


The Verilog® Hardware Description Language,
Fifth Edition



This page intentionally left blank



The Verilog® Hardware Description Language,
Fifth Edition

Donald E. Thomas
ECE Department

Carnegie Mellon University
Pittsburgh, PA

Philip R. Moorby
Co-design Automation, Inc.

www.co-design.com

Verilog® is a registered trade mark of Cadence Design Systems, Inc.



eBook ISBN:         0-306-47666-5
Print ISBN: 1-4020-7089-6

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2002 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at:  http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

Dordrecht



To Sandie,

and John and Holland,

and Jill.



This page intentionally left blank



Preface
From the Old to the New
Acknowledgments

xv
xvii
xxi

1 Verilog –

A Tutorial Introduction 1
Getting Started

A Structural Description
Simulating the binaryToESeg Driver
Creating Ports For the Module
Creating a Testbench For a Module

Behavioral Modeling of Combinational Circuits
Procedural Models
Rules for Synthesizing Combinational Circuits

Procedural Modeling of Clocked Sequential Circuits
Modeling Finite State Machines
Rules for Synthesizing Sequential Systems
Non-Blocking Assignment ("<=")

Module Hierarchy
The Counter
A Clock for the System
Tying the Whole Circuit Together
Tying Behavioral and Structural Models Together

Summary
Exercises

2
2
4
7
8

11
12
13
14
15
18
19
21
21
21
22
25
27
28

2 Logic Synthesis 35

Overview of Synthesis
Register-Transfer Level Systems
Disclaimer

Combinational Logic Using Gates and
Continuous Assign

Procedural Statements to Specify Combinational Logic
The Basics

35
35
36

37
40
40



viii The Verilog Hardware Description Language

Complications — Inferred Latches
Using Case Statements
Specifying Don' t Care Situations
Procedural Loop Constructs

Inferring Sequential Elements
Latch Inferences
Flip Flop Inferences
Summary

Inferring Tri-State Devices
Describing Finite State Machines

An Example of a Finite State Machine
An Alternate Approach to FSM Specification

Finite State Machine and Datapath
A Simple Computation
A Datapath For Our System
Details of the Functional Datapath Modules
Wiring the Datapath Together
Specifying the FSM

Summary on Logic Synthesis
Exercises

42
43
44
46
48
48
50
52
52
53
53
56
58
58
58
60
61
63
66
68

3 Behavioral Modeling 73

Process Model
If-Then-Else

Where Does The ELSE Belong?
The Conditional Operator

Loops
Four Basic Loop Statements
Exiting Loops on Exceptional Conditions

Multi-way Branching
If-Else-If
Case
Comparison of Case and If-Else-If
Casez and Casex

Functions and Tasks
Tasks
Functions
A Structural View

Rules of Scope and Hierarchical Names
Rules of Scope
Hierarchical Names

73
75
80
81
82
82
85
86
86
86
89
90
91
93
97

100
102
102
105



ix

Summary
Exercises

106
106

4 Concurrent Processes 109

Concurrent Processes
Events

Event Control Statement
Named Events

The Wait Statement
A Complete Producer-Consumer Handshake
Comparison of the Wait and While Statements
Comparison of Wait and Event Control Statements

A Concurrent Process Example
A Simple Pipelined Processor

The Basic Processor
Synchronization Between Pipestages

Disabling Named Blocks
Intra-Assignment Control and Timing Events
Procedural Continuous Assignment
Sequential and Parallel Blocks
Exercises

109
111
112
113
116
117
120
121
122
128
128
130
132
134
136
138
140

5 Module Hierarchy 143

Module Instantiation and Port Specifications
Parameters
Arrays of Instances
Generate Blocks
Exercises

143
146
150
151
154



x The Verilog Hardware Description Language

6 Logic Level Modeling 157

Introduction
Logic Gates and Nets

Modeling Using Primitive Logic Gates
Four-Level Logic Values
Nets
A Logic Level Example

Continuous Assignment
Behavioral Modeling of Combinational Circuits
Net and Continuous Assign Declarations

A Mixed Behavioral/Structural Example
Logic Delay Modeling

A Gate Level Modeling Example
Gate and Net Delays
Specifying Time Units
Minimum, Typical, and Maximum Delays

Delay Paths Across a Module
Summary of Assignment Statements
Summary
Exercises

157
158
159
162
163
166
171
172
174
176
180
181
182
185
186
187
189
190
191

7 Cycle-Accurate Specification 195

Cycle-Accurate Behavioral Descriptions
Specification Approach
A Few Notes

Cycle-Accurate Specification
Inputs and Outputs of an Always Block
Input/Output Relationships of an Always Block
Specifying the Reset Function

Mealy/Moore Machine Specifications
A Complex Control Specification
Data and Control Path Trade-offs

Introduction to Behavioral Synthesis
Summary

195
195
197
198
198
199
202
203
204
204
209
210



xi

8 Advanced Timing 211

Verilog Timing Models
Basic Model of a Simulator

Gate Level Simulation
Towards a More General Model
Scheduling Behavioral Models

Non-Deterministic Behavior of the
Simulation Algorithm

Near a Black Hole
It's a Concurrent Language

Non-Blocking Procedural Assignments
Contrasting Blocking and Non-Blocking Assignments
Prevalent Usage of the Non-Blocking Assignment
Extending the Event-Driven Scheduling Algorithm
Illustrating Non-Blocking Assignments

Summary
Exercises

211
214
215
215
218

220
221
223
226
226
227
228
231
233
234

9 User-Defined Primitives 239

Combinational Primitives
Basic Features of User-Defined Primitives
Describing Combinational Logic Circuits

Sequential Primitives
Level-Sensitive Primitives
Edge-Sensitive Primitives

Shorthand Notation
Mixed Level- and Edge-Sensitive Primitives
Summary
Exercises

240
240
242
243
244
244
246
246
249
249



xii The Verilog Hardware Description Language

10Switch Level Modeling 251

A Dynamic MOS Shift Register Example
Switch Level Modeling

Strength Modeling
Strength Definitions
An Example Using Strengths
Resistive MOS Gates

Ambiguous Strengths
Illustrations of Ambiguous Strengths
The Underlying Calculations

The miniSim Example
Overview
The miniSim Source
Simulation Results

Summary
Exercises

251
256
256
259
260
262
263
264
265
270
270
271
280
281
281

11 Projects 283

Modeling Power Dissipation
Modeling Power Dissipation
What to do
Steps

A Floppy Disk Controller
Introduction
Disk Format
Function Descriptions
Reality Sets In…
Everything You Always Wanted to Know about CRC's
Supporting Verilog Modules

283
284
284
285
286
286
287
288
291
291
292

Appendix A: Tutorial Questions and Discussion 293
Structural Descriptions
Testbench Modules
Combinational Circuits Using always

293
303
303



xiii

Sequential Circuits
Hierarchical Descriptions

305
308

Appendix B: Lexical Conventions 309
White Space and Comments
Operators
Numbers
Strings
Identifiers, System Names, and Keywords

309
310
310
311
312

Appendix C: Verilog Operators 315
Table of Operators
Operator Precedence
Operator Truth Tables
Expression Bit Lengths

315
320
321
322

Appendix D: Verilog Gate Types 323
Logic Gates
BUF and NOT Gates
BUFIF and NOTIF Gates
MOS Gates
Bidirectional Gates
CMOS Gates
Pullup and Pulldown Gates

323
325
326
327
328
328
328

Appendix E: Registers, Memories, Integers,
and Time 329

Registers
Memories
Integers and Times

329
330
331

Appendix F: System Tasks and Functions 333
Display and Write Tasks
Continuous Monitoring
Strobed Monitoring
File Output
Simulation Time
Stop and Finish
Random
Reading Data From Disk Files

333
334
335
335
336
336
336
337

Appendix G: Formal Syntax Definition 339
Tutorial Guide to Formal Syntax Specification 339



xiv The Verilog Hardware Description Language

Source text
Declarations
Primitive instances
Module and generated instantiation
UDP declaration and instantiation
Behavioral statements
Specify section
Expressions
General

343
346
351
353
355
355
359
365
370

Index 373



Preface

The Verilog language is a hardware description language that provides a means of
specifying a digital system at a wide range of levels of abstraction. The language sup-
ports the early conceptual stages of design with its behavioral level of abstraction, and
the later implementation stages with its structural abstractions. The language includes
hierarchical constructs, allowing the designer to control a description’s complexity.

Verilog was originally designed in the winter of 1983/84 as a proprietary verifica-
tion/simulation product. Later, several other proprietary analysis tools were developed
around the language, including a fault simulator and a timing analyzer. More recently,
Verilog has also provided the input specification for logic and behavioral synthesis
tools. The Verilog language has been instrumental in providing consistency across
these tools. The language was originally standardized as IEEE standard #1364-1995.
It has recently been revised and standardized as IEEE standard #1364-2001. This
book presents this latest revision of the language, providing material for the beginning
student and advanced user of the language.

It is sometimes difficult to separate the language from the simulator tool because
the dynamic aspects of the language are defined by the way the simulator works. Fur-
ther, it is difficult to separate it from a synthesis tool because the semantics of the lan-
guage become limited by what a synthesis tool allows in its input specification and
produces as an implementation. Where possible, we have stayed away from simulator-
and synthesis-specific details and concentrated on design specification. But, we have
included enough information to be able to write working executable models.
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The book takes a tutorial approach to presenting the language. Indeed, we start
with a tutorial introduction that presents, via examples, the major features of the lan-
guage and the prevalent styles of describing systems. We follow this with a detailed
presentation on using the language for synthesizing combinational and sequential sys-
tems. We then continue with a more complete discussion of the language constructs.

Our approach is to provide a means of learning by observing the examples and
doing exercises. Numerous examples are provided to allow the reader to learn (and re-
learn!) easily by example. It is strongly recommended that you try the exercises as
early as possible with the aid of a Verilog simulator. The examples shown in the book
are available in electronic form on the enclosed CD. Also included on the CD is a
simulator. The simulator is limited in the size of description it will handle.

The majority of the book assumes a knowledge of introductory logic design and
software programming. As such, the book is of use to practicing integrated circuit
design engineers, and undergraduate and graduate electrical or computer engineering
students. The tutorial introduction is organized in a manner appropriate for use with
a course in introductory logic design. A separate appendix, keyed into the tutorial
introduction, provides solved exercises that discuss common errors. The book has also
been used for courses in introductory and upper level logic and integrated circuit
design, computer architecture, and computer-aided design (CAD). It provides com-
plete coverage of the language for design courses, and how a simulator works for
CAD courses. For those familiar with the language, we provide a preface that covers
most of the new additions to the 2001 language standard.

The book is organized into eleven chapters and eight appendices. The first part of
the book contains a tutorial introduction to the language which is followed by a chap-
ter on its use for logic synthesis. The second part of the book, Chapters 3 through 6,
provide a more rigorous presentation of the language’s behavioral, hierarchical, and
logic level modeling constructs. The third part of the book, Chapters 7 through 11,
covers the more specialized topics of cycle-accurate modeling, timing and event
driven simulation, user-defined primitives, and switch level modeling. Chapter 11
suggests two major Verilog projects for use in a university course. One appendix pro-
vides tutorial discussion for beginning students. The others are reserved for the dryer
topics typically found in a language manual; read those at your own risk.

Have fun designing great systems…

always,

Donald E. Thomas

Philip R. Moorby

March 2002



From the Old to the
New

This book as been updated so that the new features of IEEE Std. 1364-2001 are
always used even though the “old ways” of writing Verilog (i.e. IEEE Std. 1364-1995)
are still valid. In this preface, we show a few side-be-side examples of the old and new.
Thus, this section can stand as a short primer on many of the new changes, or as a ref-
erence for how to read “old code.” Throughout this preface, cross references are made
to further discussion in the earlier parts of the book. However, not all changes are
illustrated in this preface.

Ports, Sensitivity Lists, and Parameters
Port declarations can now be made in “ANSI C” style as shown in Example P.1. In
the old style, the port list following the module name could only contain the identifi-
ers; the actual declarations were done in separate statements. Additionally, only one
declaration could be made in one statement. Now, the declarations can be made in the
opening port list and multiple declarations can be made at the same time. Multiple
declarations are illustrated in the declaration of eSeg being an “output reg” in the new
standard; previously this took two statements as shown on the right of the example
(See Section 5.1). This style of declaration also applies to user defined primitives (See
chapter 9). These two module descriptions are equivalent.
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module binaryToESeg_Behavioral
(output reg eSeg,
input A, B, C, D);

always @ (A, B, C, D) begin
eSeg = 1;
if(~A & D)

eSeg = 0;
if(~A & B & ~C)

eSeg = 0;
if(~B & ~C & D)

eSeg = 0;
end

endmodule

Example P.1 2001 Standard (Left);
Previous 1995 (Right)

Example P.1 also shows a simpler way
to describe sensitivity lists. Previously, the
list was an or-separated list of identifiers
as shown on the right of the figure. Now,
the list can be comma-separated (See
Section 4.2.1). Additionally, if the intent
is to describe a combinational circuit using
an always block, the explicit sensitivity list
can replaced with a @(*) as illustrated in
Example P.2. The module descriptions in
Examples P.1 and P.2 describe equivalent
functionality. (See Section 2.3.1.)

If the module is parameterized, then
the list of parameters is introduced and
declared before the port list so that some
of the port specifications can be parame-
terized. (See Section 5.2.) This is illus-
trated in Example P.3. The new standard also allows for parameters to be over-ridden
by name. The old style of instantiating module xorx of Example P.3 would be

xorx #(7, 12) x1(a,b,c);

where the new value of width is 7 and delay is 12. With the new style, individual
parameters can be overridden  —

module binaryToESeg_Behavioral
(eSeg, A, B, C, D);
output eSeg;
input A, B, C, d;
reg eSeg;

always @(Aor B or C or D)
begin

eSeg = 1;
if (~A & D)

eSeg = 0;
if (~A & B & ~C)

eSeg = 0;
if (~B & ~C & D)

eSeg = 0;
end

endmodule

module binaryToESeg_Behavioral
(output reg eSeg,
input A, B, C, D);

always @(*) begin
eSeg = 1;
if(~A & D)

eSeg = 0;
if(~A & B & ~C)

eSeg = 0;
if(~B & ~C & D)

eSeg = 0;
end

endmodule

Example P.2 Sensitivity List Using
@(*)



xix

module xorx module xorx (xout, xin1, xin2);
#(parameter width = 4, parameter width = 4,

delay = 10) delay = 10;
(output [1:width] xout, output [1:width] xout;
input [1:width] xin1,xin2); input [1:width] xin1,xin2;

assign #(delay) assign #(delay)
xout = xin1 ^ xin2; xout = xin1 ^ xin2;

endmodule endmodule

Example P.3 Parameter Definition with 2001 Standard (Left) and 1995 (Right)

xorx #(.delay(8)) x2 (a,b,c);

where delay is changed to 8 and width remains at 4.

Functions and tasks may also be declared using the combined port and declaration
style. Using the 1995 style, a function with ports would be defined as

function [11:0] multiply;
input [5:0] a, b;

endfunction

The new 2001 style allows the definition within the port list; declarations may be of
any type (See Section 3.5).

function [11:0] multiply
(input [5:0] a, b);

endfunction

Other Changes
Many of the other changes are illustrated throughout the book. They are referenced
here.

Functions may now be declared recursive, constant, and signed (Section 3.5).

Tasks may now be declared automatic (Section 3.5).

Initial values may now be specified in declarations (See Section 1.4.1).

Implicit net declarations are now applied to continuous assignments (Section 6.3).
Also, they may now be disabled (Section 6.2.3) with keyword none.

Variable part-selects (Section 3.2).



xx The Verilog Hardware Description Language

Arrays may now be multidimensional and of type net and real. Bit and part-selects
are allowed on array accesses (Section E.2).

Signed declarations. Registers (Section E.1), nets (Section 6.2.3), ports
(Section 5.1), functions (Sections 3.5.2), parameters (Section 5.2) and sized num-
bers (Section B.3) may be signed. signed and unsigned system functions have been
added (Section C.1).

Operators. Arithmetic shift operators and a power operator have been added
(Section C.1).

Parameters. Local parameters may now be defined. Parameters may now be sized
and typed. (Section 5.2)

Attributes have now been added to specify additional information to other tools
(Section 2.3.4). Details of using attributes is left to the user manuals of the tools
that define them. Attribute specification is left out of the BNF illustrations in the
running text. However they are included in appendix G.

Generate blocks have now been added to aid in iterative specification.
(Section 5.4)
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1 Verilog —
A Tutorial Introduction

Digital systems are highly complex. At their most detailed level, they may consist of
millions of elements, as would be the case if we viewed a system as a collection of
logic gates or pass transistors. From a more abstract viewpoint, these elements may be
grouped into a handful of functional components such as cache memories, floating
point units, signal processors, or real-time controllers. Hardware description lan-
guages have evolved to aid in the design of systems with this large number of ele-
ments and wide range of electronic and logical abstractions.

The creative process of digital system design begins with a conceptual idea of a log-
ical system to be built, a set of constraints that the final implementation must meet,
and a set of primitive components from which to build the system. Design is an itera-
tive process of either manually proposing or automatically synthesizing alternative
solutions and then testing them with respect to the given constraints. The design is
typically divided into many smaller subparts (following the well-known divide-and-
conquer engineering approach) and each subpart is further divided, until the whole
design is specified in terms of known primitive components.

The Verilog language provides the digital system designer with a means of describ-
ing a digital system at a wide range of levels of abstraction, and, at the same time, pro-
vides access to computer-aided design tools to aid in the design process at these levels.
The language supports the early conceptual stages of design with its behavioral con-
structs, and the later implementation stages with its structural constructs. During the
design process, behavioral and structural constructs may be mixed as the logical struc-
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ture of portions of the design are designed. The description may be simulated to
determine correctness, and some synthesis tools exist for automatic design. Indeed,
the Verilog language provides the designer entry into the world of large, complex dig-
ital systems design. This first chapter provides a brief tour of the basic features of the
Verilog language.

1.1 Getting Started
The Verilog language describes a digital system as a set of modules. Each of these
modules has an interface to other modules as well as a description of its contents. A
module represents a logical unit that can be described either by specifying its internal
logical structure — for instance describing the actual logic gates it is comprised of, or
by describing its behavior in a program-like manner — in this case focusing on what
the module does rather than on its logical implementation. These modules are then
interconnected with nets, allowing them to communicate.

1.1.1 A Structural Description

We start with a basic logic circuit from introductory logic design courses: part of a
binary to seven segment display driver, shown in Example 1.1. A display driver takes a

module binaryToESeg;
wire eSeg, p1, p2, p3, p4;
reg A,B,C,D;

nand #1
g1(p1, C,~D),
g2 (p2, A, B),
g3 (p3, ~B, ~D),
g4 (p4, A, C),
g5 (eSeg, p1, p2, p3, p4);

endmodule

Example 1.1 A Binary To Seven Segment Display Driver (E Segment Only)

four-bit binary input and drives the seven segments needed to display the digits zero
through nine and the hexadecimal digits A through F. Only the logic to drive seg-
ment E of a display is shown in the example.

A Verilog description of this circuit is also shown in Example 1.1. The description
shows the basic definition of a module — in this case, of a module named binaryToE-
Seg. Each module definition includes the keyword module followed by the module
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name and is terminated by the endmodule statement. The second line of this definition
specifies the names of wires used to transmit logic values among the submodules of
this module. The third line declares the names of storage elements that will hold val-
ues. These registers are an abstraction of a flip flop circuit element.

The fifth line, and its continuation onto lines 6 through 10, instantiates five NAND
gates, each having a delay of one time unit. NAND gates are one of the predefined logic
gate types in the language — the others, including AND, OR, and XOR, are detailed
later. This statement specifies that five gates, called g1 through g5, exist in the circuit.
The “#1” indicates that they each have a delay of one time unit. Finally, the labels in
the parentheses indicate the wires and registers to which the gates are connected. The
first label in the parentheses is the gate’s output and the others are inputs. The NOT

operator (“~”) is used to specify that the complement of a value is connected to the
input. The wire, register, and instance names are included in the schematic drawing to
further clarify the correspondence between the logic diagram and its equivalent Ver-
ilog description.

Although this example is simple, it illustrates several important points about the
Verilog language. The first is the notion of module definition versus module instantia-
tion. Using the module statement, as shown in the above example, we define a module
once specifying all of its inner detail. This module may then be used (instantiated) in
the design many times. Each of these instantiations are called instances of the mod-
ule; they can be separately named and connected differently. Primitive gates, like the
NAND, are predefined logic primitives provided by the language. They are presented in
more detail in Chapter 6.

The gates are connected by nets. Nets are one of the two fundamental data types of
the language (registers are the other), and are used to model an electrical connection
between structural entities such as gates. A wire is one type of net; others include
wired-AND, wired-OR, and trireg connections. The different net types are described in
more detail in Chapters 6 and 10.

In this example, NAND gates were used to build the binaryToESeg module. This
binaryToESeg module, if it had input/output ports, could then be used in another
module by instantiating it there, and so on. The use of hierarchical descriptions allows
us to control the complexity of a design by breaking the design into smaller and more
meaningful chunks (i.e. submodules). When instantiating the submodules, all we
need know about them is their interface; their potentially complex implementation
details are described elsewhere and thus do not clutter the current module’s descrip-
tion.

As a final comment, we should point out that the designation of A, B, C, and D as
registers might seem anomalous. One would think that these would be inputs to
module binaryToESeg, and that the value eSeg would be an output. These will be
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changed to inputs and outputs in a later example. But for now, we will keep the regis-
ter definitions as they will aid in simulation in the next section.

References: gate primitives 6.2.1; net specification 6.2.3

1.1.2 Simulating the binaryToESeg Driver

Example 1.2 shows a more complete module definition for binaryToESeg called
binaryToESegSim. The example includes statements that will provide stimulus to the
NAND gate instances, and statements that will monitor the changes in their outputs.
Although all possible input combinations are not provided, the ones shown will illus-
trate how to provide input stimuli.

module binaryToESegSim;
wire eSeg, p1, p2, p3, p4;
reg A,B,C,D;

nand #l
g1 (p1,C,~D),
g2 (p2, A, B),
g3 (p3, ~B, ~D),
g4 (p4, A, C),
g5 (eSeg, p1, p2, p3, p4);

initial // two slashes introduce a single line comment
begin

(
"A = %b B = %b C = %b D = %b, eSeg = %b",
A,B,C,D, eSeg);

//waveform for simulating the binaryToESeg driver
#10 A = 0; B = 0; C = 0; D = 0;
#10 D = 1;
#10 C = 1; D = 0;
#10

end
endmodule

Example 1.2 binaryToESeg Driver To Be Simulated

A simulator for a digital system is a program that executes the statements in
Example 1.2’s initial statement (and as we will see in later examples, the always state-
ment), and propagates changed values from the outputs of gates and registers to other
gate and module inputs. A simulator is further characterized by its ability to keep
track of time, causing the changed values to appear at some specified time in the
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future rather than immediately. These future changes are typically stored in a time-
ordered event list. When the simulator has no further statement execution or value
propagation to perform at the current time, it finds the next time-ordered event from
the event list, updates time to that of the event, and executes the event. This event
may or may not generate events at future times. This simulation loop continues until
there are no more events to be simulated or the user halts the simulation by some
other means.

Example 1.2 differs from
Example 1.1 with the inclusion
of the initial statement to drive
the simulation. The simulator
begins the simulation by start-
ing the execution of the initial
statement. The keywords begin
and end bracket the individual
statements that are part of the
initial statement. The results of
the simulation of this example are shown in Figure 1.1.

The first statement in the initial is a simulation command to monitor (and print) a
set of values when any one of the values changes. In this case, the time is printed

requests that the current time be printed) and then the quoted string is printed
with the values of A, B, C, and D substituted for the %b (for binary) printing control
in the string. Between and the quoted string are several extra commas. One is
needed to separate and the quoted string; the extras each introduce an extra
space in the printout. When issued, the monitor command prints the current values in
the design, and will automatically print later when at least one of the values in its list
changes. (However, it will not print when only changes.) As shown in
Figure 1.1, they initially print as x. When the simulator starts, all values are unknown
which is indicated by the x. The first value on the line is the time.

The initial statement continues by scheduling four events to occur in the future.
The statements:

#10 A = 0; B = 0; C = 0; D = 0;

specify that registers A, B, C, and D will each be loaded with zero 10 time units from
the current time. The way to think about the execution of this line is that the simula-
tor suspends the execution of this initial statement for 10 time units. The simulator
sees no other action at the current (zero) time and goes to the next event in the time-
ordered event list, which happens to be this statement. Thus the simulator reactivates
the initial statement. At that time, time 10, the initial statement is reactivated from
where it suspended and the next statement is executed. Indeed, it continues executing
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on the next line where the simulator sees the next #10. At this point the initial state-
ment is suspended, waiting for ten more time units.

But at the current time (time 10), the changed values for A, B, C, and D are prop-
agated. By propagation, we mean that every primitive gate that is connected to any of
these is notified of the change. These gates may then schedule their outputs to change
in the future. Because the gates in this example are defined to have a time delay of 1,
their output changes will be propagated one time unit into the future (at time 11); the
simulator schedules these values to be assigned and propagated then.

As mentioned above, the initial statement continued executing until it found the
delay on the next line which specifies that in 10 more time units (i.e., at time 20), D
will be loaded with a one. The initial block is suspended and scheduled to wake up at
time 20. The simulator looks for the next event in time, and it sees that four NAND

gates (g1 through g4) are scheduled to change their output values at time 11 and
propagate them to the final NAND gate, g5.

Interestingly, gates g1 through g4 should update their outputs at the same time.
Indeed, they will all happen at the same “simulated time”, in this case time 11. How-
ever, the simulator can only update them one at a time. All we know about the order
of updates is that it will be arbitrary — we cannot assume that one will happen before
the other.

The result of propagating these four new values on wires p1, p2, p3, and p4, is that
gate g5 will be scheduled to change its output value at time 12. Since there are no fur-
ther events during the current time (11), the next event is taken from the event list at
the next time, which is 12. The change to eSeg at time 12 will not cause any other
gates to be evaluated because it is not connected to any other gates.

The simulation continues until the initial statement executes the finish command.
Specifically, at time 20, D is set to 1. This will cause a change to eSeg two time units
later. Then at time 30, D is set to 0, C is set to 1, and eSeg changes its output two
time units later. At time 40, the command stops the simulation program.

The simulator output in Figure 1.1 illustrates three of the four values that a bit may
have in the simulator: 1 (TRUE), 0 (FALSE), and x (unknown). The fourth value, z, is
used to model the high impedance outputs of tristate gates.

We now can see why A, B, C, and D were defined as registers for the examples of
this section. As the only “external” inputs to the NAND gates, we needed a means of
setting and holding their value during the simulation. Since wires do not hold values
— they merely transmit values from outputs to inputs — a register was used to hold
the input values.
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It is useful to note that we have seen the use of the two main data types in the lan-
guage: nets and registers. Primitive gates are used to drive values onto nets; initial
statements (and, as we’ll later see, always statements) are used to make assignments to
the registers.

As a final comment on the simulation of this example, note that simulation times
have been described in terms of “time units.” A Verilog description is written with
time delays specified as we have shown above. The timescale compiler directive is then
used to attach units and a precision (for rounding) to these numbers. The examples in
the book will not specify the actual time units.

References: logic values 6.2.2; timescale compiler directive 6.5.3

Tutorial: See the Tutorial Problems in Appendix A.1.

1.1.3 Creating Ports For the Module

Our previous binaryToE-
Seg example had neither
inputs nor outputs — a
rather limiting situation
that does not represent
real modules nor help in
developing a module
hierarchy. This example
extends our notion of
defining modules to
include ones that have
ports.

module binaryToESeg
(output eSeg,
input A, B, C, D);

nand #1
g1 (p1, C, ~D),
g2 (p2, A, B),
g3 (p3, ~B, ~D),
g4 (p4, A, C),
g5 (eSeg, p1, p2, p3, p4);

endmodule

Example 1.3 Adding Ports to a Module
The first line is the

opening module definition statement, using the module keyword and the module’s
name. On the second line, the opening parenthesis indicates that ports will be
declared as part of this module. The ports are declared within the parenthesis to be
inputs, outputs, or bidirectional inouts. Note that output(s) need not be first, as is the
case with the primitive NAND gates. On the second line, this example declares eSeg to
be an output port. On the third line, four input ports named A, B, C, and D are
declared. The closing parenthesis on the third line ends the declaration of the module
ports. In contrast to Example 1.2, A, B, C, and D are now wires that connect the
input ports to the gates. The binarytoESeg module might be drawn in a logic dia-
gram as shown on the right of the example. Note that the port names are shown on
the inside of the module in the logic diagram. The port names are only known inside
the module.
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This module may now be instantiated into other modules. The port list in the
module definition establishes a contract between the internal workings of the module
and its external usage. That is, there is one output and four inputs to connect to. No
other connections within the module (say, wire p1) can be connected outside of this
module. Indeed, the internal structure of the module is not known from the outside
— it could be implemented with NOR gates. Thus, once defined, the module is a
blackbox that we can instantiate and connect into the design many times. But since
we don’t have to be bothered with the internal details of the module each time it is
instantiated, we can control the descriptive complexity of the design.

One final note on Example 1.3. We no longer declare that eSeg, p1, p2, p3, p4 are
wires. (Previously in Example 1.2, we optionally chose to declare them as wires.) Since
gates only drive nets, these names, by default, are implicitly declared to be wires.

1.1.4 Creating a Testbench For a Module

Normally in this book, we will show individual modules that illustrate specific fea-
tures of the language. This works well given the space we have to present the material.
However, when writing Verilog descriptions, it is often appropriate to organize your
description using the testbench approach. The idea is based on a vague analogy to an
engineer’s workbench where you have the system being designed wired to a test gen-
erator that is going to provide inputs at controlled time intervals and monitor the out-
puts as they change. In Verilog, a module is defined and, possibly, given the name
testBench. Within this module are two other modules, one representing the system
being designed, and the other representing the test generator and monitor. These are
shown in Figure 1.2.

This is a clean way to separate the design’s description and the means of testing it.
The system being designed, shown on the right, can be simulated and monitored
through its ports, and later the design might be synthesized using other CAD tools.
The point is that the descriptions being simulated and synthesized are the same. Fur-
ther, all testing activity is encapsulated in the module on the left. If you include
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behavior to test a design within the design’s module, then when you synthesize, you
may need to remove this behavior — an error prone process. The binaryToESegSim
module of Example 1.2 showed a module where the design’s description (the NAND
gate instantiations) and the test behavior (the initial statement) were combined.
Example 1.4 shows this description rewritten using the testbench approach.

module testBench;
wire   w1, w2, w3, w4, w5;

binaryToESeg d (w1, w2, w3, w4, w5);
test_bToESeg t (w1, w2, w3, w4, w5);

endmodule

module binaryToESeg
(input A, B, C, D,
output eSeg);

nand #1
g1 (p1, C, ~D),
g2 (p2, A, B),
g3 (p3, ~B, ~D),
g4 (p4, A, C),
g5 (eSeg, p1, p2, p3, p4);

endmodule

module test_bToESeg
(output reg A, B, C, D,
input eSeg);

initial // two slashes introduce a single line comment
begin

"A = %b B = %b C = %b D = %b, eSeg = %b",
A, B, C, D, eSeg);

//waveform for simulating the nand ftip ftop
#10 A = 0; B = 0; C = 0; D = 0;
#10 D = 1;
#10 C = 1; D = 0;
#10

end
endmodule

Example 1.4 Using the Testbench Approach to Description
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Module testBench instantiates two modules: the design module binaryToESeg
and the test module test_bToESeg. When modules are instantiated, as shown on
lines four and five, they are given names. The fourth line states that a module of type
binaryToESeg is instantiated in this module and given the name d. The fifth line
instantiates the test_bToESeg module with name t. Now it is clear what the func-
tionality of the system is (it’s a binary to seven segment decoder) and what its ports
are. Further, it is clear how the system is going to be tested (it’s all in the test module).
The testbench approach separates this information, clarifying the description, and
making it easier to follow on to other design tools such as logic synthesis. The con-
nection of these two modules is illustrated in Figure 1.3.

Wires need to be declared when connecting modules together. Here, wires w1
through w5, declared on line two of the example, specify the interconnection. We can
see that output register A in module test_bToESeg is connected to an output of the
module. The ports are specified and connected in order. In module testBench, A is
the second port (eSeg is the first) and is connected to wire w2 (the second port in the
list of ports), which is also connected to port A on module binaryToESeg. Inside
module binaryToESeg, that port is connected to gates g2 and g4. Thus register A
drives the inputs of g2 and g4. Simulating module testBench will produce the same
results as simulating module binaryToESegSim in Example 1.2.

Within module test_bToESeg we have declared A, B, C, and D to be registers.
This is necessary because they are being assigned to in the initial block. Assignments
in initial and always blocks must be to registers.

You might think that register A in module test_bToESeg and input net A in mod-
ule binaryToESeg are the same because they are named the same. However, in Ver-
ilog, each module has its own name space; each A in this example is known only



Verilog — A Tutorial Introduction 11

within the module in which it is declared. Thus the two A’s are names of distinct enti-
ties. In this example though, wire w2 connects them making them electrically the
same. Thus a change made to register A will propagate across wire w2 to the A inputs
of g2 and g4.

References: synthesis 2. namespaces 3.6

Tutorial: See the Tutorial Problems in Appendix A.2.

1.2 Behavioral Modeling of Combinational
Circuits
Our view so far of the Verilog language has mainly highlighted its capabilities of
describing structure — module definitions, module instances, and their interconnec-
tions. We have only had a very cursory view of the language’s capability for describing
a module’s function behaviorally.

A behavioral model of a module is an abstraction of how the module works. The
outputs of the module are described in relation to its inputs, but no effort is made to
describe how the module is implemented in terms of structural logic gates.

Behavioral models are useful early in the design process. At that point, a designer is
more concerned with simulating the system’s intended behavior to understand its
gross performance characteristics with little regard to its final implementation. Later,
structural models with accurate detail of the final implementation are substituted and
resimulated to demonstrate functional and timing correctness. In terms of the design
process, the key point is that it is often useful to describe and simulate a module using
a behavioral description before deciding on the module’s actual structural implemen-
tation. In this way, the designer can focus on developing the right design (i.e. one that
works correctly with the rest of a system and has the intended behavior) before con-
tinuing. This behavioral model can then be the starting point for synthesizing several
alternate structural implementations of the behavior.

Behavioral models are described in a manner similar to a programming language.
As we will see, there are many levels of abstraction at which we may model the behav-
ior of a system. For large systems, we may describe the algorithm that is to be imple-
mented. Indeed, the algorithm may be an almost direct translation from a
programming language such as C. At a lower level of abstraction, we may describe the
register-transfer level behavior of a circuit, specifying the clock edges and precondi-
tions for each of the system’s register transfers. At a still lower level, we may describe
the behavior of a logic gate or ftip ftop. In each case, we use the behavioral modeling
constructs of the Verilog language to specify the function of a module without directly
specifying its implementation.
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1.2.1 Procedural Models

Example 1.5 introduces the behavioral approach to modeling combinational logic.
The functionality of the module is described in terms of procedural statements rather
than with gate instantiations. The always statement, introduced here, is the basis for
modeling behavior. The always statement, essentially a “while (TRUE)” statement,
includes one or more procedural statements that are repeatedly executed. These proce-
dural statements execute much like you would expect a software program to execute:
changing register values using the “=” assignment, and executing loops and condi-
tional expressions. Note that within the always statement, all assignments using “=”
are made to entities declared as registers. This was also true of the initial statements
seen earlier.

module binaryToESeg_Behavioral
(output reg eSeg,
input A, B, C, D);

always @(A, B, C, D) begin
eSeg = 1;
if (~A & D)

eSeg = 0;
if (~A & B & ~C)

eSeg = 0;
if (~B & ~C & D)

eSeg = 0;
end

endmodule

Example 1.5 A Behavioral Model of binaryToESeg

The example shows a behavioral model of our binary to seven segment display
driver. The port declarations are the same as before. We have also declared one regis-
ter, eSeg. This is the register we will make assignments to within the always state-
ment, and it will also be the output of the purely combinational circuit. This always
statement starts off with an event control “@” statement. The statement:

@(A, B, C, D) begin … end

states that the simulator should suspend execution of this always block until a change
occurs on one of the named entities. Thus, the value of each of A, B, C, and D is sam-
pled when this statement executes. The simulator then waits for a change to occur on
any of these named inputs. When a change occurs on any one (or more) of these, then
execution will continue with the next statement — in this case what is contained in
the begin … end block.



Verilog — A Tutorial Introduction 13

When a change occurs and execution continues, the assignment and if statements
shown execute much like you would expect in a programming language. In this case,
the statements describe how the output (eSeg) is to be calculated from the inputs.
Comparing the statements to the Karnaugh map, one can see that the output is set to
one. Then, if one of the zeros of the function is on the input, eSeg is set back to zero.
When the begin … end block finishes, the always block restarts again, sampling the
listed values (A, B, C, or D) and then waiting for a change on one or more of them.
At this point, the simulator will propagate the final value of eSeg to other parts of the
design connected to it.

There are two features of the example to note. First, it describes the same func-
tional behavior as the previous example, but there is no mention of the actual gate
level implementation; the model is behavioral.

Secondly, the fact that eSeg is declared as a register might make you think that it is
not a combinational circuit. But, consider the action of this module when only look-
ing at its ports from the outside. You will quickly conclude that if there is any change
on any of the inputs, the output will be re-evaluated based only on the module inputs.
The previous value of eSeg does not matter. This is a fundamental characteristic of a
combinational circuit. From the outside of the module, it’s clear that this has the
behavior of a combinational circuit.

References: always 3.1, if 3.2

1.2.2 Rules for Synthesizing Combinational Circuits

Synthesis tools read a behavioral description of a circuit and automatically design a
gate level structural version of the circuit. Thus, given Example 1.5 as an input speci-
fication, a synthesis tool might produce the design specified in Example 1.3; other
implementations are possible too.

Not just any sequence of behavioral statements is appropriate for synthesis of com-
binational circuits. To use synthesis tools, you need to be very careful with how the
description is written. The rules for synthesizing combinational circuits are briefly
summarized here but they are covered in far more detail in Chapter 2. To be sure that
your synthesized circuit will be combinational:

Check that all inputs to your combinational function are listed in the control
event’s sensitivity list (the comma-separated list of names). That way, if one of
them changes, the output is re-evaluated. Section 2.3 discusses the use of the @(*)
constructto automatically specify all of the inputs.

The need for this requirement stems from the definition of a purely combinational
circuit. The output of a combinational circuit is a function of the current inputs; if
one changes, the output should be re-evaluated.
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Check that there is no way to execute the begin…end loop without assigning a
value to the combinational output (eSeg in this example). That is, the output must
be assigned a value at least once in every execution of the begin...end loop. In
Example 1.5, line 6 (eSeg = 1;) assigns a value to eSeg and satisfies this require-
ment.

To understand the need for this requirement, consider the situation where you
execute the begin…end loop and don’t assign to the output. In this case, the circuit
needs to remember the previous value. Thus, the output is a function of the cur-
rent inputs and the previous output. This is a fundamental characteristic of a
sequential circuit, not a combinational one. A synthesized version of such a circuit
will have latches to implement the sequential nature of the description. That’s not
cool, given that we’re trying to design a combinational circuit!

Another way to view this requirement is for a combinational circuit to be synthe-
sized, the loop in the description must be stateless — nothing can be remembered
from its previous execution.

Following these two rules will help you in writing behavioral descriptions of com-
binational circuits that can be used equivalently for either simulation or synthesis.

References: synthesis 2

Tutorial: See the Tutorial Problems in Appendix A.3.

1.3 Procedural Modeling of Clocked Sequential
Circuits
Procedural models also can be used to describe finite state machines. Figure 1.4 shows
the state transition diagram for a machine with three states, one input, and one out-
put. The states are encoded by two ftip ftops named and The reset state is
encoded with both ftip ftops being zero. Also shown in the figure is an implementa-
tion of the machine using D ftip ftops and gates.

The traditional diagram of a finite state machine is shown in Figure 1.5. The diagram
shows the state registers at the bottom. Their output is the current state of the
machine. Their input is the next state of the machine which the registers will load
after the clock edge. The next state is a combinational function of the current state
and the inputs. The outputs are a combinational function of the current state and (in
some systems) the inputs. This traditional structuring appears in the Verilog descrip-
tion. The next state and output combinational functions will be described behaviorally
in a single always block following the rules of the previous section. The state registers
will be described in a separate always block following a different set of rules.
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1.3.1 Modeling Finite State Machines

A behavioral description of the machine in Figure 1.4 is shown in Example 1.6. We
have named the output out, the input in, and have also provided ports for clock and
reset. Further, output out has also been declared to be a register. The current state of
the machine has been named currentState. The definition

reg [1:0] currentState, nextState;

indicates that currentState and nextState are two-bit vectors. The square brackets
(“[ ]”) construct declares the range of bit numbers that each register has, the first
number being the most-significant bit and the second being the least-significant bit.
out is also declared to be a register. It and nextState are assigned to in the combina-
tional always block that implements the next state and output functions. We have
introduced the term vector in describing the registers nextState and currentState in
this example. Registers, such as out, and nets which are single-bit are said to be scalar.
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module fsm
(output reg out,
input in, clock, reset);

reg [1:0] currentState, nextState;

always @(in, currentState) begin // the combinational portion
out = ~currentState[1] & currentState[0];
nextState = 0;
if (currentState = = 0)

if (in) nextState = 1;
if (currentState = = 1)

if (in) nextState = 3;
if (currentState = = 3) begin

if (in) nextState = 3;
else nextState = 1;

end
end

always @(posedge clock, negedge reset) begin // the sequential portion
if (~reset)

currentState <= 0;
else

currentState <= nextState;
end

endmodule

Example 1.6 A Synthesizable Finite State Machine

The first always block describes the combinational behavior of the output and next
state logic. The sensitivity list indicates that when a change occurs to in or current-
State, then the begin…end statement is executed. The statements in the begin … end
specify the new values of the combinational outputs nextState and out. out is speci-
fied as

out = ~currentState[1] & currentState[0];

indicating that the complement (“~”) of bit 1 of currentState is AND-ed with bit 0 of
currentState. The construct “currentState[1]” is called a bit-select of a vector — only a
single bit from the entire vector is used in this operation. nextState is calculated in the
following if statements. Consider the third one.
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if (currentState = = 3) begin
if (in)nextState = 3;
else nextState = 1;

end

This states that if currentState is equal to 3 (i.e., 11 in two-bit binary, which corre-
sponds to the bottom-left state in the state transition diagram of Figure 1.4), then the
new value of nextState depends on the value of in. If in is TRUE, nextState is 3 (i.e.,
11 in two-bit binary). Otherwise nextState is 01 in two-bit binary. The rest of the
always statement specifies how nextState is calculated when in other states.

The first always block specifies a combinational circuit and it is useful to recheck
the combinational rules presented in section 1.2.2. First, the only inputs to this com-
binational function are in and currentState. This can be checked by looking at the
right-hand sides of the assignment statements and the conditional expressions in the
always block. No other named entities appear so these must be the inputs. To be com-
binational, the comma-separated event list must include in and currentState. It does.
Secondly, the combinational outputs out and nextState must be declared as registers
and assigned to in any execution of the always block. They are assigned to in the first
two statements of the always block, whether they are overwritten later or not.

The second always block specifies the sequential portion of the finite state
machine. We have seen the procedural assignment “=” as it has been used in initial
and always statements. This always block introduces the non-blocking assignment “<=”
— an assignment that might best be described as a concurrent assignment — used in
initial and always statements with edge specifications (i.e., posedge or negedge). For
now, just think of “=” as an immediate assignment, and “<=”  as a delayed, concurrent
assignment; shortly, we’ll explain the differences.

The sensitivity list in the always block waits for one of two events to occur: either a
positive edge on clock or a negative edge on reset. Think of a positive edge on a signal
to be when it changes from a 0 to a 1, and a negative edge to be when a signal changes
from a 1 to a 0. When one or both of these occur, the begin…end block is executed.
Assume that a negative edge on reset occurs. As the begin…end block begins execut-
ing, reset will be zero and thus currentState will be set to zero. As long as reset
remains zero, even a positive edge on clock will only result in currentState being set
to zero. This is the action of an asynchronous reset signal that overrides the clock on a
ftip ftop.

Now consider the situation where reset is one and there is a positive edge on clock;
the begin…end loop is executed but this time the else clause is taken. The assignment
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currentState <= nextState;

loads currentState with the nextState. These statements model the positive edge-
triggered behavior of a two-bit register made up of D-type ftip ftops.

Now we can understand how the whole finite state machine model works. Assume
that we are in state 0 (currentState is 0), reset is 1 (not asserted), clock is 0, and in is
1. Given these values, then the two combinational outputs are: out is 0, and nextState
is 1. When the positive edge of the clock occurs, the second always block will execute
and assign the value of nextState to currentState and then wait again for the next
positive edge of clock or negative edge of reset. Since currentState just changed to 1,
the first alway block will execute and calculate a new value for out and nextState. out
will become 1, and nextState will become 3 if in remains 1. If in becomes 0, the first
always block will execute again, recalculating out and nextState independent of the
clock edge; nextState will become 0, and out will become 0.

References:@ 4.2; if 3.2; bit-select E.1, 3.2;

1.3.2 Rules for Synthesizing Sequential Systems

In addition to the rules listed in Section 1.2.2 for combinational circuits, there are
rules for sequential systems. The sequential portion of Example 1.6 is the second
always block. The rules are:

The sensitivity list of the always block includes only the edges for the clock, reset
and preset conditions.

These are the only inputs that can cause a state change. For instance, if we are
describing a D ftip ftop, a change on D will not change the ftip ftop state. So the D
input is not included in the sensitivity list.

Inside the always block, the reset and preset conditions are specified first. If a neg-
ative edge on reset was specified, then the if statement should be “if (~reset) …”. If
a positive edge on reset was being waited for, the if statement should be “if
(reset)…”.

A condition on the clock is not specified within the begin…end block. The assign-
ment in the last else is assumed by the synthesis tool to be the next state.

Any register assigned to in the sequential always block will be implemented using
ftip ftops in the resulting synthesized circuit. Thus you cannot describe purely
combinational logic in the same always block where you describe sequential logic.
You can write a combinational expression, but the result of that expression will be
evaluated at a clock edge and loaded into a register. Look ahead to Example 1.7
for an example of this.

Non-blocking assignments (“<=”) are the assignment operator of choice when
specifying the edge-sensitive behavior of a circuit. The “< =” states that all the
transfers in the whole system that are specified to occur on the edge in the sensi-
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tivity list should occur concurrently. Although descriptions using the regular “=”
will synthesize properly, they may not simulate properly. Since both simulation
and synthesis are generally of importance, use “<=” in this situation.

Although these rules may seem to be rather “picky,” they are necessary for synthesis
tools to infer that a ftip ftop is needed in the synthesized circuit, and then to infer how
it should be connected.

Finally, a note about the fsm module. The use of the names clock and reset have no
special meaning for a synthesis tool. We used these names here in the example for
clarity; they could be named anything in the model. By using the form of specification
shown in Example 1.6, a synthesis tool can infer the need for a ftip ftop, and what
should be connected to its D, clock, and reset inputs.

1.3.3 Non-Blocking Assignment ("<=")

The non-blocking assignment is used to synchronize assignment statements so that
they all appear to happen at once — concurrently. The non-blocking assignment is
used with an edge as illustrated in module fsm. When the specified edge occurs, then
the new values are loaded concurrently in all assignments that were waiting for the
signal’s edge. In contrast to the regular assignment (“=”), the right-hand sides of all
assignments waiting for the signal’s edge are evaluated first, and then the left-hand
sides are assigned (updated). Think of this as all of these assignments happening con-
currently — at the same time — independent of any blocking assignments anywhere
in the description. Indeed, when all of the ftip ftops in a large digital system are
clocked from the same clock edge, this is what happens. The non-blocking assign-
ment models this behavior.

Consider an alternate version of the fsm module of Example 1.6, shown here in
Example 1.7. This time the Verilog is written almost directly from the logic diagram
in Figure 1.4. We have modeled the current state ftip ftops as separately named regis-
ters, cS0 and cS1, and we have included the next state equations in the second,
sequential always block. Modules fsm and fsmNB should synthesize to the same
hardware.

Consider how the second always block works. The block waits for either a positive
edge on clock or a negative edge on reset. If the negative edge on reset occurs, then
both cS0 and cS1 are set to 0. If the positive edge of clock occurs, the right-hand sides
of the two “<=” assignments are evaluated. Then all of the assignments are made to
the registers on the left-hand side. Thus &  in” (the AND of  and in) and |
in” (the OR of  and in) are both evaluated, and then the results are assigned to cS1
and cS0 respectively.

When looking at the description, you should think of the two statements
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cS1 <= in & cS0;
cS0 <= in | cS1;

as occurring at the same time (i.e., concurrently). Think of the right-hand sides as the
inputs to two ftip ftops, and that the change in cS1 and cS0 occur when the clock edge
occurs. Realize that they occur concurrently. The cS1 on the left-hand side of the first
line is not the value cS1 used on the right-hand side of the second line. cS0 and cS1
on the right-hand sides are the values before the clock edge. cS0 and cS1 on the left-
hand sides are the values after the clock edge. These statements could have been writ-
ten in either order with the same resulting values for cS0 and cS1 after the clock edge!

module fsmNB
(output reg out,
input in, clock, reset);

reg            cS1, cS0;

always@(cS1, cS0)   // the combinational portion
out = ~cS1 & cS0;

always @(posedge clock, negedge reset) begin // the sequential portion
if (~reset) begin

cS1 <= 0;
cS0 <= 0;

end
else begin

cS1<= in & cS0;
cS0 <= in | cS1;

end
end

endmodule

Example 1.7 Illustrating the Non-Blocking Assignment

This example illustrates the functionality being specified with the non-blocking
assignment. Across a whole design there may be many always statements in many
different modules waiting on the same edge of the same signal. The powerful feature
of the non-blocking assignment is that all of these right-hand side expressions will be
evaluated before any of the left-hand side registers are updated. Thus, you do not need
to worry about which value of cS1 is being used to calculate cS0. With the “< =” you
know it is the value before the clock edge.

Tutorial: See the Tutorial Problems in Appendix A.4.
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1.4 Module Hierarchy
Let’s begin building a larger example
that includes more and varied compo-
nents. Figure 1.6 illustrates pictori-
ally what our design looks like. In this
section we will detail each of the
modules and their interconnection.
The example consists of a board mod-
ule which contains a clock module
(m555), a four-bit counter (m16), and
our binaryToESeg display driver from
section 1.2.

1.4.1 The Counter

We look first at the counter module
definition shown in Example 1.8. Our
counter has two ports: the 4-bit counter reg-
ister ctr, and a clock to increment the
counter. The example declares that the inter-
nal register ctr and its output port are 4-bit
vectors and provides an initial simulation
value for ctr (1); when simulation begins, ctr
will be set to the constant value specified to
the right of the “=”. The counter is modeled
behaviorally using an always block. The module waits for a positive edge on clock.
When that occurs, ctr is incremented and the module waits for the next positive edge
on clock. Since the generation of the new counter value occurs on an edge of a signal,
the non-blocking assignment operator (“<=”) is used.

If ctrhad not been initialized, its bits would always be unknown. When the simu-
lator tries to increment a register whose bits are unknown (x), the result is unknown.
Thus, for simulation ctr must be initialized.

1.4.2 A Clock for the System

Our counter needs a clock to drive it. Example 1.9 defines an abstraction of a “555”
timer chip called m555 and shows the waveform generated from simulating the
description.

The m555 module has an internal register (clock) which is also the output of the
module. At the start of a simulation, the output has the value x as illustrated by the
gray area in the example’s timing diagram. In this example, we choose to initialize the

module m16
(output reg [3:0] ctr = 1,
input clock);

always @(posedge clock)
ctr <= ctr + 1;

endmodule

Example 1.8 A 4-Bit Counter
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module m555
(output reg clock);

initial
#5 clock =1;

always
#50 clock = ~ clock;

endmodule

Example 1.9 A Clock For the Counter

clock after 5 time units have passed. (The initialization of ctr in the above
Example 1.8 occurs at simulation time 0.) The m555 is further modeled behaviorally
with an always statement which states that after 50 time units clock will be loaded
with its complement. Since an always statement is essentially a “while (TRUE)” loop,
after the first 50 time units have passed, the always statement will be scheduled to
execute and change clock’s value in another 50 time units; i.e., this time at time 100.
Because clock will change value every 50 time units, we have created a clock with a
period of 100 time units.

We may want to specify the clock period with real time units. The timescale com-
piler directive is used to specify the time units of any delay operator (#), and the preci-
sion to which time calculations will be rounded. If the compiler directive

`timescale 1ns / 100ps

was placed before a module definition, then all delay operators in that module and any
module that followed it would be in units of nanoseconds and any time calculations
would be internally rounded to the nearest one hundred picoseconds.

References: timescale 6.5.3

1.4.3 Tying the Whole Circuit Together

We have now defined the basic modules to be used in our system. What remains is
the tying of these together to complete the design shown in Figure 1.6. Example 1.10
ties together the module definitions in Examples 1.3, 1.8, and 1.9 by defining another
module (called board) that instantiates and interconnects these modules. This is
shown graphically in Figure 1.7.

Most of the statements in the board module definition have previously been
described, however there are a few details to point out. The module declaration of the
counter shows two ports, ctrand clock.
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module board;
wire [3:0] count;
wire clock, eSeg;

m16 counter (count, clock);
m555 clockGen (clock);
binaryToESeg disp (eSeg, count[3], count[2], count[1], count[0]);

initial
"count=%d, eSeg=%d", count, eSeg);

endmodule

Example 1.10 The Top-Level Module of the Counter

module m16
(output reg [3:0] ctr = 1,
input clock);

ctris a 4-bit output and clock is a 1-bit input. The counter output in Example 1.10 is
connected to the binaryToESeg module. However, this module is defined to have five
1-bit ports.

module binaryToESeg (eSeg, A, B, C, D);

In the board module, we define a 4-bit wire count that connects to m16. When we
connect it to binaryToESeg we need to connect each bit (A through D) individually.
This we do with a bit-select of the count wire, specifying the appropriate bit for each
connection. A bit-select allows us to specify a single bit in a register or wire that has
been declared to be a vector. Thus, the connection in to binaryToESeg in module
board becomes
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binaryToESeg disp (eSeg, count[3], count[2], count[l], count[0]);

This connects count[3] to A, count[2] to B,
count[1] to C, and count[0] to D as illus-
trated in Figure 1.8. Think of it as having a
cable that contains four bundled wires; the
bundling is then broken to expose the sepa-
rate wires.

Alternately, as shown in Example 1.11,
we could have declared four scalar (single
bit) wires and then concatenated them together when connecting to the m16 module.
Here we define scalar wires w3, w2, w1, w0 and we connect them to ports A, B, C,
and D of binaryToESeg. However, module m16 expects a 4-bit vector to connect to
its ctr port. The concatenation operator “{w3, w2, w1, w0}” combines w3, w2, w1,
and w0; They are grouped (concatenated) together and treated as one 4-bit bundle
when connecting to m16.

module boardWithConcatenation;
wire clock, eSeg, w3, w2, w1,w0;

m16 counter ({w3, w2, w1, w0}, clock);
m555 clockGen (clock);
binaryToESeg disp (eSeg, w3, w2, w1, w0);

initial
( "count=%d, eSeg=%d", {w3, w2, w1, w0}, eSeg);

endmodule

Elxample 1.11 An Alternate Top-Level Module

If the module definitions in Examples 1.3, 1.8, 1.9, and 1.10 are compiled
together, they form a complete description that can be simulated. The simulation
trace from simulating these combined examples for 802 time units is shown in
Figure 1.9.

Initially, all values in the system at time 0 are unknown. Then, the initial and
always blocks, as well as the initializations in the declarations (e.g., the initialization
of ctr), are enabled to run; they begin running in an arbitrary order. The initial state-
ments in m555 begin by delaying for #5 and #50 respectively. The always in m16
begins by waiting for a positive edge on the clock. The initilization in the declaration
sets ctr to 1. The gate primitives in binaryToESeg wait for a change on their inputs.
The initial statement in board also runs. We can see that the initialization in m16
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runs first, setting ctr to 1. Then the initial in board runs, executing the
statement and printing the first line in the figure. (If the had executed
before the initialization of ctr, count would have printed as x.)

Given that ctr (count) is set to 1 at
time 0, two time units later eSeg changes
its value to 0 (eSeg is off when the ctr 1
is being displayed). At time 5, clock
changes from x to 1. In Verilog, this is
interpreted as a positive edge, which
changes ctr (count) to 2. Two time units
later, at time 7, eSeg changes to 1
because the eSeg is on when displaying
the ctr 2. At time 50, clock changes to 0.
However, this is not shown in our simu-
lation because we were not monitoring
the change in the clock. At time 100,
clock changes to 1, creating a positive
edge on clock and incrementing ctr
(count), ctr changes to 3 and eSeg
changes appropriately two time units
later. The simulation continues as
shown.

Although the initial statement is nec-
essary for simulating Example 1.8, it is
not necessary to synthesize it. In fact, logic synthesis ignores initial blocks and initial-
izations in declarations.

References: module instantiation 5.1; net declaration 6.2.3; always 3.1; F.1

1.4.4 Tying Behavioral and Structural Models Together

In several examples, we connected together modules that were defined differently.
Some of them were defined structurally using only gate level primitives. And some
were defined behaviorally, using always blocks. This is a powerful aspect of the lan-
guage because it allows us to model parts of a system at a detailed level (i.e., the struc-
tural models) and other parts at a less detailed level (the behavioral models). At the
start of a design project, most of the system will be at the behavioral level. Then parts
will be detailed into structural models. The final simulation could then be with all
modules defined at the gate level for accurate timing and functional simulation. Thus
the language aids in the complete design process, allowing a design to evolve from
behavioral through to structural in evolutionary steps.
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Example 1.10 and its submodules partially illustrate how behavioral and structural
elements connect together. In this example, the structural binaryToESeg module in
Example 1.3 is connected together with the behavioral m16 module from
Example 1.8. The register ctr in m16 is declared to be an output. Any changes to ctr
are propagated through the module ports and eventually to gate inputs. Thus we see
that registers specified in behavioral models can drive the inputs of gate primitives.
This need not be done in separate modules.

Indeed we could combine the
functionality of these two mod-
ules as shown in Example 1.12.
Here within one module we have
both structural and behavioral
components. Anytime ctr is
updated, the gates g1 through g4
will re-evaluate their output
because their inputs are con-
nected to ctr. Thus, the “output”
of an always block — the values
in the registers assigned to by the
always block — can be used as
inputs to gate level primitives.

module counterToESeg
(output reg eSeg,
input clock);

reg [3:0] ctr = 0;

always @(posedge clock)
ctr <= ctr + 1;

nand #1
g1 (pl, ctr[l], ~ctr[0]),
g2 (p2, ctr[3], ctr[2]),
g3 (p3, ~ctr[2], ~ctr[0]),
g4 (p4, ctr[3], ctr[l]),
g5 (eSeg, p1, p2, p3, p4);

endmodule

Example 1.12 Behavior Driving Structure

In like manner, the outputs of
gate level primitives can be used as
“inputs” to always blocks as illus-
trated in Example 1.13. Here we
alter the original structural binary-
toESeg module to produce
mixedUpESegDriver. The change
is that the final NAND gate that
NAND-ed together the outputs of
the other NAND gates has been
described behaviorally using an
always block. This always block
waits for any change on p1, p2, p3,
or p4. When a change occurs, the
behavioral statement calculates
their NAND storing it in register
eSeg. This value is the combina-
tional output of the module. Thus

module mixedUpESegDriver
(output reg eSeg,
input A, B, C, D);

nand #1
g1 (p1, C, D),
g2 (p2, A, ~B),
g3 (p3, ~B, ~D),
g4 (p4, A, C);

always @(p1, p2, p3, p4)
eSeg = ~(p1 & p2 & p3 & p4);

endmodule

Example 1.13 Structure Driving Behavior
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the outputs of gate primitives can drive the inputs — values on the right-hand side of
behavioral expressions — of behavioral blocks.

These examples serve to illustrate the two main data types in the language, regis-
ters and nets, and how they work together. Gate primitives drive their outputs onto
nets (in our examples, wires). Gate inputs can either be other nets, or registers.
Behavioral models, i.e., always blocks, change register values as a result of their execu-
tion. Their inputs can either be other registers, or nets driven by gate primitives.

References: procedural assignment 3.1; continuous assignment 6.3; timing models 8.1

Tutorial: See the Tutorial Problems in Appendix A.5.

1.5 Summary
This brief tour has illustrated the basic capabilities of the language. Important among
these are:

The ability to partition a design into modules which can then be further divided
until the design is specified in terms of basic logic primitives. This hierarchical
modularization allows a designer to control the complexity of the design through
the well-known divide-and-conquer approach to large engineering design.

The ability to describe a design either in terms of the abstract behavior of the
design or in terms of its actual logical structure. The behavioral description allows
for early design activities to concentrate on functionality. When the behavior is
agreed upon, then it becomes the specification for designing possibly several alter-
nate structural implementations, possibly through the use of synthesis tools.

The ability to synchronize concurrent systems. The concurrent parts of a system
that share data must synchronize with each other so that the correct information is
passed between the current parts. We illustrated how systems can be synchronized
to signal edges (e.g. a clock).

This tutorial chapter was meant to give a quick introduction to the language. As
such, many details were skimmed over with the goal of giving the reader a feel for the
language. The approach was to present and describe examples that illustrate the main
features and uses of the language.

The goal of the later chapters is to cover the language and its uses in more depth,
while still presenting the language with an example-oriented approach. Our goal is
not to present the Verilog language just as a formal syntax specification. But, realizing
that the examples we give cannot illustrate the entire language syntax, we will begin
introducing some of the language’s formal syntax specification. This specification will
probably not be useful for the first-time reader. However, it will be invaluable for the
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reference reader and description writer. The complete formal syntax specification is in
Appendix G.

The rest of the book illustrates in more depth the syntax and semantics of the Ver-
ilog language.

1.6 Exercises
For more exercises, see Appendix A.

1.1

1.2

1.3

1.4

1.5

1.6

Rewrite the eSeg module in Example 1.4 with continuous assignment state-
ments.
Write three different descriptions of a 2-bit full adder including carry-in and
carry-out ports. One description should use gate-level models, another should
use continuous assignment statements, and the third — combinational always.

Change the clock generator m555 in Example 1.9 such that the clock period
remains the same but that the low pulse width is 40 and high pulse width is 60.

Write a two-phase clock generator. Phase two should be offset from phase one
by one quarter of a cycle.

Keeping the same output timing, replace the initial and always statements in the
clock generator m555 in Example 1.9 with gate primitives.

Write a behavioral description for a serial adder. The module definition is:

module serialAdder (
input clock, a, b, start,
output sum);

endmodule

A. The bits will come in to the module low order first. The carry into the low-
order bits is assumed to be zero. The inputs are all valid right before the negative
edge of the clock. a and b are the two bits to add and sum is the result. If start is
1, then these two bits are the first of the word’s bits to add. Just after the nega-
tive edge of the clock, sum will be updated with its new value based on the val-
ues of a and b (and the carry from the previous bits) just before the clock edge.

B. Create a test module to demonstrate the serial adder’s correctness.
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1.7 Oops, forgot the declarations! Here’s a Verilog module that is complete except
for the register, input, and output declarations. What should they be? Assume a,
b, and c are 8 bit “things” and the others are single-bit. Note that you may have
to add to the input-output list. Do not add any more assignments — only input,
output, and register declarations.

module sillyMe (a, b, c, q,…);

// oops, forgot the declarations!

initial
q = 1’b0;

always
begin

@ (posedge y)
#10 a = b + c;

q = ~q;
end

nand #10 (y, q, r);
endmodule

1.8 Spock claims that he can
translate K-maps with four
variables or less directly
into accurate Verilog mod-
ule descriptions. He takes
one glance at the K-map on
the right and produces the
Verilog module the_ckt.



30 The Verilog Hardware Description Language

module the_ckt
(output f,
input a, b, c, d);

and (f3, f1, d),
(f4, f2, b);

xnor (f1, a, c);
not (f2, f1);
or (f, f3, f4);

endmodule

A. Write a test module, called verify_spock that allows you to determine
whether the Verilog description matches the K-map. Write a top module, called
top_spock to wire your test module to the the_ckt module. The output of the
execution of your simulation module must relate easily to a truth table descrip-
tion of the function and the minterms represented on the K-map. Use a for loop
to generate the test values in your testbench.

1.9 The all-nand circuit below is intended to implement the function, F=X xor Y.
However, it produces a glitch (a temporarily incorrect output) under certain
kinds of changes in the set of signals applied to the inputs.

module weird_xor
(output xor_out,
input x,y);

nand #3
g1(f1,x,y),
g3(f3,f1,y);

nand#l
g2(f2,x,f1),
g4(xor_out, f2, f3);

endmodule

Write a complete simulation that will show when a glitch happens. Make a test
module, weird_xor_test that provides sets of test inputs and a system module,
weird_xor_system, that instantiates both of the other modules and wires them
together. Explain exactly how a glitch is detected by your simulation results.

1.10 Consider the description below:
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module bad_timing
(output f_out,
input a, b, c);

nand #10
gl(f1,a,b),
g2(f_out,f1,c);

endmodule

A. Draw the circuit described by the module. Completely label all signals and
gates, including propagation delays.

B. This circuit will output a glitch (a temporarily incorrect output) under cer-
tain operating conditions. Describe the circumstances that cause a glitch in this
circuit.

C. Write a complete simulation that will show when a glitch happens. Make a
test module, bad_timing_test that provides sets of test inputs and a system
module, bad_timing_system, that instantiates both of the other modules and
wires them together.

D. Explain exactly how a glitch is detected by your simulation results.

E. Draw a timing diagram to illustrate the glitch modeled in your simulation.

1.11 Consider the Verilog description below.

module what_is_it
(output f_out
input x,y);

nand #10
g1(f1,x,x),
g2(f2,y,y),
g3(f3,x,y),
g4(f4,f1,f2),
g5(f_out,f3,f4);

endmodule

A. Draw the circuit described by the Description. Completely label all signals
and gates, including propagation delays.

B. The what_is_it module can be replaced with another primitive gate in Ver-
ilog. What is the primitive gate?
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1.12

1.13

A great philosopher said, “A man is satisfied when he has either money, power
or fame. However, all these mean nothing to him if he is going to die.”

A. Design a Verilog module from the word problem that implements a Satisfac-
tion Detector with inputs Has_Money, Has_Power, Has_Fame,
Going_To_Die and output Has_Satisfaction. Use whatever gates you want, so
long as your description implements the problem statement. Call the module
Satisfaction_Detector.

As it turns out, this philosopher designed, developed, and marketed his Satis-
faction Detector but the manufacturing technology caused the detector to fail
after anywhere from 10-100 uses. He became famous for marketing defective
merchandise. Thus he is famous, but he is not satisfied. Back to the drawing
board:

You have been hired to help this man to build a revised Satisfaction Detector.
The new Satisfaction Detector still has inputs Has_Money, Has_Power,
Has_Fame, Going_To_Die and output Has_Satisfaction. Only this time, add
another input called, Keeps_on_Trying. In addition to the logic of the old Sat-
isfaction Detector, where any of money, power or fame will indicate satisfaction,
the new Satisfaction Detector will also indicate satisfaction if the man keeps on
trying, no matter what else (even if he is dying)!

