INCLUDES
FREE
NEWNES ONLINE

MEMBERSHIP

Newnes

n\

DIGITAL SYSTEMS
DESIGN with FPGAS

¢ A 360 degree view from our best-selling authors

* Key facts, designs, and applications fully detailed

* The ultimate hard-working desk reference:
all the essential information, techniques, and
tricks of the trade in one volume

lon Grout

Digital Systems Design with
FPGAs and CPLDs

This page intentionally left blank

Digital Systems Design with
FPGAs and CPLDs

lan Grout

AMSTERDAM e BOSTON ¢ HEIDELBERG ¢ LONDON
NEW YORK ¢ OXFORD e PARIS ¢ SAN DIEGO

" SAN FRANCISCO ¢ SINGAPORE ¢ SYDNEY ¢ TOKYO \)

ELSEVIER Newnes is an imprint of Elsevier Newnes

Newnes is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2008, Elsevier Ltd. All rights reserved.

Material in Chapter 6 is reprinted, with permission, from IEEE Std 1076-2002 for VHDL Language Reference Manual, by IEEE.
The IEEE disclaims any responsibility or liability resulting from placement and use in the manner described.

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission. The MathWorks does not
warrant the accuracy of the text or exercises in this book. This book’s use or discussion of MATLAB® and Simulink®
software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical
approach or particular use of the MATLAB® and Simulink® software.

Figures based on or adapted from figures and text owned by Xilinx, Inc., courtesy of Xilinx, Inc. Copyright © Xilinx, Inc.,
1995-2005. All rights reserved.

Microsoft product screen shot(s) reprinted with permission from Microsoft Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK:

phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions(@elsevier.com. You may also complete your request
online via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission”
and then “Obtaining Permissions.”

Recognizing the importance of preserving what has been written, Elsevier prints its books on acid-free paper whenever possible.

Library of Congress Cataloging-in-Publication Data
Grout, Ian.
Digital systems design with FPGAs and CPLDs / Ian Grout.
p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-7506-8397-5 (alk. paper) 1. Digital electronics. 2. Digital circuits — Design
and construction. 3. Field programmable gate arrays. 4. Programmable logic devices. I. Title.
TK7868.D5.G76 2008
621.381—dc22
2007044907

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Newnes publications
visit our Web site at www.books.elsevier.com

Printed in the United States of America
08 09 10 11 12 13 1009 8 7 6 5 4 3 21

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID Qe Foundation

To my family, but especially to my parents and to Jane.

This page intentionally left blank

Table of Contents

PPEfACE «..uueeennaennienarnniieniienieraieieniisessaesssecssessssesssessssssssssssssssssssnssssssssnsasnns xvii

ADDFEVIALIONS «.....cveeeeevennenenniorennioreninrensssensssonssssnssssassssssssossasssssssssssssossns XXiil

Chapter 1: Introduction to Programmable Logicuueeeeeeenennnnnnnnn. 1

1.1 Introduction to the BOOKcccoiiiiiiiii e 1

1.2 Electronic Circuits: Analogue and Digitalcccccoeeeviiiiiiiiiiiiiiiieeeeee, 10

1.2.1 INtrodUCHON coieiieiiiiiii ettt e seareee e e 10

1.2.2 Continuous Time versus Discrete Time........cccoeeveviiieeeniiiireeennnen. 10

1.2.3 Analogue versus Digitalccccooiiiiiiiiiiiiiiiiiieeeeee 12

1.3 History of Digital LOZIC......uuviiiiiiiiiiiiiiiiiiiiiiiie e 14

1.4 Programmable Logic versus Discrete LOZIC.....uuuiiiieeeeeiiiiiiiiiiiiiiiiiieeeeennn. 17

1.5 Programmable Logic Versus ProCessorscccveeeeeeeiriiiiiiiiiiiiiiiieeeeeeennn 21

1.6 Types of Programmable LOZICccceieiiiiiiiiiiiiiiiiieiccecee e 24

1.6.1 Simple Programmable Logic Device (SPLD)cccoovvviivvvvninnnn.o 24

1.6.2 Complex Programmable Logic Device (CPLD)...........ccccvvvvvvnne.en. 27

1.6.3 Field Programmable Gate Array (FPGA)......cccccceevvvviiiiciiiiiiiiinne, 28

1.7 PLD Configuration TechnolOgiescccccuvriiiiiiiiieeeeeeiiiiiiiiiiieee e 29

1.8 Programmable Logic Vendors.........coocuuiiiiiiiiiiiiiiiiicceiiceeceee e 32

1.9 Programmable Logic Design Methods and ToolSs........ccccvvvvveiiieiiiiiiiiinnn, 33

1.9.1 INtrodUCHION ..ooiiiiiiiiieiiiie et e e 33

1.9.2 Typical PLD Design FIOW..........ccoooiiiiiiiiiiiiiiiiiieeeeeeeeeeeieeee 35

1.10 Technology Trendsc...uuiiiiiiieeeeeeieiiiiieee e e e e 36

REFEIEICES ...t 38

StUAENt EXETCISES ...uvviiieiiiiiiiie ettt et e e 40

Chapter 2: Electronic Systems Desighuuuueeeneennnnnnnnnnnnnnnnnnnennnnnnennnnne. 43

2.1 INtrodUCHION ..ot 43
2.2 Sequential Product Development Process versus Concurrent

ENgINeering ProCeSS.....uuuiiiiiiiieiiiiiiiiiiiiite e ee ettt e e e e e e e e e e 52

www.newnespress.com

viii Table of Contents

2.2.1 INtrodUCHON .ooeiiiiiiiiiie e 52

2.2.2 Sequential Product Development Processccccccceveeiniiiiiieennnnn. 53

2.2.3 Concurrent Engineering Process............oeovvviireeiiiiiieeeeiiiieee e, 54

2.3 FIOWCRATTS .eeiieeiiiii ettt e ee e 56
2.4 BIOCK DIa@ramS.......cuuuviiiiiiiiiieiiieiiicciiiiiee e e e e e e e e 58
2.5 Gajski-Kuhn CRArtvviiiiiiiiiiiiiiee e e e 61
2.6 Hardware-Software Co-DeSIZNcccuvriiiiiiiiiieeeeeeeiiiiiiieiiee e e e e e e e e 62
2.7 Formal VerifiCationcoeiiiiiiiiiiiiiie et 65
2.8 Embedded Systems and Real-Time Operating Systemsccccvveeeennnn. 66
2.9 Electronic System-Level Designcccccuvviiiiiiiiiiiiiiiiiiiiiieeee e 67
2.10 Creating a Design SpecifiCation..........cc.vvvviiiiiiieeeeeiiiiiiiiiiiiee e e eeeeee e 68
2.11 Unified Modeling Language...........ccccvvviiiiiiieeeeeeeeee e ee e e e e e 70
2.12 Reading a Component Data Sheet..........cccvveiiiiiiiiiiiiiiicceeceee e 72
2.13 Digital INput/OULPUL ..c.evviiieeeiiii et eireeae e 75
2131 INtrodUCHION.eviiieeiiiie e 75
2.13.2 Logic-Level Definitionsccoovvvviiiiiiiiiiiiiieeee e 79
2.13.3 NOISE MATZIN..cccciiiiiiiiiiiiiiiieeeee e e ee e e e e e e e e e e e e e eeiiaaarreeeeas 81
2.13.4 Interfacing Logic Families.........ccccovvuiiiiiiiiiniiiiiiiieiieeceeeceeen 83

2.14 Parallel and Serial INterfacingccccceviiiiiiiiiiieieiiieee e 89
2,141 INtrodUCHION.eviiieeiiiii et 89
2.14.2 Parallel I/O ...cooooiiiie e 95
2.14.3 Serial T/O .vviiiiiieiiee e 97

2,15 SyStEM RESEL...cciiiiiiiiiiiiiiiie et e e e e e e e e e e e e e e e 102
2,16 SYSteM CIOCK ..oeoiiiiiiieiiiiiee et e e trae e e nnraeeeeen 105
2.17 POWET SUPPIES ..ttt e e et e e e tee e e e enneeaeeens 107
2.18 Power Management............uuuuuuuuueiiiiiieiieeeeeeeeeeeeeeeeeeeieiiieraieiiaeina e ees 109
2.19 Printed Circuit Boards and Multichip Modules............cccccvviiiiiiiieennnnnn, 110
2.20 System on a Chip and System in a Package.............ccccovvviiiiiiiiiiiinnnnnnnn, 112
2.21 Mechatronic SYSLEMIS.uuiiieiiiiiiieeeeiiiieeeeeeiiieeeeeeiieeeeeeeireeeeeeeeeareeeeeens 113
2.22 Intellectual PrOPertyuuueeiiii i 115
2.23 CE and FCC Markingscccoeiiiiiiiiiiiiiiiiieieeeeee e 116
REFEIEIICES eiiiiiiiiee e 118
Student EXETCISES ...eeeeiiuiiiiieeiiiiiie ettt 121
Chapter 3: PCB DeSighuuuuueeueenneennnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnssnnnnnnnnnns 123
3.1 INEEOAUCTION .ottt e e 123
3.2 What IS @ PCBY oo 125
3.2.1 DEfINITION Loiiiiiiiiiiee et 125

3.2.2 Structure of the PCB ... 127

3.2.3 Typical COMPONECNLS......ccceeeiiieiiiiiiiiiiiiiiirieeeeeeeeeeeiiiiiirirereeeeeaeeeens 139

3.3 Design, Manufacture, and TeStiNgcccveveeeeriiiiiiiiiiiiiiiiiieeeeeeeee e 144
3.3.1 PCB DESIZN .o 144

www.newnespress.com

Table of Contents ix

3.3.2 PCB ManuUfacCtUre.........cccceeiiiiiiiiiiiiiiiiiieie e e e e e eeeeeiiiiirirer e e e 150
3.3.3 PCB TeSUNE..c.utviiiieiiiiiieee ettt et e e e e e e 151

3.4 Environmental ISSUEScooiiiiiiiiiiiiiiiiiieee e 152
3.4.1 INErOdUCHON ..uvvviiiiiiiiiiiie e 152

3.4.2 WEEE DIFCCHVE ...vvvviiiiiiiiieii e 153

3.4.3 ROHS DIICCHIVE ..uuvviiiiiiiiiiieee et 153
3.4.4 Lead-Free Solder. ...t 154

3.4.5 Electromagnetic CompatibDilityccceeeviriiiiiieriiiiiieeeeiiiieee e, 154

3.5 Case Study PCB DeSIZNS.....c.uuviiieiiiiiiieeeeiiiiiee et e e 155
3.5.1 INErOAUCHION ..vvvviiiiiiiiiiiie e 155

3.5.2 SYSLEM OVEIVIEW ..vvvvviiiiiieeeeeeieiiiiiiitirereeeeeeeeeeeeeseennnsnreerrrrereeeeaeens 157

3.5.3 CPLD Development Boardccccouviiiiiiiiieeniiiiiiiiiiiieeeee e, 158

3.5.4 LCD and Hex Keypad Boardc.cccoeiviiiiiiiiiiiiicees 160

3.5.5 PC Interface Board..........cooooviiiiiiiiiiiiiiieeeee e 163

3.5.6 Digital I/O Boardooooiiiiiiiiiiiiiiieeeeeeeeeeeeeeee e 166

3.5.7 Analogue I/O Board...........ccoovviiiiiiiiiiiieeeeeeeee e 168

3.6 Technology TTendS.........iiiieiiiiiiiiiiiiiiieee e e e e e e e 171
REFEIEICES ..ttt et 173
StUAENt EXEICISES ..vvvvviiiiiiieiieieieiiiiieeee e e e e e 175
Chapter 4: Design LANGUAZES...............ueeeeeeunnennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnennnennnnnes 177
4.1 INtrodUCHION ...oooiiiiiiiiiee et 177
4.2 Software Programming Languagescccceeeeeeeiiiiiiciiiiiiiiiiiieeeeeeee e 177
4.2.1 INtrOAUCHION ..eviiieiiiiiiiee et e ettt e e 177

B.2.2 € o e 179

423 i 181
424 TAVA™ e 183

4.2.5 Visual Basic ™ ..o 186

4.2.6 Scripting LanguUagesuuvveiiirieeeeeeiiiiiiiiiiiieeeeeeeeeeeeeeeeeineeeeeeeees 189
2T PHP oo e 191

4.3 Hardware Description Languages.......cccccvvvveeiieeeieeieiiiiiiiiiieeeeeeeeeeeeeeann 193
4.3.1 INtrodUCtiONccoeiiiiiiiiiiiiii e 193

4.3.2 VHDL ..o 194

4.3.3 Verilog®-HDLcocoooiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeee e, 196
4.3.4 VeriloZ®-A ..o, 199

4.3.5 VHDL-AMS ..o 202

4.3.6 VeriloZ®-AMS ... 205

4.4 SPICE. ... oot s 205
4.5 SYSIEMC™® ..o 208
4.6 SYStEMVETIOZ. ..cciiiiiiiiiiiiiiie e 209
4.7 Mathematical Modeling ToOISccceiiriiiiiiiiiii e 210
REFEICNCES ..vvvvviiiiiiiieieeee et e 214
StUAENTt EXCICISES 1oiiiiiieiieiiiiiiiiiiii et e e e ee e e e e et eeee e e e e e e e eeeaaaaseees 216

www.newnespress.com

X Table of Contents

Chapter 5: Introduction to Digital Logic Designeeueeeeeeeenennnnnnnne. 217
ST INTOAUCHION et e e 217
5.2 INUMDET SYSTEIMS...eiiiiiiiiiiiiiiiiiiiiiii e e eeeeee e e e e et rrreeeeeeeeeeeeeeeeeneannnees 222

5.2.1 INErOAUCHION ..vvviiiiiiiiiiie ettt et et e e e e 222
5.2.2 Decimal-Unsigned Binary Conversion...........cccccvvvveeeeeeeeeeiineeennnns 224
5.2.3 Signed Binary NUMDETIS.......cccccvvviiiiiiiiiiieieeeiiiieeeee e e 226
5.2:4 Gray COC . .uuuiiiiiiiiiieieiieieiiiiiie ettt e e e e e e et reeeaeeeeeeeeesaeees 231
5.2.5 Binary Coded Decimalcccvviiiiiiiieeiiiiiiiiiiiiicee e 232
5.2.6 Octal-Binary CONVEISIONuuuiviiiiiiieeeeeeeeiiiiiiiiiieeeeeeeeeeeeeeeeeneees 233
5.2.7 Hexadecimal-Binary COnversioncccceeeeerevreieeesncinireeeennneennnn 235
5.3 Binary Data Manipulation........ccceeveiiiiiiiiiiiiiiiiiiieeeee e 240
5.3.1 INETOAUCTION ..veiiiiiiiiiiiee et 240
5.3.2 Logical OPerationscccccuuvriiiiiiiieeeeeeeeeisiiiiiiiiireeeeeeeeeeeeeesennnnees 241
5.3.3 Boolean Alebra.........cccooiiiiiiiiiiiiiiiieie e 242
5.3.4 Combinational Logic Gatescccceeeeeiiiiiiieeiiiiiiiee e 246
5.3.5 Truth Tablesoooeiiiiiiiieiie e 248
5.4 Combinational Logic DeSIZNuvvviiiiiiiiiiiiiiiiiiiiiiiiieee e 256
541 INETOAUCTION ..eeiiiiiiiiiiiee et 256
5.4.2 NAND and NOR 10ZICcccuuiiiiiiiiiiiiieee et 269
5.4.3 Karnaugh Mapscoooeiiiiiiiiiiiiee e 271
5.4.4 Don’t Care CONAIIONS.....cc.vviiiiiiiiiiiieeeiie e 277
5.5 Sequential Logic DeSIZN.....cccouviiiiiiiiiiiiieeeiiiiiiieeeee e 277
5.5 1 INETOAUCHION ..veiiiiiiiiiiiee et 277

5.5.2 Level Sensitive Latches and Edge-Triggered
FIP-FLOPS -ttt 282
5.5.3 The D Latch and D-Type FLip-FIopccoooviiiiiiiiiiiiiiii, 283
5.5:4 Counter DeSIZN.........ccooiiiiiiiiiiiiiiiieiee e 288
5.5.5 State Machine Desi@n........cccccvviiiiiiiiiiiiiiiiiiiciieeee e 305
5.5.6 Moore versus Mealy State Machinescccccvvvviiiiiieieeeeininnnn, 316
5.5.7 Shift REEISTETS. ..ccuvviiiiiiiiiiiiie ittt 317
5.5.8 Digital Scan Path..........cooooiiiiiiiiii e 319
5.0 MEITIOTY oottt e e e e e e e e e ettt e e e e eeeeeaeaaaaeaeeeeeeeasasaasannns 322
5.6.1 INETOAUCHION ..ueviiiiiiiiiiie e 322
5.6.2 Random AcCeSS MEMOTYuvuiiiiiiiiieeeeeeeeieiiiiiiiirieeeeeeeeeeeneneeenans 324
5.6.3 Read-Only MemOTY......ccooiuviiiieiiiiiieeee et eeiee e 325
REIEICIICESviiieieiiiiiie e e 327
StUAENT EXCTCISES -.vveeeeiiiiiiee et e ettt e et e e e eeeeeee e 328

Chapter 6: Introduction to Digital Logic Design with VHDL 333
6.1 INErOAUCTION ..ot 333
6.2 Designing with HDLScoooiiiiiiiiieeee e 334

www.newnespress.com

Table of Contents xi

6.3

6.4
6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14

6.15

6.16

6.17

Design Entry Methodsuuvuiiiiiiiieieeieiiciiiie e 338
6.3.1 INErOAUCLION ..evviiiiiiiiiiii e e e 338
6.3.2 Schematic CaAPLUIE........eiiiiiiiiiiiieeeiiiiee e ettt e e e e e 338
6.3.3 HDL Design Entrycccccooiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 339
LOZIC SYNTRESIS....vviiiiiiiiiiiiiieee e e e e e e e e e e 341
Entities, Architectures, Packages, and Configurations............................ 344
6.5.1 INtrOdUCLION ..eeviiiiiiiiiiii e 344
6.5.2 AND Gate EXample........cccoeiiiiiiiiiiiiiiiiiieieeeeeeeeee e 346
6.5.3 Commenting the Code.........cccuviiiiiiiiiiiiiiiiiiee e 353
A FIrst DESIZI..ccciiiiiiiiiiiiiiiiiiee e 355
6.6.1 INtrOdUCHION ..eeiiiiiiiiiiii e 355
6.6.2 Dataflow Description EXampleccccccvvvveieeriiiiiiiiiiiiiiiieeeeeenn 356
6.6.3 Behavioral Description Example.........ccccceeviiiiiniiiiiniiiinicecen 357
6.6.4 Structural Description Examplecoooovviiiiiiiiiiiiiieiieeee 359
Signals versus Variablescooviiiiiiiiiiiiiiiieeeececccee e 366
6.7.1 INtrodUCHION ..eeiiiiiiiiiiiii e 366
6.7.2 Example: Architecture with Internal Signals............cccoovvvevineenn.n. 368
6.7.3 Example: Architecture with Internal Variablescc..c...o..... 372
(€ 1S 1 1<) 8 ToL USSR 374
Reserved WOordseeiiiiiiiiie e 380
DAt TYPES o eeiiiiiiiiieeeeeee e e e e e e e e e aaaees 380
Concurrent versus Sequential Statements..........ccccvvvvviiriieeeeeeeeriiiicinnnnnee, 383
Loops and Program Control..........ccccceeeeeiiiiiiiiiiiiiiiiieieeeee e 383
Coding Styles for VHDL........cooiiiiiiiiiieeeee e 385
Combinational Logic DeSign.........cceeeeiiiiiiieiiiiiiiiee e 387
6.14.1 INtrodUCHIONueiiieiiiiiit et 387
6.14.2 Complex LogiC GateSccceevviiiiiiiiiiiiiieeeeeee e 388
6.14.3 One-Bit Half-Adder...........ooooiiiiiiieeeeeeeeeeee e 388
6.14.4 Four-to-One MultipleXercccovoiiiiiiiiiiiiiiiiiiiiee e 389
6.14.5 Thermometer-to-Binary Encoder...............cccoevviiiiiiiiiiinennn. 397
6.14.6 Seven-Segment Display DIIVETvvvvvviiiiiiiiiiiiiiiiiiiiiiieeeeeeee. 398
6.14.7 Tristate Bufferccoociiiiiiii e 409
Sequential Logic DesiZNuvvvviiiiiiiiieeeiiiiiiiiiiieeee e 414
0.15.1 INtrodUCHIONueiiiiiiiiiiie et 414
6.15.2 Latches and FLp-FIOPS........cooooiiiiiiiiiiiiiiieeeeeeeceeeeeee 416
6.15.3 CoUunter DESIZN....uuvvviiiiiiieiieiiieieiiieeee e 422
6.15.4 State Machine Design..........ccoovvuviiiiiiiiiiiieeeeeeieciree e 426
11 (S5 1010 o RSP SPRRP 440
6.16.1 INtrodUCHIONeiiiiiiiiiiie e 440
6.16.2 Random AccesS MEMOTY........oceeiriiiiieeiiiiiiieeeeeiiieeeeeeiieeee e 441
6.16.3 Read-Only MeEemMOTYcoceeiiiiiiieiiiiiiie et 444
Unsigned versus Signed ArithmetiC..........oooovvvviiiiiiiiiiiieiiieeeeeeeeeeiii 447
6.17.1 INtrodUCHIONeiiiiiiiiii e 447

www.newnespress.com

xii Table of Contents

6.17.2 Adder EXample........oooiiiiiiiiiiiiiiiiiiie e 448
6.17.3 Multiplier EXample..........ooooiiiiiiiiiiiiiiie e 449

6.18 Testing the Design: The VHDL Test Bench.........ccccoooveiiiiiiiiiiiiinnene, 453
6.19 File I/O for Test Bench Developmentccooeeviviiiiiiiiieeeeeeiiiciiiinn, 459
REFEIEIICES. ... eeeiiiii et 471
StUAEnt EXETCISES. .. eeeiiueiiiieeiiiiiie ettt e e eeee e 472
Chapter 7: Introduction to Digital Signal Processing........................evueeennn... 475
Tl INEOAUCTION .ttt e e e e e 475
7.2 Z-TransfOrM ..o et 496
7.3 Digital CONIOL....uuiiiiiiiiiiiiieeeiiieei e e e e e e e e e e e e e 509
7.4 Digital FilteriNg.....uvvviiiiieeeeeieie ittt e e e e e e ee e reee e e e e e e s e e eeesnnenes 524
741 INtrodUCTION ...veiiiiiiieiiice e 524

7.4.2 Infinite Impulse Response Filters.........ccccevviiiiniiiiiniiiiiicce, 532

7.4.3 Finite Impulse Response Filtersccccccoiieiiiiiiiiiiiiiiiiiiieeeeeeee, 534
REFEIEICES i et 535
StUAEnt EXETCISES. .. eeeiiiiiiieeiiiiiii ettt et e e 536

Chapter 8: Interfacing Digital Logic to the Real World: A/D Conversion,

D/A Conversion, and Power EIectronicsuueeueeeeneeeneeeneeeneeeneeennenenees 537
8.1 INtIOAUCHION ..uviiiiiiiieieee e 537
8.2 Digital-to-Analogue CONVEIrSIONuuvvvviiiiieeeeeeeeiiiiiiiiireeeeeeeeeeeeeeeeians 543

8.2.1 INLrOdUCHION ..uvvviiiiiiiiiiiie e 543
8.2.2 DAC CharaCteriStiCS......uuiieeeeeeiiiiiiiiiiiireeeeeeeeeeereiiiiiiirrrrrereeeeeeaens 548
8.2.3 Types Of DACuuiiiiiiiiiiieee e 555
8.2.4 DAC Control EXample..........ccooveiiiiiiiiiiiieeeeee e 559
8.3 Analogue-to-Digital CONVEIrSIONuvvvviiiiiiieeeeeiiiieiiiiieeeeeeeeeeeeeeeeians 565
8.3.1 INLrodUCHON ...vvviiiiiiiiiiiie e 565
8.3.2 ADC CharaCteriStiCS.....uuieieeeeeeiiiiiiiiriirrreeeeeeeeeeseisiiriinrrrrrereeeeeeaenns 568
8.3.3 Types Of ADC ...ouuiiiiiiiiiieeeee et 572
8.3.4 ALLASINZ..cceiiiieiiiiiieie ettt e e e e e e e e e e aaaaeaens 577
8.4 POWET ElECIIONICS ..uvvviiiiiiieee e 580
8.4.1 INLrOdUCHON ...vvviiiiiiiiiiiie e 580
84,2 DIOAES .o 581
8.4.3 POWET TTranSIStOTS . ..uuuiiiiiieeeeeeiiiiiiiiiiiiiiite e e e e e e e e e e eiiirrrrereeeeeaeeeeens 585
844 TRYTISTOTS .oeieeiiiiiiiee et e e e ettt e ettt e e e e et e e e e etbaeeeeeenenes 593
8.4.5 Gate Turn-Off ThyriStOTS...cccvviiiiiiiiiiiiee et 603
8.4.6 Asymmetric TRYTISTOIScoooiiiiiiiiiiiiiiiee e 604
B4, T TTIACS ..oiieie e et 604
8.5 Heat Dissipation and Heatsinks...........ccccceeeeeiiiiiiieiiiiiiiiiiieeeeee e, 606
8.6 Operational AMPlfier CIrCUILS.......uvvvviiiireeeeeeiiiiiiiiiiiiiirie e e e e e e eeeeiiinenns 610

www.newnespress.com

Table of Contents XIii

REFEIEIICES . ..ttt 612
StUAENT EXCTCISES...iiiiiiiiiiiiieeiiiiie e ettt e ettt e et e e e e e eare e e e e eebaeeeeees 613
Chapter 9: Testing the Electronic Systemuuueeeeeeeeeeeeecerrrnnneneeeeeennen. 615
9.1 INEFOAUCTION 1ottt e e e e e e 615
9.2 Integrated Circuit TESINGcoeveviiiiiiiiiiiiiii e 621
9.2.1 INtrodUCHON .oooiiiiiiieiiie e 621
9.2.2 Digital IC TeStNG......eieiiiieiiiieeiiiee et 624
9.2.3 Analogue IC TeStNG ...cuvvvieeiiiiiiiieeeiiiee et 629
9.2.4 Mixed-Signal IC TeSting..........cceeriiiiiiiiiiiiiiiieiee e 633
9.3 Printed Circuit Board Testingccoooviviiiiiiiiieeeieeeeeeciiireee e 633
9.4 Boundary Scan TeStINEccceeiiiiiiiiiiiiiiiiieiiieeeeeeee e eeeeeeeeeeeeens 636
9.5 SOftWATE TESINE....eeiiiiiiiiiiieiiiiiiee ettt et e e e e et e e e e eniaaeeee e 642
RELEICIICES. . v e 645
Student EXEICISES.......cooiiiiiiiiieieeee e 646
Chapter 10: System-Level Desigheeeeeeeenenneniieereneennnniseeeeeenennnnnes 647
101 INErOAUCTION ...uiiiiiiiiiiiiie et e e e e e ettt e e e e e e e e e e e e ennes 647
10.2 Electronic System-Level DeSignc..ceeeiiiiiiiieiiiiiiiiee e 654
10.3 Case Study 1: DC Motor Control.......ccccveeiiiieeeeeiiiiiiiiiiiiiieeeeeeeeeeee 661
10.3.1 INtrodUCHIONceiiiiieeiiiiie e e 661
10.3.2 Motor Control System OVEIVIEW.......cccuvvvviriireeeeeeeeiiiieeeninnnene 662

10.3.3 MATLAB®/Simulink® Model Creation
and SIMULATIONeiiiiiiiiiiiie e 665
10.3.4 Translating the Design to VHDLcccccooiiiiiiiiiiiice, 666
10.3.5 Concluding Remarkscccooovviiiiiiiiiiiiiiiiieceee e 674
10.4 Case Study 2: Digital Filter Design........cccoovvviiiiiieeeeeiiiieiiiiiiiiiieeeeeeennn 686
10.4. 1 INtrodUCTIONeiiiiieiiiiie et 686
10.4.2 FIlter OVEIVIEWeeviiiiiiiiiiiieeeeee e ettt e e e e e e e e e e e e 688

10.4.3 MATLAB®/Simulink® Model Creation
and SIMUIATION ..ooeiiiiiiiiiieiii e 690
10.4.4 Translating the Design to VHDLcccoocciiiiiiiiiie 692
10.4.5 Concluding Remarkscccoevvvviiiiiiiiiiiiiiiieeeee e 698
10.5 Automating the Translationccoccveeiiiiiiiiiieiiiiieee e 702
10.6 FUuture DIrCCTIONS ...oeeiiviiieeeiiiiiiie e ettt et e et e e e e ettt e e e e etaeeee e e e 703
REFEICINCES .. .eiieeiiit e 704
StUAEnt EXETCISES ...eeeeiiiiiiieeiiiiiii ettt 705
Additional Referencesu....uueuueneeiienneiiiienneiorienuiierieniiciieennicseeennees 707
INAEX ccceeenenniennniinniiiinniiiiniiienieienstenitranisranstsasssssssssssssssassssssssssssssssanes 717

www.newnespress.com

This page intentionally left blank

system

e noun 1 A set of things working together as parts of a mechanism or an
interconnecting network.

Oxford Dictionary of English

This page intentionally left blank

Preface

In days gone by, life for the electronic circuit designer seems to have been easier.
Designs were smaller, ran at a slower speed, and could easily fit onto a single small
printed circuit board. An individual designer could work on a problem and designs
could be specified and developed using paper and pen only. The circuit schematic
diagrams that were required could be rapidly drawn on the back of an envelope.

Struck by the success of the early circuit designs, customers started to ask for smaller,
faster, and more complex circuits—and at a lower cost. The designers started to work
on solving such problems, which has led to the rapidly expanding electronics industry
that we have today. Driven by the demand from the customer, new materials and
fabrication processes have been developed, new circuit design methodologies and
design architectures have taken over many of the early traditional design approaches,
and new markets for the circuits have evolved.

So how is the design problem tackled today? This is not an easy question to answer, and
there is more than one way to develop an electronic circuit solution to any given
problem. However, the design process is no longer the activity of a single individual.
Rather, a team of engineers is involved in the key engineering activities of design,
fabrication (manufacture), and test. All activities now involve the extensive use of
computing resources, requiring the efficient use of software tools to aid design
(electronic design automation, EDA and computer aided design, CAD), fabrication
(Computer Aided Manufacture, CAM), and test (Computer Aided Test, CAT). The
circuit is no longer a unique and isolated entity. Rather, it is part of a larger system.
Increasingly, much of the design work is undertaken at the system level . .. at a suitably
high level of design abstraction required to reduce design time and increase the designer
efficiency. However, when it comes to the design detail, the correctly specified system
must also work at the basic electric voltage and current level. How to go from an

www.newnespress.com

xviil Preface

effective system-level specification to an efficient and working circuit implementation
requires the skills of good designers who are aided by good design tools.

For the electronic circuit designer at an early stage in the design process, whether to
implement the required circuit functionality using analogue circuit techniques or digital
circuit techniques must be decided. However, sometimes the choice will have already been
made, and increasingly a digital solution is the preferred choice. The wide use of digital
signal processing (DSP) techniques facilitates complex operations that can provide superior
performance to an analogue circuit equivalent; indeed some cannot be performed in
analogue. Traditionally, DSP functions have been implemented using software programs
written to operate on a target processor. The microprocessor (LP), microcontroller (LC),
and digital signal processor provide the necessary digital circuits, in integrated circuit (IC)
form, to implement the required functions. In fact, these processors are to be found in many
everyday embedded electronics that we take for granted. This book could not have been
written without the aid of an electronic system incorporating a microprocessor running a
software operating system that in turn runs the word processor software.

Increasingly, the functions that have been traditionally implemented in software
running on a processor-based digital system in the DSP world and many control
applications are being evaluated in terms of performance that can be achieved in
software. In many cases, the software solution will be slower than is desired, and the
basic nature of the software programmed system means that this speed limitation
cannot be overcome. The way to overcome the speed limitation is to perform the
required operations in hardware designed for a particular application. However,
custom hardware solutions will be expensive to acquire.

If there were a way to obtain the power of programmability with the power of
hardware speed, then this would be provide a significant way forward.

Fortunately, programmable logic provides the power of programmability with the
power of hardware speed by providing an IC with built-in digital electronic circuitry
that is configured by the user for a particular application. Many devices can be
reconfigured for different applications. Today, two main types of programmable logic
ICs are commonly used: the field programmable gate array (FPGA) and complex
programmable logic device (CPLD).

Therefore, it is possible to implement a complex digital system that can be developed
and the functionality changed or enhanced using either a processor running a
software program or programmable logic with a specific hardware configuration.

www.newnespress.com

Preface XiX

For an end-user, the functionality of both types of system will be the same—the
design details are irrelevant to the end-user as long as the functionality of the unit
is correct. In this book, to provide consistency and to differentiate between the
processor and programmable logic, the following terminology will be used:

® A processor (microprocessor, WP; microcontroller, uC; or digital signal
processor, DSP) will be programmed for a particular application using a
software programming language (SPL).

e Programmable logic (field programmable gate array, FPGA; simple
programmable logic device, SPLD; or complex programmable logic device,
CPLD) will be configured using a hardware description language (HDL).

The aim of this book is to provide a reference source with worked examples in

the area of electronic circuit design using programmable logic. In particular, field
programmable gate arrays and complex programmable logic devices will be presented
and examples of such devices provided.

The choice whether to use a software-programmed processor or hardware-configured
programmable logic device is not a simple one, and many decisions figure into evaluating
the pros and cons of a particular implementation prior to making a final decision. This
book will provide an insight into the design capabilities and aspects relating to the design
decisions for programmable logic so that an informed decision can be made.

The book is structured as follows:

Chapter 1 will introduce the types of programmable logic device that are available
today, their differing architectures, and their use within electronic system design.
Additionally, the terminology used in this area will be presented with the aim of
demystifying the jargon that has evolved.

Chapter 2 will provide a background into the area of electronic systems design, the
types of solutions that may be developed, and the decisions that will need to be

made in order to identify the right technology choice for the design implementation.
Typical design flows will be introduced and discussed for the different technologies.

Chapter 3 will introduce the design of printed circuit boards (PCBs). These provide the
mechanical and electrical base onto which the electronic components will be mounted. The
correct design of the PCB is essential to ensure that the electronic circuit can be realized
(implemented) to operate to the correct specification (power supply voltage, thermal [heat]
dissipation, digital clock frequency, analogue and digital circuit elements, etc.) and to

www.newnespress.com

XX Preface

ensure that the different electronic circuit components interact with each other correctly
and do not provide unwanted effects. A correctly designed PCB will allow the circuit to
perform as intended. A badly designed PCB will prevent the circuit from working
altogether.

Chapter 4 will discuss the different programming languages that are used to develop
digital designs for implementation in either a processor (software-programmed
microprocessor, microcontroller, or digital signal processor) or in programmable
logic (hardware-configured FPGA or CPLD). The main languages used will be
introduced and examples provided. For programmable logic, the main hardware
description languages used are Verilog®-HDL and VHDL (VHSIC Hardware
Description Language). These are IEEE (Institute of Electrical and Electronics
Engineers) standards, universally used in both education and industry.

Chapter 5 will introduce digital logic design principles. A basic understanding of the
principles of digital circuit design, such as Boolean Logic, Karnaugh maps, and
counter/state machine design will be expected. However, a review of these principles
will be provided for designs in schematic diagram form and presented such that the
design functionality may be mapped over a VHDL description in Chapter 6.

Chapter 6 will introduce VHDL as one of the IEEE standard hardware description
languages available to describe digital circuit and system designs in an ASCII
text-based format. This description can be simulated and synthesized. (Simulation
will validate the design operation, and synthesis will translate the text-based
description into a circuit design in terms of logic gates and the interconnections
between the basic logic gates. The gates and gate connections are commonly referred to
as the netlist.) The design examples provided in schematic diagram form in Chapter 5
will be revisited and modeled in VHDL.

Chapter 7 will introduce the development of digital signal processing algorithms in
VHDL and the synthesis of the VHDL descriptions to target programmable logic
(both FPGA and CPLD). Such algorithms include digital filters (low-pass, high-pass,
and band-pass), digital PID (proportional plus integral plus derivative) control
algorithms, and the FFT (fast Fourier transform, an efficient implementation of the
discrete Fourier transform, DFT).

Chapter 8 will discuss the interfacing of programmable logic to what is commonly
referred to as the real world. This is the analogue world that we live in, and such
interfacing requires both the acquisition (capture) and the generation of analogue

www.newnespress.com

Preface XXI

signals. To enable this, the digital programmable logic device will require an interface to
the analogue world. For analogue signals to be captured and analyzed in digital, an
analogue-to-digital converter (ADC) will be required. For analogue signals to be
generated from the digital, a digital-to-analogue converter (DAC) will be required.

In this book, the convention used for the word analogue will use the -ue at the end of
the word, unless a particular name already in use is referred to spelled as analog.

Chapter 9 will introduce the testing of the electronic system. In this, failure mechanisms
in hardware and software will be introduced, and the need for efficient and
cost-effective test programs from the prototyping phase of the design through
high-volume manufacture and in-system testing.

Chapter 10 will introduce the increasing need to develop programmable logic—based
designs at a high level of abstraction using behavioral descriptions of the system
functionality, and the increasing requirements to enable the synthesis of these
high-level designs into logic. With reference to a design flow taking a digital design
developed in MATLAB® or Simulink® through a VHDL code equivalent for
implementation in FPGA or CPLD technology, the synthesis of digital control system
algorithms modeled and simulated in Simulink® will be translated into VHDL for
implementation in programmable logic.

Throughout the book, the HDL examples provided and evaluated can be implemented
within programmable logic—based circuits that may be designed by the user in addition
to the PCB design examples that are provided. These examples have been developed to
form the basis of laboratory experiments that can be used to accompany the text.

With the broad range of subject material and examples, a feature of the book is its
potential for use in a range of learning and teaching scenarios. For example:

1. As an introduction to design of electronic circuits and systems using
programmable logic. This would allow for the design approaches,
programmable logic architectures, simulation, synthesis, and the final
configuration of an FPGA or CPLD to be undertaken. It would also allow
for investigation into the most appropriate HDL coding styles and device
implementation constraints to be undertaken.

2. As an introduction to hardware description languages, in particular VHDL,
allowing for case study designs to be developed and implemented within
programmable logic. This would allow for VHDL code developers to see the

www.newnespress.com

XXii Preface

code working on real devices and to enable additional testing of the electronic
circuit with such equipment as oscilloscopes and spectrum analyzers.

3. As an introduction to the design of printed circuit boards, in particular
mixed-signal designs (mixed analogue and digital). This would allow issues
relating to the design of the printed circuit board to be investigated and
designs developed, fabricated, and tested.

4. As an introduction to digital signal processing algorithm development. This
would allow the basics of DSP algorithms and their implementation in
hardware on FPGAs and CPLDs to be investigated through the medium of
VHDL code development, simulation, and synthesis.

The VHDL examples can be downloaded and run on the hardware prototyping
arrangement that can be built by the reader using the designs provided in the book.
This hardware arrangement is centered on a Xilinx® Coolrunner™-II CPLD on
which to prototype the digital logic ideas, along with a set of input/output (I/O)
boards. The full set of boards is shown in the figure below.

