
VHDL Interactive Tutorial

WELCOME TO THE

Copyright © IEEE. All Rights Reserved.

A Learning Tool for IEEE Std. 1076,
VHDL

This CD-ROM contains the IEEE VHDL
Interactive Tutorial and the Microsoft®

Windows® , SUN® OS and SUN Solaris®
versions of the Spyglass® Mosaic(TM)

browser.

To access the tutorial with your current
browser click this icon:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/index.htm (1 of 2) [12/28/2002 12:49:30 PM]

VHDL Interactive Tutorial

For information on installing Spyglass Mosaic
or for more information on the viewing the
tutorial click here for the README.TXT file.

IEEE
Networking the World

Published by the Institute of Electrical and Electronics Engineers, Inc.
Copyright © 1996, IEEE. All Rights Reserved.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/index.htm (2 of 2) [12/28/2002 12:49:30 PM]

VHDL Interactive Tutorial

Copyright © IEEE. All Rights Reserved.

A Learning Tool for IEEE Std. 1076,
VHDL

Software License Agreement

Copyright Information and
Disclaimers

About the CD-ROM

Getting Started

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/HOMEPG.HTM (1 of 2) [12/28/2002 12:49:31 PM]

VHDL Interactive Tutorial

Tutorial

Copyright © 1995, 1996 SCRA ®

IEEE Standard VHDL Language
Reference Manual

(IEEE Std 1076-1993)

IEEE
Networking the World.

Published by the Institute of Electrical and Electronics Engineers, Inc.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/HOMEPG.HTM (2 of 2) [12/28/2002 12:49:31 PM]

Software License

INSTITUTE OF ELECTRICAL AND ELECTRONICS
ENGINEERS, INC. (IEEE)

SOFTWARE LICENSE AGREEMENT

IMPORTANT - READ CAREFULLY - THIS AGREEMENT DEFINES YOUR
RIGHTS TO USE THIS ENCLOSED SOFTWARE PRODUCT. OPENING THIS
SEALED PACKAGE OR USING THIS SOFTWARE CONSTITUTES YOUR
ACCEPTANCE OF THE TERMS OF THIS AGREEMENT AND ALL RIGHTS
THEREIN.

This software is owned by the Institute of Electrical and Electronics Engineers, Inc.,
("Licensor") and licensed to you as Licensee ("Licensee"). If you do not agree to the following
terms and conditions, return this product to Licensor and all amounts paid by you (if any) will
be refunded. Failure to return this product to Licensor within thirty (30) days of its delivery to
you will be deemed to constitute acceptance.

License

Licensor grants to you a non-transferable, non-exclusive license to copy into and use on a
single personal computer the accompanying data file(s) in electronic format, hereinafter
referred to as the "Software." Neither the Software nor any accompanying documentation may
be copied in whole or in part, except for a backup or archival copy that bears all copyright
notices and any other identifying or restrictive legends appearing on the Software as received.
Except as expressly permitted herein, you may not copy, distribute, modify or make derivative
works based on the Software nor may this Software or any backup copy or archival copy of
this Software be placed on an electronic network without prior written consent of Licensor.
Requests for reproduction, distribution or use in a multiple-user environment should be
directed to the IEEE Standards Department, Copyrights and Permissions, 445 Hoes Lane, P.O.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/SOFT_LIC.HTM (1 of 3) [12/28/2002 12:49:31 PM]

Software License

Box 1331, Piscataway, New Jersey 08855-1331, USA.

Limited Warranty

LICENSOR SHALL REPLACE ANY DEFECTIVE MEDIA CONTAINING THE
SOFTWARE IF SUCH DEFECTIVE MEDIA IS RETURNED TO LICENSOR WITHIN
THIRTY (30) DAYS AFTER DELIVERY. THE FOREGOING WARRANTY IS THE SOLE
AND EXCLUSIVE WARRANTY AND IS GIVEN IN LIEU OF ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THE
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE, THE SOFTWARE IS BEING LICENSED TO YOU "AS IS," AND LICENSOR
DOES NOT WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS
OR THAT THE OPERATION OF THE SOFTWARE WILL BE ERROR-FREE. THE
SOFTWARE IS BASED ON THE VHDL INTERACTIVE TUTORIAL, COPYRIGHT ©
1996 BY THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC.
AND IEEE STD 1076-1993 IEEE STANDARD VHDL LANGUAGE REFERENCE
MANUAL, COPYRIGHT © 1994 BY THE INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS, INC. IN THE EVENT OF A DISCREPANCY BETWEEN
THE PUBLISHED IEEE STD 1076-1993 AND THE PORTIONS OF IT CONTAINED IN
THIS SOFTWARE, THE PUBLISHED HARD COPY IS THE REFEREE DOCUMENT.

Liability

In no event shall Licensor, its employees, agents, suppliers, or contractors be liable for any
damages of any kind or character, including without limitation any compensatory, incidental,
direct, indirect, special, punitive or consequential damages, loss of use, loss of data, loss of
income or profit, loss of or damage to property, claims of third parties, or other losses of any
kind or character or attorneys' fees in connection with a claim relating to this Agreement or the
performance of the Software. In the event that liability is nevertheless imposed on Licensor, its
employees, agents, suppliers or contractors, the liability shall not exceed the fee paid for this
Software.

In no event shall Licensor have any liability whatsoever with respect to a backup copy of the
Software made by you as permitted in this Agreement.

Termination

This License shall automatically terminate in the event of a breach of the terms of this
Agreement.Upon termination, you will be required to return to Licensor the software, the
backup or archive copy and any accompanying documentation, and remove any copy residing

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/SOFT_LIC.HTM (2 of 3) [12/28/2002 12:49:31 PM]

Software License

on your hard drive.

General Terms

This Agreement is not assignable or transferable. The rights under this Agreement or any
License granted hereunder may not be assigned, sublicensed or otherwise transferred by
Licensee without the prior written consent of Licensor. This is the entire agreement between
the parties relating to the subject matter hereof and may only be modified in writing signed by
each party. This Agreement supersedes any proposal or prior agreement, oral or written, and
any other communications between the parties relating to the subject matter of this Agreement.
This Agreement is governed under the laws of the State of New York. Any questions or
comments regarding this Agreement or the Software should be directed to: Institute of
Electrical and Electronics Engineers, Inc., 445 Hoes Lane, P.O. Box 1331, Piscataway, New
Jersey 08855-1331, Attention: Standards Press.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/SOFT_LIC.HTM (3 of 3) [12/28/2002 12:49:31 PM]

Copyright Information

Copyright Information and
Disclaimers

Copyright Notice:

This product is composed of a Modular Tutorial, Copyright © 1995, 1996 SCRA ® (South
Carolina Research Authority) and IEEE Std 1076-1993, IEEE Std VHDL Language Reference
Manual, Copyright © 1994 by the Institute of Electrical and Electronics Engineers, Inc. which
together form a product, VHDL Interactive Tutorial, copyright © 1996 by the Institute of
Electrical and Electronics Engineers, Inc. All rights reserved, Published 1997. Printed in the
United States of America.

No part of this product may be reproduced or distributed in any form, in an electronic retrieval
system or otherwise, without prior written permission. Requests to reproduce and/or distribute
this product in its entirety or in portions should be directed to the IEEE Standards Department,
Copyrights and Permissions, 445 Hoes Lane, P. O. Box 1331, Piscataway, New Jersey 08855-
1331, USA.

IN THE EVENT OF ANY DISCREPANCIES BETWEEN THE PUBLISHED IEEE STD
1076-1993 AND THE PORTIONS OF IT CONTAINED IN THIS PRODUCT, THE HARD
COPY PUBLISHED VERSION IS THE REFEREE DOCUMENT.

Disclaimer:

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/COPYRIGH.HTM (1 of 3) [12/28/2002 12:49:32 PM]

Copyright Information

IEEE MAKES NO WARRANTIES WITH RESPECT TO THE CONTENTS OF THIS
PRODUCT. THE CONTENTS ARE PROVIDED FOR USE "AS IS". IEEE DISCLAIMS
ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT
LIMITATION TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Limitation of Liability:

In no event shall IEEE, its employees, agents, suppliers, or contractors be liable for any
damages of any kind or character, including without limitation any compensatory, incidental,
direct, indirect, special, punitive, or consequential damages, loss of use, loss of data, loss of
income or profit, loss of or damage to property, claims of third parties, or other losses of any
kind or character. In the event that liability is nevertheless imposed on IEEE, its employees,
agents, suppliers, or contractors, the liability shall not exceed the one-time charge paid for this
product.

License/User Information :

This product is licensed for single user purposes. Requests for multiple-user environments will
be available upon request. For information, please email such requests to
stds.vhdlinfo@ieee.org or call (908) 562-3804.

IEEE Standards Press:

IEEE Standards Press publications are not consensus documents. Information contained in this
and other works has been obtained from sources believed to be reliable, and reviewed by
credible members of IEEE Technical Societies and/or Standards Coordinating Committees.
Neither the IEEE nor its authors/developers guarantee the accuracy or completeness of any
information published herein, and neither the IEEE nor its authors/developers shall be
responsible for any errors, omissions, or damages arising out of use of this document.

Likewise, while the author/developer and publisher believe that the information and guidance
given in this work serves as an enhancement to users, all parties must rely upon their own skill
and judgment when making use of it. Neither the author nor the publisher assumes any liability
to anyone for any loss or damage caused by any error or omission in the work, whether such
error or omission is the result of negligence or any other cause. Any and all such liability is
disclaimed.

This work is published with the understanding that the IEEE and its authors/developers are
supplying information through this publication, not attempting to render engineering or other

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/COPYRIGH.HTM (2 of 3) [12/28/2002 12:49:32 PM]

Copyright Information

professional services. If such services are required, the assistance of an appropriate
professional should be sought. The IEEE Standards Press is not responsible for any statements
and/or opinions advanced in this publication.

Review Policy:

The information contained in the IEEE Standards Press publications is reviewed and evaluated
by peer reviewers of relevant IEEE Technical Societies and/or Standards Coordinating
Committees. The authors/developers addressed all of the reviewers' comments to the
satisfaction of both the IEEE Standards Press and those who served as peer reviewers for this
document.

The quality of the presentation of information contained in this publication reflects not only
the obvious efforts of the authors/developers, but also the peer reviewers. The IEEE Standards
Press acknowledges with appreciation their dedication and contribution of time and effort on
behalf of the IEEE.

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/COPYRIGH.HTM (3 of 3) [12/28/2002 12:49:32 PM]

About the CD-ROM

About the CD-ROM

Acknowledgements - These organizations
have made this tutorial possible.

DARPA Electronics Technology Office (DARPA/ETO)
United States Air Force Wright Aeronautical Laboratory
Rapid Prototyping of Application Specific Signal Processors (RASSP)
RASSP Education and Facilitation

The Modular Tutorial portion of this CD-ROM was supported in part by the Defense
Advanced Research Projects Agency Electronics Technology Office (DARPA/ETO) and the
U.S. Air Force RASSP Education and Facilitation (RASSP E&F) program under contract
number F33615-94-C-1457.

The following individuals are recognized with
gratitude for their contributions:

Development Coordinators:

SCRA (South Carolina Research Authority)
Anthony Gadient

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/ABOUTCD.HTM (1 of 3) [12/28/2002 12:49:32 PM]

About the CD-ROM

Jack Stinson
Tommy Taylor
Christopher Florio

Contributing Developers:

University of Virginia
James Aylor
Robert Klenke
Maximo Salinas
Ron Waxman

Georgia Institute of Technology
Vijay Madisetti
Tom Egolf
Shahram Famorzadeh

Raytheon
Dave Wilsey
Mitchell Heller

Mississippi State University
Scott Calhoun
Cassie S. Brook
Michael Mott
LaRosa J. Harris

University of Cincinnati
Harold Carter

Peer Reviewers

Dr. Paul Y.S. Cheung
Dean of Engineering
The University of Hong Kong
IEEE Asia Pacific Region Director

Dr. Vijay K. Madisetti
Associate Professor,
Electrical & Computer Engineering
Georgia Institute of Technology
President, VP Technologies, Inc.
IEEE Signal Processing Society
Liaison to IEEE Press

Dr. John Willis

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/ABOUTCD.HTM (2 of 3) [12/28/2002 12:49:32 PM]

About the CD-ROM

FTL Systems, Inc.
IEEE Design Automation Standards Committee (DASC) Secretary
Chair, IEEE DASC Parallel Simulation Group

Special Thanks are extended to these individuals by the IEEE Standards Press for their
contributions to this publication and their continued efforts towards the further development of
IEEE Standards and standards-related products and activities.

Grateful acknowledgement is also extended to Anthony Gadient, Jack Stinson and Tommy
Taylor for their dedicated contributions that made this IEEE Standards Press project possible.

CD-ROM Format/Browser Options

The information available on this CD-ROM has been composed in a manner thought to be
compatible with most computer architectures. The final appearance of these documents,
however, is dependent on the client software as implemented at the user site and as such is
outside of RASSP E&F's control. This CD-ROM has been checked using HTML 2.0 browsers.
For best results, use a Super-VGA or better display. For small screen displays, some pages
many not fit on the screen so scrolling will be required. You may wish to maximize the size of
your browser display area by adjusting some of your browser options (i.e. remove menu bars,
remove URL displays, etc.). Readability may be improved by adjusting the default font size or
text colors in your browser. A README.TXT file is available on the CD-ROM to help with
any problems starting up the browser and accessing the home page. This CD-ROM was
designed as a stand alone tutorial. There are a few links (RASSP Web Server, DARPA/ETO,
etc.) that use the Internet. If you do not have an Internet connection, an error message will
appear when these links are selected. However, the usefulness of the tutorial is not diminished
by not having these links. Feedback on the CD-ROM may be sent to stds.vhdlinfo@ieee.org.

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/ABOUTCD.HTM (3 of 3) [12/28/2002 12:49:32 PM]

mailto:stds.vhdlinfo@ieee.org

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬° ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (1 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/

Teleport Pro °T®§

http://roza.gmu.edu/IEEE_Tutorial/README.TXT: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (2 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/README.TXT

Teleport Pro °T®§

http://stdsbbs.ieee.org/: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬° ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (3 of 41) [12/28/2002 12:49:33 PM]

http://stdsbbs.ieee.org/

Teleport Pro °T®§

http://eto.sysplan.com/ETO/RASSP/: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬° ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (4 of 41) [12/28/2002 12:49:33 PM]

http://eto.sysplan.com/ETO/RASSP/

Teleport Pro °T®§

http://www.wl.wpafb.af.mil/welcome.html: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (5 of 41) [12/28/2002 12:49:33 PM]

http://www.wl.wpafb.af.mil/welcome.html

Teleport Pro °T®§

http://rassp.scra.org/: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬° ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

.

http://rassp.scra.org/offerings/offerings.html: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (6 of 41) [12/28/2002 12:49:33 PM]

http://rassp.scra.org/
http://rassp.scra.org/offerings/offerings.html

Teleport Pro °T®§

ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

.

http://www.ansi.org/: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬° ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (7 of 41) [12/28/2002 12:49:33 PM]

http://www.ansi.org/

Teleport Pro °T®§

.

http://www.ieee.org/: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬° ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (8 of 41) [12/28/2002 12:49:33 PM]

http://www.ieee.org/

Teleport Pro °T®§

.

http://www.iso.ch/: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬° ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (9 of 41) [12/28/2002 12:49:33 PM]

http://www.iso.ch/

Teleport Pro °T®§

.

http://www.erc.msstate.edu/mpl/vhdl-class/html: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (10 of 41) [12/28/2002 12:49:33 PM]

http://www.erc.msstate.edu/mpl/vhdl-class/html

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD4/SEC3/SSEC6/HTML/SLIDE28.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
Ëü²»ÊÇŸo·¨×xÈ¡¡¢¾ÍÊÇ”XÈ¡±»ÖÐ”àÁË¡¢»òÊÇŒ£°¸ß^ÔçÍ£Ö¹¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (11 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD4/SEC3/SSEC6/HTML/SLIDE28.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD4/SEC3/SSEC6/HTML/SLIDE31.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
Ëü²»ÊÇŸo·¨×xÈ¡¡¢¾ÍÊÇ”XÈ¡±»ÖÐ”àÁË¡¢»òÊÇŒ£°¸ß^ÔçÍ£Ö¹¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (12 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD4/SEC3/SSEC6/HTML/SLIDE31.HTM

Teleport Pro °T®§

.

http://rassp.scra.org/public/atl/taxonomy.html: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
ËüµÄ¾WÓò»òÂ·•½³¬ß^†¢Ê¼¾WÖ·ÖÐÔO¶¨µÄ¹ ‡ú¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (13 of 41) [12/28/2002 12:49:33 PM]

http://rassp.scra.org/public/atl/taxonomy.html

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD1/SEC4/SSEC1/IMAGES/IMAGE12.GIF: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
´ËÒ»™n°¸Î»ì¶Íâ²¿¾WÓò£¬¶øÇÒëxé_ËüµÄélµÀÎ»Ö·Ì«ßh¡£Èç¹ûÄúÔö¼Ó†¢Ê¼¾WÖ·µÄÍâ²¿¾WÓò”XÈ¡Éî¶È£¬Äú¾Í¿ÉÒÔ”XÈ¡µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (14 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD1/SEC4/SSEC1/IMAGES/IMAGE12.GIF

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD1/SEC4/SSEC3/IMAGES/IMAGE21A.GIF: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬°
´ËÒ»™n°¸Î»ì¶Íâ²¿¾WÓò£¬¶øÇÒëxé_ËüµÄélµÀÎ»Ö·Ì«ßh¡£Èç¹ûÄúÔö¼Ó†¢Ê¼¾WÖ·µÄÍâ²¿¾WÓò”XÈ¡Éî¶È£¬Äú¾Í¿ÉÒÔ”XÈ¡µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (15 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD1/SEC4/SSEC3/IMAGES/IMAGE21A.GIF

Teleport Pro °T®§

.

http://rassp.scra.org/public/tb/honeywell/HONEYWELL-DOCS.html: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
ËüµÄ¾WÓòÊÇÍâ²¿æœ½YµÄÍâ²¿æœ½Y¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (16 of 41) [12/28/2002 12:49:33 PM]

http://rassp.scra.org/public/tb/honeywell/HONEYWELL-DOCS.html

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD4/SEC3/SSEC6/HTML/SLIDE29.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
Ëü²»ÊÇŸo·¨×xÈ¡¡¢¾ÍÊÇ”XÈ¡±»ÖÐ”àÁË¡¢»òÊÇŒ£°¸ß^ÔçÍ£Ö¹¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (17 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD4/SEC3/SSEC6/HTML/SLIDE29.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD4/SEC3/SSEC6/HTML/SLIDE30.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
Ëü²»ÊÇŸo·¨×xÈ¡¡¢¾ÍÊÇ”XÈ¡±»ÖÐ”àÁË¡¢»òÊÇŒ£°¸ß^ÔçÍ£Ö¹¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (18 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD4/SEC3/SSEC6/HTML/SLIDE30.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD3/SEC2/SSEC1/IMAGES/IMAGE9.GIF: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
´ËÒ»™n°¸Î»ì¶Íâ²¿¾WÓò£¬¶øÇÒëxé_ËüµÄélµÀÎ»Ö·Ì«ßh¡£Èç¹ûÄúÔö¼Ó†¢Ê¼¾WÖ·µÄÍâ²¿¾WÓò”XÈ¡Éî¶È£¬Äú¾Í¿ÉÒÔ”XÈ¡µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (19 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD3/SEC2/SSEC1/IMAGES/IMAGE9.GIF

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD3/SEC2/SSEC2/IMAGES/IMAGE20B.GIF: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬°
´ËÒ»™n°¸Î»ì¶Íâ²¿¾WÓò£¬¶øÇÒëxé_ËüµÄélµÀÎ»Ö·Ì«ßh¡£Èç¹ûÄúÔö¼Ó†¢Ê¼¾WÖ·µÄÍâ²¿¾WÓò”XÈ¡Éî¶È£¬Äú¾Í¿ÉÒÔ”XÈ¡µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (20 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD3/SEC2/SSEC2/IMAGES/IMAGE20B.GIF

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD3/SEC2/SSEC2/IMAGES/IMAGE21.GIF: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
´ËÒ»™n°¸Î»ì¶Íâ²¿¾WÓò£¬¶øÇÒëxé_ËüµÄélµÀÎ»Ö·Ì«ßh¡£Èç¹ûÄúÔö¼Ó†¢Ê¼¾WÖ·µÄÍâ²¿¾WÓò”XÈ¡Éî¶È£¬Äú¾Í¿ÉÒÔ”XÈ¡µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (21 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD3/SEC2/SSEC2/IMAGES/IMAGE21.GIF

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD3/SEC2/SSEC3/IMAGES/IMAGE26.GIF: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
´ËÒ»™n°¸Î»ì¶Íâ²¿¾WÓò£¬¶øÇÒëxé_ËüµÄélµÀÎ»Ö·Ì«ßh¡£Èç¹ûÄúÔö¼Ó†¢Ê¼¾WÖ·µÄÍâ²¿¾WÓò”XÈ¡Éî¶È£¬Äú¾Í¿ÉÒÔ”XÈ¡µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (22 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD3/SEC2/SSEC3/IMAGES/IMAGE26.GIF

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/HTML/HOME.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (23 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/HTML/HOME.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/HTML/SLIDE1A.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (24 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/HTML/SLIDE1A.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/HTML/SLIDE1B.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (25 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/HTML/SLIDE1B.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC3/HTML/SLIDE11.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (26 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC3/HTML/SLIDE11.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC3/HTML/SLIDE12.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (27 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC3/HTML/SLIDE12.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC3/SSEC2/HTML/SLIDE14.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (28 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC3/SSEC2/HTML/SLIDE14.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC3/SSEC2/HTML/SLIDE15.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (29 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC3/SSEC2/HTML/SLIDE15.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC3/SSEC1/HTML/SLIDE13.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (30 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC3/SSEC1/HTML/SLIDE13.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC1/HTML/SLIDE1.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (31 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC1/HTML/SLIDE1.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC1/HTML/SLIDE3.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (32 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC1/HTML/SLIDE3.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC3/SSEC3/HTML/SLIDE16.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (33 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC3/SSEC3/HTML/SLIDE16.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC1/HTML/SLIDE2.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro ©ÒÂ^¨ú¡A¦]¬°
ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (34 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC1/HTML/SLIDE2.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC1/HTML/SLIDE4.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (35 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC1/HTML/SLIDE4.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC1/HTML/SLIDE5.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (36 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC1/HTML/SLIDE5.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC2/HTML/SLIDE6.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (37 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC2/HTML/SLIDE6.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC2/HTML/SLIDE7.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (38 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC2/HTML/SLIDE7.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC2/HTML/SLIDE8.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (39 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC2/HTML/SLIDE8.HTM

Teleport Pro °T®§

.

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC2/HTML/SLIDE9.HTM: ¦¹¤@ÀÉ®×¨Ã¥¼³Q Teleport Pro
©ÒÂ^¨ú¡A¦]¬° ËÅ·þÆ÷ˆó¸æÕÒ²»µ½´ËÒ»™n°¸¡£

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (40 of 41) [12/28/2002 12:49:33 PM]

http://roza.gmu.edu/IEEE_Tutorial/TUTORIAL/MOD2/NOTES/SEC2/SSEC2/HTML/SLIDE9.HTM

Teleport Pro °T®§

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/tppmsgs/msgs0.htm (41 of 41) [12/28/2002 12:49:33 PM]

Getting Started

Getting Started

Tutorial Purpose

Effective top-down design using VHDL is critical in order to realize reductions in the
development time and cost of complex digital electronic systems. The purpose of this
interactive VHDL tutorial is to help designers learn how to effectively use VHDL to design
complex digital electronic systems. To support this learning process, the tutorial is organized
around four related modules that are designed to incrementally add to your understanding of
the VHDL language and its application. By integrating these modules with the VHDL
Language Reference Manual, IEEE Standard 1076-1993, (VHDL LRM) in a hypertext
environment, we believe that this interactive tutorial will not only help you to learn the
language but will provide a useful reference to you as you progress from novice to expert.

Modular Tutorial Page Layout

Each module is organized as a set of hyper-linked slides. A MAP link for each module is
provided that presents a graphical view of the topics discussed in the module. An INDEX link
is provided that enables hyper-linked access to any topic area or slide within a module. At the
top of most pages are the IEEE VHDL LRM icon and the VHDL Interactive Tutorial
Home Page icon. The linked IEEE VHDL LRM icon will always return you to the VHDL
LRM Table of Contents and the linked VHDL Interactive Tutorial Home Page icon will
always return you to the tutorial home page. Together these links provide easy access to any
material that may be of interest. For a graphical introduction to the modular tutorial page
layout and links, click here.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/GETTING.HTM (1 of 4) [12/28/2002 12:49:33 PM]

Getting Started

Sponsorship

This VHDL Interactive Tutorial was initiated as part of the RASSP Education & Facilitation
(RASSP E&F) effort with support from the Defense Advanced Research Projects Agency
Electronics Technology Office (DARPA/ETO) and United States Air Force Wright
Aeronautical Laboratory under contract number F33615-94-C-1457. Rapid Prototyping of
Application Specific Signal Processors (RASSP) is a major DARPA/Tri-Service initiative to
reinvent the process by which embedded digital signal processors are developed. The goal is a
four-fold reduction in the time from concept to fielded prototype on both new designs and
design upgrades, with similar improvements in life cycle cost, quality and supportability. More
information on RASSP may be obtained from the RASSP web site (http://rassp.scra.org).

Module Abstracts

This tutorial is organized into four modules. If you have little or no VHDL experience, the
modules should be reviewed in order to provide the background material necessary for the next
section. The modules are numbered for easy reference and start at one. The abstract
information below provides a synopsis of each module.

The Basic VHDL module (module 1) is an introduction to the VHSIC Hardware

Description Language and its fundamental concepts. VHDL is a language specifically
developed to describe digital electronic hardware and its attributes. VHDL is a flexible
language and can be applied to many different design situations. This language has several key
advantages, including technology independence and a standard language for communication.
The module describes many of the advantages of using VHDL and a short history of the
language.

The Structural VHDL module (module 2) describes the use of VHDL for describing

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/GETTING.HTM (2 of 4) [12/28/2002 12:49:33 PM]

Getting Started

models in terms of component instantiations and interconnections. Structural VHDL can be
appropriate at any level of design. For example, testbenches for completed components are
often described using structural VHDL. Furthermore, structural VHDL supports the use of
libraries and component reuse. This module first describes the process of creating, or
instantiating, a component for simulation. A component instantiation declares a component
ready for use in the architecture and specifies key parameters, if necessary. The generate
statement is capable of creating regular structures automatically, such as RAM and ROM.
Thus, the generate statement can eliminate some repetitiveness when dealing with such
structures. Additionally, this module shows how VHDL supports libraries and component
reuse. Components in structural VHDL are fully described outside the architecture, most often
in component libraries. Configuration of these components involves selecting an entity and
architecture for the component and specifying parameters for the component. The Structural
VHDL module does not include a large, comprehensive example. However, an example
highlighting the use of each VHDL construct is provided. Structural VHDL supports libraries
and design partitioning through configuration; this module shows the VHDL constructs
supporting these concepts.

The Behavioral VHDL module (module 3) describes features of the language that

describe the behavior of components in response to signals. Behavioral descriptions of
hardware utilize software engineering practices and constructs to achieve a functional model.
Timing information is not necessary in a behavioral description, although such information
certainly can be added. The VHDL constructs in this module focus on describing hardware
utilizing software engineering practices. The VHDL process construct is described first.
Processes run code in a top to bottom fashion, similar to a computer program. The types of
statements allowed in a process, referred to as ’sequential’ statements, are listed. Subprograms
are another behavioral construct, allowing for code reuse and simplification. One use of
subprograms is in bus resolution functions. These important functions allow the use of buses
with multiple signal drives in VHDL models. Packages are another useful VHDL feature in
behavioral modeling. Packages can contain the code for subprograms as well as often used
custom data types. Finally, the module describes the use of testbenches and lists some
problems to avoid in VHDL. The Behavioral VHDL module ends with a comprehensive
example using the SDSP microprocessor. The details of this microprocessor are not relevant to
this module, but some of the underlying code is shown for instructional purposes. Several
subprograms that implement basic processor functions, such as the add function, are shown.
Additionally, the testbench and some control program code is shown. This example shows the
many uses of behavioral VHDL.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/GETTING.HTM (3 of 4) [12/28/2002 12:49:33 PM]

Getting Started

The System Level VHDL module (module 4) covers a wide range of topics, focusing on

VHDL constructs as applied to higher levels of design abstraction. A definition of ’system’ is
presented for purposes of this module along with several key concepts. This module is not
intended for the instruction of system level design; rather, this module focuses on the
usefulness of VHDL at the system level. Therefore, some time is also spent on the many
advantages of using VHDL at this level. This module also presents uninterpreted modeling
using VHDL, as this type of modeling is frequently used at higher levels. The VHDL
constructs supporting the system level design are described next. The first group of constructs
provides abstract data types to the designer. Using records and aliases, the designer can
implement data types, such as ’tokens’, that are important for uninterpreted modeling. Shared
variables allow for sharing data among processes and the TEXTIO package allows the design
to process files for input and output. Finally, the use of VHDL in object oriented design is
shown. Using VHDL in object oriented design has several advantages over other methods.
Finally, two comprehensive examples showing the use of VHDL at the system level are
provided. The first example, using the University of Virginia's ADEPT system, shows the use
of records and abstract data types to implement Petri Net models using VHDL. Extensive use
of functions and procedures shows the power of subprograms in VHDL. The Honeywell PML
provides another example of system level VHDL. The Honeywell PML models computer
components at the uninterpreted level and can consider various bus types. Together, these
examples show the use of VHDL in a complex system level design.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/GETTING.HTM (4 of 4) [12/28/2002 12:49:33 PM]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/PAGE.HTM

Each slide consists of three primary elements, a title, a lesson body and a tool bar. The tool bar provides access to previous
and next slides, previous and next sections, to notes pages and to the map and index. A picture of a typical module slide is
presented below.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/PAGE.HTM (1 of 2) [12/28/2002 12:49:37 PM]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/PAGE.HTM

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/PAGE.HTM (2 of 2) [12/28/2002 12:49:37 PM]

map

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/MAP.HTM [12/28/2002 12:49:38 PM]

map

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/MAP-1.htm [12/28/2002 12:49:38 PM]

map

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/MAP-2.htm [12/28/2002 12:49:38 PM]

map

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/MAP-3.htm [12/28/2002 12:49:39 PM]

Basic VHDL - Module 1

Basic VHDL -
Module 1

Table of
Contents

● Basic VHDL - Module 1

❍ Outline
❍ RASSP Roadmap
❍ Module Goals

● Introduction - The Need for Education
❍ Putting It All Together

● Concepts and History of VHDL
❍ History of VHDL
❍ Why Use VHDL?

● Gajski and Kuhn's Y Chart
❍ Sample VHDL Design Process
❍ Behavioral Specification
❍ Data Flow Specification
❍ Structural Specification

● VHDL Models of Hardware

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-1.htm (1 of 4) [12/28/2002 12:49:39 PM]

Basic VHDL - Module 1

❍ Behavioral Model
❍ Structural Model
❍ Timing Model

■ Delay Types
■ Inertial Delay
■ Transport Delay
■ Delta Delay
■ Example Without Delta Delay
■ Delta Delay
■ Example With Delta Delay

● VHDL Basics
❍ Data Types

■ Scalar Types
■ Scalar Types 2
■ Scalar Types 3
■ Scalar Types 4
■ Scalar Types 5
■ Composite Types 1
■ Composite Types 2
■ Composite Types 3
■ Access Types
■ Subtypes
■ Summary

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-1.htm (2 of 4) [12/28/2002 12:49:39 PM]

Basic VHDL - Module 1

❍ Objects
■ Constants
■ Scoping Rules
■ Variables
■ Signals
■ Signals vs Variables
■ Signals vs Variables (Cont. 1)
■ Signals vs Variables (Cont. 2)

❍ Sequential and Concurrent Statements
■ Sequential Statements
■ Concurrent Statements
■ Assignments
■ Sequential Signal Assignments

❍ Entity and Architecture Declarations
■ Port Declaration

■ Name
■ Port Mode
■ Port Mode Examples
■ Type of Data
■ Entity Declarations

■ Architecture Declarations
❍ Packages and Libraries

■ Packages

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-1.htm (3 of 4) [12/28/2002 12:49:39 PM]

Basic VHDL - Module 1

■ Declaration
■ Package Body
■ Use Clause
■ Libraries

❍ Attributes
■ Register Example
■ Register Example (cont. 1)
■ Register Example (cont. 2)

❍ Predefined Operators
■ List of Operators
■ Some Explanations

● Summary
❍ Putting It All Together
❍ References

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-1.htm (4 of 4) [12/28/2002 12:49:39 PM]

1076 -- Table of Contents

IEEE Standard VHDL Language Reference Manual

(IEEE Std. 1076-1993)

Table of Contents

Section 0 Overview of this standard

 0.1 Intent and scope of this document

 0.2 Structure and terminology of this document

 0.2.1 Syntactic description

 0.2.2 Semantic description

 0.2.3 Front matter, examples, notes, references, and appendices

Section 1 Design entities and configurations

 1.1 Entity declarations

 1.1.1 Entity header

 1.1.1.1 Generics

 1.1.1.2 Ports

 1.1.2 Entity declarative part

 1.1.3 Entity statement part

 1.2 Architecture bodies

 1.2.1 Architecture declarative part

 1.2.2 Architecture statement part

 1.3 Configuration declarations

 1.3.1 Block configuration

 1.3.2 Component configuration

Section 2 Subprograms and packages

 2.1 Subprogram declarations

 2.1.1 Formal parameters

 2.1.1.1 Constant and variable parameters

 2.1.1.2 Signal parameters

 2.1.1.3 File parameters

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/1076_TOC.HTM (1 of 6) [12/28/2002 12:49:40 PM]

1076 -- Table of Contents

 2.2 Subprogram bodies

 2.3 Subprogram overloading

 2.3.1 Operator overloading

 2.3.2 Signatures

 2.4 Resolution functions

 2.5 Package declarations

 2.6 Package bodies

 2.7 Conformance rules

Section 3 Types

 3.1 Scalar types

 3.1.1 Enumeration types

 3.1.1.1 Predefined enumeration types

 3.1.2 Integer types

 3.1.2.1 Predefined integer types

 3.1.3 Physical types

 3.1.3.1 Predefined physical types

 3.1.4 Floating point types

 3.1.4.1 Predefined floating point types

 3.2 Composite types

 3.2.1 Array types

 3.2.1.1 Index constraints and discrete ranges

 3.2.2 Record types

 3.3 Access types

 3.3.1 Incomplete type declarations

 3.3.2 Allocation and deallocation of objects

 3.4 File types

 3.4.1 File operations

Section 4 Declarations

 4.1 Type declarations

 4.2 Subtype declarations

 4.3 Objects

 4.3.1 Object declarations

 4.3.1.1 Constant declarations

 4.3.1.2 Signal declarations

 4.3.1.3 Variable declarations

 4.3.1.4 File declarations

 4.3.2 Interface declarations

 4.3.2.1 Interface lists

 4.3.2.2 Association lists

 4.3.3 Alias declarations

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/1076_TOC.HTM (2 of 6) [12/28/2002 12:49:40 PM]

1076 -- Table of Contents

 4.3.3.1 Object aliases

 4.3.3.2 Nonobject aliases

 4.4 Attribute declarations

 4.5 Component declarations

 4.6 Group template declarations

 4.7 Group declarations

Section 5 Specifications

 5.1 Attribute specification

 5.2 Configuration specification

 5.2.1 Binding indication

 5.2.1.1 Entity aspect

 5.2.1.2 Generic map and port map aspects

 5.2.2 Default binding indication

 5.3 Disconnection specification

Section 6 Names

 6.1 Names

 6.2 Simple names

 6.3 Selected names

 6.4 Indexed names

 6.5 Slice names

 6.6 Attribute name

Section 7 Expressions

 7.1 Expressions

 7.2 Operators

 7.2.1 Logical operators

 7.2.2 Relational operators

 7.2.3 Shift operators

 7.2.4 Adding operators

 7.2.5 Sign operators

 7.2.6 Multiplying operators

 7.2.7 Miscellaneous operators

 7.3 Operands

 7.3.1 Literals

 7.3.2 Aggregates

 7.3.2.1 Record aggregates

 7.3.2.2 Array aggregates

 7.3.3 Function calls

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/1076_TOC.HTM (3 of 6) [12/28/2002 12:49:40 PM]

1076 -- Table of Contents

 7.3.4 Qualified expressions

 7.3.5 Type conversions

 7.3.6 Allocators

 7.4 Static expressions

 7.4.1 Locally static primaries

 7.4.2 Globally static primaries

 7.5 Universal expressions

Section 8 Sequential statements

 8.1 Wait statement

 8.2 Assertion statement

 8.3 Report statement

 8.4 Signal assignment statement

 8.4.1 Updating a projected output waveform

 8.5 Variable assignment statement

 8.5.1 Array variable assignments

 8.6 Procedure call statement

 8.7 If statement

 8.8 Case statement

 8.9 Loop statement

 8.10 Next statement

 8.11 Exit statement

 8.12 Return statement

 8.13 Null statement

Section 9 Concurrent statements

 9.1 Block statement

 9.2 Process statement

 9.3 Concurrent procedure call statements

 9.4 Concurrent assertion statements

 9.5 Concurrent signal assignment statements

 9.5.1 Conditional signal assignments

 9.5.2 Selected signal assignments

 9.6 Component instantiation statements

 9.6.1 Instantiation of a component

 9.6.2 Instantiation of a design entity

 9.7 Generate statements

Section 10 Scope and visibility

 10.1 Declarative region

 10.2 Scope of declarations

 10.3 Visibility

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/1076_TOC.HTM (4 of 6) [12/28/2002 12:49:40 PM]

1076 -- Table of Contents

 10.4 Use clauses

 10.5 The context of overload resolution

Section 11 Design units and their analysis

 11.1 Design units

 11.2 Design libraries

 11.3 Context clauses

 11.4 Order of analysis

Section 12 Elaboration and execution

 12.1 Elaboration of a design hierarchy

 12.2 Elaboration of a block header

 12.2.1 The generic clause

 12.2.2 The generic map aspect

 12.2.3 The port clause

 12.2.4 The port map aspect

 12.3 Elaboration of a declarative part

 12.3.1 Elaboration of a declaration

 12.3.1.1 Subprogram declarations and bodies

 12.3.1.2 Type declarations

 12.3.1.3 Subtype declarations

 12.3.1.4 Object declarations

 12.3.1.5 Alias declarations

 12.3.1.6 Attribute declarations

 12.3.1.7 Component declarations

 12.3.2 Elaboration of a specification

 12.3.2.1 Attribute specifications

 12.3.2.2 Configuration specifications

 12.3.2.3 Disconnection specifications

 12.4 Elaboration of a statement part

 12.4.1 Block statements

 12.4.2 Generate statements

 12.4.3 Component instantiation statements

 12.4.4 Other concurrent statements

 12.5 Dynamic elaboration

 12.6 Execution of a model

 12.6.1 Drivers

 12.6.2 Propagation of signal values

 12.6.3 Updating implicit signals

 12.6.4 The simulation cycle

Section 13 Lexical elements

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/1076_TOC.HTM (5 of 6) [12/28/2002 12:49:40 PM]

1076 -- Table of Contents

 13.1 Character set

 13.2 Lexical elements, separators, and delimiters

 13.3 Identifiers

 13.3.1 Basic identifiers

 13.3.2 Extended identifiers

 13.4 Abstract literals

 13.4.1 Decimal literals

 13.4.2 Based literals

 13.5 Character literals

 13.6 String literals

 13.7 Bit string literals

 13.8 Comments

 13.9 Reserved words

 13.10 Allowable replacements of characters

Section 14 Predefined language environment

 14.1 Predefined attributes

 14.2 Package STANDARD

 14.3 Package TEXTIO

Annex A Syntax summary

Annex B Glossary

Annex C Potentially nonportable constructs

Annex D Changes from IEEE Std 1076-1987

Annex E Related standards

INDEX

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/1076_TOC.HTM (6 of 6) [12/28/2002 12:49:40 PM]

VHDL LRM- Introduction

IEEE Standard VHDL Language Reference
Manual

(IEEE Std. 1076-1993)

Index
Access types

described 3.3
designated type 3.3.1
elaboration of 12.3.1.3
mutually dependent 3.3.1
null 3, 3.3, 7.3.1
objects designated by 6.3

dereferencing 6.3

recursive 3.3.1
restrictions

on attributes 4.4
on file types 3.4
on prefixes 6.1
on signals 4.3.1.2
on subtype indications 4.2, 4.3.2

subprogram parameters of 2.1.1.1
usage 3

in index constraints 3.2.1.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (1 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

where prohibited 4.3.1.1

ACTIVE attribute. 4.3.2, 7.4.1, 7.4.2, 14.1:S', 14.1
Active drivers 12.6.2, 12.6.4
Active signals 12.6.2, 12.6.3
Actual designators

syntax 4.3.2.2
where used 4.3.2.2

Actual parameter part

syntax 7.3.3
usage

in functions 7.3.3
in procedures 8.6

Actuals

associations

with formal function parameters 7.3.3
with formal procedure parameters 8.6
with formal subprogram parameters 4.3.2.2
with formals of blocks 9.1

in map aspects 5.2.1.2
syntax 4.3.2.2
usage 4.3.2.2
where used 4.3.2.2

Aggregates 3

array 7.3.2.2
defining the type of 7.3.5
described 7.3.2
record 7.3.2.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (2 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

restrictions

on array types 7.3.2.2
on globally static primaries 7.4.2
on record types 7.3.2.1

subaggregates 7.3.2.2
syntax 7.3.2
type of 7.3.2
usage

as guarded signals 9.5
as targets of concurrent signal assignment statement 9.5
as targets of signal assignment statements 8.4
as targets of variable assignment statements 8.5

where used 7.3.4, 8.4

Alias declarations

described 4.3.3
elaboration of 12.3.1.5
syntax 4.3.3
where used 1.1.2, 1.2.1, 2.2, 2.5, 2.6, 9.2

Alias designators

syntax 4.3.3
where used 4.3.3

Aliases

referenced in attribute specifications 5.1
usage

as globally static primaries 7.4.2
as locally static primaries 7.4.1

Allocators 3, 3.2.1.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (3 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

constraints 7.3.6
deallocation of 3.3.2, 7.3.6
defined 3.3
described 7.3.6
evaluation of 7.3.6, 12.5
syntax 7.3.6
usage 3.3.1

as globally static primaries 7.4.2
to access values of objects 3.3

where used

Architecture bodies

as declarative regions 10.1
default binding rules 5.2.1.1
described 1, 1.2
syntax 1.2
where used 5.2.1, 5.3

Architecture declarative part

described 1.2.1
syntax 1.2.1
where used 1.2

Architecture names

where used 1.3.1, 5.2.2, 9.6, 11.1

Architecture statement part

described 1.2.2
syntax 1.2.2
where used 1.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (4 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

Array types

aggregates 7.3.2
bounds 3.2.1.1
closely related 7.3.5
concatenation of 7.2.4
constrained 3.2.1

as formal parameters of constants and variables 2.1.1.1
as formal parameters of signals 2.1.1.2
described 3.2
discrete ranges in 3.2.1.1
implicit file operations for 3.4.1
index ranges of 3.2.1.1

conversions between 7.3.5
denoting elements of 6.5
described 3.2.1
designated by access values 3.2.1.1
direction of 6.6
null arrays 3.2.1.1
predefined 3.2.1.2
restrictions

on file types 3.4

subprogram parameters of 2.1.1.1
syntax 3.2.1
unconstrained 3.2.1

described 3.2.1
elaboration of 12.3.1.2
used in index constraints 3.2.1.1
used in subprograms 3.2.1.1

variables, assignments to 8.5.1
where used 3.2.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (5 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

ASCENDING attribute 14.1:T', 14.1:A'
ASCII

format effectors 13.1
non-graphic elements 3.1.1.1

Assertion statements

described 8.2
syntax 8.2
where used 8, 9.4

Assertion statements, see also Concurrent assertion statements.
Assignment

as a basic operation 3
guarded signal 5.3, 9.5, 12.3.2.3
to arrays 3.2.1.1

Association elements

named 4.3.2.2, 4.3.3, 5.2.1.2
positional 4.3.2.2
syntax 4.3.2.2
where used

Association lists

described 4.3.2.2
generic 1.1.1.1, 12.2.2
port 12.2.4
syntax 4.3.2.2
where used 5.2.1.2

Attribute declarations

described 4.4
elaboration of 12.3.1.6
syntax 4.4

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (6 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

where used 1.1.2, 1.2.1, 2.2, 2.5, 9.2

Attribute designators

syntax 6.6
where used 5.1, 6.6

Attribute specifications

described .5.1
elaboration of 12.3.2.1
restrictions

for others and all

restrictions for others and all 5.1
syntax 5.1
where used 1.1.2, 1.2.1, 1.3, 2.2, 2.5, 5.1, 9.2

Attributes

allowed as primaries 7.1
denoting aliases 6.6
index ranges of 3.2.1.1
of formal parameters 2.1.1
predefined 3, 6.6

described 4.4, 14.1
exclusion from visibility rules 10.3
used as locally static primaries 7.4.1

restrictions

on groups 4.7
on subelements and slices 6.6
on subtype of 12.3.2.1

signal-valued 2.1.1.2
user-defined 4.4, 6.6

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (7 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

described 4.4
usage 5.1

as globally static primaries 7.4.2
as locally static primaries 7.4.1

where used 4.4

Attributes, see also specific names of predefined attributes.
backus naur form (BNF) 0.2.1
Base

syntax 13.4.2
where used 13.4.2

BASE attribute 14.1
Base specifiers

syntax 13.7
where used 13.7, Annex A

Basic operations 3, 7.2.3, 7.3.2, 7.3.4
Bidirectional ports, see Ports, INOUT
Binding indications

containing map aspects 5.2.1.2
default

described 5.2.2

described 5.2.1
elaboration of 12.3.2.2
example 1.3.1
primary 5.2.1
restrictions

for component configurations 5.2
for configuration specifications 5.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (8 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

syntax 5.2.1
where used 1.3.1, 5.2

Bindings

deferred 1.3, 5.2.1.1

BIT type 3.1.1.1, 3.2.1.2, 7.2, 7.2.1, 7.2.3
Bit values

syntax 13.7
where used 13.7, Annex A

BIT_VECTOR type 3.2.1.2
Block configurations

applicability 1.3.1
as declarative regions 10.1
described 1.3.1
implicit 1.3.1, 12.1
scope of 10.2
syntax 13.1
usage

to control elaboration of a block statement 12.4.1
when architecture identifier is used 5.2.1.2

visibility within 10.3
where used 1.3, 1.3.1

Block declarative items

syntax 1.2.1
usage 1.2.2
where used 9.1, 9.7

Block declarative part

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (9 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

elaboration of 12.4.1, 12.4.2
syntax 9.1
where used 9.1

Block headers

containing map aspects 5.2.1.2
correspondences

to component declarations 9.6.1
to component instantiation statements 9.6.2
to design entities 9.6.1

elaboration of 12.2, 12.4.1
syntax 9.1
where used 9.1

Block specifications

syntax 1.3.1
where used 1.3.1

Block statement part

elaboration of 12.4.2
syntax 9.1
where used 9.1

Block statements

as declarative regions 10.1
described 9.1
elaboration of 12.1, 12.4.1, 12.4.2
implied 9.6.2, 12.4.2
labels 1.3.1

elaboration of 12.4.2
where used 1.3.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (10 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

syntax 9.1
usage 1.3.1, 9.6, 9.6.1
where used 9.1

Blocks

communication to 1.1.1.1
described 1
interconnection via concurrent statements 9
scope of 10.2
usage 9.6, 9.6.1

Boldface 0.2.1
BOOLEAN type 3.1.1.1, 7.2, 7.2.1, 7.2.2, 7.2.3
Buffer ports, see Ports.
Bus signals 2.1.1.2, 2.4, 4.3.2
Case statement alternatives

syntax 8.8
where used 8.8

Case statements

described 8.8
syntax 8.8
usage

as signal transforms 9.5.2
with null statements 8.1.3

where used 8, 9.5

Character set, VHDL 13.1
CHARACTER type 3.2.1.2
Character types, used in case statements 8.8
Characters

apostrophe (') 13.5
backslash (\) 13.3.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (11 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

basic

allowable replacements for 180 13.10
syntax 13.1

basic graphic

syntax 13.1
where used 13.1

braces { } 0.2.1
colon (:) 13.10
exclamation mark (!) 13.10
graphic

syntax 13.1
where used 13.3.2, 13.5

lower case

where used 13.1

number sign (#) 13.4.2, 13.10
other special

syntax 13.1
where used 13.1

percent sign (%) 13.10
quotation mark (")

where used 13.6

quotation mark (") 13.10

where used 13.6, 13.7

spaces

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (12 of 73) [12/28/2002 12:49:45 PM]

VHDL LRM- Introduction

syntax 13.1
where prohibited 13.3.1
where used 13.1

special

names of 13.1
syntax 13.1
where used 13.1

square brackets [] 0.2.1
used in instance names

separator (:) 14.1

used in path names

leader (:) 14.1
separator (:) 14.1

vertical bar (|) 0.2.1
vertical line (|) 13.10

Characters, see also Operators, Symbols.
Choices

in case statements 8.8
syntax 7.3.2
where used 3.2, 8.8

Comments 13.8
Component configurations

as declarative regions 10.1
binding indications in 5.2.1
containing block configurations 1.3.2
default entity aspect of 5.2.2
described 1.3.2
implicit 1.3.1, 12.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (13 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

restrictions

against conflicting configurations 1.3.2

syntax 1.3.2
used to bind component instances to design entities 4.5
visibility rules for 10.3
where used 1.3.1

Component declarations

as declarative regions 10.1
bindings to design entities 5.2.1
described 4.5
elaboration of 12.3.1.7
prohibitions on attributes 5.1
scope of 10.2
syntax 4.5

usage 5.2, 9.6, 9.6.1
where used 1.2.1, 2.5

Component instances

association with configurations 1.3.2
bound

described 1.3
elaboration of 12.3.2.2
to design entities 5.2.1.1

fully bound 1.3.1, 5.2.1.1
index range 3.2.1.1
labels

in blocks 1.3.1

paths to

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (14 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 14.1
where used 14.1

unbound

defaults for .1.3.2
elaboration of 12.1

with conflicting configurations 1.3.2

Component instantiation statements

containing map aspects 5.2.1.2
default entity aspect of 5.2.2
described 9.6
elaboration of 12.4.3
interfaces of 4.5
referenced in configuration specifications 5.2
syntax 9.6
usage

to instantiate a component 9.6.1
to instantiate a design entity 9.6.2

where used 9

Component names

where used 9.6

Component specifications

elaboration of 12.3.2.2
syntax 5.2
where used 1.3.2, 5.2

Composite types

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (15 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

described 3.2
objects of 4.3, 4.4
restrictions

on file types 3.4

syntax 3.2
usage 3

Concurrent assertion statements

described 9.3
elaboration of 12.4.4
syntax 9.3
where used 1.1.3, 9

Concurrent procedure call statements

described 9.3
syntax 9.3
usage 9.3
where used 1.1.3, 9

Concurrent procedure call statements, see also Procedure call statements.
Concurrent signal assignment statements 8.4

containing delay mechanisms 9.5
described 9.5
elaboration of 12.4.4
execution of 9.5
syntax 9.5
where used 9

Concurrent signal assignment statements, see also Conditional
signal assignments, Selected signal assignments, Signal assignment
statements.
Concurrent statements

described 9

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (16 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

elaboration of 12.4, 12.4.4, 12.5
syntax 9
where used 1.1, 1.2.2, 9.1, 9.7

Condition clauses

described 8.1
syntax 8.1
where used 8.1

Conditional signal assignments

described 9.5.1
syntax 9.5.1
where used 9.5

Conditions

syntax 8.1
where used 8.1, 8.2, 8.7, 8.9, 8.11, 9.5.1, 9.7

Configuration declarations

anonymous 12.1
as declarative regions 10.1
described 1.3
scope of 10.4
syntax 1.3
usage

to control elaboration of a block statement 12.4.1
to define components 9.6

visibility of 1.1.2
where used 11.1

Configuration items

implicit 1.3.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (17 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 1.3.1
where used 1.3.1

Configuration specifications

default entity aspect of 5.2.2
described 5.2
elaboration of 12.3.2.2
implicit 12.1
restrictions

for binding indications 5.2.1
for others and all 5.2.1

syntax 5.2.1
usage

to bind component instances to design entities 1.3, 4.5
to define copies of blocks 9.6

where used 1.2.1

Configurations

described 1
where used 9.6

Constant declarations

described 4.3.1.1
syntax 4.3.1.1
where used 1.1.2, 1.2.1, 2.2, 2.5, 2.6, 4.3.1.1, 9.2

Constants

deferred 2.6, 4.3.1.1
explicitly declared 4.3.1.1
generic 1.1.1.1
in resolution functions 2.4

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (18 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

index ranges of 3.2.1.1
initial values of 12.3.1.4
usage

as generate parameters 9.7
as globally static primaries 7.4.2
as subprogram parameters 2.1.1.1

values of 4.3.1.1

Context clauses

described 11.3
implicit 14.2
syntax 11.3
where used 11.1

Context items

syntax 11.3
where used 11.3

Conversion functions

restrictions in signal associations 4.3.2.2

Deallocation 3.3.2
Declarations

elaboration of 12, 12.3.1
occurring immediately within declarative regions 10.1
of items in a design entity 1
overloaded 10.3, 10.5
scope of 10.3
visibility

by selection 10.3
direct 10.3
hidden 10.3

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (19 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

potential 10.4

Declarative parts, elaboration of 12.3
Declarative regions

described 10.1

Deferred bindings 1.3
Deferred constants 2.6

defined 4.3.1.1

Delay mechanisms

described 8.4
syntax 8.4
where used 8.4, 9.5

DELAYED attribute 2.2, 4.3, 4.3.2, 14.1
Delays 3.1.3.1

inertial 8.4
transport 8.4

Delimiters

defined 13.2
names of 13.2

Design entities

bindings to component instances 1.2.2, 5.2.1, 5.2.1.1, 9.6.1, 9.6.2
bodies of 1.2
declarative items 1.1, 5
defining external blocks 1.3.1
defining subcomponents of 9.6
described 1
interfaces of 1.1, 4.5

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (20 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

library requirements 1.1.3
ports 1.1.1
visibility 1.1.2

Design files

syntax 11.1

Design hierarchies

defined by configurations 5.2.1.1, 12.1
defined by design entities 12.1
described 1
elaboration

conditional or iterative 9.7
described 12.1
of component instances 9.6.1

ellaboration

described 12

portability of ports and generics in root Annex C

Design hierarchies, see also Blocks.
Design methodologies

portability issues Annex C
reusing existing libraries 9.6
structural design 9.6

Design units

described 11.1
order of analysis 11.4
primary

denoting 6.3

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (21 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 11.1
where used 11.1

reported in assertion violations 8.2
reported in report statements 8.3
secondary

portability issues Annex C
syntax 11.1
where 11.1

specifications related to 5
syntax 11.1
visibility of packages 2.5
where used 11.1

Designators

as a basic operation 3
described 2.2
overloaded 2.3.1
syntax 2.1
where used 2.1, 2.2

Digits

decimal

syntax 13.1
where used 13.1, 13.4, 13.4.1

extended

syntax 13.4.2
where used 13.4.2, 13.7

Direction

of discrete subtype indications 4.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (22 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 3.1
where used 3.1

Disconnection specifications

default

syntax 5.3

described 5.3
elaboration of 12.3.2.3
syntax 5.3
usage

to turn off drivers of guarded signals 4.3.1.2
with concurrent signal assignment statements 9.5

where used 1.1.2, 1.2.1, 2.5

Discrete ranges

bounds of 6.5, 10.5
described 3.2.1.1
direction of 1.3.1, 6.5
static

described 7.4
globally static 7.4.2
locally static 7.4.1

syntax 3.2.1
where used 1.3.1, 3.2.1, 6.5, 7.3.2, 8.9

Discrete types

described 3.1
used in case statements 8.8

Drivers

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (23 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

active 12.6.2, 12.6.4
assignments to 2.1.1.2
associated 12.6.1
constant 1.1.1.2
creation of 12.4.4
described 12.6.1
determined by null transactions 2.4, 12.6.2
in kernel process 12.6
initial values of 12.4.4
of guarded signals 4.3.1.2, 5.3

disconnection of 5.3, 12.3.2.3

of signals 4.3.1.2

DRIVING attribute 7.4.1, 7.4.2, 14.1
DRIVING_VALUE attribute 7.4.1, 7.4.2, 14.1
Elaboration

dynamic 12.5
implementation-dependent 12.3, 12.4
of configuration declaration 1.3
of processes 12.1
of statement parts 12.5

Elements

associations

named 7.3.2
positional 7.3.2
syntax 7.3.2
where used 7.3.2

terminology 3

Entities

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (24 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

associations

with architectures 1.2
with components 5.2.1.1

overloaded 10.5

Entities, see also Named entities.
Entity aspect

default 5.2.2
described 5.2.1.1
syntax 5.2.1.1
where used 5.2.1

Entity classes

syntax 5.1
usage 4.7
where used 4.6, 5.1

Entity declarations

as declarative regions 10.1
described 1
scope of 10.2
syntax 1.1
usage 5.2.1.1
visibility

causing default bindings 5.2.2, 12.1

where used 11.1

Entity declarative part 1.1

described 1.1.2
syntax 1.1.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (25 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

where used 1.1

Entity designators

restrictions 5.1
syntax 5.1
where used 5.1, 14.1

Entity headers

described 1.1.1, 1.1.2
syntax 1.1.1
where used 1.1.1

Entity name lists

syntax 5.1
where used 5.1

Entity names

usage 5.2.2
where used 1.2, 1.3, 5.2.1.1, 9.6

Entity specifications

elaboration of 12.3.2.1
syntax 5.1
where used 5

Entity statement part

described 1.1.3
syntax 1.1.3
usage 1.1
where used 1.1

Entity tags

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (26 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

restrictions 5.1
syntax 5.1
where used 5.1

Enumeration types

described 3.1.1
elaboration of 12.3.1.2
predefined 3.1.1

Enumeration types, see also Literals: enumeration.
EVENT attribute 4.3.2, 7.4.1, 7.4.2, 14.1
Exit statements

described 8.11
syntax 8.11
where used 8

Explicit ancestor, see Signals.
Exponents

syntax 13.4.1
where used 13.4.1

Exporting data, see Files: external.
Expressions

as initial values of variables 4.3.1.3
associated with signal parameters 2.1.1.2
Boolean 8.1
containing signal names 12.3
default

for interface objects 4.3.2, 4.3.2.2
for signal values 4.3.1.2

defining the type of 7.3.4
described 7.1
guard 9.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (27 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

in attribute specifications 12.3.2.1
initializing a constant 12.3.1.4
primaries in

described 7.1
where used 7.1

qualified 3

described 7.3.4
syntax 7.3.4
used as globally static primaries 7.4.2
used as locally static primaries 7.4.1
where used 7.1, 7.3.6

restrictions

on type 4.3.1.1, 4.3.1.2
on type in case statements 8.8

sequences in 7.1
shift

syntax 7.1
where used 7.1

simple

syntax 7.1
where used 7.1, 7.3.2

static

definition of globally static 7.4
definition of locally static 7.4
described 7.4
in concurrent assertion statements 9.4
where used 1.3.1, 4.3.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (28 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 7
time

usage 8.4.1
where used 8.1, 8.4.1

treatment during elaboration 12.3
universal

described 7.5

used as operands 7.3
where used 4.3.1.1, 4.3.1.2, 4.3.1.3, 5.1, 6.4, 6.6, 7.3.4, 7.3.5, 8.2, 8.3, 8.5, 8.8, 8.12,
9.5.2

Expressions, see also Guards.
External blocks 1.3.1
Factors

syntax 7.1
where used 7.1

File declarations

described 4.3.1.4
elaboration of 12.3.1.4
syntax 4.3.1.4
where used 1.1.2, 1.2.1, 2.2, 2.5, 2.6, 4.3.1.4, 9.2

File types

described 3.4
operations implicitly declared for 3.4.1
restrictions

on attributes 4.4
on signals 4.3.1.2
on subprogram parameters 4.3.1.4, 4.3.2
on subtype indications 4.2, 4.3.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (29 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

usage 3

with external files 4.3.1.4

where prohibited 3.3, 4.3.1.1

Files

explicit 4.3.1.4
external 4.3.1.4
read operations 4.3.2
used as subprogram parameters 2.1.1.3
used as subprogram- parameters 2.1.1.3
write operations 4.3.2

Floating point types

described 3.1.4
elaboration of 12.3.1.2
portability issues Annex C
predefined 3.1.4.1
required precision 3.1.4
syntax 3.1.4

FOREIGN attribute 1.1.2, 1.1.3, 1.2.1, 1.2.2, 2.2, 12.4

exclusion from elaboration 12.3
portability issues Annex C

Foreign subprograms 2.2
Formal designators

syntax 4.3.2.1
where used 4.3.2.1

Formal parameters

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (30 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

as objects 4.3
described 2.1.1
scope of 10.2
syntax 2.1.1
type profiles 2.3, 10.5
used as constants 4.3.1.1
where used 2.1

Formal parameters, see also Subprogram specifications. Formals

in map aspects 5.2.1.2,
syntax 4.3.2.2
unassociated 5.2.1.2
usage 4.3.2.2
where used 4.3.2.2

Formals, see also Formal parameters, Generics, Ports. Format effectors

end of line 13.2
syntax 13.1
where used 13.1

Function calls

defining parentage of subprograms 2.2
described 7.3.3
evaluation of 7.3.3
in association lists

as actuals 4.3.2.2
as formals 4.3.2.2

restrictions

on expanded names 6.3
on groups 4.7

syntax 7.3.3
treatment during elaboration 12.3

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (31 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

usage

as globally static primaries 7.4.2
as locally static primaries 7.4.1
general description 2

where used 6.1, 9.2

Functions

in signatures 2.3.2
invoking execution of 7.3.3
object classes for 2.1.1
overloaded 4.2
portability issues of impure Annex C
predefined

NOW 14.1, 14.2

pure 2, 2.2, 2.7, 7.4.2
resolution 2.4, 4.2
returned values 8.12
syntax 2.1
usage 2
where used 4.3.2.2

Functions, see also Return statements.
Generate parameters

as objects 4.3
constants 4.3.1.1, 12.4.2
usage 4.3

as globally static primaries 7.4.2

Generate statements

as declarative regions 10.1
defining internal blocks 1.3.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (32 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

described 9.7
elaboration of 12.4.2
labels 1.3.1

elaboration of 12.4.2
where used 1.3.1

syntax 9.7
where used 9

Generation schemes

syntax 9.7
where used 9.7

Generic clauses

elaboration of 12.2.1
syntax 1.1.1
where used 4.5, 9.1

Generic lists

defined 1.1.1
syntax 1.1.1.1
where used 1.1.1

Generic map aspect

default 5.2.1.2
described 5.2.1.2
syntax 5.2.1.2
usage 5.2.1
where used 5.2.1, 9.1, 9.6

Generic map aspects

elaboration of 12.2.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (33 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

Generics

constants 1.1.1, 4.3.1.1, 12.2.1
described 1.1.1.1
formal 5.2.2

in binding indications 5.2.1
in block headers 9.1

in top-level design entity 12.1
of unconstrained array types 3.2.1.1
scope of 10.2
where used 4.3.2.2

Group constituents

syntax 4.7
where used 4.7

Group declarations

described 4.6, 4.7
syntax 4.6
usage 4.6
where used 1.1.2, 1.2.1, 1.3, 2.2, 2.5, 2.6, 9.2, 9.2

Group template declarations

described 4.6
syntax 4.6
where used 1.1.2, 1.2.1, 2.2, 2.5, 2.6, 9.2

Group templates 4.6
Guarded signal specifications

described 5.3
elaboration of 12.3.2.3
syntax 5.3

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (34 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

where used 5.3

Guards 4.3.1.2, 9.1, 9.4
HIGH attribute 3.1.4.1, 14.1:T, 14.1:A', 14.1
Homographs 10.3, 11.2
Identifiers 4.1

basic

described 13.3.1
syntax 13.3.1
where used 13.3.1

extended

described 13.3.2
syntax 13.3.2
where used 13.3.2

of named entities 4
referenced within their own declarations 10.3
restrictions 13.9
scope of 10.2
separators required between 13.2
simple names for 0.2.1
syntax 13.3.1
visibility rules for 10.3, 10.4, 10.5
where used 1.1, 1.2, 1.3, 11.2
with overlapping scopes 10.3

Identifiers, see also Names.
IEEE P1164 Standard Annex E
If statements

described 8.7
syntax 8.7
usage 9.5.1
where used 8, 9.5.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (35 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

IMAGE attribute 14.1

portability issues Annex C

Importing data, see Files: external.
IN or INOUT ports, see Ports.
Incomplete type declarations 3.3.1
Index constraints

described 3.2.1.1
elaboration of 12.3.1.3
globally static 7.4.2
in access types 3.3
index ranges of array types 3.2.1.1, 6.5
locally static 7.4.1
syntax 3.2.1
usage 7.3.6
where used 3.2.1, 4.2

Index specifications

containing discrete ranges 1.3.1
syntax 1.3.1
where used 1.3.1

Index subtype definitions

syntax 3.2.1
where used 3.2.1

Index subtypes

compatibility with discrete ranges 3.2.1.1
of shift operators 7.2.3

Instance names, syntax of 14.1
INSTANCE_NAME attribute 14.1
Instantiated units

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (36 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 9.6
where used 9.6

Instantiation lists

syntax 5.2
where used 5.2

INTEGER type 3.1.2, 3.2.1.1
Integer types

described 3.1.2
elaboration of 12.3.1.2
predefined 3.1.2.1
syntax 3.1.2

Integers

based 13.4.2
syntax 13.4.2
where used 13.4.2

Interface constant declarations

described 4.3.2
syntax 4.3.2
usage 4.3.3
where used 4.3.2.1

Interface declarations

described 4.3.2
usage 4.3.1
where used 4.3.2

Interface file declarations

described 4.3.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (37 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 4.3.2
where used 4.3.2.1

Interface lists

described 4.3.2.1
of formal parameters 2.1.1

elaboration of 12.3.1.1

of generics 1.1.1.1
of ports 1.1.1.2
where used 1.1.1.1, 1.1.1.2

Interface objects

defined 4.3.2
in top-level design entity 12.1
index ranges

obtained by association 3.2.1.1
of constrained arrays 3.2.1.1

specifications related to 5
where used 4.5

Interface signal declarations

described 4.3.2
syntax 4.3.2
where used 4.3.2.1

Interface variable declarations

described 4.3.2
syntax 4.3.2
where used 4.3.2.1

Internal blocks 1.3.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (38 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

ISO 8859 character set 3.1.1.1, 13.1, Annex E
Italics, meaning of 0.2.1, 4.1, 14.2
Iteration schemes

FOR loops 8.9
syntax 8.9
where used 8.9
WHILE loops 8.9

Labels

block 9.1
bound 5.2
generate

where used 9.7

instantiation

where used 5.2, 9.6

loop

where declared 8.9
where used 8.10, 8.11, 8.12

of concurrent statements 9.1
process

where used 9.2

syntax 9.7
where used 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.12, 9.3, 9.5

LAST_ACTIVE attribute 4.3.2, 7.4.1, 7.4.2, 14.1:S, 14.1:notes
LAST_EVENT attribute 4.3.2, 7.4.1, 7.4.2, 14.1:S, 14.1:notes
LAST_VALUE attribute 4.3.2, 7.4.1, 7.4.2, 14.1:S, 14.1:notes
LEFT attribute 14.1:T, 14.1:A, 14.1:notes

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (39 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

LEFTOF attribute 14.1:T
LENGTH attribute 14,1:A
Letters

lower case 0.2.1

syntax 13.1
where used 13.3.1, 13.4.1

upper case 0.2.2

syntax 13.1
where used 13.1, 13.3.1, 13.4.1

Lexical elements, defined 13.2
Libraries

checks during elaboration 12.3.2.2
design

analysis of 11.1
denoting items in 6.3
description 11.2

resource 11.2
STD 11.2
WORK 11.2
working 11.2

Library clauses

syntax 11.2
where used 11.3

Library indicators

where used 14.1

Library units

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (40 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

effects of changes to 11.3
existence requirements 5.2.1.1
scope of 10.2
syntax 11.1
where used 11.1

Line breaks 13.1
Linkage ports, see Ports.
Literals

abstract

based 13.4.2
decimal 13.4.1
described 13.4
in a physical type definition 3.1.3
separators required between 13.2
where used 3.1.3, 7.3.1

bit string

described 7.3.1, 13.7
syntax 13.7, Annex A
where used 7.3.1

character

in enumeration types 3.1.1
where used 3.1.1

described 13.5
referenced within their own declarations 10.3
scope of 10.2
syntax 13.5
where used 4.3.3, 4.7, 5.1, 6.3
with overlapping scopes 10.3

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (41 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

described 7.3.1
enumeration

overloaded 2.3.2, 3.1.1, 10.5

visibility rules for 10.3

syntax 3.1.1
values of 3.1.1
where used 3.1.1, 7.3.1

integer 3.1.2, 13.4, 13.4.1, 13.4.2
null 7.3.1
numeric

allowed variations in subprograms 2.7
as basic operations 3
described 7.3.1
syntax 7.3.1
where used 7.3.1

physical

syntax 3.1.3
where used 3.1.3, 7.3.1

real 13.4, 13.4.1, 13.4.2
string 3

described 7.3.1, 13.6
syntax 13.6
where used 2.1, 7.3.1

syntax 7.3.1
where used 7.1, 7.4.1

Logical name list 11.2
Loop parameters

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (42 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

as context for overload resolution 10.5
as objects 4.3
constants 4.3.1.1
usage 4.3

Loop parameters, see Parameter specifications: loop. Loop statements

as declarative regions 10.1
described 8.9
execution of 8.9
syntax 8.9
where used 8

Loop statements, see also Next statements, Exit statements.
Loops, avoiding infinite 9.3
LOW attribute 3.1.4.1, 14.1:T', 14.1:A' , 14.1
LRM

exclusions from language definition 0.2.3
intent 0
notes 0.2.3
semantics 0.2.2
structure 0.2
syntax conventions 0.2.1
terminology 0.2, 4.3.1.2

Models, simulation of 12.6

delta cycle 12.6.4
initialization phase 12.6.4
simulation cycle 12.6.4

Modes

defaults for interface declarations 4.3.2
of formal parameters 2.1.1
of interface objects 4.3.2
of ports 1.1.1.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (43 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 4.3.2
where used 4.3.2

Named entities

aliases of 4.3.3, 5.1
attributes of 4.4, 6.6
groupings of 4.7
identifiers of 4
overloaded 5.1
restrictions on globally static primaries 7.4.2
scope of 10.2
specifications of 5.1

Names

allowed as primaries 7.1
allowed variations in subprograms 2.7
ambiguous 6.3, 7.3.3
as a basic operation 3
declared in entities 1.1.2
expanded 6.3
general description 6.1
in declarations 4
in paths 14.1:E'

indexed

described 6.4
syntax 6.4
usage 7.3.3
where used 6.1

locally static 6.1
logical

syntax 11.2
usage 11.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (44 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

where used 11.2

of architecture bodies 1.2
of attributes 4.4

described 6.6
syntax 6.6
where used 6.1

of delimiters 13.2
of files 4.3.1.4
of interface declarations 4.3.2.1
of objects 4.3.2.1
of primary units 4.3
of signals 5.3, 6.1
of slices

described 6.5
syntax 6.5
where used 6.1

of special characters 13.1
of variables 6.1
overloaded 10.5
prefixes

described 6.1
of attributes 4.4
of subprograms 10.5
syntax 6.1
where used 6.3, 6.4, 6.5, 6.6

selected

described 6.3
syntax 6.3
where used 6.1, 10.4

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (45 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

simple 0.2.1

described 6.2
syntax 6.2
where used 5.1, 6.1, 6.3

static

defined 6.1

suffixes

syntax 6.3
usage in use clauses 10.4
where used 6.3

syntax of 0.2.1
where used 4.3.3, 7.1, 8.4

Names, see also Named entities, Pathnames
NATURAL subtype 3.2.1.2
Nets

creation of 12
defined 12.6.2

Next statements

described 8.10
syntax 8.10
usage 8.10
where used 8

Non-Object aliases

described 4.3.3.2

Notation, decimal 13.4.1
NOW

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (46 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

predefined function 14.1

Null

default initial values of variables 4.3.1.3
in access types 3, 7.3.1
ranges 3.1
transactions 2.4, 4.3.1.2, 8.4.1
used as a literal 7.3.1
waveform elements 8.4.1

Null statements

described 8.13
syntax 8.13
where used 8, 9.5

Numeric types

closely related 7.3.5
described 3.1
operators

adding 7.2.4
sign 7.2.5

Numeric types, see also Literals: numeric.
Object aliases

described 4.3.3.1

Object declarations

described 4.3.1,4.3.2,4.3.3
designated by access value 3.3
elaboration of 12.3.1.4
of signals 3.2.1.1
of variables 3.2.1.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (47 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 4.3.1
where used 4.3

Objects

aliases of 4.3.3.1
allocation and deallocation 3.3.2
allowed as primaries 7.1
created by allocators 7.3.6
defined 4.3
described 4.3
explicitly declared 4.3.1

aliases of 4.3.3.2

initial values of 12.3.1.4
usage 4.3
when read 4.3.2
when updated 4.3.2

Open

file objects 3.4.1
file parameters 2.1.1.3
in association lists 4.3.2.2
in entity aspects 5.2.1.1
in map aspects 5.2.1.2
ports 1.1.1.2

Operands 7.3

convertible universal 7.3.5

Operations

basic 3, 7.2.3, 7.3.2, 7.3.4
short-circuit 7.2
visibility of predefined 10.3

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (48 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

Operator symbols

referenced within their own declarations 10.3
scope of 10.2
syntax of 7.1
where used 2.1, 4.3.3, 5.1, 6.1, 6.3
with overlapping scopes 10.3

Operators 7.2

absolute (abs) 7.2.7
adding

described 7.2.4
where used 7.1

addition (+) 7.2.4
arithmetic

for integer types 3.1.2
for physical types 3.1.3

binary 2.3.1
concatenation (&) 7.2.4
division (/) 7.2.6
equality (=) 2.3.1, 7.2.2, 8.4.1, 8.8

overloaded 12.6.2

exponentiating (**) 7.2.7
for universal expressions 7.5
identity (+) 2.3.1, 7.2.5
inequality (/=) 7.2.2
logical 7.2.1
miscellaneous 7.2.7
modulus (mod) 7.2.6
multiplication (*) 7.2.6

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (49 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

multiplying

described 7.2.6
where used 7.1

negation (-) 2.3.1, 7.2.5
ordering (<, <=, >, >=) 7.2.2
overloaded 2.3.1,2.3.2
precedence of 7.2, 7.2.5
predefined 3, 7.2

relational

described 7.2.6
where used 7.1

remainder (rem) 7.2.6
rotate left logical (rol) 7.2.3
rotate right logical (ror) 7.2.3

shift

described 7.2.3
index subtypes of 7.2.3
subtype of result 7.2.3
values returned 7.2.3
where used 7.1

shift left arithmetic (sla) 7.2.3
shift left logical (sll) 7.2.3
shift right arithmetic (sra) 7.2.3
shift right logical (srl) 7.2.3
short-circuit 7.3.1
sign operators 7.2.5

where used 7.1

subtraction (-) 7.2.4

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (50 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

unary 2.3.1, 7.2.1, 7.2.5
user-defined 2.3.1

Operators, see also Characters, Symbols. Optional items 0.2.1

Options

syntax 9.5
where used 9.5.1, 9.5.2

Others

in array aggregates 7.3.2.2
in record aggregates 7.3.2.1
where used 7.3.2

OUT ports, see Ports. Overload resolution

context of 10.5
for selected names 6.3
other factors for legality of named entities 10.5

Overloading, see Enumeration literals, Operators, Resolution
functions,Signatures, Subprograms.
Package bodies

containing group declarations 4.7
described 2, 2.6
syntax 2.6
values of deferred constants 4.3.1.1
visibility 2.6
when unnecessary 2.5
where used 11.1

Package declarations

deferred constants 4.3.1.1
denoted by group declarations 4.7
described 2, 2.5

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (51 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

scope of 10.2
syntax 2.5
where used 11.1

Packages

as declarative regions 10.1
denoting items in 6.3
elaboration of 12.1
in instance names 14.1:E'
in path names 14.1:E'
predefined

location in STD library 11.2
STANDARD 14.2
TEXTIO 3.4.1, 14.3

scope of declarations in 2.5
usage 2

Parameter specifications

generate

where used 9.7

loop

elaboration of 12.5
restrictions on 8.9
syntax 8.9
where used 8.9

Parameters

constant 2.1.1.1
file 2.1.1.3
mechanisms for passing 2.4, 4.3.2.2
of functions 7.3.3

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (52 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

of procedures 8.6
signal 2.1.1.2
variable 2.1.1.1

Parent

of subprogram 2.2

Passive statements 1.1.3
Path names, syntax of 14.1:E'
PATH_NAME attribute 7.4.1, 14.1:E'

portability issues Annex C

Physical types

described 3.1.3
elaboration of 12.3.1.2
position numbers of values 3.1.3
predefined 3.1.3.1
syntax 3.1.3
unit names 3.1.3

