown in Figure 8.32. In this circuit, the passband gain of the filter is set

R1 R2

C2

C1

RA

RB

VIN VOUT

+
–

Figure 8.32: Second-order Sallen & Key filter

0 dB
–3 dB

Passband

Frequency

Amplitude

Stopband

Transition region

Figure 8.31: Practical low-pass filter

Interfacing Digital Logic to the Real World 579

www.newnespress.com

by resistors RA and RB. When this gain is set to 1.586 (+4dB), the filter produces a

second-order Butterworth response. However, it is possible to set the gain to other

values, and if the resistors are omitted and the output is connected directly to the

op-amp inverting input, then the op-amp is configured as a unity gain buffer and the

passband gain is 1.0 (0 dB).

8.4 Power Electronics

8.4.1 Introduction

Devices such as FPGAs and CPLDs operate at low voltage levels (5V and lower)

and at low current levels (mA to mA). These are considered low-power devices as they

are not designed to operate at high-voltage and/or high-current levels. However, in

many situations, low-power devices must control large electrical loads such as DC

motors, AC motors, stepper motors, and audio amplifiers. High-power electronics

[12–14] will need to interface the loads to the low-power electronics. The high-power

circuit components considered here are the:

• diode

• power transistor

• thyristor

• gate turn-off thyristor

• asymmetric thyristor

• triac

Each component type has a particular set of characteristics and use within an

electronic system. Low-power and high-power devices are interfaced either by direct

electrical connection or through an opto-isolator, as show in Figure 8.33.

The opto-isolator connects the electronics using an optical link rather than an

electrical link, so it electrically isolates the electronics but allows for signals to be

transferred by the optical link. This is particularly useful for situations where high

voltage levels in the high-power electronics must be electrically isolated from the

low-power electronics, and where high-power electronics and electrical load create a

substantial amount of electrical noise that could interfere with the operation of the

low-power electronics.

580 Chapter 8

www.newnespress.com

8.4.2 Diodes

The diode is a two-layer, two-terminal semiconductor device. When n-type and p-type

semiconductor material are joined together, this forms a PN junction, which is

referred to as a diode. The semiconductor diode operates to allow current to flow

through it in one direction but not the other. The basic structure and circuit symbol

for the semiconductor diode are shown in Figure 8.34. The two terminals are named

the anode (A) and the cathode (K).

Conventional current flows through the diode from the anode to the cathode (the

electrons flow from the cathode to the anode). The current carriers in p-type

semiconductors are the holes, whereas the current carriers in n-type semiconductors

are the electrons. Normal diffusion at the junction of the two materials will cause

p

n

Anode

Cathode Cathode

(a) Structure (b) Circuit symbol

Anode

I

Vd

Figure 8.34: Semiconductor diode

Low-power
electronics

High-power
electronics

Electrical
load

(a) Direct electrical connection

Low-power
electronics

High-power
electronics

Electrical
load

Opto-
isolator

(b) Connection via an opto-isolator

Figure 8.33: Connecting the electronics

Interfacing Digital Logic to the Real World 581

www.newnespress.com

some of the holes to drift into the n-type material and some of the electrons to

drift into the p-type material. This creates a small charge across the junction that

repels any further diffusion of holes and electrons. The charged region at the

junction is referred to as the depletion region or barrier region. The operation of

the diode is considered when either the diode is forward biased or reverse biased,

as shown in Figure 8.35. Here, a voltage (V) is applied, and the current (I) can be

measured.

Typical applications for the semiconductor diode include AC signal rectification

in power supplies, peak detector circuits, signal level clamping (to prevent a

signal voltage level from exceeding a safe level, called circuit input protection),

telecommunications, and inductive circuit back EMF catch circuits (to remove

large voltages created by a rapidly changing current in an inductor).

When the diode is forward biased, this has the effect of reducing the depletion region.

If the diode is sufficiently biased (by a suitably high value of V), then current (I) starts

to flow. If however, the diode is reverse biased, this has the effect of increasing the

depletion region and this prevents the flow of current.

An ideal diode conducts only when the diode is forward biased, and then the voltage

drop across the diode (Vd) is zero. When the ideal diode is reverse biased, no current

flows.

In a real diode, when the diode is forward biased, there is a finite voltage drop (Vd) across

the diode: approximately 0.6V for a silicon diode and approximately 0.4V for a

germanium diode. With any applied voltage below this value, there will be no current

flow. When a real diode is reverse biased, there will be a small but finite leakage current.

The current-voltage (I-V) characteristic of the silicon diode is shown in Figure 8.36.

Forward biased Reverse biased

+ +

V V

I I

Vd Vd

Figure 8.35: Semiconductor diode operation

582 Chapter 8

www.newnespress.com

When forward biased, the diode equation is given by:

I ¼ Is � eq�V=K�T � 1
� �

where I is the current flowing in the diode, Is is the saturation or leakage current

(typically in the order of 10�14 A), V is the voltage across the diode (i.e., Vd), q is the

charge on an electron, k is Boltzman’s constant, and T is the absolute temperature (in

degreesKelvin). For a circuit operating around 20�C, k.T/q is usually taken to be 25mV.

Variations on the semiconductor diode commonly found in electronic circuits are the

Zener diode, the light-emitting diode (LED), and the photodiode.

If the reverse bias voltage exceeds a maximum value, the breakdown voltage, the

diode will conduct current and an excessive current flow can destroy the device. This

is called avalanche breakdown. A second form of breakdown, tunneling (or Zener)

breakdown, can also occur.

The Zener diode has a controlled reverse breakdown voltage. Tunneling or Zener

breakdown occurs when the control voltage is exceeded. The symbol for the Zener

diode is shown in Figure 8.37. The Zener diode is used in applications such as power

supplies and voltage reference circuits.

I

Vd

Forward
Biased

Reverse
Biased

Breakdown
voltage

Ideal Diode
Characteristic

V

I

0.6 V

Figure 8.36: Semiconductor diode characteristic (forward biased
and reverse biased scales not equal)

Interfacing Digital Logic to the Real World 583

www.newnespress.com

The LED is a diode that causes the device to emit light when current flows through it

(forward biased). The colors available are red, green, orange, blue, and white. The

symbol for the LED is shown in Figure 8.38.

A typical application for the LED is shown in Figure 8.39. Here, the LED is

connected across a circuit power supply voltage and used to indicate that the circuit

has power. The power supply voltage is þ5V DC. The forward voltage drop across

the LED is 2V (actual value depending on the particular LED), and the forward

current for standard LEDs is 20 mA (actual value depending on the particular LED).

To connect the LED to the þ5V source, the current flowing through the diode must

be limited by a suitable value resistor.

The photodiode can be used to measure light intensity as it produces a current

dependent on the amount of light falling onto the pn junction.

R VR

VD

I

VDD

If
VDD = +5 V

I = 20 mA
VD = 2 V

Then
R = 150 Ω

Figure 8.39: LED operation

Figure 8.37: Zener diode symbol

Figure 8.38: LED symbol

584 Chapter 8

www.newnespress.com

8.4.3 Power Transistors

The transistor is a three-layer, three-terminal device. It can either be a bipolar

junction transistor (BJT) or a metal oxide semiconductor field effect transistor

(MOSFET). Transistors are generally categorized by the manufacturer according to

their intended application area:

• General purpose, small-signal transistors are designed for low- to medium-

power (under 1 W) operation or for switching applications.

• Power transistors are designed for handling large currents and/or large

voltages.

• RF (radio frequency) transistors are designed for high-frequency operation

such as communications applications.

The BJT is either an NPN or a PNP transistor, shown in Figure 8.40, with three

terminals, the base, collector, and emitter. The BJT is sometimes thought of as two

diodes connected in series to produce the n-p-n or p-n-p structure.

The flow of a base current (IB) allows a larger collector current (IC) to flow. The

emitter current is the sum of the base and collector currents. The BJT acts as a current

amplifier, although in many cases, this current is passed through a resistor to produce

a voltage. By connecting the BJT with resistors (and capacitors), the resulting circuits

can provide both current and voltage amplification.

The MOSFET is either an nMOS or pMOS transistor, shown in Figure 8.41, with

three terminals, the gate, drain, and source. Some MOSFETs also have a fourth

connection, the bulk or substrate, but with a three-terminal device, the bulk is

internally connected to the source of the transistor.

The application of a voltage between the gate and source (VGS) of the MOS

transistor (a voltage greater than the threshold voltage for the transistor) allows a

drain current (ID) to flow. The gate input to the transistor is capacitive, and only

a small gate current (a leakage current in a nonideal capacitor) flows in a device.

(In simple analysis, this gate current is assumed to be zero for an ideal capacitor.)

The MOSFET uses an input voltage to control an output current. In many cases,

this current is passed through a resistor to produce a voltage. By connecting the

MOSFET with resistors (and capacitors), the resulting circuits can provide voltage

and current output.

Interfacing Digital Logic to the Real World 585

www.newnespress.com

Both BJTs and MOSFETs can be used to produce either amplifier or analogue filter

circuits (linear applications) or switching applications (nonlinear applications).

Example applications for power transistors include:

• DC motor control

• AC motor control

• stepper motor control

• audio amplifiers (the output stage of the amplifier driving the speakers)

• switched-mode power supplies

For the power transistor, the safe operating region (SOAR) specifies the safe limits of

operation for the transistor in termsof the operatingvoltages andcurrents for continuous

n

p

n

Base

Collector

Emitter

p

n

p

Base

Emitter

Collector

Base

Emitter

Collector

IB

IE

IC

Collector

Emitter

IB

IC

IE

VECVCE

VBE

VEB

Base

Figure 8.40: BJT: structure (top) and circuit symbol (bottom),
NPN transistor (left) and PNP transistor (right)

586 Chapter 8

www.newnespress.com

operation (continuous current and voltage levels) as well as for levels that exceed

the continuous operation region for a limited time period. When used as a switch

(particularly applicable for motor control), the switching ON and OFF times also

must be considered to ensure correct operation of the circuit in which the transistor

is used. If the circuit attempts to switch the transistor ON and OFF too fast, the

transistor cannot react fast enough and the result will be incorrect circuit operation.

The choice of which power transistor to use depends on a number of factors:

• availability of a transistor capable of operating to the required voltage,

current, and temperature levels

• maximum transistor power dissipation

n

p

Source

Bulk

Gate

Source

Drain

IS

ID

VGS

n

Drain
Gate

p

n

Source

Bulk

p

Drain
Gate

Gate

Drain

Source

ID

IS

VSD

VSG

VDS

Figure 8.41: MOSFET: structure (top) and circuit symbol (bottom),
nMOS transistor (left) and pMOS transistor (right)

Interfacing Digital Logic to the Real World 587

www.newnespress.com

• suitable package—the transistor package (two examples are shown in

Figure 8.42) is required to secure the transistor to the PCB or housing and to

provide a path to remove heat generated within the package

• size of the transistor

• package material (plastic, ceramic, or metal)—when metal is used in the

package casing, one of the device terminals must be electrically connected to

the package

• ON and OFF resistance—when the MOSFET is used as a switch

• cost

When the transistor is used as an amplifier, the amplifier circuit created is one of five

classes of amplifier (Table 8.13). Each class has an efficiency rating, which describes the

amount of power delivered to the circuit load (e.g., electric motor) as a percentage of the

power delivered to the amplifier. An efficiency of 100 percent means that the amplifier

does not dissipate any power (as heat), but an efficiency of 100 percent is not attainable.

TO-3 package TO-218 package

Figure 8.42: Example power transistor packages

Table 8.13: Amplifier classes

Amplifier
class

Description

Class A The transistor conducts during the complete period of the input signal. The
efficiency is low, with a maximum of 25%.

Class B The transistor conducts during one half of the input signal period. The efficiency is
higher, with a maximum of about 78%.

Class AB The amplifier operation is somewhere between Class A and Class B.

Class C The transistor conducts for less than half the period of the input signal. The
efficiency approaches 100%, but produces large distortion of the input signal.

Class D The transistor is used as a switch (ON or OFF) and produces an amplifier with good
efficiency. These are often called switching amplifiers or switch-mode amplifiers.

588 Chapter 8

www.newnespress.com

Power transistors may be used in motor control to provide motor speed, position, or

torque control. An example transistor amplifier circuit to provide speed control for a

DC electric motor is shown in Figure 8.43:

• The circuit is operated from a dual-rail power supply where þVS is positive

power supply voltage and �VS is negative power supply voltage.

• A user sets the position of the potentiometer to produce a voltage that

represents a required motor speed.

• The potentiometer output is buffered using an op-amp.

• The output of the op-amp drives a class B amplifier.

• The class B amplifier drives the DC motor.

The class B amplifier uses one NPN and one PNP transistor. When the input voltage

(output voltage from the op-amp) is positive (with respect to the common node), the

NPN transistor conducts. Current flows from the positive power supply to the

common node through the motor, and the motor turns in one direction. When the

input voltage (output voltage from the op-amp) is negative (with respect to the common

node), the PNP transistor conducts. Current flows from the common node to the

negative power supply through the motor, and the motor turns in the other direction.

The two reverse-biased diodes are connected across the transistor collector-emitter

+VS

+VS

–VS

+

–

D.C. Motor

–VS

Figure 8.43: Open-loop motor speed control

Interfacing Digital Logic to the Real World 589

www.newnespress.com

nodes and are used to protect the transistors from the high voltages that could be

produced from fast-changing currents in the inductive coils of the motor.

This is an example of an open-loop system where the voltage applied to the motor

from the controller circuit causes the motor to turn. Varying the motor voltage will

cause the motor to turn at a different speed. One potential problem with this

arrangement is that the motor speed varies with different loads connected to the

motor output shaft, even when the applied voltage is constant.

If the motor shaft speed is measured using a tachogenerator, a voltage is generated

according to the actual motor speed. If this voltage is then fed back to the controller

circuit, as shown in Figure 8.44, a closed-loop system is produced and this feedback

signal can be used to adjust the motor speed up or down automatically. Here, the

power amplifier (a triangle symbol) represents the transistor amplifier circuit. The

user input sets the required speed, and the controller circuit automatically adjusts the

motor speed to the correct value. The dynamics of the resulting control system depend

on the motor dynamics and the control algorithm used.

The control system shown in Figure 8.44 can be realized by developing a digital control

circuit with analogue input and output. The basic arrangement is shown in Figure 8.45.

Here, the CPLD implements a digital control algorithm such as proportional plus

integral (PI) control. The motor speed is set by the user with an analogue voltage. The

polarity of the command input determines the direction of motor shaft rotation, and a

magnitude determines the speed of rotation of the motor shaft.

The digital output from the controller provides the data input to an n-bit DAC. The

output voltage from the DAC is applied through an op-amp based signal conditioning

circuit, and this provides the input to a class B amplifier. The op-amp based signal

Power amplifier

Controller
circuit

User input
(speed control)

D.C.
Motor

Tachogenerator

Figure 8.44: Closed-loop motor speed control

590 Chapter 8

www.newnespress.com

User input (speed control)—
input voltage

D.C.
Motor

Tachogenerator

Circuit power
supply

CPLD
reset

CPLD
clock

Op-amp based signal
conditioning circuitry

n-bit
ADC

ADC
reference

n-bit
ADC

n-bit
DAC

Op-amp based signal
conditioning circuitry

Op-amp based signal
conditioning circuitry

ADC
reference

DAC
reference

+VS

–VS

Figure 8.45: CPLD control of a DC motor example

Interfacing Digital Logic to the Real World 591

www.newnespress.com

conditioning circuit produces an output voltage that is in a range required by the

power amplifier stage. The output from the amplifier provides the voltage and current

required to turn the motor in either direction.

A tachogenerator produces a DC voltage with a polarity determined by the

direction of motor shaft rotation, and a magnitude determined by the speed of

rotation of the motor shaft. This voltage provides the input to an op-amp based

signal conditioning circuit that modifies the tachogenerator voltage levels to the

levels required by the n-bit ADC. The ADC converts the voltage back to a digital

value, which provides a digital representation of the analogue tachogenerator

voltage.

The circuit within the CPLD provides the functions of a digital control algorithm that

controls the voltage to be applied to the motor.

Each ADC and DAC within the design requires its own reference signal (typically a

voltage).

The final part of the circuit is the power supply, which receives an available power

supply voltage and produces the power supply voltage levels required by each part of

the design.

An example commercial bipolar power transistor is the 2N3772 NPN transistor from

ST Microelectronics. This is a high-power silicon transistor housed in a TO-3 metal

case and has applications in areas such as linear amplifiers and inductive switching

applications. Table 8.14 provides the typical datasheet absolute maximum ratings for

a power transistor under different operating conditions.

Table 8.14: Typical datasheet absolute maximum ratings

Symbol Parameter Units

VCE0 Collector-emitter voltage (IE= 0) V
VCEV Collector-emitter voltage (for set non-zero value of VBE) V
VCB0 Collector-base voltage (IB= 0) V
VEB0 Emitter-base voltage (IC= 0) V
IC Collector current A
ICM Collector peak current A
IB Base current A
IBM Base peak current A
Ptot Total power dissipation at set temperature conditions (TC) W
Tstg Storage temperature �C

592 Chapter 8

www.newnespress.com

An example commercial MOS power transistor is the STF2NK60Z N-Channel

transistor from ST Microelectronics. This is a high-power silicon transistor available

in the following packages: TO-92, TO-220, IPAK, and TO-220FP. Internal to the

transistor are protection Zener diodes. Applications include low-power battery

chargers, switched-mode power supplies, and control of fluorescent lamps.

8.4.4 Thyristors

The thyristor is a four-layer, three-terminal semiconductor device used to control the

flow of current. It consists of three p-n junctions, as shown in Figure 8.46, and three

terminals named anode, cathode, and gate. Uses of the thyristor include overvoltage

(crowbar) protection of electronic circuits, motor control, domestic aids (such as

electrical kitchen aids), and voltage regulation circuits.

When turned OFF, no current (I) flows from the anode to the cathode. The thyristor

can be turned ON, or put into a conducting state, by injecting a current into the

p-type layer connected to the gate. When switched ON, it will continue to conduct

current (from the anode to the cathode) as long as the conducting current remains

above a holding current level. This is independent of the gate current.

Figure 8.47 shows a thyristor controlling the current flowing through a resistor. A

sine wave input voltage is applied as the signal to control, and current will flow when

the thyristor is in a conducting state and the conducting current remains above the

holding current level for the thyristor. For commercial devices, the datasheet provides

p

n

p

n

Anode

Cathode

Gate

(a) Structure (b) Circuit symbol

Anode

Cathode

Gate

V

I

Figure 8.46: Thyristor structure and circuit symbol

Interfacing Digital Logic to the Real World 593

www.newnespress.com

Gate current
generator

circuit

Anode

Cathode
Gate

Vth

I

R

Vin

Vr

Vin

Vr

I

Time

Time

Time

Gate current pulseGate current pulse

Figure 8.47: Thyristor controlling the flow of current through a resistor

594 Chapter 8

www.newnespress.com

this information. A gate current generator circuit generates the necessary signals to

control the operation of the thyristor. Typically, the circuit generates pulses at the

appropriate point on the input signal sine wave, in this example turning on the

thyristor at the peak of the input signal voltage. Current (I) flows as long as this

current is above the holding current level. If the load is inductive (as in electric

motors), a phase difference between the voltage and current will need to be

considered. The current will only flow from the anode to the cathode, so an AC signal

must be rectified. With this action, the thyristor is also referred to as a silicon

controlled rectifier (SCR).

The thyristor characteristics are viewed on one of two graphs:

1. Thyristor characteristic with zero gate current, Figure 8.48 shows the device

voltage (anode-to-cathode voltage) Vs current (current flow into the anode)

characteristic when the gate is not operated. Initially, with the thyristor turned

OFF, there is no conducting current and only a small forward leakage current

will flow. As the voltage across the thyristor is increased, only the small

forward leakage current will flow until the voltage reaches a value at which the

current can increase to a value (the latching current) at which the thyristor will

itself turn ON. The voltage across the thyristor drops to a forward voltage drop

level. The thyristor will continue to conduct (independent of the gate current)

as long as the forward current remains above a holding current level. When the

Forward voltage drop
(thyristor conducting)

Latching
current

Forward
leakage
current

Forward
breakover

voltage
Reverse
leakage
current

Holding
current

Reverse
breakdown

voltage

I

V

Figure 8.48: Thyristor characteristic with zero gate current

Interfacing Digital Logic to the Real World 595

www.newnespress.com

thyristor is OFF and a reverse voltage is applied across the anode and cathode,

there will be a small reverse leakage current until the applied voltage reaches a

magnitude that causes a reverse breakdown (the reverse breakdown voltage) to

occur. At this point, the current flow can dramatically increase and, if not

limited, can cause device breakdown. These voltage and current levels must be

taken into account during the circuit design to prevent unwanted circuit

operation and potential circuit failure.

2. Thyristor switching characteristic, Figure 8.49 shows the device characteristic

when the gate current is applied to turn ON the thyristor. Here, the latching

current is greater than the holding current.

An FPGA or CPLD can provide the control for a thyristor. A simple set-up, shown in

Figure 8.50, shows the CPLD providing pulses from one of its digital outputs. Here, the

circuit shows anoutput pin from theCPLDconnectingdirectly to the gate of the thyristor.

However, a current-limiting resistor in serieswith the thyristorgate (as inbipolar transistor

circuits) may be needed. This pulse signal can be created using a simple counter, with the

output of the counter states decoded to provide the necessary 0-1-0 pulse sequence.

The circuit and pulse width will need to take into account for factors:

1. The FPGA or CPLD can provide the necessary thyristor gate current and

gate voltage.

2. The gate current pulse width must consider the requirements for the thyristor

turn-on and turn-off times, and the frequency of the AC signal to control.

Latching
current

I

V

Holding
current

Figure 8.49: Thyristor switching characteristic

596 Chapter 8

www.newnespress.com

3. The point in time during the AC voltage cycle at which to create the gate pulse

signal. To create an accurately timed pulse (synchronized to the AC signal),

then the AC signal must be monitored, and the point on the signal cycle to

create the pulse is determined by the value of the monitored signal. A

comparator and DC reference voltage (the signal voltage at which to create

the pulse), with the comparator output as an input to the CPLD (and hence a

suitable digital state machine within the CPLD), provides this timing.

4. Suitable care must be taken to isolate any low-voltage and high-voltage circuits.

A way in which to isolate electrically any low-voltage and high-voltage circuits is with

an opto-isolator. This is a device that provides an optical connection between two

circuits, but an electrical isolation. The opto-isolator consists of an LED and a

phototransistor on a single package. An externally applied input signal turns the LED

ON or OFF on the input circuit. When the LED is ON, the light generated falls onto a

phototransistor, switching it ON when illuminated and OFF when not illuminated.

Anode

Cathode

Gate

Vth

I

R Vr

CPLD
power
supply

CPLD
reset

CPLD
clock

CPLD
(configured as a
digital counter)

A.C. voltage
supply to
control

Common (0 V)
connection

Vgate

Igate

Vgate

time

V

Figure 8.50: CPLD control of a thyristor

Interfacing Digital Logic to the Real World 597

www.newnespress.com

This creates an optical connection with an electrical isolation. The basic idea for

the opto-isolator is shown in Figure 8.51.

Figure 8.52 shows an example of the opto-isolator electrically isolating the CPLD

from the thyristor itself.

An FPGA or CPLD can be used to create the pulses required to turn on the

thyristor. Consider the situation where a 50Hz sine wave voltage is to be controlled

for the circuit shown in Figure 8.50. Here, the pulse is controlled to be incremented

in 1 ms steps, derived from a 1 kHz clock (the clock period is 1ms). If this 1 kHz

clock is derived from a higher clock frequency, then a counter can be developed to

Anode

Cathode
Gate

Vth

CPLD
power
supply

CPLD
reset

CPLD
clock

CPLD
(configured as a
digital counter)

Vgate

Igate

Opto-
isolator

Figure 8.52: Opto-isolation circuit example

Opto-isolator
R1

Vin Vout

VCC

Figure 8.51: Using an opto-isolator

598 Chapter 8

www.newnespress.com

produce a clock divider circuit. A simple way to derive the pulse is to create a

counter and decode the states of the counter output to produce the pulse signal. The

pulse must repeat on every cycle of the sine wave, so the counter must repeat every

20 clock cycles (representing a time period of 20 ms, 1/50 Hz). The pulse is created

(i.e., would be a logic 1) on the positive half cycle of the sine wave. No information is

given about how the circuit would detect where the time is on the sine wave cycle, so

it is assumed that when the sine wave is on the crossover point (i.e., zero) going from

a negative value to a positive value (see Figure 8.53), the counter will be in its initial

state (state 0).

An example VHDL code design for this arrangement can be seen with reference to the

block diagram shown in Figure 8.54. This shows a pictorial representation of the

VHDL code (shown in Figure 8.55) and also a counter design with decoded outputs

that is controlled from a 50 MHz master clock and an active low asynchronous reset.