B. Use the Satisfaction_Detector module designed in part A as the core of
your new design. Build another module, Satisfaction_Detector_II which
includes the logic for new input, Keeps_on_Trying. Be sure to use the module
you designed for part A!

C. Simulate your Satisfaction_Detector_II module. Include enough test cases
in your testbench to determine if your new detector is working correctly.

Implement the following in structural Verilog. Much publicity was given to the
women’s US Soccer team for winning the title several years back — and for one
of the player’s removing her jersey after the big win. Someone collected a lot of
opinions and came up with the following set of rules for when it’s OK to remove
one’s jersey on the field after a game. We’ll call the output of the rule implemen-
tor Jersey_Freeway which is asserted if it’s OK for a player to take off her Jersey
after a game. The logic works like this. If a player scored the winning goal
(Winning_Goal) or was the goalie (Goalie) and her team won the game
(Won), then she can take off her jersey (Jersey_Freeway), but only if she did
not become bruised during the game (Bruised).

A. Design a Verilog Module called Jersey_Freeway to implement an all-NAND
design of the logic.
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1.14

B. Simulate your design and verify that your implementation satisfied the word
description. How will you do the verification?

C. Alas, the rules have now been extended. The circuit must be modified. A
player should never remove her jersey unless her team won the game, except if
this is her last game (Retiring) when she always should, unless she is too badly
bruised by the game. Design a Verilog module for a new Jersey_Freeway detec-
tor, called New_Jersey_Freeway to implement the design with this additional
rule. Don’t re-design from scratch! Re-use your Jersey_Freeway module in the
design of your New_Jersey_Freeway detector. The solution must have one mod-
ule containing another module.

D. Simulate and verify your design of part C.

Implement the following in structural Verilog. As with most things, Engineers
are way ahead of the general public. For instance, we’ve had our own version of
Survivor for years. In fact, some folks have derived logic for this. The logic for
HW_Design_Survivor works like this. If a designer’s partner packs a rat in
their backpack for those long design sessions (rat is asserted) and forms an alli-
ance with a group of designers who do not use VHDL (non_VHDL_alliance is
asserted) they will survive. Or if a designer passes both immunity hardware test
challenges (immunity1 and immunity2 are asserted) and does not show up to
the final presentation naked (naked is most definitely de-asserted), they will also
be a hardware design survivor. Assume complemented inputs are available.

A. Design an all-NAND implementation which uses a minimal number of gates.
Show all work, including how you arrived at a minimal design. Actually draw all
gates for this part.

B. Design a Verilog module called survivor to implement part A.

C. Simulate your design and verify that your implementation satisfied the word
description. How will you do the verification?

D. Now we are going to extend the rules for survival. A designer will survive if
they always follow the rules for synthesizable hardware (synthesis is asserted)
and never try to gate the clock (gate is de-asserted), regardless of anything else.
Design a second Verilog module for a modified survivor logic box, called
survivor_II to implement the design with this additional rule. Only don’t re-
design from scratch, re-use your previous design in the design of your
Survivor_II detector. You must have one module containing another module.

E. Simulate and verify your design of part D.
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1.15

1.16

F. Re-design and re-simulate the survivor_II detector from scratch, using
muxes. For this, design and simulate a Verilog all-NAND implementation for
which you must use an all-NAND 8x1 mux with gate, rat, naked on the select
lines (in that order). You must use one module for the mux, another module for
the external circuitry to the mux (all NAND), and a third containing module (the
survivor_II module). Say why your simulation results that show your design
implements the detector correctly.

Design and simulate a mixed logic circuit to implement the word problem. The
Steelers are not having a very good season this year, to say the least. Some fans
have proposed the following logic to predict if the Steelers will their next game.
The Steelers will win their next game (Win_L) if hell freezes over (Hell_L is
asserted and Warm_H is de-asserted) or if the other team is locked in their
hotel rooms (Lock_L is asserted) and someone threw away the key (Key_L is
de-asserted). The Steelers will also win if the other team lets them (Trying_L is
de-asserted). The Steelers will also win if they are playing a high school team
(High_H is asserted) where all of the good players are on academic probation
(Smart_L is de-asserted). Simulate your design using only primitive gates --
structural Verilog. Clearly justify how your simulation verifies your design!

Design and simulate a mixed logic circuit to implement the following word
problem with logic to help decide whether or not to buy hotdogs at the local
hotdog stand.

It is worth buying hot dogs (Hot_L) on a weekday (Week_H) whenever it is
lunchtime (Lunch_L) or after midnight (Midnight_H), but only if none of
your Professors are swimming in the pool (No_Profs_L) and the person behind
the counter does not have a tatoo that says “Mother” (No_Tatoo_H). Simulate
your design using only primitive gates — structural Verilog. Clearly justify how
your simulation verifies your design!



2 Logic Synthesis

In this chapter, the use of the language as an input specification for synthesis is pre-
sented. The concern is developing a functionally correct specification while allowing a
synthesis CAD tool to design the final gate level structure of the system. Care must be
taken in writing a description so that it can be used in both simulation and synthesis.

2.1 Overview of Synthesis
The predominate synthesis technology in use today is logic synthesis. A system is speci-
fied at the register-transfer level of design; by using logic synthesis tools, a gate level
implementation of the system can be obtained. The synthesis tools are capable of
optimizing a design with respect to various constraints, including timing and/or area.
They use a technology library file to specify the components to be used in the design.

2.1.1 Register-Transfer Level Systems

A register-transfer level description may contain parts that are purely combinational
while others may specify sequential elements such as latches and flip flops. There may
also be a finite state machine description, specifying a state transition graph.
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A logic synthesis tool compiles a register-transfer level design using two main
phases. The first is a technology independent phase where the design is read in and
manipulated without regard to the final implementation technology. In this phase,
major simplifications in the combinational logic may be made. The second phase is
technology mapping where the design is transformed to match the components in a
component library. If there are only two-input gates in the library, the design is trans-
formed so that each logic function is implementable by a component in the library.
Indeed, synthesis tools can transform one gate level description into another, provid-
ing the capability of redesigning a circuit when a new technology library is used.

The attraction of a logic synthesis CAD tool is that it aids in a very complex design
process. (After all, did your logic design professor ever tell you what to do when the
Karnaugh map had more than five or six variables!) These tools target large combina-
tional design and different technology libraries, providing implementation trade-offs
in time and area. Further, they promise functional equivalence of the initial specifica-
tion and its resulting implementation. Given the complexity of this level of design,
these tools improve the productivity of designers in many common design situations.

To obtain this increased productivity, we must specify our design in a way that it
can be simulated for functional correctness and then synthesized. This chapter dis-
cusses methods of describing register-transfer level systems for input to logic synthe-
sis tools.

2.1.2 Disclaimer

The first part of this chapter defines what a synthesizable description for logic synthesis
is. There are behaviors that we can describe but that common logic synthesis tools will
not be able to design. (Or they may design something you’d want your competitor to
implement!) Since synthesis technology is still young, and the task of mapping an
arbitrary behavior on to a set of library components is complex, arbitrary behavior
specifications are not allowed as inputs to logic synthesis tools. Thus, only a subset of
the language may be used for logic synthesis, and the style of writing a description
using that subset is restricted. The first part of this chapter describes the subset and
restrictions commonly found in logic synthesis specification today. Our discussion of
logic synthesis is based on experience using current tools. If you use others, your mile-
age may vary. Read the synthesis tool manual closely.
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2.2 Combinational Logic Using Gates and
Continuous Assign
Using gate primitives and continuous assignment statements to specify a logic func-
tion for logic synthesis is quite straightforward. Examples 2.1 and 2.2 illustrate two
synthesizable descriptions in this style. Both of the examples implement the same
combinational function; the standard sum-of-products specification is:

Essentially, logic synthesis tools read the logic functionality of the specification and
try to optimize the final gate level design with respect to design constraints and library
elements. Even though Example 2.1 specifies a gate level design, a logic synthesis tool
is free, and possibly constrained, to implement the functionality using different gate
primitives. The example shows a different, but functionally equivalent, gate level
design. Here, the technology library only contained two-input gates; the synthesis
tool transformed the design to the implementation on the right of the example. Other
designs are possible with alternate libraries and performance constraints.

module synGate
(output f,
input a, b, c);

and A (a1, a, b, c);
and B (a2, a, ~b, ~c);
and C (a3, ~a, o1);
or D (o1, b, c);
or E (f, a1, a2, a3);

endmodule

Example 2.1 A Description and Its Synthesized Implementation

The example does not contain delay (#) information, illustrating one of the key
differences between writing Verilog descriptions for simulation and synthesis. In sim-
ulation, we normally provide detailed timing information to the simulator to help the
designer with the task of timing verification. A logic synthesis tool will ignore these
timing specifications, using only the functional specification provided in the descrip-
tion. Because timing specifications are ignored, having them in a description could
give rise to differences in simulating a design being input to a logic synthesis tool ver-
sus simulating the resulting implementation.

Consider gate instance A in Example 2.1. If it had been specified as:
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and #5 A (a1, a, b, c);

then simulation of the description would have shown a 5 time unit delay between
changes on the input to changes on the output of this gate. The implementation
shown in Example 2.1 does not have a gate corresponding to A. Thus, the timing of
the simulation of that implementation would be different. Logic synthesis does not
try to meet such timing specifications. Rather, synthesis tools provide means of speci-
fying timing requirements such as the clock period. The tool will then try to design
the logic so that all set-up times are met within that clock period.

module synAssign
(output f,
input a, b, c);

assign f = (a & b & c) | (a &~b &~c) | (~a & (b | c));
endmodule

Example 2.2 A Synthesizable Description Using Continuous Assign

Using a continuous assign statement, as shown in Example 2.2, is similar to speci-
fying logic in Boolean algebra, except Verilog has far more operators to use in the
specification. The assign statement allows us to describe a combinational logic func-
tion without regard to its actual structural implementation — that is, there are no
instantiated gates with wires and port connections. In a simulation of the circuit, the
result of the logical expression on the right-hand side of the equal sign is evaluated
anytime one of its values changes and the result drives the output f.

In this example, the same sum of products functionality from Example 2.1 is used
but the assign statement is written combining products 1, 2, and 3 into the last prod-
uct term. Of note is the fact that a continuous assign may call a function which con-
tains procedural assignment statements. The use of procedural assignment statements
to describe combinational logic will be discussed in section 2.3; thus we will limit the
discussion here to continuous assigns without function calls.
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Continuous assign statements
are often used for describing
datapath elements. These mod-
ules tend to have one-line speci-
fications as compared to the logic
specifications for next state and
output logic in a finite state
machine. In Example 2.3 both
an adder and a multiplexor are
described with continuous
assign. The addWithAssign
module is parameterized with
the width of the words being
added and include carry in (Cin)
and carry out (carry) ports. Note
that the sum generated on the
right-hand side of the assign
generates a result larger than
output sum. The concatenation
operator specifies that the top-
most bit (the carry out) will drive
the carry output and the rest of
the bits will drive the sum out-
put. The multiplexor is described using the conditional operator.

module addWithAssign
#(parameter WIDTH = 4)
(output carry,
output [WIDTH-1:0] sum,
input [WIDTH-1:0] A,B,
input Cin);

assign {carry, sum} = A + B + Cin;
endmodule

module muxWithAssign
#(parameter WIDTH = 4)
(output [WIDTH-1:0] out,
input [WIDTH-1:0] A, B,
input sel);

assign out = (sel) ? A: B;
endmodule

Example 2.3 Datapath Elements Described
With Continuous Assign

There are limits on the operators that may be used as well as the ways in which
unknowns (x) are used. An unknown may be used in a synthesizable description but
only in certain situations. The following fragment is not synthesizable because it com-
pares a value to an unknown.

assign y = (a === 1'bx)? c : 1 ;

An unknown used in this manner is a value in a simulator; it is useful in determining
if the value of a has become unknown. But we do not build digital hardware to com-
pare with unknowns and thus this construct is not synthesizable. However, the fol-
lowing fragment, using an unknown in a non-comparison fashion, is allowable:

assign y = (a == b) ? 1'bx : c ;

In this case, we are specifying a don’t-care situation to the logic synthesizer. That is,
when a equals b, we don’t care what value is assigned to y. If they are not equal, the
value c is assigned. In the hardware synthesized from this assign statement, either 1 or
0 will be assigned to y (after all, there are no unknowns in real hardware). A don’t-care
specification used in this manner allows the synthesizer additional freedom in opti-
mizing a logic circuit. The best implementation of this specification is just y = c.
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References: assign 6.3; primitive gates 6.2; parameters 5.2.

2.3 Procedural Statements to Specify
Combinational Logic
In addition to using continuous assign statements and primitive gate instantiations to
specify combinational logic, procedural statements may be used. The procedural state-
ments are specified in an always statement, within a task called from an always state-
ment, or within a function called from an always statement or a continuous assign. In
spite of the fact that a description using procedural statements appears sequential,
combinational logic may be specified with them. Section 1.2 introduced this approach
to specifying combinational logic. This section covers the topic in more detail.

2.3.1 The Basics

The basic form of a procedural descrip-
tion of combinational logic is shown in
Example 2.4. It includes an always state-
ment with an event statement containing
all of the input variables to the combina-
tional function. The example shows a
multiplexor described procedurally. In
this case, input a selects between passing
inputs b or c to output f. Even though f is
defined to be a register, a synthesis tool
will treat this module as a specification of
combinational logic.

module synCombinationalAlways
(output reg f,
input a, b, c);

always @ (a, b, c)
if (a == 1)

f  =  b ;
else

f  = c;
endmodule

Example 2.4 Combinational Logic
Described With Procedural Statements

A few definitions will clarify the rules
on how to read and write such descriptions. Let’s define the input set of the always
block to be the set of all registers, wires, and inputs used on the right-hand side of the
procedural statements in the always block. In Example 2.4, the input set contains a, b,
and c. Further, let’s define the sensitivity list of an always block to be the list of names
appearing in the event statement (“@”). In this example, the sensitivity list contains a,
b, and c. When describing combinational logic using procedural statements, every
element of the always block’s input set must appear without any edge specifiers (e.g.,
posedge) in the sensitivity list of the event statement. This follows from the very
definition of combinational logic — any change of any input value may have an
immediate effect on the resulting output. If an element of the input set is not in the
sensitivity list, or only one edge-change is specified, then it cannot have an immediate
effect. Rather, it must always wait for some other input to change; this is not true of
combinational circuits.
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Considering Example 2.4 further, we note that the combinational output f is
assigned in every branch of the always block. A control path is defined to be a sequence
of operations performed when executing an always loop. There may be many different
control paths in an always block due to the fact that conditional statements (e.g. case
and if) may be used. The output of the combinational function must be assigned in
each and every one of the possible control paths. Thus, for every conceivable input
change, the combinational output will be calculated anew; this is a characteristic of
combinational logic.

The above example and discussion essentially outline the rules for specifying com-
binational hardware using procedural statements: the sensitivity list must be the input
set and contain no edge-sensitive specifiers, and the combinational output(s) must be
assigned to in every control path.

A common error in specifying combi-
national circuits with procedural state-
ments is to incorrectly specify the
sensitivity list. Example 2.4 is revised to
use the @(*) construct as shown in
Example 2.5 — the two examples will
simulate and synthesize identically.
Essentially, @(*) is shorthand for “all the
signals on the right-hand side of the
statement or in a conditional expression.”

The basic form of the “@” event state-
ment is:

@ (sensitivity_list) statement;

module synAutoSensitivity
(output reg f,
input a, b, c);

always @ (*)
if (a == 1)

f  =  b ;
else

f  =  c ;
endmodule

Example 2.5 Automatically
Determining the Sensitivity List

When using the construct @(*) — or @* which is equivalent — only the statement’s
right-hand side or conditional expression is included. Thus, if several procedural
statements are needed to specify the combinational function, a begin-end block must
be used to group them into a compound statement. The “@(*) begin-end” will then
include the registers and nets from the right-hand sides and conditionals of all of the
statements in the compound statement.
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Although this relieves the problem of
correctly specifying the sensitivity list for
combinational functions, the rule con-
cerning assigning to the combinational
output(s) during any execution of the
always block must still be followed. An
approach to organizing descriptions so
that an assignment is always made is
shown in Example 2.6. This module has
the same multiplexor functionality as
Example 2.5. However, here the output f
is assigned to first. In a complex descrip-
tion, this approach ensures that a latch
will not be inferred because of a forgotten
output assignment.

module synAssignOutputFirst
(output reg f,
input a, b, c);

always @ (*) begin
f  =  c ;
if (a == 1)

f  = b;
end

endmodule

Example 2.6 Automatically
Determining the Sensitivity List

References: always 3.1; sensitivity list 8.1; @ 4.2; edge specifications 4.2; input set 7.2.1, functions and
tasks 3.5.

2.3.2 Complications — Inferred Latches

If there exists a control path that does not assign to the output, then the previous out-
put value needs to be remembered. This is not a characteristic of combinational hard-
ware. Rather it is indicative of a sequential system where the previous state is
remembered in a latch and gated to the output when the inputs specify this control
path. A logic synthesis tool will recognize this situation and infer that a latch is
needed in the circuit. Assuming that we are trying to describe combinational hard-
ware, we want to insure that this inferred latch is not added to our design. Assigning
to the combinational output in every control path will insure this.

An example of a
situation that infers a
latch is shown in
Example 2.7. If we
follow the control
paths in this exam-
ple, we see that if a is
equal to one, then f is
assigned the value of
b & c. However, if a
is equal to zero, then f
is not assigned to in
the execution of the always block. Thus, there is a control path in which f is not
assigned to. In this case a latch is inferred and the circuit shown on the right of the
example is synthesized. The latch is actually a gated latch — a level-sensitive device

module synInferredLatch
(output reg f,
input a, b, c);

always @(*)
if (a == 1)

f = b & c;
endmodule

Example 2.7 An Inferred Latch
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that passes the value on its input D when the latch’s gate input (G which is connected
to a) is one, and holds the value when the latch’s gate input is zero.

2.3.3 Using Case Statements

Example 2.8 illustrates using a case state-
ment to specify a combinational function in
a truth table form. (This example specifies
the same logic function as Examples 2.1
and 2.2.) The example illustrates and fol-
lows the rules for specifying combinational
logic using procedural statements: all mem-
bers of the always’ input set are contained
in the always’ sensitivity list — the @(*)
insures this, the combinational output is
assigned to in every control path, and there
are no edge specifications in the sensitivity
list.

The first line of the case specifies the
concatenation of inputs a, b, and c as the
means to select a case item to execute. The
line following the case keyword specifies a
numeric value followed by a colon. The
number 3'b000 is the Verilog notation for a
3-bit number, specified here in binary as 000. The b indicates binary. The right-hand
sides of the assignments to f need not be constants. Other expressions may be used
that include other names. The @(*) will include them in the sensitivity list.

module synCase
(output reg f,
input a, b, c);

always @(*)
case ({a, b, c})

3'b000: f = 1'b0;
3'b00l: f = 1'b1;
3'b0l0: f = 1'b1;
3'b011: f = 1'b1;
3'b100: f = 1'b1;
3'bl0l: f = 1'b0;
3'b110: f = 1'b0;
3'b111: f = 1'b1;

endcase
endmodule

Example 2.8 Combinational Logic
Specified With a Case Statement

Of course, when using a case statement
it is possible to incompletely specify the
case. If there are n bits in the case’s con-
trolling expression, then a synthesis tool

will know that there are possible con-
trol paths through the case. If not all of
them are specified, then there will be a
control path in which the output is not
assigned to; a latch will be inferred. The
default case item can be used to define the
remaining unspecified case items. Thus
Example 2.8 could also be written as
shown in Example 2.9. Here, we explicitly
list all of the zeros of the function using

module synCaseWithDefault
(output reg f,
input a, b, c);

always @(a, b, c)
case ({a, b, c})

3'b000: f = 1'b0;
3'b101: f = 1'b0;
3'b110: f = 1'b0;
default: f = 1'b1;

endcase
endmodule

Example 2.9 Using Default to Fully
Specify a Case Statement
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separate case items. If the input does not match one of these items, then by default f is
assigned the value one.

References: case 3.4, numbers B.3.

2.3.4 Specifying Don’t Care Situations

Logic synthesis tools
make great use of logi-
cal don’t care situations
to optimize a logic cir-
cuit. Example 2.10
illustrates specifying a
logic function that con-
tains a don’t care. Often
these can be specified in
the default statement of
a case. As shown,
assigning the value x to
the output is inter-
preted in this example
as specifying input cases
3'b000 and 3'b101 to be
don’t cares. An opti-
mized implementation
of this function is
shown on the right; only the single zero of the function (input case 3'b110) is imple-
mented and inverted. In general, specifying an input to be x allows the synthesis tool
to treat it as a logic don’t care specification.

Two attributes are often used to help synthesis tools optimize a function. These are
the full_case and parallel_case attributes illustrated in Example 2.11. The case state-
ment in Example 2.10 is full by definition because all of the case items are specified
either explicitly or by using a default. Thus all of the control paths are also specified.
Synthesis tools look for the full_case attribute specified on a case statement indicating
that the case is to be considered full even though all case items are not specified. In
this situation, the unspecified cases are considered to be don’t cares for synthesis, and
a latch is not inferred.

module synCaseWithDC
(output reg f,
input a, b, c);

always @(*)
case ({a, b, c})

3'b001: f = 1'b1;
3'b010: f = 1'b1;
3'b011: f = 1'b1;
3'b100: f = 1'b1;
3'b110: f = 1'b0;
3'b111: f = 1'b1;
default: f = 1'bx;

endcase
endmodule

Example 2.10 A Logic Function With a Don’t Care
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An attribute is specified as shown on line
6 of Example 2.11. Attributes are declared
as a prefix to the statement to which they
refer; in this situation it is on the line before
the case statement it refers to. (Attributes
are not comments, nor are their names
defined by the language. Rather, other tools
that use the language, such as a synthesis
tool, define their names and meanings.
Consult their user manuals for details and
examples of usage.)

Also shown in the example is a parallel
case attribute. A Verilog case statement is
allowed to have overlapping case items. In
this situation, the statements for the match-
ing items are executed in the order speci-
fied. This can result in some complex logic
because a priority among the case items is
specified. A parallel case is a case statement where there is no overlap among the case
items. That is, only one of the case items can be true at any time. If the case is parallel
(and full), it can be regarded as a sum-of-products specification which could be imple-
mented by a multiplexor. Specifying the parallel case attribute enables this interpreta-
tion and generally simplifies the logic generated.

module synAttributes
(output reg f,
input a, b, c);

always @(*)
(* full_case, parallel_case *)
case ({a, b, c})

3'b001: f = 1'b1;
3'b010: f = 1'b1;
3'b011: f = 1'b1;
3'b100: f = 1'b1;
3'b110: f = 1'b0;
3'b111: f = 1'b1;

endcase
endmodule

Example 2.11 Case Attributes

A casex statement,
which allows for the use
of x, z, or ? in the con-
trolling expression or in
a case-item expression,
can be used for specify-
ing don’t cares for syn-
thesis. However, x, z, or
? may only be specified
in a case item expres-
sion for synthesis.

Consider the mod-
ule shown in
Example 2.12. The first case item specifies that if a is zero, then the output f is one.
The use of the ? in this statement specifies that the value of b does not matter in this
situation. Thus this case item covers the first column of the Karnough map. Although
we could have specified the two case items (2'b00 and 2'b01) and assigned f to be x in
both situations, the approach shown is more compact. Since this first case item covers

module synUsingDC
(output reg f,
input a, b);

always @ (*)
casex ({a, b})

2'b0?: f  =  1 ;
2'b10: f  = 0;
2'b11: f  =  1 ;

endcase
endmodule

Example 2.12 Specifying a Logical Function Using a
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two of the four possible case-items, it along with the other two case-items make this a
full casex.

When using the ? in the
case-item expressions, the
case items can overlap.
Example 2.13 illustrates how
a one-hot state assignment
could lead to overlapping
case items. Specify the case
with the full and
parallel_case attributes; the
synthesizer will then treat
each case as exclusive and
generate more optimized
logic.

The casez statement can
also be used to specify logical
don’t cares. In this situation, only z or ? are used for the don’t care in the case-item
expression.

Care should be taken when using don’t cares in a specification because they give
rise to differences between simulation and synthesis. In a simulator, an x is one of the
four defined logic values that will be printed when tracing values. However, in the
synthesized circuit, the value printed for the same situation will either be 1 or 0. Fur-
ther, comparing to an x makes sense in a simulation but not in synthesis. To reduce
the differences between simulation and synthesis, a synthesizable description does not
compare with x or z.

References: casex and casez 3.4.

2.3.5 Procedural Loop Constructs

A reading of the above examples might suggest that the only means to specify logic
functions is through if and case statements. The for loop in Verilog may be used to
specify combinational logic. The while and forever loops are used for synthesizing
sequential systems. The repeat loop is not allowed in any synthesizable specifications.

module oneHotEncoding
(output reg [2:0] state,
input in, ck);

always @(posedge ck)
(* full_case, parallel_case *)
casex (state)

3'b1??: state <= 3'b010;
3'b?1?: state <= in ? 3'b010: 3'b001;
3'b??1: state <= in ? 3'b100: 3'b001;

endcase
endmodule

Example 2.13 Use of Full and Parallel Case
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For loops allow for a repetitive
specification as shown in
Example 2.14 (Generate loops are
discussed in more detail in
Section 5.4.) In this example, each
iteration of the loop specifies a dif-
ferent logic element indexed by the
loop variable i. Thus, eight xor gates
are connected between the inputs
and the outputs. Since this is a speci-
fication of combinational logic, i
does not appear as a register in the
final implementation.

The example illustrates several points about using for statements for specifying
logic. The for loop is highly structured, clearly specifying the step variable and its lim-
its. It will have an index i that must either start with a low limit and step up to a high
limit, or start with a high limit and step down to a low limit. The comparison for end
of loop may be <, >, <=, or >=, and the step size need not be one. The general form
shown below illustrates the count down version:

for (i = highLimit; i >= lowLimit; i = i - step);

Example 2.15 shows a more complex design. The design is of a digital correlator
which takes two inputs (message and pattern) and counts the number of bits that
match. If message was 8'b00001111 and pattern was 8'b01010101, then the number
of bits that match is four. At first glance this module appears to be a sequential algo-
rithm. However, the for loop specifies a cascade of adders summing up the correla-
tions of each bit-pair; a combinational circuit results.

The bitwidth of the inputs and outputs are parameterized. Starting with bit posi-
tion zero, the two inputs are XNOR’d together producing their correlation — 1 if the
input bits are the same, else 0. The next iteration of the for loop specifies another cor-
relation, this time of bit one of message and pattern; this correlation is added with the
previous result. The result of all iterations of the for loop is to specify dataWidth lev-
els of adders. A logic synthesizer can work hard on optimizing that! When simulated,
the initialization to matchCount starts it at zero.

References: Unallowed constructs 2.8, parameters 5.2, generate 5.4.

module synXor8
(output reg [1:8] xout,
input [1:8] xin1, xin2);

reg [1:8] i;

always @(*)
for (i = 1; i <= 8; i = i + 1)

xout[i] = xin1[i] ^ xin2[i];
endmodule

Example 2.14 Using for to Specify an Array
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module DigitalCorrelator
#(parameter dataWidth = 40,

countWidth = 6,)
(output reg [countWidth-1:0] matchCount = 0,
input [dataWidth-1:0] message, pattern);

int i;

always @(*) begin
for (i = 0; i < dataWidth; i = i + 1)

matchCount = matchCount + ~(message[i] ^ pattern[i]);
end

endmodule

Example 2.15 Digital Correlator

2.4 Inferring Sequential Elements
Sequential elements are the latches and flip flops that make up the storage elements of
a register-transfer level system. Although they are a fundamental component of a dig-
ital system, they are difficult to describe to a synthesis tool; the main reason being that
their behavior can be quite intricate. The form of the description of some of these ele-
ments (especially flip flops) are almost prescribed so that the synthesis tool will know
which library element to map the behavior to.

2.4.1 Latch Inferences

Latches are level sensitive storage devices. Typically, their behavior is controlled by a
system wide clock that is connected to a gate input (G). While the gate is asserted
(either high or low), the output of the latch follows the input D — it is a combina-
tional function of D. When the gate is unasserted, the output remembers the last
value of the D input. Sometimes these devices have asynchronous set and/or reset
inputs. As we have seen in section 2.3.2, latches are not explicitly specified. Rather,
they arise by inference from the way in which a description is written. We say that
latches are inferred. One example of an inferred latch was shown in Example 2.7.

Latches are inferred using the always statement as a basis. Within an always state-
ment, we define a control path to be a sequence of operations performed when execut-
ing an always loop. There may be many different control paths in an always block due
to the fact that conditional statements (e.g. case and if) may be used. To produce a
combinational circuit using procedural statements, the output of the combinational
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function must be assigned in each and every one of the different control paths. Thus,
for every conceivable input change, the combinational output will be calculated anew.

To infer a latch, two situations must exist
in the always statement: at least one control
path must exist that does not assign to an out-
put, and the sensitivity list must not contain
any edge-sensitive specifications. The first
gives rise to the fact that the previous output
value needs to be remembered. The second
leads to the use of level-sensitive latches (as
opposed to edge-sensitive flip flops). The
requirement for memory is indicative of a
sequential element where the previous state is
remembered in a latch when the inputs spec-
ify this control path. A logic synthesis tool
will recognize this situation and infer that a latch is needed in the circuit. Assuming
that we are trying to describe a sequential element, leaving the output variable unas-
signed in at least one path will cause a latch to be inferred.

module synLatchReset
(output reg
input g, d, reset);

always @(*)
if (~reset)

else if (g)

endmodule

Example 2.16 Latch With Reset

Example 2.16 shows a latch with
a reset input. Although we have
specified output to be a register,
that alone does not cause a latch to
be inferred. To see how the latch
inference arises, note that in the
control flow of the always state-
ment, not all of the possible input
combinations of g and reset are
specified. The specification says that
if there is a change on either g, d or
reset, the always loop is executed. If
reset is zero, then   is set to zero. If
that is not the case, then if g is one,
then is set to the d input. How-
ever, because there is no specifica-
tion for what happens when reset is
one and g is zero, a latch is needed
to remember the previous value of This is, in fact, the behavior of a level sensitive
latch with reset. The latch behavior could also have been inferred using case or other
statements.

The latch synthesized does not need to be a simple gated latch; other functionality
can be included as shown in Example 2.17. Here an ALU capable of adding and sub-
tracting is synthesized with an output latch. The module’s width is parameterized.

module synALUwithLatchedOutput
#(parameter Width = 4)
(output reg [Width-l:0]
input [Width-l:0] a, b,
input g, addsub);

always @(*) begin
if (g) begin

if (addsub)

else
end

end
endmodule

Example 2.17 ALU With Latched Output
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While gate g is TRUE, the output   will follow the inputs, producing either the sum
or difference on the output. Input addsub selects between the two functions. When g
is not TRUE, the latch holds the last result.

2.4.2 Flip Flop Inferences

Flip flops are edge-triggered storage devices.Typically, theirbehavior is controlled by a
positive or negative edge that occurs on a special input, called the clock. When the
edge event occurs, the input d is remembered and gated to the output They often
have set and/or reset inputs that may change the flip flop state either synchronously or
asynchronously with respect to the clock. At no time is the output a combinational
function of the input d. These flip flops are not explicitly specified. Rather, they are
inferred from the behavior. Since some of their behavior can be rather complex, there
is essentially a template for how to specify it. Indeed some synthesis tools provide spe-
cial compiler directives for specifying the flip flop type.

Example 2.18 shows a synthesizable model
of a flip flop. The main characteristic of a flip
flop description is that the event expression on
the always statement specifies an edge. It is this
edge event that infers a flip flop in the final
design (as opposed to a level sensitive latch).
As we will see, an always block with an edge-
triggered event expression will cause flip flops
to be inferred for all of the registers assigned to
in procedural assignments in the always block.
(Thus, an always block with an edge-triggered
event expression cannot be used to define a fully combinational function.)

module synDFF
(output reg q,
input clock, d);

always @(negedge clock)
q  < =  d ;

endmodule

Example 2.18 A Synthesizable D
Flip Flop

Typically flip flops include reset signals to initialize their state at system start-up.
The means for specifying these signals is very stylized so that the synthesis tool can
determine the behavior of the device to synthesize. Example 2.19 shows a D flip flop
with asynchronous set and reset capabilities. In this example, the reset signal is
asserted low, the set signal is asserted high, and the clock event occurs on the positive
edge of clock.

Examples 2.18 and 2.19 both use non-blocking assignments in their specification.
This specification allows for correct simulation if multiple instances of these modules
are connected together.

Although the Example 2.19 appears straight-forward, the format is quite strict and
semantic meaning is inferred from the order of the statements and the expressions
within the statements. The form of the description must follow these rules:
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module synDFFwithSetReset
(output reg q,
input d, reset, set, clock);

always @(posedge clock, negedge reset, posedge set) begin
if (~reset)

q   < =  0 ;
else if (set)

q <= 1;
else q <= d;

end
endmodule

Example 2.19 A Synthesizable D Flip Flop With Set and Reset

The always statement must specify the edges for each signal. Even though asyn-
chronous reset and set signals are not edge triggered they must be specified this
way. (They are not edge triggered because q will be held at zero as long as reset is
zero — not just when the negative edge occurs.)

The first statement following the always must be an if.

The tests for the set and reset conditions are done first in the always statement
using else-if constructs. The expressions for set and reset cannot be indexed; they
must be one-bit variables. The tests for their value must be simple and must be
done in the order specified in the event expression.

If a negative edge was specified as in reset above, then the test should be:
if (~reset) …

or
if (reset == 1'b0) …

If a positive edge was specified as in set above, then the test should be:
if (set) …

or
if (set == l'b1) …

After all of the set and resets are specified, the final statement specifies the action
that occurs on the clock edge. In the above example, q is loaded with input d.
Thus, “clock” is not a reserved word. Rather, the synthesis tools infer the special
clock input from assignment’s position in the control path; it is the action that
occurs when none of the set or reset actions occur.

All procedural assignments in an always block must either be blocking or non-
blocking assignments. They cannot be mixed within an always block. Non-block-
ing assignments (“<=”) are the assignment operator of choice when specifying the
edge-sensitive behavior of a circuit. The “<=” states that all the transfers in the
whole system that are specified to occur on the edge in the sensitivity list should
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occur concurrently. Although descriptions using the regular “=” will synthesize
properly, they may not simulate properly. Since both simulation and synthesis are
generally of importance, use “<=” for edge sensitive circuits.

The sensitivity list of the always block includes only the edges for the clock, reset
and preset conditions.

These are the only inputs that can cause a state change. For instance, if we are
describing a D flip flop, a change on D will not change the flip flop state. So the D
input is not included in the sensitivity list.

Any register assigned to in the sequential always block will be implemented using
flip flops in the resulting synthesized circuit. Thus you cannot describe purely
combinational logic in the same always block where you describe sequential logic.
You can write a combinational expression, but the result of that expression will be
evaluated at a clock edge and loaded into a register.

References: non-blocking versus blocking assignment 8.4.

2.4.3 Summary

Latches and flip flops are fundamental components of register-transfer level systems.
Their complex behavior requires that a strict format be used in their specification. We
have only covered the basics of their specification. Most synthesis tools provide com-
piler directives to aid in making sure the proper library element is selected to imple-
ment the specified behavior. Read the synthesis tool manual closely.

2.5 Inferring Tri-State Devices
Tri-state devices are combinational logic
circuits that have three output values:
one, zero, and high impedance (z). Hav-
ing special, non-typical capabilities,
these devices must be inferred from the
description. Example 2.20 illustrates a
tri-state inference.

The always statement in this module
follows the form for describing a combi-
national logic function. The special situ-
ation here is that a condition (in this
case, driveEnable) specifies a case where
the output will be high impedance. Synthesis tools infer that this condition will be the
tri-state enable in the final implementation.

module synTriState
(output reg bus,
input in, driveEnable);

always @(*)
if (driveEnable)

bus = in;
else bus = 1'bz;

endmodule

Example 2.20 Inferring a Tri-State
Device
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2.6 Describing Finite State Machines
We have seen how to specify combinational logic and sequential elements to a synthe-
sis tool. In this section we will combine these into the specification of a finite state
machine. The standard form of a finite state machine is shown in Figure 2.1. The
machine has inputs outputs and flip flops holding the current state. The out-
puts can either be a function solely of the current state, in which case this is a Moore
machine. Or, they can be a function of the current state and input, in which case this
is a Mealy machine. The input to the flip flops is the next state; this is a combinational
function of the current state and inputs.

The Verilog description of a finite state machine (FSM) follows this model closely.
The outer box of Figure 2.1 will be the FSM module. The two inner boxes will be two
separate always statements. One will describe the combinational logic functions of the
next state and output. The other will describe the state register.

2.6.1 An Example of a Finite State Machine

An example of an FSM description will be presented using the explicit style of FSM
description. In this style, a case statement is used to specify the actions in each of the
machine’s states and the transitions between states. Consider the state transition dia-
gram shown in Figure 2.2. Six states and their state transitions are shown with one
input and three output bits specified. Example 2.21 is the Verilog description of this
FSM.

The first always statement is a description of the combinational output (out) and
next state (nextState) functions. The input set for these functions contains the input i
and the register currentState. Any change on either of these will cause the always
statement to be re-evaluated. The single statement within the always is a case state-
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ment indicating the actions to be performed in each state. The controlling expression
for the case is the state variable (currentState). Thus, depending on what state the
machine is in, only the specified actions occur. Note that in each case item, the two
combinational functions being computed (out and nextState) are assigned to. In addi-
tion, a default case item is listed representing the remaining unassigned states. The
default sends the machine to state A which is equivalent to a reset. By arbitrary
choice, out is set to don’t care in the unassigned states.

This always statement will result in combinational logic because: the sensitivity list
contains all of the input set, there are no edge specifiers in the sensitivity list, and for
every control path, both of the combinational outputs have been assigned to. This
includes every possible case item. Thus, there will be no inferred latches. Note that a
default case item was used here instead of specifying that this is a full case. This allows
us to specify the reset state as the next state in case there is an error in operation — for
instance, the logic circuit somehow gets into an undefined state. Although we speci-
fied that the output in this situation is a don’t care, we could have made a specification
here too.

The second always statement infers the state register with its reset condition. In
this case, reset is asserted low and will cause the machine to go into state A. If reset is
not asserted, then the normal action of the always will be to load currentState with
the value of nextState, changing the state of the FSM on the positive edge of clock.

Notice that currentState is assigned to in every control path of the always — so
why is a flip flop inferred? The reason is that the edge specifications in the event
expression cause any register assigned to in the block to be implemented using flip
flops. You cannot specify combinational logic in an always block with edge triggers in
the sensitivity list. This is why we need two always blocks to specify an FSM: one for
the state register, and the other for the combinational logic.

The localparam statement specifies the state assignment for the system. Since these
are treated as constants, they cannot be directly overridden by instantiation.

Together, these two always statements work together to implement the functional-
ity of a finite state machine. The output of the second always is the current state of the
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module fsm
(input i, clock, reset,
output reg [2:0] out);

reg [2:0] currentState, nextState;

localparam [2:0] A = 3'b000,// The state labels and their assignments
B = 3'b001,
C = 3'b010,
D = 3'b011,
E = 3'b100,
F = 3'b101;

always @(*) // The combinational logic
case (currentState)

A: begin
nextState = (i == 0) ? A : B;
out = (i == 0) ? 3'b000 : 3'b100;

end
B: begin

nextState = (i == 0) ? A : C;
out = (i == 0) ? 3'b000 : 3'b100;

end
C: begin

nextState = (i == 0) ? A : D;
out = (i== 0) ? 3'b000 : 3'b101;

end
D: begin

nextState = (i == 0) ? D : E;
out = (i== 0) ? 3'b010 : 3'b110;

end
E: begin

nextState = (i == 0) ? D : F;
out = (i == 0) ? 3'b010 : 3'b110;

end
F: begin

nextState = D;
out = (i== 0) ? 3'b000 : 3'b101;

end
default: begin // oops, undefined states. Go to state A

nextState = A;
out = (i == 0) ? 3'bxxx : 3'bxxx;

end
endcase
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always @(posedge clock or negedge reset) //The state register
if (~reset)

currentState <= A;// the reset state
else

currentState <= nextState;
endmodule

Example 2.21 A Simple Finite State Machine

FSM and it is in the input set of the first always statement. The first always statement
is a description of combinational logic that produces the output and the next state
functions.

References: parameters 5.2; non-blocking assignment 8.4; implicit style 2.6.2.

2.6.2 An Alternate Approach to FSM Specification

The above explicit approach for specifying FSMs is quite general, allowing for arbi-
trary state machines to be specified. If an FSM is a single loop without any condi-
tional next states, an implicit style of specification may be used.

The basic form of an implicit
FSM specification is illustrated in
Example 2.22. The single always
statement lists several clock events,
all based on the same edge (positive
or negative). Since the always speci-
fies a sequential loop, each state is
executed in order and the loop exe-
cutes continuously. Thus, there is no
next state function to be specified.

In this particular example, a flow
of data is described. Each state com-
putes an output (temp and dataOut)
that is used in later states. The output
of the final state (dataOut) is the
output of the FSM. Thus, a new
result is produced every third clock
period in dataOut.

module synImplicit
(input [7:0] dataIn, c1, c2,
input clock,
output reg [7:0] dataOut);

reg [7:0] temp;

always begin
@ (posedge clock)

temp = dataIn + c1;
@ (posedge clock)

temp = temp & c2;
@ (posedge clock)

dataOut = temp - c1;
end

endmodule

Example 2.22 An Implicit FSM
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Another example of a flow of
data is a pipeline, illustrated in
Example 2.23 using a slightly
different calculation. Here a
result is produced every clock
period in dataOut. In this case,
three FSMs are specified; one for
each stage of the pipe. At every
clock event, each stage computes
a new output (stageOne, stag-
eTwo, and dataOut). Since these
variables are used on the left-
hand side of a procedural state-
ment in an always block with an
edge specifier, there are imple-
mented with registers. The non-
blocking assignment (<=) must
be used here so that the simula-
tion results will be correct.
Figure 2.3 shows a simplified
form of the implementation of
module synPipe.

module synPipe
(input [7:0] dataIn, c1, c2,
input clock,
output reg [7:0] dataOut);

reg [7:0] stageOne;
reg [7:0] stageTwo;

always @ (posedge clock)
stageOne <= dataIn + c1;

always @ (posedge clock)
stageTwo <= stageOne & c2;

always @ (posedge clock)
dataOut <= stageTwo + stageOne;

endmodule

Example 2.23 A Pipeline

References: explicit style 2.6.1
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2.7 Finite State Machine and Datapath
We’ve used the language to specify combinational logic and finite state machines.
Now we’ll move up to specifying register transfer level systems. We’ll use a method of
specification known as finite state machine and datapath, or FSM-D. Our system will
be made up of two parts: a datapath that can do computations and store results in reg-
isters, and a finite state machine that will control the datapath.

2.7.1 A Simple Computation

We begin with a simple computation and show how to specify the logic hardware
using Verilog. The computation is shown below in a C-like syntax:

for (x = 0, i = 0; i <= 10; i = i + 1)
x = x + y;

if (x < 0)
y = 0;

else x = 0;

The computation starts off by clearing x and i to 0. Then, while i is less than or equal
to 10, x is assigned the sum of x and y, and i is incremented. When the loop is exited,
if x is less than zero, y is assigned the value 0. Otherwise, x is assigned the value 0.
Although simple, this example will illustrate building larger systems.

We’ll assume that these are to be 8-bit computations and thus all registers in the
system will be 8-bit.

2.7.2 A Datapath For Our System

There are many ways to implement this computation in hardware and we will focus
on only one of them. A datapath for this system must have registers for x, i, and y. It
needs to be able to increment i, add x and y, and clear i, x, and y. It also needs to be
able to compare i with 10 and x with 0. Figure 2.4 illustrates a datapath that could
execute these register transfers.

The name in each box in the figure suggests its functionality. Names with overbars
are control signals that are asserted low. Looking at the block labeled register i, we see
that its output (coming from the bottom) is connected back to the input of an adder
whose other input is connected to 1. The output of that adder (coming from the bot-
tom) is connected to the input of register i. Given that the register stores a value and
the adder is a combinational circuit, the input to register i  will always be one greater
than the current value of register i. The register also has two control inputs: iLoad
and iClear. When one of these inputs is asserted, the specified function will occur at

…

…
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the next clock edge. If we assert iLoad, then after the next clock edge register i will
load and store its input, incrementing i. Alternately, iClear will load a zero into regis-
ter i. The compare modules are also combinational and produce the Boolean result
indicated.

The register transfers shown in our computation are x = 0, i = 0, y = 0, i = i + 1, and
x = x + y. From the above description of how the datapath works, we can see that all of
the register transfers in our computation can be executed on this datapath. Further, all
of the conditional values needed for branching in the FSM are generated in the data-
path.

The FSM shown on the left sequences through a series of states to cause the com-
putation to occur. The FSM’s outputs are yLoad, yClear, xLoad, xClear, iLoad, and
iClear. Its inputs are x<0 and i<=10. A master clock drives the state registers in the
FSM as well as the datapath registers. A reset signal is also connected.
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2.7.3 Details of the Functional Datapath Modules

The datapath is made up
of three basic modules:
registers, adders, and
comparators. The register
module definition is
shown in Example 2.24.
Looking first at the
always block, we see that
it is very similar to those
we’ve seen in sequential
circuit descriptions so far.
The register is positive
edge triggered but does
not have an asynchro-
nous reset. To go along
with the register modules
defined for our datapath, it has two control points: clear and load. These control
points, when asserted, cause the register to perform the specified function. If input
clear is asserted, it will load 0 at the clock edge. If load is asserted, it will load input in
into register out at the clock edge. If both are asserted, then the register will perform
the clear function.

This example introduces a new statement, the parameter statement. The parameter
defines a name to have a constant value; in this case Width has the value 8. This name
is known within the module and can be used in any of the statements. Here we see it
being used to define the default value for the left-most bit number in the vector defin-
itions of the output and register out and the input in. Given that Width is defined to
be 8, the left-most bit is numbered 7 (i.e., 8-1) and out and in both have a bitwidth of
eight (i.e., bits 7 through 0). What is interesting about a parameter is that the default
value can be overridden at instantiation time; however it cannot be changed during
the simulation. Thus, this module definition can be used to instantiate registers of
different bitwidth. We will see how shortly.

module register
#(parameter Width = 8)
(output reg [Width-1:0] out,
input [Width-1:0] in,
input clear, load, clock);

always @(posedge clock)
if (~clear)

out <= 0;
else if  (~load)

out <= in;
endmodule

Example 2.24 Register Module

The adder module is shown in
Example 2.25. It is parameterized to have
a default bitwidth of eight. The assign
statement in this example shows a means
of generating our “adder” function. The
output sum is assigned the arithmetic
sum of inputs a and b using the “+” opera-
tor. The assign statement is discussed fur-
ther in Chapter 6.

module adder
#(parameter Width = 8)
(input [Width-1:0] a,b,
output [Width-1:0] sum);

assign sum = a + b;
endmodule

Example 2.25 The Adder Module
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The compareLT and com-
pare modules are shown in
Example 2.26, again using the
continuous assign statement. In
the compareLT module, a is
compared to b. If a is less than b,
then out is set to TRUE. Other-
wise it is set to FALSE. The com-
pare module for comparing
i with 10 in our computation is
similar to this module except
with the “<=” operator instead of
the “<“ operator. The width of
these modules are also parame-
terized. Don’t be confused by the
second assign statement, namely:

assign out = a <= b;

module compareLT // compares a < b
#(parameter Width = 8)
(input [Width-1:0] a, b,
output out);

assign out = a < b;
endmodule

module compare // compares a <= b
#(parameter Width = 8)
(input [Width-1:0] a, b,
output out);

assign out = a <= b;
endmodule

Example 2.26 The CompareLT and
Compare Modules

This does not assign b to a with a
non-blocking assignment, and then assign a to out with a blocking assignment. Only
one assignment is allowed in a statement. Thus by their position in the statement, we
know that the first is an assignment and the second is a less than or equal comparison.

The adder, compare and compareLT modules could have written using the
combinational version of the always block. As used in these examples, the two forms
are equivalent. Typically, the continuous assign approach is used when a combina-
tional function can be described in a simple statement. More complex combinational
functions, including ones with don’t care specifications, are typically easier to describe
with a combinational always statement.

References: continuous assign 6.3

2.7.4 Wiring the Datapath Together

Now we build a module to instantiate all of the necessary FSM and datapath modules
and wire them together. This module, shown in Example 2.27, begins by declaring
the 8-bit wires needed to connect the datapath modules together, followed by the 1-
bit wires to connect the control lines to the FSM. Following the wire definitions, the
module instantiations specify the interconnection shown in Figure 2.4.

Note that this module also defines a Width parameter, uses it in the wire defini-
tions, and also in the module instantiations. Consider the module instantiation for the
register I from Example 2.27.
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module sillyComputation
#(parameter Width = 8)
(input ck, reset,
input [Width-1:0] yln,
output [Width-1:0] y,x);
wire [Width-1:0] i, addiOut, addxOut;
wire yLoad, yClear, xLoad, xClear, iLoad, iClear;

register #(Width) I (i, addiOut, iClear, iLoad, ck),
Y (y, yIn, yClear, yLoad, ck),
X  (x, addxOut, xClear, xLoad, ck);

adder #(Width)   addI    (addiOut, 'b1, i),
addX (addxOut, y, x);

compareLT #(Width) cmpX (x, 'b0, xLT0);
compare #(Width)        cmpI (i, 'd10, );

fsm  ctl
(xLT0, yLoad, yClear, xLoad, xClear, iLoad, iClear, ck, reset);

endmodule

Example 2.27 Combining the FSM and Datapath

register #(Width) I (i, addiOut, iClear, iLoad, ck),

What is new here is the second item on the line, “#( Width)”. This value is substituted
in the module instantiation for its parameter. Thus, by changing the parameter Width
in module sillyComputation to, say 23, then all of the module instantiations for the
datapath would be 23 bits wide. Parameterizing modules allows us to reuse a generic
module definition in more places, making a description easier to write. If #(Width)
had not been specified in the module instantiation statement, then the default value of
8, specified in module register, would be used. The example also illustrates the use of
unsized constants. The constant 1 specification (given as 'b1 in the port list of adder
instance addI) specifies that regardless of the parameterized Width of the module,
the value 1 will be input to the adder. That is the least significant bit will be 1 with as
many 0s padded to the left as needed to fill out the parameterized width. This is also
grue of unsized constants 'b0 and 'd10 in the compare module instantiations.
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2.7.5 Specifying the FSM

Now that the datapath has been specified, a finite state machine is needed to evoke
the register transfers in the order and under the conditions specified by the original
computation. We first present a state transition diagram for this system and then
describe the Verilog fsm module to implement it.

The state transition diagram is shown in Figure 2.5 along with the specification for
the computation. The states marked “...” represent the computation before and after
the portion of interest to us. Each state “bubble” indicates the FSM outputs that are
to be asserted during that state; all others will be unasserted. The arrows indicate the
next state; a conditional expression beside an arrow indicates the condition in which
that state transition is taken. The diagram is shown as a Moore machine, where the
outputs are a function only of the current state. Finally, the states are labeled A
through F for discussion purposes.

Following through the computation and the state transition diagram, we see that
the first action is to clear both the x and i registers in state A. This means that while
the machine is in state A, xClear and iClear are asserted (low). Note though that the
registers i and x will not become zero until after the positive clock edge and we’re in
the next state (B). State B then asserts the load signals for x and i. The datapath in
Figure 2.4 shows us what values are actually being loaded: x + y and i + 1 respectively.
Thus, state B executes both the loop body and the loop update. From state B the sys-
tem goes to state C where there is no FSM output asserted. However, from state C
there are three possible next states depending on whether we are staying in the loop
(going to state B), exiting the loop and going to the then part of the conditional (state
D), or exiting the loop and going to the else part of the conditional (state E). The
next state after D or E is state F, the rest of the computation.
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It is useful to understand why state C is needed in this implementation of the sys-
tem. After all, couldn’t the conditional transitions from state C have come from state
B where x and i are loaded? The answer is no. The timing diagram in Figure 2.6 illus-
trates the transitions between states A, B, and C. During the time when the system is
in state B, the asserted outputs of the finite state machine are xLoad and iLoad,
meaning that the x and i registers are enabled to load from their inputs. But they will
not be loaded until the next clock edge, the same clock edge that will transit the finite
state machine into state C. Thus the values of i, on which the end of loop condition is
based, and x, on which the if-then-else condition is based, are not available for com-
parison until the system is in state C. In the timing diagram, we see that since i is less
than or equal to 10, the next state after C is B.

It is interesting to note that in this implementation of the system, the exit condi-
tion of the for loop is not checked before entering the loop. However, given that we
just cleared i before entering the loop, it is not necessary to check that is less than or
equal to 10. Further, with a different datapath, state C might not be necessary. For
instance, the comparisons with i and x could be based on the input value to these reg-
isters, thus comparing with the future value. Or the constants with which the compar-
isons are made could be changed. Of course, these are all at the discretion of the
designer.
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Now consider the Verilog model of the finite state machine for this system shown
in Example 2.28. The machine’s inputs are the two conditions, x < 0 and i <= 10.
Internal to the fsm module, they are called LT and respectively. Module fsm
also has a reset input and a clock (ck) input. The module outputs are the control
points on the registers (yLoad, yClear, xLoad, xClear, iLoad, iClear). Like our previ-
ous fsm examples, there are two always blocks, one for the sequential state change and
the other to implement the next state and output combinational logic. Registers are
declared for all of the combinational outputs.

Our state machine will only implement the states shown in the state transition dia-
gram, even though there would be many more states in the rest of the computation.
Thus, the width of the state register (cState) was chosen to be three bits. Further, the
reset state is shown to be state 0 although in the full system it would be some other
state. A very simple state assignment has been chosen, with state A encoded by 0, B
encoded by 1, and so on.

The first always block is very similar to our previous state machine examples. If
reset is asserted, then the reset state is entered. Otherwise, the combinational value
nState is loaded into cState at the positive clock edge.

The second always block implements the next state and output combinational
logic. The inputs to this combinational logic are the current state (cState) and fsm
inputs (LT and The body of the always block is organized around the value of
cState. A case statement, essentially a multiway branch, is used to specify what is to
happen given each possible value of cState. The value of the expression in parenthe-
ses, in this case cState, is compared to the values listed on each line. The line with the
matching value is executed.

If the current state changes to state A, then the value of cState is 0 given our
encoding. Thus, when this change occurs, the always block will execute, and the state-
ment on the right side of the 3'b000: will execute. This statement specifies that all of
the outputs are unasserted (1) except iClear and xClear, and the next state is 3'b001
(which is state B). If the current state is B, then the second case item (3'b001) is exe-
cuted, asserting iLoad and xLoad, and unasserting all of the other outputs. The next
state from state B is C, encoded as 3'b010. State C shows a more complex next state
calculation; the three if statements specify the possible next states from state C and
the conditions when each would be selected.

The last case item specifies the defaultsituation. This is the statement that is exe-
cuted if none of the other items match the value of cState. For simulation purposes,
you might want to have a statement to print out an error warning that you’ve
reached an illegal state. The prints a message on the screen during simula-
tion, acting much like a print statement in a programming language. This one dis-
plays the message “Oops, unknown state: %b” with the binary representation of cState
substituted for %b.
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To make this always block a combinational synthesizable function, the default is
required. Consider what happens if we didn’t have the default statement and the value
of cState was something other than one of the five values specified. In this situation,
the case statement would execute, but none of the specified actions would be exe-
cuted. And thus, the outputs would not be assigned to. This breaks the combinational
synthesis rule that states that every possible path through the always block must
assign to every combinational output. Thus, although it is optional to have the default
case for debugging a description through simulation, the default is required for this
always block to synthesize to a combinational circuit. Of course a default is not
required for synthesis if all known value cases have been specified or cState was
assigned a value before the case statement.

Consider now how the whole FSM-Datapath system works together. Assume that
the current state is state C and the values of i and x are 1 and y respectively, as shown
in the timing diagram of Figure 2.6. Assume further that the clock edge that caused
the system to enter state C has just happened and cState has been loaded with value
3'b010 (the encoding for state C). Not only has cState changed, but registers x and i
were also loaded as a result of coming from state B.

In our description, several always blocks are were waiting for changes to cState, x,
and i. These include the fsm’s combinational always block, the adders, and the com-
pare modules. Because of the change to cState, x, and i, these always blocks are now
enabled to execute. The simulator will execute them, in arbitrary order. Indeed, the
simulator may execute some of them several times. (Consider the situation where the
fsm’s combinational always block executes first. Then after the compare modules exe-
cute, it will have to execute again.) Eventually, new values will be generated for the
outputs of the comparators. Changes in LT and in the fsm module will cause its
combinational always block to execute, generating a value for nState. At the next pos-
itive clock edge, this value will be loaded into cState and another state will be entered.

References: case 3.4; number representation B.3

2.8 Summary on Logic Synthesis
We have seen that descriptions used for logic synthesis are very stylized and that some
of the constructs are overloaded with semantic meaning for synthesis. In addition,
there are several constructs that are not allowed in a synthesizable description.
Because these can vary by vendor and version of the tool, we chose not to include a
table of such constructs. Consult the user manual for the synthesis tool you are using.

Table 2.1 summarizes some of the basic rules of using procedural statements to
describe combinational logic and how to infer sequential elements in a description.
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module fsm
(input LT, ck, reset,
output reg yLoad, yClear, xLoad, xClear, iLoad, iClear);

reg [2:0] cState, nState;

always @(posedge ck, negedge reset)
if (~reset)

cState <= 0;
else cState <= nState;

always @(cState, LT,
case (cState)

3'b00: begin //stateA
yLoad = 1; yClear = 1; xLoad = 1; xClear = 0;
iLoad = 1; iClear = 0; nState = 3'b001;

end
3'b001: begin // state B

yLoad = 1; yClear = 1; xLoad = 0; xClear = 1;
iLoad = 0; iClear = 1; nState = 3'b010;

end
3'b010: begin //state C

yLoad = 1; yClear = 1; xLoad = 1; xClear = 1;
iLoad = 1; iClear = 1;
if nState = 3'b001;
if(~   & LT) nState = 3'b011;
if (~ & ~LT) nState = 3'b100;

end
3'b011: begin //state D

yLoad = 1; yClear = 0; xLoad = 1; xClear = 1;
iLoad = 1; iClear = 1; nState = 3'b101;

end
3'b100: begin //state E

yLoad = 1; yClear = 1; xLoad = 1; xClear = 0;
iLoad = 1; iClear = 1; nState = 3'b101;

end
default: begin // required to satisfy combinational synthesis rules

yLoad = 1; yClear = 1; xLoad = 1; xClear = 1;
iLoad = 1; iClear = 1; nState = 3'b000;

("Oops, unknown state: %b", cState);
end

endcase
endmodule

Example 2.28 FSM For the Datapath
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2.9 Exercises
2.1

2.2

2.3

2.4

2.5

2.6

2.7

In section 2.2 on page 37, we state that a synthesis tool is capable, and possibly
constrained, to implement the functionality using different gate primitives.
Explain why it might be “constrained” to produce an alternate implementation.

Alter the description of Example 2.7 so that there is no longer an inferred latch.
When a is not one, b and c should be OR-d together to produce the output.

Alter the description of Example 2.16. Use a case statement to infer the latch.

Why can’t while and forever loops be used to specify combinational hardware?

Rewrite Example 2.21 as a Moore machine. An extra state will have to be
added.

Rewrite Example 2.21 using a one-hot state encoding. Change the description
to be fully parameterized so that any state encoding may be used.

Write a description for the FSM shown in Figure 2.7 with inputs Ain, Bin,
Cin, clock, and reset, and output Y.

A. A single always block

B. Two always blocks; one for the combinational logic and the other for the
sequential.
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C. Oops, this circuit is too slow. We can’t have three gate delays between the flip
flop outputs and inputs; rather only two. Change part B so that Y is a combina-
tional output, i.e. Move the gate generating d2 to the other side of the flip flops.

D. Simulate all of the above to show that they are all functionally equivalent.

2.8 Design, implement, and simulate a 4-bit two’s complement adder/subtractor
circuit to compute (A+B), (A-B), sat(A+B), or sat(A-B) when a two-bit add_sel
bit is 00, 01, 10, or 11, respectively. sat(x) is saturating addition. Saturating
arithmetic is analogous to other kinds of saturation — numbers can only get so
big (or so small) and no bigger (or smaller), but they don’t wrap, unlike in mod-
ulo arithmetic.

For example, for a three-bit saturating adder, 010 + 001 = 011 (2+1=3, OK,
fine), but 011 + 001 = 011 (3+1=3, huh?), i.e, instead of  “wrapping” to obtain a
negative result, let’s just represent the result as close as we can, given our limited
number of bits.

Similarly for negative results, 111+101 = 100 (-1+(-3) = -4), but 100 + 111 = 100
(-4 + (-1) = -4, i.e, the smallest, or most negative representation in 3-bit, two’s
complement).

Assume complemented inputs for B are not available. Write your description
entirely in a synthesizable procedural Verilog style. Simulate and show enough
test cases to verify your design (that does not mean all possible input cases this
time!).
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2.9 Consider the state
transition diagram
shown to the right.
The output of the
FSM is three bits,
but states A and C
only use two bits for
the output. For each
of the following
encoding styles,
(binary encoding,
output encoding, one-
hot encoding:):

A. Show the state assignment

B. Derive boolean equations for the next state logic and output logic in mini-
mized SOP. Show all your work and reasoning for full credit.

C. Design (draw) the circuit using positive edge-triggered D flip-flops with
negative-logic preset and reset signals. Show the reset logic of the FSM.

D. Write a synthesizable Verilog simulation of your design. Write a test module
to test your module with input sequence (read left to right) 11010001100. Use
decimal format for the FSM outputs. Hand in the source code and output.

2.10 For the Mealy
finite state
machine shown to
the right,

A. Write a proce-
dural Verilog
implementation
for your mealy
machine.

B. Simulate and
test your circuit
for an input
sequence (read left
to right) of 100101101111. Display the output sequence of your machine in
decimal (i.e., 0,1,2,3) and relate it back to your input sequence. Your simulation
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2.11

results must show that your machine behaves like a Mealy machine. In a Mealy,
if you change inputs between block events, the output should follow, no matter
how many times you change the inputs. Your simulation results must show this!

Design a Mealy finite state machine with one input, X, and one output,Y. With
this state machine, you get an output of Y=1 every time the input sequence has
exactly two or exactly four 1’s in a row. Y=0 otherwise. Make sure your machine
does this:

Input: 0110111011110111110
Output:0001000000001000000

Notice how you can’t tell if you get exactly two or exactly four 1’s until you see the
next input. It sort of makes the timing look like a Moore machine, but it isn’t.
It’s a Mealy. And you must design the machine as a Mealy! Write a Verilog
implementation for your mealy machine. Simulate and test your circuit using
the input sequence given above.
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3 Behavioral
Modeling

We now begin a more in-depth discussion of the constructs used to model the behav-
ior of digital systems. These have been split into two groups. The first are statements
that are, for the most part, similar to those found in programming languages: if-then-
else, loops, etc. In the next chapter we take up the statements that are oriented toward
modeling the concurrent nature of digital hardware.

3.1 Process Model
The basic essence of a behavioral model is the process. A process can be thought of as
an independent thread of control, which may be quite simple, involving only one
repeated action, or very complex. It might be implemented as a sequential state
machine, as an asynchronous clearing of a register, or as a combinational circuit. The
point is that we conceive the behavior of digital systems as a set of these independent,
but communicating, processes. Their actual implementation is left to the context of
the description (what level of abstraction we are dealing with) and the time and area
constraints of the implementation.
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The basic Verilog statement for describing a process is the always construct:

always_construct
always statement

The always continuously repeats its statement, never exiting or stopping. A behavioral
model may contain one or more always statements. If a module contains none, it is
purely a specification of hierarchical structure — instantiated submodules and their
interconnections.

The initial construct is similar to the always statement except that it is executed
only once.

initial_construct
initial statement

The initial provides a means of initiating input waveforms and initializing simulation
variables before the actual description begins simulation. Once the statements in the
initial are executed it does not repeat; rather it becomes inactive.

There are many types of procedural statements in the language. Some, such as “if”,
“while”, and procedural assignments have already been seen in earlier examples. These
and most of the rest of the statement types will be covered in the next two chapters.

When modeling a system using the statements in an always or initial block, we
must be cognizant of the execution model of these statements. The statements are
executed in the order specified in the description. Assignments made using the block-
ing assignment (“=”) take effect immediately and the value written to the left-hand side
of the = is available for use in the next statement. When an event statement (“@”), a
delay statement (“#”), or, as we’ll see later, a wait statement where the expression is
FALSE is executed, the execution of the initial or always statement is suspended until
(respectively): the event occurs, the number of time units indicated in the delay has
passed, or the wait statement expression becomes TRUE. At that time, execution of
statements in the initial or always statement continues.

Further, even though the statements in an always or initial block are executed in
order, it is possible that statements from other always or initial blocks will be inter-
leaved with them. When an always or initial block is waiting to continue (due to @, #,
or wait), other always or initial blocks, gate primitives, and continuous assign state-
ments can execute. Thus, concurrent/overlapping behavior is modeled.

Unlike gate primitives and continuous assign statements, behavioral models do not
execute because one of their inputs change. Rather, they only execute when one of the
three conditions above is being waited for, and then occurs. Behavioral models follow
the procedural timing model as discussed in Section 8.1.
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At the start of the simulation, all of the initial and always statements are allowed to
execute until they are suspended due to an event, delay, or wait. At this point, register
values set in an initial or always may activate a gate input, or time may advance to the
next event that will probably allow one or more of the suspended processes to become
active again. When there are multiple processes that can execute at any particular
time, the order in which they begin executing is arbitrary. Care must be taken when
writing them to insure that register and wire values are assigned in an appropriate
order.

In summary, the initial and always statements are the basic constructs for describ-
ing concurrency. When using these statements, we should be thinking conceptually of
concurrently active processes that will interact with each other. Although it is possible
to mix the description of behavior between the always and initial statement, it is more
appropriate to describe the behavior of the hardware in the always, and describe ini-
tialization for the simulation in the initial.

References: contrast to continuous assign 6.3; contrast to gate level modeling 6.1; interleaving 8.3; proce-
dural timing model 8.1

3.2 If-Then-Else
Conditional statements are used in a sequential behavior description to alter the flow
of control. The if statement and its variations are common examples of conditional
statements. Example 3.1 is a behavioral model of a divide module that shows several
new features, including two versions of the if statement, with and without an else
clause.