Physical types, see also Literals: physical. Port clauses

elaboration of 12.2.3
syntax 1.1.1
where used 4.5, 9.1

Port lists

containing interface signals 4.3.2
defined 1.1.1
syntax 1.1.1.2
where used 1.1.1

Port map aspect

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (53 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

default 5.2.1.2, 5.2.2
described 5.2.1.2
elaboration of 12.2.4
syntax 5.2.1.2
usage 5.2.1
where used 5.2.1, 9.1, 9.6

Ports

actual 1.1.1.2
as signal sources 4.3.1.2
associations 1.1.1.2
connected 1.1.1.2
described 1.1.1.2
formal 1.1.1.2, 5.2.2

as objects 4.3
in binding indications 5.2.1
in block headers 9.1

in top-level design entity 12.1
INOUT 1.1.1.2
input 1.1.1.2
linkage 1.1.1.2

portability issues Annex C

of unconstrained array types 3.2.1.1
open 1.1.1.1
output 1.1.1.1
restrictions on mode 1.1.1.2
scope of 10.2
unassociated 1.1.1.1
unconnected 1.1.1.1, 1.1.1.2
where used 4.3.2.2

Ports, see also Interface objects.
POS attribute 3.1.3, 14.1:T'

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (54 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

POSITIVE subtype 3.2.1.2
PRED attribute 14.1:T'
Primaries

globally static 7.4.2
locally static 7.4.1

Primary unit declarations

syntax 3.1.3
where used 3.1.3

Procedure call statements

defining parentage of subprograms 2.2
described 8.6
execution of 8.6
syntax 8.6
usage 2.1, 9.3
where used 8, 9.3

Procedure call statements, see also Concurrent procedure call statements.
Procedure calls

portability issues Annex C

Procedures

execution of 8.12
object classes for 2.1.1
parents of 8.1
persistence of variables in 4.3.1.3
restrictions when invoked by concurrent procedure call
statements 9.3
syntax 2.1
usage 2

Procedures, see also Return statements. Process declarative items

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (55 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 9.2
where used 9.2

Process declarative part

syntax 9.2
where used 9.2

Process statement part

syntax 9.2
where used 9.2

Process statements

as declarative regions 10.1
described 9.2, 12.6.1
drivers in 2.1.1.2
elaboration of 12.4.4
execution of 9.2, 9.5
labels within 8
syntax 9.2
where used 1.1.3, 9

Processes

communicating via file I/O Annex C
execution of 9.2, 12.6.4
initialization of 12.6.4
interconnection via concurrent statements 9
kernel 12.6
non-postponed 9.2, 12.6.4
passive 9.2
persistence of variables in 4.3.1.3
postponed 8.1, 9.2, 9.4, 9.5, 12.6.4
suspended 8.1

Pulse rejection limits 3.1.3.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (56 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

QUIET attribute 2.2, 4.3, 4.3.2, 12.6, 14.1:S', 14.1

updating of signals having 12.6.3, 12.6.4

RANGE attribute 13.9, 14.1:A
Range constraints

bounds

for floating point types 3.1.4
for integer types 3.1.2
for physical types 3.1.3

elaboration of 12.3.1.3
globally static 7.4.2
in subtype indications 3.1
locally static 7.4.1
syntax 3.1
where used 3.1.2, 3.1.3, 3.1.4, 4.1

Ranges

bounds 3.1
globally static 7.4.2
index 3.2.1
locally static 7.4.1
null 3.1
order 3.1
syntax 3.1
undefined 3.2.1
where used 3.1.4.1

Read-only mode, see File types: operations.
REAL type

described 3.1.4.1

REAL type, see also Literals: real.
Record types

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (57 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

aggregates 7.3.2
described 3.2.2
elaboration of 12.3.1.2
implicit file operations for 3.4.1
scope of 10.2
subprogram parameters of 2.1.1.1
syntax 3.2.2
where used 3.2

Records

elements of 6.3
index ranges of array types 3.2.1.1

Relations

syntax 7.1
where used 7.1

Report statements

described 8.3
syntax 8.3
where used 8

Reserved words 0.2.1

described 13.9

Resolution functions

described 2.4
for resolved signals 4.3.1.2
portability issues AnnexC
references to overloaded subprograms 2.3, 10.5
restrictions with allocators 7.3.6
usage 4.2
where used 4.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (58 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

Resolution limit 3.1.3.1
Return statements

described 8.12
restrictions 8.12, 10.5
syntax 8.12
where used 8, 8.12

REVERSE_RANGE attribute 14.1:A'
RIGHT attribute 14.1:T', 14.1:A', 14.1
RIGHTOF attribute 14.1:T'
Scalar types

described 3, 3.1, 3.2
implicit file operations for 3.4.1
restrictions

on signals 4.3.1.2

subprogram parameters of 2.1.1.1
used as formal signal parameters 2.1.1.2

Scope

of block configurations 1.3.1
of declarations 4, 10.2
of library clauses 11.2
overlapping 10.3
rules for elaboration 12.3.1

Secondary unit declarations

syntax 3.1.3
where used 3.1.3

Selected signal assignments 2.3.1

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (59 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

described 9.5.2
syntax 9.5.2
where used 9.5

Sensitivity clauses

application of rules for 9.3, 9.5
described 8.1
syntax 8.1
where used 8

Sensitivity lists 4.3.2

restrictions within process statements 9.2
syntax 8.1
where used 8.1, 9.2

Separators 13.2

defined 13.2

Sequence of statements

syntax 8
where used 8.7, 8.8, 8.9

Sequential statements

syntax 8
where used .2.2, 8, 9.2

Sequential statements, see also Elaboration: dynamic, Process statements.
SEVERITY_LEVEL type 8.3

where used 8.3

Shared variable declarations

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (60 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

described 4.3.1.3
portability issues AnnexC
syntax 4.3.1.3
where used 1.1.2, 1.2.1, 2.5, 2.6

Signal assignment statements 4.3.1.2

described 8.4
drivers affected by 8.4.1
drivers associated with 12.6.1
in procedures outside of processes 8.4.1
restrictions on types in 8.4
syntax 8.4
targets of

composite types 8.4.1
scalar types 8.4.1

where used 8, 9.5.1

Signal assignment statements, see also Concurrent signal assignment
statements,Conditional signal assignments, Selected signal assignments.
Signal declarations

described 4.3.1.2
syntax 4.3.1.2
where used 1.1.2

Signal kind

syntax 4.3.1.2
where used 4.3.1.2

Signal lists

syntax 5.3
where used 5.3

Signal transforms

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (61 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

described 9.5.1
where used 9.5, 9.5.1, 9.5.2

Signals

active 12.6.2, 12.6.3
associations

with formal parameters 2.1.1.2
with formal ports 4.3.2.1

basic 12.6.2
bus 2.1.1.2, 2.4, 4.3.2
denoted by concurrent procedure call statements 9.3
drivers of 2.1.1.2, 12.6.1
events on 12.6.2
explicit 2.2, 4.3.1.2, 12.6.4

when updated 12.6.2

GUARD 9.1, 9.3, 9.4, 9.5, 12.6

effect on simulation cycle 12.6.4
when updated 12.6.3

guarded 2.1.1.2, 2.2, 4.3.1.2, 4.3.2, 5.3

elaboration of 12.3.2.3
usage 8.4.1

implicit 2.2, 4.3, 9.1, 12.6.4

when updated 12.6.2, 12.6.3

index ranges of 3.2.1.1
initial values of 4.3.1.2
quiet 12.6.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (62 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

registers 12.6.2

when updated 12.6.2

resolved 2.4, 4.2, 4.3.1.2
restrictions within blocks 12.3
sources of 4.3.1.2
terminology 4.3.1.2
unresolved 4.3.1.2, 12.6.2
used as subprogram parameters 2.1.1.2
values

default 4.3.1.2
driving 12.6.2, 12.6.3
effective 12.6.2
in blocks 12.3
propagation of 2.3.1, 12.6.2

when updated 4.3.2
where used 4.3.2.2, 8.1

Signatures

described 2.3.2
syntax 2.3.2
usage 6.6
where used 4.3.3, 5.1, 6.6

Signs, see Operators: sign operators.
Simple expressions, where used 3.1
Simple names, where used 6.6
SIMPLE_NAME attribute 14.1:E'
Simulation cycle, see Models, simulation of.
Slices

null 6.5
of constants 4.3.1.1
of objects 4.3

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (63 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

Specifications

defined 5
elaboration of 12.3.2.3

STABLE attribute 2.2, 4.3, 4.3.2, 12.6, 14.1:S'

updating of signals having 12.6.3

STANDARD package

contents of 14.2
location in STD library 11.2
usage 0.2.2, 2.2, 3, 3.1.1.1, 3.1.3.1, 3.2.1.2, 7.2, 7.5

Statement transforms 9.5
STRING type 3.2.1.2, 4.3.1.4

where used 8.3

String types, see also Literals: string.
Structural designs 9.6
Subaggregates, see Aggregates.
Subelements

of constants 4.3.1.1
of objects 4.3.1
of signals 4.3.1.2
of variables 4.3.1.3
terminology 3
usage 3

Subprogram bodies

containing group declarations 4.7
defined in package 2.6
described 2.2
elaboration of 12.3.1.1
execution 2.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (64 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

labels within 8
syntax 2.2
usage 2.1
where used 1.1.2, 1.2.1, 2.2, 2.6, 9.2

Subprogram calls

object classes for 2.1.1.1
recursive 2.1
to overloaded subprograms 2.3, 10.5
usage 2.2

Subprogram declarations

described 2.1, 2.2
elaboration of 12.3.1.1, 12.5
scope of 10.2
syntax 2.1
usage 2.1, 2.2
where used 1.1.2, 1.2.1, 2.2, 2.5, 2.6, 9.2

Subprogram declarative part

syntax 2.2
usage 5
where used 2.2

Subprogram kind

syntax 2.2
usage 2.2
where used 2.2

Subprogram specifications

described 2.2
scope of 10.2
where used 2.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (65 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

Subprogram statement part

syntax 2.2
where used 2.2

Subprograms

as declarative regions 10.1
conformance rules 2.7
drivers in 2.1.1.2
foreign 2.2
of unconstrained array types 3.2.1.1
overloaded 2.3, 2.3.2

attributes of 5.1
resolution of 10.5
visibility rules for 10.3

parents of 2.2
usage 2.1

Subtype declarations

described 4.2
elaboration of 12.3.1.3
syntax 4.2
where used 1.1.2, 1.2.1, 2.2, 2.5, 2.6, 9.2

Subtype indications

containing index constraints 3.2.1.1
containing range constraints 3.1
direction 4.2
elaboration of 12.3.1.4, 12.3.1.5, 12.5
of incomplete types 3.3.1
syntax 4.2
where used 3.2.1, 3.3, 4.2, 4.3.1.1, 4.3.1.2, 4.3.1.3, 4.3.1.4, 4.3.2, 4.3.3, 7.3.6

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (66 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

Subtypes

base type of 4.1
bounds 2.1.1.2
checking 8.4.1
conversions 3.2.1.1, 8.12

with array variables 8.5.1

designated 3.3
direction 2.1.1.2
globally static 7.4.2
locally static 7.4.1
of function results 2.1
operations 3
static 7.4
usage 3

SUCC attribute 14.1:T'
Symbols

assignment (:=) 4.3.1.1, 4.3.1.2, 4.3.1.3, 4.3.2
box (<>)

in group template declarations 4.6
in undefined ranges 3.2.1

Symbols, see also Characters, Operators.
Targets

array variables 8.5.1
drivers for 8.4.1
guarded 9.5
of signal assignment statements 8.4
of variable assignment statements 8.5
syntax 8.4
where used 8.4, 8.5, 9.5, 9.5.2

Terms

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (67 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 7.1
where used 7.1

TEXTIO package

contents of 14.3
location in STD library 11.2
usage 3.4.1

Time resolutions, portability issues AnnexC
TIME type 3.1.3.1, 8.4.1
Timeout clauses

described 8.1
syntax 8.1
where used 8.1

TRANSACTION attribute 2.2, 4.3, 4.3.2, 12.6.1, 14.1:S'

initial value of signals 12.6.4
updating of signals having 12.6.3

Transactions

null 8.4.1

Transactions, see also Drivers
Type conversions

as a basic operation 3
described 7.3.5
implicit 8.4, 8.5, 8.12, 10.5
in association lists

as actuals 4.3.2.2
as formals 4.3.2.2

restrictions

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (68 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

in signal associations 4.3.2.2
on operands 7.3.5

syntax 7.3.5
usage

as globally static primaries 7.4.2
as locally static primaries 7.4.1

where used 7.1

Type declarations

as declarative regions 10.1
described 4.1
elaboration of 12.3.1.2
incomplete 3.3.1
syntax of full 4.1
where used 1.1.2, 1.2.1, 2.2, 2.5, 2.6, 9.2

Type marks

described 4.2
in incomplete type declarations 3.3.1
syntax 4.2
where used 2.3.2, 3.2.1, 4.2, 4.3.2.2, 4.4, 5.3, 7.3.4

Type profiles 2.3, 2.3.2

of enumeration literals 3.1.1

Types

anonymous 3.1.2, 3.1.3, 3.1.4, 4.1, 14.2

universal integer 3.1.2, 3.2.1.1, 7.3.1, 7.3.5, 7.5, 8.8, 13.4, 14.2
universal real 7.3.1, 7.3.5, 7.5, 13.4, 14.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (69 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

base type of 3, 4.2
character 3.1.1
closely related 7.3.5
compatibility with index constraints 3.2.1.1
constraints 3
designated 3.3
floating point 7.5
in resolution functions 2.4
in rules for overload resolution 10.5
incomplete 3.3.1
of expressions 7.1
operations 3
portability issues AnnexC
predefined

BIT 14.2
BIT_VECTOR 14.2
BOOLEAN 14.2
CHARACTER 14.2
FILE_OPEN_KIND 14.2
FILE_OPEN_STATUS 14.2
INTEGER 14.2
NATURAL 14.2
POSITIVE 14.2
REAL 14.2
SEVERITY_LEVEL 14.2
STRING 14.2
TIME 14.2

terminology 3

Types, see also names of specific type categories.
Underlines 13.3.1, 13.4.1, 13.7
Universal types, see Types: anonymous. Use clauses

described 10.4
scope of 10.2
syntax 10.4

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (70 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

usage 2.5

with multiple mentions of a library unit 11.3
with standard packages 11.2

where used 1.1.2, 1.2.1, 1.3, 1.3.1, 2.2, 2.5, 2.6, 9.2, 11.3

VAL attribute 3.1.3, 14.1:T'
VALUE attribute 14.1:T'
Values

allowed as primaries 7.1
Conversion between abstract and physical 3.1.3

Variable assignment statements 4.3.1.3

described 8.5
restrictions on types in 8.5
syntax 8.5
where used 8

Variable declarations

described 4.3.1.3
syntax 4.3.1.3
where used 2.2, 4.3.1, 9.2

Variables

default initial values 4.3.1.3
explicit 4.3.1.3
in kernel process 12.6
index ranges of 3.2.1.1
initial values of 4.3.1.3
of access types 3.3, 4.7
used as subprogram parameters 2.1.1.1
where used 4.3.2.2

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (71 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

Variables, see also Shared variable declarations.
Visibility

by selection 10.3
direct 10.3
hidden 10.3
of block configurations 1.3.1
of entity declarations 5.2.2
of entity declarative items 1.1.2
of generic constants 1.1.1
of identifiers 4
of items in package bodies 2.6
of logical names in library clauses 11.2
of overloaded subprograms 2.3
of ports 1.1.1
of predefined operations 10.3
rules

for declarations 10.3
for elaboration 12.3.1
for identifiers 10.3, 10.5
of order in which design units are analyzed 11.4

within block configurations 10.3

Wait statements

described 8.1
implicit 9.2
syntax 8.1
usage

with concurrent procedure call statements 9.3
with concurrent signal assignment statements 9.5

where prohibited 8.1, 9.2
where used 8.1

Wave transforms

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (72 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

syntax 9.5.1
where used 9.5.1, 9.5.2

Waveform elements

evaluation of 8.4.1
null, restrictions on 8.4.1, 9.5
syntax 8.4.1
unaffected 9.5
where used 8.4

Waveforms

conditional

syntax 9.5.1
where used 9.5.1

projected output

described 12.6.2
updating 8.4.1

selected

syntax 9.5.2
where used 9.5.2

syntax 8.4
where used 8.4, 9.5.1, 9.5.2

WAVES standard AnnexE
Write-only mode, see File types: operations

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_INA.HTM (73 of 73) [12/28/2002 12:49:46 PM]

VHDL LRM- Introduction

Section 3

Types
This section describes the various categories of types that are provided by the language as well as those specific types that are
predefined. The declarations of all predefined types are contained in package STANDARD, the declaration of which appears
in Section 14.

A type is characterized by a set of values and a set of operations. The set of operations of a type includes the explicitly
declared subprograms that have a parameter or result of the type. The remaining operations of a type are the basic operations
and the predefined operators (see 7.2). These operations are each implicitly declared for a given type declaration immediately
after the type declaration and before the next explicit declaration, if any.

A basic operation is an operation that is inherent in one of the following:

-- An assignment (in assignment statements and initializations)

-- An allocator

-- A selected name, an indexed name, or a slice name

-- A qualification (in a qualified expression), an explicit type conversion, a formal or actual part in the form of a type
conversion, or an implicit type conversion of a value of type universal_integer or universal_real to the corresponding
value of another numeric type

-- A numeric literal (for a universal type), the literal null (for an access type), a string literal, a bit string literal, an
aggregate, or a predefined attribute

There are four classes of types. Scalar types are integer types, floating point types, physical types, and types defined by an
enumeration of their values; values of these types have no elements. Composite types are array and record types; values of
these types consist of element values. Access types provide access to objects of a given type. File types provide access to
objects that contain a sequence of values of a given type.

The set of possible values for an object of a given type can be subjected to a condition that is called a constraint (the case
where the constraint imposes no restriction is also included); a value is said to satisfy a constraint if it satisfies the
corresponding condition. A subtype is a type together with a constraint. A value is said to belong to a subtype of a given type if
it belongs to the type and satisfies the constraint; the given type is called the base type of the subtype. A type is a subtype of
itself; such a subtype is said to be unconstrained (it corresponds to a condition that imposes no restriction). The base type of a
type is the type itself.

The set of operations defined for a subtype of a given type includes the operations defined for the type; however, the
assignment operation to an object having a given subtype only assigns values that belong to the subtype. Additional operations,
such as qualification (in a qualified expression) are implicitly defined by a subtype declaration.

The term subelement is used in this manual in place of the term element to indicate either an element, or an element of another
element or subelement. Where other subelements are excluded, the term element is used instead.

A given type must not have a subelement whose type is the given type itself.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (1 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

A member of an object is either

- A slice of the object,

- A sub element of the object, or

- A slice of a sub eleent of the object

The name of a class of types is used in this manual as a qualifier for objects and values that have a type of the class considered.
For example, the term array object is used for an object whose type is an array type; similarly, the term access value is used
for a value of an access type.

NOTE--The set of values of a subtype is a subset of the values of the base type. This subset need not be a proper subset.

3.1 Scalar Types

Scalar types consist of enumeration types, integer types, physical types, and floating point types. Enumeration types and
integer types are called discrete types. Integer types, floating point types,and physical types are called numeric types. All scalar
types are ordered; that is, all relational operators are predefined for their values. Each value of a discrete or physical type has a
position number that is an integer value.

 scalar_type_definition ::=
 enumeration_type_definition | integer_type_definition
 | floating_type_definition |physical_type_definition

 range_constraint ::= range range

 range ::=
 range_attribute_name
 | simple_expression direction simple_expression

 direction ::= to | downto

A range specifies a subset of values of a scalar type. A range is said to be a null range if the specified subset is empty.

The range L to R is called an ascending range; if L > R, then the range is a null range. The range L downto R is called a
descending range; if L < R, then the range is a null range. The smaller of L and R is called the lower bound, and the larger, the
upper bound, of the range. The value V is said to belong to the range if the relations (lower bound <= V) and (V <= upper
bound) are both true and the range is not a null range. The operators>, <, and <= in the preceding definitions are the predefined
operators of the applicable scalar type.

For values of discrete or physical types, a value V1 is said to be to the left of a value V2 within a given range if both V1 and
V2 belong to the range and either the range is an ascending range and V2 is the successor of V1 or the range is a descending
range and V2 is the predecessor of V1. A list of values of a given range is in left to right order if each value in the list is to the
left of the next value in the list within that range, except for the last value in the list.

If a range constraint is used in a subtype indication, the type of the expressions (likewise, of the bounds of a range attribute)
must be the same as the base type of the type mark of the subtype indication. A range constraint is compatible with a subtype if
each bound of the range belongs to the subtype or if the range constraint defines a null range. Otherwise, the range constraint is
not compatible with the subtype.

The direction of a range constraint is the same as the direction of its range.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (2 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

NOTE--Indexing and iteration rules use values of discrete types.

3.1.1 Enumeration types

An enumeration type definition defines an enumeration type.

 enumeration_type_definition ::=
 (enumeration_literal { , enumeration_literal })

 enumeration_literal ::= identifier | character_literal

The identifiers and character literals listed by an enumeration type definition must be distinct within the enumeration type
definition. Each enumeration literal is the declaration of the corresponding enumeration literal; for the purpose of determining
the parameter and result type profile of an enumeration literal, this declaration is equivalent to the declaration of a
parameterless function whose designator is the same as the enumeration literal and whose result type is the same as the
enumeration type.

An enumeration type is said to be a character type if at least one of its enumeration literals is a character literal.

Each enumeration literal yields a different enumeration value. The predefined order relations between enumeration values
follow the order of corresponding position numbers. The position number of the value of the first listed enumeration literal is
zero; the position number for each additional enumeration literal is one more than that of its predecessor in the list.

If the same identifier or character literal is specified in more than one enumeration type definition, the corresponding literals
are said to be overloaded. At any place where an overloaded enumeration literal occurs in the text of a program, the type of the
enumeration literal is determined according to the rules for overloaded subprograms (see 2.3).

Each enumeration type definition defines an ascending range.

Examples:

 type MULTI_LEVEL_LOGIC is (LOW, HIGH, RISING, FALLING, AMBIGUOUS) ;

 type BIT is ('0','1') ;

 type SWITCH_LEVEL is ('0','1','X') ; -- Overloads '0' and '1'

3.1.1.1 Predefined enumeration types

The predefined enumeration types are CHARACTER, BIT, BOOLEAN, SEVERITY_LEVEL, FILE_OPEN_KIND, and
FILE_OPEN_STATUS.

The predefined type CHARACTER is a character type whose values are the 256 characters of the ISO 8859-1 character set.
Each of the 191 graphic characters of this character set is denoted by the corresponding character literal.

The declarations of the predefined types CHARACTER, BIT, BOOLEAN, SEVERITY_LEVEL, FILE_OPEN_KIND, and
FILE_OPEN_STATUS appear in package STANDARD in Section 14.

NOTES

1--The first 17 nongraphic elements of the predefined type CHARACTER (from NUL through DEL) are the ASCII
abbreviations for the nonprinting characters in the ASCII set (except for those noted in Section 14). The ASCII names are
chosen as ISO 8859-1 does not assign them abbreviations. The next 16 (C128through C159) are also not assigned
abbreviations, so names unique to VHDL are assigned.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (3 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

2--Type BOOLEAN can be used to model either active high or active low logic depending on the particular conversion
functions chosen to and from type BIT.

3.1.2 Integer types

An integer type definition defines an integer type whose set of values includes those of the specified range.

 integer_type_definition ::= range_constraint

An integer type definition defines both a type and a subtype of that type. The type is an anonymous type, the range of which is
selected by the implementation; this range must be such that it wholly contains the range given in the integer type definition.
The subtype is a named subtype of this anonymous base type, where the name of the subtype is that given by the
corresponding type declaration and the range of the subtype is the given range.

Each bound of a range constraint that is used in an integer type definition must be a locally static expression of some integer
type, but the two bounds need not have the same integer type. (Negative bounds are allowed.)

Integer literals are the literals of an anonymous predefined type that is called universal_integer in this standard. Other integer
types have no literals. However, for each integer type there exists an implicit conversion that converts a value of type
universal_integer into the corresponding value (if any) of the integer type (see 7.3.5).

The position number of an integer value is the corresponding value of the type universal_integer.

The same arithmetic operators are predefined for all integer types (see 7.2). It is an error if the execution of such an operation
(in particular, an implicit conversion) cannot deliver the correct result (that is, if the value corresponding to the mathematical
result is not a value of the integer type).

An implementation may restrict the bounds of the range constraint of integer types other than type universal_integer.
However, an implementation must allow the declaration of any integer type whose range is wholly contained within the
bounds -2147483647 and +2147483647 inclusive.

Examples:

 type TWOS_COMPLEMENT_INTEGER is range -32768 to 32767;

 type BYTE_LENGTH_INTEGER is range 0 to 255;

 type WORD_INDEX is range 31 down to 0;

 subtype HIGH_BIT_LOW is BYTE_LENGTH_INTEGER range 0 to 127;

3.1.2.1 Predefined integer types

The only predefined integer type is the type INTEGER. The range of INTEGER is implementation dependent, but it is
guaranteed to include the range -2147483647to +2147483647. It is defined with an ascending range.

NOTE--The range of INTEGER in a particular implementation may be determined from the 'LOW and 'HIGH attributes.

3.1.3 Physical types

Values of a physical type represent measurements of some quantity. Any value of a physical type is an integral multiple of the
primary unit of measurement for that type.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (4 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

 physical_type_definition ::=
 range_constraint
 units
 primary_unit_declaration
 { secondary_unit_declaration }
 end units [physical_type_simple_name]
 primary_unit_declaration ::= identifier

 secondary_unit_declaration ::= identifier = physical_literal ;

 physical_literal ::= [abstract_literal] unit_name

A physical type definition defines both a type and a subtype of that type. The type is an anonymous type, the range of which is
selected by the implementation; this range must be such that it wholly contains the range given in the physical type definition.
The subtype is a named subtype of this anonymous base type, where the name of the subtype is that given by the
corresponding type declaration and the range of the subtype is the given range.

Each bound of a range constraint that is used in a physical type definition must be a locally static expression of some integer
type, but the two bounds need not have the same integer type. (Negative bounds are allowed.)

Each unit declaration (either the primary unit declaration or a secondary unit declaration) defines a unit name. Unit names
declared in secondary unit declarations must be directly or indirectly defined in terms of integral multiples of the primary unit
of the type declaration in which they appear. The position numbers of unit names need not lie within the range specified by the
range constraint.

If a simple name appears at the end of a physical type declaration, it must repeat the identifier of the type declaration in which
the physical type definition is included.

The abstract literal portion (if present) of a physical literal appearing in a secondary unit declaration must be an integer literal.

A physical literal consisting solely of a unit name is equivalent to the integer 1 followed by the unit name.

There is a position number corresponding to each value of a physical type. The position number of the value corresponding to
a unit name is the number of primary units represented by that unit name. The position number of the value corresponding to a
physical literal with an abstract literal part is the largest integer that is not greater than the product of the value of the abstract
literal and the position number of the accompanying unit name.

The same arithmetic operators are predefined for all physical types (see 7.2). It is an error if the execution of such an operation
cannot deliver the correct result (that is, if the value corresponding to the mathematical result is not a value of the physical
type).

An implementation may restrict the bounds of the range constraint of a physical type. However, an implementation must allow
the declaration of any physical type whose range is wholly contained within the bounds -2147483647 and +2147483647
inclusive.

Examples:

 type DURATION is range -1E18 to 1E18
 units
 fs; -- femtosecond
 ps = 1000 fs; -- picosecond
 ns = 1000 ps; -- nanosecond
 us = 1000 ns; -- microsecond
 ms = 1000 us; -- millisecond

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (5 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

 sec = 1000 ms; -- second
 min = 60 sec; -- minute
 end units;

 type DISTANCE is range 0 to 1E16
 units
 -- primary unit:
 A; -- angstrom

 -- metric lengths:
 nm = 10 A; -- nanometer
 um = 1000 nm; -- micrometer (or micron)
 mm = 1000 um; -- millimeter
 cm = 10 mm; -- centimeter
 m = 1000 mm; -- meter
 km = 1000 m; -- kilometer

 -- English lengths:
 mil = 254000 A; -- mil
 inch = 1000 mil; -- inch
 ft = 12 inch; -- foot
 yd = 3 ft; -- yard
 fm = 6 ft; -- fathom
 mi = 5280 ft; -- mile
 lg = 3 mi; -- league
 end units DISTANCE;

 variable x: distance; variable y: duration; variable z: integer;

 x := 5 A + 13 ft - 27 inch;
 y := 3 ns + 5 min;
 z := ns / ps;
 x := z * mi;
 y := y/10;
 z := 39.34 inch / m;

NOTES

1-- The 'POS and 'VAL attributes may be used to convert between abstract values and physical values.

2-- The value of a physical literal whose abstract literal is either the integer value zero or the floating point value zero is the
same value (specifically zero primary units) no matter what unit name follows the abstract literal.

3.1.3.1 Predefined physical types

The only predefined physical type is type TIME. The range of TIME is implementation dependent, but it is guaranteed to
include the range -2147483647 to +2147483647. It is defined with an ascending range. All specifications of delays and pulse
rejection limits must be of type TIME. The declaration of type TIME appears in package STANDARD in Section 14.

By default, the primary unit of type TIME (1 femtosecond) is the resolution limit for type TIME. Any TIME value whose
absolute value is smaller than this limit is truncated to zero (0) time units. An implementation may allow a given execution of a
model (see 12.6) to select a secondary unit of type TIME as the resolution limit. Furthermore, an implementation may restrict
the precision of the representation of values of type TIME and the results of expressions of type TIME, provided that values as
small as the resolution limit are representable within those restrictions. It is an error if a given unit of type TIME appears
anywhere within the design hierarchy defining a model to be executed, and if the position number of that unit is less than that
of the secondary unit selected as the resolution limit for type TIME during the execution of the model.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (6 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

NOTE--By selecting a secondary unit of type TIME as the resolution limit for type TIME, it may be possible to simulate for a
longer period of simulated time, with reduced accuracy, or to simulate with greater accuracy for a shorter period of simulated
time.

Cross-References: Delay and rejection limit in a signal assignment, 8.4 ; Disconnection, delay of a guarded signal, 5.3 ;
Function NOW, 14.2 ;Predefined attributes, functions of TIME, 14.1 ; Simulation time, 12.6.2 and 12.6.3 ; Type TIME, 14.2 ;
Updating a projected waveform, 8.4.1 ; Wait statements, timeout clause in, 8.1 .

3.1.4 Floating point types

Floating point types provide approximations to the real numbers. Floating point types are useful for models in which the
precise characterization of a floating point calculation is not important or not determined.

 floating_type_definition ::= range_constraint

A floating type definition defines both a type and a subtype of that type. The type is an anonymous type, the range of which is
selected by the implementation; this range must be such that it wholly contains the range given in the floating type definition.
The subtype is a named subtype of this anonymous base type, where the name of the subtype is that given by the
corresponding type declaration and the range of the subtype is the given range.

Each bound of a range constraint that is used in a floating type definition must be a locally static expression of some floating
point type, but the two bounds need not have the same floating point type. (Negative bounds are allowed.)

Floating point literals are the literals of an anonymous predefined type that is called universal_real in this standard. Other
floating point types have no literals. However, for each floating point type there exists an implicit conversion that converts a
value of type universal_real into the corresponding value (if any) of the floating point type (see 7.3.5).

The same arithmetic operations are predefined for all floating point types (see 7.2). A design is erroneous if the execution of
such an operation cannot deliver the correct result (that is, if the value corresponding to the mathematical result is not a value
of the floating point type).

An implementation may restrict the bounds of the range constraint of floating point types other than type universal_real.
However, an implementation must allow the declaration of any floating point type whose range is wholly contained within the
bounds - 1.0 E38 and + 1.0 E38 inclusive. The representation of floating point types must include a minimum of six decimal
digits of precision.

NOTE--An implementation is not required to detect errors in the execution of a predefined floating point arithmetic operation,
since the detection of overflow conditions resulting from such operations may not be easily accomplished on many host
systems.

3.1.4.1 Predefined floating point types

The only predefined floating point type is the type REAL. The range of REAL is host-dependent, but it is guaranteed to
include the range - 1.0 E38 to + 1.0 E38 inclusive. It is defined with an ascending range.

NOTE--The range of REAL in a particular implementation may be determined from the 'LOW and 'HIGH attributes.

3.2 Composite types

Composite types are used to define collections of values. These include both arrays of values (collections of values of a
homogeneous type) and records of values (collections of values of potentially heterogeneous types).

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (7 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

 composite_type_definition ::=
 array_type_definition
 | record_type_definition

An object of a composite type represents a collection of objects, one for each element of the composite object. A composite
type may only contain elements that are of scalar, composite, or access types; elements of file types are not allowed in a
composite type. Thus an object of a composite type ultimately represents a collection of objects of scalar or access types, one
for each noncomposite subelement of the composite object.

3.2.1 Array types

An array object is a composite object consisting of elements that have the same subtype. The name for an element of an array
uses one or more index values belonging to specified discrete types. The value of an array object is a composite value
consisting of the values of its elements.

 array_type_definition ::=
 unconstrained_array_definition | constrained_array_definition

 unconstrained_array_definition ::=
 array (index_subtype_definition { , index_subtype_definition })
 of element_subtype_indication

 constrained_array_definition ::=
 array index_constraint of element_subtype_indication

 index_subtype_definition ::= type_mark range <>

 index_constraint ::= (discrete_range { , discrete_range })

 discrete_range ::= discrete_subtype_indication | range

An array object is characterized by the number of indices (the dimensionality of the array); the type, position, and range of
each index; and the type and possible constraints of the elements. The order of the indices is significant.

A one-dimensional array has a distinct element for each possible index value. A multidimensional array has a distinct element
for each possible sequence of index values that can be formed by selecting one value for each index (in the given order). The
possible values for a given index are all the values that belong to the corresponding range; this range of values is called the
index range.

An unconstrained array definition defines an array type and a name denoting that type. For each object that has the array type,
the number of indices, the type and position of each index, and the subtype of the elements are as in the type definition. The
index subtype for a given index position is, by definition, the subtype denoted by the type mark of the corresponding index
subtype definition. The values of the left and right bounds of each index range are not defined but must belong to the
corresponding index subtype; similarly, the direction of each index range is not defined. The symbol <> (called a box) in an
index subtype definition stands for an undefined range (different objects of the type need not have the same bounds and
direction).

A constrained array definition defines both an array type and a subtype of this type:

-- The array type is an implicitly declared anonymous type; this type is defined by an (implicit) unconstrained array
definition, in which the element subtype indication is that of the constrained array definition and in which the type mark
of each index subtype definition denotes the subtype defined by the corresponding discrete range.

-- The array subtype is the subtype obtained by imposition of the index constraint on the array type.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (8 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

If a constrained array definition is given for a type declaration, the simple name declared by this declaration denotes the array
subtype.

The direction of a discrete range is the same as the direction of the range or the discrete subtype indication that defines the
discrete range. If a subtype indication appears as a discrete range, the subtype indication must not contain a resolution function.

Examples:

--Examples of constrained array declarations:

 type MY_WORD is array (0 to 31) of BIT ;
 -- A memory word type with an ascending range.

 type DATA_IN is array (7 downto 0) of FIVE_LEVEL_LOGIC ;
 -- An input port type with a descending range.

--Example of unconstrained array declarations:

 type MEMORY is array (INTEGER range <>) of MY_WORD ;
 -- A memory array type.

--Examples of array object declarations:

 signal DATA_LINE : DATA_IN ;
 -- Defines a data input line.

 variable MY_MEMORY : MEMORY (0 to 2n-1) ;
 -- Defines a memory of 2n 32-bit words.

NOTE--The rules concerning constrained type declarations mean that a type declaration with a constrained array definition
such as

 type T is array (POSITIVE range MINIMUM to MAX) of ELEMENT;

is equivalent to the sequence of declarations

 subtype index_subtype is POSITIVE range MINIMUM to MAX;
 type array_type is array (index_subtype range <>) of ELEMENT;
 subtype T is array_type (index_subtype);

where index_subtype and array_type are both anonymous. Consequently, T is the name of a subtype and all objects declared
with this type mark are arrays that have the same index range.

3.2.1.1 Index constraints and discrete ranges

An index constraint determines the index range for every index of an array type and, thereby, the corresponding array bounds.

For a discrete range used in a constrained array definition and defined by a range, an implicit conversion to the predefined type
INTEGER is assumed if each bound is either a numeric literal or an attribute, and if the type of both bounds (prior to the
implicit conversion) is the type universal_integer. Otherwise, both bounds must be of the same discrete type, other than
universal_integer; this type must be determined independently of the context, but using the fact that the type must be discrete
and that both bounds must have the same type. These rules apply also to a discrete range used in an iteration scheme (see 8.9)
or a generation scheme (see 9.7).

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (9 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

If an index constraint appears after a type mark in a subtype indication, then the type or subtype denoted by the type mark must
not already impose an index constraint. The type mark must denote either an unconstrained array type or an access type whose
designated type is such an array type. In either case, the index constraint must provide a discrete range for each index of the
array type, and the type of each discrete range must be the same as that of the corresponding index.

An index constraint is compatible with the type denoted by the type mark if and only if the constraint defined by each discrete
range is compatible with the corresponding index subtype. If any of the discrete ranges defines a null range, any array thus
constrained is a null array, having no components. An array value satisfies an index constraint if at each index position the
array value and the index constraint have the same index range. (Note, however, that assignment and certain other operations
on arrays involve an implicit subtype conversion.)

The index range for each index of an array object is determined as follows:

-- For a variable or signal declared by an object declaration, the subtype indication of the corresponding object
declaration must define a constrained array subtype (and thereby, the index range for each index of the object). The
same requirement exists for the subtype indication of an element declaration, if the type of the record element is an
array type, and for the element subtype indication of an array type definition, if the type of the array element is itself an
array type.

-- For a constant declared by an object declaration, the index ranges are defined by the initial value, if the subtype of the
constant is unconstrained; otherwise, they are defined by this subtype (in which case the initial value is the result of an
implicit subtype conversion).

-- For an attribute whose value is specified by an attribute specification, the index ranges are defined by the expression
given in the specification, if the subtype of the attribute is unconstrained; otherwise, they are defined by this subtype (in
which case the value of the attribute is the result of an implicit subtype conversion).

-- For an array object designated by an access value, the index ranges are defined by the allocator that creates the array
object (see 7.3.6).

-- For an interface object declared with a subtype indication that defines a constrained array subtype, the index ranges
are defined by that subtype.

-- For a formal parameter of a subprogram that is of an unconstrained array type and that is associated in whole (see
4.3.2.2), the index ranges are obtained from the corresponding association element in the applicable subprogram call.

-- For a formal parameter of a subprogram that is of an unconstrained array type and whose subelements are associated
individually (see 4.3.2.2), the index ranges are obtained as follows:

The directions of the index ranges of the formal parameter are that of the type of the formal; the high and low bounds of
the index ranges are respectively determined from the maximum and minimum values of the indices given in the
association elements corresponding to the formal.

-- For a formal generic or a formal port of a design entity or of a block statement that is of an unconstrained array type
and that is associated in whole, the index ranges are obtained from the corresponding association element in the generic
map aspect (in the case of a formal generic) or port map aspect (in the case of a formal port) of the applicable (implicit
or explicit) binding indication.

-- For a formal generic or a formal port of a design entity or of a block statement that is of an unconstrained array type
and whose subelements are associated individually, the index ranges are obtained as follows:

The directions of the index ranges of the formal generic or formal port are that of the type of the formal; the high and
low bounds of the index ranges are respectively determined from the maximum and minimum values of the indices
given in the association elements corresponding to the formal.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (10 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

-- For a local generic or a local port of a component that is of an unconstrained array type and that is associated in
whole, the index ranges are obtained from the corresponding association element in the generic map aspect (in the case
of a local generic) or port map aspect (in the case of a local port) of the applicable component instantiation statement.

-- For a local generic or a local port of a component that is of an unconstrained array type and whose subelements are
associated individually, the index ranges are obtained as follows:

The directions of the index ranges of the local generic or local port are that of the type of the local; the high and low
bounds of the index ranges are respectively determined from the maximum and minimum values of the indices given in
the association elements corresponding to the local.

If the index ranges for an interface object, or member of an interface object, are obtained from the corresponding association
element (when associating in whole) or elements (when associating individually), then they are determined either by the actual
part(s) or by the formal part(s) of the association element(s), depending upon the mode of the interface object, as follows:

-- For an interface object or member of an interface object whose mode is in, inout, or linkage, if the actual part
includes a conversion function or a type conversion, then the result type of that function or the type mark of the type
conversion must be a constrained array subtype, and the index ranges are obtained from this constrained
subtype;otherwise, the index ranges are obtained from the object or value denoted by the actual designator(s).

-- For an interface object or member of an intercace object whose mode is out, buffer, inout,or linkage, if the formal
part includes a conversion function or a type conversion, then the parameter subtype of that function or the type mark of
the type conversion must be a constrained array subtype, and the index ranges are obtained from this constrained
subtype; otherwise, the index ranges are obtained from the object denoted by the actual designator(s).

For an interface object of mode inout or linkage, the index ranges determined by the first rule must be identical to the index
ranges determined by the second rule.

Examples:

 type Word is array (NATURAL range <>) of BIT;
 type Memory is array (NATURAL range <>) of Word (31 downto 0);

 constant A_Word: Word := "10011";
 -- The index range of A_Word is 0 to 4

 entity E is
 generic (ROM: Memory);
 port (Op1, Op2: in Word; Result: out Word);
 end entity E;
 -- The index ranges of the generic and the ports are defined by the actuals
associated
 -- with an instance bound to E; these index ranges are accessible via the
predefined
 -- array attributes (see 14.1).

 signal A, B: Word (1 to 4);
 signal C: Word (5 downto 0);

 Instance: entity E
 generic map ((1 to 2) => (others => '0'))
 port map (A, Op2(3 to 4) => B (1 to 2), Op2(2) => B (3), Result => C (3
downto 1));
 -- In this instance, the index range of ROM is 1 to 2 (matching that
of the actual),

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (11 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

 -- The index range of Op1 is 1 to 4 (matching the index range of A),
the index range
 -- of Op2 is 2 to 4, and the index range of Result is (3 downto 1)
 -- (again matching the index range of the actual).

3.2.1.2 Predefined array types

The predefined array types are STRING and BIT_VECTOR, defined in package STANDARD in Section 14.

The values of the predefined type STRING are one-dimensional arrays of the predefined type CHARACTER, indexed by
values of the predefined subtype POSITIVE:

 subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH ;
 type STRING is array (POSITIVE range <>) of CHARACTER ;

The values of the predefined type BIT_VECTOR are one-dimensional arrays of the predefined type BIT, indexed by values of
the predefined subtype NATURAL:

 subtype NATURAL is INTEGER range 0 to INTEGER'HIGH ;
 type BIT_VECTOR is array (NATURAL range <>) of BIT ;

Examples:

 variable MESSAGE : STRING(1 to 17) := "THIS IS A MESSAGE" ;

 signal LOW_BYTE : BIT_VECTOR (0 to 7) ;

3.2.2 Record types

A record type is a composite type, objects of which consist of named elements. The value of a record object is a composite
value consisting of the values of its elements.

 record_type_definition ::=
 record
 element_declaration
 { element_declaration }
 end record [record_type_simple_name]

 element_declaration ::=
 identifier_list : element_subtype_definition ;

 identifier_list ::= identifier { , identifier }

 element_subtype_definition ::= subtype_indication

Each element declaration declares an element of the record type. The identifiers of all elements of a record type must be
distinct. The use of a name that denotes a record element is not allowed within the record type definition that declares the
element.

An element declaration with several identifiers is equivalent to a sequence of single element declarations. Each single element
declaration declares a record element whose subtype is specified by the element subtype definition.

If a simple name appears at the end of a record type declaration, it must repeat the identifier of the type declaration in which
the record type definition is included.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (12 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

A record type definition creates a record type; it consists of the element declarations in the order in which they appear in the
type definition.

Example:

 type DATE is
 record
 DAY :INTEGER range 1 to 31;
 MONTH :MONTH_NAME;
 YEAR :INTEGER range 0 to 4000;
 end record;

3.3 Access types

An object declared by an object declaration is created by the elaboration of the object declaration and is denoted by a simple
name or by some other form of name. In contrast, objects that are created by the evaluation of allocators (see 7.3.6) have no
simple name. Access to such an object is achieved by an access value returned by an allocator; the access value is said to
designate the object.

 access_type_definition ::= access subtype_indication

For each access type, there is a literal null that has a null access value designating no object at all. The null value of an access
type is the default initial value of the type. Other values of an access type are obtained by evaluation of a special operation of
the type, called an allocator. Each such access value designates an object of the subtype defined by the subtype indication of
the access type definition. This subtype is called the designated subtype and the base type of this subtype is called the
designated type. The designated type must not be a file type.

An object declared to be of an access type must be an object of class variable. An object designated by an access value is
always an object of class variable.

The only form of constraint that is allowed after the name of an access type in a subtype indication is an index constraint. An
access value belongs to a corresponding subtype of an access type either if the access value is the null value or if the value of
the designated object satisfies the constraint.

Examples:

 type ADDRESS is access MEMORY;
 type BUFFER_PTR is access TEMP_BUFFER;

NOTES

1--An access value delivered by an allocator can be assigned to several variables of the corresponding access type. Hence, it is
possible for an object created by an allocator to be designated by more than one variable of the access type. An access value
can only designate an object created by an allocator; in particular, it cannot designate an object declared by an object
declaration.

2--If the type of the object designated by the access value is an array type, this object is constrained with the array bounds
supplied implicitly or explicitly for the corresponding allocator.

3.3.1 Incomplete type declarations

The designated type of an access type can be of any type except a file type (see 3.3). In particular, the type of an element of

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (13 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

the designated type can be another access type or even the same access type. This permits mutually dependent and recursive
access types. Declarations of such types require a prior incomplete type declaration for one or more types.

 incomplete_type_declaration ::= type identifier ;

For each incomplete type declaration there must be a corresponding full type declaration with the same identifier. This full
type declaration must occur later and immediately within the same declarative part as the incomplete type declaration to which
it corresponds.

Prior to the end of the corresponding full type declaration, the only allowed use of a name that denotes a type declared by an
incomplete type declaration is as the type mark in the subtype indication of an access type definition; no constraints are
allowed in this subtype indication.

Example of a recursive type:

 type CELL; -- An incomplete type
declaration.

 type LINK is access CELL;

 type CELL is
 record
 VALUE : INTEGER;
 SUCC : LINK;
 PRED : LINK;
 end record CELL;
 variable HEAD : LINK := new CELL'(0, null, null);
 variable \NEXT\ : LINK := HEAD.SUCC;

Examples of mutually dependent access types:

 type PART; -- Incomplete type
declarations.
 type WIRE;

 type PART_PTR is access PART;
 type WIRE_PTR is access WIRE;

 type PART_LIST is array (POSITIVE range <>) of PART_PTR;
 type WIRE_LIST is array (POSITIVE range <>) of WIRE_PTR;

 type PART_LIST_PTR is access PART_LIST;
 type WIRE_LIST_PTR is access WIRE_LIST;

 type PART is
 record
 PART_NAME : STRING (1 to MAX_STRING_LEN);
 CONNECTIONS : WIRE_LIST_PTR;
 end record;

 type WIRE is
 record
 WIRE_NAME : STRING (1 to MAX_STRING_LEN);
 CONNECTS : PART_LIST_PTR;
 end record;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (14 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

3.3.2 Allocation and deallocation of objects

An object designated by an access value is allocated by an allocator for that type. An allocator is a primary of an expression;
allocators are described in 7.3.6 . For each access type, a deallocation operation is implicitly declared immediately following
the full type declaration for the type. This deallocation operation makes it possible to deallocate explicitly the storage occupied
by a designated object.

Given the following access type declaration:

 type AT is access T;

the following operation is implicitly declared immediately following the access type declaration:

 procedure DEALLOCATE (P: inout AT) ;

Procedure DEALLOCATE takes as its single parameter a variable of the specified access type. If the value of that variable is
the null value for the specified access type, then the operation has no effect. If the value of that variable is an access value that
designates an object, the storage occupied by that object is returned to the system and may then be reused for subsequent object
creation through the invocation of an allocator. The access parameter P is set to the null value for the specified type.

NOTE--If a pointer is copied to a second variable and is then deallocated,the second variable is not set to null and thus
references invalid storage.

3.4 File types

A file type definition defines a file type. File types are used to define objects representing files in the host system environment.
The value of a file object is the sequence of values contained in the host system file.

 file_type_definition ::= file of type_mark

The type mark in a file type definition defines the subtype of the values contained in the file. The type mark may denote either
a constrained or an unconstrained subtype. The base type of this subtype must not be a file type or an access type. If the base
type is a composite type, it must not contain a subelement of an access type. If the base type is an array type, it must be a one-
dimensional array type.

Examples:

 file of STRING -- Defines a file type that can contain
 -- an indefinite number of strings of arbitrary
length.
 file of NATURAL -- Defines a file type that can contain
 -- only nonnegative integer values.

3.4.1 File operations

The language implicitly defines the operations for objects of a file type. Given the following file type declaration:

 type FT is file of TM;

where type mark TM denotes a scalar type, a record type, or a constrained array subtype, the following operations are
implicitly declared immediately following the file type declaration:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (15 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

 procedure FILE_OPEN (file F: FT;
 External_Name: in STRING;
 Open_Kind: in FILE_OPEN_KIND := READ_MODE);

 procedure FILE_OPEN (Status: out FILE_OPEN_STATUS;
 file F: FT;
 External_Name: in STRING;
 Open_Kind: in FILE_OPEN_KIND := READ_MODE);

 procedure FILE_CLOSE (file F: FT);

 procedure READ (file F: FT; VALUE: out TM);

 procedure WRITE (file F: FT; VALUE: in TM);

 function ENDFILE (file F: FT) return BOOLEAN;

The FILE_OPEN procedures open an external file specified by the External_Name parameter and associate it with the file
object F. If the call to FILE_OPEN is successful (see below), the file object is said to be open and the file object has an access
mode dependent on the value supplied to the Open_Kind parameter (see 14.2).

-- If the value supplied to the Open_Kind parameter is READ_MODE, the access mode of the file object is read-only.
In addition, the file object is initialized so that a subsequent READ will return the first value in the external file. Values
are read from the file object in the order that they appear in the external file.

-- If the value supplied to the Open_Kind parameter is WRITE_MODE, the access mode of the file object is write-only.
In addition, the external file is made initially empty. Values written to the file object are placed in the external file in the
order in which they are written.

-- If the value supplied to the Open_Kind parameter is APPEND_MODE, the access mode of the file object is write-
only. In addition, the file object is initialized so that values written to it will be added to the end of the external file in
the order in which they are written.

In the second form of FILE_OPEN, the value returned through the Status parameter indicates the results of the procedure call:

-- A value of OPEN_OK indicates that the call to FILE_OPEN was successful. If the call to FILE_OPEN specifies an
external file that does not exist at the beginning of the call, and if the access mode of the file object passed to the call is
write-only, then the external file is created.

-- A value of STATUS_ERROR indicates that the file object already has an external file associated with it.

-- A value of NAME_ERROR indicates that the external file does not exist (in the case of an attempt to read from the
external file) or the external file cannot be created (in the case of an attempt to write or append to an external file that
does not exist). This value is also returned if the external file cannot be associated with the file object for any reason.

-- A value of MODE_ERROR indicates that the external file cannot be opened with the requested Open_Kind.

The first form of FILE_OPEN causes an error to occur if the second form of FILE_OPEN, when called under identical
conditions, would return a Status value other than OPEN_OK.

A call to FILE_OPEN of the first form is successful if and only if the call does not cause an error to occur. Similarly, a call to
FILE_OPEN of the second form is successful if and only if it returns a Status value of OPEN_OK.

If a file object F is associated with an external file, procedure FILE_CLOSE terminates access to the external file associated
with F and closes the external file. If F is not associated with an external file, then FILE_CLOSE has no effect. In either case,

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (16 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM- Introduction

the file object is no longer open after a call to FILE_CLOSE that associates the file object with the formal parameter F.

An implicit call to FILE_CLOSE exists in a subprogram body for every file object declared in the corresponding subprogram
declarative part. Each such call associates a unique file object with the formal parameter F and is called whenever the
corresponding subprogram completes its execution.

Procedure READ retrieves the next value from a file; it is an error if the access mode of the file object is write-only or if the
file object is not open. Procedure WRITE appends a value to a file; it is similarly an error if the access mode of the file object
is read-only or if the file is not open. Function ENDFILE returns FALSE if a subsequent READ operation on an open file
object whose access mode is read-only can retrieve another value from the file;otherwise, it returns TRUE. Function ENDFILE
always returns TRUE for an open file object whose access mode is write-only. It is an error if ENDFILE is called on a file
object that is not open.

For a file type declaration in which the type mark denotes an unconstrained array type, the same operations are implicitly
declared, except that the READ operation is declared as follows:

 procedure READ (file F: FT; VALUE: out TM; LENGTH: out Natural);

The READ operation for such a type performs the same function as the READ operation for other types, but in addition it
returns a value in parameter LENGTH that specifies the actual length of the array value read by the operation. If the object
associated with formal parameter VALUE is shorter than this length, then only that portion of the array value read by the
operation that can be contained in the object is returned by the READ operation, and the rest of the value is lost. If the object
associated with formal parameter VALUE is longer than this length, then the entire value is returned and remaining elements
of the object are unaffected by the READ operation.

An error will occur when a READ operation is performed on file F if ENDFILE(F) would return TRUE at that point.

NOTE--Predefined package TEXTIO is provided to support formatted human-readable I/O. It defines type TEXT (a file type
representing files of variable-length text strings) and type LINE (an access type that designates such strings). READ and
WRITE operations are provided in package TEXTIO that append or extract data from a single line. Additional operations are
provided to read or write entire lines and to determine the status of the current line or of the file itself. Package TEXTIO is
defined in Section 14.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_3.HTM (17 of 17) [12/28/2002 12:49:48 PM]

VHDL LRM-Introduction

Section 2

Subprograms and packages
Subprograms define algorithms for computing values or exhibiting behavior. They may be used as computational resources
to convert between values of different types, to define the resolution of output values driving a common signal, or to define
portions of a process. Packages provide a means of defining these and other resources in a way that allows different design
units to share the same declarations.

There are two forms of subprograms: procedures and functions. A procedure call is a statement; a function call is an
expression and returns a value. Certain functions, designated pure functions, return the same value each time they are called
with the same values as actual parameters; the remainder,impure functions, may return a different value each time they are
called, even when multiple calls have the same actual parameter values. In addition, impure functions can update objects
outside of their scope and can access a broader class of values than can pure functions. The definition of a subprogram can be
given in two parts: a subprogram declaration defining its calling conventions, and a subprogram body defining its execution.

Packages may also be defined in two parts. A package declaration defines the visible contents of a package; a package body
provides hidden details. In particular, a package body contains the bodies of any subprograms declared in the package
declaration.

2.1 Subprogram declarations

A subprogram declaration declares a procedure or a function, as indicated by the appropriate reserved word.

 subprogram_declaration ::=
 subprogram_specification ;

 subprogram_specification ::=
 procedure designator [(formal_parameter_list)]
 | [pure | impure] function designator [(formal_parameter_list)]
 return type_mark

 designator ::= identifier | operator_symbol

 operator_symbol ::= string_literal

The specification of a procedure specifies its designator and its formal parameters(if any). The specification of a function
specifies its designator, its formal parameters (if any), the subtype of the returned value (the result subtype), and whether or
not the function is pure. A function is impure if its specification contains the reserved word impure;otherwise, it is said to be
pure. A procedure designator is always an identifier. A function designator is either an identifier or an operator symbol. A
designator that is an operator symbol is used for the overloading of an operator (see 2.3.1). The sequence of characters
represented by an operator symbol must be an operator belonging to one of the classes of operators defined in 7.2 . Extra
spaces are not allowed in an operator symbol, and the case of letters is not significant.

NOTE--All subprograms can be called recursively.

2.1.1 Formal parameters

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (1 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM-Introduction

The formal parameter list in a subprogram specification defines the formal parameters of the subprogram.

 formal_parameter_list ::= parameter_interface_list

Formal parameters of subprograms may be constants, variables, signals, or files. In the first three cases, the mode of a
parameter determines how a given formal parameter may be accessed within the subprogram. The mode of a formal
parameter, together with its class, may also determine how such access is implemented. In the fourth case, that of files, the
parameters have no mode.

For those parameters with modes, the only modes that are allowed for formal parameters of a procedure are in, inout, and
out. If the mode is in and no object class is explicitly specified, constant is assumed. If the mode is inout or out, and no
object class is explicitly specified, variable is assumed.

For those parameters with modes, the only mode that is allowed for formal parameters of a function is the mode in (whether
this mode is specified explicitly or implicitly). The object class must be constant,signal, or file. If no object class is explicitly
given,constant is assumed.

In a subprogram call, the actual designator (see 4.3.2.2) associated with a formal parameter of class signal must be a signal.
The actual designator associated with a formal of class variable must be a variable. The actual designator associated with a
formal of class constant must be an expression. The actual designator associated with a formal of class file must be a file.

NOTE--Attributes of an actual are never passed into a subprogram: references to an attribute of a formal parameter are legal
only if that formal has such an attribute. Such references retrieve the value of the attribute associated with the formal.

2.1.1.1 Constant and variable parameters

For parameters of class constant or variable, only the values of the actual or formal are transferred into or out of the
subprogram call. The manner of such transfers, and the accompanying access privileges that are granted for constant and
variable parameters, are described in this subclause.

For a nonforeign subprogram having a parameter of a scalar type or an access type, the parameter is passed by copy. At the
start of each call, if the mode is in or inout, the value of the actual parameter is copied into the associated formal parameter;
it is an error if, after applying any conversion function or type conversion present in the actual part of the applicable
association element (see 4.3.2.2), the value of the actual parameter does not belong to the subtype denoted by the subtype
indication of the formal. After completion of the subprogram body, if the mode is inout or out, the value of the formal
parameter is copied back into the associated actual parameter; it is similarly an error if, after applying any conversion
function or type conversion present in the formal part of the applicable association element, the value of the formal parameter
does not belong to the subtype denoted by the subtype indication of the actual.

For a nonforeign subprogram having a parameter whose type is an array or record, an implementation may pass parameter
values by copy, as for scalar types. If a parameter of mode out is passed by copy, then the range of each index position of the
actual parameter is copied in, and likewise for its subelements or slices. Alternatively, an implementation may achieve these
effects by reference; that is, by arranging that every use of the formal parameter (to read or update its value) be treated as a
use of the associated actual parameter throughout the execution of the subprogram call. The language does not define which
of these two mechanisms is to be adopted for parameter passing, nor whether different calls to the same subprogram are to
use the same mechanism. The execution of a subprogram is erroneous if its effect depends on which mechanism is selected
by the implementation.

For a formal parameter of a constrained array subtype of mode in or inout, it is an error if the value of the associated actual
parameter(after application of any conversion function or type conversion present in the actual part) does not contain a
matching element for each element of the formal. For a formal parameter whose declaration contains a subtype indication
denoting an unconstrained array type, the subtype of the formal in any call to the subprogram is taken from the actual

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (2 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM-Introduction

associated with that formal in the call to the subprogram. It is also an error if, in either case, the value of each element of the
actual array (after applying any conversion function or type conversion present in the actual part) does not belong to the
element subtype of the formal. If the formal parameter is of mode out or inout,it is also an error if, at the end of the
subprogram call, the value of each element of the formal (after applying any conversion function or type conversion present
in the formal part) does not belong to the element subtype of the actual.

NOTES

1--For parameters of array and record types, the parameter-passing rules imply that if no actual parameter of such a type is
accessible by more than one path, then the effect of a subprogram call is the same whether or not the implementation uses
copying for parameter passing. If, however, there are multiple access paths to such a parameter (for example, if another
formal parameter is associated with the same actual parameter), then the value of the formal is undefined after updating the
actual other than by updating the formal. A description using such an undefined value is erroneous.

2--As a consequence of the parameter-passing conventions for variables, if a procedure is called with a shared variable (see
4.3.1.3) as an actual to a formal variable parameter of modes inout or out, the shared variable may not be updated until the
procedure completes its execution. Furthermore, a formal variable parameter with modes in or inout may not reflect updates
made to a shared variable associated with it as an actual during the execution of the subprogram, including updates made to
the actual during the execution of a wait statement within a procedure.

2.1.1.2 Signal parameters

For a formal parameter of class signal, references to the signal, the driver of the signal, or both, are passed into the
subprogram call.

For a signal parameter of mode in or inout, the actual signal is associated with the corresponding formal signal parameter at
the start of each call. Thereafter, during the execution of the subprogram body, a reference to the formal signal parameter
within an expression is equivalent to a reference to the actual signal.

It is an error if signal-valued attributes 'STABLE, 'QUIET, 'TRANSACTION, and 'DELAYED of formal signal parameters
of any mode are read within a subprogram.

A process statement contains a driver for each actual signal associated with a formal signal parameter of mode out or inout
in a subprogram call. Similarly, a subprogram contains a driver for each formal signal parameter of mode out or inout
declared in its subprogram specification.

For a signal parameter of mode inout or out, the driver of an actual signal is associated with the corresponding driver of the
formal signal parameter at the start of each call. Thereafter, during the execution of the subprogram body, an assignment to
the driver of a formal signal parameter is equivalent to an assignment to the driver of the actual signal.

If an actual signal is associated with a signal parameter of any mode, the actual must be denoted by a static signal name. It is
an error if a conversion function or type conversion appears in either the formal part or the actual part of an association
element that associates an actual signal with a formal signal parameter.

If an actual signal is associated with a signal parameter of any mode, and if the type of the formal is a scalar type, then it is an
error if the bounds and direction of the subtype denoted by the subtype indication of the formal are not identical to the bounds
and direction of the subtype denoted by the subtype indication of the actual.

If an actual signal is associated with a formal signal parameter, and if the formal is of a constrained array subtype, then it is
an error if the actual does not contain a matching element for each element of the formal. If an actual signal is associated with
a formal signal parameter, and if the subtype denoted by the subtype indication of the declaration of the formal is an
unconstrained array type, then the subtype of the formal in any call to the subprogram is taken from the actual associated with
that formal in the call to the subprogram. It is also an error if the mode of the formal is in or inout and if the value of each
element of the actual array does not belong to the element subtype of the formal.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (3 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM-Introduction

A formal signal parameter is a guarded signal if and only if it is associated with an actual signal that is a guarded signal. It is
an error if the declaration of a formal signal parameter includes the reserved word bus(see 4.3.2).

NOTE--It is a consequence of the preceding rules that a procedure with an out or inout signal parameter called by a process
does not have to complete in order for any assignments to that signal parameter within the procedure to take effect.
Assignments to the driver of a formal signal parameter are equivalent to assignments directly to the actual driver contained in
the process calling the procedure.

2.1.1.3 File parameters

For parameters of class file, references to the actual file are passed into the subprogram. No particular parameter-passing
mechanism is defined by the language, but a reference to the formal parameter must be equivalent to a reference to the actual
parameter. It is an error if an association element associates an actual with a formal parameter of a file type and that
association element contains a conversion function or type conversion. It is also an error if a formal of a file type is
associated with an actual that is not of a file type.

At the beginning of a given subprogram call, a file parameter is open (see 3.4.1) if and only if the actual file object
associated with the given parameter in a given subprogram call is also open. Similarly, at the beginning of a given
subprogram call, both the access mode of and external file associated with (see 3.4.1) an open file parameter are the same as,
respectively, the access mode of and the external file associated with the actual file object associated with the given
parameter in the subprogram call.

At the completion of the execution of a given subprogram call, the actual file object associated with a given file parameter is
open if and only if the formal parameter is also open. Similarly, at the completion of the execution of a given subprogram
call, the access mode of and the external file associated with an open actual file object associated with a given file parameter
are the same as, respectively, the access mode of and the external file associated with the associated formal parameter.

2.2 Subprogram bodies

A subprogram body specifies the execution of a subprogram.

 subprogram_body ::=
 subprogram_specification is
 subprogram_declarative_part
 begin
 subprogram_statement_part
 end [subprogram_kind] [designator] ;

 subprogram_declarative_part ::=
 { subprogram_declarative_item }

 subprogram_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (4 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM-Introduction

 | use_clause
 | group_template_declaration
 | group_declaration

 subprogram_statement_part ::=
 { sequential_statement }

 subprogram_kind ::= procedure | function

The declaration of a subprogram is optional. In the absence of such a declaration,the subprogram specification of the
subprogram body acts as the declaration. For each subprogram declaration, there must be a corresponding body. If both a
declaration and a body are given, the subprogram specification of the body must conform (see 2.7) to the subprogram
specification of the declaration. Furthermore, both the declaration and the body must occur immediately within the same
declarative region (see 10.1).

If a subprogram kind appears at the end of a subprogram body, it must repeat the reserved word given in the subprogram
specification. If a designator appears at the end of a subprogram body, it must repeat the designator of the subprogram.

It is an error if a variable declaration in a subprogram declarative part declares a shared variable. (See 4.3.1.3 and 8.1.4 .)

A foreign subprogram is one that is decorated with the attribute 'FOREIGN, defined in package STANDARD (see 14.2).
The STRING value of the attribute may specify implementation-dependent information about the foreign subprogram.
Foreign subprograms may have non-VHDL implementations. An implementation may place restrictions on the allowable
modes, classes, and types of the formal parameters to a foreign subprogram; such restrictions may include restrictions on the
number and allowable order of the parameters.

Excepting foreign subprograms, the algorithm performed by a subprogram is defined by the sequence of statements that
appears in the subprogram statement part. For a foreign subprogram, the algorithm performed is implementation defined.

The execution of a subprogram body is invoked by a subprogram call. For this execution, after establishing the association
between the formal and actual parameters, the sequence of statements of the body is executed if the subprogram is not a
foreign subprogram; otherwise, an implementation-defined action occurs. Upon completion of the body or implementation-
dependent action, return is made to the caller (and any necessary copying back of formal to actual parameters occurs).

A process or a subprogram is said to be a parent of a given subprogram S if that process or subprogram contains a procedure
call or function call for S or for a parent of S.

An explicit signal is a signal other than an implicit signal GUARD or other than one of the implicit signals defined by the
predefined attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION. The explicit ancestor of an implicit signal is
found as follows. The implicit signal GUARD has no explicit ancestor. An explicit ancestor of an implicit signal defined by
the predefined attributes 'DELAYED, 'STABLE, 'QUIET, or 'TRANSACTION is the signal found by recursively examining
the prefix of the attribute. If the prefix denotes an explicit signal, or a member (see Section 3) of an explicit signal then that is
the explicit ancestor of the implicit signal. Otherwise, if the prefix is one of the implicit signals defined by the predefined
attributes 'DELAYED, 'STABLE,'QUIET, or 'TRANSACTION, this rule is recursively applied. If the prefix is an implicit
signal GUARD, then the signal has no explicit ancestor.

If a pure function subprogram is a parent of a given procedure and if that procedure contains a reference to an explicitly
declared signal or variable object, or a slice or subelement (or slice thereof), of an explicit signal, then that object must be
declared within the declarative region formed by the function (see 10.1) or within the declarative region formed by the
procedure; this rule also holds for the explicit ancestor, if any, of an implicit signal and also for the implicit signal GUARD.
If a pure function is the parent of a given procedure, then that procedure must not contain a reference to an explicitly declared
file object(see 4.3.1.4) or to a shared variable (see 4.3.1.3).

Similarly, if a pure function subprogram contains a reference to an explicitly declared signal or variable object, or a slice or

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (5 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM-Introduction

subelement (or slice thereof) of an explicit signal , then that object must be declared within the declarative region formed by
the function; this rule also holds for the explicit ancestor, if any,of an implicit signal and also for the implicit signal GUARD.
A pure function must not contain a reference to an explicitly declared file object.

A pure function must not be the parent of an impure function.

The rules of the preceding four paragraphs apply to all pure function subprograms. For pure functions that are not foreign
subprograms, violations of any of these rules are errors. However, since implementations cannot in general check that such
rules hold for pure function subprograms that are foreign subprograms, a description calling pure foreign function
subprograms not adhering to these rules is erroneous.

Example:

-- The declaration of a foreign function subprogram:

 package P is
 function F return INTEGER;
 attribute FOREIGN of F: function is "implementation-dependent information";
 end package P;

NOTES

1--It follows from the visibility rules that a subprogram declaration must be given if a call of the subprogram occurs textually
before the subprogram body, and that such a declaration must occur before the call itself.

2--The preceding rules concerning pure function subprograms, together with the fact that function parameters may only be of
mode in, imply that a pure function has no effect other than the computation of the returned value. Thus, a pure function
invoked explicitly as part of the elaboration of a declaration, or one invoked implicitly as part of the simulation cycle, is
guaranteed to have no effect on other objects in the description.

3--VHDL does not define the parameter-passing mechanisms for foreign subprograms.

4--The declarative parts and statement parts of subprograms decorated with the 'FOREIGN attribute are subject to special
elaboration rules. See 12.3 and 12.4 .

5--A pure function subprogram may not reference a shared variable. This prohibition exists because a shared variable may
not be declared in a subprogram declarative part and a pure function may not reference any variable declared outside of its
declarative region.

2.3 Subprogram overloading

Two formal parameter lists are said to have the same parameter type profile if and only if they have the same number of
parameters, and if at each parameter position the corresponding parameters have the same base type. Two subprograms are
said to have the same parameter and result type profile if and only if both have the same parameter type profile, and if either
both are functions with the same result base type or neither of the two is a function.

A given subprogram designator can be used in several subprogram specifications. The subprogram designator is then said to
be overloaded; the designated subprograms are also said to be overloaded and to overload each other. If two subprograms
overload each other, one of them can hide the other only if both subprograms have the same parameter and result type profile.

A call to an overloaded subprogram is ambiguous (and therefore is an error) if the name of the subprogram, the number of
parameter associations, the types and order of the actual parameters, the names of the formal parameters (if named

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (6 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM-Introduction

associations are used), and the result type (for functions) are not sufficient to identify exactly one (overloaded) subprogram
specification.

Similarly, a reference to an overloaded resolution function name in a subtype indication is ambiguous (and is therefore an
error) if the name of the function, the number of formal parameters, the result type, and the relationships between the result
type and the types of the formal parameters (as defined in 2.4) are not sufficient to identify exactly one (overloaded)
subprogram specification.

Examples:

-- Declarations of overloaded subprograms:

 procedure Dump(F: inout Text; Value: Integer);
 procedure Dump(F: inout Text; Value: String);

 procedure Check (Setup: Time; signal D: Data; signal C: Clock);
 procedure Check (Hold: Time; signal C: Clock; signal D: Data);

-- Calls to overloaded subprograms:

 Dump (Sys_Output, 12) ;
 Dump (Sys_Error, "Actual output does not match expected output") ;

 Check (Setup=>10 ns, D=>DataBus, C=>Clk1) ;
 Check (Hold=>5 ns, D=>DataBus, C=>Clk2);
 Check (15 ns, DataBus, Clk) ;
 -- Ambiguous if the base type of DataBus is the same type as the base type of
Clk.

NOTES

1--The notion of parameter and result type profile does not include parameter names, parameter classes, parameter modes,
parameter subtypes, or default expressions or their presence or absence.

2--Ambiguities may (but need not) arise when actual parameters of the call of an overloaded subprogram are themselves
overloaded function calls, literals, or aggregates. Ambiguities may also (but need not) arise when several overloaded
subprograms belonging to different packages are visible. These ambiguities can usually be solved in two ways: qualified
expressions can be used for some or all actual parameters and for the result, if any; or the name of the subprogram can be
expressed more explicitly as an expanded name (see 6.3).

2.3.1 Operator overloading

The declaration of a function whose designator is an operator symbol is used to overload an operator. The sequence of
characters of the operator symbol must be one of the operators in the operator classes defined in 7.2 .

The subprogram specification of a unary operator must have a single parameter. The subprogram specification of a binary
operator must have two parameters; for each use of this operator, the first parameter is associated with the left operand, and
the second parameter is associated with the right operand.

For each of the operators "+" and "-", overloading is allowed both as a unary operator and as a binary operator.

NOTES

1--Overloading of the equality operator does not affect the selection of choices in a case statement or in a selected signal

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (7 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM-Introduction

assignment statement; nor does it have an affect on the propagation of signal values.

2--A user-defined operator that has the same designator as a short-circuit operator (that is, that overloads the short-circuit
operator) is not invoked in a short-circuit manner. Specifically, calls to the user-defined operator always evaluate both
arguments prior to the execution of the function.

3--Functions that overload operator symbols may also be called using function call notation rather than operator notation.
This statement is also true of the predefined operators themselves.

Examples:

 type MVL is ('0', '1', 'Z', 'X') ;

 function "and" (Left, Right: MVL) return MVL ;
 function "or" (Left, Right: MVL) return MVL ;
 function "not" (Value: MVL) return MVL ;

 signal Q,R,S: MVL ;

 Q <= 'X' or '1';
 R <= "or" ('0','Z');
 S <= (Q and R) or not S;

2.3.2 Signatures

A signature distinguishes between overloaded subprograms and overloaded enumeration literals based on their parameter and
result type profiles. A signature can be used in an attribute name, entity designator, or alias declaration.

 signature ::= [[type_mark { , type_mark }] [return type_mark]]

(Note that the initial and terminal brackets are part of the syntax of signatures and do not indicate that the entire right-hand
side of the production is optional.) A signature is said to match the parameter and result type profile of a given subprogram if
and only if all of the following conditions hold:

-- The number of type marks prior to the reserved word return, if any, matches the number of formal parameters of
the subprogram

-- At each parameter position, the base type denoted by the type mark of the signature is the same as the base type of
the corresponding formal parameter of the subprogram

-- If the reserved word return is present, the subprogram is a function and the base type of the type mark following
the reserved word in the signature is the same as the base type of the return type of the function, or the reserved word
return is absent and the subprogram is a procedure

Similarly, a signature is said to match the parameter and result type profile of a given enumeration literal if the signature
matches the parameter and result type profile of the subprogram equivalent to the enumeration literal, defined in 3.1.1 .

Example:

 attribute BuiltIn of "or" [MVL, MVL return MVL]: function is TRUE;
 -- Because of the presence of the signature, this attribute specification
 -- decorates only the "or" function defined in the previous section.

 attribute Mapping of JMP [return OpCode] : literal is "001";

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (8 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM-Introduction

2.4 Resolution functions

A resolution function is a function that defines how the values of multiple sources of a given signal are to be resolved into a
single value for that signal. Resolution functions are associated with signals that require resolution by including the name of
the resolution function in the declaration of the signal or in the declaration of the subtype of the signal. A signal with an
associated resolution function is called a resolved signal (see 4.3.1.2).

A resolution function must be a pure function (see 2.1); moreover, it must have a single input parameter of class constant
that is a one-dimensional,unconstrained array whose element type is that of the resolved signal. The type of the return value
of the function must also be that of the signal. Errors occur at the place of the subtype indication containing the name of the
resolution function if any of these checks fail (see 4.2).

The resolution function associated with a resolved signal determines the resolved value of the signal as a function of the
collection of inputs from its multiple sources. If a resolved signal is of a composite type, and if subelements of that type also
have associated resolution functions, such resolution functions have no effect on the process of determining the resolved
value of the signal. It is an error if a resolved signal has more connected sources than the number of elements in the index
type of the unconstrained array type used to define the parameter of the corresponding resolution function.

Resolution functions are implicitly invoked during each simulation cycle in which corresponding resolved signals are active
(see 12.6.1). Each time a resolution function is invoked, it is passed an array value, each element of which is determined by a
corresponding source of the resolved signal, but excluding those sources that are drivers whose values are determined by null
transactions (see 8.4.1). Such drivers are said to be off. For certain invocations (specifically, those involving the resolution of
sources of a signal declared with the signal kind bus), a resolution function may thus be invoked with an input parameter that
is a null array; this occurs when all sources of the bus are drivers, and they are all off. In such a case, the resolution function
returns a value representing the value of the bus when no source is driving it.

Example:

 function WIRED_OR (Inputs: BIT_VECTOR) return BIT is
 constant FloatValue: BIT := '0';
 begin
 if Inputs'Length = 0 then
 -- This is a bus whose drivers are all off.
 return FloatValue;
 else
 for I in Inputs'Range loop
 if Inputs(I) = '1' then
 Return '1';
 end If;
 end Loop;
 Return '0';
 end if;
 end function WIRED_OR;

2.5 Package declarations

A package declaration defines the interface to a package. The scope of a declaration within a package can be extended to
other design units.

 package_declaration ::=
 package identifier is

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (9 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM-Introduction

 package_declarative_part
 end [package] [package_simple_name] ;

 package_declarative_part ::=
 { package_declarative_item }

 package_declarative_item ::=
 subprogram_declaration
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | component_declaration
 | attribute_declaration
 | attribute_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

If a simple name appears at the end of the package declaration, it must repeat the identifier of the package declaration.

Items declared immediately within a package declaration become visible by selection within a given design unit wherever the
name of that package is visible in the given unit. Such items may also be made directly visible by an appropriate use clause
(see 10.4).

NOTE--Not all packages will have a package body. In particular, a package body is unnecessary if no subprograms or
deferred constants are declared in the package declaration.