This arrangement consists of five main system boards and an optional seven-
segment display board. The appendices and design schematics are available at the
author’s Web site for this book (refer to http://books.elsevier.com/companions/
9780750683975 and follow the hyperlink to the author’s site).

www.newnespress.com

Abbreviations

A
AC alternating current
ADC analogue-to-digital converter
ALU arithmetic and logic unit
AM amplitude modulation
AMD advanced micro devices
AMS analogue and mixed-signal
AND logical AND operation on two or more digital signals
ANSI American National Standards Institute
AOI automatic optical inspection
ASCII American Standard Code for Information Interchange
ASIC application-specific integrated circuit
ASP analogue signal processor
ASSP application-specific standard product
ATA AT attachment
ATE AT equipment
ATPG AT program generation
AWG arbitrary waveform generator
American wire gauge
AXI automatic X-ray inspection
B
BASIC Beginner’s All-purpose Symbolic Instruction Code
BCD binary coded decimal
BGA ball grid array
BiCMOS bipolar and CMOS
BIST built-in self-test

www.newnespress.com

xxiv Abbreviations

bit
BIT
BNC
BPF
BSDL
BS(I)
BST

CAD
CAE
CAM
CAT
CBGA
CD

CE
CERDIP
CERQUAD
CIC
CISC
CLB
CLCC

CMOS
COTS
CPGA
CPLD
CPU
CQFP
Cs
CSOIC
CSP
CSSP
CTFT
CTS
CUT

binary digit

bipolar junction transistor

bayonet Neill-Concelman connector
band-pass filter

boundary scan description language
British Standards (Institution)
boundary scan test

computer-aided design
computer-aided engineering
computer-aided manufacture
computer-aided test

ceramic BGA

compact disk

chip enable

ceramic DIP

ceramic quadruple side

cascaded integrator comb

complex instruction set computer
configurable logic block

ceramic leadless chip carrier
ceramic leaded chip carrier
complementary metal oxide semiconductor
commercial off-the-shelf

ceramic PGA

complex PLD

central processing unit

ceramic quad flat pack

chip select

ceramic SOIC

chip scale packaging

customer specific standard product
continuous-time Fourier transform
clear to send

circuit under test

www.newnespress.com

Abbreviations

DAC
DAE
DAQ
dB
DBM
DC
DCD
DCE
DCI
DCPSS
DDC
DDR
DDS
DfA
DfD
DFF
DfM
DfR
DT
DFT
DfX
DfY
DIB
DIL
DIMM
DIP
DL
DMM
DNL
DoD
DPLL
dpm
DR
DRAM
DRC

digital-to-analogue converter
differential and algebraic equation
data acquisition

decibel

digital boundary module
direct current

data carrier detected

data communication equipment
digitally controlled impedance
DC power supply sensitivity
direct digital control

double data rate

direct digital synthesis
design for assembly

design for debug

D-type flip-flop

design for manufacturability
design for reliability

design for testability

discrete Fourier transform
design for X

design for yield

device interface board

dual in-line

dual in-line memory module
dual in-line package

defect level

digital multimeter
differential nonlinearity

U.S. Department of Defense
digital PLL

defects per million

data register

dynamic RAM

design rules checking

www.newnespress.com

XXVI Abbreviations

DRDRAM
DSM
DSP

DSR
DTE
DTFT
DTR
DUT
DVD

E
EC

ECL
ECU
EDA
EDIF
EHF
EIAJ
ELF
EMC
EMI
ENB
EOC

EOS
EEPROM
E’EPROM
EPROM
ERC
ESD
ESIA
ESL

ESS

EU
EX-NOR
EX-OR

direct Rambus DRAM

deep submicron

digital signal processing

digital signal processor

data set ready

data terminal equipment
discrete-time Fourier transform
data terminal ready

device under test

digital versatile disk

European Commission

emitter coupled logic

electronic control unit

electronic design automation
electronic design interchange format
extremely high frequency

Electronic Industries Association of Japan
extremely low frequency
electromagnetic compatibility
electromagnetic interference
effective number of bits

end of conversion

electrical overstress

electrically erasable PROM
electrically erasable PROM

erasable PROM

electrical rules checking

electrostatic discharge

European Semiconductor Industry Association

electronic system level
environmental stress screening
European Union
NOT-EXCLUSIVE-OR

logical EXCLUSIVE-OR operation on two or more digital

signals

www.newnespress.com

Abbreviations XXVil

F

F Farad

FA failure analysis

FBGA (FPBGA) fine pitch ball grid array

FCC Federal Communications Commission (USA)
FET field effect transistor

FFT fast Fourier transform

FIFO first-in, first-out

FIR finite impulse response

FM frequency modulation

FPAA field programmable analogue array
FPGA field programmable gate array
FPT flying probe tester

FR-4 flame retardant with approximate dielectric constant of 4
FRAM ferromagnetic RAM

FSM finite state machine

FT functional tester

G

GaAs gallium arsenide

GAL generic array of logic

GDSII Graphic Data System II stream file format
GND ground

GPIB general purpose interface bus

GTL Gunning transceiver logic

GTO gate turn-off thyristor

GUI graphical user interface

H

HBM human body model

HBT heterojunction bipolar transistor
HDIP hermetic DIP

HDL hardware description language

HF high frequency

HPF high-pass filter

HSTL high-speed transceiver logic
HTML hyphertext markup language

www.newnespress.com

Abbreviations

XXVill
HVI human visual inspection
HW hardware
Hz Hertz
I
I base current
Igm base peak current
Ic collector current
Ice power supply current (into V¢ pin for bipolar circuits)
Iem collector peak current
Ibp power supply current (into Vpp pin for CMOS circuits)
Ibpo quiescent power supply current (Ipp)
Ige power supply current (out of Vgg pin for bipolar circuits)
Ikg full-scale current
Ignp ground current per supply pin
Iin high-level input current
I low-level input current
Iisp minimum output current change
Io output current
lonu high-level output current (logic 1 output)
Iop low-level output current (logic 0 output)
Ios offset current
IouT output current
IREF reference current
Iss power supply current (out of Vgg pin for CMOS circuits)
Isso quiescent power supply current (Isg)
IC integrated circuit
I°C (IIC) inter-integrated circuit (inter-IC) bus
I°S inter-1C sound bus
ICT in-circuit test

in-circuit tester
IDC insulation displacement connector
IDE integrated design environment

integrated drive electronics
IEC International Electrotechnical Commission
IEE Institution of Electrical Engineers
IEEE Institute of Electrical and Electronics Engineers

www.newnespress.com

Abbreviations XXIX

IET Institution of Engineering and Technology
IIR infinite impulse response
IMAPS International Microelectronics and Packaging Society
INL integral nonlinearity
1/0 input/output
IP intellectual property
IR instruction register
infrared
ISO International Organization for Standardization
ISP in-system programmable
ISR in-system reprogrammable
IT information technology
ITRS International Technology Roadmap for Semiconductors
1I-v current-to-voltage
J
JDK JAVA™ Development Kit
JEDEC Joint Electron Device Engineering Council
JEITA Japan Electronics and Information Technology Industries
Association
JETAG Joint European Test Action Group
JETTA Journal of Electronic Testing, Theory, and Applications
JFET junction FET
JLCC J-leaded chip carrier
JTAG Joint Test Action Group
K
KGD known good die
KSIA Korean Semiconductor Industry Association
L
LAN local area network
LC logic cell
LC*MOS linear compatible CMOS
LCC leaded chip carrier
leadless chip carrier
LCCMOS leadless chip carrier metal oxide semiconductor (also LC*MOS)
LCD liquid crystal display
LED light-emitting diode

www.newnespress.com

XXX Abbreviations

LF low frequency

LFSR linear feedback shift register
LIFO last-in, first-out

Linux® Linux is not Unix

LPF low-pass filter

LSB least significant bit

LSI large-scale integration

LUT look-up table

LVCMOS low-voltage CMOS

LVDS low-voltage differential signaling
LVS layout versus schematic

LVTTL low-voltage TTL

M

uBGA micro ball grid array

nC microcontroller

upP microprocessor

MATLAB® Matrix Laboratory (from The Mathworks, Inc.)
MAX maximum

MCM multichip module

MCU microcontroller unit

MEMs micro electro-mechanical systems
MF medium frequency

MIL military

MIN minimum

MISR multiple-input signature register
MM machine model

MOS metal oxide semiconductor
MOSFET metal oxide semiconductor field effect transistor
MPGA mask programmable gate array
MS Microsoft®

MSAF multiple stuck-at-fault

MSB most significant bit

MSI medium-scale integration

MSOP mini-small outline package
MUX multiplexer

MVI manual visual inspection (i.e., HVI)

www.newnespress.com

Abbreviations XXXI

N
NAND NOT-AND
NDI normal data input
NDO normal data output
NDT nondestructive test
NMy noise margin for high levels
NM noise margin for low levels
nMOS n-channel MOS
NOR NOT-OR
NOT logical NOT operation on a single digital signal
NRE nonrecurring engineering
NVM nonvolatile memory
NVRAM nonvolatile RAM
()
OE output enable
OEM original equipment manufacturer
ONO oxide-nitride-oxide
OOP object-oriented programming
op-amp operational amplifier
OR logical OR operation on two or more digital signals
oS operating system
OSR oversampling ratio
OTP one-time programmable
OVI Open Verilog International
P
Piot total dissipation
PAL® programmable array of logic
PBGA plastic BGA
PC personal computer
program counter
PCB printed circuit board
PCBA printed circuit board assembly
PCI PC interface
PDA personal digital assistant

www.newnespress.com

XXXIi Abbreviations

PDF portable document format
PDIL plastic DIL
PDIP plastic DIP
PERL practical extraction and report language
PGA pin grid array
PI primary input
proportional plus integral
PID proportional plus integral plus derivative
PIPO parallel in, parallel out
PLA programmable logic array
PLCC plastic leadless chip carrier
plastic leaded chip carrier
PLD programmable logic device
PLL phase-locked loop
PM phase modulation
pMOS p-channel MOS
PMU precision measurement unit
PO primary output
PoC proof of concept
PoP package on package
POR power-on reset
PPGA plastic PGA
ppm parts per million
PQFP plastic QFP
PROM programmable ROM
PRPG pseudorandom pattern generator
PSOP plastic SOP
PWB printed wiring board
PWM pulse width modulation
pulse width modulated
PXI PC extensions for instrument bus
Q
QFJ quad flat pack (J-lead)
QFP quad flat pack
QSOP quarter-size SOP
QTAG Quality Test Action Group

www.newnespress.com

Abbreviations XXXl

R
® trademark (registered; "™ for unregistered)
RAM random access memory
RC resistor-capacitor
RD read
received data
RF radio frequency
RI ring indicator
RISC reduced instruction set computer
RMS root mean squared
RoHS return of hazardous substances
ROM read-only memory
RTL register transfer level
RTOS real-time operating system
RTS ready to send
RWM read-write memory (also referred to as RAM)
Rx receiver
S
YA sigma-delta
SA0 stuck-at-0
SAl stuck-at-1
SAF stuck-at-fault
SAR successive approximation register
SCR silicon-controlled rectifier
SCSI small computer system interface
SDRAM synchronous DRAM
SDI scan data input
SDO scan data out
SE scan enable
SFDR spurious free dynamic range
SG signal ground
SHF super high frequency
SI signal integrity
SIA Semiconductor Industries Association

www.newnespress.com

XXXIV Abbreviations

SiGe
SIM
SINAD
SiP

SIP
SIPO
SISO

SISR
SLDRAM
SMT
SNR
S/(N 4+ THD)
SOAR
SoB
SoC
SOC
SOl1
SOIC
SOJ
SOP
SPGA
SPI
SPICE
SPL
SPLD
SQFP
SRAM
SRBP
SSAF
SSI
SSOP
SSTL
STC
STD
STIL
SW

silicon germanium

subscriber identity module
signal to noise plus distortion (SNR + THD)
system in a package

single in-line package

serial in, parallel out

Serial in, serial out

Single input, single output

serial input signature register
synchronous-link DRAM
surface mount technology
signal-to-noise ratio

signal to noise plus total harmonic distortion
safe operating region

system on board

system on a chip

start of conversion

silicon on insulator

small outline IC

small outline J-lead package
small outline package

staggered PGA

serial peripheral interface
simulation program with integrated circuit emphasis
software programming language
simple PLD

shrink quad flat pack

static RAM

synthetic resin-bonded paper
single stuck-at-fault

small-scale integration

small shrink outline package
stub series terminated logic
Semiconductor Test Consortium
standard

standard test interface language
software

www.newnespress.com

Abbreviations XXXV

T

TL lead temperature

Tie storage temperature

TAB tape automated bonding

TAP test access port

TCE thermal coefficient of expansion

TCK test clock

Tcl tool command language

TD transmitted data

TDI test data input

TDO test data output

THD total harmonic distortion

™ trademark (unregistered, ® for registered)

™S test mode select

TO transistor outline package (single transistor)

TPG test program generation

TQFP thin QFP

TRST test reset

TSIA Taiwan Semiconductor Industry Association

TSMC Taiwan Semiconductor Manufacturing Company

TSOP thin SOP

TSSOP thin shrink SOP

TVSOP thin very SOP

TTL transistor-transistor logic

TT™M time to market

TYP typical

Tx transmitter

U

UART universal asynchronous receiver/transmitter

UHF ultra high frequency

uJT unijunction transistor

ULSI ultra large-scale integration

UML unified modeling language

UNIX™ Uniplexed Information and Computing System (originally
Unics, later renamed Unix)

USB universal serial bus

www.newnespress.com

Abbreviations

XXXVi

uTp unit test period

uuT unit under test

uv ultraviolet

v

Vs collector-base voltage

Vee power supply voltage (positive, for bipolar circuits)
Vero collector-emitter voltage (Ig = 0)

Vcev collector-emitter voltage (Vgg = —1.5)

Vbb power supply voltage (positive, for CMOS circuits)
Veg emitter-base voltage

VEE power supply voltage (negative, for bipolar circuits)
VEs full-scale voltage

VEsr full-scale range of voltage

Vi input voltage

Viu minimum input voltage that can be interpreted as a logic 1
Vi maximum input voltage that can be interpreted as a logic 0
Viss minimum output voltage change

Vo output voltage

Vou minimum output voltage when the output is a logic 1
VoL maximum output voltage when the output is a logic 0
Vos offset voltage

Vour output voltage

VREE reference voltage

Vss power supply voltage (negative, for CMOS circuits)
VASG VHDL Analysis and Standardization Group

VB Visual Basic™

VBA Visual Basic™ for Applications

vVCO voltage-controlled oscillator

VDSM very deep submicron

VDU visual display unit

VF voice frequency

VHDL VHSIC hardware description language

VHF very high frequency

VHSIC very high-speed integrated circuit

VLF very low frequency

www.newnespress.com

Abbreviations XXXVII

VLSI
VQFP

WE
WEEE
WR
WSI

XNF

Z1F
Z1P

very large-scale integration
very thin quad flat pack

write enable

waste electrical and electronic equipment
write

wafer-scale integration

Xilinx Netlist format

zero insertion force socket
zig-zag in-line package

www.newnespress.com

This page intentionally left blank

CHAPTER 1

Introduction to Programmable Logic

1.1 Introduction to the Book

Increasingly, electronic circuits and systems are being designed using technologies
that offer rapid prototyping, programmability, and re-use (reprogrammability and
component recycling) capabilities to allow a system product to be developed in a
minimal time, to allow in-service reconfiguration (for normal product upgrading to
improve performance, to provide design debugging capabilities, and for the inevitable
requirement for design bug removal), or even to recycle the electronic components for
another application. These aspects are required by the reduced time-to-market and
increased complexities for applications—from mobile phones through computer and
control, instrumentation, and test applications. So, how can this be achieved using the
range of electronic circuit technologies available today? Several avenues are open.
The main focus of developing electronics with the above capabilities has been in the
digital domain because the design techniques and nature of the digital signals are well
suited to reconfiguration.

In the digital domain, the choice of implementation technology is essentially whether to
use dedicated (and fixed) functionality digital logic, to use a software-programmed,
processor-based system (designed based on a microprocessor, WP; microcontroller, uC; or
digital signal processor, DSP), or to use a hardware-configured programmable logic
device (PLD), whether simple (SPLD), complex (CPLD), or the field programmable gate
array (FPGA). Memory used for the storage of data and program code is integral to
many digital circuits and systems. The choices are shown in Figure 1.1.

In Figure 1.1, the electronic components used are integrated circuits (ICs). These are
electronic circuits packaged within a suitable housing that contain complete circuits
ranging from a few dozen transistors to hundreds of millions of transistors, the

www.newnespress.com

2 Chapter 1

Fixed
Functionality

—» Processor p Microcontroller

Microprocessor

H

Standard
> Product IC —

Digital Signal
Processor

!

Simple PLD

—p PLD Complex PLD

A\ 4

Field
)| Programmable
Gate Array

Digital Circuit
Requirements —

—» Memory

RAM

Fixed
> Functionality

L e

Figure 1.1: Technology choices for digital circuit design

complexity of the circuit depending on the designed functionality. Examples of
packaged ICs are shown in Figure 1.2.

In many circuits, the underlying technology will be based on IC, and a complete
electronic circuit will consist of a number of ICs, together with other circuit

www.newnespress.com

Introduction to Programmable Logic 3

(]

G

Figure 1.2: Examples of IC packages with the tops removed and the silicon dies exposed

components such as resistors and capacitors. In this book, the generic word
technology will be used throughout. The Oxford Dictionary of English defines
technology as “the application of scientific knowledge for practical purposes,
especially in industry” [1].

For us, this applies to the underlying electronic hardware and software that can be
used to design a circuit for a given requirement. For the arrangement identified in
Figure 1.1, a given set of digital circuit requirements are developed, and the role of the
designer is to come up with a solution that meets ideally all of the requirements.
Typical requirements include:

e Cost restraints: The design process, the cost of components, the manufacturing
costs, and the maintenance and future development costs must be within
specific limits.

* Design time: The design must be generated within a certain time limit.

www.newnespress.com

4 Chapter 1

e Component supply: The designer might have a free hand in choosing the
components to use, or restrictions may be set by the company or project
management requirements.

e Prior experience: The designer may have prior experience in using a particular
technology, which might or might not be suitable to the current design.

e Training: The designer might require specific training to utilize a specific
technology if he or she does not have the necessary prior experience.

e Contract arrangements: If the design is to be created for a specific customer,
the customer would typically provide a set of constraints that would be set
down in the design contract.

e Size/volume constraints: the design would need to be manufactured to fit into a
specific size/volume,

e Weight constraints: the design would need to be manufactured to be within
specific weight restrictions (e.g. for portable applications such as mobile
phones),

e Power source: the electronic product would be either fixed (in a single location
so allowing for the use of a fixed power source) or portable (to be carried to
multiple places requiring a portable power source (such as battery or solar cell),

e Power consumption constraints: The power consumption should be as low as
possible in order to (i) minimise the power source requirements, (ii) be
operable for a specific time on a limited power source, and (iii) be compatible
with best practice in the development of electronic products that are conscious
of environmental issues.

The initial choice for implementing the digital circuit is between a standard product
IC and an ASIC (application-specific integrated circuit) [2]:

e Standard product IC: This is an off-the-shelf electronic component that has been
designed and manufactured by a company for a given purpose, or range of use,
and that is commercially available for others to use. These would be purchased
either from a component supplier or directly from the designer or manufacturer.

e ASIC: This is an IC that has been specifically designed for an application.
Rather than purchasing an off-the-shelf IC, the ASIC can be designed and
manufactured to fulfil the design requirements.

www.newnespress.com

Introduction to Programmable Logic 5

For many applications, developing an electronic system based on standard product
ICs would be the approach taken as the time and costs associated with ASIC design,
manufacture, and test can be substantial and outside the budget of a particular design
project. Undertaking an ASIC design project also requires access to IC design
experience and IC CAD tools, along with access to a suitable manufacturing and test
capability. Whether a standard product IC or ASIC design approach is taken, the
type of IC used or developed will be one of four types:

1. Fixed Functionality: These ICs have been designed to implement a specific
functionality and cannot be changed. The designer would use a set of these
ICs to implement a given overall circuit functionality. Changes to the circuit
would require a complete redesign of the circuit and the use of different fixed
functionality ICs.

2. Processor: The processor would be more familiar to the majority of people as
itis in everyday use (the heart of the PC is a microprocessor). This component
runs a software program to implement the required functionality. By
changing the software program, the processor will operate a different
function. The choice of processor will depend on the microprocessor (uP),
the microcontroller (LC), or the digital signal processor (DSP).

3. Memory: Memory will be used to store, provide access to, and allow
modification of data and program code for use within a processor-based
electronic circuit or system. The two basic types of memory are ROM
(read-only memory) and RAM (random access memory). ROM is used for
holding program code that must be retained when the memory power is
removed. It is considered to provide nonvolatile storage. The code can either
be fixed when the memory is fabricated (mask programmable ROM) or
electrically programmed once (PROM, Programmable ROM) or multiple
times. Multiple programming capacity requires the ability to erase prior
programming, which is available with EPROM (electrically programmable
ROM, erased using ultraviolet [UV] light), EEPROM or E’PROM
(electrically erasable PROM), or flash (also electrically erased). PROM is
sometimes considered to be in the same category of circuit as programmable
logic, although in this text, PROM is considered in the memory category only.
RAM is used for holding data and program code that require fast access and
the ability to modify the contents during normal operation. RAM differs
from read-only memory (ROM) in that it can be both read from and written

www.newnespress.com

6 Chapter 1

to in the normal circuit application. However, flash memory can also be
referred to as nonvolatile RAM (NVRAM). RAM is considered to provide a
volatile storage, because unlike ROM, the contents of RAM will be lost when
the power is removed. There are two main types of RAM: static RAM
(SRAM) and dynamic RAM (DRAM).

4. PLD: The programmable logic device is the main focus of this book; these are
ICs that contain digital logic cells and programmable interconnect [3, 4]. The
basic idea with these devices is to enable the designer to configure the logic
cells and interconnect to form a digital electronic circuit within a single
packaged IC. In this, the hardware resources will be configured to implement
a required functionality. By changing the hardware configuration, the PLD
will operate a different function. Three types of PLD are available: the simple
programmable logic device (SPLD), the complex programmable logic device
(CPLD), or the field programmable gate array (FPGA). Figure 1.3 shows
sample packaged CPLD and FPGA devices.

Figure 1.3: Sample FPGA and CPLD packages

www.newnespress.com

Introduction to Programmable Logic 7

Both the processor and PLD enable the designer to implement and change the
functionality of the IC by changing either the software program or the hardware
configuration. Because these two different approaches are easily confused, in this
book the following terms will be used to differentiate the PLD from the processor:

e The PLD will be configured using a hardware configuration.
e The processor will be programmed using a software program.

An ASIC can be designed to create any one of the four standard product IC forms
(fixed functionality, processor, memory, or PLD). An ASIC would be designed in the
same manner as a standard product IC, so anyone who has access to an ASIC design,
fabrication, and test facility can create an equivalent to a standard product IC (given
that patent and general legal issues around IP [intellectual property] considerations
for existing designs and devices are taken into account). In addition, an ASIC might
also incorporate a programmable logic fabric alongside the fixed logic hardware.

Figure 1.1 shows what can be done with ASIC solution, but not how the ASIC
would achieve this. Figure 1.4 shows the (i) four different forms of IC (i.e., what the
IC does) that can be developed to emulate a standard product IC equivalent, and
(i1) the three different design and implementation approaches.

In a full-custom approach, the designer would be in control of every aspect of
ASIC design and layout—the way in which the electronic circuit is laid out on the
die, which is the piece of rectangular or square material (usually silicon) onto

Fixed

Functionality Full custom

A

ASIC =|| Processor ASIC Standard cell
Semi-

—>» programmable
gate array

PLD

(i) What the ASIC does (i) How the ASIC does it

Figure 1.4: ASICs, what and how

www.newnespress.com

8 Chapter 1

which the circuit components are manufactured. This would give the best circuit
performance, but would be time consuming and expensive to undertake. Full-
custom design is predominantly for analogue circuits and the creation of libraries
of components for use in a semi-custom, standard cell design approach. An
alternative to the full-custom approach uses a semi-custom approach. This is
subdivided into a standard cell approach or mask programmable gate array
(MPGA) approach. The standard cell approach uses a library of predesigned basic
circuit components (typically digital logic cells) that are connected within the IC to
form the overall circuit. In a simplistic view, this would be similar to creating a
design by connecting fixed functionality ICs together, but instead of using multiple
ICs, a single IC is created. This approach is faster and lower cost than a full-custom
approach but would not necessarily provide the best circuit performance. Because
only the circuits required within the design would be manufactured (fabricated), there
would be an immediate trade-off between circuit performance, design time, and design
cost (a trade-off that is encountered on a daily basis by the designer). The MPGA
approach is similar to a standard cell approach in that a library of components is
available and connected, but the layout on the (silicon) die is different. An array of
logic gates is predetermined, and the circuit is created by creating metal interconnect
tracks between the logic gates. In the MPGA approach, not necessarily all of the logic
gates fabricated on the die would be used. This would use a larger die than in a
standard cell approach, with the inclusion of unused gates, but it has the advantage of
being faster to fabricate than a standard cell approach.

A complement to the ASIC is the structured ASIC [16, 17]. The structured ASIC is
seen to offer a promising alternative to standard cell ASICs and FPGAs for the mid
and high volume market. Structured ASICs are similar to the mask programmable
gate array in that they have customisable metal interconnect layers patterned on top
of a prefabricated base. Either standard logic gates or look-up tables (LUTs) are
fabricated in a 2-dimensional array that forms the underlying pattern of logic gates,
memory, processors and IP blocks. This base is programmed using a small number of
metal masks. The purpose of this is to reduce the non-recurring engineering (NRE)
costs when compared to a standard cell ASIC approach and to bridge the gap that
exists between the standard cell ASIC and FPGA where:

1. Standard cell ASICs provide support for large, complex designs with high
performance, low cost per unit (if produced in volume), but at the cost of long

www.newnespress.com

Introduction to Programmable Logic 9

development times, high NRE costs and long fabrication times when
implementing design modifications,

2. FPGAs provide for short development times, low NRE costs and short times
to implement design modifications, but at the cost of limited design
complexities, performance limitations and high cost per unit.

NRE cost reductions using Structured ASICs are considered with a reduction in
manufacturing costs and reducing the design tasks. They can also offer mixed-
signal circuit capability, a potential advantage when compared to digital only
FPGA:s.

Hardware configured devices (i.e., PLDs) are becoming increasingly popular
because of their potential benefits in terms of logic replacement potential
(obsolescence), rapid prototyping capabilities, and design speed benefits in which
PLD-based hardware can implement the same functions as a software-programmed,
processor-based system, but in less time. This is particularly important for
computationally expensive mathematical operations such as the fast Fourier
transform (FFT) [5].

The aim of this book is to provide a reference text for students and practicing
engineers involved in digital electronic circuit and systems design using PLDs. The
PLD is digital in nature and this type of device will be the focus of the book.
However, it should also be noted that mixed-signal programmable devices have also
been developed and are available for use within mixed-signal circuits that require
programmable analogue circuit (e.g. programmable analogue amplifier)
components. Whilst this technology is not covered in this book, the reader is
recommended to undertake their own research activities to (i) identify the
programmable mixed-signal devices currently available (such as the Lattice®
Semiconductor Corporation ispPAC and Anadigm™™ FPAA (Field Programmable
Analog Array)), and also (ii) the history of programmable mixed-signal and devices
that have been available in the past but no longer available. The text will introduce
the basic concepts of programmable logic, along with case study designs in a range
of electronic systems that target signal generation and data acquisition systems for a
variety of applications from control and instrumentation through test equipment
systems. To achieve this, a range of FPGA and CPLD device types will be
considered. The text will also act as a reference from which the sources of additional
information can be acquired.

www.newnespress.com

10 Chapter 1

1.2 Electronic Circuits: Analogue and Digital
1.2.1 Introduction

Before looking into detail of what the PLD is and how to use it, it is important to
identify that the PLD is digital in nature, and digital circuits and signals are different
from analogue circuits and signals. This section will provide an overview of the main
characteristics and differences between the continuous- and discrete-time, and the
analogue and digital, worlds.

1.2.2 Continuous Time versus Discrete Time

Electronic circuits will receive electrical signals (voltages and/or currents) and modify
these to produce a response, which will be a voltage and/or current that is a modified
version of the input signal (see Figure 1.5). The signal will be electrical in nature and will
convey information concerning the behavior of the related system. The input to the
system will typically be created by a variation of a measurable quantity by the use of a
suitable sensor. The response will be a modified version of the input that is in a form that
can be used. In Figure 1.5, an electronic system receives an input, x, and produces a
response (output), y. The system implements a certain function that is designed to
undertake an operation that is of a particular use within the context of the overall system.

Here, the system receives a single input and produces a single response. The term
system is another generic term which is defined in the Oxford Dictionary of English as
“a set of things working together as parts of a mechanism or an interconnecting
network™ [1].

For us, this applies to the overall set of electronic components and software programs
that work together to perform the particular set of requirements. In general, there may
be one or more inputs and one or more outputs. The system is shown as a black box in
that the details of its internal operation are hidden and only the input-output relationship
is known. This black box creates a signal processor, and the designer is tasked with

Response

Input
X y

—> System >

Figure 1.5: Electronic system block diagram

www.newnespress.com

Introduction to Programmable Logic 11

creating the internal details using a suitable electronic circuit technology. The input-
output relationship will normally be modeled by a suitable mathematical algorithm.

The type of signal [6, 7] that the signal processor accepts and responds to will vary in
time but will be classified as either a continuous-time or a discrete-time signal.

A continuous-time signal can be represented mathematically as a function of a
continuous-time variable. The signal varies in time but is also continuous in time.
Figure 1.6 provides four examples of continuous-time signals: (i) a constant value,
(ii) a sine wave, (iii) a square wave, and (iv) an arbitrary waveform. Waveforms (i),
(i1), and (iv) are continuous in both time and amplitude; (iii) is continuous in time but
discontinuous in amplitude. All signals are classified as continuous-time signals.

A discrete-time signal is defined only by values at set points in time, referred to as the
sampling instants. It is normal to set the time spacing between the sampling instants to a
fixed value, T, referred to as the sampling interval. The sampling frequency is fs = 1/T,
where T is seconds and fg is Hertz (Hz). When a signal is sampled at a fixed rate, this
is referred to as periodic sampling. Figure 1.7 provides examples of discrete-time
signals that are sampled values of the continuous time signals shown in Figure 1.6.

When a discrete-time signal is expressed, it will normally be expressed by the sample
number (n) where n = 0 denotes the first sample, n = p denotes the p'" sample, and
n increments in steps of 1. For a signal x, then, the samples will be x[0], x[1], x[2],
x[3],..., x[p]. A discrete-time signal would represent a sampled analogue signal.
Hence, an electronic circuit would have continuous-time or discrete-time inputs and
continuous-time or discrete-time outputs as represented in Table 1.1.

A I
time (t) » time (1)
,, l

(i) Constant (i) Sine wave

I » time (t) I /= time (t)

(iii) Square wave (iv) Arbitrary waveform

A 4

Figure 1.6: Examples of continuous-time signals

www.newnespress.com

12 Chapter 1

Amplitude Amplitude

., Pl ol
| P

(i) Constant (i) Sine wave
Amplitude Amplitude

time (t) time (t)

(iii) Square wave (iv) Arbitrary waveform

Figure 1.7: Examples of discrete-time signals

Table 1.1: Signal types (continuous- and discrete-time)

Input signal type Response signal type

Continuous-time
Discrete-time
Discrete-time
Continuous-time

Continuous-time
Continuous-time
Discrete-time
Discrete-time

Ll

1.2.3 Analogue versus Digital

The electronic system as shown in Figure 1.8 will perform its operations on signals
that are either analogue or digital in nature, using either analogue or digital electronic
circuits. Hence, a signal may be of one of two types, analogue or digital.

An analogue signal is a continuous- or discrete-time signal whose amplitude is
continuous in value between a lower and upper limit, but may be either a continuous
time or discrete time.

Response

Input
X y

— System —

Figure 1.8: Electronic system block diagram

www.newnespress.com

Introduction to Programmable Logic 13

Table 1.2: Signal types (analogue and digital)

Input signal type Response signal type
Analogue — | Analogue

Analogue — | Digital

Digital — | Digital

Digital — | Analogue

A digital signal is a continuous or discrete-time signal with discrete values between a
lower and upper limit. These discrete values will be represented by numerical values
and be in a form suitable for digital signal processing. If the discrete-time signal has
been derived from a continuous-time signal by sampling, then the sampled signal is
converted into a digital signal by quantization, which produces a finite number of
values from a continuous amplitude signal. It is common to use the binary number
(i.e., two values, 0 or 1) system to represent a number in a digital representation.

An electronic circuit would have analogue or digital inputs and analogue or digital
outputs as represented in Table 1.2. When an analogue signal is sampled and
converted to digital, this is undertaken using an analogue-to-digital converter (ADC)
[8]. When a digital signal is converted back to analogue, this is undertaken using a
digital-to-analogue converter (DAC).

An example of both analogue and digital signals and circuits is shown in
Figure 1.9. This electronic temperature controller, as might be used in a home

Analogue Analogue Analogue Digital
| | | |
| I] 1
Temperature v v Sensor signal v Analogue- v Digital
——»| Sensor o - »{ to-Digital > signal
conditioning circuit Converter processing
Heat . L Digital-to-
Signal conditioning |, 9 P
<+— Controller circuit < égﬁllc;grtjee; <
4 4 4 4
I] | [}
]] |]
Analogue Analogue Analogue Digital

Figure 1.9: Heating control system block diagram

www.newnespress.com

14 Chapter 1

. +
Required > Controller Plant F"qlant output
temperature (heat)

Temperature
Sensor

Figure 1.10: General control system

heating system, uses digital signal processing. The system is shown as a block
diagram in which each block represents a major operation. In a design each block
would be represented by its own block diagram, going into evermore detail until the
underlying circuit hardware (and software) details are identified. The block
diagram provides a convenient way to represent the major system operations called
a top-down design approach, starting at a high level of design abstraction (initially
independent of the final design implementation details) and working down to the
final design implementation details.

Here, the room temperature is sensed as an analogue signal, but must be processed by a
digital signal processing circuit, so it must be sensed and converted to an analogue
voltage or current. This is then applied to a sensor signal conditioning circuit that is used
to connect the sensor to the ADC. The ADC samples the analogue signal at a chosen
sampling frequency. Once a temperature sample has been obtained by the digital signal
processing circuit, it is then processed using a particular algorithm, and the result is
applied to a DAC. The DAC output is a voltage or current that is used to drive a
controller (heat source). The DAC is normally connected to the controller via a signal
conditioning circuit. This circuit acts to interface the DAC to the controller in order for
the controller to receive the correct voltage and current levels. This particular system is
also an example of a closed-loop control system using an electronic controller. The
control system is generalized as shown in Figure 1.10 [9, 10].

1.3 History of Digital Logic

Early electronic circuits were analogue, and before the advent of digital logic,
signal processing was undertaken using analogue electronic circuits. The
invention of the semiconductor transistor in 1947 at Bell Laboratories [11] and

www.newnespress.com

Introduction to Programmable Logic 15

the improvements in transistor characteristics and fabrication during the 1950s
led to the introduction of linear (analogue) ICs and the first transistor-transistor
logic (TTL) digital logic IC in the early 1960s, closely followed by complementary
metal oxide semiconductor (CMOS) ICs. The early devices incorporated a small
number of logic gates. However, rapid growth in the ability to fabricate an
increasing number of logic gates in a single IC led to the microprocessor in the
early 1970s. This, with the ability to create memory ICs with ever increasing
capacities, laid the foundation for the rapid expansion in the computer industry
and the types of complex digital systems based on the computer architecture that we
have available today. The last fifty years have seen a revolution in the electronics
industry.

Fundamentally, a digital circuit will be categorized into one of three general types,
cach of which is created and fabricated within an integrated circuit:

e Combinational logic, in which the response of the circuit is based on a Boolean
logic expression of the input only and the circuit responds immediately to a
change in the input.

e Sequential logic, in which the response of the circuit is based on the current
state of the circuit and the sometimes the current input. This may be
asynchronous or synchronous. In synchronous sequential logic, the logic changes
state whenever an external clock control signal is applied. In asynchronous
sequential logic, the logic changes state on changes of the input data (the
circuit does not utilize a clock control signal).

e Memory, in which digital values can be stored and retrieved some time later. For
a user, memory can be either read-only (ROM) or random-access (RAM). In
ROM, the data stored in the memory are initially placed in the memory and can
only be read by the user. Data cannot normally be altered in the
circuit application. In RAM (also referred to as read-write memory, RWM), the
user can write data to the memory and read the data back from the memory.

The digital IC consists of a number of logic gates, which are combinational or
sequential circuit elements. The logic gates may be implemented using different
fabrication processes and different circuit architectures:

e TTL, transistor-transistor logic (bipolar)

e ECL, emitter-coupled logic (bipolar)

www.newnespress.com

16 Chapter 1

e CMOS, complementary metal oxide semiconductor

e BiCMOS, bipolar and CMOS

The material predominantly used to fabricate the digital logic circuits is silicon.
However, silicon-based circuits are complemented with the digital logic capabilities of
circuits fabricated using gallium arsenide (GaAs) and silicon germanium (SiGe)
technologies. Today, silicon-based CMOS is by far the dominant process used for
digital logic.

The digital logic gate is actually an abstraction of what is happening within the
underlying circuit. All digital logic gates are made up of transistors. The logic gates
may take one of a number of different circuit architectures (the way in which the
transistors are interconnected) at the transistor level:

e static CMOS
e dynamic CMOS

e pass transistor logic CMOS

Today, static CMOS logic is by far the dominant logic cell design structure used. The
number of logic gates within a digital logic IC will range from a few to hundreds of
thousands and ultimately millions for the more complex processors and PLDs. In
previous times, when the potential for higher levels of integration was far less than is
now possible, the digital IC was classified by the level of integration—that is, the
number of logic gate equivalents per IC (see Table 1.3). With increasing levels of
integration, the following levels were identified as follow-on descriptions from VLSI,
but these are not in common usage:

e ULSI, ultra-large-scale integration

e WSI, wafer scale integration

Table 1.3: Levels of integration

Level of integration Acronym | Number of gate equivalents per IC
Small-scale integration SSI <10

Medium-scale integration MSI 10-100

Large-scale integration LSI 100-10,000

Very large-scale integration | VLSI >10,000

www.newnespress.com

Introduction to Programmable Logic 17

NAND Gate Logic Symbol NOR Gate Logic Symbol

A — A
4 4
B — B

NAND Transistor Level Schematic NOR Transistor Level Schematic

Voo Vo
A—d B A
Z
A — B -
z
B A—C B
Vss Vss

Figure 1.11: Two-input NAND and NOR gates

The equivalent logic gate consists of four transistors. In static CMOS logic, the
2-input NAND and 2-input NOR are four transistor logic gate structures (2 nMOS
+2 pMOS transistors). Figure 1.11 shows the 2-input NAND and NOR gate in
static CMOS with both the digital logic gate symbol and the underlying transistor
level circuit. At the transistor level, the circuit is connected to a power supply
(Vpp = positive power supply voltage and Vgg=negative power supply voltage).
The nMOS transistors are connected toward Vgg and the pMOS transistors
toward Vpp.

1.4 Programmable Logic versus Discrete Logic

When designing a digital circuit or system, there will be the need to develop digital
logic designs. One of the initial decisions will be whether to use discrete logic devices
(the fixed functionality ICs previously identified) or to use a PLD. This choice will
depend on the particular design requirements as detailed in the design specification.
In some applications, the choice might be obvious; for other applications, the choice
would require careful consideration. For example, if a digital circuit only needs a few
logic gates, then a discrete logic implementation would be more probable. However, if
a complex digital circuit such as a digital filter design is to be developed, then with the

www.newnespress.com

18

Chapter 1

complexity of the resulting logic hardware, a PLD would be the logical choice. These
are the characteristics and aptitudes of each:

Discrete logic:

Suited for small designs that will not require modification

Can be used for prototyping designs as well as for the final application

Can be designed by hand using Boolean logic and Karnaugh map techniques
Suited for combinational, sequential logic designs and memory

Any change to the design will require the redesign of the circuit hardware
and wiring

No need to know how to design and configure PLDs
For a particular family of devices, the I/O standard is fixed

The logic gates may be implemented using different fabrication processes and
different circuit architectures: TTL, ECL, CMOS, and BiICMOS.

Table 1.4 identifies selected TTL device family variants in use, Table 1.5 identifies
selected CMOS device family variants in use, and Table 1.6 identifies selected low-
voltage CMOS device family variants in use.

Programmable logic:

Suited for all designs from small to large
Can be used for prototyping designs as well as for the final application
Suited for designs that might require modification

Easy to change designs without changing the circuit hardware and wiring that
the PLD is connected to by altering the internal PLD circuit configuration

Can be designed by hand using Boolean logic and Karnaugh map techniques, along
with hardware description languages (HDLs) such as VHDL and Verilog®-HDL

Suited for combinational, sequential logic designs and memory

The need to know how to design and configure PLDs

www.newnespress.com

Introduction to Programmable Logic 19

Table 1.4: Selected TTL family variants

TTL family variant

Description

74
74AS
74ALS
74F
74H
74L
74LS
74S
LVTTL

Standard TTL

Advanced Schottky

Advanced low-power Schottky
Fast

High-speed

Low-power

Low-power Schottky

Schottky

Low-voltage

Table 1.5: Selected CMOS family variants

CMOS family variant

Description

4000
74C
74HC
74HCT
74AC
74ACT
74AHC
74AHCT
74FCT
LVCMOS

True CMOS (non-TTL levels)

CMOS with pin compatibility to TTL with same number
Same as 74C but with improved switching speed

As with 74HC but can be connected directly to TTL
Advanced CMOS

As with 74AC but can be connected directly to TTL
Advanced high-speed CMOS

As with 74AHC but can be connected directly to TTL
Fast CMOS TTL inputs

Low-voltage CMOS

Table 1.6: Selected low-voltage (LV) CMOS family variants

Low-voltage
CMOS variant

Description

74LV Low-voltage CMOS | Low-speed operation, 1.0-3.6 V power supply (some
functions up to 5.5 V power supply)
74LVC Low-voltage CMOS | Medium-speed operation, 1.2-3.6 V power supply
(5 V tolerant 1/O)
74ALVC Advanced low- High-speed operation, 1.2-3.6 V power supply (5 V
voltage CMOS tolerant I/O on bus hold types)
74AVC Advanced very low- | Very high-speed operation, 1.2-3.6 V power supply

voltage CMOS

(3.6 V tolerant 1/O)

www.newnespress.com

20 Chapter 1

Table 1.7: Example 1/O standards supported by the Xilinx® PLDs

Standard Standard description

LVTTL Low-voltage transistor-transistor logic (3.3 V level)
LVCMOS33 Low-voltage CMOS (3.3 V level)

LVCMOS25 Low-voltage CMOS (2.5 V level)

LVCMOS18 Low-voltage CMOS (1.8 V level)

1.5V 1/O (1.5 Vlevels) | 1.5V level logic (1.5 V level)

HSTL-1 High-speed transceiver logic

SSTL2-1 Stub series terminated logic (2.5 V level)

SSTL3-1 Stub series terminated logic (3.3 V level)

e Many PLDs will provide a capability for the designer to set the particular I/O
standard to use from those standards supported by the device

e Many PLD vendors provide IP circuit blocks that can be used by the designer
within the vendor’s PLD, whether free or through royalty payments
depending on the licensing arrangement.