The divide module determines the output quotient from the two inputs, dvInput
and ddInput, using an iterative subtract and shift algorithm. First, four text macros
are defined. The ̀ define compiler directive provides a macro capability by defining a
name and gives a constant textual value to it. The name may then be used in the
description; on compilation, the text value will be substituted. The general form is:

`define A alpha

Then, anytime the description is compiled, alpha will be substituted for all occur-
rences of “ `A ”. Note that the left single quote (“ ` ”) is required at all uses of the
macro. Example 3.1 illustrates a means of entering constant numeric data into the
description using the more mnemonic macro.
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`defineDvLen 16
`define DdLen 32
`define 16
`defineHiDdMin 16

module divide
(input [`DdLen-1:0] ddInput, dvInput,
output reg signed quotient,
input go,
output reg done);

reg signed [`DdLen-1:0] dividend;
reg signed [`DvLen-1:0] divisor;
reg negDivisor, negDividend;

always begin
done = 0;
wait (go);
divisor = dvInput;
dividend = ddInput;
quotient = 0;
if (divisor) begin

negDivisor = divisor[`DvLen-1];
if (negDivisor) divisor = - divisor;
negDividend = dividend[`DdLen-1];
if (negDividend) dividend = - dividend;
repeat (`DvLen) begin

quotient = quotient << 1;
dividend = dividend << 1;
dividend[`DdLen-1:`HiDdMin] =

dividend[`DdLen-1:`HiDdMin] -  divisor;
if (! dividend [`DdLen-1]) quotient = quotient + 1;
else

dividend[`DdLen-1:`HiDdMin] =
dividend[`DdLen-1:`HiDdMin] + divisor;

end
if (negDivisor != negDividend) quotient = - quotient;

end
done = 1;
wait (~go);

end
endmodule

Example 3.1 A Divide Module
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The divide starts by zeroing the done output and waiting for go to be TRUE. These
two signals are the handshake signals that allow the divide module to communicate
and synchronize with other modules. done indicates when the divide module has
completed a division and stored the result in the quotient. Since at the beginning no
quotient has been calculated, done is set to FALSE (or zero). Then we wait for the go
input to be one (or TRUE) signifying that the dvInput and ddInput  inputs are valid.
When go becomes TRUE, dvInput and ddInput are copied into divisor and dividend
respectively.

The wait statement, waits for an external condition to become TRUE. When it is
executed, execution continues if the condition in the parentheses is TRUE. However, if
the condition is FALSE, the always block stops executing and waits for the condition to
become TRUE. At that point, execution continues with the statement after the wait.
The wait statement is discussed further in section 4.3.

The first example of an if tests whether the divisor is zero or not with the state-
ment:

if (divisor)
begin

// … statements
end

This shows the basic form of the if statement. The if is followed by a parenthesized
expression; a zero expression evaluates to FALSE and any value other than zero evalu-
ates to TRUE. Comparison with an unknown (x) or high impedance (z) may produce a
result that is either unknown or high impedance; these are interpreted as FALSE. In
this case, we are testing the divisor.  If it is not zero, then we follow the normal divide
algorithm. The begin-end block following the if statement allows all of the encom-
passed statements to be considered as part of the then statement of the if.

More formally:

statement
conditional _statement

|

conditional_statement
if (expression) statement_or_null [ else statement_or_null ]

Continuing with the divide algorithm, the absolute value of each of the inputs is
determined and their original signs are saved. More specifically, the statements
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negDivisor = divisor[`DvLen-1];
if (negDivisor)

divisor = - divisor;

first assign bit DvLen-1 (i.e., bit 15) of the divisor to negDivisor. If this bit is a one,
indicating that the value was negative in the two’s complement number representa-
tion, then the then part will be executed and divisor will be negated, making it posi-
tive. It should be noted that since there is no begin-end block with this if, the then
statement is the first statement (up to the semicolon) following the if.

This statement also illustrates a bit-select. A bit-select is used to specify that only
one of the bits of a vector are to be used in the operation. A range of bits may also be
specified by separating the bit numbers specifying the range with a colon. This is
called a part-select. Also, a starting bit number and a width may be specified. The +
shown below indicates the bit numbers increase from the starting but number; the -
indicates the bit numbers decrease. More formally, a bit- or part-select occurs either
as an expression or as part of an expression as shown below:

primary
hierarchical_identifier [ range_expression ]

range_expression
expression
msb _constant_expression: 1sb_constant_expression
base_expression +: width_constant_expession
base_expression -: width_constant_expession

In the formal syntax, a primary is one definition of an expression; shown here is the
bit- or part-select specification. The first definition of the range_expression is a bit-
select, and the second is the part-select. The last two specify a starting bit and a
width. The width is either counted up (+) or down (-) from the base expression. thus

vector[23- :8]

is vector[23:16]. The indices of the bit- and part-select may be positive or negative
numbers.

After the initialization to determine the final arithmetic sign, the repeat statement
executes the statements in the begin-end block 16 times. Each time, the quotient  and
dividend are shifted left one position, as described by the < < operator, and then the
divisor is subtracted from the top part of the dividend.  If the result of this subtract is
positive, one is added to the quotient.  However, if the result is negative (the top most
bit is a one), the else part of the if conditional statement is executed, adding the divi-
sor back into the top part of the dividend.
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Following this more closely, if the sign bit is 1, then the result is negative. This
nonzero value would be interpreted as TRUE by the if statement. However, the ! oper-
ator complements the result and the if expression evaluates to FALSE. Thus, if the div-
idend is negative, the else part is executed.

Finally, if the signs of the original operands are different, then the quotient is
negated. After the quotient  output is calculated, the done bit is set to one signalling
another module that the output may be read.

Before continuing on, this example illustrates some other facets of the language
that should be discussed.

Vector nets and registers all obey the laws of arithmetic modulo where n is the
number of bits in the vector. In effect, the language treats the numbers as unsigned
quantities. If any of these values were printed by a or statement,
they would be interpreted and printed as unsigned values. However, that does not
stop us from writing descriptions of hardware that use the two’s complement number

representation — the laws of arithmetic modulo still hold. Indeed, the unary minus
provided in the language performs the correct operation. In this example, we have
declared the registers dividend, divisor,  and quotient  to be signed. They will print
correctly.

The relational operators typically used in conditional expressions are listed in
Appendix B. These include > (greater than), >= (greater than or equal), = = (equal),
and != (not equal). In the case where unknown or high impedance values are present,
these comparisons may evaluate to a quantity which contains unknown or high
impedance values. Such values are considered to be FALSE by the simulator. However,
the case equality operator (= = =) and inequality operator (!= =) can be used to specify
that individual unknown or high impedance bits are to take part in the comparison.
That is, a 4-valued logic comparison is done where the value of each bit being com-
pared, including the unknowns and high impedances, must be equal. Thus, if the
statement

if(4'b110z= = =4'b110z)
then_statement;

was executed, the then part of the if  would be taken. However, if the statement

if(4'b110z==4'b110z)
then_statement

was executed, the then part of the if would not be taken.
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Conditional expressions may be more complex than the single expression examples
given so far. Logical expressions may be connected with the && (AND), || (OR), and !
(NOT) logical operators as shown in the following example:

i f ( (a>b)&&((c>=d) | | (e==f) ) )
then_statement

In this example, the then statement will execute only if a is greater than b, and either
(or both) c is greater than or equal to d, or e equals f.

References: bit-select, part-select E.1; F.1; F.2; Verilog operators C

3.2.1 Where Does The ELSE Belong?

Example 3.1 also shows the use of an else clause with an if statement. The else clause
is optional, and if it exists, it is paired with the nearest, unfinished if statement. For-
mally speaking:

conditional_statement
if (expression) statement_or_null [ else statement_or_null ]

In the example we find:

if (! dividend [`DdLen-1])
quotient = quotient + 1;

else
dividend[`DdLen-1:`HiDdMin] =

dividend[`DdLen-1:`HiDdMin] + divisor;

In this case, if the dividend is positive after subtracting the divisor from it, then the
low order bit of the quotient is set to one. Otherwise, we add the divisor back into the
top part of the dividend.

As in most procedural languages, care must be taken in specifying the else clause
where multiple if statements are involved. Consider the following situation.

if (expressionA)
if (expressionB)

a = a + b;
else

q = r + s;

In this example, we have nested if statements and a single else. In general, the lan-
guage attaches the else to the nearest if statement. In the above situation, if expres-
sionA and expressionB  are both TRUE, then a is assigned a new value. If expressionA
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is TRUE and expressionB is FALSE, then q is assigned a new value. That is, the else is
paired with the second if.

Consider an alternate description giving different results.

if (expressionA)
begin

if (expressionB)
a = a + b;

end
else

q = r + s;

In this example, the begin-end block in the first if statement causes the else to be
paired with the first if rather than the second. When in doubt about where the else
will be attached, use begin-end pairs to make it clear.

3.2.2 The Conditional Operator

The conditional operator ( ?:) can be used in place of the if statement when one of
two values is to be selected for assignment. For instance, the statement determining
the final sign of the quotient  in Example 3.1 could have been written with the same
result as

quotient = (negDivisor != negDividend) ? -quotient: quotient;.

This operator works as follows: first the conditional expression in the parentheses is
evaluated. If it isTRUE (or nonzero), then the value of the right-hand side of the state-
ment is found immediately after the question mark. If it is FALSE, the value immedi-
ately after the colon is used. The result of this statement is that one of the two values
gets assigned to quotient. In this case, if it is TRUE that the signs are not equal, then
quotient is loaded with its negative. Otherwise, quotient remains unchanged. As in
Example 3.1, we are describing hardware that will use the two’s complement number
system, and we use the fact that a Verilog’s unary minus operation implements a two’s
complement negate.

The general form of the conditional operator is:

conditional_expression
expression ? expression : expression

|

If the first expression is TRUE, then the value of the operator is the second expression.
Otherwise the value is the third expression. The operator is right-associative.
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There is a major distinction between if-then-else and the conditional operator. As
an operator, the conditional operator may appear in an expression that is either part of
a procedural or continuous assignment statement. The if-then-else construct is a
statement that may appear only in the body of an initial or always statement, or in a
task or function. Thus whereas if-then-else can only be used in behavioral modeling,
the conditional operator can be used both in behavioral and gate level structural mod-
eling.

References: if-then-else 3.2; comparison with multiway branch 3.4

3.3 Loops
Iterative sequential behavior is described with looping statements. Four different
statements are provided, including the repeat, for, while, and forever loops.

3.3.1 Four Basic Loop Statements

An excerpt from Example 3.1 illustrated in Example 3.2 shows the use of the repeat
loop. In this form of loop, only a loop count is given in parentheses after the keyword

repeat (`DvLen) begin
quotient = quotient << 1;
dividend = dividend << 1;
dividend[`DdLen-1:`HiDdMin] =

dividend[`DdLen-1:`HiDdMin] - divisor;
if (! dividend [`DdLen-1])

quotient = quotient + 1;
else dividend[`DdLen-1:`HiDdMin] =

dividend[`DdLen-1:`HiDdMin] + divisor;
end

Example 3.2 An Excerpt from Example 3.1

repeat. The value of the loop count expression is determined once at the beginning of
the execution of the loop. Then the loop is executed the given number of times. The
loop count expression is sampled once at the beginning of the loop, and thus it is not
possible to exit the loop execution by changing the loop count variable. The disable
statements described later allow for early loop exits.

The general form of the repeat statement is:

statement
loop_statement
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loop_statement
repeat ( expression ) statement

The loop in Example 3.2 could have been written as a  for loop as:

for (i = 16; i; i = i - 1)
begin

…//shift and subtract statements
end

In this case, a register must be specified to hold the loop counter. The for loop is very
similar in function to for loops in the C programming language. Essentially, this for
loop initializes i to 16, and while i is not zero, executes the statements and then decre-
ments i.

The general form of the for loop is

loop_statement
for (variable_assignment; expression; variable_assignment) statement

Specifically, the first assignment is executed once at the beginning of the loop. The
expression is executed before the body of the loop to determine if we are to stay in the
loop. Execution stays in the loop while the expression is TRUE. The second assign-
ment is executed after the body of the loop and before the next check for the end of
the loop. The statement is the body of the loop. The difference between the for and
repeat loop statements is that repeat is simply a means of specifying a constant num-
ber of iterations. The for loop is far more flexible and gives access to the loop update
variable for control of the end-of-loop-condition.

As in the C programming language, the above for statement could have been writ-
ten using a while statement as:

i = 16;
while (i)

begin
… // shift and subtract statements
i = i-1;

end

The general form of the while is

loop_statement
while (expression) statement
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The expression is evaluated and if it is TRUE, the statement is executed. The while
expression is then evaluated again. Thus, we enter and stay in the loop while the
expression is TRUE.

The while expression must be updated as part of the loop statement execution, in
this case “i = i - 1”. The while statement cannot be used to wait for a change in a value
generated external to its always statement as illustrated in the following example.

module sureDeath //This will not work!!
(input inputA);

always
begin

while (inputA)
; // wait for external variable

// other statements
end

endmodule

Here, the while statement expression is dependent on the value of inputA and the
while statement is null. The above while statement appears to have the effect of doing
nothing until the value of inputA is TRUE, at which time the other statements are exe-
cuted. However, since we are waiting for an external value to change, the correct
statement to use is the wait. For further discussion, see section 4.3 on the wait state-
ment.

Finally, the forever loop loops forever. An example of its use is in the abstract
description of a microprocessor. Here we see that certain initializations occur only at
power-on time. After that, we remain in the forever loop fetching and executing

module microprocessor;

always
begin

powerOnInitializations;
forever

begin
fetchAndExecuteInstructions;

end
end

endmodule

Example 3.3 An Abstract Microprocessor
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instructions. A forever loop may be exited by using a disable statement, as will be dis-
cussed in the next section. If the forever loop is exited, then the always statement will
start the power-on initializations and begin the forever loop again.

The general form of the forever loop is:

loop_statement
forever statement

References: disable 3.3, 4.6; wait 4.3; comparison with wait 4.3.2; intra-assignment repeat 4.7

3.3.2 Exiting Loops on Exceptional Conditions

Generally, a loop statement is written to execute to a “normal” exit; the loop counter is
exhausted or the while expression is no longer TRUE. However, any of the loop state-
ments may be exited through use of the disable statement. A disable statement dis-
ables, or terminates, any named begin-end block; execution then begins with the
statement following the block. Begin-end blocks may be named by placing the name
of the block after a colon following the begin keyword. An example of the C pro-
gramming statements break and continue are illustrated in Example 3.4.

begin :break
for (i = 0; i < n; i = i + 1)

begin: continue
if(a==0)

disable continue; // proceed with i = i + 1
… // other statements
if (a = = b)

disable break; // exit for loop
… // other statements

end
end

Example 3.4 Break and Continue Loop Exits

Example 3.4 shows two named blocks, break  and continue. Recall that the con-
tinue statement in C skips the rest of the loop body and continues the loop with the
loop update, and that the break statement breaks out of the loop entirely, regardless of
the loop update and end-of-loop condition. The disable statements in the example
perform the analogous actions. Specifically, the disable continue  statement stops exe-
cution of the begin-end block named continue and passes control to the update of the
for loop. The disable break statement stops execution of the block that contains the
for loop. Execution then proceeds with the next statement.
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The general form of the disable statement is:

statement
disable_statement

disable_statement
disable hierarchical_task_identifier;
disable hierarchical_block_identifier;

References: disable named blocks 4.6; tasks 3.5

3.4Multi-way Branching
Multi-way branching allows the specification of one or more actions to be taken based
on specified conditions. Verilog provides two statements to specify these branches: if-
else-if, and case.

3.4.1 If-Else-If

If-else-if simply uses if-then-else statements to specify multiple actions. It is the most
general way to write a multi-way decision in that it allows for a variety of different
expressions to be checked in the if conditional expressions. Consider the description
of a simple computer shown in Example 3.5. The example is reminiscent of the early
Mark-1 computer (a few details have been changed) and is used here for its simplicity.
A cycle-accurate style of specification is used, separating the instruction fetch and
execution into two separate clock periods. A memory m is declared with 8192 16-bit
words. The memory, accumulator, and program counter are declared to be signed
given that they will store signed data.

This example uses the if-else-if statement to specify the instruction decode of the
computer. Bits fifteen through thirteen of the instruction register (ir[l5:13]) are com-
pared with seven of the eight possible combinations of three bits. The one that
matches determines which of the instructions is executed.

References: if-then-else 3.2; conditional operator 3.2.2

3.4.2 Case

The case statement can be used for multi-way branches when each of the if condition-
als all match against the same basic expression. In Example 3.6, the Mark-1 descrip-
tion is rewritten using the case statement for instruction decoding.



Behavioral Modeling 87

module mark1;
reg [15:0] signed m [0:8191]; // signed 8192 x 16 bit memory
reg [12:0] signed pc; // signed 13 bit program counter
reg [12:0] signed acc; // signed 13 bit accumulator
reg [15:0] ir; // 16 bit instruction register
reg ck; // a clock signal

always
begin

@(posedge ck)
ir <= m [pc]; // fetch an instruction

@(posedge ck)
if (ir[15:13] == 3'b000) // begin decoding

pc <= m [ir [12:0]]; //and executing
else if (ir[15:13]==3'b001)

pc <= pc + m [ir [12:0]];
else if (ir[15:13]==3'b010)

acc <= -m [ir [12:0]];
else if (ir[15:13] == 3'b011)

m [ir [12:0]] <= acc;
else if ((ir[15:13] == 3'b101) || (ir[15:13] == 3'b100))

acc <= acc - m [ir [12:0]];
else if (ir[15:13] == 3'b110)

if (acc < 0) pc <= pc + 1;
pc <= pc + 1; //increment program counter

end
endmodule

Example 3.5 The Mark-1 Processor With If-Else-If

The case expressions are evaluated linearly in the order given in the description. In
this case, bits fifteen through thirteen of the instruction register (the controlling
expression) are compared with each of the seven case expressions. Bit widths must match
exactly. The first expression to match the controlling expression causes the statement
following the colon to be executed. Then execution continues with the statement after
the case. The comparison is done using 4-valued logic; thus a 2-bit case condition can
evaluate to sixteen different values.

The general form of the case statement is

statement
case_statement



88 The Verilog Hardware Description Language

module mark1Case;
reg[15:0] signed m [0:8191]; //signed 8192 x 16 bit memory
reg [12:0] signed pc; // signed 13 bit program counter
reg [12:0] signed acc; // signed 13 bit accumulator
reg [15:0] ir; // 16 bit instruction register
reg ck; // a clock signal

always
begin

@(posedge ck)
ir <= m [pc];

@(posedge ck)
case (ir [15:13])

3'b000 : pc <= m [ir [12:0]];
3'b001: pc <= pc + m [ir [12:0]];
3'b0l0 : acc <= -m [ir [12:0]];
3'b011: m [ir [12:0]] <= acc;
3'b100,
3'bl0l : acc <= acc - m [ir [12:0]];
3'bll0 : if(acc<0)pc<=pc + l;

endcase
pc <= pc + 1;

end
endmodule

Example 3.6 The Mark-1 With a Case Statement

case_statement
case (expression ) case_item { case_item} endcase

case_item
expression {, expression): statement_or_null
default [: ] statement_or_null

A default may be specified using the default keyword in place of a case expression.
When present, the default statement will be executed if none of the other case expres-
sions match the controlling expression. The default may be listed anywhere in the case
statement.

The example also illustrates how a single action may be specified for several of the
case expressions. The commas between case expressions specify that if either of the
comparisons are TRUE, then the statement is executed. In the Mark-1 example, if the
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three bits have either of the values 4 or 5, a value is subtracted from the accumulator.
The first line of case_item, above, details the syntax.

Finally, note that the controlling expressions and case expressions do not need to be
constants.

References: casez, casex 3.4.4; comparison with if-else-if 3.4.3; conditional operator 3.2.2; register
specification E.1; memory specification E.2

3.4.3 Comparison of Case and If-Else-lf

In the Mark-1 examples above, either case or if-else-if could be used. Stylistically, the
case is more compact in this example and makes for easier reading. Further, since all
of the expressions were compared with one controlling expression, the case is more
appropriate. However, there are two major differences between these constructs.

The conditional expressions in the if-else-if construct are more general. Any set of
expressions may be used in the if-else-if whereas with the case statement, the case
expressions are all evaluated against a common controlling expression.

The case expressions may include unknown (x) and high impedance (z) bits. The
comparison is done using 4-valued logic and will succeed only when each bit
matches exactly with respect to the values 0,1, x, and z. Thus it is very important
to make sure the expression widths match in the case expressions and controlling
expression. In contrast, if statement expressions involving unknown or high
impedance values may result in an unknown or high impedance value which will
be interpreted as FALSE (unless case equality is used).

An example of a case statement with unknown and high impedance values is
shown below in a debugging example.

reg ready; // a one bit register
// other statements
case (ready)

1'bz: ("ready is high impedance");
1'bx: ("ready is unknown");
default: ("ready is %b", ready);

endcase

In this example, the one bit ready is compared with high impedance (z) and unknown
(x); the appropriate display message is printed during simulation. If ready is neither
high impedance or unknown, then its value is displayed.

References: four-level logic 6.2.2; casez, casex 3.4.4; case equality 3.2
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3.4.4 Casez and Casex

casez and casex are two types of case statements that allow don’t-care values to be con-
sidered in case statements. casez allows for z values to be treated as don’t-care values,
and casex allows for both z and x to be treated as don’t-care. In addition to specifying
bits as either z or x, they may also be specified with a question mark (“?”) which also
indicates don’t-care. The syntax for casex and casez is the same as with the case state-
ment, except the casez or casex keyword is substituted for case.

case_statement
case (expression ) case_item { case_item} endcase

| casez (expression) case_item { case_item} endcase
| casex ( expression ) case_item { case_item } endcase

module decode;
reg [7:0] r;

always
begin

// other statements
r = 8'bx1x0x1x0;
casex (r)

8'b001100xx: statement1;
8'b1100xx00: statement2;
8'b00xx0011: statement3;
8'bxx001100: statement4;

endcase
end

endmodule

Example 3.7 An Example of Casex

Consider the casex shown in Example 3.7. In this example we have loaded register
r with the eight bit value x1x0x1x0, indicating that every other bit is unknown. Since
the unknown x is treated as a don’t-care, then only statement 2 will be executed.
Although statement 4 also matches, it will not be executed because the condition on
statement 2 was found first.

x1x0x1x0 value in register r
1100xx00 matching case expression

The difference between the two case types is in whether only z is considered as a
don’t-care (casez), or whether z and x are considered don’t-cares (casex).

References: Verilog operators C; case 3.4.2
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3.5 Functions and Tasks
In software programming, functions and procedures are used to break up large pro-
grams into more-manageable pieces, and to allow commonly used functionality to be
called from multiple places. In Verilog, modules provide the means of partitioning a
design into more-manageable parts; the use of modules implies that there are struc-
tural boundaries being described. These boundaries may in fact model the logical
structure or the physical packaging boundaries of the design. Verilog provides func-
tions and tasks as constructs analogous to software functions and procedures that allow
for the behavioral description of a module to be broken into more-manageable parts.

module mark1Mult;
reg[15:0] signed m [0:8191]; // signed 8192 x 16 bit memory
reg [12:0] signed pc; // signed 13 bit program counter
reg [12:0] signed acc; // signed 13 bit accumulator
reg [15:0] ir; // 16 bit instruction register
reg ck; // a clock signal

always
begin

@(posedge ck)
ir <= m [pc];

@(posedge ck)
case (ir [15:13])

3'b000 : pc <= m [ir [12:0]];
3'b001: pc <= pc + m [ir [12:0]];
3'b010 : acc <= -m [ir [12:0]];
3'b011: m [ir [12:0]] <= acc;
3'b100,
3'b101: acc <= acc - m [ir [12:0]];
3'b110 : if (acc < 0) pc <= pc + 1;
3'b111: acc <= acc * m [ir [12:0]]; //multiply

endcase
pc <= pc + 1;

end
endmodule

Example 3.8 The Mark-1 With a Multiply Instruction

Functions and tasks allow often-used behavioral sequences to be written once and
called when needed. They also allow for a cleaner writing style; instead of long
sequences of behavioral statements, the sequences can be broken into more readable
pieces, regardless of whether they are called one or many times. Finally, they allow for
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data to be hidden from other parts of the design. Indeed, functions and tasks play a
key role in making a behavioral description more readable and maintainable.

Consider defining opcode 7 of the Mark-1 description in the previous sections to
be a multiply instruction. Early in the behavioral modeling process, we could use the
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multiply operator as shown in Example 3.8. This is a perfectly reasonable behavioral
model for early in the design process in that the functionality is thoroughly described.
However, we may want to further detail the multiply algorithm used in the design.
Our first approach will be to use functions and tasks to describe the multiply algo-
rithm. Later, we will contrast this approach to that of describing the multiply as a sep-
arate module. Table 3.1 contrasts the differences between tasks and functions.

3.5.1 Tasks

A Verilog task is similar to a software procedure. It is called from a calling statement.
After execution, control returns to the next statement. It cannot be used in an expres-
sion. Parameters may be passed to it and results returned. Local variables may be
declared within it and their scope will be the task. Example 3.9 illustrates how mod-
ule Mark-1 could be rewritten using a task to describe a multiply algorithm.

A task is defined within a module using the task and endtask keywords. This task is
named multiply and is defined to have one inout (a) and one input (b). This task is
called from within the always statement. The order of task parameters at the calling
site must correspond to the order of definitions within the task. When multiply is
called, acc is copied into task variable a, the value read from memory is copied into b,
and the task proceeds. When the task is ready to return, prod is loaded into a. On
return, a is then copied back into acc and execution continues after the task call site.
Although not illustrated here, a task may include timing and event control state-
ments. Twice within Example 3.9 named begin-end blocks are used, illustrating that
within these blocks, new register identifiers may be defined. The scope of these names
(ir, mcnd, mpy, and prod) is the named begin-end block. The general form of the task
declaration is:

task_declaration
task [ automatic] task_identifier ;

{task_item_declaration}
statement_or_null
endtask

| task [ automatic] task_identifier (task_port_list) ;
{block_item_declaration}
statement
endtask

|

task_item_declaration
block_item_declaration

| tf_output_declaration
| tf_input_declaration
| inout_declaration
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module mark1Task;
reg [15:0]      signed m [0:8191]; //signed 8192 x 16 bit memory
reg [12:0] signed pc; // signed 13 bit program counter
reg [12:0] signed acc;      // signed 13 bit accumulator
reg ck; // a clock signal

always
begin: executeInstructions

reg [15:0] ir; // 16 bit instruction register

@(posedge ck)
ir <= m [pc];

@(posedge ck)
case (ir [15:13])

// other case expressions as before
3'b111: multiply (acc, m [ir [12:0]]);

endcase
pc <= pc + 1;

end

task multiply
(inout [12:0] a,
input [15:0] b);

begin: serialMult
reg [5:0] mcnd, mpy; //multiplicand and multiplier
reg [12:0] prod; //product

mpy = b[5:0];
mcnd = a[5:0];
prod = 0;
repeat (6)

begin
if (mpy[0])

prod = prod + {mcnd, 6'b000000};
prod = prod >> 1;
mpy = mpy >> 1;

end
a = prod;

end
endtask

endmodule

Example 3.9 A Task Specification
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block_item_declaration
block_register_declaration
reg_declaration
parameter_declaration
local_parameter_declaration
integer_declaration
real_declaration
time_declaration
realtime_declaration
event_declaration

The input and output tf declarations take the form of:

tf_output_declaration
output  [reg] [signed] [range] list_or_port_identifiers

| output [task_port_type] list_or_port_identifiers

The first shows the style of making multiple definitions in a single statement. The
second allows the specification of the task_port_type (to be time, real, realtime,   or
integer).

The multiply algorithm uses a shift and add technique. The low-order sixteen bits
of the operands are multiplied producing a 32-bit result that is returned. The state-
ment

mpy = b[5:0];

does a part-select on b and loads the low order six bits into mpy. Six times, the low-
order bit of the multiplier (mpy) is checked. If it is one, then the multiplicand (mcnd)
is concatenated (using the “{ , }” operator) with six bits of zeros on its right and added
to the product (prod). The product and multiplier are both shifted right one place and
the loop continues.

The general forms of a concatenation are shown below:

concatenation
{  expression {,  expression} }

multiple_ concatenation
{  constant_expression concatenation }

The first form is that shown in the example. The second allows for the concatenation
in the inner braces to be repeated n times where n is given by the constant expression.

The input, output, and inout names declared in tasks (and as we will later see,
functions) are local variables separate from the variables named at the calling site.
Their scope is the task-endtask block. When a task is called, the internal variables
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declared as inputs or inouts receive copies of the values named at the calling site. The
task proceeds executing. When it is done, then all of the variables declared as inouts
or outputs are copied back to the variables listed at the call site. When copying values
to and from the call site, the variables at the call site are lined up left-to-right with
order of the input, output, and inout declarations at the task definition site.

A task may call itself, or be called from tasks that it has called. Unless the task is
declared to be automatic, there is only one set of registers to hold the task variables.
Thus, the registers used after the second call to the task are the same physical entities
as those in the previous call(s). The simulator maintains the thread of control so that
the returns from a task called multiple times are handled correctly. Further, a task may
be called from separate processes (i.e., always and initial statements) and the task may
even be stopped at an event control when the task is enabled from another process.
There is still only one set of variables for the two invocations of the task to use. How-
ever, the simulator does keep track of the control tokens so that the appropriate return
to the calling process is made when the task exits.

When a task is declared automatic,  the task is re-entrant. That is, there may be
calls to it from several concurrent processes. Indeed, since tasks may have timing and
event controls, several processes may be waiting in the task. Each call to the task,
whether from concurrent processes or from itself, works with its own copies of the
internally declared storage. Upon exit from the task, this storage is released and thus
in unavailable to any other scope. Thus inputs, outputs, and other internal variables
cannot be assigned values using non-blocking assignments, or traced with
statements, for instance. The point is that non-automatic  tasks have static storage
allocation. Automatic  tasks have dynamic storage allocation which only exists during
a particular instance’s execution.

The general form of a task call is:

task_enable
hierarchical_task_identifier [ (expression {, expression } ) ];

It is useful to comment on the concatenation operation in the example. The “{ , }”
characters are used to express concatenation of values. In this example, we concate-
nate two 6-bit values together to add to the 13-bit prod. mcnd has 6 binary zeros
(expressed here in binary format) concatenated onto its right-hand side. Notice that
in this case, an exact bit width must be specified for the constant so that mcnd  is
properly aligned with prod  for the add.

References: functions 3.5.2; Identifiers B.5, G.10
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3.5.2 Functions

A Verilog function is similar to a software function. It is called from within an expres-
sion and the value it returns will be used in the expression. The function has one out-
put (the function name) and at least one input. Other identifiers may be declared
within the function and their scope will be the function. Unlike a task, a function may
not include delay(#) or event control (@), or wait statements. Although not illustrated
here, a function may be called from within a continuous assignment. Functions may
call other functions (including itself) but not other tasks. During the execution of the
function, a value must be assigned to the function name; this is the value returned by
the function.

Example 3.10 shows module mark1Fun specified with a multiply function. The
function is defined within a module using the Junction and endfunction keywords. The
function declaration includes the function name and bit width. At calling time, the
parameters are copied into the function’s inputs; as with tasks, the declaration order is
strictly adhered to. The function executes, making assignments to the function’s
name. On return, the final value of the function’s name (multiply) is passed back to
the calling site and, in this example, copied into register acc. Note that named begin-
end blocks are used illustrating that new register definitions may be made within
them. The general form of a function declaration is:

function_declaration
function [automatic] [signed] [range_or_type] function _identifier;

function_item_declaration {function_item_declaration}
statement
endfunction

| function [automatic] [signed] [range_or_type]
function _identifier (function_port_list);

block_item_declaration {block_item_declaration}
function_statement
endfunction

|

range_or_type
range | integer | real | realtime | time

range
[ msb_constant_expression : lsb _constant_expression ]

function_item_declaration
block_item_declaration

| tf_input_declaration;

tf_input_declaration
input [reg] [signed] [range] list_or_port_identifiers

| input [task_port_type] list_or_port_identifiers
|
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module mark1Fun;
reg[15:0] signed m [0:8191]; //signed 8192 x 16 bit memory
reg [12:0] signed pc; // signed 13 bit program counter
reg [12:0] signed acc;      // signed 13 bit accumulator
reg ck;                  // a clock signal

always
begin: executeInstructions

reg [15:0] ir; // 16 bit instruction register

@(posedge ck)
ir <= m [pc];

@(posedge ck)
case (ir [15:13])

//case expressions, as before
3'b111: acc <= multiply(acc, m [ir [12:0]]);

endcase
pc <= pc + 1;

end

function signed [12:0] multiply
(input signed [12:0] a,
input signed [15:0] b);

begin: serialMult
reg [5:0] mcnd, mpy;

mpy = b[5:0];
mcnd = a[5:0];
multiply = 0;
repeat (6)

begin
if (mpy[0])

multiply = multiply + {mcnd, 6'b000000};
multiply = multiply >> 1;
mpy = mpy >> 1;

end
end

endfunction
endmodule

Example 3.10 A Function Specification
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A function is called from inside a procedural expression or from inside a continuous
assignment where the call takes the form:

function_call
hierarchical_function_identifier ( expression {,  expression})

A function that is not declared automatic has static storage; recursive calls of the
function will use the same storage. Of course, this is the hardware view of functions.
A function may be declared automatic in which case each call to the function creates
dynamic storage for the function instance. This dynamic storage cannot be hierarchi-
cally accessed or traced with

A special case of a function is the constant function. There is no keyword to declare
them constant. Rather, their inputs are constants or parameterized values that have
been previously declared. These functions are useful for calculating bitwidths in decla-
rations as illustrated in Example 3.11 of a parameterized memory for the Markl
examples. Here the parameters are Width and number of words (NumWords). From
the parameter NumWords, the size of the address port of the memory is calculated
using the constant function clog2b.

module RAM
#(parameter Width = 16,

NumWords = 8192)
(inout [Width-l:0] data,
input [clog2b(NumWords):0] address,
input rw, ck);

reg [Width-l:0] m [0:NumWords-l];

function integer clog2b // constant function
(input integer size); // assumes non-zero size
begin

for (clogb2 = -1; size > 0; clogb2 = clogb2 + 1)
size = size >> 1;

end
endfunction

always… // internal behavior of the RAM
endmodule

Example 3.11 A Constant Log Base 2 Function

References: functions in continuous assignment 6.3.1; tasks 3.5.1; Identifier B.5, G.10
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3.5.3 A Structural View

The task and function examples of the previous sections have illustrated different
organizations of a behavioral model. That is, we can choose to model the behavior in
different ways with the same result. When we used the * operator, we were probably
only interested in simulation of the model. There are many ways to implement a mul-
tiply in hardware, but early in the design process we were content to let the simulator
substitute its method.

As the design progresses, we want to specify the multiply algorithm that we want
our hardware to implement. This we did by using the task and function statements in
the above examples. The implication of the description using a task or function is that
this divide algorithm will be part of the final data path and state machine synthesized
to implement the Mark-1 processor. That is, we enlarged the behavioral description
by specifying the details of the multiply algorithm and thus we would expect the final
state machine that implements this behavior to have more states. Likewise, the data
path may need more components to hold the values and perform the operations.

Another design decision could have been to use a possibly pre-existing multiply
module in conjunction with the Mark-1 module. This case, shown in Example 3.12,
illustrates the multiply as an instantiated module within the mark1Mod module. This
description approach would be used if a previously designed multiply module was to
be used, or if the designer wanted to force a functional partitioning of the modules
within the design. The multiply module ports are connected to the mark1Mod and
the mark1Mod module starts the multiply module with the go line. When done, the
multiply module signals the Mark-1 with the done line which Mark-1 waits for. This
structural description leads to a very different design. Now we have two state
machines, one for mark1Mod and one for multiply. To keep the two modules syn-
chronized, we have defined a handshaking protocol using wait statements and signal-
ling variables go and done. At this point in the design process it is not possible to
point to one of these solutions as being the best. Rather we can only suggest, as we
have done above, why one would describe the system solely with behavioral modeling
constructs ( *, function, task) or suggest structural partitioning of the behavior.

References. Functions in continuous assign 6.3.1
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module mark1Mod;
reg  [15:0] signed      m [0:8191];      // signed 8192 x 16 bit memory
reg [12:0] signed pc; // signed 13 bit program counter
reg [12:0] signed acc;                 // signed 13 bit accumulator
reg [15:0] ir;                   // 16 bit instruction register
reg ck;                  //  a clock signal

reg signed [12:0] mcnd;
reg go;
wire signed [12:0] prod;
wire done;
multiply mul (prod, acc, mcnd, go, done);

always
begin

@(posedge ck)
go <= 0;
ir <= m [pc];

@(posedge ck)
case (ir [15:13])

//other case expressions
3'blll:begin

wait (~done) mcnd <= m [ir [12:0]];
go <= 1;
wait (done);
acc <= prod;

end
endcase

pc <= pc + 1;
end

endmodule

module multiply
(output reg signed [12:0] prod,
input signed [12:0] mpy, mcnd,
input go,
output reg done);

reg [5:0] myMpy,
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always
begin

done = 0;
wait (go);
myMpy = mpy[5:0];
prod = 0;
repeat (6)

begin
if (myMpy[0])

prod = prod + {mcnd, 6'b000000};
prod = prod >> 1;
myMpy = myMpy >> 1;

end
done = 1;
wait (~go);

end
endmodule

Example 3.12 The Multiply as a Separate Module

3.6 Rules of Scope and Hierarchical Names
An identifier’s scope is the range of the Verilog description over which the identifier is
known. The rules of scope define this range. Verilog also has a hierarchical naming
feature allowing any identifier in the whole design to be accessed from anywhere in
the design.

3.6.1  Rules of Scope

Module names are known globally across the whole design. Verilog then allows for
identifiers to be defined within four entities: modules, tasks, functions, and named
blocks. Each of these entities defines the local scope of the identifier, the range of the
description over which the identifier is known. This local scope encompasses the
module-endmodule, task-endtask, function-endfunction, and begin:name-end pairs.
Within a local scope, there may only be one identifier with the given name.

Identifiers can be known outside of the local scope. To understand the scope rules
we need to distinguish between situations which allow forward referencing and those
which do not.
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Forward referenced. Identifiers for modules, tasks, functions, and named begin-
end blocks are allowed to be forward referencing and thus may be used before they
have been defined. That is, you can instantiate a module, enable a task, enable a
function, or disable a named block before either of these entities has been defined.

Not forward referenced. Forward referencing is not allowed with register and net
accesses. That is, before you can use them, they must be defined. Typically, these
are defined at the start of the local scope (i.e., module, task, function or named
begin-end) in which they are being used. An exception to this is that output nets
of gate primitives can be declared implicitly (See section 6.2.3).

For the case of the forward referencing entities (module, task, function, and named
begin-end blocks), there is also an upward scope defined by the module instantiation
hierarchy. From the low end of the hierarchy, forward referenced identifiers in each
higher local scope are known within the lowest scope. This path up the module
instantiation hierarchy is the upward scope.

Consider Example 3.13. The identifiers in the local scope of module top are: top,
instance1, y, r, w, and t. When module b is instantiated within module top, procedural
statements in b can enable tasks and functions defined in the local scope of module
top and also disable a named block in its local scope. However, task t in module top
has a named block (c) within its scope. c cannot be disabled from module b because c
is not in top’s local scope and thus it is not in b’s upward scope (rather, it is down a
level from it in task t’s local scope). Further, named block y in top’s local scope can be
disabled from module b and it can be disabled from within a task or function defined
in module top, or from within named blocks within the task or function.

Note however, that register r and wire w, although in the upward scope of module
b, are not accessible from it; registers and nets are not forward referencing and thus
can only be accessed in the local scope. The rule is that forward-referencing identifiers
(i.e. module, task, function, and named block identifiers) are resolved after the instan-
tiations are known by looking upward through the module instantiation tree. When
the top of the hierarchy is reached (at a module that is not instantiated elsewhere) the
search for the identifier is ended. Non-forward referenced registers and nets are
resolved immediately in the local scope.

It is important to note that tasks and functions defined in a module can be enabled
from within any of the modules instantiated (to any level) in that module. Thus func-
tions and tasks used in many parts of the design should be defined in the top module.

It is also useful to think of the upward identifier tree as arising from two sources:
the module hierarchy, and procedural statement hierarchy. The module hierarchy tree
was described above. The procedural statement hierarchy arises from nested named
blocks within always and initial statements, tasks, and functions. Procedural state-
ment hierarchies are rooted in modules (essentially, they are always and initial state-
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module top;
reg r; //hierarchical name is top.r
wire w; //hierarchical name is top.w
b instance1();

always
begin: y

reg q; //hierarchical name is top.y.q
end

task t;
begin: c //hierarchical name is top.t.c

reg q; //hierarchical name is top.t.c.q
disable y; //OK

end
endtask

endmodule

module b;
reg s; //hierarchical name is top.instance1.s

always
begin

t; //OK
disable y; //OK
disable c; //Nope, c is not known
disable t.c; //OK
s = 1; //OK
r = 1; //Nope, r is not known
top.r = 1; //OK
t.c.q = 1; //OK
y.q = 1; //OK, a different q than t.c.q

end
endmodule

Example 3.13 Scope and Hierarchical Names

ments) and are separate from the module hierarchy. When accessing non-forward
referencing identifiers (registers and wires), statements at the deepest point of nesting
look up the procedural hierarchy for the identifier. When the root of the procedural
hierarchy is found, the search is stopped. The reason is that non-forward referencing
identifiers only have access to the current local scope and its procedural statement
hierarchy for identifier resolution.
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Thus, identifiers representing registers and nets are searched up the procedural
hierarchy, but not searched across module instantiation boundaries. Identifiers repre-
senting tasks, functions, and named blocks are searched up the procedural and module
instantiation hierarchy.

3.6.2 Hierarchical Names

The previous section discussed the upward scope of identifiers within a description.
When possible, these identifiers should be used — they are easier to read and easier to
type. On the other hand, hierarchical names can uniquely specify any task, function,
named block, register, or wire in the whole description.

Hierarchical names are forward referencing — they are not resolved until all mod-
ules are instantiated. Hierarchical names consist of a path name which has identifiers
separated by periods (“.”). The first identifier is a forward referencing identifier found
by searching up the procedural and module hierarchy name tree. From where the first
identifier is found, each succeeding identifier specifies the named scope within which
to continue searching downward. The last identifier specifies the entity being search
for.

Consider Example 3.13. Within module b, register r is not known because register
and wire identifiers are not searched for across module instantiations; they are only
known in the local scope. However, the hierarchical reference top.r in module b will
access r in top. Similarly, from module b, t.c.q accesses register q in task t (which, by
the way is different than register q in named block y). Further, block c can be disabled
from b through the hierarchical name t.c. Note that these last two did not start with
top (although they could have). When searching up the module hierarchy from b, the
next scope up includes forward referencing names top, y, and t. Any of these (and
actually any forward referencing identifier — modules, tasks, functions, or named
blocks) can be used as the root of the hierarchical name. Indeed, when using a hierar-
chical name to specify a register or wire, the first identifiers in the name must be for-
ward referencing identifiers. The last is the register or wire. When specifying the
name, you need not start from the top. top.t.c.q and t.c.q are, from module b’s per-
spective, the same.

Although we can gain access to any named item in the description with this mech-
anism, it is more appropriate to stay within the local and upward scope rules which
enforce better style, readability, and maintainability. Use hierarchical names sparingly
because they violate the stylistic rules of localizing access to elements of the design,
rather than allowing any statement in the whole design to access anything.

Yes, anything can access anything else through hierarchical naming. However, it
may not be appropriate stylistically. Stick with the rules of local and upward scope as
much as possible.



106 The Verilog Hardware Description Language

3.7 Summary
The behavioral modeling statements that we have covered so far are very similar to
those found in software programming languages. Probably the major difference seen
so far is that the Verilog language has separate mechanisms for handling the structural
hierarchy and behavioral decomposition. Functions and tasks are provided to allow for
the behavior of a module to be “software engineered.” That is, we can break long and
sometimes repetitious descriptions into behavioral subcomponents. Separately, we can
use module definitions to describe the structural hierarchy of the design and to sepa-
rate concurrently operating behaviors into different modules. The examples of
Section 3.5 have shown how these two approaches to modeling allow us to represent a
design in a wide range of stages of completion. The next chapter continues with the
topic of describing concurrent behaviors.

3.8 Exercises
3.1

3.2

3.3

3.4

Change the expressions containing the right shift operator in Example 3.9 to
use bit and part selects and concatenations only.

Does replacing the repeat loop in Example 3.2 with the register declaration and
for loop below achieve the same results?

reg [3:0] i;

for (i = 0; i <= `DvLen; i = i+1)
begin

//shift and subtract statements
end

Shown below is a case statement with two case items defined. The items call
different tasks. If we want to enumerate all of the possible case items, how many
would there be in all?

reg [3:0] f;
case (f)

4’b 0110: taskR;
4’b 1010: taskS;

endcase

Write a for loop statement which is equivalent to the casez statement in the fol-
lowing function without introducing any new variables.
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function [7:0] getMask
(input [7:0] halfVal);

casez (halfVal)
8'b???????l: getMask = 8'b11111111;
8'b??????10: getMask = 8'b11111110;
8'b?????100: getMask = 8'b11111100;
8'b????1000: getMask = 8'b11111000;
8'b???10000: getMask = 8'b11110000;
8'b??100000: getMask = 8'b11100000;
8'b?1000000: getMask = 8'b11000000;
8'b10000000: getMask = 8'b10000000;
8'b00000000: getMask = 8'b11111111;

endcase
endfunction

3.5

3.6

3.7

3.8

Simulate the multiply task and show the value of mpy, mcnd, and prod initially,
and at the end of each of the 6 iterations of the loop. Add a statement
to show these values.

Write the hierarchical name of every task, function, and register in
Examples 3.9 and 3.10.

In Example 3.13, we saw that from module b, register q in task t could be
referred to either as top.t.c.q or t.c.q. Why is there only one way to refer to reg-
ister r from module b?

Look ahead to Example 6.10 on page 180.

A. How would a behavioral statement in module slave call task wiggleBus-
Lines?

B. If both modules master and slave needed to call task wiggleBusLines, where
would be the appropriate place for the task to be defined?
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4 Concurrent
Processes

Most of the behavioral modeling statements discussed to this point have been dem-
onstrated using single process examples. These statements are part of the body of an
always statement and are repetitively executed in sequential order. They may operate
on values that are inputs or outputs of the module or on the module’s internal regis-
ters. In this chapter we present behavioral modeling statements that by their defini-
tion interact with activities external to the enclosing always. For instance, the wait
statement waits for its expression to become TRUE as a result of a value being changed
in another process. As in this case and the others to be presented here, the operation
of the wait statement is dependent on the actions of concurrent processes in the sys-
tem.

4.1 Concurrent Processes
We have defined a process to be an abstraction of a controller, a thread of control that
evokes the change of values stored in the system’s registers. We conceive of a digital
system as a set of communicating, concurrent processes or independent control activi-
ties that pass information among themselves. What is important is that each of these
processes contains state information and that this state is altered as a function of the
process’ current inputs and present state.
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Example 4.1 shows an abstract description of a computer. An implementation of
the hardware controller for the process described in the always statement is a sequen-
tial state machine with output and next state logic. This state machine would control
a data path that includes the registers, arithmetic-logic units, and steering logic such
as buses and multiplexors.

module computer;
always

begin
powerOnInitializations;
forever

begin
fetchAndExecuteInstructions;

end
end

endmodule

Example 4.1 An Abstract Computer Description

Consider that this process may interact with another process in the system, possi-
bly an input interface that receives bit-serial information from a modem. The process
abstraction is necessary in this case because there are two independent, but communi-
cating, threads of control: the computer, and the input interface. The input interface
process watches for new input bits from the modem and signals the computer when a
byte of data has been received. The other process, the computer described in
Example 4.1, would only interact with the input interface process when a full byte of
information has been received.

These two processes could have been described as one, but it would have been quite
messy and hard to read. Essentially, each statement of the computer process would
have to include a check for new input data from the interface and a description of
what to do if it is found. In the worst case, if we have two processes that have n and m
states respectively, then the combined process with equivalent functionality would
have n*m states — a description of far higher complexity. Indeed, it is necessary to
conceive of the separate processes in a system and describe them separately.

When, when several processes exists in a system and information is to be passed
among them, we must synchronize the processes to make sure that correct informa-
tion is being passed. The reason for this is that one process does not know what state
another process is in unless there is some explicit signal from that process giving such
information. That is, each of the processes is asynchronous with respect to the others.
For instance, they may be operating at their own clock rate, or they may be producing
data at intervals that are not synchronized with the intervals when another process
can consume the data. In such instances, we must synchronize the processes, provid-
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ing explicit signals between them that indicate something about their internal state
and that of the data shared among them.

In hardware, one approach to synchronization is implemented with “data-ready”
handshakes — one process will not read the shared data until the other signals with a
“data-ready” signal that new data is present. When the other signals that the data has
been read, the first unasserts the “data-ready” signal until new information is available.
Alternately, a clock signal is used to synchronize multiple processes. Values are guar-
anteed to be valid and actions are specified to occur on one or both of the clock edges.
Synchronizing signals such as handshakes and clocks are necessary when information
is to be passed correctly among separate processes.

The statements presented in this chapter pertain to describing behavior that
involves the interactions among concurrent processes.

References: always, initial 3.1; procedural timing model 8.1; non-determinism 8.3

4.2 Events
Event control statements provide a means of watching for a change in a value. The exe-
cution of the process containing the event control is suspended until the change occurs.
Thus, the value must be changed by a separate process.

It is important to note that the constructs described in this section trigger on a
change in a value. That is, they are edge-sensitive. When control passes to one of
these statements, the initial value of the input being triggered on is checked. When
the value changes later (for instance, when a positive edge on the value has occurred),
then the event control statement completes and control continues with the next state-
ment.

This section covers two basic forms of the event control: one that watches for a
value change, and another, called the named event, that watches for an abstract signal
called an event.
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4.2.1 Event Control Statement

Example 4.2 will be used to motivate
the discussion of event control state-
ments. In this example, the statement:

@(negedge clock) q <= data;

models the negative edge triggering of a
D-type flip flop. This procedural event
control statement watches for the nega-
tive transition of clock and then assigns
the value of data to q. The value
assigned to q is the value of data just before the edge of the clock.

module dEdgeFF
(output reg q,
input clock, data);

always
@(negedge clock) q <= data;

endmodule

Example 4.2 AD-Type Edge-Triggered
Flip Flop

In addition to specifying a negative edge to trigger on, we may also specify a posi-
tive edge (“posedge”) or make no specification at all. Consider:

@ (ricky) lucy = crazy;

Here, lucy will be loaded with the value crazy if there is any change on ricky.

The general form of the event control statement is:

blank. The expression is a gate output, wire, or register whose value is generated as a
result of activity in another process. The event control begins watching for the speci-
fied change from the time procedural control passes to it. Changes prior to the time
when control passed to the event control statement are ignored. After the event
occurs, the statement is executed. If, while waiting for the event, a new value for the
expression is generated that happens to be the same as the old value, then no event
occurs.

event_control
@ event_identifier
@ (event_expression)
@*
@ (*)

event_expression
expression
hierarchical_identifier
posedge expression
negedge expression
event_expression or event_expression
event_expression, event_expression

|
|
|

|
|
|
|
|

The constructs, @* and @(*), are used for specifying sensitivity lists when synthesizing
combinational circuits. The qualifier may be “posedge”, “negedge”, or it may be left
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At times, the event control expression may take on unknown values. In such cases,
a negative edge is defined as a transition from 1 to 0,1 to x, or x to 0. A positive edge
is defined as a transition from 0 to 1,0 to x, or x to 1.

Any number of events can be expressed in the event control statement such that the
occurrence of any one of them will trigger the execution of the statement. A time-out
example is shown in Example 4.3.

always
begin

// start the timer that will produce the timeOut signal;

@(posedge inputA, posedge timeOut)
if (timeOut)

// … error recovery
else regA = regB; // normal operation

//…other statements
end

Example 4.3 ORing Two Events in an Event Control Statement

In this example, we are watching for either of two events, a positive edge on inputA,
or a positive edge on timeOut. The two events are specified in a comma-separated
list. In this case, we can trigger on the intended event — the change on inputA.
However, if the InputA event does not occur with a reasonable amount of time, the
process can extricate itself from a deadlock situation and begin some form of error
recovery.

The comma-separated event list is important in concurrent process applications
(the BNF also allows for the list to be or-separated). If a process needs to wait for any
of several events to occur, it does not want to prematurely commit itself to waiting for
one specific event before waiting for another. Indeed, since the events may not occur
in a given sequential order — the order of arrival may be data dependent — waiting
for individual events in a specific sequential order will probably cause the system to
deadlock. That is, one process will be waiting for an event that will never occur. The
comma-separated event list allows us to wait for any of several events.

References: level sensitive wait 4.3; compare event and wait 4.3.3; intra-assignment delay 4.7

4.2.2 Named Events

The event control statements described above require that a change be specified
explicitly. A more abstract version of event control, the named event, allows a trigger
to be sent to another part of the design. The trigger is not implemented as a register
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or wire and thus is abstract in nature. Further, even if it crosses module boundaries, it
requires no port specification. Other parts of the design may watch for the occurrence
of the named event before proceeding.

Example 4.4 shows a Fibonacci number generator example using a named event to
communicate between the two modules. The topFib module instantiates only two
modules (fnc and ng).

The always statement in module numberGen illustrates the triggering of event
ready:

#50 ready;

The event must have been previously declared as on the fourth line of the module
description. The always statement will continuously delay for 50 time units, incre-
ment the value number, delay for 50 more time units, and then trigger event ready.

Module fibNumCalc watches for the event on the first line of its always statement:

@ng.ready
count = startingValue;

The name “ng.ready” is a hierarchical name for event ready and will be explained after
we dispense with how the named event works. For module fibNumCalc to receive the
trigger, it must first have started to execute the @event statement, and then the trigger
statement in module numberGen must be executed. At this time, module fibNum-
Calc will continue executing with the statement count= startingValue;.

Note that the act of triggering an event is, itself, a statement and need not be com-
bined with a delay operator as in the example. The general form for activating the
named event is:

statement
event_trigger

event_trigger
hierarchical_event_identifier;

This description of the Fibonacci number generator does have a race condition in it
if module fibNumCalc takes longer than 100 time units to execute the always loop.
Module numberGen produces a value every 100 time units and sends a trigger. If
module fibNumCalc did not get around its always loop in less than that time, it
would miss numberGen’s trigger. The result would be that the Fibonacci number of
every other number produced by numberGen would be calculated.
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module topFib;
wire [15:0] number, numberOut;

numberGen ng (number);
fibNumCalc fnc (number, numberOut);

endmodule

module numberGen
(output reg [15:0] number = 0);

event ready; //declare the event

always
begin

#50 number = number + 1;
#50 ready; //generate event signal

end
endmodule

module fibNumCalc
(input [15:0] startingValue,
output reg [15:0] fibNum);

reg [15:0] count, oldNum, temp;

always
begin

@ng.ready //wait for event signal
count = startingValue;

oldNum = 1;
for (fibNum = 0; count != 0; count = count - 1)

begin
temp = fibNum;
fibNum = fibNum + oldNum;
oldNum = temp;

end
("%d, fibNum=%d",               fibNum);

end
endmodule

Example 4.4 Fibonacci Number Generator Using Named Events
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Note that there is no register to hold the trigger, nor any wire to transmit it; rather
it is a conceptual event which when it occurs in one module, can trigger other mod-
ules that were previously stopped at an @event statement. Further, the named event is
more abstract than the event control in that no hardware implementation clues are
given. By comparison, a posedge event control implies that some form of edge trig-
gering logic will be used to detect that such a transition has occurred. The named
event is typically used in simulation.

References. Hierarchical names 3.6

4.3 The Wait Statement
The wait statement is a concurrent process statement that waits for its conditional
expression to become TRUE. Conceptually, execution of the process stops until the
expression becomes TRUE. By definition, the conditional expression must include at
least one value that is generated by a separate, concurrent process — otherwise, the
conditional expression would never change. Because the wait must work with inputs
from other processes, it is a primary means of synchronizing two concurrent pro-
cesses.

The wait statement condition is level-sensitive. That is, it does not wait for a
change in a value. Rather it only checks that the value of the conditional is TRUE. If it
is, execution continues. If it is FALSE, the process waits.

The wait is often used in handshaking
situations where we are synchronizing
two processes. Example 4.5 illustrates the
situation where a process will only read
the dataIn input if the ready input is
TRUE. The wait synchronizes the two pro-
cesses by insuring that the consumer pro-
cess does not pass the wait statement and
consume the data until the producer pro-
cess generates dataIn and sets the ready
signal to TRUE. The ready signal is a syn-
chronization signal that tells the con-
sumer process that the producer process
has passed the state where dataIn is gen-
erated. In this way, the two processes
become synchronized by the ready signal.

The general form of the wait statement is

module consumer
(input [7:0] dataIn,
input ready);

reg [7:0] in;

always
begin

wait (ready)
in = dataIn;

//… consume dataIn
end

endmodule

Example 4.5 The Consumer Module
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statement
wait_statement

wait_statement
wait ( expression ) statement_or_null

statement _or_null
statement

| …

| ;

The expression is evaluated and if it is TRUE, the process proceeds to execute the state-
ment. If it is FALSE, the process stops until it becomes TRUE. At that time, the process
will proceed with the statement. Note that the wait statement does not, itself, have a
semicolon at its end; the statement_or_null contains the semicolon. Again, the
change in the expression must come about from the actions of another concurrent
process.

It is interesting to note that there would be a problem simulating Example 4.5 if
there were no other event control or delay operations in the always statement. If this
were true, then once the wait condition becomes TRUE , the loop would continue to be
executed forever as the wait will never be FALSE . In one sense, this problem comes
about because the simulator is simulating concurrent processes in a sequential manner
and only switching between simulating the concurrent processes when a wait for a
FALSE condition, delay, or event control is encountered. Since none of these are
encountered in this loop, a simulation would loop forever in this always statement.

Actually, this is a more general problem in describing concurrent systems. In gen-
eral, we cannot assume much about the speed of the processes in relation to each
other, and thus, we need to introduce more synchronization signals to insure their
correct execution. If Example 4.5 had another synchronization point, say a
wait (-ready), then the producer and consumer in the example would be more tightly
synchronized to each other’s operating rate. Further, the simulation would also run
correctly! The next section illustrates this with further examples.

References: compare to while 4.3.2

4.3.1 A Complete Producer-Consumer Handshake

Example 4.5 could exhibit some synchronization errors. Specifically, the consumer
never signals to the producer that the dataIn has been consumed. Two possible errors
could occur because of this incomplete handshake:

The producer may operate too fast and change dataIn to a new value before the
consumer has a chance to read the previous value. Thus the consumer would miss
a value.
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The consumer may operate too fast and get around its always statement and see
ready still TRUE. Thus it would read the same data twice.

We need to synchronize the processes so that regardless of the speed of their
implementation they function correctly. One method of synchronizing two processes
is with a fully-interlocked handshake as shown in Figure 4.1.

The handshake illustrated above is described in Example 4.6 and the following
paragraphs. The description consists of two always blocks, the first modeling the con-
sumer and the second modeling the producer. At the start of time, both of these
blocks can run. Of course one of them will go first, as chosen arbitrarily by the simu-
lator. Initially all registers and wires have unknown value. Thus, when producer
reaches “wait (consReady)” or the consumer reaches “wait (prodReady)”, that always
block will stop and wait because consReady and prodReady are unknown. If the con-
sumer starts first, it will wait for prodReady after setting consReady to 1. The pro-
ducer will then run, setting prodReady to 0 and continue through the wait for
consReady. If the producer starts first, it will set prodReady to zero, produce some
data, and wait for consReady. Then the consumer will execute, setting consReady to 1
and wait for prodReady. Since consReady was just set to 1, the producer will continue
again.

Assume we are at the point where the producer has set producer-ready (pro-
dReady) to FALSE (or zero) indicating that it is not ready to send any information, and
the consumer has set consumer-ready (consReady) to TRUE (or one) indicating that it
is ready to receive information. When producer has generated a value, and it sees that
consReady is one (arrow A in Figure 4.1), it loads the value into the output register
dataOut and sets prodReady to one. It then waits for the consumer to receive the
value and set consReady to zero. The consumer, seeing prodReady at level one, makes
a copy of the input and sets consReady to zero (arrow B in Figure 4.1).

The producer now knows that the consumer has received the data so it sets pro-
dReady back to zero, signalling the end of its half of the transfer (arrow C in
Figure 4.1). The producer proceeds with its business and the consumer consumes the
data. Then, seeing that the producer has finished its transfer, the consumer indicates
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module ProducerConsumer;
reg consReady, prodReady;
reg [7:0] dataInCopy, dataOut;

always // The consumer process
begin

consReady = 1; // indicate consumer ready
forever

begin
wait (prodReady)

dataInCopy = dataOut;
consReady = 0; // indicate value consumed
//…munch on data
wait (!prodReady) // complete handshake

consReady = 1;
end

end

always // The producer process
begin

prodReady = 0; // indicate nothing to transfer
forever

begin
// …produce data and put into “dataOut”
wait (consReady) // wait for consumer ready

dataOut =
prodReady = 1; //indicate ready to transfer
wait (!consReady) //finish handshake

prodReady = 0;
end

end
endmodule

Example 4.6 The Consumer With Fully Interlocked Handshake

that it is ready for another transfer by setting consReady (arrow D in Figure 4.1). The
consumer then watches for the next transfer. At this point, the transfer is complete.

Note that we have introduced the random system function in the producer. This
function returns a new random number each time it is called.

This method of transferring data between two concurrent processes will work cor-
rectly regardless of the timing delays between the processes and regardless of their rel-
ative speeds of execution. That is, because each process waits on each level of the
other process’ synchronization signal (i.e. the producer waits for both consReady and
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!consReady), the processes are guaranteed to remain in lockstep. Thus, the consumer
cannot get around its always loop and quickly reread the previously transferred data.
Nor, can the producer work so quickly to make the consumer miss some data. Rather,
the producer waits for the consumer to indicate that it has received the data. Systems
synchronized in this way are called self-timed systems because the two interacting pro-
cesses keep themselves synchronized; no external synchronization signal, such as a
clock, is needed.

ready is FALSE), conceptually we are synchronizing separate processes and we
should use the appropriate wait construct.

A further explanation of the differences between the wait and while involves the
use of the simulator. Assuming a uniprocessor running a simulator, each always and
initial statement is simulated as a separate process, one at a time. Once started, the
simulator continues executing a process until either a delay control (#), a wait with a
FALSE condition, or an event (@) statement is encountered. In the case of the delay
control, event, or a wait with a FALSE condition, the simulator stops executing the
process and finds the next item in the time queue to simulate. In the case of the wait
with a TRUE expression, simulation continues with the same process. A while state-
ment will never stop the simulator from executing the process.

Therefore, since the while statement shown in Example 4.7 waits for an external
variable to change, it will cause the simulator to go into an endless loop. Essentially,
the process that controls inputA will never get a chance to change it. Further, if the
loop were corrected by using a wait statement in place of the while, an infinite loop
would still occur. Since the wait is level sensitive, once its condition becomes TRUE, it
will continue to execute unless stopped by a wait with a FALSE condition, event con-
trol, or delay statement within the loop.

Substituting a wait statement in Example 4.7 would be correct only if the body of
the loop contained either a delay, wait (FALSE), or event control. These would all stop
simulation of this process and give the process that controls inputA a chance to
change its value.

References: while 3.3; delay control 3.1; event control 4.2

References: F; comparison of event and wait 4.3.3

4.3.2 Comparison of the Wait and While Statements

It is incorrect to use the while statement to watch for an externally generated condi-
tion. Even though the final implementation of the state machine that waits for the
condition generated by another concurrent process may be a “while” (i.e. stay in state



Concurrent Processes 121

module endlessLoop
(input inputA);

reg[15:0] count;

always
begin

count = 0;
while (inputA)

count = count + 1; // wait for inputA to change to FALSE

("This will never print if inputA is TRUE!");
end

endmodule

Example 4.7 An Endless Loop

4.3.3 Comparison of Wait and Event Control Statements

In essence, both the event and wait statements watch for a situation that is generated
by an external process. The difference between the two is that the event control state-
ment is edge-triggered whereas the wait is a level-sensitive statement.

Thus the event control is appropriate for describing modules that include edge-
triggering logic, such as flip flops. When active, the event statement must see a
change occur before its statement is executed. We may write:

@(posedge clock) statement;

When control passes to this statement, if clock has the value one, the execution will
stop until the next transition to one. That is, the event operator does not assume that
since clock is one that a positive edge must have occurred. Rather, it must see the pos-
itive edge before proceeding.

The wait, being level-sensitive, only waits if its expression is FALSE.

References: while 3.3
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4.4 A Concurrent Process Example
The Producer-Consumer example presented in section 4.3 illustrated how two pro-
cesses could communicate and transfer information by waiting for appropriate levels
on interprocess handshake lines. In this section, we specify a simple synchronous bus
protocol and develop a simulation model for it using the event control (@) constructs.
The cycle-accurate style of description will be used.

Figure 4.2 illustrates the synchronous bus protocol to be used in our example. A
clock signal is transmitted on the bus and is used to synchronize the actions of the bus
master and bus slave. A write bus cycle takes one full clock period and a read cycle
takes two. The type of bus cycle being performed is indicated by the rwLine bus line;
a zero indicates a read and a one indicates a write.

At the beginning of a write cycle the bus master drives the rwLine, addrLines, and
dataLines lines and waits for the end of the clock cycle. At the end of the clock cycle,
the values will have propagated down the bus to the slave. On the negative edge of
clock, the slave loads the dataLines into the memory location specified by the
addrLines lines.

A read cycle takes two clock periods to complete. During the first, and continuing
through the second, the bus master drives the rwLine and addrLines lines. During
the second clock period, the bus slave drives the data lines with the value read from
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memory at address addrLines. On the negative edge of second clock cycle, the master
loads dataLines into an internal register.

The x’ed areas in addrLines and dataLines show values changing at the clock edge.
In our description, they change in zero time; the x’s in the figure necessarily take up
physical space on the horizontal axis.

Although the bus protocol is simple, it will illustrate the cycle-accurate specifica-
tion of a clock-synchronous system and bring together a number of modeling con-
structs illustrated in smaller examples.

Example 4.8 is organized as one module containing four processes described using
always and initial statements. Three processes model the clock, the bus master, and
the bus slave. The fourth initializes the system and sets up a monitor to display
changes in values. The wiggleBusLines task is used by the master to encapsulate the
actions of the bus protocol, hiding the details from other possible actions of the mas-
ter. The processes communicate through the global variables clock, rwLine,
addressLines, and dataLines instead of through nets. (Example 6.10 extends this
example to using nets between the master and slave.)

The description begins by defining two constants of the system, READ and
WRITE. These definitions will make the wiggleBusLines task call more readable.
Within the sbus module, a parameter is defined. Parameter tClock is one half of the
clock period and is set to 20. At this point we can consider this to be default value for
the tClock. This value will be substituted when the parameter name is used. (Later in
Chapter 6, parameters will be discussed more fully and we will see that this generic
value can be overridden at instantiation time.) Finally, the registers are defined. Since
we are only implementing 32 16-bit words in memory m, we have only defined
addressLines to be 5 bits wide.

When simulation of the two always and two initial statements begins, they will
start executing in arbitrary order. The description must be written so that it will work
correctly under any starting order.