Examples:

-- A package declaration that needs no package body:

 package TimeConstants is
 constant tPLH : Time := 10 ns;
 constant tPHL : Time := 12 ns;
 constant tPLZ : Time := 7 ns;
 constant tPZL : Time := 8 ns;
 constant tPHZ : Time := 8 ns;
 constant tPZH : Time := 9 ns;
 end TimeConstants ;

-- A package declaration that needs a package body:

 package TriState is
 type Tri is ('0', '1', 'Z', 'E');
 function BitVal (Value: Tri) return Bit ;
 function TriVal (Value: Bit) return Tri;
 type TriVector is array (Natural range <>) of Tri ;
 function Resolve (Sources: TriVector) return Tri ;
 end package TriState ;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (10 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM-Introduction

2.6 Package bodies

A package body defines the bodies of subprograms and the values of deferred constants declared in the interface to the
package.

 package_body ::=
 package body package_simple_name is
 package_body_declarative_part
 end [package body] [package_simple_name] ;

 package_body_declarative_part ::=
 { package_body_declarative_item }

 package_body_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | use_clause
 | group_template_declaration
 | group_declaration

The simple name at the start of a package body must repeat the package identifier. If a simple name appears at the end of the
package body, it must be the same as the identifier in the package declaration.

In addition to subprogram body and constant declarative items, a package body may contain certain other declarative items to
facilitate the definition of the bodies of subprograms declared in the interface. Items declared in the body of a package cannot
be made visible outside of the package body.

If a given package declaration contains a deferred constant declaration (see 4.3.1.1), then a constant declaration with the
same identifier must appear as a declarative item in the corresponding package body. This object declaration is called the full
declaration of the deferred constant. The subtype indication given in the full declaration must conform to that given in the
deferred constant declaration.

Within a package declaration that contains the declaration of a deferred constant, and within the body of that package (before
the end of the corresponding full declaration), the use of a name that denotes the deferred constant is only allowed in the
default expression for a local generic, local port, or formal parameter. The result of evaluating an expression that references a
deferred constant before the elaboration of the corresponding full declaration is not defined by the language.

Example:

 package body TriState is

 function BitVal (Value: Tri) return Bit is
 constant Bits : Bit_Vector := "0100";
 begin
 return Bits(Tri'Pos(Value));
 end;

 function TriVal (Value: Bit) return Tri is

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (11 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM-Introduction

 begin
 return Tri'Val(Bit'Pos(Value));
 end;

 function Resolve (Sources: TriVector) return Tri is
 variable V: Tri := 'Z';
 begin
 for i in Sources'Range loop
 if Sources(i) /= 'Z' then
 if V = 'Z' then
 V := Sources(i);
 else
 return 'E';
 end if;
 end if;
 end loop;
 return V;
 end;
 end package body TriState ;

2.7 Conformance rules

Whenever the language rules either require or allow the specification of a given subprogram to be provided in more than one
place, the following variations are allowed at each place:

-- A numeric literal can be replaced by a different numeric literal if and only if both have the same value.

-- A simple name can be replaced by an expanded name in which this simple name is the selector if and only if at both
places the meaning of the simple name is given by the same declaration.

Two subprogram specifications are said to conform if, apart from comments and the above allowed variations, both
specifications are formed by the same sequence of lexical elements and if corresponding lexical elements are given the same
meaning by the visibility rules.

Conformance is likewise defined for subtype indications in deferred constant declarations.

1--A simple name can be replaced by an expanded name even if the simple name is itself the prefix of a selected name. For
example, Q.R can be replaced by P.Q.R if Q is declared immediately within P.

2--The subprogram specification of an impure function is never conformant to a subprogram specification of a pure function.

3--The following specifications do not conform since they are not formed by the same sequence of lexical elements:

 procedure P (X,Y : INTEGER)
 procedure P (X: INTEGER; Y : INTEGER)
 procedure P (X,Y : in INTEGER)

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_2.HTM (12 of 12) [12/28/2002 12:49:49 PM]

VHDL LRM- Introduction

Section 1

Design entites and configurations
The design entity is the primary hardware abstraction in VHDL. It represents a portion of a hardware design that has
well-defined inputs and outputs and performs a well-defined function. A design entity may represent an entire system,
a subsystem, a board, a chip, a macro-cell, a logic gate, or any level of abstraction in between. A configuration can be
used to describe how design entities are put together to form a complete design.

A design entity may be described in terms of a hierarchy of blocks, each of which represents a portion of the whole
design. The top-level block in such a hierarchy is the design entity itself; such a block is an external block that resides
in a library and may be used as a component of other designs. Nested blocks in the hierarchy are internal blocks,
defined by block statements (see 9.1).

A design entity may also be described in terms of interconnected components. Each component of a design entity may
be bound to a lower-level design entity in order to define the structure or behavior of that component. Successive
decomposition of a design entity into components, and binding those components to other design entities that may be
decomposed in like manner, results in a hierarchy of design entities representing a complete design. Such a collection
of design entities is called a design hierarchy. The bindings necessary to identify a design hierarchy can be specified
in a configuration of the top-level entity in the hierarchy.

This section describes the way in which design entities and configurations are defined. A design entity is defined by
an entity declaration together with a corresponding architecture body. A configuration is defined by a configuration
declaration.

1.1 Entity declarations

An entity declaration defines the interface between a given design entity and the environment in which it is used. It
may also specify declarations and statements that are part of the design entity. A given entity declaration maybe shared
by many design entities, each of which has a different architecture. Thus, an entity declaration can potentially represent
a class of design entities, each with the same interface.

 entity_declaration ::=
 entity identifier is
 entity_header
 entity_declarative_part
 [begin
 entity_statement_part]
 end [entity] [entity_simple_name] ;

The entity header and entity declarative part consist of declarative items that pertain to each design entity whose
interface is defined by the entity declaration. The entity statement part, if present, consists of concurrent statements that
are present in each such design entity.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (1 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

If a simple name appears at the end of an entity declaration, it must repeat the identifier of the entity declaration.

1.1.1 Entity header

The entity header declares objects used for communication between a design entity and its environment.

 entity_header ::=
 [formal_generic_clause]
 [formal_port_clause]

 generic_clause ::=
 generic (generic_list) ;

 port_clause ::=
 port (port_list) ;

The generic list in the formal generic clause defines generic constants whose values may be determined by the
environment. The port list in the formal port clause defines the input and output ports of the design entity.

In certain circumstances, the names of generic constants and ports declared in the entity header become visible outside
of the design entity (see 10.2 and 10.3).

Examples:

--An entity declaration with port declarations only:

 entity Full_Adder is
 port (X, Y, Cin: in Bit; Cout, Sum: out Bit) ;
 end Full_Adder ;

--An entity declaration with generic declarations also:

 entity AndGate is
 generic
 (N: Natural := 2);
 port
 (Inputs: in Bit_Vector (1 to N);
 Result: out Bit) ;
 end entity AndGate ;

--An entity declaration with neither:

 entity TestBench is
 end TestBench ;

1.1.1.1 Generics

Generics provide a channel for static information to be communicated to a block from its environment. The following
applies to both external blocks defined by design entities and to internal blocks defined by block statements.

 generic_list ::= generic_interface_list

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (2 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

The generics of a block are defined by a generic interface list; interface lists are described in 4.3.2.1 . Each interface
element in such a generic interface list declares a formal generic.

The value of a generic constant may be specified by the corresponding actual in a generic association list. If no such
actual is specified for a given formal generic (either because the formal generic is unassociated or because the actual is
open), and if a default expression is specified for that generic, the value of this expression is the value of the generic. It
is an error if no actual is specified for a given formal generic and no default expression is present in the corresponding
interface element. It is an error if some of the subelements of a composite formal generic are connected and others are
either unconnected or unassociated.

NOTE--Generics may be used to control structural, dataflow, or behavioral characteristics of a block, or may simply be
used as documentation. In particular, generics may be used to specify the size of ports; the number of subcomponents
within a block; the timing characteristics of a block; or even the physical characteristics of a design such as
temperature, capacitance,location, etc.

1.1.1.2 Ports

Ports provide channels for dynamic communication between a block and its environment. The following applies to both
external blocks defined by design entities and to internal blocks defined by block statements, including those equivalent
to component instantiation statements and generate statements (see 9.7).

 port_list ::= port_interface_list

The ports of a block are defined by a port interface list; interface lists are described in 4.3.2.1 . Each interface element
in the port interface list declares a formal port.

To communicate with other blocks, the ports of a block can be associated with signals in the environment in which the
block is used. Moreover, the ports of a block may be associated with an expression in order to provide these ports with
constant driving values; such ports must be of mode in. A port is itself a signal (see 4.3.1.2); thus, a formal port of a
block may be associated as an actual with a formal port of an inner block. The port, signal, or expression associated
with a given formal port is called the actual corresponding to the formal port (see 4.3.2.2). The actual, if a port or
signal, must be denoted by a static name (see 6.1). The actual, if an expression, must be a globally static expression
(see 7.4).

After a given description is completely elaborated (see Section 12), if a formal port is associated with an actual that is
itself a port, then the following restrictions apply depending upon the mode (see 4.3.2) of the formal port:

a. For a formal port of mode in, the associated actual may only be a port of mode in, inout,or buffer.

b. For a formal port of mode out, the associated actual may only be a port of mode out or inout.

c. For a formal port of mode inout, the associated actual may only be a port of mode inout.

d. For a formal port of mode buffer, the associated actual may only be a port of mode buffer.

e. For a formal port of mode linkage, the associated actual may be a port of any mode.

A buffer port may have at most one source (see 4.3.1.2 and 4.3.2).Furthermore, after a description is completely
elaborated (see Section 12), any actual associated with a formal buffer port may have at most one source.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (3 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

If a formal port is associated with an actual port, signal, or expression, then the formal port is said to be connected. If a
formal port is instead associated with the reserved word open, then the formal is said to be unconnected. A port of
mode in may be unconnected or unassociated (see 4.3.2.2) only if its declaration includes a default expression (see
4.3.2). A port of any mode other than in may be unconnected or unassociated as long as its type is not an
unconstrained array type. It is an error if some of the subelements of a composite formal port are connected and others
are either unconnected or unassociated.

1.1.2 Entity declarative part

The entity declarative part of a given entity declaration declares items that are common to all design entities whose
interfaces are defined by the given entity declaration.

 entity_declarative_part ::=
 { entity_declarative_item }

 entity_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

Names declared by declarative items in the entity declarative part of a given entity declaration are visible within the
bodies of corresponding design entities, as well as within certain portions of a corresponding configuration declaration.

Example:

--An entity declaration with entity declarative items:

 entity ROM is
 port (Addr: in Word;
 Data: out Word;
 Sel: in Bit);
 type Instruction is array (1 to 5) of Natural;
 type Program is array (Natural range <>) of Instruction;
 use Work.OpCodes.all, Work.RegisterNames.all;
 constant ROM_Code: Program :=
 (

 (STM, R14, R12, 12, R13) ,

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (4 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

 (LD, R7, 32, 0, R1) ,
 (BAL, R14, 0, 0, R7) ,
 ·
 · -- etc.
 ·
);
 end ROM;

NOTE--The entity declarative part of a design entity whose corresponding architecture is decorated with the
'FOREIGN attribute is subject to special elaboration rules. See 12.3 .

1.1.3 Entity statement part

The entity statement part contains concurrent statements that are common to each design entity with this interface.

 entity_statement_part ::=
 { entity_statement }

 entity_statement ::=
 concurrent_assertion_statement
 | passive_concurrent_procedure_call
 | passive_process_statement

Only concurrent assertion statements, concurrent procedure call statements, or process statements may appear in the
entity statement part. All such statements must be passive (see 9.2). Such statements may be used to monitor the
operating conditions or characteristics of a design entity.

--An entity declaration with statements:

 entity Latch is
 port (Din: in Word;
 Dout: out Word;
 Load: in Bit;
 Clk: in Bit);
 constant Setup: Time := 12 ns;
 constant PulseWidth: Time := 50 ns;
 use Work.TimingMonitors.all;
 begin
 assert Clk='1' or Clk'Delayed'Stable (PulseWidth);
 CheckTiming (Setup, Din, Load, Clk);
 end ;

NOTE--The entity statement part of a design entity whose corresponding architecture is decorated with the 'FOREIGN
attribute is subject to special elaboration rules. See 12.4 .

1.2 Architecture bodies

An architecture body defines the body of a design entity. It specifies the relationships between the inputs and outputs of
a design entity and may be expressed in terms of structure, dataflow, or behavior. Such specifications may be partial or
complete.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (5 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

 architecture_body ::=
 architecture identifier of entity_name is
 architecture_declarative_part
 begin
 architecture_statement_part
 end [architecture] [architecture_simple_name] ;

The identifier defines the simple name of the architecture body; this simple name distinguishes architecture bodies
associated with the same entity declaration.

The entity name identifies the name of the entity declaration that defines the interface of this design entity. For a given
design entity, both the entity declaration and the associated architecture body must reside in the same library.

If a simple name appears at the end of an architecture body, it must repeat the identifier of the architecture body.

More than one architecture body may exist corresponding to a given entity declaration. Each declares a different body
with the same interface; thus,each together with the entity declaration represents a different design entity with the same
interface.

NOTE--Two architecture bodies that are associated with different entity declarations may have the same simple name,
even if both architecture bodies(and the corresponding entity declarations) reside in the same library.

1.2.1 Architecture declarative part

The architecture declarative part contains declarations of items that are available for use within the block defined by the
design entity.

 architecture_declarative_part ::=
 { block_declarative_item }

 block_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | component_declaration
 | attribute_declaration
 | attribute_specification
 | configuration_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

The various kinds of declaration are described in Section 4, and the various kinds of specification are described in
Section 5. The use clause, which makes externally defined names visible within the block, is described in Section 10.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (6 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

NOTE--The declarative part of an architecture decorated with the 'FOREIGN attribute is subject to special elaboration
rules. See 12.3 .

1.2.2 Architecture statement part

The architecture statement part contains statements that describe the internal organization and/or operation of the block
defined by the design entity.

 architecture_statement_part ::=
 { concurrent_statement }

All of the statements in the architecture statement part are concurrent statements,which execute asynchronously with
respect to one another. The various kinds of concurrent statements are described in Section 9.

Examples:

--A body of entity Full_Adder:

 architecture DataFlow of Full_Adder is
 signal A,B: Bit;
 begin
 A <= X xor Y;
 B <= A and Cin;
 Sum <= A xor Cin;
 Cout <= B or (X and Y);
 end architecture DataFlow ;

--A body of entity TestBench:

 library Test;
 use Test.Components.all;
 architecture Structure of TestBench is
 component Full_Adder
 port (X, Y, Cin: Bit; Cout, Sum: out Bit);
 end component;

 signal A,B,C,D,E,F,G: Bit;
 signal OK: Boolean;
 begin
 UUT: Full_Adder port map (A,B,C,D,E);
 Generator: AdderTest port map (A,B,C,F,G);
 Comparator: AdderCheck port map (D,E,F,G,OK);
 end Structure;

--A body of entity AndGate:

 architecture Behavior of AndGate is
 begin
 process (Inputs)
 variable Temp: Bit;
 begin
 Temp := '1';

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (7 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

 for i in Inputs'Range loop
 if Inputs(i) = '0' then
 Temp := '0';
 exit;
 end if;
 end loop;
 Result <= Temp after 10 ns;
 end process;
 end Behavior;

NOTE--The statement part of an architecture decorated with the 'FOREIGN attribute is subject to special elaboration
rules. See 12.4 .

1.3 Configuration declarations

The binding of component instances to design entities is performed by configuration specifications (see 5.2); such
specifications appear in the declarative part of the block in which the corresponding component instances are created.
In certain cases, however, it may be appropriate to leave unspecified the binding of component instances in a given
block and to defer such specification until later. A configuration declaration provides the mechanism for specifying
such deferred bindings.

 configuration_declaration ::=
 configuration identifier of entity_name is
 configuration_declarative_part
 block_configuration
 end [configuration] [configuration_simple_name] ;

 configuration_declarative_part ::=
 { configuration_declarative_item }

 configuration_declarative_item ::=
 use_clause
 | attribute_specification
 | group_declaration

The entity name identifies the name of the entity declaration that defines the design entity at the apex of the design
hierarchy. For a configuration of a given design entity, both the configuration declaration and the corresponding entity
declaration must reside in the same library.

If a simple name appears at the end of a configuration declaration, it must repeat the identifier of the configuration
declaration.

NOTES

1--A configuration declaration achieves its effect entirely through elaboration (see Section 12). There are no behavioral
semantics associated with a configuration declaration.

2--A given configuration may be used in the definition of another, more complex configuration.

Examples:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (8 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

--An architecture of a microprocessor:

 architecture Structure_View of Processor is
 component ALU port (···); end component;
 component MUX port (···); end component;
 component Latch port (···); end component;
 begin
 A1: ALU port map (···) ;
 M1: MUX port map (···) ;
 M2: MUX port map (···) ;
 M3: MUX port map (···) ;
 L1: Latch port map (···) ;
 L2: Latch port map (···) ;
 end Structure_View ;

--A configuration of the microprocessor:

 library TTL, Work ;
 configuration V4_27_87 of Processor is
 use Work.all ;
 for Structure_View
 for A1: ALU
 use configuration TTL.SN74LS181 ;
 end for ;
 for M1,M2,M3: MUX
 use entity Multiplex4 (Behavior) ;
 end for ;
 for all: Latch
 -- use defaults
 end for ;
 end for ;
 end configuration V4_27_87 ;

1.3.1 Block configuration

A block configuration defines the configuration of a block. Such a block maybe either an internal block defined by a
block statement or an external block defined by a design entity. If the block is an internal block, the defining block
statement may be either an explicit block statement or an implicit block statement that is itself defined by a generate
statement.

 block_configuration ::=
 for block_specification
 { use_clause }
 { configuration_item }
 end for ;

 block_specification ::=
 architecture_name
 | block_statement_label
 | generate_statement_label [(index_specification)]

 index_specification ::=
 discrete_range

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (9 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

 | static_expression

 configuration_item ::=
 block_configuration
 | component_configuration

The block specification identifies the internal or external block to which this block configuration applies.

If a block configuration appears immediately within a configuration declaration, then the block specification of that
block configuration must bean architecture name, and that architecture name must denote a design entity body whose
interface is defined by the entity declaration denoted by the entity name of the enclosing configuration declaration.

If a block configuration appears immediately within a component configuration,then the corresponding components
must be fully bound (see 5.2.1.1), the block specification of that block configuration must be an architecture name, and
that architecture name must denote the same architecture body as that to which the corresponding components are
bound.

If a block configuration appears immediately within another block configuration, then the block specification of the
contained block configuration must be a block statement or generate statement label, and the label must denote a block
statement or generate statement that is contained immediately within the block denoted by the block specification of the
containing block configuration.

If the scope of a declaration (see 10.2) includes the end of the declarative part of a block corresponding to a given
block configuration, then the scope of that declaration extends to each configuration item contained in that block
configuration, with the exception of block configurations that configure external blocks. In addition, if a declaration is
visible (either directly or by selection) at the end of the declarative part of a block corresponding to a given block
configuration, then the declaration is visible in each configuration item contained in that block configuration, with the
exception of block configurations that configure external blocks. Additionally, if a given declaration is a homograph of
a declaration that a use clause in the block configuration makes potentially directly visible, then the given declaration is
not directly visible in the block configuration or any of its configuration items. See 10.3 for more information.

For any name that is the label of a block statement appearing immediately within a given block, a corresponding block
configuration may appear as a configuration item immediately within a block configuration corresponding to the given
block. For any collection of names that are labels of instances of the same component appearing immediately within a
given block, a corresponding component configuration may appear as a configuration item immediately within a block
configuration corresponding to the given block.

For any name that is the label of a generate statement immediately within a given block, one or more corresponding
block configurations may appear as configuration items immediately within a block configuration corresponding to the
given block. Such block configurations apply to implicit blocks generated by that generate statement. If such a block
configuration contains an index specification that is a discrete range, then the block configuration applies to those
implicit block statements that are generated for the specified range of values of the corresponding generate parameter;
the discrete range has no significance other than to define the set of generate statement parameter values implied by the
discrete range. If such a block configuration contains an index specification that is a static expression, then the block
configuration applies only to the implicit block statement generated for the specified value of the corresponding
generate parameter. If no index specification appears in such a block configuration, then it applies to exactly one of the
following sets of blocks:

-- All implicit blocks (if any) generated by the corresponding generate statement, if and only if the
corresponding generate statement has a generation scheme including the reserved word for

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (10 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

-- The implicit block generated by the corresponding generate statement, if and only if the corresponding
generate statement has a generation scheme including the reserved word if and if the condition in the generate
scheme evaluates to TRUE

-- No implicit or explicit blocks, if and only if the corresponding generate statement has a generation scheme
including the reserved word if and the condition in the generate scheme evaluates to FALSE

If the block specification of a block configuration contains a generate statement label, and if this label contains an index
specification, then it is an error if the generate statement denoted by the label does not have a generation scheme
including the reserved word for.

Within a given block configuration, whether implicit or explicit, an implicit block configuration is assumed to appear
for any block statement that appears within the block corresponding to the given block configuration, if no explicit
block configuration appears for that block statement. Similarly, an implicit component configuration is assumed to
appear for each component instance that appears within the block corresponding to the given block configuration, if no
explicit component configuration appears for that instance. Such implicit configuration items are assumed to appear
following all explicit configuration items in the block configuration.

It is an error if, in a given block configuration, more than one configuration item is defined for the same block or
component instance.

NOTES

1--As a result of the rules described in the preceding paragraphs and in Section 10, a simple name that is visible by
selection at the end of the declarative part of a given block is also visible by selection within any configuration item
contained in a corresponding block configuration. If such a name is directly visible at the end of the given block
declarative part, it will likewise be directly visible in the corresponding configuration items,unless a use clause for a
different declaration with the same simple name appears in the corresponding configuration declaration, and the scope
of that use clause encompasses all or part of those configuration items. If such a use clause appears, then the name will
be directly visible within the corresponding configuration items except at those places that fall within the scope of the
additional use clause (at which places neither name will be directly visible).

2--If an implicit configuration item is assumed to appear within a block configuration, that implicit configuration item
will never contain explicit configuration items.

3--If the block specification in a block configuration specifies a generate statement label, and if this label contains an
index specification that is a discrete range, then the direction specified or implied by the discrete range has no
significance other than to define, together with the bounds of the range, the set of generate statement parameter values
denoted by the range. Thus, the following two block configurations are equivalent:

 for Adders(31 downto 0) ··· end for;

 for Adders(0 to 31) ··· end for;

4--A block configuration may appear immediately within a configuration declaration only if the entity declaration
denoted by the entity name of the enclosing configuration declaration has associated architectures. Furthermore, the
block specification of the block configuration must denote one of these architectures.

Examples:

--A block configuration for a design entity:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (11 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

 for ShiftRegStruct -- An architecture name.
 -- Configuration items
 -- for blocks and components
 -- within ShiftRegStruct.
 end for ;

--A block configuration for a block statement:

 for B1 -- A block label
 -- Configuration items
 -- for blocks and components
 -- within block B1.
 end for ;

1.3.2 Component configuration

A component configuration defines the configuration of one or more component instances in a corresponding block.

 component_configuration ::=
 for component_specification
 [binding_indication ;]
 [block_configuration]
 end for ;

The component specification (see 5.2) identifies the component instances to which this component configuration
applies. A component configuration that appears immediately within a given block configuration applies to component
instances that appear immediately within the corresponding block.

It is an error if two component configurations apply to the same component instance.

If the component configuration contains a binding indication (see 5.2.1), then the component configuration implies a
configuration specification for the component instances to which it applies. This implicit configuration specification
has the same component specification and binding indication as that of the component configuration.

If a given component instance is unbound in the corresponding block, then any explicit component configuration for
that instance that does not contain an explicit binding indication will contain an implicit, default binding indication (see
5.2.2). Similarly, if a given component instance is unbound in the corresponding block, then any implicit component
configuration for that instance will contain an implicit, default binding indication.

It is an error if a component configuration contains an explicit block configuration and the component configuration
does not bind all identified component instances to the same design entity.

Within a given component configuration, whether implicit or explicit, an implicit block configuration is assumed for
the design entity to which the corresponding component instance is bound, if no explicit block configuration appears
and if the corresponding component instance is fully bound.

Examples:

--A component configuration with binding indication:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (12 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

 for all: IOPort
 use entity StdCells.PadTriState4 (DataFlow)
 port map (Pout=>A, Pin=>B, IO=>Dir, Vdd=>Pwr, Gnd=>Gnd) ;
 end for ;

--A component configuration containing block configurations:

 for D1: DSP
 for DSP_STRUCTURE
 -- Binding specified in design entity or else defaults.
 for Filterer
 -- Configuration items for filtering components.
 end for ;
 for Processor
 -- Configuration items for processing components.
 end for ;
 end for ;
 end for ;

NOTE--Therequirement that all component instances corresponding to a block configuration be bound to the same
design entity makes the following configuration illegal:

 architecture A of E is
 component C is end component C;
 for L1: C use entity E1(X);
 for L2: C use entity E2(X);
 begin
 L1: C;
 L2: C;
 end architecture A;

 configuration Illegal of Work.E is
 for A
 for all: C
 for X -- Does not apply to the same design entity in all
instances of C.
 ···
 end for; -- X
 end for; -- C
 end for; -- A
 end configuration Illegal ;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_1.HTM (13 of 13) [12/28/2002 12:49:50 PM]

VHDL LRM- Introduction

Section 0

Overview of this standard
This section describes the purpose and organization of this standard, the IEEE Standard VHDL Language Reference Manual
(IEEE Std. 1076-1993).

0.1 Intent and scope of this document

The intent of this standard is to define VHDL accurately. Its primary audiences are the implementor of tools supporting the
language and the advanced user of the language. Other users are encouraged to use commercially available books, tutorials,
and classes to learn the language in some detail prior to reading this manual. These resources generally focus on how to use
the language, rather than how a VHDL-compliant tool is required to behave.

At the time of its publication, this document was the authoritative definition of VHDL. From time to time, it may become
necessary to correct and/or clarify portions of this standard. Such corrections and clarifications may be published in separate
documents. Such documents modify this standard at the time of their publication and remain in effect until superseded by
subsequent documents or until the standard is officially revised.

0.2 Structure and terminology of this document

This manual is organized into sections, each of which focuses on some particular area of the language. Every fifth line of
each section, not including section headings, footers, and the section title, is numbered in the left margin. Within each
section, individual constructs or concepts are discussed in each clause.

Each clause describing a specific construct begins with an introductory paragraph. Next, the syntax of the construct is
described using one or more grammatical "productions."

A set of paragraphs describing the meaning and restrictions of the construct in narrative form then follow. Unlike many other
IEEE standards, which use the verb "shall" to indicate mandatory requirements of the standard and "may" to indicate optional
features, the verb "is" is used uniformly throughout this document. In all cases, "is" is to be interpreted as having mandatory
weight.

Additionally, the word "must" is used to indicate mandatory weight. This word is preferred over the more common "shall," as
"must" denotes a different meaning to different readers of this standard.

a. To the developer of tools that process VHDL, "must" denotes a requirement that the standard imposes. The resulting
implementation is required to enforce the requirement and to issue an error if the requirement is not met by some
VHDL source text.

b. To the VHDL model developer, "must" denotes that the characteristics of VHDL are natural consequences of the
language definition. The model developer is required to adhere to the constraint implied by the characteristic.

c. To the VHDL model user, "must" denotes that the characteristics of the models are natural consequences of the
language definition. The model user can depend on the characteristics of the model implied by its VHDL source text.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_0.HTM (1 of 3) [12/28/2002 12:49:51 PM]

VHDL LRM- Introduction

Finally, each clause may end with examples, notes, and references to other pertinent clauses.

0.2.1 Syntactic description

The form of a VHDL description is described by means of context-free syntax, using a simple variant of backus naur form; in
particular:

a. Lowercased words in roman font, some containing embedded underlines, are used to denote syntactic categories, for
example:

 formal_port_list

Whenever the name of a syntactic category is used, apart from the syntax rules themselves, spaces take the place of
underlines (thus, "formal port list" would appear in the narrative description when referring to the above syntactic
category).

b. Boldface words are used to denote reserved words, for example:

 array

Reserved words must be used only in those places indicated by the syntax.

c. A production consists of a left-hand side, the symbol "::="(which is read as "can be replaced by"), and a right-hand
side. The left-hand side of a production is always a syntactic category; the right-hand side is a replacement rule.

The meaning of a production is a textual-replacement rule: any occurrence of the left-hand side may be replaced by an
instance of the right-hand side.

d. A vertical bar separates alternative items on the right-hand side of a production unless it occurs immediately after an
opening brace, in which case it stands for itself:

 letter_or_digit ::= letter | digit

 choices ::= choice { | choice }

In the first instance, an occurrence of "letter_or_digit" can be replaced by either "letter" or "digit." In the second case,
"choices" can be replaced by a list of "choice," separated by vertical bars (see item f for the meaning of braces).

e. Square brackets enclose optional items on the right-hand side of a production; thus the two following productions are
equivalent:

 return_statement ::= return [expression] ;

 return_statement ::= return ; | return expression ;

Note, however, that the initial and terminal square brackets in the right-hand side of the production for signatures (in
2.3.2) are part of the syntax of signatures and do not indicate that the entire right-hand side is optional.

f. Braces enclose a repeated item or items on the right-hand side of a production. The items may appear zero or more
times; the repetitions occur from left to right as with an equivalent left-recursive rule. Thus, the following two
productions are equivalent:

 term ::= factor { multiplying_operator factor }

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_0.HTM (2 of 3) [12/28/2002 12:49:51 PM]

VHDL LRM- Introduction

 term ::= factor | term multiplying_operator factor

g. If the name of any syntactic category starts with an italicized part, it is equivalent to the category name without the
italicized part. The italicized part is intended to convey some semantic information. For example, type_name and
subtype_name are both syntactically equivalent to name alone.

h. The term simple_name is used for any occurrence of an identifier that already denotes some declared entity.

0.2.2 Semantic description

The meaning and restrictions of a particular construct are described with a set of narrative rules immediately following the
syntactic productions. In these rules, an italicized term indicates the definition of that term and identifiers appearing entirely
in uppercase refer to definitions in package STANDARD (see 14.2).

The following terms are used in these semantic descriptions with the following meaning:

erroneous The condition described represents an ill-formed description;
implementations are however,
 not required to detect and report this condition.

 Conditions are deemed erroneous only when it is impossible in
general to detect the condition
 During The Processing Of The Language.

error The condition described represents an ill-formed description;
implementations are required to
 detect the condition and report an error to the user of the tool.

illegal A synonym for "error."

legal The condition described represents a well-formed description.

0.2.3 Front matter, examples, notes, references, and annexes

Prior to this section are several pieces of introductory material; following the final section are some annexes and an index.
The front matter, annexes,and index serve to orient and otherwise aid the user of this manual but are not part of the definition
of VHDL.

Some clauses of this standard contain examples, notes, and cross-references to other clauses of the manual; these parts always
appear at the end of a clause. Examples are meant to illustrate the possible forms of the construct described. Illegal examples
are italicized. Notes are meant to emphasize consequences of the rules described in the clause or elsewhere. In order to
distinguish notes from the other narrative portions of this standard, notes are set as enumerated paragraphs in a font smaller
than the rest of the text. Cross-references are meant to guide the user to other relevant clauses of the manual. Examples,
notes, and cross-references are not part of the definition of the language.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_0.HTM (3 of 3) [12/28/2002 12:49:51 PM]

VHDL LRM- Introduction

Section 14

Predefined language environment
This section describes the predefined attributes of VHDL and the packages that all VHDL implementations must provide.

14.1 Predefined Attributes

Predefined attributes denote values, functions, types, and ranges associated with various kinds of named entities. These attributes are described
below. For each attribute, the following information is provided:

-- The kind of attribute: value, type, range, function, or signal.

-- The prefixes for which the attribute is defined.

-- A description of the parameter or argument, if one exists.

-- The result of evaluating the attribute, and the result type (if applicable).

-- Any further restrictions or comments that apply.

T'BASE

Kind: Type.

Prefix: Any type or subtype T.

Result: The base type of T.

Restrictions: This attribute is allowed only as the prefix of the name of another attribute; for example,
T'BASE'LEFT.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (1 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

T'LEFT

Kind: Value.

Prefix: Any scalar type or subtype T.

Result Type: Same type as T.

Result: The left bound of T.

T'RIGHT

Kind: Value.

Prefix: Any scalar type or subtype T.

Result Type: Same type as T.

Result: The right bound of T.

T'HIGH

Kind: Value.

Prefix: Any scalar type or subtype T.

Result Type: Same type as T.

Result: The upper bound of T.

T'LOW

Kind: Value.

Prefix: Any scalar type or subtype T.

Result Type: Same type as T.

Result: The lower bound of T.

T'ASCENDING

Kind: Value.

Prefix: Any scalar type or subtype T.

Result Type: Type Boolean

Result: TRUE if T is defined with an ascending range; FALSE otherwise.

T'IMAGE(X)

Kind: Function.

Prefix: Any scalar type or subtype T.

Parameter: An expression whose type is the base type of T.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (2 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

Result Type: Type String.

Result: The string representation of the parameter value, without leading or trailing whitespace. If T is an
enumeration type or subtype and the parameter value is either an extended identifier or a character
literal, the result is expressed with both a leading and trailing reverse solidus (backslash) (in the case
of an extended identifier) or apostrophe (in the case of a character literal); in the case of an extended
identifier that has a backslash, the backslash is doubled in the string representation. If T is an
enumeration type or subtype and the parameter value is a basic identifier, then the result is expressed
in lowercase characters. If T is a numeric type or subtype, the result is expressed as the decimal
representation of the parameter value without underlines or leading or trailing zeros (except as
necessary to form the image of a legal literal with the proper value); moreover, an exponent may (but
is not required to) be present and the language does not define under what conditions it is or is not
present. If the exponent is present, the "e" is expressed as a lowercase character. If T is a physical
type or subtype, the result is expressed in terms of the primary unit of T unless the base type of T is
TIME, in which case the result is expressed in terms of the resolution limit(see 3.1.3.1); in either
case, if the unit is a basic identifier, the image of the unit is expressed in lowercase characters. If T is
a floating point type or type, the number of digits to the right of the decimal point corresponds to the
standard form generated when the DIGITS parameter to TextIO. Write for type REAL is set to 0 (see
14.3). The result never contains the replacement characters described in 13.10 .

Restrictions: It is an error if the parameter value does not belong to the subtype implied by the prefix.

T'VALUE(X)

Kind: Function.

Prefix: Any scalar type or subtype T.

Parameter: An expression of type String.

Result Type: The base type of T.

Result: The value of T whose string representation (as defined in Section 13) is given by the parameter.
Leading and trailing whitespace is allowed and ignored. If T is a numeric type or subtype, the
parameter may be expressed either as a decimal literal or as a based literal. If T is a physical type or
subtype, the parameter may be expressed using a string representation of any of the unit names of T,
with or without a leading abstract literal. The parameter must have whitespace between any abstract
literal and the unit name. The replacement characters of 13.10 are allowed in the parameter.

Restrictions: It is an error if the parameter is not a valid string representation of a literal of type T or if the result
does not belong to the subtype implied by T.

T'POS(X)

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (3 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

Kind: Function.

Prefix: Any discrete or physical type or subtype T.

Parameter: An expression whose type is the base type of T.

Result Type: universal_integer.

Result: The position number of the value of the parameter.

T'VAL(X)

Kind: Function.

Prefix: Any discrete or physical type or subtype T.

Parameter: An expression of any integer type.

Result Type: The base type of T.

Result: The value whose position number is the universal_integer value corresponding to X.

Restrictions: It is an error if the result does not belong to the range T'LOW to T'HIGH.

T'SUCC(X)

Kind: Function.

Prefix: Any discrete or physical type or subtype T.

Parameter: An expression whose type is the base type of T.

Result Type: The base type of T.

Result: The value whose position number is one greater than that of the parameter.

Restrictions: An error occurs if X equals T'HIGH or if X does not belong to the range T'LOW to T'HIGH.

T'PRED(X)

Kind: Function.

Prefix: Any discrete or physical type or subtype T.

Parameter: An expression whose type is the base type of T.

Result Type: The base type of T.

Result: The value whose position number is one less than that of the parameter.

Restrictions: An error occurs if X equals T'LOW or if X does not belong to the range T'LOW to T'HIGH.

T'LEFTOF(X)

Kind: Function.

Prefix: Any discrete or physical type or subtype T.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (4 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

Parameter: An expression whose type is the base type of T.

Result Type: The base type of T.

Result: The value that is to the left of the parameter in the range of T.

Restrictions: An error occurs if X equals T'LEFT or if X does not belong to the range T'LOW to T'HIGH.

T'RIGHTOF(X)

Kind: Function.

Prefix: Any discrete or physical type or subtype T.

Parameter: An expression whose type is the base type of T.

Result Type: The base type of T.

Result: The value that is to the right of the parameter in the range of T.

Restrictions: An error occurs if X equals T'RIGHT or if X does not belong to the range T'LOW to T'HIGH.

A'LEFT [(N)]

Kind: Function.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, or that denotes a constrained
array subtype.

Parameter: A locally static expression of type universal_integer, the value of which must not exceed the
dimensionality of A. If omitted, it defaults to 1.

Result Type: Type of the left bound of the Nth index range of A.

Result: Left bound of the Nth index range of A. (If A is an alias for an array object, then the result is the left
bound of the Nth index range from the declaration of A, not that of the object.)

A'RIGHT [(N)]

Kind: Function.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, or that denotes a constrained
array subtype.

Parameter: A locally static expression of type universal_integer, the value of which must not exceed the
dimensionality of A. If omitted, it defaults to 1.

Result Type: Type of the Nth index range of A.

Result: Right bound of the Nth index range of A. (If A is an alias for an array object, then the result is the
right bound of the Nth index range from the declaration of A, not that of the object.)

A'HIGH [(N)]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (5 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

Kind: Function.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, or that denotes a constrained
array subtype.

Parameter: A locally static expression of type universal_integer, the value of which must not exceed the
dimensionality of A. If omitted, it defaults to 1.

Result Type: Type of the Nth index range of A.

Result: Upper bound of the Nth index range of A. (If A is an alias for an array object, then the result is the
upper bound of the Nth index range from the declaration of A, not that of the object.)

A'LOW [(N)]

Kind: Function.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, or that denotes a constrained
array subtype.

Parameter: A locally static expression of type universal_integer, the value of which must not exceed the
dimensionality of A. If omitted, it defaults to 1.

Result Type: Type of the Nth index range of A.

Result: Lower bound of the Nth index range of A. (If A is an alias for an array object, then the result is the
lower bound of the Nth index range from the declaration of A, not that of the object.)

A'RANGE [(N)]

Kind: Range.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, or that denotes a constrained
array subtype.

Parameter: A locally static expression of type universal_integer, the value of which must not exceed the
dimensionality of A. If omitted, it defaults to 1.

Result Type: The type of the Nth index range of A.

Result: The range A'LEFT(N) to A'RIGHT(N) if the Nth index range of A is ascending, or the range
A'LEFT(N) downto A'RIGHT(N) if the Nth index range of A is descending. (If A is an alias for an
array object, then the result is determined by the Nth index range from the declaration of A, not that
of the object.)

A'REVERSE_RANGE [(N)]

Kind: Range.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (6 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, or that denotes a constrained
array subtype.

Parameter: A locally static expression of type universal_integer, the value of which must not exceed the
dimensionality of A. If omitted, it defaults to 1.

Result Type: The type of the Nth index range of A.

Result: The range A'RIGHT(N) downto A'LEFT(N) if the Nth index range of A is ascending, or the range
A'RIGHT(N) to A'LEFT(N) if the Nth index range of A is descending. (If A is an alias for an array
object, then the result is determined by the Nth index range from the declaration of A, not that of the
object.)

A'LENGTH [(N)]

Kind: Value.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, or that denotes a constrained
array subtype

Parameter: A locally static expression of type universal_integer, the value of which must not exceed the
dimensionality of A. If omitted, it defaults to 1.

Result Type: universal_integer.

Result: Number of values in the Nth index range; i.e., if the Nth index range of A is a null range, then the
result is 0. Otherwise, the result is the value of T'POS(A'HIGH(N)) - T'POS(A'LOW(N)) + 1, where
T is the subtype of the Nth index of A.

A'ASCENDING [(N)]

Kind: Value.

Prefix: Any prefix A that is appropriate for an array object, or an alias thereof, or that denotes a constrained
array subtype.

Parameter: A locally static expression of type universal integer, the value of which must be greater than zero and
must not exceed the dimensionality of A. If omitted, it defaults to 1.

Result Type: Type Boolean.

Result: TRUE if the Nth index range of A is defined with an ascending range; FALSE otherwise.

S'DELAYED [(T)]

Kind: Signal.

Prefix: Any signal denoted by the static signal name S.

Parameter: A static expression of type TIME that evaluates to a nonnegative value. If omitted, it defaults to 0 ns.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (7 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

Result Type: The base type of S.

Result: A signal equivalent to signal S delayed T units of time. The value of S'DELAYED(t) at time Tn is

always equal to the value of S at time Tn-t. Specifically:

Let R be of the same subtype as S, let T >= 0 ns, and let P be a process statement of the form

P: process (S)
 begin
 R <= transport S after T;
 end process ;

Assuming that the initial value of R is the same as the initial value of S, then the attribute 'DELAYED is defined such that
S'DELAYED(T) = R for any T.

S'STABLE [(T)]

Kind: Signal.

Prefix: Any signal denoted by the static signal name S.

Parameter: A static expression of type TIME that evaluates to a nonnegative value. If omitted, it defaults to 0 ns.

Result Type: Type Boolean.

Result: A signal that has the value TRUE when an event has not occurred on signal S for T units of time, and
the value FALSE otherwise. (See 12.6.2 .)

S'QUIET [(T)]

Kind: Signal.

Prefix: Any signal denoted by the static signal name S

Parameter: A static expression of type TIME that evaluates to a nonnegative value. If omitted, it defaults to 0 ns.

Result Type: Type Boolean.

Result: A signal that has the value TRUE when the signal has been quiet for T units of time, and the value
FALSE otherwise. (See 12.6.2 .)

S'TRANSACTION

Kind: Signal.

Prefix: Any signal denoted by the static signal name S.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (8 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

Result Type: Type Bit.

Result: A signal whose value toggles to the inverse of its previous value in each simulation cycle in which
signal S becomes active.

Restriction: A description is erroneous if it depends on the initial value of S'Transaction.

S'EVENT

Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result Type: Type Boolean.

Result: A value that indicates whether an event has just occurred on signal S. Specifically:

For a scalar signal S, S'EVENT returns the value TRUE if an event has occurred on S during the current simulation cycle;
otherwise, it returns the value FALSE.

For a composite signal S, S'EVENT returns TRUE if an event has occurred on any scalar subelement of S during the current
simulation cycle; otherwise, it returns FALSE.

S'ACTIVE

Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result Type: Type Boolean.

Result: A value that indicates whether signal S is active. Specifically:

For a scalar signal S, S'ACTIVE returns the value TRUE if signal S is active during the current simulation cycle; otherwise,
it returns the value FALSE.

For a composite signal S, S'ACTIVE returns TRUE if any scalar subelement of S is active during the current simulation
cycle; otherwise, it returns FALSE.

S'LAST_EVENT

Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result Type: Type Time.

Result: The amount of time that has elapsed since the last event occurred on signal S. Specifically:

For a signal S, S'LAST_EVENT returns the smallest value T of type TIME such that S'EVENT = True during any
simulation cycle at time NOW - T, if such value exists; otherwise, it returns TIME'HIGH.

S'LAST_ACTIVE

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (9 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result Type: Type Time.

Result: The amount of time that has elapsed since the last time at which signal S was active. Specifically:

For a signal S, S'LAST_ACTIVE returns the smallest value T of type TIME such that S'ACTIVE = True during any
simulation cycle at time NOW - T, if such value exists; otherwise, it returns TIME'HIGH.

S'LAST_VALUE

Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result Type: The base type of S.

Result: The previous value of S, immediately before the last change of S.

S'DRIVING

Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result Type: Type Boolean.

Result: If the prefix denotes a scalar signal, the result is False if the current value of the driver for S in the
current process is determined by the null transaction; True otherwise. If the prefix denotes a
composite signal,the result is True if and only if R'DRIVING is True for every scalar subelement R
of S; False otherwise. If the prefix denotes a null slice of a signal, the result is True.

Restrictions: This attribute is available only from within a process, a concurrent statement with an equivalent
process, or a subprogram. If the prefix denotes a port, it is an error if the port does not have a mode
of inout, out, or buffer. It is also an error if the attribute name appears in a subprogram body that is
not a declarative item contained within a process statement and the prefix is not a formal parameter
of the given subprogram or of a parent of that subprogram. Finally, it is an error if the prefix denotes
a subprogram formal parameter whose mode is not inout or out.

S'DRIVING_VALUE

Kind: Function.

Prefix: Any signal denoted by the static signal name S.

Result Type: The base type of S.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (10 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

Result: If S is a scalar signal S, the result is the current value of the driver for S in the current process. If S is
a composite signal, the result is the aggregate of the values of R'DRIVING_VALUE for each element
R of S. If Sis a null slice, the result is a null slice.

Restrictions: This attribute is available only from within a process, a concurrent statement with an equivalent
process, or a subprogram. If the prefix denotes a port, it is an error if the port does not have a mode
of inout, out, or buffer. It is also an error if the attribute appears in a subprogram body that is not a
declarative item contained within a process statement and the prefix is not a formal parameter of the
given subprogram or of a parent of that subprogram. Finally, it is an error if the prefix denotes a
subprogram formal parameter whose mode is not inout or out, or if S'DRIVING is False at the time
of the evaluation of S'DRIVING_VALUE.

E'SIMPLE_NAME

Kind: Value.

Prefix: Any named entity as defined in 5.1 .

Result Type: Type String.

Result: The simple name, character literal, or operator symbol of the named entity, without leading or trailing
whitespace or quotation marks but with apostrophes (in the case of a character literal) and both a
leading and trailing reverse solidus (backslash) (in the case of an extended identifier).In the case of a
simple name or operator symbol, the characters are converted to their lowercase equivalents. In the
case of an extended identifier, the case of the identifier preserved, and any reverse solidus characters
appearing as part of the identifier are represented with two consecutive reverse solidus characters.

E'INSTANCE_NAME

Kind: Value.

Prefix: Any named entity other than the local ports and generics of a component declaration.

Result Type: Type String.

The result string has the following syntax:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (11 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

instance_name ::= package_based_path | full_instance_based_path

 package_based_path ::=
 leader library_logical_name leader package_simple_name leader
 [local_item_name]

 full_instance_based_path ::= leader full_path_to_instance [local_item_name]

 full_path_to_instance ::= { full_path_instance_element leader }

 local_item_name ::=
 simple_name
 character_literal
 operator_symbol

 full_path_instance_element ::=
 [component_instantiation_label @]
 entity_simple_name (architecture_simple_name)
 | block_label
 | generate_label
 | process_label
 | loop_label
 | subprogram_simple_name

 generate_label ::= generate_label [(literal)]

 process_label ::= [process_label]

 leader ::= :

Package-based paths identify items declared within packages. Full-instance-based paths identify items within an elaborated design hierarchy.

A library logical name denotes a library; see 11.2 . Since multiple logical names may denote the same library, the library logical name may not be
unique.

There is one full path instance element for each component instantiation, block statement, generate statement, process statement, or subprogram

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (12 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

body in the design hierarchy between the root design entity and the named entity denoted by the prefix.

In a full path instance element, the architecture simple name must denote an architecture associated with the entity interface designated by the entity
simple name; furthermore, the component instantiation label (and the commercial at following it) are required unless the entity simple name and the
architecture simple name together denote the root design entity.

The literal in a generate label is required if the label denotes a generate statement with a for generation scheme; the literal must denote one of the
values of the generate parameter.

A process statement with no label is denoted by an empty process label.

All characters in basic identifiers appearing in the result are converted to their lowercase equivalents. Both a leading and trailing reverse solidus
surround an extended identifier appearing in the result; any reverse solidus characters appearing as part of the identifier are represented with two
consecutive reverse solidus characters.

E'PATH_NAME

Kind: Value.

Prefix: Any named entity other than the local ports and
generics of a component declaration.

Result Type: Type String.

Result: A string describing the hierarchical path starting at
the root of the design hierarchy and descending to the
named entity, excluding the name of instantiated
design entities. Specifically:

The result string has the following syntax:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (13 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 path_name ::= package_based_path | instance_based_path

 instance_based_path ::=
 leader path_to_instance [local_item_name]

 path_to_instance ::= { path_instance_element leader }

 path_instance_element ::=
 component_instantiation_label
 | entity_simple_name
 | block_label
 | generate_label
 | process_label
 | subprogram_simple_name

Package-based paths identify items declared within packages. Full- instance - based paths identify items within an elaborated design hierarchy.

There is one path instance element for each component instantiation, block statement, generate statement, process statement, or subprogram body in
the design hierarchy between the top design entity and the named entity denoted by the prefix.

Examples:

 library Lib: -- All design units are in this
library:
 package P is -- P'PATH_NAME = ":lib:p:"
 --P'INSTANCE_NAME = ":lib:p:"

 procedure Proc (F: inout INTEGER); -- Proc'PATH_NAME = ":lib:p:proc"
 --Proc'INSTANCE_NAME =
":lib:p:proc"

 constant C: INTEGER := 42; -- C'PATH_NAME = ":lib:p:c"
 end package P; -- C'INSTANCE_NAME = ":lib:p:c"

 package body P is

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (14 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 procedure Proc (F: inout INTEGER) is
 variable x: INTEGER; -- x'PATH_NAME =
":lib:p:proc:x"
 begin -- x'INSTANCE_NAME =
":lib:p:proc:x"
 ·
 ·
 ·
 end;
 end;

 library Lib;
 use Lib.P.all; -- Assume that E is in Lib
and
 entity E is -- E is the top-level design
entity:
 -- E'PATH_NAME = ":e:"
 -- E'INSTANCE_NAME =
":e(a):"
 generic (G: INTEGER); -- G'PATH_NAME = ":e:g"
 -- G'INSTANCE_NAME =
":e(a):g"
 port (P: in INTEGER); -- P'PATH_NAME = ":e:p"
 end entity E; -- P'INSTANCE_NAME =
":e(a):p"

 architecture A of E is
 signal S: BIT_VECTOR (1 to G); -- S'PATH_NAME = ":e:s"
 -- S'INSTANCE_NAME =
":e(a):s"
 procedure Proc1 (signal sp1: NATURAL; C: out INTEGER) is
 -- Proc1'PATH_NAME =
":e:proc1:"
 -- Proc1'INSTANCE_NAME
=:e(a):proc1:"
 -- C'PATH_NAME =
":e:proc1:c"

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (15 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 -- C'INSTANCE_NAME =
":e(a):proc1:c"
 variable max: DELAY_LENGTH; -- max'PATH_NAME =
":e:proc1:max"
 -- max'INSTANCE_NAME =
 -- ":e(a):proc1:max"

 begin
 max := sp1 * ns;
 wait on sp1 for max;
 c := sp1;
 end procedure Proc1;

 begin
 p1: process
 variable T: INTEGER := 12; -- T'PATH_NAME = ":e:p1:t"
 begin -- T'INSTANCE_NAME =
":e(a):p1:t"
 ·
 ·
 ·
 end process p1;

 process
 variable T: INTEGER := 12; -- T'PATH_NAME = ":e::t"
 begin -- T'INSTANCE_NAME =
":e(a)::t"
 ·
 ·
 ·
 end process ;
 end architecture;

 entity Bottom is
 generic (GBottom : INTEGER);
 port (PBottom : INTEGER);
 end entity Bottom;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (16 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 architecture BottomArch of Bottom is
 signal SBottom : INTEGER;
 begin
 ProcessBottom : process
 variable V : INTEGER;
 begin
 if GBottom = 4 then
 assert V'Simple_Name = "v"
 and V'Path_Name = ":top:b1:b2:g1(4):b3:l1:processbottom:v"
 and V'Instance_Name =
":top(top):b1:b2:g1(4):b3:l1@bottom(bottomarch):processbottom:v";
 assert GBottom'Simple_Name = "bottom"
 and GBottom'Path_Name = ":top:b1:b2:g1(4):b3:l1:gbottom"
 and GBottom'Instance_Name =
":top(top):b1:b2:g1(4):b3:l1@bottom(bottomarch):gbottom";
 elsif GBottom = -1 then
 assert V'Simple_Name = "v"
 and V'Path_Name = ":top:l2:processbottom:v"
 and V'Instance_Name =
":top(top):l2@bottom(bottomarch):processbottom:v";
 assert GBottom'Simple_Name = "gbottom"
 and GBottom'Path_Name = "top:l2:gbottom"
 and GBottom'Instance_Name =
 ":top(top):l2@bottom(bottomarch):gbottom";
 end if;
 wait;
 end process ProcessBottom;
 end architecture BottomArch;

 entity Top is end Top;

 architecture Top of Top is
 component BComp is
 generic (GComp : INTEGER)
 port (PComp : INTEGER);
 end component BComp;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (17 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 signal S : INTEGER;
 begin
 B1 : block
 signal S : INTEGER;

 begin
 B2 : block
 signal S : INTEGER;
 begin
 G1 : for I in 1 to 10 generate
 B3 : block
 signal S : INTEGER;
 for L1 : BComp use entity Work.Bottom(BottomArch)
 generic map (GBottom => GComp)
 port map (PBottom => PComp);

 begin
 L1 : BComp generic map (I) port map (S);
 P1 : process
 variable V : INTEGER;
 begin
 if I = 7 then
 assert V'Simple_Name = "v"
 and V'Path_Name = ":top:b1:b2:g1(7):b3:p1:v"
 and V'Instance_Name =
":top(top):b1:b2:g1(7):b3:p1:v";
 assert P1'Simple_Name = "p1"
 and P1'Path_Name = ":top:b1:b2:g1(7):b3:p1:"
 and P1'Instance_Name =
":top(top):b1:b2:g1(7):b3:p1:";
 assert S'Simple_Name = "s"
 and S'Path_Name = ":top:b1:b2:g1(7):b3:s"
 and S'Instance_Name =
":top(top):b1:b2:g1(7):b3:s";
 assert B1.S'Simple_Name = "s"
 and B1.S'Path_Name = ":top:b1:s"

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (18 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 and B1.S'Instance_Name = ":top(top):b1:s";
 end if;
 wait;
 end process P1;
 end block B3;
 end generate;
 end block B2;
 end block B1;
 L2 : BComp generic map (-1) port map (S);
 end architecture Top;

 configuration TopConf of Top is
 for Top
 for L2 : BComp use
 entity Work.Bottom(BottomArch)
 generic map (GBottom => GComp)
 port map (PBottom => PComp);
 end for;
 end for;
 end configuration TopConf;

NOTES

1--The relationship between the values of the LEFT, RIGHT, LOW, and HIGH attributes is expressed in the following table:

Ascending
range

Descending
range

T'LEFT = T'LOW T'HIGH

T'RIGHT = T'HIGH T'LOW

2--Since the attributes S'EVENT, S'ACTIVE, S'LAST_EVENT, S'LAST_ACTIVE, and S'LAST_VALUE are functions, not signals, they cannot
cause the execution of a process, even though the value returned by such a function may change dynamically. It is thus recommended that the
equivalent signal-valued attributes S'STABLE and S'QUIET, or expressions involving those attributes, be used in concurrent contexts such as guard
expressions or concurrent signal assignments. Similarly, function STANDARD.NOW should not be used in concurrent contexts.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (19 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

3--S'DELAYED(0 ns) is not equal to S during any simulation cycle where S'EVENT is true.

4--S'STABLE(0 ns) = (S'DELAYED(0 ns) = S), and S'STABLE(0 ns) is FALSE only during a simulation cycle in which S has had a transaction.

5--For a given simulation cycle, S'QUIET(0 ns) is TRUE if and only if S is quiet for that simulation cycle.

6--If S'STABLE(T) is FALSE, then, by definition, for some t where 0 ns <= t<= T, S'DELAYED(t) /= S.

7--If Ts is the smallest value such that S'STABLE (Ts) is FALSE, then for all t where 0 ns <= t < Ts, S'DELAYED(t) = S.

8--S'EVENT should not be used within a postponed process (or a concurrent statement that has an equivalent postponed process) to determine if the
prefix signal S caused the process to resume. However, S'LAST_EVENT = 0 ns can be used for this purpose.

9--The values of E'PATH_NAME and E'INSTANCE_NAME are not unique. Specifically, named entities in two different, unlabelled processes may
have the same path names or instance names. Overloaded subprograms, and named entities within them, may also have the same path names or
instance names.

10--If the prefix to the attributes 'SIMPLE_NAME, 'PATH_NAME, or 'INSTANCE_NAME denotes an alias, the result is respectively the simple
name, path name or instance name of the alias. See 6.6 .

11--For all values V of any scalar type T except a real type, the following relation holds:

 V = T'Value(T'Image(V))

14.2 Package STANDARD

Package STANDARD predefines a number of types, subtypes, and functions. An implicit context clause naming this package is assumed to exist at
the beginning of each design unit. Package STANDARD may not be modified by the user.

The operators that are predefined for the types declared for package STANDARD are given in comments since they are implicitly declared. Italics
are used for pseudo-names of anonymous types (such as universal_integer), formal parameters, and undefined information (such as
implementation_defined).

 package STANDARD is

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (20 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 -- Predefined enumeration types:

 type BOOLEAN is (FALSE, TRUE);

 -- The predefined operators for this type are as follows:

 -- function "and" (anonymous, anonymous: BOOLEAN)return BOOLEAN;
 -- function "or" (anonymous, anonymous: BOOLEAN)return BOOLEAN;
 -- function "nand" (anonymous, anonymous: BOOLEAN)return BOOLEAN;
 -- function "nor" (anonymous, anonymous: BOOLEAN)return BOOLEAN;
 -- function "xor" (anonymous, anonymous: BOOLEAN)return BOOLEAN;
 -- function "xnor" (anonymous, anonymous: BOOLEAN)return BOOLEAN;

 -- function "not" (anonymous: BOOLEAN) return BOOLEAN;

 -- function "=" (anonymous, anonymous: BOOLEAN)return BOOLEAN;
 -- function "/=" (anonymous, anonymous: BOOLEAN)return BOOLEAN;
 -- function "<" (anonymous, anonymous: BOOLEAN)return BOOLEAN;
 -- function "<=" (anonymous, anonymous: BOOLEAN)return BOOLEAN;
 -- function ">" (anonymous, anonymous: BOOLEAN)return BOOLEAN;
 -- function ">=" (anonymous, anonymous: BOOLEAN)return BOOLEAN;

 type BIT is ('0', '1');

 -- The predefined operators for this type are as follows:

 -- function "and" (anonymous, anonymous: BIT) return BIT;
 -- function "or" (anonymous, anonymous: BIT) return BIT;
 -- function "nand" (anonymous, anonymous: BIT) return BIT;
 -- function "nor" (anonymous, anonymous: BIT) return BIT;
 -- function "xor" (anonymous, anonymous: BIT) return BIT;
 -- function "xnor" (anonymous, anonymous: BIT) return BIT;

 -- function "not" (anonymous: BIT) return BIT;

 -- function "=" (anonymous, anonymous: BIT) return BOOLEAN;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (21 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 -- function "/=" (anonymous, anonymous: BIT) return BOOLEAN;
 -- function "<" (anonymous, anonymous: BIT) return BOOLEAN;
 -- function "<=" (anonymous, anonymous: BIT) return BOOLEAN;
 -- function ">" (anonymous, anonymous: BIT) return BOOLEAN;
 -- function ">=" (anonymous, anonymous: BIT) return BOOLEAN;

 type CHARACTER is(

NUL, SOH, STX, ETX, EOT, ENQ, ACK, BEL,

BS, HT, LF, VT, FF, CR, SO, SI,

DLE, DC1, DC2, DC3, DC4, NAK, SYN, ETB,

CAN, EM, SUB, ESC, FSP, GSP, RSP, USP,

' ', '!', '"', '#', '$', '%', '&', ''',

'(', ')', '*', '+', ',', '-', '.', '/',

'0', '1', '2', '3', '4', '5', '6', '7',

'8', '9', ':', ';', '<', '=', '>', '?',

'@', 'A', 'B', 'C', 'D', 'E', 'F', 'G',

'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O',

'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W',

'X', 'Y', 'Z', '[', '\', ']', '^', '_',

'`', 'a', 'b', 'c', 'd', 'e', 'f', 'g',

'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o',

'p', 'q', 'r', 's', 't', 'u', 'v', 'w',

'x', 'y', 'z', '{', '|', '}', '~', DEL,

C128, C129, C130, C131, C132, C133, C134, C135,

C136, C137, C138, C139, C140, C141, C142, C143,

C144, C145, C146, C147, C148, C149, C150, C151,

C152, C153, C154, C155, C156, C157, C158, C159,

' ',* '¡', '¢', '£', '¤', '¥', '¦', '§',

'¨', '©', 'ª', '«', 'ª', '-',[+] '®', '¯',

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (22 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

'°', '±', '²', '³', ''', 'µ', '¶', '·',

'¸', '¹', 'º', '»', '¼', '½', '¾', '¿',

'À', 'Á', 'Â', 'Ã', 'Ä', 'Å', 'Æ', 'Ç',

'È', 'É', 'Ê', 'Ë', 'Ì', 'Í', 'Î', 'Ï',

'Ð', 'Ñ', 'Ò', 'Ó', 'Ô', 'Õ', 'Ö', '×',

'Ø', 'Ù', 'Ú', 'Û', 'Ü', 'Ý', 'Þ', 'ß',

'à', 'á', 'â', 'ã', 'ä', 'å', 'æ', 'ç',

'è', 'é', 'ê', 'ë', 'ì', 'í', 'î', 'ï',

'ð', 'ñ', 'ò', 'ó', 'ô', 'õ', 'ö', '÷',

'ø', 'ù', 'ú', 'û', 'ü', 'ý', 'þ', 'ÿ');

 -- The predefined operators for this type are as follows:

 -- function "=" (anonymous, anonymous: CHARACTER) return BOOLEAN;
 -- function "/=" (anonymous, anonymous: CHARACTER) return BOOLEAN;
 -- function "<" (anonymous, anonymous: CHARACTER) return BOOLEAN;
 -- function "<=" (anonymous, anonymous: CHARACTER) return BOOLEAN;
 -- function ">" (anonymous, anonymous: CHARACTER) return BOOLEAN;
 -- function ">=" (anonymous, anonymous: CHARACTER) return BOOLEAN;

 type SEVERITY_LEVEL is (NOTE, WARNING, ERROR, FAILURE);

 -- The predefined operators for this type are as follows:

 -- function "=" (anonymous, anonymous: SEVERITY_LEVEL)return BOOLEAN;
 -- function "/=" (anonymous, anonymous: SEVERITY_LEVEL)return BOOLEAN;
 -- function "<" (anonymous, anonymous: SEVERITY_LEVEL) return BOOLEAN;
 -- function "<=" (anonymous, anonymous: SEVERITY_LEVEL) return BOOLEAN;
 -- function ">" (anonymous, anonymous: SEVERITY_LEVEL) return BOOLEAN;
 -- function ">=" (anonymous, anonymous: SEVERITY_LEVEL) return BOOLEAN;

 -- type universal_integer is range implementation_defined;

 -- The predefined operators for this type are as follows:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (23 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 -- function "=" (anonymous, anonymous: universal_integer) return
BOOLEAN;
 -- function "/=" (anonymous, anonymous: universal_integer) return
BOOLEAN;
 -- function "<" (anonymous, anonymous: universal_integer) return
BOOLEAN;
 -- function "<=" (anonymous, anonymous: universal_integer) return
BOOLEAN;
 -- function ">" (anonymous, anonymous: universal_integer) return
BOOLEAN;
 -- function ">=" (anonymous, anonymous: universal_integer) return
BOOLEAN;
 -- function "+" (anonymous: universal_integer) return
universal_integer;
 -- function "-" (anonymous: universal_integer) return
universal_integer;
 -- function "abs" (anonymous: universal_integer) return
universal_integer;
 -- function "+" (anonymous, universal_integer)
 -- return universal_integer;
 -- function "-" (anonymous, universal_integer)
 -- return universal_integer;
 -- function "abs" (anonymous, universal_integer)
 -- return universal_integer;
 -- function "+" (anonymous, anonymous: universal_integer)
 -- return universal_integer;
 -- function "-" (anonymous, anonymous: universal_integer)
 -- return universal_integer;
 -- function "*" (anonymous, anonymous: universal_integer)
 -- return universal_integer;

 -- function "/" (anonymous,anonymous: universal_integer)
 -- return universal_integer;
 -- function "mod" (anonymous, anonymous: universal_integer)
 -- return universal_integer;
 -- function "rem" (anonymous, anonymous: universal_integer)

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (24 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 -- return universal_integer;

 -- type universal_real is range implementation_defined;

 -- The predefined operators for this type are as follows:

 -- function "=" (anonymous, anonymous:universal_real) return BOOLEAN;
 -- function "/=" (anonymous, anonymous:universal_real) return BOOLEAN;
 -- function "<" (anonymous, anonymous:universal_real) return BOOLEAN;
 -- function "<=" (anonymous, anonymous:universal_real) return BOOLEAN;
 -- function ">" (anonymous, anonymous:universal_real) return BOOLEAN;
 -- function ">=" (anonymous, anonymous:universal_real) return BOOLEAN;

 -- function "+" (anonymous: universal_real) return universal_real;
 -- function "-" (anonymous: universal_real) return universal_real;
 -- function "abs" (anonymous: universal_real) return universal_real;

 -- function "+" (anonymous, anonymous:universal_real) return
universal_real;
 -- function "-" (anonymous, anonymous:universal_real) return
universal_real;
 -- function "*" (anonymous, anonymous:universal_real) return
universal_real;
 -- function "/" (anonymous, anonymous:universal_real) return
universal_real;

 -- function "*" (anonymous: universal_real;anonymous:
universal_integer)
 -- return universal_real;
 -- function "*" (anonymous: universal_integer;anonymous:
universal_real)
 -- return universal_real;
 -- function "/" (anonymous: universal_real;anonymous:
universal_integer)
 -- return universal_real;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (25 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 -- Predefined numeric types:

 type INTEGER is range implementation_defined;

 -- The predefined operators for this type are as follows:

 -- function "**" (anonymous: universal_integer; anonymous: INTEGER)
 -- return universal_integer;
 -- function "**" (anonymous: universal_real; anonymous: INTEGER)
 -- return universal_real;

 -- function "=" (anonymous, anonymous: INTEGER) return BOOLEAN;
 -- function "/=" (anonymous, anonymous: INTEGER) return BOOLEAN;
 -- function "<" (anonymous, anonymous: INTEGER) return BOOLEAN;
 -- function "<=" (anonymous, anonymous: INTEGER) return BOOLEAN;
 -- function ">" (anonymous, anonymous: INTEGER) return BOOLEAN;
 -- function ">=" (anonymous, anonymous: INTEGER) return BOOLEAN;

 -- function "+" (anonymous: INTEGER) return INTEGER;
 -- function "-" (anonymous: INTEGER) return INTEGER;
 -- function "abs" (anonymous: INTEGER) return INTEGER;

 -- function "+" (anonymous, anonymous: INTEGER) return INTEGER;
 -- function "-" (anonymous, anonymous: INTEGER) return INTEGER;
 -- function "*" (anonymous, anonymous: INTEGER) return INTEGER;
 -- function "/" (anonymous, anonymous: INTEGER) return INTEGER;
 -- function "mod" (anonymous, anonymous: INTEGER) return INTEGER;
 -- function "rem" (anonymous, anonymous: INTEGER) return INTEGER;

 -- function "**" (anonymous: INTEGER; anonymous: INTEGER)
 -- return INTEGER;

 type REAL is range implementation_defined;

 -- The predefined operators for this type are as follows:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (26 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 -- function "=" (anonymous, anonymous: REAL) return BOOLEAN;
 -- function "/=" (anonymous, anonymous: REAL) return BOOLEAN;
 -- function "<" (anonymous, anonymous: REAL) return BOOLEAN;
 -- function "<=" (anonymous, anonymous: REAL) return BOOLEAN;
 -- function ">" (anonymous, anonymous: REAL) return BOOLEAN;
 -- function ">=" (anonymous, anonymous: REAL) return BOOLEAN;

 -- function "+" (anonymous: REAL) return REAL;
 -- function "- (anonymous: REAL) return REAL;
 -- function "abs" (anonymous: REAL) return REAL;

 -- function "+" (anonymous, anonymous: REAL) return REAL;
 -- function "-" (anonymous, anonymous: REAL) return REAL;
 -- function "*" (anonymous, anonymous: REAL) return REAL;
 -- function "/" (anonymous, anonymous: REAL) return REAL;

 -- function "**" (anonymous: REAL; anonymous: INTEGER) return REAL;

 -- Predefined type TIME:

 type TIME is range implementation_defined
 units

 fs; -- femtosecond
 ps = 1000 fs; -- picosecond
 ns = 1000 ps; -- nanosecond
 us = 1000 ns; -- microsecond
 ms = 1000 us; -- millisecond
 sec = 1000 ms; -- second
 min = 60 sec; -- minute
 hr = 60 min; -- hour
 end units;

 -- The predefined operators for this type are as follows:

 -- function "=" (anonymous, anonymous: TIME) return BOOLEAN;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (27 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 -- function "/=" (anonymous, anonymous: TIME) return BOOLEAN;
 -- function "<" (anonymous, anonymous: TIME) return BOOLEAN;
 -- function "<=" (anonymous, anonymous: TIME) return BOOLEAN;
 -- function ">" (anonymous, anonymous: TIME) return BOOLEAN;
 -- function ">=" (anonymous, anonymous: TIME) return BOOLEAN;

 -- function "+" (anonymous: TIME) return TIME;
 -- function "-" (anonymous: TIME) return TIME;
 -- function "abs" (anonymous: TIME) return TIME;

 -- function "+" (anonymous, anonymous: TIME) return TIME;
 -- function "-" (anonymous, anonymous: TIME) return TIME;

 -- function "*" (anonymous: TIME; anonymous: INTEGER) return
TIME;
 -- function "*" (anonymous: TIME; anonymous: REAL) return
TIME;
 -- function "*" (anonymous: INTEGER; anonymous: TIME) return
TIME;
 -- function "*" (anonymous: REAL; anonymous: TIME) return
TIME;
 -- function "/" (anonymous: TIME; anonymous: INTEGER) return
TIME;
 -- function "/" (anonymous: TIME; anonymous: REAL) return TIME;

 -- function "/" (anonymous, anonymous: TIME) return universal_integer;

 subtype DELAY_LENGTH is TIME range 0 fs to TIME'HIGH;

 -- A function that returns the current simulation time, Tc (see 12.6.4

):

 impure function NOW return DELAY_LENGTH;

 -- Predefined numeric subtypes:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (28 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 subtype NATURAL is INTEGER range 0 to INTEGER'HIGH;

 subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;

 -- Predefined array types:

 type STRING is array (POSITIVE range <>)of CHARACTER;

 -- The predefined operators for this type are as follows:

 -- function "=" (anonymous, anonymous: STRING) return BOOLEAN;
 -- function "/=" (anonymous, anonymous: STRING) return BOOLEAN;
 -- function "<" (anonymous, anonymous: STRING) return BOOLEAN;
 -- function "<=" (anonymous, anonymous: STRING) return BOOLEAN;
 -- function ">" (anonymous, anonymous: STRING) return BOOLEAN;
 -- function ">=" (anonymous, anonymous: STRING) return BOOLEAN;

 -- function "&" (anonymous: STRING; anonymous: STRING)
 -- return STRING;
 -- function "&" (anonymous: STRING; anonymous: CHARACTER)
 -- return STRING;
 -- function "&" (anonymous: CHARACTER; anonymous: STRING)
 -- return STRING;
 -- function "&" (anonymous: CHARACTER; anonymous: CHARACTER)
 -- return STRING;

 type BIT_VECTOR is array (NATURAL range <>)of BIT;

 -- The predefined operators for this type are as follows:

 -- function "and" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;
 -- function "or" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;
 -- function "nand" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;
 -- function "nor" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;
 -- function "xor" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;
 -- function "xnor" (anonymous, anonymous: BIT_VECTOR) return BIT_VECTOR;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (29 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 -- function "not" (anonymous: BIT_VECTOR) return BIT_VECTOR;

 -- function "sll" (anonymous: BIT_VECTOR; anonymous:INTEGER)
 -- return BIT_VECTOR;
 -- function "srl" (anonymous: BIT_VECTOR; anonymous:INTEGER)
 -- return BIT_VECTOR;
 -- function "sla" (anonymous: BIT_VECTOR; anonymous:INTEGER)
 -- return BIT_VECTOR;
 -- function "sra" (anonymous: BIT_VECTOR; anonymous:INTEGER)
 -- return BIT_VECTOR;
 -- function "rol" (anonymous: BIT_VECTOR; anonymous:INTEGER)
 -- return BIT_VECTOR;
 -- function "ror" (anonymous: BIT_VECTOR; anonymous:INTEGER)
 -- return BIT_VECTOR;

 -- function "=" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;
 -- function "/=" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;
 -- function "<" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;
 -- function "<=" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;
 -- function ">" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;
 -- function ">=" (anonymous, anonymous: BIT_VECTOR) return BOOLEAN;

 -- function "&" (anonymous: BIT_VECTOR; anonymous: BIT_VECTOR)
 -- return BIT_VECTOR;
 -- function "&" (anonymous: BIT_VECTOR; anonymous: BIT)
 -- return BIT_VECTOR;
 -- function "&" (anonymous: BIT; anonymous: BIT_VECTOR)
 -- return BIT_VECTOR;
 -- function "&" (anonymous: BIT; anonymous: BIT)
 -- return BIT_VECTOR;

 -- The predefined types for opening files:

 type FILE_OPEN_KIND is (
 READ_MODE, -- Resulting access mode is read-only.
 WRITE_MODE, -- Resulting access mode is write-only.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (30 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 APPEND_MODE); -- Resulting access mode is write-only;
information
 -- is appended to the end of the existing
file.

 -- The predefined operators for this type are as follows:

 -- function "=" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;
 -- function "/=" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;
 -- function "<" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;
 -- function "<=" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;
 -- function ">" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;
 -- function ">=" (anonymous, anonymous: FILE_OPEN_KIND) return BOOLEAN;

 type FILE_OPEN_STATUS is (
 OPEN_OK, -- File open was successful.
 STATUS_ERROR, -- File object was already open.
 NAME_ERROR, -- External file not found or inaccessible.
 MODE_ERROR); -- Could not open file with requested access
mode.

 -- The predefined operators for this type are as follows:

 -- function "=" (anonymous, anonymous: FILE_OPEN_STATUS)
 return BOOLEAN;
 -- function "/=" (anonymous, anonymous: FILE_OPEN_STATUS)
 return BOOLEAN;
 -- function "<" (anonymous, anonymous: FILE_OPEN_STATUS)
 return BOOLEAN;-
 -- function "<=" (anonymous, anonymous: FILE_OPEN_STATUS)
 return BOOLEAN;
 -- function ">" (anonymous, anonymous: FILE_OPEN_STATUS)
 return BOOLEAN;
 -- function ">=" (anonymous, anonymous: FILE_OPEN_STATUS)
 return BOOLEAN;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (31 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 -- The 'FOREIGN attribute:

 attribute FOREIGN: STRING;
 end STANDARD;

The 'FOREIGN attribute may be associated only with architectures (see 1.2) or with subprograms. In the latter case, the attribute specification must
appear in the declarative part in which the subprogram is declared (see 2.1).

NOTES

1--The ASCII mnemonics for file separator (FS), group separator (GS), record separator (RS), and unit separator (US) are represented by FSP, GSP,
RSP, and USP, respectively, in type CHARACTER in order to avoid conflict with the units of type TIME.

2--The declarative parts and statement parts of design entities whose corresponding architectures are decorated with the 'FOREIGN attribute and
subprograms that are likewise decorated are subject to special elaboration rules. See 12.3 and 12.4 .

14.3 Package TEXTIO

Package TEXTIO contains declarations of types and subprograms that support formatted I/O operations
on text files.

 package TEXTIO is

 -- Type definitions for text I/O:

 type LINE is access STRING; -- A LINE is a pointer to a STRING
value.

 type TEXT is file of STRING; -- A file of variable-length ASCII
records.

 type SIDE is (RIGHT, LEFT); -- For justifying output data within
fields.

 subtype WIDTH is NATURAL; -- For specifying widths of output

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (32 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

fields.