Table 1.7 shows example 1/O standards that are supported by the Xilinx® [12]. PLDs
are configured by the designer. With such programmable I/O capability before the
device has been configured with the appropriate standard, the device will default to
one of the standards. It is important for the designer to identify the default standard
and the implications of using a particular standard on the overall circuit operation.

Early uses of the PLD were for the replacement of standard product discrete logic
ICs with a single PLD (see Figure 1.12), allowing for a digital logic circuit to be

Standard Standard
‘ Product ICs Product ICs

- \,‘4ﬂ
‘/ PLD \‘

Figure 1.12: Using a PLD to reduce the number of digital logic ICs

www.newnespress.com

Introduction to Programmable Logic 21

implemented in a smaller physical size and therefore reducing the size and cost of the
printed circuit board (PCB) on which the logic ICs were to be mounted.

This then led to the use of PLDs for prototyping digital ASIC designs, allowing for
real hardware emulation of the ASIC prior to fabricating the ASIC itself. This was
useful for design verification and design debugging purposes, but with the early
PLDs, the limited speed of operation and size limitations meant that the PLD-based
hardware emulation of the ASIC was physically large and slower than the resulting
ASIC. Hence, it was not always possible to test the operation of the ASIC hardware
emulator at the intended speed of operation of the ASIC.

However, with the high speed and ability to perform complex digital signal
processing operations within a single PLD, the PLD itself is becoming in many cases
the choice for design prototyping and for use in the final application.

1.5 Programmable Logic versus Processors

The processor is more familiar to the majority of people because it is in everyday
use (the heart of the PC is a microprocessor). This component runs a software
program to implement required functionality. By changing the software program,
the processor will operate a different function. The choice of processor to use will
be based on

1. Microprocessor (LP), an integrated circuit that is programmable by the use of
a software program. This will be based on an instruction set that the software
program uses to perform a set of required tasks. The processor with be based
on one of two types of instruction set: a CISC (complex instruction set
computer) or a RISC (reduced instruction set computer). The microprocessor
is a general purpose processor in that it is designed to undertake a wide range
of tasks. Its architecture would be developed for this purpose and would
not necessarily be optimized for specific tasks. The central part of the
microprocessor is the central processing unit (CPU) to which external circuits
such as memory and I/O interfaces must be added. The CPU has the task of
fetching the instructions to be performed from the memory, interpreting the
instructions, acting on the instructions, and generating the necessary control
signals to fetch, interpret, and act on the instructions. The instructions will be
based on arithmetic, logic, and data transfer operations.

www.newnespress.com

22

Chapter 1

Microcontroller (LC), a type of microprocessor that contains additional
circuitry such as memory and communications ports (such as a UART,
universal asynchronous receiver transmitter, for RS-232 communications)
along with the CPU, and is aimed at embedded system applications. It would
not have the flexibility of the general purpose microprocessor, but instead is
aimed at being a self-contained “computer on a chip” with low cost one of the
important considerations. The integration of functions that would be in a
chip-set mounted on a PCB reduces the design and size requirements on the
PCB. The microcontroller is also sometimes referred to as a microcontroller
unit (MCU).

Digital signal processor (DSP), a specialized form of microprocessor aimed
at real-time digital signal processing operations such as digital filtering [13]
and fast Fourier transforms (FFTs). Although such operations can be
performed on a microprocessor, the DSP has an architecture that is
optimized for fast computations typically undertaken. For example, a DSP
would include a fast hardware multiplier cell that is accessed from the software
program that the DSP is running. This allows multiplications to be undertaken
on digital data using the fast hardware that would not be possible on a general
purpose microprocessor without a hardware multiplier. (A general purpose
microprocessor would perform a multiplication in software using shift
operations and additions using looping operations that would be slow to
undertake.)

The choice of a particular processor to use is based on a number of considerations
including:

final application requirements

capabilities of the processor

limitations of the processor

knowledge and prior experience of the designer

availability of tools for designing and debugging software applications for the
processor

Example processor vendors and products are shown in Table 1.8. This provides a
snapshot of the main current companies involved in the processor area. Further
information on the range of processors can be obtained from the company web sites.

www.newnespress.com

Introduction to Programmable Logic

23

Table 1.8: Main processor vendors

Company Example product Homepage URL

Intel® Intel Core™ 2 Duo http://www.intel.com/
Advanced Micro Devices (AMD) | AMD Athon™ 64 FX | http://www.amd.com
Zilog® 780180 http://www.zilog.com/
Motorola® MPC7457 http://www.motorola.com
ARM® ARM Cortex-A8 http://www.arm.com/
Microchip PIC 24F MCU http://www.microchip.com
Texas Instruments, Inc. T™MS320™ http://www.microchip.com
IBM® PowerPC® http://www.ibm.com

MIPS Technologies, Inc. MIPS32® 74K™ http://www.mips.com
Analog Devices, Inc. ADSP-21262 http://www.analog.com
Freescale Semiconductor, Inc. MCF5373 ColdFire® http://www.freescale.com/
Atmel® AT572D740 http://www.atmel.com

For designers of processor-based systems, the one concern is the possibility of
processor obsolescence. Here, if a vendor decides to discontinue a processor product
or family of products, this would have a major impact on the designer of electronic
systems using the particular processor. The designer (and organization that the
designer is working in) would potentially have invested a great deal of time and
resources in learning and using the processor, associated EDA tools, and design
flows—all of which would require reinvestment. A PLD, however, could be used as an
alternative to a processor IC purchased from a vendor. With the PLD, it would be
possible to implement a processor within the PLD itself. The processor design would
be obtained as either a schematic or, more probably, as an HDL description. This
HDL description would then be synthesised to map onto the PLD; the PLD would be
configured with the same operations as the original processor. This description would
not change and would be available for as long as the designer would require it. With
this, the processor would be a core (i.c., a block of logic that would be placed within
the PLD) and would be provided to the designer as either hard core or soft core. The
hard core would be provided as logic gates and interconnect for a particular PLD.
A soft core would be provided as HDL code describing the processor in terms of
functionality, rather than logic gates and interconnect, and would then be synthesised
to the required PLD.

An alternative to the predesigned processor architecture is to design the architecture
for a specific requirement. This would enable the designer to develop the best
architecture for the particular application and not be potentially limited in

www.newnespress.com

24 Chapter 1

performance by the availability of an existing processor. Hence, with PLDs, the
ability to develop application-specific processors is realistic. This would enable the
designer to develop PLD-based systems that can utilize both a processor (running a
software application) and dedicated, optimized hardware (for maximum speed of
operation) within a single device.

Although there are many potential advantages to using PLDs rather than
processors, the design paradigms are different and the need to consider the benefits
versus the costs, and the need to learn new design techniques (predominantly
hardware rather than software), cannot be underestimated. However, the ability for
the designer to choose a solution that provides him or her with the maximum
benefit for the particular application is something that cannot be overlooked. It is
common to consider the PROM as an SPLD, alongside the PLA, PAL® and GAL
(see below), although in this text, only the PLA, PAL® and GAL are only
considered in detail.

1.6 Types of Programmable Logic
1.6.1 Simple Programmable Logic Device (SPLD)

The SPLD was introduced before the CPLD and FPGA. The three main types of
SPLD architecture—programmable logic array (PLA), programmable array of logic
(PAL), and generic array of logic (GAL)—are described below.

The PLA

The PLA consists of two programmable planes AND and OR (see Figure 1.13). The
AND plane consists of programmable interconnect along with AND gates. The OR
plane consists of programmable interconnect along with OR gates.

In this view, there are four inputs to the PLA and four outputs from the PLA. Each of
the inputs can be connected to an AND gate with any of the other inputs by
connecting the crossover point of the vertical and horizontal interconnect lines in the
AND gate programmable interconnect. Initially, the crossover points are not
electrically connected, but configuring the PLA will connect particular crossover
points together. In this view, the AND gate is seen with a single line to the input. This
view is by convention, but this also means that any of the inputs (vertical lines) can be

www.newnespress.com

Introduction to Programmable Logic 25

Inputs

A OR plane
(Programmable interconnect)

A

WA\

—— YWY

(Programmable
interconnect)

~—
Outputs

Figure 1.13: PLA architecture

connected. Hence, for four PLA inputs, the AND gate also has four inputs. The single
output from each of the AND gates is applied to an OR gate programmable
interconnect. Again, the crossover points are initially not electrically connected, but
configuring the PLA will connect particular crossover points together. In this view,
the OR gate is seen with a single line to the input. This view is by convention, but this
also means that any of AND gate outputs can be connected to the OR gate inputs.
Hence, for four AND gates, the OR gate also has four inputs.

The PAL®

The PAL® is similar to the PLA architecture, but now there is only one
programmable plane, the AND plane, and the AND gate programmable plane is
retained (see Figure 1.14). This architecture is simpler than the PLA and removes
the time delays associated with the programmable OR gate plane interconnect,
hence producing a faster design. However, this comes at a cost of flexibility—the
PAL® is less flexible in the ways in which a digital logic design can be implemented
than the PLA.

www.newnespress.com

26 Chapter 1

Inputs OR gate inputs will be connected to the specific

AND gate outputs: FIXED connections when the
/—)% device is manufactured

> Qutputs

U

H_/

AND plane
(Programmable
interconnect)

Figure 1.14: PAL® architecture

The PLA and PAL® architectures as shown allow combinational logic designs to be
implemented. If the design provides for feedback of the outputs to the inputs, then it
is possible to implement latches and bistables, thereby also allowing sequential logic
circuits to be implemented. This is possible on some commercially available PAL
devices. Additionally, some PAL devices also provide the output to be made
available from the OR gate output or via an additional bistable connected to the
OR gate output. Hence, the types of sequential logic circuits that can be
implemented increase and therefore the usefulness of the particular PAL® device
increases.

The GAL

PAL and PLA devices are one-time programmable (OTP) based on PROM, so the
PAL or PLA configuration cannot be changed after it has been configured. This
limitation means that the configured device would have to be discarded and a new
device configured. The GAL, although similar to the PAL® architecture, uses
EEPROM and can be reconfigured.

www.newnespress.com

Introduction to Programmable Logic 27

1.6.2 Complex Programmable Logic Device (CPLD)

The CPLD is a step up in complexity from the SPLD; it builds on SPLD
architecture and creates a much larger design. Consequently, the SPLD can be used
to integrate the functions of a number of discrete digital ICs into a single device and
the CPLD can be used to integrate the functions of a number of SPLDs into a single
device. The CPLD architecture is based on a small number of logic blocks and a
global programmable interconnect. A generic CPLD architecture is shown in
Figure 1.15.

The CPLD consists of a number of logic blocks (sometimes referred to as functional
blocks), each of which contains a macrocell and either a PLA or PAL® circuit
arrangement. In this view, eight logic blocks are shown. The macrocell provides
additional circuitry to accommodate registered or nonregistered outputs, along
with signal polarity control. Polarity control provides an output that is a true signal
or a complement of the true signal. The actual number of logic blocks within a
CPLD varies; the more logic blocks available, the larger the design that can be
configured. In the center of the design is a global programmable interconnect. This
interconnect allows connections to the logic block macrocells and the 7/O cell

1/0 block |
4 4 4 4
v v v v
Macrocell Macrocell Macrocell Macrocell
PLA or PAL PLA or PAL PLA or PAL PLA or PAL
r'y A F Y A
A A 4 A A 4
Programmable interconnect |
A A A A
v v A4 A
PLA or PAL PLA or PAL PLA or PAL PLA or PAL Logic
Macrocell Macrocell Macrocell Macrocell Block
4 4 4 4
v v v v
1/0 block

Figure 1.15: Generic CPLD architecture

www.newnespress.com

28 Chapter 1

arrays (the digital I/O cells of the CPLD connecting to the pins of the CPLD
package).

The programmable interconnect is usually based on either array-based interconnect
or multiplexer-based interconnect:

e Array-based interconnect allows any signal within the programmable
interconnect to connect to any logic block within the CPLD. This is achieved
by allowing horizontal and vertical routing within the programmable
interconnect and allowing the crossover points to be connected or
unconnected (the same idea as with the PLA and PAL®), depending on the
CPLD configuration.

e Multiplexer-based interconnect uses digital multiplexers connected to each
of the macrocell inputs within the logic blocks. Specific signals within
the programmable interconnect are connected to specific inputs of the
multiplexers. It would not be practical to connect all internal signals within
the programmable interconnect to the inputs of all multiplexers due to size
and speed of operation considerations.

1.6.3 Field Programmable Gate Array (FPGA)

Like the CPLD, the FPGA is a step up in complexity from the SPLD by creating a
much larger design; unlike the CPLD architecture, the FPGA architecture was
developed using a different basic concept. The architecture is based on a regular array
of basic programmable logic cells (LC) and a programmable interconnect matrix
surrounding the logic cells (see Figure 1.16).

The array of basic programmable logic cells and programmable interconnect matrix
form the core of the FPGA. This is surrounded by programmable I/O cells. The
programmable interconnect is placed in routing channels. The specific design details
within each of the main functions (logic cells, programmable interconnect, and
programmable 1/0) will vary among vendors. For example, Xilinx®. utilizes the logic
block as a configurable logic block (CLB) in their FPGAs. The CLB is based on one
or more look-up tables (LUT) and bistables. The LUT is made from memory cells
(SRAM cells).

www.newnespress.com

Introduction to Programmable Logic 29

EEEEEEEEEEEEEEENER

- - Logic cell
ogic ce

- LI

| Tl

LC LC LC LC 4

| |

| |

- LC LC LC LC u

| |

| | Programmable

— interconnect

- LC LC LC e || T™

| |

| |

- LC LC LC LC u

n n Programmable

| WY /Ocells

| |

EEEEEEEEEEEEEEENER

Figure 1.16: Generic FPGA architecture

1.7 PLD Configuration Technologies

The PLD is configured by downloading a particular circuit configuration as a
sequence of binary logic values (sequence of Os and 1s). The configuration will be held
in a configuration file on the PC or workstation that the design was created on
using the required EDA tools. A downloader software application will read the
configuration file and download the contents to the PLD. These values are stored in
memory within the device, where the memory may be volatile or nonvolatile:

e Volatile memory: When data is stored within the memory, the data is retained
in the memory as long as the memory is connected to a power supply. Once the
power supply has been removed, then the contents of the memory (the data) is
lost. The majority of FPGAs utilize volatile SRAM-based memory. Hence,
whenever the power supply is removed from the FPGA, then the FPGA
configuration is lost and when the power supply is reapplied, then the
configuration must be reloaded into the SRAM.

www.newnespress.com

30 Chapter 1

e Nonvolatile memory: When data is stored within the memory, the data is
retained in the memory even when the power supply has been removed. Some
FPGAs utilize antifuse technology to store the FPGA configuration; new
generation FPGAs will also utilize flash memory. CPLDs utilize nonvolatile
memory such as EPROM, EEPROM, and flash memory.

SRAM-based configuration is based on the use of multiple 1-bit memory cells (see
Figure 1.17). The cell has write and read modes. In write mode, a data bit (0 or 1) to
store in the memory is applied to the bit line. The switch transistor is closed (by
applying a logic 1 to the transistor gate) on the word line. When the switch is closed,
the logic value on the bit line is applied to the input of the top inverter. The inverted
output is applied to the input of the bottom inverter, and the output of this inverter
is the same logic value as applied on the bit line. When the switch transistor is opened,
the inverter arrangement retains the logic value due to the feedback arrangement

of the two inverters.

When the value is to be read from the memory cell, the switch transistor is again
closed (by applying a logic 1 to the transistor gate) on the word line. The logic value
output from the bottom inverter is then applied to the bit line. Each of the inverters
contains two transistors (in static CMOS, one nMOS and one pMOS transistor).
Hence, the memory cell contains five transistors overall, compared to six transistors in
the memory cell of an SRAM memory IC; a second switch transistor is used at the
output of the top inverter and creates an output that is the inverse of the bit line value.

Antifuse based configuration uses a two terminal device that is electrically programmed
to change from an electrical open circuit to an electrical short circuit. The operation is

Word line L

Gate

, [

“ o]

Bit line Switch (Control)
transistor

Figure 1.17: SRAM cell based on five transistors

www.newnespress.com

Introduction to Programmable Logic 31

the inverse to that of the fuse. Initially, there is no connection between the two terminals
(there is a high resistance). When programmed (blown), a connection (low resistance) is
made between the two terminals. This is a one-time process (i.e., permanent) and once
blown, cannot be undone. The antifuse will be one of two types, amorphous-silicon
antifuse or oxide-nitride-oxide (ONO) antifuse.

Figure 1.18 shows the principle of operation. The antifuse material is placed in a via
between two metal layers in the circuit (vertical layers). Initially (i), the no connection
exists between the two metal layers. Once programmed, a low-resistance link (ii) exists
between the metal layers and connects them together.

Configurations based on EPROM, EEPROM, and flash memory use a floating gate
transistor. Figure 1.19 shows the basic arrangement for a 1-bit EPROM memory. The
transistor acts as a switch. In EEPROM and Flash memories, a second transistor is
also used. A more comprehensive description of these memory cells can be found in
references [2] and [3].

The switch is closed by the application of a logic 1 on the word line to the control gate of
the transistor. However, by applying high voltage during configuration to the control
gate of the transistor, a charge is injected into the floating gate and stored on the gate
capacitance. When the high voltage is removed, the charge is stored. The effect of this
charge is to make the transistor permanently switched off even when the word line
signal is applied. (The effect of the stored charge is to increase the threshold voltage of
the transistor so that the transistor can never switch on.)

Antifuse-based configuration is a one-time process. That is, once the antifuse has been
blown to form the circuit configuration, this cannot be undone. If the design is wrong
or requires modification, then the device has to be thrown away and a new device

Link
—
Metal Metal
SiO, Via SiO, Sio, Via SiO,
Metal Metal
Silicon Dioxide (SiO,) Silicon Dioxide (SiO,)
(i) Prior to antifuse blowing (i) After antifuse blowing

Figure 1.18: Antifuse cell-based configuration (amorphous-silicon antifuse structure)

www.newnespress.com

32 Chapter 1

_|

Word line

Bit line @

Control
Gate

Memory
Transistor
Floating /

Gate A4
Figure 1.19: EPROM-based configuration

loaded with the new configuration. SRAM-, EPROM-, EEPROM-, and flash-based
configurations, however, allow the device to be reconfigured many times.

Electrically programmable (configurable) and erasable PLD configuration allows for
the potential for in-system programming (ISP). This means that the PLD can be
physically located on its final circuit board (i.e., within a socket or soldered into place
onto the board) and via a programming port on the PLD, the configuration data can
be loaded into the PLD. The JTAG (Joint Test Action Group) standard is typically
used for this purpose. Additionally, for those PLDs that can be reconfigured, the
device allows for in-system reprogramming (ISR), meaning that the PLD
configuration can be changed while the PLD is located on its final circuit board.

1.8 Programmable Logic Vendors

PLDs are available from a range of vendors, each of which provides a family of PLDs
based on the SPLD, CPLD, or FPGA. They will also provide a set of EDA tools to
aid in the design creation process from design entry through simulation and design
verification to device configuration.

Table 1.9 identifies the main programmable logic companies today.

Refer to Appendix B for a summary reference of the main PLD vendors, selected
electronic design companies, electronic component vendors, test equipment vendors, and

www.newnespress.com

Introduction to Programmable Logic 33

Table 1.9: Main programmable logic vendors

Company Homepage URL

Achronix Semiconductor Corporation | http://www.achronix.com
Actel® Corporation http://www.actel.com
Altera Corporation http://www.altera.com
Atmel® Corporation http://www.atmel.com
Cypress Semiconductor http://www.cypress.com
Lattice® Semiconductor Corporation | http://www.latticesemi.com
Quicklogic® Corporation http://www.quicklogic.com
Xilinx® http://www.xilinx.com

EDA companies. Details on each PLD can be found on the vendor’s Internet home page;
other useful information usually provided includes:

e device data sheets

e application notes (on how to use the devices)

e white papers (on applications that have been developed with the PLDs)
e audiovisual aids such as tutorial videos and web casts

e vendor EDA tool user guides and tutorials and software download areas

1.9 Programmable Logic Design Methods and Tools
1.9.1 Introduction

To design with a particular PLD, the appropriate design tools are required. In
general, free versions of the tools with limited capabilities are available, as well as
full versions for purchase. Table 1.10 identifies the tools for each of the main
vendors.

Although each software design tool differs in appearance and the manner in which the
designer interacts with it, all have a common set of basic features required to create
and implement designs within a particular tool. These features are:

e Project management: the ability to set up design projects and to manage the

design data in a user-friendly manner
www.newnespress.com

Chapter 1

Table 1.10: PLD design tool by vendor

Company Design tool
Actel® Corporation Libero® IDE
Altera Corporation Quartus® Il
Altiump, Altium Designer
Atmel® Corporation Integrated Development System (IDS)
Cypress Semiconductor Warp

Lattice® Semiconductor Corporation | ispLEVER®
Mentor Graphics® FPGA Advantage®
Quicklogic® Corporation QuickWorks®
Synplicity® Synplify Pro®
Xilinx® ISE™

Design entry: entering the design into the tools using a combination of
schematic capture, HDL design entry, state machine flow diagrams

Design simulation: Once the design has been entered, the design can be
simulated to check that it performs as required.

Design synthesis: For HDL design entry, typically at the register transfer level
(RTL), the HDL description is to be synthesized to produce the digital logic
circuit in terms of logic gates and interconnect (netlist).

Place and route: taking the design that has been entered and/or synthesized,
and mapping it to the hardware resources on the PLD. This defines which
parts of the PLD will contain which functions in the design and how the
different parts of the PLD are interconnected.

Post-layout delay extraction: takes the information on the placed and routed
design, and extracts timing delays due to the logic gates and interconnect used

Post-layout simulation: Using the layout timing delays, the design is
resimulated with these delays included to determine whether the design still
functions correctly.

Configuration file generation: creates the PLD configuration data

PLD configuration: downloads the configuration data to the PLD and enables
the configuration on the PLD to be verified for correctness

Interfacing to external tools: allows for third-party tools such as simulation
and synthesis tools to be interfaced to the main design tools

www.newnespress.com

Introduction to Programmable Logic

35

1.9.2 Typical PLD Design Flow

Whether a CPLD or FPGA is to be used, the designer follows a common design flow
for the major stages in the design entry, verification, and device configuration.
However, there will be differences in the fine detail between the CPLD and FPGA.

Figure 1.20 shows a typical PLD design flow.

Device selection

EDA tool
configuration

Design entry tool

Simulation tool

Design entry

A
A

A

Schematic capture |

HDL |

State transition
diagram

HDL test bench
(test fixture)

Synthesis tool

HDL code synthesis |

Synthesis directives

Postsynthesis

simulation model

A

Simulation |<—O

A4
User constraints ’—>| Fit or Place & Route |

4>| Extract layout delays |

Generator tool

-

| PLD Configuration tool I—»

Configuration file
generation

A4

Download
configuration to
PLD

v

Simulation |<—

Configure

Verify

Figure 1.20: Typical PLD design flow

www.newnespress.com

36 Chapter 1

The first step is to enter the design into the appropriate EDA tool, typically using
a combination of schematic capture, HDL descriptions, and state transition
diagrams (for state machine design). The designs will be added to a design
project, and within this project, the target PLD will also be identified, although
the target PLD can be changed at a later date. When the designs have been
entered, the operation of each design part and then the overall design will be
validated through simulation. This will use a suitable simulation tool and test
bench (test fixture).

When the design, prior to HDL code synthesis, has been validated, the HDL designs
are synthesized into logic. Synthesis will use a suitable synthesis tool and user-
generated synthesis directives (e.g., size [area] and power constraints). A postsynthesis
simulation model of the design is generated and simulated. Normally, the same

test bench as used before would be used and the simulation results on both designs
compared to ensure that the postsynthesis design operation is equivalent to the
presynthesis design operation.

On successful completion of this stage, the design is either fitted to a CPLD or placed
and routed to an FPGA. This will use a suitable layout tool and user-generated
constraints (e.g., device pins and the I/O cell configuration). A post-layout simulation
is then run on the design and additional timing delays resulting from the logic gates
and interconnect used. This simulation ensures that the design at the PLD layout level
will operate at the required speed and that the layout delays are not large enough
to impede circuit operation.

Finally, the configuration file is generated as a bitstream file or JEDEC format file, then
the configuration is downloaded to the PLD. Normally, the configuration tool allows
for the configuration within the PLD to be verified by comparing the configuration
actually within the PLD to the required configuration (by reading the PLD
configuration and comparing this with the original bitstream or JEDEC file [14]).

1.10 Technology Trends

The early SPLDs were, by today’s standards, simple and contained few logic gates.
They are still used for small designs. For many applications, though, the choice now is
whether to use CPLD or FPGA, so the focus of research and product development is
on those two. Key technology trends for programmable logic include the following as
identified in Table 1.11.

www.newnespress.com

Introduction to Programmable Logic 37

Table 1.11: Technology trends

More functionality per IC The end-user demands for more functionality within the PLD to
enable increased digital signal processing capabilities,
as required, for example, in communication system applications.

Emphasis on electronic system The majority of design work using HDLs involves writing HDL
level (ESL) design code at a level referred to as register transfer level (RTL). This
level describes the movement and storage of data around
the digital system, and synthesis tools have been developed
to synthesize RTL-level HDL code into logic gates and
interconnect (netlists). As design complexities increase, there
is a need for the designer to describe at more abstract
levels of description—to describe the behavior of the system
and to let the synthesis tool take care of the details. ESL
design refers to the design and verification methodologies at
higher levels of abstraction from traditional RTL.

Inclusion of hardware macros Many FPGAs today include dedicated hardware macros such
with programmable logic as RAM, hardware multipliers, and processor cores that are
seen as resources alongside the programmable logic. When a
design is synthesized to a particular PLD, the synthesis tool
would know about the available macros and use them
appropriately. In addition, the move toward including
mixed-signal macros such as ADCs and DACs increases the
usefulness of the PLD.

High-level behavioral synthesis The description of system behavior and the ability to
synthesize behavioral descriptions to logic and interconnect,
as described above in ESL.

Seamless codesign of hardware- The ability to design and develop designs based on software
software systems operations and hardware operations within a single design
environment that seamlessly allows the overall design to be
undertaken in a single step.

Increased need for design debug | As the types of digital systems being developed increase in
tools complexity, the potential for errors (bugs) increases. The
ability to debug PLD designs once configured enables the
designer to identify the cause of errors and to remove them—
in a similar manner to the debugging arrangements within
processor-based designs. The need for more comprehensive
design debug tools is increasing.

Higher operating frequencies As the complexities of the types of digital signal processing
algorithms increases, there is a need to perform the
algorithm calculations more quickly. This requires faster logic
gates, so the PLD can work at higher operating frequencies to
enable real-time digital signal processing.

(continued)

www.newnespress.com

38 Chapter 1
Table 1.11 (Continued)

Finer fabrication process To provide for more circuitry within a single device, the size of

geometries each of the logic gates and of the interconnect within the
device must be reduced. This is achieved by utilizing finer
geometry processes. Each process is defined by a technology
node that defines the geometries of a particular fabrication
process. This is defined by the International Technology
Roadmap for Semiconductors (ITRS) [15].

Lower power supply voltages When the speed of operation of a CMOS design increases,
the power consumption increases, and the temperature in
turn increases. To reduce power consumption, excessively
high operating temperatures, and allow for portable, battery-
operated electronics, the power supply voltage is reduced.
This reduction in power supply voltage is also required for
reliability reasons when using the finer fabrication process
geomettries.

Newer and faster device test Whenever a PLD is fabricated, the PLD must be tested to

methods ensure that the device was fabricated correctly and without
circuit faults. With an ever-increasing device design
complexity, the test problem increases. Effective tests are
needed to set quality levels at the lowest possible cost.

Lower costs Driven by the end-user requirements for devices with more
functionality but at a lower cost.

References

[1] Oxford Dictionary of English, Second Edition, Revised, eds. C. Soanes and
A. Stevenson, Oxford University Press, 2005, ISBN 0-19-861057-2.

[2] Smith, M., Application Specific Integrated Circuits, Addison-Wesley, 1999,
ISBN 0-201-50022-1.

[3] Skahill, K., VHDL for Programmable Logic, Addison-Wesley, 1996, ISBN
0-201-89573-0.

[4] Maxfield, C., The Design Warrior’s Guide to FPGAs, Elsevier, 2004, ISBN
0-7506-7604-3.

[5] Cooley, J. W., and Tukey, J. W., “An Algorithm for the Machine Computation
of the Complex Fourier Series,” Mathematics of Computation, Vol. 19, April
1965, pp. 297-301.

[6] Meade, M., and Dillon, C., Signals and Systems, Models and Behaviour, Second

Edition, Chapman and Hall, 1991, ISBN 0-412-40110-x.

www.newnespress.com

Introduction to Programmable Logic 39

[7]1 Parhi, K., VLSI Digital Signal Processing Systems, Design and Implementation,
John Wiley & Sons, Inc., 1999, ISBN 0-471-24186-5.

[8] Jespers, P., Integrated Converters D to A and A to D Architectures, Analysis and
Simulation. Oxford University Press, 2001, ISBN 0-19-856446-5.

[9] Astrom, K., and Wittenmark, B., Computer-Controlled Systems, Theory and
Design, Second Edition, Prentice-Hall International Editions, 1990, ISBN
0-13-172784-2.

[10] Golden, J., and Verwer, A., Control System Design and Simulation, McGraw-
Hill, 1991, ISBN 0-07-707412-2.

[11] Bell Laboratories (Bell Labs), http:www.bell-labs.com/

[12] Xilinx Inc., USA, http://www .xilinx.com

[13] Ifeachor, E., and Jervis, B., Digital Signal Processing, A Practical Approach,
Second Edition, Prentice Hall, 2002, ISBN 0-201-69619-9.

[14] Joint Electronic Device Engineering Council (JEDEC), http://www.jedec.org/

[15] International Technology Roadmap for Semiconductors, 2006 Edition.

[16] Zahiri, B., Structured ASICs: Opportunities and Challenges, Proceedings of the
21°" International Conference on Computer Design, Oct. 2003, pp. 404-409.

[17] Ran, Y., and Marek-Sadowska, M., Designing Via Configurable Logic Blocks
for Regular Fabric, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Jan. 2006, pp. 1-14.

www.newnespress.com

40 Chapter 1

Student Exercises

The following exercises will involve the use of suitable reference text books and
Internet resources in order to answer.

1.1 The 74LS family of digital logic ICs provides a set of fixed functionality
logic gates. For the following logic gates:

e 2-input NAND gate
e 2-input AND gate

e 2-input NOR gate

e 2-input NAND gate
e buffer

e inverter

identify the following characteristics:

e the power supply voltage requirements

e the power supply current requirements

e the number of pins dedicated to the power supply or supplies
e the package type(s) that the IC is available in

e the number of logic gates that a designer has access to use

e the number of I/Os that a designer has access to use

1.2 The 74HC family of digital logic ICs provides a set of fixed functionality logic
gates. What are the main differences between 74LS and 74HC logic gates?

1.3 Repeat Question 1.1 using 74HC logic.

1.4 What is an application-specific standard product (ASSP)?

1.5 The majority of integrated circuits are fabricated using silicon-based
technology. A particular IC fabrication process will be based on a
particular technology node. What is meant by the term technology node?

1.6 For the following PLDs:

Xilinx® Spartan™-3 XC3S1000

Xilinx® Coolrunner™-II XC2C256-144
Lattice® Semiconductor MACH4A 5-64/32
Lattice® Semiconductor ispLSI2064E

identify the following from the device datasheets:

e whether the device is a CPLD or FPGA

www.newnespress.com

Introduction to Programmable Logic 41

1.7
1.8

1.9

1.10

1.12

1.13

e the power supply voltage requirements

e the power supply current requirements

e the number of pins dedicated to the power supply or supplies

e the maximum digital clocking frequency

e the package type(s) that the IC is available in

e the number of I/Os that a designer has access to use

e the I/O standards that the designer can set for the 1/Os

e the cost of each PLD

e the CAD tools used in the design of circuits and systems with each PLD

e the role of each of the CAD tools used in the design of circuits and
systems with each type of PLD

What is the main difference between a PAL- and a GAL-based SPLD?
What processors are commonly used in the following:

e desktop PCs
e Jlaptop PCs
e personal digital assistants (PDAs)

Which companies provide these processors?

Considering the Xilinx® Coolrunner™-II CPLD family, from the
datasheet, identify the CPLD architecture used. What is the functional
block and what does it do? How does the specific architecture compare to
or differ from the generic CPLD architecture identified in this chapter?
Considering the FPGA, for each of the main PLD vendors who provide
FPGA devices, choose one small FPGA and identify:

e the architecture of the particular FPGA

e the particular configuration technology (technologies) used with this
device

e the time required to load the configuration into the FPGA

What are the advantages of using programmable logic over discrete digital
logic I1Cs? Give two examples of where it would be more beneficial to use

a PLD.

Give two examples of where it would not necessarily be beneficial to use
a PLD over discrete digital logic ICs.

What is a structured ASIC? How does this compare and differ from the
traditional ASIC and the PLD?

www.newnespress.com

This page intentionally left blank

CHAPTER 2

Electronic Systems Design

2.1 Introduction

In this chapter, the design of electronic systems will be introduced by looking at the
different parts (subsystems) that are brought together to form the overall system.
However, before considering any design three points should always be noted:

1. Always use common sense. If something does not seem right, then it probably
isn’t.

2. Never leave anything to chance. What can go wrong will go wrong.

3. There is almost always more than one way to solve a problem. The choice for
the designer is to determine the most appropriate solution. The first solution
developed might not necessarily be the best.

Within the context of this book, the interest lies in the ability to design electronic
circuits and systems that can have a wide range of required functions, be practical
and useful, and will ultimately use analogue, digital, or mixed-signal circuits. The
advantage of each type of circuitry is:

® Analogue circuits manipulate electrical signals (voltages and/or currents)
that will vary continuously in amplitude between lower and upper limits.
Theoretically, the analogue signal is capable of changing by infinitesimally
small amounts. Examples of analogue circuits include operational amplifiers,
(voltage, current, audio, and power), and analogue filters (low-pass, high-pass,
band-pass, band-reject).

e Digital circuits manipulate signals that are quantized—that is, using signals that
will vary at discrete values between lower and upper limits. Binary (two-level logic,

www.newnespress.com

44 Chapter 2

0 and 1) is most commonly used and is the basis of the majority of computing
applications today. Examples of digital circuits include microprocessors,
microcontrollers, digital signal processors, digital filters, and programmable logic.

* Mixed-signal circuits manipulate both analogue and digital signals and are
typically used to interface digital circuits to analogue input and output.
Examples of mixed-signal circuits include analogue to digital converters (ADC),
digital to analogue converters (DAC), digital processors with on-chip (on-
board) ADCs and DACs, comparators, and programmable analogue arrays.

The terms electronic circuit and electronic system are commonly used and are used
throughout this text. The Oxford Dictionary of English [1] defines circuit as “a complete
and closed path around which a circulating electric current can flow: a system of electrical
conductors and components forming an electrical circuit,” and defines system as “a set of
things working together as parts of a mechanism or an interconnecting network.”

In electronics, there is no clear point at which a circuit becomes a system; a number of

different criteria could be found and would make for interesting debate. However, in the
context of this book, the distinction is this: an electronic system will be designed to perform
a complex function or range of functions and will consist of one or more electronic circuits.

For example, consider the desktop PC in everyday use, as shown in Figure 2.1. This
would be considered an electronic system consisting of a number of subsystems, each

Figure 2.1: Image of a desktop PC

www.newnespress.com

Electronic Systems Design 45

in turn consisting of a number of individual electronic circuits. At the initial visual
appearance, the PC consists of a small number of larger units, including:

e case containing the computer electronics
e the visual display unit (VDU)
e the keyboard
e the mouse
The case contains the electronics, which include the following basic subsystems:
e motherboard
e power supply
e hard disk
e floppy disk
e CD-ROM reader
e CD-ROM writer
e DVD reader
e DVD writer

e Input/output (I/O) ports: parallel port (Centronics), serial port (RS-232C),
universal serial bus (USB), firewire, local area network (LAN), modem

These are designed to perform specific functions for the manipulation of data and
for efficient user interaction. PCs will be available from a number of different
manufacturers, with each manufacturer offering their own set of advantages over the
competitors (cost, ease of use, etc.). Company and product branding in this highly
competitive market is extremely important.

Although the appearance of each PC might vary, the internal arrangement within
every PC is basically the same; that is, the architecture of the computer is based on
a common architecture. With the side cover taken off the PC, then these internal
subsystems will be exposed. Figure 2.2 shows the internal arrangement for an
example PC. Here, the PC motherboard is housed vertically and secured to one
side of the PC case. Connectors are mounted on the PC motherboard to allow for
other subsystems to be connected, for example, the power supply (bottom right)

www.newnespress.com

46

Chapter 2

Figure 2.2: Inside a desktop PC

and disk drives. The disk drives here are placed in slots at the bottom left of the
case (empty in this image).

The motherboard is of interest here as it is a printed circuit board (PCB) that houses the
main electronic components, including:

microprocessor

memory: ROM and RAM
clocks, counters, and timers
miscellaneous logic

1/O circuitry

The main circuitry is in the form of an integrated circuit (IC). This is shown in Figure 2.3.

Electronic Systems Design 47

Clocks, Counters,

‘ and Timers ‘<}:::>
N /
«ﬂ\

Miscellaneous
Figure 2.3: PC motherboard electronics (simplified view)

Logic

The microprocessor runs a software program that will enable the microprocessor to
undertake a number of actions (operations). Read-only memory (ROM) will be used to
hold program code. Random access memory (RAM) will be used for temporary storage
of data (both program code and variable data). Clocks are used to provide the necessary
timing to control the operation of the sequential logic parts of the circuits. Counters and
timers are used to provide specific timing signals. The I/O circuitry provides the interfacing
between the electronics and the rest of the electronic system. The miscellaneous logic
provides specific hardware interfacing between ICs within the overall electronic system.

The software code that the microprocessor runs will be based on the internal
instruction set of the microprocessor. This defines what operations the
microprocessor can undertake. When a program is written to run on a
microprocessor, the programmer uses one of two approaches:

1. High-level languages (such as C or Java) are suited for general-purpose
programming tasks for which the programmer does not need to understand
the details of the target computing hardware. This is an efficient use of the
programmer’s time but may not produce the most efficient code (in terms of
the size of the program code and the time required to execute commands).
The high-level program is then compiled into the machine-code form that the
microprocessor then uses.

2. Machine-code is low-level code that works at the computing hardware level.
The programmer must have a good understanding of the internal structure of

www.newnespress.com

48 Chapter 2

the microprocessor and its fundamental instruction set. This is time consuming
but can produce efficient code (in terms of the size of the program code and the
time required to execute commands). When a program is written in machine-
code form, the program is firstly written in the form of standard instruction
mnemonics that are then converted to the machine-code form. The process of
converting the instruction mnemonics to machine-code is referred to as assembly.
Software programs that undertake this task are referred to as assemblers.

Today, most programming is undertaken using a suitable high-level language.

Aside: An interesting read on how the global computer industry developed from the early
days in Silicon Valley during the 1970s is the book Accidental Empires by Robert Cringley
(Harper and Brothers, 1996).

The previous PC example is only one example of how an electronic system utilizes a
processor. Increasingly, many other systems utilize programmable logic at the center
of the electronics. All designs of this size and complexity need to consider a large
number of issues relating to the design, manufacture, and test of the electronic
system [2]. The chosen design approach will ultimately be a trade-off in resolving often
conflicting requirements, such as performance versus cost. The choices will include:

e Generating the initial idea: What must be designed? What functions are to be
included? Why? How are ideas to be generated and captured (documented)?

e Market requirements: Successful products fulfill a set of market requirements.
Identifying what the market requirements are and what the steps are required
to develop a product that will be a commercial success are essential.

e Cost to design, manufacture, and test: What is the cost to design, manufacture,
and test the design?

e Sales price: What can the sale price be?

e Converting the idea into a specification, or family of specifications: How will the
design requirements be captured into a formal document so that the designers
and the end users will have a common set of documentation relating to the
system? Typically one or more specification documents are created, depending
on the type of system to be created and the need for particular types of
specification documents (for example, documents to be generated and made
available for specific contract requirements).

www.newnespress.com

Electronic Systems Design 49

Following a design process: How will the design be created from the initial idea
through to production level manufacture? (Sequential and concurrent design
processes are discussed in the next section.)

The need for teamwork: The creation of any system of design complexity
requires skills from a number of people who will be formed into teams, each
responsible for a specific design task.