The first initial statement in the example performs three important functions.
First, it loads memory m from an external file called “memory.data” using the
memh system task. The operation of this task will be described later. Secondly, clock
is initialized to 0; it is important to initialize values that are used to synchronize pro-
cesses. Finally, the statement displays the values rwLine, dataLines,
addressLines, and anytime any of the first three change.

The first always statement in the description simply inverts clock every tClock
time units (which is 20 in this case). It waits for tClock time units before executing.
Even if this always statement started executing first, it will not access the value of
clock until it is set to 0 by the initial statement described above. Thus, the time delay
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`define READ 0
`define WRITE 1

module sbus;
parameter tClock = 20;

reg clock;
reg[15:0] m[0:31]; //32 16-bit words
reg [15:0] data;
// registers names xLine model the bus lines using global registers
reg rwLine; //write = 1, read = 0
reg [4:0] addressLines;
reg [15:0] dataLines;

initial
begin

("memory.data", m);
clock = 0;

("rw=%d, data=%d, addr=%d at time %d",
rwLine, dataLines, addressLines, );

end

always
#tClock clock =!clock;

initial // bus master end
begin

#1
wiggleBusLines (`READ, 2, data);
wiggleBusLines (`READ, 3, data);
data = 5;
wiggleBusLines (`WRITE, 2, data);
data = 7;
wiggleBusLines (`WRITE, 3, data);
wiggleBusLines (`READ, 2, data);
wiggleBusLines (`READ, 3, data);

end
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task wiggleBusLines
(input readWrite,
input [5:0] addr,
inout [15:0] data);

begin
rwLine <= readWrite;
if (readWrite) begin // write value

addressLines <= addr;
dataLines <= data;

end
else begin //read value

addressLines <= addr;
@ (negedge clock);

end
@(negedge clock);
if (~readWrite)

data <= dataLines; // value returned during read cycle
end

endtask

always // bus slave end
begin

@(negedge clock);
if (~rwLine) begin //read

dataLines <= m[addressLines];
@(negedge clock);

end
else //write

m[addressLines] <= dataLines;
end

endmodule

Example 4.8 Behavioral Description of a Synchronous Bus

orders the start of these two statements and insures that this always statement won’t
be complementing an unknown value.

The bus master process calls the wiggleBusLines task with three parameters, indi-
cating the type of cycle, the memory address, and the data. The third parameter is
defined in the task to be an inout, and represents the data to be written during a write
bus cycle, or the data read during a read cycle. The task is called six times by the mas-
ter process, passing different values to it. The first task call will cause wiggleBusLines
to read from address 2 and return the read value in data. The third call will cause a
write of the value 5 into memory address 2.



126 The Verilog Hardware Description Language

The bus master is written assuming that clock has just fallen and a new bus cycle is
beginning. If the bus cycle is a WRITE, the then part of the if is executed, loading
addressLines and dataLines with the values passed to the task. The task then waits
for the next negative edge of the clock (i.e. the end of the write cycle) before returning
from the task. When that negative edge occurs, we know that the end of the WRITE
cycle has occurred and, as we will see, the bus slave has loaded the value in dataLines
into m at the address in addressLines. The #1 assures that all other always and initial
blocks execute first.

Let’s trace the action of the slave during the write cycle. The bus slave process
begins by waiting for the negative edge of the clock. Remember that these models are
written assuming that a negative clock edge has just occurred and that a bus cycles is
just beginning. Thus the “@(negedge clock)” statement waits until the end of the
cycle just started, at which point it executes its if statement. Since we are tracing a
write cycle, the else part of the if is executed and the value in dataLines is copied into
m as addressed by addressLines. The slave process then waits for the end of the next
clock cycle.

Let’s assume that two back-to-back writes are going to be done to memory. It is
instructive to examine how the two “@(negedge clock)” statements at end of the write
cycle work; the one clock event is near the end of the wiggleBusLines task and the
other is the clock event at the start of the slave process. Both processes are waiting for
this edge to occur. When it does, one or the other will execute first; we do not know
which. The value at issue is dataLines. If wiggleBusLines executes first and starts the
second write, it will assign dataLines with a new value of data in the first then part. If
the slave starts first, it will write the value of dataLines into memory. So, which value
of dataLines will be written into memory? Given that both transfers are non-block-
ing, the transfers are synchronized and order independent. Indeed, care must be taken
to insure the order independence of data transfers. In cycle-accurate descriptions,
non-blocking assignments insure this.

The read cycle requires an extra clock period in the master and slave models. Task
wiggleBusLines loads addressLines with the address to read from and waits for the
end of the second clock cycle before continuing. At the end of the second cycle, the
value in dataLines is loaded into data and that value is returned from the task to the
bus master.

The bus slave waits for the end of the first clock cycle and then puts the value read
from address addressLines of m into dataLines. Thus the value read appears at the
beginning of the second clock cycle. The slave then waits for the next negative clock
edge event (i.e. the end of the read cycle) before looping around for the next bus cycle.

The results of simulating Example 4.8 are shown in Figure 4.3. The simulation is
driven by the bus master process and its calls to the wiggleBusLines task. Essentially,
the process reads from addresses 2 and 3, writes the values 5 and 7 respectively to
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them, and then rereads them to see that the values are written correctly. The
system task is called to end the simulation.

The printing is controlled by the statement in the initial statement. Since
values only change on the clock edges, each line of the simulation trace shows the val-
ues in the system at the end of a clock cycle. The first line shows values in the system
when the                  first executes. The second line shows the values when the wiggle-
BusLines task first executes (it shows the system reading from address 2). dataLines
has not been written yet and thus it appears as x. The next line represents the values at
the ends of the two clock cycles in the read cycle. The value read is 29. (This corre-
sponds to the value that was in the memory.data file.) Following through the simula-
tion trace, we can see that the 29 in address 2 is overwritten with the value 5 by the
first write operation. Evidence that the value was actually stored in the memory is
seen in the second to last read operation where address 2 is reread.

There are several features of the description that should be emphasized:

The bus master and slave processes are synchronized to the clock signal. At the
end of the clock period when the negative edge occurs, these processes execute. It
is important to note that none of these processes immediately changes any of the
registers used to pass information between the processes (i.e. rwLine, addrLines,
dataLines). If one of the processes had changed any of these registers, the result of
the simulation would have relied on the order in which the simulator executed
these events — not good. Non-blocking assignments insure correct operation.

The memory array m is initialized from an external text file using the
system task. This technique is quite useful for loading machine instructions into a
simulation model of a processor, initializing data in a memory as shown here, and
loading test vectors that will be applied to other parts of the system. In this case,
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the task reads whitespace-separated hexadecimal numbers from the
memory.data file and loads them consecutively into memory locations starting at
address 0. See Appendix F.8 for more details and options.

Note that READ and WRITE were defined to be constants but tClock was
defined to be a parameter. Parameters provide a means of specifying a default con-
stant to use for a module. However, when the module is instantiated, the values of
the parameters may be overridden. Section 5.2 discusses parameters in more
detail.

In one statement we use the operator “!” to specify the complement of clock, and
in another statement we use the operator “~” to specify the complement of
rwLine. In this context, either is correct because the values being complemented
are one-bit. The “~” specifies a bitwise complement of its operand (i.e. ~4’b0101 is
4’b1010). The “!” specifies the complement of the operand’s value. Assume the
operand is multibit. Then if the value is 0 (FALSE), the “!” complement is TRUE. If
the multibit operand is nonzero (TRUE), the “!” complement is FALSE. Thus
!4’b0101 is false.

References: parameters 5.2; F.8; Verilog operators C; tasks 3.5.1; register specification E.1;
memory specification E.2

4.5 A Simple Pipelined Processor
This section presents another example of a concurrent system. Here we will design a
very simple pipelined processor based on the Mark-1 description started in chapter 3.
Although the example is not indicative of the complexity of current-day processors,
the basic approach suggests methods of modeling such processors.

4.5.1 The Basic Processor

The model for the processor, using the cycle-accurate style of specification, is shown
in Example 4.9. An abstract level of modeling a processor allows the designer to
understand what functionality will occur during each clock cycle, how that function-
ality is impacted by concurrent activity in other stages of the processor’s pipeline, and
what the performance of the machine will be, at least in terms of clock cycles.

This example is composed of two always blocks, one for each pipestage of this sim-
ple processor. The first always block models the first pipestage of the processor which
fetches instructions. The second always block models the second pipestage which exe-
cutes the instructions. Since each is described by an always block, we have modeled
the concurrency found between pipestages of a processor.
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Non-blocking assignment is used across the design to synchronize the updating of
state to the clock edge ck. With non-blocking assignment, it is important to remem-
ber that all of the right-hand sides of the assignments across the whole design (the
two always blocks here) are evaluated before any of the left-hand sides are updated. In
this example, note that the instruction register (ir) is loaded in the first always block
and it is accessed in the second. Since all accesses are implemented with non-blocking
assignments, we know that the instruction fetch which loads the instruction register
will not interfere with the instruction execution in the second always block — all
right-hand sides in the second always block will be evaluated before ir is updated by
the first always block.

module mark1Pipe;
reg[15:0] signed m [0:8191]; //signed 8192 x 16 bit memory
reg [12:0] signed pc; // signed 13 bit program counter
reg [12:0] signed acc; // signed 13 bit accumulator
reg [15:0] ir; // 16 bit instruction register
reg ck; // a clock signal

always @(posedge ck) begin
ir <= m [pc];
pc <= pc + 1;

end

always @(posedge ck)
case (ir [15:13])

3'b000 : pc <= m [ir [12:0]];
3'b001:   pc <= pc + m [ir [12:0]];
3'b010  :    acc <= -m [ir [12:0]];
3'b011:   m [ir [12:0]] <= acc;
3'b100,
3'b101 :     acc <= acc - m [ir [12:0]];
3 ' b 1 1 0 :   i f ( a c c < 0 ) p c < = p c + l ;

endcase
endmodule

Example 4.9 A Pipelined Processor

However, the non-blocking assignments do not guard against all problems in syn-
chronization. Note that when executing certain instructions, the pc is loaded in both
always blocks — instruction 0 is such a case. The issue to consider is which update of
the pc will occur first: the one in the first always block, or in the second? Of course,
the order of updates is undefined so we need to alter this description to obtain correct
operation.
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4.5.2 Synchronization Between Pipestages

In the general case, having the same register written by two separate always blocks
leads to indeterminate values being stored in the register. If a model can guarantee
that the two always blocks never write the register at the same time (i.e., during the
same state or clock time), then writing a register from two always blocks is perfectly
valid. However, in our case though, pc is written during every state by the fetch pro-
cess and during some states by the execution process.

Example 4.10 corrects this problem by adding register pctemp. This register is
written only by the execute stage while pc is written only by the fetch stage. In the
case where a branch instruction is executed, pctemp is written with the branch target.
At the same time, the next sequential instruction is fetched and the pc is incremented
by the fetch stage. However, since a branch is being executed, this instruction and the
incremented pc are not needed. A separate indicator register, skip, is set by the execu-
tion stage to indicate that a branch occurred and that the next instruction should be
fetched from m[pctemp] rather than from m[pc]. Additionally, since the instruction
after the branch was already fetched, skip also controls the execution stage to keep it
from being executed.

In this example, all assignments are non-blocking except one. In the fetch process,
pc is assigned with a blocking assignment so that it can be used on the following lines
of the process.

There are alternate approaches to correcting this problem, including duplicating
the case(ir) statement in the fetch stage so that pc is conditionally loaded with a
branch target when a branch occurs. However, the execution stage will still need to
skip the extra instruction.
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module mark1PipeStage;
reg[15:0] signed m [0:8191];   //signed 8192 x 16 bit memory
reg [12:0] signed pc; // signed 13 bit program counter
reg [12:0] signed acc; // signed 13 bit accumulator
reg [15:0] ir; // 16 bit instruction register
reg ck, skip;

always @(posedge ck) begin //fetch process
if (skip)

pc = pctemp;
ir <= m [pc];
pc <= pc + 1;

end

always @(posedge ck) begin //execute process
if (skip)

skip <= 0;
else

case (ir [15:13])
3'b000: begin

pctemp <= m [ir [12:0]];
skip <= 1;

end
3'b001: begin

pctemp <= pc + m [ir [12:0]];
skip <= 1;

end
3'b010 : acc <= -m [ir [12:0]];
3'b011: m [ir [12:0]] <= acc;
3'b100,
3'b101: acc <= acc - m [ir [12:0]];
3'b110: if (acc < 0) begin

pctemp <= pc + 1;
skip <= 1;

end
endcase

end
endmodule

Example 4.10 Synchonization Between the Stages
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4.6 Disabling Named Blocks
In Example 3.4, we showed how the
disable statement could be used to
break out of a loop or continue exe-
cuting with the next iteration of the
loop. The disable statement, using the
same syntax, is also applicable in con-
current process situations. Essen-
tially, the disable statement may be
used to disable (or stop) the execution
of any named begin-end block —
execution will then continue with the
next statement following the block.
The block may or may not be within
the process containing the disable
statement. If the block being disabled
is not within the local or upward
scope, then hierarchical names are
required.

To illustrate disabling a concurrent
process we return to the scheduled
behavior in Example 4.11. A reset
input has been added, along with an
initial statement, and a wait statement
in the always block. These additions
provide an asynchronous, asserted-
low, reset for this cycle-accurate speci-
fication.

module simpleTutorialWithReset
(input clock, reset,
output reg [7:0] y,x);

initial
forever begin

@(negedge reset)
disable main;

end

always begin: main
wait (reset);
@(posedge clock) x <= 0;
i = 0;
while (i <= 10) begin

@(posedge clock);
x <= x + y;
i = i + 1;

end
@(posedge clock);
if (x<0)

y < = 0 ;
else x <= 0;

end
endmodule

Example 4.11 Description Using
Scheduled Behavioral Approach

Consider how the module works. At the start of time, both the initial and always
block can begin executing. One stops to wait for a negative edge on reset while the
other waits for reset to be TRUE. If we assume that reset is unasserted (1), then the
always block will begin executing its cycle-accurate specification. At some time, reset
is asserted (i.e., it becomes 0), and its negative edge activates the initial block. The
initial block disables main, which is the name of the begin-end block in the always
block. No matter where the main block was in its execution, it is exited, and the
always block is restarted. The first statement at the start is a wait for reset to be TRUE

— unasserted. Thus, when reset is asserted, the main block is stopped, and it does not
restart at the beginning until reset becomes unasserted.

A block is named as illustrated in the example. A block declaration is a statement
and has the general form:



Concurrent Processes 133

statement
seq_block

seq_block
begin [: block_identifier {block_item_declaration} ]

{ statement }
end

block_item_declaration
parameter_declaration
local_parameter_declaration
integer_declaration
real_declaration
time_declaration
realtime_declaration
event_declaration

Note that the introduction of a named block also allows for the optional block decla-
rations. At this point, other parameters and registers may be defined for the scope of
the block.

The action of the disable statement not only stops the named block, but also any
functions or tasks that have been called from it. Also, any functions or tasks they have
called are also stopped. Execution continues at the next statement after the block. If
you disable the task (or function) you are in, then you return from the task (or func-
tion).

It is also interesting to point out what is not stopped by the disable statement. If
the disabled named block has triggered an event control, by changing a value or by
triggering a named event, the processes watching for these events will already have
been triggered. They will not be stopped by the disable.

When we defined the term process, we emphasized that it referred to an indepen-
dent thread of control. The implementation of the control was irrelevant; it could be
as a microcoded controller, simple state machine, or in some other way. In the case of
Example 4.11, if we assume that the first state of the controller implementing the
always statement is encoded as state zero, then the initial block could be implemented
as an asynchronous reset of the state register of the always’ controller. That is, the ini-
tial statement would not look like a state machine, rather it would be some simple
reset logic. The point is that regardless of the implementation of the two processes,
there are two independent activities in the system capable of changing state. Each is
active and operating independently of the other.

References: always 3.1; disable in loops 3.3.2; parallel blocks 4.9; hierarchical names 3.6; scope of

identifiers 3.6
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4.7 Intra-Assignment Control and Timing Events
Most of the control and timing events that we have used in examples have been speci-
fied to occur before the action or assignment occurs. We have written statements like:

#25 a = b;

or

@(posedge w) q = r;

The actions performed respectively are: delay 25 time units and then assign the value
of b to a; and delay until there is a positive edge on w and then assign the value of r to
q. What is common about these behavioral statements is the “delay” (either the # or
the @) occurs before the assignment is performed. Indeed, the right-hand side of the
statement is not evaluated until after the “delay” period. Intra-assignment timing con-
trols allow for the “delay” to occur within the assignment — between when the right-
hand side is evaluated and when the left-hand side is assigned. Conceptually, these
assignments have a master-slave character; inputs are sampled, a delay occurs, and
then later the outputs are assigned.

The assignments are written with the delay or event control specification in the
middle of the assignment just following the “=”. This makes intuitive sense when
reading such an assignment. Given that the right-hand side of the equation is evalu-
ated first and then assigned to the left-hand side, having the delay or event control in
the middle of the assignment keys the reader that you must delay before completing
the right-to-left assignment. Although all of our examples here are with blocking
assignments, intra-assignment control and timing events can be used with non-block-
ing assignments as well. The intra-assignment timing control versions of the state-
ments above are:
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The actions taken by the first two assignments are respectively: evaluate b and store
the value in a temporary place, delay 25 time units, and then assign the stored value to
a; and evaluate r and store the value in a temporary place, wait for the next positive
edge on w, and then store the temporary value in q. These correspond to the illustra-
tions above. The third entry shows the intra-assignment repeat which was not illus-
trated above. The right-hand side is calculated and assigned to a temporary place.
When the delay is completed (in this case, waiting for two positive edges of clock),
the value is assigned to w. Thus each of these statements stores a temporary copy of
the right-hand-side value for assignment to the left-hand side at a later time.

The copy of the right-hand side is actually stored in the simulator event queue and
is not accessible for any other purposes.

The three forms of the intra-assignment statement, for both blocking and non-
blocking assignments, are described below:

statement
blocking_assignment;
nonblocking_assignment;

blocking_assignment
variable_1value = [ delay_or_event_control ] expression

nonblocking_assignment
variable_1value <= [ delay_or_event_control ] expression

delay_or_event_control
delay_control
event_control
repeat (expression ) event_control

delay _control
# delay_value
# ( mintypmax_expression )
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event_control
@ event_identifier
@ (event expression)
@*
@(*)

event_expression
expression
hierarchical_identifier
posedge expression
negedge expression
event_expression or event_expression
event_expression, event_expression

A use of intra-assignment timing controls is specifying a D flip flop. This approach
uses the statement:

@(posedge clock) q = #10 d;

This statement provides a master-slave character to the behavior of the flip flop. This
model samples the value of d at the clock edge and assigns it 10 time units later. How-
ever, the following does not accurately model a flip flop.

q = @(posedge clock) d;

This statement samples the value of d whenever the statement is executed. Then
when the positive edge of the clock occurs, q is assigned that value. Given that the
initial value of d could be sampled well before the time of the clock edge, the typical
behavior of a flip flop is not captured.

References: non-determinism 8.3

4.8 Procedural Continuous Assignment
The continuous assignment statement presented in an earlier chapter, allows for the
description of combinational logic whose output is to be computed anytime any one
of the inputs change. There is a procedural version of the continuous assignment
statement that allows for continuous assignments to be made to registers for certain
specified periods of time. Since the assignment is not in force forever, as is true with
the continuous assignment, we call this the procedural continuous assignment (these
were called “quasi-continuous” in earlier versions of the manuals), While the proce-
dural continuous assignment is in effect, the statement acts like a continuous assign.
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Consider the example of a preset
and clear on a register shown in
Example 4.12. Note first that the
difference between continuous and
procedural continuous is immedi-
ately obvious from the context; the
procedural continuous assignment
is a procedural statement executed
only when control passes to it. (The
continuous assignment is always
active, changing its outputs when-
ever its inputs change.) In this
example, the first always statement
describes a process that reacts to a
change in either the clear or preset
signals. If clear becomes zero, then
we assign register q to be zero. If
preset becomes zero, then we assign
register q to be one. When a change
occurs and neither are zero, then we
deassign q (essentially undoing the
previous procedural continuous
assignment), and then q can be
loaded with a value using the nor-
mal clock method described by the second always statement.

module dFlop
(input preset, clear,
output reg q,
input clock, d);

always
@(clear, preset)

begin
if(!clear)

#10 assign q = 0;
else if (!preset)

#10 assign q = 1;
else

#10 deassign q;
end

always
@(negedge clock)

q = #10 d;
endmodule

Example 4.12 Flip Flop With Procedural
Continuous Assignment

The general form of the assignment is:

statement
procedural_continuous_assignments

procedural_continuous_assigmnent
assign variable_assignment;
deassign variable_lvalue;

variable_assignment
variable_lvalue = expression

It is important to note that the procedural continuous assignment overrides a nor-
mal procedural assignment to a register. While the procedural continuous assignment
is in effect, the reg_assignment acts like a continuous assignment. Thus, even if the
negative edge of the clock occurred as watched for in the second always statement, the
procedural assignment of d to q would not take effect. Further, if the value of the
right-hand side of a procedural continuous assignment changes (it was not a constant
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as in the above example), then the left-hand side will follow it. The value procedural-
continuously assigned remains in the register after the deassignment.

References: continuous assignment 6.3; procedural assignment 3.1; event control with or 4.2.1

4.9 Sequential and Parallel Blocks
The begin-end blocks that we have seen so far are examples of sequential blocks.
Although their main use is to group multiple procedural statements into one com-
pound statement, they also allow for the new definition of parameters, registers, and
event declarations when the begin-end blocks are named. Thus new local variables
may be specified and accessed within a named begin-end block.

An alternate version
of the sequential begin-
end block is the parallel
or fork-join block shown
below. Each statement in
the fork-join block is a
separate process that
begins when control is
passed to the fork. The
join waits for all of the
processes to complete
before continuing with
the next statement
beyond the fork-join
block.

module microprocessor;
always

begin
resetSequence;
fork: mainWork

forever
fetchAndExecuteInstructions;

@(posedge reset)
disable mainWork;

join
end

endmodule

Example 4.13 An Illustration of the Fork-Join Block

This example illustrates the description of an asynchronous reset restarting a pro-
cess. A resetSequence initializes registers and then begins the fork-join block named
mainWork. The first statement of the fork is a forever loop that describes the main
behavior of the microprocessor. The second statement is the process that watches for
the positive edge of the reset signal. When the positive edge of the reset occurs, the
mainWork block is disabled. As described previously, when a block is disabled, every-
thing in the named block is disabled and execution continues with the next statement,
in this case the next iteration of the always statement. Thus, no matter what was hap-
pening in the fetch and execute behavior of the system, the reset is able to asynchro-
nously restart the whole system.

The general form for the parallel block is given below. Like the named (sequential)
blocks previously described, naming the block allows for the optional
block_declarations that can introduce new names for the scope of the block.
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statement
par_block

par_block
fork [: block _identifier { block_item_declaration } ]

{ statement}
join

block_item_declaration
parameter_declaration
local_parameter_declaration
integer_declaration
real_declaration
time_declaration
realtime_declaration
event_declaration

Example 4.14 shows a less abstract
use of the fork-join block.
Example 4.11 has been rewritten, this
time with a single always that includes
a fork-join.

Again, it is important to note that
we consider each of the statements of
the fork-join as a separate process.
This example essentially replaced two
always statements by one that has a
fork-join. Comparing back to
Example 4.11 serves to enforce further
the notion that each statement in the
fork-join should be considered, at least
conceptually, a separate process.

References: named blocks 4.6

module simpleTutorialWithReset
(input clock, reset,
output reg [7:0] y, x_;

reg [7:0] i;

always fork: main
@(negedge reset)

disable main;
begin

wait (reset);
@(posedge clock) x <= 0;
i = 0;
while (i <= 10) begin

@(posedge clock);
x <= x + y;
i = i + 1;

end
@(posedge clock);
if (x < 0)

y < = 0 ;
else x <= 0;

end
join

endmodule

Example 4.14 Fork-Join Version of Simple
Tutorial Example
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4.10 Exercises
4.1

4.2

4.3

4.4

4.5

Will the following two fragments of Verilog code result in the same behavior?
Why or why not?

@(posedge exp)
#1 statement1;

wait (exp)
#1 statement 1;

Rewrite the consumer and producer modules in Examples 4.6 at the behavioral
level, such that a common clock signal controls the timing of the data transfer
between the modules. On consecutive positive clock edges, the following is to
happen: 1) the producer sets up the data on its output, 2) the consumer reads the
data, 3) the producer sets up its next data value, and so on.

For the design to be valid there needs to be a suitable power-on initialization
mechanism. Find a solution to this and include it in the model.

Extend Examples 4.6 to include internal processing between the consumer and
producer parts that is a simple increment operation with a delay of 10 time
units. Connect an instance of this module in a loop such that data can flow
around the loop forever with data being incremented each time around. Add
extra code to initialize the model for execution (See figure, top of next page).

Consider four named events: e1, e2, e3, and e. Write a description to trigger
event e after e1, e2, and e3 have occurred in a strict sequence Namely, if any
event goes out of order the sequence is to be reset. Then, write a description to
trigger event e after e1, e2, and e3 have each occurred three times in any order.

The following combinational logic block has three inputs and an output. The
circuit was built in some screwy technology and then analyzed. We now want to
insert the correct input-to-output timing information into the circuit (internal
node timings need not be correct).
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Here are the circuit timings that must be represented in the circuit.

The delay of a rising or falling edge on a or b to output f: 15 time units

The delay of a rising or falling edge on c to output f: 10 time units

4.6

4.7

Yes, those times are rather strange given the logic diagram. However, this is a
screwy technology and the transistor implementation made for some strange,
but actual, time delays.

Assume a, b, and c are outputs of synchronously clocked flip flops. Write the
behavioral Verilog description that will be correct in functionality and timing.

For the pipeline processor in Example 4.10, add part of the instruction decode
logic (i.e., like the case statement in the execute stage) into the fetch stage. Use
it instead of the skip variable to determine how to load the pc.
For the mark1PipeStage module in Example 4.10, write an initial statement
that will load the processor’s memory and execute several instructions. Add a
monitor statement and other initializations and clocking as needed. Write a
program with the given machine instructions that will execute the following
pseudo code:
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4.8

if ((m[4] - m[5]) < 0)
m[4] = 17;

else m[4] = -10;

Add a third stage to the pipeline of Example 4.10. The second stage should only
fetch operands; values read from memory should be put in a memory data regis-
ter (mdr). The third stage will execute the instructions, loading the resulting val-
ues (mdr) in acc, pctemp, or m. Assume that the memory has multiple read and
write ports. Handle any interstage conflicts that may arise.



5 Module Hierarchy

A structural model of a digital system uses Verilog module definitions to describe
arbitrarily complex elements composed of other modules and gate primitives. As we
have seen in earlier examples, a structural module may contain a combination of
behavioral modeling statements (an always statement), continuous assignment state-
ments (an assign statement), or module instantiations referencing other modules or
gate level primitives. By using module definitions to describe complex modules, the
designer can better manage the complexity of a design. In this chapter we explore
module hierarchy and how it is specified as we cover instantiation, parameterized
modules, and iterative generation.

5.1 Module Instantiation and Port Specifications
A port of a module can be viewed as providing a link or connection between two
items, one internal to the module instance and one external to it. We have seen
numerous examples of the specification of module ports.

An input port specifies the internal name for a vector or scalar that is driven by an
external entity. An output port specifies the internal name for a vector or scalar which
is driven by an internal entity and is available external to the module. An inout port
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specifies the internal name for a vector or scalar that can be driven either by an inter-
nal or external entity.

It is useful to recap some of the do’s and don’t’s in their specification. First, an input
or inout port cannot be declared to be of type register. Either of these port types may
be read into a register using a procedural assignment statement, used on the right-
hand side of a continuous assignment, or used as input to instantiated modules or
gates. An inout port may only be driven through a gate with high impedance capabil-
ities such as a bufif0 gate.

Secondly, each port connection is a con-
tinuous assignment of source to sink where
one connected item is the signal source and
the other is a signal sink. The output ports
of a module are implicitly connected to sig-
nal source entities such as nets, registers,
gate outputs, instantiated module outputs,
and the left-hand side of continuous
assignments internal to the module. Input
ports are connected to gate inputs, instanti-
ated module inputs, and the right-hand
side of continuous and procedural assign-
ments. Inout ports of a module are con-

module binaryToESeg
(input A, B, C, D,
output eSeg);

nand #1
g1 (p1, C, ~D),
g2 (p2, A, B),
g3 (p3, ~B, ~D),
g4 (p4, A, C),
g5 (eSeg, p1, p2, p3, p4);

endmodule

nected internally to gate outputs or inputs. Externally, only nets may be connected to
a module’s outputs.

Finally, a module’s ports are normally connected at the instantiation site in the
order in which they are defined. However, we may connect to a module’s ports by
naming the port and giving its connection. Given the definition of binaryToESeg,
reprinted here from Example 1.3, we can instantiate it into another module and con-
nect its ports by name as shown below. Example 1.11 instantiated this module using
the statement:

binaryToESeg disp m1 (eSeg, w3, w2, w1, w0);

where eSeg, w3, w2, w1, and w0 were all declared as wires. (The module instance
name m1 has been added here to help the discussion.) Alternately, the ports could
have been specified by listing their connections as shown below:

binaryToESeg disp m1 (.eSeg(eSeg), .A(w3), .B(w2), .C(w1), .D(w0));

In this statement, we have specified that port eSeg of instance m1 of module binary-
ToESeg will be connected to wire eSeg, port A to wire w3, port B to wire w2, port C
to wire w1, and port D to wire w0. The period (“.”) introduces the port name as
defined in the module being instantiated. Given that both names are specified
together, the connections may be listed in any order. If a port is to be left uncon-
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module _identifier [ parameter_value_assignment ] module_instance {,
module_instance };

parameter_value_assignment
# (expression {, expression } )

module_instance
name_of_instance ([list_of_module_connections])

name_of_instance
module_instance_identifier [ range ]

list_of_module_connections
ordered_port_connection {, ordered_port_connection }
named_port_connection {, named_port_connection }

ordered_port_connection
[ expression ]

named_port_connection
port_identifier ([ expression ])

nected, no value is specified in the parentheses — thus .D() would indicate that no
connection is to be made to port D of instance m1 of module binaryToESeg.

At this point we can formally specify the syntax needed to instantiate modules and
connect their ports. Note that the following syntax specification includes both means
of listing the module connections: ordered-port and named-port specifications.

module instantiation
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5.2 Parameters
Parameters allow us to enter define
names for values and expressions that
will be used in a module’s descrip-
tion. Some, for instance a
localparam, allow for the specifica-
tion of a constant, possibly through a
compile-time expression. Others
(parameter) allow us to define a
generic module that can be parame-
terized for use in different situations.
Not only does this allow us to reuse
the same module definition in more
situations, but it allows us to define
generic information about the mod-
ule that can be overridden when the
module is instantiated.

module xor8
(output [1:8] xout,
input [1:8] xin1, xin2);

xor (xout[8], xinl [8], xin2[8]),
(xout[7], xinl [7], xin2[7]),
(xout[6], xinl [6], xin2[6]),
(xout[5], xinl [5], xin2[5]),
(xout[4], xinl [4], xin2[4]),
(xout[3], xinl [3], xin2[3]),
(xout[2], xinl [2], xin2[2]),
(xout[l], xinl [l], xin2[l]);

endmodule

Example 5.1 An 8-Bit Exclusive Or

Example 5.1 presents an 8-bit XOR module that instantiates eight XOR primitives
and wires them to the external ports. The ports are 8-bit scalars; bit-selects are used to
connect each primitive. In this section we develop a parameterized version of this
module.

First, we replace the eight XOR gate
instantiations with a single assign
statement as shown in Example 5.2,
making this module more generally
useful with the parameter specification.
Here we specify two parameters, the
width of the module (4) and its delay
(10). Parameter specification is part of
module definition as seen in the fol-
lowing syntax specification:

module xorx
# (parameter width =  4,

delay = 10)
(output [l:width] xout,
input [1:width] xinl, xin2);

assign #(delay) xout = xin1 ̂  xin2;
endmodule

Example 5.2 A Parameterized Module

module_declaration
module_keyword module_identifier [ module_parameter_port_list]

[list_of_ports];
{ module_item }
endmodule

| module_keyword module_identifier [ module_parameter_port_list]
[list_of_ports_declarations];
{ non_port_module_item }
endmodule
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module_parameter_port_list
# (parameter_declaration { , parameter_declaration})

parameter_declaration
parameter [ signed ] [ range ] list_of_param_assignments;
parameter integer list_of_param_assignments;
parameter real list_of_param_assignments;
parameter realtime list_of_param_assignments;
parameter time list_of_param_assignments;

The module_parameter_port_list can be specified right after the module keyword
and name; the types of parameters that can be specified include signed, sized (with a
range) parameters, as well as parameter types integer, real, realtime, and time.

Local parameters have a similar declaration style except that the localparam key-
word is used instead of parameter.

local_parameter_declaration
localparam [ signed ] [ range ] list_of_param_assignments;
localparam integer list_of_param_assignments;
localparam real list_of_param_assignments;
localparam realtime list_of_param_assignments;
localparam time list_of_param_assignments;

These cannot be directly overridden and thus are typically used for defining constants
within a module. However, since a local parameter assignment expression can contain
a parameter (which can be overridden), it can be indirectly overridden.

When module xorx is instantiated,
the values specified in the parameter
declaration are used. This is a generic
instantiation of the module. However,
an instantiation of this module may
override these parameters as illustrated
in Example 5.3. The “#(4, 0)” specifies
that the value of the first parameter
(width) is 8 for this instantiation, and
the value of the second (delay) is 0. If the
“#(4, 0)” was omitted, then the values
specified in the module definition would
be used instead. That is, we are able to override the parameter values on a per-mod-
ule-instance basis.

module overriddenParameters
(output [3:0] a1, a2);

reg[3:0] b1, c1, b2, c2;

xorx #(4, 0) a(a1, b1, c1),
b(a2, b2, c2);

endmodule

Example 5.3 Overriding Generic
Parameters

The order of the overriding values follows the order of the parameter specification
in the module’s definition. However, the parameters can also be explicitly overridden
by naming the parameter at the instantiation site. Thus:
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xorx #(.width(4), .delay(0)
a(a1, b1, c1),
b(a2, b2, c2);

would have result as the instantiation of xorx in Example 5.3. With the explicit
approach, the parameters can be listed in any order. Those not listed at the instantia-
tion will retain their generic values.

The general form of specifying parameter values at instantiation time is seen in the
following syntax specification:

module instantiation
module _identifier [ parameter_value_assignment ] module_instance {,
module_instance };

parameter_value_assignment
# (list_of_parameter_assignments})

list_of_parameter_assignments
ordered_parameter_assignment {, ordered_parameter_assignment}
named_parameter_assignment {, named_parameter_assignment}

ordered_parameter_assignment
expression

named_parameter_assignment
. parameter_identifier ([expression])

This shows the syntax for either the ordered or named parameter lists.
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Another approach to overriding the
parameters in a module definition is to
use the defparam statement and the hier-
archical naming conventions of Verilog.
This approach is shown in Example 5.4.

Using the defparam statement, all of
the respecifications of parameters can be
grouped into one place within the
description. In this example, the delay
parameter of instance b of module xorx
instantiated within module xorsAreUs
has been changed so that its delay is five.
Module annotate uses hierarchical nam-
ing to affect the change. Thus, the
parameters may be respecified on an indi-
vidual basis. The general form of the def-
param statement is:

parameter_override
defparam
list_of_param_assignments;

module xorsAreUs
(output [3:0] a1, a2);

reg[3:0] b1, c1, b2, c2;

xorx a(al, bl, cl),
b(a2, b2, c2);

endmodule

module xorx
#(parameter width = 4,

delay =10)
(output [1:width] xout,
input [1:width] xin1, xin2);

assign #delay xout = xin1 ̂  xin2;
endmodule

module annotate;
defparam

xorsAreUs.b.delay = 5;
endmodule

Example 5.4 Overriding Parameter
Specification With defparam

The choice of using the defparam or
module instance method of modifying
parameters is a matter of personal style
and modeling needs. Using the module instance method makes it clear at the instan-
tiation site that new values are overriding defaults. Using the defparam method allows
for grouping the respecifications in specific locations. Indeed, the defparams can be
collected in a separate file and compiled with the rest of the simulation model. The
system can be changed by compiling with a different defparam file rather than by re-
editing the entire description. Further, a separate program could generate the def-
param file for back annotation of delays.
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5.3 Arrays of Instances
The definition of the xor8 module in
Example 5.1 was rather tedious because each
XOR instance had to be individually num-
bered with the appropriate bit. Verilog has a
shorthand method of specifying an array of
instances where the bit numbering of each
successive instance differ in a controlled way.
Example 5.5 shows the equivalent redefini-
tion of module xor8 using arrays of
instances. This is equivalent to the original
module xor8 in Example 5.1. The array of instances specification uses the optional
range specifier to provide the numbering of the instance names.

module xor8
(output [1:8] xout,
input [1:8] xin1, xin2);

xor a[l:8] (xout, xinl, xin2);
endmodule

Example 5.5 Equivalent xor8 Using
Array of Instances

There are no requirements on
the absolute values or the relation-
ship of the msb or lsb of the range
specifier (the [1:8} in this exam-
ple) — both must be integers and
one is not required to be larger
than the other. Indeed, they can
be equal in which case only one
instance will be generated. Given
msb and lsb, 1 + abs(msb-lsb)
instances will be generated.

This example showed the case
where each instance was con-
nected to a bit-select of the out-
puts and inputs. When the
instances are generated and the
connections are made, there must
be an equal number of bits pro-
vided by the terminals (ports,
wires, registers) and needed by the
instances. In this, eight instances
needed eight bits in each of the
output and input ports. (It is an
error if the numbers are not
equal.) However, instances are not
limited to bit-select connections. If a terminal has only one bit (it is scalar) but there
are n instances, then each instance will be connected to the one-bit terminal.
Example 5.6 shows D flip flops connected to form a register. The equivalent module

module reggae
(output [7:0]
input [7:0] D,
input clock, clear);

dff r[7:0] ( D, clear, clock);
endmodule

module regExpanded
(output [7:0]
input [7:0] D,
input clock, clear);

dff r7 D[7], clear, clock),
r6 D[6], clear, clock),
r5 D[5], clear, clock),
r4 D[4], clear, clock),
r3 D[3], clear, clock),
r2 D[2], clear, clock),
r1 D[l], clear, clock),
r0 D[0], clear, clock);

endmodule

Example 5.6 A Register Using Arrays of
Instances
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with the instances expanded is shown at the bottom. Note that clock and clear, being
one-bit scalars, are connected to each instance.

5.4 Generate Blocks
Using arrays of instances is limited to fairly simple repetitive structures. Generate
blocks provide a far more powerful capability to create multiple instances of an object.
The primary objects that can be generated are: module and primitive instances, initial
and always procedural blocks, continuous assignments, net and variable declarations,
task and function definitions, and parameter redefinitions.

Continuing with the xorx
examples of the chapter,
Example 5.7 illustrates using a
generate statement to re-describe
the module. The generate…end-
generate block specifies how an
object is going to be repeated.
Variables for use in specifying the
repetition are defined to be gen-
vars. Then a for loop is used to
increment (or decrement) the
genvars over a range. The use of
the genvars in the object to be
repeated then specify such infor-
mation as bit-selects.

module xorGen
#(parameter width = 4,

delay =10)
(output [1:width] xout,
input [l:width] xinl, xin2);

generate
genvar i;
for (i = 1; i <= width; i=i+l) begin: xi

assign #delay
xout[i] = xin1[i] ̂  xin2[i];

end
endgenerate

endmodule

Example 5.7 A Generate Block
In this example, the genvar is i.

The following four copies of the assign statement are generated:

assign #delay xout[l] = xinl[l] ^ xin2[l];
assign #delay     xout[2] = xinl[2] ^ xin2[2];
assign #delay xout[3] = xinl[3] ^ xin2[3];
assign #delay xout[4] = xinl[4] ^ xin2[4];

Since the generate statement is executed at elaboration time, these four statements
become part of module xorGen replacing the generate…endgenerate statement.

The statements controlling the generation of objects within a generate…endgener-
ate block are limited to for, if-then-else, and case. The index of the for loop must be a
genvar and both assignments in the for must be to the same genvar. The genvar can
only be assigned a value as part of the for loop and it can only take on the values of 0
and positive integers. The genvar declaration may be outside of the generate…end-
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generate block, making it available to other generate blocks. A named begin…end
block must be used to specify the contents of the for loop; this provides hierarchical
naming to the generated items.

The generate block of Example 5.7 could also have been written to instantiate
primitive gate instances or always blocks. Shown below is the gate primitive version.
In this case four XOR gates would be instantiated. The gates would have hierarchical
names of xi[1] … xi[4], assuming that the generic instantiation of the module was
specified.

generate
genvar i;
for (i = 1; i <= width; i=i+1) begin: xi

xor #delay a (xout[i], xin1[i], xin2[i]);
end

endgenerate

The always block version is shown below. The result would be four always blocks
with the indicies replaced by 1 through 4.

generate
genvar i;
for (i = 1; i <= width; i=i+1) begin: xi

always @(*)
xout[i] = xin1[i] ̂  xin2[i];

end
endgenerate

Consider modeling an n-bit adder (where n is greater than 1) that also has condi-
tion code outputs to indicate if the result was negative, produced a carry, or produced
a two’s complement overflow. In this case, not all generated instances of the adder are
connected the same. if-then-else and case statements in the for loop may be used to
generate these differences. Example 5.8 shows a module using a case statement in the
generate to produce different adder logic depending on which bit is being generated.

Three different situations are broken out for separate handling. For most of the
stages, the carry in of a stage is connect to the carry out of the previous stage. For the
least significant bit (bit 0), the carry in is connected to the module’s carry in (cIn). For
the most significant bit (which is parameterized as width), the carry out (cOut), over-
Flow and negative (neg) outputs must be connected.
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module adderWithConditionCodes
#(parameter width = 1)
(output reg [width-1:0] sum,
output reg cOut, neg, overFlow,
input [width-1:0] a, b,
input cIn);

reg [width -1:0] c;

generate
genvar i;
for (i = 0; 1<= width-1; i=i+l) begin: stage

case(i)
0: begin

always @(*) begin
sum[i] = a[i] ^ b[i] ^ cIn;
c[i] = a[i]&b[i] | b[i]&cIn | a[i] & c I n ;

end
end
width-1: begin

always @(*) begin
sum[i] = a[i] ̂  b[i] ̂  c[i-1];
cOut = a[i]&b[i] | b[i]&c[i-1] | a[i] & c[i-1];
neg = sum[i];
overFlow = cOut^ c[i-1];

end
end
default: begin

always @(*) begin
sum[i] = a[i] ̂  b[i] ̂  c[i-l];
c[i] = a[i]&b[i] | b[i]&c[i-1] | a[i] &c[i-l];

end
end
endcase

end
endgenerate

endmodule

Example 5.8 Generating an Adder
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5.5 Exercises
5.1 Write a module with the structure:

module progBidirect (ioA, ioB, selectA, selectB, enable);
inout [3:0] ioA, ioB;
input [1:0] selectA, selectB;
input enable;

endmodule

such that selectA controls the driving of ioA in the following way:

selectA ioA
0 no drive
1 drive all 0's
2 drive all 1's
3 drive ioB

and selectB controls the driving of ioB in the same way. The drivers are only to be in
effect if enable is 1. If enable is 0 the state of the ioA and ioB drivers must be high
impedance.

A.

B.

Write this module using gate level primitives only.

Write this module using continuous assignments only.
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5.2 The following combinational logic block has three inputs and an output. The
circuit was built in some screwy technology and then analyzed. We now want to
insert the correct input-to-output timing information into the circuit (internal
node timings need not be correct).

Here are the circuit timings that must be represented in the circuit.

The delay of a rising or falling edge on a or b to output f: 15 time units

The delay of a rising or falling edge on c to output f: 10 time units

Yes, those times are rather strange given the logic diagram. However, this is a
screwy technology and the transistor implementation made for some strange,
but actual, time delays.

Assume a, b, and c are outputs of synchronously clocked flip flops. Write the
structural Verilog description that will be correct in functionality and timing.
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6 Logic Level
Modeling

To this point, we have concentrated mostly on behavioral modeling of a digital sys-
tem. Behavioral models are more concerned with describing the abstract functionality
of a module, regardless of its actual implementation. Logic level modeling is used to
model the logical structure of a module, specifying its ports, submodules, logical func-
tion, and interconnections in a way that directly corresponds to its implementation.
This chapter presents the Verilog constructs that allow us to describe the logical func-
tion and structure of a system.

6.1 Introduction
There are several approaches to the logic level modeling of a digital system. Each of
these approaches represents a sublevel of logic level modeling, and emphasizes differ-
ent features of a module.

A gate level model of a circuit describes the circuit in terms of interconnections of
logic primitives such as AND, OR, and XOR. Modeling at this level allows the designer
to describe the actual logic implementation of a design in terms of elements found in
a technology library or databook and thus be able to accurately analyze the design for
such features as its timing and functional correctness. Since gate level modeling is so
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pervasive, the Verilog language provides gate level primitives for the standard logic
functions.

A more abstract means of describing the combinational logic of a design is pro-
vided by the continuous assignment statement. This approach allows for logic functions
to be specified in a form similar to Boolean algebra. The continuous assignment state-
ment typically describes the behavior of a combinational logic module, and not its
implementation.

Finally, the Verilog language allows us to describe a circuit at the transistor switch
level. At this level, the language provides abstractions of the underlying EOS and
CEOS transistors, giving the designer access to some of the electrical characteristics of
the logic implementation.

To help in reading and writing models at these levels, it is useful to understand how
the simulator executes them. The basic data type in this style of modeling is the net
which is driven by gate and continuous assign outputs. These nets then are inputs to
other gates and continuous assigns, as well as to the right-hand side of procedural
assignment statements. Anytime the input to a gate or continuous assign statement
changes, its output is evaluated and any change to the output is propagated, possibly
with a delay, via its output net to other inputs. We call this method of updating out-
puts when any input changes the Verilog gate level timing model; this is discussed fur-
ther in Chapter 8.

In contrast, procedural assignment statements found in behavioral modeling only
execute when control is passed to them. Thus just because a net on the right-hand
side of a procedural assignment statement changes doesn’t mean that the statement
will execute. Rather, that input would have to have been to an event (“@”) or wait
statement which when triggered will cause the procedural statements in the behav-
ioral model to execute.

The language provides different methods for the designer to describe a system, thus
allowing the description to be at the level of detail appropriate to the designer’s needs.
These different methods of describing the logic level function and structure of a sys-
tem are presented in this and the next two chapters.

References: contrast to procedural assignment 3.1; gate level timing model 8.1

6.2 Logic Gates and Nets
We start with modeling a system at the logic gate level. Verilog provides a set of 26
gate level primitives that have been predefined in the language. From these primitives,
we build larger functional modules by interconnecting the gates with nets and enclos-
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ing them into modules. When describing a circuit at the gate level, we try to maintain
a close (some might say strict) correspondence to the actual gate level implementa-
tion.

6.2.1 Modeling Using Primitive Logic Gates
Example 6.1 shows a structural model of a
full adder using some of Verilog’s gate level
primitives. This example was developed from
a databook description of a CEOS one-bit full
adder. Three single bit inputs and two single
bit outputs provide connection to the outside
world. Internal to the module description, we
list the eleven primitive logic module
instances that comprise the adder. Figure 6.1
shows a diagram of the adder with the inter-
nal connections labelled for ease of compari-
son. As a partial explanation, we see that
there are two NAND gates, one with output x2
(note that the first parameter of a gate level
primitive is its output) and inputs aIn and
bIn, and the other with output cOut and
inputs x2 and x8.

module fullAdder
(output cOut, sum,
input aIn, bIn, cIn);

wire x2;

nand      (x2, aIn, bIn),
(cOut,x2,x8);

xnor (x9, x5, x6);
nor   (x5, x1, x3),

(xl, aIn, bIn);
or (x8, xl, x7);
not  (sum, x9),

(x3,x2),
(x6, x4),
(x4,cIn),
(x7, x6);

endmodule

Example 6.1 A One-Bit Full Adder
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The general syntax for instantiating a gate is given by:

gate instantiation
n_input_gatetype [drive_strength] [delay2] n_input_gate_instance {,
n_input_ gate_instance };

n_input_gatetype
and | nand | or | nor | xor | xnor

n_input_gate_instance
[name_of_gate_instance](output_terminal,input_terminal {,
input_terminal})

name_of_gate_instance
gate_Instance_identifier [range]

input_terminal
expression

output_terminal
net_lvalue

where the n_input_gatetype specifies one of the gate level primitives listed above, the
optional drive_strength specifies the electrical characteristics of the gate’s output, the
optional delay specifies the simulation gate delay to be used with this instance, and the
list of gate instances is a comma-separated list specifying the terminals of each gate
instance and, optionally, names of each instance. The default strengths are strong0
and strong1. The default delay is 0. Further discussion of strengths is given in
Chapter 10 and a further discussion of delay modeling is in sections 6.5 and 6.6.

Note that the above formal specification does not cover the NOT gate shown in
Example 6.1. NOT and BUF gates may have any number of outputs (listed first) but
only one input, as described formally below:

gate instantiation
n_output_gatetype [drive_strength] [delay2] n_output_gate_instance {,
n_output_gate_instance };

n_output_gate_instance
[name_of_gate_instance]( output_terminal {, output_terminal},
input_terminal)

n_output _gatetype
buf | not
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In Example 6.1, we have not named any of the gate instances. However, we could
name the NAND gates by changing the statement to:

nand John (x2, aIn, bIn),
Holland (cOut,x2,x8);

Or, we could have specified a strong0 and strong1 drive, as well as a 3 unit gate delay
for each of John and Holland.

nand (strong0, strong1) #3
John (x2, aIn, bIn),
Holland (cOut, x2, x8);

The drive strength and delay specifications qualify the gate instantiation(s). When
one (or both) of these qualifiers is given, then it applies to all of the defined instances
in the comma-separated list. To change one or both of these qualifiers, the gate
instantiation list must be ended (with a “;”) and restarted.

A complete list of predefined gate level primitives is given in Table 6.1. For the rest
of the chapter, we will concern ourselves with the primitives in the first three columns.
They represent logic abstractions of the transistors from which they are made. The
other entries in the last three columns allow for modeling at the transistor switch
level. These switch level elements will be discussed in Chapter 10.

The gate primitives in the first column of Table 6.1 implement the standard logic
functions listed. In the second column, the buf gate is a non-inverting buffer, and the
not gate is an inverter. In the third column, the bufif and notif gates provide the buf
and not function with a tristate enable input. A bufif0 drives its output if the enable is
0 and drives a high impedance if it is 1. The 4-level truth tables (using 0,1, x, and z)
for Verilog gates may be found in Appendix D.

For the gate level primitives in the first column, the first identifier in the gate
instantiation is the single output or bidirectional port and all the other identifiers are
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the inputs. Any number of inputs may be listed. Buf and not gates may have any
number of outputs; the single input is listed last.

Although the drive strength will be discussed further in Chapter 10, it is useful to
point out that a strength may only be specified for the gates listed in the first three
columns.

References: Verilog primitive gates D; four-level logic 6.2.2; strengths 10.2; delay specification 6.5; switch
level gates 10; user-defined primitives 9

6.2.2 Four-Level Logic Values
The outputs of gates drive nets that connect to other gates and modules. The values
that a gate may drive onto a net comes from the set:

0
1
x
z

represents a logic zero, or FALSE condition
represents a logic one, or TRUE condition
represents an unknown logic value (any of 0,1, or in a state of change)
represents a high-impedance condition

The values 0 and 1 are logical complements of each other. The value x is interpreted as
“either 0 or 1 or in a state of change.” The z is a high-impedance condition. When the
value z is present at the input of a gate or when it is encountered in an expression, the
effect is usually the same as an x value. It should be reiterated that even the registers in
the behavioral models store these four logic values on a bit-by-bit basis.

Each of the primitive gates are defined in terms of these four logic values. Table 6.2
shows the definition of an AND gate. Note that a zero on the input of an AND will
force the output to a zero regardless of the other input — even if it is x or z.

References: four-level gate definitions D
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6.2.3 Nets
Nets are a fundamental data type of the language, and are used to model an electrical
connection. Except for the trireg net which models a wire as a capacitor that stores
electrical charge, nets do not store values. Rather, they only transmit values that are
driven on them by structural elements such as gate outputs and assign statements, and
registers in a behavioral model.

In Example 6.1 we see a net of type wire named x2 being declared. We could have
declared it to have a delay with the following statement

wire #3 x2;

meaning that any change of value driven on the wire from the first NAND gate instance
is delayed by 3 before it is seen at the wire’s terminations (which are the other NAND

gate and the NOT gate). Further, the delay could include both rise and fall time speci-
fications:

wire #(3,5) x2;

meaning that the transition to 1 has a 3 unit delay and the fall to 0 has a 5 unit delay.

However, we also find many more wires declared implicitly in Example 6.1. For
instance, net x9 which is the output of the XNOR gate has not been declared in the ful-
1Adder module. If an identifier appears in the connection list of an instance of a gate
primitive, module, or on the left-hand side of a continuous assignment, it will implic-
itly be declared a net. If the net is connected to a module port, its default width will be
that of the port declaration. Otherwise, it will be a scalar. By default, the type of an
implicit declaration is wire. However, this may be overridden by the default_nettype
typeOfNet compiler directive where typeOfNet is any of the net types listed in
Table 6.4 except the supply0 and supply1 types. Implicit net declaration can be turned
off by declaring

`default_nettype none

In this case, any undefined identifier will be flagged as an error. One reason to turn off
implicit net declaration is to catch typing errors arising from letters and numbers that
look alike, e.g., O,0,1,1.

Thus, wire x2 need not have been declared separately here. It was only done so for
illustration purposes.

Example 6.2 illustrates the use of a different type of net, the wired-AND, or wand.
The wired-AND performs the AND function on the net. The only difference between
the AND gate and the wand is that the wand will pass a z on its input whereas an AND

gate will treat a z on its input as an x.
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module andOfComplements
(input a, b,
output wand c,
output d);

not (c, a);
not (c, b);

not (d, a);
not (d,b);

endmodule

Example 6.2 Wire AND Example

Here we illustrate the differences between the normal wire and wand net types, d is
declared to be a wire net, and c is declared to be a wand net. c is driven by two differ-
ent NOT gates as is d. A net declared wand will implement the wired-AND function.
The output c will be zero if any one of the inputs to the wand net is zero (meaning
that one of the inputs, a or b, was one). The output c will be one if both of the inputs
a and b are zero.

On the other hand, d is a wire net driven by two gates. Its value will be unknown
(x) unless both gates drive it to the same value. Essentially the wand allows for several
drivers on the net and will implement the wired-AND function between the drivers,
while the wire net will show an unknown (x) when different values are driven on it.
Table 6.3 shows the outputs for all possible inputs to Example 6.2 (The sixteen rows
of the truth table are folded into two columns of eight rows).
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The general form of the net declaration is:

net_declaration
net_type [ vectored | scalared ] [signed] range [delay3]
list_of_net_identifiers;

|      net_type [signed] [delay3] list_of_net_identifiers;
|      net_type [drive strength] [ vectored | scalared ] [signed] range [delay3]

list_of_net_decl_assignments;
| net_type [drive strength] [signed] [delay3] list_of_net_decl_assignments;
| trireg [charge_strength] [ vectored | scalared ] [signed] range [delay3]

list_of_net_identifiers;

net_type
wire | tri | tril | supply0 | wand | triand | tri0 | supply1 | wor | trior

list_of_net_identifiers
net_identifier [dimension {dimension}] {, net_identifier [dimension {di-
mension}] }

list_of_net_assignments
net_decl_assignment {, net_decl_assignment}

net_decl_assignment
net_identifier = expression

range
[ msb_constant_expression: 1sb _constant_expression ]

We’ll concentrate on the first net declaration in this section. net_type is one of the
types (such as wire and wand) listed in Table 6.4, signed indicates if the wire’s values
are to be considered signed when entering into expressions, range is the specification
of bit width (default is one bit), delay provides the option for the net to have its own
delay (default is 0), and list_of_net_identifiers is a comma-separated list of nets that
will all have the given range and delay properties. When a delay is specified on a net,
the new value from any entity driving the net will be delayed by the specified time
before it is propagated to any entities connected to the net.

The range of nets can optionally be declared as vectored or scalared. Scalered is the
default case and indicates that the individual bits of a vector (i.e. a multibit net) might
be accessed using bit- and part-selects. This allows individual bits and parts of a net to
be driven by the outputs of gates, primitives, and modules, or to be on the left-hand
side of a continuous assign. When specified as vectored, the items are represented
internally as a single unit for efficiency. In this case, for instance, gate outputs cannot
drive a bus specified as vectored.
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References: trireg 10.1; charge storage properties 10.2.2; delay 6.5; continuous assign to nets 6.3.2;
primitives 9; bit- and part-selects E.1; scope of identifiers 3.6

6.2.4 A Logic Level Example
As an example of logic level modeling, this section presents a system implementing a
Hamming encoding and decoding function. Hamming encoding is used when there
is a possibility of noise entering a system and data being corrupted. For instance, data
in a memory might be stored in an encoded form. The example presented here will
encode eight bits of data, pass the encoded data through a noisy channel, and then
regenerate the original data, correcting a single bit error if necessary. Detailed deriva-
tion and presentation of the technique can be found in most introductory logic design
texts.

The error detection and correction is implemented by adding extra bits to the mes-
sage to be encoded. The basic encoding is shown in Figure 6.2. Here we see eight
original bits (Dx) on the left being encoded into twelve bits on the right. The original
data bits are interleaved with four Hamming bits (Hx) as shown in the center column.
The four bits are determined by XORing certain of the original bits. The interleaved
ordering of the bits is important as the final decoding of the bits will indicate which of
the bits (including the Hamming bits) is incorrect by specifying its bit position. The
bit numbering of the encoded data is shown on the right.

The whole picture of our example, which includes this encoding function, is shown
in Figure 6.3. We will have one module, testHam, which instantiates all of the other
modules and provides test vectors to it. Submodules to testHam include hamEncode,
which implements the function in Figure 6.2, and hamDecode, which itself has sev-
eral submodules. There is also an assign statement shown in gray in the center of the
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figure that will insert a single error into the data after it is encoded. The hamDecode
module regenerates the original eight-bit message by correcting any single bit errors.
A simulation trace of the whole system is presented in Figure 6.4, illustrating the val-
ues passed between the major subentities of testHam (namely, original, encoded,
messedUp, and regenerated).

The Hamming code example is shown in Example 6.3. Module hamEncode gen-
erates the twelve-bit encoding (valueOut) of vIn. The encoding is implemented with
four instantiated XOR gates implementing the encoding functions shown in
Figure 6.2. The outputs of these gates are connected to wires (h1, h2, h4, and h8) and
the wires are concatenated together with the data bits in the assign statement. Con-
catenation is indicated by the “{}” construct. The comma separated list of wires and
part-selects of wires is combined into the output valueOut. Note that the order in
which the values are concatenated matches that given in Figure 6.2. It is also interest-
ing to note that the module is completely structural in nature; there are no procedural
statements or registers.
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Module hamDecode takes the 12-bit input vIn and produces the 8-bit output value-
Out. Internally, hamDecode needs to determine which of the bits (if any) is incorrect,
and then correct it. The four XOR gates producing outputs on c1, c2, c4, and c8 indi-
cate if a bit is incorrect. Consider the c’s to be the separate bits of a vector; c8 has
place-value 8, and so on. If the value of the c’s taken together is 0, then there is no
correction to be made. However, if the c’s take on a non-zero value, that value encodes
the bit number of the bit that is incorrect. This bit needs to be inverted. The c bits are
input to the deMux module which decodes them to one of eight possible data bits.
These bits, assigned to the 8-wire vector bitFlippers, correspond to the bit position
that needs to be inverted (a one indicates invert, and a zero indicates no inversion).
The individual bits of bitFlippers are then inputs to eight XOR gates in xor8. The
other input of the XOR gates is the data bits to be corrected. A one on a bitFlipper bit
will invert (correct) the corresponding data bit. The output of xor8 is the corrected
data and is the output of the hamDecode module.

module testHam;
reg [1:8] original;
wire [1:8] regenerated;
wire  [1:12] encoded,

messedUp;
integer seed;

initial begin
seed = 1;
forever begin

original = (seed);
#1

("original=%h, encoded=%h, messed=%h, regen=%h",
original, encoded, messedUp, regenerated);

end
end

hamEncode     hIn (original, encoded);
hamDecode hOut (messedUp, regenerated);

assign messedUp = encoded ^ 12'b 0000_0010_0000;
endmodule

module hamEncode
(input [1:8] vIn,
output [1:12] valueOut);

wire h1, h2, h4, h8;

xor (h1, vIn[l], vIn[2], vIn[4], vIn[5], vIn[7]),
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(h2, vIn[l], vIn[3], vIn[4], vIn[6], vIn[7]),
(h4, vIn[2], vIn[3], vIn[4], vIn[8]),
(h8,vIn[5],vIn[6],vIn[7],vIn[8]);

assign valueOut = {h1, h2, vIn[l], h4, vln[2:4], h8, vIn[5:8]};
endmodule

module xor8
(output [1:8] xout,
input [1:8] xin1,xin2);

xor a[l:8] (xout, xin1, xin2);
endmodule

module hamDecode
(input [1:12] vIn,
output [1:8] valueOut);

wire                    c1, c2, c4, c8;
wire [1:8]     bitFlippers;
xor (c1, vIn[l], vIn[3], vIn[5], vIn[7], vIn[9], vIn[11]),

(c2, vIn[2], vIn[3], vIn[6], vIn[7], vIn[10], vIn[11]),
(c4, vIn[4], vIn[5], vIn[6], vIn[7], vIn[12]),
(c8, vIn[8], vIn[9], vIn[10], vIn[l l], vIn[12]);

deMux mux1 (bitFlippers, c1, c2, c4, c8,1'b1);
xor8 x1 (valueOut, bitFlippers, {vIn[3], vIn[5], vIn[6], vIn[7], vIn[9],

vIn[10],vIn[11],vIn[12]});
endmodule

module deMux
(output [1:8] outVector,
input A, B, C, D, enable);
and v(ml2, D, C, ~B, ~A, enable),

h (m11, D, ~C, B, A, enable),
d (m10, D, ~C, B, ~A, enable),
1 (m9, D, ~C, ~B, A, enable),
s(m7,~D,C,B, A, enable),
u (m6, ~D, C, B, ~A, enable),
c (m5, ~D, C, ~B, A, enable),
ks (m3, ~D, ~C, B, A, enable);

assign outVector = {m3, m5, m6, m7, m9, ml0, m11, m12};
endmodule

Example 6.3 The Hamming Encode/Decode Example
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Looking more closely at module deMux, we see four select inputs (a - d) and an
enable. Input d corresponds to the 8’s place-value and a corresponds to the 1’s place.
The purpose of this module is to generate an 8-bit vector that has at most one bit set.
That one bit corresponds to the encoded bit that needs to be corrected. Since we are
only going to correct the data bits, only the necessary minterms of bits a-d are gener-
ated. These are: 3, 5, 6, 7, 9, 10, 11, and 12, which correspond to the encoded bit
positions of the data in Figure 6.2. The AND gates generate the minterms and the
assign statement concatenates these minterms together into outVector.

BitFlippers, the output of deMux, is input to xor8. These input bits (input xin1)
along with bits 3, 5, 6, 7, 9, 10, 11, and 12 of the encoded data (input xin2) are inputs
to eight XOR gates. Thus, an incorrect input bit, indicated by a one in one of the bits of
xinl, will cause that bit to be inverted by the XOR gates. The output of xor8 is also the
output of hamDecode.

Returning to module hamTest, we see that original is the input to hamEncode and
that encoded is its output. Encoded is then the input to the assign statement which
produces messedUp. The purpose of the assign statement is to simulate a noisy chan-
nel where one of the input bits gets inverted. In this case bit 7 is inverted. The output
of the assign (messedUp) is input to hamDecode which corrects this inversion and
produces the original data on regenerated.

The only procedural statements in the whole example are in the initial statement of
this module. Their purpose is to run test vectors through the system. To do this, we
use the system task to produce random numbers. Here, we set the seed value
for to 1 and enter a forever loop. Original is loaded with the result of

The output of original drives the hamEncode module. None of the gate primi-
tives or wires have delays associated with them, so regenerated is produced in zero
simulation time. Our forever loop delays 1 time unit to insure regenerated is pro-
duced and then displays all of the inter-module values as shown in Figure 6.4. Con-
sider the first row of the figure. The original data is 00 which is encoded as 000. The
assign statement inverts bit 7 producing 020. (In this example, the bits are counted
from the left starting with 1 and the task specifies hexadecimal.) The bit is
then corrected producing the original data.

There are several features to note in this example:

Seed is declared to be an integer. Integers are often used for ancillary calculations
in a simulation model. In a real design, this value would not exist as it is only there
for testing purposes. Registers should be used when modeling real parts of hard-
ware. See Appendix E for more discussion on integers.

This use of the system task requests printing in hexadecimal with the
“%h” printing control. See Appendix F for more discussion of the  task.
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References: F.1; F.7

6.3 Continuous Assignment
Continuous assignments provide a means to abstractly model combinational hardware
driving values onto nets. An alternate version of the one-bit full adder in the previous
section is shown using continuous assignments in Example 6.4. Here we show the
two outputs sum and cOut being described with an assign statement. The first (sum)
is the exclusive-or of the three inputs, and the second is the majority function of the
three inputs.

module oneBitFullAdder
(output  cOut, sum,
input    aIn, bIn, cIn);

assign sum = aIn ^ bIn ^ cIn,
cOut = (aIn & bIn)  (bIn & cIn) (aIn & cIn);

endmodule

Example 6.4 Illustration of Continuous Assignment

The continuous assignment is different from the procedural assignment presented
in the chapters on behavioral modeling. The continuous assignment is always active
(driving a 0, , x, or z), regardless of any state sequence in the circuit. If any input to
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the assign statement changes at any time, the assign statement will be reevaluated and
the output will be propagated. This is a characteristic of combinational logic and also
of the Verilog gate level timing model.

The general form of the assign statement is:

continuous_assign
assign [drive_strength] [delay3] list_of_net_assignments ;

list_of_net_assignments
net_assignment {, net_assignment }

net_assigmnent
net_lvalue = expression

where assign is a keyword, the drive_strength and delay3 specifications are optional
parts, and the list_of_net_assignments takes the form of a comma-separated list as
shown in Example 6.4. The drive strength of a continuous assign defaults to strong0
and strong1 and can be specified for assignments to scalar nets of any type except type
supply0 and supplyl. The delay defaults to 0. If undeclared, the left-hand side is
implicitly declared a net. The above assign could have been written as shown below:

assign (strong0, strong1)
sum = aIn ^ bIn ^ cIn,
cOut = (aIn & bIn) | (bIn & cIn) | (aIn & cIn);

Here we specify that both of the continuous assignments have the default drive
strength.