This VHDL code design is implemented within four processes: The first process

creates a 50,000-count counter using the 50 MHz input clock. The second process

Clock
divider50 MHz Counter Counter output

decoder

Gate
control
pulse

Reset

Figure 8.54: Digital design to create thyristor gate pulse

time

Signal
amplitude

20 ms

Counter
state 0

Counter
state 9

Counter
state 19

Counter
state 9

Figure 8.53: Sine wave cycle position to counter state mapping

Interfacing Digital Logic to the Real World 599

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Pulse_Generator is
 PORT (Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Gate_Control : OUT STD_LOGIC);
END ENTITY Pulse_Generator;

ARCHITECTURE Behavioural OF Pulse_Generator IS

SIGNAL Divider : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Int_Clock : STD_LOGIC;
SIGNAL Count : STD_LOGIC_VECTOR(4 downto 0);

BEGIN

PROCESS(Master_Clock, Master_Reset)

BEGIN

 If (Master_Reset = '0') Then

 Divider(15 downto 0) <= "0000000000000000";

 ElsIf (Master_Clock'event and Master_Clock = '1') Then

 If (Divider = "1100001101001111") Then
 Divider(15 downto 0) <= "0000000000000000";
 Else
 Divider(15 downto 0) <= Divider(15 downto 0) + 1;
 End If;

 End If;

END PROCESS;

PROCESS(Divider)

BEGIN

 If (Divider = "1100001101001111") Then
 Int_Clock <= '1';
 Else
 Int_Clock <= '0';
 End If;

END PROCESS;

Figure 8.55: Thyristor gate control pulse generator

600 Chapter 8

www.newnespress.com

creates an internal 1 kHz clock by decoding the output from the first process. The

third process creates a 20-state counter, and the fourth process decodes this counter

output to produce the thyristor gate control signal.

An example VHDL test bench for this design is shown in Figure 8.56.

The point of the input signal on which to trigger the thyristor gate pulse can be

detected with a circuit like that shown in Figure 8.57. Here, a comparator is used to

detect when the input signal exceeds a set DC reference voltage (VREF).

In this arrangement, the two resistors (R1 and R2) are used to reduce the value of the

sine wave input voltage (VIN) to a safe level that can be used by the comparator

without causing damage to the comparator itself.

BEGIN

 If (Master_Reset = '0') Then

 Count(4 downto 0) <= "00000";

 ElsIf (Int_Clock'event and Int_Clock = '1') Then

 If (Count = "10011") Then
 Count(4 downto 0) <= "00000";
 Else
 Count(4 downto 0) <= Count(4 downto 0) + 1;
 End If;

 End If;

END PROCESS;

PROCESS(Count)

BEGIN

 If (Count = "00001") Then
 Gate_Control <= '1';
 Else
 Gate_Control <= '0';
 End If;

END PROCESS;

END ARCHITECTURE Behavioural;

PROCESS(Int_Clock, Master_Reset)

Figure 8.55: (Continued)

Interfacing Digital Logic to the Real World 601

www.newnespress.com

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Pulse_Generator_vhd IS
END Test_Pulse_Generator_vhd;

ARCHITECTURE Behavioural OF Test_Pulse_Generator_vhd IS

COMPONENT Pulse_Generator
PORT(
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Gate_Control : OUT STD_LOGIC);
END COMPONENT;

SIGNAL Master_Clock : STD_LOGIC := '0';
SIGNAL Master_Reset : STD_LOGIC := '0';

SIGNAL Gate_Control : STD_LOGIC;

BEGIN

uut: Pulse_Generator PORT MAP(
 Master_Clock => Master_Clock,
 Master_Reset => Master_Reset,
 Gate_Control => Gate_Control);

Master_Reset_Process : PROCESS

BEGIN

 Wait for 0 ns; Master_Reset <= '0';
 Wait for 5 ns; Master_Reset <= '1';
 Wait;

END PROCESS;

Master_Clock_Process : PROCESS

Figure 8.56: Thyristor gate control pulse generator test bench

602 Chapter 8

www.newnespress.com

8.4.5 Gate Turn-Off Thyristors

The gate turn-off (GTO) thyristor is a variant of the basic thyristor that enables the

forward-conducting current to be switched ON by the application of a positive gate

current and switched OFF by the application of a negative gate current. The symbol

for the GTO is shown in Figure 8.58.

BEGIN

 Wait for 0 ns; Master_Clock <= '0';
 Wait for 10 ns; Master_Clock <= '1';
 Wait for 10 ns; Master_Clock <= '0';

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 8.56: (Continued)

R1

R2

VREF

VIN

CPLD
controllerComparator

Control signal

Figure 8.57: Detecting a value of the input sine wave

Anode

Cathode

Gate

V

I

Figure 8.58: GTO symbol

Interfacing Digital Logic to the Real World 603

www.newnespress.com

8.4.6 Asymmetric Thyristors

The asymmetric thyristor is a combined thyristor and reverse diode in parallel in a

single device, shown in Figure 8.59. The forward current flow is controlled by the gate

current; the device always conducts current in the reverse direction.

8.4.7 Triacs

The triac is a multilayer device that has the same electrical operation as two thyristors

connected in parallel but in reverse direction, as shown in Figure 8.60. This allows

current to flow in both directions. The three terminals are named T1, T2, and Gate.

Anode

Cathode

Gate

Figure 8.59: Asymmetric thyristor

T1

(a) Structure (b) Circuit symbol

T2

T1

Gate

p

n

pn

T2

Gate n

n

Figure 8.60: Triac structure and circuit symbol

604 Chapter 8

www.newnespress.com

Either a positive or a negative gate current will turn ON the triac. Applications for

the triac include office equipment (such as photocopiers), motor control, switched-

mode power supplies, light dimmers, and domestic equipment such as hair dryers,

televisions, and refrigerators.

The triac is operated according to the polarity of the gate current pulse (positive or

negative) and the polarity of the voltage at terminal T2 with respect to terminal T1.

This produces four possible quadrants (I through IV) of operation, as shown in

Figure 8.61.

A variation on the triac is the diac. This is a triac that does not have a gate connection,

as shown in Figure 8.62. The diac is designed to break down at low voltage levels in

both the forward and reverse directions.

T2

T1

Gate

(+)IGATE(–)IGATE

T2 positive

T2

T1

Gate

T2

T1

Gate

T2

T1

Gate

Quadrant I

Quadrant IV

Quadrant II

Quadrant III

(+)IGATE

(+)IGATE

(–)IGATE

T2 negative

(–)IGATE

Figure 8.61: Triac, quadrants of operation

Interfacing Digital Logic to the Real World 605

www.newnespress.com

8.5 Heat Dissipation and Heatsinks

When operating power devices, the current flowing through the device will cause the

device to dissipate power as heat. The result is that the device temperature will rise

above the ambient temperature, and this temperature rise must be controlled. If the

temperature rises above a maximum limit, the device could be damaged and fail. The

power dissipated as heat must be transferred by one of the mechanisms of heat

transfer:

• Conduction occurs within a body of material and when two bodies of material

are in physical contact with each other. For example, if a rod of metal is

heated at one end, then the temperature of the other end will rise as heat is

conducted through the metal. Conduction occurs within a body when its

different parts are at different temperatures, the direction of heat flow always

being from a higher temperature to a lower temperature. Most metals are

good conductors of both electricity and heat. In conduction, energy transfer is

by molecular vibration and electron motion within the material.

• Convection involves the movement of mass from the point to another, such as

the movement of hot water around the pipes in a home central heating system.

When the material is forced to move by a pump or blower (see Figure 8.63),

this is referred to as forced convection. When material moves in response to

differences in density caused by thermal expansion of the material, this is

referred to as natural or free convection.

• Radiation is heat transfer by electromagnetic radiation, such as visible light,

infrared radiation, and ultraviolet radiation.

T2

T1

Figure 8.62: Diac circuit symbol

606 Chapter 8

www.newnespress.com

In low-power applications, the heat generated by a device might be low, so the

temperature rise would be small and well within the limits set by the device

manufacturer (as defined in the device data sheet). The device package allows the heat

to dissipate by natural convection away from the device to the ambient environment.

However, for high-power applications, the heat generated can be significantly unable

to dissipate fast enough by natural convection. In this case, a heatsink is attached

to the device to draw the heat from the device, then release it through natural

convection to the ambient environment. The choice of heatsink shape, size, and

material depends on the device casing (the shape of the device package) and the

operating temperatures involved. In some circumstances, forced convection is also

required, such as the fans in a PC.

Example heatsinks are shown in Figure 8.64. The left side shows three different shapes

for mounting ICs and transistors; the bottom heatsink shows a transistor mounted

onto the heatsink. The right side shows a þ12V voltage regulator IC (a 7812 [þ12V]

regulator IC in a TO-18 package) mounted onto the heatsink, which is in turn

mounted onto a PCB. A capacitor is sited next to the IC (to the right). In this

example, the IC is secured directly to the heatsink, and no electrical insulation is used

to insulate the IC from the metal of the heatsink. A screw and nut arrangement

secures the components to the PCB.

To insulate the components electrically from the heatsink while maintaining a good

level of thermal conduction, an insulating sheet of material (a thermal pad) is placed

between the base of the IC and the heatsink, and a plastic insulator covers the screw as

it passes through the IC base. This arrangement is shown in Figure 8.65.

Manufacturer details

Power leads

Hole (in each corner)
for mechanically
securing the fan to
the system housing

Figure 8.63: Example fan for cooling electronic circuits (small fan
operating on a 112V DC power supply)

Interfacing Digital Logic to the Real World 607

www.newnespress.com

When a heatsink is used, then the heat transfer path is:

1. from the device junction to the device case

2. from the device case to the heatsink (in general, the heat transfer system)

3. from the heatsink to the ambient temperature

To calculate the heat transfer and temperatures that occur at different points in the

heat transfer path, an electrical equivalent circuit for the heat transfer circuit can be

created. This is shown in Figure 8.66. The resistors model the thermal resistance of the

parts in the heat transfer path. (Thermal resistance is the reciprocal of thermal

conductance).

Heatsink base
PCB

Plastic insulating to
cover screw

IC
Fixing screw
and washer

Fixing nut
and washer

IC base
Thermal pad

Figure 8.65: Electrically insulating the 7812 from the heatsink

Figure 8.64: Example heatsinks

608 Chapter 8

www.newnespress.com

In Figure 8.66, the following are defined:

• P is the internal power loss of the device (in watts, W).

• yj is the temperature of the device virtual junction (�C).

• yc is the temperature of the case (�C).

• yh is the temperature of the heat transfer system (�C).

• ya is the temperature of the ambient environment (�C).

• Rjc is the thermal resistance of the junction to the device case (�C/W).

• Rch is the thermal resistance of the device case to the heat transfer system (�C/W).

• Rha is the thermal resistance of the heat transfer system to the ambient (�C/W).

• Cj is the thermal capacitance of the junction (Ws/�C).

• Cc is the thermal capacitance of the device case (Ws/�C).

• Ch is the thermal capacitance of the heat transfer system (Ws/�C).

Under steady-state conditions, the thermal capacitances have no effect and are

removed from the analysis of the model. When the thermal capacitance is ignored, the

junction temperature is given by the series combination of the thermal resistances:

yj ¼ ya þ PðRjc þRch þRhaÞ

Virtual junction
temperature (θj)

Case
temperature

(θc)

Heat transfer
system

temperature (θh)

Ambient
temperature

(θa)

Cj Cc Ch

Rjc Rch Rha
P (W)

Figure 8.66: Heat transfer path equivalent model

Interfacing Digital Logic to the Real World 609

www.newnespress.com

The thermal resistance of each part of the path is given in the data sheet of the

particular device or heatsink. For example, consider the 7812 IC shown in

Figure 8.65. If the thermal resistance of the junction to the case of the 7812 is 3�C/W,

the thermal resistance of the thermal pad is 0.2�C/W, the thermal resistance of the

heatsink is 6.8�C/W, the ambient temperature is 25�C, and the power dissipated by

the IC is 3W, then the junction temperature is:

yj ¼ 25þ 3 � ð3þ 0:2þ 6:8Þ
yj ¼ 55�C

8.6 Operational Amplifier Circuits

The op-amp is a form of differential amplifier. The op-amp is manufactured as a

monolithic integrated circuit and is typically available as a packaged device that

contains one, two, or four op-amps. The op-amp is a three-terminal device whose

circuit symbol is shown in Figure 8.67.

Here:

• The + input is referred to as the noninverting input.

• The � terminal is referred to as the inverting input.

• A voltage (Vþ) is applied to the noninverting input.

• A voltage (V�) is applied to the inverting input.

• The output node produces a single-ended output.

• All voltages in the circuit must be referenced to a common (0V) node.

The op-amp requires a DC power supply voltage (positive and negative). These

connections are not shown in the figure; it is common to leave the power supply

+

–

Figure 8.67: Op-amp symbol

610 Chapter 8

www.newnespress.com

connections out of the diagram. Nonetheless, the power supply connections are

implicit to the design and cannot be left out of the circuit implementation.

The op-amp amplifies the difference in voltage between the two inputs and produces a

single output voltage. A high-differential voltage gain (for many op-amps, in the

order of 100,000) is required. However, the op-amp is typically used to incorporate

feedback between the op-amp output and input terminals to produce linear signal

processing circuits, nonlinear signal processing circuits, and signal generator circuits.

• Linear signal processing circuit applications include inverting amplifiers,

noninverting amplifiers, unity gain buffers, summer amplifiers, difference

amplifiers, low-pass active filters, high-pass active filters, band-pass active

filters, and band-reject (notch) active filters.

• Nonlinear signal processing circuit applications include comparators, peak

detectors, Schmitt triggers, precision half-wave rectifiers, precision full-wave

rectifiers, and logarithmic amplifiers.

• Signal generator circuit waveforms include sine, cosine, square, triangular, and

staircase.

Each op-amp circuit can be used alone or in combination to create a specific signal

conditioning circuit arrangement.

Interfacing Digital Logic to the Real World 611

www.newnespress.com

References

[1] Grout, I. A., Integrated Circuit Test Engineering Modern Techniques, Springer,

2006, ISBN 1-84628-023-0.

[2] Bushnell, M. L., Essentials of Electronic Testing for Digital, Memory and

Mixed-Signal VLSI Circuits, Kluwer Academic Publishers, 2000, ISBN

0-7923-7991-8.

[3] Burns, M., and Roberts, G. W., An Introduction to Mixed-Signal IC Test and

Measurement, Oxford University Press, 2001, ISBN 0-19-514016-8.

[4] Jespers, P. G. A., Integrated Converters D to A and A to D Architectures,

Analysis and Simulation, Oxford University Press, 2001, ISBN 0-19-856446-5.

[5] Jaegar, R. C., Microelectronic Circuit Design, McGraw-Hill, 1997, ISBN 0-07-

114386-6.

[6] Tocci, R. J., Widmer, N. S., and Moss, G. L., Digital Systems Principles and

Applications, Ninth Edition, Pearson Prentice Hall, 2001, ISBN 0-13-121931-6.

[7] Analog Devices Inc., AD7524 CMOS 8-Bit Buffered Multiplying DAC

datasheet.

[8] Haskard, M. R., and May, I. C., Analog VLSI Design nMOS and CMOS,

Prentice Hall, 1988, ISBN 0-7248-0027-1.

[9] Geerts, Y., Steyaert, M., and Sansen, W., Design of Multi-Bit Delta-Sigma A/D

Converters, Kluwer Academic Publishers, 2002, ISBN 1-4020-7078-0.

[10] Meade, M. L., and Dillon, C. R., Signals and Systems, Models and Behaviour,

Second Edition, Chapman & Hall, 1991, ISBN 0-412-40110-x.

[11] Schaumann, R., and Van Valkenburg, M., Design and Analog Filters, Oxford

University Press, 2001, ISBN 0-19-511877-4.

[12] Bradley, D., Power Electronics, Van Nostrand Reinhold (UK), 1987, ISBN

0-442-31778-6.

[13] Horowitz, P., and Hill, W., The Art of Electronics, Second Edition, Cambridge

University Press, 1989, ISBN 0-521-37095-7.

[14] Storey, N., Electronics, A Systems Approach, Second Edition, Addison-Wesley,

1998, ISBN 0-201-17796-X.

612 Chapter 8

www.newnespress.com

Student Exercises

8.1 Using the CPLD development board and the digital I/O board, develop

a circuit that will flash a single 12V bulb ON and OFF at a frequency of

1Hz. Develop the interface circuitry to allow this by using a suitable

opto-isolator.

8.2 Modify the design in Exercise 8.1 so that it now allows the user to set the

light flash frequency to either OFF or 1Hz for an array of eight bulbs (one

bulb per digital output). The user will control the operation of the bulb by

using the eight digital inputs (0= bulb OFF, 1= bulb flashing). Each digital

input is to control one bulb.

8.3 Modify the design in Exercise 8.2 so that it now allows the user to control the

lights from a PC via a UART within the CPLD.

8.4 How could the CPLD control a stepper motor? Choose a small stepper

motor from a component supplier and, using the component data sheet,

develop an interface circuit that will connect the stepper motor to the

CPLD development board and the digital I/O board. Develop a VHDL

code design that will allow the CPLD to control the rotation of the

stepper motor.

8.5 Develop the VHDL code that will allow a user to control the stepper motor

from a PC via a UART within the CPLD.

8.6 Identify and compare the key parameters of importance when choosing the

following power electronic components:

• diode

• BJT

• MOSFET

• thyristor

• triac

8.7 In what circuit applications would a power MOSFET be preferred over a

power BJT?

8.8 Identify the types of power electronic components used in the battery

charging system for automobile applications. What are the differences

between a dynamo-based and alternator-based battery charging system?

8.9 What is a Darlington pair? What types of circuit applications would

use it?

Interfacing Digital Logic to the Real World 613

www.newnespress.com

8.10 A thyristor has a thermal resistance of 0.8�C/W between its virtual

junction and the heat transfer system, and 1.8�C/W between the heat

transfer system and the ambient. If the ambient temperature is 30�C, what
is the power loss in the thyristor if the junction temperature is 125�C?

8.11 What types of power supply are used in a desktop PC? In a laptop PC?

614 Chapter 8

www.newnespress.com

CHA P T E R 9

Testing the Electronic System

9.1 Introduction

If the world were perfect, there would be no need to test. A perfect design would not

contain functional errors, and a manufacturing process would not include defects that

lead to faults. However, the world is not perfect, and with ever-advancing design

complexities, the use of smaller device geometries and new materials, there has never

been a greater need for testing.

Testing an electronic system, both the hardware and software, is essential to ensuring

that the design meets the requirements of the end-user, meets quality requirements,

adheres to standards, and is actually complete [1–3]. The three basic engineering

actions are design, manufacture, and testing (Figure 9.1); the testing process is

integral to design and manufacture and cannot be seen as a stand-alone process [4].

The design process is primarily concerned with creating a design in hardware or

software that meets the required design specifications, and doing so as quickly and

Design

Manufacture Test

Figure 9.1: Design, manufacture, and testing

www.newnespress.com

economically as possible. The manufacturing process is initially concerned with

ensuring that the design can be manufactured, then with manufacturing it as quickly

and economically as possible. The test process is concerned with ensuring initially

that the design is error free (functionally correct) and secondly that it has been

manufactured correctly, and again, as quickly and economically as possible.

However, speed and cost in the design, manufacture, and test processes must not be at

the expense of product quality.

Testing provides a means to ensure that the design:

• meets the requirements of the end-user (the customer)

• adheres to standards

• is technically correct

• is complete

• is reliable—the design works whenever called upon over its defined lifespan

• is durable—the design works over its defined lifespan without component

failure

• is usable

• is capable of working in the intended environment

• is not overstressed by incorrect component specification so that it will fail

early in the final application

• does not include software errors that will lead to a software failure (if applicable)

• does not include any hardware circuit faults

• provides feedback to the design process to identify any problems or potential

problems with the design itself

• provides feedback to the manufacturing process to identify any problems or

potential problems with the manufacturing process

Given the number of steps involved in the creation and use of a particular product,

circuit or system testing will be undertaken at different points in time: during product

development, during product manufacture, and while in service either as part of a

normal routine service arrangement or to rectify faults as they occur.

616 Chapter 9

www.newnespress.com

During product development, the testing is undertaken at different points in the

fabrication process: at the component level, at the subsystem level, and at the system

level.

Figure 9.2 identifies these points. Testing at the component level—integrated circuits

(ICs), passive components (resistors, capacitors, inductors), discrete semiconductor

devices (diodes, transistors, thyristors, and triacs), cables, etc.—is undertaken by the

component manufacturer. These components are placed into a subsystem (e.g.,

soldered to a printed circuit board, PCB), and the subsystem will be placed within

the overall system. An example is a mobile phone. The overall system is the phone,

which is made up of a number of subsystems such as the main circuit board,

power supply, display, keypad, and so on. Each subsystem consists of components;

for example, the main circuit board consists of ICs, passive components, and

connectors.

Testing is necessary to maintain and improve the overall product quality. Testing

is an increasingly important activity at both the device level and the system level.

The importance of testing in discovering faults in an electronic circuit or system

hardware after fabrication and before use is summarized in the Rule of Ten, shown

in Figure 9.3.

The cost multiplies by ten every time a faulty item is not detected before use in a large

electronic circuit or system. Here, if the cost of detecting a faulty device when it is

Component

Subsystem

System

such as an integrated circuit

such as a printed circuit board

such as the system housing

Figure 9.2: Component to system test

Testing the Electronic System 617

www.newnespress.com

produced is one unit, the cost of detecting that faulty device when used at the board

level (PCB) is ten units, and the cost of detecting that faulty board after inserted in its

system is 100 units, and so on. While this rule is a generalisation, is does provide

an insight into the need for effective testing at the right point in the product

manufacturing process. Preventing faulty components from being used (where they

are faulty but the fault has not been detected and so are thought to be fault-free) is

essential to developing cost effective and high quality products.

This chapter will consider integrated circuit testing, printed circuit board testing,

boundary scan testing (both IC and PCB levels), and software testing.

Testing is primarily concerned with two aspects, controllability and observability:

• Controllability refers to controlling specific parts of a design to set specific

values at specific points within the design. In hardware, this is a specific

analogue voltage or current, or a digital logic level (0 or 1). In software, this is

a specific variable value.

• Observability refers to observing a value within the design.

Device (×1)

Board (×10)

System (×100)

Cost to
test

Production stage

Figure 9.3: The Rule of Ten

618 Chapter 9

www.newnespress.com

The controllability and observability are undertaken in the most economic way

possible while providing the necessary test coverage. In hardware, the observation will

be at the circuit nodes at the I/O and power supply pins of the PCB or IC, along

with specific internal nodes within the design. This will be achieved with the use

of suitable test equipment and increasingly by building testability aspects into the

design itself.

Where testability is designed into the circuit, this is referred to as design for

testability (DfT). This may be accomplished by adding specific test hardware or,

in a processor-based system, by including software test routines. A part of DfT,

but usually considered as a subject in its own right, is the built-in self-test (BIST).

BIST is test circuitry included within a design to allow the design to test parts

of itself. With the addition of test functionality, the design must be required to

have two or more modes of operation: mission mode is the normal operating

mode, and one or more test modes dedicated to testing. The end user might

have access only to the normal operating mode and might not even be aware of

the existence of test modes, whereas the developer would have access to all modes

of operation.

The external test equipment [5] used to test the design is either manual test equipment

or automatic test equipment (ATE). Manual test equipment is the type used in the

laboratory and requires the user to control the instruments manually, either by the use

of controls on the equipment itself or via a PC interface. Examples of such equipment

include:

• basic instruments such as an AVO meter (which is used to measure voltage,

current, and resistance) and digital multimeters (DMM)

• oscilloscopes, spectrum analyzers, and waveform generators

• logic analyzers

• special instruments such as signal distortion meters, high-voltage, and high-

current meters.

Designs are also visually inspected to identify any problems or damage, such as

broken components.

Automatic test equipment (ATE) is programmed for a specific operation and will

automatically test a batch of designs with no or minimal human intervention. This

Testing the Electronic System 619

www.newnespress.com

allows short test times and is used in production testing of devices. Examples of such

equipment include:

• Vision systems optically inspect the circuit by capturing an image of the

circuit and analyzing the image for abnormalities. The types of vision

system are:

� automated optical inspection (AOI)

� X-Ray inspection (used to inspect hidden features)

� infra-red and laser scanning

• In-circuit testers (ICT) test the functionality of components within an

assembled circuit. The ICT equipment accesses components one at a time, via

a test fixture commonly referred to as a bed of nails fixture.

• Flying probe testers, also referred to as a fixtureless tester, access the circuit

with probes that rapidly move between points on the circuit using an accurate,

high-speed positioning system.

• Functional testers (FT) test the circuit via its primary connectors and

additional spring-loaded probes.

• Hot rigs are special test facilities for testing the subassemblies (subsystems)

in a rig.

• Special testers include other test equipment for the testing of specific system

parameters.