Choosing the right implementation technology: Most designs can be
implemented in a number of different ways. The choices available can initially
be overwhelming, but by suitable care and thought about what exactly is
required and how these requirements can be realized in electronic hardware
and software, a small number of appropriate choices emerges. There might not
necessarily be a right or wrong choice, rather a better or worse choice for the
particular design scenario.

Incorporating testing and design for testability (DfT): During the design and
production manufacture of a system, testing ensures that the design itself is
correct and that the manufacture of the design has not created defects that
result in a faulty operation. To demonstrate the importance of testing and
the discovering of faults in an electronic circuit or system after fabrication
and before use is referred to as the Rule of Ten: the cost multiplies by a
factor of ten every time an undetected fault is used to form a large electronic
circuit or system (Figure 2.4). Here, if the cost of detecting a faulty device
(component) when it is produced is one unit; the cost to detect that faulty
device when used at the board level (PCB) is 10 units; and the cost to detect
that faulty board when inserted in its system is 100 units, and so on.

Setting up and using quality control mechanisms: Determine the level of quality
required of the final system, then adopt the appropriate approach to each
stage in design, manufacture, and testing to ensure that the right level of
product quality is achieved and maintained. Quality control mechanisms

are outside the scope of this text book and so are not considered further.

Product branding: Does the company producing the system and/or the product
have a specific and identifiable brand? Does the potential customer associate
the company and/or product with price, quality, and reliability?

Time to market (TTM): How long will it take to get the product into the

market so that sales income can be generated?
www.newnespress.com

50 Chapter 2

Cost to
test

V' N ’

System (x100)

7’
- Board (x10
Jp— (x10)

Device (x1)

» Production Stage

Figure 2.4: Rule of Ten

e Design simulation: During the design process and prior to building the
prototype, the operation of the design will be simulated. At this stage, many of
the bugs in the design can be removed, although care must always be taken
because the results of a simulation study are only as good as the simulation
set-up (the test stimulus to apply) and the analysis of the simulation results.

¢ Design prototyping: What steps are required to take the initial design idea to a
prototyping stage in order (i) to identify the correct operation and that it meets
the required specifications, and (ii) where the design does not work correctly,
to identify the problem and the correction, whether in the design itself or in the
manufacturing. Design prototyping will be undertaken on a physical system
that has been built.

e Design debug: Debugging is undertaken during design simulation and design
prototyping to remove bugs in the design that prevent correct design operation.

¢ Production level manufacture: Once the design prototyping stage has been
successfully completed and the design is correct, then the full-scale manufacture
of the design can be undertaken. The design is then assumed to be correct.

www.newnespress.com

Electronic Systems Design 51

e Production level testing: Testing is undertaken on the systems that have been
manufactured to determine that the system has been manufactured without
defects that cause faults in the system operation.

e Future-proofing the design: Developing a design that is capable of being
modified and its operation enhanced in the future according to the market
requirements.

e Aesthetics: What concerns must be given to the appealing appearance of the
product? For example, if the system is to be embedded within a motor car and
will not be seen by the user of the motor car (or others), then the appearance is
not necessarily of concern. However, if the product is to be used in the home
and will be on display, then the aesthetics will be of great concern.

e Ergonomics: How will the product be used? Will there need to be a great
amount of interaction with the user and so how will the product be designed to
make the system both intuitive and easy to use?

The design process itself will not be an isolated activity. It must consider also the need to
manufacture the design and the need for testing the design. In recent years, significant
emphasis has been placed on the interaction between design and test, leading to the
concept of design for testability (DfT). However, DfT is just one example of DfX
(design for X). In general the following are also considered and approaches developed:

e DfA, design for assembly

e DfD, design for debug

e DfM, design for manufacturability
e DIfR, design for reliability

e DIfT, design for testability

e DfY, design for yield

The differentiation between a circuit and a system is further complicated by the
increased demands and ability to provide electronic components with ever higher
levels of integration—that is, more circuitry placed within individual components.
This is leading to the situation in which individual ICs, normally used in an electronic
circuit, would themselves be a complete electronic system. Such an IC with a high
level of circuit integration is commonly referred to as a system on a chip (SoC).

www.newnespress.com

52 Chapter 2

Given the complexities in the circuitry that exists in a modern microprocessor, such
a device might be referred to as a System on a Chip. However, this could be argued
as not being the case. The modern microprocessor might be seen as just a complex
integrated circuit which still requires external circuitry in a similar way as to older
generation microprocessors. Therefore it would not be seen as an SoC as it is not

a complete system within a single integrated circuit. The definition of the SoC is
therefore something that needs to be considered carefully. This results in different
forms of electronic circuits or systems being available:

e Integrated circuit (IC): An electronic circuit fabricated on a die of semiconductor
material, usually silicon based. The die is normally housed within a package
although individual bare dies are available.

e Printed circuit board (PCB): An insulating material (substrate) with integrated
metal interconnect tracks that is used to mechanically secure and electrically
connect electronic components.

e Multichip module (MCM): An insulating material (substrate) smaller than
a PCB in size, with metal interconnect tracks that mechanically
secure and electrically connect individual ICs (either packaged ICs or
bare dies). The MCM was originally referred to as a hybrid circuit.

e System on a chip (SoC): A large integrated circuit that contains a complete
electronic system.

e System in a package (SiP): An extension to the idea of the MCM, but with the
capability of higher levels of integration and three-dimensional (3-D) packaging.

2.2 Sequential Product Development Process
versus Concurrent Engineering Process

2.2.1 Introduction

The process undertaken to develop a product is the means by which a design can be
developed from an initial concept through to realization as a (commercial or
noncommercial) product. One of two approaches can be undertaken to realize the product:

e sequential product development process

e concurrent engineering process

www.newnespress.com

Electronic Systems Design 53

Essentially, these will identify the main steps involved in the development and
production of a product and how these steps will interact with each other.

2.2.2 Sequential Product Development Process

In a sequential design process, each of the steps involved in the design process—from
design concept through to production and testing—is completed before the next step
begins. This traditional approach is shown in Figure 2.5.

Create Initial Design

A 4
Validate/Verify

v
Prototype

v

Review
(Results of Prototype)

One step after
another —
activities run in a
sequential order

Redesign

v
Re-validate/Re-verify

A 4
Produce (Final Design)

A 4
Test (Production Test)

<

Figure 2.5: Sequential design process [3]

www.newnespress.com

54 Chapter 2

Here, the main steps are:
1. Design: Create the initial design.
2. Validate/Verify: Check the initial design for functional correctness.

3. Prototype: Create a physical prototype of the design and test the functionality
of the design.

4. Review: Identify whether the design functions as expected and identify
any issues raised and/or problems with the design that need to be resolved.

5. Redesign: Based on the issues and problems identified, undertake a product
redesign to address them.

6. Revalidate/Reverify: Check the new product design for functional correctness.

7. Produce: Once the design has been passed as functionally correct, then it is
produced (manufactured) in volume.

8. Test: The manufactured product is tested to identify any failures created by
the manufacturing process.

Although this approach appears to be simple, easy to understand, and initially easy to
manage, its sequential nature was inefficient. It does not allow for a step to interact with
any other step except those immediately prior and after; for example, the prototyping step
does not interact with the production step. This in-built restriction can create problems as
issues identified in the prototyping step might have an effect on the production step.
The important information generated in the prototyping step is therefore lost.

2.2.3 Concurrent Engineering Process

In a concurrent engineering process, each of the steps from concept through to
production and testing is interlinked, allowing information to be passed among

the steps. This idea is shown in Figure 2.6. Here, the different steps in the

process appear at different times. The overall process has a flatter structure—in
contrast to the previous sequential approach, activities occur in parallel—allowing
any issues and/or problems to be dealt with together. This allows for all stakeholders
in the development of the product to have the relevant information and assess

the impact of design issues and changes on their part of the product development.

www.newnespress.com

Electronic Systems Design 55

Requirements Definition

v ‘t

Market
requirements

Design Quality

mechanisms

concept DX 1]

A 4 I A 4

Service and Design Manufacturing
support systems embodiment processes

Manufacture

Product

v

[1] DfX:
DfA Design for Assembly
DfD Design for Debug
DfM Design for Manufacturability
DfR Design for Reliability
DfT Design for Testability
DfY Design for Yield

Figure 2.6: Concurrent engineering process (after [3])

www.newnespress.com

56 Chapter 2

2.3 Flowcharts

A flowchart [4] is a graphical or schematic representation of a process or algorithm. It
is used to show the intended operation of either a software program or a hardware
circuit. The flowchart is made up of connecting standard symbols together with
straight lines. The direction of the line is denoted by an arrow. Figure 2.7 shows the
commonly used symbols in the flowchart.

Terminal (Start/Stop)

Rectangle—Internal action

Rhomboid (parallelogram)—I/O device action

Diamond—Decision

Document

Manual operation

Manual input

Off-page connector

Display

Magnetic disk

Flow line

o|0oonddo |

Circle—Connector

Figure 2.7: Flowchart symbols

www.newnespress.com

Electronic Systems Design 57

The terminal symbolidentifies the start and end of the flowchart. The rectangle (internal
action) symbol identifies an internal action to be undertaken. The rhomboid (I/O device
action) symbol identifies an action to be undertaken by an input or output device. The
diamond symbol identifies a decision (or branch) to be made. One of two routes out of
the diamond symbol will be undertaken depending on the result of the decision. The
document symbol identifies a document media. The manual operation symbol identifies
an off-line process to be undertaken by a person at a “human speed.” The manual input
symbol identifies the need for a manual input from a person using a device such as a
keyboard or pushbuttons. The off-page connector symbol links a flowchart that is
drawn on two or more pages. The display symbol identifies an output to an online
display. The magnetic disk symbol identifies an input or output from magnetic disk
storage (i.e., data file I/O). The flow line identifies the flow of the flowchart based on the
actions and decisions. The circle symbol identifies a connection of flow lines.

An example flowchart is shown in Figure 2.8. Here, a software program
detects an input that is a serial bitstream. The pattern to detect is a “101”

Turn light
OFF

4—9ﬁ

Read input
=<
Yes
i Turn light
ON
Read input l
Yes

Figure 2.8: Example flowchart

www.newnespress.com

58 Chapter 2

sequence. When this sequence is detected, a light is turned on and the program
stops.

2.4 Block Diagrams

A block diagram is a circuit or system drawing that identifies major functions and
the interconnections between the functions, rather than showing a detailed
implementation. Its purpose is to represent graphically a system consisting of
subsystems or a subsystem consisting of components. It helps in the creation and
interpretation of a design by

e allowing a design concept to be developed in order to identify the required
arrangement prior to any detailed design process

e allowing a simplified view of a designed system to be viewed and
interpreted

As an example, consider the block diagram for a basic central processing unit (CPU)
for a microprocessor as shown in Figure 2.9.

The microprocessor will also contain ROM (holding specific program code for
the microprocessor to work), RAM (for temporary storage of data), and

a port (for data I/O between the microprocessor and the external electronic
system).

The block diagram is a representation of the CPU system. The system itself consists of
a number of subsystems. These are modeled by boxes with a text identifier. The
identified blocks are:

e Arithmetic and logic unit (ALU): Provides a set of arithmetic and logic
functions.

e Accumulator: A register used to hold one of the inputs to the ALU and the
results of an ALU operation. This is used for temporary storage and is one of
the most used registers within the CPU.

e Program counter (PC): This is a counter that increments after each instruction
and tracks program execution to ensure that the program executes in the
correct sequence.

www.newnespress.com

Electronic Systems Design 59

External Control
Signals

<: Store Address |/L—N /I/
Register \l_\/
4 Program |/ N| Instruction
>
o <: Counter (PC) N——/ Decode,
@ Control and
o Timing
g f o
2 @
e ©
m -—
% Status Register /—N 3 |
£ T E
==} i),
[
::: /—N| Instruction
<: ALU N—/ Register (IR)
|
External —
Address
Bus /A N
Accumulator <
T External Data Bus

Figure 2.9: Basic CPU block diagram

Store address register: A register that can be loaded with a single address in
memory that might be required by the program.

Status register: Also referred to as a flag register, it is used to store information
relating to the last operation undertaken by the ALU.

Instruction decode, control, and timing: Used for organizing the data flow
between the different parts of the CPU.

Instruction register (IR): Used to store an instruction that the microprocessor

is to decode and act upon.
www.newnespress.com

60 Chapter 2

Each subsystem is identified by a single block. Where functions are related, there may
be a hierarchical block diagram in which blocks are grouped within larger blocks.
Connecting the blocks will be buses of three types:

1. Data bus transfers data within the microprocessor and externally.

2. Address bus sets the address of the memory or port to access within the
microprocessor and externally.

3. Control bus controls the blocks within the microprocessor and for external
control lines.

The interconnection lines mark the direction of data or information with the direction
of the arrow. This can be one-way or two-way in direction.

A second example for a block diagram is the heating control system identified in
Chapter 1. This is shown again in Figure 2.10. Here, the room temperature is
sensed as an analogue signal but must be processed by a digital signal processing
circuit. So the temperature is converted to an analogue voltage or current. This
is then applied to a sensor signal conditioning circuit that is used to connect

the sensor to the ADC. The ADC samples the analogue signal at a chosen
sampling frequency. Once a temperature sample has been obtained by the digital
signal processing circuit, it is then processed using a particular algorithm, and
the result is applied to a DAC. The DAC output is a voltage or current, which
is used to drive a controller (heat source). The DAC is normally connected to
the controller via a signal conditioning circuit. This circuit acts to interface the
DAC to the controller so the controller can receive the correct voltage and current
levels.

s onal Analogue Digital
Temperature —»| Sensor gl?son.‘ signa it » to Digital > signal
conditioning circul Converter processing
: T Digital to
Heat «— Controller Signal c.ond.momng < Analogue |«
circuit
Converter

Figure 2.10: Heating control system block diagram

www.newnespress.com

Electronic Systems Design 61

2.5 Gajski-Kuhn Chart

The Gajski-Kuhn chart [5, 6] is commonly referred to in the EDA industry [7] in
relation to categorizing the different design abstraction levels and design synthesis. As
shown in Figure 2.11, the chart takes the form of five concentric circles and three
partitions or domains.

The five concentric circles characterize the hierarchical levels of the design process,
with increasing abstraction from the inner to the outer circle. Each circle
characterizes a model, and the models thus characterized are specific to the three
domains.

Behavioral
domain

Structural
domain

Specification Subsystem
Algorithm IPs, memories
I;RTL ALU, registers, mux

'Boole;:m Iogic, Gate, bistable

Transfer function Transistor

Shapes: (rectangles, polygons)

e /
Standard cell /
pd /

Macrocell

P
Block
_—
SoC/Board

Physical domain

Figure 2.11: Gajski-Kuhn chart

www.newnespress.com

62 Chapter 2

e Behavior: describes the functional behavior of the system

1.

A

Specification
Algorithm
RTL

Boolean logic

Transfer function

e Structure: describes the circuits and subsystems that will be connected together
to form the required system

1.

A

Subsystem

IPs (IP blocks) and memories

ALUEs, registers, and multiplexers (MUX)
Gates and bistables

Transistors

e Physical domain: describes the underlying implementation of the system

1.

A

Shapes (rectangles and polygons)
Standard cells

Macrocells

Blocks

SoC and board

2.6 Hardware-Software Co-Design

Many digital circuits and systems are based on digital logic hardware only. However,
many other digital circuits and systems are based on processors running a software
program. These processors will then interface to external hardware circuitry. For such
hardware (HW) and software (SW) designs, it is necessary to design the hardware and
software parts together to create

www.newnespress.com

Electronic Systems Design 63

e a working design (Designing a software program without knowing the
hardware it will run on will ultimately result in a failure.)

e a design that uses the best set of hardware components
e a design that efficiently uses the available hardware

e a design that runs an efficient software program

e a design that is maintainable and can be upgraded

e a design that is cost-effective

Hardware-software co-design [8—10] is an idea that has been around for a long time,

being continually refined and updated to adapt to emerging technologies. However,

the fundamental basis remains the same: to provide an approach for the cooperative
or collaborative design of electronic systems with hardware and software parts.

An approach to hardware-software co-design is shown in Figure 2.12. The design
approach initially starts with the system specification, which contains a document

or set of documents that define what exactly the system is intended to do. The design
choices are then made to identify which parts are to be undertaken in hardware and
which parts are to be undertaken in software. This is followed by the partitioning of
the design into the hardware parts and software parts, along with the parts that
provide the interface between them. It is at this point that the design implementation
typically comes to the hardware and software designers. Given that this initial
partitioning of the design has been completed, then the system design is refined to
develop the specifications for the hardware and software parts.

When those specifications have been developed and formally agreed on, the design can
be undertaken. Specific EDA tools relevant to the electronics or the software
programming are used. When hardware and software designers work in close
co-operation, EDA tools that support an integrated hardware-software co-design
approach can be used. Simulation (validation) and formal verification support the
design process. On integration of hardware and software, a hardware-software
co-simulation might be undertaken that will simulate the operation of the software
program on the actual hardware. Design prototyping creates a physical prototype of
the overall system that allows the operation of the real design to be evaluated. On
successful completion of the design prototyping, the final design would be ready for
design production. Depending on the required application, the number of systems to be

produced can range from one to millions.
www.newnespress.com

64 Chapter 2

Hardware
simulation

System specification

l

Design choices

v
HW/SW partitioning

!

)

| [

A 4

Hardware part Interfacing

Software part

System design refinement

N

A

Hardware specification

Software specification

N

A

-~

h 4

Hardware design Software design

Cosimulation

Design prototyping

Design production

Figure 2.12: Hardware-software co-design

www.newnespress.com

Software
simulation

Electronic Systems Design 65

2.7 Formal Verification

Formal verification is essentially concerned with identifying the correctness of
hardware [11] and software design operation. Because verification uses formal
mathematical proofs, a suitable mathematical model of the design must be created.
Today, both verification and validation processes are typically undertaken to analyze
a design implementation. Verification differs from validation in that:

e Validation seeks to examine the correctness in the operation of the electronic
circuit or software program implementation by examining its behavior (e.g.,
through simulation or prototype evaluation).

e Verification seeks to examine the correctness in the operation of the electronic
circuit or software program implementation by a mathematical proof.

An example where both verification and validation can be undertaken is during the
design of digital circuits and systems using hardware description languages (HDLs).
This idea is shown in Figure 2.13. Here, the process starts with an RTL (register

4@ RTL design

v v
1. Vali.d.atio.n — simulation Synthesis
2. Verification
S
~—— Logic design
MeM™
N~
v N .
1. Validation — simulation Post-synthesis
2. Verification actions
7 N Post-processed
> logic design
_/<
N~
v v
1. Validation — simulation Optimization
2. Verification
Optimized

VS . ;
—84 logic design

Figure 2.13: Verification and validation of an RTL design

www.newnespress.com

66 Chapter 2

transfer level) description of a digital circuit. This is synthesized using a suitable
synthesis tool.

After the design has been synthesized into a netlist, postsynthesis actions are
undertaken on the design such as clock tree insertion and testability (typically a scan
path test). The design is then optimized to form the final design, then simulated.
Validation is undertaken via simulation, and verification is undertaken using a
mathematical model of the design.

2.8 Embedded Systems and Real-Time
Operating Systems

A real-time operating system (RTOS) is a software operating system that is intended
for use in real-time applications such as:

e consumer electronics—household appliances, cameras, audio equipment
e telecommunications—mobile phones

e automotive—electronic control unit (ECU) and antilock brakes

e aerospace

e gspacecraft

e plant control—industrial robots

These are generally referred to as embedded systems [12, 13] because they include
computing functions and are dedicated to a particular application. An obvious aspect
of an embedded system is that it would not necessarily look like a computer, but
instead are enclosed within the everyday items that we use.

An embedded system is evaluated on technical and economical merits:
e Technical merits:
o Performance: the execution time of the required tasks
o Energy efficiency: the amount of power consumed by the system

o Size: specific measurements of the system to meet particular size
constraints for the application

www.newnespress.com

Electronic Systems Design 67

o Flexibility: the ability to reconfigure the system for different applications

o Deterministic operation: the system performs tasks within a guaranteed
time period.

e Economical merits:

o Unit cost: cost to manufacture a unit, excluding nonrecurring engineering
(NRE) costs

o Nonrecurring engineering (NRE) costs: costs to design and manufacture
the system. For example, if an ASIC is to be part of the system, then there
would be NRE costs associated with designing and manufacturing the
mask sets required in the lithographic steps in the ASIC wafer fabrication.

o Flexibility: the ability to redesign the system, or parts of the system,
without incurring high NRE costs

o Time to market (TTM): the time required to develop the system so that it is
in a state that can be sold to the customer

The operating system running on the embedded system processor is a multitasking
operating system in that it is required to execute multiple processes concurrently by
multitasking the CPU of the processor used within the embedded system. Tasks
would be executed using one of two basic design approaches:

1. Event-driven: The CPU switches to a particular task when the task itself
requests servicing (via interrupts on the CPU). Tasks are prioritized, and a
task with a higher priority will be serviced before a task with a lower priority.

2. Time-sharing: The CPU switches to between tasks on a time-sharing basis.

An important aspect of the embedded system would be that its operation is deterministic.
This means that, if designed correctly, it can undertake specific tasks within a specific,
guaranteed time period. This feature differs from the general purpose computer (such as
a desktop or laptop computer), whose operation would not be deterministic.

2.9 Electronic System-Level Design

With the increasing complexities of digital systems to be created today, particularly for
applications such as communications, there is a need to enable the designer to work at
higher levels of design abstraction and away from the detailed design aspects. Designing

www.newnespress.com

68 Chapter 2

at such high levels is referred to as electronic system-level (ESL) design [14, 15]. ESL
design is an emerging area for the design community and is a response to the emerging
needs of the designers (both hardware and software) to support their need to develop
more complex systems designs but in a reduced time. This allows the designer to:

e raise the design entry point to a design abstraction level to make the complex
design problem manageable

e concentrate on high-level design concept issues rather than low-level design
implementation issues

e reduce design time by automating specific time-consuming tasks that are
suited to automation

e cxplore the design space at the abstraction level and explore trade-offs (in size,
performance, power consumption) in the design decisions

ESL design is a response to designers working at a behavioral level, as has become
more prevalent in recent years, with behavioral-level modeling of designs being
developed for synthesis into logic. However, ESL design is required to overcome
limitations with working at design behavioral level and considers higher levels of
design abstraction and complexity.

To facilitate this design approach, then, the designer requires:
e design entry tools to support ESL design

e design languages (either textural or graphical) that effectively model the wide
range of designs to be encountered and the different levels of design abstraction

e design simulation tools to simulate complete systems at different levels of
design abstraction

For ESL design, suitable EDA tools are required to enable high-level designs to be
automatically translated to HDL code, which can then be synthesized in the normal
manner.

2.10 Creating a Design Specification

A design specification describes the detailed operation and attributes of a system and
is used as the basis of the design concept. With small designs, developing a clear and
concise design specification is a relatively straightforward task. However, as designs

www.newnespress.com

Electronic Systems Design 69

become more complex, with increased functionality and more customer requirements,
then the task of writing a design specification becomes more complex.

In most cases, a specification is a document that can be referred to by all or some of
the stakeholders (active participants—the designers and the customers) involved in
the design process. Normally two or more specification documents are required for
internal use (by the designers only) and for external use (by the designers and the
customer). The purposes of the design specification are to:

e involve all stakeholders in the plans for the system development—the
specification should be written for the particular audience (technical,
nontechnical, management, etc.)

¢ identify potential problems and risks before they are encountered to save time
and money

e be used as the basis for project planning and review

e be used as the basis for the design itself
Whatever the use of the design specification, it follows the same set of requirements:

1. Be clear.
Be concise.

Avoid general statements and be specific.

2
3
4. Avoid statements that are open to multiple interpretations.
5. Be accurate.

6. Be available in a format that is agreed by its users.

7

Adhere to specific requirements and standards adopted by the organizations
involved.

8. Be readable.

When considering the creation of a design specification, it is sometimes easier to
identify what not to do rather than what to do. For example avoid using statements
such as “The user interface should be user friendly.” After all, what is actually meant by
user friendly? An interface that appears user friendly to one person may be impossible

www.newnespress.com

70 Chapter 2

to use by someone else! For example, a software programmer who works at a UNIX™
or Linux command line and never touches a graphical user interface (GUI) would not
necessarily appreciate a highly complex GUI with many unnecessary options. Hence,
the requirements of end-user must always be considered.

Aside: A humorous read on how engineers, scientists, and software programmers think is in
“The Dilbert Principle” by Scott Adams (Boxtree, 1997). Particularly illuminating is
Chapter 14, “Engineers, Scientists, Programmers, and Other Odd People™!

Although a design specification is generally a document, it can also take other forms:
diagrams, charts, tables, databases, prototypes, or mock-ups. Mock-ups are different
from prototypes in that mock-ups are scaled models to show what the system would
look like, whereas the prototype is a fully functional system used for evaluating the
system prior to manufacture.

2.11 Unified Modeling Language

UML (unified modeling language) [16] is a standardized specification language used
in software engineering for object modeling—specifically, for software specification,
visualization, construction, and documentation of the software system and its
component parts. UML was conceived with the aims to:

e provide software developers with a visual programming language with which
to develop models of the software

e provide a means to extend the core concepts

e be independent of any particular programming language and software
development process

e provide a basis on which to formally understand the modeling language
e integrate best practices in software development
e support high-level software development concepts

Although conceived for software engineering, UML is not restricted to modeling
software, but also has applications in such areas as systems engineering modeling and
process modeling. When a model is developed in UML, the UML model forms the
basis to translate the UML model to other languages such as Java'™.

www.newnespress.com

Electronic Systems Design 71

Because UML is a visual language, a UML diagram is created to allow
developers and customers to view the software system from their different
perspectives and at different levels of abstraction. UML diagrams commonly
include the following:

e Use case diagram. This displays the relationship between actors and use cases.
An actor is a user of the system who applies a stimulus to the system and
cannot be controlled by the system itself. The actor is seen as a role rather than
a physical person. Use cases are services that the system knows how to
perform. Figure 2.14 shows an example case diagram for a user of a bank
ATM machine. The actor is drawn as a stick figure, and the use case is drawn
as an ellipse. The lines show the interactions.

e (lass diagram. This display provides a static view of the classes in a model. It
also shows the relationships such as containment, inheritance, and associations.

e Interaction diagram. The two types of interaction diagram are the sequence
diagram and the collaboration diagram:

o The sequence diagram displays the time sequence of the objects participating
in a particular interaction. The objects will interact by passing messages
among themselves. On the diagram, the vertical direction represents the
time, and the horizontal direction represents the different objects.

Withdraw
cash

Check

/ balance

Order
statement

Bank
Customer

Figure 2.14: Example case diagram for a bank ATM machine

www.newnespress.com

72 Chapter 2

o The collaboration diagram displays the interaction among objects and the
links between objects. Numbers are used to show the sequence of messages
passed among objects.

e Activity diagram. This displays a state diagram that focuses on flows driven by
internal object processing. This provides a means to describe workflow.

e Statechart diagram. This displays the sequences of states that an object will go
through during an interaction with a received stimulus and the object’s responses
and actions. This diagram is closely related to the activity diagram. Statechart
diagrams provide a means to describe the behavior of dynamic model elements.

e Implementation diagram. The two types of implementation diagram are the
component diagram and the deployment diagram:

o The component diagram displays the relationships among the software
components in the system.

o The deployment diagram displays the hardware configuration used to
implement the system and the links between the hardware components.

2.12 Reading a Component Data Sheet

All components that are available to purchase for use within an electronic circuit or
system will have an associated data sheet. The data sheet provides the necessary
information for the designer of an electronic circuit to determine whether the
component is suitable for the particular application. The data sheet (see Figure 2.15)

Developer Data Sheet User
Developer 1
R
~ ——»{ vt |
Developer 2
R

— —— O _user2 |
Developer n
—

I

Figure 2.15: Data sheets

www.newnespress.com

Electronic Systems Design 73

should be presented in a style that is quick and easy to read, and allows the designer to
evaluate the information to determine component suitability. Reading a component
datasheet takes practice and familiarity with the typical style of presentation [17].
Writing a data sheet takes much more practice.

There is no single style to the presentation of information within the datasheet, but
the following style for a digital IC is a good generic model:

e Company logo and part number (and name)

e Features: the general electrical and thermal features to be found within the
component

e Description: an introduction to the component

e Package types and pinout: the package types that the IC can be obtained in
and the pin designation (pinout) for each package type. Appendix C identifies
the main IC packages commonly used (see the last paragraph of the Preface
for instructions regarding how to access this online content).

¢ Functional block diagram: a block diagram of the internal architecture of the IC

e Absolute maximum ratings: the absolute maximum ratings give the values of
voltage, current, and temperature that, if exceeded, could cause permanent
damage to the component. Table 2.1 provides example absolute maximum
ratings for an example digital IC.

e ESD warning: a warning logo and description to identify the potential damage
to the component from electrostatic discharge (ESD)

e Terminology: identifies the terminology and abbreviations used in the data
sheet and their meaning

Table 2.1: Example absolute maximum ratings for a digital IC

Symbol | Parameter Value Unit
Ve D.C. power supply voltage —0.5to +7.0 | V

\% D.C. input voltage —0.5to +7.0 | V
Vo D.C. output voltage —0.5t0o+7.0 |V

lo D.C. output current +50 mA
lcc D.C. output current per supply pin | £100 mA
lanD D.C. ground current per supply pin | £100 mA
Tsee Storage temperature —65to +150 | °C
T Lead temperature (10 sec) 300 °C

www.newnespress.com

74 Chapter 2

e Thermal information: temperature range and package thermal resistance
information

e Operating conditions: The D.C. power supply voltage and D.C. input voltage
range (minimum and maximum) expected for normal operation

e Static electrical specifications: voltage and current specifications—minimum
(MIN), typical (TYP) and maximum (MAX), or a subset of these—that must
be applied to the IC, or that will be guaranteed by the IC, for correct
operation. In addition, input and output capacitance of the inputs and outputs
would normally be provided.

e Description of operation: a detailed description of the operation of the IC,
including how the designer would use the features of the IC in his or her own
application

e Function pin definition: identification of the name and description of
operation for each pin on the IC in a table format

e Dynamic electrical specifications: timing information for the system timing
waveforms

o System timing waveforms: timing diagrams showing the required digital
timing for operation of the IC

o Example use: also shows how they can be interfaced to other electronic circuits

o Package dimensions: for the different packages in which the component is
available

The parameters for the device will be taken for specific test conditions, such as
ambient temperature and power supply voltage. These conditions should be
noted with care as the quoted parameters are only valid at these operating conditions.

Ty identifies the storage temperature for the IC. However, the IC will have
temperature ratings for different scenarios:

e Storage: the range in temperature that the IC can handle without damage
during component storage (before power is applied to the 1C)

e Lead: the absolute maximum temperature (for a given duration) that the IC
can handle at the IC lead (pin) without damage during component soldering to
a PCB

www.newnespress.com

Electronic Systems Design 75

e Junction: the maximum temperature that the die within the IC can reach under
any condition without damage

e Operating: the range in temperature that the IC can handle without damage
during component use. This will depend on the application, and the IC will be
one of the following types:

o Commercial: 0°C to +70°C
o Industrial: —-40°C to +85°C
o Military: —-55°C to +125°C

2.13 Digital Input/Output
2.13.1 Introduction

When preparing to transmit digital data in the electronic system, these questions need
to be asked:

e What is a logic level (0 or 1) in terms of the voltage levels in the circuit?

e How is the digital data to be transmitted? What is the communications
channel?

e What preprocessing must the data undergo before it can be transmitted, and
what postprocessing must the data undergo after it has been received?

e What effect does the communications channel have on the signal?

Data transmission can take a number of forms and serve different purposes; an
example of this is shown in Figure 2.16. Here, a number of PCs are locally connected
on a LAN and connected to the external world using the telephone line (modem), the
Internet (telephone or dedicated lines), and satellite.

Figure 2.16 shows the communications between large electronic systems.
Communications will also occur locally within the system itself, whether within
individual ICs, between ICs on a PCB, or between subsystems (e.g., between separate
PCBs). Whatever the purpose of the communications is, there will be a need to
design to particular standards for the correct transmission and receipt of data at various
speeds of data transmission. Each digital IC will have pins to be used for creating
(transmitting) and capturing (receiving) digital data. The digital inputs to an IC and

www.newnespress.com

76 Chapter 2

Local PC

Satellite

p

[_j Local PC
ﬁi‘,;
3 o C):%

Internet A

Figure 2.16: Data communication examples

the digital outputs from an IC will adhere to particular standards. A number of the main

standards will be identified and discussed in Section 2.14, “Parallel and Serial

Interfacing.”

The 1/O signals will be either single ended or differential depending on the particular
standard. A digital IC will adhere to one or a number of standards. For example,

the Xilinx® range of field programmable gate arrays (FPGAs) and complex

programmable logic devices (CPLDs) can be configured by the user to adhere to one
of a number of standards. Table 2.2 shows example I/O standards that are supported
by the Xilinx® PLDs and configured by the designer. With such a programmable 1/O

Table 2.2: Example I/O standards supported by the Xilinx® PLDs

Standard Standard Description

LVTTL Low-voltage transistor-transistor logic (3.3 V level)
LVCMOS33 Low-voltage CMOS (3.3 V level)

LVCMOS25 Low-voltage CMOS (2.5V level)

LVCMOS18 Low-voltage CMOS (1.8V level)

1.5V 1/O (1.5V levels) | 1.5V level logic (1.5V level)

HSTL-1 High-speed transceiver logic

SSTL2-1 Stub series terminated logic (2.5V level)

SSTL3-1 Stub series terminated logic (3.3 V level)

www.newnespress.com

Electronic Systems Design 77

Signal Signal
source destination

T VsiaNAL

% (a) Single-ended signaling

JuL

Signal Signal
source T VianaL destination

U

% (b) Differential signaling

Figure 2.17: Single-ended versus differential signals

capability, before the device has been configured with the appropriate standard, the
device will default to one of the standards. It is therefore important for the designer to
identify the default standard and the implications of using a particular standard on

the overall circuit operation.

A single-ended signal is a single signal on a single wire that creates a voltage that is
referenced to a common point in the circuit (usually the 0 V common connection).
Differential signals utilize two wires to carry complementary signals, and the signal
is the difference in voltage between the two wires (Figure 2.17). Differential
signaling is suitable for use with low-voltage electronics (such as mobile devices
that obtain power from batteries) and is robust against noise added during data
transmission.

Two important points to note with digital logic ICs are:

1. No input to an IC input is to be left unconnected (referred to as floating
input). If an input to an IC is not required, then it must be tied to logic level
(0 or 1). This is usually achieved by connecting a high-resistance value resistor
(typically 10 to 100 k€2 in value) between the unused input and one of the power
supply connections (Vpp for logic 1, Vsg or GND for logic 0). In some ICs,
specific inputs might be designed to be used only for specific circumstances and

www.newnespress.com

78 Chapter 2

will have integrated into the IC input pin circuitry a pull-up (to logic 1) or
pull-down (to logic 0) component. Such integrated pull-up or pull-down
components alleviate the need for the designer to place resistors on the PCB
and so reduce the PCB design requirements.

2. Where a logic gate only produces a logic 0 or 1 output, then no two or more
logic gate outputs are to be connected together unless the implementation
technology (the circuitry within the logic gate) allows this. Certain logic gate
outputs can be put into a high-impedance state, which stops the output from
producing a logic output and instead turns the output into a high-impedance
electrical load. Circuits with a high-impedance output are used where multiple
devices are to be connected to a common set of signals (a bus) such as a
microprocessor data bus.

Whenever an FPGA or CPLD is used, there may be situations where not all of the
available digital I/O pins are used. In this case, the unused pins are not connected
to any circuitry and would be left unconnected on the PCB. However, internally
within the FPGA or CPLD, the pin circuitry would be arranged so that it would
not be left floating. The designer of a system using FPGAs or CPLDs should check
what happens when the pin is not used (i.e, not configured) given the particular
arrangement of the device.

In telecommunications systems, the transmission of high-speed digital data is often
tested using an eye diagram (or eye pattern). Essentially, this is an oscilloscope display
where the received data is sampled at a fixed rate and applied to the vertical input of
the oscilloscope. The data rate is then used to trigger the horizontal sweep of the
oscilloscope. The eye diagram is so called because, for several types of signal, the
pattern looks like a series of eyes. In Figure 2.18, the top eye diagram is for an
undistorted signal, and the bottom eye diagram includes the noise in the signal and
signal timing errors.

Analysis of the eye diagram can identify issues such as:

e signals that are poorly synchronized to the system clock
® noise
e overshoot and undershoot

e signal jitter (variance in signal transmission timing)

www.newnespress.com

Electronic Systems Design 79

T Undistorted signal:
Q i » known signal voltage

range and timing

Signal amplitude

Time

Distorted signal: Timing
variation observed

Distorted signal:
Voltage variation
observed

Figure 2.18: Eye diagram: undistorted signal (top) and distorted signal (bottom)

2.13.2 Logic-Level Definitions

When designing with logic gates, the primary concern is to consider the logic levels
(logic 0 and logic 1) and ensure that the correct logic levels appear at the required
nodes in the circuit at the right time. However, the underlying circuitry within the
logic gates is analogue (using transistors), so the voltages and currents in the design
must be considered. Shown in Figure 2.19 is a two-input AND gate with voltage
signal generators connected to the inputs 4 and B, and the resulting voltage is
monitored at the output Z.

Figure 2.19: Two-input AND gate with voltage sources

www.newnespress.com

80 Chapter 2

When the voltages and currents are considered, the two values in the digital world (0 or 1)
become, in the analogue world, continuously varying signal levels between a lower and

upper limit. A logic level would be defined by a band of voltage levels from a predefined
minimum level to a predefined maximum level. For each voltage, the following are defined:

* VL
Maximum input voltage that can be interpreted as a logic 0

* Vi
Minimum input voltage that can be interpreted as a logic 1

* VoL
Maximum output voltage when the output is a logic 0

* Vou
Minimum output voltage when the output is a logic 1

These voltage levels are discussed in the next section.

In addition to the voltages defined above, the logic gate will also have low-level and
high-level input and output currents as shown in Figure 2.20:

* LIin

High-level input current: the current that flows into an input when a high-level
voltage (value to be specified) is applied

e I
Low-level input current: the current that flows out of an input when a low-
level voltage (value to be specified) is applied

B
i lon
Input B
P I loL } Output Z

Figure 2.20: Two-input AND gate with current definitions

www.newnespress.com

Electronic Systems Design 81

* Ion
High-level output current: the current that flows out of an output when a
high-level voltage (logic 1 output) is created. The output load conditions will
need to be specified.

e IoL
Low-level output current: the current that flows into an output when a low-
level voltage (logic 0 output) is created. The output load conditions will need
to be specified.

When designing with digital ICs, these voltage and current figures should be provided
in the particular device data sheet.

2.13.3 Noise Margin

In digital logic, two logic levels are defined: logic 0 and logic 1. Each logic level
will represent a voltage the analogue circuit level (the transistor operation within
the digital logic gate). In the digital logic inverter, the input and output voltages
and how they will create the required logic levels can be considered. Consider the
static CMOS inverter, which uses one nMOS and one pMOS transistor as shown
in Figure 2.21. Here, the logic symbol and the transistor level connections are
shown.

The circuit requires a DC power supply voltage (Vpp/Vss) to operate. Here, two
signal voltages are identified (Vin and Voyut), which represent the input and output
voltages. A logic 0 will be considered as an input voltage at the Vgg (0 V) level, and a
logic 1 will be considered an input voltage at the Vpp (+3.3 V) level. For each voltage,
the following are defined:

° Vi
Maximum input voltage (Vn) that can be interpreted as a logic 0

* Vi
Minimum input voltage (Vn) that can be interpreted as a logic 1

* VoL
Maximum output voltage (Voyut) When the output is a logic 0

* Vou
Minimum output voltage (VouT) when the output is a logic 1

www.newnespress.com

82 Chapter 2

Vop
‘ (e.g.,+3.3V)
& pMOS
transistor
A—e@ z
nMOS
- transistor
Vi Vout
1 Vss
(e.g., +0V)

Figure 2.21: Static CMOS inverter

Inverter logic symbol

Inverter
transistor
connections

This means that the input and output voltages will not be a single value, but rather the
logic level will represent a band of voltage levels from a predefined minimum level to a
predefined maximum level. Two values for noise margin are then identified:

e NM_

Noise margin for low levels: NMy =V — VoL

e NMjy

Noise margin for high levels: NMy=Voy — Vig

Figure 2.22 graphically displays the noise margin and hence the tolerance of the
circuit to variations in voltage level so the logic levels can be viewed. The noise margin
for a circuit becomes increasingly important for low-voltage systems (moving down to
and below 1.0V Vpp) as the noise margin decreases and the potential for noise to
corrupt values can increase (a logic 0 level becomes a logic 1, and vice versa).