References: delay modeling 6.5 and 6.6; strength modeling 10; timing models 8.1

6.3.1 Behavioral Modeling of Combinational Circuits
The continuous assign provides a means of abstracting from a gate level model of a
circuit. In this sense, the continuous assign is a form of behavioral modeling for com-
binational circuits. That is, we only need specify the Boolean algebra of the logic
function, not its actual gate level implementation. The final gate level implementation
is then left to a logic synthesis program or further designer effort.
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The right-hand side expression
in the assign statement may contain
a function call to a Verilog function.
Recall that within a function, we
may have procedural statements
such as case and looping state-
ments, but not wait, @event, or
#delay. Thus we may use procedural
statements to describe a complex
combinational logic function. For
instance, in Example 6.5 a descrip-
tion of a multiplexor illustrates a
function call in an assign.

In this example, module multi-
plexor has a continuous assignment
which calls function mux. The
function uses the procedural case
statement to describe the behavior
of the combinational multiplexing
function. If one of the case expres-
sions match the controlling expres-
sion, then mux is assigned the
appropriate value. If none of the
first four match (e.g. there is an x or z on a select input), then by default, mux is
assigned to carry the unknown value x.

Although the assign statement provides access to an assortment of procedural
statements for behaviorally describing combinational hardware, we must be cognizant
of different levels of abstraction in behavioral modeling. At a high level of abstraction
we have the process that models sequential activity as described in Chapters 3 and 4.
At that level, we are describing a situation which involves a separate thread of control
and the implementation will typically have its own internal state machine watching
for changes on its inputs. To model this, we would define a module with an always
statement and communicate with it through module ports and with the interprocess
wait and event statements. Clearly, this is not the modeling situation of Example 6.5
where we are only describing a combinational multiplexor which gates one of its
inputs to its output without the need for an internal state machine to control it.

Rather, at this lower level of abstraction we model combinational behavior which
does not contain its own internal state. Instead of using Boolean algebra to describe a
multiplexor, Example 6.5 used procedural statements. The use of procedural state-
ments in a function called from an assign merely gives us another method of describ-
ing the combinational behavior. Modeling in this way does not imply the use of a

module multiplexor
(input a, b, c, d,
input [1:0] select,

output e);

assign e = mux (a, b, c, d, select);

function mux
(input a, b, c, d,
input [l:0]select);

case (select)
2'b00: mux = a;
2'b0l: mux = b;
2'b10: mux = c;
2'bl l: mux = d;
default:   mux = 'bx;

endcase
endfunction
endmodule

Example 6.5 Function Call From Continuous
Assignment
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sequential state machine for implementation and should not be used when sequential
activity is to be modeled.

References: functions 3.5.2

6.3.2 Net and Continuous Assign Declarations
Continuous assign statements spec-
ify a value to be driven onto a net as
shown in Example 6.6.

Here we have defined a vector wire
with eight bits and an eight-bit
exclusive-or of inputs a and b which
drive them. The delay specifies the
delay involved in the exclusive-or,
not in the wire drivers.

module modXor
(output [7:0] AXorB,
input [7:0] a, b);

assign #5 AXorB = a ^ b;
endmodule

Example 6.6 Combined Net and Continuous
Assignment

If we had declared the wire and exclusive-or separately as

wire [7:0] AXorB;
assign #5           AXorB = a ^ b;

we could have assigned a separate delay of 10 to the wire drivers by substituting the
statement:

wire [7:0] #10 AXorB;

When a delay is given in a net declara-
tion as shown, the delay is added to any
driver that drives the net. For example,
consider the module in Example 6.7. We
have defined a wand net with delay of 10
and two assign statements that both drive
the net. One assign statement has delay 5
and the other has delay 3. When input a
changes, there will be a delay of fifteen
before its change is reflected at the inputs
that c connects to. When input b
changes, there will be a delay of thirteen.

module wandOfAssigns
(input a, b,
output c);

wand #10 c;

assign #5 c = ~a;
assign #3 c = ~b;

endmodule

Example 6.7 Net and Continuous
Assignment Delays

The combined use of a net specification and continuous assign is formally specified
with the following descriptions of a net_declaration:

net_declaration
| net_type [drive strength] [ vectored | scalared ] [signed] range [delay3]
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list_of_net_decl_assignments;
net_type [drive strength] [signed] [delay3] list_of_net_decl_assignments;

list_of_net_decl_assignments
net_decl_assigmnent {, net_decl_assignment}

net_decl_assignment
net_identifier = expression

The difference compared to the first entry is that strengths can be specified, and that
there is a list of assignments associated with a strength-range-delay combination.

Continuous assignment statements may also be used to drive an inout port.
Example 6.8 shows an example of a buffer-driver.

module bufferDriver
(inout busLine,
output bufferedVal,
input bufInput, busEnable);

assign bufferedVal = busLine,
busLine = (busEnable) ? bufInput: 1'bz;

endmodule

Example 6.8 Continuous Assignment to an Inout

Here we see busEnable being used to select between bufInput driving the busLine
and a high impedance driving the line. However, no matter what the state of busEn-
able, bufferedVal always follows the value of busLine. Thus busLine may be driven in
an external module when busEnable is zero and bufferedVal will show its value.
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A typical use of tristate drivers
is in a memory module designed
to attach to a processor bus.
Example 6.9 illustrates a 64K
byte memory. The dataBus port
is defined to be an inout, allow-
ing it be driven in the module’s
assign statement and also be used
as the source when writing
memory. Writing the memory is
a synchronous activity con-
trolled by the positive edge of the
clock. A new value is read from
the memory when read enable
(re) first becomes asserted (i.e.,
the negative edge), or when there
is a change on the address lines
(addrBus). The value read is
stored in temporary register out
which drives the dataBus when
re is asserted. If re is unasserted,
dataBus is tristated.

References: nets, vectored/scalared 6.2.3

module Memory_64Kx8
(inout [7:0] dataBus,
input [15:0] addrBus,
input we, re, clock);

reg [7:0] out;
reg [7:0] Mem [65535:0];

assign dataBus = (~re)? out: 16'bz;

always @(negedge re or addrBus)
out = Mem[addrBus];

always @(posedge clock)
if (we = = 0)

Mem[addrBus] <= dataBus;
endmodule

Example 6.9 Memory Module With Tristate
Drivers

6.4 A Mixed Behavioral/Structural Example
Example 4.8 presented an example of a synchronous bus. In this section we will alter
the description by modeling the bus lines using wires rather than registers, and
parameterizing the modules to make them more generically useful. The new model is
shown in Example 6.10. The bus protocol and the organization of the Verilog
description are the same as in the earlier example. The reader is referred to the earlier
presentation in section 4.4 as background for this section.

Again we have a bus master process communicating with a bus slave process. In
contrast to the previous example, the communication in Example 6.10 is carried out
over wires defined in the sbus module. Here we see wires rw, addr, and data being the
only means of communication between the instantiated master and slave modules.
The rw and addr lines are driven only by the bus master. However, the data lines
must be driven during a write cycle by the master, and during a read cycle by the
slave. Thus we need to develop a means of synchronizing the driving of the data lines.
Of course, the rw line produced by the master is the global indicator of whether a bus
read or write is in progress. Both the master and slave modules include a register
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called enable which is used internally to enable the bus drivers at the appropriate
times.

Module busDriver is defined in a manner similar to the bus driver in Example 6.8.
The main difference being that the module does not also act as a bus receiver. The
module is parameterizable to the bus size, and will drive the bus with valueToGo if
driveEnable is TRUE. Otherwise it drives a z. This module is instantiated into both
the master and slave modules.

In the slave module, the enable register has been added to control the bus driver.
Enable is set to 0 during initialization which causes the bus line to be at z. Enable is
then set to 1 during the second clock cycle of the read cycle. This is the time when the
value being read is driven on the bus by the slave. In the master module a separate
enable has been added to control the bus driver. Again enable is set to 0 during ini-
tialization. The master sets enable to 1 during the write cycle as it is during this time
that the master drives the data bus.

The sbus module has been set up so that it can be instantiated with parameters of
clock period, address and data bus size, and memory size. Thus it can be used in a
number of modeling situations.

d̀efine READ 0
`define WRITE 1

module sbus;
parameter

Tclock = 20,
Asize = 5,
Dsize = 16,
Msize = 32;

reg clock;

wire rw;
wire [Asize-1:0] addr;
wire [Dsize-l:0] data;

master #(Asize, Dsize) ml (rw, addr, data, clock);
slave #(Asize, Dsize, Msize)          s1 (rw, addr, data, clock);

initial
begin

clock = 0;
("rw=%d, data=%d, addr=%d at time %d",

rw, data, addr,
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end

always
#Tclock clock = !clock;

endmodule

module busDriver
#(parameter Bsize = 16)
(inout [Bsize-1:0] busLine,
input [Bsize-1:0] valueToGo,
input driveEnable);

assign busLine = (driveEnable) ? valueToGo: 'bz;
endmodule

module slave
#(parameter Asize = 5,

Dsize = 16,
Msize = 32)

(input rw,
input    [Asize-1:0] addressLines,
inout [Dsize-1:0] dataLines,
input clock);

reg [Dsize-1:0] m[0:Msize];
reg [Dsize-1:0] internalData;
reg enable;

busDriver #(Dsize) bSlave (dataLines, internalData, enable);

initial
begin

("memory.data", m);
enable = 0;

end

always // bus slave end
begin

@(negedge clock);
if (~rw) begin //read

internalData <= m[addressLines];
enable <= 1;
@(negedge clock);
enable <= 0;

end



Logic Level Modeling 179

else //write
m[addressLines] <= dataLines;

end
endmodule

module master
#(parameter Asize = 5,

Dsize = 16)
(output reg rw,
output reg [Asize-1:0] addressLines,
inout      [Dsize-1:0]  dataLines,
input clock);

reg enable;
reg       [Dsize-1:0] internalData;

busDriver #(Dsize) bMaster (dataLines, internalData, enable);

initial enable = 0;

always // bus master end
begin

#1
wiggleBusLines (`READ, 2,0);
wiggleBusLines (`READ, 3,0);
wiggleBusLines (`WRITE, 2,5);
wiggleBusLines (`WRITE, 3,7);
wiggleBusLines (`READ, 2,0);
wiggleBusLines (`READ, 3,0);

end

task wiggleBusLines
(input readWrite,
input     [Asize:0]   addr,
input     [Dsize:0]   data);

begin
rw <= readWrite;
if (readWrite) begin// write value

addressLines <= addr;
internalData <= data;
enable <= 1;

end
else begin //read value
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addressLines <= addr;
@ (negedge clock);

end
@(negedge clock);
enable <= 0;

end
endtask
endmodule

Example 6.10 A Synchronous Bus Using Behavioral and Structural Constructs

Results of simulating Example 6.10 are shown in Figure 6.5. It differs from the
previous simulation run (Figure 4.3) only in the fact that the data lines are z during
the first clock cycle of a read bus cycle. Other than that, the two models produce
identical results.

6.5 Logic Delay Modeling
Gate level modeling is used at the point in the design process when it is important to
consider the timing and functionality of the actual gate level implementation. Thus, at
this point the gate and net delays are modeled, possibly reflecting the actual place-
ment and routing of the gates and nets. In this section, we will concentrate on the
logic gate primitives and specifying their timing properties for simulation.
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6.5.1 A Gate Level Modeling Example

The tristate NAND latch shown in Example 6.11 illustrates the use of the bufif1 gate
and detailed timing information. A diagram of the circuit is also shown in Figure 6.6.

module triStateLatch
(output qOut,
input clock, data, enable);

tri qOut,

not #5 (ndata, data);
nand #(3,5) d(wa, data, clock),

nd(wb, ndata, clock);
nand #(12,15)  nq, wa),

q, wb);
bufifl #(3,7,13) qDrive (qOut, q, enable),

nq, enable);
endmodule

Example 6.11 A Tristate Latch

This latch drives its qOut and ports, which are defined as tristate nets, when
the enable input is one. The bufif1 gate models the tristate functionality. As shown in
Table 6.5, when the control input is 1, then the output is driven to follow the input.
Note that a z on the data input is propagated as an unknown on the data output.
When the control input is 0, the output is high impedance (z).
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In the case where the control input is either x or z, the data output is modeled with
L and H. L indicates the output is either a 0 or a z, and H indicates either a 1 or a z.

Other tristate modeling primitives include bufif0 which reverses the sense of the
control input from bufif1, notif1 which inverts the data input and drives the output
when the control input is one, and notif0 which inverts the data input and drives the
output when the control input is zero. Truth tables for these gates may be found in
Appendix D.

The functionality of Example 6.11 may now be described. The basic latch function
is implemented by the cross-connected NAND gates and When the clock is
low, the outputs of d and nd are held high and the latch pair hold their value. When
the clock is high, then the d and nd values propagate through and change the latch
value. The and NAND gates follow the data input as long as the clock is high.
The two bufif1 gates are driven by the output of the NAND latch gates and the input
enable signal. As per the definition of the bufif1 gate, when enable is high, the output
will be driven. When enable is low, the output will be z.

References:  Verilog gates D; nets 6.2; delays across a module 6.6

6.5.2 Gate and Net Delays

Gate, continuous assign, and net delays provide a means of accurately describing the
delays through a circuit. The gate delays describe the delay from when the inputs of a
gate change until when the output of the gate is changed and propagated. Continuous
assign delays describe the delay from when a value on the right-side changes to when
the left-hand side is changed and propagated. Net delays describe the delay from
when any of the net’s driving gates or assign statements change to when the value is
propagated. The default delay for gates, nets, and assign statements is zero. If one
delay parameter is specified, then the value is used for all propagation delays associ-
ated with the gate, net, or assign.
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The following gate instantiations are excerpts from Example 6.11 and will be used
to illustrate the different propagation situations.

not #5 (ndata, data);
nand #(12,15)  nq, wa),

q, wb);
bufif1 #(3,7,13) qDrive (qOut, q, enable),

nq, enable);

Propagation delays are specified in terms of the transition to 1, the transition to 0,
and the transition to z (turn-off delay). The NOT gate has been specified with a delay
of 5. Since only this one value is given, the delay will pertain to both the transition to
1 and the transition to 0. The NAND gate instances have a rising delay of 12 and a fall-
ing delay of 15. Finally, the bufif1 gates have a rising delay of 3, falling delay of 7, and
a delay to the high impedance value of 13. Note that if the gate is in the high imped-
ance condition, then when the enable becomes 1, it will take 3 time units (i.e. the ris-
ing delay) for the output to change to 1.

Generally speaking, the delay specifications takes the form of

#(dl, d2)

or

#(dl, d2, d3)

where d1 is the rising delay, d2 the falling delay, and d3 the delay to the high imped-
ance value. The reason for the two-specification form is that some gates allow only
two times to be specified and some allow three. A special case of the meaning of d3 is
when it is used with the trireg net; d3 is then the decay time at which point the wire’s
value becomes x. Delay specification may be summarized in the following syntax:

delay2
# delay_value
# ( delay_value [, delay_value] )

delay3
# delay_value
# (delay_value [, delay_value [, delay_value ] ] )

delay_value
unsigned_number
parameter_identifier
mintypmax_expression

mintypmax_expression
expression

|

|

|
|
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| expression : expression : expression

(Note that the second form of mintypmax_expression will be discussed in
section 6.5.1.) Table 6.6 summarizes the from-to propagation delay used by the simu-
lator for the two and three delay specifications. Again, if no delay specification is
made, zero is the default. If only one value is given, then all of the propagations are
assumed to take that time.

A shorthand for remembering some of the delays is that a rising delay (d1) is from
0 to x, x to 1, or z to 1. Likewise, a falling delay is from 1 to x, x to 0, or z to 0.

The tri net defined in Example 6.11 does not include its own delay parameters.
However, it could have been defined as:

tri #(2,3,5) qOut,

In this case, any driver that drives either of these nets would incur a rising delay of 2,
a falling delay of 3, and a delay to z of 5 before its output would be propagated. Thus
in Example 6.11 with the bufifl qDrive gate instance driving the qOut net, the rising
delay from when an input to gate qDrive changes to when the result is propagated on
the qOut net is 5 (2 + 3), the falling delay is 10, and the delay to z is 18.

If the case of a continuous assign where the left-hand side is a vector, then multiple
delays are handled by testing the value of the right-hand side. If the value was non-
zero and becomes zero, then the falling delay is used. If the value becomes z, then the
turn-off delay is used. Otherwise, the rising delay is used.
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References: delays across a module 6.6

6.5.3 Specifying Time Units

Our examples have used the # delay operator to introduce time into the simulation
models of hardware components. However, time units for the delay values have not
been specified. The `timescale compiler directive is used to make these specifications.

The form of the compiler directive is:

`timescale <time_unit> / <time_precision>

This directive sets the time units and precision for the modules that follow it. Multi-
ple ̀ timescale directives may be included in a description.

The <time_unit> and <time_precision> entries are an integer followed by a unit of
time measure. The integer may be one of 1, 10, or 100. The time measure abbrevia-
tions are shown in Table 6.7. Thus a module following a `timescale directive of:

`timescale 10 ns / 1 ns

maintains time to the precision of 1 nanosecond. The values specified in delays
though are multiples of 10 nanoseconds. That is, #27 means delay 270 nanoseconds.
Table 6.8 shows several examples of delay specifications and the actual time delayed
for a given `timescale directive. The simulation times are determined by rounding to
the appropriate number of decimal places, and then multiplying by the time unit.
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6.5.1 Minimum, Typical, and Maximum Delays

Verilog allows for three val-
ues to be specified for each of
the rising, falling, and turn-
off delays. These values are
the minimum delay, the typi-
cal delay, and the maximum
delay.

Example 6.12 shows the
use of the minimum, typical,
and maximum delays being
separated by colons, and the
rising, falling, and turn-off
delays being separated by
commas.

Generally, the delay speci-
fication form

#(d1, d2, d3)

is expanded to:

#(d1_min: d1_typ: d1_max, d2_min: d2_typ: d2_max, d3_min: d3_typ: d3_max)

This is the second form of mintypmax_expression shown in the formal syntax specifi
cation of the previous section.

module IOBuffer
#(parameter

R_Min = 3, R_Typ = 4, R_Max = 5,
F_Min = 3, F_Typ = 5, F_Max = 7,
Z_Min = 12, Z_Typ = 15, Z_Max = 17)

(inout bus,
input in,
output out,
input dir);

bufif1 #(R_Min: R_Typ: R_Max,
F_Min: F_Typ: F_Max,
Z_Min: Z_Typ: Z_Max)

(bus, out, dir);

buf #(R_Min: R_Typ: R_Max,
F_Min: F_Typ: F_Max)

(in, bus);
endmodule

Example 6.12 Illustration of Min, Typical, and Max
Delays.



Logic Level Modeling 187

Min/Typ/Max delays may be used on gate primitives, nets, continuous assign-
ments, and procedural assignments.

6.6 Delay Paths Across a Module
It is often useful to specify delays to paths across a module (i.e. from pin to pin), apart
from any gate level or other internal delays specified inside the module. The specify
block allows for timing specifications to be made between a module’s inputs and out-
puts. Example 6.13 illustrates the use of a specify block.

module dEdgeFF
(input clock, d, clear, preset,
output q);

specify
// specify parameters
specparam

// module path declarations
(clock => q) =
(clear, preset *> q) =

endspecify

// description of module's internals
endmodule

Example 6.13 Delay Path Specifications.

A specify block is opened with the specify keyword and ended with the endspecify
keyword. Within the block, specparams are declared and module paths are declared.
The specparams name constants that will be used in the module path declarations. The
module path declarations list paths from the module’s inputs and inouts (also called
the path’s source), to its inouts and outputs (also called the path’s destination). The tim-
ing specified will be used for all instances of the module.

In this example, the first module path declaration specifies that the rising delay
time from the clock input to the q output will be 100 time units and that the fall time
will be 120. The second module path declaration specifies the delays from both clear
and preset to q. Delay paths are not typically mixed with delay (#) operators in a mod-
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ule description. However, if they are, then the maximum of the two delays will be
used for simulation.

Two methods are used to describe the module paths, one using “=>” and the other
using “*>”. The “=>” establishes a parallel connection between source input bits and des-
tination output bits. The inputs and outputs must have the same number of bits. Each
bit in the source connects to its corresponding bit in the destination.

The “*>” establishes a full connection between source inputs and destination outputs.
Each bit in the source has a path to every bit in the destination. The source and desti-
nation need not have the same number of bits. In Example 6.13, we specify that clear
and preset have a path to the q output. Multiple outputs may be specified. So, for
instance, we could state:

(a,b*>c,d) = 10;

This statement is equivalent to:

(a=>c) = 10;
(a => d) = 10;
(b => c) = 10;
(b => d) = 10;

Here, we assume that a, b, c, and d are single bit entities. We could also state:

(e => f) = 10;

If e and f were both 2-bit entities, then this statement would be equivalent to:

(e[l] => f[l]) = 10;
(e[0] => f[0]) = 10;

Module paths may connect any combination of vectors and scalars, but there are
some restrictions. First, the module path source must be declared as a module input or
inout. Secondly, the module path destination must be declared as an output or inout,
and be driven by a gate level primitive other than a bidirectional transfer gate.

The delays for each path can be specified as described in the previous section,
including the capability of specifying rising, falling, and turn-off delays, as well as
specifying minimum, typical, and maximum delays. Alternately, six delay values may
be given. Their order of specification is 0 to 1, 1 to 0, 0 to z, z to 1, 1 to z, z to 0. In
addition, minimum, typical, and maximum delays may be specified for each of these.

The formal syntax for specify blocks can be found in Appendix G.8. A set of sys-
tem tasks, described in the simulator reference manual, allow for certain timing
checks to be made. These include, setup, hold, and pulse-width checks, and are listed
within the specify block.
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6.7 Summary of Assignment Statements
When developing Verilog models of digital systems, an important aspect is capturing
how new values (outputs) are generated over time. The book, so far, has presented
four different methods for generating new values: gate primitives, continuous assign-
ment, procedural assignment (“=”), and non-blocking assignment (“<=”). Within the
Verilog language, these four methods fall into two major categories that differ in the
way in which outputs are generated over time. Thus we call them timing models.
These models are the gate-level timing model and the procedural timing model.

The gate-level timing model is illustrated by the gate primitive (e.g., Example 6.1)
and continuous assignment (e.g., Example 6.4). When writing a simple AND expres-
sion, we could write either:

and (a, b, c);

or

assign a = b & c;

These two statements as shown are equivalent; both perform a bitwise AND of b and c,
and assign the result to a. The way to think about these statements is that any time
any of the inputs (b or c) changes, the output a is re-evaluated. Further, in both of
these statements, a is a net.

The procedural timing model uses procedural statements found in initial and
always blocks to generate new values. Regular procedural assignment (“=”) was illus-
trated in Example 1.5 and non-blocking procedural assignment (“<=”) was illustrated
in Example 1.7. The always block:

always @(posedge clock)

has two inputs (clock and D) and one output  In contrast to the gate-level timing
model, the procedural assignment is not sensitive to all of its inputs; only certain ones
at certain times. Here, the always block is only sensitive to positive edge changes on
clock. When the positive edge occurs,  is updated with the value of D. However, if
D, another input to the always block changes, is not updated. Procedural models
are only sensitive to the inputs they are explicitly waiting for. Further, the left-hand
sides of all procedural assignments are registers or word-selects of memories.

The loading of the value into the register or memory is done only when control is
transferred to the procedural assignment statement. Control is transferred to a proce-
dural assignment statement in a sequential manner, flowing from one statement to the
next. In this way, procedural assignments function similar to a normal software pro-
gramming language assignment statement. However, the flow of control can be inter-
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rupted by an event (@) statement (and as we’ll see later, wait and #delay statements),
and then is only reactivated when the event occurs.

The procedural assignments “=” and “<=” can be further categorized by when the
left-hand side is updated. The “=” updates its left-hand side immediately so that this
new value is available in the next procedural statement. In contrast, “<=” updates its
left-hand side only after all of the right-hand sides of “<=” statements waiting on the
same edge in the whole design have been calculated. Thus, the new value on the left-
hand side is not available in the next procedural statement. This leads to anomalous
descriptions such as:

@(posedge clock) begin // somewhere in an evil always block
m = 3;
n = 75;
n <= m;
r = n;

The question is what value is assigned to r? The answer is 75. Even though the third
statement changes r to 3, the left-hand side isn’t updated immediately. Indeed the
always block doesn’t stop (i.e., block) to update n; rather it keeps going (thus the name
non-blocking), using the value of n from before the clock edge. Eventually, n will be
updated with the value of 3, but only after all other right-hand sides of non-blocking
assignments have been evaluated. It’s better not to write models such as the evil one
above; they are hard to read. Further, they are not accepted by synthesis tools, so their
use is limited. Use non-blocking assignments when describing concurrent transfers in
edge-sensitive systems.

In essence, the two timing models are closely aligned with the two fundamental
data types of the language: nets and registers. Continuous assigns and primitive gates
may only drive nets, and procedural assignments may only be made to registers (and
memories).

References: procedural assignment 3.1; continuous assignment 6.3; timing models 8.1

6.8 Summary
This chapter has covered the basics in logic level modeling using the Verilog language.
We have seen how to define gates and nets and interconnect them into more complex
modules. The use of delays and strengths have been illustrated, and we have shown
how module definitions can be parameterized.

. . .



Logic Level Modeling 191

6.9 Exercises
6.1 Write a module with the structure:

module progBidirect (ioA, ioB, selectA, selectB, enable);
inout [3:0] ioA, ioB;
input [1:0] selectA, selectB;
input enable;

endmodule

such that selectA controls the driving of ioA in the following way:

selectA
0
1
2
3

ioA
no drive
drive all 0's
drive all 1's
drive ioB

and selectB controls the driving of ioB in the same way. The drivers are only to be in
effect if enable is 1. If enable is 0 the state of the ioA and ioB drivers must be high
impedance.

A.

B.

Write this module using gate level primitives only.

Write this module using continuous assignments only.

6.2

6.3

Change the Hamming encoder/decoder in Example 6.3 so that random individ-
ual bits are set for each data item passed through the noisy channel.

Use the array-of-instances construct to specify a multi-bit full adder. The mod-
ule header is:

...
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module fullAdder (cOut, sum, a, b, cIn);

A. Describe this as an 8-bit adder where sum, a, and b are 8-bit elements and
cOut and cIn are one-bit inputs.

B. Parameterize the bit-width of elements sum, a, and b of module fullAdder.

6.4

6.5

6.6

6.7

The Hamming encoder/decoder in Example 6.3 detected and corrected one
error bit. By adding a thirteenth bit which is the exclusive-OR of the other
twelve bits, double bit errors can be detected (but not corrected). Add this fea-
ture to the example and modify the noisy channel so that sometimes two bits are
in error. Change the statement to indicate the double error.

Change the memory in Example 6.10 to use the double bit detector/single bit
corrector circuit from the previous problem. Change the system data size to be 8
bits. When a word is written to memory, it should be stored in encoded form.
When it is read, it should be decoded and corrected. Add a bus line driven by
the slave and read by the master that indicates when a double error has
occurred. Devise a means for the data in the memory to become corrupted, and
a means of displaying when a double error has occurred.

Use the array-of-instances construct to specify a multi-bit full adder. The mod-
ule header is:
module fullAdder (cOut, sum, a, b, cIn);

A. Describe this as an 8-bit adder where sum, a, and b are 8-bit elements and
cOut and cIn are one-bit inputs.

B. Parameterize the bit-width of elements sum, a, and b of module fullAdder.

The following combinational logic block has three inputs and an output. The
circuit was built in some screwy technology and then analyzed. We now want to
insert the correct input-to-output timing information into the circuit (internal
node timings need not be correct).

Here are the circuit timings that must be represented in the circuit.

The delay of a rising or falling edge on a or b to output f: 15 time units

The delay of a rising or falling edge on c to output f: 10 time units

Yes, those times are rather strange given the logic diagram. However, this is a
screwy technology and the transistor implementation made for some strange,
but actual, time delays.
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Assume a, b, and c are outputs of synchronously clocked flip flops. Write the
structural Verilog description that will be correct in functionality and timing.
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7 Cycle-Accurate
Specification

We now turn our attention to a higher level of modeling: cycle accurate, sometimes
called scheduled behavior. At this level, a system is described in a clock-cycle by clock-
cycle fashion, specifying the behavior that is to occur in each state. The term cycle-
accurate is used because the values in the system are specified to be valid only at the
time of the system’s state change — at a clock edge. This chapter presents the cycle-
accurate method of specification, overviews behavioral synthesis, and illustrates how
to specify systems for design using behavioral synthesis.

7.1 Cycle-Accurate Behavioral Descriptions

7.1.1 Specification Approach

Scheduled behavior is specified using always blocks, and “@(posedge clock);” state-
ments are used to break the specification into clock cycles or states. Example 7.1 illus-
trates a scheduled behavioral description of a simple calculation. The module has
ports for registers x, y, and the clock. Register i, a loop counter, is only used inside the
module.
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Using the cycle-accu-
rate style of description, an
“@(posedge clock);” state-
ment is followed by behav-
ioral statements and then
by another “@(posedge
clock)” statement. We’ll
call this “@(posedge
clock)” the clock event. The
statements between the
two clock events consti-
tute a state. The clock
event statements need not
appear in pairs; if there is
only one clock event state-
ment in a loop body, then
the loop executes in one
state and the next clock
event is, indeed, itself.

In example 7.1, consider
state C, the last clock event
and the statement that fol-
lows it as shown in
Figure 7.1. The statement that follows the clock event here is an if-else statement.
Given that the always continuously loops, the next clock event is the one at the top of
the always block, which starts state A. Thus, these statements show the specification
of one state. In that state, either y or x is assigned the value 0, depending on whether
x is less than 0. On the right of the figure the state corresponding to the description is
shown. Mealy notation is used (where outputs are a function of inputs and current
state), indicating that if x is less than 0 then we’ll follow the top arc to state A and
load register y with 0 (using a non-blocking assignment). The bottom arc shows the
inverse condition when x is set to zero. In simulation, when the clock event before the
if statement is being waited for, we are executing state C.

module simpleTutorial
(input clock,
output reg [7:0] x, y);

reg [7:0] i;

always begin
@(posedge clock) x <= 0;
i = 0;
while (i <= 10) begin

@(posedge clock);
x <= x + y;
i = i + 1;

end
@(posedge clock);
i f (x < 0)

y  <= 0;
else x  <=  0;

end
endmodule

Example 7.1 Description Using Scheduled

@(posedge clock);
if (x < 0)

y <= 0;
else x  <=  0;
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The full state transition diagram is shown in Figure 7.2. The state A initializes x
and i to 0 and enters the loop. The state B is the loop body and state C is the if-else as
described above. The state B is of particular interest because it shows two possible
next states. The beginning of the state is the clock event statement in the loop body.
However, the next clock event statement is either the one found by executing the loop
body and staying in the loop (i.e., the same statement), or the one found by executing
the loop body and exiting to the one just after the while statement. These account for
the two next states possible from state B.

7.1.2 A Few Notes

There are a few interesting notes to be made about this example and the scheduled
behavior or cycle-accurate style of description.

This style of description is used at the point in system design when we want to
specify the cycle-by-cycle behavior of the system but we are not too concerned with
the actual datapath for the design. We have specified the simple calculation and which
states the new values will be produced in. But, we haven’t specified any datapath for it;
that is left for a later stage of the design process.

The use of blocking (“=”) and non-blocking (“<=”) assignments was mixed in this
specification. Non-blocking assignments were used for registers x and y which are
used outside of the always block. This effectively synchronizes their loading to the
clock edge specified. For registers used only in one always block, such as register i, this
is not necessary. Remember that when you assign using non-blocking assignments,
the value is not available by the register’s name until after the clock edge. i.e, it’s not
available on the next line of the description! Further, only one unconditional non-
blocking assignment can be made to any register in a state. However, you can use
blocking assignments to calculate intermediate values and values only used inside the
always block. Of course, these are immediately available on the next line of the
description. In this example, the i used in comparison at the end of the loop is the i
calculated in the loop because we used a blocking assignment.
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7.2 Cycle-Accurate Specification
The basis for cycle-accurate specifications is the always statement, which is viewed as
a specification of a thread of control: a process. The resulting register-transfer level
implementation of the always statement will include a data path to perform the pro-
cessing specified in the always statement, and a description of a finite-state machine
to evoke the register-transfer operations in the data path. A module may have multi-
ple always statements in it. Each will be synthesized to a separate, although commu-
nicating, data path-finite state machine pairs.

7.2.1 Inputs and Outputs of an Always Block

Although an always block is a behavioral
construct that does not have a formal specifi
cation of ports, we can think of them as hav-
ing ports. Consider a module with a single
always block and no other continuous assign
or module/gate instantiations as shown in
Example 7.2. It is clear that the input and
output ports of the module correspond to
the inputs and outputs of the always block.
That is, entities the always block needs as
inputs come from outside the module, and
entities the always block produces are made
available outside the module. Of course,
there may be some internal registers with
values produced by the execution of the
always block and also used as input to it.
But, since such registers are not made avail-
able outside of the always block, they are not
considered outputs. And, since they are gen-
erated internally, their use is not considered an input.

module inOutExample
(input [7:0] r, s,
input clock,
output reg [7:0] qout);

reg [7:0] q;

always begin
@ (posedge clock)

q <= r + s;
@ (posedge clock)

qout <= q + qout;
end

endmodule

Example 7.2 Illustration of always
Block Input, Output, and Internal

Sets

More formally, the internal register set of an always block is the set of all named
entities on the left-hand side of the procedural assignment statements in the always
block that are only used internal to the always block. These include registers and
memories. In Example 7.2, register q is a member of the internal register set. Register
qout is not a member of the internal set because it is also used outside of the module.

The input set of an always block includes all of the named entities on the right-
hand side of the procedural assignments in the always block and all of the named
entities in conditional expressions that are not members of the internal register set.
That is, they are generated by a gate primitive, continuous assign, or another always
block. In Example 7.2, r and s are members of the input set.
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The output set of an always statement is the set of all named entities on the left-
hand side of the procedural assignment statements that are not members of the inter-
nal set. That is, these entities are used on the right-hand side of a continuous assign,
are input to a gate primitive, or are in the input set of another always block. In
Example 7.2, qout is a member of the output set. Even though qout is also used on
the right-hand side of this always block, it is the fact that it is used outside of the
always block that puts it in the output set.

An always block used in cycle-accurate specification often has clock and reset
inputs as well. Indeed, Example 7.2 shows the use of input clock. For the sake of the
above definitions, we do not consider these to be inputs of the always block. Rather
we will view them as special control inputs. This is similar to the practice in finite
state machine design where clock and reset are not considered part of the systems
inputs. (To make our point, we intentionally left clock out of the input port list.)

A module has many always blocks, gate instantiations, and continuous assign state-
ments. Conceptually, we consider an always block as having ports made up of its input
set and output set. Although these ports are not formally listed, we view each always
block as reading its inputs and producing its outputs and interacting with the rest of a
system through them.

7.2.2 Input/Output Relationships of an Always Block

A cycle-accurate description is an always block that specifies the timing relationships
between reading elements from the input set and producing values in the output set.
The input/output relationships define the interface of the system to the outside world.
These relationships are specified by inserting clock edge specifications in the proce-
dural statements. The clock edge specifications are called clock events. Thus, we might
state:

always begin
@ (posedge clock)

q <= r + s;
@ (posedge clock)

qout <= q + qout;
end

Here, the clock events are the event control statements with the posedge specifier. Of
course, they could have been specified as negedge clocks as well.

Consider how to read the above statements. The statement labelled State A above
indicates the action that occurs in one state of the system. When the posedge of the
clock is seen, q will be loaded with the sum of r and s. That is, even though q <= r + s
is written on the text line after the event statement waiting for the edge, we know
from the simulation semantics of the language that q will be calculated based on val-
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ues of r and s existing just before the clock edge. q will be updated after all such right-
hand sides have been calculated. Likewise, qout will be loaded at the second clock
edge based on the value of q and qout just before this edge (this will be the q calcu-
lated in the previous state). From this specification, we infer that we have one clock
period in which to calculate the sum of r, s, and qout. That is, in state A, the r and s
inputs are sampled and summed to produce q. State B then accumulates that sum into
qout.

The Verilog description is shown again in Figure 7.3, this time with a timing dia-
gram and a state transition diagram. Note that the clock edge that transits the system
from state A to state B is the same one that loads the new value generated for q in
state A. Thus, the new value of q is generated by state A; it will not be available in
register q until the system is in state B.

When modeling systems using the cycle-accurate approach, we are only sampling
the always block inputs on the edge of the clock at the end of the state. Thus, as
shown in the figure, even though r and s were generated earlier in time (possibly at the
previous clock event), we only require that they be valid at the clock edge at the end of
the state. After all, the specification is only accurate at the clock cycles (clock events);
thus the name. Since all actions occur at the clock edge, assignments to members of
the output set must be non-blocking.

An important notion in behavioral synthesis is that the timing relationships
between the input and output sets specify the complete interface with the rest of the
system. That is, it is possible to synthesize alternate implementations of the behavior
that have the same input/output timing relationships which may vary in the size of
the implementation or its maximum clock frequency. Consider the Verilog fragment
in Example 7.3.

always begin
@ (posedge clock)

q <= r + s;
@ (posedge clock)

quot <= q + quot;
end
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(input [7:0] i, j, k,
output reg [7:0] f, h);

reg [7:0] g, q, r, s;

always begin

@ (posedge clock)
f <= i + j;
g=j*23;

@ (posedge clock)
h <= f + k;

@ (posedge clock)
f <= f* g;
q = r * s;

Example 7.3 Alternate Implementations of Cycle-Accurate Specifications

Assume the output set is f and h, the input set is i, j, and k, and registers g, q, r, and s
are part of the internal set. Note that either of the multiplies in state C could have
been executed in state B because the values being multiplied in each of the statements
were calculated before state B. Rescheduling one of these would be advantageous
because state C has two multiplies scheduled in it. That means that the data path to
implement this Verilog fragment would have to have two separate multiply cells to
execute both multiplies in the same state. If we moved one of the multiplies to state B,
then each of the states would only need one multiply in the data path — a savings in
area. Behavioral synthesis tools are capable of recognizing the opportunities of
rescheduling operators into other states to make such savings.

If q = r * s was moved into stateB, there would be no change in input/output func-
tionality. However, if f <= f * g is moved, then f would appear one state too early. The
timing relationships of the input and output sets would be changed, A behavioral syn-
thesis tool knows to insert a temporary register to load this value in state B, and then
transfer the value to the output f in state C. It is possible that an extra register already
exists in the design. For instance, if g is not accessed after state C before it is rewritten
in the next iteration of the always statement, the result of the multiply could be loaded
into register g and then transferred to register f in stateC. The states B and C are
rewritten below as Bnew and Cnew to illustrate this:
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@ (posedge clock)
h <= f + k;

g = f* g;
@ (posedge clock)

f <= g;
q = r * s;

One might observe that a designer can recognize these opportunities for optimiza-
tion and could perform them. In fact, a designer could rewrite the descriptions as we
have to specify different schedulings of operations to control states. However, a
behavioral synthesis tool, given one of these specifications, can rapidly suggest alter-
nate implementations that exhibit different trade-offs. The designer can select from
the most appropriate. Not all behavioral synthesis tools can make all of these transfor-
mations. Your mileage may vary.

References: always 3.1; thread of control 3.1; input set 2.3.1

7.2.3 Specifying the Reset Function

The example discussed above is expanded here in Example 7.4 to include a specifica-
tion for the behavior of the circuit when it is reset. Module accumulate has ports for
the output (qout), ports for the inputs (r and s), as well as the special inputs for the
system (clock and reset).

The reset function for the always block is specified by an initial statement. Here we
have specified an asynchronous reset that is asserted low. The initial block begins by
waiting for a negative edge on reset. When that occurs, the main block in the always
is disabled, qout is set to 0, and the next negative edge of reset is waited for. This
action causes the named begin-end block (main) to exit. When it exits, the always
restarts it again and waits for reset to be TRUT (unasserted). At some point, reset
becomes unasserted and the system will be in state A; at the first clock event, the sys-
tem will transit from state A to state B. Note, though, that qout has been initialized
to 0 through the reset, and the system will begin accumulating values from 0. The
functionality described is captured by the Verilog description and illustrated by the
state transition diagram in Example 7.4.

There are a few points to note. If reset is unasserted, the behavior of the always
block is that of the example in the previous section. Reset could have been specified as
asserted-high by waiting for the positive edge of reset in the initial block, and then
waiting for ~reset in the always block. Finally, no action can be specified between the
“wait(reset);” and the “@(posedge clock)”. Such an action can’t be part of state B
because it would have to be conditioned by the reset — an action not normally
allowed in finite state machine design. Any such action there would have to be imple-
mented as another state executing when reset becomes unasserted and a clock event
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module accumulate
(output reg [11:0] qout,
input [11:0] r, s,
input clock, reset);

reg [11:0] q;

initial
forever @(negedge reset) begin

disable main;
qout  <=  0;

end

always begin: main
wait (reset);
@ (posedge clock)

q <= r + s;
@ (posedge clock)

qout <= q + qout;
end

endmodule

Example 7.4 Specifying the Reset Functionality

would be needed so that it would clearly be part of a state. Thus a clock event always
follows the wait for an unasserted reset.

Our full, cycle-accurate specification of a system now includes both the always and
initial blocks. Together these specify a thread of control and how that thread is reset
into a known state. When discussing the input and output sets of an always block at
this level of design, it is more accurate to consider both the always and initial blocks
together. Analyze only the always block to determine the sets. The initial block only
specifies the reset behavior.

7.3 Mealy/Moore Machine Specifications
Examples in the previous sections described the basics of modeling systems using the
cycle-accurate approach. This section illustrates how these descriptions can be used as
input to behavioral synthesis tools.

The examples illustrate several features in specification for behavioral synthesis.
First, the placement of the clock events is arbitrary. They may be placed in condition-
als, and there may be different numbers of them in different conditional control paths.
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That is, each branch of an if-then-else need not have an equivalent number of states.
Arbitrary placement of clock events in conditionals and loops allows the specification
of very complicated state transitions. For instance, you may traverse into several
nested loops before coming to a clock event. The only restriction on their placement is
that a loop body must have at least one clock event specifier; it can be anywhere in the
loop body.

7.3.1 A Complex Control Specification

Example 7.5 specifies an interpolating 3rd order FIR filter that samples its input (in)
either every second or fourth clock period. Based on the sampled input, a new output
value y is calculated. This value will appear on the output either two or four clock
periods in the future. The interpolated values for either one or three intermediate
clock periods are calculated as the difference between the new value (out) and the pre-
vious value of y (yold). This is stored in delta and divided by two. If switch is equal to
zero, delta is added to yold (also named out) to produce the single interpolated output
in the next state. If switch is equal to 1, delta is divided by two again and used to pro-
duce the interpolated outputs for the next three states.

In the example, the final value of delta in state A depends on whether the then
path of the if statement is taken. That is, the control signals to the data path depend
on state information (we’re in state A) as well as the system input switch. This
requires a Mealy machine implementation.

Note that when writing to elements in the output set (in this case, out), a non-
blocking assignment is used. This removes any problems with race conditions with
any other assignments. All of the other assignments are blocking, allowing the values
assigned in one statement to be used in the next statements.

7.3.2 Data and Control Path Trade-offs

In this section we consider two descriptions of an 8-point FIR filter specified for
behavioral synthesis using the cycle-accurate approach. In Example 7.6, arrays
coef_array and x_array are used to store the coefficients and previous inputs respec-
tively. The filter reads a sample x every eight clock cycles and produces a result y every
eight cycles. Examples 7.6 and 7.7 produce the same simulation results but represent
different implementations.

Module firFilt in Example 7.6 takes two states to specify the FIR algorithm. The
first state (A) determines initial values for the accumulator (acc), and the x_array
value. In addition, the index is initialized to the starting position (start_pos). The sec-
ond state (B) executes the body and end-condition check for the loop. Thus it has two
next states. The loop body will always generate new values for acc and index. If the
loop is exited, based on the updated value of index, a new value of the output y and
the next starting position (start_pos) in the array are also generated. A disable state-
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ment is used to specify a test-at-the-end loop. When synthesized, the datapath and a
two-state controller will be generated.

When using cycle-accurate specification, only one non-blocking assignment is
made to any member of the output set in a state. If two such assignments were made
to a register, its final value would be indeterminate.

module synSwitchFilter
(input Clock, reset, switch,
input [7:0] in,
output reg [7:0] out);

reg [7:0] xl, x2, x3, y, yold, delta;

initial forever @(negedge reset) begin
disable main;
out = 0;
y = 1;
x2 = 2;
x3 = 3;

end

always begin :main
wait (reset);
@(posedge Clock)
x1 = in;
out <= y;
yold = y;
y = x1 + x2 + x3;
delta = y - yold;
delta = delta >> 1;
if (switch = = 1) begin

delta = delta >> 1;
@(posedge Clock) out <= out + delta;
@(posedge Clock) out <= out + delta;

end
@(posedge Clock) out <= out + delta;
x3 = x2;
x2 = x1;

end
endmodule

Example 7.5 Specification for Behavioral Synthesis
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module firFilt
(input clock, reset,
input [7:0] x,
output reg [7:0] y);

reg [7:0] coef_array [7:0];
reg [7:0] x_array [7:0];
reg [7:0] acc;

reg [2:0] index, start_pos;
//important: these roll over from 7 to 0

initial
forever @ (negedge reset) begin

disable firmain;
start_pos = 0;

end

always begin: firmain
wait (reset);
@ (posedge clock); // State A;
x_array[start_pos] = x;
acc = x * coef_array[start_pos];
index = start_pos + 1;
begin :loop1

forever begin
@ (posedge clock); // State B;
acc = acc + x_array[index] * coef_array[index];
index = index + 1;
if (index = = start_pos) disable loopl;

end
end // loopl
y <= acc;
start_pos = start_pos + 1;

end
endmodule

Example 7.6 Basic FIR

The state transition diagram of Example 7.6 is shown on the left-hand side of
Figure 7.4. Along with the conditionals, only the names of the registers that are writ-
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ten in the state are shown; the actual expression is not shown. The state transition dia-
gram is quite straight-forward.

Module firFiltMealy in Example 7.7 is a one-state specification of the FIR algo-
rithm. As is typical with Mealy machine implementations, actions are encoded on the
different next state arcs of the finite state machine. Here, the actions of firFilt above
are so encoded. firFiltMealy shows three separate actions that can occur; all with the
same next state (which is the current state). The first action is the then part of the first
if statement. This corresponds to the initialization of the loop in firFilt. The second
action is the else part, which actually has two possible actions. The first action, where
loop1 is not disabled, updates acc and index and corresponds to the loop body of fir-
filt. The second action updates acc and index, but also updates y and start_pos. This
corresponds to exiting the loop in module firFilt. Interesting, when firFiltMealy is
synthesized, there is no identifiable finite state machine. All actions are conditioned
by the comparison of registers index and start_pos; only datapath registers are
clocked.

The state transition diagram for Example 7.7 is shown on the right-hand side of
Figure 7.4. The same notation is used here; only the register name that are written are
shown. In this case, the next state arc transited depends on the current value of index
and also the updated value of index. This updated value is shown here as index+1.
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module firFiltMealy
(input clock, reset,
input [7:0] x,
output reg [7:0] y);

reg [7:0] coef_array [7:0];
reg [7:0] x_array [7:0];
reg [7:0] acc;
reg [2:0] index, start_pos;

initial
forever @ (negedge reset) begin

disable firmain;
start_pos = 0;
index = 0;

end

always begin: firmain
wait (reset);
begin: loopl

forever begin
@ (posedge clock); // State 1 — the only state
if (index = = start_pos) begin

x_array[index] = x;
acc = x * coef_array[index];
index = index + 1;

end
else begin

acc = acc + x_array[index] * coef_array[index];
index = index + 1;
if (index == start_pos) disable loopl;

end
end

end
y <= acc;
start_pos = start_pos + 1;
index = start_pos;

end
endmodule

Example 7.7 Mealy FIR
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These examples illustrate the control a designer has in specifying complex control
structures.

7.4 Introduction to Behavioral Synthesis
Behavioral synthesis tools aid in the design of register transfer level systems — finite
state machine with datapath systems. As illustrated in Figure 7.5, a cycle-accurate
description is used to specify the functionality of the system. From the cycle accurate
nature of the description, timing relationships involving the inputs and outputs of the
system are derived. The behavioral synthesis tool designs a datapath and finite state
machine implementing the functionality and meeting these timing relationships. The
design is specified in terms of functional datapath modules such as ALUs, register
files, and multiplexor/bus drivers that are provided in a technology library file. In
addition, the finite state machine for the system is specified. Downstream design tools
include logic synthesis to design the finite state machine and module generation to
design the datapath.

Behavioral synthesis can be defined by its primary functions: scheduling, alloca-
tion, and mapping.

Scheduling assigns operations to control states. Given that the input to a behavioral
synthesis system is a cycle-accurate specification, one might wonder what role
scheduling plays. To behavioral synthesis, cycle-accurate specifications only con-
strain when input ports are read and when results are made available on an output
port. Internally, there is flexibility to schedule the operations that produce the
results as long as the result is available at the appropriate time.

Allocation specifies how many of an object are used to implement the datapath.
The cycle-accurate specification only tells us how to calculate the outputs from the
inputs. The behavioral synthesis tool selects the number of operators (i.e., should
there be one multiplier or two?), the number of registers, and the number of buses
in a design. In conjunction with scheduling, allocation provides a wide range of
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trade-offs in implementation. That is, if two multipliers are available, then two
multiply operations could be done in one control state, making the implementa-
tion faster but larger.

Mapping assigns operations (e.g. the “+” and “-” in Verilog procedural statements)
to functional modules. Given that a behavioral synthesis tool has decided to have
two adders in the datapath, select which of the + operators in the description are
going to be mapped into which of the functional modules.

7.5 Summary
This chapter has described the cycle-accurate style of specification in Verilog. This
style is often used in high level simulation of systems and it is beginning to be used for
behavioral synthesis. Since synthesis technology is still young, the restrictions on the
language styles will evolve; the user manual for the tools must be consulted.



8 Advanced Timing

The previous chapters were based on a relatively straight-forward understanding of
how the Verilog simulator schedules and executes events. This chapter develops a
more detailed model of the simulator, including the processing of a number of the
more subtle timing semantics of the language. Topics include the simulator schedul-
ing algorithm, non-deterministic aspects of the language, and non-blocking assign-
ments.

The material in this chapter is meant to explain conceptually how Verilog simula-
tors are expected to work. However, the presentation may not match any particular
implementation. There are plenty of short-cuts, tricks, and go-fasts that are or could
be implemented. Their mileage and software-engineering appropriateness may vary
and are not the topic of the chapter.

8.1 Verilog Timing Models
A hardware description language is used to model both the function and timing of
digital systems. The simulation of these models is organized around events. An event
is a change in a value in the simulation model at a specific time. The semantics of the
language specify how an event causes other events to occur in time. Through this
sequence of events, simulation models are executed, and simulation time is advanced.
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A timing model is a model of how simulation time is advanced — it is tied closely to
the semantics of the hardware description language. So far, we have seen two timing
models used by the Verilog language. These timing models are illustrated by gate level
and behavioral level descriptions.

A simulation model should not be confused with a timing model. The first is a model
of digital hardware: e.g., an ALU or register file. The latter is a model of how time is
advanced by the simulator. In this section, we will discuss these timing models and
how the simulator advances time.

Example 8.1 shows a simple NAND latch. By the
semantics of the language we know that when a
change occurs on one of the gate inputs, that gate
will evaluate its inputs and determine if its output
is to change. If it is, then after the specified gate
delay (#2), the output will change and be propa-
gated. The gate instance is sensitive to its inputs —
a change on any of these inputs will cause the
model of the gate instance to be executed.

A simulation model has a sensitivity list — a list

module nandLatch
(output q, qBar,
input set, reset);

nand #2
(q, qBar, set),
(qBar, q, reset);

endmodule

Example 8.1 A NAND Latch

of inputs to the simulation model that, when a change occurs on one or more of them,
will cause the model to be executed. The sensitivity list is a different view of a fanout
list. The fanout list is organized around the element producing a new value — it tells
us which elements need to be evaluated when an event occurs. The sensitivity list is
organized around the element receiving new values — it tells us which of the inputs
are to cause the model to be executed when a change occurs.

Example 8.1 illustrates the Verilog gate level timing model. When any input changes
at any time, the gate instance will execute to evaluate its output, and create a new
event, possibly in the future, if the output changes. All inputs are always sensitive to a
change; the change will cause the evaluation of the simulation model. The gate level
timing model applies to all the gate primitives, user defined primitives, continuous
assignment statements, and procedural continuous assignment statements. A contin-
uous assignment statement is sensitive to any change at any time on its right-hand
side. The change will cause the expression to be evaluated and assigned to the left-
hand side, possibly at a future time.

Another characteristic of the gate level timing model pertains to the scheduling of
new events. Consider the situation where an event for a particular element exhibiting
the gate level timing model has previously been scheduled but has not occurred. If a
new event is generated for the output of that element, the previously scheduled event
is cancelled and the new one is scheduled. Thus, if a pulse that is shorter than the
propagation time of a gate appears on the gate’s input, the output of the gate will not
change. An inertial delay is the minimum time a set of inputs must be present for a
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change in the output to be seen. Verilog gate models have inertial delays just greater
than their propagation delay. That is, a pulse on a gate’s input will not be seen on the
output unless its width is greater than the propagation delay of the gate. As we will
see, if the input pulse is equal to the propagation delay, it is indeterminate whether it
affects the output. This is true for all elements exhibiting the gate level timing model.

Now consider the behavioral model of a D flip
flop shown in Example 8.2. The semantics of the
language tell us that the always statement will
begin executing and will wait for a positive edge
on the clock input. When a positive edge occurs,
the model will delay five time units, set q equal to
the value on the d input at that time, and then
wait for the next positive edge on clock. In con-
trast to the gate level timing model, this example
illustrates a different timing model.

module DFF
(output reg q,
input d, clock);

always
@ (posedge clock)

#5 q = d;
endmodule

Example 8.2 A Behavioral
Model of a D Flip Flop

The always statement can be thought of as having two inputs (clock and d) and
one output (q). The always statement is not sensitive to any change at any time as the
gate level timing model was. Rather, its sensitivities are control context dependent.
For instance, during the time the always is delaying for five time units, another posi-
tive edge on the clock input will have no effect. Indeed that second positive edge will
not be seen by the simulation model since when the 5 time units are up, the model
will then wait for the next clock edge. It will only be sensitive to positive clock edges
that are greater than 5 time units apart. Thus the always statement is only sensitive to
clock when execution of the model is stopped at the “@”. Further, the always state-
ment is never sensitive to the d input — a change on d will not cause the always state-
ment to do any processing.

This example illustrates the Verilog procedural timing model which occurs in the
behavioral blocks contained in initial and always statements. In general, the initial and
always statements are only sensitive to a subset of their inputs, and this sensitivity
changes over time with the execution of the model. Thus the sensitivities are depen-
dent on what part of the behavioral model is currently being executed.

Another characteristic of the procedural timing model pertains to how events are
scheduled. Assume that an update event for a register has already been scheduled. If
another update event for the same register is scheduled, even for the same time, the
previous event is not cancelled. Thus there can be multiple events in the event list for
an entity such as a register. If there are several update events for the same time, the
order of there execution is indeterminate. This is in contrast to the gate level timing
model where new update events for an output will cancel previously scheduled events
for that output.
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There is an overlap in the simulation models that can be built using the two Verilog
timing models. Indeed, in terms of input sensitivities, the procedural timing model
can be used to model a super set of what a gate level timing model can. To see this,
consider the behavioral NAND gate model shown in Example 8.3. This model uses the
or construct with the control event (“@”) to mimic the input sensitivities of the gate
level timing model. If there is a change on in1, in2, or in3, the output will be evalu-
ated. Thus, the procedural timing model can be used mimic the input sensitivities of
the gate level timing model. However, as shown above, the procedural timing model
can have other timing sensitivities, making it more flexible.

module behavioralNand
#(parameter delay = 5)
(output reg out,
input in1, in2, in3);

always
@ (in1 or in2 or in3)

#delay out = ~(in1 & in2 & in3);
endmodule

Example 8.3 Overlap in Timing Models

There are several subtle differences between Example 8.3 and a three-input NAND-
gate instantiation. First, the procedural assignment makes the behavioral model
insensitive to the inputs during the propagation delay of the gate. Second, if the
inputs of a gate level timing model change and there is already a new output sched-
uled for a future time, the previously scheduled update will be cancelled and a new
event will be scheduled.

In summary, elements of a Verilog description follow either the gate level or proce-
dural timing model. These timing models define two broad classes of elements in the
language, specifying how they are sensitive to changes on their inputs. Further, these
specify two methods for how events are scheduled for future action.

8.2 Basic Model of a Simulator
In this section, we will develop a model for the inner workings of an event-driven
simulator — specifically how a simulator deals with the execution of simulation mod-
els that create events, and with the propagation of events that cause other simulation
models to execute. Timing models are important to understand because each model
requires different actions by the simulation algorithm.
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8.2.1 Gate Level Simulation

Consider first the basic operation of a simulator as it simulates the gate level model
shown in Figure 8.1. Assume each gate has d units of delay. At the initial point of our
example, the logic gates have the stable values shown in Figure 8.1a. An event occurs
on line A at time t, changing it to logic 1 as shown by the arrow in Figure 8.1b. At
time t, gate g1 is evaluated to see if there is a change on its output B. Since B will
change to a 0, this event is scheduled for a gate delay of d time units in the future.

At time t+d, gate g1’s output (B) will be set to 0 as indicated by the arrow in
Figure 8.1c and this new value will be propagated to the gates on g1’s fanout. Since
g1’s output is connected to gates g2 and g3, each of these gate models are evaluated to
see if there will be an event on their outputs due to the event on B. As can be seen,
only gate g2 (output C) will change. This event (C = 1) will be scheduled to change d
more time units in the future. Figure 8.1d shows the results after this event at time
t+2d. At this point, the new value on C will be propagated to the gates on the fanout
of gate g2. These gates will be evaluated and new events will be scheduled, and so on.

8.2.2 Towards a More General Model

Clearly, a gate level event-driven simulator needs to keep track of the output values of
all the gate instances, the future times at which new events will occur, and a fanout list
for each of the gate instances in the simulation model. The events are stored in a list
of event lists. The first list is ordered by times in the future. For each future time, there



216 The Verilog Hardware Description Language

is a list of events; all events for a specific time are kept together. A simulator scheduler
keeps track of the new events occurring and maintains the event list. The scheduler
can schedule an event at a future time by inserting the event into the event list. The
scheduler can also unschedule an event by removing it from the list.

To this point, we have defined an event to be a change of a value at a specified time.
From here on, we will distinguish between two types of events: update events, and
evaluation events. An update event causes a value to be updated at a specified time. An
evaluation event causes a gate (or as we will see later, a behavioral model) to be evalu-
ated, possibly producing a new output. Indeed, update events cause evaluation events,
and evaluation events may cause update events.

Figure 8.2 illustrates the interconnection of the major elements of an event-driven
simulator. The simulation scheduler is shown here as being the major actor in the sys-
tem. Each of the arrows connecting to it has a label attached describing the actions
taken by the scheduler. From the last section, we remember that current update events
(new values) are removed from the event list and gate output values are updated.
These update events cause the scheduler to look at the fanout list and determine
which gates need to be evaluated. These gates are evaluated and any resulting output
changes will cause an update event to be scheduled, possibly for a future time.

Figure 8.3 shows an algorithm specification for a simulator scheduler. Here we see
the typical flow of an event-driven simulator. Each iteration around the outer (while)
loop is called a simulation cycle. Since the event lists are maintained in time order, it is
easy to find the next time and the events to execute at that time; they are first in the
list. If there are no more events for the current time, currentTime is updated to that
of the next chronological event. All the events for the currentTime are removed from
the event list. These are then selected for processing in an arbitrary order by the “For
each” statement.
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If the event selected is an update event, the assignment is made and the fanout list
is followed, building a list of gates to evaluate. These gates are evaluated and any
resulting output changes are scheduled as update events. If there are behaviors on the
fanout, evaluation events is scheduled for them. If the event selected is an evaluation
event, the gate or behavioral model is executed. Any output change causes an update
event for the output. Note that the new update event may be for the current time
(e.g., a gate of zero delay was executed). This event is still inserted into the event list
and will be removed at the next cycle of the outer loop. Thus, there may be several
simulation cycles at the current time.

Let’s follow this simulation algorithm, seeing how the event list develops over time.
Figure 8.4a shows the initial event list for the example of Figure 8.1. The unprocessed
entries in the list are shown in bold, and the processed (old) entries are shown in gray
to illustrate the progression of time. (In a simulator, the processed entries would be
removed from the list.) Specifically, when update event A = 1 is removed from the list,
gate g1 evaluated. Since its output changes, an update for B = 0 is scheduled for t+d.
This event is inserted into the event list as shown in Figure 8.4b. The next iteration of
the simulation cycle is started and time is updated to t+d. At that time, update event
B = 0 is executed causing gates g2 and g3 to be evaluated. Only gate g2 changes, so an
update event is scheduled for C = 1 at time t+2d as shown in Figure 8.4c. In the next
simulation cycle update event C = 1 is executed.

The discussion so far has centered around simulating gate level simulation models
exhibiting the gate level timing model. That is, when an event occurs on a gate out-
put, all other gates on the fanout of that gate are evaluated to see if their outputs
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change. The next section will extend our understanding of a simulator to be able to
handle behavioral models.

8.2.3 Scheduling Behavioral Models

Behavioral models in Verilog follow the procedural timing model. Thus, these simula-
tion models are sensitive only to a subset of their inputs, and these sensitivities may
change over the execution of the model. In this section we will consider the various
aspects of simulating behavior models, including handling fanout lists, and register
updates.

Consider Example 8.4, a behavioral model
of a master-slave latch. The operation of the
latch is dependent on the two clock phases
phi1 and phi2. First the latch waits for the
positive edge of phi1. When this occurs, the
value of d is saved internally and then the
always waits for the positive edge of phi2.
When it occurs, the output q is set to the qIn-
ternal  value and the always loop repeats.

The important point to realize is that over
the execution of this behavioral model, it is
alternately sensitive to the positive edges of
phi1 and phi2, and is never sensitive to input
d. A behavioral model has a sensitivity list — a
list that specifies which of its inputs the always
or initial statement is currently sensitive to.
Thus, we can examine any always or initial statement and determine, as a function of
time, what update events can cause it to be evaluated.

module twoPhiLatch
(input      phi1, phi2,
output reg q,
input d);

reg qInternal;

always begin
@ (posedge phi1)

qInternal = d;
@ (posedge phi2)

q = qInternal;
end

endmodule

Example 8.4 A Master-Slave Latch
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To simulate elements using the procedural timing model within the framework of
Section 8.2.2, we need to be able to alter the fanout lists as the execution of the simu-
lation models proceed. That is, because the sensitivity lists change, the fanout lists
need to change. For instance, at the start of simulation in Example 8.4, the control
event (“@”) is executed and the process statement (i.e., the always) containing the
control event is put on the fanout list of phi1. When there is an update event on phi1,
an evaluation event for the process is scheduled. When this evaluation event is exe-
cuted, the process determines if there is a positive edge. If there isn’t, then the always
block continues waiting — the fanout lists are not changed. If there is, the process is
removed from the fanout list of phi1, and the behavioral statements resume their exe-
cution (in this case with “qInternal = d;”). When the next control event is executed,
the process is placed on the fanout list of phi2. Now, any change on phi2 will cause an
evaluation event to be scheduled for the process. When the evaluation event is exe-
cuted and the positive edge found to have occurred, the process is removed from the
fanout list of phi2, execution of the behavioral statements proceeds, and at the next
control event the process is placed on the fanout list of phi1.

In general, execution of a control event or a wait statement with a FALSE condition
will cause the current process statement (an always or an initial) to be suspended and
placed on the fanout lists of the elements in the event or conditional expression.
When an event occurs on one of the elements, an evaluation event is scheduled for the
process to determines whether the event or wait condition has been satisfied. When
the condition has been satisfied, the process statement is removed from the fanout
lists.

Not only is the process statement placed on the fanout list, but also an indicator as
to where to resume executing the process is maintained. This is analogous to a soft
ware program trying to read from an input device. The operating system will suspend
execution of the program until the input has arrived. Once input has arrived, the pro-
gram continues executing from the point where it was suspended. In like manner, a
suspended Verilog process resumes executing from where it was suspended.
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Now consider an altered version of
Example 8.4 shown in Example 8.5. The
only difference here is that there is a delay of
two time units before each of the procedural
assignments. The action taken by the simu-
lator when a delay is executed is to suspend
the process statement and schedule an eval-
uation event for its resumption at the appro-
priate time in the future. The process’
sensitivity list is not changed. Thus, instead
of the statement “qInternal = d” being exe-
cuted right after a positive edge is seen on
phi1, an evaluation event for the process is
scheduled two time units later. At that
point, the process resumes executing by
assigning to qInternal.

module twoPhiLatchWithDelay
(input phi1, phi2, d,
output reg q);

reg qInternal;

always begin
@ (posedge phi1)

#2 qInternal = d;
@ (posedge phi2)

#2 q = qInternal;
end

endmodule

Example 8.5 Delay in a Behavioral
Model

Registers are assigned new values as a result of executing behavioral models. The
values are assigned immediately without need for creating update events. Thus if a
register is assigned to on the left-hand side of a procedural expression, and immedi-
ately used in the next statement on the right-hand side, its new value is used. In addi-
tion, registers that are outputs of the process will also create update events. So, if a
register is used as a source in a continuous assignment, or in a wire, or if another
behavioral process is waiting (with @ or wait) for a change in the register, the update
event will cause evaluation events to be scheduled.

Behavioral models, exhibiting the procedural timing model, can be simulated using
the algorithm of Figure 8.3 if we allow for fanout lists to be changed during execution
of the models, and if register values are updated so they are available for the next
behavioral statements.

8.3 Non-Deterministic Behavior of the
Simulation Algorithm
Verilog is a concurrent language, allowing for the specification of actions that occur at
the same time. Executing these actions requires their serialization because the com-
puter being used is not as parallel as the hardware being modeled. There are two
sources of non-deterministic behavior in the Verilog language: arbitrary execution
order in zero time, and arbitrary interleaving of statements from other processes;
these will be discussed in this section. Although one simulator will always produce the
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same results given the same simulation model and inputs, a different simulator version
or a different supplier’s simulator may choose to execute these same events in a differ-
ent order. Thus, we say that the results are not deterministic.

8.3.1 Near a Black Hole

A simulator executes events scheduled for the same time in a group. It may take sev-
eral simulation cycles to execute all of these events because some events may create
other events for the current time. We speak of executing events for the same time as
executing them in zero-time. It is not that these take no time to execute. Rather all of
the events occur without the passage of simulation time. They occur in zero-time.

The “For each” statement in the sched-
uling algorithm of Figure 8.3 removes one
or more events from the event list for exe-
cution during the current simulation time.
Further, it specifies that the order in which
these events are executed is arbitrary. The
arbitrary execution order of events in zero-
time is a source of non-determinism in the
simulation language. When writing mod-
els, one needs to be sensitive to the fact
that the ordering of events in zero-time is
unspecified.