The types of circuit and system tests identified above perform tests using either

electrical or optical measurements. Another type of test which would be performed

is a mechanical test, which tests the mechanical strength of the system for the

required operating conditions (e.g., it tests the operation of the circuit or system

when subjected to the mechanical vibrations that would occur in automotive

applications).

Some of the tests to be undertaken are destructive in nature, so samples of a

production run are taken with the intention of testing the circuit or system to

destruction. When the tested system is required for use after testing, the tests need

to be non-destructive and it is essential to ensure that the non-destructive tests do

not cause damage to the circuit or system.

620 Chapter 9

www.newnespress.com

9.2 Integrated Circuit Testing

9.2.1 Introduction

An IC consists of a circuit on a die of semiconductor material such as silicon, which is

secured to a protective package. IC testing must consider the circuit operation as well

as the packaging.

Before considering what tests are to be undertaken on the IC, the physical structure of

the IC should be considered, and the tests should ensure that the circuit design is

correct, and the design has been fabricated without producing a circuit failure.

The ability to fabricate the circuit without producing a circuit failure is essential to

ensuring that the end-user has received a working circuit. Ideally, the manufacturer

can provide the customer with devices, knowing that 100 percent of all supplied

devices are fully functional. However, the ability to test for every possible circuit fault

is prohibitively expensive, and a test program to implement this may be impossible, so

delivering 100 percent of fully functional devices is unlikely to happen. The goal for

the manufacturer is to reduce the number of faulty devices to an acceptable level.

The defect level (DL) is used as a measure of the test quality and is expressed as the

number of faulty ICs that exist within a group of ICs that has passed the test. This

is normally expressed in terms of parts per million (ppm). Typically, a defect level of

0 ppm is the target, but 100 ppm would be considered a high-quality test. The defect

level is determined from analysis of the returned faulty devices. These devices may

have failed the customer incoming acceptance test (supplied devices are tested by the

customer prior to use), may have failed an in-system test (the device has passed the

customer incoming acceptance test but fails in the customer application), or may fail

in the in-field test (either during normal operation or routine maintenance tests).

The IC packaging is of three main types:

• Hermetic, usually ceramic (hermetic-ceramic), is designed for high-

performance applications and is usually the most costly. The die is

environmentally decoupled from the external environment with a

vacuum-tight enclosure.

• Plastic refers to a resin material (usually epoxy-based) in which the die is

encapsulated. Over time the external environment penetrates the plastic.

• Metal is commonly used for discrete device (e.g., transistor) packaging.

Testing the Electronic System 621

www.newnespress.com

An example packaged IC is shown in Figure 9.4. The silicon die is secured in a cavity

in the center of the ceramic package and is electrically bonded to the package using

bond wires. For use, the package is placed into a socket soldered to the application

printed circuit board. The IC package has to:

• provide the necessary electrical connections for signal and power

• provide proper heat dissipation from the die

• provide a thermal expansion compatible with the die

• minimize signal delay and noise

• provide mechanical, environmental, and electromagnetic protection

In normal applications, a lid covers the top of the package and the die is not visible.

Some packages, however, require a glass-covered hole to expose the die (e.g., for UV

erasure of an EPROM).

The die is connected to the package using one of three methods:

• Wire bond is the most common bonding technique.

• Flip-chip, in which solder bumps on the die and substrates are joined to form

the connections.

• TAB (tape-automated bonding).

Figure 9.4: IC package (84 CLCC) with the lid removed

622 Chapter 9

www.newnespress.com

These three bonding methods are shown in Figure 9.5. The circuit die (usually silicon)

is secured to the package substrate, and electrical bonding connects the signal and

power connections from the die to the package pins.

The circuit created on the die provides the required circuit functionality. The three

basic circuit categories are:

• Digital circuits consider signals in the form of discrete values (usually binary, a

logic 0 or 1 value) that change at discrete points in time. The logic levels and

timing of their changes are of primary concern.

• Analogue circuits consider continuously varying signals (voltages and currents)

over a range of values.

• Mixed-signal circuits combine the functionality of analogue and digital

circuits, usually for interfacing analogue signals to a digital processor system.

Substrate

DieBond
Wire Die Bond

Material

Substrate

Die
Solder Bumps

Substrate

DieTAB
Lead Die Bond

Material

(a) Wire bond

(b) Flip-chip

(c) TAB

Figure 9.5: Bonding methods of circuit die to its package

Testing the Electronic System 623

www.newnespress.com

The types of tests used reflect these different circuit requirements.

Design testing is undertaken both through simulation and through validation of the

physical IC. Simulation is undertaken during IC design development and aims to ensure

that the design is functioning correctly and will meet the required specifications prior to

device fabrication using a simulation model of the electronic circuit and IC packaging.

However, the results of a simulation study are only as good as:

• the person undertaking the simulation study

• the model of the circuit used in the simulation study

• the stimulus to apply to the model of the circuit

• the analysis of the simulation study results

Care must always be taken when assessing the results of a simulation study: they

might look correct but might not result in a functioning circuit in reality in that the

circuit might work for the scenario that defined the applied stimulus, but might not

work for other scenarios.

9.2.2 Digital IC Testing

The primary aim for the digital IC testing is to ensure that the circuit operates

correctly in terms of digital logic levels (0 and 1) and the timing of the changes to the

logic levels. The basic arrangement for testing a packaged digital IC is shown in

Figure 9.6. Here, an external ATE is used to apply the digital stimulus and capture the

Automatic Test Equipment

Digital
Stimulus

Generator

Digital
Response
Capture

Tester electronics
controller

(PC/workstation)
Digital

IC

User

Figure 9.6: Digital IC test

624 Chapter 9

www.newnespress.com

digital response. Internally within the ATE, the response to the test stimulus is

analyzed, and the test program determines whether the IC passes or fails the test for

that particular stimulus.

The role of the test engineer is to:

• develop the test program requirements (the types of tests to undertake),

commonly referred to as the test specification

• develop the software test program to run on the ATE (usually a C language

based program)

• develop the hardware tester interface between the existing tester electronics

and the particular digital IC

• analyze and deal with the results of the test program

Typically each of three types of test is performed to a greater or lesser level for a

particular product:

1. A functional test exercises the operation of the design through the various

functional operations that it is intended to undertake. For complex digital

circuits and systems, this can be extremely time consuming and hence costly.

2. A structural test stimulates faults that may exist in the design resulting from

fabrication defects. The idea is to apply suitable digital vectors that sensitize the

particular fault considered so that the faulty circuit produces a different result

than a fault-free circuit. This requires the creation of suitable fault models to

model fabrication defects. These models are simulated in the design to identify

the right set of digital vectors to apply to the actual fabricated circuit.

3. A parametric test addresses specific analogue parameters (voltage and current)

that are not tested in the functional or structural tests, which address logic level

and timing issues. Parametric testing focuses on the I/O cells within the

periphery of the circuit die (Figure 9.7). The die consists of two main areas, the

core and the periphery, which is a standard arrangement for ICs. The core

contains the main circuitry; this is the circuitry targeted by functional and

structural tests. The periphery contains the cells (the rectangles in the

periphery) that contain circuitry and metal pads (black squares) to bond the die

to the package pins. These connections are for signals and power. It is the

circuitry in the signal periphery cells that the parametric tests target.

Testing the Electronic System 625

www.newnespress.com

The example IC in Figure 9.8 shows the die within a package and the package lid

removed. The silicon die is in the center of the image, and the bond wires for the

signals and power radiate from all four sides.

Functional tests are required during device development (tests on physical prototypes

prior to high-volume fabrication) to determine that the design operates according to

the required design specification and that the results are consistent with the results

from the simulation studies.

Structural tests are undertaken during production (high-volume) testing to

stimulate faults if they exist (and hence allow for the observation of faulty circuit

behavior). The resulting test program often requires less test time that an exhaustive

functional test and hence costs less. However, specific functional tests to cover

Die (usually
a silicon die)

Core
I/O and power
supply cells

Periphery

Figure 9.7: IC die structure

Figure 9.8: Example silicon die bonded to package

626 Chapter 9

www.newnespress.com

circuit operation that cannot be controlled with structural tests is also required.

The structural tests assume that the design functionality is correct, and faults caused

by manufacturing defects are to be detected. Structural tests are based on applying

digital stimulus to the IC to stimulate specifically considered faults. These faults

are based on fault models, and for digital circuits, the main fault models are stuck-

at-fault, bridging fault, and delay fault.

The stuck-at-fault (SAF) considers a fault to create nodes within the design—either

at the primary inputs/outputs (the circuit die I/O) or at the internal nodes—that

get stuck at a logic level. This basic idea is shown in Figure 9.9. A node is either

stuck-at-logic 0 (SA0) or stuck-at-logic 1 (SA1) and will always be at these fixed logic

levels, even though the circuit might be attempting to set a different logic level. The

premise is that a defect within the circuit causes this type of logical fault. The circuit is

considered to operate in one of three scenarios:

• In fault-free operation: no fault exists in the circuit.

• In single-stuck-at-fault (SSAF) operation, the circuit contains a single stuck-

at-fault (a single fault assumption).

• In multiple-stuck-at-fault (MSAF) operation, the circuit contains multiple

stuck-at-faults.

It is common to consider only the SSAF scenario because it simplifies the test pattern

generation to manageable levels. The stimulus (test pattern) generation process uses

software tools and a procedure referred to as automatic test pattern generation (ATPG).

In the bridging fault, two (or more) nodes are considered to be unintentionally

connected by a conductive material such as metal. An example of this is the resistive

material in the metal interconnect layer connecting tracks, where tracks are placed close

Node is SA1

Node is SA0

Node is fault-free
‘0’

‘1’

Figure 9.9: Stuck-at-fault

Testing the Electronic System 627

www.newnespress.com

to each other on the physical circuit layout. A bridging fault is usually considered in

terms of logic level behavior, although a resistive bridging fault can be considered in the

analogue rather than digital domain. For the logical bridging fault, the two models are:

• Wired-AND, in which two nodes are considered, and the fault is modeled as logic 0

dominant. The nodes that are bridged are connected to the inputs of a two-input

AND gate.When either or both bridged nets are logic 0, then the output is logic 0.

• Wired-OR, in which two nodes are considered, and the fault is modeled to be

logic 1 dominant. The nodes that are bridged are connected to the inputs of a

two-input OR gate. When either or both bridged nets are logic 1, then the

output is logic 1.

A basic bridging fault is shown in Figure 9.10, in which a two-input NAND gate with

an output nodes Net1 and Net2 that are close enough to result in a bridging fault.

Net2
(a) Fault-free design

Net1

Net2
R (Ω)

Net1 (d) Faulty design with
resistive fault model
(analogue operation)

Net2

Net1
(b) Faulty design with
wired-AND fault model

Net1 (fault
model output)

Net2 (fault
model output)

Net2

Net1
(c) Faulty design with
wired-OR fault model

Net1 (fault
model output)

Net2 (fault
model output)

Figure 9.10: Bridging fault models

628 Chapter 9

www.newnespress.com

In a delay fault, the fault does not cause a logical error in the circuit output, but rather

it causes an error in the timing. The output then reaches its final logical value at a later

time than expected. Several delay fault models have been developed and are in use.

The stuck-at-fault, bridging fault and delay fault are examples of commonly

considered faults that can be modelled using digital logic levels and timing. However,

such faults operate by considering that the faults that could exist in the underlying

analogue circuitry will exhibit such logical and timing faulty behaviour. An

alternative look at the faults would look into the analogue circuit operation in more

detail. Defects in the processing can create analogue faults such as open and short

circuit faults that have both resistive and capacitive effects. For example, a short

circuit between two nets can cause a resistive bridging fault that does not cause a pure

logical bridging fault circuit behaviour (as previously described), but is more complex

in nature. Similarly, an open circuit fault in a metal track (net) could be considered as

either a high value resistance and/or a capacitance between the two parts of the

broken track. Such a broken track could lead to a floating net situation where the

voltage on the net will be set by the charge stored on the net metal track (the broken

net then forming a capacitor between the net and the circuit common node). This can

lead to a complex circuit behaviour that can be caused by a fault that might be

difficult to detect. As the semiconductor processing technology evolves and finer

process geometries are used (as in the high performance digital semiconductor

processing technologies on the 90 nm, 65 nm, 45 nm, and lower technology nodes) in

the fabrication of digital logic, so do the fabrication processing defects and the

resulting circuit behaviour caused by these defects. This then leads on to the need to

detect faults through suitable test programs that now exist in the finer semiconductor

processing technologies that would not have existed in the coarser fabrication

processing technologies.

9.2.3 Analogue IC Testing

The primary reason for testing analogue ICs is to ensure circuit operation is correct in

terms of analogue voltage and current levels, and analogue parameters such as

frequency response, impedance, and noise. The basic arrangement for testing a

packaged analogue IC is shown in Figure 9.11. Here, an external ATE is used to apply

the analogue stimulus and capture the analogue response. Internally within the ATE, the

response to the test stimulus is analyzed, and the test program determines whether the

IC passes or fails the test for the particular stimulus.

Testing the Electronic System 629

www.newnespress.com

With this set-up, and with the tester electronics controller operating in the digital

domain, the tester requires a digital-to-analogue converter (DAC) to generate the

analogue test stimulus from a digital representation of the analogue test stimulus, and an

analogue-to-digital converter (ADC) to convert the captured analogue response into the

digital domain. The basic building blocks of the analogue stimulus generator are shown

in Figure 9.12, and those of the analogue response capture are shown in Figure 9.13.

In the analogue stimulus generator, the digital representation of the analogue test

stimulus is held in memory within the tester. The contents of the memory are read at a

Automatic Test Equipment

Analogue
Stimulus

Generator

Analogue
Response
Capture

Tester electronics
controller

(PC/workstation)
Analogue

IC

User

Figure 9.11: Analogue IC test

Memory
Digital-to-
analogue
converter

Programmable
gain amplifier

Programmable
low-pass

filter

Analogue test
stimulus

Controller

Figure 9.12: Analogue stimulus generator

630 Chapter 9

www.newnespress.com

particular rate and applied to a DAC. The analogue output from the DAC is then

applied to a programmable gain amplifier and a programmable low-pass filter. All of

these blocks are controlled by a controller unit within the tester. It is also possible to

select the amplifier and low-pass filter blocks to be used or to be bypassed. This

programmability is typically achieved by using relays (the relays providing a low

impedance switching of the analogue signals).

In the analogue response capture, the analogue input signal is applied to a

programmable low-pass filter and programmable gain amplifier before becoming

the input to an ADC. The digital output of the ADC is then stored in memory

for results analysis. All of these blocks are controlled by a controller unit

within the tester. It is also possible to select the amplifier and low-pass filter

blocks to be used or to be bypassed. This programmability is typically achieved

by using relays (the relays providing a low impedance switching of the analogue

signals).

As in digital testing, the role of the test engineer is to:

• develop the test program requirements (the types of tests to undertake),

commonly referred to as the test specification

• develop the software test program to run on the ATE (usually a C language

based program)

Memory
Analogue-to-

digital
converter

Programmable
gain amplifier

Programmable
low-pass

filter

Analogue
response

Controller

Figure 9.13: Analogue response capture

Testing the Electronic System 631

www.newnespress.com

• develop the hardware tester interface between the existing tester electronics

and the particular analogue IC

• analyze and deal with the results of the test program

An additional requirement for analogue tests is to take into account the process

variations. The silicon foundry (where the IC behavior is fabricated) will guarantee

their fabrication process to within specific tolerances. As a result of these tolerances,

no single IC is identical to another. The analogue test therefore considers the expected

typical operation of the IC, as well as its operation at the extremes of the fabrication

process. The tolerances of the ATE are also taken into account.

Sampling the analogue input requires careful consideration to avoid signal aliasing (if

the input signal is not sampled at a high enough sample rate) and to obtain a coherent

sampling of the signal. In general, when a signal is sampled, the sampling can be either

coherent or noncoherent, and the results in the frequency domain (where the digital

samples of the analogue signal are analysed using the fast fourier transform (FFT)

and the spectral components of the sampled signal are identified) will be different.

In coherent sampling, and considering a sine wave analogue input voltage, N samples

are used to represent exactly one cycle of the signal (sine wave) and will repeat without

disjunction from one cycle to the next. This idea is shown in Figure 9.14, where

N=4, and the sampling repeats at the same point on the sine wave.

If N samples are taken for one cycle of the signal frequency (fin), then the sampling

frequency (fS), is given by:

fin ¼ ð fS=NÞ

In reality, a signal is not a single-frequency (single-tone) sine wave, so a certain

amount of noncoherent sampling (where the sampling of a complete cycle of the

analogue signal is not achieved) is expected. Postprocessing of the samples using

windowing techniques will reduce the effects of this noncoherent sampling situation.

1

2

3

4

1

2

3

4

1
Time

v

Figure 9.14: Coherent sampling of a sine wave

632 Chapter 9

www.newnespress.com

Unlike digital IC testing, in which structural test methods (particularly stuck-at-fault)

are widely used, analogue IC testing is still predominantly functional. Attempts to

develop structural test methods for analogue ICs has met with limited success.

9.2.4 Mixed-Signal IC Testing

Mixed-signal ICs combine both analogue and digital circuitry. Examples of mixed-

signal ICs include:

• ADC

• DAC

• phase-locked loop (PLL)

• digitally programmable analogue amplifier

• comparator

• analogue switch

The primary reason for testing mixed-signal ICs is to ensure the circuit operation is

correct in terms of the analogue voltage and current levels for the analogue parts, and

the digital logic levels and timing for the digital parts. The testers used for mixed-

signal testing must be suitable for both analogue and digital parts.

9.3 Printed Circuit Board Testing

Components such as ICs and passive components are soldered to a printed circuit board

(PCB) to create the final electronic circuit or system. The PCB (discussed more fully in

Chapter 3) provides the necessary electrical, thermal, and mechanical properties to

ensure that the electronic circuit or system will function correctly. The technology

drivers for the PCB to provide the right performance at the right cost include:

• greater reliability

• higher device density

• smaller device geometries

• higher interconnect density (finer track geometries and pitch between tracks)

• higher operating frequencies (e.g., clock frequency of modern

microprocessors, RF signal frequencies for communications applications)

Testing the Electronic System 633

www.newnespress.com

• more terminals and wiring at PCB interfaces

• preservation of signal integrity

• electromagnetic compatibility (EMC)

• multiple layers of interconnect

• move toward surface-mount packaging for ICs (from through-hole packages)

• move toward surface-mount replacement of discrete devices (mainly resistors

and capacitors)

All these are required, but with lower costs and higher product quality!

The functions of PCB testing are to:

1. Ensure that the PCB itself (the substrate and interconnect) has been

fabricated correctly prior to populating the board with components.

Electrical tests on the interconnect detect any open or short circuits in the

tracks, and a visual inspection of the board detects any faults such as missing

protective coating and missing or lifted (away from the substrate) tracks

and pads.

2. Ensure that the circuit operates properly after the PCB has been populated (as

in the example shown in Figure 9.15). Electrical tests confirm that the circuit

operates electrically as required, and a visual inspection identifies problems

such as:

• missing components

• misplaced components

• correct type of component but wrong value

• short circuits resulting from too much solder

• open circuits resulting from too little solder

• badly formed solder joints (shape and color)

3. Ensure that the PCB has the correct thermal performance by operating it at

elevated or reduced temperatures, and through thermal cycling where the

PCB is cycled through a range of temperatures for a set time and under

specific circuit operating conditions.

634 Chapter 9

www.newnespress.com

4. Ensure that the mechanical strength of the solder joints and the overall PCB is

as required. Samples are taken from a production batch of PCBs and tested to

destruction:

• vibration test, in which the board is shaken until destruction

• shear strength testing of solder joint strength

• visual inspection of microsectioned solder joints

Figure 9.15: Example populated PCB top and bottom views

Testing the Electronic System 635

www.newnespress.com

9.4 Boundary Scan Testing

Boundary scan tests [6–8] for digital ICs was introduced as IEEE Standard 1149.1-

1990 in 1990 and now forms one of a family of standards covering boundary scanning

for digital circuits, mixed-signal circuits, and system designs. The current standards

are identified in Table 9.1.

Boundary scan testing is an extension of scan path testing that was developed for digital

logic. Scanpath testing provides test access to the core of the ICvia the circuit bistables (e.g.,

D-type bistable), and to allow test data to be serially clocked into, and out of, the device

under test (DUT) via the primary I/O (i.e., the device package pins) of the IC. Scan path

testing is an easily adopted DfT approach for digital ICs that allows the controllability

and observability of internal nodes within a digital IC to be maintained for the more

complex ICs. Scan path testing is included within the core of the IC. However, the basic

idea can be adopted for the peripheral cells of the IC and at the PCB level, as well.

Boundary scan testing essentially allows a scan path to be set up in the peripheral cells of

the IC and the PCB to provide test access to the individual ICs mounted onto the PCB.

The motivation for the creation and adoption of boundary scan testing lies in the

increasing complexity of digital ICs, the reduction in IC package dimensions, and the

increasing complexity of PCB designs. Two example PCBs are shown in Figure 9.16.

Here, the size of the IC packages (number of pins and physical footprint) as well

as the close placement on the PCB itself can be seen. These technological advances

have resulted in a decreased ability to probe the PCB nodes with conventional test

equipment such as the flying probe tester and the ICT.

To address the PCB test problem, the Joint Test Action Group (JTAG) was

established in the 1980s. This led to the development of the IEEE Standard 1149.1-

1990, also commonly referred to as JTAG boundary scan. The basic idea is to set up a

Table 9.1: IEEE Standard 1149

IEEE Std 1149.1-1990 IEEE standard test access port and boundary-scan architecture
IEEE Std 1149.1a-1993 IEEE standard test access port and boundary-scan architecture
IEEE Std 1149.1b-1994 Supplement to IEEE Std 1149.1-1990, IEEE standard test access

port and boundary-scan architecture
IEEE Std 1149.1-2001 IEEE standard test access port and boundary-scan architecture
IEEE Std 1149.4-1999 IEEE standard for a mixed-signal test bus
IEEE Std 1149.5-1995 IEEE standard for module test and maintenance bus (MTM-Bus)

protocol
IEEE Std 1149.6TM-2003 IEEE standard for boundary-scan testing of advanced digital networks

636 Chapter 9

www.newnespress.com

Surface
mount IC

Surface
mount
passive
components

Densely
packed, high
pin-count
digital ICs

Miscellaneous
digital logic

Figure 9.16: Example complex digital PCBs

Testing the Electronic System 637

www.newnespress.com

serial scan path in the periphery (I/O) of the device under test, and to use the IC

interconnect on the PCB to set up the IC boundary scan test path for the application

and retrieval of test data. In this approach, one or more digital ICs supporting

boundary scan (boundary scan compliant ICs) are within the boundary scan path.

This approach includes the interconnections (tracks) on the PCB and the ICs

mounted on the PCB in the test.

Given that some ICs contain a boundary scan capability (boundary scan compliant)

while others do not, one of the following scenarios exists at the PCB level:

1. No boundary scan capability is available.

2. A partial boundary scan capability is available where some of the ICs are

boundary scan compliant, while others are not.

3. A full boundary scan capability is available where all of the ICs are boundary

scan compliant.

Where a boundary scan capability exists, the designer must choose whether to create a

single boundary scan at the PCB level or to have multiple boundary scan paths. With

multiple boundary scan paths, the designer much choose between shared and separate

signals.

A basic boundary scan arrangement is shown in Figure 9.17 where two ICs are

mounted on a PCB and connected together in a single boundary scan path. Each IC

Core
Logic

Core
Logic

IC1 IC2

TDI TDO

TMS

TCK

Boundary Scan Cell

TDO TDI
TAPTAP

Figure 9.17: Basic boundary scan arrangement for two ICs

638 Chapter 9

www.newnespress.com

has two modes of operation: normal operating mode (the mission mode) and

boundary scan mode.

In the normal operating mode, the boundary scan is bypassed and has no effect,

However, in the boundary scan mode, test data can be serially clocked in and out

of each IC in the scan path that is set up in the interconnect at the PCB level and in the

I/O cells of the IC. Each I/O cell is a boundary scan cell and contains logic to control

the operation of the cell between the normal operating mode and the boundary scan

mode. Test access is via the TAP (test access port). A basic test access port will consist

of the following:

1. TAP controller

2. Data registers (boundary scan register, bypass register, identification register

and user defined registers)

3. Instruction register

In a basic arrangement, each IC requires four additional pins for the boundary scan:

• test data input (TDI) is used for providing the IC with both data and

instructions

• test clock (TCK)

• test data output (TDO) is used for providing both data and instruction outputs

from the IC

• test mode select (TMS) which, together with the TCK, is used to control the

TAP controller, a 16-state finite state machine used as the controller of the

boundary scan circuitry on the IC

An additional optional test reset (TRST) is sometimes included, but is not a

requirement in the standard.

A boundary scan solution consists of a hardware part and a software part. The basic

hardware part has been previously discussed. The software part is supported by the

boundary scan description language (BSDL), which a subset of VHDL. BSDL

provides the structured and machine-readable form needed to describe the parameters

for an IEEE Standard 1149.1 compliant IC. However, VHDL is a large language, and

not all of its available features are required for boundary scanning, hence BSDL is

only required to be a subset of VHDL.