Table 2.3 provides the Vi, Vig, Vor. and Vgoy voltage levels for several TTL and
CMOS family variants [18] when Vpp/Vcec is +5.0 V.

www.newnespress.com

Electronic Systems Design 83

Vin Vour
V N VN
Vbp
-~ VOH
NMy
VlH k-------_-"
i Transition region
Vi il
NM_
A 4 VOL
Vss

Figure 2.22: Noise margin definitions

Table 2.3: TTL and CMOS family variants

Parameter/Device | V) (max) | Viy (min) | Vo, (max) | Vou (min)
CMOS

4000B 1.5 3.5 0.05 4.95
74HC 1.0 3.5 0.1 4.9
74HCT 0.8 2.0 0.1 4.9
74AC 1.5 3.5 0.1 4.9
74ACT 0.8 2.0 0.1 4.9
TTL

74LS 0.8 2.0 0.5 2.7
74AS 0.8 2.0 0.5 2.7

2.13.4 Interfacing Logic Families

In an electronic system, ICs must be connected at the PCB level. When using digital
logic ICs, the designer may need to interface ICs that are based on different circuit

architectures (basically the different variants of TTL and CMOS logic), and that may
also operate at different power supply voltage levels. In such situations, the designer
will need to ensure that the device providing a signal can meet the voltage and current

www.newnespress.com

84 Chapter 2

requirements of the device or devices being driven. Two figures are normally quoted
for fan-in and fan-out, where:

e [an-in is the number of logic outputs that can be connected to a logic gate
input. Standard TTL and CMOS logic outputs (providing logic levels 0 and 1)
should not be connected together. However, certain digital ICs provide
for open-collector (TTL) and open-drain (CMOS) outputs as shown in
Figure 2.23. External to the IC is a resistor connected to V¢ (TTL) or
Vpp (CMOS). Open-collector and open-drain outputs can be connected
together.

e [Fan-out is the number of logic inputs that can be driven from a logic gate
output.

Vee Vee
R
(a) TTL open
Output collector output
Output
Vee
Vee
VDD VDD

(b) CMOS open

Output drain output

R
Output
Vss
Vss

Figure 2.23: Open-collector and open-drain outputs

www.newnespress.com

Electronic Systems Design 85

TTL Logic IC Driving a CMOS Logic IC

Considering both digital logic ICs operating on the same power supply voltage,
then with a CMOS logic gate input, the current that would flow into an input
would be low and a TTL device would be able to provide the necessary current
to drive one or more CMOS logic IC inputs. However, problems will occur when
considering the voltage levels required by the different technologies (Vir, Vi, Vor,
and Vop). Table 2.3 shows several examples. Some CMOS family variant devices
(e.g., 4000B, 74HC, and 74AC series) have Vi1, Vig, VoL, and Voy levels different
than TTL, whereas other family variant devices (e.g., 74HCT and 74ACT series)
have Vi, Vin, VoL, and Voy levels compatible with TTL. A common solution to
overcoming the problem for non-TTL level CMOS devices is to use an external
pull-up resistor as shown in Figure 2.24. Here, the power supply voltage is +5.0 V.
A typical value would be 10 k€.

When the TTL output is a logic 1, then the pull-up resistor will pull the voltage to
approximately +5.0 V, which produces a voltage high enough for the CMOS input to
receive a logic 1 input.

VDD (+50 V)

cMos IC
(40008,
74HC,
74AC)

% Vgs (0V)

Figure 2.24: TTL driving a non-TTL level CMOS logic IC

www.newnespress.com

86 Chapter 2

4000B
74HCT 74HC
TTL 74ACT 74AC

D—"——

Figure 2.25: TTL to CMOS using an HCT or ACT interface IC

An alternative interfacing method, as shown in Figure 2.25, is to use a 74HCT
or 74ACT device as a buffer between the TTL and non-TTL level CMOS
devices.

CMOS Logic IC Driving a TTL Logic IC

When a CMOS logic IC is to drive a TTL logic IC (+5.0 V power supply),
then:

e A 74HCT or 74ACT IC can be connected directly to a TTL IC.
e A 74HC, 74AC, or 4000B IC can be connected directly to a TTL IC.

Lower Power Supply Voltages

In past times, the +5.0V DC power supply was commonly used. Now,
however, many digital ICs operate at +3.3V, +2.5V, or +1.8V, with some
operating as low as +1.0 V. In this case, care is needed when using different
power supply voltages, particularly in many microprocessors, FPGAs, and
CPLDs that operate on a dual power supply (one power supply for the
core of the IC and a second for the I/O circuitry). The 1/O power supply
tends to be higher than the core power supply to enable connections

to other ICs.

In some cases, an IC would operate at a power supply of +3.3 V, with the digital logic
levels created by 0V (logic 0) and +3.3 V (logic 1), but would also be capable of
accepting a higher input voltage (+5.0 V tolerant) to enable direct connections to
+5.0V logic devices.

www.newnespress.com

Electronic Systems Design 87

Where mixed power supply voltages are to be used in a circuit, and the ICs working at
different power supply voltage levels and signals are to be connected, this is typically
achieved by:

1. Direct connection, if the ICs allow for this capability

2. Using a pull-up resistor where a lower-voltage device is to drive a
higher-voltage device

3. By using a special level translator 1C
4. By configuring the I/O pin to the required standard (if possible)
Techniques 1 to 3 are shown in Figure 2.26 and Figure 2.27 in relating +2.5V logic

to +3.3V logic. A similar approach would be taken for interfacing +3.3V logic to
+5.0V logic. Technique 4 would be identified in the particular IC data sheet.

| +sav] s2sv

Direct
connection +3.3V
+3'3 v) +2'E? v tolerant
logic logic inputs
Vss (0V)

Level

logic
translator
é Vss (0V)

Figure 2.26: +3.3V to +2.5V interface

www.newnespress.com

88 Chapter 2

—|— +2.5V

+2.5V

Direct
connection

—|— +3.3V

logic

N +3.3V
Y logic

If high-level output
from +2.5V IC is
sufficient to drive a
logic 1 into the
+3.3VIC

+2.5V
logic

+2.5V

+3.3V

logic

-

Y logic
Level

translator |

é Vss (0V)

Figure 2.27: +2.5V to +3.3V interface

www.newnespress.com

Electronic Systems Design 89

2.14 Parallel and Serial Interfacing
2.14.1 Introduction

Interfacing the electronic system allows the electronic circuit or system to
communicate internally and externally. The communications interface allows the
transmission of either analogue signals or digital data. A system that transmits data to
and receives data from an external source is shown in Figure 2.28.

Each electronic system communicates with other systems by transmitting data via a
transmitter (Tx) subsystem and receives data via a receiver (Rx) subsystem. The medium
between the two systems is the communications channel. However, when analogue
signals or digital data are transmitted through the communications channel, noise
might be added to the signal, potentially corrupting the data. A great deal of care must
be taken to ensure that the electronic systems do not use corrupted information.

Although information can be sent or received as analogue signals or digital data,
digital data transmission is increasingly common and occurs as either parallel or serial
data transmission:

e Parallel data transmission. Multiple bits of data are transferred
simultaneously, allowing high-speed data transfer.

e Serial data transmission. One bit of data is transferred at a time (a serial
bitstream). Serial data transmission takes longer, but when the data is
transmitted on electrical wires (typically copper wires), fewer wires are
required than with the parallel data transmission. Serial data transmission also
lends itself to data transmission via optical fibers and wireless methods.

...

: Transmitter Receiver
i | Electronic (™) (Rx) Electronic | |
i system 1 Receiver Transmitter system 2 |
! (Rx) (Tx) i

Communications
channel

Figure 2.28: Data transmission and receipt

www.newnespress.com

90 Chapter 2

LAN USB Parallel VDU
(x2) port

VDU Modem Serial External
port power

Figure 2.29: Rear view of laptop identifying PC connections

Many systems allow several parallel and serial communications standards. The PCis a
good example. Figure 2.29 shows the rear view of a PC, with several connections
identified.

When the data are transmitted, they must be received and stored for use. Data
transmission will be either synchronous or asynchronous:

e Synchronous, in which a continuously running clock is carried along with the
data, and the data are synchronized with the clock. Both of these signals are
received by the receiver circuit, and the receiver uses both the clock and the
data inputs to capture and store the data for use.

e Asynchronous, in which only the data are transmitted. An internal clock within
the receiver is used to synchronize the receiver with the data in order to
capture and store the data for use.

The basic idea is shown in Figure 2.30.

For the synchronous data transfer, a separate clock is shown for the transmitter and
receiver. In practice, there might only be one common clock for the transmitter and
receiver.

During data transmission, errors can occur when noise is added to the signal and
when the noise is large enough to corrupt the data being transmitted. The transmitter
circuit can include the ability to add information to the data before they are
transmitted, and the receiver circuit can include the ability to identify whether the
data it has received appears to be OK or has been corrupted. A simple method for
error checking is to use parity checking, in which a bit is added and transmitted with

www.newnespress.com

Electronic Systems Design 91

E Transmitter |t Clock . Receiver N E
: (Tx) : : (Rx) E
| Electronic | Data E Electronic | !
| system 1 E E system2 |1
E | Receiver : Clock | Transmitter E
:) (Rx) ; ; (Tx) |
! " Data | !
(a) Synchronous data transmission
e CoTTTTTTTTTTmmmmmm T T 1
E Transmitter | | Data ! Receiver !
: (Tx) | E (Rx) i
| Electronic E E Electronic | !
'| system 1 E E system2 | |
| y Receiver i Data | | Transmitter i
:) (Rx) | E (Tx) !

(b) Asynchronous data transmission

Figure 2.30: Synchronous and asynchronous data transfer

the data. Considering a byte of data (8 bits) as an example, parity checking is of two
types:

e Odd parity coding will set the parity bit to a logic 1 if the number of logic 1s in
the byte is even, so that the total number of logic 1s is an odd number. If the
receiver receives an odd number of logic 1s, then it will identify that the byte
was transmitted correctly.

e Even parity coding will set the parity bit to a logic 1 if the number of logic 1sin the
byteis odd, so that the total number of logic 1s is an even number. If the receiver
receives an even number of logic 1s, then it will identify that the byte was
transmitted correctly.

Parity checking is a rudimentary method, and most communications systems include
more sophisticated capabilities.

The characteristics of the channel must also be considered, the data may need to be
modulated before transmission. Modulation takes either of two forms:

® Baseband signals in digital are the 1s and Os being generated. On a PCB and
communicating between ICs on the PCB, baseband signals are used. These
signals cover a frequency range from DC to an upper frequency value.

www.newnespress.com

92 Chapter 2

e Modulated signals are baseband signals that have been modulated by a carrier
signal so that the entire signal is now at some higher frequency. Modulation
allows the baseband signals to be transmitted through a particular
communications channel. When modulated signals are transmitted and
received, the electronic system must include a modulator and a demodulator.

The transmission of the signal through the communications channel can be either
one-way or two-way, so the designer must decide whether the communication is to be
simplex, half-duplex, or full-duplex:

e Simplex, in which data transmission is one-way on a single channel.

e Half-duplex, in which data transmission is two-way on a single channel. This
means that the direction of data transmission alternates, so that the system
would be able to receive or transmit, but not both at the same time.

e Full-duplex, in which data transmission is two-way on two channels. This means
that an electronic system would be able to receive or transmit at the same time.

This idea is shown in Figure 2.31.

Finally, the signal will be transmitted through the communications channel via
electrical wires, optical fibers, or using wireless methods.

e Wired, in which metal wires, typically copper, are used to transmit the
electrical signal.

e Optical fiber, in which an electrical signal is converted to an optical (light)
signal and transmitted along the optical fiber. This allows high transmission
rates and low loss, so that signals can be transmitted over long distances, and a
low bit error rate. The electrical signal is generated either by a light-emitting
diode (LED) creating noncoherent light or by a laser creating coherent light.
At the receiver end, the signal is converted back to an electrical signal using a
photodiode or phototransistor.

e Wireless, in which an electrical signal is modulated and applied to an antenna.
The more popular modulation methods are AM (amplitude modulation),
FM (frequency modulation), and PM (phase modulation). The signal is
transmitted through free space, and at the receiver, another antenna picks
up the transmitted signal, demodulates it, and restores it. It must then be
amplified before it can be used.

www.newnespress.com

Electronic Systems Design 93

r
i | Transmitter Receiver
' | Electronic [7 (Tx) (Rx) Electronic | |
| system system | 1
E 1 2 !

Communications
channel
(a) Simplex communications
. TTTTTTTTTTTmmTmmoomommommomsomooey
i »| Transmitter Receiver) E
1| Electronic [7 (Tx) (Rx) Electronic |
P| system system | |
' 1 Receiver | Transmitter 2 ;
i (Rx) 7] (Tx) :
Communications
channel
(b) Half-duplex communications

»| Transmitter Receiver :
Electronic (Tx) (Rx) Electronic | i
system system | |
1 Receiver Transmitter 2 :
(Rx) (Tx) i

Communications
channel

(c) Full-duplex communications

Figure 2.31: Simplex, half-duplex, and full-duplex communications

For wired communications, two example cable assemblies are shown in Figure 2.32.
The cable assembly on the left consists of a ribbon cable with IDC (insulation
displacement connector) terminations. The assembly on the right consists of a multicore
cable terminated at each end with a nine-way D-type connector (female); this type would
be used to connect an external electronic circuit to a PC via the RS-232C standard.

www.newnespress.com

94 Chapter 2

Figure 2.32: Example cable assemblies: IDC connector (left),
nine-way D-type connectors (right)

Both optical fiber transmission and wireless use the electromagnetic spectrum in the
transmission of signals [19]. Wireless transmission occurs at the lower frequencies,
and optical communications use infrared and visible light at the higher frequencies.
Wireless transmission frequencies fall into bands within the radio spectrum, from

3 Hz to 300 GHz. Table 2.4 shows the radio spectrum and the corresponding bands.

Table 2.4: Radio spectrum

Frequency Band
From To
3 300 Extremely low frequency (ELF)
300 3 kHz Voice frequency (VF)
3 kHz 30 kHz Very low frequency (VLF)

30 kHz 300 kHz | Low frequency (LF)

300 kHz | 3 MHz Medium frequency (MF)

3 MHz 30 MHz | High frequency (HF)

30 MHz | 300 MHz | Very high frequency (VHF)

300 MHz | 3 GHz Ultra high frequency (UHF)

3 GHz 30 GHz Super high frequency (SHF)

30 GHz 300 GHz | Extremely high frequency (EHF)

www.newnespress.com

Electronic Systems Design 95

Figure 2.33: Example antenna (60 kHz)

An example of a low-frequency antenna, consisting of an inductor wound on a ferrite
core with a parallel capacitor to form a 60 kHz tuned circuit, is shown in Figure 2.33.
This antenna is secured to a PCB.

2.14.2 Parallel /0

Parallel 1/O allows groups of data bits to be transmitted simultaneously. In early
versions of the microprocessor, data was grouped into bytes (8 bits). Today,
microprocessors work with 8, 16, 32, 64, and 128 bits of data. Access to more memory
requires address buses with an increased number of bits and the required control
signals. The variety of parallel I/O standards available for use today include:

e (Centronics (PC printer port)

e [EEE 488-1975 (also known as GPIB, general purpose instrument bus)
e SCSI (small computer system interface)

e IDE (integrated drive electronics)

e ATA (AT attachment)

PC Parallel Port (Centronics)

The PC parallel port (by Centronics) was until recently the port used primarily to
connect the PC[20, 21] to a printer device, as shown in Figure 2.34. Here, each device is
fitted with a 36-pin connector, and byte-wide data are sent from the PC to the printer
(the peripheral) with handshaking—i.e., both the PC and the peripheral communicate
with each other to control data transmission to be at a time suitable for both.

96 Chapter 2

Printer
PC 36-pin connector

PEERN
- N
. N
. N [l
. N
. ~
. ~
- N
- N
. N

\{
\

Figure 2.34: Connecting a PC to a printer using the parallel port

Table 2.5 identifies the cable connections for the Centronics printer port. Signals are
transmitted on a twisted-pair (i.e., two wires twisted together) with its own common
connection. Signal directions are shown from the perspective of the PC rather than
the peripheral.

Today, the parallel port connection to the printer is usually replaced by a USB
interface.

Table 2.5: Centronics (printer) port signals (PC connector)

Name Pin Number Direction (PC) | Meaning

Signal | Common
STROBE 1 19 ouT Data strobe
DO 2 20 ouT Data bit 0 (LSB)
D1 3 21 ouT Data bit 1
D2 4 22 ouT Data bit 2
D3 5 23 ouT Data bit 3
D4 6 24 ouT Data bit 4
D5 7 25 ouT Data bit 5
D6 8 26 ouT Data bit 6
D7 9 27 ouT Data bit 7 (MSB)
ACKNLG 10 28 IN Finished with last character
BUSY 11 29 IN Not ready
PE 12 30 IN No paper
SLCT 13 - IN Pulled high
AUTO FEED XT 14 - ouT Auto LF
INIT 31 16 ouT Initialise printer
ERROR 32 - IN Can’t print
SLCT IN 36 - ouT Deselect protocol
GND - 33 - Additional ground
CHASSIS GND 17 - - Chassis ground

www.newnespress.com

Electronic Systems Design 97

2.14.3 Serial I/0O

To connect an electronic system to an external device such as a PC or
instrumentation, serial I/O is often preferred because it reduces the amount of
wiring required. This is particularly important when dealing with large data and
address buses, as when parallel 1/O is used, and the IC and wiring connectors need
to have more pins. This leads to larger IC packages and the need to route a large
number of tracks on the PCB. Many digital ICs (such as memories) now provide
serial I/O rather than parallel I/O to reduce the package requirements. In the circuits
within such serial ICs, however, data serial-to-parallel and parallel-to-serial
conversion capabilities are needed. Among the serial 1/O standards available for
use today are:

e RS-232C
e RS-422

e RS-423

e RS-485

e FEthernet
e USB

e IS (inter-IC sound bus)

e I°C (inter-IC bus)

e SPI (serial peripheral interface)

e Firewire (IEEE Std 1394a-2000)

e Serial ATA

e Bluetooth (wireless)

e Wi-Fi (wireless, based on IEEE Std 802.11)
e Zigbee (wireless, IEEE Std 802.15.4).

For serial data transmission, each bit is sent one at a time. The bif rate is the number
of bits sent per second. For serial data transmission, the baud rate is the same as the

bit rate.
www.newnespress.com

98 Chapter 2

RS-232C

This has been a serial I/O available on PCs until the last couple of years, when it has been
replaced by a USB. However, it is an important standard and provides an important
introduction to serial communications. Bytes of data are sent as a serial bitstream
asynchronously between terminals (such as between a PC and another PC or a modem),
as shown in Figure 2.35, first the LSB (least significant bit) then the MSB (most
significant bit). Typical baud rates for RS-232C used for data transmission on PCs are:

e 9,600 baud

e 19,200 baud
e 38,400 baud
e 115,200 baud

Serial data is transmitted and received via a circuit called a UART (universal
asynchronous receiver transmitter). One example is the CDP6402 CMOS Universal

Tx Rx

Tx

y N

Rx

(b) PC to modem data transmission

Figure 2.35: Uses for RS-232C

www.newnespress.com

Electronic Systems Design 99

Asynchronous Receiver/Transmitter (UART) [22] from Harris Semiconductor. This
circuit provides a 40-pin DIP device with internal serial-to-parallel, parallel-to-serial
conversion and control logic.

RS-232C provides a means to send bytes of ASCII data between devices. ASCII is the
most widely used alphanumeric code in use and stands for American Standard Code
for Information Interchange. The ASCII code is a seven-bit code, so there are

27 =128 possible codes. The first 32 are control codes (nonprintable), and the
remaining 96 character codes are printable characters. Table 2.6 shows the ASCII
character set. This contains columns (0-F) and rows (0-7).

This panel is organized as follows: the code is presented in hexadecimal number
format with:

e row numbers representing the first digit (0-7), 3 bits
e column numbers representing the second digit (0-F), 4 bits
For example, the letter 4 is ASCII code 415 (64;9).

A byte of data is sent serially in the form shown in Figure 2.36. Here, when data is not
being sent, the level is a logic 1. A start bit (logic 0) indicates the start of the byte
transmission. Eight data bits (or seven data bits and a parity bit) are then sent,
beginning with the LSB (data bit 0). A logic 1 indicates a stop bit, and the signal then
remains at a logic 1 until the next start bit occurs.

Within an electronic system, the logic levels are generated by a digital IC typically
operating on a +5.0 V or +3.3 V power supply. For transmission, these voltage levels
must be increased to achieve the voltage limits set by the standard. A logic 0 is a voltage
between +3V and +15V (also referred to as the space), whereas a logic 1 is a voltage
between -3 Vand —15V (also referred to as the mark). This idea is shown in Figure 2.37,
where a digital signal is shown with the voltage levels for signal transmission.

The last bit of data (data bit 7), noted as the MSB, can also be used as a parity bit. If
the MSB is used as a parity bit, then the data is reduced to 7 bits. As the data is sent
asynchronously, the receiver and transmitter must create their own internal clocks.
With the UART, this clock is set to be sixteen times that of the baud rate. Table 2.7
shows the UART clock frequencies required for different baud rates.

To translate the voltage levels generated by a digital IC with those required
for transmission, a suitable transceiver such as the MAX-232CPE [23] (3.0V

www.newnespress.com

3
3
h
=]
o
g
=]
[0}
n
©
=
o
n
n
o
o
3

Table 2.6: ASCII codes

0 1 2 3 4 5 6 7 8 9 A B C E F
0 | NUL | SOH | STX | ETX | EOT | ENQ | ACK | BEL | BS TAB | LF VT FF | CR | SO | SI
1 | DLE | DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN | EM SUB | ESC | FS | GS | RS | US
21sp |1 " # $ % & ’ () * + -y
310 1 2 3 4 5 6 7 8 9 ; < | = > ?
4| @ A B C D E F G H I J K L M N (@)
s|p Q R s T U v W X Yy |z [U I P
6 |- a b c d e f g h i j k | m | n o
71p q r s t u v w X y z { | |} ~ DEL

00!

z 4a1dvy>

Electronic Systems Design 101

8 data bits

V'S
v

/1 TX

Start Databit 0 Data bit7 gtop
bit (LsB) (MSB) bit

Figure 2.36: RS-232 timing waveform (logic levels)

Logic 0

Logic 1

Figure 2.37: RS-232 timing waveform (voltage levels)

Table 2.7: Baud rate and UART clock frequency

Baud Rate UART Clock Frequency (Hz)
9,600 baud 153.6 k

19,200 baud 307.2 k

38,400 baud 614.4 k

115,200 baud 1.8432 M

power supply version) from Maxim Integrated Products is typically used. This
accommodates an IC (in a 16-pin DIL package) with external capacitors, thereby
providing the necessary circuitry to connect devices such as FPGAs and CPLDs to
transmit and receive RS-232C level signals.

The connector for the RS-232C wiring is either a 25-pin or a 9-pin D-type connector.
Both male (plug) and female (socket) connectors are used. Figure 2.38 shows PCB

www.newnespress.com

102 Chapter 2

Figure 2.38: Nine-way PCB mount D-socket (left) and D-plug (right)

Table 2.8: Nine-way connector pin-out (from DTE)

Name | Pin Number | Direction | Function

DCD 1 IN Data carrier detected
RD 2 IN Received data

TD 3 ouT Transmitted data
DTR 4 ouT Data terminal ready
SG 5 — Signal ground

DSR 6 IN Data set ready

RTS 7 ouT Ready to send

CTS 8 IN Clear to send

RI 9 IN Ring indicator

mount 9-pin D-type plug and socket. In the standard, two types of equipment were
originally considered, data terminal equipment (DTE) and data communication
equipment (DCE). Care must be taken when connecting equipment together to ensure
that the right connections are established.

Table 2.8 identifies the connections for the 9-way connector for data terminal
equipment. Because signals will be transmitted both ways, care must be taken to
ensure that the correct connections are established. In a minimal form, with no
handshaking needed, only the TD, RD, and SG connections are needed.

2.15 System Reset

At some point during the operation of a digital circuit or system, there will be the need
to reset the circuit into a known state. This is particularly important when the power
supply is first switched on to an electronic circuit as the state of the circuit is not then
known. Circuits typically include a reset input connection in the pins of their ICs to

www.newnespress.com

Electronic Systems Design 103

reset internal connections (on the bistables) within the design. The reset signal will be
designed to occur (be asserted) when:

e the power supply is initially switched on

e some time during the normal circuit operation when the circuit must be reset
for normal circuit operation.

When the power supply is initially switched on, the power supply voltage at the power
supply pins of the ICs in the circuit will take a finite time to increase from 0V to the
normal operating voltage (e.g., +3.3 V). During this power supply voltage rise time,
the power supply voltage of the ICs increases to the normal operating voltage of the
power supply, which will be sufficient to operate the ICs:

e The power supply voltage is designed to have a typical value (e.g., +3.3 V) with a
tolerance (e.g., £10%). If a tolerance of £10% is set for a nominal +3.3 V power
supply, then the power supply voltage would be in the range +3.0 to +3.6 V.

e The ICs used in the circuit have a typical power supply voltage value (e.g., +3.3 V),
but with a tolerance over which the operation of the IC is guaranteed.

The tolerance of the power supply voltage must be such that all components in the
circuit will operate correctly over the normal power supply voltage range variance.

When the power supply is initially switched on, the power supply voltage will rise to a
level at which the IC will start to operate correctly (the power supply threshold voltage), as
shown in Figure 2.39. When this threshold voltage has been reached, the circuit will
operate correctly. During the device power-up, the device should be held in its reset state
(i.e., the reset input is asserted). After the threshold voltage has been reached, the reset
should be removed. The top graph of Figure 2.39 identifies the power supply voltage rise
(in time), and the bottom graph identifies the reset (/reset as it is active low here) signal
being asserted (logic 0) and removed (logic 1).

The reset signal can be generated in one of three ways:
1. Dby using a discrete RC (resistor-capacitor) network
2. by using a discrete power-on reset (POR) circuit
3. by using an integrated POR circuit

In a discrete RC network, the resistor and capacitor are connected in series across the
power supply. Initially the voltage across the capacitor is zero, and when the power supply

www.newnespress.com

104 Chapter 2

Voltage
Power supply voltage
E Threshold voltage
» Time
(a) Power supply
Voltage
- 5
E /Reset voltage
—P 4—— Delay
: b Time
(b) /Reset signal

Figure 2.39: Power supply threshold voltage

is switched on, the capacitor starts to charge (an exponential rise in voltage) with a time
constant set by (R.C). This is the reset voltage and can be applied directly to the reset pin
of the IC. Although this is a simple circuit to implement, it is limited by the rise time of this
signal, particularly for high-speed logic. The input to the IC should be a Schmitt Trigger
input rather than a simple digital input buffer. Figure 2.40(a) shows an addition to this
circuit, a push-switch across the capacitor to allow for a manual (user) reset.

In a discrete POR circuit, an external IC acts to create the reset signal for the circuit.
An example arrangement with a manual reset switch input is shown in Figure 2.40(b).
The choice of which POR circuit to use, discrete or integrated, depends on the
threshold required [24]:

1. The power supply voltage has a nominal value with a tolerance.

2. The IC to be reset requires a nominal power supply voltage with a tolerance
to operate correctly.

3. The circuit is designed so that it will tolerate short power supply glitches, and
the POR does not assert a reset signal if a short power supply glitch occurs
but would not affect circuit operation.

Where multiple ICs are to be reset, the order in which the resets are to be asserted and
removed is a consideration. Additionally, the circuit may contain ICs operating on
different power supply voltages, and so multiple reset signals will be needed.

www.newnespress.com

Electronic Systems Design 105

Vop
Vbp E—J

/Reset /Reset
- i

Cc

—

Push to Digital

manually l V. IC

reset the q ss
IC Vss

(a) Discrete RC network

/Reset Jll—— /Reset

—) POR Digital

)—- /MR IC
VSS VSS

Push to

manually

reset the
IC

Vss

(b) Discrete POR circuit

Figure 2.40: Different circuit reset methods

2.16 System Clock

In many electronic circuits and systems, one or more clock signals are required to
control the timing of circuit operations. These clock signals are needed to generate the
required clock frequencies and to operate at the required power supply voltage levels,
and must remain stable (in the generated frequency) over variations in the power
supply voltage, over the operating temperature range, and over time.

www.newnespress.com

106 Chapter 2

Not
1 connected or Vop 14

enable output

Package top view

7 ‘ VSS OutputF 8

Figure 2.41: Four-MHz oscillator module in 14-DIP package: top
and bottom views (top) and typical pin-outs (bottom)

A clock is generated using one of four types of circuit:
1. RC network
2. Quartz crystal
3. Through-hole-mounted oscillator modules
4. Surface-mount oscillator modules

For simple clocks, then an RC network connected to suitable circuitry within the IC is
sufficient (a simple example of this would be the 555 timer IC). However, accurate timing can
be difficult because of tolerances in the values for the resistor and the capacitor. A quartz
crystal (available in either a through-hole or surface-mount package) connected to suitable
circuitry within the IC provides a more accurate clock. This two-terminal device is connected
to circuitry internal to the IC so that the crystal creates an oscillatory electrical signal.
Oscillator modules, which are complete clock signal generators, are available in either
through-hole or surface-mount packages. Figure 2.41 shows an example of a through-
hole-mounted 4 MHz oscillator module in a metal case. This is in a metal 14-pin DIP package
with four pins: two for the power supply, one for the oscillator output, and one which would
either be unused (not connected) or used in some modules for a clock enable signal.

www.newnespress.com

Electronic Systems Design 107

2.17 Power Supplies

Whether AC or DC, the power supply provides the necessary power to operate the
circuit. It requires an energy source and will modify the energy to provide the necessary
voltages and currents required by the circuit, as shown in Figure 2.42. This power
supply must guarantee circuit operation within a set range (a nominal value with a
tolerance), be stable over the operating temperature range, be stable over time, and
provide the necessary voltages and currents required by the electronic circuit or system.

The choice of power supply is concerned with:
e the means by which to obtain the energy input
e the required AC and DC voltage and current outputs
e the size and weight of the power supply

e whether the electronics are static (located in a single location) or portable
(mobile)

e the length of time that the power supply is required to operate before it must
be recharged or replaced

A fixed power supply that is to operate indefinitely without being recharged or
replaced will operate from either the domestic or industrial mains power supply or
from a generator (such as a wind turbine or solar panel). A portable power supply
utilizes batteries, whether disposable or rechargeable (from a fixed power supply).
In addition, voltage must be converted from AC input to DC output (using a
transformer and diode-based rectifier circuit or a switched-mode power supply), or
from DC input to AC output (using an inverter, for example, to operate mains
powered electronic equipment from a car battery).

p—p \/0ltage output 1

> \/oltage output n

Voltage output
power supply

Energy source

p——>p Current output 1

Current output
power supply

— Current output n

Figure 2.42: Power supply generating multiple voltage and current power supplies

www.newnespress.com

108 Chapter 2

4— Battery

'\ Battery charger connection

(on side of phone casing)

Figure 2.43: Mobile phone (portable electronics using a battery power supply)
Images courtesy of NEC, © NEC 2001-2004, no longer in stock

Figure 2.43 shows the example of a mobile phone (specifically, the NEC ¢228). This
is a third generation (3G) mobile phone for use with the 3G mobile phone standards
and technology. Such devices provide for a wide range of services for individuals to
effectively communicate with each other using voice, text and video
communications means. The left view shows the front of the phone (the user
interface). Because this is a portable device, the phone will operate on a rechargeable
battery (3.7 V DC and 1,100 mAh rated lithium-ion) with a charge lifetime in hours.
The battery location is shown in the right view, housed in the rear of the mobile
phone with the back removed.

The battery is recharged using a battery charger that operates from a domestic
electricity connection. A battery consists of one or more electrochemical cells that
converts chemical energy to electrical energy. Batteries will be classed as either
disposable or rechargeable, where:

1. Disposable batteries transform chemical energy into electrical energy and
when the energy has been taken from the battery it cannot be restored.
These are “use once” batteries and are carefully disposed of (in accordance
with the required legislation) when the battery can no longer provide
electrical energy. A range of battery types is available and the type of battery
would be chosen for the required application. Battery types include alkaline
and silver-oxide.

www.newnespress.com

Electronic Systems Design 109

2. Rechargeable batteries also transform chemical energy into electrical
energy, but the energy can be restored by the supply of electrical energy to
the battery. These batteries can be recharged and so can be used multiple
times. A range of battery types is available and the type of battery would
be chosen for the required application. Battery types include nickel-
cadmium (NiCd), nickel-metal hydride (NiMH) and Lithium-ion.

2.18 Power Management

When an electronic circuit or system is operating, it will consume power from either
a fixed or portable power supply. The power consumption for some circuits can be
large, so any reduction in the power consumption of the circuit is beneficial:

e It will consume less power and so be cheaper to operate.

e [t will be suitable for portable, battery-operated systems required to operate
for long durations between charges.

e It will require less heat removal (some ICs such as the microprocessor will
generate heat, which must be removed so the microprocessor can operate
without failure), and so the heat removal system would be smaller and
cheaper.

e The power supply would be smaller, lighter, and cheaper.

Power consumption can be considered by looking at all stages in the creation and use
of the design, in particular by considering:

1. Design architecture. Design circuits using circuit architectures that will
consume less power.

2. Fabrication process. Within an IC the circuits consist of transistors, resistors, and
capacitors. Most ICs are silicon based, and the circuits are bipolar and MOS
transistors. CMOS is suited for low-power, low-voltage circuits, and static
CMOS circuits provide low-power consumption when the circuit activity is low.

3. Reduced power supply voltage. Using electronic components that can operate
at low power.

4. Minimized circuit activity, keeping signal logic transitions from 0 to 1 and
1 to 0. In static CMOS logic gates, current flows when nodes in a digital logic

www.newnespress.com

110 Chapter 2

design change their logic levels, which happens when the transistor switches
move from closed to open and open to closed positions. If this activity is
reduced, then less current would be required to flow from the power supply.

5. Power management features. Some [Cs provide the ability to shut down parts of
the circuit when they are not used. (For example, RF transmitters consume
considerable power when the RF circuitry is active, but this circuitry might only
be required to be operational for short periods of time.) Additionally, some
microprocessors allow reduced clock frequency within the microprocessor itself
when the required activity of the microprocessor is low.

2.19 Printed Circuit Boards and Multichip Modules

An electronic system consists of a number of subsystems and components that are
connected together to form the required overall system. In many cases, the main
functions of the system are created using integrated circuits mounted onto a PCB.
There are four package levels between a circuit die (within a package) and the PCB [25]:

1. Die level—Bare die (predominantly based on silicon).
2. Single IC level—Packaged silicon die (considering a single packaged die).

3. Intermediate level—Silicon dies (die level) and/or packaged dies (single IC level)
are mounted onto a suitable substrate that may or may not be further packaged.

4. PCB level—Printed circuit board level.
Combining these four levels creates four types of packaged electronics:
1. Type 1—Packaged silicon die mounted onto a PCB.

2. Type 2—Packaged silicon die mounted onto an intermediate substrate that is
then mounted onto a PCB.

3. Type 3—A bare silicon die mounted onto an intermediate substrate that is
then mounted onto a PCB.

4. Type 4—A bare die mounted directly onto a PCB.

Many semiconductor devices contain a circuit fabricated on a single die (as in the
single IC level). However, sometimes multiple dies are housed within the package,

www.newnespress.com

Electronic Systems Design 111

such as a device that contains a sensor (e.g., accelerometer) along with sensor signal
conditioning circuitry and a communications interface. For either technical or cost
reasons, the sensor and circuitry cannot be fabricated on a single die. Where multiple
dies will be housed within the package, this device is referred to as a multichip module
(MCM, originally referred to as a hybrid circuit). The MCM consists of two or more
integrated circuits and passive components on a common circuit base (substrate), and
interconnected by conductors fabricated within the substrate. The ICs may be either
packaged dies or bare dies (an unpackaged known good die, KGD).

The MCM was developed to address a number of issues relating to the need to reduce
the size of increasingly complex electronic circuits and to the degradation of signals
passing through the packaging and interconnect on a PCB. The MCM can provide
advantages in certain electronic applications over a conventional IC on a PCB
implementation such as:

e increased system operating speed
e reduced overall physical size
e ability to handle ICs with a large number of 1/Os

e increased number of interconnections in a given area (higher levels of
interconnect density)

e reduced number of external connections for a given functionality (as the
majority of the interconnect is within the MCM itself)

In addition, an MCM may contain dies produced with different fabrication processes
within a single packaged solution (e.g., mixing low-power CMOS with high-power
bipolar technologies). There are a number of types of MCMs that can be realized:

e MCM-D—MCMs whose interconnections are formed by thin film deposition
of metals on deposited dielectrics. The dielectrics may be polymers or
inorganic dielectrics.

e MCM-L—MCMs using advanced forms of PCB technologies, forming copper
conductors on laminate-based dielectrics.

e MCM-C—MCMs constructed on co-fired ceramic substrates using thick film
(screen printing) technologies to form conductor patterns. The term co-fired relates
to the fact that the ceramic and conductors are heated in the oven at the same time.

www.newnespress.com

112 Chapter 2

Bare Die MCM Package

-

Bond Wire & Package Pin

Substrate ./

Printed Circuit Board

Figure 2.44: Example MCM structure

e MCM-D/C—MCMs using a deposited dielectric on co-fired ceramic.

e MCM-Si-—MCMs using a silicon-based substrate similar to conventional
silicon ICs.

The MCM typically uses a similar package as that used for the integrated circuit, so
it is not obvious that the package contains multiple dies and sensors unless the
structure and operation of the packaged device is known. Figure 2.44 shows the
cross-section of a MCM in which the dies are mounted onto a substrate and
electrically connected to the substrate using bond wires. This MCM is mounted
directly to the PCB. The substrate contains additional interconnect in a similar way
to the PCB.

2.20 System on a Chip and System in a Package

An extension to the basic integrated circuit is the system on a chip (SoC) [26]. This is
essentially a complex (mainly digital) IC that can be considered as a complete
electronic system in a single IC. Modern communications ICs are examples of SoC
design. The need to develop such complex ICs has been in response to the end-user
requirements, who need:

e increased device functionality (more circuitry per mm? of silicon area)
e higher operating frequencies
e reduced physical size (more circuitry in a smaller package)

e Jower cost

www.newnespress.com

Electronic Systems Design 113

The ability to integrate complex digital circuits and systems on a single circuit die has led
to incorporating the functionality that was once manufactured as a discrete chip-set
within the single IC itself. The SoC includes a number of interconnected circuits:

® one Or more processor cores
e one or more embedded memory macros (RAM and ROM)
e dedicated graphics hardware

e dedicated arithmetic hardware (e.g., adder, multiplier) for high-speed
arithmetic

e bus control circuitry for data, addresses, and control signals between the main
circuit blocks

e serial and parallel I/Os

e glue logic—miscellaneous logic for subsystem interfacing purposes
e data converters, ADCs and DACs

e Phase-locked loop (PLL)

An extension to the multichip module is the system in a package (SiP) [27]. The ITRS
[28] definition for the SiP is “any combination of semiconductors, passives, and
interconnects integrated into a single package.” SiP designs extend the concept of the
MCM from devices placed horizontally side-by-side and bonded to a substrate to
include the ability to vertically stack dies with bonding to the substrate.

2.21 Mechatronic Systems

Mechatronics [3, 29, 301—mechanical and electronics—is the combined design of
products and processes containing mechanical, electrical or electronic software, and
information technology parts. Systems that contain these parts are referred to as
mechatronic systems. The concept is shown in the Venn diagram in Figure 2.45. The
computer science set encompasses software engineering and information technology.
The union of the three sets is the mechatronic domain.

Mechatronics provides the focus required to bring together different disciplines and
create mixed-technology design. Traditionally, these have been housed in separate
departments within an organization, which has blocked effective communications in

www.newnespress.com

114

Chapter 2

Mechanical
engineering

Mechatronics

Electronic
engineering

Computer
Science

Figure 2.45: Mechatronics, combining the disciplines

the design process, with each discipline providing its own set of terminology and
competition instead of collaboration. The combined approach naturally removes
barriers and allows effective communications, thereby leading to an improved design
process and a higher-quality end product.

Example application areas of mechatronics include automotive, aerospace, space,
biomedical, and industrial control. Consider the motor control example shown in
Figure 2.46. Here, a DC electric motor is to be controlled by a CPLD, the heart of the
electronic controller, which is configured to provide the closed loop control. A
number of subsystems are required to implement the overall system design, with each
subsystem drawing on the expertise of one or more engineering disciplines, including:

Electronic engineer to design the CPLD configuration (digital logic), power
electronics, and sensor interface electronics

Communications engineer to design the communications interface (wired,
optical fiber, or wireless)

Software engineer to design the software application to run on the PC required
to interface to the controller

Control engineer to design the underlying closed-loop control algorithm to
control the electric motor to given design requirements

Mechanical engineer to design the mechanical load

www.newnespress.com

Electronic Systems Design 115

Host PC

Communications
interface

CPLD (digital
controller)
% ‘Opto- Power
isolator electronics
— DC motor
) Mechanical
load
Sensor
interface
electronics
Sensor

Figure 2.46: CPLD control of a motor in a mechatronic system

2.22 Intellectual Property

Intellectual property (IP) allows people to own things that they have created, similar
to owning a physical item, so they can control their use and reap the rewards [31].