 -- Standard text files:

 file INPUT: TEXT open READ_MODE is "STD_INPUT";

 file OUTPUT: TEXT open WRITE_MODE is "STD_OUTPUT";

 -- Input routines for standard types:

 procedure READLINE (file F: TEXT; L: out LINE);

 procedure READ (L: inout LINE; VALUE: out BIT; GOOD: out
BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out BIT);

 procedure READ (L: inout LINE; VALUE: out BIT_VECTOR; GOOD: out
BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out BIT_VECTOR);

 procedure READ (L: inout LINE; VALUE: out BOOLEAN; GOOD: out
BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out BOOLEAN);

 procedure READ (L: inout LINE; VALUE: out CHARACTER; GOOD: out
BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out CHARACTER);

 procedure READ (L: inout LINE; VALUE: out INTEGER; GOOD: out
BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out INTEGER);

 procedure READ (L: inout LINE; VALUE: out REAL; GOOD: out
BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out REAL);

 procedure READ (L: inout LINE; VALUE: out STRING; GOOD: out
BOOLEAN);

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (33 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 procedure READ (L: inout LINE; VALUE: out STRING);

 procedure READ (L: inout LINE; VALUE: out TIME; GOOD: out
BOOLEAN);
 procedure READ (L: inout LINE; VALUE: out TIME);

 -- Output routines for standard types:

 procedure WRITELINE (file F: TEXT; L: inout LINE);

 procedure WRITE (L: inout LINE; VALUE: in BIT;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);
 procedure WRITE (L: inout LINE; VALUE: in BIT_VECTOR;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

 procedure WRITE (L: inout LINE; VALUE: in BOOLEAN;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

 procedure WRITE (L: inout LINE; VALUE: in CHARACTER;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

 procedure WRITE (L: inout LINE; VALUE: in INTEGER;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

 procedure WRITE (L: inout LINE; VALUE: in REAL;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
 DIGITS: in NATURAL:= 0);

 procedure WRITE (L: inout LINE; VALUE: in STRING;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0);

 procedure WRITE (L: inout LINE; VALUE: in TIME;
 JUSTIFIED: in SIDE:= RIGHT; FIELD: in WIDTH := 0;
 UNIT: in TIME:= ns);

 -- File position predicate:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (34 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

 --function ENDFILE (file F: TEXT) return BOOLEAN;

 end TEXTIO;

Procedures READLINE and WRITELINE declared in package TEXTIO read and write entire lines of a file of type TEXT. Procedure READLINE
causes the next line to be read from the file and returns as the value of parameter L an access value that designates an object representing that line. If
parameter L contains a nonnull access value at the start of the call, the object designated by that value is deallocated before the new object is created.
The representation of the line does not contain the representation of the end of the line. It is an error if the file specified in a call to READLINE is
not open or, if open, the file has an access mode other than read-only (see 3.4.1). Procedure WRITELINE causes the current line designated by
parameter L to be written to the file and returns with the value of parameter L designating a null string. If parameter L contains a null access value at
the start of the call, then a null string is written to the file. It is an error if the file specified in a call to WRITELINE is not open or, if open, the file
has an access mode other than write-only.

The language does not define the representation of the end of a line. An implementation must allow all possible values of types CHARACTER and
STRING to be written to a file. However, as an implementation is permitted to use certain values of types CHARACTER and STRING as line
delimiters, it may not be possible to read these values from a TEXT file.

Each READ procedure declared in package TEXTIO extracts data from the beginning of the string value designated by parameter L and modifies the
value so that it designates the remaining portion of the line on exit.

The READ procedures defined for a given type other than CHARACTER and STRING begin by skipping leading whitespace characters. A
whitespace character is defined as a space, a nonbreaking space, or a horizontal tabulation character (SP, NBSP, or HT). For all READ procedures,
characters are then removed from L and composed into a string representation of the value of the specified type. Character removal and string
composition stops when a character is encountered that cannot be part of the value according to the lexical rules of 13.2 ; this character is not
removed from L and is not added to the string representation of the value. The READ procedures for types INTEGER and REAL also accept a
leading sign; additionally, there can be no space between the sign and the remainder of the literal. The READ procedures for types STRING and
BIT_VECTOR also terminate acceptance when VALUE'LENGTH characters have been accepted. Again using the rules of 13.2 , the accepted
characters are then interpreted as a string representation of the specified type. The READ does not succeed if the sequence of characters removed
from L is not a valid string representation of a value of the specified type or, in the case of types STRING and BIT_VECTOR, if the sequence does
not contain VALUE'LENGTH characters.

The definitions of the string representation of the value for each data type are as follows:

-- The representation of a BIT value is formed by a single character, either1 or 0. No leading or trailing quotation characters are present.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (35 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

-- The representation of a BIT_VECTOR value is formed by a sequence of characters, either 1 or 0. No leading or trailing quotation
characters are present.

-- The representation of a BOOLEAN value is formed by an identifier, either FALSE or TRUE.

-- The representation of a CHARACTER value is formed by a single character.

-- The representation of both INTEGER and REAL values is that of a decimal literal (see 13.4.1), with the addition of an optional leading
sign. The sign is never written if the value is nonnegative, but it is accepted during a read even if the value is nonnegative. No spaces can
occur between the sign and the remainder of the value. The decimal point is absent in the case of an INTEGER literal and present in the case
of a REAL literal. An exponent may optionally be present; moreover, the language does not define under what conditions it is or is not
present. However, if the exponent is present, the "e" is written as a lowercase character. Leading and trailing zeroes are written as necessary
to meet the requirements of the FIELD and DIGITS parameters, and they are accepted during a read.

-- The representation of a STRING value is formed by a sequence of characters, one for each element of the string. No leading or trailing
quotation characters are present.

-- The representation of a TIME value is formed by an optional decimal literal composed following the rules for INTEGER and REAL literals
described above, one or more blanks, and an identifier that is a unit of type TIME, as defined in package STANDARD (see 14.2). When
read, the identifier can be expressed with characters of either case; when written, the identifier is expressed in lowercase characters.

Each WRITE procedure similarly appends data to the end of the string value designated by parameter L; in this case, however, L continues to
designate the entire line after the value is appended. The format of the appended data is defined by the string representations defined above for the
READ procedures.

The READ and WRITE procedures for the types BIT_VECTOR and STRING respectively read and write the element values in left-to-right order.

For each predefined data type there are two READ procedures declared in package TEXTIO. The first has three parameters: L, the line to read from;
VALUE, the value read from the line; and GOOD, a Boolean flag that indicates whether the read operation succeeded or not. For example, the
operation READ (L, IntVal,OK) would return with OK set to FALSE, L unchanged, and IntVal undefined if IntVal is a variable of type INTEGER
and L designates the line "ABC". The success indication returned via parameter GOOD allows a process to recover gracefully from unexpected
discrepancies in input format. The second form of read operation has only the parameters L and VALUE. If the requested type cannot be read into
VALUE from line L, then an error occurs. Thus, the operation READ (L, IntVal) would cause an error to occur if IntVal is of type INTEGER and L
designates the line "ABC".

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (36 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

For each predefined data type there is one WRITE procedure declared in package TEXTIO. Each of these has at least two parameters: L, the line to
which to write; and VALUE, the value to be written. The additional parameters JUSTIFIED, FIELD, DIGITS, and UNIT control the formatting of
output data. Each write operation appends data to a line formatted within a field that is at least as long as required to represent the data value.
Parameter FIELD specifies the desired field width. Since the actual field width will always beat least large enough to hold the string representation
of the data value, the default value 0 for the FIELD parameter has the effect of causing the data value to be written out in a field of exactly the right
width (i.e., no leading or trailing spaces). Parameter JUSTIFIED specifies whether values are to be right- or left-justified within the field; the default
is right-justified. If the FIELD parameter describes a field width larger than the number of characters necessary for a given value, blanks are used to
fill the remaining characters in the field.

Parameter DIGITS specifies how many digits to the right of the decimal point are to be output when writing a real number; the default value 0
indicates that the number should be output in standard form, consisting of a normalized mantissa plus exponent (e.g. 1.079236E-23). If DIGITS is
nonzero, then the real number is output as an integer part followed by '.' followed by the fractional part, using the specified number of digits (e.g.,
3.14159).

Parameter UNIT specifies how values of type TIME are to be formatted. The value of this parameter must be equal to one of the units declared as
part of the declaration of type TIME; the result is that the TIME value is formatted as an integer or real literal representing the number of multiples
of this unit,followed by the name of the unit itself. The name of the unit is formatted using only lowercase characters. Thus the procedure call
WRITE(Line, 5 ns,UNIT=>us) would result in the string value " 0.005 us" being appended to the string value designated by Line, whereas
WRITE(Line, 5 ns) would result in the string value "5 ns" being appended (since the default UNIT value is ns).

Function ENDFILE is defined for files of type TEXT by the implicit declaration of that function as part of the declaration of the file type.

NOTES

1--For a variable L of type Line, attribute L'Length gives the current length of the line, whether that line is being read or written. For a line L that is
being written, the value of L'Length gives the number of characters that have already been written to the line; this is equivalent to the column
number of the last character of the line. For a line L that is being read, the value of L'Length gives the number of characters on that line remaining to
be read. In particular, the expression L'Length = 0 is true precisely when the end of the current line has been reached.

2--The execution of a read or write operation may modify or even deallocate the string object designated by input parameter L of type Line for that
operation; thus, a dangling reference may result if the value of a variable L of type Line is assigned to another access variable and then a read or
write operation is performed on L.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (37 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_14.HTM (38 of 38) [12/28/2002 12:49:54 PM]

VHDL LRM- Introduction

Section 7

Expressions
The rules applicable to the different forms of expression, and to their evaluation, are given in this section.

7.1 Expressions

An expression is a formula that defines the computation of a value.

 expression ::=
 relation { and relation }
 | relation { or relation }
 | relation { xor relation }
 | relation [nand relation]
 | relation [nor relation]
 | relation { xnor relation }

 relation ::=
 shift_expression [relational_operator shift_expression]

 shift_expression ::=
 simple_expression [shift_operator simple_expression]

 simple_expression ::=
 [sign] term { adding_operator term }

 term ::=
 factor { multiplying_operator factor }

 factor ::=
 primary [** primary]
 | abs primary
 | not primary

 primary ::=
 name
 | literal
 | aggregate
 | function_call
 | qualified_expression
 | type_conversion
 | allocator
 | (expression)

Each primary has a value and a type. The only names allowed as primaries are attributes that yield values and names denoting
objects or values. In the case of names denoting objects, the value of the primary is the value of the object.

The type of an expression depends only upon the types of its operands and on the operators applied; for an overloaded operand

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (1 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

or operator, the determination of the operand type, or the identification of the overloaded operator, depends on the context (see
10.5). For each predefined operator, the operand and result types are given in the following clause.

NOTE--The syntax for an expression involving logical operators allows a sequence of and, or, xor, or xnor operators
(whether predefined or user-defined), since the corresponding predefined operations are associative. For the operators nand
and nor (whether predefined or user-defined), however, such a sequence is not allowed, since the corresponding predefined
operations are not associative.

7.2 Operators

The operators that may be used in expressions are defined below. Each operator belongs to a class of operators, all of which
have the same precedence level;the classes of operators are listed in order of increasing precedence.

logical_operator ::= and | or | nand | nor | xor | xnor

relational_operator ::= = | /= | < | <= | > | >=

shift_operator ::= sll | srl | sla | sra | rol | ror

adding_operator ::= + | - | &

sign ::= + | -

mutiplying_operator ::= * | / | mod | rem

micellaneous_operator ::= ** | abs | not

Operators of higher precedence are associated with their operands before operators of lower precedence. Where the language
allows a sequence of operators, operators with the same precedence level are associated with their operands in textual order,
from left to right. The precedence of an operator is fixed and may not be changed by the user, but parentheses can be used to
control the association of operators and operands.

In general, operands in an expression are evaluated before being associated with operators. For certain operations, however,
the right-hand operand is evaluated if and only if the left-hand operand has a certain value. These operations are called short-
circuit operations. The logical operations and, or, nand, and nor defined for operands of types BIT and BOOLEAN are all
short-circuit operations; furthermore, these are the only short-circuit operations.

Every predefined operator is a pure function (see 2.1). No predefined operators have named formal parameters; therefore,
named association (see 4.3.2.2) may not be used when invoking a predefined operation.

NOTES

1--The predefined operators for the standard types are declared in package STANDARD as shown in 14.2 .

2--The operator not is classified as a miscellaneous operator for the purposes of defining precedence, but is otherwise
classified as a logical operator.

7.2.1 Logical operators

The logical operators and, or, nand, nor,xor, xnor, and not are defined for predefined types BIT and BOOLEAN. They are
also defined for any one-dimensional array type whose element type is BIT or BOOLEAN. For the binary operators and,or,
nand, nor, xor, and xnor, the operands must be of the same base type. Moreover, for the binary operators and,or, nand, nor,
xor, and xnor defined on one-dimensional array types, the operands must be arrays of the same length,the operation is
performed on matching elements of the arrays, and the result is an array with the same index range as the left operand. For the
unary operator not defined on one-dimensional array types, the operation is performed on each element of the operand, and the
result is an array with the same index range as the operand.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (2 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

The effects of the logical operators are defined in the following tables. The symbol T represents TRUE for type BOOLEAN, '1'
for type BIT; the symbol F represents FALSE for type BOOLEAN, '0' for type BIT.

A B A and B A B A or B A B A xor B

T T T T T T T T F

T F F T F T T F T

F T F F T T F T T

F F F F F F F F T

A B A nand B A B A nor B A B A xnor B

T F F T T F T T T

T T T T F F T F F

F T T F T F F T F

F T T F F T F F T

A
not
A

T F

F T

For the short-circuit operations and, or, nand, and nor on types BIT and BOOLEAN, the right operand is evaluated only if the
value of the left operand is not sufficient to determine the result of the operation. For operations and and nand, the right
operand is evaluated only if the value of the left operand is T; for operations or and nor, the right operand is evaluated only if
the value of the left operand is F.

NOTE--All of the binary logical operators belong to the class of operators with the lowest precedence. The unary logical
operator not belongs to the class of operators with the highest precedence.

7.2.2 Relational operators

Relational operators include tests for equality, inequality, and ordering of operands. The operands of each relational operator
must be of the same type. The result type of each relational operator is the predefined type BOOLEAN.

Operator Operation Operand type Result type

= Equality Any type BOOLEAN

/= Inequality Any type BOOLEAN

<
<=
>
>=

Ordering Any scalar type or discrete array type BOOLEAN

The equality and inequality operators (= and /=) are defined for all types other than file types. The equality operator returns the
value TRUE if the two operands are equal and returns the value FALSE otherwise. The inequality operator returns the value
FALSE if the two operands are equal and returns the value TRUE otherwise.

Two scalar values of the same type are equal if and only if the values are the same. Two composite values of the same type are
equal if and only if for each element of the left operand there is a matching element of the right operand and vice versa, and the
values of matching elements are equal, as given by the predefined equality operator for the element type. In particular, two null
arrays of the same type are always equal. Two values of an access type are equal if and only if they both designate the same

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (3 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

object or they both are equal to the null value for the access type.

For two record values, matching elements are those that have the same element identifier. For two one-dimensional array
values, matching elements are those (if any) whose index values match in the following sense: the left bounds of the index
ranges are defined to match; if two elements match, the elements immediately to their right are also defined to match. For two
multi-dimensional array values, matching elements are those whose indices match in successive positions.

The ordering operators are defined for any scalar type and for any discrete array type. A discrete array is a one-dimensional
array whose elements are of a discrete type. Each operator returns TRUE if the corresponding relation is satisfied; otherwise,
the operator returns FALSE.

For scalar types, ordering is defined in terms of the relative values. For discrete array types, the relation < (less than) is defined
such that the left operand is less than the right operand if and only if

-- The left operand is a null array and the right operand is a nonnull array; otherwise,

-- Both operands are nonnull arrays, and one of the following conditions is satisfied:

-- The leftmost element of the left operand is less than that of the right;or

-- The leftmost element of the left operand is equal to that of the right, and the tail of the left operand is less than that of the
right (the tail consists of the remaining elements to the right of the leftmost element and can be null).

The relation <= (less than or equal) for discrete array types is defined to be the inclusive disjunction of the results of the < and
= operators for the same two operands. The relations > (greater than) and >= (greater than or equal) are defined to be the
complements of the <= and <operators respectively for the same two operands.

7.2.3 Shift operators

The shift operators sll, srl, sla, sra, rol,and ror are defined for any one-dimensional array type whose element type is either of
the predefined types BIT or BOOLEAN.

Operator Operation Left operand type Right operand type Result type

sll Shift left logical
Any one-dimensional array type whose element type is
BIT or BOOLEAN

INTEGER Same as left

srl Shift right logical
Any one-dimensional array type whose element typeis
BIT or BOOLEAN

INTEGER Same as left

sla Shift left arithmetic
Any one-dimensional array type whose element type is
BIT or BOOLEAN

INTEGER Same as left

sra Shift right arithmetic
Any one-dimensional array type whose element type is
BIT or BOOLEAN

INTEGER Same as left

rol Rotate left logical
Any one-dimensional array type whose element type is
BIT or BOOLEAN

INTEGER Same as left

ror Rotate right logical
Any one-dimensional array type whose element type is
BIT or BOOLEAN

INTEGER Same as left

The index subtypes of the return values of all shift operators are the same as the index subtypes of their left arguments.

The values returned by the shift operators are defined as follows. In the remainder of this section, the values of their leftmost
arguments are referred to as L and the values of their rightmost arguments are referred to as R.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (4 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

-- The sll operator returns a value that is L logically shifted left by R index positions. That is, if R is 0 or if L is a null array, the
return value is L. Otherwise, a basic shift operation replaces L with a value that is the result of a concatenation whose left
argument is the rightmost (L'Length -1) elements of L and whose right argument is T'Left, where T is the element type of L. If
R is positive, this basic shift operation is repeated R times to form the result. If R is negative, then the return value is the value
of the expression L srl -R.

-- The srl operator returns a value that is L logically shifted right by R index positions. That is, if R is 0 or if L is a null array,
the return value is L. Otherwise, a basic shift operation replaces L with a value that is the result of a concatenation whose right
argument is the leftmost (L'Length -1) elements of L and whose left argument is T'Left, where T is the element type of L. If R
is positive, this basic shift operation is repeated R times to form the result. If R is negative, then the return value is the value of
the expression L sll -R.

-- The sla operator returns a value that is L arithmetically shifted left by R index positions. That is, if R is 0 or if L is a null
array, the return value is L. Otherwise, a basic shift operation replaces L with a value that is the result of a concatenation
whose left argument is the rightmost(L'Length - 1) elements of L and whose right argument is L(L'Right). If R is positive, this
basic shift operation is repeated R times to form the result. If R is negative, then the return value is the value of the expression
L sra -R.

-- The sra operator returns a value that is L arithmetically shifted right by R index positions. That is, if R is 0 or if L is a null
array, the return value is L. Otherwise, a basic shift operation replaces L with a value that is the result of a concatenation
whose right argument is the leftmost(L'Length - 1) elements of L and whose left argument is L(L'Left). If R is positive, this
basic shift operation is repeated R times to form the result. If R is negative, then the return value is the value of the expression
Lsla -R.

-- The rol operator returns a value that is L rotated left by R index positions. That is, if R is 0 or if L is a null array, the return
value is L. Otherwise, a basic rotate operation replaces L with a value that is the result of a concatenation whose left argument
is the rightmost (L'Length - 1) elements of L and whose right argument is L(L'Left). If R is positive, this basic rotate operation
is repeated R times to form the result. If R is negative, then the return value is the value of the expression L ror -R.

-- The ror operator returns a value that is L rotated right by R index positions. That is, if R is 0 or if L is a null array, the return
value is L. Otherwise, a basic rotate operation replaces L with a value that is the result of a concatenation whose right
argument is the leftmost (L'Length - 1) elements of L and whose left argument is L(L'Right). If R is positive, this basic rotate
operation is repeated R times to form the result. If R is negative, then the return value is the value of the expression L rol -R.

NOTES

1--The logical operators may be overloaded, for example, to disallow negative integers as the second argument.

2--The subtype of the result of a shift operator is the same as that of the left operand.

7.2.4 Adding operators

The adding operators + and - are predefined for any numeric type and have their conventional mathematical meaning. The
concatenation operator & is predefined for any one-dimensional array type.

Operator Operation Left operand type Right operand type Result type

+ Addition Any numeric type Same type Same type

- Subtraction Any numeric type Same type Same type

& Concatenation

Any array type Same array type Same array type

Any array type The element type Same array type

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (5 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

The element type Any array type Same array type

The element type The element type Any array type

For concatenation, there are three mutually exclusive cases:

a. If both operands are one-dimensional arrays of the same type, the result of the concatenation is a one-dimensional array
of this same type whose length is the sum of the lengths of its operands, and whose elements consist of the elements of
the left operand (in left-to-right order) followed by the elements of the right operand (in left-to-right order). The
direction of the result is the direction of the left operand, unless the left operand is a null array, in which case the
direction of the result is that of the right operand.

If both operands are null arrays, then the result of the concatenation is the right operand. Otherwise, the direction
and bounds of the result are determined as follows: Let S be the index subtype of the base type of the result. The
direction of the result of the concatenation is the direction of S, and the left bound of the result is S'LEFT.

b. If one of the operands is a one-dimensional array and the type of the other operand is the element type of this
aforementioned one-dimensional array, the result of the concatenation is given by the rules in case 1, using in place of
the other operand an implicit array having this operand as its only element.

c. If both operands are of the same type and it is the element type of some one-dimensional array type, the type of the
result must be known from the context and is this one-dimensional array type. In this case, each operand is treated as
the one element of an implicit array, and the result of the concatenation is determined as in case a.

In all cases, it is an error if either bound of the index subtype of the result does not belong to the index subtype of the type of
the result, unless the result is a null array. It is also an error if any element of the result does not belong to the element subtype
of the type of the result.

Examples:

 subtype BYTE is BIT_VECTOR (7 downto 0);
 type MEMORY is array (Natural range <>) of BYTE;

 -- The following concatenation accepts two BIT_VECTORs and returns a BIT_VECTOR
 -- (case a):

 constant ZERO: BYTE := "0000" & "0000";

 -- The next two examples show that the same expression can represent either
case a or
 -- case c, depending on the context of the expression.

 -- The following concatenation accepts two BIT_VECTORS and returns a BIT_VECTOR
 -- (case a):

 constant C1: BIT_VECTOR := ZERO & ZERO;

 -- The following concatenation accepts two BIT_VECTORs and returns a MEMORY
 -- (case c):

 constant C2: MEMORY := ZERO & ZERO;

 -- The following concatenation accepts a BIT_VECTOR and a MEMORY, returning a
 -- MEMORY (case b):

 constant C3: MEMORY := ZERO & C2;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (6 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

 -- The following concatenation accepts a MEMORY and a BIT_VECTOR, returning a
 -- MEMORY (case b):

 constant C4: MEMORY := C2 & ZERO;

 -- The following concatenation accepts two MEMORYs and returns a MEMORY (case
a):

 constant C5: MEMORY := C2 & C3;

 type R1 is 0 to 7;
 type R2 is 7 downto 0;

 type T1 is array (R1 range <>) of Bit;
 type T2 is array (R2 range <>) of Bit;

 subtype S1 is T1(R1);
 subtype S2 is T2(R2);

 constant K1: S1 := (others => '0');
 constant K2: T1 := K1(1 to 3) & K1(3 to 4); -- K2'Left = 0 and
K2'Right = 4
 constant K3: T1 := K1(5 to 7) & K1(1 to 2); -- K3'Left = 0 and
K3'Right = 4
 constant K4: T1 := K1(2 to 1) & K1(1 to 2); -- K4'Left = 0 and
K4'Right = 1

 constant K5: S2 := (others => '0');
 constant K6: T2 := K5(3 downto 1) & K5(4 downto 3); -- K6'Left = 7 and
K6'Right = 3
 constant K7: T2 := K5(7 downto 5) & K5(2 downto 1) -- K7'Left = 7 and
K7'Right = 3
 constant K8: T2 := K5(1 downto 2) & K5(2 downto 1); -- K8'Left = 7 and
K8'Right = 6

NOTES

1--For a given concatenation whose operands are of the same type, there maybe visible more than one array type that could be
the result type according to the rules of case 3. The concatenation is ambiguous and therefore an error if, using the overload
resolution rules of 2.3 and 10.5 , the type of the result is not uniquely determined.

2--Additionally, for a given concatenation, there may be visible array types that allow both case a and case c to apply. The
concatenation is again ambiguous and therefore an error if the overload resolution rules cannot be used to determine a result
type uniquely.

7.2.5 Sign operators

Signs + and - are predefined for any numeric type and have their conventional mathematical meaning: they respectively
represent the identity and negation functions. For each of these unary operators, the operand and the result have the same type.

Operator Operation Operand type Result type

+ Identity Any numeric type Same type

- Negation Any numeric type Same type

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (7 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

NOTE--Because of the relative precedence of signs + and - in the grammar for expressions, a signed operand must not follow a
multiplying operator, the exponentiating operator **, or the operators abs and not. For example, the syntax does not allow the
following expressions:

 A/+B -- An illegal expression
 A**-B -- An illegal expression

However,these expressions may be rewritten legally as follows:

 A/(+B) -- A legal expression
 A**(-B) -- A legal expression

7.2.6 Multiplying operators

The operators * and / are predefined for any integer and any floating point type and have their conventional mathematical
meaning; the operators mod and rem are predefined for any integer type. For each of these operators, the operands and the
result are of the same type.

Operator Operation Left operand type Right operand type Result type

* Multiplication
Any integer type Same type Same type

Any floating point type Same type Same type

/ Division
Any integer type Same type Same type

Any floating point type Same type Same type

mod Modulus Any integer type Same type Same type

rem Remainder Any integer type Same type Same type

Integer division and remainder are defined by the following relation:

 A = (A/B)*B + (A rem B)

where(A rem B) has the sign of A and an absolute value less than the absolute value of B. Integer division satisfies the
following identity:

 (-A)/B = -(A/B) = A/(-B)

The result of the modulus operation is such that (A mod B) has the sign of B and an absolute value less than the absolute value
of B; in addition, for some integer value N, this result must satisfy the relation:

 A = B*N + (A mod B)

In addition to the above table, the operators * and / are predefined for any physical type.

Operator Operation Left operand type Right operand type Result type

* Multiplication

Any physical type INTEGER Same as left

Any physical type REAL Same as left

INTEGER Any physical type Same as right

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (8 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

REAL Any physical type Same as right

/ Division

Any physical type INTEGER Same as left

Any physical type REAL Same as left

Any physical type The same type Universal integer

Multiplication of a value P of a physical type Tp by a value I of type INTEGER is equivalent to the following computation:

 Tp'Val(Tp'Pos(P) * I)

Multiplication of a value P of a physical type Tp by a value F of type REAL is equivalent to the following computation:

 Tp'Val(INTEGER(REAL(Tp'Pos(P)) * F))

Division of a value P of a physical type Tp by a value I of type INTEGER is equivalent to the following computation:

 Tp'Val(Tp'Pos(P) / I)

Division of a value P of a physical type Tp by a value F of type REAL is equivalent to the following computation:

 Tp'Val(INTEGER(REAL(Tp'Pos(P)) / F))

Division of a value P of a physical type Tp by a value P2 of the same physical type is equivalent to the following computation:

 Tp'Pos(P) / Tp'Pos(P2)

Examples:

 5 rem 3 = 2
 5 mod 3 = 2

 (-5) rem 3 = -2
 (-5) mod 3 = 1

 (-5) rem (-3) = -2
 (-5) mod (-3) = -2

 5 rem (-3) = 2
 5 mod (-3) = -1

NOTE--Because of the precedence rules (see 7.2), the expression "-5 rem 2" is interpreted as "-(5 rem 2)" and not as "(-5)
rem 2".

7.2.7 Miscellaneous operators

The unary operator abs is predefined for any numeric type.

Operator Operation Operand type Result type

abs Absolute value Any numeric type Same numeric type

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (9 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

The exponentiating operator ** is predefined for each integer type and for each floating point type. In either case the right
operand, called the exponent, is of the predefined type INTEGER.

Operator Operation Left operand type Right operand type Result type

** Exponentiation
Any integer type INTEGER Same as left

Any floating point type INTEGER Same as left

Exponentiation with an integer exponent is equivalent to repeated multiplication of the left operand by itself for a number of
times indicated by the absolute value of the exponent and from left to right; if the exponent is negative, then the result is the
reciprocal of that obtained with the absolute value of the exponent. Exponentiation with a negative exponent is only allowed
for a left operand of a floating point type. Exponentiation by a zero exponent results in the value one. Exponentiation of a
value of a floating point type is approximate.

7.3 Operands

The operands in an expression include names (that denote objects, values, or attributes that result in a value), literals,
aggregates, function calls, qualified expressions, type conversions, and allocators. In addition, an expression enclosed in
parentheses may be an operand in an expression. Names are defined in 6.1 ; the other kinds of operands are defined in the
following subclauses.

7.3.1 Literals

A literal is either a numeric literal, an enumeration literal, a string literal, a bit string literal, or the literal null.

 literal ::=
 numeric_literal
 | enumeration_literal
 | string_literal
 | bit_string_literal
 | null

 numeric_literal ::=
 abstract_literal
 | physical_literal

Numeric literals include literals of the abstract types universal_integer and universal_real, as well as literals of physical types.
Abstract literals are defined in 13.4 ; physical literals are defined in 3.1.3 .

Enumeration literals are literals of enumeration types. They include both identifiers and character literals. Enumeration literals
are defined in 3.1.1 .

String and bit string literals are representations of one-dimensional arrays of characters. The type of a string or bit string literal
must be determinable solely from the context in which the literal appears, excluding the literal itself but using the fact that the
type of the literal must be a one-dimensional array of a character type. The lexical structure of string and bit string literals is
defined in Section 13, Lexical Elements.

For a nonnull array value represented by either a string or bit string literal,the direction and bounds of the array value are
determined according to the rules for positional array aggregates, where the number of elements in the aggregate is equal to the
length (see 13.6 and 13.7) of the string or bit string literal. For a null array value represented by either a string or bit string
literal, the direction and leftmost bound of the array value are determined as in the non-null case. If the direction is ascending,
then the rightmost bound is the predecessor (as given by the 'PRED attribute) of the leftmost bound; otherwise the rightmost

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (10 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

bound is the successor (as given by the 'SUCC attribute) of the leftmost bound.

The character literals corresponding to the graphic characters contained within a string literal or a bit string literal must be
visible at the place of the string literal.

The literal null represents the null access value for any access type.

Evaluation of a literal yields the corresponding value.

Examples:

 3.14159_26536 -- A literal of type universal_real.
 5280 -- A literal of type universal_integer.
 10.7 ns -- A literal of a physical type.
 O"4777" -- A bit-string literal.
 "54LS281" -- A string literal.
 "" -- A string literal representing a null array.

7.3.2 Aggregates

An aggregate is a basic operation (see the introduction to Section 3) that combines one or more values into a composite value
of a record or array type.

 aggregate ::=
 (element_association { , element_association })

 element_association ::=
 [choices =>] expression

 choices ::= choice { | choice }

 choice ::=
 simple_expression
 | discrete_range
 | element_simple_name
 | others

Each element association associates an expression with elements (possibly none). An element association is said to be named if
the elements are specified explicitly by choices; otherwise, it is said to be positional. For a positional association, each element
is implicitly specified by position in the textual order of the elements in the corresponding type declaration.

Both named and positional associations can be used in the same aggregate, with all positional associations appearing first (in
textual order) and all named associations appearing next (in any order, except that no associations may follow an others
association). Aggregates containing a single element association must always be specified using named association in order to
distinguish them from parenthesized expressions.

An element association with a choice that is an element simple name is only allowed in a record aggregate. An element
association with a choice that is a simple expression or a discrete range is only allowed in an array aggregate: a simple
expression specifies the element at the corresponding index value, whereas a discrete range specifies the elements at each of
the index values in the range. The discrete range has no significance other than to define the set of choices implied by the
discrete range. In particular, the direction specified or implied by the discrete range has no significance. An element
association with the choice others is allowed in either an array aggregate or a record aggregate if the association appears last
and has this single choice; it specifies all remaining elements, if any.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (11 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

Each element of the value defined by an aggregate must be represented once and only once in the aggregate.

The type of an aggregate must be determinable solely from the context in which the aggregate appears, excluding the aggregate
itself but using the fact that the type of the aggregate must be a composite type. The type of an aggregate in turn determines the
required type for each of its elements.

7.3.2.1 Record aggregates

If the type of an aggregate is a record type, the element names given as choices must denote elements of that record type. If the
choice others is given as a choice of a record aggregate, it must represent at least one element. An element association with
more than one choice, or with the choice others, is only allowed if the elements specified are all of the same type. The
expression of an element association must have the type of the associated record elements.

A record aggregate is evaluated as follows. The expressions given in the element associations are evaluated in an order (or lack
thereof) not defined by the language. The expression of a named association is evaluated once for each associated element. A
check is made that the value of each element of the aggregate belongs to the subtype of this element. It is an error if this check
fails.

7.3.2.2 Array aggregates

For an aggregate of a one-dimensional array type, each choice must specify values of the index type, and the expression of
each element association must be of the element type. An aggregate of an n-dimensional array type, where n is greater than 1,
is written as a one-dimensional aggregate in which the index subtype of the aggregate is given by the first index position of the
array type, and the expression specified for each element association is an (n-1)-dimensional array or array aggregate, which is
called a subaggregate. A string or bit string literal is allowed as a subaggregate in the place of any aggregate of a one-
dimensional array of a character type.

Apart from a final element association with the single choice others,the rest (if any) of the element associations of an array
aggregate must be either all positional or all named. A named association of an array aggregate is allowed to have a choice that
is not locally static, or likewise a choice that is a null range, only if the aggregate includes a single element association and this
element association has a single choice. An others choice is locally static if the applicable index constraint is locally static.

The subtype of an array aggregate that has an others choice must be determinable from the context. That is, an array aggregate
with an others choice may only appear

a. As an actual associated with a formal parameter or formal generic declared to be of a constrained array subtype (or
subelement thereof)

b. As the default expression defining the default initial value of a port declared to be of a constrained array subtype
c. As the result expression of a function, where the corresponding function result type is a constrained array subtype
d. As a value expression in an assignment statement, where the target is a declared object, and the subtype of the target is

a constrained array subtype (or subelement of such a declared object)
e. As the expression defining the initial value of a constant or variable object, where that object is declared to be of a

constrained array subtype
f. As the expression defining the default values of signals in a signal declaration, where the corresponding subtype is a

constrained array subtype
g. As the expression defining the value of an attribute in an attribute specification, where that attribute is declared to be of

a constrained array subtype
h. As the operand of a qualified expression whose type mark denotes a constrained array subtype
i. i) As a subaggregate nested within an aggregate, where that aggregate itself appears in one of these contexts

The bounds of an array that does not have an others choice are determined as follows. If the aggregate appears in one of the
contexts in the preceding list, then the direction of the index subtype of the aggregate is that of the corresponding constrained
array subtype; otherwise, the direction of the index subtype of the aggregate is that of the index subtype of the base type of the
aggregate. For an aggregate that has named associations, the leftmost and rightmost bounds are determined by the direction of

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (12 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

the index subtype of the aggregate and the smallest and largest choices given. For a positional aggregate, the leftmost bound is
determined by the applicable index constraint if the aggregate appears in one of the contexts in the preceding list; otherwise,
the leftmost bound is given by S'LEFT where S is the index subtype of the base type of the array. In either case, the rightmost
bound is determined by the direction of the index subtype and the number of elements.

The evaluation of an array aggregate that is not a subaggregate proceeds in two steps. First, the choices of this aggregate and of
its subaggregates, if any,are evaluated in some order (or lack thereof) that is not defined by the language. Second, the
expressions of the element associations of the array aggregate are evaluated in some order that is not defined by the language;
the expression of a named association is evaluated once for each associated element. The evaluation of a subaggregate consists
of this second step (the first step is omitted since the choices have already been evaluated).

For the evaluation of an aggregate that is not a null array, a check is made that the index values defined by choices belong to
the corresponding index subtypes, and also that the value of each element of the aggregate belongs to the subtype of this
element. For a multidimensional aggregate of dimension n, a check is made that all (n-1)-dimensional subaggregates have the
same bounds. It is an error if any one of these checks fails.

7.3.3 Function calls

A function call invokes the execution of a function body. The call specifies the name of the function to be invoked and
specifies the actual parameters, if any, to be associated with the formal parameters of the function. Execution of the function
body results in a value of the type declared to be the result type in the declaration of the invoked function.

 function_call ::=
 function_name [(actual_parameter_part)]

 actual_parameter_part ::= parameter_association_list

For each formal parameter of a function, a function call must specify exactly one corresponding actual parameter. This actual
parameter is specified either explicitly, by an association element (other than the actual part open) in the association list, or in
the absence of such an association element, by a default expression (see 4.3.2).

Evaluation of a function call includes evaluation of the actual parameter expressions specified in the call and evaluation of the
default expressions associated with formal parameters of the function that do not have actual parameters associated with them.
In both cases, the resulting value must belong to the subtype of the associated formal parameter. (If the formal parameter is of
an unconstrained array type, then the formal parameter takes on the subtype of the actual parameter.) The function body is
executed using the actual parameter values and default expression values as the values of the corresponding formal parameters.

NOTE--If a name (including one used as a prefix) has an interpretation both as a function call and an indexed name, then the
innermost complete context is used to disambiguate the name. If, after applying this rule, there is not exactly one interpretation
of the name, then the name is ambiguous. See 10.5 .

7.3.4 Qualified expressions

A qualified expression is a basic operation (see the introduction to Section 3)that is used to explicitly state the type, and
possibly the subtype, of an operand that is an expression or an aggregate.

 qualified_expression ::=
 type_mark ' (expression)
 | type_mark ' aggregate

The operand must have the same type as the base type of the type mark. The value of a qualified expression is the value of the
operand. The evaluation of a qualified expression evaluates the operand and checks that its value belongs to the subtype
denoted by the type mark.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (13 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

NOTE--Whenever the type of an enumeration literal or aggregate is not known from the context, a qualified expression can be
used to state the type explicitly.

7.3.5 Type conversions

A type conversion provides for explicit conversion between closely related types.

 type_conversion ::= type_mark (expression)

The target type of a type conversion is the base type of the type mark. The type of the operand of a type conversion must be
determinable independent of the context (in particular, independent of the target type). Furthermore, the operand of a type
conversion is not allowed to be the literal null, an allocator, an aggregate, or a string literal. An expression enclosed by
parentheses is allowed as the operand of a type conversion only if the expression alone is allowed.

If the type mark denotes a subtype, conversion consists of conversion to the target type followed by a check that the result of
the conversion belongs to the subtype.

Explicit type conversions are allowed between closely related types. In particular, a type is closely related to itself. Other types
are closely related only under the following conditions:

a. Abstract Numeric Types--Any abstract numeric type is closely related to any other abstract numeric type. In an explicit
type conversion where the type mark denotes an abstract numeric type, the operand can be of any integer or floating
point type. The value of the operand is converted to the target type, which must also be an integer or floating point type.
The conversion of a floating point value to an integer type rounds to the nearest integer; if the value is halfway between
two integers, rounding may be up or down.

b. Array Types--Two array types are closely related if and only if

-- The types have the same dimensionality;

-- For each index position, the index types are either the same or are closely related; and

-- The element types are the same.

In an explicit type conversion where the type mark denotes an array type, the following rules apply: if the type mark
denotes an unconstrained array type and if the operand is not a null array, then, for each index position, the bounds of
the result are obtained by converting the bounds of the operand to the corresponding index type of the target type. If the
type mark denotes a constrained array subtype, then the bounds of the result are those imposed by the type mark. In
either case, the value of each element of the result is that of the matching element of the operand (see 7.2.2).

No other types are closely related.

In the case of conversions between numeric types, it is an error if the result of the conversion fails to satisfy a constraint
imposed by the type mark.

In the case of conversions between array types, a check is made that any constraint on the element subtype is the same for the
operand array type as for the target array type. If the type mark denotes an unconstrained array type, then, for each index
position, a check is made that the bounds of the result belong to the corresponding index subtype of the target type. If the type
mark denotes a constrained array subtype, a check is made that for each element of the operand there is a matching element of
the target subtype, and vice versa. It is an error if any of these checks fail.

In certain cases, an implicit type conversion will be performed. An implicit conversion of an operand of type universal_integer
to another integer type, or of an operand of type universal_real to another floating point type, can only be applied if the
operand is either a numeric literal or an attribute, or if the operand is an expression consisting of the division of a value of a

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (14 of 18) [12/28/2002 12:49:56 PM]

VHDL LRM- Introduction

physical type by a value of the same type; such an operand is called a convertible universal operand. An implicit conversion of
a convertible universal operand is applied if and only if the innermost complete context determines a unique (numeric) target
type for the implicit conversion, and there is no legal interpretation of this context without this conversion.

NOTE--Two array types may be closely related even if corresponding index positions have different directions.

7.3.6 Allocators

The evaluation of an allocator creates an object and yields an access value that designates the object.

 allocator ::=
 new subtype_indication
 | new qualified_expression

The type of the object created by an allocator is the base type of the type mark given in either the subtype indication or the
qualified expression. For an allocator with a subtype indication, the initial value of the created object is the same as the default
initial value for an explicitly declared variable of the designated subtype. For an allocator with a qualified expression, this
expression defines the initial value of the created object.

The type of the access value returned by an allocator must be determinable solely from the context, but using the fact that the
value returned is of an access type having the named designated type.

The only allowed form of constraint in the subtype indication of an allocator is an index constraint. If an allocator includes a
subtype indication and if the type of the object created is an array type, then the subtype indication must either denote a
constrained subtype or include an explicit index constraint. A subtype indication that is part of an allocator must not include a
resolution function.

If the type of the created object is an array type, then the created object is always constrained. If the allocator includes a
subtype indication, the created object is constrained by the subtype. If the allocator includes a qualified expression, the created
object is constrained by the bounds of the initial value defined by that expression. For other types, the subtype of the created
object is the subtype defined by the subtype of the access type definition.

For the evaluation of an allocator, the elaboration of the subtype indication or the evaluation of the qualified expression is first
performed. The new object is then created, and the object is then assigned its initial value. Finally, an access value that
designates the created object is returned.

In the absence of explicit deallocation, an implementation must guarantee that any object created by the evaluation of an
allocator remains allocated for as long as this object or one of its subelements is accessible directly or indirectly; that is, as
long as it can be denoted by some name.

NOTES

1--Procedure Deallocate is implicitly declared for each access type. This procedure provides a mechanism for explicitly
deallocating the storage occupied by an object created by an allocator.

2--An implementation may (but need not) deallocate the storage occupied by an object created by an allocator, once this object
has become inaccessible.

Examples:

 new NODE -- Takes on default initial value.
 new NODE'(15 ns, null) -- Initial value is
specified.
 new NODE'(Delay => 5 ns, \Next\ => Stack) -- Initial value is

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (15 of 18) [12/28/2002 12:49:57 PM]

VHDL LRM- Introduction

specified.
 new BIT_VECTOR'("00110110") -- Constrained by initial
value.
 new STRING (1 to 10) -- Constrained by index
constraint.
 new STRING -- Illegal: must be
constrained.

7.4 Static expressions

Certain expressions are said to be static. Similarly, certain discrete ranges are said to be static, and the type marks of certain
subtypes are said to denote static subtypes.

There are two categories of static expression. Certain forms of expression can be evaluated during the analysis of the design
unit in which they appear; such an expression is said to be locally static. Certain forms of expression can be evaluated as soon
as the design hierarchy in which they appear is elaborated; such an expression is said to be globally static.

7.4.1 Locally static primaries

An expression is said to be locally static if and only if every operator in the expression denotes an implicitly defined operator
whose operands and result are scalar and if every primary in the expression is a locally static primary, where a locally static
primary is defined to be one of the following:

a. A literal of any type other than type TIME
b. A constant (other than a deferred constant) explicitly declared by a constant declaration and initialized with a locally

static expression
c. An alias whose aliased name (given in the corresponding alias declaration) is a locally static primary
d. A function call whose function name denotes an implicitly defined operator, and whose actual parameters are each

locally static expressions
e. A predefined attribute that is a value, other than the predefined attribute 'PATH_NAME, and whose prefix is either a

locally static subtype or is an object name that is of a locally static subtype
f. A predefined attribute that is a function, other than the predefined attributes 'EVENT, 'ACTIVE, 'LAST_EVENT,

'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 'DRIVING_VALUE, whose prefix is either a locally static subtype
or is an object that is of a locally static subtype, and whose actual parameter (if any)is a locally static expression

g. A user-defined attribute whose value is defined by a locally static expression
h. A qualified expression whose operand is a locally static expression
i. A type conversion whose expression is a locally static expression
j. A locally static expression enclosed in parentheses

A locally static range is either a range of the second form (see 3.1) whose bounds are locally static expressions, or a range of
the first form whose prefix denotes either a locally static subtype or an object that is of a locally static subtype. A locally static
range constraint is a range constraint whose range is locally static. A locally static scalar subtype is either a scalar base type or
a scalar subtype formed by imposing on a locally static subtype a locally static range constraint. A locally static discrete range
is either a locally static subtype or a locally static range.

A locally static index constraint is an index constraint for which each index subtype of the corresponding array type is locally
static and in which each discrete range is locally static. A locally static array subtype is a constrained array subtype formed by
imposing on an unconstrained array type a locally static index constraint. A locally static record subtype is a record type whose
fields are all of locally static subtypes. A locally static access subtype is a subtype denoting an access type. A locally static file
subtype is a subtype denoting a file type.

A locally static subtype is either a locally static scalar subtype, a locally static array subtype, a locally static record subtype, a
locally static access subtype, or a locally static file subtype.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (16 of 18) [12/28/2002 12:49:57 PM]

VHDL LRM- Introduction

7.4.2 Globally static primaries

An expression is said to be globally static if and only if every operator in the expression denotes a pure function and every
primary in the expression is a globally static primary, where a globally static primary is a primary that, if it denotes an object
or a function, does not denote a dynamically elaborated named entity (see 12.5) and is one of the following:

a. A literal of type TIME
b. A locally static primary
c. A generic constant
d. A generate parameter
e. A constant (including a deferred constant)
f. An alias whose aliased name (given in the corresponding alias declaration) is a globally static primary
g. An array aggregate, if and only if

1) All expressions in its element associations are globally static expressions, and

2) All ranges in its element associations are globally static ranges

h. A record aggregate, if and only if all expressions in its element associations are globally static expressions
i. A function call whose function name denotes a pure function and whose actual parameters are each globally static

expressions
j. A predefined attribute that is a value and whose prefix is either a globally static subtype or is an object or function call

that is of a globally static subtype
k. A predefined attribute that is a function, other than the predefined attributes 'EVENT, 'ACTIVE, 'LAST_EVENT,

'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING,and 'DRIVING_VALUE, whose prefix is either a globally static subtype
or is an object or function call that is of a globally static subtype, and whose actual parameter (if any) is a globally static
expression

l. A user-defined attribute whose value is defined by a globally static expression
m. A qualified expression whose operand is a globally static expression
n. A type conversion whose expression is a globally static expression
o. An allocator of the first form (see 7.3.6) whose subtype indication denotes a globally static subtype
p. An allocator of the second form whose qualified expression is a globally static expression
q. A globally static expression enclosed in parentheses
r. A subelement or a slice of a globally static primary, provided that any index expressions are globally static expressions

and any discrete ranges used in slice names are globally static discrete ranges

A globally static range is either a range of the second form (see 3.1) whose bounds are globally static expressions, or a range
of the first form whose prefix denotes either a globally static subtype or an object that is of a globally static subtype. A globally
static range constraint is a range constraint whose range is globally static. A globally static scalar subtype is either a scalar base
type or a scalar subtype formed by imposing on a globally static subtype a globally static range constraint. A globally static
discrete range is either a globally static subtype or a globally static range.

A globally static index constraint is an index constraint for which each index subtype of the corresponding array type is
globally static and in which each discrete range is globally static. A globally static array subtype is a constrained array subtype
formed by imposing on an unconstrained array type a globally static index constraint. A globally static record subtype is a
record type whose fields are all of globally static subtypes. A globally static access subtype is a subtype denoting an access
type. A globally static file subtype is a subtype denoting a file type.

A globally static subtype is either a globally static scalar subtype, a globally static array subtype, a globally static record
subtype, a globally static access subtype, or a globally static file subtype.

NOTES

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (17 of 18) [12/28/2002 12:49:57 PM]

VHDL LRM- Introduction

1--An expression that is required to be a static expression may either be a locally static expression or a globally static
expression. Similarly, a range,a range constraint, a scalar subtype, a discrete range, an index constraint, or an array subtype that
is required to be static may either be locally static or globally static.

2--The rules for locally and globally static expressions imply that a declared constant or a generic may be initialized with an
expression that is neither globally nor locally static; for example, with a call to an impure function. The resulting constant
value may be globally or locally static, even though its subtype or its initial value expression is neither. Only interface
constant, variable, and signal declarations require that their initial value expressions be static expressions.

7.5 Universal expressions

A universal_expression is either an expression that delivers a result of type universal_integer or one that delivers a result of
type universal_real.

The same operations are predefined for the type universal_integer as for any integer type. The same operations are predefined
for the type universal_real as for any floating point type. In addition, these operations include the following multiplication and
division operators:

Operator Operation Left operand type Right operand type Result type

* Mutiplication
Universal real Universal integer Universal real

Universal real Universal real Universal real

/ Division Universal real Universal integer Universal real

The accuracy of the evaluation of a universal expression of type universal_real is at least as good as the accuracy of evaluation
of expressions of the most precise predefined floating point type supported by the implementation, apart from universal_real
itself.

For the evaluation of an operation of a universal expression, the following rules apply. If the result is of type universal_integer,
then the values of the operands and the result must lie within the range of the integer type with the widest range provided by
the implementation, excluding type universal_integer itself. If the result is of type universal_real, then the values of the
operands and the result must lie within the range of the floating point type with the widest range provided by the
implementation, excluding type universal_real itself.

NOTE--The predefined operators for the universal types are declared in package STANDARD as shown in 14.2 .

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_7.HTM (18 of 18) [12/28/2002 12:49:57 PM]

VHDL LRM- Introduction

Section 4

Declarations
The language defines several kinds of entities that are declared explicitly or implicitly by declarations.

 declaration ::=
 type_declaration
 | subtype_declaration
 | object_declaration
 | interface_declaration
 | alias_declaration
 | attribute_declaration
 | component_declaration
 | group_template_declaration
 | group_declaration
 | entity_declaration
 | configuration_declaration
 | subprogram_declaration
 | package_declaration

For each form of declaration, the language rules define a certain region of text called the scope of the declaration (see 10.2).
Each form of declaration associates an identifier with a named entity. Only within its scope, there are places where it is possible
to use the identifier to refer to the associated declared entity; these places are defined by the visibility rules (see 10.3). At such
places the identifier is said to be a name of the entity; the name is said to denote the associated entity.

This section describes type and subtype declarations, the various kinds of object declarations, alias declarations, attribute
declarations, component declarations, and group and group template declarations. The other kinds of declarations are described
in Section 1 and Section 2.

A declaration takes effect through the process of elaboration. Elaboration of declarations is discussed in Section 12.

4.1 Type declarations

A type declaration declares a type.

 type_declaration ::=
 full_type_declaration
 | incomplete_type_declaration

 full_type_declaration ::=
 type identifier is type_definition ;

 type_definition ::=
 scalar_type_definition
 | composite_type_definition
 | access_type_definition
 | file_type_definition

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (1 of 19) [12/28/2002 12:49:58 PM]

VHDL LRM- Introduction

The types created by the elaboration of distinct type definitions are distinct types. The elaboration of the type definition for a
scalar type or a constrained array type creates both a base type and a subtype of the base type.

The simple name declared by a type declaration denotes the declared type,unless the type declaration declares both a base type
and a subtype of the base type, in which case the simple name denotes the subtype and the base type is anonymous. A type is
said to be anonymous if it has no simple name. For explanatory purposes, this standard sometimes refers to an anonymous type
by a pseudo-name, written in italics, and uses such pseudo-names at places where the syntax normally requires an identifier.

NOTES

1--Two type definitions always define two distinct types, even if they are lexically identical. Thus, the type definitions in the
following two integer type declarations define distinct types:

 type A is range 1 to 10;
 type B is range 1 to 10;

This applies to type declarations for other classes of types as well.

2--The various forms of type definition are described in Section 3. Examples of type declarations are also given in that section.

4.2 Subtype declarations

A subtype declaration declares a subtype.

 subtype_declaration ::=
 subtype identifier is subtype_indication ;

 subtype_indication ::=
 [resolution_function_name] type_mark [constraint]

 type_mark ::=
 type_name
 | subtype_name

 constraint ::=
 range_constraint
 | index_constraint

A type mark denotes a type or a subtype. If a type mark is the name of a type,the type mark denotes this type and also the
corresponding unconstrained subtype. The base type of a type mark is, by definition, the base type of the type or subtype
denoted by the type mark.

A subtype indication defines a subtype of the base type of the type mark.

If a subtype indication includes a resolution function name, then any signal declared to be of that subtype will be resolved, if
necessary, by the named function (see 2.4); for an overloaded function name, the meaning of the function name is determined
by context (see 2.3 and 10.5). It is an error if the function does not meet the requirements of a resolution function (see 2.4).The
presence of a resolution function name has no effect on the declarations of objects other than signals or on the declarations of
files, aliases,attributes, or other subtypes.

If the subtype indication does not include a constraint, the subtype is the same as that denoted by the type mark. The condition
imposed by a constraint is the condition obtained after evaluation of the expressions and ranges forming the constraint. The rules
defining compatibility are given for each form of constraint in the appropriate section. These rules are such that if a constraint is
compatible with a subtype, then the condition imposed by the constraint cannot contradict any condition already imposed by the

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (2 of 19) [12/28/2002 12:49:58 PM]

VHDL LRM- Introduction

subtype on its values. An error occurs if any check of compatibility fails.

The direction of a discrete subtype indication is the same as the direction of the range constraint that appears as the constraint of
the subtype indication. If no constraint is present, and the type mark denotes a subtype, the direction of the subtype indication is
the same as that of the denoted subtype. If no constraint is present, and the type mark denotes a type, the direction of the subtype
indication is the same as that of the range used to define the denoted type. The direction of a discrete subtype is the same as the
direction of its subtype indication.

A subtype indication denoting an access type or a file type may not contain are solution function. Furthermore, the only
allowable constraint on a subtype indication denoting an access type is an index constraint (and then only if the designated type
is an array type).

NOTE--A subtype declaration does not define a new type.

4.3 Objects

An object is a named entity that contains (has) a value of a given type. An object is one of the following:

-- An object declared by an object declaration (see 4.3.1)

-- A loop or generate parameter (see 8.9 and 9.7)

-- A formal parameter of a subprogram (see 2.1.1)

-- A formal port (see 1.1.1.2 and 9.1)

-- A formal generic (see 1.1.1.1 and 9.1)

-- A local port (see 4.5)

-- A local generic (see 4.5)

-- An implicit signal GUARD defined by the guard expression of a block statement (see 9.1)

In addition, the following are objects, but are not named entities:

-- An implicit signal defined by any of the predefined attributes 'DELAYED,'STABLE, 'QUIET, and 'TRANSACTION
(see 14.1)

-- An element or slice of another object (see 6.3 , 6.4 , and 6.5)

-- An object designated by a value of an access type (see 3.3)

There are four classes of objects: constants, signals, variables, and files. The variable class of objects also has an additional
subclass: shared variables. The class of an explicitly declared object is specified by the reserved word that must or may appear at
the beginning of the declaration of that object. For a given object of a composite type, each subelement of that object is itself an
object of the same class and subclass, if any, as the given object. The value of a composite object is the aggregation of the values
of its subelements.

Objects declared by object declarations are available for use within blocks,processes, subprograms, or packages. Loop and
generate parameters are implicitly declared by the corresponding statement and are available for use only within that statement.
Other objects, declared by interface declarations,create channels for the communication of values between independent parts of

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (3 of 19) [12/28/2002 12:49:58 PM]

VHDL LRM- Introduction

a description.

4.3.1 Object declarations

An object declaration declares an object of a specified type. Such an object is called an explicitly declared object.

 object_declaration ::=
 constant_declaration
 | signal_declaration
 | variable_declaration
 | file_declaration

An object declaration is called a single-object declaration if its identifier list has a single identifier; it is called a multiple-object
declaration if the identifier list has two or more identifiers. A multiple-object declaration is equivalent to a sequence of the
corresponding number of single-object declarations. For each identifier of the list, the equivalent sequence has a single-object
declaration formed by this identifier,followed by a colon and by whatever appears at the right of the colon in the multiple-object
declaration; the equivalent sequence is in the same order as the identifier list.

A similar equivalence applies also for interface object declarations (see 4.3.2).

NOTE--The subelements of a composite, declared object are not declared objects.

4.3.1.1 Constant declarations

A constant declaration declares a constant of the specified type. Such a constant is an explicitly declared constant.

 constant_declaration ::=
 constant identifier_list : subtype_indication [:= expression] ;

If the assignment symbol ":=" followed by an expression is present in a constant declaration, the expression specifies the value
of the constant; the type of the expression must be that of the constant. The value of a constant cannot be modified after the
declaration is elaborated.

If the assignment symbol ":=" followed by an expression is not present in a constant declaration, then the declaration declares a
deferred constant. Such a constant declaration may only appear in a package declaration. The corresponding full constant
declaration, which defines the value of the constant, must appear in the body of the package (see 2.6).

Formal parameters of subprograms that are of mode in may be constants,and local and formal generics are always constants; the
declarations of such objects are discussed in 4.3.2 . A loop parameter is a constant within the corresponding loop (see 8.9);
similarly, a generate parameter is a constant within the corresponding generate statement (see 9.7). A subelement or slice of a
constant is a constant.

It is an error if a constant declaration declares a constant that is of a file type, an access type, or a composite type that has a
subelement that is a file type or an access type.

NOTE--The subelements of a composite, declared constant are not declared constants.

Examples:

 constant TOLERANCE : DISTANCE := 1.5 nm;
 constant PI : REAL := 3.141592;
 constant CYCLE_TIME : TIME := 100 ns;
 constant Propagation_Delay : DELAY_LENGTH; -- a deferred constant

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (4 of 19) [12/28/2002 12:49:58 PM]

VHDL LRM- Introduction

4.3.1.2 Signal declarations

A signal declaration declares a signal of the specified type. Such a signal is an explicitly declared signal.

 signal_declaration ::=
 signal identifier_list : subtype_indication [signal_kind] [:= expression
] ;

 signal_kind ::= register | bus

If the name of a resolution function appears in the declaration of a signal or in the declaration of the subtype used to declare the
signal, then that resolution function is associated with the declared signal. Such a signal is called a resolved signal.

If a signal kind appears in a signal declaration, then the signals so declared are guarded signals of the kind indicated. For a
guarded signal that is of a composite type, each subelement is likewise a guarded signal. For a guarded signal that is of an array
type, each slice (see 6.5) is likewise a guarded signal. A guarded signal may be assigned values under the control of Boolean-
valued guard expressions (or guards).

When a given guard becomes False, the drivers of the corresponding guarded signals are implicitly assigned a null transaction
(see 8.4.1) to cause those drivers to turn off. A disconnection specification (see 5.3) is used to specify the time required for
those drivers to turn off.

If the signal declaration includes the assignment symbol followed by an expression, it must be of the same type as the signal.
Such an expression is said to be a default expression. The default expression defines a default value associated with the signal
or, for a composite signal,with each scalar subelement thereof. For a signal declared to be of a scalar subtype, the value of the
default expression is the default value of the signal. For a signal declared to be of a composite subtype, each scalar subelement
of the value of the default expression is the default value of the corresponding subelement of the signal.

In the absence of an explicit default expression, an implicit default value is assumed for a signal of a scalar subtype or for each
scalar subelement of a composite signal, each of which is itself a signal of a scalar subtype. The implicit default value for a
signal of a scalar subtype T is defined to be that given by T'LEFT.

It is an error if a signal declaration declares a signal that is of a file type or an access type. It is also an error if a guarded signal
of a scalar type is neither a resolved signal nor a subelement of a resolved signal.

A signal may have one or more sources. For a signal of a scalar type,each source is either a driver (see 12.6.1) or an out,
inout,buffer, or linkage port of a component instance or of a block statement with which the signal is associated. For a signal of
a composite type, each composite source is a collection of scalar sources, one for each scalar subelement of the signal. It is an
error if, after the elaboration of a description, a signal has multiple sources and it is not a resolved signal. It is also an error if,
after the elaboration of a description, a resolved signal has more sources than the number of elements in the index range of the
type of the formal parameter of the resolution function associated with the resolved signal.

If a subelement or slice of a resolved signal of composite type is associated as an actual in a port map aspect (either in a
component instantiation statement or in a binding indication), and if the corresponding formal is of mode out, inout, buffer, or
linkage, then every scalar subelement of that signal must be associated exactly once with such a formal in the same port map
aspect, and the collection of the corresponding formal parts taken together constitute one source of the signal. If a resolved
signal of composite type is associated as an actual in a port map aspect, that is equivalent to each of its subelements being
associated in the same port map aspect.

If a subelement of a resolved signal of composite type has a driver in a given process, then every scalar subelement of that signal
must have a driver in the same process, and the collection of all of those drivers taken together constitute one source of the
signal.

The default value associated with a scalar signal defines the value component of a transaction that is the initial contents of each

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (5 of 19) [12/28/2002 12:49:58 PM]

VHDL LRM- Introduction

driver (if any) of that signal. The time component of the transaction is not defined, but the transaction is understood to have
already occurred by the start of simulation.

Examples:

 signal S : STANDARD.BIT_VECTOR (1 to 10) ;

 signal CLK1, CLK2 : TIME ;

 signal OUTPUT : WIRED_OR MULTI_VALUED_LOGIC;

NOTES

1--Ports of any mode are also signals. The term signal is used in this standard to refer to objects declared either by signal
declarations or by port declarations (or to subelements, slices, or aliases of such objects). It also refers to the implicit signal
GUARD (see 9.1) and to implicit signals defined by the predefined attributes 'DELAYED, 'STABLE, 'QUIET, and
'TRANSACTION. The term port is used to refer to objects declared by port declarations only.

2--Signals are given initial values by initializing their drivers. The initial values of drivers are then propagated through the
corresponding net to determine the initial values of the signals that make up the net (see 12.6.3).

3--The value of a signal may be indirectly modified by a signal assignment statement (see 8.4); such assignments affect the
future values of the signal.

4--The subelements of a composite, declared signal are not declared signals.

Cross-References: Disconnection specifications, 5.3 ; Disconnection statements, 9.5 ; Guarded assignment, 9.5 ; Guarded
blocks, 9.1 ; Guarded targets, 9.5 ; Signal guard, 9.1 .

4.3.1.3 Variable declarations

A variable declaration declares a variable of the specified type. Such a variable is an explicitly declared variable.

 variable_declaration ::=
 [shared] variable identifier_list : subtype_indication [:= expression] ;

A variable declaration that includes the reserved word shared is a shared variable declaration. A shared variable declaration
declares a shared variable. Shared variables are a subclass of the variable class of objects. More than one process may access a
given shared variable; however,if more than one process accesses a given shared variable during the same simulation cycle (see
12.6.4), neither the value of the shared variable after the access nor the value read from the shared variable is defined by the
language. A description is erroneous if it depends on whether or how an implementation sequentializes access to shared
variables.

If the variable declaration includes the assignment symbol followed by an expression, the expression specifies an initial value
for the declared variable; the type of the expression must be that of the variable. Such an expression is said to be an initial value
expression.

If an initial value expression appears in the declaration of a variable, then the initial value of the variable is determined by that
expression each time the variable declaration is elaborated. In the absence of an initial value expression, a default initial value
applies. The default initial value for a /variable of a scalar subtype T is defined to be the value given by T'LEFT. The default
initial value of a variable of a composite type is defined to be the aggregate of the default initial values of all of its scalar
subelements, each of which is itself a variable of a scalar subtype. The default initial value of a variable of an access type is
defined to be the value null for that type.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (6 of 19) [12/28/2002 12:49:58 PM]

VHDL LRM- Introduction

NOTES

1--The value of a variable may be modified by a variable assignment statement (see 8.5); such assignments take effect
immediately.

2--The variables declared within a given procedure persist until that procedure completes and returns to the caller. For
procedures that contain wait statements, a variable may therefore persist from one point in simulation time to another, and the
value in the variable is thus maintained over time. For processes, which never complete, all variables persist from the beginning
of simulation until the end of simulation.

3--The subelements of a composite, declared variable are not declared variables.

4--Since the language does not guarantee the synchronization of accesses to shared variables by multiple processes in the same
simulation cycle, the use of shared variables in this manner is non portable and nondeterministic. For example, consider the
following architecture:

 architecture UseSharedVariables of SomeEntity is
 subtype ShortRange is INTEGER range 0 to 1;
 shared variable Counter: ShortRange := 0;

 begin
 PROC1: process
 begin
 Counter := Counter + 1; -- The subtype check may or may not fail.
 wait;
 end process PROC1;

 PROC2: process
 begin
 Counter := Counter - 1; -- The subtype check may or may not fail.
 wait;
 end process PROC2;
 end architecture UseSharedVariables;

In particular, the value of Counter after the execution of both processes is not guaranteed to be either 0 or 1, even if Counter is
declared to be of type INTEGER.

5--Variables declared immediately within entity declarations, architecture bodies, packages, package bodies, and blocks must be
shared variables. Variables declared immediately within subprograms and processes must not be shared variables.

Examples:

 variable INDEX : INTEGER range 0 to 99 := 0 ;
 -- Initial value is determined by the initial value expression

 variable COUNT : POSITIVE ;
 -- Initial value is POSITIVE'LEFT; that is,1.

 variable MEMORY : BIT_MATRIX (0 to 7, 0 to 1023) ;
 -- Initial value is the aggregate of the initial values of each element

4.3.1.4 File declarations

A file declaration declares a file of the specified type. Such a file is an explicitly declared file.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (7 of 19) [12/28/2002 12:49:58 PM]

VHDL LRM- Introduction

 file_declaration ::=
 file identifier_list : subtype_indication [file_open_information] ;

 file_open_information ::= [open file_open_kind_expression] is
file_logical_name

 file_logical_name ::= string_expression

The subtype indication of a file declaration must define a file subtype.

If file open information is included in a given file declaration, then the file declared by the declaration is opened (see 3.4.1)
with an implicit call to FILE_OPEN when the file declaration is elaborated (see 12.3.1.4). This implicit call is to the
FILE_OPEN procedure of the first form, and it associates the identifier with the file parameter F, the file logical name with the
External_Name parameter, and the file open kind expression with the Open_Kind parameter. If a file open kind expression is not
included in the file open information of a given file declaration, then the default value of READ_MODE is used during
elaboration of the file declaration.

If file open information is not included in a given file declaration, then the file declared by the declaration is not opened when
the file declaration is elaborated.

The file logical name must be an expression of predefined type STRING. The value of this expression is interpreted as a logical
name for a file in the host system environment. An implementation must provide some mechanism to associate a file logical
name with a host-dependent file. Such a mechanism is not defined by the language.

The file logical name identifies an external file in the host file system that is associated with the file object. This association
provides a mechanism for either importing data contained in an external file into the design during simulation or exporting data
generated during simulation to an external file.

If multiple file objects are associated with the same external file, and each file object has an access mode that is read-only (see
3.4.1), then values read from each file object are read from the external file associated with the file object. The language does
not define the order in which such values are read from the external file, nor does it define whether each value is read once or
multiple times (once per file object).

The language does not define the order of and the relationship, if any, between values read from and written to multiple file
objects that are associated with the same external file. An implementation may restrict the number of file objects that may be
associated at one time with a given external file.

If a formal subprogram parameter is of the class file, it must be associated with an actual that is a file object.

Examples:

 type IntegerFile is file of INTEGER;

 file F1: IntegerFile; -- No implicit FILE_OPEN is performed
 -- during elaboration.

 file F2: IntegerFile is "test.dat"; -- At elaboration, an implicit call is
performed:
 -- FILE_OPEN (F2, "test.dat");
 -- The OPEN_KIND parameter defaults to
 -- READ_MODE.

 file F3: IntegerFile open WRITE_MODE is "test.dat";
 -- At elaboration, an implicit call is
performed:
 -- FILE_OPEN (F3, "test.dat",

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (8 of 19) [12/28/2002 12:49:58 PM]

VHDL LRM- Introduction

WRITE_MODE);

NOTE--All file objects associated with the same external file should be of the same base type.

4.3.2 Interface declarations

An interface declaration declares an interface object of a specified type. Interface objects include interface constants that appear
as generics of a design entity, a component, or a block, or as constant parameters of subprograms; interface signals that appear
as ports of a design entity, component, or block, or as signal parameters of subprograms;interface variables that appear as
variable parameters of subprograms; and interface files that appear as file parameters of subprograms.

 interface_declaration ::=
 interface_constant_declaration
 | interface_signal_declaration
 | interface_variable_declaration
 | interface_file_declaration

 interface_constant_declaration ::=
 [constant] identifier_list : [in] subtype_indication [:=
static_expression]

 interface_signal_declaration ::=
 [signal] identifier_list : [mode] subtype_indication [bus] [:=
static_expression]

 interface_variable_declaration ::=
 [variable] identifier_list : [mode] subtype_indication [:=
static_expression]

 interface_file_declaration ::=
 file identifier_list subtype_indication

 mode ::= in | out | inout | buffer | linkage

If no mode is explicitly given in an interface declaration other than an interface file declaration, mode in is assumed.

For an interface constant declaration or an interface signal declaration, the subtype indication must define a subtype that is
neither a file type nor an access type.

For an interface file declaration, it is an error if the subtype indication does not denote a subtype of a file type.

If an interface signal declaration includes the reserved word bus, then the signal declared by that interface declaration is a
guarded signal of signal kind bus.

If an interface declaration contains a ":=" symbol followed by an expression,the expression is said to be the default expression of
the interface object. The type of a default expression must be that of the corresponding interface object. It is an error if a default
expression appears in an interface declaration and any of the following conditions hold:

-- The mode is linkage

-- The interface object is a formal signal parameter

-- The interface object is a formal variable parameter of mode other than in.

In an interface signal declaration appearing in a port list, the default expression defines the default value(s) associated with the

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (9 of 19) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

interface signal or its subelements. In the absence of a default expression, an implicit default value is assumed for the signal or
for each scalar subelement, as defined for signal declarations (see 4.3.1.2). The value, whether implicitly or explicitly provided,
is used to determine the initial contents of drivers, if any, of the interface signal as specified for signal declarations.

An interface object provides a channel of communication between the environment and a particular portion of a description. The
value of an interface object may be determined by the value of an associated object or expression in the environment; similarly,
the value of an object in the environment may be determined by the value of an associated interface object. The manner in which
such associations are made is described in 4.3.2.2 .

The value of an object is said to be read when one of the following conditions is satisfied:

-- When the object is evaluated, and also (indirectly) when the object is associated with an interface object of the modes
in, inout, or linkage.

-- When the object is a signal and a name denoting the object appears in a sensitivity list in a wait statement or a process
statement.

-- When the object is a signal and the value of any of its predefined attributes 'STABLE, 'QUIET, 'DELAYED,
'TRANSACTION, 'EVENT, 'ACTIVE,'LAST_EVENT, 'LAST_ACTIVE, or 'LAST_VALUE is read.

-- When one of its subelements is read.

-- When the object is a file and a READ operation is performed on the file.

The value of an object is said to be updated when one of the following conditions is satisfied:

-- When it is the target of an assignment, and also (indirectly) when the object is associated with an interface object of the
modes out,buffer, inout, or linkage.

-- When one of its subelements is updated.

-- When the object is a file and a WRITE operation is performed on the file.

Only signal, variable, or file objects may be updated.

An interface object has one of the following modes:

-- in. The value of the interface object may only be read. In addition, any attributes of the interface object may be read,
except that attributes 'STABLE, 'QUIET, 'DELAYED, and 'TRANSACTION of a subprogram signal parameter may not
be read within the corresponding subprogram. For a file object, operation ENDFILE is allowed.

-- out. The value of the interface object may be updated. Reading the attributes of the interface element, other than the
predefined attributes 'STABLE, 'QUIET, 'DELAYED, 'TRANSACTION, 'EVENT, 'ACTIVE,
'LAST_EVENT,'LAST_ACTIVE, and 'LAST_VALUE, is allowed. No other reading is allowed.

-- inout. The value of the interface object may be both read and updated. Reading the attributes of the interface object,
other than the attributes 'STABLE, 'QUIET, 'DELAYED, and 'TRANSACTION of a signal parameter,is also permitted.
For a file object, all file operations (see 3.4.1) are allowed.

-- buffer. The value of the interface object may be both read and updated. Reading the attributes of the interface object is
also permitted.

-- linkage. The value of the interface object may be read or updated,but only by appearing as an actual corresponding to
an interface object of mode linkage. No other reading or updating is permitted.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (10 of 19) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

NOTES

1--Although signals of modes inout and buffer have the same characteristics with respect to whether they may be read or
updated, a signal of mode inout may be updated by zero or more sources, whereas a signal of mode buffer must be updated by
at most one source (see 1.1.1.2).

2--A subprogram parameter that is of a file type must be declared as a file parameter.

3--Since shared variables are a subclass of variables, a shared variable may be associated as an actual with a formal of class
variable.

4.3.2.1 Interface lists

An interface list contains the declarations of the interface objects required by a subprogram, a component, a design entity, or a
block statement.

 interface_list ::=
 interface_element { ; interface_element }

 interface_element ::= interface_declaration

A generic interface list consists entirely of interface constant declarations. A port interface list consists entirely of interface
signal declarations. A parameter interface list may contain interface constant declarations, interface signal declarations,
interface variable declarations, interface file declarations, or any combination thereof.

A name that denotes an interface object may not appear in any interface declaration within the interface list containing the
denoted interface object except to declare this object.

NOTE--The above restriction makes the following three interface lists illegal:

 entity E is
 generic (G1: INTEGER; G2: INTEGER := G1); --
illegal
 port (P1: STRING; P2: STRING(P1'RANGE));
-- illegal

 procedure X (Y1, Y2: INTEGER; Y3: INTEGER range Y1 to Y2);
-- illegal
 end E;

However,the following interface lists are legal:

 entity E is
 generic (G1, G2, G3, G4: INTEGER);
 port (P1, P2: STRING (G1 to G2));

 procedure X (Y3: INTEGER range G3 to G4);
 end E;

4.3.2.2 Association lists

An association list establishes correspondences between formal or local generic, port, or parameter names on the one hand and
local or actual names or expressions on the other.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (11 of 19) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

 association_list ::=
 association_element { , association_element }

 association_element ::=
 [formal_part =>] actual_part

 formal_part ::=
 formal_designator
 | function_name (formal_designator)
 | type_mark (formal_designator)

 formal_designator ::=
 generic_name
 | port_name
 | parameter_name

 actual_part ::=
 actual_designator
 | function_name (actual_designator)
 | type_mark (actual_designator)

 actual_designator ::=
 expression
 | signal_name
 | variable_name
 | file_name
 | open

Each association element in an association list associates one actual designator with the corresponding interface element in the
interface list of a subprogram declaration, component declaration, entity declaration, or block statement. The corresponding
interface element is determined either by position or by name.

An association element is said to be named if the formal designator appears explicitly; otherwise, it is said to be positional. For a
positional association, an actual designator at a given position in an association list corresponds to the interface element at the
same position in the interface list.

Named associations can be given in any order, but if both positional and named associations appear in the same association list,
then all positional associations must occur first at their normal position. Hence once a named association is used, the rest of the
association list must use only named associations.

In the following, the term actual refers to an actual designator, and the term formal refers to a formal designator.

The formal part of a named element association may be in the form of a function call, where the single argument of the function
is the formal designator itself, if and only if the mode of the formal is out, inout,buffer, or linkage, and if the actual is not
open. In this case, the function name must denote a function whose single parameter is of the type of the formal and whose
result is the type of the corresponding actual. Such a conversion function provides for type conversion in the event that data
flows from the formal to the actual.

Alternatively, the formal part of a named element association may be in the form of a type conversion, where the expression to
be converted is the formal designator itself, if and only if the mode of the formal is out,inout, buffer, or linkage, and if the
actual is not open. In this case, the base type denoted by the type mark must be the same as the base type of the corresponding
actual. Such a type conversion provides for type conversion in the event that data flows from the formal to the actual. It is an
error if the type of the formal is not closely related to the type of the actual. (See 7.3.5 .)

Similarly, the actual part of a (named or positional) element association maybe in the form of a function call, where the single
argument of the function is the actual designator itself, if and only if the mode of the formal is in, inout, or linkage, and if the

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (12 of 19) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

actual is not open. In this case, the function name must denote a function whose single parameter is of the type of the actual, and
whose result is the type of the corresponding formal. In addition, the formal must not be of class constant for this interpretation
to hold (the actual is interpreted as an expression that is a function call if the class of the formal is constant). Such a conversion
function provides for type conversion in the event that data flows from the actual to the formal.

Alternatively, the actual part of a (named or positional) element association may be in the form of a type conversion, where the
expression to be type converted is the actual designator itself, if and only if the mode of the formal is in, inout, or linkage, and
if the actual is not open. In this case, the base type denoted by the type mark must be the same as the base type of the
corresponding formal. Such a type conversion provides for type conversion in the event that data flows from the actual to the
formal. It is an error if the type of the actual is not closely related to the type of the formal.

The type of the actual (after applying the conversion function or type conversion, if present in the actual part) must be the same
as the type of the corresponding formal, if the mode of the formal is in, inout, or linkage, and if the actual is not open.
Similarly, if the mode of the formal is out, inout, buffer, or linkage, and if the actual is not open, then the type of the formal
(after applying the conversion function or type conversion, if present in the formal part) must be the same as the corresponding
actual.

For the association of signals with corresponding formal ports, association of a formal of a given composite type with an actual
of the same type is equivalent to the association of each scalar subelement of the formal with the matching subelement of the
actual, provided that no conversion function or type conversion is present in either the actual part or the formal part of the
association element. If a conversion function or type conversion is present,then the entire formal is considered to be associated
with the entire actual.