Testing the Electronic System 639

www.newnespress.com

Although the boundary scan standard was created to solve test problems at the PCB

level, it has the following additional uses:

• as part of a test solution at the PCB level where boundary scan circuitry is

included at the digital IC level

• as part of a test solution for the digital IC itself in production test

• for configuring programmable logic devices, whereas the FPGAs and CPLDs

available today are configured via a JTAG interface

For the configuration of programmable devices, IEEE Standard 1532-2002

(In-System Configuration of Programmable Devices) is available.

A more detailed look into a boundary scan compliant IC is provided in figure 9.18.

Here the core logic (or system circuitry) provides the core of the IC that is surrounded

by digital input and output obtained from the boundary scan register. This is formed

using the boundary scan cells. Alongside this circuitry is the circuitry that forms the

test access port (TAP). This is formed by the TAP controller, instruction register (and

the instruction decode logic), data registers and associated logic that is required for the

IC to be compliant with the standard. The two types of register are the instruction

register (sets up the mode of operation of the IC) and the data register. Four data

registers are shown here, with these registers being either mandatory (must be

present) or optional (can be included if so required):

1. Boundary scan register: This is formed using the boundary scan cells in the I/O

of the IC and allows for test data to be applied to the core inputs of the IC and

to be retrieved from the core outputs.

2. Bypass register: This is a mandatory 1-bit register which allows the IC to be

bypassed so that test data applied on the test data input (TDI) pin is passed to

the test data output (TDO) pin and is not stored in either the instruction

register or the other data registers.

3. Device identification (ID) register: This is the hardwired identification for the

particular device which is formed using a 32-bit code. This is an optional register.

4. User defined register: This is an optional register (or registers) that are

specified by the user for the particular IC.

Test data can be accessed through the TDO pin from any of the data registers or from

the instruction register depending on the actions determined by the TAP controller.

640 Chapter 9

www.newnespress.com

Boundary scan register

Core logic
(system circuitry)

User defined register

Device ID register

Bypass register

Instruction decode

Instruction register
D Q

TAP
Controller

Select

TCK

Shift

TDI

TDI

TCK

TRST

TDO

ClockIR
ShiftIR
UpdateIR

ClockDR
ShiftDR
UpdateDR

Normal
I/O

Normal I/O

mode 1 mode n

Data registers

Normal
I/O

Figure 9.18: Example boundary scan complaint IC structure

Testing the Electronic System 641

www.newnespress.com

These signals are stored in a bistable and accessed from the TDO pin that is formed

using a tri-state buffer.

9.5 Software Testing

Software programs are designed and written to run on a suitable processor-based

electronic system [9]. Software programs are intended for one of two main uses:

• as an application to run on a PC or workstation

• as an application to run on a processor in an embedded system

Although the basic idea for an application is the same in both uses—it is a software

program that is to be developed for and run on a suitable processor—program

requirements differ. For example, the software program to run on an embedded

system must be capable of real-time operation, consider safety as a primary design

requirement, and the resulting code must occupy as little memory as possible.

Such considerations are not always necessary for a software application to run on a

PC. While a software failure in a word processor application running on a PC might

be annoying and result in the loss of a document, it is not a catastrophic failure.

By contrast, a software failure in the engine control system in a spacecraft might result

in the loss of the spacecraft. For example, on the maiden flight of the European Space

Agency Ariane 5 launcher on June 4, 1996, a software failure caused a catastrophic

failure of the launcher resulting in its destruction. The Ariane 5 is a European rocket

designed to launch commercial payloads such as communications satellites into Earth

orbit. During launch, incorrect control signals were sent to the rockets that caused the

failure. These incorrect control signals were created by a software failure that allowed

diagnostic commands to be transmitted to the engines, which interpreted them as real

data, causing the rockets to swivel to an extreme position. On analysis of the failure, it

was ascertained that the software failure resulted from an attempt to convert a 64-bit

floating point number into a 16-bit integer number, which caused a number overflow.

Because this overflow was not dealt with by an exception handler in the software

program, system exception management was invoked and shut down the software.

This potential scenario was not considered during the software development, and so

not handled within the software.

The development of a software program involves two main players, the developer and

the customer. The developer develops the software program on behalf of the customer

642 Chapter 9

www.newnespress.com

and to the customer’s specifications. The software testing process must take into

account the requirements of both players.

When writing the software program, both syntax and semantics are considered.

Program syntax relates to the grammatical structure of the programming language

used and the rules that determine whether the program can be compiled or interpreted.

Program semantics relate to themeaning of the program as written. A programmight be

correct in its syntax but incorrect in its semantics, or vice versa. In programming

languages such as C, syntax errors are removed when the program is compiled using the

available program checking and debugging tools that support the code compiler.

As part of the design process, software engineers must consider that the developed

program might contain faults, which may or may not cause a software failure. Hence,

faults are distinguished from failures. A fault is an error in the semantics of the

software program. A failure occurs when the program performs an action that it was

not designed to perform. For example, a programmight delete a required file on a PC.

A program might operate correctly on the processor for which it was compiled, but

might fail when compiled to a different processor. Thorough testing of the program

should remove the possibility of a software failure.

Testing the software program is undertaken at different times within a program

development process and again once the development is completed. The types of tests

depend on what information is needed from the test process. When a software

program is developed, the overall design problem is broken down into smaller, more

manageable tasks. The code development is broken down into units, each of which is

connected together to form the overall software program. The basic software tests

consider this approach:

1. unit testing

2. unit interaction testing

3. integration testing

4. acceptance testing

Whenever a fault is located and corrected in the software program, then the program

must be retested both to verify that the fault was corrected and to verify that

correcting the error did not introduce new faults. It is essential to ensure that the test

process is suitably planned and managed and that the right tests are undertaken at

the right points in the process. A lack of testing could set up a situation in which

Testing the Electronic System 643

www.newnespress.com

faults and failures are not detected. An excess of testing will result in higher than

necessary test costs. Planning and conducting software tests is a complex process,

particularlywhen a teamof software developers are involved in the overall design process.

Unit testing, also referred to as white box testing, considers the program code in detail.

It is undertaken after an individual unit has been developed, and by the developer with

knowledge of the internal code structure. Therefore all parts of the code (e.g., variable

values) can be monitored. The tests are based on the program code detail, so if the

code changes, then the tests probably have to be changed, as well. Once the tests for

functional correctness have been completed, exception testing is conducted to test the

unit under exceptional conditions. This ensures that the program behaves gracefully

when the program experiences unexpected situations, such as when it receives a value

outside the range for the declared variable type, and does not simply crash.

Unit interaction testing is undertaken after the units have been written and

individually tested. This tests for the correct operation of the units working together,

for example, correctly passing variable values between units.

Integration testing is then undertaken and checks that the whole system has been

integrated successfully. Unit interaction testing should have already identified many

of the integration problems and allowed for their correction at the unit level.

Acceptance testing is performed to ensure that the system is doing the right thing.

These give the customer confidence that the program has the required features and

behaves correctly. The program must pass all of the acceptance tests to be accepted by

the customer. The tests that are specified and undertaken represent the interests and

needs of the customer rather than the interests and needs of the developer. Acceptance

tests are also sometimes referred to as functional tests. Two examples are:

• When the application is initially opened, the application log file named

‘‘application.log’’ opens in the directory ‘‘C:\bin\’’.

• When the application is closed, the application log file named

‘‘application.log’’ is closed.

The application is run and checked that these actions are correctly performed

and, where multiple actions are undertaken, are performed in the correct order.

Acceptance testing considers the software specification and is a form of black box

testing. In black box testing, the tests consider an external perspective of the program

and do not involve any knowledge of the internal structure of the program.

644 Chapter 9

www.newnespress.com

References

[1] Bushnell, M. L., Essentials of Electronic Testing for Digital, Memory and Mixed-

Signal VLSI Circuits. Kluwer Academic Publishers, 2000, ISBN 0-7923-7991-8.

[2] Burns, M., and Roberts, G. W., An Introduction to Mixed-Signal IC Test and

Measurement. Oxford University Press, 2001, ISBN 0-19-514016-8.

[3] Rajsuman, R., System-on-a-Chip Design and Test, Artech House Publishers,

USA, 2000, ISBN 1-58053-107-5.

[4] Grout, I. A., Integrated Circuit Test Engineering Modern Techniques, Springer,

2006, ISBN 1-84628-023-0.

[5] O’Connor, P., Test Engineering, A Concise Guide to Cost-effective Design,

Development and Manufacture, John Wiley & Sons Ltd., England, 2001, ISBN

0-471-49882-3.

[6] The Institute of Electrical and Electronics Engineers, IEEE Standard Test Access

Port and Boundary-Scan Architecture, IEEE Standard 1149.1-2001, IEEE, USA.

[7] Van Treuren, B., and Miranda, J., ‘‘Embedded Boundary Scan,’’ IEEE Design

and Test of Computers, March–April 2003, pp. 20–25.

[8] Parker, K., The Boundary-Scan Handbook, Analog and Digital, Second Edition,

Kluwer Academic Publishers, USA, 2000, ISBN 0-7923-8277-3.

[9] Ince, D. C., Software Engineering. Van Nostrand Reinhold International, 1989,

ISBN 0-278-00079-7.

Testing the Electronic System 645

www.newnespress.com

Student Exercises

9.1 What is a scan D-type bistable? How is it used in testing digital ICs?

9.2 What is the principle of IDDQ testing? How is it used in testing digital ICs?

9.3 Built-in self-test (BIST) for digital circuits will normally be based on specific

known circuit designs and operation in order to provide the necessary BIST

functionality, but with a small circuit overhead (the amount of circuitry

required to implement the BIST). One example of a commonly used circuit is

the linear feedback shift register (LFSR). Using suitable texts identified in

the reference list for this chapter, identify the operation of the LFSR and

determine why it is used.

9.4 For the IEEE Standard 1149.1 boundary scan standard, identify the

operation of the TAP controller. For this digital finite state machine, develop

and simulate a VHDL code implementation for this design.

9.5 For each of the case study PCB designs identified in Appendix F, Case Study

PCBDesigns (see the last paragraph of the Preface for instructions regarding

how to access this online content), develop a suitable test procedure that

could be used to test the PCBs during design and fabrication.

646 Chapter 9

www.newnespress.com

CHAP T E R 1 0

System-Level Design

10.1 Introduction

Increasingly, there is a need to developmore complex digital systems andmore quickly to

reduce development time and cost and to get a new product to market first. These

requirements have highlighted the limitations that exist with traditional design

approaches that were developed and suited to smaller designs where working at a more

detailed level was part of the normal design process. In the more complex designs,

working at the detailed design level is no longer viable, resulting in a need to work at a

higher level of design abstraction. Here, the designer develops, validates, and verifies the

operation of high-level designmodels, which are then automatically synthesized into the

circuit design implementation. The designer can concentrate on getting the high-level

operation right, then put the detailed implementation into the hands of software

electronic design automation (EDA) tools [1] for automating the creation of the design

details—essentially the synthesis of the system-level models into registered transfer logic

(RTL) code (for hardware) and/or software source code (such as C/C++). Then the

standard RTL logic synthesis design flow to utilize this RTL code is undertaken for

the hardware, and source code compilation is undertaken for the software.

An electronic system-level design approach considers both hardware and software

and the right mix of hardware and software. Much of the system-level and detailed

design implementation work is undertaken using one or more EDA tools.

The implementation technologies available for use today—processor based, FPGA

(field programmable gate array) or CPLD (complex programmable logic device)

based, ASIC (application-specific integrated circuit) based—typically contain a

number of libraries of predesigned blocks ranging in complexity (considering

hardware) from basic logic gates to IP (intellectual property) blocks such as

www.newnespress.com

multipliers, processors, memory, and communications that must be brought together

in the system design and must work together to create a working system.

The question does, however, need to be asked: Why use a system level design approach?

There are many possible answers. For a designer working with smaller designs (What

is small?), the traditional design flows and EDA tools appear to be adequate and well

supported. But what if the needed design is several times larger in magnitude and is

needed in less time? Would the traditional design flows and EDA tools be sufficient?

Probably not. The designer is encountering a number of factors:

• increasing design complexity

• increased speed of operation of designs

• increasing range of possible implementation technologies

• use of third-party IP (intellectual property) blocks

• licensing and IP issues associated with the use of third-party IP blocks

• working with third-party suppliers and keeping up to date with IP supplier

changes

• increased need to work in project teams and on a global scale in various time

zones

• outsourcing of specific design, manufacturing, and test activities to third-party

organizations

• need for cost-efficient and fast design prototyping

• reduced time to market (TTM)

• increased competition

• using best practices in design

• keeping up to date with the latest developments

• use of mature and new design flows

• use of mature and new EDA tools

• reduced costs

• . . . and so on . . .

648 Chapter 10

www.newnespress.com

Even with simpler designs, a number of issues must be considered before a design

concept can be realized as a product. Working at the electronic system-level design,

some of these identified issues become a more critical role in realizing a design concept:

• design implementation efficiency

• increasing distance between the design abstraction level and the design

implementation

• increased potential for detail implementation issues (the devil is in the detail)

• test and testability issues

• DfX, design for X:

* DfA, design for assembly

* DfD, design for debugging

* DfM, design for manufacturability

* DfR, design for reliability

* DfT, design for testability

* DfY, design for yield

• correct, robust, and repeatable system operation

• automated documentation generation

• information at all stages of the process about actions taken automatically (by

the EDA tools for example) so the designer can quickly and easily check

specific design details

• target hardware design issues

• design team communications (on a local and global scale)

• robustness of the design to manufacturing process variations

• keeping up to date with existing and new legislation (e.g., the WEEE directive)

• . . . and so on . . .

The area of electronic system-level (ESL) design is still emerging, and various

activities are undertaken in defining the direction for ESL design [2]. However, there

System-Level Design 649

www.newnespress.com

is a basic need to combine into a single and robust design methodology multiple

design methods, EDA tools, and implementation technologies, as shown in

Figure 10.1. How would these be combined? What changes are needed to enable

the best integration into the ESL design? Or would it be better to start new and

create new solutions for ESL design from scratch, without risking any limitations

and compromises the old solutions might bring with them? These are only a few of

the pertinent questions that are not easy questions to answer, but nevertheless

must be asked.

The way in which an ESL design methodology will be developed and implemented has

a major impact on how easily the methodology can be used and ultimately whether

a product can be successfully developed. Two approaches are possible:

1. A one method fits all approach, in which a single, fixed methodology would

exist, and any given design project would adapt to fit the model. If the

methodology is not right for the particular project, this could ultimately limit

the success of a project. However, this approach does facilitate monitoring

and controlling a project.

ESL design

EDA tools

Implementation
technologies

Design
methodologies

Figure 10.1: Combining design methodologies, EDA tools, and implementation
technologies for ESL design

650 Chapter 10

www.newnespress.com

2. A general framework that can adapt to particular project requirements.

This simple framework would identify the key steps in design, and the details,

the design modules, would be added for a particular project—to use a

computer industry term, providing a plug-and-play capability. This allows

the designer to create dynamic methodologies that can react to different

project requirements and changes that inevitably occur.

Three points raised at the beginning of Chapter 2 bear repeating. Before considering

any design:

1. Always use common sense. If something does not seem right, then it probably isn’t.

2. Never leave anything to chance. What can go wrong will go wrong.

3. There is almost always more than one way to solve a problem. The choice for

the designer is to determine the most appropriate solution. The first solution

developed might not necessarily be the best.

A fourth point is also necessary:

4. All systems are based on the same principles of physics. The principles learned

in the first year of any degree program in electronics and computer

engineering will be always valid.

As design complexity increases, it is easy to lose sight of the requirement to

implement the design, and rather for the designer to become so focused on the higher

levels of design abstraction that common sense falls away.

Aside: Never underestimate the need for basic theorems such as Ohm’s Law.

The designer therefore needs to remember that, although he or she may be working

at a high level of design abstraction, the design must work in a manufactured

system. This is not always easy to achieve, and it may be necessary for a team of

designers working at different levels of abstraction to work closely together and

use the same terminology, talk the same language. At the high level of design

abstraction are the platform design engineers. At the detailed implementation,

System-Level Design 651

www.newnespress.com

are the circuit (or software) design engineers. In between are the integration

design engineers. Figure 10.2 identifies these three levels:

1. Platform design engineers work at the highest levels of abstraction and define

the right architecture for the particular system, along with the interfacing

between the components.

2. Circuit (or software) design engineers work on detailed implementation issues.

3. Integration design engineers work at a middle level of detail and provide a link

interface between the specialties. The integration design engineer is not a specialist

in one area, but rather has a general understanding of both specialties and the

communications skills to achieve fluent and productive two-way communications.

A two-way flow of information among all three roles must be clear, concise, and

efficient, with a common terminology and an appreciation of the needs of each role.

The need is for cooperation rather than competition or conflict.

The separation of tasks must also be considered, given that any single individual cannot

do everything at all stages of the design process. This parallels the modern approach

taken in electronic circuit testing for the proactive involvement of the test engineer

alongside the design engineer to assess test and design testability issues at an early stage

in the design process—as early as the design specification stage. This has brought test

Platform design engineer

Integration design engineer

Circuit (or software) design
engineer

Concept

Implementation

Particular
roles may be
combined or
be named
differently

Figure 10.2: System level designer interaction

652 Chapter 10

www.newnespress.com

engineering closer to the design activities in that the test program development for an

electronic or microelectronic circuit occurs at an early stage in the product development

process and requires a basis in design. This overcomes the problems encountered when

design and test activities were separate and distinct, an unnecessary barrier between two

interrelated activities. In this design for testability (DfT), sometimes referred to as

Design for Test approach, test activities can influence how a design is created by

identifying testability issues and improving test access to specific circuitry within the

design. Specialist engineers in both design and testing are supported by a generalist DfT

engineer, shown in Figure 10.3, who bridges the gap between them. The need for

specialists is based on the need for in-depth knowledge of specific design and test issues,

roles which a single person could not realistically be expected to undertake.

The term platform is used in ESL design to refer to the architecture of the system,

what different technologies are to be used for particular functions, and how these will

be interconnected. It refers to both hardware and software components. For example,

if an embedded system uses an 8051 microcontroller and associated chip-set, the

platform that the embedded software will operate on will be the microcontroller and

associated chip-set. A number of software EDA tools, both separate and integrated

tools, will be used to design the platform, including:

• software compiler for the particular microcontroller

• PCB design software

• SPICE-based circuit simulator

Design engineer

DfT engineer

Test engineer

Design

Test

Particular
roles may be
combined or
be named
differently

Figure 10.3: Design, test, and Df T

System-Level Design 653

www.newnespress.com

The platform designer is also known as a system architect.

Whenever an action, or a sequence of actions, is to be undertaken during the design,

the following four questions should always be asked:

1. WHAT action is to be undertaken, and what information do I need to

undertake this action?

2. WHEN is the action to the undertaken?

3. WHY is the action to be undertaken?

4. HOW is the action to be undertaken?

How is one implementation technology chosen in preference to another?

To consider these questions and to identify some of the implementation issues,

system-level design in this chapter is considered with reference to the development

ofVHDL (orVHSIC, very high-speed integrated circuit, hardware description language)

code for implementing required digital algorithms from a system-level simulationmodel.

In this case, a MATLAB�/Simulink� model is created and manually translated to

VHDLcode [3–6] by considering the required high-level functions and how they can then

be implemented in RTL-level VHDL. Two case study designs are considered, one digital

control algorithm for a motor control scenario and a digital filter design. They are

worked through from design concept through to VHDL coding and simulation.

When looking at particular case studies, be aware that each particular problem

considered has specific needs. Although a number of the issues identified and resolved

for the particular case study may be generic, other issues may be specific to that

particular problem. Attempting to generalize the problem for all possible applications

is not trivial and requires careful consideration.

10.2 Electronic System-Level Design

Electronic system-level (ESL) design is emerging as an important design approach for

more complex electronic system design problems [2]. Rather than focusing on design

details, the ESL approach concentrates on the higher levels of design abstraction. It is

not the same as behavioral modeling, rather it is advancement on what was attempted

to be achieved by behavioral modeling. An important point is to note that ESL has a

taxonomy. Taxonomy has a number of definitions, coming mainly from the natural

654 Chapter 10

www.newnespress.com

sciences. One definition is the science of classification according to a predefined system.

This produces a catalog with which to provide a conceptual framework that allows for

discussion, analysis, and information retrieval by those who use the framework.

There are a number of reasons for considering an ESL approach. The work is

undertaken at a high level of abstraction, allowing ideas to be rapidly developed and

evaluated without time-consuming detail work. The design is created and the

operation simulated using a high-level modeling and simulation language. The

implementation (down to the basic digital logic hardware and software programs) is

undertaken using a suitable EDA tool or set of tools

Aside: A useful compilation of articles on various issues associated with ESL design is
provided in an article entitled ‘‘Electronic System-Level Design’’ in the September–October
2006 issue of Design & Test of Computers (http://www.computer.org/dt).

A number of the companies and organizations currently involved in ESL design are

identified in Table 10.1. As an emerging area, ESL is dynamically changing to the

needs of the complex systems encountered today, as well as predicting the needs for

the future. The need for the future is for insight rather than hindsight.

Table 10.1: Organizations currently involved in ESL

Company URL

ARM (Advanced RISC Machines) http://www.arm.com/

AltiumTM http://www.altium.com
AutoESL Design Technologies http://www.autoesl.com/
Cadence Design Systems http://www.cadence.com/
Celoxica http://www.celoxica.com/
Codetronix http://www.codetronix.com
Coware http://www.coware.com
Mentor Graphics http://www.mentor.com/
The Mathworks Inc. http://www.mathworks.com/
Synopsys http://www.synopsys.com/
Esterel Technologies http://www.esterel-technologies.com/
Bluespec http://www.bluespec.com/
Cebatech http://www.cebatech.com/
Impulse Accelerated Technologies http://www.impulsec.com/
Forte Design Systems http://www.forteds.com
Computer Engineering Group (GrecO) of the Informatics
Center of Federal University of Pernambuco

http://www.pdesigner.org/

SystemCrafter Ltd. http://www.systemcrafter.com

System-Level Design 655

www.newnespress.com

Within the semiconductor industry, which is driving much of global technological

advances, is the International Technology Roadmap for Semiconductors (ITRS)

[7, 8]. This roadmap is a set of public domain documentation that identifies industry

trends, highlights technical obstacles, and provides companies with the information to

align their product cycles with the developing technologies. The ITRS identifies the

semiconductor industry technological challenges and needs over the next 15 years

and is regularly updated. This cooperative effort of industry manufacturers and

suppliers, government organizations, and universities is sponsored by the following

organizations:

• European Semiconductor Industry Association (ESIA)

• Japan Electronics and Information Technology Industries Association

(JEITA)

• Korean Semiconductor Industry Association (KSIA)

• Semiconductor Industry Association (SIA)

• Taiwan Semiconductor Industry Association (TSIA)

The ITRS considers design, fabrication, test, and EDA, but does not propose a fixed

plan for the future. Rather it provides a means to identify the future challenges and

where the organizations involved consider that effort is best expended.

ESL is a response to the emerging needs of the designers (both hardware and

software) to support their need to develop more complex systems designs but in less

time. This allows the designer to:

• raise the design entry point to a more abstract level to make the complex

design problem manageable

• concentrate on the high-level design concept issues rather than the low-level

design implementation issues

• reduce design time by automating time-consuming tasks that are suited to

automation

• explore the design space at the abstraction level and explore trade-offs (in size,

performance, power consumption) in the design decisions

ESL design is a response to designers working at a behavioral level, as has become

increasingly common with behavioral-level modeling being developed for synthesis

656 Chapter 10

www.newnespress.com

into logic. However, ESL design is required to overcome limitations of behavioral-

level modeling by working at higher levels of abstraction and complexity.

The design aspects considered thus far constitute only one part of a three-part story:

design, fabrication, and testing as shown in Figure 10.4. In the center of the triangle is

project management, which provides the necessarily logistic support.

To work efficiently, ESL design methodology must integrate all three parts in a

seamless and easy-to-use manner. For example, with the complexity of digital system-

on-a-chip (SoC) designs being developed today, the test circuit is integrated into the

design as part of the DfT strategy.

Table 10.2 provides a list of the main tools and languages currently available today,

including source information. It is typical for the developers and suppliers to provide

information such as product and language specifications, data sheets, and technical

white papers that identify the principles of operation.