There are five types of IP:

e Copyright protects material such as literature, art, music, sound recordings,
films, and broadcasts. It can also cover software. Copyright allows the right
for someone to reproduce their own original work.

e Design rights protect the visual (aesthetic) appearance of a product. Design
rights may be unregistered or registered.

www.newnespress.com

116 Chapter 2

Table 2.9: Example patent offices

Patent Office URL
European Patent Office http://www.epo.org/
Irish Patents Office http://www.patentsoffice.ie/

United Kingdom Intellectual Property Office | http://www.ipo.gov.uk/
United States Patent and Trademark Office | http://www.uspto.gov/

e Patents protect the technical and functional aspects of both products and
processes. The patent is a monopoly granted by a government to the first
inventor of a new invention for a fixed period of time. In return for this
monopoly, the inventor is required to make a full disclosure of the invention.
This information is available to anyone who might wish to view the invention
details. To be patentable, the invention must be new, be capable of industrial
application, and involve an inventive step.

e Trademarks protect signs that distinguish a company or goods of one
trader from other traders. Trademarks can be either unregistered ™ or
registered (®).

e Know-how, also known as frade secrets, refers to secret (or proprietary)
information. It is not protected by any of the above means, but only by being
kept secret.

Table 2.9 identifies a number of the existing patent offices and their websites. These
offices provide further information on how to apply for patents and also search
engines for finding existing patents.

2.23 CE and FCC Markings

For electronic circuits and systems to be available for commercial sale, they must meet
the requirements of specific legislation. If electronic products meet the requirements,
they will have a verifying marking on the outside, usually either CE or FCC.

Figure 2.47 shows part of an electronic product (in this case a power supply) with
both CE and FCC markings.

The CE marking is a declaration by a product manufacturer that the product meets all
of the appropriate provisions of the relevant legislation required to implement specific

www.newnespress.com

Electronic Systems Design 117

Area for the
product
description
and marking
on external
surface of
product

Figure 2.47: Electronic product with CE and FCC marking

European Directives [32, 33]. CE is not an abbreviation for any specific words, nor is
it meant to be a mark of product quality.

The FCC marking is for commercial electronic devices for sale in the United States
that are unintentional radio-frequency radiators intended for operation without an
individual broadcast license [34]. It covers devices that use clocks or oscillators,
operate above a frequency of 9 kHz, and use digital techniques. The specific
requirements are set down in the FCC Rules and Regulations, Title 47 CFR Part 15
Subpart B. Most processor-based systems, for example, fall into this category. This is
regulated by the Federal Communications Commission (FCC) and categorizes the
parts into one of two classes:

e (lass A: A device intended for an industrial or business environment and not
intended for use in a home or a residential area

e (lass B: A device intended for use in a home or a residential area

www.newnespress.com

118

Chapter 2

References

[1]
2]

3]

[4]
[5]
[6]
[7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

Oxford Dictionary of English, Second Edition, Revised, eds. C. Soanes and
A. Stevenson, Oxford University Press, 2005, ISBN 0-19-861057-2.
MacMillen, D., et al. “An Industrial View of Electronic Design Automation,”
IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, Vol. 19, No. 12, December 2000, pp. 1428—1448.

Bradley, D., Seward, D., Dawson, D., and Burge, S., Mechatronics and
the Design of Intelligent Machines and Systems, Stanley Thornes, 2000,
ISBN 0-7487-5443-1.

“Flowcharting With the ANSI Standard: A Tutorial,” ACM Computing
Surveys (CSUR), Vol. 2, Issue 2, June 1970, pp. 119-146.

Gajski, D. D., and Ramachandran, L., “Introduction to high-level synthesis,”
IEEE Design & Test of Computers, Vol. 11, Issue 4, Winter 1994, pp. 44-54.
Gajski, D. D., and Kuhn, R. H., “New VLSI Tools,” Computer, Vol. 16,
Issue 12, December 1983, pp. 11-14.

Hemani, A., “Charting the EDA roadmap,” IEEE Circuits and Devices
Magazine, Vol. 20, Issue 6, November—December 2004, pp. 5-10.

Wolf, W. H., “Hardware-Software co-design of embedded systems,” Proceedings
of the IEEE, Vol. 82, Issue 7, July 1994, pp. 967-989.

Balarin, F., et al. Hardware-software Co-design of Embedded Systems: The Polis
Approach, Kluwer Academic Publishers, 1997, ISBN 079239936.

Gajski, D. D., and Vahid, F., “Specification and design of embedded hardware-
software systems,” IEEE Design & Test of Computers, Vol. 12, Issue 1, Spring
1995, pp. 53-67.

Kropf, T., Introduction to Formal Hardware Verification, Springer, 1999,
ISBN 3-540-65445-3.

Marculescu, R., and Eles, P., “Guest Editors’ Introduction: Designing Real-
Time Embedded Multimedia Systems,” IEEE Design & Test of Computers,
September—October 2004, pp. 354-356.

Edwards, S. A., “The Challenges of Synthesizing Hardware from C-Like Lan-
guages,” [IEEE Design & Test of Computers, September—October 20006,
pp. 375-386.

Grant, M., Bailey, B., and Piziali, A., ESL Design and Verification: A Prescrip-
tion for Electronic System Level Methodology, Morgan Kaufmann Publishers
Inc., 2007, ISBN 0123735513.

www.newnespress.com

Electronic Systems Design 119

[15] Densmore, D., et al. “A Platform-Based Taxonomy for ESL Design,” IEEE
Design & Test of Computers, September—October 2006, pp. 359-374.

[16] Bennett, S., Skelton, J., and Lunn, K., UML, McGraw-Hill, 2001,
ISBN 0-07-709673-8.

[17] Mancini, R., “How to read a semiconductor datasheet,” EDN, April 14, 2005,
pp. 85-90, http://www.edn.com

[18] Tocci, R. J., Widmer, N. S., and Moss, G. L. K., Digital Systems, Ninth
Edition, Pearson Education International, USA, 2004, ISBN 0-13-121931-6.

[19] Sears, F., Zemansky, M., and Young, H., University Physics, Seventh Edition,
Addison-Wesley, 1987, ISBN 0-201-06694-7.

[20] Mueller, S., Upgrading and Repairing PCs, Sixteenth Edition, Que Publishing,
2005, ISBN 0-7897-3210-6.

[21] Horowitz, P., and Hill, W., The Art of Electronics, Second Edition, Cambridge
University Press, 1989, ISBN 0-521-37095-7.

[22] Harris Semiconductor, “CDP6402, CDP6402C CMOS Universal Asynchro-
nous Receiver/Transmitter (UART),” product datasheet, March 1997.

[23] Maxim Integrated Products, “MAX232-CPE RS-232 Transceiver,” product
datasheet, 2000.

[24] Maxim Integrated Products, “Power-on Reset and Related Supervisory Func-
tions,” application note 3227, May 11, 2004.

[25] Doane, D. A., and Franzon, P. D., Multichip Module Technologies and Alter-
natives, The Basics, Van Nostrand Reinhold, New York, 1993, ISBN 0-442-
01236-5.

[26] Rajsuman, R., System-on-a-Chip Design and Test, Artech House Publishers,
USA, 2000, ISBN 1-58053-107-5.

[27] Rickett, P., “Cell Phone Integration: SiP, SoC and PoP,” IEEFE Design & Test of
Computers, May—June 2006, pp. 188—195.

[28] International Technology Roadmap for Semiconductors (ITRS), 2003 Edition,
“Assembly and Packaging.”

[29] Bolton, W., Mechatronics: Electronic Control Systems in Mechanical Engineer-
ing, Second Edition, Longman, 1999, ISBN 0582357055.

[30] Walters, R. M., Bradley, D. A., and Dorey, A. P., “The High Level Design of
Electronic Systems for Mechatronic Applications,” IEE Colloquium on Struc-
tured Methods for Hardware Systems Design, 1994, pp. 1/1-1/4.

[31] Wilson, C., Intellectual Property Law, Second Edition, Sweet & Maxwell, 2005,
ISBN 0-421-89150-5.

www.newnespress.com

120 Chapter 2

[32] Department for Trade and Industry (United Kingdom), http://www.dti.gov.
uk/innovation/strd/cemark/pagel1646.html

[33] European Commission, Guide to the Implementation of Directives Based on New
Approach and Global Approach, http://ec.europa.eu/enterprise/newapproach/
legislation/guide/

[34] Federal Communications Commission (United States of America), http://
www.fcc.gov/

www.newnespress.com

Electronic Systems Design 121

Student Exercises

1.1 Draw a flowchart for the following processes:

a. Changing a broken light bulb in a home

b. Changing the tire of a car

c. Driving correctly through a crossroad with a set of traffic lights
d. Making a cup of tea

1.2 Consider the following scenario:

A user of an electronic system enters three different integer numbers from a
keypad (possible numbers are 0 to 9). The electronic system determines which
number is the highest in value and displays this on a two-line LCD display.

Draw a flowchart for the operation of this electronic system function.
Write a design specification for this electronic system.
1.3 Consider the following scenario:

A software program running on a PC is to open a text file and read the contents
of the file character by character until the end of the file is reached. If the
character is upper case (A—Z), then it is displayed on the computer VDU.

Draw a flowchart for the operation of this electronic system function.
Write a design specification for this software program.

1.4 Modify the operation of the software program in Exercise 1.3 so that it now
also writes the uppercase character (A—Z7) to a second text file.

Draw a flowchart for the operation of this electronic system function.
Write a design specification for this software program.

1.5 Identify the types of batteries available for use. For each type of battery,
identify its output voltage level and its ampere-hour rating. How does
battery operation vary with temperature?

1.6 Identify the principle of operation of the switched-mode power supply.

www.newnespress.com

This page intentionally left blank

PCB Design

3.1 Introduction

Within an electronic system, the printed circuit board (PCB) fulfils an essential role in
which to mount the main electronic components, whether by soldering or by the use
of fixing aids such as screws, and the means by which the electronic components are
electrically connected to form the required electrical circuit, using metal tracks
patterned onto the PCB and solder joints.

Figure 3.1 shows a 3-D graphical representation of an example PCB with models for
the components placed on the PCB in their intended positions. A number of PCB
design tools (for example, the Altium™ Protel PCB design software) provide for a
3-D viewing capability that enables the designer to view the PCB as it would appear in
the final fabricated PCB with components inserted prior to PCB fabrication. The
main base (commonly referred to as the substrate) is the insulating material, and
tracks are patterned into it. Here, the electronic components are mounted to the top
of the board, although components may also be mounted to both the top and bottom.

In this example, the board is rectangular and 1.6 mm thick; actually this PCB was designed
to be Eurocard size (160 mm x 100 mm [6.3” x 3.94"]). However, the actual shape of the
PCB can be decided by the designer (restricted only by the manufacturing capabilities and
cost to manufacture) to fit into the appropriate housing requirement for the electronics.

To develop a working PCB that operates according to the required functionality,
three key steps must be successfully completed:

e Design. First develop a suitable design specification for the required circuit [1],
then develop the circuit schematic (the components to use and interconnect

www.newnespress.com

124 Chapter 3

Figure 3.1: Graphical representation of an example PCB (top view)

between the components) to meet the initial design specification, and finally
develop the PCB layout (the actual representation of the design that will be
manufactured). The designer will work with different design representations
(in which to view the design and understand the design functionality) to arrive
at a solution that can work.

e Manufacture. The manufacture, or fabrication, of the printed circuit board
itself must adhere to the design details. The two main steps are manufacturing
the PCB base (insulating base with metal interconnect), and electrically and
mechanically connecting the electronic components to the PCB base.
Connecting the components to the PCB base is commonly referred to as
populating the board.

e Test. The purpose of testing the design and manufactured PCB is to ascertain
whether or not the design is working [2, 3]. Testing is undertaken at a number
of points during the design and manufacture. Testing includes both simulation
testing of a model of the PCB design prior to manufacture to determine the
functional correctness of the design and physical testing of the manufactured
PCB to take electrical measurements to determine the functional correctness
of the manufactured design.

PCB design can take a number of different approaches, which initially arose from the
lack of a suitable standard adopted by all PCB designers. More recently, there has
been a move to standardize PCB design approaches and terminology used by the
design community, in particular the activities of the IPC Designers Council. In this
text, the descriptions presented in the next section are used to identify the approaches
and terminology commonly used.

www.newnespress.com

PCB Design 125

3.2 Whatls a PCB?
3.2.1 Definition

A printed circuit board (PCB) is an electrical component [4, 5] made up of one or
more layers of electrical conductors that are separated by insulating material. Other
electrical components are secured to the top and bottom of the PCB to create a
complete electrical circuit. An example PCB with components soldered to the top

is shown in Figure 3.2.

Here, five connectors are used to connect the board to the remainder of the electronic
system (the board here is only a small part of a larger electronic system). Four D-type
connectors are placed along the bottom edge of the PCB and a single IDC (insulation
displacement connector) is placed on the left edge of the board. Along the right edge
of the board are small terminals to connect test equipment to electrical signals
generated on the board for test and evaluation purposes. The main circuit is in the
center the board, with three integrated circuit (IC) sockets (the ICs themselves are not
yet placed in the sockets) [6], seven light-emitting diodes (LEDs), fifteen capacitors,
seven resistors, and one diode. The patterned metal tracks can be seen as narrow lines
on the top of the board. The thickness of the board is 1.6 mm, and the thickness of the
copper tracks is 35 um (0.035 mm).

+3
BHD

?3 éum_u(

P11 COML_Rx

PE COML_RTS

MK

s (F, |
) oy AN
' DB P12 coma_Tx
EomMED | Hinin tone pe (4
w214 comt T (7, |
|
|

Figure 3.2: Manufactured PCB (top)

www.newnespress.com

126 Chapter 3

This circuit will be discussed in further detail in Section 3.5 (case study design), but
four key things can be immediately noted from this board:

1. All components are through-hole mounted; that is, they are placed on the top
of the board, their electrical connections (legs) pushed through holes in the
PCB, and then soldered from the bottom of the board. The bottom of this
board is shown in Figure 3.3. The patterned metal tracks can be seen as
narrow lines on the bottom of the board. There are two thicknesses of track:
the thin tracks are used for signals requiring little current flow, and the
thicker tracks are used for the component power supply (positive and
negative) that requires a greater current flow.

2. The tracks on the bottom of the board are connected to the top of the board
through metal-plated holes (vias) drilled into the base insulation.

3. The color of the board is green in appearance. This results from the solder mask
material covering the entire board. The base insulator is made of FR-4 material,
which is typically yellow in color.

4. This particular board does not have many components, and they are not densely
packed; that is, the few components on the board are not placed close to each other.
This eases physical access to the components for probing with test equipment.

Figure 3.3: Manufactured PCB (bottom)

www.newnespress.com

PCB Design 127

In some texts, the PCB is referred to as a PWB (printed wiring board) [7], however in
this text, the term PCB will be used throughout.

3.2.2 Structure of the PCB

Overview

A PCB consists of an electrically insulating base onto which conducting metal tracks
are patterned to form electrical connections for electronic components mounted to the
top, and sometimes the bottom, of the insulating based. The PCB has electrical,
mechanical, and thermal properties that must be considered when creating a design
for a particular application.

The insulating material commonly used is FR-4 (flame retardant with a dielectric
constant of approximately 4), also referred to as the dielectric. FR-4 is usually preferred
over cheaper alternatives such as synthetic resin bonded paper (SRBP) as it can operate
at higher electrical frequencies (important for high frequency applications), is
mechanically stronger, absorbs less moisture (any moisture from the surrounding
ambient conditions), and is highly flame resistant. However, note that the choice of
material for the PCB will depend on the final application requirements and cost.

Simple Single-Sided PCB

The simplest type of PCB consists of a square or rectangle of insulating material with
patterned metal tracks on one side only. The metal is usually copper. This is suitable
for the simplest of circuits but cannot hold a larger number of components because all
of the tracks cannot be physically routed on one side of the board. The electronic
components are placed on the opposite side of the board, and holes (called vias)
drilled through the board allow for the ends of the electronic component legs to be
located on the same side of the board as the metal tracks.

When the leg of the component passes through the board, the component is referred to
as a through-hole component. Where the legs are to be in contact with the tracks, the
tracks are shaped to form pads that are normally larger than the tracks and allow the
component leg to be soldered to a suitably large amount of metal track material.
Figure 3.4 illustrates the placement and soldering of a component. Traditional solder is
an alloy of tin and lead (typically 60—40), which melts at a temperature of about 200°C.
(Coating a surface with solder is called tinning because of the tin content of solder.)

www.newnespress.com

128 Chapter 3

Component Electronic component

leg \ / with 2 legs

Insulating base

/

e

Solder joint Metal track

+—> +—>
Track pad area Track pad area

Figure 3.4: Single-sided PCB

However, as lead is poisonous, the solder in use today does not contain lead, and
alternative alloys are used. The solder used for electronic circuit manufacture also
contains tiny cores of flux. The flux cleans the metal surfaces as the solder melts.
Without the flux, most solder joints would probably fail because the metals quickly
oxidize, and the solder itself will not flow properly onto a dirty, oxidized, metal surface.

Two-Sided PCB

A more sophisticated and more common PCB has metal tracks on both sides of the
board. This allows twice the area to pattern the tracks, and the electrical connections
formed by the tracks can move between the top and bottom of the board through
holes (vias) drilled in the board. Vias are of two types, plated through-hole and
nonplated through-hole. A nonplated through-hole via is simply the hole that was
drilled. To make an electrical connection through the hole, a piece of metal wire is
soldered top and bottom. The plated through-hole via has a metal plating connecting
the top and bottom track pads formed during the PCB base manufacture (Figure 3.5).

Nonplated Plated
through-hole via through-hole

— C—

Nonplated through-hole Insulating base
via with soldered wire to
form electrical connection

Figure 3.5: Through-hole vias

www.newnespress.com

PCB Design 129

PCB Pads

The shapes of the pads are typically round, oval, square, rectangular, or octagonal,
shown in three different sizes in Figure 3.6. The round center of each pad is sized to
the hole that is to be drilled to fit the component leg; different components require
legs of different sizes, which should be specified on the data sheet for the component.
The outside part of the pad is the metal (track material) to which the solder adheres.

The different shapes signify different pins. For example, in Figure 3.7, a 14-pin DIP
(dual in-line package) IC pad placement is shown. The number 1 pin is shown on the

Hole drilled through

board insulator Round
Square
v
O Octagonal
A
Oval
Track
Pad metal area Rectangular

Figure 3.6: Pad shapes and sizes

Pin1——

Figure 3.7: 14-pin DIP pad placement (through-hole component)
and image of DIP package

130 Chapter 3

top left of the image and is signified by a rectangular shape. The other 13-pin pads are
oval in shape. Here, the pad metal is placed on both sides of the board (top and
bottom). For a through-hole component, the pad need only be on the bottom side
of the board where the leg of the component is to be soldered to the pad. However, if
the pad is placed on both sides of the board, and the via is a plated through-hole via,
then tracks can connect to the bottom and top sides of the pad. This will provide a
benefit for track routing in that both the bottom and top of the board can be used for
routing the required power and signal tracks.

Tracks

The metal tracks connecting the pads and hence the components are for two types
of electrical use:

1. Signal provides the necessary electrical connections for signals (voltage and
current) to flow between components. Unless the signals require high current
levels or the track carrying the signal is very low resistance, the signal track widths
are normally small to allow many signal tracks to be patterned on the PCB.

2. Power provides the required voltage and current to the components. In
general, they are wider than the signal tracks to provide low-resistance paths.
A track will have a certain resistance (due to the resistivity of the metal and
the size of the metal), and when currents flow in the track, voltage will
drop. Care must be taken so that this does not interfere with or degrade
the operation of the circuit.

Components on Two Sides

When a two-sided board is used, tracks can be created on the top and bottom of
the board. Components are usually mounted only on the top side of the board, but
they can be mounted on both top and bottom, as shown in Figure 3.8.

Through-Hole versus Surface Mount

The earliest components, and those still in many everyday electronic circuits, are

through-hole components, as previously discussed. However, the space requirements
for the legs and the need to fit the legs through the PCB itself for soldering has created
the need for considerable surface area and physically large PCBs. The lengths of the

www.newnespress.com

PCB Design 131

Electronic component
Track / with 2 legs on top side

leg
\4 Insulating base

/

b

Solder joint Metal track

\ Electronic component
with 2 legs on bottom side

Figure 3.8: Two-sided board with components on top and bottom

leads also add parasitic circuit elements (resistance, capacitance, and inductance) that
can seriously affect high-frequency performance. An alternative to through-hole
components are surface mount components. (The technology associated with surface
mount components is generically referred to as surface mount technology, SMT.)
Rather than having legs that are pushed through the board, the connections for
soldering the component to the PCB pads are on the same side of the PCB as the
component itself (Figure 3.9), allowing physically smaller components that can be
mounted onto smaller PCBs, with superior high-frequency performance when
compared to a through-hole equivalent.

Figure 3.9: Surface mount component (eight-pin surface mount MSOP,
mini-small outline package)

www.newnespress.com

132 Chapter 3

Multilayer PCBs

Some fabrication facilities can manufacture PCBs with more than two layers of metal
interconnect, and typically up to six layers are possible. This can dramatically increase
the ability to route a large number of tracks, typically for applications such as
computer motherboards. Where three or more layers are used, the vias will be one of
three types: through-hole, blind, or buried via. Figure 3.10 illustrates this idea. The
through-hole via will extend through the board from top to bottom. A blind via will
extend only from a surface (top or bottom) into the board. A buried via will be buried
within the structure of the PCB.

Ground and Power Planes

A metal layer within the PCB structure can be used as a ground or a power plane. These
are large areas of metal that can span all, or nearly all, of a metal layer to provide a
large area for current to flow, accommodating the power supply connections (positive
and negative) and the common connection (ground for both analogue and digital
circuitry). This creates a low-resistance path for the current and allows for substantially
more current than would be possible in a thin track. One or more of the metal layers
can be used for a power or ground plane. When one layer is used for a single power or
ground plane, this is referred to as a single plane. However, a single layer can be used for
multiple power or ground planes, where the metal is separated into different areas,
one for each connection; this is referred to as a split plane.

Protective Coating

A protective coating is normally applied to the surface of the PCB to prevent damage
from the environment in which it will be used. This protective coating can be applied

Through-hole via Blind via Buried via

i

Top Metal
Insulation
Internal Metal 1
Insulation
Internal Metal 2
Insulation
Bottom Metal

Figure 3.10: Via types in a four-layer board

PCB Design 133

after manufacture and either before or after the electronic components have been
soldered on. The protective coating protects in several different ways:

e The copper commonly used for the tracks will be corroded by exposure to
oxygen in the air, and the protective coating (a passivation layer) puts a barrier
between the oxygen and the metal):

o If the copper must be accessible, either for soldering (on to pads) or
for electrical contact (such as edge connectors off the PCB), then the
copper is plated with another metal such as tin or nickel. This additional
metal forms a passivation layer that protects the copper from oxidation.

© Where the copper need not be accessible, then an electrically insulating
protective coating is applied over the metal. This has the additional
advantage of preventing dirt and moisture from reducing the insulation
resistance between the tracks.

e The insulating material used in the substrate (e.g., FR-4) will readily absorb
moisture from the air, thereby reducing the electrical properties of the
substrate. The protective coating puts a barrier between the substrate and the
moisture in the air.

e The protective coating also controls the flow of solder during the soldering
process. This prevents solder from jumping across tracks and causing
short circuits.

When a protective coating is applied prior to soldering the components onto the
board, it is usually referred to as a solder mask. When applied after the components
have been soldered, it is usually referred to as a conformal coating.

Silk Screen

Screen printing techniques using a silk screen can be used to apply solder paste to the
PCB for the attachment of the electronic components when board assembly is

automated. Here, the solder paste is applied only to the places on the PCB on which
solder is required. Additionally, a silk screen is used to create legends, text or shapes,
on top of the protective coating (sometimes referred to as a top overlay). Figure 3.11
shows the legends for four capacitors and one IC created in white ink on the top layer

of a PCB.
www.newnespress.com

134 Chapter 3

Ic1 : 1c2
74HC240 74HC240 =

1c2
Ic1 o
74HC240 ;. qmezta, o

e 2l g | T [

00nF

Figure 3.11: Silk screen, top overlay

Track Thickness

The thickness of the copper track is normally specified in ounces per square foot,
which refers to the weight if the copper were laid out flat in one square foot of area.
Most common is 1 oz copper, although increased metal thicknesses such as 0.5 oz,
2 oz, and 4 oz are possible. Table 3.1 identifies the resulting thicknesses of the
common specified values.

Thicker copper PCBs are usually for high-current circuits. Calculations for track
width based on a particular track thickness are usually made by considering the

maximum current flow and maximum rise in temperature of the board. The IPC
provides a detailed method to calculate the required track width for given circuit
requirements [§].

Track Resistance

Metal tracks have electrical resistance, determined by both the metal resistivity (p) [9]
and the track dimensions. Example resistivity values for different metals and alloys
are identified in Table 3.2. The units for resistivity are {2.m (ohm.meter).

Table 3.1: Common copper track thickness values

oz/ft? Thickness
wm inches mils
0.5 17.5 0.0007 0.7
1 35 0.0014 1.4
2 70 0.0028 2.8
3 105 0.0042 4.2

www.newnespress.com

PCB Design 135

Table 3.2: Metal and alloy resistivity values

Metal Resistivity (p) - Q.m
Aluminum 2.63 x 10°°
Copper 1.72 x 107

Iron 1.0 x 1077

Gold 2.44 x 1078

Lead 2.08 x 1077
Platinum 1.1 x 1077

Silver 1.47 x 10°°

Tin 115 x 1077
Tungsten 551 x 108

Alloy Resistivity (p) - Q.m
Brass (an alloy of zinc and copper) | 0.8 x 1077

Steel (alloy of iron and carbon) 1.0 x 1077

When a track is formed on the PCB insulating substrate, it will have a cross-sectional
area and length (Figure 3.12). The resistance of the track (€2) from end to end (A to B)
is given by:

L
-tk
where:

p is the resistivity of the metal (2.m)
R is the resistance of the track (£2)
L is the length of the track (m)

A is the cross-sectional area of the track, width (W) x thickness (T) (m?).

A \
!

T8
/W

Figure 3.12: Metal track resistance calculation

www.newnespress.com

136 Chapter 3

The thickness of the track material is a fixed value set by the PCB manufacturing
process, so the resistance will be set by the designer from the given track length
and width. For a given length of track, a wide track will have less resistance than a
narrow track.

For example, a track is created using copper, with a length of 100 mm and a width of
0.25 mm. The track thickness is 17.5 um (i.e., 1 oz copper). What is the resistance
of the track?

R =P

o (172x10°%) x (0.1)
R= (25 % 107%) x (17.5 x 10-6) 039302

Electromigration

A phenomenon known as electromigration can occur when a high current level
flows in a track. If the current density (amount of electrical current flowing per
cross-sectional area, A/mz) is high, then electromigration is the gradual movement
of the ions in a conductor due to the momentum transfer between conducting
electrons and diffusing metal atoms. The effect is for the metal to move, causing a
reduction in the width of one part of the metal as the metal atoms “flow.” Eventually,
the track width reduces to a narrow enough cross-section for the metal to “fuse.” That
is, it becomes an open circuit, in the same manner as a fuse would be designed to
intentionally fuse (or “blow”) when the current passing through the fuse exceeds

a maximum permitted value.

Insulation Capacitance

When a track is patterned in the PCB, and a second track, either above or below,
crosses the first track, then the area created by the combination of the tracks and
insulation between them creates a capacitor. If the overlap area and the capacitance
per unit area of the insulation is known, then the value of the capacitance (a parasitic
[i.e., unwanted] capacitance) can be calculated. At low signal frequencies, this
capacitance does not necessary affect the operation of the circuit. However, as the

www.newnespress.com

PCB Design 137

\ Capacitor

Dielectric

—
“—>
-

Figure 3.13: Track-track capacitance calculation

signal frequency increases, the effect of the capacitance also increases (as its
impedance decreases), which can have a serious effect on circuit operation.
Capacitance value (Figure 3.13) is calculated by:

i 80'£ins'A

C
D

where:

C is the value of the capacitance of the overlapping area of the two tracks A and B
(in Farads, F)

A is the area of overlap of the two tracks, width (W) x length (L) (cm?)
D is the thickness of the insulator (dielectric) (cm)

€, 1s the relative permittivity of the insulating material (for FR-4, this is
approximately 4)

€ins is the permittivity of free space (~8.85 x 10~'* F/cm).

Signal Integrity

Signal integrity affects the electrical signals as they pass through the tracks in the
PCB. Ideally, the signal should not be altered by the electrical properties of the track.
However, a real track will alter the shape of the signal and so corrupt its integrity.

www.newnespress.com

138 Chapter 3

If care is not taken to ensure a high level of signal integrity when designing the PCB
layout, then manufacturing problems can occur in that:

e It will cause the design to work incorrectly in some cases, but not all cases.
e The design might actually fail completely.
e The design might operate slower than expected (and required).
Signal integrity problems can be created by a number of problems, including:
e The tracks’ own parasitic resistance, capacitance, and inductance will be altered.

e Cross-talk between two or more different tracks will occur because of a
capacitive coupling between the tracks resulting from the PCB substrate
insulation.

e For high-frequency signals, the characteristic impedance of the transmission
line that the track creates does not match the signal source and destination.

An example where the track resistance and capacitance can create a parasitic resistor-
capacitor (RC) network that is modeled as a single resistor and capacitor is shown in
Figure 3.14. Applying a digital clock signal, a square wave voltage waveform, to the
RC network causes a change in the observed waveform at the output. The output
becomes an exponential waveform with a time constant 7 = R.C. Such an effect can
cause circuit failure.

Drawing Units

When designing the PCB layout, considering both the component placement
and the interconnect placement, the designer is working with physical
dimensions. Component placement and routing depends on a number of

Figure 3.14: RC time constant effect

www.newnespress.com

PCB Design 139

Table 3.3: Imperial-to-metric conversion

Imperial (mils) Metric (mm)
1,000 25.4

100 2.54

10 0.254

1 0.0254

Eurocard size PCB
3937 x 6299 (3.94” x 6.3”) | 100 x 160 (0.1Tm x 0.16 m)

considerations. The particular PCB manufacturer will provide the necessary
minimum (and possibly maximum) dimensions that can be used for their
manufacturing process.

The dimensions will be provided in either Imperial measurements (using mils) or
metric (using mm). There are 1,000 mils and 25.4 mm in | inch. Table 3.3 is a
conversion chart.

3.2.3 Typical Components

The PCB will be populated with a number of components, using both
through-hole and surface mount packages. Component location on the PCB
is critical for:

1. Efficiently routing the PCB tracks (signal and power)

2. Accounting for thermal effects when components heat up during normal
operation. The temperature rise must not be too large on any single part of
the board. Suitable placement of components and the addition of heat sinks
(components that absorb heat and allow it to be dissipated away from the
component that generated it).

3. Ergonomic considerations where a user may need to access part of the PCB to
control components (e.g., switches) or for test and evaluation purposes.

Table 3.4 identifies some of the electronic components more commonly found on
typical PCBs.

www.newnespress.com

140 Chapter 3

Table 3.4: Typical components on a PCB

Component Description

Resistor The resistor is a 2-terminal
electronic component that resists
the flow of current and produces
a voltage drop across the
component that is proportional
to the current flow as given by
Ohms Law.

The image to the right shows a
single resistor and a resistor array
(in a14-pin DIL package).

Variable resistor | The variable resistor
(potentiometer or preset) is a
3-terminal device that acts to vary
the resistance between two
connections as a mechanical
screw is rotated.

The image to the right shows |
three different preset packages.

Capacitor The capacitor is a 2-terminal
device that consists of two
metal plates separated by a
dielectric material that creates a
specific value of capacitance. A
range of materials are used as
the dielectric. Specific capacitors
are used for particular
requirements within the circuit,
and specific capacitor types are
polarized; that is, one connection
has a positive potential to the
other connection.

The image to the right shows
four different capacitor types and

packages.

www.newnespress.com

PCB Design 141

Table 3.4 (Continued)

Component

Description

Inductor

Diode

Transistor

Integrated
circuit

The inductor is a 2-terminal
device that consists of a winding
of metal that creates a specific
value of inductance.

The image to the right shows an
inductor that is created in a
package similarin size and shape to
a through-hole resistor package.

The diode is a 2-terminal
semiconductor device that allows
current to flow in one direction
through the device but blocks the
flow of current in the opposite
direction.

The image to the right shows a
through-hole package diode.

The transistor is a 3-terminal
semiconductor device that is either
use to amplify a signal (voltage or
current) in analogue circuits or acts
as an electronic switch in digital
circuits. Both bipolar (npn and
pnp) and CMOS (nMOS and
pMOQOS) transistors, along with
unijunction and JFET transistor
structures, can be created.

The image to the right shows three
of the different package sizes and
shapes that are available.

The integrated circuit is a
semiconductor device that consists
of a packaged circuit die (silicon,
silicon germanium, or gallium
arsenide semiconductor material)
that contains an electronic circuit
consisting of transistors, resistors,
capacitors, and possibly inductors.

The image to the right shows a
surface mount package.

(continued)

www.newnespress.com

142 Chapter 3

Table 3.4 (Continued)

Component Description

Switch The switch is a device that
mechanically opens or closes
metal contacts to connect or
disconnect parts of an electrical
or electronic or circuit.

The image to the right shows a
PCB mount toggle switch.

Connector The connector provides a
mechanism to connect different
electronic circuits together using
wires.

The image to the right shows
three of the different package
sizes and shapes that are
available.

Transformer The transformer is a device
consisting of two sets of wire coils
to form a mutual inductance. The
transformer is used to step up
(increase) or step down
(decrease) an AC voltage.

The image to the right shows an
example transformer package.

Light emitting The light emitting diode is a 2-
diode (LED) terminal semiconductor device
that produces light when a

Available colors | ¢\rrent is passed through it.

are red, yellow,
green, blue, The image to the right shows two
white LED, for soldering to a PCB. The
LED can be obtained in various
shapes and sizes and also as
7-segment displays.

www.newnespress.com

PCB Design 143

Table 3.4 (Continued)

Component

Description

Liquid crystal
display (LCD)

Test probe point

Crystal
oscillator

Jumper terminal

The liquid crystal display is a
device that is used to present
either images or text.

The image to the right shows a
2-line, 16-character LCD display.

The test probe point is a
1-terminal device that allows
external text and measurement
equipment to be connected to a
point in an electronic circuit for
test and evaluation purposes.

The image to the right shows
eyelet probes that allow for test
equipment probes to be hooked
to the test probe point.

The crystal oscillator is a device
that produces an oscillating signal
at a particular frequency for the
generation of clock signals within
a digital circuit.

The image to the right shows an
example oscillator module that is
housed in a 14-pin DIL package.

The jumper terminal is a
2-terminal device that connects
two points of a circuit together
when a metal header is placed
across the terminals, or
disconnects two points of a
circuit together when the header
is physically removed by a user.

The image to the right shows a
jumper terminal (+ header)
mounted to a PCB.

www.newnespress.com

144 Chapter 3

3.3 Design, Manufacture, and Testing
3.3.1 PCB Design

Overview

PCB design begins with an insulating base and adds metal tracks for electrical
interconnect and the placement of suitable electronic components to define and create
an electronic circuit that performs a required set of functions. The key steps in
developing a working PCB are shown in Figure 3.15 and briefly summarized below:

e Initially, a design specification (document) is written that identifies the
required functionality of the PCB. From this, the designer creates the circuit
design, which is entered into the PCB design tools.

e The design schematic is analyzed through simulation using a suitably defined
test stimulus, and the operation of the design is verified. If the design does not
meet the required specification, then either the design must be modified, or in
extreme cases, the design specification must be changed.

e When the design schematic is complete, the PCB layout is created, taking
into account layout directives (set by the particular design project) and the
manufacturing process design rules.

e On successful completion of the layout, it undergoes analysis by
(1) resimulating the schematic design to account for the track parasitic
components (usually the parasitic capacitance is used), and (ii) using specially
designed signal integrity tools to confirm that the circuit design on the PCB
will function correctly. If not, the design layout, schematic, or specification
will require modification.

When all steps to layout have been completed, the design is ready for submission for
manufacture.

PCB Design Tools

A range of design tools are available for designing PCBs, running on the main
operating systems (Windows®, Linux, UNIX™). The choice of tool depends on the
actual design requirements, but must consider:

e Schematic capture capabilities: the ability to create and edit schematic
documents representing the circuit diagram

www.newnespress.com

PCB Design 145
<
- Design specification
Design interpretation D
Specification
Design entry O
(schematic capture) N
Test > Design simulation < O
stimulus

Layout
Design Rules

Simulation
results OK?

Layout
directives

Design layout

|

Layout

Extraction of layout
parasitics

|

Activities using
a PCB design ——»
tool

Post-layout circuit simulation

Simulation
results OK?

Signal integrity
directives

Design ready

\4

Yes

Signal Integrity (SI) checks

Sl results No

for submission [«
to manufacture

OK?

Figure 3.15: Steps to PCB design

www.newnespress.com

146 Chapter 3

e Layout generation capabilities: the ability to create the PCB layout either
manually or using automatic place and route tools. Some design tools will link
the schematic to the layout so that changes in the schematic are reflected as
changes in the layout (and vice versa).

e Circuit simulation capabilities: the ability to simulate the design functionality
using a suitable simulator such as a simulator based on SPICE.

e Supported operating systems: What PC or workstation operating systems are
needed for the software tool to operate?

e Company support: What support is available from the company if problems
are encountered using the design tools?

e Licensing requirements and costs: What are the licensing arrangements for the
software, and is there an annual maintenance fee?

¢ [Ease of use and training requirements: How easy is the design tool to use, and
what training and/or documentation is available to the user?

Table 3.5 shows the main PCB design tools currently used.

LVS

Layout versus schematic (LVS) checking is a process by which the electronic circuit
created in the final PCB layout is compared to the original schematic circuit diagram.
This check is undertaken to ensure that the PCB layout is electrically the same as the
original schematic, and errors have not been introduced. LVS can take a manual
approach, in which the designer manually checks the connections in the layout and
compares them to the schematic connections, or it can be automated using an

LVS software tool.

Table 3.5: Example PCB design tools

Design Tool Name | Company

Allegro® Cadence™ Design Systems Inc.
Board System® Mentor Graphics®

Eagle CadSoft

Easy-PC Number One Systems

Orcad® Cadence™ Design Systems Inc.
Protel Altium ™

www.newnespress.com

PCB Design 147

DRC

Design rules checking (DRC) is a process by which the PCB layout is checked to confirm
that it meets manufacturing requirements. Each manufacturing process has a set of
design rules that identifies the limitations of the manufacturing process and ensures a
high manufacturing yield. Design rules are rarely violated, and only then if clearance is
given by the manufacturer and the designer is aware of and accepts any inherent risks.

Layout Design Rules and Guidelines

To produce a well-designed and working PCB, design guidelines (should be followed
but are not mandatory) and rules (must be followed to avoid manufacturing
problems) are to be followed. For example:

e Do not violate the minimum track widths, track spacing, and via sizes set by
the PCB manufacturer. Table 3.6 provides a set of minimum dimension
constraint examples.

e Avoid exposed metal under component packages. Any metal under a package
should be covered with solder mask.

e Make the pads for soldering the electronic components to the board as large as
possible to aid component soldering.

e Avoid the placement of components and tracks (and ground and power
planes) that will require the removal of a great amount of copper from parts of

Table 3.6: Layout design considerations

Layout Meaning

consideration

Internal line width Minimum the width of a metal track inside the PCB structure.

Internal line spacing Minimum the distance between two metal tracks inside the PCB structure.
External line width Minimum the width of a metal track on an outside surface (top or

bottom) of the PCB.
External line spacing | Minimum the distance between two metal tracks on an outside surface

of the PCB.

Minimum via size The minimum size allowable for a via.

Hole to hole The minimum distance between adjacent holes in the PCB insulating
material.

Edge to copper The minimum distance from the edge of the PCB to the copper that is

designed for use.

www.newnespress.com

148 Chapter 3

the board, and leaving large amounts of copper in the remainder of the board.
Where possible, have an even spread of tracks and gaps between the tracks
across the entire board. (The copper layer starts as a sheet of metal covering
the entire surface, and an etching process removes the unwanted copper to
pattern the tracks.)

e Use ground (and power) planes for the component power supplies. Where
possible, dedicate a layer to a particular power level (e.g., 0 V as ground). Use
split planes if necessary; these are multiple planes on a layer where a part of
the layer is dedicated to a particular power level.

e Use power supply decoupling capacitors for each power pin on each
component. Place the decoupling capacitor as close as possible to its component
pin. For example, data converter data sheets normally provide information
for the PCB designer in relation to the decoupling capacitor requirements.

e Use decoupling capacitors for each DC reference voltage used in the circuit
(e.g., reference voltages for data converters). For example, data converter data
sheets normally provide information for the PCB designer in relation to the
decoupling capacitor requirements.

e Use separate digital and analogue power supply planes and connect at only
one point in the circuit. For example, a data converter package normally has
separate power (Vpp and GND) pins for the analogue and digital circuitry.
The device analogue and digital power will be provided by connecting the IC
to separate power planes. The GND connection is connected at one point only
underneath the IC (see Figure 3.16). Data converter datasheets normally

Digital Vpp Analogue Vpp

Data Converter

Digital / Bl A:?)Iv(\)/g?e
power :
decoupling decoupling
capacitor T capacitor

Digital GND Analogue GND

Connecting the analogue and digital GND
connections under the IC at one point only

Figure 3.16: Example data converter GND (“common”) connection (top down)

www.newnespress.com

PCB Design 149

provide information for the PCB designer relating to the placement of signal
and power connections.

e Minimize the number of vias required.

e Avoid ground loops, which can form when the ground connections on the
electronic components are laid out to the common track (or plane) so
that loops of metal are formed. They can cause noise problems in analogue
signals.

e For the particular PCB, consider which is more important, the placement of
the components or the routing of the tracks? Adopt a layout design procedure
to reflect this.

e Separate the digital and analogue components and tracks to avoid or
reduce the effects of cross-talk between the analogue signals and digital
signals.