Similarly, for the association of actuals with corresponding formal subprogram parameters, association of a formal parameter of
a given composite type with an actual of the same type is equivalent to the association of each scalar subelement of the formal
parameter with the matching subelement of the actual. Different parameter passing mechanisms may be required in each case,
but in both cases the associations will have an equivalent effect. This equivalence applies provided that no actual is accessible
by more than one path (see 2.1.1.1).

A formal may be either an explicitly declared interface object or member (see Section 3) of such an interface object. In the
former case,such a formal is said to be associated in whole. In the latter cases,named association must be used to associate the
formal and actual; the subelements of such a formal are said to be associated individually. Furthermore, every scalar subelement
of the explicitly declared interface object must be associated exactly once with an actual (or subelement thereof)in the same
association list, and all such associations must appear in a contiguous sequence within that association list. Each association
element that associates a slice or subelement (or slice thereof) of an interface object must identify the formal with a locally static
name.

If an interface element in an interface list includes a default expression fora formal generic, for a formal port of any mode other
than linkage, or for a formal variable or constant parameter of mode in, then any corresponding association list need not include
an association element for that interface element. If the association element is not included in the association list, or if the actual
is open, then the value of the default expression is used as the actual expression or signal value in an implicit association
element for that interface element.

It is an error if an actual of open is associated with a formal that is associated individually. An actual of open counts as the
single association allowed for the corresponding formal but does not supply a constant, signal, or variable (as is appropriate to
the object class of the formal) to the formal.

NOTES

1--It is a consequence of these rules that, if an association element is omitted from an association list in order to make use of the
default expression on the corresponding interface element, all subsequent association elements in that association list must be
named associations.

2--Although a default expression can appear in an interface element that declares a (local or formal) port, such a default
expression is not interpreted as the value of an implicit association element for that port. Instead, the value of the expression is

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (13 of 19) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

used to determine the effective value of that port during simulation if the port is left unconnected (see 12.6.2).

3--Named association may not be used when invoking implicitly defined operations, since the formal parameters of these
operators are not named (see 7.2).

4--Since information flows only from the actual to the formal when the mode of the formal is in, and since a function call is
itself an expression, the actual associated with a formal of object class constant is never interpreted as a conversion function or
a type conversion converting an actual designator that is an expression. Thus, the following association element is legal:

 Param => F (open)

under the conditions that Param is a constant formal and F is a function returning the same base type as that of Param and
having one or more parameters, all of which may be defaulted.

5--No conversion function or type conversion may appear in the actual part when the actual designator is open.

4.3.3 Alias declarations

An alias declaration declares an alternate name for an existing named entity.

 alias_declaration ::=
 alias alias_designator [: subtype_indication] is name [signature] ;

 alias_designator ::= identifier | character_literal | operator_symbol

An object alias is an alias whose alias designator denotes an object (that is, a constant, a variable, a signal, or a file). A
nonobject alias is an alias whose alias designator denotes some named entity other than an object. An alias can be declared for
all named entities except for labels, loop parameters, and generate parameters.

The alias designator in an alias declaration denotes the named entity specified by the name and, if present, the signature in the
alias declaration. An alias of a signal denotes a signal; an alias of a variable denotes a variable; an alias of a constant denotes a
constant; and an alias of a file denotes a file. Similarly, an alias of a subprogram (including an operator) denotes a subprogram,
an alias of an enumeration literal denotes an enumeration literal,and so forth.

NOTES

1--Since, for example, the alias of a variable is a variable, every reference within this document to a designator (a name,
character literal, or operator symbol) that requires the designator to denote a named entity with certain characteristics (for
example, to be a variable) allows the designator to denote an alias, so long as the aliased name denotes a named entity having
the required characteristics. This situation holds except where aliases are specifically prohibited.

2--The alias of an overloadable object is itself overloadable.

4.3.3.1 Object aliases

The following rules apply to object aliases:

a. A signature may not appear in a declaration of an object alias.
b. The name must be a static name (see 6.1) that denotes an object. The base type of the name specified in an alias

declaration must be the same as the base type of the type mark in the subtype indication (if the subtype indication is
present); this type must not be a multi-dimensional array type. When the object denoted by the name is referenced via the
alias defined by the alias declaration, the following rules apply:

-- If the subtype indication is absent or if it is present and denotes an unconstrained array type:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (14 of 19) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

-- If the alias designator denotes a slice of an object, then the subtype of the object is viewed as if it were of the
subtype specified by the slice

-- Otherwise, the object is viewed as if it were of the subtype specified in the declaration of the object denoted by
the name

-- If the subtype indication is present and denotes a constrained array subtype, then the object is viewed as if it were of
the subtype specified by the subtype indication; moreover, the subtype denoted by the subtype indication must include a
matching element (see 7.2.2) for each element of the object denoted by the name;

-- If the subtype indication denotes a scalar subtype, then the object is viewed as if it were of the subtype specified by the
subtype indication;moreover, it is an error if this subtype does not have the same bounds and direction as the subtype
denoted by the object name.

a. The same applies to attribute references where the prefix of the attribute name denotes the alias.

b. A reference to an element of an object alias is implicitly a reference to the matching element of the object denoted by the
alias. A reference to a slice of an object alias consisting of the elements e1, e2, ..., en is implicitly a reference to a slice of

the object denoted by the alias consisting of the matching elements corresponding to each of e1 through en.

4.3.3.2 Nonobject aliases

The following rules apply to nonobject aliases:

a. A subtype indication may not appear in a nonobject alias.

b. A signature is required if the name denotes a subprogram (including an operator) or enumeration literal. In this case, the
signature is required to match (see 2.3) the parameter and result type profile of exactly one of the subprograms or
enumeration literals denoted by the name.

c. If the name denotes an enumeration type, then one implicit alias declaration for each of the literals of the type
immediately follows the alias declaration for the enumeration type; each such implicit declaration has, as its alias
designator, the simple name or character literal of the literal and has, as its name, a name constructed by taking the name
of the alias for thee numeration type and substituting the simple name or character literal being aliased for the simple
name of the type. Each implicit alias has a signature that matches the parameter and result type profile of the literal being
aliased.

d. Alternatively, if the name denotes a physical type, then one implicitali as declaration for each of the units of the type
immediately follows the alias declaration for the physical type; each such implicit declaration has, as its name, a name
constructed by taking the name of the alias for the physical type and substituting the simple name of the unit being
aliased for the simple name of the type.

e. Finally, if the name denotes a type, then implicit alias declarations for each predefined operator for the type immediately
follow the explicit alias declaration for the type and, if present, any implicit alias declarations for literals or units of the
type. Each implicit alias has a signature that matches the parameter and result type profile of the implicit operator being
aliased.

Examples:

 variable REAL_NUMBER : BIT_VECTOR (0 to 31);

 alias SIGN : BIT is REAL_NUMBER (0);
 -- SIGN is now a scalar (BIT) value

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (15 of 19) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

 alias MANTISSA : BIT_VECTOR (23 downto 0) is REAL_NUMBER (8 to 31);
 -- MANTISSA is a 24b value whose range is 23 downto 0.
 -- Note that the ranges of MANTISSA and REAL_NUMBER (8 to 31)
 -- have opposite directions. A reference to MANTISSA (23 downto 18)
 -- is equivalent to a reference to REAL_NUMBER (8 to 13).

 alias EXPONENT : BIT_VECTOR (1 to 7) is REAL_NUMBER (1 to 7);
 -- EXPONENT is a 7-bit value whose range is 1 to 7.

 alias STD_BIT is STD.STANDARD.BIT; -- explicit alias

 -- alias '0' is STD.STANDARD.'0' -- implicit aliases ...
 -- [return STD.STANDARD.BIT];
 -- alias '1' is STD.STANDARD.'1'
 -- [return STD.STANDARD.BIT];
 -- alias "and" is STD.STANDARD."and"
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BIT];
 -- alias "or" is STD.STANDARD."or"
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BIT];
 -- alias "nand" is STD.STANDARD."nand"
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BIT];
 -- alias "nor" is STD.STANDARD."nor"
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BIT];
 -- alias "xor" is STD.STANDARD."xor"
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BIT];
 -- alias "xnor is STD.STANDARD."xnor"
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BIT];
 -- alias "not" is STD.STANDARD."not"
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BIT];
 -- alias "=" is STD.STANDARD."="
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BOOLEAN];
 -- alias "/=" is STD.STANDARD."/="
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BOOLEAN];
 -- alias "<" is STD.STANDARD."<"
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BOOLEAN];
 -- alias "<=" is STD.STANDARD."<="
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BOOLEAN];
 -- alias ">" is STD.STANDARD.">"
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BOOLEAN];
 -- alias ">=" is STD.STANDARD.">="
 -- [STD.STANDARD.BIT, STD.STANDARD.BIT
 -- return STD.STANDARD.BOOLEAN];

NOTE--An alias of an explicitly declared object is not an explicitly declared object,nor is the alias of a subelement or slice of an

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (16 of 19) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

explicitly declared object an explicitly declared object.

4.4 Attribute declarations

An attribute is a value, function, type, range, signal, or constant that may be associated with one or more named entities in a
description. There are two categories of attributes: predefined attributes and user-defined attributes. Predefined attributes
provide information about named entities in a description. Section 14 contains the definition of all predefined attributes.
Predefined attributes that are signals may not be updated.

User-defined attributes are constants of arbitrary type. Such attributes are defined by an attribute declaration.

 attribute_declaration ::=
 attribute identifier: type_mark ;

The identifier is said to be the designator of the attribute. An attribute may be associated with an entity declaration, an
architecture, a configuration,a procedure, a function, a package, a type, a subtype, a constant, a signal, a variable, a component, a
label, a literal, a unit, a group, or a file.

The type mark must denote a subtype that is neither an access type nor a file type. The subtype need not be constrained.

Examples:

 type COORDINATE is record X,Y: INTEGER; end record;
 subtype POSITIVE is INTEGER range 1 to INTEGER'HIGH;
 attribute LOCATION: COORDINATE;
 attribute PIN_NO: POSITIVE;

NOTES

1--A given named entity E will be decorated with the user-defined attribute A if and only if an attribute specification for the
value of attribute A exists in the same declarative part as the declaration of E. In the absence of such a specification, an attribute
name of the form E'A is illegal.

2--A user-defined attribute is associated with the named entity denoted by the name specified in a declaration, not with the name
itself. Hence, an attribute of an object can be referenced by using an alias for that object rather than the declared name of the
object as the prefix of the attribute name, and the attribute referenced in such a way is the same attribute (and therefore has the
same value) as the attribute referenced by using the declared name of the object as the prefix.

3--A user-defined attribute of a port, signal, variable, or constant of some composite type is an attribute of the entire port, signal,
variable, or constant, not of its elements. If it is necessary to associate an attribute with each element of some composite object,
then the attribute itself can be declared to be of a composite type such that for each element of the object,there is a
corresponding element of the attribute.

4.5 Component declarations

A component declaration declares a virtual design entity interface that may be used in a component instantiation statement. A
component configuration or a configuration specification can be used to associate a component instance with a design entity that
resides in a library.

 component_declaration ::=
 component identifier [is]
 [local_generic_clause]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (17 of 19) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

 [local_port_clause]
 end component [component_simple_name] ;

Each interface object in the local generic clause declares a local generic. Each interface object in the local port clause declares a
local port.

If a simple name appears at the end of a component declaration, it must repeat the identifier of the component declaration.

4.6 Group template declarations

A group template declaration declares a group template, which defines the allowable classes of named entities that can appear in
a group.

 group_template_declaration ::=
 group identifier is (entity_class_entry_list) ;

 entity_class_entry_list ::=
 entity_class_entry { , entity_class_entry }

 entity_class_entry ::= entity_class [<>]

A group template is characterized by the number of entity class entries and the entity class at each position. Entity classes are
described in 5.1 .

An entity class entry that is an entity class defines the entity class that may appear at that position in the group type. An entity
class entry that includes a box (<>) allows zero or more group constituents to appear in this position in the corresponding group
declaration; such an entity class entry must be the last one within the entity class entry list.

Examples:

 group PIN2PIN is (signal, signal); -- Groups of this type consist of
two signals.

 group RESOURCE is (label <>); -- Groups of this type consist of
any number
 -- of labels.
 group DIFF_CYCLES is (group <>); -- A group of groups.

4.7 Group declarations

A group declaration declares a group, a named collection of named entities. Named entities are described

in 5.1 .

 group_declaration ::=
 group identifier : group_template_name (group_constituent_list) ;

 group_constituent_list ::= group_constituent { , group_constituent }

 group_constituent ::= name | character_literal

It is an error if the class of any group constituent in the group constituent list is not the same as the class specified by the
corresponding entity class entry in the entity class entry list of the group template.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (18 of 19) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

A name that is a group constituent may not be an attribute name (see 6.6), nor, if it contains a prefix, may that prefix be a
function call.

If a group declaration appears within a package body, and a group constituent within that group declaration is the same as the
simple name of the package body, then the group constituent denotes the package declaration and not the package body. The
same rule holds for group declarations appearing within subprogram bodies containing group constituents with the same
designator as that of the enclosing subprogram body.

If a group declaration contains a group constituent that denotes a variable of an access type, the group declaration declares a
group incorporating the variable itself, and not the designated object, if any.

Examples:

 group G1: RESOURCE (L1, L2); -- A group of two labels.

 group G2: RESOURCE (L3, L4, L5); -- A group of three labels.

 group C2Q: PIN2PIN (PROJECT.GLOBALS.CK, Q); -- Groups may associate named
 -- entities in different
declarative -- parts (and regions).
 group CONSTRAINT1: DIFF_CYCLES (G1, G3); -- A group of groups.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_4.HTM (19 of 19) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

Section 10

Scope and visibility
The rules defining the scope of declarations and the rules defining which identifiers are visible at various points in the text
of the description are presented in this section. The formulation of these rules uses the notion of a declarative region.

10.1 Declarative region

A declarative region is a portion of the text of the description. A single declarative region is formed by the text of each of
the following:

a. An entity declaration, together with a corresponding architecture body.

b. A configuration declaration.

c. A subprogram declaration, together with the corresponding subprogram body.

d. A package declaration, together with the corresponding body (if any).

e. A record type declaration.

f. A component declaration.

g. A block statement.

h. A process statement.

i. A loop statement.

j. A block configuration.

k. A component configuration.

l. A generate statement.

In each of these cases, the declarative region is said to be associated with the corresponding declaration or statement. A
declaration is said to occur immediately within a declarative region if this region is the innermost region that encloses the
declaration, not counting the declarative region (if any) associated with the declaration itself.

Certain declarative regions include disjoint parts. Each declarative region is nevertheless considered as a (logically)
continuous portion of the description text. Hence, if any rule defines a portion of text as the text that extends from some
specific point of a declarative region to the end of this region, then this portion is the corresponding subset of the declarative
region (thus, it does not include intermediate declarative items between the interface declaration and a corresponding body
declaration).

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_10.HTM (1 of 7) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

10.2 Scope of declarations

For each form of declaration, the language rules define a certain portion of the description text called the scope of the
declaration. The scope of a declaration is also called the scope of any named entity declared by the declaration.
Furthermore, if the declaration associates some notation (either an identifier, a character literal, or an operator symbol) with
the named entity, this portion of the text is also called the scope of this notation. Within the scope of a named entity, and
only there, there are places where it is legal to use the associated notation in order to refer to the named entity. These places
are defined by the rules of visibility and overloading.

The scope of a declaration that occurs immediately within a declarative region extends from the beginning of the
declaration to the end of the declarative region; this part of the scope of a declaration is called the immediate scope.
Furthermore, for any of the declarations in the following list, the scope of the declaration extends beyond the immediate
scope:

a. A declaration that occurs immediately within a package declaration

b. An element declaration in a record type declaration

c. A formal parameter declaration in a subprogram declaration

d. A local generic declaration in a component declaration

e. A local port declaration in a component declaration

f. A formal generic declaration in an entity declaration

g. A formal port declaration in an entity declaration

In the absence of a separate subprogram declaration, the subprogram specification given in the subprogram body acts as the
declaration, and rule(3) applies also in such a case. In each of these cases, the given declaration occurs immediately within
some enclosing declaration, and the scope of the given declaration extends to the end of the scope of the enclosing
declaration.

In addition to the above rules, the scope of any declaration that includes the end of the declarative part of a given block
(whether it be an external block defined by a design entity or an internal block defined by a block statement) extends into a
configuration declaration that configures the given block.

If a component configuration appears as a configuration item immediately within a block configuration that configures a
given block, and if the scope of a given declaration includes the end of the declarative part of that block, then the scope of
the given declaration extends from the beginning to the end of the declarative region associated with the given component
configuration. A similar rule applies to a block configuration that appears as a configuration item immediately within
another block configuration, provided that the contained block configuration configures an internal block. Furthermore, the
scope of a use clause is similarly extended. Finally, the scope of a library unit contained within a design library is extended
along with the scope of the logical library name corresponding to that design library.

NOTE--These scope rules apply to all forms of declaration. In particular, they apply also to implicit declarations.

10.3 Visibility

The meaning of the occurrence of an identifier at a given place in the text is defined by the visibility rules and also, in the

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_10.HTM (2 of 7) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

case of overloaded declarations, by the overloading rules. The identifiers considered in this section include any identifier
other than a reserved word or attribute designator that denotes a predefined attribute. The places considered in this section
are those where a lexical element (such as an identifier) occurs. The overloaded declarations considered in this section are
those for subprograms and enumeration literals.

For each identifier and at each place in the text, the visibility rules determine a set of declarations (with this identifier) that
define the possible meanings of an occurrence of the identifier. A declaration is said to be visible at a given place in the text
when, according to the visibility rules, the declaration defines a possible meaning of this occurrence. Two cases may arise
in determining the meaning of such a declaration:

-- The visibility rules determine at most one possible meaning. In such a case, the visibility rules are sufficient to
determine the declaration defining the meaning of the occurrence of the identifier, or in the absence of such a
declaration, to determine that the occurrence is not legal at the given point.

-- The visibility rules determine more than one possible meaning. In such a case, the occurrence of the identifier is
legal at this point if and only if exactly one visible declaration is acceptable for the overloading rules in the given
context.

A declaration is only visible within a certain part of its scope; this part starts at the end of the declaration except in the
declaration of a design unit, in which case it starts immediately after the reserved word is is given after the identifier of the
design unit. This rule applies to both explicit and implicit declarations.

Visibility is either by selection or direct. A declaration is visible by selection at places that are defined as follows:

a. For a primary unit contained in a library: at the place of the suffix in a selected name whose prefix denotes the
library.

b. For an architecture body associated with a given entity declaration: at the place of the block specification in a block
configuration for an external block whose interface is defined by that entity declaration.

c. For an architecture body associated with a given entity declaration: at the place of an architecture identifier (between
the parentheses) in the first form of an entity aspect in a binding indication.

d. For a declaration given in a package declaration: at the place of the suffix in a selected name whose prefix denotes
the package.

e. For an element declaration of a given record type declaration: at the place of the suffix in a selected name whose
prefix is appropriate for the type; also at the place of a choice (before the compound delimiter =>) in a named
element association of an aggregate of the type.

f. For a user-defined attribute: at the place of the attribute designator(after the delimiter ') in an attribute name whose
prefix denotes a named entity with which that attribute has been associated.

g. For a formal parameter declaration of a given subprogram declaration: at the place of the formal designator in a
formal part (before the compound delimiter =>) of a named parameter association element of a corresponding
subprogram call.

h. For a local generic declaration of a given component declaration: at the place of the formal designator in a formal
part (before the compound delimiter=>) of a named generic association element of a corresponding component
instantiation statement; similarly, at the place of the actual designator in an actual part (after the compound delimiter
=>, if any) of a generic association element of a corresponding binding indication.

i. For a local port declaration of a given component declaration: at the place of the formal designator in a formal part

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_10.HTM (3 of 7) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

(before the compound delimiter=>) of a named port association element of a corresponding component instantiation
statement; similarly, at the place of the actual designator in an actual part (after the compound delimiter =>, if any)
of a port association element of a corresponding binding indication.

j. For a formal generic declaration of a given entity declaration: at the place of the formal designator in a formal part
(before the compound delimiter=>) of a named generic association element of a corresponding binding indication;
similarly, at the place of the formal designator in a formal part(before the compound delimiter =>) of a generic
association element of a corresponding component instantiation statement when the instantiated unit is a design
entity or a configuration declaration.

k. For a formal port declaration of a given entity declaration: at the place of the formal designator in a formal part
(before the compound delimiter=>) of a named port association element of a corresponding binding specification;
similarly, at the place of the formal designator in a formal part (before the compound delimiter =>) of a port
association element of a corresponding component instantiation statement when the instantiated unit is a design
entity or a configuration declaration.

l. For a formal generic declaration or a formal port declaration of a given block statement: at the place of the formal
designator in a formal part (before the compound delimiter =>) of a named association element of a corresponding
generic or port map aspect.

Finally, within the declarative region associated with a construct other than a record type declaration, any declaration that
occurs immediately within the region and that also occurs textually within the construct is visible by selection at the place
of the suffix of an expanded name whose prefix denotes the construct.

Where it is not visible by selection, a visible declaration is said to be directly visible. A declaration is said to be directly
visible within a certain part of its immediate scope; this part extends to the end of the immediate scope of the declaration
but excludes places where the declaration is hidden as explained in the following paragraphs. In addition, a declaration
occurring immediately within the visible part of a package can be made directly visible by means of a use clause according
to the rules described in 10.4 .

A declaration is said to be hidden within (part of) an inner declarative region if the inner region contains a homograph of
this declaration; the outer declaration is then hidden within the immediate scope of the inner homograph. Each of two
declarations is said to be a homograph of the other if both declarations have the same identifier, operator symbol, or
character literal, and if overloading is allowed for at most one of the two. If overloading is allowed for both declarations,
then each of the two is a homograph of the other if they have the same identifier, operator symbol, or character literal, as
well as the same parameter and result type profile (see 3.1.1).

Within the specification of a subprogram, every declaration with the same designator as the subprogram is hidden. Where
hidden in this manner, a declaration is visible neither by selection nor directly.

Two declarations that occur immediately within the same declarative region must not be homographs, unless exactly one of
them is the implicit declaration of a predefined operation. In such cases, a predefined operation is always hidden by the
other homograph. Where hidden in this manner, an implicit declaration is hidden within the entire scope of the other
declaration (regardless of which declaration occurs first); the implicit declaration is visible neither by selection nor directly.

Whenever a declaration with a certain identifier is visible from a given point, the identifier and the named entity (if any) are
also said to be visible from that point. Direct visibility and visibility by selection are likewise defined for character literals
and operator symbols. An operator is directly visible if and only if the corresponding operator declaration is directly visible.

In addition to the above rules, any declaration that is visible by selection at the end of the declarative part of a given
(external or internal) block is visible by selection in a configuration declaration that configures the given block.

In addition, any declaration that is directly visible at the end of the declarative part of a given block is directly visible in a

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_10.HTM (4 of 7) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

block configuration that configures the given block. This rule holds unless a use clause that makes a homograph of the
declaration potentially visible (see 10.4) appears in the corresponding configuration declaration, and if the scope of that use
clause encompasses all or part of those configuration items. If such a use clause appears, then the declaration will be
directly visible within the corresponding configuration items, except at those places that fall within the scope of the
additional use clause. At such places, neither name will be directly visible.

If a component configuration appears as a configuration item immediately within a block configuration that configures a
given block, and if a given declaration is visible by selection at the end of the declarative part of that block, then the given
declaration is visible by selection from the beginning to the end of the declarative region associated with the given
component configuration. A similar rule applies to a block configuration that appears as a configuration item immediately
within another block configuration, provided that the contained block configuration configures an internal block.

If a component configuration appears as a configuration item immediately within a block configuration that configures a
given block, and if a given declaration is directly visible at the end of the declarative part of that block, then the given
declaration is visible by selection from the beginning to the end of the declarative region associated with the given
component configuration. A similar rule applies to a block configuration that appears as a configuration item immediately
within another block configuration, provided that the contained block configuration configures an internal block.
Furthermore, the visibility of declarations made directly visible by a use clause within a block is similarly extended. Finally,
the visibility of a logical library name corresponding to a design library directly visible at the end of a block is similarly
extended. The rules of this paragraph hold unless a use clause that makes a homograph of the declaration potentially visible
appears in the corresponding block configuration, and if the scope of that use clause encompasses all or part of those
configuration items. If such a use clause appears, then the declaration will be directly visible within the corresponding
configuration items, except at those places that fall within the scope of the additional use clause. At such places, neither
name will be directly visible.

NOTES

1--The same identifier, character literal, or operator symbol may occur indifferent declarations and may thus be associated
with different named entities, even if the scopes of these declarations overlap. Overlap of the scopes of declarations with the
same identifier, character literal, or operator symbol can result from overloading of subprograms and of enumeration
literals. Such overlaps can also occur for named entities declared in the visible parts of packages and for formal generics
and ports, record elements, and formal parameters, where there is overlap of the scopes of the enclosing package
declarations, entity interfaces, record type declarations, or subprogram declarations. Finally, overlapping scopes can result
from nesting.

2--The rules defining immediate scope, hiding, and visibility imply that a reference to an identifier, character literal, or
operator symbol within its own declaration is illegal (except for design units). The identifier,character literal, or operator
symbol hides outer homographs within its immediate scope--that is, from the start of the declaration. On the other hand, the
identifier, character literal, or operator symbol is visible only after the end of the declaration (again, except for design units).
For this reason, all but the last of the following declarations are illegal:

 constant K: INTEGER := K*K; -- Illegal
 constant T: T; -- Illegal
 procedure P (X: P); -- Illegal
 function Q (X: REAL := Q) return Q; -- Illegal
 procedure R (R: REAL); -- Legal (although perhaps
confusing)
Example:

 L1: block
 signal A,B: Bit ;
 begin
 L2: block
 signal B: Bit ; -- An inner homograph

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_10.HTM (5 of 7) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

of B.
 begin
 A <= B after 5 ns; -- Means L1.A <= L2.B
 B <= L1.B after 10 ns; -- Means L2.B <= L1.B
 end block ;
 B <= A after 15 ns; -- Means L1.B <= L1.A
 end block ;

10.4 Use clauses

A use clause achieves direct visibility of declarations that are visible by selection.

 use_clause ::=
 use selected_name { , selected_name } ;

Each selected name in a use clause identifies one or more declarations that will potentially become directly visible. If the
suffix of the selected name is a simple name, character literal, or operator symbol, then the selected name identifies only the
declaration(s) of that simple name, character literal, or operator symbol contained within the package or library denoted by
the prefix of the selected name. If the suffix is the reserved word all, then the selected name identifies all declarations that
are contained within the package or library denoted by the prefix of the selected name.

For each use clause, there is a certain region of text called the scope of the use clause. This region starts immediately after
the use clause. If a use clause is a declarative item of some declarative region, the scope of the clause extends to the end of
the declarative region. If a use clause occurs within the context clause of a design unit, the scope of the use clause extends
to the end of the declarative region associated with the design unit. The scope of a use clause may additionally extend into a
configuration declaration(see 10.2).

In order to determine which declarations are made directly visible at a given place by use clauses, consider the set of
declarations identified by all use clauses whose scopes enclose this place. Any declaration in this set is a potentially visible
declaration. A potentially visible declaration is actually made directly visible except in the following two cases:

a. A potentially visible declaration is not made directly visible if the place considered is within the immediate scope of
a homograph of the declaration.

b. Potentially visible declarations that have the same designator are not made directly visible unless each of them is
either an enumeration literal specification or the declaration of a subprogram (either by a subprogram declaration or
by an implicit declaration).

NOTES

1--These rules guarantee that a declaration that is made directly visible by a use clause cannot hide an otherwise directly
visible declaration.

2--If a named entity X declared in package P is made potentially visible within a package Q (e.g., by the inclusion of the
clause "use P.X;" in the context clause of package Q), and the context clause for design unit R includes the clause "use
Q.all;", this does not imply that X will be potentially visible in R. Only those named entities that are actually declared in
package Q will be potentially visible in design unit R (in the absence of any other use clauses).

10.5 The context of overload resolution

Overloading is defined for names, subprograms, and enumeration literals.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_10.HTM (6 of 7) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

For overloaded entities, overload resolution determines the actual meaning that an occurrence of an identifier or a character
literal has whenever the visibility rules have determined that more than one meaning is acceptable at the place of this
occurrence; overload resolution likewise determines the actual meaning of an occurrence of an operator or basic operation
(see the introduction to Section 3).

At such a place, all visible declarations are considered. The occurrence is only legal if there is exactly one interpretation of
each constituent of the innermost complete context; a complete context is either a declaration,a specification, or a statement.

When considering possible interpretations of a complete context, the only rules considered are the syntax rules, the scope
and visibility rules, and the rules of the form described below.

a. Any rule that requires a name or expression to have a certain type or to have the same type as another name or
expression.

b. Any rule that requires the type of a name or expression to be a type of a certain class; similarly, any rule that requires
a certain type to be a discrete, integer, floating point, physical, universal, character, or Boolean type.

c. Any rule that requires a prefix to be appropriate for a certain type.

d. The rules that require the type of an aggregate or string literal to be determinable solely from the enclosing complete
context. Similarly, the rules that require the type of the prefix of an attribute, the type of the expression of a case
statement, or the type of the operand of a type conversion to be determinable independently of the context.

e. The rules given for the resolution of overloaded subprogram calls; for the implicit conversions of universal
expressions; for the interpretation of discrete ranges with bounds having a universal type; and for the interpretation
of an expanded name whose prefix denotes a subprogram.

f. The rules given for the requirements on the return type, the number of formal parameters, and the types of the formal
parameters of the subprogram denoted by the resolution function name (see 2.4).

NOTES

1--If there is only one possible interpretation of an occurrence of an identifier, character literal, operator symbol, or string,
that occurrence denotes the corresponding named entity. However, this condition does not mean that the occurrence is
necessarily legal since other requirements exist that are not considered for overload resolution: for example, the fact that the
expression is static, the parameter modes, conformance rules, the use of named association in an indexed name, the use of
open in an indexed name, the use of a slice as an actual to a function call, and so forth.

2--A loop parameter specification is a declaration, and hence a complete context.

3--Rules that require certain constructs to have the same parameter and result type profile fall under category a. The same
holds for rules that require conformance of two constructs, since conformance requires that corresponding names be given
the same meaning by the visibility and overloading rules.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_10.HTM (7 of 7) [12/28/2002 12:49:59 PM]

VHDL LRM- Introduction

Section 8

Sequential statements
The various forms of sequential statements are described in this section. Sequential statements are used to define algorithms
for the execution of a subprogram or process; they execute in the order in which they appear.

 sequence_of_statements ::=
 { sequential_statement }

 sequential_statement ::=
 wait_statement
 | assertion_statement
 | report_statement
 | signal_assignment_statement
 | variable_assignment_statement
 | procedure_call_statement
 | if_statement
 | case_statement
 | loop_statement
 | next_statement
 | exit_statement
 | return_statement
 | null_statement

All sequential statements may be labeled. Such labels are implicitly declared at the beginning of the declarative part of the
innermost enclosing process statement or subprogram body.

8.1 Wait statement

The wait statement causes the suspension of a process statement or a procedure.

 wait_statement ::=
 [label :] wait [sensitivity_clause] [condition_clause] [
timeout_clause] ;

 sensitivity_clause ::= on sensitivity_list

 sensitivity_list ::= signal_name { , signal_name }

 condition_clause ::= until condition

 condition ::= boolean_expression

 timeout_clause ::= for time_expression

The sensitivity clause defines the sensitivity set of the wait statement,which is the set of signals to which the wait statement is
sensitive. Each signal name in the sensitivity list identifies a given signal as a member of the sensitivity set. Each signal name
in the sensitivity list must be a static signal name, and each name must denote a signal for which reading is permitted. If no

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (1 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

sensitivity clause appears, the sensitivity set is constructed according to the following (recursive) rule:

The sensitivity set is initially empty. For each primary in the condition of the condition clause, if the primary is

-- A simple name that denotes a signal, add the longest static prefix of the name to the sensitivity set

-- A selected name whose prefix denotes a signal, add the longest static prefix of the name to the sensitivity set

-- An expanded name whose prefix denotes a signal, add the longest static prefix of the name to the sensitivity set

-- An indexed name whose prefix denotes a signal, add the longest static prefix of the name to the sensitivity set and
apply this rule to all expressions in the indexed name

-- A slice name whose prefix denotes a signal, add the longest static prefix of the name to the sensitivity set and apply
this rule to any expressions appearing in the discrete range of the slice name

-- An attribute name, if the designator denotes a signal attribute, add the longest static prefix of the name of the implicit
signal denoted by the attribute name to the sensitivity set; otherwise, apply this rule to the prefix of the attribute name

-- An aggregate, apply this rule to every expression appearing after the choices and the =>, if any, in every element
association

-- A function call, apply this rule to every actual designator in every parameter association

-- An actual designator of open in a parameter association, do not add to the sensitivity set

-- A qualified expression, apply this rule to the expression or aggregate qualified by the type mark, as appropriate

-- A type conversion, apply this rule to the expression type converted by the type mark

-- A parenthesized expression, apply this rule to the expression enclosed within the parentheses

-- Otherwise, do not add to the sensitivity set

This rule is also used to construct the sensitivity sets of the wait statements in the equivalent process statements for concurrent
procedure call statements(9.3), concurrent assertion statements (9.4), and concurrent signal assignment statements (9.5).

If a signal name that denotes a signal of a composite type appears in a sensitivity list, the effect is as if the name of each scalar
subelement of that signal appears in the list.

The condition clause specifies a condition that must be met for the process to continue execution. If no condition clause
appears, the condition clause until TRUE is assumed.

The timeout clause specifies the maximum amount of time the process will remain suspended at this wait statement. If no
timeout clause appears, the timeout clause for (STD.STANDARD.TIME'HIGH - STD.STANDARD.NOW) is assumed. It is
an error if the time expression in the timeout clause evaluates to a negative value.

The execution of a wait statement causes the time expression to be evaluated to determine the timeout interval. It also causes
the execution of the corresponding process statement to be suspended, where the corresponding process statement is the one
that either contains the wait statement or is the parent (see 2.2) of the procedure that contains the wait statement. The
suspended process will resume, at the latest, immediately after the timeout interval has expired.

The suspended process may also resume as a result of an event occurring on any signal in the sensitivity set of the wait

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (2 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

statement. If such an event occurs,the condition in the condition clause is evaluated. If the value of the condition is TRUE, the
process will resume. If the value of the condition is FALSE, the process will re-suspend. Such re-suspension does not involve
the recalculation of the timeout interval.

It is an error if a wait statement appears in a function subprogram or in a procedure that has a parent that is a function
subprogram. Furthermore, it is an error if a wait statement appears in an explicit process statement that includes a sensitivity
list or in a procedure that has a parent that is such a process statement.

Example:

 type Arr is array (1 to 5) of BOOLEAN;
 function F (P: BOOLEAN) return BOOLEAN;
 signal S: Arr;
 signal l, r: INTEGER range 1 to 5;

 -- The following two wait statements have the same meaning:

 wait until F(S(3)) and (S(l) or S(r));
 wait on S(3), S, l, r until F(S(3)) and (S(l) or S(r));

NOTES

1--The wait statement wait until Clk = '1'; has semantics identical to

 loop
 wait on Clk;
 exit when Clk = '1';
 end loop;

because of the rules for the construction of the default sensitivity clause. These same rules imply that wait until True; has
semantics identical to wait;.

2--The conditions that cause a wait statement to resume execution of its enclosing process may no longer hold at the time the
process resumes execution if the enclosing process is a postponed process.

3--The rule for the construction of the default sensitivity set implies that if a function call appears in a condition clause and the
called function is an impure function,then any signals that are accessed by the function but that are not passed through the
association list of the call are not added to the default sensitivity set for the condition by virtue of the appearance of the
function call in the condition.

8.2 Assertion statement

An assertion statement checks that a specified condition is true and reports an error if it is not.

 assertion_statement ::= [label :] assertion ;

 assertion ::=
 assert condition
 [report expression]
 [severity expression]

If the report clause is present, it must include an expression of predefined type STRING that specifies a message to be
reported. If the severity clause is present, it must specify an expression of predefined type SEVERITY_LEVEL that specifies
the severity level of the assertion.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (3 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

The report clause specifies a message string to be included in error messages generated by the assertion. In the absence of a
report clause for a given assertion, the string "Assertion violation." is the default value for the message string. The severity
clause specifies a severity level associated with the assertion. In the absence of a severity clause fora given assertion, the
default value of the severity level is ERROR.

Evaluation of an assertion statement consists of evaluation of the Boolean expression specifying the condition. If the
expression results in the value FALSE, then an assertion violation is said to occur. When an assertion violation occurs, the
report and severity clause expressions of the corresponding assertion, if present, are evaluated. The specified message string
and severity level (or the corresponding default values, if not specified) are then used to construct an error message.

The error message consists of at least

a. An indication that this message is from an assertion
b. The value of the severity level
c. The value of the message string
d. The name of the design unit (see 11.1) containing the assertion

8.3 Report statement

A report statement displays a message.

 report_statement ::=
 [label :]
 report expression
 [severity expression] ;

The report statement expression must be of the predefined type STRING. The string value of this expression is included in the
message generated by the report statement. If the severity clause is present, it must specify an expression of predefined type
SEVERITY_LEVEL. The severity clause specifies a severity level associated with the report. In the absence of a severity
clause for a given report, the default value of the severity level is NOTE.

The evaluation of a report statement consists of the evaluation of the report expression and severity clause expression, if
present. The specified message string and severity level (or corresponding default, if the severity level is not specified) are then
used to construct a report message.

The report message consists of at least

a. An indication that this message is from a report statement
b. The value of the severity level
c. The value of the message string
d. The name of the design unit containing the report statement

Example:

 report "Entering process P"; -- A report statement
 -- with default
severity NOTE.

 report "Setup or Hold violation; outputs driven to 'X' -- Another report
statement;
 severity WARNING; -- severity is
specified.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (4 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

8.4 Signal assignment statement

A signal assignment statement modifies the projected output waveforms contained in the drivers of one or more signals (see
12.6.1).

 signal_assignment_statement ::=
 [label :] target <= [delay_mechanism] waveform ;

 delay_mechanism ::=
 transport
 | [reject time_expression] inertial

 target ::=
 name
 | aggregate

 waveform ::=
 waveform_element { , waveform_element }
 | unaffected

If the target of the signal assignment statement is a name, then the name must denote a signal, and the base type of the value
component of each transaction produced by a waveform element on the right-hand side must be the same as the base type of
the signal denoted by that name. This form of signal assignment assigns right-hand side values to the drivers associated with a
single (scalar or composite) signal.

If the target of the signal assignment statement is in the form of an aggregate, then the type of the aggregate must be
determinable from the context, excluding the aggregate itself but including the fact that the type of the aggregate must be a
composite type. The base type of the value component of each transaction produced by a waveform element on the right-hand
side must be the same as the base type of the aggregate. Furthermore, the expression in each element association of the
aggregate must be a locally static name that denotes a signal. This form of signal assignment assigns slices or subelements of
the right-hand side values to the drivers associated with the signal named as the corresponding slice or subelement of the
aggregate.

If the target of a signal assignment statement is in the form of an aggregate,and if the expression in an element association of
that aggregate is a signal name that denotes a given signal, then the given signal and each subelement thereof (if any) are said
to be identified by that element association as targets of the assignment statement. It is an error if a given signal or any
subelement thereof is identified as a target by more than one element association in such an aggregate. Furthermore, it is an
error if an element association in such an aggregate contains an others choice or a choice that is a discrete range.

The right-hand side of a signal assignment may optionally specify a delay mechanism. A delay mechanism consisting of the
reserved word transport specifies that the delay associated with the first waveform element is to be construed as transport
delay. Transport delay is characteristic of hardware devices (such as transmission lines) that exhibit nearly infinite frequency
response: any pulse is transmitted, no matter how short its duration. If no delay mechanism is present, or if a delay mechanism
including the reserved word inertial is present, the delay is construed to be inertial delay. Inertial delay is characteristic of
switching circuits:a pulse whose duration is shorter than the switching time of the circuit will not be transmitted, or in the case
that a pulse rejection limit is specified, a pulse whose duration is shorter than that limit will not be transmitted.

Every inertially delayed signal assignment has a pulse rejection limit. If the delay mechanism specifies inertial delay, and if the
reserved word reject followed by a time expression is present, then the time expression specifies the pulse rejection limit. In
all other cases, the pulse rejection limit is specified by the time expression associated with the first waveform element.

It is an error if the pulse rejection limit for any inertially delayed signal assignment statement is either negative or greater than
the time expression associated with the first waveform element.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (5 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

It is an error if the reserved word unaffected appears as a waveform in a (sequential) signal assignment statement.

NOTE--The reserved word unaffected may only appear as a waveform in concurrent signal assignment statements. See 9.5.1 .

Examples:

-- Assignments using inertial delay:

 -- The following three assignments are equivalent to each other:

 Output_pin <= Input_pin after 10 ns;
 Output_pin <= inertial Input_pin after 10 ns;
 Output_pin <= reject 10 ns inertial Input_pin after 10 ns;

 -- Assignments with a pulse rejection limit less than the time expression:

 Output_pin <= reject 5 ns inertial Input_pin after 10 ns;
 Output_pin <= reject 5 ns inertial Input_pin after 10 ns, not Input_pin
after 20 ns;

-- Assignments using transport delay:

 Output_pin <= transport Input_pin after 10 ns;
 Output_pin <= transport Input_pin after 10 ns, not Input_pin after 20 ns;

 -- Their equivalent assignments:

 Output_pin <= reject 0 ns inertial Input_pin after 10 ns;
 Output_pin <= reject 0 ns inertial Input_pin after 10 ns, not Input_pin
after 10 ns;

NOTE--If a right-hand side value expression is either a numeric literal or an attribute that yields a result of type
universal_integer or universal_real,then an implicit type conversion is performed.

8.4.1 Updating a projected output waveform

The effect of execution of a signal assignment statement is defined in terms of its effect upon the projected output waveforms
(see 12.6.1) representing the current and future values of drivers of signals.

 waveform_element ::=
 value_expression [after time_expression]
 | null [after time_expression]

The future behavior of the driver(s) for a given target is defined by transactions produced by the evaluation of waveform
elements in the waveform of a signal assignment statement. The first form of waveform element is used to specify that the
driver is to assign a particular value to the target at the specified time. The second form of waveform element is used to specify
that the driver of the signal is to be turned off, so that it (at least temporarily) stops contributing to the value of the target. This
form of waveform element is called a null waveform element. It is an error if the target of a signal assignment statement
containing a null waveform element is not a guarded signal or an aggregate of guarded signals.

The base type of the time expression in each waveform element must be the predefined physical type TIME as defined in
package STANDARD. If the after clause of a waveform element is not present, then an implicit"after 0 ns" is assumed. It is
an error if the time expression in a waveform element evaluates to a negative value.

Evaluation of a waveform element produces a single transaction. The time component of the transaction is determined by the

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (6 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

current time added to the value of the time expression in the waveform element. For the first form of waveform element, the
value component of the transaction is determined by the value expression in the waveform element. For the second form of
waveform element, the value component is not defined by the language, but it is defined to be of the type of the target. A
transaction produced by the evaluation of the second form of waveform element is called a null transaction.

For the execution of a signal assignment statement whose target is of a scalar type, the waveform on its right-hand side is first
evaluated. Evaluation of a waveform consists of the evaluation of each waveform element in the waveform. Thus, the
evaluation of a waveform results in a sequence of transactions, where each transaction corresponds to one waveform element
in the waveform. These transactions are called new transactions. It is an error if the sequence of new transactions is not in
ascending order with respect to time.

The sequence of transactions is then used to update the projected output waveform representing the current and future values
of the driver associated with the signal assignment statement. Updating a projected output waveform consists of the deletion of
zero or more previously computed transactions(called old transactions) from the projected output waveform and the addition of
the new transactions, as follows:

a. All old transactions that are projected to occur at or after the time at which the earliest new transaction is projected to
occur are deleted from the projected output waveform.

b. The new transactions are then appended to the projected output waveform in the order of their projected occurrence.

If the initial delay is inertial delay according to the definitions of 8.4 , the projected output waveform is further
modified as follows:

c. All of the new transactions are marked.

d. An old transaction is marked if the time at which it is projected to occur is less than the time at which the first new
transaction is projected to occur minus the pulse rejection limit.

e. For each remaining unmarked, old transaction, the old transaction is marked if it immediately precedes a marked
transaction and its value component is the same as that of the marked transaction.

f. The transaction that determines the current value of the driver is marked.

g. All unmarked transactions (all of which are old transactions) are deleted from the projected output waveform.

For the purposes of marking transactions, any two successive null transactions in a projected output waveform are considered
to have the same value component.

The execution of a signal assignment statement whose target is of a composite type proceeds in a similar fashion, except that
the evaluation of the waveform results in one sequence of transactions for each scalar subelement of the type of the target.
Each such sequence consists of transactions whose value portions are determined by the values of the same scalar subelement
of the value expressions in the waveform, and whose time portion is determined by the time expression corresponding to that
value expression. Each such sequence is then used to update the projected output waveform of the driver of the matching
subelement of the target. This applies both to a target that is the name of a signal of a composite type and to a target that is in
the form of an aggregate.

If a given procedure is declared by a declarative item that is not contained within a process statement, and if a signal
assignment statement appears in that procedure, then the target of the assignment statement must be a formal parameter of the
given procedure or of a parent of that procedure, or an aggregate of such formal parameters. Similarly, if a given procedure is
declared by a declarative item that is not contained within a process statement, and if a signal is associated with an inout or out
mode signal parameter in a subprogram call within that procedure, then the signal so associated must be a formal parameter of
the given procedure or of a parent of that procedure.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (7 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

NOTES

1--These rules guarantee that the driver affected by a signal assignment statement is always statically determinable if the signal
assignment appears within a given process (including the case in which it appears within a procedure that is declared within the
given process). In this case, the affected driver is the one defined by the process; otherwise, the signal assignment must appear
within a procedure, and the affected driver is the one passed to the procedure along with a signal parameter of that procedure.

2--Overloading the operator "=" has no effect on the updating of a projected output waveform.

3--Consider a signal assignment statement of the form

 T <= reject tr inertial e1 after t1 { , ei after ti<./sub> } ;

The following relations hold:

 0 ns <= tr <= t1

and

 0 ns <= ti < ti+1

Note that, if tr = 0 ns, then the waveform editing is identical to that for transport-delayed assignment, and if tr = t1, the waveform is identical to that for the

statement

 T <= e1 after t1 { , ei after ti } ;

4--Consider the following signal assignment in some process:

 S <= reject 15 ns inertial 12 after 20 ns, 18 after 41 ns;

where S is a signal of some integer type. Assume that at the time this signal assignment is executed, the driver of S in the process has the following contents
(the first entry is the current driving value):

1 2 2 12 5 8

NOW +3 ns +12 ns +13 ns +20 ns +42 ns

(The times given are relative to the current time.) The updating of the projected output waveform proceeds as follows:

a. The driver is truncated at 20 ns. The driver now contains the following pending transactions:

1 2 2 12

NOW +3 ns +12 ns +13 ns

b. The new waveforms are added to the driver. The driver now contains the following pending transactions:

1 2 2 12 12 18

NOW +3 ns +12 ns +13 ns +20 ns +41 ns

c. All new transactions are marked, as well as those old transactions that occur at less than the time of the first new waveform (20 ns) less the rejection limit
(15 ns). The driver now contains the following pending transactions (marked transactions are emboldened):

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (8 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

1 2 2 12 12 18

NOW +3 ns +12 ns +13 ns +20 ns +41 ns

d. Each remaining unmarked transaction is marked if it immediately precedes a marked transaction and has the same value as the marked transaction. The
driver now contains the following pending transactions:

1 2 2 12 12 18

NOW +3 ns +12 ns +13 ns +20 ns +41 ns

e. The transaction that determines the current value of the driver is marked, and all unmarked transactions are then deleted. The final driver contents are then
as follows, after clearing the markings:

1 2 12 12 18

NOW +3 ns +13 ns +20 ns +41 ns

5--No subtype check is performed on the value component of a new transaction when it is added to a driver. Instead, a subtype check that the value component
of a transaction belongs to the subtype of the signal driven by the driver is made when the driver takes on that value. See 12.6.1 .

8.5 Variable assignment statement

A variable assignment statement replaces the current value of a variable with anew value specified by an expression. The named variable and the right-hand
side expression must be of the same type.

 variable_assignment_statement ::=
 [label :] target := expression ;

If the target of the variable assignment statement is a name, then the name must denote a variable, and the base type of the expression on the right-hand side
must be the same as the base type of the variable denoted by that name. This form of variable assignment assigns the right-hand side value to a single(scalar or
composite) variable.

If the target of the variable assignment statement is in the form of an aggregate, then the type of the aggregate must be determinable from the context,
excluding the aggregate itself but including the fact that the type of the aggregate must be a composite type. The base type of the expression on the right-hand
side must be the same as the base type of the aggregate. Furthermore, the expression in each element association of the aggregate must be a locally static name
that denotes a variable. This form of variable assignment assigns each subelement or slice of the right-hand side value to the variable named as the
corresponding subelement or slice of the aggregate.

If the target of a variable assignment statement is in the form of an aggregate, and if the locally static name in an element association of that aggregate denotes
a given variable or denotes another variable of which the given variable is a subelement or slice, then the element association is said to identify the given
variable as a target of the assignment statement. It is an error if a given variable is identified as a target by more than one element association in such an
aggregate.

For the execution of a variable assignment whose target is a variable name, the variable name and the expression are first evaluated. A check is then made that
the value of the expression belongs to the subtype of the variable, except in the case of a variable that is an array (in which case the assignment involves a
subtype conversion). Finally, the value of the expression becomes the new value of the variable. A design is erroneous if it depends on the order of evaluation
of the target and source expressions of an assignment statement.

The execution of a variable assignment whose target is in the form of an aggregate proceeds in a similar fashion, except that each of the names in the aggregate
is evaluated, and a subtype check is performed for each subelement or slice of the right-hand side value that corresponds to one of the names in the aggregate.
The value of the subelement or slice of the right-hand side value then becomes the new value of the variable denoted by the corresponding name.

An error occurs if the aforementioned subtype checks fail.

The determination of the type of the target of a variable assignment statement may require determination of the type of the expression if the target is a name
that can be interpreted as the name of a variable designated by the access value returned by a function call, and similarly, as an element or slice of such a
variable.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (9 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

NOTE--If the right-hand side is either a numeric literal or an attribute that yields a result of type universal integer or universal real, then an implicit type
conversion is performed.

8.5.1 Array variable assignments

If the target of an assignment statement is a name denoting an array variable(including a slice), the value assigned to the target is implicitly converted to the
subtype of the array variable; the result of this subtype conversion becomes the new value of the array variable.

This means that the new value of each element of the array variable is specified by the matching element (see 7.2.2) in the corresponding array value obtained
by evaluation of the expression. The subtype conversion checks that for each element of the array variable there is a matching element in the array value, and
vice versa. An error occurs if this check fails.

NOTE--The implicit subtype conversion described for assignment to an array variable is performed only for the value of the right-hand side expression as a
whole; it is not performed for subelements or slices that are array values.

8.6 Procedure call statement

A procedure call invokes the execution of a procedure body.

 procedure_call_statement ::= [label :] procedure_call ;

 procedure_call ::= procedure_name [(actual_parameter_part)]

The procedure name specifies the procedure body to be invoked. The actual parameter part, if present, specifies the association of actual parameters with
formal parameters of the procedure.

For each formal parameter of a procedure, a procedure call must specify exactly one corresponding actual parameter. This actual parameter is specified either
explicitly, by an association element (other than the actual open) in the association list or, in the absence of such an association element, by a default
expression (see 4.3.2).

Execution of a procedure call includes evaluation of the actual parameter expressions specified in the call and evaluation of the default expressions associated
with formal parameters of the procedure that do not have actual parameters associated with them. In both cases, the resulting value must belong to the subtype
of the associated formal parameter. (If the formal parameter is of an unconstrained array type, then the formal parameter takes on the subtype of the actual
parameter.) The procedure body is executed using the actual parameter values and default expression values as the values of the corresponding formal
parameters.

8.7 If statement

An if statement selects for execution one or none of the enclosed sequences of statements, depending on the value of one or more corresponding conditions.

 if_statement ::=
 [if_label :]
 if condition then
 sequence_of_statements
 { elsif condition then
 sequence_of_statements }
 [else
 sequence_of_statements]
 end if [if_label] ;

If a label appears at the end of an if statement, it must repeat the if label.

For the execution of an if statement, the condition specified after if,and any conditions specified after elsif, are evaluated in succession(treating a final else as
elsif TRUE then) until one evaluates to TRUE or all conditions are evaluated and yield FALSE. If one condition evaluates to TRUE, then the corresponding
sequence of statements is executed; otherwise, none of the sequences of statements is executed.

8.8 Case statement

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (10 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

A case statement selects for execution one of a number of alternative sequences of statements; the chosen alternative is defined by the value of an expression.

 case_statement ::=
 [case_label :]
 case expression is
 case_statement_alternative
 { case_statement_alternative }
 end case [case_label] ;

 case_statement_alternative ::=
 when choices =>
 sequence_of_statements

The expression must be of a discrete type, or of a one-dimensional array type whose element base type is a character type. This type must be determinable
independently of the context in which the expression occurs, but using the fact that the expression must be of a discrete type or a one-dimensional character
array type. Each choice in a case statement alternative must be of the same type as the expression; the list of choices specifies for which values of the
expression the alternative is chosen.

If the expression is the name of an object whose subtype is locally static,whether a scalar type or an array type, then each value of the subtype must be
represented once and only once in the set of choices of the case statement, and no other value is allowed; this rule is likewise applied if the expression is a
qualified expression or type conversion whose type mark denotes a locally static subtype, or if the expression is a call to a function whose return type mark
denotes a locally static subtype.

If the expression is of a one-dimensional character array type, then the expression must be one of the following:

-- The name of an object whose subtype is locally static

-- An indexed name whose prefix is one of the members of this list and whose indexing expressions are locally static expressions

-- A slice name whose prefix is one of the members of this list and whose discrete range is a locally static discrete range

-- A function call whose return type mark denotes a locally static subtype

-- A qualified expression or type conversion whose type mark denotes a locally static subtype

In such a case, each choice appearing in any of the case statement alternatives must be a locally static expression whose value is of the same length as that of
the case expression. It is an error if the element subtype of the one-dimensional character array type is not a locally static subtype.

For other forms of expression, each value of the (base) type of the expression must be represented once and only once in the set of choices, and no other value
is allowed.

The simple expression and discrete ranges given as choices in a case statement must be locally static. A choice defined by a discrete range stands for all values
in the corresponding range. The choice others is only allowed for the last alternative and as its only choice; it stands for all values(possibly none) not given in
the choices of previous alternatives. An element simple name (see 7.3.2) is not allowed as a choice of a case statement alternative.

If a label appears at the end of a case statement, it must repeat the case label.

The execution of a case statement consists of the evaluation of the expression followed by the execution of the chosen sequence of statements.

NOTES

1--The execution of a case statement chooses one and only one alternative,since the choices are exhaustive and mutually exclusive. A qualified expression
whose type mark denotes a locally static subtype can often be used as the expression of a case statement to limit the number of choices that need be explicitly
specified.

2--An others choice is required in a case statement if the type of the expression is the type universal_integer (for example, if the expression is an integer
literal), since this is the only way to cover all values of the type universal_integer.

3--Overloading the operator "=" has no effect on the semantics of case statement execution.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (11 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

8.9 Loop statement

A loop statement includes a sequence of statements that is to be executed repeatedly, zero or more times.

 loop_statement ::=
 [loop_label :]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_label] ;

 iteration_scheme ::=
 while condition
 | for loop_parameter_specification

 parameter_specification ::=
 identifier in discrete_range

If a label appears at the end of a loop statement, it must repeat the label at the beginning of the loop statement.

Execution of a loop statement is complete when the loop is left as a consequence of the completion of the iteration scheme (see below), if any, or the execution
of a next statement, an exit statement, or a return statement.

A loop statement without an iteration scheme specifies repeated execution of the sequence of statements.

For a loop statement with a while iteration scheme, the condition is evaluated before each execution of the sequence of statements; if the value of the condition
is TRUE, the sequence of statements is executed; if FALSE, the iteration scheme is said to be complete and the execution of the loop statement is complete.

For a loop statement with a for iteration scheme, the loop parameter specification is the declaration of the loop parameter with the given identifier. The loop
parameter is an object whose type is the base type of the discrete range. Within the sequence of statements, the loop parameter is a constant. Hence, a loop
parameter is not allowed as the target of an assignment statement. Similarly, the loop parameter must not be given as an actual corresponding to a formal of
mode out or inout in an association list.

For the execution of a loop with a for iteration scheme, the discrete range is first evaluated. If the discrete range is a null range, the iteration scheme is said to
be complete and the execution of the loop statement is therefore complete; otherwise, the sequence of statements is executed once for each value of the
discrete range (subject to the loop not being left as a consequence of the execution of a next statement, an exit statement, or a return statement), after which the
iteration scheme is said to be complete. Prior to each such iteration, the corresponding value of the discrete range is assigned to the loop parameter. These
values are assigned in left-to-right order.

NOTE--A loop may be left as the result of the execution of a next statement if the loop is nested inside of an outer loop and the next statement has a loop label
that denotes the outer loop.

8.10 Next statement

A next statement is used to complete the execution of one of the iterations of an enclosing loop statement (called "loop" in the following text). The completion
is conditional if the statement includes a condition.

 next_statement ::=
 [label :] next [loop_label] [when condition] ;

A next statement with a loop label is only allowed within the labeled loop and applies to that loop; a next statement without a loop label is only allowed within
a loop and applies only to the innermost enclosing loop (whether labeled or not).

For the execution of a next statement, the condition, if present, is first evaluated. The current iteration of the loop is terminated if the value of the condition is
TRUE or if there is no condition.

8.11 Exit statement

An exit statement is used to complete the execution of an enclosing loop statement (called "loop" in the following text). The completion is conditional if the
statement includes a condition.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (12 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

 exit_statement ::=
 [label :] exit [loop_label] [when condition] ;

An exit statement with a loop label is only allowed within the labeled loop and applies to that loop; an exit statement without a loop label is only allowed
within a loop and applies only to the innermost enclosing loop (whether labeled or not).

For the execution of an exit statement, the condition, if present, is first evaluated. Exit from the loop then takes place if the value of the condition is TRUE or
if there is no condition.

8.12 Return statement

A return statement is used to complete the execution of the innermost enclosing function or procedure body.

 return_statement ::=
 [label :] return [expression] ;

A return statement is only allowed within the body of a function or procedure,and it applies to the innermost enclosing function or procedure.

A return statement appearing in a procedure body must not have an expression. A return statement appearing in a function body must have an expression.

The value of the expression defines the result returned by the function. The type of this expression must be the base type of the type mark given after the
reserved word return in the specification of the function. It is an error if execution of a function completes by any means other than the execution of a return
statement.

For the execution of a return statement, the expression (if any) is first evaluated and a check is made that the value belongs to the result subtype. The execution
of the return statement is thereby completed if the check succeeds; so also is the execution of the enclosing subprogram. An error occurs at the place of the
return statement if the check fails.

NOTES

1--If the expression is either a numeric literal, or an attribute that yields a result of type universal_integer or universal_real, then an implicit conversion of the
result is performed.

2--If the return type mark of a function denotes a constrained array subtype,then no implicit subtype conversions are performed on the values of the
expressions of the return statements within the subprogram body of that function. Thus, for each index position of each value, the bounds of the discrete range
must be the same as the discrete range of the return subtype,and the directions must be the same.

8.13 Null statement

A null statement performs no action.

 null_statement ::=
 [label :] null ;

The execution of the null statement has no effect other than to pass on to the next statement.

NOTE--The null statement can be used to specify explicitly that no action is to be performed when certain conditions are true, although it is never mandatory
for this (or any other) purpose. This is particularly useful in conjunction with the case statement, in which all possible values of the case expression must be
covered by choices: for certain choices, it may be that no action is required.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_8.HTM (13 of 13) [12/28/2002 12:50:01 PM]

VHDL LRM- Introduction

Section 12

Elaboration and execution
The process by which a declaration achieves its effect is called the elaboration of the declaration. After its elaboration, a
declaration is said to be elaborated. Prior to the completion of its elaboration (including before the elaboration), the declaration
is not yet elaborated.

Elaboration is also defined for design hierarchies, declarative parts, statement parts (containing concurrent statements), and
concurrent statements. Elaboration of such constructs is necessary in order ultimately to elaborate declarative items that are
declared within those constructs.

In order to execute a model, the design hierarchy defining the model must first be elaborated. Initialization of nets (see 12.6.2)
in the model then occurs. Finally, simulation of the model proceeds. Simulation consists of the repetitive execution of the
simulation cycle, during which processes are executed and nets updated.

12.1 Elaboration of a design hierarchy

The elaboration of a design hierarchy creates a collection of processes interconnected by nets; this collection of processes and
nets can then be executed to simulate the behavior of the design.

A design hierarchy may be defined by a design entity. Elaboration of a design hierarchy defined in this manner consists of the
elaboration of the block statement equivalent to the external block defined by the design entity. The architecture of this design
entity is assumed to contain an implicit configuration specification (see 5.2) for each component instance that is unbound in
this architecture; each configuration specification has an entity aspect denoting an anonymous configuration declaration
identifying the visible entity declaration (see 5.2) and supplying an implicit block configuration (see 1.3.1) that binds and
configures a design entity identified according to the rules of 5.2.2 . The equivalent block statement is defined in 9.6.2 .
Elaboration of a block statement is defined in 12.4.1 .

A design hierarchy may also be defined by a configuration. Elaboration of a configuration consists of the elaboration of the
block statement equivalent to the external block defined by the design entity configured by the configuration. The
configuration contains an implicit component configuration(see 1.3.2) for each unbound component instance contained within
the external block and an implicit block configuration (see 1.3.1) for each internal block contained within the external block.

An implementation may allow, but is not required to allow, a design entity at the root of a design hierarchy to have generics
and ports. If an implementation allows these top-level interface objects, it may restrict their allowed types and modes in an
implementation-defined manner. Similarly,the means by which top-level interface objects are associated with the external
environment of the hierarchy are also defined by an implementation supporting top-level interface objects.

Elaboration of a block statement involves first elaborating each not-yet-elaborated package containing declarations referenced
by the block. Similarly, elaboration of a given package involves first elaborating each not-yet-elaborated package containing
declarations referenced by the given package. Elaboration of a package additionally consists of the

a. Elaboration of the declarative part of the package declaration,eventually followed by
b. Elaboration of the declarative part of the corresponding package body, if the package has a corresponding package

body.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (1 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

Step b above, the elaboration of a package body, may be deferred until the declarative parts of other packages have been
elaborated, if necessary, because of the dependencies created between packages by their interpackage references.

Elaboration of a declarative part is defined in 12.3 .

Examples:

 -- In the following example, because of the dependencies between the packages,
the
 -- elaboration of either package body must follow the elaboration of both
package
 -- declarations.

 package P1 is
 constant C1: INTEGER := 42;
 constant C2: INTEGER;
 end package P1;

 package P2 is
 constant C1: INTEGER := 17;
 constant C2: INTEGER;
 end package P2;

 package body P1 is
 constant C2: INTEGER := Work.P2.C1;
 end package body P1;

 package body P2 is
 constant C2: INTEGER := Work.P1.C1;
 end package body P2;

 -- If a design hierarchy is described by the following design entity:

 entity E is end;

 architecture A of E is
 component comp
 port (...);
 end component;
 begin
 C: comp port map (...);
 B: block
 ...
 begin
 ...
 end block B;
 end architecture A;

 -- then its architecture contains the following implicit configuration
specification at the
 -- end of its declarative part:

 for C: comp use configuration anonymous;

 -- and the following configuration declaration is assumed to exist when E(A) is
 -- elaborated:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (2 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

 configuration anonymous of L.E is -- L is the library in
which E(A) is found.
 for A -- The most recently
analyzed architecture
 -- of L.E.

 end for;
 end configuration anonymous;

12.2 Elaboration of a block header

Elaboration of a block header consists of the elaboration of the generic clause, the generic map aspect, the port clause, and the
port map aspect, in that order.

12.2.1 The generic clause

Elaboration of a generic clause consists of the elaboration of each of the equivalent single generic declarations contained in the
clause, in the order given. The elaboration of a generic declaration consists of elaborating the subtype indication and then
creating a generic constant of that subtype.

The value of a generic constant is not defined until a subsequent generic map aspect is evaluated or, in the absence of a generic
map aspect, until the default expression associated with the generic constant is evaluated to determine the value of the
constant.

12.2.2 The generic map aspect

Elaboration of a generic map aspect consists of elaborating the generic association list. The generic association list contains an
implicit association element for each generic constant that is not explicitly associated with an actual or that is associated with
the reserved word open; the actual part of such an implicit association element is the default expression appearing in the
declaration of that generic constant.

Elaboration of a generic association list consists of the elaboration of each generic association element in the association list.
Elaboration of a generic association element consists of the elaboration of the formal part and the evaluation of the actual part.
The generic constant or subelement or slice thereof designated by the formal part is then initialized with the value resulting
from the evaluation of the corresponding actual part. It is an error if the value of the actual does not belong to the subtype
denoted by the subtype indication of the formal. If the subtype denoted by the subtype indication of the declaration of the
formal is a constrained array subtype,then an implicit subtype conversion is performed prior to this check. It is also an error if
the type of the formal is an array type and the value of each element of the actual does not belong to the element subtype of the
formal.

12.2.3 The port clause

Elaboration of a port clause consists of the elaboration of each of the equivalent single port declarations contained in the
clause, in the order given. The elaboration of a port declaration consists of elaborating the subtype indication and then creating
a port of that subtype.

12.2.4 The port map aspect

Elaboration of a port map aspect consists of elaborating the port association list.

Elaboration of a port association list consists of the elaboration of each port association element in the association list whose
actual is not the reserved word open. Elaboration of a port association element consists of the elaboration of the formal part;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (3 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

the port or subelement or slice thereof designated by the formal part is then associated with the signal or expression designated
by the actual part. This association involves a check that the restrictions on port associations (see 1.1.1.2) are met. It is an error
if this check fails.

If a given port is a port of mode in whose declaration includes a default expression, and if no association element associates a
signal or expression with that port, then the default expression is evaluated and the effective and driving value of the port is set
to the value of the default expression. Similarly, if a given port of mode in is associated with an expression, that expression is
evaluated and the effective and driving value of the port is set to the value of the expression. In the event that the value of a
port is derived from an expression in either fashion, references to the predefined attributes 'DELAYED, 'STABLE, 'QUIET,
'EVENT, 'ACTIVE, 'LAST_EVENT,'LAST_ACTIVE, 'LAST_VALUE, 'DRIVING, and 'DRIVING_VALUE of the port
return values indicating that the port has the given driving value with no activity at any time (see 12.6.3).

If an actual signal is associated with a port of any mode, and if the type of the formal is a scalar type, then it is an error if (after
applying any conversion function or type conversion expression present in the actual part) the bounds and direction of the
subtype denoted by the subtype indication of the formal are not identical to the bounds and direction of the subtype denoted by
the subtype indication of the actual. If an actual expression is associated with a formal port (of mode in), and if the type of the
formal is a scalar type, then it is an error if the value of the expression does not belong to the subtype denoted by the subtype
indication of the declaration of the formal.

If an actual signal or expression is associated with a formal port, and if the formal is of a constrained array subtype, then it is
an error if the actual does not contain a matching element for each element of the formal. In the case of an actual signal, this
check is made after applying any conversion function or type conversion that is present in the actual part. If an actual signal or
expression is associated with a formal port, and if the subtype denoted by the subtype indication of the declaration of the
formal is an unconstrained array type, then the subtype of the formal is taken from the actual associated with that formal. It is
also an error if the mode of the formal is in or inout and the value of each element of the actual array (after applying any
conversion function or type conversion present in the actual part) does not belong to the element subtype of the formal. If the
formal port is of mode out, inout, or buffer, it is also an error if the value of each element of the formal(after applying any
conversion function or type conversion present in the formal part) does not belong to the element subtype of the actual.

If an actual signal or expression is associated with a formal port, and if the formal is of a record subtype, then it is an error if
the rules of the preceding three paragraphs do not apply to each element of the record subtype. In the case of an actual signal,
these checks are made after applying any conversion function or type conversion that is present in the actual part.

12.3 Elaboration of a declarative part

The elaboration of a declarative part consists of the elaboration of the declarative items, if any, in the order in which they are
given in the declarative part. This rule holds for all declarative parts, with three exceptions:

a. The entity declarative part of a design entity whose corresponding architecture is decorated with the 'FOREIGN
attribute defined in package STANDARD (see 5.1 and 14.2)

b. The architecture declarative part of a design entity whose architecture is decorated with the 'FOREIGN attribute defined
in package STANDARD

c. A subprogram declarative part whose subprogram is decorated with the 'FOREIGN attribute defined in package
STANDARD

For these cases, the declarative items are not elaborated; instead, the design entity or subprogram is subject to implementation-
dependent elaboration.

In certain cases, the elaboration of a declarative item involves the evaluation of expressions that appear within the declarative
item. The value of any object denoted by a primary in such an expression must be defined at the time the primary is read (see
4.3.2). In addition, if a primary in such an expression is a function call, then the value of any object denoted by or appearing as
a part of an actual designator in the function call must be defined at the time the expression is evaluated.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (4 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

NOTE--It is a consequence of this rule that the name of a signal declared within a block cannot be referenced in expressions
appearing in declarative items within that block, an inner block, or process statement; nor can it be passed as a parameter to a
function called during the elaboration of the block. These restrictions exist because the value of a signal is not defined until
after the design hierarchy is elaborated. However, a signal parameter name maybe used within expressions in declarative items
within a subprogram declarative part, provided that the subprogram is only called after simulation begins,because the value of
every signal will be defined by that time.

12.3.1 Elaboration of a declaration

Elaboration of a declaration has the effect of creating the declared item.

For each declaration, the language rules (in particular scope and visibility rules) are such that it is either impossible or illegal to
use a given item before the elaboration of its corresponding declaration. For example, it is not possible to use the name of a
type for an object declaration before the corresponding type declaration is elaborated. Similarly, it is illegal to calla
subprogram before its corresponding body is elaborated.

12.3.1.1 Subprogram declarations and bodies

Elaboration of a subprogram declaration involves the elaboration of the parameter interface list of the subprogram declaration;
this in turn involves the elaboration of the subtype indication of each interface element to determine the subtype of each formal
parameter of the subprogram.

Elaboration of a subprogram body has no effect other than to establish that the body can, from then on, be used for the
execution of calls of the subprogram.

12.3.1.2 Type declarations

Elaboration of a type declaration generally consists of the elaboration of the definition of the type and the creation of that type.
For a constrained array type declaration, however, elaboration consists of the elaboration of the equivalent anonymous
unconstrained array type followed by the elaboration of the named subtype of that unconstrained type.

Elaboration of an enumeration type definition has no effect other than the creation of the corresponding type.

Elaboration of an integer, floating point, or physical type definition consists of the elaboration of the corresponding range
constraint. For a physical type definition, each unit declaration in the definition is also elaborated. Elaboration of a physical
unit declaration has no effect other than to create the unit defined by the unit declaration.

Elaboration of an unconstrained array type definition consists of the elaboration of the element subtype indication of the array
type.

Elaboration of a record type definition consists of the elaboration of the equivalent single element declarations in the given
order. Elaboration of an element declaration consists of elaboration of the element subtype indication.

Elaboration of an access type definition consists of the elaboration of the corresponding subtype indication.

12.3.1.3 Subtype declarations

Elaboration of a subtype declaration consists of the elaboration of the subtype indication. The elaboration of a subtype
indication creates a subtype. If the subtype does not include a constraint, then the subtype is the same as that denoted by the
type mark. The elaboration of a subtype indication that includes a constraint proceeds as follows:

a. The constraint is first elaborated.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (5 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

b. A check is then made that the constraint is compatible with the type or subtype denoted by the type mark (see 3.1 and
3.2.1.1).

Elaboration of a range constraint consists of the evaluation of the range. The evaluation of a range defines the bounds and
direction of the range. Elaboration of an index constraint consists of the elaboration of each of the discrete ranges in the index
constraint in some order that is not defined by the language.

12.3.1.4 Object declarations

Elaboration of an object declaration that declares an object other than a file object proceeds as follows:

a. The subtype indication is first elaborated. This establishes the subtype of the object.
b. If the object declaration includes an explicit initialization expression,then the initial value of the object is obtained by

evaluating the expression. It is an error if the value of the expression does not belong to the subtype of the object; if the
object is an array object, then an implicit subtype conversion is first performed on the value unless the object is a
constant whose subtype indication denotes an unconstrained array type. Otherwise, any implicit initial value for the
object is determined.

c. The object is created.
d. Any initial value is assigned to the object.

The initialization of such an object (either the declared object or one of its subelements) involves a check that the initial value
belongs to the subtype of the object. For an array object declared by an object declaration, an implicit subtype conversion is
first applied as for an assignment statement, unless the object is a constant whose subtype is an unconstrained array type.

The elaboration of a file object declaration consists of the elaboration of the subtype indication followed by the creation of the
object. If the file object declaration contains file open information, then the implicit call to FILE_OPEN is then executed (see
4.3.1.4).

NOTES

1--These rules apply to all object declarations other than port and generic declarations, which are elaborated as outlined in
12.2.1 through 12.2.4 .

2--The expression initializing a constant object need not be a static expression.

12.3.1.5 Alias declarations

Elaboration of an alias declaration consists of the elaboration of the subtype indication to establish the subtype associated with
the alias, followed by the creation of the alias as an alternative name for the named entity. The creation of an alias for an array
object involves a check that the subtype associated with the alias includes a matching element for each element of the named
object. It is an error if this check fails.

12.3.1.6 Attribute declarations

Elaboration of an attribute declaration has no effect other than to create a template for defining attributes of items.

12.3.1.7 Component declarations

Elaboration of a component declaration has no effect other than to create a template for instantiating component instances.

12.3.2 Elaboration of a specification

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (6 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

Elaboration of a specification has the effect of associating additional information with a previously declared item.

12.3.2.1 Attribute specifications

Elaboration of an attribute specification proceeds as follows:

a. The entity specification is elaborated in order to determine which items are affected by the attribute specification.
b. The expression is evaluated to determine the value of the attribute. It is an error if the value of the expression does not

belong to the subtype of the attribute; if the attribute is of an array type, then an implicit subtype conversion is first
performed on the value, unless the subtype indication of the attribute denotes an unconstrained array type.

c. A new instance of the designated attribute is created and associated with each of the affected items.
d. Each new attribute instance is assigned the value of the expression.

The assignment of a value to an instance of a given attribute involves a check that the value belongs to the subtype of the
designated attribute. For an attribute of a constrained array type, an implicit subtype conversion is first applied as for an
assignment statement. No such conversion is necessary for an attribute of an unconstrained array type; the constraints on the
value determine the constraints on the attribute.

NOTE--The expression in an attribute specification need not be a static expression.

12.3.2.2 Configuration specifications

Elaboration of a configuration specification proceeds as follows:

a. The component specification is elaborated in order to determine which component instances are affected by the
configuration specification.

b. The binding indication is elaborated to identify the design entity to which the affected component instances will be
bound.

c. The binding information is associated with each affected component instance label for later use in instantiating those
component instances.

As part of this elaboration process, a check is made that both the entity declaration and the corresponding architecture body
implied by the binding indication exist within the specified library. It is an error if this check fails.

12.3.2.3 Disconnection specifications

Elaboration of a disconnection specification proceeds as follows:

a. The guarded signal specification is elaborated in order to identify the signals affected by the disconnection
specification.

b. The time expression is evaluated to determine the disconnection time for drivers of the affected signals.
c. The disconnection time is associated with each affected signal for later use in constructing disconnection statements in

the equivalent processes for guarded assignments to the affected signals.

12.4 Elaboration of a statement part

Concurrent statements appearing in the statement part of a block must be elaborated before execution begins. Elaboration of
the statement part of a block consists of the elaboration of each concurrent statement in the order given. This rule holds for all
block statement parts except for those blocks equivalent to a design entity whose corresponding architecture is decorated with
the 'FOREIGN attribute defined in package STANDARD (see 14.2).

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (7 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

For this case, the statements are not elaborated; instead, the design entity is subject to implementation-dependent elaboration.

12.4.1 Block statements

Elaboration of a block statement consists of the elaboration of the block header, if present, followed by the elaboration of the
block declarative part, followed by the elaboration of the block statement part.

Elaboration of a block statement may occur under the control of a configuration declaration. In particular, a block
configuration, whether implicit or explicit, within a configuration declaration may supply a sequence of additional implicit
configuration specifications to be applied during the elaboration of the corresponding block statement. If a block statement is
being elaborated under the control of a configuration declaration, then the sequence of implicit configuration specifications
supplied by the block configuration is elaborated as part of the block declarative part, following all other declarative items in
that part.

The sequence of implicit configuration specifications supplied by a block configuration, whether implicit or explicit, consists
of each of the configuration specifications implied by component configurations (see 1.3.2) occurring immediately within the
block configuration, in the order in which the component configurations themselves appear.

12.4.2 Generate statements

Elaboration of a generate statement consists of the replacement of the generate statement with zero or more copies of a block
statement whose declarative part consists of the declarative items contained within the generate statement and whose statement
part consists of the concurrent statements contained within the generate statement. These block statements are said to be
represented by the generate statement. Each block statement is then elaborated.