Everyone can see the usefulness of electronic systems in everyday life. It is unusual,

for example, for anyone in the developed world not to either own, use, or at least have

seen a mobile phone. Such devices have been in everyday use for the last twenty years,

and now, every couple of months, new phones with additional features become

available. Figure 10.5 shows one example, the NEC e228 phone. The left view shows

the front of the phone (the user interface). As this is a portable device, the phone

operates on a battery, shown on the right view of the side, which is rechargeable and

lasts for a number of hours on a charge (the 1100 mAh rated lithium-ion battery

provides 3.7 V DC). The main functions of the user interface are:

• keypad for hand input

• microphone for audio input

Design

Fabrication Test

Project
management

Figure 10.4: Design, fabrication, and testing

System-Level Design 657

www.newnespress.com

Table 10.2: Summary table for languages and tools used in ESL

Company or organization Tool or language Company URL

Agilent Technologies Agilent Ptolemy http://eesof.tm.agilent.com

Altera C2H http://www.altera.com

Bluespec Inc. BlueSpec http://www.bluespec.com/

Cadence Design Systems Spectre� http://www.cadence.com

Mentor Graphics Catapult-C� http://www.mentor.com

Celoxica Handel-C http://www.celoxica.com/

Forte Design Systems Cynthesiszer http://www.forteds.com

Accellera Verilog Analog
Mixed-Signal Group

Verilog�-A http://www.eda.org/verilog-ams/

Verilog�-AMS http://www.eda.org/verilog-ams/

IEEE Verilog�-HDL http://www.ieee.org

VHDL http://www.ieee.org

VHDL-AMS http://www.ieee.org

Language SystemVerilog http://www.ieee.org

Impulse Accelerated
Technologies

Impulse-C� http://www.impulsec.com/

Inria Estererel http://www-sop.inria.fr

Maplesoft Maple http://www.maplesoft.com

Mentor Graphics SystsemVision http://www.mentor.com

National Instruments LabVIEWTM http://www.national.com

Scilab Scilab and toolboxes such as Scicos http://www.scilab.org

Sun Microsystems JAVATM http://www.sun.com/

Open SystemC Initiative System-C� http://www.systemc.org

The Mathworks Inc. MATLAB� and toolboxes/blocksets
(such as Simulink�)

http://www.themathworks.com

Wolfram Research Mathematica http://www.wolfram.com

International Organization for
Standardization

ANSI-C http://www.iso.org

ANSI-C++ http://www.iso.org

UML Object Management
Group

UML http://www.uml.org/

University of California, Irvine SpecC http://www.ics.uci.edu

University of Kansas Rosetta http://wwwsldl.org

University of California at
Berkeley

SPICE http://bwrc.eecs.berkeley.edu/
Classes/IcBook/SPICE/

Xilinx� Platform Studio http://www.xilinx.com
ISE and EDK (Embedded
Development Kit)

http://www.xilinx.com

www.newnespress.com

658 Chapter 10

• camera for visual input

• speaker for audio output

• LCD (liquid crystal display) for visual output

• battery for power supply

• port for battery recharge

• SIM card for personalizing the system

It is a useful exercise simply to take a look at the electronics in everyday use and to

consider what functions they undertake, how they look, and then to consider what

design decisions led to this.

As another example, consider a conceptual design that uses four separate processors.

Each processor has associated memory (RAM and ROM). Part of the RAM used by

the processor is available only to itself, whereas other parts of the RAM are shared.

Battery

SIM card
beneath battery

Battery charger port (on
side of phone case)

Camera
(rear)

KeypadBattery charger port (on
side of phone case)

Visual
display
(LCD)

Microphone

Camera
(front)

Memory
stick slot

Figure 10.5: Mobile phone (portable electronics example) (Images courtesy of NEC,
Copyright � NEC 2001–2004, no longer in stock)

System-Level Design 659

www.newnespress.com

The memory is distributed memory, so called because it is distributed among the main

functional parts rather than being concentrated in one memory block. Given that

some of the RAM is shared, RAM access control is needed to prevent multiple

processors accessing the same RAM at the same time. Each processor can

communicate with each of the other processors and with external electronic systems

via wired connections. The wireless communications link is accessible only by one of

the processors. This idea is shown in Figure 10.6.

The question arises, how would this design be realized and why? Asking the right

questions is the first step toward a working solution.

Processor 1

Wireless
communications link

Aerial

ROM RAM

Processor 1

ROM RAM

Internal
communication External

communication
External

communication

Processor 1 Processor 1

Internal
 communication External

communication
External

communication

ROM RAM ROM RAM

Shared RAM
Internal

communication
Internal

communication

Figure 10.6: Multiprocessor design concept

660 Chapter 10

www.newnespress.com

10.3 Case Study 1: DC Motor Control

10.3.1 Introduction

In this case study, a digital controller is developed to control the speed of a DC

electric motor. The overall control system model will be developed in MATLAB� [9]

and its Simulink� [10] toolbox. The model of the control algorithm will then

be manually converted to VHDL code using a set design translation flow for

implementation as a digital controller using a CPLD. The design issues will be

captured and presented in a way that allows the VHDL code to be generated

automatically. The overall design flow is shown in Figure 10.7.

Digital controller
simulation model

Design translation
directives

Idea

Control system design
requirements

Capture idea

Create simulation model and
generate control law. Set

controller coefficient values

Digital controller design
requirements

Translate digital controller model
to VHDL code suitable for
simulation and synthesis

Digital controller
VHDL code

Digital controller
VHDL test bench

Technology directives

Designer directives

Figure 10.7: Motor control case study design flow

System-Level Design 661

www.newnespress.com

10.3.2 Motor Control System Overview

The control system is a closed-loop controller using PI (proportional plus integral)

control [11, 12]. Other forms of control algorithm such as PID (proportional plus

integral plus derivative) could be used, but the added complexity is unnecessary in this

case. The particular control algorithm was chosen based on the requirements of the

motor (the plant to control) and the required system response. As such, PI control

provides zero steady-sate error in the motor speed (a motor speed steady-state error

would exist if only proportional control was used) and a design simple to implement

and easy to understand. The coefficients of each action within the PI control law are set

to give a response that settles to a steady state in an adequately short time. The initial

step in the design is to create the control system block diagram, shown in Figure 10.8.

The controller receives two analogue signals (voltages): first the command input that

sets the required motor speed, then a feedback input that identifies the actual speed of

the motor. In this control system model, then:

• The motor is modeled as a Laplace transform with the transfer function

[1/(1+0.1s)].

• The analogue input range for the controller is 0 V to+5.0 V, which indicates a

speed in both directions of motor shaft rotation, where:

* 0 V indicates a maximum motor shaft speed in an anticlockwise direction.

* +5.0 V indicates a maximum motor shaft speed in a clockwise direction.

* +2.5 V indicates that the motor shaft is stationary.

P

I
–

+

+

+

Motor

Tachogenerator

Command Input
(Desired Speed)

(X)

Motor Shaft
Speed

(Y)

Controller
Sensor

Plant

Feeedback

Figure 10.8: Motor control system example with PI control

662 Chapter 10

www.newnespress.com

• The proportional action (Kp) gain is +2.0, and the integral action gain (Ki) is

+8.0 (not optimized).

• This is a high-level behavioral model (and a linear model of the system) that

does not take into account nonlinear effects such as value limits, slew rate

effects, and any existing motor dead zone.

• The motor model contains a tachogenerator (sensor) that produces an

analogue voltage output in the range 0 V to +5.0 V.

• The command input (required speed) and actual motor speed outputs are

considered to be voltages, and the motor shaft speed uses suitable units (e.g.,

rads/sec).

• The model uses the built-in Simulink� library continuous time blocks, and no

design hierarchy has been developed.

• The digital controller is required to sample analogue signals and to undertake

digital signal processing on the discrete time samples. The sampling frequency

for this design is 100 Hz, a slow sampling frequency compared to many

control systems, but adequate for this application.

• The model uses only continuous time blocks, so when the digital controller

is created, the analogue model prototype must be converted to a digital

approximation. Those parts of the controller to be mapped to a digital

algorithm modeled in VHDL must therefore be identified.

The motor model used is a simple first-order Laplace transform that models the

motor and tachogenerator as a single unit. This was created by monitoring the

tachogenerator output voltage to a step change in motor speed command input

voltage. This is reasonably representative of the motor reaction to larger step

changes in command input, but does not model nonideal characteristics such as a

motor dead zone around a null (zero) command input and the need to minimize

the command input voltage required for the motor to react to a command input

change.

A full analysis of the control system is undertaken to determine that the derived

control algorithm is suitable for the application. This analysis is not, however,

covered in this text.

System-Level Design 663

www.newnespress.com

At this level of design abstraction (i.e., a simplified model of the system), none of the

implementation issues have been considered and only a mathematical model of the

system exists. But of course, ultimately, the system must be built using electronic

circuits. The basic arrangement created for such a control system is shown in

Figure 10.9. Here, the CPLD implements the digital control algorithm and interfaces

User input (speed control)
input voltage

D.C.
Motor

Tachogenerator

Circuit power
supply

CPLD
reset

CPLD
clock

Op-amp based signal
conditioning circuitry

n-bit
ADC

ADC
reference

n-bit
ADC

n-bit
DAC

Op-amp based signal
conditioning circuitry

Op-amp based signal
conditioning circuitry

ADC
reference

DAC
reference

+VS

–VS

Digital controller

CPLD configuration

PC

Figure 10.9: Motor speed control circuit arrangement

664 Chapter 10

www.newnespress.com

to two ADCs (analogue-to-digital converters, to sample the analogue input voltages

for the command input and the feedback) and one DAC (digital-to-analogue

converter, to output an analogue voltage to create the motor voltage). This DAC

output voltage is applied to a transistor power amplifier (because the DAC would not

be able to provide the necessary voltage and current levels required by the DC motor).

Op-amp based analogue circuitry is used on the ADC inputs and DAC outputs as

necessary to provide specific low-power analogue signal conditioning. A power

supply unit provides the necessary voltage and current levels required by the overall

circuit. Finally, a PC is used here to configure the CPLD.

10.3.3 MATLAB�/Simulink� Model Creation and Simulation

Before considering how controller is to be implemented, the control law (algorithm)

must be developed and analyzed. An example Simulink� model for this system is

shown in Figure 10.10.

The controller is placed within a single block (the controller block), and the motor

(motor model) is modeled using as a first-order system a Laplace transform equation.

The motor model also contains the tachogenerator output, so the output from the

Command_Input

Command

Command

Controller
Motor Model Motor_Speed

Simulation_TimeClock

Speed

Time

1
0.1s + 1

Controller_Out

Feedback
Signal

Generator

Figure 10.10: Simulink� model for the motor control system case study

System-Level Design 665

www.newnespress.com

system is modeled as the tachogenerator voltage (which represents the motor shaft

speed). This equation was obtained from the motor itself by applying directly a step

input voltage to the motor and observing the tachogenerator voltage. A signal

generator (signal generator block) allows different signals to be applied to the system.

The design is analyzed using both hand calculations and the Simulink� simulator,

with typical analogue input signals (step, sine wave, DC, triangle, and ramp) as part

of the overall system analysis routine. A frequency response could be undertaken by

generating a model for frequency analysis in MATLAB�.

The PI controller is shown in Figure 10.11.

The control system is simulated, and the gain values for the proportional and integral

actions are set so that the required response is obtained: a stable system with a transient

response that matches the requirements of the design specification. For a proportional

gain of+2.0 and an integral gain of+8.0 (not optimized), the system response (i.e., motor

shaft speed) produces an overdamped response to a step input as shown in Figure 10.12.

10.3.4 Translating the Design to VHDL

After the analysis of the system has been completed, the digital controller model is

translated to VHDL code suitable for simulation and synthesis. This requires that the

VHDL code be generated according to a set design translation flow in the following

eight steps:

1. Translation preparation (according to the nine steps below).

2. Set the architecture details (according to the six steps below).

Command

Feedback

Integral_Gain Integral_Action

Proportional_Gain

+– 21

2

8
1
s

++ 1

Controller_Out

Figure 10.11: Simulink� model for the PI controller

666 Chapter 10

www.newnespress.com

3. Translation from Simulink� model to VHDL code by reading the

Simulink� model, extracting the necessary design information, and

generating the VHDL code.

4. Generate VHDL test bench.

5. Simulate the VHDL code and check for correct operation to validate the

operation of the generated VHDL code.

6. Synthesize the VHDL code and resimulate the design to generate a structural

design based on the particular target technology.

7. Configure the CPLD and validate the operation of the design.

8. Use the controller.

The nine steps of translation preparation are:

1. Identify the parts to be translated into digital (the controller).

2. Remove any unnecessary information, leaving only the controller model.

3. Identify the digital controller interfacing.

0
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Figure 10.12: Simulation results for step change

System-Level Design 667

www.newnespress.com

4. Identify the clock and reset inputs, along with any other control signals.

5. Identify any external communications required.

6. Set up the support necessary to include the translation directives (see

architecture details below).

7. Identify the technology directives (any requirements for the target

technology, such as CPLD) and the synthesis tool to be used.

8. Identify any designer directives.

9. Determine what test circuitry is to be inserted into the design and at what

stage in the design process.

The six steps to set the architecture details are:

1. Identify the particular architecture to use.

2. Identify the internal wordlength within the digital signal processing part of

the digital core.

3. Identify any specific circuits to avoid (e.g., specific VHDL code constructs).

4. Identify the control signals required by the I/O.

5. Identify the number system to use (e.g., 2s complement) in the arithmetic

operations.

6. Identify any number scaling requirements to limit the required wordlength

within the design.

The model translation must initially consider the architecture to use either a

processor-based architecture running a software application (standard fixed

architecture processor or a configurable processor) or a custom hardware architecture

based directly on the model. This idea is shown in Figure 10.13.

If the translation is to be performed manually, this can be undertaken by visual reference

to the graphical representation of the model (i.e., the block diagram). If the translation

is to be performed automatically (by a software application), the translation can be

performed using the underlying text based model (i.e., with the Simulink�.mdl file).

A fixed architecture processor is based on an existing CISC or RISC architecture, and

its translation either will generate the hardware design (in HDL) and the processor

668 Chapter 10

www.newnespress.com

microcode together, or will generate only the processor microcode using an existing

processor design. The configurable processor is a processor design that dynamically

changes specific aspects of the architecture based on the particular application.

Direct mapping starts with the model as presented and directly translates its functions

to a custom hardware HDL code equivalent. Customized mapping uses custom

architecture based on the model, but then determines the most appropriate way to

implement its functions (e.g., by using multiple multiplication blocks or a single

multiplexed multiplier block) based on the application.

No matter what particular architecture is chosen, in addition to generating the

required digital signal processing algorithm hardware (as identified in the system

block diagram), then there would be the need to also generate the necessary

interfacing signals for external circuitry such as ADCs and DACs, and the internal

timing signals for the control of the signal processing operations, along with the

storage and movement of data signals within the design. These interfacing and

internal timing signals would need to be created by an additional circuit creating

the functions of a control unit particular to the design.

In this case study, direct mapping of model functions will be considered, so the

controller shown in Figure 10.11 will be translated. This requires the use of the

following main functional blocks:

• one subtraction block

• one addition block

Architecture

Processor

Custom
Hardware

Fixed architecture

Configurable

Direct mapping

Customized mapping

Figure 10.13: Controller architecture decisions

System-Level Design 669

www.newnespress.com

• one proportional action

• one integral action (shown as the integral gain and integrator action blocks)

One complication with this model is that it was created using continuous time blocks as

an analogue prototype of the digital controller. The Simulink� model uses Laplace

transforms, which much be approximated to a pulse transfer function for discrete time

implementation. The pulse transfer function G(z) is created from the Laplace (s)

transform form using one of the following methods where T is the signal sampling period:

1. Forward difference or Euler’s method:

s ¼ z� 1

T

2. Backward difference method:

s ¼ z� 1

zT

3. Tustin’s approximation (also referred to as the bilinear transform):

s ¼ 2

T
:
z� 1

zþ 1

These methods are readily applied by hand to transform from s to z.

In this case study, Tustin’s approximation is used. It applies only to the integral action

since the proportional action is simply a multiplication on the sampled data.

The proportional action (using Z-transforms) is:

PðzÞ ¼ Kp:XðzÞ

The integral action (using Z-transforms) is:

IðzÞ ¼ KiT

2

� �
xðzÞ þ xðzÞz�1
� �� �

þ IðzÞz�1

The PI controller block diagram can be remodeled using Z-transforms, as shown

in Figure 10.14. The two storage (z–1) blocks have a common clock signal that controls

when the inputs to the blocks are stored. This control signal must be created. The

670 Chapter 10

www.newnespress.com

controller block shown in Figure 10.14 forms the digital signal processing core of the

overall controller design. Figure 10.15 shows this core along with the necessary control

unit that generates the internal control signals based on the timing requirements of the

controller. The inputs to the controller are sampled at a sampling frequency of 100 Hz;

this timing is generated from a master input clock. After the algorithm has been run on

the current input signal (and previous inputs along with previous outputs), the current

output is updated. Because these actions are performed in less time than the 100Hz

sampling frequency allows, the design must wait until the next sample is required. This

idea is shown in Figure 10.16.

Signed arithmetic is used inside the control algorithm hardware (2s complement in this case

study). To achieve this, and given that the input is straight binary, the sampled value must

be stored (in a register) and converted to a 2s complement number, as shown in Table 10.3.

Finally, the interconnects between the main functional blocks must be considered.

The inputs are analogue inputs sampled using two AD7575 eight-bit LC2MOS

(leadless chip carrier metal oxide semiconductor) successive approximation ADCs

[13]. The output is an analogue signal created using a single AD7524 eight-bit

buffered multiplying DAC [14]. The internal wordlength is 16 bits, so the eight-bit

input and analogue output is transformed from 16-bit input and output. The eight-bit

+

+

I(z)

Z

–1

+

+

Error
E(z)

Z

–1

0.04

Store 1 Store 2

–

+

+

+
2

Controller
effort
P(z)

Command
Input
X(z)

Proportional
action output

P(z)

Feedback
Y(z)

Proportional action

Integral action output I(z)

Integrator gain

Figure 10.14: Discrete time PI controller

System-Level Design 671

www.newnespress.com

Proportional
action gain

8-bit ADC
8

16-bit
register

8-bit ADC
8

16-bit
register

16

16

Subtractor

8-bit DAC
8

16-bit
register

Unsigned binary to 2s complement and
 2s complement to unsigned binary conversion

internal to algorithm

16

Integral action
gain

Integral action
integrator

Summer

Control Unit

Master_ Clock

Master_Reset

Command_ADC

Feedback_ADC

Controller_DAC

Update_Out

Store_Feedback

Store_Command

Update_Out Store_Feedback Store_Command Int_Store

Command_ADC
Feedback_ADC
Controller_DAC

Int_Store 1

Vcommand

Vfeedback

Vcontroller

Int_Store 2

Figure 10.15: Electronic controller circuit block diagram

w
w
w
.n

e
w
n
e
s
p
re

s
s
.c
o
m

6
7
2

C
hapter

1
0

output circuitry must also include value limiting because the 16-bit internal value

exceeds the value limits set by the eight-bit output.

The Simulink� model for the overall control system must be reviewed and

should contain:

• information for translation to VHDL

• information not for translation to VHDL

Start

Take sample

Run algorithm

Update output

Wait for next
sample time

Figure 10.16: PI controller operation flowchart

Table 10.3: Binary I/O to internal value mapping

Digital I/O code,
decimal

Digital I/O code
(8-bits), binary

Internal code,
decimal

Internal code
(8-bits), binary

0 00000000 ! –128 10000000
127 01111111 ! –1 11111111
128 10000000 ! 0 00000000
255 11111111 ! +127 01111111

System-Level Design 673

www.newnespress.com

The information not for translation to VHDL includes information such as visual

attributes and software version information and must be stripped from the

representation of the model used for translation to VHDL. The Simulink�

model code for the controller only is shown in Figure 10.17. This is the text

description of the model shown in Figure 10.11. It consists of the blocks used,

their attributes, and the interconnect between the blocks (lines). Interpreting this

model requires knowledge of its syntax and how the values that can be modified

by the user are represented. The syntax is readable, and the names used are

identifiable by comparison with the block diagram view.

This model for the controller can be remodeled in VHDL, shown in Figure 10.18

as a structural description for the control algorithm. Detailed operation of each

block is defined in separate entity-architecture pairs.

The Xilinx ISETM RTL schematic for the synthesized controller design is shown in

Figure 10.19.

This control algorithm is placed in the overall VHDL structural description of the

controller, as shown in Figure 10.20.

The Xilinx ISETM RTL schematic for the synthesized controller design is shown in

Figure 10.21.

The final step is to generate and simulate a VHDL test bench for the controller.

An example VHDL test bench is shown in Figure 10.22.

10.3.5 Concluding Remarks

This case study design was for a simple digital control algorithm, but it also shows the

main operations required for typical digital control algorithms. The VHDL code to

implement the design within a CPLD was created by mapping the original Simulink�

block diagram to a VHDL code equivalent in which each of the main functional

blocks was presented as a unique entity-architecture pair. The structural design of

the controller top level and the control algorithm were presented, although the details

of the individual operations are left for the reader to implement.

The block diagram was mapped directly to VHDL to implement a custom hardware

design. In many cases, this would result in a large design, particularly when multiple

multiplications are necessary. However here, the ease and rapid development of the

674 Chapter 10

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

System {
Name "Controller"

 Block {
 BlockType Inport
 Name "Command"
 Position [20, 73, 50, 87]
 }
 Block {
 BlockType Inport
 Name "Feedback"
 Position [140, 225, 170, 240]
 Orientation "up"
 Port "2"
 }
 Block {
 BlockType Integrator
 Name "Integral_Action"
 Ports [1, 1]
 Position [355, 155, 385, 185]
 }
 Block {
 BlockType Gain
 Name "Integral_Gain"
 Position [260, 155, 290, 185]
 Gain "8"
 }
 Block {
 BlockType Gain
 Name "Proportional_Gain"
 Position [285, 65, 315, 95]
 Gain "2"
 }
 Block {

BlockType Sum
 Name "Sum"

Ports [2, 1]
 Position [145, 70, 165, 90]
 ShowName off
 IconShape "round"
 Inputs "|+-"
 InputSameDT off
 OutDataTypeMode "Inherit via internal rule"

}
 Block {
 BlockType Sum
 Name "Sum1"

Ports [2, 1]
 Position [430, 70, 450, 90]
 ShowName off
 IconShape "round"

46
47
48
49

 Inputs "|++"
 InputSameDT off
 OutDataTypeMode "Inherit via internal rule"
 }

Figure 10.17: Simulink� model for the PI controller

System-Level Design 675

www.newnespress.com

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

 Block {
 BlockType Outport
 Name "Controller_Out"
 Position [525, 73, 555, 87]
 }
 Line {
 SrcBlock "Sum"
 SrcPort 1
 Points [0, 0; 45, 0]
 Branch {

DstBlock "Proportional_Gain"
DstPort 1

 }
 Branch {

Points [0, 90]
DstBlock "Integral_Gain"
DstPort 1

 }
 }
 Line {
 SrcBlock "Integral_Gain"
 SrcPort 1
 DstBlock "Integral_Action"
 DstPort 1
 }
 Line {
 SrcBlock "Proportional_Gain"

SrcPort 1
 DstBlock "Sum1"

DstPort 1
 }
 Line {
 SrcBlock "Integral_Action"
 SrcPort 1
 Points [50, 0]
 DstBlock "Sum1"
 DstPort 2
 }
 Line {
 SrcBlock "Command"

SrcPort 1
 DstBlock "Sum"

DstPort 1
 }
 Line {
 SrcBlock "Feedback"

SrcPort 1
 DstBlock "Sum"

DstPort 2
 }98

99
100
101
102
103
104
105

 Line {
 SrcBlock "Sum1"
 SrcPort 1
 DstBlock "Controller_Out"
 DstPort 1
 }
 }

Figure 10.17: (Continued)

676 Chapter 10

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Control_Algorithm IS
 PORT (Command : IN STD_LOGIC_VECTOR (15 downto 0);
 Feedback : IN STD_LOGIC_VECTOR (15 downto 0);
 Controller_Out : OUT STD_LOGIC_VECTOR (15 downto 0);
 Integrator_Store_1 : IN STD_LOGIC;
 Integrator_Store_2 : IN STD_LOGIC;
 Reset : IN STD_LOGIC);

END ENTITY Control_Algorithm;

ARCHITECTURE Structural OF Control_Algorithm IS

SIGNAL Error : STD_LOGIC_VECTOR (15 downto 0);
SIGNAL Proportional : STD_LOGIC_VECTOR (15 downto 0);
SIGNAL Int_1 : STD_LOGIC_VECTOR (15 downto 0);
SIGNAL Int_2 : STD_LOGIC_VECTOR (15 downto 0);
SIGNAL Int_3 : STD_LOGIC_VECTOR (15 downto 0);
SIGNAL Int_4 : STD_LOGIC_VECTOR (15 downto 0);
SIGNAL Integral : STD_LOGIC_VECTOR (15 downto 0);

COMPONENT Adder IS
 PORT (Data_In_1 : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_In_2 : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0));

END COMPONENT Adder;

COMPONENT Subtractor IS
 PORT (Data_In_1 : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_In_2 : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0));

END COMPONENT Subtractor;

COMPONENT Integral_Gain IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0));