Ground Planes

Ground (GND) and power planes on the PCB are large areas of metal that are
connected to either a power supply potential (e.g., Vpp) or the common (0V)
connection (commonly referred to as ground). They appear as low-impedance
paths for signals and are used to reduce noise in the circuit, particularly for the
common signal. In a multilayer PCB, one or more of the layers can be dedicated to
a plane. Any given metal layer can have a single plane or multiple planes (split
plane), shown in Figure 3.17. Signals will pass through the plane where the

metal is etched away at specific points only, signified by the white dots in the
illustration.

PCBs for Different Applications

Certain PCB manufacturers will provide a range of different PCB fabrication facilities
to support different applications including:

e High-frequency circuits: Specific materials will be required for the insulating
base and the track metal for the circuit to operate at the required frequencies

[10, 11].

150 Chapter 3

Figure 3.17: Single (left) and split (right) planes

e Power supplies: Power supplies may be required to operate at high voltages
and high currents to meet performance requirements.

e Controlled impedance: This is required in applications in which the
interconnecting track acts as a transmission line and must have a known
and controlled impedance. Such applications include radio frequency (RF)
circuits and high-speed digital switching circuits.

3.3.2 PCB Manufacture

When the design layout has been completed, it is submitted for manufacture.
Depending on the manufacturer and design project requirements, either one or several
prototype PCBs will be manufactured and populated for design debug and
verification purposes prior to a full-scale production run.

The design layout will normally be submitted in electronic format using one of the
PCB layout file tools supported by the manufacturer.

Figure 3.18 shows the different layers that are used to make a two-sided PCB
with through-hole plated vias and top overlay layers for information text (and
graphics). This is the board shown in Figure 3.2.

PCB Design 151

All layers Top metal layer tracks

L]
RN TRNT
[(RELTRTT

(1N 1]
[RLLTRTT
(1N 1]

1]
LI

e
(L1}
.

.
e
-
resssssrsansne g

=
g e,
o W
5 OB g ERCR 2o
o QC/J Oﬁ' 0w, Om 2w
+ e, -4 oF 1
o + o O '”Q e COUTH
B
2
O

rm: m!inTvu nmlimu mniTum cors

Top overlay layer

Figure 3.18: PCB layers

3.3.3 PCB Testing

To verify that the circuit design is functionally correct, the design is tested both
prior to and after manufacturing. Prior to manufacturing, the design is simulated
using an appropriate simulation model of the circuit and a suitable test stimulus.
Simulation is undertaken twice:

e prior to creating the PCB layout, to verify the correct electrical functionality

of the circuit schematic diagram
wWww.newnespress.com

152

Chapter 3

after the PCB layout, by extracting layout information and (i) resimulating the
design with layout (track) parasitics included, and (ii) using signal
integrity tools

After manufacturing, the PCB is physically tested for electrical and nonelectrical
properties:

3.4

3.4.1

Electrical test. By applying appropriate analogue and digital signals, the
correct electrical operation of the PCB can be ascertained [12, 13]. These will
be compared both to the initial circuit simulation results (for comparison of
the design operation) and to the initial design specification (to ascertain that
the circuit meets the required electrical specifications). These tests will include
EMC/EMI (electromagnetic compatibility/electromagnetic interference)
testing [14, 15].

Optical test. Optical tests are carried out to inspect the board for the correct
placement of the correct components and for defects in the manufacturing
process (e.g., mechanical damage to the components). Both manual

visual inspection (M VI, also referred to as human visual inspection, HVI)
and automated optical inspection (AOI) techniques will be used.

Mechanical test. Mechanical testing is undertaken to ensure that the PCB
meets the required mechanical strength for the end application (e.g., it can
withstand a set level of vibrations) and to determine the mechanical strength
of the solder joints [16]. For destructive tests (those that stress the PCB until it
breaks), a set of samples from the main manufacturing run are used.

Thermal test. Thermal testing ensures that the PCB will operate over the
required operating temperature range without failure.

WEEE and RoHS compliance. Tests undertaken to ensure that the PCB
is compliant with the required legislation (discussed further in the next section).

Environmental Issues

Introduction

Increasingly, the whole process of design, manufacture, and test is required to
consider their impact on the environment. There is a need, guided by legislation,
to reduce that environmental impact.

www.newnespress.com

PCB Design 153

3.4.2 WEEE Directive

The WEEE Directive (waste electrical and electronic equipment) was introduced
by the European Union (EU) to increase the electrical and electronic equipment
recycling [17]. A key part of this is to make manufacturers and importers (also
referred to as producers) responsible for meeting the costs of the collection,
treatment, and recovery of equipment that has come to the end of its life span.
This encourages the designers of such equipment to create products with recycling
in mind.

The WEEE Directive covers a number of items, such as:

e small and large household appliances

e Information technology (IT) and telecommunications equipment

e consumer equipment

e lighting

e clectrical and electronic tools (except large-scale stationary industrial tools)
e toys, leisure, and sports equipment

e medical devices (with exceptions)

e monitoring and control instruments

e automatic dispensers

3.4.3 RoHS Directive

The RoHS Directive (return of hazardous substances) supports the WEEE

directive by covering the use of certain hazardous substances used in electrical and
electronic equipment [18]. The European Union directive, effective July 1, 2006, limits
the use of certain substances to prescribed maximum concentration levels in electrical
and electronic equipment unless the equipment is exempt from the directive. The
banned substances are:

e Jead

e cadmium

www.newnespress.com

154 Chapter 3

® mercury

e hexavalent chromium

e polybrominated biphenyl ethers
e polybrominated diphenyl ethers

Equipment is categorized as RoHS compliant, not RoHS compliant, or RoHS
compliant by exemption. Equipment that is required to be compliant must have a
Certificate of RoHS compliance.

3.4.4 Lead-Free Solder

In electronic circuits, traditional (lead) solder was comprised of 60% tin and 40%
lead (Sn60/Pb40) by mass to produce a near-eutectic mixture. (A eutectic or
eutectic mixture is a mixture of two or more phases at a particular composition
of materials that have the lowest melting point, at which temperature the

phases will simultaneously crystalize.) For Sn60/Pb40, the lowest melting point is
below 190°C.

Since the introduction of the WEEE directive and RoHS, lead has been removed from
electrical and electronic equipment. The resulting lead-free solders contain other
metals such as tin, copper, and silver [19]. Lead-free solders have higher melting
points, which has necessitated re-engineering the electronic components to withstand
the higher solder melting points.

3.4.5 Electromagnetic Compatibility

When an electronic circuit is to operate in a particular environment, it will be required
to operate:

e without producing any interference to the operation of any other electronic
circuit

e without itself being interfered to by any other electronic circuit

Electromagnetic noise is produced when an electronic source produces rapidly
changing current and voltage. Nearby electronic circuits that are coupled to the

www.newnespress.com

PCB Design 155

source (by conductive, radiative, capacitive, or inductive coupling) can receive

noise through this coupling mechanism, and electromagnetic interference (EMI) will
occur. Electromagnetic compatibility (EMC) is the ability of an electronic circuit to

function in its operating environment without causing or experiencing performance

degradation resulting from unintentional EMI.

Unless circuits are designed to be coupled, circuit designs can be made to reduce the
noise effect by any of several means:

e reducing any signal switching frequency to as low as possible to maintain the
circuit operation

e physically separating the circuits

e suitably shielding the circuit using shielding material and enclosures

3.5 Case Study PCB Designs
3.5.1 Introduction

The case study designs presented within the book are based on the development
of a complete mixed-signal electronic system, as shown in Figure 3.19, using

a complex programmable logic device (CPLD) development board with plug-in
modules (Eurocard-sized PCBs). As such, the modules can be developed

on a need-to-use basis. With this arrangement, the single experimentation
arrangement will enable a wide range of designs to be designed, developed,

and tested.

Each of the boards can be designed and manufactured as and when required,
depending on the type of system to develop and experiments to undertake.

The core of the system is the CPLD development board, containing a XC2C256
Coolrunner™-1I CPLD, SRAM (static RAM) memory, and connectors for
connecting the other boards. Hence, the development board must be designed and
manufactured first. The board operates on a single +3.3V power supply for both
the CPLD and SRAM. Additionally, a +1.8 V power supply is derived from the
+3.3V input power to provide the necessary power to the CPLD; this particular
CPLD requires a +1.8 V power supply for the core and a +3.3V periphery
interface level to the external circuitry.

www.newnespress.com

g
g
:
3
o
g
3
[0}
n
©
=
o
n
n
o
o
3

Analogue Power Digital Power
Supply Supply
- |
Analogue I/0 Board ,_l_m m-, LCD and Hex Keypad Board
ADC — l .
B I |

A C

DAC 1« CPLD Development Board

Digital 1/0 Board PC Interface Board

=| > il hand
| A | —
) B d
« - P AT | —
y
JTAG Interface for CPLD configuration [‘_!

is

Figure. 3.19: Case study board set-up

Main User PC

951

£ 4a1doy>

PCB Design 157

Aside: In this section, the PCB board operation and connections are identified, along with
the potential uses. The circuit schematics are not provided here, but are available in
Appendix F, Case Study PCB Designs (see the last paragraph of the Preface for instruc-
tions regarding how to access this online content).

The digital logic uses LVCMOS standard (logic 1 = +3.3V, logic 0 = 0 V), and the
analogue circuits operate on a +/—5.0 V dual rail power supply. The digital logic
power supply for all boards is derived from the CPLD development board, but the
analogue I/O board requires a separate dual rail power supply for the analogue parts.
Hence, the circuit is designed to operate at the lower voltage levels.

If signal voltage levels exceeding the designed levels are required, they must be
generated externally. The external circuit levels must be compatible with the
designed levels for the system and must not under any circumstances exceed the
absolute maximum ratings for each component in the circuit. Absolute maximum
ratings for each component are identified in the datasheet for the particular
component.

3.5.2 System Overview

Once the CPLD development board has been designed, manufactured, and
successfully tested, it can be used for developing digital circuit and systems designs.
Those designs are developed based on logic schematic diagrams and/or hardware
description language (HDL) and using an appropriate CPLD design tool. (The
Xilinx® ISE™ tools available from the company will be required.) It is possible to use
both VHDL (VHSIC hardware description language) and Verilog®-HDL to develop
the digital designs, and synthesizing the resulting HDL RTL (register transfer level)
code into a netlist targeting the CPLD, but in this book, only VHDL will be
considered. Attached to the CPLD development board (the motherboard) will be four
daughter boards, each with a different function as follows:

1. LCD (liquid crystal display) and hex keypad board
2. PC interface board
3. digital I/O board

4. analogue I/O board

www.newnespress.com

158 Chapter 3

With this arrangement, it is possible to develop a wide range of digital and
mixed-signal electronic circuits based on a central digital core, for applications
such as:

e general computing

e communications

e digital signal processing (DSP)

e digital control

e security and alarm systems

® instrumentation

e cnvironmental monitoring

e mixed-signal electronic circuit test equipment

e analogue signal generation (using an arbitrary waveform generator, AWQG)

e direct digital synthesis (DDS)
The CPLD I/O connections will be configured to adhere to the LVCMOS (3.3 V level)
standard so that the I/O will interface to the digital circuitry it is attached to.
However, the digital circuitry will be required to adhere to the LVCMOS (3.3 V level)

standard for compatibility, unless suitable level shifting circuitry is utilised to
interface the CPLD to the digital circuitry.

3.5.3 CPLD Development Board

The CPLD development board is the heart of the electronic system. This contains a
X(C2C256 Coolrunner™-1I CPLD, SRAM memory, and connectors for connecting
the other boards. The CPLD development board operates on a single +3.3 V power
supply, used to power both the CPLD and SRAM. Additionally, a +1.8 V power
supply is derived from the +3.3 V input power to provide the necessary power to the
CPLD:; this particular CPLD requires a +1.8 V power supply for the core and

a +3.3 V periphery interface level to the external circuitry.

The CPLD operates using a 50 MHz crystal oscillator IC and has a power-on reset
circuit (with additional manual reset switch).

www.newnespress.com

PCB Design 159

The CPLD is programmed from a PC using its built-in JTAG (Joint Test

Action Group) interface. The ISE™ tool is to be used for CPLD design entry,
simulation, layout, and configuration. An introduction to the design tool used is
provided in Appendix E, Introduction to the Design Tools (see the last paragraph of
the Preface for instructions regarding how to access this online content).

The CPLD I/O connections are configured to adhere to the LVCMOS (3.3 V level)
standard. However, the CPLD I/O can be configured to operate with the
following digital logic standards:

e LVTTL, Low-voltage transistor-transistor logic (3.3 'V level)
e LVCMOS33, Low-voltage CMOS (3.3V level)

e LVCMOS25, Low-voltage CMOS (2.5V level)

e LVCMOSIS, Low-voltage CMOS (1.8 V level)

e 1.5V I/O (1.5V levels), 1.5V level logic (1.5V level)

e HSTL-I1, High-speed transceiver logic

e SSTL2-1, Stub series terminated logic (2.5V level)

e SSTL3-1, Stub series terminated logic (3.3 V level)

The 1/O standard is set during the design entry within the CPLD design tools and
is one of the design constraints that the user will set.

The CPLD development board (see Figure 3.20) is based around the use of the
Coolrunner ™-1I CPLD (XC2C256-144) device using a 144-pin package (in a
TQFP [thin quad flat pack]) package, connected to IDC connectors to interface the
CPLD to the daughter boards. The board also houses a Cypress Semiconductor
CYC1049CV33 512x8 SRAM IC that can be used for temporary data storage
whenever the CPLD is configured to undertake either digital signal processing or data
capture operations.

The CPLD is automatically reset whenever the power is applied using

a power-on reset circuit. (The configuration is held in nonvolatile memory so that
whenever the power is removed from the CPLD, the last configuration is retained.)
This reset can also be manually applied using a push-switch at any time by the
user. This circuit uses the Maxim MAXS811-S voltage monitor IC with manual

reset input.
www.newnespress.com

160 Chapter 3

+3.3V Power
+1.8V
Regulator
Reset
push button
A 4 A, y A 4
CYC1049CV33 |, | XC2C256-144 » Voltage Monitor
512x8 SRAM [~ Coolrunner™-|| (< IC
CPLD
7-Segment Y
Display
Extension
A A 4 y
PC Interface LCD and Digital I/0 Analogue I/O
Board Display Board Board Board
Connector Connector Connector Connector

Figure 3.20: CPLD development board

The IDC connector pin allocation for the CPLD development board to connect to the
four daughter boards is the same as for each of the daughter boards.

The circuit diagram for this PCB is provided in Appendix F, Case Study PCB Designs
(see the last paragraph of the Preface for instructions regarding how to access this
online content).

Table 3.7 identifies the component list for the CPLD development board.

3.5.4 LCD and Hex Keypad Board

A 12-key hex keypad is used for data entry into the CPLD (whether at a data entry
terminal, security keypad, telephone keypad, for instance), and data is displayed on a
MDLS162653V 2-line, 16-digit LCD (see Figure 3.21). The LCD can be used for a
range of scenarios such as message boards and prompts for the user to take specific
actions. This user I/O mechanism is based on typical portable electronics used today
(e.g., the mobile phone). The circuit is designed to operate with a logic 1 value of
+3.3V and a logic 0 value of 0V, and the LCD display is designed for 3.3V

www.newnespress.com

PCB Design 161

Table 3.7: CPLD development board component list

Component no. | Component description Quantity
1 XC2C256-144 Coolrunner™"Il CPLD 1
2 CYC1049CV33 512x8 SRAM 1
3 PCB mount Push-switch 1
4 1N4001 diode 1
5 150 €2 resistor (0.6 W, £1% tolerance) 1
6 Blue LED (20 mA) 1
7 20-way IDC connector 4
8 2.1 mm power connector 1
9 50 MHz crystal oscillator (8-pin DIP) 1

10 REG1117 +1.8V voltage regulator 1
11 MAX811-S voltage monitor IC 1
12 14-way connector (specific to JTAG programmer cable) 1
13 16-way connector (for LED display board extension) 1
14 100 nF capacitor 13
15 10 WF electrolytic capacitor 1
16 Eyelet test probe point 8

20-way IDC Connector (to/from CPLD Development Board

ECO 12150 06 SP MDLS162653V
Hex Keypad LCD Display
Prototyping Display contrast

Area adjust preset

Figure 3.21: LCD and hex keypad board

operation. The data sheet for the MDLS162653V display obtained from the
appropriate manufacturer can be referred to for precise logic 1/O specifications
(power supply operation, logic I/O voltage levels, and speed of operation).

A preset (variable resistor) is connected to the LCD display to allow the user to adjust
the display contrast. The free space on the PCB (i.e., the area not used by the
components and interconnect track) is filled with a prototyping area consisting of
through-hole plated vias spaced at 2.54 mm in a 24 x 12 array. The via spacing is set

www.newnespress.com

162 Chapter 3

to that of through-hole DIL (dual in-line) packages. The circuit diagram for this PCB
is provided in Appendix F, Case Study PCB Designs (see the last paragraph of the

Preface for instructions regarding how to access this online content).

Table 3.8 identifies the component list for the LCD display and hex keypad board.
Table 3.9 identifies the 20-way IDC connector pin allocation for the LCD display and

hex keypad board.

Table 3.8: LCD and Hex keypad board component list

Component no.

Component description

Quantity

coOoNOOn b LON =

20 way IDC plug (PCB mount)
1N4001 diode

150 € resistor (0.6 W, £1% tolerance)
Blue LED (20 mA)
10 kS2 preset

LCD display (16 character, 2 line), MDLS162653V
12-key hex keypad - ECO 12150 06 SP

10 kS resistor (0.6 W, £1% tolerance)

[N [N NN I

Table 3.9: LCD and hex keypad board 20-way IDC connector pin allocation

Pin no. Identifier Function Direction
1 VDD +3.3V DC Power supply
2 DBO LCD display data bit 0 (LSB) Input
3 D Hex keypad (D) Input/output
4 DB1 LCD display data bit 1 Input
5 E Hex keypad (E) Input/output
6 DB2 LCD display data bit 2 Input
7 F Hex keypad (F) Input/output
8 DB3 LCD display data bit 3 Input
9 G Hex keypad (G) Input/output
10 DB4 LCD display data bit 4 Input
11 H Hex keypad (H) Input/output
12 DBS LCD display data bit 5 Input
13 J Hex keypad (J) Input/output
14 DB6 LCD display data bit 6 Input
15 K Hex keypad (K) Input/output
16 DB7 LCD display data bit 7 Input
17 RS LCD register select control Input
18 Enable LCD enable control Input
19 R/W LCD read/write control Input
20 VSS 0V DC Power supply

www.newnespress.com

PCB Design 163

1(]2]]3
4|56
71189
| lo||#

KeyPad

ECO_12150_06_SP

Figure 3.22: Hex keypad pin identification

The CPLD must be configured so that it will suitably access the keypad. This
involves providing output logic levels to specific connections on the keypad and
reading in from the remaining connections. This is a common technique adopted
when using hex keypads of this type. Figure 3.22 shows the keypad pin
identification.

3.5.5 PC Interface Board

The PC interface board (Figure 3.23) uses RS-232 communications protocol, which
allows digital circuits to communicate with each other using a UART (universal
asynchronous receiver transmitter) circuit. The board contains three-level shifting ICs
(the MAX3232CPE) to provide four serial links (COM links 1 to 4) that can be
connected to the CPLD board. The MAX2323CPE level shifting ICs (IC pin
connections) translate the PC UART output levels to +3.3 V/0 'V levels compatible

www.newnespress.com

164 Chapter 3

20-way IDC Connector (to/from CPLD Development Board

MAX3232CPE MAX3232CPE MAX3232CPE
y \4 A 4
9-way D-plug 9-way D-plug 9-way D-plug 9-way D-plug
(COM 1) (COM 2) (COM 3) (COM 4)

Figure 3.23: PC interface board

with the CPLD board (Figure 3.24). The datasheet for the MAX3232CPE obtained
from the appropriate manufacturer provides precise logic I/O specifications (power
supply operation, logic I/O voltage levels, and speed of operation).

The circuit diagram for this PCB is provided in Appendix F, Case Study PCB Designs
(see the last paragraph of the Preface for instructions regarding how to access this
online content).

Table 3.10 identifies the component list for PC interface board.

Table 3.11 identifies the 20-way IDC connector pin allocation for the PC
interface board.

T1OUT T20UT R1IN R2IN <«—— To/From PC
% % % 2 <«— To/From CPLD
T1IN T2IN R10UT R20UT

Figure 3.24: MAX3232CPE circuit with pin identifiers

www.newnespress.com

PCB Design

165

Table 3.10: PC interface board component list

Component no.

Component description

Quantity

O VW ONOUNPN~NWN =

_

20 way IDC plug (PCB mount)
1N4001 diode

150 €2 resistor (0.6 W, £1% tolerance)
Blue LED (20 mA)

Red LED (20 mA)

Yellow LED (20 mA)

MAX3232CPE Level-Shifter IC

10 pF electrolytic capacitor

PCB mount D-connector (plug)

Eyelet test probe point

—_

AN U WAN-_ NI -

_

Table 3.11: PC interface board 20-way IDC connector pin allocation

Pin no. | Identifier Function Direction
1 VDD +3.3v DC Power supply
2 Tx_LED Transmitter indicator LED Input
3 COM1_Rx COM 1 data receiver Input Output
4 Rx_LED Receiver indicator LED Input
5 COM1_Tx COM 1 data transmitter output Input
6 COM4_LED | COM 4 selected indicator LED Input
7 COM1_CTS | COM 1 clear to send Output
8 COM3_LED COM 4 selected indicator LED Input
9 COM1_RTS COM 1 ready to send Input

10 COM2_LED | COM 4 selected indicator LED Input
11 COM2_Rx COM 2 data receiver input Output
12 COMT_LED | COM 4 selected indicator LED Input
13 COM2_Tx COM 2 data transmitter output Input
14 COM4_Tx COM 4 data transmitter output | Input
15 COM2_CTS | COM 2 clear to send Output
16 COM4_Rx COM 4 data receiver input Output
17 COM2_RTS | COM 2 ready to send Input
18 COM3_Tx COM 3 data transmitter output Input
19 COM3_Rx COM 3 data receiver input Output
20 VSS 0V DC Power supply

There are four possible COM ports, using the following connections:
e COM 1—Tx, Rx, CTS, and RTS signals
e COM 2—Tx, Rx, CTS, and RTS signals

www.newnespress.com

166 Chapter 3

e (COM 3—Tx and Rx signals
e COM 4—Tx and Rx signals

The CPLD can identify which COM port it is currently accessing using the four
yellow LEDs on the PC interface board (where a logic 1 output from the CPLD turns
ON the LED and a logic 0 output from the CPLD turns OFF the LED). The CPLD
can also identify Tx and Rx signal activity by using the two red LEDs on the PC
interface board.

3.5.6 Digital I/O Board

The digital I/O board (Figure 3.25) uses octal three-state (tri-state) buffers using
74HC240 logic ICs that provide a digital buffer between the CPLD and external
digital logic circuitry. This both allows the CPLD logic outputs to be applied to
external circuitry and provides protection; if a fault in the external circuitry causes a
situation that can damage the CPLD (e.g., electrical overstress), then the 74HC240
logic ICs will be damaged before the CPLD. The 74HC240 logic ICs (IC pin
connections, Figure 3.26) are cheaper to replace and will be mounted in sockets,
thereby avoiding the need to unsolder the CPLD surface mount package. The circuit
is designed to operate with a logic 1 value of +3.3 V and a logic 0 value of 0 V.

|20-way IDC Connector (to/from CPLD Development Board) |

+3.3V oV
(Power) (Power)
Output Enable Input Enable
(active low) (active low)

Digital logic outputs Digital logic inputs from
to external circuitry external circuitry

Figure 3.25: Digital /O board block diagram

www.newnespress.com

PCB Design 167

10E o[> 20E o[>
]]

1A1 ;; 1Y1 2A1 ; 2Y1
] b

1A2 $o 1v2 2A2 Lo 22
]]

1A3 o 13 2A3 o 2v3

1A4 Lo 14 2A4 Lo ov4

Figure 3.26: 74HC240 octal buffer circuit schematic with pin identifiers

The data sheet for the 74HC240 IC obtained from the appropriate manufacturer
provides the precise logic 1/O specifications (power supply operation, logic I/O
voltage levels, and speed of operation).

The circuit diagram for this PCB is provided in Appendix F, Case Study PCB Designs
(see the last paragraph of the Preface for instructions regarding how to access this
online content).

Table 3.12 identifies the component list for the digital I/O board.
Table 3.13 identifies the 20-way IDC connector pin allocation for the digital I/O board.

The circuit requires a +3.3 V power supply via the IDC connector from the
CPLD development board to provide the necessary power to the buffer ICs.

A protection diode (1N4001) is reversed-biased across the power supply so that
when the power supply is connected in the correct orientation, the diode does not

Table 3.12: Digital 1/O board component list

Component no. Component description Quantity

20 way IDC plug (PCB mount)

74HC240 (Octal buffer with 3-state outputs)
Blue LED (20 mA)

Yellow LED (20 mA)

150 € resistor (0.6 W, 1% tolerance)
1N4001 diode

9-way terminal block

100 nF ceramic capacitors

Eyelet test probe point

OCoOoONOUN DW=
ONNN = LN =N =

—_

www.newnespress.com

168 Chapter 3

Table 3.13: Digital 1/O board 20-way IDC connector pin allocation

Pin no. | ldentifier Function Direction
1 VDD +3.3v DC Power supply
2 OE1 Output buffer enable Input
3 A0 Output buffer (A), bit 0 (LSB) Input
4 A1 Output buffer (A), bit 1 Input
5 A2 Output buffer (A), bit 2 Input
6 A3 Output buffer (A), bit 3 Input
7 A4 Output buffer (A), bit 4 Input
8 A5 Output buffer (A), bit 5 Input
9 A6 Output buffer (A), bit 6 Input

10 A7 Output buffer (A), bit 7 (MSB) Input
11 OE2 Input buffer enable Input
12 BO Input buffer (B), bit 0 (LSB) Output
13 B1 Input buffer (B), bit 1 Output
14 B2 Input buffer (B), bit 2 Output
15 B3 Input buffer (B), bit 3 Output
16 B4 Input buffer (B), bit 4 Output
17 BS Input buffer (B), bit 5 Output
18 B6 Input buffer (B), bit 6 Output
19 B7 Input buffer (B), bit 7 (MSB) Output
20 VSS 0V DC Power supply

have any effect. If, however, the power supply orientation is reversed (i.e., +3.3 V and
0V are connected the wrong way around), then the diode will conduct for a short time
until it is damaged, then the IC Vpp will be limited to approximately —0.6 V (because
of the forward-biased diode voltage drop), and during this time, the ICs will be
protected from damage resulting from electrical overstress.

Three LEDs are also included on the board: one blue to indicate the power supply is
connected, and two yellow to indicate that the buffers are enabled (LED is OFF) or
disabled (LED is ON).

3.5.7 Analogue I/O Board

The analogue I/O board generates and samples analogue voltages under the control
of the CPLD (Figure 3.27).

A stereo DAC (digital-to-analogue converter) provides two analogue output voltages
digitally generated by the CPLD. The DAC is a Wolfson® Microelectronics WM8725

www.newnespress.com

PCB Design 169

| 20-way IDC Connector (to/from CPLD Development Board) |

l l

+3.3V Reference ov

(Power) l l (Power)
WM8738 WM8725
ADC DAC

T

Analogue Analogue Analogue Analogue
/P 1 I/P 1 O/P 1 O/P 1

Figure 3.27: Analogue 1/O board block diagram

stereo DAC with a serial interface, which requires seven digital signals for control and
data, analogue and digital power supplies, and an analogue reference voltage. A
stereo ADC (analogue-to-digital converter) is used to sample two analogue input
voltages into the CPLD. The ADC is a Wolfson® Microelectronics WM8738 stereo
ADC with a serial interface, which requires six digital signals for control and data,
analogue and digital power supplies, and an analogue reference voltage.

Table 3.14 identifies the component list for the analogue 1/O board.
Table 3.15 identifies the 20-way IDC connector pin allocation for the analogue I/O board.

Both the DAC and the ADC require a reference voltage to operate. This is externally
generated using a Reference Voltage IC (REF3230), which provides an accurate
+3.0V voltage to supply the analogue power to both the DAC and ADC, which in
turn internally generates the required reference voltage.

Each of the analogue inputs and outputs to and from the board are connected via

an op-amp operating as a unity gain buffer to BNC connectors on the board. The
output voltage range is set by the output range of the DAC (minimum to maximum
output voltage values) and the input range of the ADC (minimum to maximum input
voltage values). The outputs and inputs are also unipolar (positive voltages only).

www.newnespress.com

170 Chapter 3

Table 3.14: Analogue I/O board component list

Component no. | Component description

Quantity

20-way IDC plug (PCB mount)

150 W resistor (0.6 W, £1% tolerance)
1 MW resistor (0.6 W, +1% tolerance)
Blue LED (20 mA)

Red LED (20 mA)

Green LED (20 mA)

1N4001 diode

WM8725 stereo DAC

WME8738 stereo ADC

REF3230 (3.0V) voltage reference IC
LM324 quad op-amp

PCB mount BNC connector

PCB mount screw terminal (3-way)

10 pF electrolytic capacitor

100 nF ceramic capacitor

Eyelet test probe point

—_
O VW ONOUNA~NWN =

NN
nhwn o
AU RN D NN =N

—_
@)

Table 3.15: Analogue I/O board 20-way IDC connector pin allocation

Pin no. | Identifier Function Direction
1 VDD +3.3V DC Power supply
2 ADC_FMT WM8738 ADC signal FMT Input
3 ADC_NOHP WM8738 ADC signal NOHP Input
4 ADC_SDATO WM8738 ADC signal SDATO Output
5 ADC_LRCLK WM8738 ADC signal LRCLK Input
6 ADC_BCLK WM8738 ADC signal BCLK Input
7 ADC_MCLK WM8738 ADC signal MCLK Input
8 DAC_FORMAT | WM8725 DAC signal FORMAT Input
9 DAC_SCKI WM8725 DAC signal SCKI Input

10 DAC_LRCIN WMB8725 DAC signal LRCIN Input
11 DAC_DIN WM8725 DAC signal DIN Input
12 DAC_BCKIN WM8725 DAC signal BCKIN Input
13 DAC_DEEMPH | WMB8725 DAC signal DEEMPH Input
14 DAC_MUTE WM8725 DAC signal MUTE Input
15 — — —

16 ADC_1_LED ADC input 1 selected indicator LED | Input
17 ADC_2_LED ADC input 2 selected indicator LED | Input
18 DAC_1_LED DAC input 1 selected indicator LED | Input
19 DAC_2_LED DAC input 2 selected indicator LED | Input
20 VSS 0V DC Power supply

www.newnespress.com

PCB Design 171

Therefore, for bipolar (positive and negative voltages) and for a wider range of 1/O
voltages, external circuitry is required to appropriately condition the signals.

Four yellow LEDs are also mounted on the PCB so the CPLD can indicate which
DAC or ADC is actually selected at any one time.

The circuit requires a +3.3 V digital power supply via the IDC connector from the
CPLD development board to provide the necessary power to the buffer ICs. A
protection diode (1N4001) is reversed-biased across the power supply so that when
the power supply is connected in the correct orientation, the diode does not have any
effect. If, however, the power supply orientation is reversed (i.e., +3.3V and 0V are
connected the wrong way around), then the diode will conduct and for a short time
until it is damaged, then the IC Vpp will be limited to approximately —0.6 V (because
of the forward-biased diode voltage drop), and during this time, the ICs will be
protected from damage resulting from electrical overstress.

The analogue power for the op-amps is provided by a separate screw terminal
connector. This additional power supply also incorporates protection diodes.

3.6 Technology Trends

The areas of PCB design, manufacture, and test are taking on an increasingly
important role in ensuring that a circuit design will operate correctly once
manufactured. Among the technological and commercial drivers requiring these
improvements are:

* Cost reduction: End users requiring more product for less cost

e Higher quality levels: The need to continually improve the quality of the
manufactured PCB

e Adherence to legislation directives: Increased implementation of legislation that
requires particular design, manufacture, and test specifications

e Adherence to standards: The development of standards by organizations to
ensure consistency in the design, manufacture, and testing of PCBs

e Higher density interconnect: Reduced interconnect track widths and spacing
between the tracks to provide more interconnect on the PCB—particularly
important for computer and communications applications

www.newnespress.com

172 Chapter 3

e Higher density of electronic components: Reduced spacing between the
electronic components to provide more circuit functionality on the PCB—
particularly important for computer and communications applications

e Reduced electronic component package size (the “footprint” on the PCB):
Reduced packaging dimensions for the electronic components to provide more
circuit functionality on the PCB—particularly important for computer and
communications applications

¢ Increased use of surface mount technology

e Less empty space: A reduction in the amount of PCB surface area left unused
to provide more functionality for the PCB and to reduce overall production
costs

e Higher operating frequencies: Driven by computer and communications
applications so the electronic circuit can undertake more operations in a
reduced time: for computer applications, the need for high-speed digital data
transfer; for communications applications, both high-speed digital data
transfer, wired and wireless data transfer (RF)

www.newnespress.com

PCB Design 173

References

[1] Horowitz, P., and Hill, P., The Art of Electronics, Second Edition, Cambridge
University Press, 1989, ISBN 0-521-37095-7.

[2] O’Connor, P., Test Engineering, A Concise Guide to Cost-effective Design,
Development and Manufacture, John Wiley & Sons, Ltd., 2001, ISBN 0-471-
49882-3.

[3] Bushnell, M., and Agrawal, V., “Essentials of Electronic Testing for Digital,
Memory & Mixed-Signal VLSI Circuits,” Kluwer Academic Publishers, 2000,
ISBN 0-7923-7991-8.

[4] Hughes, E., Electrical and Electronic Technology, Ninth Edition, Pearson
Education, 2005, ISBN 0-13-114397-2.

[5] Floyd, T., Electronics Fundamentals, Circuits, Devices, and Applications, Fifth
Edition, 2001 Prentice Hall, ISBN 0-13-085236-8.

[6] Smith, M., Application Specific Integrated Circuits, Addison-Wesley, 1999,
ISBN 0-201-50022-1.

[71 Doane, D., and Franzon, P., Multichip Module Technologies and Alternatives,
The Basics, Van Nostrand Reinhold, 1993, ISBN 0442091236-5.

[8] IPC, http://www.ipc.org

[9] Sears, F., Zemansky, M., and Young, H., University Physics, Seventh Edition,
Addison-Wesley, 1987, ISBN 0-201-06694-7.

[10] Smithson, G., “Practical RF printed circuit board design,” IEE Training
Course: “How to Design RF Circuits” (Ref. No. 2000/027), IEE, 5 April
2000, pp. 11/1-11/6.

[11] Sharawi, M. S., “Practical issues in high speed PCB design,” IEEE Potentials,
Vol. 23, Issue 2, April-May 2004, pp. 24-27.

[12] Verma, A., “Optimizing test strategies during PCB design for boards with
limited ICT access,” 27th International IEEE/SEMI Annual Electronics
Manufacturing Technology Symposium (IEMT 2002), 17-18 July 2002,
pp. 364-371.

[13] Reeser, S., “Design for in-circuit testability,” 11th International IEEE/CHMT
Electronics Manufacturing Technology Symposium, 16-18 September 1991,
pp. 325-328.

[14] Ghose, A. K., Mandal, S. K., and Deb, G. K., “PCB Design with Low EMI,”
Proceedings of the International Conference on Electromagnetic Interference and
Compatibility, 6-8 December 1995, pp. 69-76.

www.newnespress.com

174

Chapter 3

[13]

[16]

[17]

[18]

[19]

John, W., “Remarks to the solution of EMC-problems on printed-circuit-
boards,” Proceedings of the 7th International Conference on Electromagnetic
Compatibility, 28-31 August 1990, pp. 68-72.

XiaoKun Zhu, Bo Qi, Xin Qu, JiaJi Wang, Tackoo Lee, and Hui Wang,
“Mechanical test and analysis on reliability of lead-free BGA assembly,” Pro-
ceedings of the 6th International Conference on Electronic Packaging Technol-
0gy, 20 Aug.—2 Sept. 2005, pp. 498-502.

European Union, Directive 2002/96/EC on Waste Electrical and Electronic
Equipment (WEEE).

European Union, Directive 2002/95/EC on the Restriction of Use of Certain
Hazardous Substances.

Deubzer, O., Hamano, H., Suga, T., and Griese, H., “Lead-free soldering-
toxicity, energy and resource consumption,” Proceedings of the 2001 IEEE
International Symposium on Electronics and the Environment, 7-9 May 2001,
pp- 290-295.

www.newnespress.com

PCB Design 175

Student Exercises

The exercises for this chapter are based on the PCB case study designs. The aim will be
to design, manufacture, and test these PCBs, both separately and as a complete
system. To achieve this goal, it will be necessary to act as a team. The structure of the
team can be decided upon as considered most appropriate, but the following roles
should be adopted:

¢ Project management: Coordinating the team to develop and administer the
processes to obtain a working PCB design.

e Schematic entry: Using the circuit designs provided in Appendix F (see the last
paragraph of the Preface for instructions regarding how to access this online
content). Develop the circuit schematics in the PCB design tool of choice.

e Layout: Develop the PCB layout from the circuit schematic. This step also
includes the manufacture of the PCB.

e Simulation and test: Developing a suitable test procedure (using simulation if
possible), and using suitable test equipment on the manufactured PCB.

e System interfacing: Developing a test procedure to test the PCB when
integrated into the overall electronic circuit. (This role is to be taken into
Question 3 of the exercise.)

1. Identify the possible routes to manufacturing the required PCBs for both
one-off prototypes. For the chosen manufacturing process, identify the
materials used and the required layout design rules.

2. For the circuit designs identified in the case studies, obtain the following
information:

e User guides and relevant information on the PCB design tools to be used
e Component datasheets
e Relevant information on the PCB manufacturing facility to be used.

Using this information, create a suitable information resource center based on
HTML pages to operate on a local intranet site. The site is to be readily
accessible by those requiring the information.

3. For each PCB: Working in teams, design, fabricate, and test each PCB in
turn to create the required overall system. Team members should change roles
for each PCB so that each member can practice each step.

4. For the overall system: When integrating all PCBs into the overall system,
assign one person to develop and run board integration tests. Do not assign

www.newnespress.com

176 Chapter 3

a project manager; instead, so each team member is to take on one or more
specific roles of a project manager, listed below:

e CPLD development board integration test

e LCD display and keypad board integration test
e PC interface board integration test

e digital I/O board integration test

e analogue I/O board integration test

e overall system test

5. Develop a new PCB design that replaces the digital I/O board with a board
that uses suitably placed LEDs (yellow, red, green, blue) to create the lights
on a Christmas tree. The CPLD is to be used to switch the LEDs ON and
OFF, and to enable a user to set different lighting arrangements from a PC.
An example board arrangement is shown in the following figure.

Figure: Example Christmas tree lights board

www.newnespress.com

Design Languages

4.1 Introduction

Design languages provide the means by which to describe the operation of both
software programs and hardware. These descriptions, usually text based, are
developed and stored as ASCII text files within the computer on which the
descriptions are being developed. Over the years, a large number of languages have
been developed. Some are still in use today, while others have become obsolete.

Design languages are of two types, software programming languages (SPL) and
hardware description languages (HDL). At one time, designers were either software
or hardware designers, and design teams were clearly distinguished by these separate
roles. Today, however, designers are involved in both software and hardware design
and need skills in both areas, although they may be specialized.

Attempting to identify and introduce all the design languages developed and in use
would be a book in its own right. This chapter will identify and introduce a number of
key languages used in both hardware and software design. Figure 4.1 identifies the
languages to be identified and discussed.

4.2 Software Programming Languages
4.2.1 Introduction

Software programming languages (SPLs) allow a software designer to create
executable software applications that will operate on a suitable processor. The target
processor will be one of three types: microprocessor (LP), microcontroller (uC), or

digital signal processor (DSP).

178 Chapter 4

| Design Requirement |

Software Hardware
implementation implementation
° — Digital VHDL
= Verilog®-HDL
Visual
Basic™
—» Analogue SPICE
JAVATM <
Verilog®-A
Scripting
Languages —
— “s”;gﬁ;’l L VHDL-AMS
Verilog®-AMS
System R _
K A (digital) p| SystemVerilog
v« v Y
SystemC®

Figure 4.1: Design languages

The microprocessor is a software-programmable, integrated circuit built around a
central processing unit (CPU) and based on an instruction set that the software
program uses to perform a set of required tasks. The instruction set is one of two types:
CISC (complex instruction set computer) or a RISC (reduced instruction set computer).
As a general-purpose processor that can be designed to undertake a wide range of tasks,
the microprocessor architecture is not necessarily optimized for specific tasks.