For a generate statement with a for generation scheme, elaboration consists of the elaboration of the discrete range, followed
by the generation of one block statement for each value in the range. The block statements all have the following form:

a. The label of the block statement is the same as the label of the generate statement.
b. The block declarative part has, as its first item, a single constant declaration that declares a constant with the same

simple name as that of the applicable generate parameter; the value of the constant is the value of the generate
parameter for the generation of this particular block statement. The type of this declaration is determined by the base
type of the discrete range of the generate parameter. The remainder of the block declarative part consists of a copy of
the declarative items contained within the generate statement.

c. The block statement part consists of a copy of the concurrent statements contained within the generate statement.

For a generate statement with an if generation scheme, elaboration consists of the evaluation of the Boolean expression,
followed by the generation of exactly one block statement if the expression evaluates to TRUE, and no block statement
otherwise. If generated, the block statement has the following form:

-- The block label is the same as the label of the generate statement.

-- The block declarative part consists of a copy of the declarative items contained within the generate statement.

-- The block statement part consists of a copy of the concurrent statements contained within the generate statement.

Examples:

 -- The following generate statement:

 LABL : for I in 1 to 2 generate
 signal s1 : INTEGER;
 begin

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (8 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

 s1 <= p1;
 Inst1 : and_gate port map (s1, p2(I), p3);
 end generate LABL;

 -- is equivalent to the following two block statements:

 LABL : block
 constant I : INTEGER := 1;
 signal s1 : INTEGER;
 begin
 s1 <= p1;
 Inst1 : and_gate port map (s1, p2(I), p3);
 end block LABL;

 LABL : block

 constant I : INTEGER := 2;
 signal s1 : INTEGER;
 begin
 s1 <= p1;
 Inst1 : and_gate port map (s1, p2(I), p3);
 end block LABL;

 -- The following generate statement:

 LABL : if (g1 = g2) generate
 signal s1 : INTEGER;
 begin
 s1 <= p1;
 Inst1 : and_gate port map (s1, p4, p3);
 end generate LABL;

 -- is equivalent to the following statement if g1 = g2;
 -- otherwise, it is equivalent to no statement at all:

 LABL : block
 signal s1 : INTEGER;
 begin
 s1 <= p1;
 Inst1 : and_gate port map (s1, p4, p3);
 end block LABL;

NOTE--The repetition of the block labels in the case of a for generation scheme does not produce multiple declarations of the
label on the generate statement. The multiple block statements represented by the generate statement constitute multiple
references to the same implicitly declared label.

12.4.3 Component instantiation statements

Elaboration of a component instantiation statement that instantiates a component declaration has no effect unless the
component instance is either fully bound to a design entity defined by an entity declaration and architecture body or bound to a
configuration of such a design entity. If a component instance is so bound, then elaboration of the corresponding component
instantiation statement consists of the elaboration of the implied block statement representing the component instance and
(within that block) the implied block statement representing the design entity to which the component instance is bound. The
implied block statements are defined in 9.6.1 .

Elaboration of a component instantiation statement whose instantiated unit denotes either a design entity or a configuration

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (9 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

declaration consists of the elaboration of the implied block statement representing the component instantiation statement and
(within that block) the implied block statement representing the design entity to which the component instance is bound. The
implied block statements are defined in 9.6.2 .

12.4.4 Other concurrent statements

All other concurrent statements are either process statements or are statements for which there is an equivalent process
statement.

Elaboration of a process statement proceeds as follows:

a. The process declarative part is elaborated.
b. The drivers required by the process statement are created.
c. The initial transaction defined by the default value associated with each scalar signal driven by the process statement is

inserted into the corresponding driver.

Elaboration of all concurrent signal assignment statements and concurrent assertion statements consists of the construction of
the equivalent process statement followed by the elaboration of the equivalent process statement.

12.5 Dynamic elaboration

The execution of certain constructs that involve sequential statements rather than concurrent statements also involves
elaboration. Such elaboration occurs during the execution of the model.

There are three particular instances in which elaboration occurs dynamically during simulation. These are as follows:

a. Execution of a loop statement with a for iteration scheme involves the elaboration of the loop parameter specification
prior to the execution of the statements enclosed by the loop (see 8.9). This elaboration creates the loop parameter and
evaluates the discrete range.

b. Execution of a subprogram call involves the elaboration of the parameter interface list of the corresponding subprogram
declaration; this involves the elaboration of each interface declaration to create the corresponding formal parameters.
Actual parameters are then associated with formal parameters. Finally, if the designator of the subprogram is not
decorated with the 'FOREIGN attribute defined in package STANDARD, the declarative part of the corresponding
subprogram body is elaborated and the sequence of statements in the subprogram body is executed. If the designator of
the subprogram is decorated with the 'FOREIGN attribute defined in package STANDARD, then the subprogram body
is subject to implementation-dependent elaboration and execution.

c. Evaluation of an allocator that contains a subtype indication involves the elaboration of the subtype indication prior to
the allocation of the created object.

NOTE--It is a consequence of these rules that declarative items appearing within the declarative part of a subprogram body are
elaborated each time the corresponding subprogram is called; thus, successive elaborations of a given declarative item
appearing in such a place may create items with different characteristics. For example, successive elaborations of the same
subtype declaration appearing in a subprogram body may create subtypes with different constraints.

12.6 Execution of a model

The elaboration of a design hierarchy produces a model that can be executed in order to simulate the design represented by the
model. Simulation involves the execution of user-defined processes that interact with each other and with the environment.

The kernel process is a conceptual representation of the agent that coordinates the activity of user-defined processes during a
simulation. This agent causes the propagation of signal values to occur and causes the values of implicit signals [such as
S'Stable(T)] to be updated. Furthermore, this process is responsible for detecting events that occur and for causing the

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (10 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

appropriate processes to execute in response to those events.

For any given signal that is explicitly declared within a model, the kernel process contains a variable representing the current
value of that signal. Any evaluation of a name denoting a given signal retrieves the current value of the corresponding variable
in the kernel process. During simulation, the kernel process updates that variable from time to time, based upon the current
values of sources of the corresponding signal.

In addition, the kernel process contains a variable representing the current value of any implicitly declared GUARD signal
resulting from the appearance of a guard expression on a given block statement. Furthermore, the kernel process contains both
a driver for, and a variable representing the current value of,any signal S'Stable(T), for any prefix S and any time T, that is
referenced within the model; likewise, for any signal S'Quiet(T) or S'Transaction.

12.6.1 Drivers

Every signal assignment statement in a process statement defines a set of drivers for certain scalar signals. There is a single
driver for a given scalar signal S in a process statement, provided that there is at least one signal assignment statement in that
process statement and that the longest static prefix of the target signal of that signal assignment statement denotes S or denotes
a composite signal of which S is a subelement. Each such signal assignment statement is said to be associated with that driver.
Execution of a signal assignment statement affects only the associated driver(s).

A driver for a scalar signal is represented by a projected output waveform. A projected output waveform consists of a sequence
of one or more transactions, where each transaction is a pair consisting of a value component and a time component. For a
given transaction, the value component represents a value that the driver of the signal is to assume at some point in time, and
the time component specifies which point in time. These transactions are ordered with respect to their time components.

A driver always contains at least one transaction. The initial contents of a driver associated with a given signal are defined by
the default value associated with the signal (see 4.3.1.2).

For any driver, there is exactly one transaction whose time component is not greater than the current simulation time. The
current value of the driver is the value component of this transaction. If, as the result of the advance of time, the current time
becomes equal to the time component of the next transaction, then the first transaction is deleted from the projected output
waveform and the next becomes the current value of the driver.

12.6.2 Propagation of signal values

As simulation time advances, the transactions in the projected output waveform of a given driver (see 12.6.1) will each, in
succession, become the value of the driver. When a driver acquires a new value in this way, regardless of whether the new
value is different from the previous value, that driver is said to be active during that simulation cycle. For the purposes of
defining driver activity, a driver acquiring a value from a null transaction is assumed to have acquired a new value. A signal is
said to be active during a given simulation cycle

-- If one of its sources is active

-- If one of its subelements is active

-- If the signal is named in the formal part of an association element in a port association list and the corresponding
actual is active

-- If the signal is a subelement of a resolved signal and the resolved signal is active

If a signal of a given composite type has a source that is of a different type (and therefore a conversion function or type
conversion appears in the corresponding association element), then each scalar subelement of that signal is considered to be
active if the source itself is active. Similarly, if a port of a given composite type is associated with a signal that is of a different

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (11 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

type (and therefore a conversion function or type conversion appears in the corresponding association element), then each
scalar subelement of that port is considered to be active if the actual signal itself is active.

In addition to the preceding information, an implicit signal is said to be active during a given simulation cycle if the kernel
process updates that implicit signal within the given cycle.

If a signal is not active during a given simulation cycle, then the signal is said to be quiet during that simulation cycle.

The kernel process determines two values for certain signals during any given simulation cycle. The driving value of a given
signal is the value that signal provides as a source of other signals. The effective value of a given signal is the value obtainable
by evaluating a reference to the signal within an expression. The driving value and the effective value of a signal are not
always the same, especially when resolution functions and conversion functions or type conversions are involved in the
propagation of signal values.

A basic signal is a signal that has all of the following properties:

-- It is either a scalar signal or a resolved signal (see 4.3.1.2);

-- It is not a subelement of a resolved signal;

-- Is not an implicit signal of the form S'Stable(T), S'Quiet(T), orS'Transaction (see 14.1); and

-- It is not an implicit signal GUARD (see 9.1).

Basic signals are those that determine the driving values for all other signals.

The driving value of any basic signal S is determined as follows:

-- If S has no source, then the driving value of S is given by the default value associated with S (see 4.3.1.2).

-- If S has one source that is a driver and S is not a resolved signal (see 4.3.1.2), then the driving value of S is the value
of that driver.

-- If S has one source that is a port and S is not a resolved signal, then the driving value of S is the driving value of the
formal part of the association element that associates S with that port (see 4.3.2.2). The driving value of a formal part is
obtained by evaluating the formal part as follows: If no conversion function or type conversion is present in the formal
part, then the driving value of the formal part is the driving value of the signal denoted by the formal designator.
Otherwise, the driving value of the formal part is the value obtained by applying either the conversion function or type
conversion (whichever is contained in the formal part) to the driving value of the signal denoted by the formal
designator.

-- If S is a resolved signal and has one or more sources, then the driving values of the sources of S are examined. It is an
error if any of these driving values is a composite where one or more subelement values are determined by the null
transaction (see 8.4.1) and one or more subelement values are not determined by the null transaction. If S is of signal
kind register and all the sources of S have values determined by the null transaction, then the driving value of S is
unchanged from its previous value. Otherwise, the driving value of S is obtained by executing the resolution function
associated with S, where that function is called with an input parameter consisting of the concatenation of the driving
values of the sources of S, with the exception of the value of any source of S whose current value is determined by the
null transaction.

The driving value of any signal S that is not a basic signal is determined as follows:

-- If S is a subelement of a resolved signal R, the driving value of S is the corresponding subelement value of the

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (12 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

driving value of R.

-- Otherwise (S is a nonresolved, composite signal), the driving value of Sis equal to the aggregate of the driving values
of each of the basic signals that are the subelements of S.

For a scalar signal S, the effective value of S is determined in the following manner:

-- If S is a signal declared by a signal declaration, a port of mode buffer, or an unconnected port of mode inout, then
the effective value of S is the same as the driving value of S.

-- If S is a connected port of mode in or inout, then the effective value of S is the same as the effective value of the
actual part of the association element that associates an actual with S (see 4.3.2.2). The effective value of an actual part
is obtained by evaluating the actual part, using the effective value of the signal denoted by the actual designator in place
of the actual designator.

-- If S is an unconnected port of mode in, the effective value of S is given by the default value associated with S (see
4.3.1.2).

For a composite signal R, the effective value of R is the aggregate of the effective values of each of the subelements of R.

For a scalar signal S, both the driving and effective values must belong to the subtype of the signal. For a composite signal R,
an implicit subtype conversion is performed to the subtype of R; for each element of R, there must be a matching element in
both the driving and the resolved value, and vice versa.

In order to update a signal during a given simulation cycle, the kernel process first determines the driving and effective values
of that signal. The kernel process then updates the variable containing the current value of the signal with the newly
determined effective value, as follows:

a) If S is a signal of some type that is not an array type, the effective value of S is used to update the current value of S.
A check is made that the effective value of S belongs to the subtype of S. An error occurs if this subtype check fails.
Finally, the effective value of S is assigned to the variable representing the current value of the signal.

b) If S is an array signal (including a slice of an array), the effective value of S is implicitly converted to the subtype of
S. The subtype conversion checks that for each element of S there is a matching element in the effective value and vice
versa. An error occurs if this check fails. The result of this subtype conversion is then assigned to the variable
representing the current value of S.

If updating a signal causes the current value of that signal to change, then an event is said to have occurred on the signal. This
definition applies to any updating of a signal, whether such updating occurs according to the above rules or according to the
rules for updating implicit signals given in 12.6.3 . The occurrence of an event may cause the resumption and subsequent
execution of certain processes during the simulation cycle in which the event occurs.

For any signal other than one declared with the signal kind register,the driving and effective values of the signal are
determined and the current value of that signal is updated as described above in every simulation cycle. A signal declared with
the signal kind register is updated in the same fashion during every simulation cycle except those in which all of its sources
have current values that are determined by null transactions.

A net is a collection of drivers, signals (including ports and implicit signals), conversion functions, and resolution functions
that, taken together,determine the effective and driving values of every signal on the net.

Implicit signals GUARD S'Stable(T), S'Quiet(T), and S'Transaction, for any prefix S and any time T, are not updated
according to the above rules; such signals are updated according to the rules described in 12.6.3 .

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (13 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

NOTES

1--In a simulation cycle, a subelement of a composite signal may be quiet,but the signal itself may be active.

2--The rules concerning association of actuals with formals (see 4.3.2.2) imply that, if a composite signal is associated with a
composite port of mode out, inout, or buffer, and if no conversion function or type conversion appears in either the actual or
formal part of the association element, then each scalar subelement of the formal is a source of the matching subelement of the
actual. In such a case, a given subelement of the actual will be active if and only if the matching subelement of the formal is
active.

3--The algorithm for computing the driving value of a scalar signal S is recursive. For example, if S is a local signal appearing
as an actual in a port association list whose formal is of mode out or inout, the driving value of S can only be obtained after
the driving value of the corresponding formal part is computed. This computation may involve multiple executions of the
above algorithm.

4--Similarly, the algorithm for computing the effective value of a signal S is recursive. For example, if a formal port S of mode
in corresponds to an actual A, the effective value of A must be computed before the effective value of S can be computed. The
actual A may itself appear as a formal port in aport association list.

5--No effective value is specified for out and linkage ports, since these ports may not be read.

6--Overloading the operator "=" has no effect on the propagation of signal values.

7--A signal of kind register may be active even if its associated resolution function does not execute in the current simulation
cycle if the values of all of its drivers are determined by the null transaction and at least one of its drivers is also active.

8--The definition of the driving value of a basic signal exhausts all cases, with the exception of a non-resolved signal with
more than one source. This condition is defined as an error in 4.3.1.2 .

12.6.3 Updating implicit signals

The kernel process updates the value of each implicit signal GUARD associated with a block statement that has a guard
expression. Similarly, the kernel process updates the values of each implicit signal S'Stable(T), S'Quiet(T), or S'Transaction for
any prefix S and any time T; this also involves updating the drivers of S'Stable(T) and S'Quiet(T).

For any implicit signal GUARD, the current value of the signal is modified if and only if the corresponding guard expression
contains a reference to a signal S and if S is active during the current simulation cycle. In such a case, the implicit signal
GUARD is updated by evaluating the corresponding guard expression and assigning the result of that evaluation to the variable
representing the current value of the signal.

For any implicit signal S'Stable(T), the current value of the signal (and likewise the current state of the corresponding driver) is
modified if and only if one of the following statements is true:

-- An event has occurred on S in this simulation cycle.

-- The driver of S'Stable(T) is active.

If an event has occurred on signal S, then S'Stable(T) is updated by assigning the value FALSE to the variable representing the
current value of S'Stable(T), and the driver of S'Stable(T) is assigned the waveform TRUE after T. Otherwise, if the driver of
S'Stable(T) is active, then S'Stable(T) is updated by assigning the current value of the driver to the variable representing the
current value of S'Stable(T). Otherwise, neither the variable nor the driver is modified.

Similarly, for any implicit signal S'Quiet(T), the current value of the signal (and likewise the current state of the corresponding

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (14 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

driver) is modified if and only if one of the following statements is true:

-- S is active.

-- The driver of S'Quiet(T) is active.

If signal S is active, then S'Quiet(T) is updated by assigning the value FALSE to the variable representing the current value of
S'Quiet(T), and the driver of S'Quiet(T) is assigned the waveform TRUE after T. Otherwise, if the driver of S'Quiet(T) is
active, then S'Quiet(T) is updated by assigning the current value of the driver to the variable representing the current value of
S'Quiet(T). Otherwise, neither the variable nor the driver is modified.

Finally, for any implicit signal S'Transaction, the current value of the signal is modified if and only if S is active. If signal S is
active, then S'Transaction is updated by assigning the value of the expression (not S'Transaction) to the variable representing
the current value of S'Transaction. At most one such assignment will occur during any given simulation cycle.

For any implicit signal S'Delayed(T), the signal is not updated by the kernel process. Instead, it is updated by constructing an
equivalent process (see 14.1) and executing that process.

The current value of a given implicit signal denoted by R is said to depend upon the current value of another signal S if one of
the following statements is true:

-- R denotes an implicit GUARD signal and S is any other implicit signal named within the guard expression that
defines the current value of R.

-- R denotes an implicit signal S'Stable(T).

-- R denotes an implicit signal S'Quiet(T).

-- R denotes an implicit signal S'Transaction.

-- R denotes an implicit signal S'Delayed(T).

These rules define a partial ordering on all signals within a model. The updating of implicit signals by the kernel process is
guaranteed to proceed in such a manner that, if a given implicit signal R depends upon the current value of another signal S,
then the current value of S will be updated during a particular simulation cycle prior to the updating of the current value of R.

NOTE--These rules imply that, if the driver of S'Stable(T) is active, then the new current value of that driver is the value
TRUE. Furthermore, these rules imply that, if an event occurs on S during a given simulation cycle, and if the driver of
S'Stable(T) becomes active during the same cycle, the variable representing the current value of S'Stable(T) will be assigned
the value FALSE, and the current value of the driver of S'Stable(T) during the given cycle will never be assigned to that signal.

12.6.4 The simulation cycle

The execution of a model consists of an initialization phase followed by the repetitive execution of process statements in the
description of that model. Each such repetition is said to be a simulation cycle. In each cycle, the values of all signals in the
description are computed. If as a result of this computation an event occurs on a given signal, process statements that are
sensitive to that signal will resume and will be executed as part of the simulation cycle.

At the beginning of initialization, the current time, Tc, is assumed to be 0 ns.

The initialization phase consists of the following steps:

-- The driving value and the effective value of each explicitly declared signal are computed, and the current value of the

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (15 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

signal is set to the effective value. This value is assumed to have been the value of the signal for an infinite length of
time prior to the start of simulation.

-- The value of each implicit signal of the form S'Stable(T) or S'Quiet(T)is set to True. The value of each implicit signal
of the form S'Delayed(T) is set to the initial value of its prefix, S.

-- The value of each implicit GUARD signal is set to the result of evaluating the corresponding guard expression.

-- Each nonpostponed process in the model is executed until it suspends.

-- Each postponed process in the model is executed until it suspends.

-- The time of the next simulation cycle (which in this case is the first simulation cycle), Tn, is calculated according to

the rules of step f of the simulation cycle, below.

A simulation cycle consists of the following steps:

a. The current time, Tc is set equal to Tn. Simulation is complete when Tn= TIME'HIGH and there are no active drivers or

process resumptions at Tn.

b. Each active explicit signal in the model is updated. (Events may occur on signals as a result.)
c. Each implicit signal in the model is updated. (Events may occur on signals as a result.)
d. For each process P, if P is currently sensitive to a signal S and if an event has occurred on S in this simulation cycle,

then P resumes.
e. Each nonpostponed process that has resumed in the current simulation cycle is executed until it suspends.
f. The time of the next simulation cycle, Tn, is determined by setting it to the earliest of

1. TIME'HIGH,
2. The next time at which a driver becomes active, or
3. The next time at which a process resumes.
4. If Tn = Tc, then the next simulation cycle (if any) will be a delta cycle.

g. If the next simulation cycle will be a delta cycle, the remainder of this step is skipped. Otherwise, each postponed
process that has resumed but has not been executed since its last resumption is executed until it suspends. Then Tn is

recalculated according to the rules of step f. It is an error if the execution of any postponed process causes a delta cycle
to occur immediately after the current simulation cycle.

NOTES

1--The initial value of any implicit signal of the form S'Transaction is not defined.

2--Updating of explicit signals is described in 12.6.2 ; updating of implicit signals is described in 12.6.3 .

3--When a process resumes, it is added to one of two sets of processes to be executed (the set of postponed processes and the
set of nonpostponed processes). However, no process actually begins to execute until all signals have been updated and all
executable processes for this simulation cycle have been identified. Nonpostponed processes are always executed during step e
of every simulation cycle, while postponed processes are executed during step g of every simulation cycle that does not
immediately precede a delta cycle.

4--The second and third steps of the initialization phase and steps b and c of the simulation cycle may occur in interleaved
fashion. This interleaving may occur because the implicit signal GUARD may be used as the prefix of another implicit signal;
moreover, implicit signals may be associated as actuals with explicit signals, making the value of an explicit signal a function
of an implicit signal.

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (16 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/1076_12.HTM (17 of 17) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

Section 6

Names
The rules applicable to the various forms of name are described in this section.

6.1 Names

Names can denote declared entities, whether declared explicitly or implicitly. Names can also denote

-- Objects denoted by access values,

-- Subelements of composite objects,

-- Subelements of composite values,

-- Slices of composite objects,

-- Slices of composite values, and

-- Attributes of any named entity.

 name ::=
 simple_name
 | operator_symbol
 | selected_name
 | indexed_name
 | slice_name
 | attribute_name

 prefix ::=
 name
 | function_call

Certain forms of name (indexed and selected names, slices, and attribute names) include a prefix that is a name or a function
call. If the prefix of a name is a function call, then the name denotes an element, a slice, or an attribute, either of the result of
the function call, or (if the result is an access value) of the object designated by the result. Function calls are defined in 7.3.3 .

If the type of a prefix is an access type, then the prefix must not be a name that denotes a formal parameter of mode out or a
subelement thereof.

A prefix is said to be appropriate for a type in either of the following cases:

-- The type of the prefix is the type considered.

-- The type of the prefix is an access type whose designated type is the type considered.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_6.HTM (1 of 7) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

The evaluation of a name determines the named entity denoted by the name. The evaluation of a name that has a prefix
includes the evaluation of the prefix,that is, of the corresponding name or function call. If the type of the prefix is an access
type, the evaluation of the prefix includes the determination of the object designated by the corresponding access value. In
such a case, it is an error if the value of the prefix is a null access value. It is an error if,after all type analysis (including
overload resolution) the name is ambiguous.

A name is said to be a static name if and only if one of the following conditions holds:

-- The name is a simple name or selected name (including those that are expanded names) that does not denote a
function call or an object or value of an access type and (in the case of a selected name) whose prefix is a static name.

-- The name is an indexed name whose prefix is a static name, and every expression that appears as part of the name is a
static expression.

-- The name is a slice name whose prefix is a static name and whose discrete range is a static discrete range.

Furthermore, a name is said to be a locally static name if and only if one of the following conditions hold:

-- The name is a simple name or selected name (including those that are expanded names) that is not an alias and that
does not denote a function call or an object or a value of an access type and (in the case of a selected name) whose
prefix is a locally static name.

-- The name is a simple name or selected name (including those that are expanded names) that is an alias, and that the
aliased name given in the corresponding alias declaration (see 4.3.3) is a locally static name, and (in the case of a
selected name) whose prefix is a locally static name.

-- The name is an indexed name whose prefix is a locally static name, and every expression that appears as part of the
name is a locally static expression.

-- The name is a slice name whose prefix is a locally static name and whose discrete range is a locally static discrete
range.

A static signal name is a static name that denotes a signal. The longest static prefix of a signal name is the name itself, if the
name is a static signal name; otherwise, it is the longest prefix of the name that is a static signal name. Similarly, a static
variable name is a static name that denotes a variable, and the longest static prefix of a variable name is the name itself, if the
name is a static variable name; otherwise, it is the longest prefix of the name that is a static variable name.

Examples:

 S(C,2) -- A static name: C is a static constant.
 R(J to 16) -- A nonstatic name: J is a signal.
 -- R is the longest static prefix of R(J to 16).

 T(n) -- A static name; n is a generic constant.
 T(2) -- A locally static name.

6.2 Simple names

A simple name for a named entity is either the identifier associated with the entity by its declaration, or another identifier
associated with the entity by an alias declaration. In particular, the simple name for an entity interface, a configuration, a
package, a procedure, or a function is the identifier that appears in the corresponding entity declaration, configuration
declaration, package declaration, procedure declaration, or function declaration, respectively. The simple name of an
architecture is that defined by the identifier of the architecture body.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_6.HTM (2 of 7) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

 simple_name ::= identifier

The evaluation of a simple name has no other effect than to determine the named entity denoted by the name.

6.3 Selected names

A selected name is used to denote a named entity whose declaration appears either within the declaration of another named
entity or within a design library.

 selected_name ::= prefix . suffix

 suffix ::=
 simple_name
 | character_literal
 | operator_symbol
 | all

A selected name may be used to denote an element of a record, an object designated by an access value, or a named entity
whose declaration is contained within another named entity, particularly within a library or a package. Furthermore, a selected
name may be used to denote all named entities whose declarations are contained within a library or a package.

For a selected name that is used to denote a record element, the suffix must be a simple name denoting an element of a record
object or value. The prefix must be appropriate for the type of this object or value.

For a selected name that is used to denote the object designated by an access value, the suffix must be the reserved word all.
The prefix must belong to an access type.

The remaining forms of selected names are called expanded names. The prefix of an expanded name may not be a function
call.

An expanded name denotes a primary unit contained in a design library if the prefix denotes the library and the suffix is the
simple name of a primary unit whose declaration is contained in that library. An expanded name denotes all primary units
contained in a library if the prefix denotes the library and the suffix is the reserved word all. An expanded name is not allowed
for a secondary unit, particularly for an architecture body.

An expanded name denotes a named entity declared in a package if the prefix denotes the package and the suffix is the simple
name, character literal, or operator symbol of a named entity whose declaration occurs immediately within that package. An
expanded name denotes all named entities declared in a package if the prefix denotes the package and the suffix is the reserved
word all.

An expanded name denotes a named entity declared immediately within a named construct if the prefix denotes a construct
that is an entity interface, an architecture, a subprogram, a block statement, a process statement, a generate statement, or a loop
statement, and the suffix is the simple name, character literal, or operator symbol of a named entity whose declaration occurs
immediately within that construct. This form of expanded name is only allowed within the construct itself.

If, according to the visibility rules, there is at least one possible interpretation of the prefix of a selected name as the name of
an enclosing entity interface, architecture, subprogram, block statement, process statement, generate statement, or loop
statement, then the only interpretations considered are those of the immediately preceding paragraph. In this case, the selected
name is always interpreted as an expanded name. In particular, no interpretations of the prefix as a function call are considered.

Examples:

 -- Given the following declarations:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_6.HTM (3 of 7) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

 type INSTR_TYPE is
 record
 OPCODE: OPCODE_TYPE;
 end record;
 signal INSTRUCTION: INSTR_TYPE;

 -- The name "INSTRUCTION.OPCODE" is the name of a record element.

 -- Given the following declarations:

 type INSTR_PTR is access INSTR_TYPE;
 variable PTR: INSTR_PTR;

 -- The name "PTR.all" is the name of the object designated by PTR.

 -- Given the following library clause:

 library TTL, CMOS;

 -- The name "TTL.SN74LS221" is the name of a design unit contained in a library
 -- and the name "CMOS.all" denotes all design units contained in a library.

 -- Given the following declaration and use clause:

 library MKS;
 use MKS.MEASUREMENTS, STD.STANDARD;

 -- The name "MEASUREMENTS.VOLTAGE" denotes a named entity declared in a
 -- package and the name "STANDARD.all" denotes all named entities declared in a
 -- package.

 -- Given the following process label and declarative part:

 P: process
 variable DATA: INTEGER;
 begin

 -- Within process P, the name "P.DATA" denotes a named entity declared in
process P.

 end process;

NOTES

1--The object denoted by an access value is accessed differently depending on whether the entire object or a subelement of the
object is desired. If the entire object is desired, a selected name whose prefix denotes the access value and whose suffix is the
reserved word all is used. In this case, the access value is not automatically dereferenced, since it is necessary to distinguish an
access value from the object denoted by an access value.

If a subelement of the object is desired, a selected name whose prefix denotes the access value is again used; however, the
suffix in this case denotes the subelement. In this case, the access value is automatically dereferenced.

These two cases are shown in the following example:

 type rec;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_6.HTM (4 of 7) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

 type recptr is access rec;

 type rec is
 record
 value : INTEGER;
 \next\ : recptr;
 end record;

 variable list1, list2: recptr;
 variable recobj: rec;

 list2 := list1; -- Access values are copied;
 -- list1 and list2 now denote the same
object.
 list2 := list1.\next\; -- list2 denotes the same object as list1.\next\.
 -- list1.\next\ is the same as
list1.all.\next\.
 -- An implicit dereference of the access
value occurs before the
 -- "\next\" field is selected.
 recobj := list2.all -- An explicit dereference is needed here.

2--Overload resolution may be used to disambiguate selected names. See rules 1 and 3 of 10.5 .

3--If, according to the rules of this clause and of 10.5 , there is not exactly one interpretation of a selected name that satisfies
these rules, then the selected name is ambiguous.

6.4 Indexed names

An indexed name denotes an element of an array.

 indexed_name ::= prefix (expression { , expression })

The prefix of an indexed name must be appropriate for an array type. The expressions specify the index values for the element;
there must be one such expression for each index position of the array, and each expression must be of the type of the
corresponding index. For the evaluation of an indexed name,the prefix and the expressions are evaluated. It is an error if an
index value does not belong to the range of the corresponding index range of the array.

Examples:

 REGISTER_ARRAY(5) -- An element of a one-dimensional array.
 MEMORY_CELL(1024,7) -- An element of a two-dimensional array.

NOTE--If a name (including one used as a prefix) has an interpretation both as an indexed name and as a function call, then the
innermost complete context is used to disambiguate the name. If, after applying this rule, there is not exactly one interpretation
of the name, then the name is ambiguous. See 10.5 .

6.5 Slice names

A slice name denotes a one-dimensional array composed of a sequence of consecutive elements of another one-dimensional
array. A slice of a signal is a signal; a slice of a variable is a variable; a slice of a constant is a constant; a slice of a value is a
value.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_6.HTM (5 of 7) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

 slice_name ::= prefix (discrete_range)

The prefix of a slice must be appropriate for a one-dimensional array object. The base type of this array type is the type of the
slice.

The bounds of the discrete range define those of the slice and must be of the type of the index of the array. The slice is a null
slice if the discrete range is a null range. It is an error if the direction of the discrete range is not the same as that of the index
range of the array denoted by the prefix of the slice name.

For the evaluation of a name that is a slice, the prefix and the discrete range are evaluated. It is an error if either of the bounds
of the discrete range does not belong to the index range of the prefixing array, unless the slice is a null slice. (The bounds of a
null slice need not belong to the subtype of the index.)

Examples:

 signal R15: BIT_VECTOR (0 to 31) ;
 constant DATA: BIT_VECTOR (31 downto 0) ;

 R15(0 to 7) -- A slice with an ascending range.
 DATA(24 downto 1) -- A slice with a descending range.
 DATA(1 downto 24) -- A null slice.
 DATA(24 to 25) -- An error.

NOTE--If A is a one-dimensional array of objects, the name A(N to N) or A(N downto N) is a slice that contains one element;
its type is the base type of A. On the other hand, A(N) is an element of the array A and has the corresponding element type.

6.6 Attribute names

An attribute name denotes a value, function, type, range, signal, or constant associated with a named entity.

 attribute_name ::=
 prefix [signature] ' attribute_designator [(expression)]

 attribute_designator ::= attribute_simple_name

The applicable attribute designators depend on the prefix plus the signature, if any. The meaning of the prefix of an attribute
must be determinable independently of the attribute designator and independently of the fact that it is the prefix of an attribute.

A signature may follow the prefix if and only if the prefix denotes a subprogram or enumeration literal, or an alias thereof. In
this case, the signature is required to match (see 2.3.2) the parameter and result type profile of exactly one visible subprogram
or enumeration literal, as is appropriate to the prefix.

If the attribute designator denotes a predefined attribute, the expression either must or may appear, depending upon the
definition of that attribute (see Section 14); otherwise, it must not be present.

If the prefix of an attribute name denotes an alias, then the attribute name denotes an attribute of the aliased name and not the
alias itself, except when the attribute designator denotes any of the predefined attributes 'SIMPLE_NAME, 'PATH_NAME, or
'INSTANCE_NAME. If the prefix of an attribute name denotes an alias and the attribute designator denotes any of the
predefined attributes SIMPLE_NAME, 'PATH_NAME, or 'INSTANCE_NAME, then the attribute name denotes the attribute
of the alias and not of the aliased name.

If the attribute designator denotes a user-defined attribute, the prefix cannot denote a subelement or a slice of an object.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_6.HTM (6 of 7) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

Examples:

 REG'LEFT(1) -- The leftmost index bound of array REG.

 INPUT_PIN'PATH_NAME -- The hierarchical path name of the port INPUT_PIN.

 CLK'DELAYED(5 ns) -- The signal CLK delayed by 5 ns.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_6.HTM (7 of 7) [12/28/2002 12:50:03 PM]

VHDL LRM- Introduction

Section 9

Concurrent statements
The various forms of concurrent statements are described in this section. Concurrent statements are used to define
interconnected blocks and processes that jointly describe the overall behavior or structure of a design. Concurrent statements
execure asynchronously with respect to each other.

 concurrent_statement ::=
 block_statement
 | process_statement
 | concurrent_procedure_call_statement
 | concurrent_assertion_statement
 | concurrent_signal_assignment_statement
 | component_instantiation_statement
 | generate_statement

The primary concurrent statements are the block statement, which groups together other concurrent statements, and the process
statement, which represents a single independent sequential process. Additional concurrent statements provide convenient
syntax for representing simple, commonly occurring forms of processes, as well as for representing structural decomposition
and regular descriptions.

Within a given simulation cycle, an implementation may execute concurrent statements in parallel or in some order. The
language does not define the order, if any, in which such statements will be executed. A description that depends upon a
particular order of execution of concurrent statements is erroneous.

All concurrent statements may be labeled. Such labels are implicitly declared at the beginning of the declarative part of the
innermost enclosing entity declaration, architecture body, block statement, or generate statement.

9.1 Block statement

A block statement defines an internal block representing a portion of a design. Blocks may be hierarchically nested to support
design decomposition.

 block_statement ::=
 block_label :
 block [(guard_expression)] [is]
 block_header
 block_declarative_part
 begin
 block_statement_part
 end block [block_label] ;

 block_header ::=
 [generic_clause
 [generic_map_aspect ;]]
 [port_clause
 [port_map_aspect ;]]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (1 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

 block_declarative_part ::=
 { block_declarative_item }

 block_statement_part ::=
 { concurrent_statement }

If a guard expression appears after the reserved word block, then a signal with the simple name GUARD of predefined type
BOOLEAN is implicitly declared at the beginning of the declarative part of the block, and the guard expression defines the
value of that signal at any given time (see 12.6.4). The type of the guard expression must be type BOOLEAN. Signal GUARD
may be used to control the operation of certain statements within the block (see 9.5).

The implicit signal GUARD must not have a source.

If a block header appears in a block statement, it explicitly identifies certain values or signals that are to be imported from the
enclosing environment into the block and associated with formal generics or ports. The generic and port clauses define the
formal generics and formal ports of the block (see 1.1.1.1 and 1.1.1.2); the generic map and port map aspects define the
association of actuals with those formals (see 5.2.1.2). Such actuals are evaluated in the context of the enclosing declarative
region.

If a label appears at the end of a block statement, it must repeat the block label.

NOTES

1--The value of signal GUARD is always defined within the scope of a given block, and it does not implicitly extend to design
entities bound to components instantiated within the given block. However, the signal GUARD may be explicitly passed as an
actual signal in a component instantiation in order to extend its value to lower-level components.

2--An actual appearing in a port association list of a given block can never denote a formal port of the same block.

9.2 Process statement

A process statement defines an independent sequential process representing the behavior of some portion of the design.

 process_statement ::=
 [process_label :]
 [postponed] process [(sensitivity_list)] [is]
 process_declarative_part
 begin
 process_statement_part
 end [postponed] process [process_label] ;

 process_declarative_part ::=
 { process_declarative_item }

 process_declarative_item ::=
 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration
 | file_declaration
 | alias_declaration

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (2 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

 | attribute_declaration
 | attribute_specification
 | use_clause
 | group_type_declaration
 | group_declaration

 process_statement_part ::=
 { sequential_statement }

If the reserved word postponed precedes the initial reserved word process, the process statement defines a postponed process;
otherwise, the process statement defines a nonpostponed process.

If a sensitivity list appears following the reserved word process, then the process statement is assumed to contain an implicit
wait statement as the last statement of the process statement part; this implicit wait statement is of the form

 wait on sensitivity_list ;

where the sensitivity list of the wait statement is that following the reserved word process. Such a process statement must not
contain an explicit wait statement. Similarly, if such a process statement is a parent of a procedure, then that procedure may not
contain a wait statement.

Only static signal names (see 6.1) for which reading is permitted may appear in the sensitivity list of a process statement.

If the reserved word postponed appears at the end of a process statement, the process must be a postponed process. If a label
appears at the end of a process statement, the label must repeat the process label.

It is an error if a variable declaration in a process declarative part declares a shared variable.

The execution of a process statement consists of the repetitive execution of its sequence of statements. After the last statement
in the sequence of statements of a process statement is executed, execution will immediately continue with the first statement
in the sequence of statements.

A process statement is said to be a passive process if neither the process itself, nor any procedure of which the process is a
parent,contains a signal assignment statement. Such a process, or any concurrent statement equivalent to such a process, may
appear in the entity statement part of an entity declaration.

NOTES

1--The above rules imply that a process that has an explicit sensitivity list always has exactly one (implicit) wait statement in
it, and that wait statement appears at the end of the sequence of statements in the process statement part. Thus, a process with a
sensitivity list always waits at the end of its statement part; any event on a signal named in the sensitivity list will cause such a
process to execute from the beginning of its statement part down to the end, where it will wait again. Such a process executes
once through at the beginning of simulation, suspending for the first time when it executes the implicit wait statement.

2--The time at which a process executes after being resumed by a wait statement(see 8.1) differs depending on whether the
process is postponed or nonpostponed. When a nonpostponed process is resumed, it executes in the current simulation cycle
(see 2.6.4). When a postponed process is resumed, it does not execute until a simulation cycle occurs in which the next
simulation cycle is not a delta cycle. In this way, a postponed process accesses the values of signals that are the "final" values
at the current simulated time.

3--The conditions that cause a process to resume execution may no longer hold at the time the process resumes execution if the
process is a postponed process.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (3 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

9.3 Concurrent procedure call statements

A concurrent procedure call statement represents a process containing the corresponding sequential procedure call statement.

 concurrent_procedure_call_statement ::=
 [label :] [postponed] procedure_call ;

For any concurrent procedure call statement, there is an equivalent process statement. The equivalent process statement is a
postponed process if and only if the concurrent procedure call statement includes the reserved word postponed. The equivalent
process statement has a label if and only if the concurrent procedure call statement has a label; if the equivalent process
statement has a label, it is the same as that of the concurrent procedure call statement. The equivalent process statement also
has no sensitivity list, an empty declarative part, and a statement part that consists of a procedure call statement followed by a
wait statement.

The procedure call statement consists of the same procedure name and actual parameter part that appear in the concurrent
procedure call statement.

If there exists a name that denotes a signal in the actual part of any association element in the concurrent procedure call
statement, and that actual is associated with a formal parameter of mode in or inout, then the equivalent process statement
includes a final wait statement with a sensitivity clause that is constructed by taking the union of the sets constructed by
applying the rule of 8.1 to each actual part associated with a formal parameter.

Execution of a concurrent procedure call statement is equivalent to execution of the equivalent process statement.

Example:

 CheckTiming (tPLH, tPHL, Clk, D, Q); -- A concurrent
procedure called statement.

 process -- The equivalent
process.
 begin
 CheckTiming (tPLH, tPHL, Clk, D, Q);
 wait on Clk, D, Q;
 end process;

NOTES

1--Concurrent procedure call statements make it possible to declare procedures representing commonly used processes and to
create such processes easily by merely calling the procedure as a concurrent statement. The wait statement at the end of the
statement part of the equivalent process statement allows a procedure to be called without having it loop interminably, even if
the procedure is not necessarily intended for use as a process (i.e., it contains no wait statement). Such a procedure may persist
over time (and thus the values of its variables may retain state over time) if its outermost statement is a loop statement and the
loop contains a wait statement. Similarly, such a procedure may be guaranteed to execute only once, at the beginning of
simulation, if its last statement is a wait statement that has no sensitivity clause, condition clause, or timeout clause.

2--The value of an implicitly declared signal GUARD has no effect on evaluation of a concurrent procedure call unless it is
explicitly referenced in one of the actual parts of the actual parameter part of the concurrent procedure call statement.

9.4 Concurrent assertion statements

A concurrent assertion statement represents a passive process statement containing the specified assertion statement.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (4 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

 concurrent_assertion_statement ::=
 [label :] [postponed] assertion ;

For any concurrent assertion statement, there is an equivalent process statement. The equivalent process statement is a
postponed process if and only if the concurrent assertion statement includes the reserved word postponed. The equivalent
process statement has a label if and only if the concurrent assertion statement has a label; if the equivalent process statement
has a label, it is the same as that of the concurrent assertion statement. The equivalent process statement also has no sensitivity
list, an empty declarative part, and a statement part that consists of an assertion statement followed by a wait statement.

The assertion statement consists of the same condition, report clause, and severity clause that appear in the concurrent
assertion statement.

If there exists a name that denotes a signal in the Boolean expression that defines the condition of the assertion, then the
equivalent process statement includes a final wait statement with a sensitivity clause that is constructed by applying the rule of
8.1 to that expression; otherwise, the equivalent process statement contains a final wait statement that has no explicit
sensitivity clause, condition clause, or timeout clause.

Execution of a concurrent assertion statement is equivalent to execution of the equivalent process statement.

NOTES

1--Since a concurrent assertion statement represents a passive process statement, such a process has no outputs. Therefore, the
execution of a concurrent assertion statement will never cause an event to occur. However, if the assertion is false, then the
specified error message will be sent to the simulation report.

2--The value of an implicitly declared signal GUARD has no effect on evaluation of the assertion unless it is explicitly
referenced in one of the expressions of that assertion.

3--A concurrent assertion statement whose condition is defined by a static expression is equivalent to a process statement that
ends in a wait statement that has no sensitivity clause; such a process will execute once through at the beginning of simulation
and then wait indefinitely.

9.5 Concurrent signal assignment statements

A concurrent signal assignment statement represents an equivalent process statement that assigns values to signals.

 concurrent_signal_assignment_statement ::=
 [label :] [postponed] conditional_signal_assignment
 | [label :] [postponed] selected_signal_assignment

 options ::= [guarded] [delay_mechanism]

There are two forms of the concurrent signal assignment statement. For each form,the characteristics that distinguish it are
discussed in the following paragraphs.

Each form may include one or both of the two options guarded and a delay mechanism (see 8.4 for the delay mechanism,
9.5.1 for the conditional signal assignment statement, and 9.5.2 for the selected signal assignment statement).The option
guarded specifies that the signal assignment statement is executed when a signal GUARD changes from FALSE to TRUE, or
when that signal has been TRUE and an event occurs on one of the signal assignment statement's inputs. (The signal GUARD
may be one of the implicitly declared GUARD signals associated with block statements that have guard expressions, or it may
be an explicitly declared signal of type Boolean that is visible at the point of the concurrent signal assignment statement.) The
delay mechanism option specifies the pulse rejection characteristics of the signal assignment statement.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (5 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

If the target of a concurrent signal assignment is a name that denotes a guarded signal (see 4.3.1.2), or if it is in the form of an
aggregate and the expression in each element association of the aggregate is a static signal name denoting a guarded signal,
then the target is said to be a guarded target. If the target of a concurrent signal assignment is a name that denotes a signal that
is not a guarded signal, or if it is in the form of an aggregate and the expression in each element association of the aggregate is
a static signal name denoting a signal that is not a guarded signal, then the target is said to be an unguarded target. It is an error
if the target of a concurrent signal assignment is neither a guarded target nor an unguarded target.

For any concurrent signal assignment statement, there is an equivalent process statement with the same meaning. The process
statement equivalent to a concurrent signal assignment statement whose target is a signal name is constructed as follows:

a. If a label appears on the concurrent signal assignment statement, then the same label appears on the process statement.
b. The equivalent process statement is a postponed process if and only if the concurrent signal assignment statement

includes the reserved word postponed.
c. If the delay mechanism option appears in the concurrent signal assignment, then the same delay mechanism appears in

every signal assignment statement in the process statement; otherwise, it appears in no signal assignment statement in
the process statement.

d. The statement part of the equivalent process statement consists of a statement transform (described below).

If the option guarded appears in the concurrent signal assignment statement, then the concurrent signal assignment is
called a guarded assignment. If the concurrent signal assignment statement is a guarded assignment, and if the target of
the concurrent signal assignment is a guarded target, then the statement transform is as follows:

 if GUARD then
 signal_transform
 else
 disconnection_statements
 end if ;

Otherwise, if the concurrent signal assignment statement is a guarded assignment, but if the target of the concurrent
signal assignment is nota guarded target, then the statement transform is as follows:

 if GUARD then
 signal_transform
 end if ;

Finally, if the concurrent signal assignment statement is not a guarded assignment, and if the target of the concurrent
signal assignment is not a guarded target, then the statement transform is as follows:

 signal_transform

It is an error if a concurrent signal assignment is not a guarded assignment and the target of the concurrent signal
assignment is a guarded target.

A signal transform is either a sequential signal assignment statement, an if statement, a case statement, or a null
statement. If the signal transform is an if statement or a case statement, then it contains either sequential signal
assignment statements or null statements, one for each of the alternative waveforms. The signal transform determines
which of the alternative waveforms is to be assigned to the output signals.

e. If the concurrent signal assignment statement is a guarded assignment, or if any expression (other than a time
expression) within the concurrent signal assignment statement references a signal, then the process statement contains a
final wait statement with an explicit sensitivity clause. The sensitivity clause is constructed by taking the union of the
sets constructed by applying the rule of 8.1 to each of the aforementioned expressions. Furthermore, if the concurrent
signal assignment statement is a guarded assignment, then the sensitivity clause also contains the simple name
GUARD. (The signals identified by these names are called the inputs of the signal assignment statement.) Otherwise,
the process statement contains a final wait statement that has no explicit sensitivity clause, condition clause, or timeout

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (6 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

clause.

Under certain conditions (see above) the equivalent process statement may contain a sequence of disconnection statements. A
disconnection statement is a sequential signal assignment statement that assigns a null transaction to its target. If a sequence of
disconnection statements is present in the equivalent process statement, the sequence consists of one sequential signal
assignment for each scalar subelement of the target of the concurrent signal assignment statement. For each such sequential
signal assignment, the target of the assignment is the corresponding scalar subelement of the target of the concurrent signal
assignment, and the waveform of the assignment is a null waveform element whose time expression is given by the applicable
disconnection specification (see 5.3).

If the target of a concurrent signal assignment statement is in the form of an aggregate, then the same transformation applies.
Such a target may only contain locally static signal names, and a signal may not be identified by more than one signal name.

It is an error if a null waveform element appears in a waveform of a concurrent signal assignment statement.

Execution of a concurrent signal assignment statement is equivalent to execution of the equivalent process statement.

NOTES

1--A concurrent signal assignment statement whose waveforms and target contain only static expressions is equivalent to a
process statement whose final wait statement has no explicit sensitivity clause, so it will execute once through at the beginning
of simulation and then suspend permanently.

2--A concurrent signal assignment statement whose waveforms are all the reserved word unaffected has no drivers for the
target, since every waveform in the concurrent signal assignment statement is transformed to the statement

null;

in the equivalent process statement. See 9.5.1 .

9.5.1 Conditional signal assignments

The conditional signal assignment represents a process statement in which the signal transform is an if statement.

 conditional_signal_assignment ::=
 target <= options conditional_waveforms ;

 conditional_waveforms ::=
 { waveform when condition else }
 waveform [when condition]

The options for a conditional signal assignment statement are discussed in 9.5 .

For a given conditional signal assignment, there is an equivalent process statement corresponding to it as defined for any
concurrent signal assignment statement. If the conditional signal assignment is of the form

 target <= options waveform1 when condition1 else
 waveform2 when condition2 else
 ·
 ·
 ·
 waveformN-1 when conditionN-1 else
 waveformN when conditionN;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (7 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

then the signal transform in the corresponding process statement is of the form

 if condition1 then
 wave_transform1
 elsif condition2 then
 wave_transform2
 ·
 ·
 ·
 elsif conditionN-1 then
 wave_transformN-1
 elsif conditionN then
 wave_transformN
 end if ;

If the conditional waveform is only a single waveform, the signal transform in the corresponding process statement is of the
form

 wave_transform

For any waveform, there is a corresponding wave transform. If the waveform is of the form

 waveform_element1, waveform_element2, ..., waveform_elementN

then the wave transform in the corresponding process statement is of the form

 target <= [delay_mechanism] waveform_element1, waveform_element2, ...,
 waveform_elementN;

If the waveform is of the form

 unaffected

then the wave transform in the corresponding process statement is of the form

 null;

In this example, the final null causes the driver to be unchanged, rather than disconnected. (This is the null statement--not a
null waveform element).

The characteristics of the waveforms and conditions in the conditional assignment statement must be such that the if statement
in the equivalent process statement is a legal statement.

Example:

 S <= unaffected when Input_pin = S'DrivingValue else
 Input_pin after Buffer_Delay;

NOTE--The wave transform of a waveform of the form unaffected is the null statement, not the null transaction.

9.5.2 Selected signal assignments

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (8 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

The selected signal assignment represents a process statement in which the signal transform is a case statement.

 selected_signal_assignment ::=
 with expression select
 target <= options selected_waveforms;

 selected_waveforms ::=
 { waveform when choices , }
 waveform when choices

The options for a selected signal assignment statement are discussed in 9.5 .

For a given selected signal assignment, there is an equivalent process statement corresponding to it as defined for any
concurrent signal assignment statement. If the selected signal assignment is of the form

 with expression select
 target <= options waveform1 when choice_list1,
 waveform2 when choice_list2,
 ·
 ·
 ·
 waveformN-1 when choice_listN-1,
 waveformN when choice_listN ;

then the signal transform in the corresponding process statement is of the form

 case expression is
 when choice_list1 =>
 wave_transform1
 when choice_list2 =>
 wave_transform2
 ·
 ·
 ·
 when choice_listN-1 =>
 wave_transformN-1
 when choice_listN =>
 wave_transformN
 end case;

Wave transforms are defined in 9.5.1 .

The characteristics of the select expression, the waveforms, and the choices in the selected assignment statement must be such
that the case statement in the equivalent process statement is a legal statement.

9.6 Component instantiation statements

A component instantiation statement defines a subcomponent of the design entity in which it appears, associates signals or
values with the ports of that subcomponent, and associates values with generics of that subcomponent. This subcomponent is
one instance of a class of components defined by a corresponding component declaration, design entity, or configuration
declaration.

 component_instantiation_statement ::=
 instantiation_label :

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (9 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

 instantiated_unit
 [generic_map_aspect]
 [port_map_aspect] ;

 instantiated_unit ::=
 [component] component_name
 | entity entity_name [(architecture_identifier)]
 | configuration configuration_name

The component name, if present, must be the name of a component declared in a component declaration. The entity name, if
present, must be the name of a previously analyzed entity interface; if an architecture identifier appears in the instantiated unit,
then that identifier must be the same as the simple name of an architecture body associated with the entity declaration denoted
by the corresponding entity name. The architecture identifier defines a simple name that is used during the elaboration of a
design hierarchy to select the appropriate architecture body. The configuration name, if present, must be the name of a
previously analyzed configuration declaration. The generic map aspect, if present, optionally associates a single actual with
each local generic (or member) in the corresponding component declaration or entity interface. Each local generic member
must be associated at most once. Similarly, the port map aspect, if present, optionally associates a single actual with each local
port member in the corresponding component declaration or entity interface. Each local port member must be associated at
most once. The generic map and port map aspects are described in 5.2.1.2 .

If an instantiated unit containing the reserved word entity does not contain an explicitly specified architecture identifier, then
the architecture identifier is implicitly specified according to the rules given in 5.2.2 . The architecture identifier defines a
simple name that is used during the elaboration of a design hierarchy to select the appropriate architecture body.

A component instantiation statement and a corresponding configuration specification, if any, taken together, imply that the
block hierarchy within the design entity containing the component instantiation is to be extended with a unique copy of the
block defined by another design entity. The generic map and port map aspects in the component instantiation statement and in
the binding indication of the configuration specification identify the connections that are to be made in order to accomplish the
extension.

NOTES

1--A configuration specification can be used to bind a particular instance of a component to a design entity and to associate the
local generics and local ports of the component with the formal generics and formal ports of that design entity. A configuration
specification may apply to a component instantiation statement only if the name in the instantiated unit of the component
instantiation statement denotes a component declaration. (See 5.2 .)

2--The component instantiation statement may be used to imply a structural organization for a hardware design. By using
component declarations, signals,and component instantiation statements, a given (internal or external) block may be described
in terms of subcomponents that are interconnected by signals.

3--Component instantiation provides a way of structuring the logical decomposition of a design. The precise structural or
behavioral characteristics of a given subcomponent may be described later, provided that the instantiated unit is a component
declaration. Component instantiation also provides a mechanism for reusing existing designs in a design library. A
configuration specification can bind a given component instance to an existing design entity, even if the generics and ports of
the entity declaration do not precisely match those of the component (provided that the instantiated unit is a component
declaration); if the generics or ports of the entity declaration do not match those of the component, the configuration
specification must contain a generic map or port map, as appropriate, to map the generics and ports of the entity declaration to
those of the component.

9.6.1 Instantiation of a component

A component instantiation statement whose instantiated unit contains a name denoting a component is equivalent to a pair of
nested block statements that couple the block hierarchy in the containing design unit to a unique copy of the block hierarchy

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (10 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

contained in another design unit (i.e., the subcomponent).The outer block represents the component declaration; the inner
block represents the design entity to which the component is bound. Each is defined by a block statement.

The header of the block statement corresponding to the component declaration consists of the generic and port clauses (if
present) that appear in the component declaration, followed by the generic map and port map aspects (if present) that appear in
the corresponding component instantiation statement. The meaning of any identifier appearing in the header of this block
statement is associated with the corresponding occurrence of the identifier in the generic clause, port clause, generic map
aspect, or port map aspect,respectively. The statement part of the block statement corresponding to the component declaration
consists of a nested block statement corresponding to the design entity.

The header of the block statement corresponding to the design entity consists of the generic and port clauses (if present) that
appear in the entity declaration that defines the interface to the design entity, followed by the generic map and port map aspects
(if present) that appear in the binding indication that binds the component instance to that design entity. The declarative part of
the block statement corresponding to the design entity consists of the declarative items from the entity declarative part,
followed by the declarative items from the declarative part of the corresponding architecture body. The statement part of the
block statement corresponding to the design entity consists of the concurrent statements from the entity statement part,
followed by the concurrent statements from the statement part of the corresponding architecture body. The meaning of any
identifier appearing anywhere in this block statement is that associated with the corresponding occurrence of the identifier in
the entity declaration or architecture body, respectively.

For example, consider the following component declaration, instantiation, and corresponding configuration specification:

 component
 COMP port (A,B : inout BIT);
 end component;

 for C: COMP use
 entity X(Y)
 port map (P1 => A, P2 => B) ;
 ·
 ·
 ·
 C: COMP port map (A => S1, B => S2);

Given the following entity declaration and architecture declaration:

 entity X is
 port (P1, P2 : inout BIT);
 constant Delay: Time := 1 ms;
 begin
 CheckTiming (P1, P2, 2*Delay);
 end X ;

 architecture Y of X is
 signal P3: Bit;
 begin
 P3 <= P1 after Delay;
 P2 <= P3 after Delay;
 B: block
 ·
 ·
 ·
 begin
 ·
 ·

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (11 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

 ·
 end block;
 end Y;

then the following block statements implement the coupling between the block hierarchy in which component instantiation
statement C appears and the block hierarchy contained in design entity X(Y):

 C: block -- Component block.
 port (A,B : inout BIT); -- Local ports.
 port map (A => S1, B => S2); -- Actual/local
binding.
 begin
 X: block -- Design entity block.
 port (P1, P2 : inout BIT); -- Formal ports.
 port map (P1 => A, P2 => B); -- Local/formal
binding.
 constant Delay: Time := 1 ms; -- Entity declarative
item.
 signal P3: Bit; -- Architecture
declarative item.
 begin
 CheckTiming (P1, P2, 2*Delay); -- Entity statement.
 P3 <= P1 after Delay; -- Architecture
statements.
 P2 <= P3 after Delay;
 B: block -- Internal block
hierarchy.
 ·
 ·
 ·
 begin
 ·
 ·
 ·
 end block;
 end block X ;
 end block C;

The block hierarchy extensions implied by component instantiation statements that are bound to design entities are
accomplished during the elaboration of a design hierarchy (see Section 12).

9.6.2 Instantiation of a design entity

A component instantiation statement whose instantiated unit denotes either a design entity or a configuration declaration is
equivalent to a pair of nested block statements that couple the block hierarchy in the containing design unit to a unique copy of
the block hierarchy contained in another design unit (i.e.,the subcomponent). The outer block represents the component
instantiation statement; the inner block represents the design entity to which the instance is bound. Each is defined by a block
statement.

The header of the block statement corresponding to the component instantiation statement is empty, as is the declarative part of
this block statement. The statement part of the block statement corresponding to the component declaration consists of a nested
block statement corresponding to the design entity.

The header of the block statement corresponding to the design entity consists of the generic and port clauses (if present) that
appear in the entity declaration that defines the interface to the design entity, followed by the generic map and port map aspects

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (12 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

(if present) that appear in the component instantiation statement that binds the component instance to a copy of that design
entity. The declarative part of the block statement corresponding to the design entity consists of the declarative items from the
entity declarative part, followed by the declarative items from the declarative part of the corresponding architecture body. The
statement part of the block statement corresponding to the design entity consists of the concurrent statements from the entity
statement part, followed by the concurrent statements from the statement part of the corresponding architecture body. The
meaning of any identifier appearing anywhere in this block statement is that associated with the corresponding occurrence of
the identifier in the entity declaration or architecture body, respectively.

For example, consider the following design entity:

 entity X is
 port (P1, P2: inout BIT);
 constant Delay: DELAY_LENGTH:= 1 ms;
 use WORK.TimingChecks.all;
 begin
 CheckTiming(P1, P2, 2*Delay);
 end entity X;

 architecture Y of X is
 signal P3: BIT;
 begin
 P3 <= P1 after Delay;
 P2 <= P3 after Delay;
 B: block
 ·
 ·
 ·
 begin
 ·
 ·
 ·
 end block B;
 end architecture Y;

This design entity is instantiated by the following component instantiation statement:

 C: entity Work.X (Y) port map (P1 => S1, P2 => S2);

The following block statements implement the coupling between the block hierarchy in which component instantiation
statement C appears and the block hierarchy contained in design entity X(Y):

 C: block -- Instance block.
 begin
 X: block -- Design entity block.
 port (P1, P2: inout BIT); -- Entity interface
ports.
 port map (P1 => S1, P2 => S2); -- Instantiation
statement port map.
 constant Delay: DELAY_LENGTH := 1 ms; -- Entity declarative
items.
 use WORK.TimingChecks.all;
 signal P3: BIT; -- Architecture
declarative item.
 begin
 CheckTiming (P1, P2, 2*Delay); -- Entity statement.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (13 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

 P3 <= P1 after Delay; -- Architecture
statements.
 P2 <= P3 after Delay;
 B: block
 ·
 ·
 ·
 begin
 ·
 ·
 ·
 end block B;
 end block X;
 end block C;

Moreover,consider the following design entity, which is followed by an associated configuration declaration and component
instantiation:

 entity X is
 port (P1, P2: inout BIT);
 constant Delay: DELAY_LENGTH := 1 ms;
 use WORK.TimingChecks.all;
 begin
 CheckTiming (P1, P2, 2*Delay);
 end entity X;

 architecture Y of X is
 signal P3: BIT;
 begin
 P3 <= P1 after Delay;
 P2 <= P3 after Delay;
 B: block
 ·
 ·
 ·
 begin
 ·
 ·
 ·
 end block B;
 end architecture Y;

The configuration declaration is

 configuration Alpha of X is
 for Y
 ·
 ·
 ·
 end for;
 end configuration Alpha;

The component instantiation is

 C: configuration Work.Alpha port map (P1 => S1, P2 => S2);

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (14 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

The following block statements implement the coupling between the block hierarchy in which component instantiation
statement C appears and the block hierarchy contained in design entity X(Y):

 C: block -- Instance block.
 begin
 X: block -- Design entity
block.
 port (P1, P2: inout BIT); -- Entity interface
ports.
 port map (P1 => S1, P2 => S2); -- Instantiation
statement port map.
 constant Delay: DELAY_LENGTH := 1 ms; -- Entity declarative
items.
 use WORK.TimingChecks.all;
 signal P3: BIT; -- Architecture
declarative item.
 begin
 CheckTiming (P1, P2, 2*Delay); -- Entity statement.
 P3 <= P1 after Delay; -- Architecture
statements.
 P2 <= P3 after Delay;
 B: block
 ·
 ·
 ·
 begin
 ·
 ·
 ·
 end block B;
 end block X;
 end block C;

The block hierarchy extensions implied by component instantiation statements that are bound to design entities occur during
the elaboration of a design hierarchy(see Section 12).

9.7 Generate statements

A generate statement provides a mechanism for iterative or conditional elaboration of a portion of a description.

 generate_statement ::=
 generate_label :
 generation_scheme generate
 [{ block_declarative_item }
 begin]
 { concurrent_statement }
 end generate [generate_label] ;

 generation_scheme ::=
 for generate_parameter_specification
 | if condition

 label ::= identifier

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (15 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM- Introduction

If a label appears at the end of a generate statement, it must repeat the generate label.

For a generate statement with a for generation scheme, the generate parameter specification is the declaration of the generate
parameter with the given identifier. The generate parameter is a constant object whose type is the base type of the discrete
range of the generate parameter specification.

The discrete range in a generation scheme of the first form must be a static discrete range; similarly, the condition in a
generation scheme of the second form must be a static expression.

The elaboration of a generate statement is described in 12.4.2 .

Example:

 Gen: block
 begin
 L1: CELL port map (Top, Bottom, A(0), B(0)) ;

 L2: for I in 1 to 3 generate
 L3: for J in 1 to 3 generate
 L4: if I+J>4 generate
 L5: CELL port map (A(I-1),B(J-1),A(I),B(J)) ;
 end generate ;
 end generate ;
 end generate ;
 L6: for I in 1 to 3 generate
 L7: for J in 1 to 3 generate
 L8: if I+J<4 generate
 L9: CELL port map (A(I+1),B(J+1),A(I),B(J)) ;
 end generate ;
 end generate ;
 end generate ;
 end block Gen;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_9.HTM (16 of 16) [12/28/2002 12:50:05 PM]

VHDL LRM-Introduction

Section 5

Specifications
This section describes specifications, which may be used to associate additional information with a VHDL description. A
specification associates additional information with a named entity that has been previously declared. There are three kinds of
specifications: attribute specifications,configuration specifications, and disconnection specifications.

A specification always relates to named entities that already exist; thus a given specification must either follow or (in certain
cases) be contained within the declaration of the entity to which it relates. Furthermore, a specification must always appear
either immediately within the same declarative part as that in which the declaration of the named entity appears, or (in the case
of specifications that relate to design units or the interface objects of design units, subprograms, or block statements)
immediately within the declarative part associated with the declaration of the design unit, subprogram body, or block
statement.

5.1 Attribute specification

An attribute specification associates a user-defined attribute with one or more named entities and defines the value of that
attribute for those entities. The attribute specification is said to decorate the named entity.

 attribute_specification ::=
 attribute attribute_designator of entity_specification is expression ;

 entity_specification ::=
 entity_name_list : entity_class

 entity_class ::=
 entity | architecture | configuration
 | procedure | function | package
 | type | subtype | constant
 | signal | variable | component
 | label | literal | units
 | group | file

 entity_name_list ::=
 entity_designator { , entity_designator }
 | others
 | all

 entity_designator ::= entity_tag [signature]

 entity_tag ::= simple_name | character_literal | operator_symbol

The attribute designator must denote an attribute. The entity name list identifies those named entities, both implicitly and
explicitly defined, that inherit the attribute, as described below:

-- If a list of entity designators is supplied, then the attribute specification applies to the named entities denoted by those
designators. It is an error if the class of those names is not the same as that denoted by the entity class.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (1 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM-Introduction

-- If the reserved word others is supplied, then the attribute specification applies to named entities of the specified class
that are declared in the immediately enclosing declarative part, provided that each such entity is not explicitly named in
the entity name list of a previous attribute specification for the given attribute.

-- If the reserved word all is supplied, then the attribute specification applies to all named entities of the specified class
that are declared in the immediately enclosing declarative part.

An attribute specification with the entity name list others or all for a given entity class that appears in a declarative part must
be the last such specification for the given attribute for the given entity class in that declarative part. No named entity in the
specified entity class may be declared in a given declarative part following such an attribute specification.

If a name in an entity name list denotes a subprogram or package, it denotes the subprogram declaration or package
declaration. Subprogram and package bodies cannot be attributed.

An entity designator that denotes an alias of an object is required to denote the entire object, not a member or subelement (or
slice thereof).

The entity tag of an entity designator containing a signature must denote the name of one or more subprograms or enumeration
literals. In this case, the signature must match (see 2.3.2) the parameter and result type profile of exactly one subprogram or
enumeration literal in the current declarative part; the enclosing attribute specification then decorates that subprogram or
enumeration literal.

The expression specifies the value of this attribute for each of the named entities inheriting the attribute as a result of this
attribute specification. The type of the expression in the attribute specification must be the same as(or implicitly convertible to)
the type mark in the corresponding attribute declaration. If the entity name list denotes an entity interface, architecture body, or
configuration declaration, then the expression is required to be locally static (see 7.4).

An attribute specification for an attribute of a design unit (i.e., an entity interface, an architecture, a configuration, or a
package) must appear immediately within the declarative part of that design unit. Similarly, an attribute specification for an
attribute of an interface object of a design unit, subprogram, or block statement must appear immediately within the declarative
part of that design unit, subprogram, or block statement. An attribute specification for an attribute of a procedure, a function, a
type, a subtype, an object (i.e., a constant, a file, a signal, or a variable), a component, literal, unit name, group, or a labeled
entity must appear within the declarative part in which that procedure, function, type, subtype, object,component, literal, unit
name, group, or label, respectively, is explicitly or implicitly declared.

For a given named entity, the value of a user-defined attribute of that entity is the value specified in an attribute specification
for that attribute of that entity.

It is an error if a given attribute is associated more than once with a given named entity. Similarly, it is an error if two different
attributes with the same simple name (whether predefined or user-defined) are both associated with a given named entity.

An entity designator that is a character literal is used to associate an attribute with one or more character literals. An entity
designator that is an operator symbol is used to associate an attribute with one or more overloaded operators.

The decoration of a named entity that can be overloaded attributes all named entities matching the specification already
declared in the current declarative part.

If an attribute specification appears, it must follow the declaration of the named entity with which the attribute is associated,
and it must precede all references to that attribute of that named entity. Attribute specifications are allowed for all user-defined
attributes, but are not allowed for predefined attributes.

An attribute specification may reference a named entity by using an alias for that entity in the entity name list, but such a
reference counts as the single attribute specification that is allowed for a given attribute and therefore prohibits a subsequent
specification that uses the declared name of the entity (or any other alias) as the entity designator.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (2 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM-Introduction

An attribute specification whose entity designator contains no signature and identifies an overloaded subprogram has the effect
of associating that attribute with each of the designated overloaded subprograms declared within that declarative part.

Examples:

 attribute PIN_NO of CIN: signal is 10;
 attribute PIN_NO of COUT: signal is 5;
 attribute LOCATION of ADDER1: label is (10,15);
 attribute LOCATION of others: label is (25,77);
 attribute CAPACITANCE of all: signal is 15 pF;
 attribute IMPLEMENTATION of G1: group is "74LS152";
 attribute RISING_DELAY of C2Q: group is 7.2 ns;

NOTES

1--User-defined attributes represent local information only and cannot be used to pass information from one description to
another. For instance, assume some signal X in an architecture body has some attribute A. Further, assume that X is associated
with some local port L of component C. C in turn is associated with some design entity E(B), and L is associated with E's
formal port P. Neither L nor P has attributes with the simple name A, unless such attributes are supplied via other attribute
specifications; in this latter case, the values of P'A and X'A are not related in any way.

2--The local ports and generics of a component declaration cannot be attributed, since component declarations lack a
declarative part.

3--If an attribute specification applies to an overloadable named entity, then declarations of additional named entities with the
same simple name are allowed to occur in the current declarative part unless the aforementioned attribute specification has as
its entity name list either of the reserved words others or all.

4--Attribute specifications supplying either of the reserved words others or all never apply to the interface objects of design
units, block statements, or subprograms.

5--An attribute specification supplying either of the reserved words others or all may apply to none of the named entities in
the current declarative part, in the event that none of the named entities in the current declarative part meet all of the
requirements of the attribute specification.

5.2 Configuration specification

A configuration specification associates binding information with component labels representing instances of a given
component declaration.

 configuration_specification ::=
 for component_specification binding_indication ;

 component_specification ::=
 instantiation_list : component_name

 instantiation_list ::=
 instantiation_label { , instantiation_label }
 | others
 | all

The instantiation list identifies those component instances with which binding information is to be associated, as defined
below:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (3 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM-Introduction

-- If a list of instantiation labels is supplied, then the configuration specification applies to the corresponding component
instances. Such labels must be (implicitly) declared within the immediately enclosing declarative part. It is an error if
these component instances are not instances of the component declaration named in the component specification. It is
also an error if any of the labels denote a component instantiation statement whose corresponding instantiated unit does
not name a component.

-- If the reserved word others is supplied, then the configuration specification applies to instances of the specified
component declaration whose labels are (implicitly) declared in the immediately enclosing declarative part,provided
that each such component instance is not explicitly named in the instantiation list of a previous configuration
specification. This rule applies only to those component instantiation statements whose corresponding instantiated units
name components.

-- If the reserved word all is supplied, then the configuration specification applies to all instances of the specified
component declaration whose labels are (implicitly) declared in the immediately enclosing declarative part. This rule
applies only to those component instantiation statements whose corresponding instantiated units name components.

A configuration specification with the instantiation list others or all for a given component name that appears in a declarative
part must be the last such specification for the given component name in that declarative part.

The elaboration of a configuration specification results in the association of binding information with the labels identified by
the instantiation list. A label that has binding information associated with it is said to be bound. It is an error if the elaboration
of a configuration specification results in the association of binding information with a component label that is already bound.

NOTE--A configuration specification supplying either of the reserved words others or all may apply to none of the component
instances in the current declarative part. This is the case when none of the component instances in the current declarative part
meet all of the requirements of the given configuration specification.

5.2.1 Binding indication

A binding indication associates instances of a component declaration with a particular design entity. It may also associate
actuals with formals declared in the entity interface.

 binding_indication ::=
 [use entity_aspect]
 [generic_map_aspect]
 [port_map_aspect]

The entity aspect of a binding indication, if present, identifies the design entity with which the instances of a component are
associated. If present, the generic map aspect of a binding indication identifies the expressions to be associated with formal
generics in the design entity interface. Similarly, the port map aspect of a binding indication identifies the signals or values to
be associated with formal ports in the design entity interface.

When a binding indication is used in a configuration specification, it is an error if the entity aspect is absent.

A binding indication appearing in a component configuration need not have an entity aspect under the following condition:
The block corresponding to the block configuration in which the given component configuration appears is required to have
one or more configuration specifications that together configure all component instances denoted in the given component
configuration. Under this circumstance, these binding indications are the primary binding indications. It is an error if a binding
indication appearing in a component configuration does not have an entity aspect and there are no primary binding indications.
It is also an error if, under these circumstances, the binding indication has neither a generic map aspect nor a port map aspect.
This form of binding indication is the incremental binding indication, and it is used to rebind incrementally the ports and
generics of the denoted instance(s) under the following conditions:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (4 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM-Introduction

-- For each formal generic appearing in the generic map aspect of the incremental binding indication and denoting a
formal generic that is unassociated or associated with open in any of the primary binding indications, the given formal
generic is bound to the actual with which it is associated in the generic map aspect of the incremental binding
indication.

-- For each formal generic appearing in the generic map aspect of the incremental binding indication and denoting a
formal generic that is associated with an actual other than open in one of the primary binding indications, the given
formal generic is rebound to the actual with which it is associated in the generic map aspect of the incremental binding
indication. That is, the association given in the primary binding indication has no effect for the given instance.

-- For each formal port appearing in the port map aspect of the incremental binding indication and denoting a formal
port that is unassociated or associated with open in any of the primary binding indications, the given formal port is
bound to the actual with which it is associated in the port map aspect of the incremental binding indication.

-- It is an error if a formal port appears in the port map aspect of the incremental binding indication and it is a formal
port that is associated with an actual other than open in one of the primary binding indications.

If the generic map aspect or port map aspect of a binding indication is not present, then the default rules as described in 5.2.2
apply.

Examples:

 entity AND_GATE is
 generic (I1toO, I2toO: DELAY_LENGTH := 4 ns);
 port (I1, I2: in BIT; O: out BIT);
 end entity AND_GATE;

 entity XOR_GATE is
 generic (I1toO, I2toO : DELAY_LENGTH := 4 ns);
 port (I1, I2: in BIT; O : out BIT);
 end entity XOR_GATE;

 package MY_GATES is
 component AND_GATE is
 generic (I1toO, I2toO: DELAY_LENGTH := 4 ns);
 port (I1, I2: in BIT; O: out BIT);
 end component AND_GATE;

 component XOR_GATE is
 generic (I1toO, I2toO: DELAY_LENGTH := 4 ns);
 port (I1, I2: in BIT; O : out BIT);
 end component XOR_GATE;
 end package MY_GATES;

 entity Half_Adder is
 port (X, Y: in BIT;
 Sum, Carry: out BIT);
 end entity Half_Adder;

 use WORK.MY_GATES.all;
 architecture Structure of Half_Adder is
 for L1: XOR_GATE use
 entity WORK.XOR_GATE(Behavior) -- The primary binding
indication
 generic map (3 ns, 3 ns) -- for instance L1.
 port map (I1 => I1, I2 => I2, O => O);

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (5 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM-Introduction

 for L2: AND_GATE use
 entity WORK.AND_GATE(Behavior) -- The primary binding
indication
 generic map (3 ns, 4 ns) -- for instance L2.
 port map (I1, open, O);

 begin
 L1: XOR_GATE port map (X, Y, Sum);
 L2: AND_GATE port map (X, Y, Carry);
 end architecture Structure;

 use WORK.GLOBAL_SIGNALS.all;
 configuration Different of Half_Adder is
 for Structure
 for L1: XOR_GATE
 generic map (2.9 ns, 3.6 ns); -- The incremental binding
 end for; -- indication of L1;
rebinds its generics.

 for L2: AND_GATE
 generic map (2.8 ns, 3.25 ns) -- The incremental binding
 port map (I2 => Tied_High); -- indication L2; rebinds
its generics
 end for; -- and binds its open port.
 end for;
 end configuration Different;

5.2.1.1 Entity aspect

An entity aspect identifies a particular design entity to be associated with instances of a component. An entity aspect may also
specify that such a binding is to be deferred.

 entity_aspect ::=
 entity entity_name [(architecture_identifier)]
 | configuration configuration_name
 | open

The first form of entity aspect identifies a particular entity declaration and (optionally) a corresponding architecture body. If no
architecture identifier appears, then the immediately enclosing binding indication is said to imply the design entity whose
interface is defined by the entity declaration denoted by the entity name and whose body is defined by the default binding rules
for architecture identifiers (see 5.2.2). If an architecture identifier appears, then the immediately enclosing binding indication
is said to imply the design entity consisting of the entity declaration denoted by the entity name together with an architecture
body associated with the entity declaration; the architecture identifier defines a simple name that is used during the elaboration
of a design hierarchy to select the appropriate architecture body. In either case, the corresponding component instances are said
to be fully bound.