A contrived illustration of non-deter-
minism is shown in Example 8.6. The
example has three behavioral processes
(one initial and two always statements),
and one gate model. Assume at some time
q = 0, f = qBar = b = 1, and a = 0. Later, a
changes to 1. a changing to one will create
a positive edge that will cause the first
always statement to begin executing. The
always statement will delay ten time units, set q equal to b (which is 1), and then wait
for the next positive edge on a. Setting q to a new value will cause evaluation events
for the two elements that are on q’s fanout — the second always statement and the not
gate. In the next simulation cycle, these will be removed from the event list and exe-
cuted in arbitrary order. Note however that depending on the order, a different value
for output f will be obtained. If the always statement is executed first, f will remain 1.
If the not gate is executed first, f will be set to 0.

module stupidVerilogTricks
(output reg f,
input a, b);

reg q;

initial
f=0;

always
@ (posedge a)

# 10 q = b;

not (qBar, q);

always
@ q

f = qBar;
endmodule

Example 8.6 Problems in Zero-Time
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Which answer is correct? Based on the
semantics of the language, either one is correct.
They are both correct because the simulator is
allowed to take events out of the event list for
the current time and execute them in whatever
order it pleases. If you think that q and qBar
(and thus f) should always appear to have com-
plementary values, then you need to change the
simulation model. For example, one change is
to combine the second always statement and
the not gate instantiation, leaving only the always statement shown in Example 8.7.
This solution will maintain the timing. Also, placing a “#1” before “f = qBar” in
Example 8.6 will ensure the “correct” value is loaded into f — however, the timing
characteristics of the module would be changed too. A solution that maintains the
timing uses “#0” instead of the “#1” in the “f = qBar” statement. This solution will be
discussed further in section 8.4.

always
begin

@ q
qBar = ~q;
f = qBar;

end

Example 8.7 One Correction to
Example 8.6

Although the above example was con-
trived, be assured that non-determinism sur-
faces in uncontrived examples. Consider the
ripple counter in Example 8.8. Here two D
flip flops are connected together in a counter
configuration; the low order flip flop (instance
a) is connected in a toggle mode. The higher
order bit (b) has the low order bit as its input.
We would expect the counter to increment
through the states 00, 01, 10, 11, 00, … at the
positive edge of the clock. However, on closer
inspection we see that the “q = d” statement
of both instances of the dff is scheduled to
continue executing three time units into the
future. At that time, the scheduler will take
both of these evaluation events off of the
event list and execute them in arbitrary order.
Of course, the order does matter. Executing
instance a first will lead to an incorrect count-
ing sequence (00, 11, 00, ...). Executing
instance b first will produce intended order.

module goesBothWays
(output [2:1]
input clock);

wire q1, q2;
assign

dff a (ql, ~ql, clock),
b (q2, ql, clock);

endmodule

module dff
(output reg q,
input d, clock);

always
@(posedge clock)

#3 q = d;
endmodule

Example 8.8 Non-Determinism in a
Flip Flop Model

This problem can be corrected by using the intra-assignment delay statement
“q = #3 d;” in the dff module. This statement will cause all of the d inputs of the dff
instances to be sampled and stored as update events in the event list before any of the
updates are made to the instances of q. Thus, the instances can be executed in any
order and the behavior is deterministic. The problem can also be corrected by using
non-blocking assignment: “q <= d;” in the dff module. Here the non-blocking assign-
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ment works with the clock edge to separate the reading of all of the d’s from the
updating of the q’s.

The fact that events in zero-time can be executed in arbitrary order is part of the
basic definition of the language. Non-deterministic behavior in a design reflects either
poor usage of the modeling constructs, or a real race condition. Non-determinism is
allowed in the language both for efficiency reasons and because it happens in real life
… “non-determinism happens”. Care must be exercised when writing models without
races so that the results will be deterministic given any ordering of execution in zero-
time.

8.3.2 It’s a Concurrent Language

The second source of non-determinism in Verilog stems from potential interleaving
of the statements in different behavioral processes. By behavioral process models, we
mean the behavioral statements found in always and initial statements. Update events
and all evaluation events except for the execution of behavioral process models are
atomic actions; these events are guaranteed to be executed in their entirety before
another event is executed. The behavioral process models found in initial and always
statements live by a different set of rules.

Consider first a software programming environment. In a normal programming
language such as C, a single process is described that starts and ends with the “main”
function. As it executes, we expect the statements to be executed in the order written
and for the values calculated and stored in a variable on one line to have the same
value when used as sources on succeeding lines. Indeed, this is the case as long as
there is only one process. However, if there is more than one process and these pro-
cesses share information — they store their variables in the same memory locations —
then it is possible that the value in a variable will change from one line to the next
because some other software process overwrote it.

Continuing with the software analogy, consider the excerpts from two processes
shown in Figure 8.5 executing in a parallel programming environment. Each process
is its own thread of control, executing at its own rate. But the two processes share a
variable — in this case the variable a in both processes refers to the same memory
words. If these processes were being executed on one processor, then process A might
execute for a while, then process B would execute, and then A again, and so on. The
operating system scheduler would be charged with giving time to each of the pro-
cesses in a fair manner, stopping one when its time is up and then starting the other.
Of course, there could be a problem if process A is stopped right after the “a = b + c”
statement and process B is started; process B will change the value of a seen by pro-
cess A and the result calculated for q when process A is finally resumed will be differ-
ent than if process A executed the two shown statements without interruption.
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Alternatively, these two processes could be executed on two parallel processors with
the variable a in a shared memory. In this case, it is possible that process B will exe-
cute its “a = a + 3” statement between process A’s two statements and change the value
of a. Again, the result of q is not deterministic.

What is the chance of this happening? Murphy’s law states that the probability is
greater than zero!

In a software parallel programming environment, we are guaranteed that the state-
ments in any process will be executed in the order written. However, between the
statements of one process, statements from other processes may be interleaved. Given
the parallel programming environments suggested here, there could be many different
interleavings. We will call any specific interleaving of statements in one process by
those of other processes a scenario. The two following scenarios give rise to the two
differing values for q described above.

Scenario 1
A: a = b + c
B: a = a + 3
A: q = a + 1

Scenario 2
A: a = b + c
A: q = a + 1
B:a = a + 3

Which of these two scenarios is correct? According to the normal understanding of
a parallel programming environment, both interpretations are correct! If the writer
wanted Scenario 2 to be the correct way for q to be determined, then the writer would
have to change the description to insure that this is the only way q can be calculated.
In a parallel programming environment, any access to a would be considered a critical
section. When program code is in a critical section, the operating system must make
sure that only one process is executing in the critical section at a time. Given that the
statements shown in process A and process B in Figure 8.5 would be in a critical sec-
tion to protect the shared variable a, scenario 1 would be impossible. That is, the
operating system would not allow process B to execute “a = a + 3” because process A is
still in the critical section.

The above discussion of parallel software programing environments is exactly the
environment that Verilog processes execute in. Specifically, the execution rules for
behavioral processes are:
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the statements in a begin-end block in a Verilog process (i.e., the statements
within an always or initial statement) are guaranteed to execute in the order writ-
ten.

the statements in a Verilog process may be interleaved by statements from other
Verilog processes.

registers and wires whose names resolve through the scope rules to the same entity,
are the same. These shared entities can be changed by one process while another
process is using them.

Thus, many scenarios are possible. Indeed, be aware that the processes may call func-
tions and tasks which do not have their own copies of variables — they too are shared.
It is the designer’s role to make sure that only correct scenarios are possible. Generally,
the culprits in these situations are the shared registers or wires. Any register or wire
that can be written from more than one process can give rise to interleaving problems.

Sometimes you want the current
process to stop executing long
enough for other values to propa-
gate. Consider Example 8.9. The
result printed for b is indetermi-
nate — the value could be x or 1. If
the initial process is executed
straight through, b will have the
value x. However, given the
semantics described above, it is
possible that when a is set to 1, the
behavioral process can be sus-
pended and the value of b could
then be updated. When the behavioral process is restarted, the display statement
would show b set to 1.Changing the display statement to start with a “#0” will cause
the initial process to be suspended, b to be updated, and when the display statement
resumes it will show b as 1.

Interestingly, in concurrent software languages, high level methods are provided to
synchronize multiple processes when they try to share information. P and V sema-
phores are one approach; critical sections are another. To make these methods work,
there are instructions (such as “test and set”) that are atomic — they cannot be inter-
rupted by another process. These instructions, acting in “zero-time,” provide the basis
for the higher level synchronization primitives. In hardware, synchronization between
processes is maintained by clock edges, interlocked handshake signals, and in some
cases timing constraints.

module suspend;
reg a;
wire b = a;

initial begin
a=l ;

("a = %b,b = %b",a,b);
end

endmodule

Example 8.9 Suspending the Current
Process
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8.4 Non-Blocking Procedural Assignments
A procedural assignment statement serves two purposes: one is to assign a value to the
left-hand side of a behavioral statement, the second is to control the scheduling of
when the assignment actually occurs. Verilog’s two types of procedural assignment
statements, blocking and non-blocking, do both of these functions differently.

8.4.1  Contrasting Blocking and Non-Blocking Assignments

The non-blocking assignment is indicated by the “<=” operator instead of the “=”
operator used for blocking assignments. The <= operator is allowed anywhere the = is
allowed in procedural assignment statements. The non-blocking assignment operator
cannot be used in a continuous assignment statement. Although <= is also used for
the less-than-or-equal operator, the context of usage determines whether it is part of
an expression and thus a less-than-or-equal operator, or whether it is part of a proce-
dural assignment and thus a non-blocking assignment.

Consider the two statements: “a = b;” and “a <= b;”. In isolation, these two state-
ments will perform the same function — they will assign the value currently in b to
the register a. Indeed, if b had the value 75 when each statement was encountered, a
would receive the value 75. The same is true for the paired statements:

“#3 a = b;” and “#3 a < = b ; ” ,and

“a = #4b;” and “a <=#4 b;”

In each of these paired cases, the resulting values stored in a are equal. The differences
between these statements pertain to how the assignment is actually made and what
ramifications the approach has on other assignments.

Let’s consider the differences between “a = #4 b;” and “a <= #4 b;”. The first calcu-
lates the value b (which could have been an expression), stores that value in an inter-
nal temporary register, and delays for 4 time units by scheduling itself as an update
event for a 4 time units in the future. When this update event is executed, the internal
temporary register is loaded into a and the process continues. This could have been
written:

bTemp = b; combined, these are the same as a = #4 b;
#4 a = bTemp;

The statement (“a <= #4 b;”) calculates the value b, schedules an update event at 4
time units in the future for a with the calculated value of b, and continues executing
the process in the current time. That is, it does not block or suspend the behavioral
process — thus the name non-blocking. Note that in both cases, the value assigned to a
is the value of b when the statement first started executing. However, the new value
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will not be assigned until 4 time units hence. Thus if the next statement uses a as a
source register, it will see the old value of a, not the new one just calculated.

The two Verilog fragments shown below contrast these two forms of assignment.
The blocking assignments on the left will cause the value of b to be assigned to c four
time units after the begin-end block starts. In the non-blocking assignments on the
right, the first statement schedules a to get the value b two time units into the future.
Because this statement is non-blocking, execution continues during the current time
and c is scheduled to get the value a two time units into the future. Thus, c will be
different in these two situations.

begin
a = #2 b;
c = #2 a;

end

begin
a <= #2b;
c <= #2 a;

end

Beyond the definition of blocking versus non-blocking, there is another important
distinction between blocking and non-blocking assignments; the distinction is when
in the simulation scheduler algorithm the update events are handled. In section 8.2.3
we only discussed how the results of blocking assignments are updated; they are
updated immediately so that the following behavioral statements will use the new
value. If they are also process outputs, they are also put in the event list for the current
time, in which case they will be propagated during the next simulation cycle. Non-
blocking assignment statements produce update events that are stored in a separate
part of the event list. These update events are not executed until all of the currently
scheduled update and evaluation events for the current time have been executed —
including the events generated by these for the current time. That is, when the only
events for the current time are non-blocking update commands, then they are han-
dled. Of course the non-blocking updates may cause other evaluation events to be
scheduled in the event list for the current time.

8.4.2 Prevalent Usage of the Non-Blocking Assignment

As presented in Chapter 1, the main use of non-blocking assignment is with an edge
specifier as shown in Example 8.10, which is revised from Example 1.7. The non-
blocking assignment serves to separate the values existing before the clock edge from
those generated by the clock edge. Here, the values on the right-hand side of the non-
blocking assignment are values before the clock edge; those on the left-hand side are
generated by the clock edge.

Using non-blocking assignments causes these two assignments to be concurrent —
to appear to happen at the same time. The first statement in the always block is exe-
cuted and a non-blocking update for cS1 is scheduled for the current time. However,
the update is not made immediately and execution continues with the second line.
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Here a non-blocking update for cS0 is scheduled for the current time. This update is
not made immediately and execution continues with the always block waiting for the
next posedge clock. Thus, the cS1 calculated on the first line is not the same value
used on the right-hand side of next statement.

When will the values of cS1 and cS0
be updated? They will be updated only
after all blocking updates for the current
time are executed. This includes any
blocking updates or evaluation events
generated from them. Thus all right-
hand sides will be evaluated before any
of the left-hand sides are updated. The
effect is that all non-blocking assign-
ments appear to happen concurrently
across the whole design. The order of
the two statements for cS1 and cS0
could be switched in the description
with no change in the resulting value.

module fsm
(output  reg    cS1, cS0,
input in, clock);

always @(posedge clock) begin
cS1<= in & cS0;
cS0 <= in | cS1;

end
endmodule

Example 8.10  Illustrating the Non-
Blocking Assignment

The powerful feature of the non-blocking assignment is that not only are the two
statements in this module concurrent, but all non-blocking assignments waiting on
the same edge in any of the always or initial statements in the whole design are con-
current.

8.4.3  Extending the Event-Driven Scheduling Algorithm

An expanded version of the simulator scheduler algorithm (previously shown in
Figure 8.3) is shown in Figure 8.6. Several elements have changed. First, the term
regular event has been used to include all events other than the non-blocking update
events. Thus regular events include blocking assignment updates and evaluation
events for behavioral processes and gate models. Secondly, the then clause of the sec-
ond if has been changed to look for non-blocking update events when all regular
events have been executed. Conceptually, the non-blocking update events are changed
to regular events so that the rest of the scheduler algorithm can handle them directly.
Finally, monitor events are handled after all of the above events have been executed.

The event list can be thought of as having separate horizontal layers as shown in
Figure 8.7. For any given time in the event list, there are three separate layers: the
regular events, the non-blocking events, and the monitor events. The scheduler algo-
rithm removes the regular events from the list and executes them, possibly causing
other events to be scheduled in this and other time slots. Regular events for time are
put in the list in the regular event section; these will be removed during the next sim-
ulation cycle. Other events will be scheduled into their respective sections or into
event lists for future times.
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When we get to the next simulation cycle and there are more regular events, these
are handled as just described. When there are no more regular events for the current
time, events from the non-blocking layer are moved to the regular event layer and
executed. These in turn may cause other regular events and non-blocking events
which are scheduled into their respective sections. The event scheduling algorithm
continues repeatedly executing all of the regular events for the current time, followed
by the non-blocking events for the current time until no more events (regular or non-
blocking) exist for the current time. At this point, the scheduler handles monitor
events. These are inserted in the monitor events layer when the input to a monitor
statement changes. These are the last to be handled before time is advanced. They
cause no further events.

Given this background, here is a list of how the different procedural assignments
are handled by the simulation scheduler:
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“a = b;”

“a <= b;”

“a = #0 b;”

“a <= #0 b;”

“a= #4 b;”

“a <= #4 b;”

“#3 a = b;”

b is calculated and used immediately to update a. Note that the next
statement in the behavioral process that uses a as a source will use
this new value. If a is an output of the process, elements on a’s
fanout list are scheduled in the current time as a regular evaluation
events.

b is calculated and a non-blocking update event is scheduled for a
during the current time. Execution of the process continues. This
new value for a will not be seen by other elements (not even the cur-
rently executing behavioral process) until the non-blocking update
events are executed.

b is calculated and an update event for a is scheduled as a regular
event in the current time. The current process will be blocked until
the next simulation cycle when the update of a will occur and the
process will continue executing.

b is calculated and a non-blocking update event is scheduled for the
current time. The current process will continue executing. The
update event will be executed after all regular events for the current
time are executed. The same as “a <= b;”.

This is like “a = #0 b;” except that the update event and the contin-
uation of the process is scheduled 4 time units into the future.

This is like “a <= #0 b;” except that a will not be updated (using a
non-blocking update event) until 4 time units into the future.

Wait 3 time units before doing the action for “a = b;” specified
above. The value assigned to a will be the value of b 3 time units
hence.
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“#3 a <= b;” Wait 3 time units before doing the action for “a <= b;” specified
above. The value assigned to a will be the value of b 3 time units
hence.

Note that in the above situations the value assigned to a is the same. (Well okay, the
value of b in the last two examples could change in the next three time units. But for
those two cases, the value assigned to a would be the same.) The differences lie in
what part of the event list the update is scheduled in, whether the value is available in
the next behavioral statement, and whether the current process is blocked because of
the  #.

8.4.4 Illustrating Non-Blocking Assignments

As presented in the previous section, the non-blocking assignment allows us to sched-
ule events to occur at the end of a time step, either the current one or a future one.
Further, they allow the process to continue executing. As with blocking assignments,
event control and repeat constructs can be specified within the assignment statement.
The general form for the non-blocking assignment is shown below:

nonblocking_assignment
vaiable_lvalue <= [ delay_or_event_control ] expression

delay_or_event_control
delay_control

| event_control
| repeat ( expression ) event_control

delay _control
# delay_value

| # (mintypmax_expression)

event_control
@ event_identifier

| @ (event expression)
| @*
| @(*)

event_expression
expression
hierarchical_identifier
posedge_expreession
negedge_expression
event_expression or event_expression
event_expression , event_expression
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We have already illustrated the optional delay control. This section will discuss the
event control and repeat constructs.

A differentiating feature of the non-
blocking assignment is the fact that it
schedules an assignment but does not
block the current process from executing
further. Consider the behavioral model of
a NAND gate, shown in Example 8.11,
that changes the inertial delay of a gate to
zero. Any change on a or b will cause an
update event for f to be scheduled pDelay
time units in the future. A non-blocking
assignment is necessary here because it
allows the behavioral model to remain
sensitive to its inputs; a change one time
unit later will cause another update event on f. If a blocking assignment had been
used, the behavioral model would be delaying and the input change one time unit
later would have been missed until after the delay.

module inertialNand
#(parameter pDelay = 5)
(output reg f,
input a, b);

always
@(a,b)

f <= #pDelay~(a & b);
endmodule

Example 8.11  Illustration of Non-
Blocking Assignment

Figure 8.8 shows the output waveforms for the NAND gate of Example 8.11 (iDelay
= 0) as compared to an instantiated NAND gate. The instantiated NAND gate’s output
only responds to a set of inputs when they have been supporting the new output for
the propagation time. Thus the output does not see the pulses on the inputs and twice
an output update event is cancelled (see “*”). With the inertial delay equal to 0, the
input pulses show up a propagation time (pDelay) later. Note at the right that an
input “pulse” can be generated from two different inputs changing. Because of the 0
inertial delay, this pulse is seen on the output at the right of the figure.
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Consider a behavioral model of a pipelined multiplier shown in Example 8.12. The
latency for the multiplier is four clock periods and it can accept a new set of inputs
each clock period. A positive edge on go is the signal to start a multiply. At that time,
the inputs are multiplied together and product is scheduled to be updated on the
fourth positive edge of clock. Since this is a non-blocking assignment, the calculated
product is stored internally in the event list and the always can then wait for the next
go signal which will start another, possibly overlapping, multiply. In this situation, go
must be synchronous with respect to clock because we cannot have more than one
multiply started for each clock edge. However, we can have one multiply started each
clock period. The example further illustrates that the event list can be used to store
multiple events for the same name and from the same assignment.

module pipeMult
(output reg [19:0] product,
input [9:0] mPlier, mCand,
input go, clock);

always
@(posedge go)

product <= repeat (4) @(posedge clock) mPlier * mCand;
endmodule

Example 8.12 A Pipelined Multiplier

An interesting contrast between gate level timing models and procedural timing
models is illustrated here. If an update is generated for the output of an element using
the Verilog gate level timing model, update events already scheduled in the event list
for that element will be removed and the new update will be scheduled. This is not
the case with elements using the procedural timing model. As we have seen in this
example, multiple update events for product are scheduled without changing any of
the already scheduled update events.

References: intra-assignment repeat 4.7

8.5 Summary
Timing models have been introduced as a means of separating simulation models into
two broad classes characterized by how they advance simulation time. Algorithms for
a simulator scheduler that handles these models was presented. Detailed liming
issues, including non-determinism in the language and the contrast between blocking
and non-blocking procedural assignments were covered.
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8.6 Exercises
8.1 Below is a circuit and two Verilog models, one written as a structural model and

the other as a behavioral model. Note that the models are not equivalent. Cur-
rent logic levels are shown in the circuit. Assume there are no events in the event
list except for those specified below.

module sMux
(output f,
input a, b, select);

nand #8
(f, aSelect, bSelect),
(aSelect, select, a),
(bSelect, notSelect, b);

not
(notSelect, select);

endmodule

module bMux
(output reg f,
input a, b, select);

always
@select

#8 f = (select) ?a :b ;
endmodule

A. Simulate only module sMux and show all events that will eventually appear
in the event list. The initial event in the event list is the update event “b = 0 at
time 35”. Separately simulate it with the initial update event as “select = 1 at
time 50”.

B. Simulate only module bMux and show all events that will eventually appear
in the event list. The initial event in the event list is the update event “b = 0 at
time 35”. Separately simulate it with the initial update event as “select = 1 at
time 50”.

C. As mentioned, the models are not equivalent. Briefly explain why the models
are not equivalent. Change the bMux model to make it equivalent to sMux in
function and timing by rewriting the always statement. Aspects you may or may
not want to consider: functionality only, input sensitivity, and/or timing with
respect to inertial delay. Explain your changes.

D. As a function of time, what is the input sensitivity list of the always process
statement in bMux?
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8.2 Fill in the following table by simulating module nbSchedule for 25 time units.
Each line of the table represents a simulation cycle. You do not need to turn in
the event lists and how they change over tim. However, keeping the lists would
probably help you keep track of what you should put in the table.

8.3 Start executing the following description at time = 0 and stop at time = 40.

module beenThere;
reg [15:0] q;
wire h;
wire [15:0] addit;

doneThat dT (q, h, addit);
initial q = 20;

always begin
@ (posedge h);
if (addit = = 1)

q = q + 5;
else q = q - 3;

end
endmodule

module doneThat
(input [15:0] que,
output reg f,
output reg [15:0] add);

always
#10 f = ~ f;

initial begin
f=0;
add = 0;
#14 add = que + 1;
#14 add = 0;

end
endmodule

8.4

Fill in the trace below (adding more lines), giving the time a register changes,
the register name, and the new value assigned. List these in time order.

at time =

Write and execute a test module for Example 8.12. The clock should have a 100
ns. period. Several test vectors (numbers to multiply) should be loaded into
mPlier and mCand and then go should be pulsed high for 10 ns. (Test module?
See Chapter 1.)

A.

B.

Show that your test module along with pipeMult produce correct answers.

Trace the update and evaluation events in the event list.
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module nbSchedule
(output q2);

wire q1;
reg c, a;

xor (d, a, q1),
(clk, 1'b1, c);
// holy doodoo, Batman, a gated clock!

dff s1(q1, d, clk),
s2 (q2, q1, clk);

initial begin
c=1;
a = 0;
#8 a = 1;

end

always
#20 c = ~c;

endmodule

module dff
(output reg q,
input d, c);

initial q = 0;

always
@(posedge c) q <= d;

endmodule

8.5

8.6

Here’s a skeleton of two modules (interleave and huh) that could have non-
determinism problems due to interleaving with other behavioral processes.
Where might a problem be encountered. Explain how to correct the problem.

Remembering that there is some non-determinism built into the simulator,
explain how different results can be obtained by simulating this circuit. Suggest
two different corrections to the description that remove the problem.
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module interleave;
reg [7:0] a;
huh h ();

endmodule

module huh;
reg [7:0] b, c, q, r;

always begin

a = b + c;
q = a + r;

end
endmodule

module ouch (select, muxOut, a, b);
(input select,
output reg muxOut,
input a, b);

always begin
@select

muxOut = (a & select) | (b & notSelect);

not
(notSelect, select);

endmodule
8.7 Assuming that all registers are single-bit initially with the value x, contrast the

two following situations. At what times will the registers change?

initial begin
q = #15 1;
r = #25 0;
s = #13 1;

end

initial begin
q <= #15 1;
r <= #25 0;
s <= #13 1;

end

8.8

8.9

Change the pipeMult module in Example 8.12 so that it can only take new val-
ues every two clock periods. That is, the pipeline latency is still 4 clock periods,
but the initiation rate is every two clock periods. Test the new module.

Write a behavioral description that swaps the values in two registers without
using a temporary register. The new values should appear #2 after the positive
edge. Complete the following module.
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module swapIt
(input doIt);

reg [15:0] george, georgette;

always
@(posedge doIt)

//do it
endmodule

8.10

8.11

8.12

Rewrite twoPhiLatch in Example 8.4 using a non-blocking assignment.

Write a model for a simple component that requires the use of “<=” rather than
“=” somewhere in the model. Example 8.12 was one such example; come up
with another.

A student once asked if they could use blocking assignments rather than non-
blocking assignments in their finite state machine descriptions. As it turns out,
they could have but I would have pryed off their fingernails. Keeping in mind
the differences between “may” and “can”, …

A. Show an example where they can and it doesn’t matter. Explain why. What
assumptions are required?

B. Explain why they may not do this — briefly.



9 User-Defined
Primitives

Verilog provides a set of 26 gate level primitives for modeling the actual logic imple-
mentation of a digital system. From these primitives, presented in Chapter 6, larger
structural models may be hierarchically described. This chapter presents an advanced
method for extending the set of gate level primitives to include user-defined combina-
tional, and level- and edge-sensitive sequential circuits.

There are several reasons for wanting to extend the set of gate level primitives.
First, user-defined primitives are a very compact and efficient way of describing a pos-
sibly arbitrary block of logic. Secondly, it is possible to reduce the pessimism with
respect to the unknown x value in the simulator’s three valued logic, thus creating
more realistic models for certain situations. Finally, simulation efficiency may be
gained through their use. Note, however, that these may not be used to specify
designs for logic synthesis.
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9.1 Combinational Primitives

9.1.1 Basic Features of User-Defined Primitives

As shown in Example 9.1, user-defined
primitives are defined in a manner similar
to a truth table enumeration of a logic
function. Primitives are defined at the same
lexical level as modules, i.e. primitives are
not defined within modules. This example
describes a primitive for generating the
carry out of a single-bit full adder. carry-
Out is the output, and carryIn, aIn, and
bIn are the inputs. A table is then specified
showing the value of the output for the var-
ious combinations of the inputs. A colon
separates the output on its right from the
inputs on its left. The order of inputs in the
table description must correspond to the
order of inputs in the port list of the primi-
tive definition statement. Reading from the
fourth line of the table, if carryIn was 0,
aIn was 1, and bIn was 1, then carryOut
would be 1.

primitive carry
(output carryOut,
input carryIn, aIn, bIn);

table
0
0
0
0
1
1
1
1

00
01
10
11
00
01
10
11

0;
0;
0;
1;
0;
1;
1;
1;

endtable
endprimitive

Example 9.1 A User-Defined
Combinational Primitive

There are a number of rules that must be considered:

Primitives have multiple input ports, but exactly one output port. They may not
have bidirectional inout ports.

The output port must be the first port in the port list.

All primitive ports are scalar. No vector ports are allowed.

Only logic values of 1, 0, and x are allowed on input and output. The z value can-
not be specified, although on input, it is treated as an x.

The user-defined primitives act the same as other gate primitives and continuous
assign statements. When one of their inputs changes, then the new output is deter-
mined from the table and is propagated on the output. The input values in a row of
the table must correspond exactly to the values of the input ports for the row’s output
value to be selected. If a set of inputs appears on the ports for which there is no exact
match, then the output will default to x. Any time delay to be associated with the
primitive is specified when instances of the primitive are defined. Because primitives
cannot generate the value z, only two delays (rising and falling) can be specified per
instance.
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As can be seen, the definition of a user-defined primitive follows closely the defini-
tion of a module. However, the keyword primitive introduces the definition and the
keyword endprimitive closes it. Declarations within a primitive can only be inputs,
outputs, and registers (i.e. no inouts).

udp_declaration
primitive udp_identifier ( udp_port_list);

udp_port_declaration { udp_port_declaration }
udp_body
endprimitive

primitive udp_identifier (udp_declaration_port_list);
udp_body
endprimitive

udp_port_list
output_port_identifier, input_port_identifier {, input_port_identifier }

udp_port_declaration
udp_output_declaration
udp_input_declaration
udp_reg_declaration

Beyond this point, the primitive definition departs greatly from that of a module
definition. The primitive has no internal instantiations, assign statements, or always
statements. (However, sequential primitives may have initial statements.) Rather, the
primitive requires a table definition whose syntax is partially detailed below.

udp_body
combinational_body
sequential_body

combinational_body
table

combinational_entry { combinational_entry }
endtable

combinational_entry
level_input_list: output_symbol;

sequential_body
[udp_initial_statement]

table_sequential_entry {sequential_entry }
endtable

udp_initial_statement
initial output_port_identifier = init_val;
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References: sequential primitives 9.2

9.1.2 Describing Combinational Logic Circuits

The usefulness of Example 9.1 might be rather low as nothing is stated about what
happens when there is an unknown (x) input on any of the inputs. Since the table
made no mention of what happens when there is an x input, the output of the primi-
tive will be x. This is rather pessimistic in that if the other two inputs were both 1,
then the output should be 1 regardless of the third input.

The table enumeration allows for the
specification of 1,0, and x values in its input
and output sections. Further, it allows for
the specification of a don’t care in the table
meaning that any of the three logic values
are to be substituted for it when evaluating
the inputs. Consider the expanded defini-
tion of the carry primitive shown in
Example 9.2. Here, the last six lines of the
table specify the output in the presence of
unknown inputs. For instance (third line
from bottom of table), if carryIn and aIn
were 1, and bIn was x, then carryOut will
be 1 regardless of the value of bIn. Of
course, if there were two unknowns on the
inputs to this gate, then the output would
be unknown since there is no table entry
specifying what to do in that case.

primitive carryX
(output carryOut,
input carryIn, aIn, bIn);

table

The table may be abbreviated using the ?
symbol to indicate iterative substitution of
0,1, and x. Essentially, the ? allows for us to
state that we don’t care what a certain value
is, the other inputs will specify the output.
The carry primitive example can be rewritten more compactly as shown in
Example 9.3.

0
0
0
0
1
1
1
1
0
0
x
1
1
x

00
01
10
11
00
01
10
11
0x
x0
00
1x
x1
11

0;
0;
0;
1;
0;
1;
1;
1;
0;
0;
0;
1;
1;
1;

endtable
endprimitive

Example 9.2 A Carry Primitive
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We can read any line of the table in two
ways. Taking the first line of the table as an
example, we can state that if the first two
inputs are both zero, then the third input can
be considered a don’t care and the output will
be zero. Second, we can mentally triplicate
the line substituting in values of 0, 1, and x
for the ?. The shorthand provided by the
don’t care symbol improves the readability of
the specification remarkably.

9.2 Sequential Primitives
In addition to describing combinational devices, user-defined primitives may be used
to describe sequential devices which exhibit level- and edge-sensitive properties.
Since they are sequential devices, they have internal state that must be modeled with a
register variable and a state column must be added to the table specifying the behavior
of the primitive. The output of the device is driven directly by the register. The output
field in the table in the primitive definition specifies the next state.

The level- and edge-sensitive primitives are harder to describe correctly because
they tend to have far more combinations than normal combinational logic. This
should be evident from the number of edge combinations that must be defined.
Should any of the edges go unspecified, the output will become unknown (x). Thus,
care should be taken to describe all combinations of levels and edges, reducing the
pessimism.

primitive carryAbbrev
(output carryOut,
input carryIn, aIn, bIn);

table
0
0
?

?
1
1

0?
?0
00
11
?1
1?

0;
0;
0;
1;
1;
1;

endtable
endprimitive

Example 9.3 A Carry Primitive With
Shorthand Notation
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9.2.1 Level-Sensitive Primitives

The level-sensitive behavior of a latch
is shown in Example 9.4. The latch
output holds its value when the clock
is one, and tracks the input when the
clock is zero. Notable differences
between combinational and sequen-
tial device specification are the state
specification (surrounded by colons),
and a register specification for the
output.

To understand the behavior specifi
cation, consider the first row. When
the clock is zero and the data is a one,
then when the state is zero, one or x
(as indicated by the ?), the output is
one. Thus, no matter what the state is, the output (next state) depends only on the
input. Line two makes a similar statement for having zero on the data input.

If the clock input is one, then no matter what the data input is (zero, one, or x)
there will be no change in the output (next state). This “no change” is signified by the
minus sign in the output column.

9.2.2 Edge-Sensitive Primitives

The table entries for modeling edge-
sensitive behavior are similar to those
for level-sensitive behavior except
that a rising or falling edge must be
specified on one of the inputs. It is
illegal to specify more than one edge
per line of the table. Example 9.5
illustrates the basic notation with the
description of an edge-triggered D-
type flip flop.

The terms in parentheses represent
the edge transitions of the clock vari-
able. The first line indicates that on
the rising edge of the clock (01) when
the data input is zero, the next state
(as indicated in the output column)
will be a zero. This will occur regardless of the value of the current state. Line two of

primitive latch
(output reg q,
input clock, data);

table
// clock data state output

0 1
0 0
1 ?

: ? :
: ? :
: ? :

1;
0;
-;

endtable
endprimitive

Example 9.4 A User-Defined Sequential
Primitive

primitive dEdgeFF
(output reg q,
input clock, data);

table
// clock data state output

endtable
endprimitive

Example 9.5 Edge-Sensitive Behavior

(01)
(01)
(0x)
(0x)
(?0)
?

0
1
1
0
?

(??)

:? :
:?:

:1:
:0:
:?:
:?:

0;
1;
1;
0;
-;
-;
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the table specifies the results of having a one at the data input when a rising edge
occurs; the output will become one.

If the clock input goes from zero to don’t care (zero, one, or x) and the data input
and state are one, then the output will become one. Any unspecified combinations of
transitions and inputs will cause the output to become x.

The second to the last line specifies that on the falling edge of the clock, there is no
change to the output. The last line indicates that if the clock line is steady at either
zero, one, or x, and the data changes, then there is no output change.

Similar to the combinational user-defined primitive, the primitive definition is very
similar to that of a module. Following is the formal syntax for the sequential entries in
a table within the primitive.

udp_body
combinational_body

| sequential_body

combinational_body
table

combinational_entry { combinational_entry}
endtable

combinational_entry
level_input_list: output_symbol; // see section 9.1

sequential_body
[udp_initial_statement]

table_sequential_entry (sequential_entry }
endtable

udp_initial_statement
initial output_port_identifier = init_val;

init_val
1'b0 | 1'b1 | 1'bx | 1'bX | 1'B0 | 1'B1 | 1'Bx | 1'BX | 1 | 0

sequential_entry
seq_input_list: current_state : next_state ;

seq_input_list
level_input_list

| edge_input_list

level_input_list
level_symbol {level_symbol}
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edge_input_list
{level_symbol} edge_indicator {level_symbol}

edge_indicator
(level_symbol level_symbol)

| edge_symbol //see section 9.3

current_state
level_symbol

next_state
output_symbol

| - // a literal hyphen, see text

References: combinational primitives 9.1; edge symbols 9.3

9.3 Shorthand Notation
Example 9.6 is another description of the
edge-triggered flip flop in Example 9.5
except that this one is written using some
of Verilog’s shorthand notation for edge
conditions.

The symbol “r” in the table stands for
rising edge or (zero to one), and “*” indi-
cates any change, effectively substituting
for “(??)”. Table 9.1 lists all of the short-
hand specifications used in tables for user-
defined primitives.

primitive dEdgeFFShort
(output reg q,
input clock, data);

table
// clock data state output

r 0
r 1

(0x) 0
(0x) 1
(?0) ?
? *

:?: 0;
:?: 1;
:1: 1;
:1: 1;
: ?: -;
: ?: -;

endtable
endprimitive

Example 9.6 Edge -Sensitive Behavior
With Shorthand Notation

9.4 Mixed Level- and Edge-Sensitive Primitives
It is quite common to mix both level- and edge-sensitive behavior in a user-defined
primitive. Consider the edge-sensitive JK flip flop with asynchronous clear and preset
shown in Example 9.7
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In this example, the preset and clear inputs are level-sensitive. The preset section
of the table specifies that when preset is zero and clear is one, the output will be one.
Further, if there are any transitions (as specified by the “*”) on the preset input and
clear and the internal state are all ones, then the output will be one. The clear section
of the table makes a similar specification for the clear input.

The table then specifies the normal clocking situations. The first five lines specify
the normal JK operations of holding a value, setting a zero, setting a one, and tog-
gling. The last line states that no change will occur on a falling edge of the clock.

The j and k transition cases specify that if the clock is a one or zero, then a transi-
tion on either j or k will not change the output.

Finally, we have the cases that reduce the pessimism of the example by specifying
outputs for more situations. The first three lines include the full set of rising-edge
cases, i.e. those clock edges including x. Following these, the next four lines make fur-
ther specifications on when a negative edge including x occurs on the clock. Finally,
the specification for clock having the value x is given. In all of these “pessimism reduc-
ing” cases, we have specified no change to the output.

There are times when an edge-sensitive and level-sensitive table entry will conflict
with each other. The general rule is that when the input and current state conditions
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primitive jkEdgeFF
(output reg q,
input clock, j, k, preset, clear);

table
//clock jk pc state output
// preset logic

? ?? 01 :?: 1;
? ?? *1 :1: 1;

// clear logic
? ?? 10 :?: 0;
? ?? 1* :0: 0;

// normal clocking cases
r 00 11 :? -;
r 01 11 :? 0;
r 10 11 :? 1;
r 11 11 :0 1;
r 11 11 :1 0;
f ?? ?? :? -;

//j and k transition cases
b *? ?? :?: -;
b ?* ?? :?: -;

//cases reducing pessimism
p 00 11 :?: -;
p 0? 1? :0: -;
p ?0 ?1 :1: -;
(x0) ?? ?? :?: -;
(1x) 00 11 :?: -;
(1x) 0? 1? :0: -;
(1x) ?0 ?1 :1: -;
x *0 ?1 :1: -;
x 0* 1? :0: -;

endtable
endprimitive

Example 9.7 AJK Flip Flop
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of both a level-sensitive table row and an edge-sensitive table row specify conflicting
next-states, the level-sensitive entry will dominate the edge-sensitive entry. Consider
the table entry in Example 9.7:

//clock jk pc state output
? ?? 01 :?: 1; //Case A

which includes the case:

1 00 01 :0: 1; //Case B

Another entry:

f ?? ?? :?: -; //Case C

includes the case:

f 00 01 :0: 0; //Case D

Case B is a level-sensitive situation and case D is an edge-sensitive situation, but they
define conflicting next state values for the same input combinations. In these two
cases, the j, k, p, and c inputs are the same. Case B states that when the clock is one
and the state is zero, then the next state is one. However, case D states that when
there is a one to zero transition on the clock and the state is zero, then the next state is
zero. But for a falling edge to be on the clock with the other inputs as given, the clock
must just previously have been one and thus the next state should have already
changed to one, and not zero. In all cases, the level-sensitive specification dominates
and the next state will be one.

9.5 Summary
The user-defined primitives represent an advanced capability in the language for
specifying combinational and sequential logic primitives. The specifications are
efficient and compact and allow for the reduction of pessimism with respect to the x
value.

9.6 Exercises
9.1 Write combinational user defined primitives that are equivalent to:

A. the predefined 3-input XOR gate,

B. the equation ~((a c & b) | (c & d)), and
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C. the multiplexor illustrated as follows:

9.2

9.3

9.4

9.5

Try to reduce pessimism in the multiplexor description when the select line is
unknown.

Try to reduce the pessimism in Example 9.4 for cases when the clock becomes
unknown. Can more entries in Example 9.5 be given to further reduce pessi-
mism?

Write a sequential user defined primitive of a simple two input positive edge
triggered toggle flip flop with an asynchronous clear input.

Write a combinational user defined primitive of a strobed difference detector.
The device is to have 3 inputs: inA, inB and strobe, such that when strobe is 1,
inA is compared with inB. The output should be 0 when inA equals inB, and 1
when the comparison fails. When inB is unknown this indicates a don’t-care sit-
uation such that regardless of the value of inA the output is a 0.

Develop a gate level description of an edge-sensitive JK flip flop with asynchro-
nous clear and preset, and compare it against the user defined primitive in
Example 9.7 with respect to pessimism from the unknown value.



10 Switch Level
Modeling

Designs at the logic level of abstraction, describe a digital circuit in terms of primitive
logic functions such as OR, and NOR, etc., and allow for the nets interconnecting the
logic functions to carry 0,1, x and z values. At the analog-transistor level of modeling,
we use an electronic model of the circuit elements and allow for analog values of volt-
ages or currents to represent logic values on the interconnections.

The switch level of modeling provides a level of abstraction between the logic and
analog-transistor levels of abstraction, describing the interconnection of transmission
gates which are abstractions of individual MOS and CMOS transistors. The switch level
transistors are modeled as being either on or off, conducting or not conducting. Fur-
ther, the values carried by the interconnections are abstracted from the whole range of
analog voltages or currents to a small number of discrete values. These values are
referred to as signal strengths.

10.1 A Dynamic MOS Shift Register Example
We began our discussion of logic level modeling in Chapter 6 by listing the primitive
set of gates provided by the Verilog language (the list is reproduced as Table 10.1).
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At the time, only the logic level primitives were discussed. We can see from the switch
level primitives, shown in the right three columns of the table, that they all model
individual MOS/CMOS transistors.

Figure 10.1 illustrates the differences in modeling at the switch and logic levels.
The circuit is a three stage, inverting shift register controlled by two phases of a clock.
The relative timing of the clock phases is also shown in the figure. The Verilog
description is shown in Example 10.1.
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module shreg
/* IO port declarations, where 'out' is the inverse
of 'in' controlled by the dual-phased clock */

(output tri out,//shift register output
input in, //shift register input

phase1,//clocks
phase2);

tri     wb1, wb2; //tri nets pulled up to VDD
pullup (wb1), (wb2), (out);//depletion mode pullup devices

trireg (medium) wa1, wa2, wa3; //charge storage nodes

supply0 gnd; //ground supply

nmos #3 //pass devices and their interconnections
a1(wa1, in, phase1), b1(wb1, gnd, wa1),
a2(wa2, wb1, phase2), b2(wb2, gnd, wa2),
a3(wa3, wb2, phase1), gout(out, gnd, wa3);

endmodule

Example 10.1 MOS Shift Register

The circuit consists only of nmos transistors and depletion mode pullup transistors
interconnected by nets of type tri and trireg. tri nets model tristate nets. In this exam-
ple, tri nets wb1, wb2, and out are pulled up to VDD through the declaration of three
unnamed pullup gates.

Three trireg nets, wa1, wa2, and wa3, are declared. Trireg nets are different from
other types of nets in that they store a value when all gates driving the net have turned
off. That is, a driver can drive them (i.e. charge them) and then turn off. The value
driven will remain on the trireg net even though it is no longer being driven. These
nets are used in this example to model the dynamic storage of the shift register stages.
The declaration of the nets shows them being given the medium capacitor strength
(which also happens to be the default).

A net of type supply0 is defined and named gnd, modeling a connection to the
ground terminal of the power supply. Finally, the nmos pass transistors are instanti-
ated and connected, completing the shift register definition.

It is instructive to evoke the inputs to the shift register model and follow its simula-
tion output. The module in Example 10.2 instantiates a copy of the shreg module
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module waveShReg;
wire shiftout; //net to receive circuit output value
reg shiftin; //register to drive value into circuit
reg phase1, phase2; //clock driving values

parameter d = 100; //define the waveform time step

shreg cct (shiftout, shiftin, phase1, phase2);

initial
begin :main

shiftin = 0; //initialize waveform input stimulus
phase1 = 0;
phase2 = 0;
setmon; // setup the monitoring information
repeat(2) //shift data in

clockcct;
end

task setmon; //display header and setup monitoring
begin

time clks in out wa1-3 wb1-2");
phase1, phase2,,,,,,shiftin,,,, shiftout,,,,,

cct.wa1, cct.wa2, cct.wa3,,,,,cct.wb1, cct.wb2);
end

endtask

task clockcct; //produce dual-phased clock pulse
begin

#d phase1 = 1; //time step defined by parameter d
#d phase1 = 0;
#d phase2 = 1;
#d phase2 = 0;

end
endtask

endmodule

Example 10.2 Simulating the MOS Shift Register

described in Example 10.1, drives its inputs and monitors its outputs. Table 10.2 lists
the output from the simulation of this example.

Module waveShReg initializes shiftin, phase1, and phase2 to zero, prints a header
line for the output table, and then sets up the monitoring of certain nets within
instance cct of module shreg. Note that the nets within instance cct are referenced
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with the hierarchical naming convention (e.g. “cct.wbl”). The clockcct task is exe-
cuted twice, evoking actions within the shift register. After two iterations of clockcct,
the simulation is finished.

Table 10.2 lists the output from the simulation. Initially, the outputs are all
unknown. After 100 time units the phase1 clock is set to one. This enables the pass
transistor to conduct and the zero value at the input to be driven onto trireg net wa1
after one gate delay. After one more gate delay, tri net wb1 becomes one because tran-
sistor b1 is cutoff and wb1 is connected to a pullup. No more gate action occurs until
the phase1 clock goes to zero at time 200. At this point, we see the value on trireg net
wa1 persisting even though there is no driver for that net. The phase2 clock then
becomes 1 and the value on wb1 is transferred to wa2, driving transistor b2 and net
wb2 to zero. Phase2 is lowered and phase1 is raised, shifting the bit to wa3, making
the complement of the original input available at the output. (Note that charge will
remain on a net indefinitely unless there is a three-delay specifier placed on the net —
the first being the delay to one, the second is the delay to zero, and the last is the delay
to x.)

References: Verilog gates D; strengths 10.2
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10.2 Switch Level Modeling
Switch level modeling allows for the strength of a driving gate and the size of the
capacitor storing charge on a trireg net to be modeled. This capability provides for
more accurate simulation of the electrical properties of the transistors than would a
logic simulation.

10.2.1 Strength Modeling

Consider the description of a static RAM cell shown in Example 10.3 and
Figure 10.2. Among other declarations, two NOT gates are instantiated, each with a
“pull” drive strength; pull0 for the zero output strength, and pull1 for the one output
strength. The pull drive strength is one of the possible strengths available in Verilog.
It is weaker than the default strong drive which models a typical active drive gate out-
put.

In the example, the two NOT gates form a feedback loop that latches a value
driven on w4 through the tranif1 gate. The tranif1 gate is a transfer gate that conducts
when its control input (address in this case) is one, and is nonconducting otherwise.
The bufif1 gate is the read/write control for the circuit. In read mode, the bufif1 con-
trol line (write) is zero and its output is high impedance. When the cell is addressed,
the value in the latch is connected to the output buffer g5. In write mode when the
cell is addressed, the bufif1 gate drives w4 through the tranif1 gate, possibly changing
the latch’s state.

Example 10.3 also shows a Verilog module that will evoke the sram module and
print out the state of the nets in the circuit. The output is shown in Table 10.3 in a
tabular form. The method of modeling in this example shows us a static view of the
circuit; values are printed out after the “minor” gate changes have occurred. (Note:
The actual printout from simulating Example 10.3 has been edited for display in
Table 10.3. Only the values printed are shown; the textual information such as
“addr=” has been omitted. This is also true of Tables 10.6 and 10.8. In addition, the
three values for w134 are not shown in Table 10.3.)
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module sram
(output dataOut,
input address, dataIn, write);

tri       w1, w3, w4, w43;

bufif1            g1(w1, dataIn, write);
tranif1 g2(w4, w1, address);
not (pull0, pull1) g3(w3, w4), g4(w4, w3);
buf g5(dataOut, wl);

endmodule

module wave_sram; //waveform for testing the static RAM cell
#(parameter d = 100);
wire dataOut;
reg address, dataIn, write;

sram cell (dataOut, address, dataIn, write);

initial begin
#d dis;
#d address = 1;    #d dis;
#d dataIn = 1;     #d dis;
#d write = 1; #d dis;
#d write = 0; #d dis;
#d write = 'bx; #d dis;
#d address = 'bx; #d dis;
#d address = 1;    #d dis;
#d write = 0; #d dis;

end

task dis; //display the circuit state
"addr=%v d_In=%v write=%v d_out=%v",

address, dataIn, write, dataOut,
" (134)=%b%b%b", cell.wl, cell.w3, cell.w4,
" w134=%v %v %v", cell.w1, cell.w3, cell.w4);

endtask
endmodule

Example 10.3 A Static RAM Cell
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Note first that all values in the circuit start at x. By time 500, the dataIn and
address value are both 1. The tranif1 gate will transfer values in both directions. The
bufif1 gate, having an x on its control input, is driving its output to level H (meaning
1 or z). Since this table only shows the Boolean values (as specified with the %b in the

statement) we see an x on the bufif1 output w1.

At time 700, the write line has been one for 100 time units, driving w1 and
dataOut to a one. Since the tranif1 gate is conducting, w1 and w4 are connected. At
this point, we have gate g4 (the NOT gate) and g1 (the bufif1 gate) both driving these
connected lines. However, since g4 has been defined to have driving strength pull0
and pull1 in the zero and one states respectively, its drive strength is not as strong as
the bufif gate which has the default strong drive strengths. In this case, the strong
drive overwhelms the pull drive and w4 follows w1, and w3 becomes the complement.
w3 on the input to g4 then completes the changing of the ram cell value.

At time 900, the write line is at zero, but the address line still selects the cell. This
is the read function of the sram module; the dataOut indicates the saved state.

At time 1300, both address and write are x, and thus so is w1 and dataOut. How-
ever, the sram still holds its value. By time 1700, address  and write  indicate the read
function and the value stored earlier is again conducted through the tranif1 gate to the
dataOut.

References:    F.1; resistive gates 10.2.4
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10.2.2 Strength Definitions

The above example showed two of the levels of strength available in modeling switch
level circuits; Table 10.4 is a complete list. Again we can see that the strong drive of
the bufif1 gate is stronger than the pull drive of the NOT gate.

There are four driving strengths and three charge storage strengths. The driving
strengths are associated with gate and continuous assignment outputs, and the charge
storage strengths are associated with the trireg net type. The strengths may be associ-
ated with either a 1, 0, or x value. That is, a gate may drive a weak zero, a weak one, or
a weak x. The declaration abbreviation should be used with a zero or one (e.g. pull0)
when gate instances and strengths are declared. The printed abbreviation column
indicates how the strength is printed when the %v format is used (see later examples).

Strengths associated with gate instances and assign statements are specified within
parentheses as shown in the examples and in the following formal syntax:

gate instantiation
n_input_gatetype [drive_strength] [delay2] n_input_gate_instance {,
n_input_ gate_instance };

continuous_assign
assign [drive_strength] [delay3] list_of_net_assignments;

| …
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drive_strength
(strength0, strength1)
(strength1, strength0)
(strength0, highly )
( strength1, highz0)
( highz1, strength0)
( highz0, strength1)

strength0
supply0 | strong0 | pull0 | weak0

strength1
supply1| strong1 | pull1 | weak1

If the strengths are not given, then strong drives are assumed. Only the gate types
shown in Table 10.5 support drive strength specifications:

When a trireg net is declared, a charge storage strength is specified to model the
size of the capacitance exhibited by the net. However, charge stored in the net does
not decay with time unless a three-delay specification is given. The third delay param-
eter specifies the time until the stored charge decays to an x value. Trireg declarations
are a form of net specifications as shown in the formal syntax:

net_declaration
trireg [charge_strength] [signed] [delay3] list_of_net_identifiers;
trireg [charge_strength] [signed] [delay3] list_of_net_decl_assignments;
trireg [charge_strength] [ vectored | scalared ] [signed] range [delay3]
list_of_net_identifiers;
trireg[charge_strength] [ vectored | scalared ] [signed] range [delay3]
list_of_net_dec1_assignments;

charge strength
(small)  | (medium) | (large)

References: net declarations 6.2.3

10.2.3 An Example Using Strengths

We now look more closely at Example 10.3 and observe the gate strengths as they are
calculated and printed. The statement:

|
|
|
|

|

|
|

|
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"address=%b dataIn=%b write=%b dataOut=%b",
address, dataIn, write, dataOut,

"(134)=%b%b%b", cell.w1, cell.w3, cell.w4,
" w134=%v %v %v", cell.w1, cell.w3, cell.w4);

prints the w134 signals as binary numbers, using the %b control, and then as
strengths, using the %v control. Table 10.6 shows the strengths printed out when
using this statement. (Note that the simulation trace has been edited for display pur-
poses.)

The strength outputs in Table 10.6 have one of two formats. If a strength is listed
with a value, then the net is being driven by that value with the specified strength.
The printing abbreviations for the strengths are listed in Table 10.4. Thus St1 indi-
cates a strong 1, StH indicates a strong 1 or z, Pu0 indicates a pull 0, and PuX indi-
cates a driver of strength pull driving an x. If two numbers are given with the value,
then the net is being driven by multiple sources and the numbers indicate the mini-
mum and maximum strength levels (see level numbers in Table 10.4) driving the net.
For instance, at time 1100, net w1 is being driven by a strong (6) and pull (5) value
one.

At time 100, all of the nets have unknown values on them, but notice that there is a
strength associated with each of them corresponding to their driver’s declaration.
Thus, address, dataIn, write, w1, and dataOut are all strong-strength signals,
whereas w3 is a pull strength. w4 is connected to g4 which is a pull-strength gate and
to the tranif1 gate. Since it is connected to more than one gate output, we would have
expected to see a range of strengths driven on it. Indeed this could be the case. How-
ever, it is not the tranif1 gate driving w4. Rather it is the bufif1 gate driving w4
through the tranif1.The MOS gates do not have their own drive strength. They merely
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propagate the values and strengths at their input (with a possible reduction in strength
depending on gate type and strength input).

At time 500, we see net w1 listed as 56X, indicating that it is being driven by both
a pull x and strong 1 driver. This indication arises because the bufif1 gate (strong) is
driving an H (its control line is x) and the tranif1 gate is passing a pull-strength x
from gate g4. The two combine to drive an x on w1. Since w1 and w4 are connected
together through the tranif1 gate, they both have the same indication.

Following the operation of the sram at time 700, we see again that the strong
strength of the bufif1 gate transmitted through the tranif1 gate overrides the value
driven by g4 onto w4, thus allowing for a new value to be saved. At 1300, we see that
even when address and write become unknown, the sram still holds its value.

10.2.4 Resistive MOS Gates

The MOS gates can be modeled as either resistive or nonresistive devices. Nonresistive
gates (nmos, pmos, cmos, tran, tranif0, and tranif1) do not effect the signal strength
from input to output (i.e. between bidirectional terminals) except that a supply
strength will be reduced to a strong strength. In addition, pullup and pulldown gates
drive their output with a pull strength. However, when the resistive model is used
(rnmos, rpmos, rcmos, rtran, rtranif0, rtranif1), then a value passing through the gate
undergoes a reduction in drive strength as enumerated in Table 10.7

Consider another change in the sram specification where the tranif1 gate is
declared to be a resistive transfer gate, rtranif1, with the following statement:
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rtranif1
g2(w4, w1, address);

Then with the detailed display statement shown in Example 10.3, we obtain the sim-
ulation results shown in Table 10.8. (Note that the simulation trace has been edited
for display purposes.)

Considering the values and strengths at time 500, we now see that w1 and w4 are
different because they are separated by a resistive device. On w1 there is a 36x, the 6
arises from the bulif1 output driving a strong logic one and the 3 arises from g4 driv-
ing a logic zero as reduced from a pull drive (5) to a weak drive (3) by the rtranif1
gate.

It is important to note that this version of the sram does not work! The previous
versions of the sram changed the stored value because the strong output of the bufif1
gate overpowered the pull output of g4. But in this case, the rtranif1 gate reduces the
strong output to a pull output which does not overpower the output of g4. Thus, g3
does not change its output and the latching mechanism comprised of g3 and g4 does
not capture the new value.

10.3 Ambiguous Strengths
A possible way of representing a scalar net value is with two bytes of information; the
first byte indicates the strength of the 0 portion of the net value, and the second byte
indicates the strength of the 1 portion. The bit positions within each byte are num-
bered from most significant down to least significant. The bit position corresponds to
the strength level values as given in Table 10.4. The higher place value positions cor-
respond to higher strengths. These are illustrated in Figure 10.3 When a logic
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gate is simulated, the value on its input in terms of zero, one, x, and z is determined
from the strength bytes. If the bit in either of the bytes is set when the rest of
the bits are zero, or both bytes are zero, then the input is z. If the bits of both
bytes are zero, then for known values only one of these bytes will be non-zero. For
unknown (x) values, both bytes will be non-zero.

Ambiguous situations arise when multiple gates drive a common net, and in situa-
tions where there is an unknown value driving a tristate control input. These situa-
tions are modeled by the net taking on a range of values, i.e. contiguous bits in the
two strength bytes are set.

10.3.1 Illustrations of Ambiguous Strengths

We will list a few examples to illustrate the reasoning process. Imagine the two bytes
joined together as shown in Figure 10.4

Consider the following examples where two outputs drive the same net. The repre-
sentation used for the 0-strength and 1-strength bytes in the examples is that shown
in Figure 10.4.

<0-strength:1-strength>=logic value.

Both the 0- and 1-strength bytes are given in binary notation. The logic value corre-
sponding to each of the two strength bytes is given as one of 0, l, x, or z.
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In the above case, output 1 is a strong zero and output 2 is a pull 1. The result on
the net is a zero due to the strong driver.

In this case, each output has an ambiguous strength, listed here as being both
strong and pull. When these two outputs, one driving a one and the other driving a
zero, are combined on the net, the result is an x. All the bits between the values are set
as shown in the result.

In the above case, a pull 1 and an unknown with ambiguous strengths both drive
the net. The drives range from a zero of medium capacitor (2) strength through a
strong one. The result is a one with ambiguous strengths ranging between strong and
pull.

10.3.2 The Underlying Calculations

The above illustrations were meant to give an intuitive feel for the operation of the
simulator in the presence of ambiguous strengths. In this section we present portions
of the miniSim example shown in full detail in Section 10.4. The miniSim is a Ver-
ilog description of a very simple simulator that handles strengths. We will present
only the portions of the Verilog description that do the strength calculations.

Example 10.4 illustrates the log3 function which is called when a gate input is eval-
uated. The function converts the value inVal specified with two strength bytes into a
three-valued logic. In the description, the first strength byte is the zero byte and the
second is the one byte. The first casez expression says that if none of the strength bits
are set, then the value is a x. The second expression states that if only some of the zero
strength bits are one, the value is a zero. Next, if only some of the one strength bits are
one, the value is a one. If none of the above conditions hold, the value is unknown.

The above function would be used when gates are evaluated. Example 10.5 illus-
trates a task used to simulate a NAND gate.

Although we will not describe all of the details of the task, we will describe enough
to give the basic understanding of the simulation. First we call the storeInVal task to

0000_0000:0110_0000
0110_0000:0000_0000
0111_1111:0111_1111

=1
=0
=x

output 1
output 2
result on net

0100_0000:0000_0000
0000_0000:0010_0000
0100_0000:0000_0000

=0
=1
=0

output 1
output2
result on net

0000_0000:0010_0000
0000_0111:0111_1111
0000_0000:0110_0000

=1
=x
=1

output 1
output 2
result on net
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` define Va10 3'd0
`define Val1 3'd1
`define ValX 3'd2
// Convert a full strength value to a three-valued logic (0, 1 or X)
function [1:0] log3

(input[15:0] in Val);

begin
casez (in Val)

16'b00000000_00000000: log3 = `ValX ;
16'b???????0_00000000: log3 = ̀ Val0;
16'b00000000_???????0: log3 = ̀Val1;
default: log3 = `ValX;

endcase
end

endfunction

Example 10.4 The log3 Function

// Evaluate a 'Nand' gate primitive.
task evalNand

(input fanout); //first or second fanout indicator

begin
storeInVal(fanout);
// calculate new output value
in0 = log3(in0Val[evalElement]);
in1 = log3(in1Val[evalElement]);
out  = ((in0 == `Va10) || (in1 == `Val0)) ?

strengthVal(`Val1):
((in0 == `ValX) || (in1 == ̀ ValX)) ?

strengthVal(`ValX):
strength Val(`Val0);

// schedule if output value is different
if (out != outVal[evalElement])

schedule(out);
end

endtask

store the input values to this element in the global memories in0Val and in1Val. We
then convert these strength values into three-valued logic and store them in in0 and
in1. Next, out is set as per the three-valued NAND of the two values. Finally, if there
was a change in out, then we schedule the output to change.
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Consider evaluating a wire which is driven by two inputs as shown in
Example 10.6. This example parallels the above evalNand task, except that within the
task, we deal with the strengths. Specifically, function getMast, shown in

// Evaluate a wire with full strength values
task evalWire;

(input fanout);

reg[7:0] mask;

begin
storeInVal(fanout);
in0 = in0Val[evalElement];
in1 = in1Val[evalElement];
mask = getMask(in0[15:8]) &getMask(in0[7:0]) &

getMask(in1[15:8]) & getMask(in1[7:0]);
out = fillBits((in0 | in1) &{mask, mask});

if (out != outVal[evalElement])
schedule(out);

if(DebugFlags[2])

"in0 = %b_%b\ninl = %b_%b\nmask= %b %b\nout = %b_%b",
in0[15:8],in0[7:0],in1[15:8],in1[7:0])

mask,mask, out[15:8],out[7:0]);
end

endtask

Example 10.6 The evalWire Task

Example 10.7, is called to develop a mask for the final result and function fillBits,
shown in Example 10.8, actually constructs the strength bytes for the result.

Let’s consider the following example presented in the previous section. In this case,
we have ambiguous strengths on both outputs driving the wire.

0000_0000:0110_0000 =1 output 1 —in0
0110_0000:0000_0000 =0 output 2 —in1
0111_1110:0111_1110 =x result on net

Following along in task evalWire, we see that in0 and in1 are each loaded with the
two strength bytes for the inputs to the wires. A mask is generated by calling getMask
four times, each with a different strength byte. The results are AND-ed together and
put in mask. The results, in order, are:
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// Given either a 0-strength or 1-strength half of a strength value
// return a masking pattern for use in a wire evaluation.
function [7:0] getMask

(input [7:0] halfVal); //half a full strength value

casez (halfVal)
8'b???????1: getMask = 8'b11111111;
8'b??????10: getMask = 8'b11111110;
8'b?????100: getMask = 8'b11111100;
8'b????1000: getMask = 8'b11111000;
8'b???10000: getMask = 8'b11110000;
8'b??100000: getMask = 8'b11100000;
8'b?1000000: getMask = 8'b11000000;
8'b10000000: getMask = 8'b10000000;
8'b00000000: getMask = 8'b11111111;

endcase
endfunction

Example 10.7 The getMask Function

1111_1111
1110_0000
1110_0000
1111_1111
1110_0000 mask

Two copies of mask concatenated together are then ANDed with the result of OR-
ing the inputs in0 and in1 together.

0110_0000:0110_0000 OR of in0 and in1
1110 0000:1110 0000 mask, mask
0110_0000:0110_0000 result passed to fillBits

This result is passed to fillBits which will determine that this value is x and will then
execute the two casez statements. In the first casez, fillBits will be set to
0111_1111:0110_0000, and the second casez will OR in the value
0000_0000:0111_1111. fillBits will have the final value:

0111_1111:0111_1111.

This result, if different from the previous value on the wire, is scheduled.

References:  casez 3.4.4



Switch Level Modeling 269

// Given an incomplete strength value, fill the missing strength bits.
// The filling is only necessary when the value is unknown.
function [15:0] fillBits;

(input [15:0] val);
begin

fillBits = val;
if (log3(val) == `ValX)

begin
casez (val)

16'b1???????_????????: fillBits = fillBits | 16'b11111111_00000001;
16'b01??????_????????: fillBits = fillBits | 16'b01111111_00000001;
16'b001?????_????????: fillBits = fillBits | 16'b00111111_00000001;
16'b0001????_????????: fillBits = fillBits | 16'b00011111_00000001;
16'b00001???_????????: fillBits = fillBits | 16'b00001111_00000001;
16'b000001??_????????: fillBits = fillBits | 16'b00000111_00000001;
16'b0000001?_????????: fillBits = fillBits | 16'b00000011_00000001;

endcase
casez (val)

16'b????????_1???????: fillBits = fillBits | 16'b00000001_11111111;
16'b????????_01??????: fillBits = fillBits | 16'b00000001_01111111;
16'b????????_001?????: fillBits = fillBits | 16'b00000001_00111111;
16'b????????_0001????: fillBits = fillBits | 16'b00000001_00011111;
16'b????????_00001???: fillBits = fillBits | 16'b00000001_00001111;
16'b????????_000001??: fillBits  = fillBits | 16'b00000001_00000111;
16'b????????_0000001?: fillBits  = fillBits | 16'b00000001_00000011;

endcase
end

end
endfunction

Example 10.8 The fillBits Function
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10.4 The miniSim Example

10.4.1 Overview

MiniSim is a description of a very simplified
gate level simulator. Only three primitives
have been included: a NAND gate, a D posi-
tive edge-triggered flip flop, and a wire that
handles the full strength algebra that is used
in Verilog. All primitive timing is unit delay,
and a record is kept of the stimulus pattern
number and simulation time within each
pattern. Each primitive is limited to two
inputs and one output that has a maximum
fanout of two.