END COMPONENT Integral_Gain;

COMPONENT Proportional_Gain IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0));

END COMPONENT Proportional_Gain;

Figure 10.18: VHDL model for the control algorithm

System-Level Design 677

www.newnespress.com

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

COMPONENT Delay IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC);

END COMPONENT Delay;

BEGIN

I1 : Subtractor
 PORT MAP (Data_In_1 => Command,
 Data_In_2 => Feedback,
 Data_Out => Error);

I2 : Proportional_Gain
 PORT MAP (Data_In => Error,
 Data_Out => Proportional);
I3 : Adder
 PORT MAP (Data_In_1 => Proportional,
 Data_In_2 => Integral,
 Data_Out => Controller_Out);

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

I4 : Integral_Gain
 PORT MAP (Data_In => Error,
 Data_Out => Int_1);
I5 : Delay
 PORT MAP (Data_In => Int_1,
 Data_Out => Int_2,
 Reset => Reset,
 Store => Integrator_Store_1);

I6 : Adder
 PORT MAP (Data_In_1 => Int_1,
 Data_In_2 => Int_2,
 Data_Out => Int_3);

I7 : Adder
 PORT MAP (Data_In_1 => Int_3,
 Data_In_2 => Int_4,
 Data_Out => Integral);

I8 : Delay
 PORT MAP (Data_In => Integral,
 Data_Out => Int_4,
 Reset => Reset,
 Store => Integrator_Store_2);

END ARCHITECTURE Structural;

Figure 10.18: (Continued)

678 Chapter 10

www.newnespress.com

Controller Out (15:0)Data_In_1(15:0)Data_Out(15:0)

Data_In_2(15:0)

Data_In(15:0)Data_Out(15:0)

Data_In_1(15:0)Data_Out(15:0)

Data_In_2(15:0)

Data_In_1(15:0)Data_Out(15:0)

Data_In_2(15:0)

Data_In_1(15:0)Data_Out(15:0)

Data_In_2(15:0)

Data_In(15:0)Data_Out(15:0)

Reset

Store

Data_In(15:0)Data_Out(15:0)

Reset

Store

Data_In(15:0)Data_Out(15:0)

Feedback (15:0)

Command (15:0)

Reset

Integrator_Store_1

Integrator_Store_2

Figure 10.19: Digital control algorithm synthesis results (CoolrunnerTM-II CPLD)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Controller IS
 PORT (Command_ADC_BUSY : IN STD_LOGIC;
 Command_ADC_TP : OUT STD_LOGIC;
 Command_ADC_RD : OUT STD_LOGIC;
 Command_ADC_CS : OUT STD_LOGIC;
 Command_ADC_Data : IN STD_LOGIC_VECTOR (7 downto 0);
 Feedback_ADC_BUSY : IN STD_LOGIC;
 Feedback_ADC_TP : OUT STD_LOGIC;
 Feedback_ADC_RD : OUT STD_LOGIC;
 Feedback_ADC_CS : OUT STD_LOGIC;
 Feedback_ADC_Data : IN STD_LOGIC_VECTOR(7 downto 0);
 Controller_DAC_WR : OUT STD_LOGIC;
 Controller_DAC_CS : OUT STD_LOGIC;
 Controller_Out : OUT STD_LOGIC_VECTOR(7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC);

END ENTITY Controller;

ARCHITECTURE Structural OF Controller IS

SIGNAL Command_Int : STD_LOGIC_VECTOR (15 downto 0);
SIGNAL Feedback_Int : STD_LOGIC_VECTOR (15 downto 0);
SIGNAL Controller_Out_Int : STD_LOGIC_VECTOR (15 downto 0);
SIGNAL Store_Command : STD_LOGIC;
SIGNAL Store_Feedback : STD_LOGIC;
SIGNAL Update_Out : STD_LOGIC;
SIGNAL Integrator_Store_1 : STD_LOGIC;
SIGNAL Integrator_Store_2 : STD_LOGIC;

COMPONENT Control_Algorithm IS
 PORT (Command : IN STD_LOGIC_VECTOR(15 downto 0);
 Feedback : IN STD_LOGIC_VECTOR(15 downto 0);
 Controller_Out : OUT STD_LOGIC_VECTOR(15 downto 0);
 Integrator_Store_1 : IN STD_LOGIC;
 Integrator_Store_2 : IN STD_LOGIC;
 Reset : IN STD_LOGIC);

END COMPONENT Control_Algorithm;

Figure 10.20: VHDL model for the controller

680 Chapter 10

www.newnespress.com

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

 Feedback_ADC_CS : OUT STD_LOGIC;
 Controller_DAC_WR : OUT STD_LOGIC;
 Controller_DAC_CS : OUT STD_LOGIC;
 Store_Command : OUT STD_LOGIC;
 Store_Feedback : OUT STD_LOGIC;
 Update_Out : OUT STD_LOGIC;
 Integrator_Store_1 : OUT STD_LOGIC;
 Integrator_Store_2 : OUT STD_LOGIC);
END COMPONENT Control_Unit;

COMPONENT Input_Register IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (7 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC);
END COMPONENT Input_Register;

COMPONENT Output_Register IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (7 downto 0);
 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC);
END COMPONENT Output_Register;

BEGIN

COMPONENT Control_Unit IS
 PORT (Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Command_ADC_BUSY : IN STD_LOGIC;
 Command_ADC_TP : OUT STD_LOGIC;
 Command_ADC_RD : OUT STD_LOGIC;
 Command_ADC_CS : OUT STD_LOGIC;
 Feedback_ADC_BUSY : IN STD_LOGIC;
 Feedback_ADC_TP : OUT STD_LOGIC;
 Feedback_ADC_RD : OUT STD_LOGIC;

I1 : Control_Algorithm
 PORT MAP(Command => Command_Int,
 Feedback => Feedback_Int,
 Controller_Out => Controller_Out_Int,
 Integrator_Store_1 => Integrator_Store_1,
 Integrator_Store_2 => Integrator_Store_2,

Figure 10.20: (Continued)

System-Level Design 681

www.newnespress.com

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

I2 : Control_Unit
 PORT MAP(Master_Clock => Master_Clock,
 Master_Reset => Master_Reset,
 Command_ADC_BUSY => Command_ADC_BUSY,
 Command_ADC_TP => Command_ADC_TP,
 Command_ADC_RD => Command_ADC_RD,
 Command_ADC_CS => Command_ADC_CS,
 Feedback_ADC_BUSY => Feedback_ADC_BUSY,
 Feedback_ADC_TP => Feedback_ADC_TP,
 Feedback_ADC_RD => Feedback_ADC_RD,
 Feedback_ADC_CS => Feedback_ADC_CS,
 Controller_DAC_WR => Controller_DAC_WR,
 Controller_DAC_CS => Controller_DAC_CS,
 Store_Command => Store_Command,
 Store_Feedback => Store_Feedback,
 Update_Out => Update_Out,
 Integrator_Store_1 => Integrator_Store_1,
 Integrator_Store_2 => Integrator_Store_2);

I3 : Input_Register
 PORT MAP (Data_In => Command_ADC_Data,
 Data_Out => Command_Int,
 Store => Store_Command,
 Reset => Master_Reset);

I4 : Input_Register
 PORT MAP (Data_In => Feedback_ADC_Data,
 Data_Out => Feedback_Int,
 Store => Store_Feedback,
 Reset => Master_Reset);

I5 : Output_Register
 PORT MAP (Data_In => Controller_Out_Int,
 Data_Out => Controller_Out,
 Store => Update_Out,
 Reset => Master_Reset);

 END ARCHITECTURE Structural;

 Reset => Master_Reset);

Figure 10.20: (Continued)

682 Chapter 10

www.newnespress.com

Command ADC BUSY

Command ADC Data(7:0)

Master Reset
IBUF

IBUF

IBUF

Master_Clock

Feedback ADC BUSY

Feedback ADC Data(7:0)
IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUF

IBUFIBUF
Data_In(7:0)data_Out(15:0)

Reset

Store

Data_In(7:0)data_Out(15:0)

Reset

Store

Command(15:0) Controller_Out(15:0)

Feedback(15:0)

Integrator_Store_1

Integrator_Store_2

Reset

Data_In(7:0)data_Out(15:0)

Reset

Store

Command_ADC_BUSYCommand_ADC_CS

Command_ADC_RD

Command_ADC_TP

Controller_DAC_CS

Feedback_ADC_BUSYController_DAC_WR

Feedback_ADC_CS

Feedback_ADC_RD

Feedback_ADC_TP

Master_Clock Integrator_Store_1

Integrator_Store_2

Store_Command

Store_Feedback

Update_OutMaster_Reset

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

OBUF

Command ADC CS

Controller Out(7:0)

Command_ADC_RD

Controller_DAC_CS

Controller_DAC_WR

Command_ADC_TP

Feedback ADC CS

Feedback_ADC_RD

Feedback_ADC_TP
OBUF

Figure 10.21: Digital controller synthesis results (CoolrunnerTM-II CPLD)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned.all;

ENTITY Test_Controller_vhd IS
END Test_Controller_vhd;

ARCHITECTURE Behavioural OF Test_Controller_vhd IS

COMPONENT Controller
PORT(
 Command_ADC_BUSY : IN STD_LOGIC;
 Command_ADC_Data : IN STD_LOGIC_VECTOR(7 downto 0);
 Feedback_ADC_BUSY : IN STD_LOGIC;
 Feedback_ADC_Data : IN STD_LOGIC_VECTOR(7 downto 0);
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Command_ADC_TP : OUT STD_LOGIC;
 Command_ADC_RD : OUT STD_LOGIC;
 Command_ADC_CS : OUT STD_LOGIC;
 Feedback_ADC_TP : OUT STD_LOGIC;
 Feedback_ADC_RD : OUT STD_LOGIC;
 Feedback_ADC_CS : OUT STD_LOGIC;
 Controller_DAC_WR : OUT STD_LOGIC;
 Controller_DAC_CS : OUT STD_LOGIC;
 Controller_Out : OUT STD_LOGIC_VECTOR(7 downto 0));
END COMPONENT;

SIGNAL Command_ADC_BUSY : STD_LOGIC := '0';
SIGNAL Feedback_ADC_BUSY : STD_LOGIC := '0';
SIGNAL Master_Clock : STD_LOGIC := '0';
SIGNAL Master_Reset : STD_LOGIC := '0';
SIGNAL Command_ADC_Data : STD_LOGIC_VECTOR(7 downto 0) := (others=>'0');
SIGNAL Feedback_ADC_Data : STD_LOGIC_VECTOR(7 downto 0) := (others=>'0');

SIGNAL Command_ADC_TP : STD_LOGIC;
SIGNAL Command_ADC_RD : STD_LOGIC;
SIGNAL Command_ADC_CS : STD_LOGIC;
SIGNAL Feedback_ADC_TP : STD_LOGIC;
SIGNAL Feedback_ADC_RD : STD_LOGIC;
SIGNAL Feedback_ADC_CS : STD_LOGIC;
SIGNAL Controller_DAC_WR : STD_LOGIC;
SIGNAL Controller_DAC_CS : STD_LOGIC;
SIGNAL Controller_Out : STD_LOGIC_VECTOR(7 downto 0);

Figure 10.22: VHDL test bench for the controller

684 Chapter 10

www.newnespress.com

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

BEGIN

uut: Controller PORT MAP(
 Command_ADC_BUSY => Command_ADC_BUSY,
 Command_ADC_TP => Command_ADC_TP,
 Command_ADC_RD => Command_ADC_RD,
 Command_ADC_CS => Command_ADC_CS,
 Command_ADC_Data => Command_ADC_Data,
 Feedback_ADC_BUSY => Feedback_ADC_BUSY,
 Feedback_ADC_TP => Feedback_ADC_TP,
 Feedback_ADC_RD => Feedback_ADC_RD,
 Feedback_ADC_CS => Feedback_ADC_CS,
 Feedback_ADC_Data => Feedback_ADC_Data,
 Controller_DAC_WR => Controller_DAC_WR,
 Controller_DAC_CS => Controller_DAC_CS,
 Controller_Out => Controller_Out,
 Master_Clock => Master_Clock,
 Master_Reset => Master_Reset);

Reset_Process : PROCESS
 BEGIN

 Wait for 0 ns; Master_Reset <= '0';
 Wait for 5 ns; Master_Reset <= '1';
 Wait;

END PROCESS;

Clock_Process : PROCESS
 BEGIN

 Wait for 0 ns; Master_Clock <= '0';
 Wait for 10 ns; Master_Clock <= '1';
 Wait for 10 ns; Master_Clock <= '0';

END PROCESS;

ADC_Data_Process : PROCESS
 BEGIN

 Wait for 0 ns; Command_ADC_Data <= "00000000";
 Feedback_ADC_Data <= "00000000";
 Wait;

END PROCESS;

ADC_Busy_Process : PROCESS

Figure 10.22: (Continued)

System-Level Design 685

www.newnespress.com

VHDL code by a direct mapping for this small design reduced the design time. The

multiplications were undertaken within the Proportional_Gain and Integrator_Gain

blocks. The design can use either a full 16� 16 multiplier design or a shift-and-add

approach. Given that the multiplications are fixed and relatively simple, a full

multiplier design can be expected to produce a larger hardware design than

necessary.

An internal wordlength of 16 bits is used in this case study and must be considered

in the calculations performed. Where the potential for number overflow existed, this

was prevented either by ensuring that the internal values are never large enough to

create an overflow, or if an overflow situation does occur, by saturating the output

from a computation to the limits set by the wordlength. The internal multiplication

within the integrator gain also produces a number with integer and fractional parts.

Therefore, for a fixed-point calculation, the lower part of the 16-bit wordlength must

be used to represent the fractional part, and the upper part must be used to represent

the integer part. Placing the decimal point in the number is a design decision. If the

finite wordlength creates errors in calculations, that information is fed back to the

original simulation model for the control system and used to modify the controller.

10.4 Case Study 2: Digital Filter Design

10.4.1 Introduction

Digital filters perform the operations of addition, subtraction, multiplication, and

division on sampled data. Among the types of digital filter are the infinite impulse

response (IIR) filter, the finite impulse response (FIR) filter [15], and the

105
106
107
108
109
110
111
112
113
114

 BEGIN

 Wait for 0 ns; Command_ADC_BUSY <= '0';
 Feedback_ADC_BUSY <= '0';
 Wait;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 10.22: (Continued)

686 Chapter 10

www.newnespress.com

computationally efficient cascaded integrator comb (CIC) filter [16]. The CIC filter is

widely used in decimation and interpolation in communications systems:

• Decimation is the process of sample rate reduction. Where a signal is sampled

at a particular sampling rate, a decimator reduces the original sample rate

(fs) to a lower rate (fs/M). For example, if a signal is sampled at 10 kHz and

M=5, a decimator outputs a value once every M samples and discards the

other (M – 1) samples. When M=5, the sample rate is reduced from 10 kHz

to 2 kHz.

• Interpolation is the process of sample rate increase. Where a signal is

sampled at a particular sampling rate, the interpolation process increases

the sample rate (fs) to a higher rate (Lfs). For example, if a signal is sampled

at 10 kHz and L=5, an interpolator outputs a value at an increased

rate of 50 kHz. The input sample is output once every L output values,

and the interpolator will fill the remaining (L – 1) output values with a

zero value.

This idea is shown in Figure 10.23.

Decimation and interpolation functions are used in communications systems and in

circuits such as the digital signal conditioning circuitry within sigma-delta modulator

architecture ADCs and DACs. For example, CIC filters are suited for digital anti-

aliasing filtering prior to decimation; a typical arrangement is shown in Figure 10.24.

Here, the input is applied to the CIC filter, and the output from the CIC filter is

applied to an FIR filter.

↓M

(a) Decimation

(b) Interpolation

↑L

x(n)

x(n)

y(m)

y(m)

Figure 10.23: Decimation and interpolation

System-Level Design 687

www.newnespress.com

A CIC filter used in interpolation is shown in Figure 10.25. Here, the input is applied

to the FIR filter, and the output from the FIR filter is applied to an CIC filter.

In this case study, a third-order digital CIC filter will be developed to filter a single-bit

bitstream pattern. The overall filter model will be developed inMATLAB� [9] and its

Simulink� toolbox [10]. The model of the filter algorithmwill then be manually

converted to VHDL code using a set design translation flow for implementation as a

digital filterusingaCPLD.Thedesign issueswill be capturedandpresented inaway that

allowstheVHDLcodetobegeneratedautomatically.Theoveralldesignflowis shownin

Figure 10.26.

10.4.2 Filter Overview

The CIC filter consists of an integrator section and a comb section. The integrator

implements integration of the signal, and the comb implements differentiation on the

signal. The operation of the CIC filter is well explained in many texts, so it is not

considered further here. For use in decimation, the CIC filter has the form shown in

Figure 10.27. This design is for a third-order CIC filter with three integrator and three

FIR filterx(n) y(m)
CIC filter

and
interpolation

Input signal at a
rate of fs

CIC input signal
at a rate of fs

Filter output signal
at a rate of Lfs

Figure 10.25: CIC filter in interpolation

CIC filter
and

decimation
x(n) y(m)FIR filter

Input signal at a
rate of fs

CIC output signal
at a rate of fs/M

Filter output signal
at a rate of fs/M

Figure 10.24: CIC filter in decimation

688 Chapter 10

www.newnespress.com

comb circuits. (A fourth-order CIC filter would use four integrators and four comb

circuits, etc.) Variations on this basic structure are possible. Note that the decimator is

placed between the integrator and comb parts of the design.

The integrator is modeled using Z-transforms as:

OutputðzÞ
InputðzÞ ¼ 1

1� z�1

� �

Idea

Digital filter design
requirements

Capture idea

Create simulation model and
generate filter design

Digital filter design
requirements

Digital filter
simulation model

Translate digital filter model to
VHDL code suitable for

simulation and synthesis

Digital filter
 VHDL code

Digital filter
VHDL test bench

Design translation
directives

Technology directives

Designer directives

Figure 10.26: CIC filter case study design flow

System-Level Design 689

www.newnespress.com

The differentiator is modeled using Z-transforms as:

OutputðzÞ
InputðzÞ ¼ 1� z�1

� �

Each delay block has a control signal to store the input to the delay. Note that

these forms for the integrator and differentiator differ from those presented in

Chapter 7.

10.4.3 MATLAB�/Simulink� Model Creation and Simulation

Before considering how the controller is to be implemented, the algorithm must

be developed and analyzed. An example Simulink� model for this system is

shown in Figure 10.28.

Here, the CIC filter is separated into the integrator and differentiator parts.

Within the integrators, the inputs are sampled at a sampling rate of fs. Within

↓M

x(n)

y(m)

z–1 z–1 z–1

Integrator (× 3 integrators)

Comb (× 3 differentiators)

Decimator

z–1

+

+

+

–

+

–

+

–

z–1

+

+
z–1

+

+

Figure 10.27: Third-order CIC filter in decimation

690 Chapter 10

www.newnespress.com

the differentiators, the inputs are sampled at a sampling rate of (fs/M). In this

model, the CIC filter is intended for use in the digital signal conditioning

circuitry within a sigma-delta ADC design. A single-bit bitstream pattern

(Filter_In) is applied to the filter input, and a 16-bit output from the CIC filter

(Filter_Out) is created. This is achieved by a switch block at the input of the

filter such that:

• When the input is a logic 0, then using 2s complement arithmetic, a value of

–110 is applied to the filter input.

• When the input is a logic 1, then using 2s complement arithmetic, a value of

+110 is applied to the filter input.

The integrator design is shown in Figure 10.29, and the differentiator design is shown

in Figure 10.30.

The design is analyzed using both hand calculations and the Simulink� simulator,

with typical bitstream patterns representing different signal frequencies as part of the

overall system analysis routine. A frequency response could be undertaken by

generating a model for frequency analysis in MATLAB�.

Filter_In

Bit_Stream

Constant1

Integrator_1

Differentiator_1 Differentiator_2 Differentiator_3

In1 Out1

In1 Out1 In1 Out1 In1 Out1 Filter_Out

Filter_Out

Simulation_TimeClock

L Time

In1 Out1 In1 Out1

Integrator_2 Integrator_3

Constant

1

–1

Switch

Figure 10.28: Simulink� model for the CIC filter

System-Level Design 691

www.newnespress.com

10.4.4 Translating the Design to VHDL

After system analysis of the system has been completed, the digital filter model is

translated to VHDL code suitable for simulation and synthesis. This requires that the

VHDL code be generated according to a set design translation in the following eight

steps:

1. Translation preparation (according to the nine steps below).

2. Set the architecture details (according to the six steps below).

3. Translation from Simulink� model to VHDL code by reading the

Simulink� model, extracting the necessary design information, and

generating the VHDL code.

4. Generate VHDL test bench.

5. Simulate the VHDL code and check for correct operation to validate the

operation of the generated VHDL code.

6. Synthesize the VHDL code and resimulate the design to generate a structural

design based on the particular target technology.

1 1

In1

++

1

Z

Unit Delay
Out1

Figure 10.29: Simulink� model for the integrator

Unit Delay

In1

1 1+–

Out1

1

z

Figure 10.30: Simulink� model for the differentiator

692 Chapter 10

www.newnespress.com

7. Configure the CPLD and validate the operation of the design.

8. Use the filter.

The nine steps of translation preparation are:

1. Identify the parts to be translated into digital (the filter).

2. Remove any unnecessary information, leaving only the filter model.

3. Identify the digital filter interfacing.

4. Identify the clock and reset inputs, along with any other filter signals.

5. Identify any external communications required.

6. Set up the support necessary to include the translation directives (see

architecture details below).

7. Identify the technology directives (any requirements for the target

technology, such as CPLD) and the synthesis tool to be used.

8. Identify any designer directives.

9. Determine what test circuitry is to be inserted into the design and at what

stage in the design process.

The six steps to set the architecture details are:

1. Identify the particular architecture to use.

2. Identify the internal wordlength within the digital signal processing part of

the digital core.

3. Identify any specific circuits to avoid (e.g., specific VHDL code constructs).

4. Identify the control signals required by the I/O.

5. Identify the number system to use (e.g., 2s complement) in the arithmetic

operations.

6. Identify any number scaling requirements to limit the required wordlength

within the design.

The model translation must initially consider which architecture to use, either a

processor-based architecture running a software application (standard fixed

System-Level Design 693

www.newnespress.com

architecture processor or a configurable processor) or a custom hardware architecture

based directly on the model. This idea is shown in Figure 10.31.

If the translation were performed manually, this could be accomplished by visual

reference to the graphical representation of the model (i.e., the block diagram).

If the translation were performed automatically (by a software application),

it could be accomplished using the underlying text based model (i.e., with the

Simulink�.mdl file).

A fixed architecture processor is based on an existing CISC or RISC architecture, and

the translation either will generate the hardware design (in HDL) and the processor

microcode together, or will use an existing processor design and only generate the

processor microcode. The configurable processor is a processor design that dynamically

changes specific aspects of the architecture based on the particular application.

Direct mapping starts with the model as presented and directly translates its

functions to a custom hardware HDL code equivalent. Customized mapping

uses custom architecture based on the model, but then determines the most

appropriate way to implement its functions (e.g., by using multiple multiplication

blocks or a single multiplexed multiplier block) based on the application.

No matter what particular architecture is chosen, in addition to generating the

required digital signal processing algorithm hardware (as identified in the system

block diagram), then there would be the need to also generate the necessary

interfacing signals for external circuitry such as ADCs and DACs, and the internal

timing signals for the control of the signal processing operations, along with the

storage and movement of data signals within the design. These interfacing and

Architecture

Processor

Custom
Hardware

Fixed architecture

Configurable

Direct mapping

Customized mapping

Figure 10.31: Filter architecture decisions

694 Chapter 10

www.newnespress.com

internal timing signals would need to be created by an additional circuit creating

the functions of a control unit particular to the design.

In this case study, direct mapping of model functions will be considered, so the

filter shown in Figure 10.28 will be translated. This requires the use of the

following main functional blocks:

• three integrator blocks

• three differentiator blocks

• one switch block

• two constant values

The input is a single-bit bitstream pattern, and the output is a 16-bit pattern. The

Simulink� model for the overall control system must be reviewed and should

contain:

• information for translation to VHDL

• information not for translation to VHDL

The information not for translation to VHDL includes information such as

visual attributes and software version information, which must be stripped

from the representation of the model used for translation to VHDL.

The Simulink� model code for the filter only is shown in Figure 10.32.

This is the text description of the model shown in Figure 10.28. It consists of

the blocks used, their attributes, and the interconnect between the blocks (lines).

Interpreting this model requires knowledge of its model syntax and how the

values that can be modified by the user are represented in the model. The syntax

is readable, and the names used can be identified by comparison with the block

diagram view.

To create a digital design to implement the filter, a control unit is needed within the

design to generate the necessary timing signals to control the operation of the filter

parts from master clock and reset inputs. The basic structure for this is shown in

Figure 10.33.