At the time of the analysis of an entity aspect of the first form, the library unit corresponding to the entity declaration denoted
by the entity name is required to exist; moreover, the design unit containing the entity aspect depends on the denoted entity
declaration. If the architecture identifier is also present, the library unit corresponding to the architecture identifier is required
to exist only if the binding indication is part of a component configuration containing explicit block configurations or explicit
component configurations; only in this case does the design unit containing the entity aspect also depend on the denoted
architecture body. In any case, the library unit corresponding to the architecture identifier is required to exist at the time that
the design entity implied by the enclosing binding indication is bound to the component instance denoted by the component
configuration or configuration specification containing the binding indication; if the library unit corresponding to the

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (6 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM-Introduction

architecture identifier was required to exist during analysis, it is an error if the architecture identifier does not denote the same
library unit as that denoted during analysis. The library unit corresponding to the architecture identifier, if it exists, must be an
architecture body associated with the entity declaration denoted by the entity name.

The second form of entity aspect identifies a design entity indirectly by identifying a configuration. In this case, the entity
aspect is said to imply the design entity at the apex of the design hierarchy that is defined by the configuration denoted by the
configuration name.

At the time of the analysis of an entity aspect of the second form, the library unit corresponding to the configuration name is
required to exist. The design unit containing the entity aspect depends on the configuration denoted by the configuration name.

The third form of entity aspect is used to specify that the identification of the design entity is to be deferred. In this case, the
immediately enclosing binding indication is said to not imply any design entity. Furthermore,the immediately enclosing
binding indication must not include a generic map aspect or a port map aspect.

5.2.1.2 Generic map and port map aspects

A generic map aspect associates values with the formal generics of a block. Similarly, a port map aspect associates signals or
values with the formal ports of a block. The following applies to both external blocks defined by design entities and to internal
blocks defined by block statements.

 generic_map_aspect ::=
 generic map (generic_association_list)

 port_map_aspect ::=
 port map (port_association_list)

Both named and positional association are allowed in a port or generic association list.

The following definitions are used in the remainder of this subclause:

-- The term actual refers to an actual designator that appears either in an association element of a port association list or
in an association element of a generic association list.

-- The term formal refers to a formal designator that appears either in an association element of a port association list or
in an association element of a generic association list.

The purpose of port and generic map aspects is as follows:

-- Generic map aspects and port map aspects appearing immediately within a binding indication associate actuals with
the formals of the design entity interface implied by the immediately enclosing binding indication. No scalar formal
may be associated with more than one actual. No scalar subelement of any composite formal may be associated more
than once in the same association list.

Each scalar subelement of every local port of the component instances to which an enclosing configuration
specification or component configuration applies must be associated as an actual with at least one formal or with a
scalar subelement thereof. The actuals of these associations for a given local port may be the entire local port or any
slice or subelement (or slice thereof). The actuals in these associations must be locally static names.

-- Generic map aspects and port map aspects appearing immediately within a component instantiation statement
associate actuals with the formals of the component instantiated by the statement. No scalar formal may be associated
with more than one actual. No scalar subelement of any composite formal may be associated with more than one scalar
subelement of an actual.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (7 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM-Introduction

-- Generic map aspects and port map aspects appearing immediately within a block header associate actuals with the
formals defined by the same block header. No scalar formal may be associated with more than one actual. No scalar
subelement of any composite formal may be associated with more than one actual or with a scalar subelement thereof.

An actual associated with a formal generic in a generic map aspect must be an expression or the reserved word open; an actual
associated with a formal port in a port map aspect must be a signal, an expression, or the reserved word open.

Certain restrictions apply to the actual associated with a formal port in a port map aspect; these restrictions are described in
1.1.1.2 .

A formal that is not associated with an actual is said to be an unassociated formal.

NOTE--A generic map aspect appearing immediately within a binding indication need not associate every formal generic with
an actual. These formals may be left unbound so that, for example, a component configuration within a configuration
declaration may subsequently bind them.

Example:

 entity Buf is
 generic (Buf_Delay: TIME := 0 ns);
 port (Input_pin: in Bit; Output_pin: out Bit);
 end Buf;

 architecture DataFlow of Buf is
 begin
 Output_pin <= Input_pin after Buf_Delay;
 end DataFlow;

 entity Test_Bench is
 end Test_Bench;

 architecture Structure of Test_Bench is
 component Buf is
 generic (Comp_Buf_Delay: TIME);
 port (Comp_I: in Bit; Comp_O: out Bit);
 end component;

 -- A binding indication; generic and port map aspects within a binding
indication
 -- associate actuals (Comp_I, etc.) with formals of the design entity
interface
 -- (Input_pin, etc.):
 for UUT: Buf
 use entity Work.Buf(DataFlow)
 generic map (Buf_Delay => Comp_Buf_Delay)
 port map (Input_pin => Comp_I, Output_pin=> Comp_O);
 signal S1,S2: Bit;
 begin

 -- A component instantiation statement; generic and port map aspects within
a
 -- component instantiation statement associate actuals (S1, etc.) with the
 -- formals of a component (Comp_I, etc.):
 UUT: Buf
 generic map(Comp_Buf_Delay => 50 ns)
 port map(Comp_I => S1, Comp_O => S2);

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (8 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM-Introduction

 -- A block statement; generic and port map aspects within the block header
of a block
 -- statement associate actuals (4, etc.) with the formals defined in the
block header:
 B: block
 generic (G: INTEGER);
 generic map(G => 4);
 begin
 end block;
 end Structure;

NOTE--A local generic (from a component declaration) or formal generic (from a block statement or from the entity
declaration of the enclosing design entity) may appear as an actual in a generic map aspect. Similarly, a local port (from a
component declaration) or formal port (from a block statement or from the entity declaration of the enclosing design entity)
may appear as an actual in a port map aspect.

5.2.2 Default binding indication

In certain circumstances, a default binding indication will apply in the absence of an explicit binding indication. The default
binding indication consists of a default entity aspect, together with a default generic map aspect and a default port map aspect,
as appropriate.

If no visible entity declaration has the same simple name as that of the instantiated component, then the default entity aspect is
open. A visible entity declaration is either

a) An entity declaration that has the same simple name as that of the instantiated component and that is directly visible
(see 10.3), or

b) An entity declaration that has the same simple name as that of the instantiated component and that would be directly
visible in the absence of a directly visible (see 10.3) component declaration with the same simple name as that of the
entity declaration

These visibility checks are made at the point of the absent explicit binding indication that causes the default binding indication
to apply.

Otherwise, the default entity aspect is of the form

 entity entity_name (architecture_identifier)

where the entity name is the simple name of the instantiated component, and the architecture identifier is the same as the
simple name of the most recently analyzed architecture body associated with the entity declaration. If this rule is applied either
to a binding indication contained within a configuration specification or to a component configuration that does not contain an
explicit inner block configuration, then the architecture identifier is determined during elaboration of the design hierarchy
containing the binding indication. Likewise, if a component instantiation statement contains an instantiated unit containing the
reserved word entity but does not contain an explicitly specified architecture identifier, this rule is applied during the
elaboration of the design hierarchy containing a component instantiation statement. In all other cases, this rule is applied
during analysis of the binding indication.

It is an error if there is no architecture body associated with the entity interface denoted by an entity name that is the simple
name of the instantiated component.

The default binding indication includes a default generic map aspect if the design entity implied by the entity aspect contains
formal generics. The default generic map aspect associates each local generic in thecorresponding component instantiation (if

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (9 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM-Introduction

any) with a formal of the same simple name. It is an error if such a formal does not exist or if its mode and type are not
appropriate for such an association. Any remaining unassociated formals are associated with the actual designator open.

The default binding indication includes a default port map aspect if the design entity implied by the entity aspect contains
formal ports. The default port map aspect associates each local port in the corresponding component instantiation (if any) with
a formal of the same simple name. It is an error if such a formal does not exist or if its mode and type are not appropriate for
such an association. Any remaining unassociated formals are associated with the actual designator open.

If an explicit binding indication lacks a generic map aspect, and if the design entity implied by the entity aspect contains
formal generics, then the default generic map aspect is assumed within that binding indication. Similarly, if an explicit binding
indication lacks a port map aspect, and the design entity implied by the entity aspect contains formal ports, then the default
port map aspect is assumed within that binding indication.

5.3 Disconnection specification

A disconnection specification defines the time delay to be used in the implicit disconnection of drivers of a guarded signal
within a guarded signal assignment.

 disconnection_specification ::=
 disconnect guarded_signal_specification after time_expression ;

 guarded_signal_specification ::=
 guarded_signal_list : type_mark

 signal_list ::=
 signal_name { , signal_name }
 | others
 | all

Each signal name in a signal list in a guarded signal specification must be a locally static name that denotes a guarded signal
(see 4.3.1.2). Each guarded signal must be an explicitly declared signal or member of such a signal.

If the guarded signal is a declared signal or a slice thereof, the type mark must be the same as the type mark indicated in the
guarded signal specification (see 4.3.1.2). If the guarded signal is an array element of an explicitly declared signal, the type
mark must be the same as the element subtype indication in the (explicit or implicit) array type declaration that declares the
base type of the explicitly declared signal. If the guarded signal is a record element of an explicitly declared signal, then the
type mark must be the same as the type mark in the element subtype definition of the record type declaration that declares the
type of the explicitly declared signal. Each signal must be declared in the declarative part enclosing the disconnection
specification.

Subject to these rules, a disconnection specification applies to the drivers of a guarded signal S of whose type mark denotes the
type T under the following circumstances:

-- For a scalar signal S, if an explicit or implicit disconnection specification of the form

 disconnect S: T after time_expression;

exists, then this disconnection specification applies to the drivers of S.

-- For a composite signal S, an explicit or implicit disconnection specification of the form

 disconnect S: T after time_expression;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (10 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM-Introduction

is equivalent to a series of implicit disconnection specifications, one for each scalar subelement of the signal S. Each
disconnection specification in the series is created as follows: it has, as its single signal name in its signal list, a unique
scalar subelement of S. Its type mark is the same as the type of the same scalar subelement of S. Its time expression is
the same as that of the original disconnection specification.

The characteristics of the disconnection specification must be such that each implicit disconnection specification in the
series is a legal disconnection specification.

-- If the signal list in an explicit or implicit disconnection specification contains more than one signal name, the
disconnection specification is equivalent to a series of disconnection specifications, one for each signal name in the
signal list. Each disconnection specification in the series is created as follows: It has, as its single signal name in its
signal list, a unique member of the signal list from the original disconnection specification. Its type mark and time
expression are the same as those in the original disconnection specification.

The characteristics of the disconnection specification must be such that each implicit disconnection specification in the
series is a legal disconnection specification.

-- An explicit disconnection specification of the form

 disconnect others: T after time_expression;

is equivalent to an implicit disconnection specification where the reserved word others is replaced with a signal list
comprised of the simple names of those guarded signals that are declared signals declared in the enclosing declarative
part, whose type mark is the same as T, and that do not otherwise have an explicit disconnection specification
applicable to its drivers; the remainder of the disconnection specification is otherwise unchanged. If there are no
guarded signals in the enclosing declarative part whose type mark is the same as T and that do not otherwise have an
explicit disconnection specification applicable to its drivers, then the above disconnection specification has no effect.

The characteristics of the explicit disconnection specification must be such that the implicit disconnection specification,
if any, is a legal disconnection specification.

-- An explicit disconnection specification of the form

 disconnect all: T after time_expression;

is equivalent to an implicit disconnection specification where the reserved word all is replaced with a signal list
comprised of the simple names of those guarded signals that are declared signals declared in the enclosing declarative
part and whose type mark is the same as T; the remainder of the disconnection specification is otherwise unchanged. If
there are no guarded signals in the enclosing declarative part whose type mark is the same as T,then the above
disconnection specification has no effect.

The characteristics of the explicit disconnection specification must be such that the implicit disconnection specification,
if any, is a legal disconnection specification.

A disconnection specification with the signal list others or all for a given type that appears in a declarative part must be the
last such specification for the given type in that declarative part. No guarded signal of the given type may be declared in a
given declarative part following such a disconnection specification.

The time expression in a disconnection specification must be static and must evaluate to a non-negative value.

It is an error if more than one disconnection specification applies to drivers of the same signal.

If, by these rules, no disconnection specification applies to the drivers of a guarded, scalar signal S whose type mark is T
(including a scalar subelement of a composite signal), then the following default disconnection specification is implicitly

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (11 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM-Introduction

assumed:

 disconnect S : T after 0 ns;

A disconnection specification that applies to the drivers of a guarded signal S is the applicable disconnection specification for
the signal S.

Thus the implicit disconnection delay for any guarded signal is always defined,either by an explicit disconnection specification
or by an implicit one.

NOTES

1--A disconnection specification supplying either the reserved words others or all may apply to none of the guarded signals in
the current declarative part, in the event that none of the guarded signals in the current declarative part meet all of the
requirements of the disconnection specification.

2--Since disconnection specifications are based on declarative parts, not on declarative regions, ports declared in an entity
interface cannot be referenced by a disconnection specification in a corresponding architecture body.

Cross-References: Disconnection statements, 9.5 ; Guarded assignment, 9.5 ; Guarded blocks, 9.1 ; Guarded signals, 4.3.1.2 ;
Guarded targets, 9.5 ; Signal guard, 9.1 .

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_5.HTM (12 of 12) [12/28/2002 12:50:06 PM]

VHDL LRM- Introduction

Section 11

Design units and their analysis
The overall organization of descriptions, as well as their analysis and subsequent definition in
a design library, are discussed in this section.

11.1 Design units

Certain constructs may be independently analyzed and inserted into a design library; these
constructs are called design units. One or more design units in sequence comprise a design file.

 design_file ::= design_unit { design_unit }

 design_unit ::= context_clause library_unit

 library_unit ::=
 primary_unit
 | secondary_unit

 primary_unit ::=
 entity_declaration
 | configuration_declaration
 | package_declaration

 secondary_unit ::=
 architecture_body
 | package_body

Design units in a design file are analyzed in the textual order of their appearance in the design
file. Analysis of a design unit defines the corresponding library unit in a design library. A
library unit is either a primary unit or a secondary unit. A secondary unit is a separately
analyzed body of a primary unit resulting from a previous analysis.

The name of a primary unit is given by the first identifier after the initial reserved word of that

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_11.HTM (1 of 4) [12/28/2002 12:50:07 PM]

VHDL LRM- Introduction

unit. Of the secondary units, only architecture bodies are named; the name of an architecture
body is given by the identifier following the reserved word architecture. Each primary unit in
a given library must have a simple name that is unique within the given library, and each
architecture body associated with a given entity declaration must have a simple name that is
unique within the set of names of the architecture bodies associated with that entity
declaration.

Entity declarations, architecture bodies, and configuration declarations are discussed in Section
1. Package declarations and package bodies are discussed in Section 2.

11.2 Design libraries

A design library is an implementation-dependent storage facility for previously analyzed
design units. A given implementation is required to support any number of design libraries.

 library_clause ::= library logical_name_list ;

 logical_name_list ::= logical_name { , logical_name }

 logical_name ::= identifier

A library clause defines logical names for design libraries in the host environment. A library
clause appears as part of a context clause at the beginning of a design unit. There is a certain
region of text called the scope of a library clause; this region starts immediately after the
library clause, and it extends to the end of the declarative region associated with the design
unit in which the library clause appears. Within this scope each logical name defined by the
library clause is directly visible, except where hidden in an inner declarative region by a
homograph of the logical name according to the rules of 10.3 .

If two or more logical names having the same identifier (see 13.3) appear in library clauses in
the same context clause, the second and subsequent occurrences of the logical name have no
effect. The same is true of logical names appearing both in the context clause of a primary unit
and in the context clause of a corresponding secondary unit.

Each logical name defined by the library clause denotes a design library in the host
environment.

For a given library logical name, the actual name of the corresponding design libraries in the
host environment may or may not be the same. A given implementation must provide some
mechanism to associate a library logical name with a host-dependent library. Such a
mechanism is not defined by the language.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_11.HTM (2 of 4) [12/28/2002 12:50:07 PM]

VHDL LRM- Introduction

There are two classes of design libraries: working libraries and resource libraries. A working
library is the library into which the library unit resulting from the analysis of a design unit is
placed. A resource library is a library containing library units that are referenced within the
design unit being analyzed. Only one library may be the working library during the analysis of
any given design unit; in contrast, any number of libraries (including the working library itself)
may be resource libraries during such an analysis.

Every design unit except package STANDARD is assumed to contain the following implicit
context items as part of its context clause:

 library STD, WORK ; use STD.STANDARD.all ;

Library logical name STD denotes the design library in which package STANDARD and
package TEXTIO reside; these are the only standard packages defined by the language (see
Section 14). (The use clause makes all declarations within package STANDARD directly
visible within the corresponding design unit; see 10.4). Library logical name WORK denotes
the current working library during a given analysis.

The library denoted by the library logical name STD contains no library units other than
package STANDARD and package TEXTIO.

A secondary unit corresponding to a given primary unit may only be placed into the design
library in which the primary unit resides.

NOTE--The design of the language assumes that the contents of resource libraries named in all
library clauses in the context clause of a design unit will remain unchanged during the analysis
of that unit (with the possible exception of the updating of the library unit corresponding to the
analyzed design unit within the working library, if that library is also a resource library).

11.3 Context clauses

A context clause defines the initial name environment in which a design unit is analyzed.

 context_clause ::= { context_item }

 context_item ::=
 library_clause
 | use_clause

A library clause defines library logical names that may be referenced in the design unit; library

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_11.HTM (3 of 4) [12/28/2002 12:50:07 PM]

VHDL LRM- Introduction

clauses are described in 11.2 . A use clause makes certain declarations directly visible within
the design unit; use clauses are described in 10.4 .

NOTE--The rules given for use clauses are such that the same effect is obtained whether the
name of a library unit is mentioned once or more than once by the applicable use clauses, or
even within a given use clause.

11.4 Order of analysis

The rules defining the order in which design units can be analyzed are direct consequences of
the visibility rules. In particular:

a. A primary unit whose name is referenced within a given design unit must be analyzed
prior to the analysis of the given design unit.

b. A primary unit must be analyzed prior to the analysis of any corresponding secondary
unit.

In each case, the second unit depends on the first unit.

The order in which design units are analyzed must be consistent with the partial ordering
defined by the above rules.

If any error is detected while attempting to analyze a design unit, then the attempted analysis is
rejected and has no effect whatsoever on the current working library.

A given library unit is potentially affected by a change in any library unit whose name is
referenced within the given library unit. A secondary unit is potentially affected by a change in
its corresponding primary unit. If a library unit is changed (e.g., by reanalysis of the
corresponding design unit),then all library units that are potentially affected by such a change
become obsolete and must be reanalyzed before they can be used again.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_11.HTM (4 of 4) [12/28/2002 12:50:07 PM]

VHDL LRM- Introduction

Section 13

Lexical elements
The text of a description consists of one or more design files. The text of a design file is a sequence of lexical elements, each
composed of characters; the rules of composition are given in this section.

13.1 Character set

The only characters allowed in the text of a VHDL description are the graphic characters and format effectors. Each graphic
character corresponds to a unique code of the ISO eight-bit coded character set [(ISO 8859-1 : 1987 (E)], and is represented
(visually) by a graphical symbol.

 basic_graphic_character ::=
 upper_case_letter | digit | special_character |space_character

 graphic_character ::=
 basic_graphic_character | lower_case_letter | other_special_character

 basic_character ::=
 basic_graphic_character | format_effector

The basic character set is sufficient for writing any description. The characters included in each of the categories of basic
graphic characters are defined as follows:

a. Uppercase letters
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í
Î Ï Ñ Ò Ó Ô Õ Ö Ø Ù Ú Û Ü Ý Þ

b. Digits
0 1 2 3 4 5 6 7 8 9

c. Special characters
" # & ' () * + , - . / : ; < = > [] _ |

d. The space characters
SPACE1, NBSP2

Format effectors are the ISO (and ASCII) characters called horizontal
tabulation,vertical tabulation, carriage return, line feed, and form feed.

1The visual representation of the space is the absence of a graphic symbol. It may
be interpreted as a graphic character, a control character, or both.

2The visual representation of the nonbreaking space is the absence of a graphic
symbol. It is used when a line break is to be prevented in the text as presented.

The characters included in each of the remaining categories of graphic characters
are defined as follows:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_13.HTM (1 of 11) [12/28/2002 12:50:08 PM]

VHDL LRM- Introduction

a. Lowercase letters
a b c d e f g h i j k l m n o p q r s t u v w x y z ß à á â ã ä å æ ç è é ê ë ì
í î ï ð ñ ò ó ô õ ö ø ù ú û ü ý þ ÿ

b. Other special characters
! $ % @ ? \ ^ ` { } ~ ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ~ ® ¯ ° ± ² ³ ' µ ¶ · ¸ ¹ º » 1/4
1/2 3/4 ¿ × ÷ -

NOTES

Allowable replacements for the special characters vertical line(|), number sign (#),
and quotation mark (") are defined in the last clause of this section.

1--The font design of graphical symbols (for example, whether they are in italic or
bold typeface) is not part of ISO 8859-1:1987.

2--The meanings of the acronyms used in this section are as follows: ASCII stands
for American Standard Code for Information Interchange, ISO stands for International
Organization for Standardization.

3--There are no uppercase equivalents for the characters ß and ÿ.

4--The following names are used when referring to special characters:

Character Name Character Name

" quotation mark ¢ cent sign

number sign £ pound sign

& ampersand ¤ currency sign

' apostrophe, tick ¥ yen sign

(left parenthesis ¦ broken bar

) right parenthesis § paragraph sign, section sign

* asterisk, multiply ¨ diaeresis

+ plus sign © copyright sign

, comma ª feminine ordinal indicator

- hyphen, minus sign « left angle quotation mark

.
dot, point, period, full
stop

 not sign

/ slash, divide, solidus - soft hyphen*

: colon ® registered trade mark sign

; semicolon ¯ macron

< less-than sign ° ring above, degree sign

= equals sign ± plus-minus sign

> greater-than sign ² superscript two

_ underline, low line ³ superscript three

| vertical line, vertical bar ' acute accent

! exclamation mark µ micro sign

$ dollar sign ¶ pilcrow sign

% percent sign · middle dot

? question mark ¸ cedilla

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_13.HTM (2 of 11) [12/28/2002 12:50:08 PM]

VHDL LRM- Introduction

@ commercial at ¹ superscript one

[left square bracket º masculine ordinal indicator

\ backslash, reverse solidus » right angle quotation mark

] right square bracket ¼ vulgar fraction one quarter

^ circumflex accent ½ vulgar fraction one half

` grave accent ¾ vulgar fraction three quarters

{ left curly bracket ¿ inverted question mark

} right curly bracket × multiplication sign

~ tilde ÷ division sign

¡ inverted exclamation mark

*The soft hyphen is a graphic character that is imaged by a graphic symbol identical
with, or similar to, that representing HYPHEN, for use when a line break has been
established within a work.

13.2 Lexical elements, separators, and delimiters

The text of each design unit is a sequence of separate lexical elements. Each
lexical element is either a delimiter, an identifier (which may be a reserved word),
an abstract literal, a character literal, a string literal, a bit string literal, or
a comment.

In some cases an explicit separator is required to separate adjacent lexical
elements (namely when, without separation, interpretation as a single lexical
element is possible). A separator is either a space character (SPACE or NBSP),a
format effector, or the end of a line. A space character (SPACE or NBSP) is a
separator except within a comment, a string literal, or a space character literal.

The end of a line is always a separator. The language does not define what causes
the end of a line. However if, for a given implementation, the end of aline is
signified by one or more characters, then these characters must be format effectors
other than horizontal tabulation. In any case, a sequence of one or more format
effectors other than horizontal tabulation must cause atleast one end-of-line.

One or more separators are allowed between any two adjacent lexical elements,before
the first of each design unit or after the last. At least one separator is required
between an identifier or an abstract literal and an adjacent identifier or abstract
literal.

A delimiter is either one of the following special characters (in the basic
character set):

& ' () * + , - . / : ; < = > | []

or one of the following compound delimiters, each composed of two adjacent special
characters:

=> ** := /= >= <= <>

Each of the special characters listed for single character delimiters is a single
delimiter except if this character is used as a character of a compound delimiter or

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_13.HTM (3 of 11) [12/28/2002 12:50:08 PM]

VHDL LRM- Introduction

as a character of a comment, string literal, character literal, or abstract literal.

The remaining forms of lexical elements are described in other clauses of this
section.

NOTES

1--Each lexical element must fit on one line, since the end of a line is a
separator. The quotation mark, number sign, and underline characters, likewise two
adjacent hyphens, are not delimiters, but may form part of other lexical elements.

2--The following names are used when referring to compound delimiters:

Delimiter Name

=> arrow

** double star, exponentiate

:= variable assignment

/= inequality (pronounced "not equal")

>= greater than or equal

<= less than or equal; signal assignment

<> box

13.3 Identifiers

Identifiers are used as names and also as reserved words.

 identifier ::= basic_identifier | extended_identifier

13.3.1 Basic identifiers

A basic identifier consists only of letters, digits, and underlines.

 basic_identifier ::=
 letter { [underline] letter_or_digit }

 letter_or_digit ::= letter | digit

 letter ::= upper_case_letter | lower_case_letter

All characters of a basic identifier are significant, including any underline
character inserted between a letter or digit and an adjacent letter or digit. Basic
identifiers differing only in the use of corresponding upper and lowercase letters
are considered the same.

Examples:

 COUNT X c_out FFT Decoder

 VHSIC X1 PageCount STORE_NEXT_ITEM

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_13.HTM (4 of 11) [12/28/2002 12:50:08 PM]

VHDL LRM- Introduction

NOTE--No space (SPACE or NBSP) is allowed within a basic identifier since a space is
a separator.

13.3.2 Extended identifiers

Extended identifiers may contain any graphic character.

 extended_identifier ::=
 \ graphic_character { graphic_character } \

If a backslash is to be used as one of the graphic characters of an extended
literal, it must be doubled. All characters of an extended identifier are
significant (a doubled backslash counting as one character). Extended identifiers
differing only in the use of corresponding upper and lowercase letters are distinct.
Moreover, every extended identifier is distinct from any basic identifier.

Examples:

 \BUS\ \bus\ -- Two different identifiers, neither
of which is
 -- the reserved word bus.

 \a\\b\ -- An identifier containing three
characters.

 VHDL \VHDL\ \vhdl\ -- Three distinct identifiers.

13.4 Abstract literals

There are two classes of abstract literals: real literals and integer literals. A
real literal is an abstract literal that includes a point; an integer literal is an
abstract literal without a point. Real literals are the literals of the type
universal_real. Integer literals are the literals of the type universal_integer.

 abstract_literal ::= decimal_literal | based_literal

13.4.1 Decimal literals

A decimal literal is an abstract literal expressed in the conventional decimal
notation (that is, the base is implicitly ten).

 decimal_literal ::= integer [. integer] [exponent]

 integer ::= digit { [underline] digit }

 exponent ::= E [+] integer | E - integer

An underline character inserted between adjacent digits of a decimal literal does
not affect the value of this abstract literal. The letter E of the exponent,if any,
can be written either in lowercase or in uppercase, with the same meaning.

An exponent indicates the power of ten by which the value of the decimal literal
without the exponent is to be multiplied to obtain the value of the decimal literal

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_13.HTM (5 of 11) [12/28/2002 12:50:08 PM]

VHDL LRM- Introduction

with the exponent. An exponent for an integer literal must not have a minus sign.

Examples:

 12 0 1E6 123_456 -- Integer literals

 12.0 0.0 0.456 3.14159_26 -- Real literals

 1.34E-12 1.0E+6 6.023E+24 -- Real literals with
exponents

13.4.2 Based literals

A based literal is an abstract literal expressed in a form that specifies the base
explicitly. The base must be at least two and at most sixteen.

 based_literal ::=
 base # based_integer [. based_integer] # [exponent]

 base ::= integer

 based_integer ::=
 extended_digit { [underline] extended_digit }

 extended_digit ::= digit | letter

An underline character inserted between adjacent digits of a based literal does not
affect the value of this abstract literal. The base and the exponent, if any, are in
decimal notation. The only letters allowed as extended digits are the letters A
through F for the digits ten through fifteen. A letter in a based literal (either an
extended digit or the letter E of an exponent) can be written either in lowercase or
in uppercase, with the same meaning.

The conventional meaning of based notation is assumed; in particular the value of
each extended digit of a based literal must be less than the base. An exponent
indicates the power of the base by which the value of the based literal without the
exponent is to be multiplied to obtain the value of the based literal with the
exponent. An exponent for a based integer literal must not have a minus sign.

Examples:

 -- Integer literals of value 255:
 2#1111_1111# 16#FF# 016#0FF#
 -- Integer literals of value 224:
 16#E#E1 2#1110_0000#
 -- Real literals of value 4095.0 :
 16#F.FF#E+2 2#1.1111_1111_111#E11

13.5 Character literals

A character literal is formed by enclosing one of the 191 graphic
characters(including the space and nonbreaking space characters) between two

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_13.HTM (6 of 11) [12/28/2002 12:50:08 PM]

VHDL LRM- Introduction

apostrophe characters. A character literal has a value that belongs to a character
type.

 character_literal ::= ' graphic_character '

Examples:

 'A' '*' ''' ' '

13.6 String literals

A string literal is formed by a sequence of graphic characters (possibly
none)enclosed between two quotation marks used as string brackets.

 string_literal ::= " { graphic_character } "

A string literal has a value that is a sequence of character values corresponding to
the graphic characters of the string literal apart from the quotation mark itself.
If a quotation-mark value is to be represented in the sequence of character values,
then a pair of adjacent quotation marks must be written at the corresponding place
within the string literal. (This means that a string literal that includes two
adjacent quotation marks is never interpreted as two adjacent string literals.)

The length of a string literal is the number of character values in the sequence
represented. (Each doubled quotation mark is counted as a single character.)

Examples:

 "Setup time is too short" -- An error message.

 "" -- An empty string literal.

 " " "A" """" -- Three string literals of length 1.

 "Characters such as $, %, and } are allowed in string literals."

NOTE--A string literal must fit on one line, since it is a lexical element (see 13.2

).Longer sequences of graphic character values can be obtained by concatenation of
string literals. The concatenation operation may also be used to obtain string
literals containing nongraphic character values. The predefined type CHARACTER in
package STANDARD specifies the enumeration literals denoting both graphic and
nongraphic characters. Examples of such uses of concatenation are

 "FIRST PART OF A SEQUENCE OF CHARACTERS " &
 "THAT CONTINUES ON THE NEXT LINE"

 "Sequence that includes the" & ACK & "control character"

13.7 Bit string literals

A bit string literal is formed by a sequence of extended digits (possibly
none)enclosed between two quotations used as bit string brackets, preceded by a base

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_13.HTM (7 of 11) [12/28/2002 12:50:08 PM]

VHDL LRM- Introduction

specifier.

 bit_string_literal ::= base_specifier " [bit_value] "

 bit_value ::= extended_digit { [underline] extended_digit }

 base_specifier ::= B | O | X

An underline character inserted between adjacent digits of a bit string literal does
not affect the value of this literal. The only letters allowed as extended digits
are the letters A through F for the digits ten through fifteen. A letter in a bit
string literal (either an extended digit or the base specifier) can be written
either in lowercase or in uppercase, with the same meaning.

If the base specifier is 'B', the extended digits in the bit value are restricted to
0 and 1. If the base specifier is 'O', the extended digits in the bit value are
restricted to legal digits in the octal number system, i.e.,the digits 0 through 7.
If the base specifier is 'X', the extended digits are all digits together with the
letters A through F.

A bit string literal has a value that is a string literal consisting of the
character literals '0' and '1'. If the base specifier is 'B', the value of the bit
string literal is the sequence given explicitly by the bit value itself after any
underlines have been removed.

If the base specifier is 'O' (respectively 'X'), the value of the bit string literal
is the sequence obtained by replacing each extended digit in the bit_value by a
sequence consisting of the three (respectively four) values representing that
extended digit taken from the character literals '0' and '1';as in the case of the
base specifier 'B', underlines are first removed. Each extended digit is replaced
according to the table on the following page:

Extended digit
Replacement when the base

specifier is
Replacement when the base

specifier is

'O' 'X'

0 000 0000

1 001 0001

2 010 0010

3 011 0011

4 100 0100

5 101 0101

6 110 0110

7 111 0111

8 (illegal) 1000

9 (illegal) 1001

A (illegal) 1010

B (illegal) 1011

C (illegal) 1100

D (illegal) 1101

E (illegal) 1110

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_13.HTM (8 of 11) [12/28/2002 12:50:08 PM]

VHDL LRM- Introduction

F (illegal) 1111

The length of a bit string literal is the length of its string literal value.

Example:

 B"1111_1111_1111" -- Equivalent to the string literal "111111111111"
 X"FFF" -- Equivalent to B"1111_1111_1111"
 O"777" -- Equivalent to B"111_111_111"
 X"777" -- Equivalent to B"0111_0111_0111"

 constant c1: STRING := B"1111_1111_1111";

 constant c2: BIT_VECTOR := X"FFF";

 type MVL is ('X', '0', '1', 'Z');
 type MVL_VECTOR is array (NATURAL range <>) of MVL;
 constant c3: MVL_VECTOR := O"777";

 assert c1'LENGTH = 12 and
 c2'LENGTH = 12 and
 c3 = "111111111";

13.8 Comments

A comment starts with two adjacent hyphens and extends up to the end of the line. A
comment can appear on any line of a VHDL description. The presence or absence of
comments has no influence on whether a description is legal or illegal. Furthermore,
comments do not influence the execution of a simulation module; their sole purpose
is to enlighten the human reader.

Examples:

 -- The last sentence above echoes the Algol 68 report.

 end; -- Processing of LINE is complete

 -- A long comment may be split onto
 -- two or more consecutive lines.

 ----------- The first two hyphens start the comment.

NOTE--Horizontal tabulation can be used in comments, after the double hyphen, and is
equivalent to one or more spaces (SPACE characters) (see 13.2).

13.9 Reserved words

The identifiers listed below are called reserved words and are reserved for
significance in the language. For readability of this manual, the reserved words
appear in lowercase boldface.

abs file nand select

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_13.HTM (9 of 11) [12/28/2002 12:50:08 PM]

VHDL LRM- Introduction

access for new severity

after function next signal

alias nor shared

all generate not sla

and generic null sll

architecture group sra

array guarded of srl

assert on subtype

attribute if open

impure or then

begin in others to

block inertial out transport

body inout type

buffer is package

bus port unaffected

label postponed units

case library procedure until

component linkage process use

configuration literal pure

constant loop variable

range

disconnect map record wait

downto mod register when

reject while

else rem with

elsif report

end return xnor

entity rol xor

exit ror

A reserved word must not be used as an explicitly declared identifier.

NOTES

1--Reserved words differing only in the use of corresponding upper and lowercase
letters are considered as the same (see 13.3.1). The reserved word range is also

used as the name of a predefined attribute.

2--An extended identifier whose sequence of characters inside the leading and
trailing backslashes is identical to a reserved word is not a reserved word. For
example, \next\ is a legal (extended) identifier and is not the reserved word next.

13.10 Allowable replacements of characters

The following replacements are allowed for the vertical line, number sign, and
quotation mark basic characters:

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/1076_13.HTM (10 of 11) [12/28/2002 12:50:08 PM]

VHDL LRM- Introduction

-- A vertical line (|) can be replaced by an exclamation mark (!) where used as
a delimiter.

-- The number sign (#) of a based literal can be replaced by colons
(:),provided that the replacement is done for both occurrences.

-- The quotation marks (") used as string brackets at both ends of a string
literal can be replaced by percent signs (%), provided that the enclosed
sequence of characters contains no quotation marks, and provided that both
string brackets are replaced. Any percent sign within the sequence of
characters must then be doubled, and each such doubled percent sign is
interpreted as a single percent sign value. The same replacement is allowed for
a bit string literal, provided that both bit string brackets are replaced.

These replacements do not change the meaning of the description.

NOTES

1--It is recommended that use of the replacements for the vertical line,number sign,
and quotation marks be restricted to cases where the corresponding graphical symbols
are not available. Note that the vertical line appears as a broken line on some
equipment; replacement is not recommended in this case.

2--The rules given for identifiers and abstract literals are such that lowercase and
uppercase letters can be used indifferently; these lexical elements can thus be
written using only characters of the basic character set.

file:///E|/temp/Downloads%20Elektroda/VHDLrart...ial1/VHDL%20Interactive%20Tutorial/1076_13.HTM (11 of 11) [12/28/2002 12:50:08 PM]

VHDL LRM- Introduction

Annex A

Syntax summary

(informative)
This annex provides a summary of the syntax for VHDL. Productions are ordered alphabetically by left-hand nonterminal
name. The clause number indicates the clause where the production is given.

 abstract_literal ::= decimal_literal | based_literal
[§ 13.4]

 access_type_definition ::= access subtype_indication
[§ 3.3]

 actual_designator ::=
[§ 4.3.2.2]

 expression
 | signal_name
 | variable_name
 | file_name
 | open

 actual_parameter_part ::= parameter_association_list
[§ 7.3.3]

 actual_part ::=
[§ 4.3.2.2]

 actual_designator
 | function_name (actual_designator)
 | type_mark (actual_designator)

 adding_operator ::= + | - | &
[§ 7.2]

 aggregate ::=
[§ 7.3.2]

 (element_association { , element_association })

 alias_declaration ::=
[§ 4.3.3]

 alias alias_designator [: subtype_indication] is name [signature] ;

 alias_designator ::= identifier | character_literal | operator_symbol
[§ 4.3.3]

 allocator ::=
[§ 7.3.6]

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (1 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 new subtype_indication
 | new qualified_expression

 architecture_body ::=
[§ 1.2]

 architecture identifier of entity_name is
 architecture_declarative_part
 begin
 architecture_statement_part
 end [architecture] [architecture_simple_name] ;

 architecture_declarative_part ::=
[§ 1.2.1]

 { block_declarative_item }

 architecture_statement_part ::=
[§ 1.2.2]

 { concurrent_statement }

 array_type_definition ::=
[§ 3.2.1]

 unconstrained_array_definition | constrained_array_definition

 assertion ::=
[§ 8.2]

 assert condition
 [report expression]
 [severity expression]

 assertion_statement ::= [label :] assertion ;
[§ 8.2]

 association_element ::=
[§ 4.3.2.2]

 [formal_part =>] actual_part

 association_list ::=
[§ 4.3.2.2]

 association_element { , association_element }

 attribute_declaration :
[§ 4.4]

 attribute identifier : type_mark ;

 attribute_designator ::= attribute_simple_name
[§ 6.6]

 attribute_name ::=
[§ 6.6]

 prefix [signature] ' attribute_designator [(expression)]

 attribute_specification ::=
[§ 5.1]

 attribute attribute_designator of entity_specification is expression ;

 base ::= integer

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (2 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

[§ 13.4.2]

 base_specifier ::= B | O | X
[§ 13.7]

 based_integer ::=
[§ 13.4.2]

 extended_digit { [underline] extended_digit }

 based_literal ::=
[§ 13.4.2]

 base # based_integer [. based_integer] # [exponent]

 basic_character ::=
[§ 13.1]

 basic_graphic_character | format_effector

 basic_graphic_character ::=
[§ 13.1]

 upper_case_letter | digit | special_character| space_character

 basic_identifier ::= letter { [underline] letter_or_digit }
[§ 13.3.1]

 binding_indication ::=
[§ 5.2.1]

 [use entity_aspect]
 [generic_map_aspect]
 [port_map_aspect]

 bit_string_literal ::= base_specifier " [bit_value] "
[§ 13.7]

 bit_value ::= extended_digit { [underline] extended_digit }
[§ 13.7]

 block_configuration ::=
[§ 1.3.1]

 for block_specification
 { use_clause }
 { configuration_item }
 end for ;

 block_declarative_item ::=
[§ 1.2.1]

 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | component_declaration
 | attribute_declaration

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (3 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 | attribute_specification
 | configuration_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

 block_declarative_part ::=
[§ 9.1]

 { block_declarative_item }

 block_header ::=
[§ 9.1]

 [generic_clause
 [generic_map_aspect ;]]
 [port_clause
 [port_map_aspect ;]]

 block_specification ::=
[§ 1.3.1]

 architecture_name
 | block_statement_label
 | generate_statement_label [(index_specification)]

 block_statement ::=
[§ 9.1]

 block_label :
 block [(guard_expression)] [is]
 block_header
 block_declarative_part
 begin
 block_statement_part
 end block [block_label] ;

 block_statement_part ::=
[§ 9.1]

 { concurrent_statement }

 case_statement ::=
[§ 8.8]

 [case_label :]
 case expression is
 case_statement_alternative
 { case_statement_alternative }
 end case [case_label] ;

 case_statement_alternative ::=
[§ 8.8]

 when choices =>
 sequence_of_statements

 character_literal ::= ' graphic_character '
[§ 13.5]

 choice ::=

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (4 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

[§ 7.3.2]

 simple_expression
 | discrete_range
 | element_simple_name
 | others

 choices ::= choice { | choice }
[§ 7.3.2]

 component_configuration ::=
[§ 1.3.2]

 for component_specification
 [binding_indication ;]
 [block_configuration]
 end for ;

 component_declaration ::=
[§ 4.5]

 component identifier [is]
 [local_generic_clause]
 [local_port_clause]
 end component [component_simple_name] ;

 component_instantiation_statement ::=
[§ 9.6]

 instantiation_label :
 instantiated_unit
 [generic_map_aspect]
 [port_map_aspect] ;

 component_specification ::=
[§ 5.2]

 instantiation_list : component_name

 composite_type_definition ::=
[§ 3.2]

 array_type_definition
 | record_type_definition

 concurrent_assertion_statement ::=
[§ 9.4]

 [label :] [postponed] assertion ;

 concurrent_procedure_call_statement ::=
[§ 9.3]

 [label :] [postponed] procedure_call ;

 concurrent_signal_assignment_statement ::=
[§ 9.5]

 [label :] [postponed] conditional_signal_assignment
 | [label :] [postponed] selected_signal_assignment

 concurrent_statement ::=
[§ 9]
 block_statement

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (5 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 | process_statement
 | concurrent_procedure_call_statement
 | concurrent_assertion_statement
 | concurrent_signal_assignment_statement
 | component_instantiation_statement
 | generate_statement

 condition ::= boolean_expression
[§ 8.1]

 condition_clause ::= until condition
[§ 8.1]

 conditional_signal_assignment ::=
[§ 9.5.1]

 target <= options conditional_waveforms ;

 conditional_waveforms ::=
[§ 9.5.1]

 { waveform when condition else }
 waveform [when condition]

 configuration_declaration ::=
[§ 1.3]

 configuration identifier of entity_name is
 configuration_declarative_part
 block_configuration
 end [configuration] [configuration_simple_name] ;

 configuration_declarative_item ::=
[§ 1.3]

 use_clause
 | attribute_specification
 | group_declaration

 configuration_declarative_part ::=
[§ 1.3]

 { configuration_declarative_item }

 configuration_item ::=
[§ 1.3.1]

 block_configuration
 | component_configuration

 configuration_specification ::=
[§ 5.2]

 for component_specification binding_indication ;

 constant_declaration ::=
[§ 4.3.1.1]

 constant identifier_list : subtype_indication [:= expression] ;

 constrained_array_definition ::=
[§ 3.2.1]

 array index_constraint of element_subtype_indication

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (6 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 constraint ::=
[§ 4.2]

 range_constraint
 | index_constraint

 context_clause ::= { context_item }
[§ 11.3]

 context_item ::=
[§ 11.3]

 library_clause
 | use_clause

 decimal_literal ::= integer [. integer] [exponent]
[§ 13.4.1]

 declaration ::=
[§ 4]
 type_declaration
 | subtype_declaration
 | object_declaration
 | interface_declaration
 | alias_declaration
 | attribute_declaration
 | component_declaration
 | group_template_declaration
 | group_declaration
 | entity_declaration
 | configuration_declaration
 | subprogram_declaration
 | package_declaration

 delay_mechanism ::=
[§ 8.4]

 transport
 | [reject time_expression] inertial

 design_file ::= design_unit { design_unit }
[§ 11.1]

 design_unit ::= context_clause library_unit
[§ 11.1]

 designator ::= identifier | operator_symbol
[§ 2.1]

 direction ::= to | downto
[§ 3.1]

 disconnection_specification ::=
[§ 5.3]

 disconnect guarded_signal_specification after time_expression ;

 discrete_range ::= discrete_subtype_indication | range

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (7 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

[§ 3.2.1]

 element_association ::=
[§ 7.3.2]

 [choices =>] expression

 element_declaration ::=
[§ 3.2.2]

 identifier_list : element_subtype_definition ;

 element_subtype_definition ::= subtype_indication
[§ 3.2.2]

 entity_aspect ::=
[§ 5.2.1.1]

 entity entity_name [(architecture_identifier)]
 | configuration configuration_name
 | open

 entity_class ::=
[§ 5.1]

 entity | architecture | configuration
 | procedure | function | package
 | type | subtype | constant
 | signal | variable | component
 | label | literal | units
 | group | file

 entity_class_entry ::= entity_class [<>]
[§ 4.6]

 entity_class_entry_list ::=
[§ 4.6]

 entity_class_entry { , entity_class_entry }

 entity_declaration ::=
[§ 1.1]

 entity identifier is
 entity_header
 entity_declarative_part
 [begin
 entity_statement_part]
 end [entity] [entity_simple_name] ;

 entity_declarative_item ::=
[§ 1.1.2]

 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (8 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 | attribute_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

 entity_declarative_part ::=
[§ 1.1.2]

 { entity_declarative_item }

 entity_designator ::= entity_tag [signature]
[§ 5.1]

 entity_header ::=
[§ 1.1.1]

 [formal_generic_clause]
 [formal_port_clause]

 entity_name_list ::=
[§ 5.1]

 entity_designator { , entity_designator }
 | others
 | all

 entity_specification ::=
[§ 5.1]

 entity_name_list : entity_class

 entity_statement ::=
[§ 1.1.3]

 concurrent_assertion_statement
 | passive_concurrent_procedure_call_statement
 | passive_process_statement

 entity_statement_part ::=
[§ 1.1.3]

 { entity_statement }

 entity_tag ::= simple_name | character_literal | operator_symbol
[§ 5.1]

 enumeration_literal ::= identifier | character_literal
[§ 3.1.1]

 enumeration_type_definition ::=
[§ 3.1.1]

 (enumeration_literal { , enumeration_literal })

 exit_statement ::=
[§ 8.11]

 [label :] exit [loop_label] [when condition] ;

 exponent ::= E [+] integer | E - integer
[§ 13.4.1]

 expression ::=

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (9 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

[§ 7.1]

 relation { and relation }
 | relation { or relation }
 | relation { xor relation }
 | relation [nand relation]
 | relation [nor relation]
 | relation { xnor relation }

 extended_digit ::= digit | letter
[§ 13.4.2]

 extended_identifier ::= \ graphic_character { graphic_character } \
[§ 13.3.2]

 factor ::=
[§ 7.1]

 primary [** primary]
 | abs primary
 | not primary

 file_declaration ::=
[§ 4.3.1.4]

 file identifier_list : subtype_indication [file_open_information] ;

 file_logical_name ::= string_expression
[§ 4.3.1.4]

 file_open_information ::=
[§ 4.3.1.4]

 [open file_open_kind_expression] is file_logical_name

 file_type_definition ::=
[§ 3.4]

 file of type_mark

 floating_type_definition ::= range_constraint
[§ 3.1.4]

 formal_designator ::=
[§ 4.3.2.2]

 generic_name
 | port_name
 | parameter_name

 formal_parameter_list ::= parameter_interface_list
[§ 2.1.1]

 formal_part ::=
[§ 4.3.2.2]

 formal_designator
 | function_name (formal_designator)
 | type_mark (formal_designator)

 full_type_declaration ::=
[§ 4.1]

 type identifier is type_definition ;

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (10 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 function_call ::=
[§ 7.3.3]

 function_name [(actual_parameter_part)]

 generate_statement ::=
[§ 9.7]

 generate_label :
 generation_scheme generate
 [{ block_declarative_item }
 begin]
 { concurrent_statement }
 end generate [generate_label] ;

 generation_scheme ::=
[§ 9.7]

 for generate_parameter_specification
 | if condition

 generic_clause ::=
[§ 1.1.1]

 generic (generic_list) ;

 generic_list ::= generic_interface_list
[§ 1.1.1.1]

 generic_map_aspect ::=
[§ 5.2.1.2]

 generic map (generic_association_list)

 graphic_character ::=
[§ 13.1]

 basic_graphic_character | lower_case_letter | other_special_character

 group_constituent ::= name | character_literal
[§ 4.7]

 group_constituent_list ::= group_constituent { , group_constituent}
[§ 4.7]

 group_declaration ::=
[§ 4.7]

 group identifier : group_template_name (group_constituent_list) ;

 group_template_declaration ::=
[§ 4.6]

 group identifier is (entity_class_entry_list) ;

 guarded_signal_specification ::=
[§ 5.3]

 guarded_signal_list : type_mark

 identifier ::= basic_identifier | extended_identifier
[§ 13.3]

 identifier_list ::= identifier { , identifier }

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (11 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

[§ 3.2.2]

 if_statement ::=
[§ 8.7]

 [if_label :]
 if condition then
 sequence_of_statements
 { elsif condition then
 sequence_of_statements }
 [else
 sequence_of_statements]
 end if [if_label] ;

 incomplete_type_declaration ::= type identifier ;
[§ 3.3.1]

 index_constraint ::= (discrete_range { , discrete_range })
[§ 3.2.1]

 index_specification ::=
[§; 1.3.1]

 discrete_range
 | static_expression

 index_subtype_definition ::= type_mark range <>
[§ 3.2.1]

 indexed_name ::= prefix (expression { , expression })
[§ 6.4]

 instantiated_unit ::=
[§ 9.6]

 [component] component_name
 | entity entity_name [(architecture_identifier)]
 | configuration configuration_name

 instantiation_list ::=
[§ 5.2]

 instantiation_label { , instantiation_label }
 | others
 | all

 integer ::= digit { [underline] digit }
[§ 13.4.1]

 integer_type_definition ::= range_constraint
[§ 3.1.2]

 interface_constant_declaration ::=
[§ 4.3.2]

 [constant] identifier_list : [in] subtype_indication [:=
static_expression]

 interface_declaration ::=
[§ 4.3.2]

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (12 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 interface_constant_declaration
 | interface_signal_declaration
 | interface_variable_declaration
 | interface_file_declaration

 interface_element ::= interface_declaration
[§ 4.3.2.1]

 interface_file_declaration ::=
[§ 4.3.2]

 file identifier_list : subtype_indication

 interface_list ::=
[§ 4.3.2.1]

 interface_element { ; interface_element }

 interface_signal_declaration ::
[§ 4.3.2]

 [signal] identifier_list : [mode] subtype_indication [bus] [:=
static_expression]

 interface_variable_declaration ::=
[§ 4.3.2]

 [variable] identifier_list : [mode] subtype_indication [:=
static_expression]

 iteration_scheme ::=
[§ 8.9]

 while condition
 | for loop_parameter_specification

 label ::= identifier
[§ 9.7]

 letter ::= upper_case_letter | lower_case_letter
[§; 13.3.1]

 letter_or_digit ::= letter | digit
[§ 13.3.1]

 library_clause ::= library logical_name_list ;
[§ 11.2]

 library_unit ::=
[§ 11.1]

 primary_unit
 | secondary_unit

 literal ::=
[§ 7.3.1]

 numeric_literal
 | enumeration_literal
 | string_literal
 | bit_string_literal
 | null

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (13 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 logical_name ::= identifier
[§ 11.2]

 logical_name_list ::= logical_name { , logical_name }
[§ 11.2]

 logical_operator ::= and | or | nand | nor | xor | xnor
[§; 7.2]

 loop_statement ::=
[§ 8.9]

 [loop_label :]
 [iteration_scheme] loop
 sequence_of_statements
 end loop [loop_label] ;

 miscellaneous_operator ::= ** | abs | not
[§ 7.2]

 mode ::= in | out | inout | buffer | linkage
[§ 4.3.2]

 multiplying_operator ::= * | / | mod | rem
[§ 7.2]

 name ::=
[§ 6.1]

 simple_name
 | operator_symbol
 | selected_name
 | indexed_name
 | slice_name
 | attribute_name
 next_statement ::=
[§ 8.10]

 [label :] next [loop_label] [when condition] ;

 null_statement ::= [label :] null ;
[§ 8.13]

 numeric_literal ::=
[§ 7.3.1]

 abstract_literal
 | physical_literal

 object_declaration ::=
[§ 4.3.1]

 constant_declaration
 | signal_declaration
 | variable_declaration
 | file_declaration

 operator_symbol ::= string_literal
[§ 2.1]

 options ::= [guarded] [delay_mechanism]

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (14 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

[§ 9.5]

 package_body ::=
[§ 2.6]

 package body package_simple_name is
 package_body_declarative_part
 end [package body] [package_simple_name] ;

 package_body_declarative_item ::=
[§ 2.6]

 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | use_clause
 | group_template_declaration
 | group_declaration

 package_body_declarative_part ::=
[§ 2.6]

 { package_body_declarative_item }

 package_declaration ::=
[§ 2.5]

 package identifier is
 package_declarative_part
 end [package] [package_simple_name] ;

 package_declarative_item ::=
[§ 2.5]

 subprogram_declaration
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | signal_declaration
 | shared_variable_declaration
 | file_declaration
 | alias_declaration
 | component_declaration
 | attribute_declaration
 | attribute_specification
 | disconnection_specification
 | use_clause
 | group_template_declaration
 | group_declaration

 package_declarative_part ::=
[§ 2.5]

 { package_declarative_item }

 parameter_specification ::=

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (15 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

[§ 8.9]

 identifier in discrete_range

 physical_literal ::= [abstract_literal] unit_name
[§ 3.1.3]

 physical_type_definition ::=
[§ 3.1.3]

 range_constraint
 units
 primary_unit_declaration
 { secondary_unit_declaration }
 end units [physical_type_simple_name]

 port_clause ::=
[§ 1.1.1]

 port (port_list) ;

 port_list ::= port_interface_list
[§ 1.1.1.2]

 port_map_aspect ::=
[§ 5.2.1.2]

 port map (port_association_list)

 prefix ::=
[§ 6.1]

 name
 | function_call

 primary ::=
[§ 7.1]

 name
 | literal
 | aggregate
 | function_call
 | qualified_expression
 | type_conversion
 | allocator
 | (expression)

 primary_unit ::
[§ 11.1]

 entity_declaration
 | configuration_declaration
 | package_declaration

 primary_unit_declaration ::= identifier;
 procedure_call ::= procedure_name [(actual_parameter_part)]
[§ 8.6]

 procedure_call_statement ::= [label :] procedure_call ;
[§ 8.6]

 process_declarative_item ::=
[§ 9.2]

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (16 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | use_clause
 | group_template_declaration
 | group_declaration

 process_declarative_part ::=
[§; 9.2]

 { process_declarative_item }

 process_statement ::=
[§ 9.2]

 [process_label :]
 [postponed] process [(sensitivity_list)] [is]
 process_declarative_part
 begin
 process_statement_part
 end [postponed] process [process_label] ;

 process_statement_part ::=
[§ 9.2]

 { sequential_statement }

 qualified_expression ::=
[§ 7.3.4]

 type_mark ' (expression)
 | type_mark ' aggregate
 range ::=
[§ 3.1]

 range_attribute_name
 | simple_expression direction simple_expression

 range_constraint ::= range range
[§ 3.1]

 record_type_definition ::=
[§ 3.2.2]

 record
 element_declaration
 { element_declaration }
 end record [record_type_simple_name]

 relation ::=
[§ 7.1]

 shift_expression [relational_operator shift_expression]

 relational_operator ::= = | /= | < | <= | > | >=
[§ 7.2]

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (17 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 report_statement ::=
[§ 8.3]

 [label :]
 report expression
 [severity expression] ;

 return_statement ::=
[§ 8.12]

 [label :] return [expression] ;

 scalar_type_definition ::=
[§ 3.1]

 enumeration_type_definition | integer_type_definition
 | floating_type_definition | physical_type_definition

 secondary_unit ::=
[§ 11.1]

 architecture_body
 | package_body

 secondary_unit_declaration ::= identifier = physical_literal ;
[§ 3.1.3]

 selected_name ::= prefix . suffix
[§ 6.3]

 selected_signal_assignment ::=
[§ 9.5.2]

 with expression select
 target <= options selected_waveforms ;

 selected_waveforms ::=
[§ 9.5.2]

 { waveform when choices , }
 waveform when choices

 sensitivity_clause ::= on sensitivity_list
[§ 8.1]

 sensitivity_list ::= signal_name { , signal_name }
[§ 8.1]

 sequence_of_statements ::=
[§ 8]
 { sequential_statement }

 sequential_statement ::=
[§ 8]
 wait_statement
 | assertion_statement
 | report_statement
 | signal_assignment_statement
 | variable_assignment_statement
 | procedure_call_statement
 | if_statement

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (18 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 | case_statement
 | loop_statement
 | next_statement
 | exit_statement
 | return_statement
 | null_statement

 shift_expression ::=
[§ 7.1]

 simple_expression [shift_operator simple_expression]

 shift_operator ::= sll | srl | sla | sra | rol | ror
[§ 7.2]

 sign ::= + | -
[§ 7.2]

 signal_assignment_statement ::=
[§ 8.4]

 [label :] target <= [delay_mechanism] waveform ;

 signal_declaration ::=
[§ 4.3.1.2]

 signal identifier_list : subtype_indication [signal_kind] [:= expression
] ;

 signal_kind ::= register | bus
[§; 4.3.1.2]

 signal_list ::=
[§ 5.3]

 signal_name { , signal_name }
 | others
 | all

 signature ::= [[type_mark { , type_mark }] [return type_mark]]
[§ 2.3.2]

 simple_expression ::=
[§ 7.1]

 [sign] term { adding_operator term }

 simple_name ::= identifier
[§ 6.2]

 slice_name ::= prefix (discrete_range)
[§ 6.5]

 string_literal ::= " { graphic_character } "
[§ 13.6]

 subprogram_body ::=
[§ 2.2]

 subprogram_specification is
 subprogram_declarative_part
 begin
 subprogram_statement_part

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (19 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 end [subprogram_kind] [designator] ;

 subprogram_declaration ::=
[§ 2.1]

 subprogram_specification ;

 subprogram_declarative_item ::=
[§ 2.2]

 subprogram_declaration
 | subprogram_body
 | type_declaration
 | subtype_declaration
 | constant_declaration
 | variable_declaration
 | file_declaration
 | alias_declaration
 | attribute_declaration
 | attribute_specification
 | use_clause
 | group_template_declaration
 | group_declaration

 subprogram_declarative_part ::=
[§ 2.2]

 { subprogram_declarative_item }

 subprogram_kind ::= procedure | function
[§ 2.2]

 subprogram_specification ::=
[§ 2.1]

 procedure designator [(formal_parameter_list)]
 | [pure | impure] function designator [(formal_parameter_list)]
 return type_mark

 subprogram_statement_part ::=
[§ 2.2]

 { sequential_statement }

 subtype_declaration ::=
[§ 4.2]

 subtype identifier is subtype_indication ;

 subtype_indication ::=
[§ 4.2]

 [resolution_function_name] type_mark [constraint]

 suffix ::=
[§ 6.3]

 simple_name
 | character_literal
 | operator_symbol
 | all

 target ::=

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (20 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

[§ 8.4]

 name
 | aggregate

 term ::=
[§ 7.1]

 factor { multiplying_operator factor }

 timeout_clause ::= for time_expression
[§ 8.1]

 type_conversion ::= type_mark (expression)
[§ 7.3.5]

 type_declaration ::=
[§ 4.1]

 full_type_declaration
 | incomplete_type_declaration

 type_definition ::=
[§ 4.1]

 scalar_type_definition
 | composite_type_definition
 | access_type_definition
 | file_type_definition

 type_mark ::=
[§ 4.2]

 type_name
 | subtype_name

 unconstrained_array_definition ::=
[§ 3.2.1]

 array (index_subtype_definition { , index_subtype_definition })
 of element_subtype_indication

 use_clause ::=
[§ 10.4]

 use selected_name { , selected_name } ;

 variable_assignment_statement ::=
[§ 8.5]

 [label :] target := expression ;

 variable_declaration ::=
[§ 4.3.1.3]

 [shared] variable identifier_list : subtype_indication [:= expression] ;

 wait_statement ::=
[§ 8.1]

 [label :] wait [sensitivity_clause] [condition_clause] [
timeout_clause] ;

 waveform ::=
[§ 8.4]

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (21 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

 waveform_element { , waveform_element }
 | unaffected

 waveform_element ::=
[§ 8.4.1]

 value_expression [after time_expression]
 | null [after time_expression]

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXA.HTM (22 of 22) [12/28/2002 12:50:10 PM]

VHDL LRM- Introduction

Annex B

Glossary

(informative)
This glossary contains brief, informal descriptions for a number of terms and phrases used to
define this language. The complete, formal definition of each term or phrase is provided in the
main body of the standard.

For each entry, the relevant clause numbers in the text are given. Some descriptions refer to
multiple clauses in which the single concept is discussed; for these, the clause number
containing the definition of the concept is given in italics. Other descriptions contain multiple
clause numbers when they refer to multiple concepts; for these, none of the clause numbers are
italicized.

B.1 abstract literal: A literal of the universal_real abstract type or the universal_integer
abstract type. (§ 13.2 , § 13.4)

B.2 access type: A type that provides access to an object of a given type. Access to such an
object is achieved by an access value returned by an allocator; the access value is said to
designate the object.(§;3, § 3.3)

B.3 access mode: The mode in which a file object is opened, which can be either read-only or
write-only. The access mode depends on the value supplied to the Open_Kind parameter. (§
3.4.1 , § 14.3).

B.4 access value: A value of an access type. This value is returned by an allocator and
designates an object (which must be a variable) of a given type. A null access value designates
no object. An access value can only designate an object created by an allocator; it cannot
designate an object declared by an object declaration. (§3, § 3.3)

B.5 active driver: A driver that acquires a new value during a simulation cycle regardless of

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (1 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

whether the new value is different from the previous value. (§ 12.6.2 , § 12.6.4)

B.6 actual: An expression, a port, a signal, or a variable associated with a formal port, formal
parameter, or formal generic. (§ 1.1.1.1 , § 1.1.1.2 , § 3.2.1.1 , § 4.3.1.2 , § 4.3.2.2 , § 5.2.1 , §
5.2.1.2)

B.7 aggregate:

a) The kind of expression, denoting a value of a composite type. The value is specified
by giving the value of each of the elements of the composite type. Either a positional
association or a named association may be used to indicate which value is associated
with which element.

b) A kind of target of a variable assignment statement or signal assignment statement
assigning a composite value. The target is then said to be in the form of an aggregate.
(§ 7.3.1 , § 7.3.2 , § 7.3.4 , § 7.3.5 , § 7.5.2)

B.8 alias: An alternate name for a named entity. (§ 4.3.3)

B.9 allocator: An operation used to create anonymous, variable objects accessible by means of
access values. (§ 3.3 , § 7.3.6)

B.10 analysis: The syntactic and semantic analysis of source code in a VHDL design file and
the insertion of intermediate form representations of design units into a design library. (§ 11.1 ,
§ 11.2 , § 11.4)

B.11 anonymous: The undefined simple name of an item, which is created implicitly. The
base type of a numeric type or an array type is anonymous;similarly, the object denoted by an
access value is anonymous. (§ 4.1)

B.12 appropriate: A prefix is said to be appropriate for a type if the type of the prefix is the
type considered, or if the type of the prefix is an access type whose designated type is the type
considered.(§ 6.1)

B.13 architecture body: A body associated with an entity declaration to describe the internal
organization or operation of a design entity. An architecture body is used to describe the
behavior, data flow, or structure of a design entity. (§1, § 1.2)

B.14 array object: An object of an array type.(§3)

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (2 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B.15 array type: A type, the value of which consists of elements that are all of the same
subtype (and hence, of the same type). Each element is uniquely distinguished by an index (for
a one-dimensional array) or by a sequence of indexes (for a multidimensional array). Each
index must be a value of a discrete type and must lie in the correct index range. (§ 3.2.1)

B.16 ascending range: A range L to R. (§ 3.1)

B.17 ASCII: The American Standard Code for Information Interchange. The package
Standard contains the definition of the type Character, the first 128 values of which represent
the ASCII character set. (§ 3.1.1 , §; 14.2)

B.18 assertion violation: A violation that occurs when the condition of an assertion statement
evaluates to false. (§ 8.2)

B.19 associated driver: The single driver for a signal in the (explicit or equivalent) process
statement containing the signal assignment statement.(12.6.1 ">§ 12.6.1)

B.20 associated in whole: When a single association element of a composite formal supplies
the association for the entire formal.(§ 4.3.2.2)

B.21 associated individually: A property of a formal port, generic, or parameter of a
composite type with respect to some association list. A composite formal whose association is
defined by multiple association elements in a single association list is said to be associated
individually in that list. The formats of such association elements must denote non-overlapping
subelements or slices of the formal. (§ 4.3.2.2)

B.22 association element: An element that associates an actual or local with a local or formal.
(§ 4.3.2.2)

B.23 association list: A list that establishes correspondences between formal or local port or
parameter names and local or actual names or expressions. (§ 4.3.2.2)

B.24 attribute: A definition of some characteristic of a named entity. Some attributes are
predefined for types, ranges, values, signals, and functions. The remaining attributes are user
defined and are always constants.(§ 4.4)

B.25 base specifier: A lexical element that indicates whether a bit string literal is to be
interpreted as a binary, octal, or hexadecimal value.(§ 13.7)

B.26 base type: The type from which a subtype defines a subset of possible values, otherwise

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (3 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

known as a constraint. This subset is not required to be proper. The base type of a type is the
type itself. The base type of a subtype is found by recursively examining the type mark in the
subtype indication defining the subtype. If the type mark denotes a type, that type is the base
type of the subtype; otherwise, the type mark is a subtype,and this procedure is repeated on
that subtype. (§3) See also subtype.

B.27 based literal: An abstract literal expressed in a form that specifies the base explicitly.
The base is restricted to the range 2 to 16.(§ 13.4.2)

B.28 basic operation: An operation that is inherent in one of the following:

a) An assignment (in an assignment statement or initialization);

b) An allocator;

c) A selected name, an indexed name, or a slice name;

d) A qualification (in a qualified expression), an explicit type conversion, a formal or
actual designator in the form of a type conversion, or an implicit type conversion of a
value of type universal_integer or universal_real to the corresponding value of another
numeric type; or

e) A numeric literal (for a universal type), the literal null (for an access type), a string
literal, a bit string literal, an aggregate, or a predefined attribute. (§3)

B.29 basic signal: A signal that determines the driving values for all other signals. A basic
signal is

-- Either a scalar signal or a resolved signal;

-- Not a subelement of a resolved signal;

-- Not an implicit signal of the form S'Stable(T), S'Quiet(T), or S'Transaction; and

-- Not an implicit signal GUARD. (§ 12.6.2)

B.30 belong (to a range): A property of a value with respect to some range. The value V is said
to belong to a range if the relations (lower bound <= V) and (V <= upper bound) are both
true,where lower bound and upper bound are the lower and upper bounds, respectively,of the
range. (§ 3.1 , § 3.2.1)

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (4 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B. 31 belong (to a subtype): A property of a value with respect to some subtype. A value is
said to belong to a subtype of a given type if it belongs to the type and satisfies the applicable
constraint.(§3, § 3.2.1)

B.32 binding: The process of associating a design entity and,optionally, an architecture with
an instance of a component. A binding can be specified in an explicit or a default binding
indication. (§ 1.3 , § 5.2.1 , § 5.2.2 , § 12.3.2.2 , § 12.4.3)

B.33 bit string literal: A literal formed by a sequence of extended digits enclosed between
two quotation (") characters and preceded by a base specifier. The type of a bit string literal is
determined from the context.(§ 7.3.1 , § 13.7)

B. 34 block: The representation of a portion of the hierarchy of a design. A block is either an
external block or an internal block.(§1, § 1.1.1.1 , § 1.1.1.2 , § 1.2.1 § 1.3 , § 1.3.1 , § 1.3.2)

B.35 bound: A label that is identified in the instantiation list of a configuration specification.
(§ 5.2)

B.36 box: The symbol <> in an index subtype definition, which stands for an undefined range.
Different objects of the type need not have the same bounds and direction. (§ 3.2.1)

B.37 bus: One kind of guarded signal. A bus floats to a user-specified value when all of its
drivers are turned off. (§ 4.3.1.2 , § 4.3.2)

B.38 character literal: A literal of the character type. Character literals are formed by
enclosing one of the graphic characters (including the space and nonbreaking space characters)
between two apostrophe (') characters.(§ 13.2 , § 13.5)

B.39 character type: An enumeration type with at least one character literal among its
enumeration literals. (§ 3.1.1 , § 3.1.1.1)

B.40 closely related types: Two type marks that denote the same type or two numeric types.
Two array types may also be closely related if they have the same dimensionality, if their
index types at each position are closely related, and if the array types have the same element
types. Explicit type conversion is only allowed between closely related types. (§ 7.3.5)

B.41 complete: A loop that has finished executing. Similarly, an iteration scheme of a loop is
complete when the condition of a while iteration scheme is FALSE or all of the values of the
discrete range of a for iteration scheme have been assigned to the iteration parameter. (§ 8.9)

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (5 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B.42 complete context: A declaration, a specification, or a statement; complete contexts are
used in overload resolution. (§ 10.5)

B.43 composite type: A type whose values have elements. There are two classes of composite
types: array types and record types.(§3, § 3.2)

B.44 concurrent statement: A statement that executes asynchronously,with no defined
relative order. Concurrent statements are used for dataflow and structural descriptions. (§9)

B.45 configuration: A construct that defines how component instances in a given block are
bound to design entities in order to describe how design entities are put together to form a
complete design. (§1, § 1.3 , § 5.2)

B.46 conform: Two subprogram specifications, are said to conform if, apart from certain
allowed minor variations, both specifications are formed by the same sequence of lexical
elements, and corresponding lexical elements are given the same meaning by the visibility
rules. Conformance is defined similarly for deferred constant declarations. (§ 2.7)

B.47 connected: A formal port associated with an actual port or signal. A formal port
associated with the reserved word open is said to be unconnected. (§ 1.1.1.2)

B.48 constant: An object whose value may not be changed. Constants maybe explicitly
declared, subelements of explicitly declared constants, or interface constants. Constants
declared in packages may also be deferred constants. (§ 4.3.1.1)

B.49 constraint: A subset of the values of a type. The set of possible values for an object of a
given type that can be subjected to a condition is called a constraint. A value is said to satisfy
the constraint if it satisfies the corresponding condition. There are index constraints,range
constraints, and size constraints. (§3)

B.50 conversion function: A function used to convert values flowing through associations.
For interface objects of mode in, conversion functions are allowed only on actuals. For
interface objects of mode out or buffer, conversion functions are allowed only on formals. For
interface objects of mode inout or linkage, conversion functions are allowed on both formals
and actuals. Conversion functions have a single parameter. A conversion function associated
with an actual accepts the type of the actual and returns the type of the formal. A conversion
function associated with a formal accepts the type of the formal and returns the type of the
actual. (§ 4.3.2.2)

B.51 convertible: A property of an operand with respect to some type. An operand is
convertible to some type if there exists an implicit conversion to that type. (§ 7.3.5)

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (6 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B.52 current value: The value component of the single transaction of a driver whose time
component is not greater than the current simulation time.(§ 12.6 , § 12.6.1 , § 12.6.2 , § 12.6.3
)

B.53 decimal literal: An abstract literal that is expressed in decimal notation. The base of the
literal is implicitly 10. The literal may optionally contain an exponent or a decimal point and
fractional part.(§ 13.4.1)

B.54 declaration: A construct that defines a declared entity and associates an identifier (or
some other notation) with it. This association is in effect within a region of text that is called
the scope of the declaration. Within the scope of a declaration, there are places where it is
possible to use the identifier to refer to the associated declared entity; at such places, the
identifier is said to be the simple name of the named entity. The simple name is said to denote
the associated named entity.(§4)

B.55 declarative part: A syntactic component of certain declarations or statements (such as
entity declarations, architecture bodies, and block statements). The declarative part defines the
lexical area (usually introduced by a keyword such as is and terminated with another keyword
such as begin) within which declarations may occur. (§ 1.1.2 , § 1.2.1 , § 1.3 , § 2.6 , § 9.1 , §
9.2 , § 9.6.1 , § 9.6.2)

B.56 declarative region: A semantic component of certain declarations or statements. A
declarative region may include disjoint parts, such as the declarative region of an entity
declaration, which extends to the end of any architecture body for that entity. (§ 10.1)

B.57 decorate: To associate a user-defined attribute with a named entity and to define the
value of that attribute. (§ 5.1)

B.58 default expression: A default value that is used for a formal generic, port, or parameter
if the interface object is unassociated. A default expression is also used to provide an initial
value for signals and their drivers. (§ 4.3.1.2 , § 4.3.2.2)

B.59 deferred constant: A constant that is declared without an assignment symbol (:=) and
expression in a package declaration. A corresponding full declaration of the constant must
exist in the package body to define the value of the constant. (§ 4.3.1.1)

B.60 delta cycle: A simulation cycle in which the simulation time at the beginning of the cycle
is the same as at the end of the cycle. That is,simulation time is not advanced in a delta cycle.
Only nonpostponed processes can be executed during a delta cycle. (§ 12.6.4)

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (7 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B.61 denote: A property of the identifier given in a declaration. Where the declaration is
visible, the identifier given in the declaration is said to denote the named entity declared in the
declaration.(§4)

B.62 depend (on a library unit): A design unit that explicitly or implicitly mentions other
library units in a use clause. These dependencies affect the allowed order of analysis of design
units. (§ 11.4)

B.63 depend (on a signal value): A property of an implicit signal with respect to some other
signal. The current value of an implicit signal R is said to depend on the current value of
another signal S if R denotes an implicit signal S'Stable(T), S'Quiet(T), or S'Transaction, or if
R denotes an implicit GUARD signal and S is any other implicit signal named within the guard
expression that defines the current value of R.(§ 12.6.3)

B.64 descending range: A range L downto R. (§ 3.1)

B.65 design entity: An entity declaration together with an associated architecture body.
Different design entities may share the same entity declaration, thus describing different
components with the same interface or different views of the same component. (§1)

B.66 design file: One or more design units in sequence. (§ 11.1)

B.67 design hierarchy: The complete representation of a design that results from the
successive decomposition of a design entity into subcomponents and binding of those
components to other design entities that may be decomposed in a similar manner. (§1)

B.68 design library: A host-dependent storage facility for intermediate-form representations
of analyzed design units. (§ 11.2)

B.69 design unit: A construct that can be independently analyzed and stored in a design
library. A design unit may be an entity declaration, an architecture body, a configuration
declaration, a package declaration, or a package body declaration. (§ 11.1)

B.70 designate: A property of access values that relates the value to some object when the
access value is nonnull. A nonnull access value is said to designate an object. (§ 3.3)

B.71 designated subtype: For an access type, the subtype defined by the subtype indication of
the access type definition. (§ 3.3)

B.72 designated type: For an access type, the base type of the subtype defined by the subtype

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (8 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

indication of the access type definition. (§ 3.3)

B.73 designator:

a) Syntax that forms part of an association element. A formal designator specifies
which formal parameter, port, or generic (or which subelement or slice of a parameter,
port, or generic) is to be associated with an actual by the given association element. An
actual designator specifies which actual expression, signal, or variable is to be
associated with a formal (or subelement or subelements of a formal). An actual
designator may also specify that the formal in the given association element is to be left
unassociated (with an actual designator of open). (§ 4.3.2.2)

b) An identifier, character literal, or operator symbol that defines an alias for some
other name. (§ 4.3.3)

c) A simple name that denotes a predefined or user-defined attribute in an attribute
name, or a user-defined attribute in an attribute specification.(§ 5.1 , § 6.6)

d) An simple name, character literal, or operator symbol, and possibly a signature, that
denotes a named entity in the entity name list of an attribute specification. (§ 5.1)

e) An identifier or operator symbol that defines the name of a subprogram.(§ 2.1)

B.74 directly visible: A visible declaration that is not visible by selection. A declaration is
directly visible within its immediate scope,excluding any places where the declaration is
hidden. A declaration occurring immediately within the visible part of a package can be made
directly visible by means of a use clause. (§ 10.3 , § 10.4). See also visible.

B.75 discrete array: A one-dimensional array whose elements are of a discrete type. (§ 7.2.3)

B.76 discrete range: A range whose bounds are of a discrete type.(§ 3.2.1 , § 3.2.1.1)

B.77 discrete type: An enumeration type or an integer type. Each value of a discrete type has
a position number that is an integer value. Indexing and iteration rules use values of discrete
types. (§ 3.1)

B.78 driver: A container for a projected output waveform of a signal. The value of the signal
is a function of the current values of its drivers. Each process that assigns to a given signal
implicitly contains a driver for that signal. A signal assignment statement affects only the
associated driver(s). (§ 12.4.4 , § 12.6.1 , § 12.6.2 , § 12.6.3)

file:///E|/temp/Downloads%20Elektroda/VHDLrart...al1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (9 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B.79 driving value: The value a signal provides as a source of other signals. (§ 12.6.2)

B.80 effective value: The value obtained by evaluating a reference to the signal within an
expression. (§ 12.6.2)

B.81 elaboration: The process by which a declaration achieves its effect. Prior to the
completion of its elaboration (including before the elaboration), a declaration is not yet
elaborated. (§12)

B.82 element: A constituent of a composite type. (§3) See also subelement.