The microcontroller is a type of microprocessor that contains additional circuitry such
as memory and communications ports (such as a UART, universal asynchronous
receiver transmitter, for RS-232 communications) along with the CPU, and is used in
embedded system applications. It does not have the generality of the general-purpose
microprocessor, but rather is a self-contained, low-cost “computer on a chip.”

www.newnespress.com

Design Languages 179

The digital signal processor is a specialized form of microprocessor used in real-time
digital signal processing operations. Although such operations can be performed on a
microprocessor, DSP architecture is optimized for the fast computations typically
undertaken.

Essentially, software is developed for one of two target areas:

e as a software application to run on a workstation or PC, executing on a
suitable operating system (UNIX™, Windows®, Mac OS® or Linux®)

e asembedded software to run on a processor within an embedded system.
Examples of embedded systems include control, automotive, and aerospace
applications. The processor runs the embedded software program as a stand-alone
entity rather than through one of the above software operating systems.

For software applications to run on workstations or PCs, there are a number of
software programming languages and supporting development environments to aid
the designer. Some supporting development environments are a collection of separate
software tools that are executed by the designer separately, others are a collection of
software tools contained within a single integrated design environment (IDE).

For embedded software to run on a processor within an embedded system, the choice
of programming language and supporting development environments reduces. The C
language is most commonly used for embedded software development.

4.2.2 C

The C programming language evolved from two previous programming languages, BCPL
and B [1]. BCPL was developed by Martin Richards in 1967. B was then developed by
Ken Thompson using many of the features found in BCPL. C evolved from B, and was
developed by Dennis Ritchie at Bell Laboratories (USA) and originally implemented in
1972. Initially designed for the UNIX™ operating system, C can now be compiled on
almost any computer (UNIX™, Windows®, and Linux® operating systems) and is one of
the most commonly used programming languages. Most operating systems, including
Microsoft® Windows®, are written in C and/or its extension C++. C is also used to
develop the software code run on the majority of processors for use in embedded system
applications. The standard for C is the ANSI/ISO Standard C [2]. The standard was first
introduced in 1989 and updated in 1999. C is hardware independent, and with careful
code design, the same source code can be portable to most computers.

www.newnespress.com

180 Chapter 4

1 /**/
2 /* This program simply outputs a line of arbitrary text */
3 /**/
4

5 #include <stdio.h>

6

7 void main (void) {

8 printf (“Hello World\n”) ;

9 }

10

11 /**/
12 /* End of File */
13 /**/

Figure 4.2: “Hello World” program in C

Consider an example of the “Hello World” program written in C. Figure 4.2 shows
the program source code and the corresponding line numbers are added for
information purposes only.

This program introduces a number of features of C. The first three lines are
comments. A comment is a piece of code that is ignored by the C compiler. Comments
are used to add useful descriptions of the functionality of the source code, and enable
easier reading of the source code by the author as well as by readers. Careful and
comprehensive commenting of the program source code is essential to good
programming practice.

The fourth, sixth, and tenth lines are left blank for readability purposes.

The fifth line is a directive to the C preprocessor. Lines that begin with the number
sign, # (also called a hash character), are processed by the C preprocessor before the
program is compiled.

The seventh line is the beginning of the program and is known as the main function.
A C program is essentially a number of functions that interact with each other in a
predefined manner. At the end of this line is an opening curly bracket, {, and on the
last line is a closing curly bracket, 3. Curly brackets are used to group a number of
statements together. In this case, they are used to mark the beginning and the end of
the program, but they can also be used to group statements that are part of other
statements such as an if statement or a while statement.

The eighth line is the statement that outputs information using the printf statement.
Any text that appears between the quotation marks, 4 ’’, will be printed to the

www.newnespress.com

Design Languages 181

standard output (i.e., the computer display screen). The last two characters of
the printf statement are \n. This indicates a new line.

The last three lines are comments.

C program development requires a program development environment, the language,
and a C standard library. The program development environment provides the
software toolset to allow the designer to enter the design software source code, to
undertake the phases necessary for the source code to the executed, to accommodate
project management, and to enable suitable software code debugging tools.

C programs are executed in six phases:

1. Source code editing, in which the designer creates and edits the C source code
file using a suitable stand-alone text editor or an editor built into an IDE,
such as Microsoft® Visual C++ [3].

2. Preprocessing is undertaken prior to program compilation and uses specific
preprocessor directives that identify needed actions. Such actions include the
replacement of specific text characters within the source code and the
inclusion of other files include the source code file.

3. Compilation uses a compiler program to translate the C source code into
machine language code (also called object code) for the particular processor
used in the computer system on which the program will run.

4. Linking: C programs usually include references to functions defined elsewhere
within libraries of functions created elsewhere. The object code created by
the C compiler, then, contain gaps for the referenced functions. A linker links
the object code with the code for the referenced functions to create an
executable image that can then be run.

5. Loading places the executable image in memory for execution.

6. Execution runs (executes) the executable image on the processor used in the
computer system on which the program will run.

B

A C source code file carries the file extension “.c.’

4.2.3 Ci+

C++ is an extension to the C language that allows an object-oriented programming
approach to application development [1]. C++ uses the concepts classes and objects.
Unlike software programming languages such as ANSI standard C, which are procedural

www.newnespress.com

182 Chapter 4

in nature, object-oriented programming (OOP) languages such as C++ (and JAVA™)
are based on objects. OOP is a design philosophy that identifies and uses the relationship
between data (variables, constants, and types) and processes (procedures and functions).
Object-oriented design identifies objects, data, and processes that relate to these objects.

Objects can be seen in everyday life and surround us. For example, a motor car that
someone owns is an object that is used for a particular purpose. It has particular
attributes that are specific to the car (such as the color and mileage), but it also has
attributes that are common to all other cars of the make and model (such as
manufacturer, engine, fuel requirements).

A vast number of attributes can be identified for any given motor car. In fact, any
object is made up of smaller objects that combine to enable its functionality.

For the purpose of this explanation (only), people can also be considered as objects in
the world, in that we all have individual attributes (height, age, hair color), and
common attributes (one head, two arms, opposable thumbs). In general, then:

e An object can undertake a number of operations, referred to as methods.

e An object has an internal state that might or might not be available to the user
of the object, either directly or through the use of the methods.

e An object is to be considered as a black box, which means its internal details
are hidden from the user. The user will use the object by applying an input
and then receiving an output. How the input is manipulated to form the
output is hidden from the user.

* An object is created from a class. The class defines the actions that the object can
undertake and the states it can maintain. A classis a template used to create an object.

e An object will have a set of attributes that are particular to the object.

Because C++ is a superset of C, C programs are compiled with a C++ compiler.
There are two points to note about C++:

1. Some language additions allow programs to be written in the same manner as
a standard C program (i.e., procedural) but they must be kept in mind. The
key points are:

® single-line comments
e]/O streams

e declarations in C++

www.newnespress.com

Design Languages 183

e creating new data types in C++
e function prototypes and type checking
e inline functions
e function overloading
2. Some language additions allow an OOP approach using classes and objects.

The most noticeable aspect of C4++ programming are the comments. Both single- and
multiline comments commence with a /* and end with a */. In C++, single-line
comments can also commence with a //. The second most noticeable aspect of C++
programming is the manner in which input to the file and output from the program is
dealt with in the code. In C, input and output is provided with scanf and printf. In
C++, streams are used to handle the input (cin) and output (cout). These aspects are
shown in the sample C++ source code shown in Figure 4.3. This program prompts
the user to enter two integer numbers and calculates the sum and difference. A C++
source code carries the a file extension “.cc.”

4.2.4 JAVA™

Java™ was developed in the mid-1990s by developers at Sun Microsystems and was first
released in 1995 [1, 4]. The software development kit (the Java"™ Development Kit, JDK)
is freely available for download via the Internet from the Sun Microsystems [5]. The

current release is Java 2 version 5.0, but both Java 2 and Java 1.1 remain in common use.

The development of this object-oriented language was undertaken to overcome the
limitations posed by the C+-+ object-oriented language. It is now widely used in a
range of computing applications, in particular for Internet-based software systems. It
is an object-oriented and platform neutral language in that:

e Object-oriented allows a programmer to follow an object-oriented programming
(OOP) approach to software development in which objects are used and work
together in the overall system and are created from templates referred to as
classes.

e Platform neutral allows a program written on one operating system to be run
on any other operating system without modification. The source code is
compiled into a format referred to as bytecode, and this bytecode is then run

using a Java interpreter.
www.newnespress.com

184 Chapter 4

// C++ source code to prompt a user to enter two integer numbers, calculate
// the sum and difference and to display the results to the standard output.

#include <iostream.h>

void messagel () ;
void message2 (void) ;

int sumFunction(int x, int y);
int diffFunction(int x, int y);

int a
int b
int sum

main() {

cout << "\M-mmmmm e \n\n";
messagel () ;

cin >> a;

message2 () ;

cin >> b;

COUt << "\N=——mmmm oo \n\n";

sum = sumFunction(a, b);

cout << "The sum of " << a << " and " << b << " is\t\t\t" << sum << "\n";

cout << "The difference between " << a << " and " << b << " is\t" << diffFunction(a, b) << "\n";
COut << "\M=—==--—m oo \n";
return 0;

}

J e e i

// Function prototype to prompt the user to input 'a'
void messagel() {
cout << "Enter an integer number for a ...";

// Function prototype to prompt the user to input 'b'
void message2 (void) {
cout << "Enter an integer number for b ...";

// Function prototype to calculate the sum of two numbers
int sumFunction(int x, int y) {
return(a + b);

// Function prototype to calculate the difference betweem two numbers
int differenceFunction(int x, int y) {
return(a - b);

Figure 4.3: C++ source code for input to and output from a program

The Java™ language can be used to develop programs for two types of use:

e when used as an application running on an operating system (Microsoft®
Windows®, Mac OS®, UNIX™, and LINUX®)

e when used within an Internet browser (such as Microsoft® Internet Explorer),
referred to as applets and called from within HTML code viewed in the browser

www.newnespress.com

Design Languages 185

import java.lang.*;
public class HelloWorld {
public static void main(String[] arguments) {

System.out.println("Hello World") ;

BooNaumrwnkr

Figure 4.4: “Hello World” program in Java™

Consider an example of the “Hello World” program (application) written in Java™.
Figure 4.4 shows the program source code (in the right column of the table),

with the corresponding line numbers (in the left column of the table) added for
informational purposes only.

This contains a single class called HelloWor1d, and within this class is a single method
called main. Before the class is written, a package called java.langis imported. This
package contains all of the classes for creating user interfaces and for painting
graphics and images. It is not strictly required for the above source code to work, but is
included to identify the use of predeveloped classes. The program could be written
without this line. In this program source code, then:

e The first line
import java.lang.¥*;

imports a package called java.lang. The .* means to import all classes within
the package. This is used to import packages (groups of classes) as well as
individual classes. It is not strictly required for the above source code to work as
this package is automatically available, but is included to identify the use of
predeveloped classes. The program could be written without this line.

e The second, fourth, sixth, and eighth lines are blank lines used to aid
readability.

e The third line
public class HelloWorld {

is the start of the class declaration. The class name HellowWorld matches the
file name (without the extension). It is a public class. There may be only

www.newnespress.com

186 Chapter 4

one public class, which may contain a number of inner private classes.
A class is a collection of methods and properties.

e The fifth line

public static void main(String[] arguments) {

is the first line of a method called main. A class must contain a main method
in a Java application for the Java interpreter to run. A static main method
is first called when an object is created.

e The seventh line is a statement to output a string of text to the system display
(the monitor).

e The ninth line is a closing bracket around the main method.
e The tenth line is a closing bracket around the HelloWor1d class.

The basic procedure for creating and running a Java™ application includes three steps:

1. Create the Java™ source code using a suitable text editor. The source code
file should have the file extension .java.

2. Compile the Java™ source code into Java™ bytecode using javac. This
bytecode is machine independent and may be run on Windows®, Linux, Mac
0S®, or UNIX™ operating systems. Theoretically, then, all the features used
on one operating system should work on the other operating systems,
although in practice one must identify any differences between the operating
systems. The bytecode carries the file extension .class signifying the Java™
class file that contains it.

3. Run the Java™ bytecode. This action runs the class file (note that the .class
extension is not included). The command java <class file> runs the Java™
interpreter on the identified file.

4.2.5 Visual Basic™

Visual Basic™ (VB) is a programming language developed by Microsoft® for
Windows®-based software applications [6]. Visual Basic'™ is also the name of the
programming environment. This modern version of the BASIC (Beginner’s All-
purpose Symbolic Instruction Code) programming language allows developers to use
the Visual Basic'™ programming environment to create applications with a graphical

www.newnespress.com

Design Languages 187

user interface (GUI) and to take advantage of the language’s OOP features. Visual
Basic™ is part of the Microsoft® Visual Studio suite of development tools; in Visual
Studio 6.0, the tools available are Visual Basic™ 6.0, Visual C++ 6.0, Visual FoxPro
6.0, and Visual InterDev 6.0.

The widely used version of VB is version 6.0, although VB.net has been developed to
replace version 6.0. Additionally, VBA (Visual Basic™ for Applications) is a
modified version of VB designed as a macro language for the development of macros
in software applications such as Microsoft® Word and Excel.

Visual Basic™ applications are designed in three stages:

1. Identify the appearance of the user interface by choosing the required
items from a collection of components such as menus, buttons, text boxes, etc.

2. Write the associated scripts with each of the items in the user interface that
defines the behavior of the application.

3. Execute the program. This is undertaken from within the programming
environment during design development and debugging, and then by creating
a stand-alone executable (.exe) file.

Consider an example of an application that prints the “Hello World” message
written in Visual Basic™. Figure 4.5 shows the program development within
the programming environment The center windows show the user interface as
it appears in the programming environment (top) and the associated scripts
(bottom).

Figure 4.6 shows the window that appears when the program is executed. This
application has one label (center of window) to display messages and a single item
in a pull-down menu (top of window). The script for this example is held in a
single form (.frm) file.

The script code created by the designer is shown in Figure 4.7. This consists of two
private subroutines:

1. Private Sub Form Load()
2. Private Sub FileClose Click()

The form name is Forml. The first subroutine (Form_Load()) identifies the actions
to be undertaken when the program initially starts. In this application, two actions
are taken. The first centers the window on the computer display screen, and the

www.newnespress.com

188 Chapter 4

Rz Sk Ues Profst Fomact Sews Fun Gusy Dagem Todkh Adddng Iereme cop

B-H-T F-"ﬂli'_-‘"-iﬂﬁ 7| IIlﬁlﬁ'ﬂg‘?alumulza :"D nom| M
= B
] aje o @ (=I=0CES
x 3 7 [5% Draject I (Helln_Warld.vbn)
o ol & 2 e
A 11 Pl (el ol Fond
5 =)
[
=:R=4
=m &
B :
5 o .
s | : d
& - FllcClase | [enex =
= E frivace S Filedloae Cliekil =
e
; e TR ETEEEE i |
' guit the aEplicazica Farmi Fem -
...................................] =
End Femt B
apseacznze 1-30

auscred-am Fb=
Bl Budn Recholn O shcoomome,
frrderbds skl

=

Privebs Zukh Form_Lowd)
(Harme)
Retums the neme uesd I cade b cerify

Figure 4.5: “Hello World” program in Visual Basic™

& Hello World

Hello World

Figure 4.6: “Hello World” program as it appears to the user

second updates the label (Forml.labell) with the required “Hello World” message.
The second subroutine identifies the actions when the menu (Figure 4.6, top of
window) action (FileClose_Click()) is performed. This ends the application and

closes the window.

www.newnespress.com

Design Languages 189

Private Sub FileClose_Click()

' Quit the application

L T O O R O L L O B U B B SO SO BN O |

End

L T O T O O R L O L L A O T B B SO SO B O |

End Sub

Private Sub Form_Load()

' Automatically centre the form on the screen

L T O O T O O O O O L L O B L T B OO B SO O |

Left = (Screen.Width - Width) \ 2
Top = (Screen.Height - Height) \ 2

' Update labell with the required text

L T O O T T O T O O O O O L L O O L B B OO SO SO O |

Forml.Labell = "Hello World"

L T O T O O O O O L L O O L U B OO B SO O |

End Sub

Figure 4.7: “Hello World” program script

4.2.6 Scripting Languages

Scripting languages provide a high-level application programming interface that
enables applications to be created and tested quickly [7]. Unlike languages

such as C and C++ that are compiled before an executable image of the
program is run, programs written in a scripting language are interpreted as they
run, thereby removing the step of having to compile a program whenever a
change is made. Programs using scripting languages can be found in many
workstation or PC applications, as well as Internet-based applications. For
example, scripting language applications are commonly used to glue together
other applications to form a single user interface for a range of existing
applications.

www.newnespress.com

190

Chapter 4

The main scripting languages in use today are described below:

Javascript was created by Brendan Eich in 1995 as a Web scripting language
for creating interactive web pages on via a suitable Internet browser tool. It
was originally called LiveScript and was incorporated into the Netscape
Internet browser. Javascript runs on the user’s machine (client-side scripting)
and allows more operations than possible with HTML alone; the Javascript is
placed within the HTML document [7].

PERL (Practical Extraction and Report Language) was developed in the late
1980s by Larry Wall as a simple text processing language. It is also used

in a wide range of applications such as file manipulation and processing,
interacting with the operating system, and establishing network connections.
It originated on the UNIX™ operating systems but is now available on all
major operating systems and includes OOP coding capabilities [7].

Python is a high-level object-oriented scripting language. Python was invented
in 1990 by Guido van Rossum and first appeared in 1991. It has a wide range
of applications from system utility actions through Internet scripting and
database access [§].

Tcl/Tk is the tool command language (Tcl) commonly used with an
associated toolkit called Tk. This high-level scripting language was created
by Professor John Ousterhout and runs on the Windows®, Linux®, Mac
0S®, and UNIX™ operating systems. It is machine independent in that the
same code (which is stored in an ASCII text file) can be transported across
platforms [9].

PHP is a recursive acronym that stands for hypertext preprocessor. It is a
server-side scripting language used for creating dynamic web pages. Server-
side scripting means that the execution of all PHP source code takes place on
the server on which the PHP file is hosted. The output after the PHP source
code has been executed is HTML on the user’s web browser [10].

VBA (Visual Basic™ for Applications) is a modified version of Visual
Basic™ designed as a macro language for the development of macros in
software applications such as Microsoft® Word and Excel.

VBScript was developed by Microsoft® as an alternative to Javascript. It runs
on the client-side computer and only with Microsoft® Internet Explorer.

www.newnespress.com

Design Languages 191

4.2.7 PHP

A PHP file can be created using any text editor and saving the file with the extension
.php. A PHP file can contain text as well as HTML tags and scripts. When a PHP
file is parsed, the PHP parser looks for opening and closing tags indicating that
everything between them is to be executed as PHP code. Everything that appears
outside of these tags is ignored. The most common, and recommended, syntax for the
opening tag is <?php. The syntax for the closing tag in PHP is 2>. Every command in
PHP must end with a semicolon, ;. The most basic command in PHP is the echo
command, used in the following manner: echo ‘‘some text’’. The echo command
simply outputs whatever text is placed within the quotation marks (single or double).

Comments can be made in PHP using either of two methods.

1. A single line comment is made by using two forward slashes, //. Everything
after this and until the end of the line will be a comment.

2. A multiline comment is made by beginning with /* and ending with */.
Everything that appears between these delimiters is a comment.

Consider an example of the “Hello World” application written in PHP. Figure 4.8
shows the program source code (in the right column of the table) and the
corresponding line numbers (in the left column of the table) added for informational
purposes only. The PHP code here is embedded within an HTML document for
browsing on a suitable Internet browser tool such as Micosoft® Internet Explorer.

In Figure 4.8, normal HTML tags are used. As these are not within the opening
and closing PHP tags, PHP simply ignores them. Then the opening tag is used on

1 <html>

2 <head>

3 <title>PHP Example l</title>
4 </head>

5

6 <body>

7

8 <?php

9 echo 'Hello World';
10 ?>

11

12 </body>

13 </html>

Figure 4.8: “Hello World” using a PHP script

www.newnespress.com

192 Chapter 4

line 8, and the echo statement is used to output the text Hello World on line 9. The
closing tag on line 10 concludes the PHP section of the code. Figure 4.9 shows the file
viewed in Micosoft® Internet Explorer.

Another way to create a PHP file is to output every element of the HTML file using
echo statements. This can be useful if the need arose to create totally different pages
depending on a certain event. Figure 4.10 shows a PHP file written in this way; this
file outputs the same page as the file in Figure 4.8.

2} PHP Example 1 - Microsoft Internct Explorer,

Fie Edt Wew Favoiites Took Heb B
Qui- © A B G| Pows frre B3 % @ - LUK

tikiress [&) hetpuf/127.0.0.1 phe!.php B0 ks ™
Google [Gi= v g & & D> o oookmatksw B blocksd 9 chack + 2) Sengsw
Hello World
ﬂbane | O Inkarnet

Figure 4.9: “Hello World” using a PHP script viewed in Micosoft® Internet Explorer

<?php

/* This is a multi-line comment.
It only ends when the closing delimiter
is used.

*/

echo '<html>"';

echo '<head><title> PHP Example 2</title></head>';
echo '<body>';

// This 1is a single line comment
echo 'Hello World';

echo '</html>"';

RRRRBRRRBR
RE e LR R Bvovaumwnr

Figure 4.10: Alternative “Hello World” using a PHP script

www.newnespress.com

Design Languages 193

4.3 Hardware Description Languages
4.3.1 Introduction

Hardware description language (HDL) design is based on the creation and use of
textural based descriptions of a digital logic circuit or system. By using a particular HDL
(the two IEEE standards in common use in industry and academia are Verilog®-HDL
[11] and VHDL [12]), the description of the circuit can be created at different levels of
abstraction from the basic logic gate description according to the language syntax

(the grammatical arrangement of the words and symbols used in the language) and
semantics (the meaning of the words and symbols used in the language).

Hardware circuit or system designs created using HDL is generated at different levels
of abstraction. Starting at the highest level (i.e., furthest from the circuit detail), the
system idea or concept is the initial high-level description of the design that provides
the design specification. The algorithm level describes the behavioral of the design in
mathematical terms. Neither the system idea nor the algorithm describes how the
behavior of the design is to be implemented. The algorithm structure in hardware is
described by the architecture, which identifies the high-level functional blocks to use
and how the functions are connected. The algorithm and architecture levels describe
the behavior of the design to be verified in simulation.

The next level down from the architecture is the register transfer level (RTL), which
describes the storage (in registers) and flow of data around a design, along with logical
operations performed on the data. This level is usually used by synthesis tools that
describe the design structure (the netlist of the design in terms of logic gates and
interconnect wiring between the logic gates). The logic gates are themselves
implemented using transistors. The HDL may also support switch level descriptions
that model the transistor operation as a switch (ON/OFF).

When designing with HDLs, the designer chooses what language to use and at what
level of design abstraction to work. When choosing language, the following aspects
must be considered:

e the availability of suitable electronic design automation (EDA) tools to
support the use of the language (including design management capabilities and
availability of tool use within a project)

e previous knowledge

e personal preferences

www.newnespress.com

194 Chapter 4

e availability of simulation models

e gsynthesis capabilities

e commercial issues

e design re-use

e requirements to learn a new language and the capabilities of the language
e supported design flows within an organization

e cxistence of standards for the language

e access to the standards for the language

e readability of the resulting HDL code

e ability to create the levels of design abstraction required and language or EDA
tool support for these abstraction levels

e access to design support tools for the language, such as the existence of
automatic code checking tools and documentation generation tools

4.3.2 VHDL

Very high-speed integrated circuit hardware description language—VHSIC HDL or
VHDL—began life in 1980 under a United States Department of Defense (DoD)
requirement for the design of digital circuits following a common design
methodology, providing the ability for self-documentation and re-use with new
technologies. VHDL development commenced in 1983, and the language became an
IEEE standard in 1987 (IEEE Std 1076-1987). The language was revised in 1993,
2000, and 2002, the latest release being 1076-2002. VHDL also has a number of
associated standards relating to modeling and synthesis.

The HDL code is contained in an ASCII text file and therefore is transportable between
EDA tools on the same computing system, between computers, between different versions
of the EDA tools and between the different engineers within the particular design team.

The HDL code is written to conform to one of three styles:

1. A structural description describes the circuit structure in terms of the logic gates
used and the interconnect wiring between the logic gates to form a circuit netlist.

www.newnespress.com

Design Languages 195

2. A dataflow description describes the transfer of data from input to output and
between signals.

3. A behavioral description describes the behavior of the design in terms of the
circuit and system behavior using algorithms. This high-level description uses
language constructs that resemble a high-level software programming language.

Both the dataflow description and behavioral description use similar language
constructs, but in VHDL they differ: a behavioral description uses the language
process statements, whereas a dataflow description does not.

In VHDL, a design is created initially as an entity declaration and an architecture
body. The entity declaration describes the design I/O and includes parameters that
customize the entity. The entity can be thought of as a black box with visible 1/O
connections. The architecture body describes the internal working of the entity and
contains any combination of structural, dataflow, or behavioral descriptions used to
describe the internal working of the entity.

For example, consider a dataflow level description of a two-input AND gate. This is
shown in the right column of Figure 4.11, and the corresponding line numbers are in

i
2 -- And_Gate: Implements a 2-input AND gate.

c PR
4

5 LIBRARY IEEE;

6 USE IEEE.STD_LOGIC_1164.ALL;

7

8 ENTITY And Gate IS

9 Port (A : IN STD_LOGIC;

10 B : IN STD_LOGIC;

11 Z : OUT STD LOGIC) ;

12 END ENTITY And Gate;

13

14 ARCHITECTURE Dataflow OF And Gate IS

15

16 BEGIN

17

18 Z <= (A AND B);

19

20 END ARCHITECTURE Dataflow;

21

A B e i
23 -- End of File

2 I B

Figure 4.11: Two-input AND gate description in VHDL

www.newnespress.com

196 Chapter 4

the left column for informational purposes only. The design has two inputs (4 and B)
and one output (Z). The code has three main parts:

1. Top part identifies the reference libraries to use within the design
2. Middle part identifies the design entity
3. Bottom part identifies the design architecture.

Comments in VHDL start with —--. Lines 1 to 3 and 22 to 24 are comments at the
beginning and ending of the file (with a .vhd extension) containing the VHDL code.

e Line 5 identifies the reference library to use in this design (IEEE), and line 6
identifies and the part(s) of the library to use.

e Lines 8 to 12 declare the entity (with a name And_Gate) and the 1/O
connections (ports).

e Lines 14 to 20 identify the architecture body, using the built-in logical AND
operator to define the operation of the design within the architecture.

e Lines 4, 7,13, 15,17, 19, and 21 are blank lines to aid code readability.

An example test bench used to simulate the design is shown in Figure 4.12. The
structure of the test bench is the same as for a circuit design, except that there are
no inputs to or outputs from the test bench. The stimulus to apply to the circuit is
defined within the test bench, and an instance of the circuit is placed within the test
bench.

4.3.3 Verilog®-HDL

Verilog®-HDL was released in 1983 by Gateway Design System Corporation, together
with a Verilog®-HDL simulator. In 1985, the language and simulator were enhanced
with the introduction of the Verilog-XL® simulator. In 1989, Cadence Design Systems,
Inc. bought the Gateway Design System Corporation, and in early 1990, Verilog®-
HDL and Verilog-XL® were separated into two products. Verilog®-HDL, until

then a proprietary language, was released into the public domain to facilitate the
dissemination of knowledge relating to Verilog®-HDL and to allow Verilog®-HDL to
compete with VHDL, which already existed as a nonproprietary language. In 1990,
Open Verilog International (OVI) was formed as an industry consortium consisting of
computer-aided engineering (CAE) vendors and Verilog®-HDL users to control the

www.newnespress.com

Design Languages 197

-- Test bench for And_Gate: Implements a 2-input AND gate.

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;
USE ieee.std_logic_unsigned_all;

ENTITY Test_And_Gate_vhd IS
END Test_And_Gate_vhd;

ARCHITECTURE Behavioural OF Test_And_Gate_vhd IS

COMPONENT And_Gate

PORT (
A : IN std_logic;
B IN std_logic;
Z : OUT std_logic
)i

END COMPONENT;

SIGNAL A : std_logic := '0';
SIGNAL B : std_logic := '0';
SIGNAL Z : std_logic;
BEGIN
uut: And_Gate PORT MAP (
A => A,
B => B,
Z => 7
)i
Testbench_Process : PROCESS
BEGIN
Wait for 0 ns; A<= '0'; B<='0"';
Wait for 10 ns; A <= 'l'; B <= '0';
Wait for 10 ns; A <= '0'; B <= 'l';
Wait for 10 ns; A <= 'l'; B <= 'l';

Wait;
END PROCESS;
END ARCHITECTURE Behavioural;

Figure 4.12: VHDL test bench for a two-input AND gate description

www.newnespress.com

198 Chapter 4

[17777707777777777770777777777777777777777777777771777
// Module definition for full-adder.
// Design modelled using logic gates
[107777777777770777777777777777777777777777777777777

module fulladder (A, B, Cin, Sum, Cout);

input A, B, Cin;
output Sum, Cout;

xor gl (X1, B, Cin);

xor g2 (Sum, X1, A);

and g3 (X2, A, B);

and g4 (X3, B, Cin);

and g5 (X4, A, Cin);

or g6 (Cout, X2, X3, X4);
endmodule

[171777
// End of File
[171777

NNNNRBEBRBRERRRBRR
WNROWVLOIOANIRWNROYRIOAURWNR

Figure 4.13: Full-adder description in Verilog®-HDL

language specification. In 1995, Verilog®-HDL was reviewed and adopted as IEEE
Standard 1364 (becoming IEEE Std 1364-1995). In 2001, the standard was reviewed,
the latest version of the standard now being IEEE Std 1364-2001.

As an example, consider a structural level description of a full-adder design. This is
shown in the right column of Figure 4.13 m with the corresponding line numbers in
the left column for informational purposes only.

The design is created within a design module, which contains the design defined in
terms of logic gate primitives (AND, OR, XOR) and interconnections between the
logic gates. These logic gate primitives are defined within the language. The design has
three inputs (4, B, and Cin), and 2 outputs (Sum and Cout).

e Comments in the code start with a // on lines 1 to 4 and 21 to 23.
e The module starts on line 6 and finishes on line 19.

e Line 8§ defines the module inputs, and line 9, the module output.

www.newnespress.com

Design Languages 199

e Lines 11, 12, and 14 to 17 define the circuit in terms of logic gate primitives
and the interconnections between the logic gates.

e Lines 5, 7, 10, 13, 18, and 20 are left blank for readability purposes.

An example test fixture for simulating the operation of the full-adder design is shown
in Figure 4.14.

4.3.4 Verilog®-A

Verilog®-HDL (sometimes referred to as Verilog®-D for digital) was originally
developed to model digital circuits and systems. The need to model analogue circuit
behavior led to the development of Verilog®-A, an analogue-only specification
providing a unique set of features over the digital modeling language [13]. Features of
the language include:

e analogue behavioral descriptions contained in separate analogue blocks
e circuit parameters that can be specified with valid range limits
e control of the simulation time step for accurate simulation

e a full set of mathematical functions and operators describe analogue circuit
behavior

e time derivative and integral operators
e circuit noise modeling

e the description of sampled data systems with Z-domain filters and linear
continuous time filters with Laplace transforms.

As an example of a Verilog®-A description for an analogue circuit, consider an
analogue voltage amplifier with a gain of +2.0. The amplifier is modeled within

a module as an ideal amplifier (i.e., infinite input impedance and zero output
impedance, along with frequency independence). Figure 4.15 shows a graphical view
of the amplifier with input and output voltages. This is a single-ended input, single-
ended output voltage amplifier. (No circuit implementation details are included.)

The Verilog®-A description is shown in Figure 4.16. The functionality is the line:
V(sigout) <+ 2 * V(sigin);q, which states that the output voltage is twice
(x2) the input voltage. This operation is verified through time domain simulation.

www.newnespress.com

200 Chapter 4

[1771777
// Module definition for full-adder test fixture
[170770 7777777777777 777

module test;

reg A, B, Cin;

wire Sum, Cout;

fulladder I1 (A, B, Cin, Sum, Cout);
initial

begin

Sdisplay ("\n--Start of simulation\n");

#10

end

//

Sfinish;

endmodule

End of File

Sdisplay ("\n--End of simulation\n");

Cin = 1'b0; B = 1'b0; A = 1'b0;

#5 S$display(a, " ", B, " ", Cin, " ", Sum, " ", Cout) ;
#5 Cin = 1'bl; B = 1'b0; A = 1'b0;

#5 S$display(a, " ", B, " ", Cin, " ", Sum, " ", Cout) ;
#5 Cin = 1'b0; B = 1'bl; A = 1'b0;

#5 S$display(a, " ", B, " ", Cin, " ", Sum, " ", Cout) ;
#5 Cin = 1'bl; B = 1'bl; A = 1'b0;

#5 $display(a, " ", B, " ", Cin, " ", Sum, " ", Cout);
#5 Cin = 1'b0; B = 1'b0; A = 1'bl;

#5 $display(a, " ", B, " ", Cin, " ", Sum, " ", Cout);
#5 Cin = 1'bl; B = 1'b0; A = 1'bl;

#5 S$display(a, " ", B, " ", Cin, " ", Sum, " ", Cout) ;
#5 Cin = 1'b0; B = 1'bl; A = 1'bl;

#5 S$display(a, " ", B, " ", Cin, " ", Sum, " ", Cout) ;
#5 Cin = 1'bl; B = 1'bl; A = 1'bl;

#5 S$display(a, " ", B, " ", Cin, " ", Sum, " ", Cout) ;

N NN,

L1777 7777777777777 7777777777777/77777777777777777777777777/777777777

www.newnespress.com

Figure 4.14: Verilog®-HDL test fixture for a full-adder description

Design Languages 201

Input Output
voltage voltage

v

Figure 4.15: Analogue voltage amplifier design with a voltage gain of +2.0

//***

// Verilog-A module for x2 voltage amplifier design
//***

“include "constants.h"
“include "discipline.h"

module plant_ahdl (sigin, sigout);

input sigin;
output sigout;

electrical sigin, sigout;
analog begin

V(sigout) <+ 2 * V(sigin);
end

endmodule

//***

// End of File

//***

Figure 4.16: Verilog®-A amplifier description

Such a description is used for simulation purposes rather than attempting to
synthesize the design into analogue circuitry. To simulate the Verilog®-A description,
the Spectre® simulator is used [14]. The amplifier design module is instantiated within
the Spectre® netlist. In this design, a sine wave input voltage is applied to the

amplifier.
www.newnespress.com

202 Chapter 4

J A i i s T T o o e e S s
// Example Verilog-A design of an analogue amplifier.

// This is simulated using the Spectre simulator.

A e e T T T T e e o ok S S TS

global 0
simulator lang=spectre

J A e e R o e T e e e R e e
adhl_include "/Models/ahdl/veriloga.va"

J A o o o b S e
// Plant Model

I0 (a b) plant_ahdl

J A B e SR SR R oS
// Sine wave input

Vin (a 0) vsource dc=0 type=sine fundname="inputl" delay=10m \
sinedc=2.5 ampl=0.5 freg=2 sinephase=0 mag=1 phase=0

A e R o st s S s e s e e e e e S S o SR SR S e S
tran tran stop=1 maxstep = 1lm
J A o e S o o o o S S e

Figure 4.17: Spectre® simulation file for a Verilog®-A amplifier description

Figure 4.17 shows an example Spectre® netlist for simulating the design. Spectre is an
analogue and mixed-signal modeling language that provides constructs for DC, AC,
transient, and noise analysis in analogue circuits and has a number of features superior
to SPICE-based simulation. It provides the features found in SPICE, and the Spectre
simulator can simulate designs developed in the native language, along with designs
written using SPICE syntax. (SPICE is discussed in detail later in this chapter.)

4.3.5 VHDL-AMS

Two modeling languages are emerging for mixed-signal (analogue and digital)

electronic and mixed-technology system modeling, these being Verilog®-AMS [15] and
VHDL-AMS [16]. These are extensions to the digital HDL Verilog®-HDL and VHDL,
which are widely used as means to model and allow for simulation, documentation, and
synthesis of digital circuits and systems from simple Boolean Logic to complex signal
processing functions. These extensions from the digital domain are generally referred to
as analogue and mixed-signal (AMS) languages for electronic circuits, but the manner

www.newnespress.com

Design Languages 203

in which nondigital electronics are modeled leads to the modeling of nonelectrical and
electronic parts using the same model constructs. This provides a common means by
which to model mixed-nature, mechatronic systems [17].

VHDL-AMS is the AMS extension to VHDL. This was adopted as a standard in 1999
as IEEE Standard 1076.1-1999. This superset of VHDL supports the description
and simulation of continuous and mixed-continuous or discrete time systems. With
the ability to model digital, analogue, and mixed-signal electrical and electronic
circuits, along with nonelectrical parts, it allows the modeling of mixed-technology,
mechatronic systems. Continuous time parts of the system are modeled using
ordinary differential and algebraic equations (DAE), in which both conservative and
nonconservative systems may be modeled:

e Conservative systems use conservation semantics, such as electrical systems
obeying Kirchoff’s Laws.

e Nonconservative systems do not use conservation semantics.

As with VHDL, designs are modeled using entities and architectures. Considering the
analogue connections and signals, analogue ports are declared with a simple nature

(e.g., electrical) and with any associated quantities (e.g., voltage across the port to a
reference point and currents through the port).

Consider a simple electrical resistor-capacitor (RC) network driven by a step voltage source
as shown in Figure 4.18. The voltage source (Vsrc) is connected between two nodes in the
circuit (the node x1 and the common node). The resistor (R1) is connected between nodes
x1 and x2. The capacitor (C1) is connected between nodes x2 and the common node.

The voltage source, resistor, and capacitor used in the design are defined in Figure 4.19.
The voltage source produces a step change voltage input that changes at 50 ms and 100 ms.

R1 10 kQ
x1] x2
L —®
Vsrc ______C11ypF Vx2

% ®
Figure 4.18: RC network

www.newnespress.com

204 Chapter 4

LIBRARY DISCIPLINES;
USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;

ENTITY Source IS
PORT (TERMINAL pos,neg: ELECTRICAL) ;
END Source;

ARCHITECTURE behav OF Source IS
QUANTITY Vsource ACROSS Isource THROUGH pos TO neg;

BEGIN
IF now < 50 ms or now > 100 ms USE
Vsource==0.0;
ELSE
Vsource==1.0;
END USE;

END ARCHITECTURE behav;

LIBRARY DISCIPLINES;
USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;

ENTITY Resistor IS
PORT (TERMINAL pos,neg : ELECTRICAL) ;
END Resistor;

ARCHITECTURE behav OF Resistor IS

QUANTITY Vr ACROSS Ir THROUGH pos TO neg;
BEGIN Ir == Vr/10000.0;
END behav;

LIBRARY DISCIPLINES;
USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;

ENTITY Capacitor IS

PORT (TERMINAL pos,neg : ELECTRICAL) ;
END Capacitor;
ARCHITECTURE behav OF Capacitor IS

QUANTITY Vc ACROSS Ic THROUGH pos TO neg;

BEGIN
Ic==1.0e-6 * Vc'dot;
END behav;

Figure 4.19: Component descriptions

www.newnespress.com

Design Languages 205

LIBRARY DISCIPLINES;
USE DISCIPLINES.ELECTROMAGNETIC_SYSTEM.ALL;

ENTITY TestBench IS
END;

ARCHITECTURE Structure OF TestBench IS
TERMINAL x1,x2: ELECTRICAL;

BEGIN
Vsrc: ENTITY Source (behav) PORT MAP (x1, electrical_ground) ;
R1: ENTITY Resistor (behav) PORT MAP (x1,x2);
Cl: ENTITY Capacitor (behav) PORT MAP (x2, electrical_ground) ;

END Structure;

Figure 4.20: VHDL-AMS test bench for the RC circuit

These three components are placed within a test bench for simulation purposes. The
test bench code is shown in Figure 4.20.

4.3.6 Verilog®-AMS

Verilog®-AMS is the AMS extension to Verilog®-HDL [18]. It provides the
extensions to Verilog®-HDL to model mixed-signal (mixed analogue and digital)
electronics and mixed-technology (electrical/electronic and nonelectrical/electronic)
systems. It encompasses the features of Verilog®-D and Verilog®-A.

4.4 SPICE

Simulation techniques are an essential part of electrical and electronic circuit design,
providing an insight into the operation of a designed circuit prior to its being built.
This allows circuit design changes and device optimization, along with “what if”
scenarios that would be difficult or impossible to undertake on a real circuit. One

www.newnespress.com

206 Chapter 4

example is investigating the effects on an analogue amplifier design if transistor
parameters were to change because of processing variations.

Electronic circuits and systems can be implemented as:
e printed circuit board (PCB)
e integrated circuit (IC)
e multichip module (MCM)

On a PCB design, simulation is an invaluable input to design verification and can
highlight problems that result from component and interconnect placement (e.g.,
ensuring that signal integrity is maintained). On IC and MCM designs, with complex
circuits and systems implemented on (typically) silicon dies and