System-Level Design 695

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

 System {
 Name "comb_filter_1"
 Block {
 BlockType FromWorkspace
 Name "Bit_Stream"
 Position [25, 78, 90, 102]
 VariableName "Filter_In"
 SampleTime "0"
 }
 Block {
 BlockType Constant
 Name "Constant"
 Position [135, 20, 165, 50]
 }
 Block {
 BlockType Constant
 Name "Constant1"
 Position [135, 145, 165, 175]
 Value "-1"
 }
 Block {
 BlockType SubSystem
 Name "Differentiator_1"
 Ports [1, 1]
 Position [355, 215, 395, 275]
 TreatAsAtomicUnit off
 }
 Block {
 BlockType SubSystem
 Name "Differentiator_2"
 Ports [1, 1]
 Position [455, 215, 495, 275]
 TreatAsAtomicUnit off
 }
 Block {
 BlockType SubSystem
 Name "Differentiator_3"
 Ports [1, 1]
 Position [550, 215, 590, 275]
 TreatAsAtomicUnit off
 }
 Block {
 BlockType ToWorkspace
 Name "Filter_Out"
 Position [715, 230, 775, 260]
 VariableName "Filter_Out"
 MaxDataPoints "inf"
 SampleTime "-1"
 SaveFormat "Structure"
 }
 Block {
 BlockType SubSystem
 Name "Integrator_1"
 Ports [1, 1]
 Position [330, 66, 395, 114]
 TreatAsAtomicUnit off
 }

Figure 10.32: Simulink� model for the CIC filter

696 Chapter 10

www.newnespress.com

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

 }
 Line {
 SrcBlock "Bit_Stream"
 SrcPort 1
 DstBlock "Switch"
 DstPort 2
 }
 Line {
 SrcBlock "Constant"
 SrcPort 1
 Points [25, 0; 0, 45]
 DstBlock "Switch"
 DstPort 1
 }
 Line {
 SrcBlock "Constant1"
 SrcPort 1
 Points [25, 0; 0, -60]
 DstBlock "Switch"
 DstPort 3
 }
 Line {
 SrcBlock "Switch"
 SrcPort 1
 DstBlock "Integrator_1"
 DstPort 1
 }
 Line {
 SrcBlock "Integrator_1"
 SrcPort 1
 DstBlock "Integrator_2"
 DstPort 1
 }
 Line {
 SrcBlock "Integrator_2"
 SrcPort 1
 DstBlock "Integrator_3"
 DstPort 1
 }

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

 Block {
 BlockType SubSystem
 Name "Integrator_2"
 Ports [1, 1]
 Position [430, 66, 495, 114]
 TreatAsAtomicUnit off
 }
 Block {
 BlockType SubSystem
 Name "Integrator_3"
 Ports [1, 1]
 Position [530, 66, 595, 114]
 TreatAsAtomicUnit off
 }
 Block {
 BlockType Switch
 Name "Switch"
 Position [235, 75, 265, 105]
 InputSameDT off

Figure 10.32: (Continued)

System-Level Design 697

www.newnespress.com

The CIC filter can be remodeled in VHDL, shown in Figure 10.34 as a structural

description for the filter. Detailed operation of each of the blocks is defined in

separate entity-architecture pairs.

10.4.5 Concluding Remarks

In this case study, a third-order CIC digital filter was developed as a Simulink� block

diagram and translated to a VHDL model for implementation within a CPLD. The

structural VHDL description for the CIC filter section of a digital core was

developed. The following VHDL code is also needed to configure the CPLD:

• top-level design containing the CIC filter and the control unit

• switch block details

• integrator details

• differentiator details

The block diagram was mapped directly to VHDL to implement a custom hardware

design. In many cases, this would result in a large design, particularly where

multiple repeated operations are needed. However, the ease and rapid development

of the VHDL code by direct mapping for this small design reduced design time.

This design included no multiplications, so the multiplier implementation required

in other digital filter designs was not needed.

An internal wordlength of 16 bits was required for this design, which has to be

accommodated in the calculations. When number overflow was possible in the

CIC filterBit_Stream Filter_Out

Control Unit

Filter control signals

Master_Clock

Master_Reset

Figure 10.33: Digital filter control

698 Chapter 10

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

 library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY CIC_Filter IS
 Port (Bit_Stream : IN STD_LOGIC;
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Filter_Out : OUT STD_LOGIC_VECTOR (15 downto 0));
END ENTITY CIC_Filter;

ARCHITECTURE Structural OF CIC_Filter IS

SIGNAL Internal_1 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_2 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_3 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_4 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_5 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_6 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_7 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_8 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Integrator_1_Store : STD_LOGIC;
SIGNAL Integrator_2_Store : STD_LOGIC;
SIGNAL Integrator_3_Store : STD_LOGIC;
SIGNAL Differentiator_1_Store : STD_LOGIC;
SIGNAL Differentiator_2_Store : STD_LOGIC;
SIGNAL Differentiator_3_Store : STD_LOGIC;

COMPONENT Switch IS
 PORT (Bit_Stream : IN STD_LOGIC;
 Data_In_1 : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_In_2 : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0));
END COMPONENT Switch;

COMPONENT Plus_One IS
 PORT (Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0));
END COMPONENT Plus_One;

47

Figure 10.34: VHDL model for the CIC filter

System-Level Design 699

www.newnespress.com

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC);
END COMPONENT Differentiator;

COMPONENT Control_Unit is
 PORT (Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Integrator_1_Store : OUT STD_LOGIC;
 Integrator_2_Store : OUT STD_LOGIC;
 Integrator_3_Store : OUT STD_LOGIC;
 Differentiator_1_Store : OUT STD_LOGIC;
 Differentiator_2_Store : OUT STD_LOGIC;
 Differentiator_3_Store : OUT STD_LOGIC);
END COMPONENT Control_Unit;

BEGIN

I1: Switch
 PORT MAP (Bit_Stream => Bit_Stream,
 Data_In_1 => Internal_1,
 Data_In_2 => Internal_2,
 Data_Out => Internal_3);

I2 : Plus_One
 PORT MAP (Data_Out => Internal_1);

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

COMPONENT Minus_One IS
 PORT (Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0));
END COMPONENT Minus_One;

COMPONENT Integrator IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0);

Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC);
END COMPONENT Integrator;

COMPONENT Differentiator IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0);

92
93
94

I3 : Minus_One
 PORT MAP (Data_Out => Internal_2);

Figure 10.34: (Continued)

700 Chapter 10

www.newnespress.com

127
128
129
130
131
132
133
134
135
136
137

 Data_Out => Filter_Out,
 Store => Differentiator_3_Store,
 Reset => Master_Reset);

I10 : Control_Unit
 PORT MAP (Master_Clock => Master_Clock,
 Master_Reset => Master_Reset,
 Integrator_1_Store => Integrator_1_Store,
 Integrator_2_Store => Integrator_2_Store,
 Integrator_3_Store => Integrator_3_Store,
 Differentiator_1_Store => Differentiator_1_Store,

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

I4 : Integrator
 PORT MAP (Data_In => Internal_3,
 Data_Out => Internal_4,
 Store => Integrator_1_Store,
 Reset => Master_Reset);

I5 : Integrator
 PORT MAP (Data_In => Internal_4,
 Data_Out => Internal_5,
 Store => Integrator_2_Store,
 Reset => Master_Reset);

I6 : Integrator
 PORT MAP (Data_In => Internal_5,
 Data_Out => Internal_6,
 Store => Integrator_3_Store,
 Reset => Master_Reset);

I7 : Differentiator
 PORT MAP (Data_In => Internal_6,
 Data_Out => Internal_7,
 Store => Differentiator_1_Store,
 Reset => Master_Reset);

I8 : Differentiator
 PORT MAP (Data_In => Internal_7,
 Data_Out => Internal_8,
 Store => Differentiator_2_Store,
 Reset => Master_Reset);

I9 : Differentiator
 PORT MAP (Data_In => Internal_8,

138
139
140
141

 Differentiator_2_Store => Differentiator_2_Store,
 Differentiator_3_Store => Differentiator_3_Store);

END ARCHITECTURE Structural;

Figure 10.34: (Continued)

System-Level Design 701

www.newnespress.com

integrators, it was prevented either by ensuring that the internal values encountered are

never large enough to create an overflow situation, or if an overflow situation could

occur, saturating the output from a computation to the limits set by the wordlength.

10.5 Automating the Translation

The two case studies presented provide a snapshot of two possible target applications

for the automatic generation of VHDL code from a system-level simulation model.

A number of design implementation issues were raised and solved for these two

scenarios. However, for automating the translation process into VHDL, the

translation steps must be adaptable to a more generic application. Any possible

approach to automating model translation, however, must:

1. be capable of being manually undertaken (i.e., by hand) if required

2. allow the designer to enter specific requirements for the particular

application

3. be presented to the designer in a way that is familiar to his or her particular

engineering domain and technical language

4. not intentionally restrict the designer to such an extent that the translation

tool cannot be used

5. be aware that different versions of the software can vary the syntax of the

underlying text file containing the model description, so a translation

tool written for one version of the simulation software must be validated

for a different version

6. select a software programming language appropriate to the end use of the

application

7. select an architecture appropriate to the required operation and coding

styles in VHDL

8. be developed in a modular manner so that the translation tool can be readily

modified and enhanced

9. consider timing issues in the underlying digital logic

10. consider testability issues for the designs to be implemented

702 Chapter 10

www.newnespress.com

11. Effectively and efficiently deal with design hierarchy

12. Consider the circuit functions that are required to support the algorithm

modelled at the high level of description, but which are not modelled

at this level. For example, in digital designs there would be the need to

include some form of circuit control. This would be required to perform

synchronisation of signals around the circuit and ensure that the correct

data flow is provided. In addition, specific control signals for signal

sampling (e.g. through and ADC) and output updating (e.g. through

a DAC) would be required

13. Include the capability for automatic documentation creation as part of

the translation process. This can be in the form of document formats

such as plain text, postscript, portable document format (PDF) and

hypertext markup language (HTML)

10.6 Future Directions

The area of ESL design is still emerging, and various activities are undertaken in defining

the direction for ESL design. However, there is a basic need to combine into a single and

robust design methodology multiple design methods, EDA tools, and implementation

technologies. With the area of ESL design dynamically changing, designers must be

aware of the technologies, ESL design methodologies, and EDA tools that are becoming

available to provide the right approach for the types of complex electronic systems

being developed. This will come from the collaboration between the developers and

the design community. Initially, a number of different approaches will be adopted;

those showing the most promise will ultimately become industry standards, adopted

and formally developed by one or more of the professional bodies.

Alongside the systems-level design methods and EDA tools being developed to solve

the complex problems encountered today and expected in the future, there is still the

need for electronic circuit and computer software designers who work at the most

detailed level of design. Advances at this detailed level allow more complex systems to

be developed of smaller size, in less time, and at lower cost. No matter how complex a

system becomes, the devil will always remain in the details, so the need for effective

communication and collaboration among the designers working at all levels of

abstraction will always exist.

System-Level Design 703

www.newnespress.com

References

[1] MacMillen, D., et al., ‘‘An Industrial View of Electronic Design Automation,’’

IEEE Transactions on Computer Aided Design of Integrated Circuits and

Systems, Vol. 19, No. 12, December 2000, pp. 1428–1448.

[2] Bailey, B., Martin, G., and Piziali, A., ESL Design and Verification, Morgan

Kaufmann Publishers, 2007, ISBN 0-12-373551-3.

[3] Grout, I. A., and Keane, K., ‘‘A Matlab to VHDL Conversion Toolbox for

Digital Control,’’ IFAC Symposium on Computer Aided Control System

Design (CACSD2000), Salford, UK, September 2000.

[4] Grout, I. A., and O’Shea, T., ‘‘MATLAB/VHDL-AMS Modelling and Simula-

tion Support for Microelectronic Circuit Design and Test,’’ Proceedings of the

10th International Mixed-Signal Testing Workshop, 2004, pp. 178–183.

[5] Simulink� HDL Coder, The Mathworks Inc., http://www.themathworks.com

[6] Karnofsky, K., ‘‘Simulink Brings Model-Based Design to Embedded Signal

Processing,’’ Xcell Journal, Xilinx Inc., Winter 2004.

[7] International Technology Roadmap for Semiconductors, 2003 Edition,

‘‘Executive Summary.’’

[8] Edenfeld, D., et al., ‘‘2003 Technology Roadmap for Semiconductors,’’ Com-

puter, IEEE Computer Society, January 2004, pp. 47–56.

[9] MATLAB�, The Mathworks Inc., http://www.themathworks.com

[10] Simulink�, The Mathworks Inc., http://www.themathworks.com

[11] Golden, J., and Verwer, A., Control System Design and Simulation, McGraw-

Hill, 1991, ISBN 0-07-707412-2.

[12] Astrom, K. J., and Wittenmark, B., Computer-Controlled Systems Theory and

Design, Second Edition, Prentice Hall International, 1990, ISBN 0-13-172784-2.

[13] Analog Devices Inc., AD7575 LC2MOS Successive Approximation ADC

datasheet.

[14] Analog Devices Inc., AD7524 CMOS 8-Bit Buffered Multiplying DAC

datasheet.

[15] Ifeachor, E. C., and Jervis, B. W., Digital Signal Processing: A Practical

Approach, Pearson Education Ltd., 2002, ISBN 0-201-59619-9.

[16] Crochiere, R. E., ‘‘Interpolation and Decimation of Digital Signals—A Tutorial

Review,’’ Proceedings of the IEEE, Vol. 69, No. 3, March 1981, pp. 300–331.

704 Chapter 10

www.newnespress.com

Student Exercises

10.1 For the PI controller design case study, develop the VHDL code to

implement the detailed operation of the different functional blocks that

constitute the system.

10.2 For the PI controller design case study, develop a new design that uses a

standard processor architecture. What differences are there in the design

flow and the design effort involved?

10.3 For the CIC filter design case study, develop the VHDL code to implement

the detailed operation of the different functional blocks that constitute the

system.

10.4 For the CIC filter design case study, develop the control unit model and the

overall digital core for the filter design.

10.5 For the CIC filter design case study, develop a new design that uses a

standard processor architecture. What differences are there in the design

flow and the design effort involved?

System-Level Design 705

www.newnespress.com

This page intentionally left blank

Additional References

Books

Astrom, K. J., and Wittenmark, B., Computer-Controlled Systems Theory and Design,

Second Edition, Prentice Hall International, 1990, ISBN 0-13-172784-2.

Balarin, F., et al., Hardware-Software Co-Design of Embedded Systems: The Polis

Approach, Kluwer Academic Publishers, 1997, ISBN 079239936.

Barron, D., The World of Scripting Languages, Wiley, 2000, ISBN 0-471-99886-9.

Bennett, S., Skelton, J., and Lunn, K., UML, McGraw-Hill, 2001, ISBN 0-07-

709673-8.

Bolton, W., Mechatronics: Electronic Control Systems in Mechanical Engineering,

Second Edition, Longman, 1999, ISBN 0582357055.

Bradley,D.,PowerElectronics, VanNostrandReinhold (UK), 1987, ISBN0-442-31778-6.

Bradley, D., Seward, D., Dawson, D., and Burge, S., Mechatronics and the Design

of Intelligent Machines and Systems, Stanley Thornes, 2000, ISBN 0-7487-5443-1.

Burns, M., and Roberts, G. W., An Introduction to Mixed-Signal IC Test and Mea-

surement, Oxford University Press, 2001, ISBN 0-19-514016-8.

Bushnell, M., and Agrawal, V., Essentials of Electronic Testing for Digital, Memory and

Mixed-Signal VLSICircuits, KluwerAcademic Publishers, 2000, ISBN0-7923-7991-8.

Cadenhead, R., and Lemay, L., SAMS Teach Yourself JavaTM 2 in 21 days, SAMS,

2004, ISBN 0-672-32628-0.

Deitel, H. M., and Deitel, P. J., C, How to Program, Fourth Edition, Prentice Hall,

2004, ISBN 0-13-122543-X.

Doane, D. A., and Franzon, P. D., Multichip Module Technologies and Alternatives,

the Basics, Van Nostrand Reinhold, New York, 1993, ISBN 0-442-01236-5.

www.newnespress.com

Floyd, T., Electronics Fundamentals, Circuits, Devices and Applications, Fifth Edition,

2001, Prentice Hall, ISBN 0-13-085236-8.

Geerts, Y., Steyaert, M., and Sansen, W., Design of Multi-Bit Delta-Sigma A/D

Converters, Kluwer Academic Publishers, 2002, ISBN 1-4020-7078-0.

Golten, J., and Verwer, A., Control System Design and Simulation, McGraw-Hill,

1991, ISBN 0-07-707412-2.

Grant, M., Bailey, B., and Piziali, A., ESL Design and Verification: A Prescription for

Electronic System Level Methodology, Morgan Kaufmann Publishers Inc., 2007,

ISBN 0123735513.

Grotker, T. et al., System Design with SystemC, Kluwer Academic Publishers, 2004,

ISBN 1-4020-7072-1.

Grout, I. A., Integrated Circuit Test Engineering Modern Techniques, Springer, 2006,

ISBN 1-84628-023-0.

Hanselman, D., and Littlefield, B., Mastering MATLAB� 6: A Comprehensive

Tutorial and Reference, Prentice Hall Inc., 2001, ISBN 0-13-019468-9.

Haskard, M. R., and May, I. C., Analog VLSI Design nMOS and CMOS, Prentice

Hall, 1988, ISBN 0-7248-0027-1.

Horowitz, P., and Hill, W., The Art of Electronics, Second Edition, Cambridge

University Press, 1989, ISBN 0-521-37095-7.

Hughes, E., Electrical and Electronic Technology, Ninth Edition, Pearson Education,

2005, ISBN 0-13-114397-2.

Ifeachor, E. C., and Jervis, B. W., Digital Signal Processing: A Practical Approach,

Pearson Education Ltd., 2002, ISBN 0-201-59619-9.

Ince, D. C., Software Engineering, Van Nostrand Reinhold (International), 1989,

ISBN 0-278-00079-7.

Jaegar, R. C.,Microelectronic Circuit Design, McGraw-Hill, 1997, ISBN 0-07-114386-6.

Jespers, P., Integrated Converters D to A and A to D Architectures, Analysis and

Simulation, Oxford University Press, 2001, ISBN 0-19-856446-5.

Kamen, E. W., and Heck, B. S., Fundamentals of Signals and Systems Using the Web

and MATLAB�, Pearson Education Ltd., 2007, ISBN 0-13-168737-9.

Kang, S., and Leblebici, Y., CMOS Digital Integrated Circuits Analysis and

Design, McGraw-Hill International Editions, Singapore, 1996, ISBN 0-07-

114423-4.

708 Additional References

www.newnespress.com

Kropf, T., Introduction to Formal Hardware Verification, Springer 1999, ISBN 3-540-

65445-3.

Lutz, M., Programming Python, Second Edition, O’Reilly, 2006, ISBN 0-596-00925-9.

Maxfield, C., The Design Warrior’s Guide to FPGAs, Elsevier, 2004, ISBN 0-7506-

7604-3.

Meade, M. L., and Dillon, C. R., Signals and Systems Models and Behaviour,

Chapman & Hall, 1991, ISBN 0-412-40110-X.

Meloni, J. C., SAMS Teach Yourself PHP, MySQLTM and Apache in 24 Hours, 2003,

ISBN 0-672-32489-X.

Mintz, M. and Ekendahl, R., Hardware Verification with System Verilog: An Object-

Oriented Framework, Springer-Verlag New York, May 2007, ISBN

9780387717388.

Mueller, S., Upgrading and Repairing PCs, Sixteenth Edition, Que Publishing, 2005,

ISBN 0-7897-3210-6.

Navabi, Z., VHDL Analysis and Modeling of Digital Systems, McGraw-Hill Interna-

tional Editions, 1993, ISBN 0-07-112732-1.

O’Connor, P., Test Engineering, A Concise Guide to Cost-Effective Design, Develop-

ment and Manufacture, John Wiley & Sons, Ltd, 2001, ISBN 0-471-49882-3.

Parhi, K., VLSI Digital Signal Processing Systems, Design and Implementation, John

Wiley & Sons, Inc., 1999, ISBN 0-471-24186-5.

Parker, K., The Boundary-Scan Handbook, Analog and Digital, Second Edition,

Kluwer Academic Publishers, USA, 2000, ISBN 0-7923-8277-3.

Rajsuman, R., System-on-a-Chip Design and Test, Artech House Publishers, USA,

2000, ISBN 1-58053-107-5.

Salcic, Z., and Smailagic, A., Digital Systems Design and Prototyping Using Field

Programmable Logic, Kluwer Academic Publishers, 1998, ISBN 0-7923-9935-8.

Sastry, V., and Sastry, L., SAMS Teach Yourself Tcl/Tk in 24 Hours, SAMS, 2000,

ISBN 0-672-31749-4.

Schaumann, R., and Van Valkenburg, M., Design and Analog Filters, Oxford Uni-

versity Press, 2001, ISBN 0-19-511877-4.

Sears, F., Zemansky,M., and Young, H.,University Physics, Seventh Edition, Addison-

Wesley Publishing Company, 1987, ISBN 0-201-06694-7.

Additional References 709

www.newnespress.com

Skahill, K., VHDL for Programmable Logic, Addison-Wesley, 1996, ISBN 0-201-

89573-0.

Smith, M., Application Specific Integrated Circuits, Addison-Wesley, 1999, ISBN

0-201-50022-1.

Soanes, C., and Stevenson, A. (Eds.), Oxford Dictionary of English, Second Edition,

Revised, Oxford University Press, 2005, ISBN 0-19-861057-2.

Stonham, T. J., Digital Logic Techniques Principles and Practice, Second Edition,

Van Nostrand Reinhold (UK), 1988, ISBN 0-278-00011-8.

Storey, N., Electronics, a Systems Approach, Second Edition, Addison-Wesley, 1998,

ISBN 0-201-17796-X.

Sutherland, S., Davidmann, S. and Flake, P., SystemVerilog for Design: A Guide to

Using SystemVerilog for Hardware Design and Modeling, Second Edition, Springer,

2006, ISBN 0-387-3399-1.

Terrell, T. J., Introduction to Digital Filters, The MacMillan Press Ltd, 1980, ISBN

0-333-24671-3.

Tocci, R. J., Widmer, N. S., and Moss, G. L. K., Digital Systems, Ninth Edition,

Pearson Education International, USA, 2004, ISBN 0-13-121931-6.

Tuinenga, P., SPICE, A Guide to Circuit Simulation and Analysis Using Pspice, Third

Edition, Prentice Hall, 1995, ISBN 0-13-158775-7.

Wilson, C., Intellectual Property Law, Second Edition, Sweet & Maxwell, 2005, ISBN

0-421-89150-5.

Zwolinski, M., Digital System Design with VHDL, Pearson Education Limited, 2000,

England, ISBN 0-201-36063-2.

Journals, Conferences, and Symposium Papers

Chapin, N., ‘‘Flowcharting With the ANSI Standard: A Tutorial,’’ ACM Computing

Surveys (CSUR), Vol. 2, Issue 2, June 1970, pp. 119–146.

Cooley, J. W., and Tukey, J. W., ‘‘An Algorithm for the Machine Computation of the

ComplexFourier Series,’’Mathematics ofComputation,Vol. 19,April 1965, pp. 297–301.

Densmore, D., et al., ‘‘A Platform-Based Taxonomy for ESL Design,’’ IEEE Design &

Test of Computers, September–October 2006, pp. 359–374.

710 Additional References

www.newnespress.com

Deubzer, O., Hamano, H., Suga, T., and Griese, H., ‘‘Lead-free soldering-toxicity,

energy and resource consumption,’’ Proceedings of the 2001 IEEE International

Symposium on Electronics and the Environment, 7–9 May 2001, pp. 290–295.

Edwards, S. A., ‘‘The Challenges of Synthesizing Hardware from C-Like Languages,’’

IEEE Design & Test of Computers, September–October 2006, pp. 375–386.

Gajski, D. D., and Ramachandran, L., ‘‘Introduction to high-level synthesis,’’ IEEE

Design & Test of Computers, Vol. 11, Issue 4, Winter 1994, pp. 44–54.

Gajski, D. D., and Kuhn, R. H., ‘‘New VLSI Tools,’’ Computer, Vol. 16, Issue 12,

Dec. 1983, pp. 11–14.

Gajski, D. D., and Vahid, F., ‘‘Specification and design of embedded hardware-

software systems,’’ IEEE Design & Test of Computers, Vol. 12, Issue 1, Spring

1995, pp. 53–67.

Ghose, A. K., Mandal, S. K., and Deb, G. K., ‘‘PCB Design with low EMI,’’

Proceedings of the International Conference on Electromagnetic Interference and

Compatibility, 6–8 December 1995, pp. 69–76.

Hemani, A., ‘‘Charting the EDA Roadmap,’’ IEEE Circuits and Devices Magazine,

Vol. 20, Issue 6, November–December 2004, pp. 5–10.