Two circuits are illustrated. The first
to be loaded and simulated is a flip flop
toggle circuit (Figure 10.5). The second
circuit (Figure 10.6) has two open-col-
lector gates wired together with a pul-
lup, and illustrates some cases when
combining signal strengths.
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10.4.2 The miniSim Source

module miniSim;

// element types being modeled
`define Nand 0
`define DEdgeFF 1
`define Wire 2

// literal values with strength:
// format is 8 0-strength bits in decreasing strength order
// followed by 8 1-strength bits in decreasing strength order
`define Strong0 16'b01000000_00000000
`define Strong1 16'b00000000_01000000
`define StrongX 16'b01111111_01111111
`define Pull0 16'b00100000_00000000
`define Pull1 16'b00000000_00100000
`define Highz0 16'b00000001_00000000
`define Highz1 16'b00000000_00000001

// three-valued logic set
`define Val0 3'd0
`define Val1 3'd1
`define ValX 3'd2

//
// loading
// event changes
// wire calc
// evaluation
// scheduling

parameter//set DebugFlags to 1 for message
DebugFlags = 'b11000,

IndexSize = 16, //maximum size for index pointers
MaxElements = 50, //maximum number of elements
TypeSize = 12; //maximum number of types

reg [IndexSize-1:0]
eventElement, //output value change element
evalElement, //element on fanout
fo0Index[1:MaxElements], //first fanout index of eventElement
fo1Index[1:MaxElements], //second fanout index of eventElement
currentList, //current time scheduled event list
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nextList, //unit delay scheduled event list
schedList[1:MaxElements]; //scheduled event list index

reg [TypeSize-1:0]
eleType[1:MaxElements]; //element type

reg
fo0TermNum[1:MaxElements], //first fanout input terminal number
fo1TermNum[1:MaxElements], //second fanout input terminal number
schedPresent[1:MaxElements]; //element is in scheduled event list flags

reg [15:0]
eleStrength[1:MaxElements], //element strength indication
outVal[1:MaxElements], //element output value
in0Val[1:MaxElements], //element first input value
in1Val[1:MaxElements], //element second input value
in0, in1, out, oldIn0; //temporary value storage

integer pattern, simTime; //time keepers

initial
begin

// initialize variables
pattern = 0;
currentList = 0;
nextList = 0;

display("Loading toggle circuit");
loadElement(1, ̀DEdgeFF, 0, `Strong1,0,0,4,0,0,0);
loadElement(2, `DEdgeFF, 0, `Strong1,0,0,3,0,0,0);
loadElement(3, ̀ Nand, (`Strong0|`Strong1),

`Strong0; ̀ Strong1,`Strong1, 4,0,1,0);
loadElement(4, `DEdgeFF, (`Strong0|`Strong1),

`Strong1,`Strong1,`Strong0, 3,0,1,0);

// apply stimulus and simulate
display("Applying 2 clocks to input element 1");

applyClock(2, 1);
display("Changing element 2 to value 0 and applying 1 clock");

setupStim(2, ̀ Strong0);
applyClock(1, 1);

display("\nLoading open-collector and pullup circuit");
loadElement(l, `DEdgeFF, 0, `Strong1,0,0,3,0,0,0);
loadElement(2, `DEdgeFF, 0, `Strong0,0,0, 4,0,0,0);
loadElement(3, `Nand, (`Strong0|`Highz1),

`Strong0, ̀ Strong1, ̀ Strong1, 5,0,0,0);
loadElement(4, `Nand, (`Strong0|`Highz1),
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`Highz1,`Strong0,`Strong1, 5,0,1,0);
loadElement(5, `Wire, 0,

`Strong0,`Strong0,`Highz1, 7,0,1,0);
loadElement(6, `DEdgeFF, 0, `Pull1,0,0,7,0,0,0);
loadElement(7, `Wire, 0,

`Strong0,`Pull1,`Strong0, 0,0,0,0);

// apply stimulus and simulate
display("Changing element 1 to value 0");

pattern = pattern + 1;
setupStim(1, `Strong0);
executeEvents;

display("Changing element 2 to value 1");
pattern = pattern + 1;
setupStim(2, `Strong1);
executeEvents;
display("Changing element 2 to value X");

pattern = pattern + 1;
setupStim(2, `StrongX);
executeEvents;

end

// Initialize data structure for a given element.
task loadElement;
input [IndexSize-1:0] loadAtIndex; //element index being loaded
input [TypeSize-1:0] type; //type of element
input [15:0] strengthCoercion; //strength specification of element
input [15:0] oVal, i0Val, i1Val; //output and input values
input [IndexSize-1:0] fo0, fo1; //fanout element indexes
input fo0Term, fo1Term; //fanout element input terminal indicators
begin

if(DebugFlags[4])
display(

"Loading element %0d, type %0s, with initial value %s(%b_%b)",
loadAtIndex, typeString(type),
valString(oVal), oVal[15:8], oVal[7:0]);

eleType[loadAtIndex] = type;
eleStrength[loadAtIndex] = strengthCoercion;
outVal[loadAtIndex] = oVal;
in0Val[loadAtIndex] = i0Val;
in1Val[loadAtIndex] = i1Val;
fo0Index[loadAtIndex] = fo0;
fo1Index[loadAtIndex] = fo1;
fo0TermNum[loadAtIndex] = fo0Term;
fo1TermNum[loadAtIndex] = fo1Term;
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schedPresent[loadAtIndex] = 0;
end

endtask

// Given a type number, return a type string
function [32*8:1] typeString;
input [TypeSize-1:0] type;

case (type)
`Nand: typeString = "Nand";
`DEdgeFF: typeString = "DEdgeFF";
`Wire: typeString = "Wire";
default: typeString = "*** Unknown element type";

endcase
endfunction

// Setup a value change on an element,
task setupStim;
input [IndexSize-1:0] vcElement; //element index
input [15:0] newVal; //new element value
begin

if (! schedPresent[vcElement])
begin

schedList[vcElement] = currentList;
currentList = vcElement;
schedPresent[vcElement] = 1;

end
outVal[vcElement] = newVal;

end
endtask

// Setup and simulate a given number of clock pulses to a given element.
task applyClock;
input [7:0] nClocks;
input [IndexSize-1:0] vcElement;

repeat(nClocks)
begin
pattern = pattern + 1;
setupStim(vcElement, `Strong0);
executeEvents;
pattern = pattern + 1;
setupStim(vcElement, `Strong1);
executeEvents;

end
endtask
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// Execute all events in the current event list.
// Then move the events in the next event list to the current event
// list and loop back to execute these events. Continue this loop
// until no more events to execute.
// For each event executed, evaluate the two fanout elements if present.
task executeEvents;
reg [15:0] newVal;
begin

simTime = 0;
while (currentList)
begin

eventElement = currentList;
currentList = schedList[eventElement];
schedPresent[eventElement] = 0;
newVal = outVal[eventElement];
if (DebugFlags[3])

display(
"At %0d,%0d Element %0d, type %0s, changes to %s(%b_%b)",
pattern, simTime,
eventElement, typeString(eleType[eventElement]),
valString(newVal), newVal[15:8], newVal[7:0]);

if (fo0Index[eventElement]) evalFo(0);
if (fo1Index[eventElement]) evalFo(1);
if (! currentList) // if empty move to next time unit
begin
currentList = nextList;
nextList = 0;
simTime = simTime + 1;

end
end

end
endtask

// Evaluate a fanout element by testing its type and calling the
// appropriate evaluation routine.
task evalFo;
input fanout; //first or second fanout indicator
begin

evalElement = fanout ? fo1Index[eventElement]:
fo0Index[eventElement];

if(DebugFlags[1])
display("Evaluating Element %0d type is %0s",

evalElement, typeString(eleType[evalElement]));
case (eleType[evalElement])

`Nand: evalNand(fanout);
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`DEdgeFF: evalDEdgeFF(fanout);
`Wire: evalWire(fanout);

endcase
end

endtask

// Store output value of event element into
// input value of evaluation element.
task storeInVal;
input fanout; //first or second fanout indicator
begin
// store new input value
if (fanout ? fo1TermNum[eventElement] : fo0TermNum[eventElement])

in1Val[evalElement] = outVal[eventElement];
else

in0Val[evalElement] = outVal[eventElement];
end

endtask

// Convert a given full strength value to three-valued logic (0,1 or X)
function [1:0] log3;
input[15:0] in Val;

casez (inVal)
16'b00000000_00000000: log3 = `ValX;
16'b???????0_00000000: log3 = `Val0;
16'b00000000_???????0: log3 = `Val1;
default:            log3 = `ValX;

endcase
endfunction

// Convert a given full strength value to four-valued logic (0,1, X or Z),
// returning a 1 character string
function [8:1] valString;
input [15:0] in Val;

case (log3(inVal))
`Val0: valString = "0";
`Val1: valString = "1";
`ValX: valString = (inVal & 16'b11111110_11111110) ? "X": "Z";

endcase
endfunction

// Coerce a three-valued logic output value to a full output strength value
// for the scheduling of the evaluation element
function [15:0] strengthVal;
input [1:0] logVal;
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case (log Val)
`Val0: strengthVal = eleStrength[evalElement] & 16'b11111111_00000000;
`Val1: strengthVal = eleStrength[evalElement] & 16'b00000000_11111111;
`ValX: strengthVal = fillBits(eleStrength[evalElement]);

endcase
endfunction

// Given an incomplete strength value, fill the missing strength bits.
// The filling is only necessary when the value is unknown.
function [15:0] fillBits;
input [15:0] val;
begin

fillBits = val;
if(log3(val) ==`ValX)
begin

casez (val)
16'b1???????_????????: fillBits = fillBits  | 16'b11111111_00000001;
16'b01??????_????????: fillBits = fillBits | 16'b01111111_00000001;
16'b001?????_????????: fillBits = fillBits | 16'b00111111_00000001;
16'b0001????_????????: fillBits = fillBits | 16'b00011111_00000001;
16'b00001???_????????: fillBits = fillBits  | 16'b00001111_00000001;
16'b000001??_????????: fillBits = fillBits  | 16'b00000111_00000001;
16'b0000001?_????????: fillBits = fillBits  | 16'b00000011_00000001;

endcase
casez (val)

16'b????????_1???????: fillBits = fillBits | 16'b00000001_11111111;
16'b????????_01??????: fillBits = fillBits | 16'b00000001_01111111;
16'b????????_001?????: fillBits = fillBits | 16'b00000001_00111111;
16'b????????_0001????: fillBits = fillBits | 16'b00000001_00011111;
16'b????????_00001???: fillBits = fillBits  | 16'b00000001_00001111;
16'b????????_000001??: fillBits = fillBits | 16'b00000001_00000111;
16'b????????_0000001?: fillBits = fillBits | 16'b00000001_00000011;

endcase
end

end
endfunction

// Evaluate a 'Nand' gate primitive,
task evalNand;
input fanout; //first or second fanout indicator
begin

storeInVal(fanout);
// calculate new output value
in = log3(in0Val[evalElement]);
in1 = log3(in1Val[evalElement]);
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out = ((in0 = = `Val0) || (in1 = = `Val0)) ?
strengthVal(`Val1):
((in0 = = `ValX) || (in1 == `ValX)) ?

strengthVal(`ValX):
strengthVal(`Val0);

// schedule if output value is different
if (out != outVal[evalElement])

schedule(out);
end

endtask

// Evaluate a D positive edge-triggered flip flop
task evalDEdgeFF;
input fanout; //first or second fanout indicator

// check value change is on clock input
if (fanout ? (fo1TermNum[eventElement] = = 0):

(fo0TermNum[eventElement] = = 0))
begin
// get old clock value
oldIn0 = log3(in0Val[evalElement]);
storeInVal(fanout);
in0 = log3(in0Val[evalElement]);
// test for positive edge on clock input
if ((oldIn0 = = ̀ Val0) &&(in0 = = ̀ Val1))

begin
out = strength Val(log3(in1Val[evalElement]));
if (out != outVal[evalElement])

schedule(out);
end

end
else

storeInVal(fanout); // store data input value
endtask

// Evaluate a wire with full strength values
task evalWire;
input fanout;
reg [7:0] mask;
begin

storeInVal(fanout);

in0 = in0Val[evalElement];
in1 = in1Val[evalElement];
mask = getMask(in0[15:8]) & getMask(in0[7:0]) &

getMask(in1[15:8]) & getMask(in1[7:0]);
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out = fillBits((in0 | in1) & {mask, mask});

if (out != outVal[evalElement])
schedule(out);

if(DebugFlags[2])
display("in0 = %b_%b\nin1 =  %b_%b\nmask=  %b %b\nout =  %b_%b",
in0[15:8],in0[7:0],inl[15:8],in1[7:0],
mask,mask, out[15:8],out[7:0]);

end
endtask

// Given either a 0-strength or 1-strength half of a strength value
// return a masking pattern for use in a wire evaluation.
function [7:0] getMask;
input [7:0] halfVal; //half a full strength value

casez (halfVal)
8'b???????l: getMask = 8'b11111111;
8'b??????10: getMask = 8'b11111110;
8'b?????100: getMask = 8'b11111100;
8'b????1000: getMask = 8'b11111000;
8'b???10000: getMask = 8'b11110000;
8'b??100000: getMask = 8'b11100000;
8'b?1000000: getMask = 8'b11000000;
8'b10000000: getMask = 8'b10000000;
8'b00000000: getMask = 8'b11111111;

endcase
endfunction

// Schedule the evaluation element to change to a new value.
// If the element is already scheduled then just insert the new value.
task schedule;
input [15:0] newVal; // new value to change to
begin

if(DebugFlags[0])
display(

"Element %0d, type %0s, scheduled to change to %s(%b_%b)",
evalElement, typeString(eleType[evalElement]),
valString(newVal), newVal[l5:8], newVal[7:0]);

if (! schedPresent[evalElement])
begin

schedList[evalElement] = nextList;
schedPresent[evalElement] = 1;
nextList = evalElement;

end
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outVal[evalElement] = newVal;
end

endtask
endmodule

10.4.3 Simulation Results

Loading toggle circuit
Loading element 1, type DEdgeFF, with initial value 1(00000000_01000000)
Loading element 2, type DEdgeFF, with initial value 1(00000000_01000000)
Loading element 3, type Nand, with initial value 0(01000000_00000000)
Loading element 4, type DEdgeFF, with initial value 1(00000000_01000000)
Applying 2 clocks to input element 1
At 1,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 2,0 Element 1, type DEdgeFF, changes to 1(00000000_01000000)
At 2,1 Element 4, type DEdgeFF, changes to 0(01000000_00000000)
At 2,2 Element 3, type Nand, changes to 1(00000000_01000000)
At 3,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 4,0 Element 1, type DEdgeFF, changes to 1(00000000_01000000)
At 4,1 Element 4, type DEdgeFF, changes to 1(00000000_01000000)
At 4,2 Element 3, type Nand, changes to 0(01000000_00000000)
Changing element 2 to value 0 and applying 1 clock
At 5,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 5,0 Element 2, type DEdgeFF, changes to 0(01000000_00000000)
At 5,1 Element 3, type Nand, changes to 1(00000000_01000000)
At 6,0 Element 1, type DEdgeFF, changes to 1(00000000_01000000)

Loading open-collector and pullup circuit
Loading element 1, type DEdgeFF, with initial value 1(00000000_01000000)
Loading element 2, type DEdgeFF, with initial value 0(01000000_00000000)
Loading element 3, type Nand, with initial value 0(01000000_00000000)
Loading element 4, type Nand, with initial value Z(00000000_00000001)
Loading element 5, type Wire, with initial value 0(01000000_00000000)
Loading element 6, type DEdgeFF, with initial value 1(00000000_00100000)
Loading element 7, type Wire, with initial value 0(01000000_00000000)
Changing element 1 to value 0
At 7,0 Element 1, type DEdgeFF, changes to 0(01000000_00000000)
At 7,1 Element 3, type Nand, changes to Z(00000000_00000001)
At 7,2 Element 5, type Wire, changes to Z(00000000_00000001)
At 7,3 Element 7, type Wire, changes to 1(00000000_00100000)
Changing element 2 to value 1
At 8,0 Element 2, type DEdgeFF, changes to 1(00000000_01000000)
At 8,1 Element 4, type Nand, changes to 0(01000000_00000000)
At 8,2 Element 5, type Wire, changes to 0(01000000_00000000)
At 8,3 Element 7, type Wire, changes to 0(01000000_00000000)
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Changing element 2 to value X
At 9,0 Element 2, type DEdgeFF, changes to X(01111111_01111111)
At 9,1 Element 4, type Nand, changes to X(01111111_00000001)
At 9,2 Element 5, type Wire, changes to X(01111111_00000001)
At 9,3 Element 7, type Wire, changes to X(01111111_00111111)

10.5 Summary
We have seen in this chapter how strengths may be assigned to gate outputs and
assign statements, and how logic values driven at these strengths may be propagated
through gates, driven on nets, and stored on trireg nets. The chapter closed with a
brief discussion of the miniSim, a simulator written in the Verilog language that dem-
onstrates how the logic strengths are combined together. Following this, the whole
miniSim example was presented.

10.6 Exercises
10.1

10.2

10.3

Change the method of monitoring in Example 10.2 to that of strobing the sig-
nals 1 time unit before the positive edge of the phase1 clock. Do this in such a
way as to be independent of the absolute value of d, i.e. keep the timing param-
eterizable.

Without using a wand net, model a wired-AND configuration by employing
open-collector NAND gates and a pullup primitive.

Model the following charge sharing circuit using appropriate trireg declarations:
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10.4

10.5

10.6

10.7

10.8

10.9

What results from passing the following strength values through a resistive MOS

gate:
A) 0(00110000_00000000)
B) X(00000011_00000001)
C) 1(00000000_11111110)

In the following two examples of combining strength values, one of them has an
incorrect result, which one, and what should the result be?

x(00000001_01111111) output 1
0(00100000_00000000) output 2
x(00111111_01111111) result on net
0(01100000_00000000) output 1
x(01111111_00111111) output 2
0(01100000_00000000) result on net

Given the following about combining strength values for a wired-AND net type:
0(01000000_00000000) output 1
1(00000000_01000000) output 2
0(01000000_00000000) result on wired-AND net

What is the correct result for the following wired-AND combination?
0(01100000_00000000) output 1
1(00000000_01100000) output 2

Extend the miniSim description to include a cross-coupled NAND latch element.

Extend the miniSim description to include a bufif1 gate element. What output
values are generated when the control input is unknown and the data input is 0
or 1?

Add another net type that models a two input wired-AND element to the
miniSim description. This element must allow the 0-strength component to win
in situations of equal 0 and 1 strength (hint: the solution involves an alteration
of the masking operation only).



11 Projects

The exercises at the end of the previous chapters have been short questions to help
you think about the material in the chapter. This chapter contains two projects that
each encompass many aspects of the Verilog language. Each of these projects has been
used in Junior level university classes for electrical and computer engineering stu-
dents.

The projects are all open-ended; there is no one correct answer. Instructors should
realize that the projects were aimed at a set of students with a certain course back-
ground that may not match the background of their current students. Further, the
projects were tailored to the specific material being presented in class at the time.
Alter the projects by adding or deleting portions as needed.

Some of these projects have supporting Verilog descriptions. These may be
obtained from the e-mail reflector as described in the book’s Preface.

11.1 Modeling Power Dissipation
Hardware description languages are used to model various aspects of a system; perfor-
mance and functionality being the two main ones. With all the interest in building
low-power devices for handheld electronics, it is also important to model the power
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dissipation of a circuit during its operation. This problem asks you to write a Verilog
description of several versions of a small system, and use these descriptions to com-
pare and contrast the power dissipation of each.

11.1.1 Modeling Power Dissipation

In this assignment, we choose to model circuits at the gate level. In CMOS circuits,
power is only dissipated when a gate switches state. More specifically, when the gate
output changes from a zero to a one, charge is drawn from the power supply to charge
up the output connection and drive the gates in the fanout list. In this model, we will
assume that it takes no energy to hold a gate’s output value. Also, changing from an
output 1 to 0 takes no energy. As a further tweak of the model, the energy needed to
switch from 0 to 1 is proportional to the gate’s fanout.

We’ll build our circuit completely out of NAND gates. But, Verilog’s built-in gate
primitives don’t count zero-to-one transitions — they only keep track of time and
logic value. Thus we need to build our own model of a NAND gate that keeps track of
the number of zero-to-one transitions. This number will then be proportional to
power dissipated in the circuit.

11.1.2 What to do

We’ll build several versions of a circuit to implement the equation:

Several versions? Well, let’s see. Assume that these are all 16-bit adds, and that each
add has a combinational logic delay of time Here’s three versions to consider:

The adds are organized like a balanced tree and the operations occur in a single
clock period of (essentially implementing a = ((b + c) + (d + e)). i.e., b and c are
added together at the same time d and e are added together. Then the sums are
added producing a.

There is an unbalanced tree of adds and a single clock period of (essentially
implementing a = (b + (c + (d + e))).

And yet another version that takes two clock periods, each of time to implement
the balanced tree. That is, during the first clock period, b and c are added and
stored in a register. Also during that first clock period, d and e are added and put
into a separate register. During the second clock period, these two registers are
added.

What you will do in this assignment is build these three circuits, run thousands of
input vectors through them (hey, what’s a little computer time), and measure the
power dissipated by each.
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11.1.3 Steps

A. Build a full adder module by instantiating 2-input NAND gates. At first, use
gate primitives and give them all a unit gate delay (#1). Then build a 16-bit
adder by instantiating full adder modules. Use any form of carry logic you wish
— ripple carry might be the easiest.

B. Build the different circuits suggested above. Instantiate and connect the 16-
bit adder modules built in part A to do this. Ignore the carryout from the most
significant bit. For each circuit, build a testbench module that will present input
vectors to your circuit. Use a random number generator (see to gener-
ate 2000 different input sets. (An input set includes different numbers for b, c, d,
and e.) Check a few to see if your circuits really do add the numbers correctly!

C. Now that you have things working correctly, change the full adder module to
use a new type of NAND gate called “myNAND” (or similar). Write a behavioral
model for myNAND that can be directly substituted for the original NANDS. That
is, anytime any of the inputs change, the behavioral model should execute,
determine if a zero-to-one output transition will occur, and then update a global
counter indicating that the transition occurred. Of course, it should schedule its
output to change after a gate delay of time. The global counter is a register in the
top module of the simulation which you will initialize to zero when simulation
starts. Anytime a zero-to-one transition occurs in any instantiated gate in the
system, this counter will be updated. Use hierarchical naming to get access to it.
You may want to consider what to do if the gate output changes from zero-to-
one and one-to-zero in zero time — there should be no expenditure of power
nor change in logic output value.

D. Change the delays of the myNAND module to be proportional to the number
of fanouts. Let’s say delay will just equal fanout. Define a parameter in myNAND

that initializes the delay to 1. When you instantiate myNAND, override the
parameter with a count of the gate’s fanout. (Be as accurate as you can.) Also
change the model so that the global counter is incremented by the delay num-
ber. Thus a gate with large fanout will take more power every time it changes
from zero to one, and it will also take more time to propagate the change.

E. Compare the different circuits. Can you explain the differences in dissipation
based on the model we’re using?

F. Extra, for fun. Can you come up with a version that dissipates even less
energy?
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11.2 A Floppy Disk Controller

11.2.1 Introduction

In this project, each two-person team will use Verilog to create a model of part of a
floppy disk controller. A floppy disk controller takes a stream of data bits mingled
with a clock signal, decodes the stream to separate the clock and data, and computes
the Cyclic Redundancy Checksum (CRC) of the data to ensure that no errors have
occurred. Once the data is found to be correct, it is placed in a FIFO, and from there it
is placed into main memory via direct memory access (DMA). Your Verilog model will
take the stream of data bits from the disk as input, and will negotiate with the mem-
ory bus as output.

The parts of the controller are shown in Figure 11.1. For this project, you will build
Verilog models of the functions in the shaded area of Figure 11.1. Verilog models for
everything else are provided on the e-mail reflector. Each box in the figure represents
a concurrent process. The box labeled ‘CRC’ should be implemented at the gate level,
but all other boxes can be implemented at the behavioral level. The next section
describes the format of the disk media, which will be followed by a description of the
function of each of the boxes.
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11.2.2 Disk Format

The format of the disk is shown in Figure 11.2. Figure 11.2a depicts the relationship
between the sectors and index holes used to generate the IDX signal, while
Figure 11.2b shows the format of each sector. IDX is used to find the proper sector for
a transfer. IDX pulses high at the beginning of every sector. You may assume for this
project that when the simulation starts that the disk is just before the beginning of
sector 0. So the first IDX pulse signals the beginning of sector 0, the second the begin-
ning of sector 1, etc. There are only 10 sectors on our disk.

The other output from the disk media is RDDATA. RDDATA is the stream of data bits
mingled with the clock signal. Module DECODE extracts the data from the clock signal
and presents both to module Series-to-parallel (SerPar). Module SerPar then collects
the bits into bytes and interprets them as per the sector format.

At the beginning of each sector is a preamble. The preamble consists of 16 bytes of
0’s. Immediately following the preamble is the sync byte (10000001). The sync byte
signals the end of the preamble and the beginning of the data to the controller. This is
necessary because the head of the disk may have landed in the middle of the preamble
and you may not have seen all 16 bytes of 0’s. When the sync byte is seen, the control-
ler can start counting the bits and bytes of the rest of the sector.

After the sync byte comes the actual data stored in the sector. There are 477 bytes
of data stored in each sector. The least significant bit (LSB) of the each byte of data is
written to (and read from) the disk first. Using Figure 11.3 as an example, if the byte
5B hex (01011011) were stored on the disk, the bits would be read from the disk
11011010.
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At the end of each sector is a postscript which, like the preamble, consists of 16
bytes of 0’s.The 2 bytes immediately preceding the postscript contain the checksum
for the data in the sector (See section 11.2.5.). In our disk format, each sector con-
tains 512 bytes. So the amount of data in a sector is 512 - 16 - 1 - 16 - 2 = 477 bytes.

11.2.3 Function Descriptions

Decode: Decode takes as its input RDDATA, which is a stream of data bits mingled with
a clock signal, from the disk media. Decode separates the clock from the data, and
outputs each of them to SerPar. The RDDATA signal at the beginning of the sector (in
the preamble) only contains clock pulses as shown in Figure 11.3. The data embedded
in RDDATA is placed between the clock pulses. (No pulse between the clocks means a
zero bit of data, a one pulse between the clocks means a one bit of data.) Since there
are 16 bytes of zeros at the beginning, the controller has a chance to lock on to the
clock signal embedded in RDDATA. The sync byte is the first byte that has any 1 bits in
it.

The rightmost end of the RDDATA signal of Figure 11.3 shows what RDDATA would
look like if the byte 01011011 were being read from the disk. The nominal period of
the RDDATA clock pulses is with a duty cycle of 1/8. For the sake of readability,
the duty cycle is not accurately represented in Figure 11.3.

SerPar: SerPar takes as its input IDX, the sector index signal from the disk media;
the clock and data signals from Decode; and the sector number and go signals from
the simulation interface. On the positive edge of go, SerPar resets the CRC, and begins
counting IDX pulses until the proper sector is found. Once the proper sector is found,
SerPar begins monitoring the data line from Decode for the sync byte. SerPar then
transfers the data a bit at a time to CRC, and a byte at a time to FIFO. When it has
received all the data from the sector it compares the 16-bit checksum stored after the
data in the sector to the one that has just been computed by CRC for the data. If the
two checksums are the same, then SerPar raises the done signal for the simulation
interface. If the two checksums are different, then SerPar raises the err signal for the
simulation interface.



Projects 289

CRC: CRC takes the data one bit at a time from SerPar, and computes its checksum
on the data bytes. The CRC should be reset by SerPar before the data from the sector is
read in. You must implement CRC at the gate/flip-flop level.

FIFO: FIFO is a 16-byte First In, First Out queue. It serves as a buffer for the data
between SerPar, and DMA and memory. Once it receives a byte from SerPar, FIFO

should signal to DMA that a transaction is necessary. When DMA has gained access to
main memory, FIFO will transfer its contents to memory via DMA.

DMA: DMA transfers bytes from FIFO to main memory. When FIFO signals that a
transaction is necessary, DMA arbitrates with main memory for control of the memory
bus. The DMA asserts hrq to request the bus. The memory asserts hack (how appropri-
ate are these names?) to tell the DMA it can use the bus. Once DMA has gained control
of the bus, it transfers the bytes of data from FIFO to main memory. The data is trans-
ferred by asserting the address and data lines and then memw. When FIFO has no
more data, DMA relinquishes control of the memory bus by deasserting hrq and waits
until FIFO again signals that a transaction is necessary. Figure 11.4 shows the protocol
for gaining control of the bus, and then strobing the data into memory. Assume that
the data will be placed in the first N bytes of memory, so you won’t have to worry
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about getting a starting address or block size. In the real world, controllers need to
know where to place data and how much data is going to be placed.
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11.2.4 Reality Sets In…

We told you in the Disk Format section that the clock embedded in the RDDATA sig-
nal has a nominal period of and that the data is put halfway between clock
pulses. “No big deal,” you say, “when I get a clock pulse, I’ll wait and see if
RDDATA is high. If it is, I have a 1. If not, I have a 0.” If you write a simulation where
the clock comes along every and the data is exactly between the clock pulses, the
simulation works, and you’re happy. But real disk drives depend on motors and mag-
netic media, so sometimes the clock comes along at and sometimes it comes
along at with the data at

Disk drive controllers use something called a phase-locked loop (PLL) to latch onto
the frequency of the clock and to adjust to its variations as the motor changes speed
and the bits jitter around. You need to come up with a way to find the data in between
the clock pulses without depending on the clock pulses being exactly apart. The
RDDATA from our input modules is going to vary like RDDATA does in the real world.
In order to make the problem a little easier though, we’ll guarantee that the clock
period will be +/- 5%, and that the center of the data will be within +/- 5% of the
center of the pulses. Make sure your Decode module can lock onto the embedded
clock during the preamble and hold onto it even as the frequency changes slightly. In
real life, that’s why the preamble is there. A Verilog description that produces these
waveforms is provided on the e-mail reflector.

11.2.5 Everything You Always Wanted to Know about CRC’s

The disk will use a 16 bit cyclic redundancy check (CRC) word calculated from the
data bytes by the binary polynomial:

The CRC computation uses a shift register and XOR gates. Unlike a normal shift reg-
ister, some of the stages shift in the previous bit XOR’d with the bit being shifted out of
the shift register. The bits from the data stream are shifted in from the left. Number-
ing the bits from 1 on the left to 16 on the right, the input to the first, sixth, and thir-
teenth bits of the register are XOR’d with the output of the sixteenth bit.

The shift register is initialized to zero. After the entire data stream has been read
in, the content of the shift register is the checksum for the sector. It is compared bit-
by-bit with the checksum stored with the sector on the disk. If the two checksums
match, then it is unlikely that a bit error has occurred, and the controller can transfer
the data to memory. If the checksums do not match, then some bit(s) of data must
have been corrupted. The controller should then signal that an error has occurred.

The CRC should be build out of XOR gates and flip-flop modules (the FF’s may be
described behaviorally).



292 The Verilog Hardware Description Language

11.2.6 Supporting Verilog Modules

There are several Verilog modules providing the stream of data and clock coming
from the disk. Some modules will have correct data and some erroneous data; the file
names are “correctx.v” and “errorx.v.” The memory and bus controller modules are
provided in “memory.v.” The module declarations for these files are shown in
Figure 11.5. The Verilog descriptions mentioned here can be found on the e-mail
reflector.



A Tutorial Questions
and Discussion

This appendix contains questions, answers, and discussion to accompany Chapter 1,
the tutorial introduction. The goal of this appendix is to provide far more help and
guidance than we could in Chapter 1. This appendix contains tutorial help for the
beginning student and questions appropriate for use with an introductory course in
digital systems design or computer architecture. The sections here are referenced from
the sections of Chapter 1.

Some of the questions assume that the reader has access to a Verilog simulator —
the one included on the book’s CD will suffice. A few of the questions assume access
to a synthesis tool; limited access to one is available through the CD. Finally, the
book’s CD includes copies of the books examples; retrieve them from there to avoid
retyping.

A.1 Structural Descriptions
The questions in this section accompany Section 1.1.2. The first two include a
detailed presentation of how to develop a simple Verilog description, including a dis-
cussion of common mistakes. The questions following assume more familiarity with a
hardware description language and simulator.
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A.1 Write a Verilog description of the logic
diagram shown in Figure A. 1. This
logic circuit implements the Boolean
function which you can
probably see by inspection of the K-
map. Since this is the first from-scratch
description, the discussion section has
far more help.

Do This — Write a module specification
for this logic circuit. The module will not
have inputs or outputs. Use primitives gates
(AND, OR, and NOT), connect them with
wires, and include an initial statement to fully
test your circuit. To produce from B, add a NOT gate (inverter) to the above dia-
gram. Specify that NOT gates have a delay of 1 time unit and the others have delays of
2 time units. Oh, and try not to look at the answer below! If you’re not sure what to
do, read on.

Discussion: The first thing to write is the module header and name — give it any
name you wish. Next, break the description down into the individual gates, assigning
distinct names to the wires connecting the gates. Now write the gate instantiations
and specify the ports for interconnecting them. A gate is instantiated as shown here:

and #5 myFirstAnd (q, r, s);

Here an AND gate with delay five, instance name myFirstAnd, and ports q, r, and s is
defined. Which connection is first in the list? The output; q it the output and the oth-
ers are inputs. Finish instantiating the gates.

In answering the question, you might have written the following module descrip-
tion. Clearly, you probably used a different name for the module (it’s top here) and
also for the gate instance names (e.g., g1). The delay specification, which is optional
when specifying gate instantiations, is required in the description because the problem
statement asked for it. There are other ways to start writing this problem.

module top;
not #1 g1(d,b);
and #2 g2 (e, d, a);
or #2 g3(f,c,d);

endmodule

This description will not parse; some of the identifiers have not been declared.
Some?
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Do This — Explain which ones? Why not the others? There are no declarations in
this description, so why don’t all of the identifiers produce an error?

The reason is that an output of a primitive gate is declared as a wire by default.
Thus, identifiers d, e, and f are all defaulted to be of type wire. a, b, and c are not
declared and will thus cause errors. Why is the output of a primitive gate defaulted to
be a wire? Real combinational logic gates are connected to wires. In the Verilog lan-
guage, new values are either driven on nets (wires are the default type of net) or loaded
into registers. Primitive gates always drive wires.

Now continue the example by declaring the gate inputs (a, b, and c) to be registers.
This will allow us to assign values to them in an initial statement and to test the out-
put of our logic function. We could add the following declarations.

wire d, e, f;
reg a, b, c;

But remember that the wire declaration is not needed because gate outputs default to
wire declarations. The following description would parse without errors.

module top;
reg        a, b, c;

not #1 g1 (d,b);
and #2 g2 (e, d, a);
or #2 g3 (f,c,d);

endmodule

But, this description wouldn’t do much except parse correctly. The goal is to simu-
late the design and convince yourself that the specification performs the logic function
that you expect. Now we need to specify a set of inputs (called test vectors) so that we
can simulate the circuit and observe its output.

Do This — write an initial block that will provide several different inputs to these
gates and display all values in the circuit. The block should be part of the top module.
The ordered series of inputs that we will put into our design will be (a, b, c): 100,110,
010, 011. This is a fairly extensive test set, even though it does not test every input
combination.

Discussion:To use the registers that we put in the description for the gate inputs,
we need to write an initial block — registers can only be loaded by assignment state-
ments in initial and always blocks. We’ll use an initial block since these are often used
to provide test vector inputs.

Here’s our first try. Following the statements, the first three put 100 on the inputs
(a, b, c). The next assignment changes b to make the input 110. The fifth assignment



296 The Verilog Hardware Description Language

changes a to make the input 010, and the last assignment makes the input 011. That
is the sequence of inputs we want, but alas this specification will not work.

initial begin
a = l ;
b = 0;
c = 0;
b = l;
a = 0;
c = l;

end

Do This — Explain why this initial block will not work.

Discussion:  There are two errors here. One error is there is no means of displaying
the output when the inputs change. Let’s add a statement to display the
data to the screen whenever any value changes. Additionally, we will have the simula-
tion time reported. In our case we will use the statement:

            "a=%b, b=%b, c=%b, d=%b, e=%b, f=%b", a, b, c, d, e, f);

The monitor statement is not just a print statement. It will cause a printing of the
quoted string when executed but then it will continue to monitor for changes on any
of the input identifiers (a, b, c, d, e, and f here), printing the quoted string when any
one changes. Only one of these statements can be active at the same time. If
one is reached while another is active, the new one cancels the old.

The second error is more fundamental. The error is that the only input value the
gates will see is the last one: 011. The simulation didn’t stop to let the intermediate
values flow through the gates. Here’s how to think about how the simulator works. At
the start of the simulation, all values in the system (both nets and registers) have the
value x (i.e., unknown). The initial and always blocks start executing in an arbitrary
order. In this system, we only have one initial block; it runs, making all of the assign-
ments, and then it stops with a = 0, b = 1, and c = 1. When the initial block stops, the
gates notice that their inputs have changed and they calculate their output values. The
other input combinations are never seen by the gates.

Indeed, if we simulated our current version of the module shown below we would
get the simulation trace showing only the final inputs and output. Not cool.
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module top;
wire d, e, f;
rega,     b, c;

not #1 g1(d,b);
and #2 g2(e, a, d);
or #2 g3(f ,e ,c) ; / /

initial begin
                                "a=%b, b=%b, c=%b, d=%b, e=%b, f=%b\n",

a,b,c,d,e,f);
a = 1; // initialization
b = 0;
c = 0;
b = 1; // first change of input
a = 0; // second change of input
c = 1; // third change of input

#20 // this tells the simulator to stop
end

endmodule

Here is the simulated output showing the values in the circuit. The first value on the
line is the time at which the values occur. The first line shows the inputs valid at time
0, the output of the not gate (d) changes one time unit later, and the output of g2 (e)
and g3 (f) change at time 2. Note that the value of 1 on c causes f to change at time 2.
We don’t have to wait for the output of the not gate to propagate through gate g2 and
g3.

0 a=0, b=l, c=l, d=x, e=x, f=x
1 a=0, b=l, c=l, d=0, e=x, f=x
2 a=0, b=l, c=l, d=0, e=0, f=l

Back to our problem: no delay was used in the assignment of the registers, and they
were all assigned (in order, from top to bottom) during the same time. We need to
add delay statements that will stop the execution of the initial block long enough so
that the gates can produce their outputs. The new initial block could be:



298 The Verilog Hardware Description Language

initial begin
                                  "a=%b, b=%b, c=%b, d=%b, e=%b, f=%b\n",

a, b, c, d, e, f);
a = 1; // initialization
b = 0;
c = 0;
#2 b = 1; //first change of input
#2 a = 0; // second change of input
#2 c = 1; // third change of input

#20
end

Although this does add delay to the circuit and allows the values to propagate into
the circuit, it doesn’t allow enough time, as these results show:

1
2
3
4
5
6
8

0 a=l, b=0, c=0, d=x, e=x, f=x
a=l, b=0, c=0, d=l, e=x, f=x
a=l, b=l, c=0, d=l, e=x, f=x
a=l,b=l,c=0,d=0,e=0,f=x
a=0,b=l,c=0,d=0,e=0,f=x
a=0,b=l,c=0,d=0,e=0,f=0
a=0,b=l,c=l,d=0,e=0,f=0
a=0,b=l,c=l,d=0,e=0,f=l

The problem is that the inputs change again before the logic values have time to
propagate to the output. The delay we include in the description needs to be longer
than the longest delay through the gates. In this case, setting it to six would work
since the longest path from inputs to outputs is five. You could also set it to #3072
with no change in the results.

The following description is correct.
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module top;
wire d, e, f;
reg a, b, c;

not      #1 gl(d,b);
and #2 g2(e, a, d);
or #2  g3(f,e, c); //

initial begin
                                "a=%b, b=%b, c=%b, d=%b, e=%b, f=%b\n",

a, b, c, d, e, f);

a = 1; // initialization
b = 0;
c = 0;
#20 b = 1; // first change of input
#20 a = 0; //second change of input
#20 c = 1; // third change of input

#20
end

endmodule

The simulation results should look like this:

1
3
5

a=1, b=0, c=0, d=1, e=x, f=x
a=1, b=0, c=0, d=1, e=1, f=x
a=1,b=0,c=0,d=1,e=1,f=1

20
21
23
25
40
60
62

a=1,b=1,c=0,d=1,e=1,f=1
a=1,b=1,c=0,d=0,e=1,f=1
a=1,b=1,c=0,d=0,e=0,f=1
a=1, b=1, c=0, d=0, e=0, f=0
a=0,b=1,c=0,d=0,e=0,f=0
a=0, b=1, c=1, d=0, e=0, f=0
a=0,b=1,c=1,d=0,e=0,f=1

A.2 Type in the folowing example and
name the file adder.v. It implements
the add function for two bits, produc-
ing a sum and a carry out. Create a
module to test this halfadder module
and instantiate them both in a test-
bench module.

module halfadder
(output cOut, sum;
input a, b);

xor       #1 (sum, a, b);
and #2 (cOut, a, b);

endmodule
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The first line gives the name of the module, and lists the inputs and outputs. The
next two lines define which are inputs and which are outputs. Essentially it defines
two outputs and two inputs, each to be single bit quantities.

Then we instantiate an XOR gate, with a and b as inputs, and sum as the output.
The XOR gate is specified to have a delay of one time unit. That is, one time unit after
an input changes, the output might change. The and gate is similar, but with a delay
of two time units. Finally, we have the endmodule statement which indicates the end
of the module description.

Do This — Create the testadder module. The idea is that we’re going to connect
this module to the halfadder module and have this module test it. Both modules will
be instantiated within another module called system.

Discussion: A testadder module is shown below. The initial statement introduces a
behavioral block; these blocks can be read much like you would read C (yes, there are
many differences). The initial statement indicates that the block should only be exe-
cuted once.

When the initial statement starts, it executes the statement (as described
in the previous question), and assigns x and y to be 0. “#10” tells the simulator to wait
for 10 time units and then continue execution. In 10 more time units, x is set to 1.
After another 10, y is set to 1. Finally, after another 10, x is set to 0. Essentially, over
the course of execution, x and y will have all four combinations of inputs for the half
adder, and there is enough time for these values to propagate through the gates in the
adder module.

causes the simulator to exit after another 10 time units.

module testadder
(output reg x,y,
input c, s);

initial begin

"x = %b, y = %b, Sum = %b, Carry = %b", x, y, s, c);

#10
#10
#10
#10

x = 0;
y = 0;
x = l;
y = l;
x = 0;

end
endmodule
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Finally, we need to connect the two modules together as shown in module system.
The wire declaration defines four wires with the given names.

module system;
wire CarryOut, SumOut, in1, in2;

halfadder AddUnit (CarryOut, SumOut, in1, in2);
testadder TestUnit (in1, in2, CarryOut, SumOut);

endmodule

The module system is the top level of our design — it has no inputs or outputs and
the other modules are instantiated within it. When the modules are instantiated,
instance names are given to each: halfadder is named AddUnit, and testadder is
named TestUnit. In effect, we have wired up a half adder module to a module that
creates inputs for the half adder. Outputs from the half adder are monitored by the
test module.

Consider the two statements from module system:

halfadder AddUnit (CarryOut, SumOut, in1, in2);
testadder       TestUnit (inl, in2, CarryOut, SumOut);

Do not think of this as executing the halfadder, then executing the testadder — these
are not function calls. Rather, these define that an instance of each of these modules is
to be connected together using wires as shown. Reversing the order of the two state-
ments has no effect.

Do This — Run the simulator on this file. The simulator should display all the
inputs and outputs, with the simulation time. Reason your way through the execution
of these modules. Note that the testadder module will set x and y to certain values and
then wait 10 time units. During that time, the XOR and AND gates in the halfadder
module will execute and change their outputs. And then the testadder module will
continue to execute.

A.3

A. What effect do the time delays in module halfadder have? Play around with
them (they’re integers). Make them 1.

B. Remove the command; what changes?

C. Then also change the initial to always; what changes?

Example 1.2 is duplicated here as Example A.1. Expand the initial statement to
cover all input patterns. Simulate the circuit, and create a truth table or K-map
for this circuit. Draw out the seven-segment display patterns. Is the function
correct?
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A.4

A.5

A.6

A.7

Discussion: the example has four inputs and thus distinct input patterns.
Make sure all patterns are assigned to registers A, B, C, and D with enough
time for the values to propagate to the output.

In the same example, change the gate types toAND and OR. Resimulate.

Discussion: Use DeMorgan’s theorem to convert from NAND-NAND logic to
AND-OR.

In the same example, change the gate types to NOR-NOR.

Discussion:Use DeMorgan’s theorem.

Simulate Example A.1 using #6 instead of #1 for the gate delays. The results
will not be the same. Explain.

Design a circuit using only NAND gates implementing the driver for segment a.
Test it using the simulator.

module binaryToESegSim;
wire eSeg, p1, p2, p3, p4;
reg A, B, C, D;

nand #1
g1 (pl, C,~D),
g2 (p2, A, B),
g3 (p3, ~B, ~D),
g4 (p4, A, C),
g5 (eSeg, p1, p2, p3, p4);

initial // two slashes introduce a single line comment
begin

"A = %b B = %b C = %b D = %b, eSeg = %b",
A, B, C, D, eSeg);

//waveform for simulating the binaryToESeg driver
#10 A = 0; B = 0; C = 0; D = 0;
#10 D = 1;
#10 C = 1; D = 0;
#10

end
endmodule

Example A.1 A Copy of Example 1.2
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A.2 Testbench Modules
The questions in this section are to be used with Section 1.1.4.

A.8

A.9

In problem A.4 you developed an AND-OR version of Example A.1. Change it to
use the testbench approach. Simulate using a complete set of test vectors.

In problem A.5 you developed an NOR-NOR version of Example A.1. Change it
to use the testbench approach. Simulate using a complete set of test vectors.

A. 3 Combinational Circuits Using always
These problems are to be used with Section 1.2. Problem A.11 includes a detailed
discussion of problems encountered when writing such descriptions.

A.10

A.11

Substitute module binaryToESeg_Behavioral into the testBench module of
Example 1.4. Compare the simulation results with those of the original exam-
ple. What is different?

At this point, we have only covered the basic issues in describing combinational
circuits using the always block. For a more detailed discussion, refer back to
Chapter 2.

Do this — write a module using
behavioral modeling techniques to
describe the circuit in Figure A.2.
Compile the module for simulation
and synthesis. Is it functionally cor-
rect? If your circuit will not synthesize, read on to see if you hit upon any of these
common mistakes!

Lack of Assignment  — You might run into
this particular problem if you assume that register
values start at or default to 0. This is how our
code would look if this assumption of f=0 by
default was made.

The simulator will initially assign f to have the
value x. It will keep that value until it is assigned
to 1, and will never assign it to zero. Obviously,
we simply put in an else that will assign f to be 0. When describing modules for syn-
thesis, it’s a good general rule that for every if there should be an else to tell the logic
what to do should that statement not be TRUE. Like this:

module andOr
(output reg f,
input a, b, c);

always @(a, b, c)
if (c + (a&~b))

f = l ;
endmodule
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module andOr
(output reg f,
input a, b, c);

always @(a, b, c)
if (c + (a&~b))

f = l;
else f = 0;

endmodule

But we can break that rule. Here is a correct always block for the above problem
with out an else. The trick is that the statement assigning f to zero creates a default
value for f, the rest of the description can then concentrate on when to set it to 1.

always @(a, b, c) begin
f = 0;
if (c + (a&~b))

f = l;
end

Missing Input Sensitivity     — This is generally a simple matter that something was
left out. A fundamental characteristic of combinational circuits is that they are always
sensitive to all of their inputs. That is, a change on any input could cause a change on
the output. Thus, the event statement (“@”) in the always block has to include all of
the combinational inputs. The expression in the parentheses of the event statement is
called the sensitivity list. The following is how not to write the sensitivity list.

module andOr
(output reg f,
input a, b, c);

always @(a,c) //OOPS! Forgot b! This should be (a, b, c)
if (c)

f = 1;
else

f = a &~b;
endmodule

This will have the effect of not updating the output when b changes, leaving it
wherever it was until either a or c change. The simulation will give bad results. A syn-
thesis tool will not think of this as a combinational circuit. It will think: anytime b
changes, the circuit has to remember the previous before b changed. This requires
memory in the circuit. Combinational circuits do not have memory; their outputs are
a function only of the current inputs.
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A.12

A.13

Rewrite Example 1.5 starting with “eSeg = 0”. Then specify the conditions when
it is to be set to one. The module should use only a single always block. Then
insert into a testBench module and simulate to show correct function.

A case statement is often used in synthesizable Verilog descriptions.
Example A.2 is a Verilog description for a BCD to seven segment display mod-
ule using a case statement. Read ahead in section 3.4.2 to see how the case state-

module BCDtoSevenSeg
(output reg [7:0] led,
input [3:0] bcd);

always @(bcd)
case (bcd)

0 : led = 'h81;
1 : led =  'hcf;
2 : led = 'h92;
3 : led = 'h86;
4 : led = 'hcc;
5 : led = 'ha4;
6 : led = 'ha0;
7 : led = 'h8f;
8 : led = 'h80;
9 : led = 'h8c;
default:led = 'bxxxxxxxx;

endcase
endmodule

Example A.2 Verilog Description of BCD to Seven Segment Display

ment works.

Do this — Since this module only decodes the digits 0 through 9, change it to also
decode and display the digits A through F.

Hints: Ignore the top-most bit. It is always one. The others are asserted low; a zero
turns on a display segment. The segment bits are shown in order (either segments a-f
or f-a). Figure out which is which from what you know about displays.

A.4 Sequential Circuits
These questions are to be used with Section 1.3. The first question includes a fairly
lengthy discussion of writing a description of a sequential circuit. The others assume
more background.
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A.14 Design a two-bit counter. The circuit will count either up or down through the
2-bit binary number range. Your circuit has two external inputs:

up determines the count direction. It is asserted high.
reset asynchronously sends the circuit to state 0. It is asserted low.

The counter will sequence between the four states: 0, 1, 2, 3 as follows:

if up =
if up =

Thus the circuit implements a counter that counts from 0 to 3, or 3 to 0, over and
over. It can be asynchronously reset to 0, by asserting reset.

What states and state transitions exist? A state transition diagram is shown in
Figure A.3.

How to represent the states? Let’s use two bits to represent the states. An obvious
state assignment is to have 00 represent state 0, 01 represent 1,10 represent 2, and 11
represent 3.

Do this — Write the Verilog description for this counter. Here is the module header:

module counter_2_bit(up, clk, rst, count);
input up, clk, rst;
output [1:0]   count;
reg        [1:0] count;

An answer follows on the next page.

A.15

A.16

Why is the default:  needed in the answer to the counter description in the above
problem? Consider both simulation and synthesis when answering.

Create a testbench module for Example 1.6. You will need to include a clock for
the circuit; use the one in Example 1.9. Your testbench module should reset the
circuit and then provide the following inputs to the circuit
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module counter_2_bit //Answer to problem A. 14
(input up, clk, rst,// Declarations
output reg [1:0] count);

reg [1:0] nextCount;

always @(up, count)
case (count)

0: begin
if (up) nextCount = 1;
else nextCount = 3;

end
1: begin

if (up) nextCount = 2;
else nextCount = 0;

end
2: begin

if (up) nextCount = 3;
else nextCount = 1;

end
3: begin

if (up) nextCount = 0;
else nextCount = 2;

end
default:

nextCount = 0;
endcase

always @(posedge clk, negedge rst)
if(~rst)

count <= 0;
else

count <= nextCount;
endmodule

0, 0, 1, 0, 1, 1, 1, 1, 0, 0.

Simulate the fsm to show that it correctly transits through its states.

A.17 Ifyou changed the non-blocking assignments (<=) to blocking assignments (=)
in Example 1.6, would there be any difference in the outcome of a simulation.
Explain.
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A.18

A.19

Some simulators have a single step mode where individual events are simulated.
figure out which of the two concurrent assignments is done first in the else in
Example 1.7. Why can’t we give you an answer as to which one is done first?

Here’s one way to swap values in registers.

reg [7:0] a, b, temp;

always begin

temp = a;
a = b;
b = temp;

Rewrite this using only registers a and b (i.e., get rid of temp).

A.5 Hierarchical Descriptions
These questions are to be used with Section 1.4.

A.20

A.21

What differences will be found when simulating Examples 1.13, 1.3, and 1.5?

Write the whole board example (Examples 1.3, 1.8, 1.9, and 1.10) as one
module. Use behavioral models (always and initial) as much as possible. Explain
the order of execution at the start of a simulation.



B Lexical Conventions

Verilog source text files consist of a stream of lexical tokens separated by white space.
The spacing of tokens is free format — the specific choice of tabs, spaces, or newlines
to separate lexical tokens is not important to the compiler. However, the choice is
important for giving a readable structure to the description. It is important that you
develop a consistent style of writing your Verilog descriptions. We offer the examples
in the book as a starting point to develop your own personal style.

The types of lexical tokens in the language are: white space, comments, operators,
numbers, strings, identifiers, and keywords. This Appendix will discuss each of these.

B.1 White Space and Comments
White space is defined as any of the following characters: blanks, tabs, newlines, and
formfeeds. These are ignored except for when they are found in strings.

There are two forms of comments. The single line comment begins with the two
characters // and ends with a newline. A block comment begins with the two charac-
ters /* and ends with the two characters */. Block comments may span several lines.
However, they may not be nested.
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B.2 Operators
Operators are single, double or triple character sequences that are used in expressions.
Appendix C lists and defines all the operators.

B.3 Numbers
Constant numbers can be specified in decimal, hexadecimal, octal, or binary. They
may optionally start with a + or -, and can be given in one of two forms.

The first form is an unsized decimal number specified using the digits from the
sequence 0 to 9. Although the designer may not specify the size, Verilog calculates a
size for use in an expression. In an expression, the size is typically equivalent to the
size of the operator’s other (sized) operand. The appropriate number of bits, starting
from the least significant bit, are selected for use. Appendix C.4 lists a set of rules for
calculating the size.

The second form specifies the size of the constant and takes the form:

aa...a 'sf nn…n

where:

Unknown and high impedance values may be given in all but the decimal base. In
each case, the x or z character represents the given number of bits of x or z. i.e. in
hexadecimal, an x would represent four unknown bits, in octal, three.
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Normally, zeros are padded on the left if the number of bits specified in nn…n is
less than specified by ss…s. However, if the first digit of nn…n is x or z, then x or z is
padded on the left.

An underline character may be inserted into a number (of any base) to improve
readability. It must not be the first character of a number. For instance, the binary
number:

12 'b 0x0x_1101_0zx1

is more readable than:

12 'b 0x0x11010zx1.

Examples of unsized constants are:

792 // a decimal number
7d9 // illegal, hexadecimal must be specified with 'h
'h 7d9  // an unsized hexadecimal number
'o 7746  // an unsized octal number

Examples of sized constants are:

12 'h x // a 12-bit unknown number
8 'h fz // equivalent to the binary: 8 'b 1111_zzzz
10 'd 17  // a ten-bit constant with the value 17.

Examples of signed and negative constants are:

-6 'd 5 // a six-bit constant with the value of -5 (i.e., 111011)
6 'd -5 // illegal
3 'sd 7 //a three-bit signed constant with value -1. i.e., deciml 7 represented in

three bits is 111. The s indicates that the number should be treated as
signed, which makes it minus 1.

4 'sh F // a four-bit signed constant with the value -1. i.e., hex F is represented
in four bits as 1111. The s indicates that the number should be treated
as signed, which makes it minus 1.

B.4 Strings
A string is a sequence of characters enclosed by double quotes. It must be contained
on a single line. Special characters may be specified in a string using the “\” escape
character as follows:
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\n new line character. Typically the return key.
\t tab character. Equivalent to typing the tab key.
\\ is the \ character.
\" is the " character
\ddd is an ASCII character specified in one to three octal digits.

B.5 Identifiers, System Names, and Keywords
Identifiers are names that are given to elements such as modules, registers, ports,
wires, instances, and begin-end blocks. An identifier is any sequence of letters, digits,
and the underscore (_) symbol except that:

the first character must not be a digit, and

the identifier must be 1024 characters or less.

Upper and lower case letters are considered to be different.

System tasks and system functions are identifiers that always start with the dollar
symbol. A partial list of system tasks and functions is provided in Appendix F.

Escaped identifiers allow for any printable ASCII character to be included in the
name. Escaped identifiers begin with white space. The backslash (“\”) character leads
off the identifier, which is then terminated with white space. The leading backslash
character is not considered part of the identifier.

Examples of escaped identifiers include:

\bus-index

\a+b

Escaped identifiers are used for translators from other CAD systems. These sys-
tems may allow special characters in identifiers. Escaped identifiers should not be
used under normal circumstances
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C Verilog Operators

C.1Table of Operators
Table 3.1 Verilog Operators

Operator
Symbol Name Definition Comments

{ , } Concatenation

Addition

Subtraction

Unary minus

Joins together bits
from two or more
comma-sepa-
rated expressions

Sums two oper-
ands.

Finds difference
between two
operands.

Changes the sign
of its operand

Constants must be sized. Alternate
form uses a repetition multiplier. {b, {3
{a, b}}} is equivalent to {b, a, b, a, b, a,
b}.

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the result will be unknown.

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the result will be unknown.

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the result will be unknown.

+

-
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Table 3.1 Verilog Operators
* Multiplication

Division

Modulus

Power

Greater than

Greater than or
equal

Less than

Less than or
equal

Logical negation

Logical AND

Multiply two
operands.

Divide two oper-
ands

Find remainder

Raise to the
power of

Determines rela-
tive value

Determines rela-
tive value

Determines rela-
tive value

Determines rela-
tive value

Unary Comple-
ment

ANDs two logical
values.

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the result will be unknown.

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the result will be unknown. Divide by
zero produces an x.

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the result will be unknown.

Result = base ** exp. Result will be
unsigned if the base and exp are also. It
will be a real if either operand is a real,
integer, or signed value.

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the relation is ambiguous and the result
will be unknown.

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the relation is ambiguous and the result
will be unknown.

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the relation is ambiguous and the result
will be unknown.

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the relation is ambiguous and the result
will be unknown.

Converts a non-zero value (TRUE) into
zero; a zero value (FALSE) into one;
and an ambiguous truth value into x.

Used as a logical connective in, for
instance, if statements. e.g. if ((a > b)
&&(c<d)).

/

%

**

>

>=

<

<=

!

&&
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Table 3.1 Verilog Operators

||

!=

! = =

&

Logical OR

Logical equality

Logical inequal-
ity

Case equality

Case inequality

Bitwise negation

Bitwise AND

Bitwise OR

Bitwise XOR

Equivalence

Unary reduction
AND

|

^

^~ or ~^

&

ORs two logical
values.

Compares two
values for equality

Compares two
values for inequal-
ity

Compares two
values for equality

Compares two
values for inequal-
ity

Complements
each bit in the
operand

Produces the bit-
wise AND of two
operands.

Produces the bit-
wise inclusive OR
of two operands.

Produces the bit-
wise exclusive OR
of two operands.

Produces the bit-
wise exclusive
NOR of two
operands

Produces the sin-
gle bit AND of all
of the bits of the
operand.

Used as a logical connective in, for
instance, if statements, e.g. if ((a > b) ||
(c < d)).

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the relation is ambiguous and the result
will be unknown.

Register and net operands are treated as
unsigned. Real and integer operands
may be signed. If any bit is unknown,
the relation is ambiguous and the result
will be unknown.

The bitwise comparison includes com-
parison of x and z values. All bits must
match for equality. The result is either
TRUE or FALSE.

The bitwise comparison includes com-
parison of x and z values. Any bit differ-
ence produces inequality. The result is
either TRUE or FALSE.

Each bit of the operand is comple-
mented. The complement of x is x.

See truth table below

See truth table below

See truth table below

See truth table below

Unary reduction and binary bitwise
operators are distinguished by syntax.

= =

= = =

~
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Table 3.1 Verilog Operators

~ &

I

Unary reduction
NAND

Unary reduction
OR

Unary reduction
NOR

Unary reduction
XOR

Unary reduction
XNOR

Left shift

Right shift

Arithmetic shift
left

Produces the sin-
gle bit NAND of
all of the bits of
the operand.

Produces the sin-
gle bit inclusive
OR of all of the
bits of the oper-
and.

Produces the sin-
gle bit NOR of all
of the bits of the
operand.

Produces the sin-
gle bit XOR of all
of the bits of the
operand.

Produces the sin-
gle bit XNOR of
all of the bits of
the operand.

Shift the left
operand left by
the number of bit
positions specified
by the right oper-
and

Shift the left
operand right by
the number of bit
positions specified
by the right oper-
and

Shift the left
operand left by
the number of bit
positions specified
by the right oper-
and.

Unary reduction and binary bitwise
operators are distinguished by syntax.

Unary reduction and binary bitwise
operators are distinguished by syntax.

Unary reduction and binary bitwise
operators are distinguished by syntax.

Unary reduction and binary bitwise
operators are distinguished by syntax.

Unary reduction and binary bitwise
operators are distinguished by syntax.

Vacated bit positions are filled with
zeros

Vacated bit positions are filled with
zeros

This is the same as left shift (<<).

~|

^

~^ or ^~

<<

>>

<<<
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Table 3.1 Verilog Operators

>>>

?:

Arithmetic shift
right

Conditional

Convert to
signed

Convert to
unsigned

Shift the left
operand right by
the number of bit
positions specified
by the right oper-
and.

Assign one of two
values based on
expression

If the left operand is signed, the vacated
bit positins will be filled with copies of
the sign bit. Otherwise it will fill with
zeros.

condExpr ? trueExpr : falseExpr. If con-
dExpr is TRUE, the trueExpr is the
result of the operator. If condExpr is
FALSE, the falseExpr is the result. If
the condExpr is ambiguous, then both
trueExpr and falseExpr expressions are
calculated and the result is produced in a
bitwise fashion. For each bit, if  both
expression bits are one, the result is one.
If  both are zero, the result is zero. Oth-
erwise, the resulting bit is x. The opera-
tor is right associative.

This is actually a system function call
that takes a name and returns it as a
signed value. This allows the unsigned
value m to be treated in an expression as
if it was a signed value

This is actually a system function call
that takes a name and returns it as an
unsigned value. This allows the signed
value m to be treated in an expression as
if it was an unsigned value

If all of the operands of an expression are signed, then signed operations are per-
formed. If any operand is not signed, then unsigned operations are used. The

and operations above is used, for instance, to change an
unsigned operand into a signed one so that an expression can be calculated in a signed
manner.
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C.2Operator Precedence
The operator precedences are shown below. The top of the table is the highest prece-
dence, and the bottom is the lowest. Operators listed on the same line have the same
precedence. All operators associate left to right in an expression (except ?:). Parenthe-
ses can be used to change the precedence or clarify the situation. When in doubt, use
parentheses. They are easier to read, and reread!

Highest precedence

Lowest precedence
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C.3 Operator Truth Tables
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C.4 Expression Bit Lengths
In the following table, L(i) refers to the length in bits of operand i.



D Verilog Gate Types

D.1 Logic Gates
These gates all have one scalar output and any number of scalar inputs. When instan-
tiating one of these modules, the first parameter is the output and the rest are inputs.
Zero, one or two delays may be specified for the propagation times. Strengths may be
specified on the outputs.
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D.2 BUF and NOT Gates
These gates have one or more scalar outputs and one scalar input. The input is listed
last on instantiation. Zero, one, or two delays may be specified. Strengths may be
specified on the outputs.
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D.3 BUFIF and NOTIF Gates
These gates model three-state drivers. Zero, one, two, or three delays may be speci-
fied. Each of the gates has one output, one data input, and one control input. On
instantiation, the ports are listed in that order. (L indicates 0 or z; H indicates 1 or z)
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D.4 MOS Gates
These gates model NMOS and PMOS transistors. The “r” versions model NMOS
and PMOS transistors with significantly higher resistivity when conducting. The
resistive forms reduce the driving strength from input to output. The nonresistive
forms only reduce the supply strength to a strong strength. See Table 10.7. Drive
strengths may not be specified for these gates.

Each gate has one scalar output, one scalar data input, and one scalar control input,
and on instantiation, are listed in that order. (L indicates 0 or z; H indicates 1 or z)
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D.5 Bidirectional Gates
The following gates are true bidirectional transmission gates: tran, tranif1, tranif0,
rtran, rtranif1, and rtranif0. Each of these has two scalar inout terminals. The tranif
and rtranif gates have a control input which is listed last on instantiation.

The rise delay indicates the turn-on delay for the pass device and the fall delay
indicates the turn-off delay.

D.6 CMOS Gates
CMOS gates represent the typical situation where nmos and pmos transistors are
paired together to form a transmission gate. The first terminal is the data output, the
second is the data input, the third is the n-channel control, and the last is the p-chan-
nel control. The cmos gate is a relatively low impedance device. The rcmos version has
a higher impedance when conducting.

D.7 Pullup and Pulldown Gates
These are single output gates that drive pull strength values (the default) onto the
output net. Pullup drives a logic one and pulldown drives a logic zero. The strength
may be specified.



E Registers,
Memories, Integers,
and Time

E.1 Registers
Registers are abstractions of storage devices found in digital systems. They are defined
with the reg keyword and are optionally given a size (or bit width). The default size is
one. Thus:

reg tempBit;

defines a single bit register named tempBit, while

reg [15:0] tempNum;

defines a 16-bit register named tempNum. Single-bit registers are termed scalar, and
multiple-bit registers are termed vector. The bit width specification gives the name of
the most significant bit first (in this case, 15) and the least significant bit last.

The register could have been declared as

reg [0:15] tempNum;

with the only difference being that the most significant bit is named (numbered) 0. Of
course, all the other bits are differently numbered. Further, the register can be
declared as signed
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reg signed [15:0] tempNum;

indicating that when used in an expression, it is to be treated as a signed (2’s comple-
ment) number.

The general form of a register specification is:

reg_declaration reg [signed] [range] list_of_variable_identifiers;

list_of_variable_identifiers variable_type { , variable_type }

variable_type
variable_identifier [ = constant_expression]

| variable_identifier dimension {dimension}

variable_identifier
identifier

dimension
[dimension_constant_expression : dimension_constant_expression ]

Either a single bit, or several contiguous bits of a vector register (or net) can be
addressed and used in an expression. Selecting a single bit is called a bit-select, and
selecting several contiguous bits is known as a part-select. Examples of these include:

reg [10:0] counter;
reg a;
reg [2:0] b;
reg [-5:7] c

a = counter [7]; // bit seven of counter is loaded into a
b = counter [4:2]; // bits 4, 3, 2 of counter are loaded into b

In a bit-select, the bit to be selected may be specified with an expression or by a lit-
eral. The bits selected in a part-select must be specified with constant expressions or
literals; the values may be positive or negative.

E.2 Memories
Memories are defined using the register declaration:
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reg [10:0] lookUpTable [0:31];

This declares a 32 word array named lookUpTable where each word consists of 11
bits. The memory is used in an expression, for example, as follows:

lookUpTable [5] = 75;

This loads the fifth word of lookUpTable with the value 75.

Memories may be multidimensional; here two and three dimensional arrays are
declared:

reg [7:0] twoDarray [15:0] [63:0];
reg [9:0] threeDarray [31:0] [31:0][43:0];

If an 8-bit register a is also declared, then a legal procedural assignment would be:

a = twoDarray[3][2];

Part and bit selects can be applied to memories; the select is the last index, which is
added to the end of the access. Thus, accessing bits 7 through 0 of threeDarray could
be written as:

a = threeDarray[21][4][40][7:0];

Reading memory array elements outside the range of a dimension returns an
unknown x. Writing to a memory array element outside the range of a dimension has
no effect.

It is illegal to select more than one word from a memory — a whole dimension
cannot be read at one time. However, some system functions, like are
passed a memory’s name without indicies.

The formal syntax specification in the previous section covers both register and
memory declarations.

E.3 Integers and Times
Registers are used to model hardware. Sometimes though, it is useful to perform cal-
culations for simulation purposes. For example, we may want to turn off monitoring
after a certain time has passed. If we use registers for this purpose, the operations on
them may be confused with actions of the actual hardware. Integer and time variables
provide a means of describing calculations pertinent to the simulation. They are pro-
vided for convenience and make the description more self documenting.
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An integer declaration uses the integer keyword and specifies a list of variables. The
time declaration is the same except for the time keyword:

integer a, b; //two integers
integer c [1:100]; // an array of integers
time q, r; // two time variables
time s [31:0]; // an array of times

An integer is a general purpose 32-bit variable. Operations on it are assumed to be
two’s complement and the most significant bit indicates the sign.

A time variable is a 64-bit variable typically used with the system function.