John, W., ‘‘Remarks to the solution of EMC-problems on printed-circuit-boards,’’

Proceedings of the Seventh International Conference on Electromagnetic Compat-

ibility, 28–31 August 1990, pp. 68–72.

MacMillen, D., et al., ‘‘An Industrial View of Electronic Design Automation,’’ IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 19,

No. 12, December 2000, pp. 1428–1448.

Mancini, R., ‘‘How to read a semiconductor datasheet,’’ EDN, 14 April 2005, pp.

85–90, http://www.edn.com.

Marculescu, R., and Eles, P., ‘‘Guest Editors’ Introduction: Designing Real-Time

Embedded Multimedia Systems,’’ IEEE Design & Test of Computers, September–

October 2004, pp. 354–356.

Pecheux, F., Lallement, C., and Vachoux, A., ‘‘VHDL-AMS and Verilog-AMS as

Alternative Hardware Description Languages for Efficient Modeling of Multi-

discipline Systems,’’ IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, Vol. 24, No. 2, February 2005.

Additional References 711

www.newnespress.com

Ran, Y., and Marek-Sadowska, M., ‘‘Designing Via Configurable Logic Blocks for

Regular Fabric,’’ IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Jan. 2006, pp. 1–14.

Reeser, S., ‘‘Design for in-circuit testability,’’ 11th International IEEE/CHMT Elec-

tronics Manufacturing Technology Symposium, 16–18 September 1991, pp. 325–328.

Rickett, P., ‘‘Cell Phone Integration: SiP, SoC and PoP,’’ IEEE Design & Test of

Computers, May–June 2006, pp. 188–195.

Sharawi, M. S., ‘‘Practical issues in high speed PCB design,’’ IEEE Potentials, Vol. 23,

Issue 2, April–May 2004, pp. 24–27.

Smithson, G., ‘‘Practical RF printed circuit board design,’’ IEE Training Course on

‘‘How to Design RF Circuits’’ (Ref. No. 2000/027), IEE, 5 April 2000, pp. 11/1–11/6.

Van Treuren, B., and Miranda, J., ‘‘Embedded Boundary Scan,’’ IEEE Design and

Test of Computers, March–April 2003, pp. 20–25.

Verma, A., ‘‘Optimizing test strategies during PCB design for boards with limited

ICT access,’’ 27th International IEEE/SEMI Annual Electronics Manufacturing

Technology Symposium (IEMT 2002), 17–18 July 2002, pp. 364–371.

Walters, R. M., Bradley, D. A., and Dorey, A. P., ‘‘The High-Level Design of

Electronic Systems for Mechatronic Applications,’’ IEE Colloquium on Structured

Methods for Hardware Systems Design, 1994, pp. 1/1–1/4.

Wolf, W. H., ‘‘Hardware-software co-design of embedded systems,’’ Proceedings of

the IEEE, Vol. 82, Issue 7, July 1994, pp. 967–989.

XiaoKun Zhu, Bo Qi, Xin Qu, JiaJi Wang, Taekoo Lee, and Hui Wang, ‘‘Mechanical

test and analysis on reliability of lead-free BGA assembly,’’ Proceedings of the 6th

International Conference on Electronic Packaging Technology, 20 August–2 Sep-

tember 2005, pp. 498–502.

Zahiri, B., ‘‘Structured ASICs: Opportunities and Challenges,’’ Proceedings of the 21st

International Conference on Computer Design, Oct. 2003, pp. 404–409.

Internet Resources

Accelera Verilog Analog Mixed-Signal Group, http://www.verilog.org/verilog-ams/

Accellera, http://www.accellera.org

American National Standards Institute, INCITS/ISO/IEC 9899–1999 (R2005), Pro-

gramming languages—C (formerly ANSI/ISO/IEC 9899–1999), http://www.ansi.org

712 Additional References

www.newnespress.com

Bell Laboratories (Bell Labs), http:www.bell-labs.com/

Cadence Design Systems Inc., USA, http:://www.cadence.com

Department for Trade and Industry (United Kingdom), http://www.dti.gov.uk/

innovation/strd/cemark/page11646.html

European Commission, Guide to the Implementation of Directives Based on New

Approach and Global Approach, http://ec.europa.eu/enterprise/newapproach/

legislation/guide/

Federal Communications Commission (USA), http://www.fcc.gov/

The Institute of Electrical and Electronics Engineers, IEEE Std 1076-2002, IEEE

Standard Verilog Hardware Description Language, http://www.ieee.org

The Institute of Electrical and Electronics Engineers, IEEE Std 1364-2001, IEEE

Standard VHDL Language Reference Manual, http://www.ieee.org

The Institute of Electrical and Electronics Engineers, IEEE Std 1076.1-1999. IEEE

Standard VHDL Analog and Mixed-Signal Extensions, http://www.ieee.org

IPC, http://www.ipc.org

Joint Electronic Device Engineering Council (JEDEC), http://www.jedec.org/

Maplesoft, http://www.maplesoft.com

The Mathworks Inc., http://www.themathworks.com

Microsoft� Corporation, Microsoft� Visual C++�, http://www.microsoft.com

Microsoft� Corporation, Microsoft� Visual BasicTM, http://www.microsoft.com

Modelica Association, http://www.modelica.org/

Open Verilog International, Verilog-A Language Reference Manual Analog Exten-

sions to Verilog HDL, Version 1.0, August 1996, http://www.verilog.org/

Scilab, http://www.scilab.org

Sun Microsystems, Java Platform, Standard Edition (J2SE) http://java.sun.com/j2se/

SystemC, http://www.systemc.org

SystemVerilog, http://www.systemverilog.org

Wolfram Research, http://www.wolfram.com/

Xilinx Inc., USA, http://www.xilinx.com

Additional References 713

www.newnespress.com

Datasheets

Analog Devices Inc., AD7524 CMOS 8-Bit Buffered Multiplying DAC datasheet.

Analog Devices Inc., AD7575 LC2MOS 5 �s 8-Bit ADC with Track/Hold.

Harris Semiconductor, ‘‘CDP6402, CDP6402C CMOS Universal Asynchronous

Receiver/Transmitter (UART),’’ product datasheet, March 1997.

Maxim Integrated Products, ‘‘MAX232-CPE RS-232 Transceiver,’’ product data-

sheet, 2000.

Standards

American National Standards Institute, INCITS/ISO/IEC 14882-2003, Programming

languages – C++, http://www.ansi.org

IEEE, IEEE Std 91-1984, Graphics Symbols for Logic Functions, IEEE, USA.

IEEE Std 1076TM-2002, IEEE Standard VHDL Language Reference Manual, IEEE,

USA.

IEEE Std 1666TM-2005, IEEE Standard SystemC� Language Reference Manual,

IEEE, http://www.ieee.org

IEEE Std 1800TM-2005, IEEE Standard for SystemVerilog – Unified Hardware

Design, Specification, and Verification Language, IEEE, http://www.ieee.org

IEEE Std 1364TM-2005, IEEE Standard for Verilog� Hardware Description Language,

IEEE, http://www.ieee.org

IEEE Std 1149.1-2001, IEEE standard test access port and boundary-scan architecture,

IEEE, USA.

Overview of IEEE Standard 91-1984, Explanation of Logic Symbols, 1996, Texas

Instruments, USA.

Other Documents

European Union, Directive 2002/96/EC on waste electrical and electronic equipment

(WEEE).

European Union, Directive 2002/95/EC on the restriction of use of certain hazardous

substances.

714 Additional References

www.newnespress.com

International Technology Roadmap for Semiconductors, 2006 Edition.

International Technology Roadmap for Semiconductors (ITRS), 2003 Edition,

‘‘Assembly and Packaging.’’

Maxim Integrated Products, ‘‘Power-On Reset and Related Supervisory Functions,’’

application note 3227, 11 May 2004.

SPICE: Simulation Program with Integrated Circuit Emphasis, Version 3f5, Univer-

sity of California, Berkeley, USA.

Additional References 715

www.newnespress.com

This page intentionally left blank

Index

A

Abstraction 14, 37, 61, 71, 193,

251, 334

Adder 113, 198, 260, 343, 388, 448

Addition 227, 265, 352, 448, 513

Aliasing 577, 632

Algorithm 537

Analog See analogue

Analogue 8, 12, 43, 60, 132, 158, 178,

207, 217, 256, 397, 475, 539, 543,

577, 623, 629

Analogue-to-digital converter 13, 169,

397, 475, 540, 543, 565, 572, 630, 665

Anti-aliasing filter 578

Antifuse 30

American standard code for information

interchange 99, 177, 190

Amorphous-silicon antifuse 31

Application specific integrated

circuit 4, 24, 218, 647

Architecture 15, 23, 109, 193, 195,

256, 336, 342, 348, 480, 545, 572

Arithmetic 21, 58, 211, 223, 323, 349,

447, 513, 523

ASCII See American standard code

for information interchange

ASIC See application specific

integrated circuit

Assembler 48

Asynchronous 15, 22, 90, 98, 163, 178,

222, 288, 420, 432, 481, 562

Asynchronous sequential logic

15, 222, 278

ATE See automatic test equipment

ATPG See automatic test pattern

generation

Automatic optical inspection 620

Automatic test equipment 619, 625

Automatic test pattern generation 627

B

Baseband 91

Battery 4, 38, 107, 546, 593

Baud rate 97, 432, 486

Bed of nails fixture 620

Behavioral 37, 61, 68, 93, 207, 335,

341, 372, 504, 522

Behavioural See behavioral

BiCMOS 16, 18

Binary 13, 29, 43, 217, 222, 388, 397,

422, 451, 481, 513, 547, 555

Binary coded decimal 223, 232, 548

www.newnespress.com

BIST Self built-in self-test

Block diagram 10, 14, 58, 73, 210, 211,

218, 266, 496, 520, 561, 599

Boolean algebra 242, 244

Boolean logic 15, 18, 61, 202, 253, 255,

271, 279, 290, 357, 387

Boundary scan 636

Boundary scan description

language 639

Bridging fault 627, 629

Built-in self-test 619

C

C programming language 179, 647

C++ programming language 101,

208, 209, 647

CAD See computer aided design

Capacitance 31, 74, 131, 136, 144, 609

Capacitor 617

Cascaded integrator comb filter 687

Central processing unit 21, 58, 178

CE marking 116

Circuit 1, 4, 10, 43, 58, 123, 125, 178,

193, 217, 333, 338, 475, 537, 540

Circuit under test 538

Clock 15, 46, 66, 78, 90, 105, 110, 117,

138, 143, 222, 278, 283, 367, 414

Coherent sampling 632

Combinational logic 15, 26, 221, 246,

256, 271, 274, 338, 387, 414

Comment (VHDL) 353

Commercial 4, 26, 48, 52, 75, 116, 171,

194, 218, 335, 548

Complement 8, 27, 223, 226, 449, 453,

481, 513, 548, 568

Complementary metal oxide

semiconductor 15, 256

Complex programmable logic

device 1, 6, 27, 76, 155, 218, 220,

478, 542, 640, 647, 661

Complex instruction set computer 21,

178, 512, 668

Component 1, 4, 44, 58, 70, 72, 123,

187, 218, 344, 351, 364, 617

Computer aided design 5, 218, 334, 351

Computer Aided Engineering 196, 334

Concurrent 344, 357, 366, 383

Concurrent engineering process 52, 54

Configuration 1, 7, 26, 29, 34, 72, 114,

156, 159, 220, 344, 351, 479

Conformal coating 133

Continuous time 10, 199, 203, 217,

496, 568

Controllability 618

Counter 47, 58, 278, 288, 294, 415,

422, 432, 561

D

D/A conversion 537

D latch 222, 278, 282, 283, 414, 416

D-type flip-flop 222, 278, 283, 415, 416

Data communication equipment 102

Data terminal equipment 102

Dataflow 195, 341, 342

Datasheet (data sheet) 72, 73

Decimal 222, 223, 398, 548, 551

Decimation 687

Defect 615

Defect level 621

Delay fault 629

Design 615

Design for assembly 51, 528, 649

Design for debug 51, 528, 649

Design for reliability 51, 528, 649

718 Index

www.newnespress.com

Design for manufacturability 51, 528,

649

Design for testability 49, 51, 528, 619,

636, 649, 653, 657

Design for yield 51, 528, 649

Design rules checking 147

Design specification 17, 68, 69

Design unit (VHDL) 348, 349

Development 616

Device under test 538, 636

Digital 1, 6, 10, 12, 14, 17, 43, 60, 62,

67, 132, 138, 141, 177, 193, 217,

333, 477, 537, 623, 624

Digital signal processing 13, 21, 37,

60, 158, 179, 211, 217, 447, 475

Digital signal processor 1, 5, 22, 44,

177, 179, 218, 220, 440, 475, 478, 539

Digital-to-analogue converter 13, 168,

475, 543, 630, 665

Diode 580, 581, 617

DIP See dual in-line package

Discrete time 10, 12, 203, 496, 568

Dielectric 127, 137, 140

Don’t care 277, 307, 382, 396

DRAM See dynamic random access

memory

DSP See digital signal processor/

processing

Dual in-line package 99, 106, 129, 324

Duplex 92

Dynamic random access memory 6,

220, 324

E

EDA See electronic design automation

Electrically erasable programmable read

only memory 5, 26, 30, 220, 325

Electrically programmable read only

memory 5, 30, 220, 325, 622

Electromigration 136

Electromagnetic compatibility 152,

154, 155, 634

Electromagnetic interference 155

Electronic design automation 23, 29,

32, 61, 68, 193, 333, 335, 338, 647

Electronic system-level 37, 68, 649,

654

Electrostatic discharge 73

Embedded system 22, 66, 67, 178, 179

Emitter coupled logic 15

Entity 179, 195, 342, 343

Enumerated (VHDL) 381, 382

EEPROM See electrically erasable

programmable read only memory

EPROM See electrically

programmable read only memory

ESL See electronic system level

Eurocard 123, 139, 155

Eye diagram 78, 79

F

Fan-in 84

Fan-out 84

Fast Fourier transform 9, 22, 539,

553, 632

Fault 615, 621

Federal Communications Commission

(FCC) 116

Field programmable analog array 9

Field programmable gate array 1, 6,

28, 76, 218, 220, 441, 478, 542,

640, 647

Flash 5, 30, 220, 325, 397, 573, 575

Finite impulse response filter 686

Index 719

www.newnespress.com

Flip-chip 622

Flip-flop 222, 277, 280, 282, 286, 387,

414, 416

Flowchart 56, 57

Flying probe tester 620

Formal verification 63, 65

FR-4 126, 127, 133, 137

Full adder 198, 260, 263

Full custom 7, 8

Functional test 625

Functional tester 620

G

Gajski-Kuhn chart 61

Gallium arsenide 16

Generic (VHDL) 374

Generic array of logic 24

Graphical user interface 70, 211

Gray code 223, 231

Ground plane 132, 149

H

Half adder 260, 262, 388

Handshaking 95, 102

Hardware 615, 647

Hardware description language 18,

65, 157, 177, 193, 241, 333, 334, 668

Hardware-software co-design 62

Heat dissipation 606

Heatsink 606

Hexadecimal 99, 223, 235, 398, 403

Hot rig 620

Hybrid 52, 111

I

In-circuit tester 620

Inductor 617

Industrial 66, 75, 107, 114, 153, 548

Inertial 366, 367

Infinite impulse response filter 686

Integrated circuit 1, 4, 15, 21, 46, 52,

110, 125, 141, 178, 194, 206, 218,

334, 342, 537, 547, 610, 617, 621

Integration 652

Intellectual property 7, 115, 221,

647, 648

Interpolation 687

Insulation displacement connector

93, 125

Interfacing logic families 83

International Technology Roadmap for

Semiconductors 38, 113, 656

ITRS See International Technology

Roadmap for Semiconductors

J

JavaTM 47, 70, 178, 183

JEDEC 36

Joint Test Action Group 32, 159, 269,

636, 640

JTAG See Joint Test Action Group

K

Karnaugh map 18, 241, 271, 333

Known good die 111, 538

L

Laplace transform 662

Latch 26, 222, 277, 282, 414, 416

Layout versus schematic 146

LCD See liquid crystal display

Lead-free solder 154

Least significant bit 98, 226

LED See light emitting diode

720 Index

www.newnespress.com

Library 8, 181, 186, 208, 211, 348, 349

Light emitting diode 92, 125, 142, 398

Liquid crystal display 659

Look up table 8, 28, 444

Logic 1, 5, 7, 43, 47, 58, 155 ,157, 193,

217, 218, 333, 334

Loop 14, 113, 114, 211, 241, 271,

380, 383

M

Manufacture 615, 616

Mask programmable gate array 8

MATLAB� 210, 211, 654, 661

Mealy machine 279, 281, 306, 415, 426

Memory 1, 5, 8, 15, 46, 47, 155, 158,

1278, 181, 218, 220, 322, 440

Metastability 288

Microcontroller 1, 5, 22, 44, 177, 218,

220, 440, 478, 541

Microprocessor 1, 5, 15, 21, 44, 46,

52, 177, 178, 218, 220, 276, 440,

478, 540

Military 75, 548

Mixed-signal 9, 37, 43, 155, 158, 202,

205, 343, 540, 623, 632

Mock-up 70

Mode (VHDL signal) 343, 361

Modulated 91, 92

Moore machine 279, 281, 306, 316,

415, 428

Most significant bit 98, 226, 548

Mechatronics 113

Multichip module 52, 110

Multiple stuck-at-fault 627

Multiplexer 28, 62, 229, 260, 355

Multiplier 22, 37, 113, 448, 449,

517, 534

N

NAND and NOR logic 269

Noise margin 81

Noncoherent sampling 632

Nonrecurring engineering 67

Nonvolatile 5, 6, 29, 30, 159, 220, 325

O

Observability 618

Obsolescence 9, 23

Octal 166, 223, 233

Operating system 66, 144, 146, 179,

183, 539

Operational amplifier 610

Optical fiber 89, 92, 114, 543

Oxide-nitride-oxide 31

P

Package 1, 6, 52, 73, 97, 110, 112, 129,

185, 197, 206, 220, 324, 342, 344,

349, 351, 537, 621

Parallel 45, 54, 89, 95, 99, 113, 257,

317, 355, 432, 457, 479, 539,

546, 567

Parametric test 625

Parity 90, 91, 99, 432

Passivation layer 133

PC See personal computer

PCB See printed circuit board

Personal computer 44, 440

Phase-locked loop 113, 540

PHP 190, 191

Platform 652, 653

Power electronics 580

Power management 109, 110

Power on reset 103, 158, 159, 542

Power plane 132, 147

Index 721

www.newnespress.com

Power supply 17, 29, 38, 45, 74, 81, 86,

102, 126, 132, 148, 155, 257, 481,

528, 545

Power transistor 580, 585

Processor 1, 5, 21, 23, 37, 44, 47, 52,

58, 62, 67, 95, 109, 177, 218, 240,

322, 440, 475, 509, 537, 541, 640

Programmable logic device 1, 6, 24,

27, 76, 155, 218, 220, 449, 478, 542

Programmable read only memory

5, 24, 26, 220, 325

Printed circuit board 21, 46, 49, 52,

75, 123, 125, 206, 276, 325, 539,

546, 617, 632, 653

Program control 383

Programmable logic array 24

Programmable array of logic 24

Proportional plus integral control 662

Proportional plus integral plus

derivative control 662

Prototype 50, 53, 63, 70, 150, 183, 501,

511, 516, 533

Prototyping 1, 9, 18, 21, 50, 54, 63,

161, 210

Q

Quantization 13, 217, 568

R

Radio 94, 117, 150, 585

RAM See random access memory

Random access memory 5, 15, 47,

218, 220, 322, 324, 441, 659

Read only memory 5, 15, 47, 218, 220,

322, 325, 444, 659

Read-write memory 15, 324, 441

Real time operating system 66

Receiver 22, 89, 98, 163, 178, 427, 432,

481, 483

Reduced instruction set computer 21,

178, 668

Register transfer level 34, 37, 157, 193,

336, 647, 653

Reserved words (VHDL) 380

Resistance 31, 74, 77, 130, 134, 140,

207, 276, 399, 588, 608

Resistor 617

Resource library (VHDL) 350

RoHS directive 153

ROM See read only memory

RS-232 22, 45, 93, 97, 98, 163, 178,

432, 482, 540

Reset 102, 158, 222, 279, 387

Rule of ten 49, 617

S

Sampling 11, 13, 60, 479, 500, 513,

516, 553, 555, 568

Scan path 66, 319

Schematic 17, 23, 34, 56, 123, 144,

146, 241, 333, 338

Scripting languages 178, 189

Semi-custom 8

Sequence detector 280, 427

Sequential 15, 18, 26, 47, 48, 52, 221,

222, 277, 357, 366, 383, 387, 414,

512, 545, 566

Sequential logic 15, 18, 26, 47, 221,

222, 277, 387, 414

Sequential product development

process 52

Serial 45, 57, 76, 89, 97, 99, 163,

169, 280, 313, 317, 355, 432, 479,

539, 546

722 Index

www.newnespress.com

Service 616

Seven-Segment Display 398, 401

Shift register 317, 319

Signal (VHDL) 341, 343, 348, 366

Signal integrity 137, 144

Signed 349, 447

Silicon 3, 7, 16, 31, 52, 109, 141

Silicon germanium 16

Silk screen 133

Simple programmable logic device

1, 6, 24, 218

Simplex 92, 93

Simulation 32, 34, 50, 63, 65, 124, 144,

193, 623

Simulink� 210, 211, 654, 661

Single stuck-at-fault 627

Software 615, 640, 647

Software failure 643

Software fault 643

Software programming language 177,

179, 195

Solder mask 126, 133, 147

Special tester 620

SPICE 146, 178, 202, 205, 653

SRAM See static random access

memory

Standard cell 7, 8, 61

Standard product IC 2, 4, 218

State machine 34, 36, 211, 278, 305,

338, 415, 426

State transition diagram 280, 289, 333,

338, 426, 428

State transition table 280, 281, 289

Static CMOS 16, 17, 30, 81, 82, 109

Static random access memory 6, 28,

30, 220, 324

Stuck-at-fault 627, 629

Structural (VHDL) 336, 339, 344, 359

Structural test 625

Structured ASIC 8, 9

Substrate 52, 110, 123, 133, 135, 138

Subsystem 617

Subtraction 229, 352, 513, 522

Subtype (VHDL) 382

Surface mount 106, 130, 139, 141, 166,

172, 634

Synchronous 15, 90, 222, 278, 286,

416, 420

Synchronous sequential logic 15, 222,

278

Synthesis 34, 35, 61, 65, 68, 158, 193,

202, 211, 283, 333, 337, 341, 366

Synthetic resin bonded paper 127

System 1, 5, 10, 43, 615, 617, 647

System on a Chip 51, 52, 112, 657

System in a package 52, 112

SystemC� 178, 208

SystemVerilog 178, 209

T

Tape automated bonding 622

Technology 1, 3, 36, 49, 78, 108,

113, 202, 205, 218, 276, 337, 341,

512, 528

Test 615

Test access port 639

Test data input 639

Test data output 639

Test bench 35, 36, 196, 336, 357,

453, 459

Test clock 639

Test mode select 639

Test specification 625

Thermometer-to-Binary Encoder 397

Index 723

www.newnespress.com

Threshold voltage 31, 103

Through-hole 106, 126, 127, 128

Thyristor 580, 593, 617

Time to market 1, 49, 67, 648

Transistor 617

Transistor-transistor logic 15, 20,

76, 159

Transmitter 22, 89, 98, 110, 163, 178,

432, 481, 483

Transport (VHDL) 366, 367

Triac 580, 604, 617

Tristate buffer 269, 276, 292, 409

Truth table 241, 248, 355, 358

TTL See transistor-transistor logic

Two’s complement (2s complement)

223, 225, 329, 449, 453

Type (VHDL signal) 346, 349

U

Ultra large scale integration 16

Unified modeling language 70

Universal asynchronous receiver

transmitter 22, 98, 163, 178,

432, 481

Universal serial bus 45

Unsigned 197, 223, 226, 230, 343, 349,

351, 481, 548

USB See universal serial bus

V

Validated 36

Validation 21, 65, 623

Variable 11, 47, 140, 161, 182, 243,

366, 372, 498, 516

Verification 21, 32, 35, 37, 63, 65

Verified 34, 36

Verify 640

Verilog�-A 178, 199

Verilog�-AMS 178, 205

Verilog�-HDL 178, 196

Very large scale integration 16

VHDL 18, 157, 178, 196, 639, 654,

661, 666

VHDL-AMS 178, 202, 211, 250, 283,

333, 334

Via 31, 126, 127, 128

Visual BasicTM 178, 186

Volatile 5, 6, 29, 159, 220, 324

W

Wafer scale integration 16

WEEE directive 152, 153

Wire bond 622

Wired-AND 628

Wired-OR 628

Wireless 89, 92, 97, 114, 172

Work library (VHDL) 349, 351

Working library (VHDL) 350, 351

X

Xilinx� 20, 33, 76, 157

Z

Z-transform 670

724 Index

www.newnespress.com