F System Tasks and
Functions

In this section we present some of the built in Verilog System Tasks and Functions.
Our philosophy for this book is not to become a substitute for the simulator manual.
Rather, we want to illustrate a few of the basic methods of displaying the results of
simulation, and stopping the simulation.

F.1 Display and Write Tasks
There are two main tasks for printing information during a simulation: and

These two are the same except that always prints a newline character
at the end of its execution. Examples of the task were given throughout the
main portion of the book. A few details will be given here.

The typical form of the parameters to these tasks is

("Some text %d and maybe some more: %h.", a, b);

This statement would print the quoted string with the value of a substituted in for the
format control "%d", and b is substituted in for the format control "%h". The "%d"
indicates that the value should be printed in a decimal base. %h specifies hexadecimal.

Allowable letters in the format control specification are:
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h or H
d or D
o or O
b or B
c or C
v or V
m or M
s or S

display in hexadecimal
display in decimal
display in octal
display in binary
display ASCII character
display net signal strength (see Table 10.4).
display hierarchical name
display string

Using the construct "%0d" will print a decimal number without leading zeros or
spaces. This may be used with h, d, and o also.

Two adjacent commas („) will print a single space. Other special characters may be
printed with escape sequences:

\n is the new line character
\t is the tab character
\\ is the \ character
\" is the " character
\ddd       is the character specified in up to 3 octal digits

For instance:

("Hello world\n");

will print the quoted string with two newline characters (remember, auto-
matically adds one at the end of its execution).

F.2 Continuous Monitoring
The command is used to print information whenever there is a change in
one or more specified values. The monitor prints at the end of the current time so that
all changes at the current time will be reflected by the printout. The parameters for
the task are the same as for the task.

The command is:

(parameters as used in the task);

Whenever the task is called, it will print the values and set up the simulator
to print them anytime one of the parameters changes. Only one display list
may be active at a time. If time is being printed as in the following state-
ment, a change in simulation time will not trigger the to print.
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( "regA = ", regA);

F.3 Strobed Monitoring
The task also uses the same parameter list format as the   task. Unlike

it will print just before simulation time is about to advance. In this way,
insures that all of the changes that were made at the current simulation time

have been made, and thus will be printed.

F.4 File Output
The and tasks have a version for writing to a file.
They each require an extra parameter, called the file descriptor, as shown below:

(descriptor, parameters as in the display command);
(descriptor, parameters as in the write command);

(descriptor, parameters as in the monitor command);
(descriptor, parameters as in the strobe command);

The descriptor is a 32-bit value returned from the function. The descriptor
may be stored in a 32-bit reg. The function takes the form:

("name of file");

will return 0 if it was unable to open the file for writing. When finished writ-
ing to a file, it is closed with the function call:

(descriptor);

The descriptors are set up so that each bit of the descriptor indicates a different
channel. Thus, multiple calls to will return a different bit set. The least signifi
cant bit indicates the “standard output” (typically a terminal) and need not be opened.
By passing the OR of two or more descriptors to one of the printing commands, the
same message will be printed into all of the files (and standard output) indicated by
the ORed descriptors.



336                                                                     The Verilog Hardware Description Language

F.5 Simulation Time
is a function that returns the current time as a 64-bit value. will return a

32-bit value. The time may be printed, for instance, with the command as
shown below:

(             "regA = ", regA);

Note that the change of simulation time will not trigger the to print.

F.6 Stop and Finish
The            and              tasks stop simulation. They differ in that            returns control
back to the simulator’s command interpreter, while returns back to the host
operating system.

A parameter may be passed to these tasks with the following effects.

If the forms with no parameter are used, then the default is the same as passing a 1
to it.

F.7 Random
The system function provides a random number mechanism, returning a
new random number each time the function is called. The size of the returned value is
the same as an integer variable. Typical usages is illustrated below:
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parameter SEED = 33;
reg [31:0] vector;

always @(posedge clock)
vector = (SEED);

F.8 Reading Data From Disk Files
The and system tasks are used to load information stored in
disk files into Verilog memories. The “b” version reads binary numbers and the “h”
version reads hexadecimal numbers.

The general syntax for the task call is:

(“filename”,  <memname>,  <<start_addr>  <,<finish_addr>>?>?);

where:

x is “b” or “h”

<memname> specifies the Verilog identifier of the memory to be loaded.

<start_addr> optionally specifies the starting address of the data. If none is speci-
fied, the left-hand address given in the memory declaration is used. If the
<finish_addr> is specified, loading begins at the <start_addr> and continues to the
<finish_addr>. Also see below for an alternate specification of the starting address.

<finish_addr> is the last address to be written into.

Addresses can be specified within the file as well. The construct “@hhh…h” within
the file specifies the hexadecimal address to use as the starting address. Subsequent
data is loaded starting at that memory address. Note that the “h” specifies hexadeci-
mal digits only. There is no length or base format specified. There may be several
address specifications allowing several sub-blocks of memory to be loaded while the
rest remains untouched.

The format for data in the file is either binary or hexadecimal numbers only. The
length and base is not specified. The numbers are separated by white space. Verilog
comments are allowed.

Verilog also has access to a set of I/O system function calls that essentially dupli-
cate several of the C language file I/O functions. They are:
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G Formal Syntax
Definition

This formal syntax specfication is provided in BNF. This information, starting in
section G.2 and continuing through the end of this sppendix, is reprinted from IEEE
Standard 1364-2001 “IEEE Standard Verilog Hardware Description Language Ref-
erence Manual (LRM)”, Copyright © 2001 by the Institute of Electrical and Elec-
tronics Engineers, Inc (IEEE). The IEEE disclaims any responsibility or liability
resulting from the placement and use in this publication. This information is
reprinted with the permission of the IEEE.

G.1 Tutorial Guide to Formal Syntax
Specification
The formal syntax notation will be introduced through an example — in this case
Example G.1, an edge triggered D flip flop, dEdgeFF. Using this example we will
describe the formal syntax of a module definition.

To this point, we have, by example, demonstrated that a module definition uses
certain keywords (“module”, “endmodule”) and has other entities associated with it
(“ports”, “instantiations”, etc.). The formal syntax for a module is:
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module dEdgeFF
(output q,
input clock, data);

reg reset;
wire q, qBar, r, s, r1, si;

initial begin
reset = 1;
#20 reset = 0;

end

nor #10
a (q, qBar, r, reset);

nor
b (qBar, q, s),
c (s, r, clock, s1),
d (s1, s, data),
e (r, r1, clock),
f(r1,s1,r);

endmodule

Example G.1 An Edge-Triggered Flip Flop

module_declaration
module_keyword module_identifier [ module_parameter_port_list]

[list_of_ports];
{ module_item }
endmodule

| module_keyword module_identifier [ module_parameter_port_list]
[list_of_ports_declarations];
{ non_port_module_item }
endmodule

module_keyword
module

| macromodule

In plain words, the module construct (“module_declaration”) is defined by a
“module_keyword,” followed by the “module_identifier.” The name is optionally fol-
lowed by a list of parameters (the “[ ]” indicates an optional item), an optional list of
poerts, and then by a “;”. Next come zero or more module items (the “{ }” indicates
zero or more) followed by the “endmodule” keyword. The module_keyword is the
keyword “module” or “macromodule” and the “module_identifier” is the name of the
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module. A definition of this can be found under “identifier.” Examples of all of these
items can be seen in Example G.1.

As a key, the construct before the is the item to be defined. The line with the
starts the definition of the construct (later we will see that “|” indicates an alter-

nate definition). Any other items in regular text are constructs that are defined else-
where. Finally, bold text indicates literal text — text like “module” or “;” that will
appear directly in the description. Typically, these are keywords and language punctu-
ation. Some items are listed with the first part being italic and the rest being regular
text. The italic part adds extra semantic information to the regular text item. The item
to be used is found under the definition of the regular text item.

We still need to define the syntax construct items. Below are the rest of the defini-
tions for a module. In some cases, the text “…” is used to indicate that there are more
alternatives but that due to space or expediency, they won’t be list and discussed here.
All syntax construct items used in the normal text of the book are keyed to the identi-
cally named items in the Appendix.

More of the formal syntax for a module:

module_identifier
identifier
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A module is named using a module_identifier. The full definition of identifier is not
included here. However, the later appendix has the full definition.

Now let’s consider the ports. Above we see that a module has an optional
list_of_ports. Below we see that a list_of_ports is one or more comma-separated ports
listed within parentheses. Thus if there are no ports to the module (after all, they’re
optional), then nothing is specified — not even a null “()”. However, if there is at least
one port, then parentheses are used to contain the list of comma-separated ports.

list_of_ports
(port {,port})

A port is an optional port_expression which in turn is either a port_reference or a
concatenation of port_references. A port_reference is either a port_identifier (which
is actually an identifier), a bit-select of a port_identifier (the second alternative in the
list), or a part-select of port_identifier (the third alternative). The items in the bit-
and part-selects are constants indicating which bits are to be used. The selects are
enclosed in literal square brackets and the constants of a part-select are separated by a
literal colon.

port
[ port_expression ]

port_expression
port_reference

|      {port_reference {, port reference} }

port_reference
port_identifier

| port_identifier [ constant_expression ]
| port_identifier [ range_expression ]

Going further with the module definition, we see that it also includes zero, one, or
more module_items. One item is the module_or_generate_item which is itself a long
list of alternatives — some of which we see in Example G.1. For instance, the Exam-
ple contains gate instantiations, initial constructs, and always constructs. We also see
other familiar items — gate and module instantiations, and continuous assignments.

module_item
module_or_generate_item

| port_declaration
| generated_instantiation
| local_parameter_declaration
| parameter_declaration



343

module_or_generate_item
module_or_generate_item_declaration

| continuous_assignment
| gate_instantiation
| initial_construct
| always_construct

References: register specifications E.1; IDENTIFIERS B.5, G.10

G.2 Source text

G.2.1 Library source text

library_text ::= {library_descriptions }
library_descriptions ::=

library_declaration
| include_statement
| config_declaration

library_declaration ::=
library library_identifier file_path_spec [ {, file_path_spec } ]
[ -incdir file_path_spec [ {, file_path_spec } ];

file_path_spec ::= file_path
include_statement ::= include <file_path_spec> ;

G.2.2 Configuration source text

config_declaration ::=
config config_identifier;
design_statement
{config_rule_statement}
endconfig

design_statement ::= design {[library_identifier.]cell_identifier } ;
config_rule_statement ::=

default_clause liblist_clause
| inst_clause liblist_clause
| inst_clause use_clause
| cell_clause liblist_clause
| cell_clause use_clause

default_clause ::= default
inst_clause ::= instance inst_name

IEEE Std 1364-2001, Copyright © 2001, IEEE. All rights reserved
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inst_name ::= topmodule_identifier{.instance_identifier}
cell_clause ::= cell [ library_identifier.]cell_identifier
liblist_clause ::= liblist [{library_identifier}]
use_clause ::= use [library_identifier.]cell_identifier[:config]

G.2.3  Module and primitive source text

source_text ::= { description }
description ::=

module_declaration
| udp_declaration

module_declaration ::=
{ attribute_instance } module_keyword module_identifier [

module_parameter_port_list ]
[ list_of_ports ]; { module_item }
endmodule

| { attribute_instance } module_keyword module_identifier [
module_parameter_port_list ]

[ list_of_port_declarations ]; { non_port_module_item }
endmodule

module_keyword ::= module | macromodule

G.2.4 Module parameters and ports

module_parameter_port_list ::= # (parameter_declaration {, parameter_declaration}
)

list_of_ports ::= (port {, port})
list_of_port_declarations ::=

(port_declaration {, port_declaration } )

| ( )
port ::=

[ port_expression ]
|   port_identifier ( [ port_expression ] )

port_expression ::=
port_reference

| {  port_reference {, port_reference } }
port_reference ::=

port_identifier
| port_identifier [ constant_expression ]
| port_identifier [ range_expression ]

port_declaration ::=
{attribute_instance} inout_declaration

IEEE Std 1364-2001, Copyright © 2001, IEEE. All rights reserved
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| {attribute_instance} input_declaration
| {attribute_instance} output_declaration

G.2.5 Module items

module_item ::=
module_or_generate_item

| port_declaration ;
| { attribute_instance } generated_instantiation
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration

module_or_generate_item ::=
{ attribute_instance } module_or_generate_item_declaration

| { attribute_instance } parameter_override
| { attribute_instance } continuous_assign
| { attribute_instance } gate_instantiation
| { attribute_instance } udp_instantiation
| { attribute_instance } module_instantiation
| { attribute_instance } initial_construct
| { attribute_instance } always_construct

module_or_generate_item_declaration ::=
net_declaration

| reg_declaration
| integer_declaration
| real_declaration
| time_declaration
| realtime_declaration
| event_declaration
| genvar_declaration
| task_declaration
| function_declaration

on_port_module_item ::=
{ attribute_instance } generated_instantiation

| { attribute_instance } local_parameter_declaration
| { attribute_instance } module_or_generate_item
| { attribute_instance } parameter_declaration
| { attribute_instance } specify_block
| { attribute_instance } specparam_declaration

IEEE Std 1364-2001, Copyright © 2001, IEEE. All rights reserved
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parameter_override ::= defparam list_of_param_assignments ;

G.3 Declarations

G.3.1 Declaration types

G.3.1.1 Module parameter declarations

local_parameter_declaration ::=
localparam [ signed ] [ range ] list_of_param_assignments ;

| localparam integer list_of_param_assignments ;
| localparam real list_of_param_assignments ;
| localparam realtime list_of_param_assignments ;
| localparam time list_of_param_assignments ;

parameter_declaration ::=
parameter [ signed ] [ range ] list_of_param_assignments ;

| parameter integer list_of_param_assignments ;
| parameter real list_of_param_assignments ;
| parameter realtime list_of_param_assignments ;
| parameter time list_of_param_assignments ;

specparam_declaration ::= specparam [ range ] list_of_specparam_assignments ;

G.3.1.2 Port declarations

inout_declaration ::= inout [ net_type ] [ signed ] [ range ]
list_of_port_identifiers

input_declaration ::= input [ net_type ] [ signed ] [ range ]
list_of_port_identifiers

output_declaration ::=
output [ net_type ] [ signed ] [ range ]

list_of_port_identifiers
| output [ reg ] [ signed ] [ range ]

list_of_port_identifiers
| output reg [ signed ] [ range ]

list_of_variable_port_identifiers
| output [ output_variable_type ]

list_of_port_identifiers
| output output_variable_type

IEEE Std 1364-2001, Copyright © 2001, IEEE. All rights reserved
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list_of_variable_port_identifiers

G.3.1.2 Type declarations
event_declaration ::= event list_of_event_identifiers ;
genvar_declaration ::= genvar list_of_genvar_identifiers ;
integer_declaration ::= integer list_of_variable_identifiers ;
net_declaration ::=

net_type [ signed ]
[ delay3 ] list_of_net_identifiers ;

| net_type [ drive_strength ] [ signed ]
[ delay3 ] list_of_net_decl_assignments ;

| net_type [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_identifiers ;

| net_type [ drive_strength ] [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_decl_assignments ;

| trireg [ charge_strength ] [ signed ]
[ delay3 ] list_of_net_identifiers ;

| trireg [ drive_strength ] [ signed ]
[ delay3 ] list_of_net_decl_assignments ;

| trireg [ charge_strength ] [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_identifiers ;

| trireg [ drive_strength ] [ vectored | scalared ] [ signed ]
range [ delay3 ] list_of_net_decl_assignments ;

real_declaration ::= real list_of_real_identifiers ;
realtime_declaration ::= realtime list_of_real_identifiers ;
reg_declaration ::= reg [ signed ] [ range ]

list_of_variable_identifiers ;
time_declaration ::= time list_of_variable_identifiers ;

G.3.1 Declaration data types

G.3.1.1   Net and variable types

net_type ::=
supply0 | supply1

| tri | triand | trior | tri0 | tri1
| wire | wand | wor

output_variable_type ::= integer | time
real_type ::=

real_identifier [ = constant_expression ]
| real_identifier dimension { dimension }

IEEE Std 1364-2001, Copyright © 2001, IEEE. All rights reserved
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variable_type ::=
variable_identifier [ = constant_expression ]

| variable_identifier dimension { dimension }

G.3.1.2 Strengths

drive_strength ::=
( strength0, strength1 )

| ( strength1, strength0 )
| (strength0, highz1 )
| ( strength1, highz0)
| ( highz0 , strength1 )
| (highz1, strength0 )

strength0 ::= supply0 | strong0 | pull0 | weak0
strength1 ::= supply 1| strong1 | pull1 | weak1
charge_strength ::= (small) | (medium) | (large)

G.3.1.3 Delays

delay3 ::= # delay_value | # (delay_value [ , delay_value [ , delay_value ] ] )
delay2 ::= # delay_value | # ( delay_value [ , delay_value ])
delay_value ::=

unsigned_number
| parameter_identifier
| specparam_identifier
| mintypmax_expression

G.3.2 Declaration lists

list_of_event_identifiers ::= event_identifier [ dimension { dimension }]
{, event_identifier [ dimension { dimension }] }

list_of_genvar_identifiers ::= genvar_identifier {, genvar_identifier }
list_of_net_decl_assignments ::= net_decl_assignment {, net_decl_assignment}
list_of_net_identifiers ::= net_identifier [ dimension { dimension }]

{, net_identifier [ dimension { dimension }]}
list_of_param_assignments ::=param_assignment {, param_assignment}
list_of_port_identifiers ::= port_identifier {, port_identifier}
list_of_real_identifiers ::= real_type {, real_type }
list_of_specparam_assignments ::=specparam_assignment {, specparam_assignment

}
list_of_variable_identifiers ::= variable_type {, variable_type }
list_of_variable_port_identifiers ::= port_identifier [ = constant_expression ]

IEEE Std 1364-2001, Copyright © 2001, IEEE. All rights reserved
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{ , port_identifier [ = constant_expression ] }

G.3.3 Declaration assignments

net_decl_assignment ::= net_identifier = expression
param_assignment ::= parameter_identifier = constant_expression
specparam_assignment ::=

specparam_identifier = constant_mintypmax_expression
| pulse_control_specparam

pulse_control_specparam ::=
PATHPULSE$ = ( reject_limit_value [ , error_limit_value ] ) ;

| PATHPULSE$specify_input_terminal_descriptor$specify_output_terminal_descriptor
= ( reject_limit_value [ , error_limit_value ] ) ;

error_limit_value ::= limit_value
reject_limit_value ::= limit_value
limit_value ::= constant_mintypmax_expression

G.3.4 Declaration ranges

dimension ::= [ dimension_constant_expression : dimension_constant_expression ]
range ::= [ msb_constant_expression : lsb_constant_expression ]

G.3.5 Function declarations

function_declaration ::=
function [ automatic ] [ signed ] [ range_or_type ] function_identifier ;
function_item_declaration { function_item_declaration }
function_statement
endfunction
| function [ automatic ] [ signed ] [ range_or_type ] function_identifier (

function_port_list )  ;
block_item_declaration { block_item_declaration }
function_statement
endfunction

function_item_declaration ::=
block_item_declaration

| tf_input_declaration ;
function_port_list ::= { attribute_instance } tf_input_declaration { , { attribute_instance }

tf_input_declaration }
range_or_type ::= range | integer | real | realtime | time

IEEE Std 1364-2001, Copyright © 2001, IEEE. All rights reserved
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G.3.6 Task declarations

task_declaration ::=
task [ automatic ] task_identifier ;
{ task_item_declaration }
statement
endtask

| task [ automatic ] task_identifier ( task_port_list ) ;
{ block_item_declaration }
statement
endtask

task_item_declaration ::=
block_item_declaration

| { attribute_instance } tf_input_declaration ;
| { attribute_instance } tf_output_declaration ;
| { attribute_instance } tf_inout_declaration ;

task_port_list ::= task_port_item { , task_port_item }
task_port_item ::=

{ attribute_instance } tf_input_declaration
| { attribute_instance } tf_output_declaration
| { attribute_instance } tf_inout_declaration

tf_input_declaration ::=
input [ reg ] [ signed ] [ range ] list_of_port_identifiers

| input [ task_port_type ] list_of_port_identifiers
tf_output_declaration ::=

output [ reg ] [ signed ] [ range ] list_of_port_identifiers
| output [ task_port_type ] list_of_port_identifiers

tf_inout_declaration ::=
inout [ reg ] [ signed ] [ range ] list_of_port_identifiers

| inout [ task_port_type ] list_of_port_identifiers
task_port_type ::=

time | real | realtime | integer

G.3.7  Block item declarations

block_item_declaration ::=
{ attribute_instance } block_reg_declaration

| { attribute_instance } event_declaration
| { attribute_instance } integer_declaration
| { attribute_instance } local_parameter_declaration
| { attribute_instance } parameter_declaration
| { attribute_instance } real_declaration

IEEE Std 1364-2001, Copyright © 2001, IEEE. All rights reserved
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| { attribute_instance } realtime_declaration
| { attribute_instance } time_declaration

block_reg_declaration ::= reg [ signed ] [ range ]
list_of_block_variable_identifiers ;

list_of_block_variable_identifiers::=
block_variable_type { , block_variable_type }

block_variable_type ::=
variable_identifier

| variable_identifier dimension { dimension }

G.4 Primitive instances

G.4.1 Primitive instantiation and instances

gate_instantiation ::=
cmos_switchtype [delay3]

cmos_switch_instance { , cmos_switch_instance } ;
| enable_gatetype [drive_strength] [delay3]

enable_gate_instance { , enable_gate_instance } ;
| mos_switchtype [delay3]

mos_switch_instance { , mos_switch_instance } ;
| n_input_gatetype [drive_strength] [delay2]

n_input_gate_instance { , n_input_gate_instance } ;
| n_output_gatetype [drive_strength] [delay2]

n_output_gate_instance { , n_output_gate_instance } ;

| pass_en_switchtype [delay2]
pass_enable_switch_instance { , pass_enable_switch_instance } ;

| pass_switchtype
pass_switch_instance { , pass_switch_instance } ;

| pulldown [pulldown_strength]
pull_gate_instance { , pull_gate_instance } ;

| pullup [pullup_strength]
pull_gate_instance { , pull_gate_instance } ;

cmos_switch_instance ::= [ name_of_gate_instance ] ( output_terminal ,
input_terminal ,

ncontrol_terminal , pcontrol_terminal )
enable_gate_instance ::= [ name_of_gate_instance ] ( output_terminal , input_terminal

, enable_terminal )
mos_switch_instance ::= [ name_of_gate_instance ] ( output_terminal , input_terminal
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, enable_terminal)
n_input_gate_instance ::= [ name_of_gate_instance ] ( output_terminal ,

input_terminal { , input_terminal } )
n_output_gate_instance ::= [ name_of_gate_instance ] ( output_terminal { ,

output_terminal } , input_terminal )
pass_switch_instance::= [ name_of_gate_instance ] ( inout_terminal , inout_terminal )
pass_enable_switch_instance ::= [ name_of_gate_instance ] ( inout_terminal ,

inout_terminal , enable_terminal )
pull_gate_instance ::= [ name_of_gate_instance ] ( output_terminal )
name_of_gate_instance ::= gate_instance_identifier [ range ]

GA.2 Primitive strengths

pulldown_strength ::=
( strength0 , strength1 )

| ( strength1 , strength0 )
| ( strength0 )

pullup_strength ::=
( strength0 , strength1 )

| ( strength1 , strength0 )
| ( strength1 )

G.4.3 Primitive terminals

enable_terminal ::= expression
inout_terminal ::=net_lvalue
input_terminal ::= expression
ncontrol_terminal ::= expression
output_terminal ::= net_lvalue
pcontrol_terminal ::= expression

G.4.4  Primitive gate and switch types

cmos_switchtype ::= cmos | rcmos
enable_gatetype ::= bufif0 | bufif1 | notif0 | notif1
mos_switchtype ::= nmos | pmos | rnmos | rpmos
n_input_gatetype ::= and | nand | or | nor | xor | xnor
n_output_gatetype ::= buf | not
pass_en_switchtype ::= tranif0 | tranif1 | rtranif1 | rtranif0
pass_switchtype ::= tran | rtran
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G.5 Module and generated instantiation

G.5.1 Module instantiation

module_instantiation ::=
module_identifier [ parameter_value_assignment ]

module_instance { , module_instance } ;
parameter_value_assignment ::= # ( list_of_parameter_assignments )
list_of_parameter_assignments ::=

ordered_parameter_assignment { , ordered_parameter_assignment } |
named_parameter_assignment { , named_parameter_assignment }

ordered_parameter_assignment ::= expression
named_parameter_assignment ::= parameter_identifier ( [ expression ] )
module_instance ::= name_of_instance ( [ list_of_port_connections ] )
name_of_instance ::= module_instance_identifier [ range ]
list_of_port_connections ::=

ordered_port_connection { , ordered_port_connection }
| named_port_connection { , named_port_connection }

ordered_port_connection ::= { attribute_instance } [ expression ]
named_port_connection ::= { attribute_instance } .port_identifier ( [ expression ] )

G.5.2 Generated instantiation

generated_instantiation ::= generate { generate_item } endgenerate
generate_item_or_null ::= generate_item | ;
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generate_item ::=
generate_conditional_statement

| generate_case_statement
| generate_loop_statement
| generate_block
| module_or_generate_item

generate_conditional_statement ::=
if ( constant_expression ) generate_item_or_null [ else generate_item_or_null ]

generate_case_statement ::= case ( constant_expression )
genvar_case_item { genvar_case_item } endcase

genvar_case_item ::= constant_expression { , constant_expression } :
generate_item_or_null | default [ : ] generate_item_or_null

generate_loop_statement ::= for ( genvar_assignment ; constant_expression ;
genvar_assignment )
begin : generate_block_identifier { generate_item } end

genvar_assignment ::= genvar_identifier = constant_expression
generate_block ::= begin [ : generate_block_identifier ] { generate_item } end

G.6 UDP declaration and instantiation

G.6.1 UDP declaration

udp_declaration ::=
{ attribute_instance } primitive udp_identifier ( udp_port_list ) ;
udp_port_declaration { udp_port_declaration}
udp_body
endprimitive

| { attribute_instance } primitive udp_identifier ( udp_declaration_port_list ) ;
udp_body
endprimitive

G.6.2 UDP ports

udp_port_list ::= output_port_identifier, input_port_identifier { ,
input_port_identifier}

udp_declaration_port_list ::=
udp_output_declaration , udp_input_declaration { , udp_input_declaration }

udp_port_declaration ::=
udp_output_declaration ;

| udp_input_declaration ;
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| udp_reg_declaration ;
udp_output_declaration ::=

{ attribute_instance } output port_identifier
| { attribute_instance } output reg port_identifier [ = constant_expression ]

udp_input_declaration ::= { attribute_instance } input list_of_port_identifiers
udp_reg_declaration ::= { attribute_instance } reg variable_identifier

G.6.3 UDP body

udp_body ::= combinational_body | sequential_body
combinational_body ::=table combinational_entry { combinational_entry } endtable
combinational_entry ::= level_input_list : output_symbol ;
sequential_body ::= [ udp_initial_statement ] table sequential_entry {

sequential_entry } endtable
udp_initial_statement ::= initial output_port_identifier = init_val ;
init_val ::= 1'b0 | 1'b1 | 1'bx | 1'bX | 1'B1 | 1'Bl | 1'Bx | 1'BX | 1 | 0
sequential_entry ::= seq_input_list : current_state : next_state ;
seq_input_list ::= level_input_list | edge_input_list
level_input_list ::=level_symbol { level_symbol }
edge_input_list ::= { level_symbol } edge_indicator { level_symbol }
edge_indicator ::= ( level_symbol level_symbol ) | edge_symbol
current_state ::= level_symbol
next_state ::= output_symbol | -
output_symbol ::= 0 | 1 | x | X
level_symbol ::= 0 | 1 | x | X | ? | b | B
edge_symbol ::= r | R | f | F | p | P | n | N | *

G.6.4  UDP instantiation

udp_instantiation ::= udp_identifier [ drive_strength ] [ delay2 ]
udp_instance { , udp_instance } ;

udp_instance ::= [ name_of_udp_instance ] ( output_terminal, input_terminal
{ , input_terminal } )

name_of_udp_instance ::= udp_instance_identifier [ range ]

G.7 Behavioral statements

G.7.1 Continuous assignment statements

continuous_assign ::= assign [ drive_strength ] [ delay3 ] list_of_net_assignments ;
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list_of_net_assignments ::= net_assignment { , net_assigmnent }
net_assignment ::= net_lvalue = expression

G.7.2 Procedural blocks and assignments

initial_construct ::= initial statement
always_construct ::= always statement
blocking_assignment ::= variable_lvalue = [ delay_or_event_control ] expression
nonblocking_assigmnent ::=variable_lvalue<= [ delay_or_event_control ] expression
procedural_continuous_assignments ::=

assign variable_assignment
| deassign variable_lvalue
| force variable_assignment
| force net_assignment
| release variable_lvalue
| release net_lvalue

function_blocking_assignment ::= variable_lvalue = expression
function_statement_or_null ::=

function_statement
| { attribute_instance } ;

G.7.3 Parallel and sequential blocks

function_seq_block ::= begin [ : block_identifier
{ block_item_declaration } ] { function_statement} end

variable_assignment ::= variable_lvalue = expression
par_block ::= fork [ : block_identifier

{ block_item_declaration } ] { statement } join
seq_block ::= begin [ : block_identifier

{ block_item_declaration } ] { statement } end

G.7.4 Statements

statement ::=
{ attribute_instance } blocking_assignment ;

| { attribute_instance } case_statement
| { attribute_instance } conditional_statement
| { attribute_instance } disable_statement
| { attribute_instance } event_trigger
| { attribute_instance } loop_statement
| { attribute_instance } nonblocking_assignment ;
| { attribute_instance } par_block
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| { attribute_instance } procedural_continuous_assignments ;
| { attribute_instance } procedural_timing_control_statement
| { attribute_instance } seq_block
| { attribute_instance } system_task_enable
| { attribute_instance } task_enable
| { attribute_instance } wait_statement

statement_or_null ::=
statement

| { attribute_instance } ;
function_statement ::=

{ attribute_instance } function_blocking_assignment ;
| { attribute_instance } function_case_statement
| { attribute_instance } function_conditional_statement
| { attribute_instance } function_loop_statement
| { attribute_instance } function_seq_block
| { attribute_instance } disable_statement
| { attribute_instance } system_task_enable

G.7.5 Timing control statements

delay_control ::=
# delay_value

| # ( mintypmax_expression )
delay_or_event_control ::=

delay_control
| event_control
| repeat ( expression ) event_control

disable_statement ::=
disable hierarchical_task_identifier ;

| disable hierarchical_block_identifier ;
event_control ::=

@ event_identifier
| @ ( event_expression )

| @*
| @  (*)

event_trigger ::=
-> hierarchical_event_identifier ;

event_expression ::=
expression

| hierarchical_identifier
| posedge expression
| negedge expression
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| event_expression or event_expression
| event_expression , event_expression

procedural_timing_control_statement ::=
delay_or_event_control statement_or_null

wait_statement ::=
wait ( expression ) statement_or_null

G.7.6  Conditional statements

conditional_statement ::=
if ( expression )

statement_or_null [ else statement_or_null ]
| if_else_if_statement

if_else_if_statement ::=
if ( expression ) statement_or_null
{ else if ( expression ) statement_or_null }
[ else statement_or_null ]

function_conditional_statement ::=
if ( expression ) function_statement_or_null

[ else function_statement_or_null ]
|  function_if_else_if_statement

function_if_else_if_statement ::=
if ( expression ) function_statement_or_null
{ else if ( expression ) function_statement_or_null}
[ else function_statement_or_null ]

G.7.7 Case statements

case_statement ::=
case ( expression )

case_item { case_item } endcase
| casez ( expression )

case_item { case_item } endcase
| casex ( expression )

case_item { case_item } endcase
case_item ::=

expression { , expression } : statement_or_null
| default [ : ] statement_or_null

function_case_statement ::=
case ( expression )

function_case_item { function_case_item } endcase
| casez ( expression )
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function_case_item { function_case_item } endcase
| casex ( expression )

function_case_item { function_case_item } endcase
function_case_item ::=

expression { , expression } : function_statement_or_null
| default [ : ] function_statement_or_null

G.7.8 Looping statements

function_loop_statement ::=
forever function_statement

| repeat ( expression ) function_statement
| while ( expression ) function_statement
| for ( variable_assignment ; expression ; variable_assignment )

function_statement
loop_statement ::=

forever statement
| repeat ( expression ) statement
| while ( expression ) statement
| for ( variable_assignment ; expression ; variable_assignment )

statement

G.7.9 Task enable statements

system_task_enable ::= system_task_identifier [ ( expression { , expression } ) ] ;
task_enable ::= hierarchical_task_identifier [ ( expression { , expression } ) ] ;

G.8 Specify section

G.8.1 Specify block declaration

specify_block ::= specify { specify_item } endspecify
specify_item ::=

specparam_declaration
| pulsestyle_declaration
| showcancelled_declaration
| path_declaration
| system_timing_check

pulsestyle_declaration ::=
pulsestyle_onevent list_of_path_outputs ;
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| pulsestyle_ondetect list_of_path_outputs ;
showcancelled_declaration ::=

showcancelled list_of_path_outputs ;
| noshowcancelled list_of_path_outputs ;

G.8.2 Specify path declarations

path_declaration ::=
simple_path_declaration ;

| edge_sensitive_path_declaration ;
| state_dependent_path_declaration ;

simple_path_declaration ::=
parallel_path_description = path_delay_value

| full_path_description = path_delay_value
parallel_path_description ::=

( specify_input_terminal_descriptor [ polarity_operator ] =>
specify_output_terminal_descriptor )

full_path_description ::=
( list_of_path_inputs [ polarity_operator ] *> list_of_path_outputs )

list_of_path_inputs ::=
specify_input_terminal_descriptor { , specify_input_terminal_descriptor }

list_of_path_outputs ::=
specify_output_terminal_descriptor { , specify_output_terminal_descriptor }

G.8.3 Specify block terminals

specify_input_terminal_descriptor ::=
input_identifier

| input_identifier [ constant_expression ]
| input_identifier [ range_expression ]

specify_output_terminal_descriptor ::=
output_identifier

| output_identifier [ constant_expression ]
| output_identifier [ range_expression ]

input_identifier ::= input_port_identifier | inout_port_identifier
output_identifier ::= output_port_identifier | inout_port_identifier

G.8.4 Specify path delays

path_delay_value ::=

list_of_path_delay_expressions
| ( list_of_path_delay_expressions )
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list_of_path_delay_expressions ::=
t_path_delay_expression

| trise_path_delay_expression , tfall_path_delay_expression
| trise_path_delay_expression , tfall_path_delay_expression ,

tz_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression ,

t0z_path_delay_expression ,
tz1_path_delay_expression , t1z_path_delay_expression ,

tz0_path_delay_expression
| t01_path_delay_expression , t10_path_delay_expression ,

t0z_path_delay_expression ,
tz1_path_delay_expression , t1z_path_delay_expression ,

tz0_path_delay_expression
t0x_path_delay_expression, tx1_path_delay_expression ,

t1x_path_delay_expression ,
tx0_path_delay_expression , txz_path_delay_expression ,

tzx_path_delay_expression
t_path_delay_expression ::= path_delay_expression
trise_path_delay_expression ::= path_delay_expression
tfall_path_delay_expression ::= path_delay_expression
tz_path_delay_expression ::= path_delay_expression
t01_path_delay_expression ::= path_delay_expression
t10_path_delay_expression: = path_delay_expression
t0z_path_delay_expression: = path_delay_expression
tz1_path_delay_expression ::= path_delay_expression
t1z_path_delay_expression ::= path_delay_expression
tz0_path_delay_expression ::= path_delay_expression
t0x_path_delay_expression ::= path_delay_expression
tx1_path_delay_expression ::= path_delay_expression
t1x_path_delay_expression ::= path_delay_expression
tx0_path_delay_expression ::= path_delay_expression
txz_path_delay_expression ::= path_delay_expression
tzx_path_delay_expression ::= path_delay_expression
path_delay_expression ::= constant_mintypmax_expression
edge_sensitive_path_declaration ::=

parallel_edge_sensitive_path_description = path_delay_value
| full_edge_sensitive_path_description = path_delay_value

parallel_edge_sensitive_path_description ::=
( [ edge_identifier ] specify_input_terminal_descriptor =>

specify_output_terminal_descriptor [ polarity_operator ] :
data_source_expression)

full_edge_sensitive_path_description ::=
( [ edge_identifier ] list_of_path_inputs *>
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list_of_path_outputs [ polarity_operator ] : data_source_expression )
data_source_expression ::= expression

edge_identifier ::= posedge | negedge
state_dependent_path_declaration ::=

if ( module_path_expression) simple_path_declaration
| if ( module_path_expression ) edge_sensitive_path_declaration
| ifnone simple_path_declaration

polarity_operator ::= + | -

G.8.5 System timing checks

G.8.5.1 System timing check commands

system_timing_check ::=
$setup_timing_check

| $hold _timing_check
| $setuphold_timing_check
| $recovery_timing_check
| $removal_timing_check
| $recrem_timing_check
| $skew_timing_check
| $timeskew_timing_check
| $fullskew_timing_check
| $period_timing_check
| $width_timing_check
| $nochange_timing_check

$setup_timing_check ::=
$setup( data_event , reference_event , timing_check_limit [ , [ notify_reg ] ] ) ;

$hold _timing_check ::=
$hold ( reference_event , data_event , timing_check_limit [ , [ notify_reg ] ] ) ;

$setuphold_timing_check ::=
$setuphold ( reference_event , data_event , timing_check_limit ,

timing_check_limit
[ , [ notify_reg ] [ , [ stamptime_condition ] [ , [

checktime_condition ]
[ , [ delayed_reference ] [ , [ delayed_data ] ] ] ] ] ] ) ;

$recovery_timing_check ::=
$recovery ( reference_event , data_event , timing_check_limit [ , [ notify_reg ]

]);
$removal_timing_check ::=

$removal ( reference_event , data_event , timing_check_limit [ , [ notify_reg ]
] ) ;
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$recrem_timing_check ::=
$recrem ( reference_event , data_event , timing_check_limit ,

timing_check_limit
[, [ notify_reg ] [, [ stamptime_condition ] [ , [

checktime_condition ]
[, [ delayed_reference ] [, [ delayed_data ] ] ] ] ] ] ) ;

$skew_timing_check ::=
$skew ( reference_event , data_event , timing_check_limit [, [ notify_reg ] ] ) ;

$timeskew_timing_check ::=
$timeskew ( reference_event , data_evet , timing_check_limit

[, [ notify_reg ] [, [ event_based_flag ] [, [ remain_active_flag
]]]]);

$fullskew_timing_check ::=
$fullskew ( reference_event , data_event , timing_check_limit ,

timing_check_limit
[ , [ notify_reg ] [, [ event_based_flag ] [, [ remain_active_flag

]]]]);
$period_timing_check ::=

$period ( controlled_reference_event , timing_check_limit [ , [ notify_reg ] ]) ;
$width_timing_check ::=

$width ( controlled_reference_event , timing_check_limit ,
threshold [, [ notify_reg ] ] ) ;

$nochange_timing_check ::=
$nochange ( reference_event , data_event , start_edge_offset ,

end_edge_offset [ , [ notify_reg ] ] ) ;

G.8.5.2 System timing check command arguments

checktime_condition ::= mintypmax_expression
controlled_reference_event ::= controlled_timing_check_event
data_event ::= timing_check_event
delayed_data ::=

terminal_identifier
| terminal_identifier [ constant_mintypmax_expression ]

delayed_reference ::=
terminal_identifier

| terminal_identifier [ constant_mintypmax_expression ]
end_edge_offset ::= mintypmax_expression
event_based_flag ::= constant_expression
notify_reg ::= variable_identifier
reference_event ::= timing_check_event
remain_active_flag ::= constant_mintypmax_expression
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stamptime_condition ::= mintypmax_expression
start_edge_offset ::= mintypmax_expression
threshold ::=constant_expression
timing_check_limit ::= expression

G.8.5.3 System timing check event definitions

timing_check_event ::=
[timing_check_event_control] specify_terminal_descriptor [ &&&

timing_check_condition ]
controlled_timing_check_event ::=

timing_check_event_control specify_terrninal_descriptor [ &&&
timing_check_condition ]

tirning_check_event_control ::=
posedge

| negedge
| edge_control_specifier

specify_terminal_descriptor ::=
specify_input_terminal_descriptor

| specify_output_terminal_descriptor
edge_control_specifier ::= edge [ edge_descriptor [ , edge_descriptor ] ]
edge_descriptor<Superscript>1 ::=

01
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z_or_x zero_or_one
zero_or_one z_or_x

zero_or_one ::= 0   1
z_or_x ::= x | X |z | Z
timing_check_condition ::=

scalar_timing_check_condition
| (scalar_timing_check_condition )
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scalar_timing_check_condition ::=
expression

| ~ expression
| expression == scalar_constant
| expression === scalar_constant
| expression != scalar_constant
| expression !== scalar_constant

scalar_constant ::=
1'b0 |1'b1 |1'B0 |1'B1 |'b0 | 'bl | 'B0 | 'B1|1 |0

G.9 Expressions

G.9.1 Concatenations

concatenation ::= {  expression {, expression } }
constant_concatenation ::= {  constant_expression {, constant_expression } }
constant_multiple_concatenation ::= {  constant_expression constant_concatenation }
module_path_concatenation ::= {module_path_expression {,

module_path_expression}}
module_path_multiple_concatenation ::= {  constant_expression

module_path_concatenation}
multiple_concatenation ::= {constant_expression concatenation}
net_concatenation ::= {net_concatenation_value {, net_concatenation_value } }
net_concatenation_value ::=

hierarchical_net_identifier
| hierarchical_net_identifier [ expression ] { [ expression ] }
| hierarchical_net_identifier [ expression ] { [ expression ] } [ range_expression ]
| hierarchical_net_identifier [ range_expression ]
| net_concatenation

variable_concatenation ::= {  variable_concatenation_value {,
variable_concatenation_value }}

variable_concatenation_value ::=
hierarchical_variable_identifier

| hierarchical_variable_identifier [ expression ] { [ expression ] }
| hierarchical_variable_identifier [ expression ] { [ expression ] } [

range_expression ]
| hierarchical_variable_identifier [ range_expression ]
| variable_concatenation
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G.9.2   Function calls

constant_function_call ::= function_identifier { attribute_instance }
( constant_expression { , constant_expression } )

function_call ::=hierarchical_function_identifier{ attribute_instance }
( expression { , expression } )

genvar_function_call ::= genvar_function_identifier { attribute_instance }
(constant_expression { , constant_expression } )

system_function_call ::= system_function_identifier
[ ( expression { , expression } ) ]

G.9.3  Expressions

base_expression ::= expression
conditional_expression ::= expressionl ? { attribute_instance } expression2 :

expression3
constant_base_expression ::= constant_expression
constant_expression ::=

constant_primary
| unary_operator { attribute_instance } constant_primary

| constant_expression binary_operator { attribute_instance } constant_expression
| constant_expression ? { attribute_instance } constant_expression :

constant_expression
| string

constant_mintypmax_expression ::=
constant_expression

| constant_expression: constant_expression : constant_expression
constant_range_expression ::=

constant_expression
| msb_constant_expression: 1sb_constant_expression
| constant_base_expression +: width_constant_expression
| constant_base_expression -: width_constant_expression

dimension_constant_expression ::= constant_expression
expression1 ::= expression
expression2 ::= expression
expression3 ::= expression
expression ::=

primary
| unary_operator { attribute_instance } primary
| expression binary_operator { attribute_instance } expression
| conditional_expression
| string
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1sb_constant_expression ::= constant_expression
mintypmax_expression::=

expression
| expression : expression : expression

module_path_conditional_expression ::= module_path_expression ? {
attribute_instance }

module_path_expression : module_path_expression
module_path_expression ::=

module_path_primary
| unary_module_path_operator { attribute_instance } module_path_primary

| module_path_expression binary_module_path_operator { attribute_instance }
module_path_expression

| module_path_conditional_expression
module_path_mintypmax_expression::=

module_path_expression
| module_path_expression : module_path_expression : module_path_expression

msb_constant_expression ::= constant_expression
range_expression ::=

expression
| msb_constant_expression: 1sb_constant_expression
| base_expression +: width_constant_expression
| base_expression -: width_constant_expression

width_constant_expression ::= constant_expression

G.9.4 Primaries

constant_primary ::=
constant_concatenation

| constant_function_call
| ( constant_mintypmax_expression )
| constant_multiple_concatenation
| genvar_identifier
| number
| parameter_identifier
| specparam_identifier

module_path_primary ::=
number

| identifier
| module_path_concatenation
| module_path_multiple_concatenation
| function_call
| system_function_call
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| constant_function_call
| ( module_path_mintypmax_expression)

primary ::=
number

| hierarchical_identifier
| hierarchical_identifier [ expression ] { [ expression ] }
| hierarchical_identifier [ expression ] { [ expression ] } [ range_expression ]
| hierarchical_identifier [ range_expression ]
| concatenation
| multiple_concatenation
| function_call
| system_function_call
| constant_function_call
| ( mintypmax_expression )

G.9.5  Expression left-side values

net_1value ::=
hierarchical_net_identifier

| hierarchical_net_identifier [ constant_expression ] { [ constant_expression ] }
| hierarchical_net_identifier [ constant_expression ] {[ constant_expression ] } [

constant_range_expression ]
| hierarchical_net_identifier [ constant_range_expression ]
| net_concatenation

variable_1value ::=
hierarchical_variable_identifier

| hierarchical_variable_identifier [ expression ] { [ expression ] }
| hierarchical_variable_identifier [ expression ] { [ expression ] } [

range_expression ]
| hierarchical_variable_identifier [ range_expression ]
| variable_concatenation

G.9.6 Operators

unary_operator ::=
+ | - |! |~ | & |~& ||| ~| | ̂  |~  ̂|^~

binary_operator ::=
+ | -|* | /|% | == |!= | === |!== |&& | || |**

| < | <= | > | >= | & | | | ̂  | ̂ ~ | ~^ | >> | << | >>> | <<<

unary_module_path_operator ::=
!|~ |& |~& | | |~| | ̂  |~^ | ̂ ~

binary_module_path_operator ::=
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==| != | &&| ||| & ||| ̂  | ̂ ~ | ~^

G.9.7 Numbers
number ::=

decimal_number
| octal_number
| binary_number
| hex_number
| real_number

real_number<Superscript>1 ::=
unsigned_number unsigned_number

| unsigned_number [ unsigned_number ] exp [ sign ] unsigned_number
exp ::=e | E
decimal_number ::=

unsigned_number
| [ size ] decimal_base unsigned_number
| [ size ] decimal_base x_digit { _ }
| [ size ] decimal_base z_digit { _ }

binary_number ::= [ size ] binary_base binary_value
octal_number ::= [ size ] octal_base octal_value
hex_number ::= [ size ] hex_base hex_value
sign::= + | -
size ::= non_zero_unsigned_number
non_zero_unsigned_number<Superscript>1 ::= non_zero_decimal_digit { _ |

decimal_digit}
unsigned_number<Superscript>1 ::= decimal_digit { _ | decimal_digit}
binary_value<Superscript>1 ::= binary_digit { _ | binary_digit}
octal_value<Superscript>1 ::= octal_digit { _ | octal_digit}
hex_value<Superscript>1 ::= hex_digit {_ | hex_digit}
decimal_base<Superscript>1 ::= '[s|S]d | '[s|S]D
binary_base<Superscript>1 ::= '[s|S]b | '[s|S]B
octal_base<Superscript>1 ::='[s|S]o | '[s|S]O
hex_base<Superscript>1 ::= '[s|S]h | '[s|S]H
non_zero_decimal_digit ::=1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
decimal_digit ::=0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
binary_digit ::= x_digit | z_digit | 0 |1
octal_digit ::= x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
hex_digit ::=

x_digit | z_digit | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| a | b | c | d | e | f | A | B | C | D | E | F

x_digit ::= x | X
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z_digit::= z | Z | ?

G.9.8 Strings

string ::= " { Any_ASCII_Characters_except_new_line } "

G.10 General

G.10.1 Attributes

attribute_instance ::= (* attr_spec { , attr_spec } *)
attr_spec ::=

attr_name = constant_expression
| attr_name

attr_name ::= identifier

G.10.2 Comments

comment ::=
one_line_comment

| block_comment
one_line_comment ::= // comment_text \n
block_comment ::= /* comment_text */
comment_text ::= { Any_ASCII_character }

G.10.3 Identifiers

arrayed_identifier ::=
simple_arrayed_identifier

| escaped_arrayed_identifier
block_identifier ::= identifier
cell_identifier ::= identifier
config_identifier ::= identifier
escaped_arrayed_identifier ::= escaped_identifier [ range ]
escaped_hierarchical_identifier<Superscript>4 ::=

escaped_hierarchical_branch
{.simple_hierarchical_branch | .escaped_hierarchical_branch }

escaped_identifier ::=\ {Any_ASCII_character_except_white_space} white_space
event_identifier ::= identifier
function_identifier ::= identifier
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gate_instance_identifier ::= arrayed_identifier
generate_block_identifier ::= identifier
genvar_function_identifier ::= identifier /* Hierarchy disallowed */
genvar_identifier ::= identifier
hierarchical_block_identifier ::= hierarchical_identifier
hierarchical_event_identifier ::= hierarchical_identifier
hierarchical_function_identifier ::= hierarchical_identifier
hierarchical_identifier ::=

simple_hierarchical_identifier
| escaped_hierarchical_identifier

hierarchical_net_identifier ::= hierarchical_identifier
hierarchical_variable_identifier ::= hierarchical_identifier
hierarchical_task_identifier ::= hierarchical_identifier
identifier ::=

simple_identifier
| escaped_identifier

inout_port_identifier ::= identifier
input_port_identifier ::= identifier
instance_identifier ::= identifier
library_identifier ::= identifier
memory_identifier ::= identifier
module_identifier ::= identifier
module_instance_identifier ::= arrayed_identifier
net_identifier ::= identifier
output_port_identifier ::= identifier
parameter_identifier ::= identifier
port_identifier ::= identifier
real_identifier ::= identifier
simple_arrayed_identifier ::= simple_identifier [ range ]
simple_hierarchical_identifier<Superscript>3 ::=

simple_hierarchical_branch [ .escaped_identifier ]
simple_identifier<Superscript>2 ::= [ a-zA-Z_ ] { [ a-zA-Z0-9_$ ] }
specparam_identifier ::= identifier
system_function_identifier<Superscript>5 ::= $[ a-zA-Z0-9_$ ]{ [ a-zA-Z0-9_$ ] }
system_task_identifier<Superscript>5 ::= $[ a-zA-Z0-9_$ ]{ [ a-zA-Z0-9_$ ] }
task_identifier ::= identifier
terminal_identifier ::= identifier
text_macro_identifier ::= simple_identifier
topmodule_identifier ::= identifier
udp_identifier ::= identifier
udp_instance_identifier ::= arrayed_identifier
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variable_identifier ::= identifier

G.10.4 Identifier branches

simple_hierarchical_branch<Superscript>3 ::=
simple_identifier [ [ unsigned_number ] ]

[ { simple_identifier [ [ unsigned_number ] ] } ]
escaped_hierarchical_branch<Superscript>4::=

escaped_identifier [ [ unsigned_number ] ]
[ { escaped_identifier [ [ unsigned_number ] ] } ]

G.10.5 White space
white_space ::= space  tab | newline | eof<Superscript>6

NOTES

1)
2)

3)

4)

5)

6)

Embedded spaces are illegal.
A simple_identifier and arrayed_reference shall start with an alpha or
underscore (_) character, shall have at least one character, and shall not
have any spaces.
The period (.) in simple_hierarchical_identifier and
simple_hierarchical_
branch shall not be preceded or followed by white_space.
The period in escaped_hierarchical_identifier and escaped_hierarchical_
branch shall be preceded by white_space, but shall not be followed by
white_space.
The $ character in a system_function_identifier or
system_task_identifier shall not be followed by white_space. A
system_function_identifier or system_task_identifier shall not be
escaped.
End of file.

IEEE Std 1364-2001, Copyright © 2001, IEEE. All rights reserved



Symbols
Operator symbols

See also operator table 315
! 80
!= 76,79
!== 79
# 183
$ 312
$display system task 124,168, 333

See also display system task
$fclose system task 335
$fdisplay system task 335
$finish system task 336
$fmonitor system task 335
$fopen system task 335
$fstrobe system task 335
$fwrite system task 335
$monitor system task 334

example of 4, 9, 254, 302
$random system task 168, 170, 336

See also random system task
$readmemb system task 337
$readmemh system task 124, 337
$signed 319
$stime 336
$stop system task 336
$strobe system task 335
$time 336
$unsigned 319
$write system task 333
&& 80
<< 76, 82
<= 79
== 79
=== 79

114
> 79
>= 79
>> 94
? 242
?: 81
@ 112
\ 312
\" 312
\ddd 312
\n 312
\t 312
`default-net type 163
`define 75, 124, 266
`timescale 22, 185
|| 80
~ 317

A
always 74

contrast with initial 75
formal definition 74
in behavioral synthesis 198
in synthesis 11, 40
input set 198
internal register set 198
output set 199
process definition 74

and
&, &&, See table of operators 315
See gate types 323

arithmetic laws 79
array of instances

example 150
assign

formal definition 172, 259
keyword 172

assignments
continuous 158, 171
contrasting blocking and non-

blocking 189, 229
non-blocking 17, 19, 131, 226
procedural 74
procedural continuous 136

attributes 44

B
begin-end blocks

disabling 132
example of 76
fork-join 138

formal definition 139
formal definition 133
named 85
sequential 138

formal definition 139
behavioral modeling 73

clock event 196
combinational logic 11
contrasting assignments 189
cycle-accurate specification 195, 198
finite state machines (FSM) 15
FSM-Datapath 58
Mealy/Moore 203
pipeline processor 131
sequential circuits 14

behavioral synthesis 198
always 198
cycle-accurate specification 198
Mealy/Moore 203
substeps 209
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bidirectional gates 328
bit width

of expressions 322
See part-select

bit-select 78, 165, 330, 342
example of 16, 23, 87
formal definition 78

bitwise negation (~) 317
See also logical negation 317

black holes 221
string theory 311

block declarations 133
See also begin-end blocks

buf
See gate types 325

bufif0
See gate types 326

bufifl
See gate types 326

C
case

casex 90
casez 90
contrast to if-else-if 89
default action 88
formal definition 87
full 44
keyword 86
parallel 45
synthesizable 43

case equality operator (= = =) 79
case inequality operator (!= =) 79
casex

See case
casez

See case
charge decay 183, 255, 260
clock event 196
combinational logic

behavioral modeling 11
synthesis of 37, 40
synthesizable specification 11

comments 309
compiler directives

default-net type 163
define 75, 266
timescale 22, 185

concatenation 167
example of 24, 94
formal definition 95

conditional operator (?:) 81
formal definition 81

constants 310

continuous assignment 158, 171
example of 38
formal definition 172
on to nets 174
synthesis 38
with function call 173

control path 41, 48
cycle-accurate specification 195, 198

Mealy/Moore 203

D
deassign

keyword 137
declarations

implicit 163
default

action in case 88
formal definition 88

define
compiler directive 75, 266

definitions. See formal definition
defparam

keyword 149
See also parameters

delay
formal definition 183

delay modeling 180
across a module 187
bidirectional gates 328
charge decay 183, 255, 260
edge specification 184
example of 181
formal definition 183
full connection 188
inertial 212
min, typical, max 186
parallel connection 188
path declarations 187
six values 188

disable 132
formal definition 85

display system task 124, 168, 333
example of 79, 254
example with strengths 257

E
edge sensitive 50

comparison to level sensitive 121
example of negedge 126
formal definition 112
non-blocking assignment 19
positive edge 121
synthesis of flip flops 50



375

user-defined primitives 244
See also event control

edge specification
delay modeling 184

else
formal definition 80

end
See begin-end blocks

endcase
See case

endfunction
See functions

endmodule
See module

endspecify
See specify

endtask
See task

equal operator 79
comparison with case equality 79

not equal operator
comparison with case inequality 79

evaluation event 216
event 211

evaluation 216
update 216

event control 111, 113
contrast to wait 121
definition of an edge 113
edge specification 112
event control statements 111
example of 112, 115
formal definition 112
named events 114
or-ing events 12

event list 215
event trigger

formal definition 114
event-driven simulation 214
examples

AND of complements 164
array of instances 150
behavioral reset 202
behavioral synthesis

specification 196
break 85
buffer-driver 175
carry 240
clock generator 22
compare modules 61
continue 85
continuous assign 60
continuous assignment 61
counter-display module 26

cycle-accurate specification 196
display driver — behavioral 12
display driver simulator 4
display driver structure 2
display driver with ports 7
don’t care in specification 45
D-type edge triggered flip-flop 187
four-bit counter 21
FSM and Datapath 62
full adder 159
Hamming encode/decode 168
I/O buffer 186
implicit FSM 56
inferred flip flop 50
inferred latch 42, 49
input, output, internal sets 198
intra-assignment delay 232
intra-assignment repeat 233
introductory module 2
JK edge triggered flip-flop 248
latch 244
logical don’t care 44, 45
michael and lisa not doing it 232
microprocessor reset 138
microprocessor with fork-join 138
mini simulator 265
mixed behavior and structure 26
MOS shift register 253
MOS shift register output 254
MOS static RAM 257
multiplexor 173
multiply as separate module 101
multiply function 98
multiply task 94
named begin-end block 85
non-blocking assignment 20, 228,

232, 233
non-determinism 222
one-bit full adder 171
or in event control 12
overlap in timing models 214
pipeline processor 131
pipelined multiplier 233
procedural continuous assign 137
resolving 0, 1, x from strengths 266
scope and hierarchical names 104
simple computer 87, 88, 91
specification for behavioral

synthesis 204
synchronous bus (behavioral and

structural modeling) 177
synchronous bus (behavioral

model) 124
synthesizable adder 60



376                                                                   The Verilog Hardware Description Language

synthesizable always  40, 41, 42
synthesizable assign 38
synthesizable case 43
synthesizable flip flop 51
synthesizable FSM 16, 20, 55, 228
synthesizable gate primitives 37
synthesizable loops 47
synthesizable register 60
time out 113
top-level module 23
tristate latch 181
tri-state synthesis 52
twoPhiLatch 218
why #0 225
wire concatenation 24
xor module 174

explicit FSM style 53
expression

signed 319
unsigned 319

F
fclose system task 335
fdisplay system task 335
finish system task 336
flip flop inferences 50
fmonitor system task 335
fopen system task 335
for loop

formal definition 83
forever

example of 84
how long is it? 85

fork-join blocks 138
See also begin-end blocks

formal definition 339–??
always 74
assign 172, 259
begin-end blocks 133, 139
bit-select 78
case 87
concatenation 95
conditional operator (?:) 81
default 88
delay (#) 183
else 80
event control (@) 112
event triggering ( ) 114
for 83
fork-join 139
function 97
function call 99
gate instantiation 159, 259
initial 74

module 146
module instantiation 148
named block 139
negedge 112
nets 165, 174,260
non-blocking assignment 231
parameters 146
part-select 78
port 342
posedge 112
procedural continuous assign 137
repeat 83
strength 260
task 93
task enable 96
user-defined primitives 241
wait 117
while 83

FSM-D 58
fstrobe system task 335
full case 44
functions 91, 97

automtic 99
constant 99
contrast procedural vs.

continuous 173
contrast to tasks 92, 97
example of 98
formal definition 97
formal definition of call 99
a structural view 100

fwrite system task 335

G
gate instantiation

array of instances 150
formal definition 159, 259
synthesis 37

gate level modeling 158
bidirectional gates 328
gate primitives 158
multi-value truth tables 323
table of gate primitives 161
See also user-defined primitives

gate level timing model 158, 212
generate blocks 151
ground connection

example of 253

H
H value 182, 327
handshake 117
Hi abbreviation 259
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hierarchical names 102, 105, 114
example 104
example of 149

Hierarchical naming 149
hierarchy

specifying 21
high impedance 162, 259
highz 259
highz0 259
highzl 259

I
I/O system functions 337
identifiers 312

keywords 313
scope 102
system 312

if
ambiguous (x,z) values 77
else clause 75
example of 76
keyword 75

if-else-if 86
contrast to case 89
example of 87

implicit declarations 163
implicit FSM 56
inertial delay 212, 232
inferred 42

example of latch 42
flip flops 50
latch 42, 48
sequential elements 48
tri-state 52

initial
contrast with always 75
formal definition 74

inout
definition 144
example in task 94
port type 144
use of 175

input 21, 23, 26, 144
input set 40, 198
instantiation

See gate instantiation
See module instantiation

integers 329, 331
intra-assignment delay 112, 134, 222,

226, 231

K
keywords

list of 313

L
Lvalue 182, 327
La abbreviation 259
large 259, 260
large capacitor 259
level sensitive 48, 116, 121, 244
lexical conventions 309
Local parameters 147
logic values 162
logical expressions

in conditional expressions 80
logical negation (!) 316

example of 76, 80, 82
See also bitwise negation 316

loops
exit from 85
in synthesis 46
See disable
See for
See forever
See repeat
See while

M
Me abbreviation 259
medium 259, 260
medium capacitor 259
memory 329, 330

example of 87
multidimensional 331

module
connection by port names 144
formal definition 146
introductory example 2
keyword 143
parameter override 147
port specifications 143

module instantiation
array of instances 150
formal definition 148

monitor system task 79, 334
example of 4, 9, 254, 302

multi-way branching
if-else-if case 86

N
named begin-end blocks

formal definition 139
named event 113

See also event control
names 312
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hierarchical 102, 114
keywords 313
scope 102
system 312

nand
See gate types 324

negative edge 126
negedge

formal definition 112
See also edge sensitive 126

net types
table of 166

nets 158, 163, 174
contrast wire and wand 164
delay specification 174
formal definition 165, 174, 260
implicit declarations 163
table of types 166
trireg 255
trireg charge decay 183, 255, 260
wire 163

nmos switch level primitive
example of 253
See gate types 327

non-blocking assignment 17, 19, 131,
226

non-determinism 220
interleaved statements 224

nor
See gate types 324

not
See gate types 325

not equal operator 79
notif0

See gate types 326
notif1

See gate types 327
number specification 310

O
operators 310

bit width of results 322
multi-valued truth tables 321
precedence 320
table of 315

or
I, I I, See table of operators 315
in event control 12
primitive logic gate 324
See gate types 324

output 21, 23, 26, 144
output set 199

P
parallel blocks (fork-join) 138

See also begin-end blocks
parallel case 45
Parameters 146

local parameters 147
parameters

defparam 149
example of 55, 60, 174
formal definition 146
as module generics 147

part-select 78, 165, 330
example of 76, 82, 95, 167
formal definition 78

pmos switch level primitives
See gate types 327

posedge
formal definition 112
See also edge sensitive 121

precedence of operators 320
procedural continuous assign 136

deassign 137
example of 137
formal definition 137
See also assignments

procedural timing model 74, 213
process concept 73, 109, 173

execution model 74, 211
compared to continuous

assign 74
compared to gate

primitives 74
interleaved statements 224
non-determinism 220
procedural timing model 74, 213
zero-time 220

process model 198
producer-consumer handshake 117
Pu abbreviation 259
pull 259
pull drive 259
pull0 256
pulll 256
pulldown switch level primitive

See gate types 328
pullup switch level primitive

example of 253
See gate types 328

Q
quasi-continuous assign. See

procedural continuous assign
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R
random system task 168, 170, 336

example of 119
readmemb system task 337
readmemh system task 124, 337
registers (reg) 329
relational operators 79

See also operator table 315
repeat

example of 76, 82, 94
formal definition 83
intra-assignment 134,233
keyword 78

resistive MOS gates
See nmos switch level primitives

rnmos switch level primitives
See gate types 327

rpmos switch level primitives
See gate types 327

S
scalar 329
scalared 165
scheduled behavior 195
scope 102, 133

example 104
sensitivity list 40, 212, 218
sequential blocks

See begin-end blocks
signed expression 319
simulation cycle 216
simulator

how it works 214
scheduling algorithm 216, 220
simulation cycle 216

Sm abbreviation 259
small 259, 260
small capacitor 259
specify block 187

example of 187
specparam

example of 187
St abbreviation 259
stime 336
stop system task 336
strength0 260
strength1 260
strengths 251, 256

ambiguity 263
conversion to 1, 0, x, z 263
displaying 260
example of display 257
example of specifications 257

formal definition 260
gate types supported 260
reduction through resistive

gates 262
resolving ambiguous values 264
table of 259

strings 311
strobe system task 335
strong 256, 259
strong drive 259
strong0 259
strongl 259
structural modeling 157
Su abbreviation 259
supply 259
supply drive 259
supply0 259

table of net types 166
supplyl 259

table of net types 166
switch level modeling 251
synthesis

behavioral 198
explicit FSM 53
finite state machines 53
implicit FSM 56
logical don’t care 44, 55
pipeline 57
restrictions 66
rules 41
testbench approach 8
using always 40

synthesis restrictions
# 37
(non)blocking assignments 51
flip flop specifications 50
latch specifications 49
logical don’t care 46
repeat 46
unknown (x) 39

synthesis rules 13,18
synthesizable subset 35
system tasks and functions 333

T
table

bitwise AND 321
bitwise OR 321
bitwise XNOR 321
bitwise XOR 321
BUFIF1 gate function 182
delay values 184
delay/precision specification 185
expression bit length 322
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four-value logic gates 323
four-valued AND 162
gate and switch level primitives 161,

252
gates supporting strengths 260
intra-assignment events 134
items in formal syntax 341
net types and modeling 166
parts of a number 310
strength reduction 262
strength specifications 259
task and function comparison 92
timescale compiler directive 185
UPD shorthand 247
Verilog keywords 313
Verilog operators 315
wand and wire 164

table as keyword 240
See also user-defined primitives 240

task enable
formal definition 96

tasks 91
a structural view 100
contrast to function 93
contrast to functions 92
example of 94
formal definition 93

text macro
See ̀ define

thread of control 73, 198
time 336

advancement in behavioral
models 74

advancement in logic models 158
advancement near a black hole 221
See also timing models
specifying units 185

time variables 329, 331
timing model 189, 211

gate level 158, 212
procedural 74, 213

transfer gates 256
tri

table of net types 166
tri0

table of net types 166
tri1

table of net types 166
triand

table of net types 166
trior

table of net types 166
trireg

example of 253

table of net types 166
See also nets

U
undefined 162
update event 216
user-defined primitives 239

combinational 240
edge sensitive 244
example of 240
level sensitive 243
mixing edge and level sensitive 246
shorthand notation 246

V
value set 162
vector 329
vectored 165
VHDL 169

W
wait 116

contrast to event control 121
contrast to while 84, 120
example of 119
formal definition 117

wand
examples of 164
table of net types 166

We abbreviation 259
weak 259
weak drive 259
weak0 259
weak1 259
while

contrast to wait 84, 120
example of 83
formal definition 83

white space 309
wire

table of net types 166
wor

table of net types 166
write system task 333

X
x 162

in synthesis 44, 55
See multi-value truth tables 323

xnor
See gate types 325
See table of operators 315

xor
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See gate types 324
See table of operators 315

Z
z 162

in synthesis 52
See multi-value truth tables 323

zero-time 220
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