B.83 entity declaration: A definition of the interface between a given design entity and the
environment in which it is used. It may also specify declarations and statements that are part of
the design entity. A given entity declaration may be shared by many design entities, each of
which has a different architecture. Thus, an entity declaration can potentially represent a class
of design entities, each with the same interface. (§1, § 1.1)

B.84 enumeration literal: A literal of an enumeration type. An enumeration literal may be
either an identifier or a character literal.(§ 3.1.1 , § 7.3.1)

B.85 enumeration type: A type whose values are defined by listing(enumerating) them. The
values of the type are represented by enumeration literals. (§ 3.1 , § 3.1.1)

B.86 error: A condition that makes the source description illegal. If an error is detected at the
time of analysis of a design unit, it prevents the creation of a library unit for the given design
unit. A run-time error causes simulation to terminate. (§ 11.4)

B.87 erroneous: An error condition that cannot always be detected.(§ 2.1.1.1 , § 2.2)

B.88 event: A change in the current value of a signal, which occurs when the signal is updated
with its effective value. (§ 12.6.2)

B.89 execute:

a) When first the design hierarchy of a model is elaborated, then its nets are initialized,
and finally simulation proceeds with repetitive execution of the simulation cycle, during
which processes are executed and nets are updated.

b) When a process performs the actions specified by the algorithm described in its

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (10 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

statement part. (§12, § 12.6)

B.90 expanded name: A selected name (in the syntactic sense) that denotes one or all of the
primary units in a library or any named entity within a primary unit. (§ 6.3 , § 8.1) See also
selected name.

B.91 explicit ancestor: The parent of the implicit signal that is defined by the predefined
attributes 'DELAYED, 'QUIET, 'STABLE, or 'TRANSACTION. It is determined using the
prefix of the attribute. If the prefix denotes an explicit signal or a slice or subelement (or slice
thereof),then that is the explicit ancestor of the implicit signal. If the prefix is one of the
implicit signals defined by the predefined attributes 'DELAYED,'QUIET, 'STABLE, or
'TRANSACTION, this rule is applied recursively. If the prefix is an implicit signal GUARD,
the signal has no explicit ancestor.(§ 2.2)

B.92 explicit signal: A signal defined by the predefined attributes 'DELAYED, 'QUIET,
'STABLE, or 'TRANSACTION. (§ 2.2)

B.93 explicitly declared constant: A constant of a specified type that is declared by a
constant declaration. (§ 4.3.1.1)

B.94 explicitly declared object: An object of a specified type that is declared by an object
declaration. An object declaration is called a single-object declaration if its identifier list has a
single identifier; it is called a multiple-object declaration if the identifier list has two or more
identifiers. (§ 4.3 , § 4.3.1) See also implicitly declared object.

B.95 expression: A formula that defines the computation of a value.(§ 7.1)

B.96 extend: A property of source text forming a declarative region with disjoint parts. In a
declarative region with disjoint parts, if a portion of text is said to extend from some specific
point of a declarative region to the end of the region, then this portion is the corresponding
subset of the declarative region (and does not include intermediate declarative items between
an interface declaration and a corresponding body declaration).(§ 10.1)

B.97 extended digit: A lexical element that is either a digit or a letter. (§ 13.4.2)

B.98 external block: A top-level design entity that resides in a library and may be used as a
component in other designs. (§1)

B.99 file type: A type that provides access to objects containing a sequence of values of a
given type. File types are typically used to access files in the host system environment. The

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (11 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

value of a file object is the sequence of values contained in the host system file. (§3, § 3.4)

B.100 floating point types: A discrete scalar type whose values approximate real numbers.
The representation of a floating point type includes a minimum of six decimal digits of
precision. (§ 3.1 , § 3.1.4)

B.101 foreign subprogram: A subprogram that is decorated with the attribute 'FOREIGN,
defined in package STANDARD. The STRING value of the attribute may specify
implementation-dependent information about the foreign subprogram. Foreign subprograms
may have non-VHDL implementations. An implementation may place restrictions on the
allowable modes, classes, and types of the formal parameters to a foreign subprogram, such as
constraints on the number and allowable order of the parameters. (§ 2.2)

B.102 formal: A formal port or formal generic of a design entity, a block statement, or a
formal parameter of a subprogram. (§ 2.1.1 , § 4.3.2.2 , § 5.2.1.2 , § 9.1)

B.103 full declaration: A constant declaration occurring in a package body with the same
identifier as that of a deferred constant declaration in the corresponding package declaration. A
full type declaration is a type declaration corresponding to an incomplete type declaration. (§
2.6)

B.104 fully bound: A binding indication for the component instance implies an entity
interface and an architecture. (§ 5.2.1.1)

B.105 generate parameter: A constant object whose type is the base type of the discrete
range of a generate parameter specification. A generate parameter is declared by a generate
statement. (§ 9.7)

B.106 generic: An interface constant declared in the block header of a block statement, a
component declaration, or an entity declaration. Generics provide a channel for static
information to be communicated to a block from its environment. Unlike constants, however,
the value of a generic can be supplied externally, either in a component instantiation statement
or in a configuration specification. (§ 1.1.1.1)

B.107 generic interface list: A list that defines local or formal generic constants. (§ 1.1.1.1 , §
4.3.2.1)

B.108 globally static expression: An expression that can be evaluated as soon as the design
hierarchy in which it appears is elaborated. A locally static expression is also globally static
unless the expression appears in a dynamically elaborated context. (§ 7.4)

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (12 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B.109 globally static primary: A primary whose value can be determined during the
elaboration of its complete context and that does not thereafter change. Globally static
primaries can only appear within statically elaborated contexts. (§ 7.4.2)

B.110 group: A named collection of named entities. Groups relate different named entities for
the purposes not specified by the language. In particular, groups may be decorated with
attributes. (§ 4.6 , § 4.7)

B.111 guard: See guard expression.

B.112 guard expression: A Boolean-valued expression associated with a block statement that
controls assignments to guarded signals within the block. A guard expression defines an
implicit signal GUARD that may be used to control the operation of certain statements within
the block. (§ 4.3.1.2 , § 9.1 , § 9.5)

B.113 guarded assignment: A concurrent signal assignment statement that includes the
option guarded, which specifies that the signal assignment statement is executed when a
signal GUARD changes from FALSE to TRUE, or when that signal has been TRUE and an
event occurs on one of the signals referenced in the corresponding GUARD expression. The
signal GUARD may be one of the implicitly declared GUARD signals associated with block
statements that have guard expressions, or it may be an explicitly declared signal of type
Boolean that is visible at the point of the concurrent signal assignment statement.(§ 9.5)

B.114 guarded signal: A signal declared as a register or a bus. Such signals have special
semantics when their drivers are updated from within guarded signal assignment statements. (§
4.3.1.2)

B.115 guarded target: A signal assignment target consisting only of guarded signals. An
unguarded target is a target consisting only of unguarded signals. (§ 9.5)

B.116 hidden: A declaration that is not directly visible. A declaration may be hidden in its
scope by a homograph of the declaration. (§ 10.3)

B.117 homograph: A reflexive property of two declarations. Each of two declarations is said
to be a homograph of the other if both declarations have the same identifier and overloading is
allowed for at most one of the two. If overloading is allowed for both declarations, then each
of the two is a homograph of the other if they have the same identifier, operator symbol, or
character literal, as well as the same parameter and result type profile.(§ 1.3.1 , § 10.3)

B.118 identify: A property of a name appearing in an element association of an assignment

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (13 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

target in the form of an aggregate. The name is said to identify a signal or variable and any
subelements of that signal or variable. (§ 8.4 , § 8.5)

B.119 immediate scope: A property of a declaration with respect to the declarative region
within which the declaration immediately occurs. The immediate scope of the declaration
extends from the beginning of the declaration to the end of the declarative region. (§ 10.2)

B.120 immediately within: A property of a declaration with respect to some declarative
region. A declaration is said to occur immediately within a declarative region if this region is
the innermost region that encloses the declaration, not counting the declarative region (if
any)associated with the declaration itself. (§ 10.1)

B.121 implicit signal: Any signal S'Stable(T), S'Quiet(T), S'Delayed, or S'Transaction, or any
implicit GUARD signal. A slice or subelement (or slice thereof) of an implicit signal is also an
implicit signal.(§ 12.6.2 , § 12.6.3 , § 12.6.4)

B.122 implicitly declared object: An object whose declaration is not explicit in the source
description, but is a consequence of other constructs; for example, signal GUARD. (§ 4.3 , §
9.1 , § 14.1) See also declared object.

B.123 imply: A property of a binding indication in a configuration specification with respect
to the design entity indicated by the binding specification. The binding indication is said to
imply the design entity; the design entity maybe indicated directly, indirectly, or by default. (§
5.2.1.1)

B.124 impure function: A function that may return a different value each time it is called,
even when different calls have the same actual parameter values. A pure function returns the
same value each time it is called using the same values as actual parameters. An impure
function can update objects outside of its scope and can access a broader class of values than a
pure function. (§2)

B.125 incomplete type declaration: A type declaration that is used to define mutually
dependent and recursive access types. (§ 3.3.1)

B.126 index constraint: A constraint that determines the index range for every index of an
array type, and thereby the bounds of the array. An index constraint is compatible with an
array type if and only if the constraint defined by each discrete range in the index constraint is
compatible with the corresponding index subtype in the array type. An array value satisfies an
index constraint if the array value and the index constraint have the same index range at each
index position . (§ 3.1 , § 3.2.1.1)

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (14 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B.127 index range: A multidimensional array has a distinct element for each possible
sequence of index values that can be formed by selecting one value for each index (in the
given order). The possible values for a given index are all the values that belong to the
corresponding range. This range of values is called the index range. (§ 3.2.1)

B.128 index subtype: For a given index position of an array, the index subtype is denoted by
the type mark of the corresponding index subtype definition. (§ 3.2.1)

B.129 inertial delay: A delay model used for switching circuits; a pulse whose duration is
shorter than the switching time of the circuit will not be transmitted. Inertial delay is the
default delay mode for signal assignment statements. (§ 8.4) See also transport delay.

B.130 initial value expression: An expression that specifies the initial value to be assigned to
a variable. (§ 4.3.1.3)

B.131 inputs: The signals identified by the longest static prefix of each signal name appearing
as a primary in each expression (other than time expressions) within a concurrent signal
assignment statement. (§ 9.5)

B.132 instance: A subcomponent of a design entity whose prototype is a component
declaration, design entity, or configuration declaration. Each instance of a component may
have different actuals associated with its local ports and generics. A component instantiation
statement whose instantiated unit denotes a component creates an instance of the
corresponding component. A component instantiation statement whose instantiated unit
denotes either a design entity or a configuration declaration creates an instance of the denoted
design entity. (§ 9.6 , § 9.6.1 , § 9.6.2)

B.133 integer literal: An abstract literal of the type universal_integer that does not contain a
base point.(§ 13.4)

B.134 integer type: A discrete scalar type whose values represent integer numbers within a
specified range. (§ 3.1 , § 3.1.2)

B.135 interface list: A list that declares the interface objects required by a subprogram,
component, design entity, or block statement.(§ 4.3.2.1)

B.136 internal block: A nested block in a design unit, as defined by a block statement. (§1)

B.137 ISO: The International Organization for Standardization.

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (15 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B.138 ISO 8859-1: The ISO Latin-1 character set. Package Standard contains the definition of
type Character, which represents the ISO Latin-1character set. (§ 3.1.1 , § 14.2)

B.139 kernel process: A conceptual representation of the agent that coordinates the activity of
user-defined processes during a simulation. The kernel process causes the execution of I/O
operations, the propagation of signal values, and the updating of values of implicit signals
[such as S'Stable(T)]; in addition, it detects events that occur and causes the appropriate
processes to execute in response to those events. (§ 12.6)

B.140 left of: When both a value V1 and a value V2 belong to a range and either the range is
an ascending range and V2 is the successor of V1, or the range is a descending range and V2 is
the predecessor of V1. (§ 3.1)

B.141 left-to-right order: When each value in a list of values is to the left of the next value in
the list within that range, except for the last value in the list. (§ 3.1)

B.142 library: See design library.

B.143 library unit: The representation in a design library of an analyzed design unit. (§ 11.1)

B.144 literal: A value that is directly specified in the description of a design. A literal can be a
bit string literal, enumeration literal, numeric literal, string literal, or the literal null. (§ 7.3.1)

B.145 local generic: An interface object declared in a component declaration that serves to
connect a formal generic in the interface list of an entity and an actual generic or value in the
design unit instantiating that entity. (§ 4.3 , § 4.3.2.2 , § 4.5)

B.146 local port: A signal declared in the interface list of a component declaration that serves
to connect a formal port in the interface list of an entity and an actual port or signal in the
design unit instantiating that entity. (§ 4.3 , § 4.3.2.2 , § 4.5)

B.147 locally static expression: An expression that can be evaluated during the analysis of the
design unit in which it appears. (§ 7.4 , § 7.4.1)

B.148 locally static name: A name in which every expression is locally static (if every
discrete range that appears as part of the name denotes a locally static range or subtype and if
no prefix within the name is either an object or value of an access type or a function call). (§
6.1)

B.149 locally static primary: One of a certain group of primaries that includes literals, certain

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (16 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

constants, and certain attributes. (§ 7.4)

B.150 locally static subtype: A subtype whose bounds and direction can be determined during
the analysis of the design unit in which it appears.(§ 7.4.1)

B.151 longest static prefix: The name of a signal or a variable name,if the name is a static
signal or variable name. Otherwise, the longest static prefix is the longest prefix of the name
that is a static signal or variable name. (§ 6.1) See also static signal name.

B.152 loop parameter: A constant, implicitly declared by the for clause of a loop statement,
used to count the number of iterations of a loop.(§ 8.9)

B.153 lower bound: For a range L to R or L downto R, the smaller of L and R. (§ 3.1)

B.154 match: A property of a signature with respect to the parameter and subtype profile of a
subprogram or enumeration literal. The signature is said to match the parameter and result type
profile if certain conditions are true. (§ 2.3.2)

B.155 matching elements: Corresponding elements of two composite type values that are
used for certain logical and relational operations.(§ 7.2.3)

B.156 member: A slice of an object, a subelement, or an object; or a slice of a subelement of
an object. (§ 3)

B.157 mode: The direction of information flow through the port or parameter. Modes are in,
out, inout, buffer, or linkage. (§ 4.3.2)

B.158 model: The result of the elaboration of a design hierarchy. The model can be executed
in order to simulate the design it represents.(§12, § 12.6)

B.159 name: A property of an identifier with respect to some named entity. Each form of
declaration associates an identifier with a named entity. In certain places within the scope of a
declaration, it is valid to use the identifier to refer to the associated named entity; these places
are defined by the visibility rules. At such places, the identifier is said to be the name of the
named entity. (§4, § 6.1)

B.160 named association: An association element in which the formal designator appears
explicitly. (§ 4.3.2.2 , § 7.3.2)

B.161 named entity: An item associated with an identifier, character literal, or operator

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (17 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

symbol as the result of an explicit or implicit declaration. (§4) See also name.

B.162 net: A collection of drivers, signals (including ports and implicit signals), conversion
functions, and resolution functions that connect different processes. Initialization of a net
occurs after elaboration, and a net is updated during each simulation cycle. (§12, § 12.1 , §
12.6.2)

B.163 nonobject alias: An alias whose designator denotes some named entity other than an
object. (§ 4.3.3 , § 4.3.3.2) See also object alias.

B.164 nonpostponed process: An explicit or implicit process whose source statment does not
contain the reserved word postponed. When a nonpostponed process is resumed, it executes in
the current simulation cycle. Thus, nonpostponed processes have access to the current values
of signals,whether or not those values are stable at the current model time. (§ 9.2)

B.165 null array: Any of the discrete ranges in the index constraint of an array that define a
null range. (§ 3.2.1.1)

B.166 null range: A range that specifies an empty subset of values. A range L to R is a null
range if L > R, and range L downto R is a null range if L < R. (§ 3.1)

B.167 null slice: A slice whose discrete range is a null range.(§ 6.5)

B.168 null waveform element: A waveform element that is used to turn off a driver of a
guarded signal. (§ 8.4.1)

B.169 null transaction: A transaction produced by evaluating a null waveform element. (§
8.4.1)

B.170 numeric literal: An abstract literal, or a literal of a physical type. (§ 7.3.1)

B.171 numeric type: An integer type, a floating point type, or a physical type. (§ 3.1)

B.172 object: A named entity that has a value of a given type. An object can be a constant,
signal, variable, or file. (§ 4.3.3)

B.173 object alias: An alias whose alias designator denotes an object(that is, a constant,
signal, variable, or file). (§ 4.3.3 , §; 4.3.3.1) See also nonobject alias.

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (18 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B.174 overloaded: Identifiers or enumeration literals that denote two different named entities.
Enumeration literals, subprograms, and predefined operators may be overloaded. At any place
where an overloaded enumeration literal occurs in the text of a program, the type of the
enumeration literal must be determinable from the context. (§ 2.1 , § 2.3 , § 2.3.1 , § 2.3.2 , §
3.1.1)

B.175 parameter: A constant, signal, variable, or file declared in the interface list of a
subprogram specification. The characteristics of the class of objects to which a given
parameter belongs are also characteristics of the parameter. In addition, a parameter has an
associated mode that specifies the direction of data flow allowed through the parameter. (§
2.1.1 , § 2.1.1.1 , § 2.1.1.2 , § 2.1.1.3 , § 2.3 , § 2.6)

B.176 parameter interface list: An interface list that declares the parameters for a
subprogram. It may contain interface constant declarations,interface signal declarations,
interface variable declarations, interface file declarations, or any combination thereof. (§
4.3.2.1)

B.177 parameter type profile: Two formal parameter lists that have the same number of
parameters, and at each parameter position the corresponding parameters have the same base
type. (§ 2.3)

B.178 parameter and result type profile: Two subprograms that have the same parameter
type profile, and either both are functions with the same result base type, or neither of the two
is a function. (§ 2.3)

B.179 parent: A process or a subprogram that contains a procedure call statement for a given
procedure or for a parent of the given procedure.(§ 2.2)

B.180 passive process: A process statement where neither the process itself, nor any
procedure of which the process is a parent, contains a signal assignment statement. (§ 9.2)

B.181 physical literal: A numeric literal of a physical type.(§ 3.1.3)

B.182 physical type: A numeric scalar type that is used to represent measurements of some
quantity. Each value of a physical type has a position number that is an integer value. Any
value of a physical type is an integral multiple of the primary unit of measurement for that
type. (§ 3.1 , § 3.1.3)

B.183 port: A channel for dynamic communication between a block and its environment. A
signal declared in the interface list of an entity declaration,in the header of a block statement,

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (19 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

or in the interface list of a component declaration. In addition to the characteristics of signals,
ports also have an associated mode; the mode constrains the directions of data flow allowed
through the port. (§ 1.1.1.2 , § 4.3.1.2)

B.184 port interface list: An interface list that declares the inputs and outputs of a block,
component, or design entity. It consists entirely of interface signal declarations. (§ 1.1.1 , §
1.1.1.2 , § 4.3.2.1 , § 4.3.2.2 , § 9.1)

B.185 positional association: An association element that does not contain an explicit
appearance of the formal designator. An actual designator at a given position in an association
list corresponds to the interface element at the same position in the interface list. (§ 4.3.2.2 , §
7.3.2)

B.186 postponed process: An explicit or implicit process whose source statement contains the
reserved word postponed. When a postponed process is resumed, it does not execute until the
final simulation cycle at the current modeled time. Thus, a postponed process accesses the
values of signals that are the "stable" values at the current simulated time. (§ 9.2)

B.187 predefined operators: Implicitly defined operators that operate on the predefined
types. Every predefined operator is a pure function. No predefined operators have named
formal parameters; therefore, named association may not be used when invoking a predefined
operation. (§ 7.2 , § 14.2)

B.188 primary: One of the elements making up an expression. Each primary has a value and a
type. (§ 7.1)

B.189 projected output waveform: A sequence of one or more transactions representing the
current and projected future values of the driver.(§ 12.6.1)

B.190 pulse rejection limit: The threshold time limit for which a signal value whose duration
is greater than the limit will be propagated. A pulse rejection limit is specified by the reserved
word reject in an inertially delayed signal assignment statement. (§ 8.4)

B.191 pure function: A function that returns the same value each time it is called with the
same values as actual parameters. An impure function may return a different value each time it
is called, even when different calls have the same actual parameter values. (§ 2.1)

B.192 quiet: In a given simulation cycle, a signal that is not active.(§ 12.6.2)

B.193 range: A specified subset of values of a scalar type. (§ 3.1)See also ascending range,

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (20 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

belong (to a range),descending range, lower bound, and upper bound.

B.194 range constraint: A construct that specifies the range of values in a type. A range
constraint is compatible with a subtype if each bound of the range belongs to the subtype or if
the range constraint defines a null range. The direction of a range constraint is the same as the
direction of its range. (§ 3.1 , § 3.1.2 , § 3.1.3 , § 3.1.4)

B.195 read: The value of an object is said to be read when its value is referenced or when
certain of its attributes are referenced.(§ 4.3.2)

B.196 real literal: An abstract literal of the type universal_real that contains a base point. (§
13.4)

B.197 record type: A composite type whose values consist of named elements. (§ 3.2.2 , §
7.3.2.1)

B.198 reference: Access to a named entity. Every appearance of a designator (a name,
character literal, or operator symbol) is a reference to the named entity denoted by the
designator, unless the designator appears in a library clause or use clause. (§ 10.4 , § 11.2)

B.199 register: A kind of guarded signal that retains its last driven value when all of its
drivers are turned off. (§ 4.3.1.2)

B.200 regular structure: Instances of one or more components arranged and interconnected
(via signals) in a repetitive way. Each instance may have characteristics that depend upon its
position within the group of instances. Regular structures may be represented through the use
of the generate statement. (§ 9.7)

B.201 resolution: The process of determining the resolved value of a resolved signal based on
the values of multiple sources for that signal.(§ 2.4 , § 4.3.1.2)

B.202 resolution function: A user-defined function that computes the resolved value of a
resolved signal. (§ 2.4 , § 4.3.1.2)

B.203 resolution limit: The primary unit of type TIME (by default, 1femtosecond). Any
TIME value whose absolute value is smaller than this limit is truncated to zero (0) time units.
(§ 3.1.3.1)

B.204 resolved signal: A signal that has an associated resolution function. (§ 4.3.1.2)

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (21 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B.205 resolved value: The output of the resolution function associated with the resolved
signal, which is determined as a function of the collection of inputs from the multiple sources
of the signal. (§ 2.4 , § 4.3.1.2)

B.206 resource library: A library containing library units that are referenced within the
design unit being analyzed. (§ 11.2)

B.207 result subtype: The subtype of the returned value of a function.(§ 2.1)

B.208 resume: The action of a wait statement upon an enclosing process when the conditions
on which the wait statement is waiting are satisfied. If the enclosing process is a nonpostponed
process, the process will subsequently execute during the current simulation cycle. Otherwise,
the process is a postponed process, which will execute during the final simulation cycle at the
current simulated time. (§ 12.6.3)

B.209 right of: When a value V1 and a value V2 belong to a range and either the range is an
ascending range and V2 is the predecessor of V1, or the range is a descending range and V2 is
the successor of V1. (§ 14.1)

B.210 satisfy: A property of a value with respect to some constraint. The value is said to
satisfy a constraint if the value is in the subset of values determined by the constraint. (§3, §
3.2.1.1)

B.211 scalar type: A type whose values have no elements. Scalar types consist of
enumeration types, integer types, physical types, and floating point types. Enumeration types
and integer types are called discrete types. Integer types, floating point types,and physical
types are called numeric types. All scalar types are ordered; that is, all relational operators are
predefined for their values.(§3, § 3.1)

B.212 scope: A portion of the text in which a declaration may be visible. This portion is
defined by visibility and overloading rules.(§ 10.2)

B.213 selected name: Syntactically, a name having a prefix and suffix separated by a dot.
Certain selected names are used to denote record elements or objects denoted by an access
value. The remaining selected names are referred to as expanded names. (§ 6.3 , § 8.1) Also
see expanded name.

B.214 sensitivity set: The set of signals to which a wait statement is sensitive. The sensitivity
set is given explicitly in anon clause, or is implied by an until clause. (§ 8.1)

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (22 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

B.215 sequential statements: Statements that execute in sequence in the order in which they
appear. Sequential statements are used for algorithmic descriptions. (§8)

B.216 short-circuit operation: An operation for which the right operand is evaluated only if
the left operand has a certain value. The short-circuit operations are the predefined logical
operations and, or,nand, and nor for operands of types BIT and BOOLEAN.(§ 7.2)

B.217 signal: An object with a past history of values. A signal may have multiple drivers, each
with a current value and projected future values. The term signal refers to objects declared by
signal declarations or port declarations. (§ 4.3.1.2)

B.218 signal transform: A sequential statement within a statement transform that determines
which one of the alternative waveforms, if any, is to be assigned to an output signal. A signal
transform can be a sequential signal assignment statement, an if statement, a case statement, or
a null statement.(§ 9.5)

B.219 simple name: The identifier associated with a named entity, either in its own
declaration or in an alias declaration. (§6.2)

B.220 simulation cycle: One iteration in the repetitive execution of the processes defined by
process statements in a model. The first simulation cycle occurs after initialization. A
simulation cycle can be a delta cycle or a time-advance cycle. (§ 12.6.4)

B.221 single-object declaration: An object declaration whose identifier list contains a single
identifier; it is called a multiple-object declaration if the identifier list contains two or more
identifiers. (§ 4.3.1)

B.222 slice: A one-dimensional array of a sequence of consecutive elements of another one-
dimensional array. (§ 6.5)

B.223 source: A contributor to the value of a signal. A source can be a driver or port of a
block with which a signal is associated or a composite collection of sources. (§ 4.3.1.2)

B.224 specification: A class of construct that associates additional information with a named
entity. There are three kinds of specifications:attribute specifications, configuration
specifications, and disconnection specifications. (§5)

B.225 statement transform: The first sequential statement in the process equivalent to the
concurrent signal assignment statement. The statement transform defines the actions of the
concurrent signal assignment statement when it executes. The statement transform is followed

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (23 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

by a wait statement, which is the final statement in the equivalent process. (§ 9.5)

B.226 static: See locally static and globally static.

B.227 static name: A name in which every expression that appears as part of the name (for
example, as an index expression) is a static expression (if every discrete range that appears as
part of the name denotes a static range or subtype and if no prefix within the name is either an
object or value of an access type or a function call). (§ 6.1)

B.228 static range: A range whose bounds are static expressions.(§ 7.4)

B.229 static signal name: A static name that denotes a signal.(§ 6.1)

B.230 static variable name: A static name that denotes a variable.(§ 6.1)

B.231 string literal: A sequence of graphic characters, or possibly none, enclosed between
two quotation marks ("). The type of a string literal is determined from the context. (§ 7.3.1 , §
13.6)

B.232 subaggregate: An aggregate appearing as the expression in an element association
within another, multidimensional array aggregate. The subaggregate is an (n-1)-dimensional
array aggregate, where n is the dimensionality of the outer aggregate. Aggregates of
multidimensional arrays are expressed in row-major (rightmost index varies fastest) order.(§
7.3.2.2)

B.233 subelement: An element of another element. Where other subelements are excluded,
the term element is used. (§3)

B.234 subprogram specification: Specifies the designator of the subprogram, any formal
parameters of the subprogram, and the result type for a function subprogram. (§ 2.1)

B.235 subtype: A type together with a constraint. A value belongs to a subtype of a given type
if it belongs to the type and satisfies the constraint; the given type is called the base type of the
subtype. A type is a subtype of itself. Such a subtype is said to be unconstrained because it
corresponds to a condition that imposes no restriction. (§3)

B.236 suspend: A process that stops executing and waits for an event or for a time period to
elapse. (§ 12.6.4)

B.237 timeout interval: The maximum time a process will be suspended, as specified by the

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (24 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

timeout period in the until clause of a wait statement.(§ 8.1)

B.238 to the left of: See left of.

B.239 to the right of: See right of.

B.240 transaction: A pair consisting of a value and a time. The value represents a (current or)
future value of the driver; the time represents the relative delay before the value becomes the
current value. (§ 12.6.1)

B.241 transport delay: An optional delay model for signal assignment. Transport delay is
characteristic of hardware devices (such as transmission lines) that exhibit nearly infinite
frequency response: any pulse is transmitted, no matter how short its duration. (§ 8.4) See also
inertial delay.

B.242 type: A set of values and a set of operations. (§3)

B.243 type conversion: An expression that converts the value of a subexpression from one
type to the designated type of the type conversion. Associations in the form of a type
conversion are also allowed. These associations have functions and restrictions similar to
conversion functions but can be used in places where conversion functions cannot. In both
cases(expressions and associations), the converted type must be closely related to the
designated type. (§ 4.3.2.2 , § 7.3.5) See also conversion function and closely related types.

B.244 unaffected: A waveform in a concurrent signal assignment statement that does not
affect the driver of the target. (§ 8.4 , § 9.5.1)

B.245 unassociated formal: A formal that is not associated with an actual. (§ 5.2.1.2)

B.246 unconstrained subtype: A subtype that corresponds to a condition that imposes no
restriction. (§3, § 4.2)

B.247 unit name: A name defined by a unit declaration (either the primary unit declaration or
a secondary unit declaration) in a physical type declaration. (§ 3.1.3)

B.248 universal_integer: An anonymous predefined integer type that is used for all integer
literals. The position number of an integer value is the corresponding value of the type
universal_integer. (§ 3.1.2 , § 7.3.1 , § 7.3.5)

B.249 universal_real: An anonymous predefined type that is used for literals of floating point

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (25 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

types. Other floating point types have no literals. However, for each floating point type there
exists an implicit conversion that converts a value of type universal_real into the
corresponding value (if any) of the floating point type. (§ 3.1.4 , § 7.3.1 , § 7.3.5)

B.250 update: An action on the value of a signal, variable, or file. The value of a signal is said
to be updated when the signal appears as the target (or a component of the target) of a signal
assignment statement,(indirectly) when it is associated with an interface object of mode
out,buffer, inout, or linkage, or when one of its subelements(individually or as part of a slice)
is updated. The value of a signal is also said to be updated when it is subelement or slice of a
resolved signal,and the resolved signal is updated. The value of a variable is said to be updated
when the variable appears as the target (or a component of the target) of a variable assignment
statement, (indirectly) when it is associated with an interface object of mode out or linkage, or
when one of its subelements (individually or part of a slice) is updated. The value of a file is
said to be updated when a WRITE operation is performed on the file object. (§ 4.3.2)

B.251 upper bound: For a range L to R or L downto R, the larger of L and R. (§ 3.1)

B.252 variable: An object with a single current value.(§ 4.3.1.3)

B.253 visible: When the declaration of an identifier defines a possible meaning of an
occurrence of the identifier used in the declaration. A visible declaration is visible by selection
(for example, by using an expanded name) or directly visible (for example, by using a simple
name). (§ 10.3)

B.254 waveform: A series of transactions, each of which represents a future value of the
driver of a signal. The transactions in a waveform are ordered with respect to time, so that one
transaction appears before another if the first represents a value that will occur sooner than the
value represented by the other. (§ 8.4)

B.255 white space character: A space, a nonbreaking space, or a horizontal tabulation
character (SP, NBSP, or HT). (§ 14.3)

B.256 working library: A design library into which the library unit resulting from the analysis
of a design unit is placed. (§ 11.2)

file:///E|/temp/Downloads%20Elektroda/VHDLrar...l1/VHDL%20Interactive%20Tutorial/1076_AXB.HTM (26 of 26) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

Annex C

Potentially nonportable constructs

(informative)
This annex lists those VHDL constructs whose use may result in nonportable descriptions. A
description is considered portable if it

a) Compiles, elaborates, initializes, and simulates to termination of the simulation cycle
on all conformant implementations, and

b) The time-variant state of all signals and variables in the description are the same at
all times during the simulation

under the condition that the same stimuli are applied at the same times to the description. The
stimuli applied to a model include the values supplied to generics and ports at the root of the
design hierarchy of the model, if any.

Note that the content of files generated by a description are not part of the state of the
description, but that the content of files consumed by a description are part of the state of the
description.

The use of the following constructs may lead to nonportable VHDL descriptions:

-- Resolution functions that do not treat all inputs symmetrically.

-- The comparison of floating point values.

-- Events on floating-point-valued signals.

-- The use of explicit type conversion to convert floating point values to integer values.

-- Any value that does not fall within the minimum guaranteed range for the type.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/1076_AXC.HTM (1 of 2) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

-- The use of architectures and subprogram bodies implemented via the foreign
language interface (the 'FOREIGN attribute).

-- Processes that communicate via file I/O, including TEXTIO.

-- Impure functions.

-- Linkage ports.

-- Ports and generics in the root of a design hierarchy.

-- Use of a time resolution greater than fs.

-- Shared variables.

-- Procedure calls passing a single object of an array or record type to multiple formals
where at least one of the formals is of mode out or inout.

-- Models that depend on a particular format of T'Image.

-- Declarations of integer or physical types that have a secondary unit whose position
number is outside of the range -(2**31-1) to 2**31-1.

-- The predefined attributes 'INSTANCE_NAME or 'PATH_NAME, if the behavior of
the model is dependent on the values returned by the attributes.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/1076_AXC.HTM (2 of 2) [12/28/2002 12:50:13 PM]

VHDL LRM- Introduction

Annex D

Changes from IEEE Std 1076-1987

(informative)
This annex lists those clauses that have been changed from IEEE Std 1076-1987during its
revision. The clause numbers are from IEEE Std 1076-1987; where a new clause has been
added, it is described as being added between or after existing clauses from IEEE Std 1076-
1987.

Section 1: 1.1 , 1.1.1 , 1.1.1.1 , 1.1.1.2 , 1.1.2 , 1.1.3 , 1.2 , 1.2.1 , 1.2.2 , 1.3 , 1.3.1 , and 1.3.2 .

Section 2: 2.1 , 2.1.1 , 2.1.1.1 , 2.1.1.2 , 2.2 , 2.3 , 2.3.1 , 2.4 , 2.5 , 2.6 , and 2.7 . In addition,
the following new clauses have been added: 2.1.1.3 ,describing file parameters, has been added
after 2.1.1.2 ; and 2.3.2 , describing signatures, has been added after 2.3.1 .

Section 3: Introduction, 3.1 , 3.1.1 , 3.1.1.1 , 3.1.3 , 3.1.3.1 , 3.1.4 , 3.1.4.1 , 3.2.1 , 3.2.1.1 ,
3.2.2 , 3.3 , 3.3.1 , and 3.4.1 .

Section 4: Introduction, 4.1 , 4.2 , 4.3 , 4.3.1 , 4.3.1.1 , 4.3.1.2 , 4.3.1.3 , 4.3.2 , 4.3.3 , 4.3.3.1 ,
4.3.3.2 , 4.3.4 , 4.4 , and 4.5 . In addition, two new clauses, describing group template
declarations and group declarations,have been added at the end of this chapter.

Section 5: Introduction, 5.1 , 5.2 , 5.2.1 , 5.2.1.1 , 5.2.1.2 , 5.2.2 , and 5.3 .

Section 6: 6.1 , 6.2 , 6.3 , 6.4 , 6.5 , and 6.6 .

Section 7: 7.1 , 7.2 , 7.2.1 , 7.2.2 , 7.2.3 , 7.2.4 , 7.3.1 , 7.3.2 , 7.3.2.1 , 7.3.2.2 , 7.3.3 , 7.3.5 ,
7.3.6 , 7.4 , and 7.5 . Additionally, a new clause describing the shift operators has been added
between 7.2.1 and 7.2.2 , and anew clause describing the sign operators has been added
between 7.2.3 and 7.2.4 .

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/1076_AXD.HTM (1 of 2) [12/28/2002 12:50:14 PM]

VHDL LRM- Introduction

Section 8: Introduction, 8.1 , 8.2 , 8.3 , 8.3.1 , 8.4 , 8.4.1 , 8.5 , 8.6 , 8.7 , 8.8 , 8.9 , 8.10 , 8.11 ,
and 8.12 . Additionally, a new clause describing the report statement has been added between
8.2 and 8.3 .

Section 9: Introduction, 9.1 , 9.2 , 9.3 , 9.4 , 9.5 , 9.5.1 , 9.5.2 , 9.6 , 9.6.1 , and 9.7 . In
addition, a new clause describing the instantiation of a design entity has been added between
9.6.1 and 9.7 .

Section 10: 10.1 , 10.2 , 10.3 , 10.4 , and 10.5 .

Section 11: 11.2 , 11.3 , and 11.4 .

Section 12: Introduction, 12.1 , 12.2 , 12.2.1 , 12.2.2 , 12.2.4 , 12.3 , 12.3.1 , 12.3.1.2 , 12.3.1.3
, 12.3.1.4 , 12.3.1.5 , 12.3.2.1 , 12.4 , 12.4.1 , 12.4.2 , 12.4.3 , 12.6.1 , 12.6.2 , and 12.6.3 .

Section 13: 13.1 , 13.3 , 13.4.2 , 13.5 , and 13.9 . In addition, two new clauses describing basic
and extended identifiers have been added between 13.3 and 13.4 .

Section 14: 14.1 , 14.2 , and 14.3 .

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/1076_AXD.HTM (2 of 2) [12/28/2002 12:50:14 PM]

VHDL LRM- Introduction

Annex E

Related standards

(informative)
ANSI/ISO/IEC 8652-1995 Information Technology - Programming Languages - Ada (revised
ANSI/MIL-STD-1815A-1983, American National Standard Reference Manual for the Ada
Programming Language.) [1,3]

IEEE Std 1029.1 -1991, IEEE Standard for Waveform and Vector Exchange (WAVES).[2]

IEEE Std 1164-1993, IEEE Standard Multivalue Logic System for VHDL Model
Interoperability (Std_logic_1164).

ANSI/ISO 8859-1 : 1987, Information processing--8-bit single-byte coded graphic character
sets--Part 1: Latin Alphabet No. 1.[2,3]

[1]ANSI publications are available from the Sales Department, American National Standards
Institute, 11 West 42nd Street, 13th Floor, New York, NY 10036, USA.

[2]IEEE publications are available from the Institute of Electrical and Electronics Engineers,
445 Hoes Lane, P.O. Box 1331, Piscataway,NJ 08855-1331, USA.

[3]ISO publications are available from the ISO Central Secretariat, Case Postale 56, 1 rue de
Varembé, CH-1211, Genève 20, Switzerland/Suisse. ISO publications are also available in the
United States from the Sales Department, American National Standards Institute, 11 West
42nd Street, 13th Floor, New York, NY 10036, USA.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_AXE.HTM [12/28/2002 12:50:14 PM]

Outline

Basic VHDL - Module 1

This module was prepared as part of the RASSP Education &
Facilitation effort.

Copyright © 1995, 1996 SCRA

Version 1.0

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/HOME-1.htm [12/28/2002 12:50:15 PM]

Toolbar Fucntionality

Toolbar Functionality

Takes the user up one hierarchical level in the presentation.

Takes the user to the previous section of the presentation.

Takes the user to the previous slide in the presentation.

Takes the user to a listing of all slides with links to each
slide.

Takes the user to a visual representation of the organization
of the slide presentation.

Takes the user to a document, further explaining the
information contained within the slide.

Brings the user to this document, containing information on
the use of the toolbar.

Takes the user to the next slide in the presentation.

Takes the user to the next section of the presentation.

Takes the user down one hierarchical level in the
presentation.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/HELP-1.htm [12/28/2002 12:50:16 PM]

Outline

Basic VHDL -
Module 1

Outline

● Introduction

● Concepts and History of VHDL

● Gajski and Kuhn's Y Chart

● VHDL Models of Hardware

● VHDL Basics

● Summary

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/OUTLINE-1.htm [12/28/2002 12:50:16 PM]

Need for Education

Introduction -
The Need for

Education

● In a survey of 71 US universities (representing
about half of the EE graduating seniors in 1993),
they reported

❍ 44% have no training on or use of VHDL in any
undergraduate EE course

❍ 45% have no faculty members who can teach VHDL

❍ 14% of the graduating seniors have a working knowledge of
VHDL and only 8% know Verilog

● However, in the 1994 USE/DA Standards Survey,
85% of the engineers surveyed were designers
and reported

❍ 55% were familiar with EDIF

❍ 55% were familiar with VHDL

❍ 33% were familiar with Verilog

Copyright the User Society for Electronic Design Automation. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1-1.htm [12/28/2002 12:50:16 PM]

Basic VHDL Module Goals

Basic VHDL -
Module 1

Module Goals

● Comprehension of VHDL Basic Constructs

● Understanding of the VHDL Timing Model

● Familiarity with VHDL design descriptions

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1B-1.htm [12/28/2002 12:50:17 PM]

RASSP Roadmap

RASSP Roadmap

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1A-1.htm [12/28/2002 12:50:17 PM]

Module Goals (Note Page)

Module Goals
-- Notes Page --

The goals of this module are to provide an introduction to the basic
concepts and constructs of VHDL. VHDL is a versatile hardware
description language which is useful for modeling electronic systems at
various levels of design abstractions. Although most of the language will
be touched on in this module, subsequent modules will cover specific
areas of VHDL more thoroughly.

Specifically, areas to be covered in this module include:

● The VHDL timing model
● VHDL entities, architectures, and packages
● Concurrent and sequential modes of execution

The goal of this module is to provide a basic understanding of VHDL
fundamentals in preparation for the material to be covered in the
subsequent VHDL modules.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1BN-1.htm [12/28/2002 12:50:18 PM]

Need for Education (Note Page)

Need for
Education
-- Notes Page --

VHDL is an IEEE and U.S. Department of Defense standard for
electronic system descriptions. It is also becoming increasingly popular in
private industry as experience with the language grows and supporting
tools become more widely available. Therefore, to facilitate the transfer
of system description information, an understanding of VHDL will
become increasingly important. This module provides a first step towards
developing a basic comprehension of VHDL.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1N-1.htm [12/28/2002 12:50:18 PM]

Putting It All Together

Putting It All
Together

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE2-2.htm [12/28/2002 12:50:18 PM]

Putting it all Together (Note Page)

Putting it all
Together
-- Notes Page --

This figure captures the main features of a complete VHDL model. A
single component model is composed of one entity and one or many
architectures. The entity represents the interface specification (I/O) of the
component. It defines the components external view, sometimes referred
to as its "pins".

The architecture(s) describe the function or composition of an entity.
There are three general types of architectures. One type of architecture
describes the structure of the design (right hand side) in terms of its sub-
components and their interconnections. A key item of a structural VHDL
architecture is the "configuration statement" which binds the entity of a
sub-component to one of several alternative architectures for that
component.

A second type of architecture, containing only concurrent statements, is
commonly referred to as a dataflow description (left hand side).
Concurrent statements execute when data is available on their inputs.
These statements can occur in any order within the architecture.

The third type of architecture is the behavioral description in which the
functional and possibly timing characteristics are described using VHDL
concurrent statements and processes. The process is a concurrent
statement of an architecture. All statements contained within a process
execute in a sequential order until it gets suspended by a wait statement.

Packages are used to provide a collection of common declarations,

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE2N-1.htm (1 of 2) [12/28/2002 12:50:19 PM]

Putting it all Together (Note Page)

constants, and/or subprograms to entities and architectures.

Generics provide a method to communicate static information to a
architecture from the external environment. They are passed through the
entity construct.

Ports provide the mechanism for a device to communication with its
environment. A port declaration defines the names, types, directions, and
possible default values for the signals in a component's interface.

Implicit in this figure is the testbench which is the top level of a self-
contained simulatable model. The testbench is a special VHDL object for
which the entity has no signals in its port declaration. Its architecture
often contains constructs from all three of the types described above.
Structural VHDL concepts are used to connect the model's various
components together, Dataflow and behavioral concepts are often used to
provide the simulation's start/stop conditions, or other desired modeling
directives.

This slide will be used again at the end of this module as a review.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE2N-1.htm (2 of 2) [12/28/2002 12:50:19 PM]

Concepts and History of VHDL

Concepts and
History of

VHDL

● VHDL is the VHSIC (Very High Speed
Integrated Circuit) Hardware Description
Language

● VHDL is an international standard
specification language for describing digital
hardware used by industry worldwide

● VHDL enables hardware modeling from the
gate to system level

● VHDL provides a mechanism for digital design
and reusable design documentation

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE3-2.htm [12/28/2002 12:50:19 PM]

History of VHDL

History of
VHDL

● Very High Speed Integrated Circuit (VHSIC)
Program

❍ Launched in 1980

❍ Aggressive effort to advance state of the art

❍ Object was to achieve significant gains in VLSI technology

❍ Need for common descriptive language

❍ $ 17 Million for direct VHDL development

❍ $ 16 Million for VHDL design tools

● Woods Hole Workshop

❍ Held in June 1981 in Massachusetts

❍ Discussion of VHSIC goals

❍ Comprised of members of industry, government, and
academia

● In July 1983, a team of Intermetrics, IBM and
Texas Instruments were awarded a contract to
develop VHDL

● In August 1985, the final version of the language
under government contract was released: VHDL
Version 7.2

● In December 1987, VHDL became IEEE
Standard 1076-1987 and in 1988 an ANSI
approved standard

● In September 1993, VHDL was restandardized to

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE4-2.htm (1 of 2) [12/28/2002 12:50:19 PM]

History of VHDL

clarify and enhance the language (IEEE
Standard 1076-1993)

● VHDL is now undergoing international review to
become an IEC standard

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE4-2.htm (2 of 2) [12/28/2002 12:50:19 PM]

Gajski and Kuhn's Y Chart

Gajski and Kuhn's
Y Chart

[Walker85][Gajski83]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE6-2.htm [12/28/2002 12:50:20 PM]

History of VHDL (Note Page)

History of
VHDL

-- Notes Page --

The Very High Speed Integrated Circuit (VHSIC) Hardware Description
Language (VHDL) is the product of a US Government request for a new
means of describing digital hardware. The Very High Speed Integrated
Circuit (VHSIC) Program was an initiative of the Defense Department to
push the state of the art in VLSI technology, and VHDL was proposed as
a versatile hardware description language.

The contract for the first VHDL implementation was awarded to the team
of Intermetrics, IBM, and Texas Instruments in July 1983. However,
development of the language was not a closed process and was subjected
to public review throughout the process (accounting for Versions 1
through 7.1). The final version of the language, developed under
government contract, was released as VHDL Version 7.2.

In March 1986, IEEE proposed a new standard VHDL to extend and
modify the language to fix identified problems. In December 1987,
VHDL became IEEE Standard 1076-1987. VHDL was again modified in
September 1993 to further refine the language. These refinements both
clarified and enhanced the language. The major changes included much
improved file handling and a more consistent syntax and resulted in
VHDL Standard 1076-1993.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE4N-1.htm [12/28/2002 12:50:20 PM]

Why Use VHDL?

Why Use
VHDL?

● Allows for various design methodologies

● Provides technology independence

● Describes a wide variety of digital hardware

● Eases communication through standard language

● Allows for better design management

● Provides a flexible design language

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE5-2.htm [12/28/2002 12:50:20 PM]

Gajski and Kuhn's Y Chart (Note Page)

Gajski and
Kuhn's
Y Chart

-- Notes Page --

VHDL allows the designer to work at various levels of abstraction. Many
of the levels are shown pictorially in the Gajski/Kuhn chart. Although
VHDL does not support system description at the physical/geometry level
of abstraction, many design tools can take behavioral or structural VHDL
and generate chip layouts.

As an illustrative example, the next few slides will show a sample VHDL
design process to demonstrate how a designer can move from an
algorithmic behavioral description, to a register transfer (or data flow)
description, to a gate level description. Although this chart is often
referenced, this particular interpretation is found in [Walker85].

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE6N-1.htm [12/28/2002 12:50:20 PM]

Sample VHDL Design Process

Sample VHDL
Design Process

● Problem: Design a single bit half adder with carry
and enable

● Specifications

❍ Passes results only on enable high

❍ Passes zero on enable low

❍ Result gets x plus y

❍ Carry gets any carry of x plus y

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE7-2.htm [12/28/2002 12:50:21 PM]

VHDL Simulation Models

VHDL Models
of Hardware

● VHDL models three very important and different
facets of digital hardware

❍ Behavior

❍ Structure

❍ Time

● VHDL makes no implicit assumptions about the
hardware and takes a general approach

● VHDL combines all three facets of hardware
description into a cohesive language

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE11-2.htm [12/28/2002 12:50:21 PM]

Why use VHDL? (Note Page)

Why use
VHDL?

-- Notes Page --

VHDL is a powerful and versatile language and offers numerous
advantages:

Design Methodology:
VHDL supports many different design methodologies (top-down,
bottom-up, delay of detail) and is very flexible in its approach to
describing hardware.

Technology Independence:
VHDL is independent of any specific technology or process.
However, VHDL code can be written and then targeted at many
different technologies.

Wide Range of Descriptions:
VHDL can model hardware at various levels of design abstraction.
VHDL can describe hardware from the standpoint of a "black box"
to the gate level. VHDL also allows for different abstraction-level
descriptions of the same component and allows the designer to mix
behavioral descriptions with gate level descriptions.

Standard Language:
The use of a standard language allows for easier documentation and
the ability to run the same code in a variety of environments.
Additionally, communication among designers and among design
tools is enhanced by a standard language.

Design Management:
Use of VHDL constructs, such as packages and libraries, allows
common elements to be shared among members of a design group.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE5N-1.htm (1 of 2) [12/28/2002 12:50:21 PM]

Why use VHDL? (Note Page)

Flexible Design:
VHDL can be used to model digital hardware as well as many other
types of systems, including analog devices.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE5N-1.htm (2 of 2) [12/28/2002 12:50:21 PM]

Putting it all Together (Note Page)

Sample VHDL
Design

Process
-- Notes Page --

Note that the code used in the example is "pseudo code" and not intended
to follow VHDL syntax.

The requirement is to design a single bit adder with carry and enable
functions. The inputs x, y, and enable are single bits with enable active
high. The output of result is the bit addition of x and y and the carry
output is the carry generated by the addition. When the enable line is low,
the adder is to output zeroes.

This sample design sequence is directly based on an example in
[Navabi93].

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE7N-1.htm [12/28/2002 12:50:21 PM]

Behavioral Specification

Behavioral
Specification

● Starting with an algorithm, a high level description of the
adder is created

● The model can now be simulated at this high level
description to verify correct understanding of the problem

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE8-2.htm [12/28/2002 12:50:22 PM]

Structural Specification

Structural
Specification

● Finally, a structural description is created at the gate level

● These gates can be pulled from a library of parts

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE10-2.htm [12/28/2002 12:50:22 PM]

VHDL Models of Hardware (Note Page)

VHDL Models
of Hardware

-- Notes Page --

VHDL supports the three necessary facets for system modeling. Behavior
is necessary to describe how system components respond to stimuli.
Structure describes how the various subcomponents are connected to each
other. The timing model provides a framework so that system events can
occur in the correct order.

VHDL makes no assumptions about the underlying hardware. While the
designer can add as many specifics as needed, VHDL will also operate
with a general description only.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE11N-1.htm [12/28/2002 12:50:22 PM]

Behavorial Model

Behavioral
Model

● Primary level of abstraction in VHDL is the
entity

● In a behavioral description, the entity is defined
by its responses to signals or input

● A behavioral model is similar to a "black box"

❍ Interior is hidden from view

❍ Behavior of the entity is defined by the relationship of the
input to the output

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE12-2.htm [12/28/2002 12:50:23 PM]

VHDL Basics

VHDL BASICS

● Data Types

● Objects

● Sequential and concurrent statements

● Entity and architecture declarations

● Packages and libraries

● Attributes

● Predefined operators

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE21A-1.htm [12/28/2002 12:50:23 PM]

Data Flow Specification

Data Flow
Specification

● With the high level description confirmed, logic equations
describing the data flow are then created

● Again, the model can be simulated at this level to confirm
the logic equations

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE9-2.htm [12/28/2002 12:50:23 PM]

Sample VHDL Design Process: Structural Specification (Note Page)

Sample VHDL
Design

Process:

Structural
Specification

-- Notes Page --

Finally, the logic equations may be mapped to specific logic gates. The
models for these gates can come from many different libraries, and use
specific or generic technologies. While this structural description ties
together gate level logic, VHDL structural descriptions may be used to
describe the interconnect of high level components as well (such as
multiplexors, full adders, etc.).

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE10N-1.htm [12/28/2002 12:50:24 PM]

Behavioral Model (Note Page)

Behavioral
Model

-- Notes Page --

Unfortunately, the term entity has two meanings in the VHDL literature.
First, it is used to signify the complete description for a component.
Second, it used to refer to the VHDL construct in which a component's
interface is described. The appropriate definition, however, is generally
discernible from the context in which the term is used. In the context of
this slide, for example, the student should use the first of the two
definitions above.

No matter what level of abstraction is used for a VHDL model, the
relationship between the model and its outside, as observed through its
interface, must be described. A behavioral description of that relationship
is generally the most abstract where specific details about a component's
internal structure need not be made available, if in fact, they even exist at
this point in the system's design.

Each device in VHDL behaves as a process performing operations on the
input to the device and writes to the output. This input and output
information is carried in constructs called signals which are the chief
means of communication between VHDL entities. Signals in VHDL are
roughly similar to wires in the real world.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE12N-1.htm [12/28/2002 12:50:24 PM]

Structural Model

Structural Model

● VHDL can model the structure of digital devices

● Structural VHDL describes the arrangement and
interconnection of components

● Structural descriptions support the use of predefined
components

● Structural descriptions may connect simple gates or
complex, abstract components

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE13-2.htm [12/28/2002 12:50:24 PM]

Example With Delta Delay

An Example With
Delta Delay

● What is the final output of C?

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE21-1.htm [12/28/2002 12:50:25 PM]

Data Types

Data Types

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22-1.htm [12/28/2002 12:50:25 PM]

Summary

Summary

● VHDL is a worldwide standard for the
description and modeling of digital hardware

● VHDL gives the designer many different ways
to describe hardware

● Familiar programming tools are available for
complex and simple problems

● Sequential and concurrent modes of execution
meet a large variety of design needs

● Packages and libraries support design
management and component reuse

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE70.HTM [12/28/2002 12:50:25 PM]

Delta Delay (cont.)

Delta Delay
(cont.)

● The extra pulse on C may cause unexpected
behavior in other components

● The unpredictable order of execution is not
acceptable for modeling

● The delta delay establishes a clear order of
events, with predictable and consistent behavior
in execution

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE20-2.htm [12/28/2002 12:50:26 PM]

Delta Delay: An example w/ Delta Delay (Note Page)

Delta Delay:

An example w/
Delta Delay

-- Notes Page --

This is the same example as before. However, each signal assignment
will incur a one delta cycle delay.

The one to zero transition in IN occurs on the inverter just as before. A is
then scheduled to be updated one delta cycle in the future. On the next
delta cycle, A is updated, and now both the NAND and AND devices are
evaluated concurrently and any resulting signal assignments will result in
signals B and C being assigned new values one delta cycle in the future.
When B and C change in the next delta cycle, however, the change in B
triggers a second evaluation of the AND gate which results in an
assignment of zero to C. C reaches this final value on the subsequent
delta cycle.

[Perry94], pp. 22-24.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE21N-1.htm [12/28/2002 12:50:26 PM]

Data Types (Note Page)

Data Types
-- Notes Page --

The three defined data types in VHDL are access, scalar, and composite.
Note that VHDL 1076-1987 defined a fourth data type, file, but files were
reclassified as objects in VHDL 1076-1993. In any case, files will not be
discussed in this module but will be covered in the 'System Level VHDL'
module included in this collection of educational modules.

Simply put, access types are akin to pointers in other programming
languages, scalar types are atomic units of information, and composite
types are arrays and/or records. These are explained in more detail in the
next few slides. In addition, subtypes will also be introduced.

[Perry94], p. 74.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22N-1.htm [12/28/2002 12:50:26 PM]

Scalar Types

VHDL Data
Types

Scalar Types

● Integer

❍ Minimum range for any implementation as defined by
standard: -2,147,483,647 to 2,147,483,647

❍ Integer assignment example

 ARCHITECTURE test_int OF test IS
 BEGIN
 PROCESS (X)
 VARIABLE a: INTEGER;
 BEGIN
 a := 1; -- OK
 a := -1; -- OK
 a := 1.0; -- bad
 END PROCESS;
 END TEST;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE23-2.htm [12/28/2002 12:50:26 PM]

Objects

VHDL Objects

● There are four types of objects in VHDL

❍ Files

❍ Constants

❍ Variables

❍ Signals

● File declarations make a file available for use to a
design

● Files can be opened for reading and writing

● Files provide a way for a VHDL design to
communicate with the host environment

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE34.HTM [12/28/2002 12:50:27 PM]

Some Explanations

Some
Explanations

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE69.HTM [12/28/2002 12:50:27 PM]

Putting It All Together

Putting It All
Together

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE71.HTM [12/28/2002 12:50:28 PM]

Attributes

Attributes

● Language defined attributes return information
about certain items in VHDL

❍ Types, subtypes

❍ Procedures, functions

❍ Signals, variables, constants

❍ Entities, architectures, configurations, packages

❍ Components

● Attributes can be user-defined to handle custom
situations (user-defined records, etc.)

● VHDL has several predefined attributes that are
useful to the designer

● General form of attribute use

 name ' attribute_identifier ' read as "tick"

● Some example predefined attributes

❍ X'EVENT -- evaluates TRUE when an event on signal X
occurs

❍ X'LAST_VALUE -- returns the last value of signal X

❍ Y'HIGH -- returns the highest value in the range of Y

❍ X'STABLE(t) -- evaluates TRUE when no event has occured
on signal X in the past t" time

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE63-1.htm (1 of 2) [12/28/2002 12:50:28 PM]

Attributes

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE63-1.htm (2 of 2) [12/28/2002 12:50:28 PM]

List of Operators

List of
Operators

● Logical operators

❍ AND, OR, NAND, NOR, XOR, XNOR

● Relational operators

❍ =, /=, <, <=, >, >=

● Addition operators

❍ +, -, &

● Multiplication operators

❍ *, /, mod, rem

● Miscellaneous operators

❍ **, abs, not

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE68.HTM [12/28/2002 12:50:28 PM]

Predefined Operators: some Explanations (Note Page)

Predefined
Operators:

Some
Explanations

-- Notes Page --

This slide explains two of the less obvious operators.

The concatenation operator joins two vectors together. Both vectors must
be of similar types. The example given above implements a logical shift
left for this four-bit array by concatenating (or appending) a '0' to the
vector resulting from a simple shift.

For the exponentiation operator **, the exponent must always be an
integer. No real exponents are allowed, and negative exponents are
allowed only with real numbers.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE69N.HTM [12/28/2002 12:50:29 PM]

References

References

References:

[Walker85] Walker, Robert A. and Thomas,
Donald E., "A Model of Design Representation
and Syntheses", 22nd Design Automation
Conference, pp. 453-459, IEEE, 1985

[Gajski83] Gajski, Daniel D. and Kuhn, Robert H.,
"Guest Editors Introduction - New VLSI Tools",
IEEE Computer, pp 11-14, IEEE, 1983

[Navabi93] Navabi, Z., VHDL: Analysis and
Modeling of Digital Systems, McGraw-Hill, 1993.

[Perry94] Perry, D.L., VHDL, McGraw-Hill, 1994.

[USE/DA94] USE/DA Standards Survey, 1994.

[VI93] VHDL International Survey, 1993.

For further reading:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE72.HTM (1 of 2) [12/28/2002 12:50:29 PM]

References

Bhasker, J., A VHDL Primer, Prentice Hall, 1995.

Calhoun, J.S., Reese, B.,, Class Notes for EE-
4993/6993: Special Topics in Electrical
Engineering (VHDL), Mississippi State
University, http://www.erc.msstate.edu/mpl/vhdl-
class/html, 1995

Coehlo, D.R., The VHDL Handbook, Kluwer
Academic Publishers, 1989.

IEEE Standard VHDL Language Reference
Manual, IEEE Std 1076-1993.

Lipsett, R., C. Schaefer, C. Ussery, VHDL:
Hardware Description and Design, Kluwer
Academic Publishers, 1989.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE72.HTM (2 of 2) [12/28/2002 12:50:29 PM]

RASSP Roadmap (Note Page)

RASSP
Roadmap
-- Notes Page --

This diagram emphasizes the role of VHDL in the RASSP program.
VHDL can be used for system definition, functional design, hardware-
software partitioning, hardware design and hardware-software integration
and test. The concept of virtual prototyping uses VHDL as the binding
language of choice for all design paradigms.

The most common usage of VHDL prior to RASSP was in the area of
hardware design. The RASSP program has extended VHDL's use to
include executable requirements, performance modeling/system level
design as well as system integration and test.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1AN-1.htm [12/28/2002 12:50:29 PM]

Sample VHDL Design Process: Behavioral Specification (Note Page)

Sample VHDL
Design

Process:

Behavioral
Specification

-- Notes Page --

In the first stage of the design process, a high-level behavior of the adder
is considered. This level uses abstract constructions (such as the IF-
THEN-ELSE statement) to make the model more readable and
comprehensible.

Simulation of the adder at this level proves correct understanding of the
problem specifications of the adder. VHDL code for this adder will be
shown later.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE8N-1.htm [12/28/2002 12:50:29 PM]

Sample VHDL Design Process: Data-Flow Specification (Note Page)

Sample VHDL
Design

Process:

Data-Flow
Specification

-- Notes Page --

After the behavioral model is confirmed, a more specific model is
formed. This model uses logic equations to describe the flow of data
inside the model. Notice that the higher level construct of the IF-THEN-
ELSE statement is gone.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE9N-1.htm [12/28/2002 12:50:29 PM]

Structural Model (Note Page)

Structural
Model

-- Notes Page --

VHDL also supports descriptions based on a component's underlying
internal structure. Structural VHDL allows for sub-components to be
instantiated and interconnected. In fact, a structural description is similar
to a netlist. Of course, the description of the sub-components can
themselves be structural and/or behavioral in nature.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE13N-1.htm [12/28/2002 12:50:30 PM]

Timing Model

Timing Model

● VHDL uses a simulation cycle to model the stimulus
and response nature of digital hardware

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE14-2.htm [12/28/2002 12:50:30 PM]

Timing Model (Note Page)

Timing Model
-- Notes Page --

The VHDL timing model drives the stimulus and response sequence of
digital hardware. At the start of a simulation, defined or implied initial
values are assigned to all signals. All processes not suspended on wait
conditions are executed concurrently until they reach their respective wait
statements; these process executions will include signal assignment
statements that assign new signal values after prescribed delays. After
signals assume their new values, all processes examine their wait
conditions to determine if they can proceed. Processes that can proceed
will then execute concurrently until they all reach their respective wait
conditions. This cycle continues until the simulation termination
conditions are met or until all processes are suspended indefinitely
because no new signal assignments are scheduled to unsuspend any
process that is waiting.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE14N-1.htm [12/28/2002 12:50:30 PM]

Delay Types

Delay Types

● Delay is created by scheduling a signal
assignment for a future time

● Delay in a VHDL cycle can be of several types

❍ Inertial
❍ Transport

❍ Delta

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE15-2.htm [12/28/2002 12:50:30 PM]

Example Without Delta Delay

Delta Delay

An Example Without
Delta Delay

● What is the output of C?

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE19-2.htm [12/28/2002 12:50:31 PM]

Delta Delay (Note Page)

Delta Delay
-- Notes Page --

Without delta delay, the order of execution in this series of logic is
uncertain. While the end result is the same, the extra pulse generated
could cause other logic to trigger unexpectedly. Without a clear order of
execution, VHDL would be a poor language for simulation.

The solution, in this case, is to make zero delay devices have an equal,
but infinitesimal, delay, i.e. a delta cycle delay. The delta delay, as
mentioned before, does not advance simulation time (i.e. no seconds, or
ms, or ns, etc., are advanced). The delta delay is a scheduling device so
that the simulator provides consistent and predictable behavior for models
without specified delays.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE20N-1.htm [12/28/2002 12:50:31 PM]

VHDL Data Types: Scalar Types (Note Page)

VHDL Data
Types:

Scalar Types

-- Notes Page --

Scalar objects can hold only one data value at a time. A simple example
is the integer data type. Variables and signals of type integer can only be
assigned integers within a simulator-specific (although the VHDL
standard imposes a minimum) range.

In the above example, the first two variable assignments are valid since
they assign integers to variables of type integer. The last variable
assignment is illegal because it attempts to assign a real number value to
a variable of type integer.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE23N.HTM [12/28/2002 12:50:31 PM]

Scalar Types 2

VHDL Data
Types

Scalar Types 2

● Real

❍ Minimum range for any implementation as defined by
standard: -1.0E38 to 1.0E38

❍ Real assignment example

 ARCHITECTURE test_real OF test IS
 BEGIN
 PROCESS (X)
 VARIABLE a: REAL;
 BEGIN
 a := 1.3; -- OK
 a := -7.5; -- OK
 a := 1; -- bad
 a := 1.7E13; -- OK
 A := 5.3 ns; -- bad
 END PROCESS;
 END TEST;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE24-2.htm [12/28/2002 12:50:32 PM]

Summary

VHDL Data
Types

Summary

● VHDL has several different data types available
to the designer

● Enumerated types are user defined
● Physical types represent physical quantities

● Arrays contain a number of elements of the same
type or subtypes

● Records may contain a number of elements of
different types or subtypes

● Access types are basically pointers

● Subtypes are user defined restrictions on the base
type

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE33.HTM [12/28/2002 12:50:32 PM]

VHDL Objects (Note Page)

VHDL Objects
-- Notes Page --

VHDL 1993 defines four types of objects, files, constants, variables, and
signals.

The purposes of the file object are listed above. Files may be opened in
read or write mode. Once a file is opened, its contents may only be
accessed sequentially. A detailed description of the use of file objects is
beyond this module and will be discussed further in the 'System Level
VHDL module'.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE34N.HTM [12/28/2002 12:50:32 PM]

Constants

VHDL Objects

Constants

● Name assigned to a specific value of a type

● Allow for easy update and readability

 CONSTANT constant_name : type_name [:=value];

 CONSTANT PI : REAL := 3.14;
 CONSTANT SPEED : INTEGER := 100;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE35.HTM [12/28/2002 12:50:32 PM]

Sequential vs. Concurrent

Sequential and
Concurrent
Statements

● VHDL provides two different types of execution:
sequential and concurrent

● Different types of execution are useful for
modeling of real hardware

❍ Supports various levels of abstraction

● Sequential statements view hardware from a
"programmer" approach

● Concurrent statements are order-independent
and asynchronous

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE42-1.htm [12/28/2002 12:50:33 PM]

Delay Types (Note Page)

Delay Types
-- Notes Page --

There are several types of delay in VHDL, and understanding how delay
works in a process is key to writing and understanding VHDL.

Simply put, any signal assignment in VHDL is actually a scheduling for a
future value to be placed on that signal. When a signal assignment
statement is executed, the signal maintains its original value until the time
for the scheduled update to the new value. Any signal assignment
statement will incur a delay of one of the three types listed in this slide.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE15N-1.htm [12/28/2002 12:50:33 PM]

Inertial Delay

Inertial Delay

● Default delay type

● Allows for user specified delay

● Absorbs pulses of shorter duration than the specified
delay

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE16-2.htm [12/28/2002 12:50:33 PM]

Delta Delay

Delta Delay

● Delta delay needed to provide support for
concurrent operations with zero delay

❍ The order of execution for components with zero delay is
not clear

● Scheduling of zero delay devices requires the
delta delay

❍ A delta delay is necessary if no other delay is specified
❍ A delta delay does not advance simulator time

❍ One delta delay is an infinitesimal amount of time

❍ The delta is a scheduling device to ensure repeatability

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE18-2.htm [12/28/2002 12:50:33 PM]

Delta Delay: An example w/o Delta Delay (Note Page)

Delta Delay:

An example w/o
Delta Delay

-- Notes Page --

Let's assume that the above circuit does not specify any delays, and that
there is no delta delay mechanism in the simulator behavior. In such a
case, the order of execution of concurrent events will be arbitrary. In such
a case, if the input to the inverter has a 1 to 0 transition, and the other
input to the NAND gate is a constant 1, what is the output of C?

The final answer is, of course, the same. C eventually goes to 0.
However, the transient behavior of the circuit depends on the order in
which the gates are evaluated. If the NAND gate is evaluated first, no
glitch is seen on the output of the AND gate. When A goes to 1, the
output of the NAND gate, being evaluated first, goes to 0. When the
AND gate is then evaluated, its output will also evaluate to 0, which is its
final value.

However, if the AND gate is evaluated first, a glitch is generated because
the NAND gate has not yet been updated to its new value. Therefore, C
initially goes to 1 and will only go to 0 after the NAND gate drives its
output to 0.

Therefore, if the order of execution is arbitrary, the behavior of the
system may be unpredictable. This is generally not an acceptable
situation for modeling.

[Perry94], pp. 22-24.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE19N-1.htm (1 of 2) [12/28/2002 12:50:34 PM]

Delta Delay: An example w/o Delta Delay (Note Page)

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE19N-1.htm (2 of 2) [12/28/2002 12:50:34 PM]

VHDL Data Types: Scalar Types (cont.) (Note Page)

VHDL Data
Types:

Scalar Types
(cont.)

-- Notes Page --

A second simple example is the real data type. This type consists of the
real numbers within a simulator-specific (but with a VHDL standard
imposed minimum) range. The variable assignment lines marked OK are
valid assignments. The first statement marked "bad" attempts to assign an
integer to a real type variable, and the second "bad" statement is not
allowed since the unit ns implies a physical data type.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE24N.HTM [12/28/2002 12:50:34 PM]

Scalar Types 3

VHDL Data
Types

Scalar Types 3

● Enumerated

❍ User defined range

❍ Enumerated example

 TYPE binary IS (ON, OFF);
 ...some statements ...
 ARCHITECTURE test_enum OF test IS
 BEGIN
 PROCESS (X)
 VARIABLE a: binary;
 BEGIN
 a := ON; -- OK
 ... more statements ...
 a := off; -- OK
 ... more statements ...
 END PROCESS;
 END TEST;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE25.HTM [12/28/2002 12:50:34 PM]

Subtypes

VHDL Data
Types

Subtypes

● Subtype

❍ Allows for user defined constraints on a data type

❍ May include entire range of base type

❍ Assignments that are out of the subtype range result in an
error

❍ Subtype example

 SUBTYPE name IS base type RANGE <user range>;
 SUBTYPE first_ten IS INTEGER RANGE 0 TO 9;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE32.HTM [12/28/2002 12:50:34 PM]

VHDL Data Types: Summary (Note Page)

VHDL Data
Types:

Summary

-- Notes Page --

VHDL offers a variety of different data types to the VHDL modeler
providing the flexibility to describe systems at various levels of
information abstraction.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE33N.HTM [12/28/2002 12:50:35 PM]

VHDL Objects: Constants (Note Page)

VHDL
Objects:

Constants

-- Notes Page --

VHDL constants are objects with permanently assigned values. The value
of a constant, however, does not need to be assigned at the time the
constant is declared; it can be assigned later in a package body if
necessary.

The syntax of the constant declaration statement is shown above. The
constant declaration includes the name of the constant, its type, and,
optionally, its value.

Constant assignments can be deferred in the package declarations. The
assignment can then be made in the package body.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE35N.HTM [12/28/2002 12:50:35 PM]

Scoping Rules

VHDL Objects

Scoping Rules

● VHDL limits the visibility of the objects,
depending on where they are declared

● The scope of the object is as follows

❍ Objects declared in a package are global to all entities that
use that package

❍ Objects declared in an entity are global to all architectures
that use that entity

❍ Objects declared in an architecture are available to all
statements in that architecture

❍ Objects declared in a process are available to only that
process

● Scoping rules apply to constants, variables,
signals and files

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE36.HTM [12/28/2002 12:50:35 PM]

Signals vs Variables (Cont.)

VHDL Objects

Signals vs Variables (cont. 2)

● This composite table of results clearly shows the differences
between variables and signals

signals variables

Time | a b c | out_1 out_2 | out_3 out_4

0 | 0 1 1 | 1 0 | 1 0

1 | 1 1 1 | 1 0 | 0 1

1+d | 1 1 1 | 0 0 |

1+2d | 1 1 1 | 0 1 |

● The statements produce the same end result

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE41-1.htm [12/28/2002 12:50:35 PM]

Sequential vs. Concurrent (Note Page)

Sequential vs.
Concurrent

-- Notes Page --

In essence, VHDL is a concurrent language in that all processes execute
concurrently. All VHDL execution can be seen as taking place inside
processes; concurrent signal assignment statements have already been
shown to be equivalent to one-line processes. Within a process, however,
VHDL adheres to a sequential mode of execution where statements
within a process are executed in "top-to-bottom' fashion until the process
suspends at a wait statement.

This simultaneous support of concurrent and sequential modes allows
great flexibility in modeling systems at multiple levels of design and
description abstraction.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE42N.HTM [12/28/2002 12:50:36 PM]

Sequential Statements

Sequential
Statements

● Sequential statements run in top to bottom order

● Sequential execution most often found in
behavioral descriptions

● Statements inside PROCESS execute sequentially

ARCHITECTURE sequential OF test_mux IS

BEGIN
 select_proc : PROCESS (x, y, selector)

 BEGIN
 IF (selector = '0') THEN
 z <= x;
 ELSIF (selector = '1') THEN
 z <= y;
 ELSE
 z <= "XXXX";
 END IF;
 END PROCESS select_proc;
END sequential;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE43-1.htm [12/28/2002 12:50:36 PM]

Entity and Architecture Declarations

Entity and
Architecture
Declarations

● An entity declaration describes the interface of the
component

● PORT clause indicates input and output ports

● An entity can be thought of as a symbol for a
component

ENTITY half_adder IS
 PORT (x, y, enable: IN bit;
 carry, result: OUT bit);

END half_adder;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE49-1.htm (1 of 2) [12/28/2002 12:50:36 PM]

Entity and Architecture Declarations

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE49-1.htm (2 of 2) [12/28/2002 12:50:36 PM]

Packages and Libraries

Packages and
Libraries

● User defined constructs declared inside
architectures and entities are not visible to
other entities

❍ Subprograms, user defined data types, and constants

can not be shared

● Packages and libraries provide the ability to
reuse constructs in multiple entities and
architectures

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE57-1.htm [12/28/2002 12:50:37 PM]

Libraries

Libraries

● Increased complexity of devices requires
configuration and revision control

● There is a need for using libraries of previous
designs and modification of these libraries

● Design library is a set of files stored by the host
operating system

● VHDL knows library only by logical name

❍ Current design unit is compiled into the Work library

❍ Both Work and STD libraries are always available

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE62.HTM [12/28/2002 12:50:37 PM]

Attributes (Note Page)

Attributes
-- Notes Page --

Attributes may be used to extract information about many different items
in VHDL. Attributes can return various types of information. For
example, an attribute can be used to determine the depth of an array, or its
range, or its leftmost index, etc. Additionally, the user may define new
attributes to cover specific situations. This capability allows user-defined
constructs and data types to use attributes. Another example of the use of
attributes is in assigning information to a VHDL construct, such as board
location, revision number, etc.

A few examples of predefined VHDL attributes are shown above. Note
that the apostrophe marking the use of an attribute is pronounced tick (i.e.
'EVENT is pronounced "tick EVENT").

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE63N.HTM [12/28/2002 12:50:37 PM]

Register Example

Register Example

● The following example shows how attributes can be
used to make an 8-bit register

● Specifications

❍ Triggers on rising clock edge

❍ Latches only on enable high

❍ Has a data setup time of x_setup

❍ Has propagation delay of pop_delay

ENTITY 8_bit_reg IS
 GENERIC (x_setup, prop_delay, : TIME);
 PORT (enable, clk : IN qsim_state;
 a : IN qsim_state_vector (7 DOWNTO 0);
 b : OUT qsim_state_vector (7 DOWNTO 0);
END 8_bit_reg;

● qsim_state type is being used - includes logic values 0,
1, X, and Z

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE64.HTM [12/28/2002 12:50:37 PM]

Predefined Operators

Predefined
Operators

● Operators manipulate the supplied data

● Most operators require both operands to be of
the same type

❍ Exception: operands of physical type may be multiplied and
divided by integers and real numbers

❍ Result of an expression with a relational operator will be
Boolean

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE67.HTM [12/28/2002 12:50:38 PM]

Predefined Operators: List of Operators (Note Page)

Predefined
Operators:

List of Operators

-- Notes Page --

The above is the list of predefined operators in VHDL. The logical and
relational operators are similar to those found in other languages. The
addition operators are also familiar except for the concatenation operator
which will be discussed in the next slide. The multiplication operators are
also typical (e.g. the mod operator returns the modulus of the division and
the rem operator returns the remainder). Finally, the miscellaneous
operators provide some useful frequently used functions.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE68N.HTM [12/28/2002 12:50:38 PM]

Inertial Delay (Note Page)

Inertial Delay
-- Notes Page --

Inertial delay is the default delay type if a signal assignment statement
contains an after clause. This delay model assumes that a signal in a
device has a certain amount of "inertia" that must be overcome before the
signal can assume a new value. By default, this inertial delay is equal to
the propagation delay time of the device. If the signal is of shorter
duration than the inertial delay, then the pulse will not be seen at the
output.

In the example above, the (inverted) value of the signal Input will be
assigned to the signal Output AFTER 10 ns. Because inertial delay is the
default, it does not need to be specified explicitly. In the example
waveforms above, the 10ns inertial delay on the inverter will suppress the
5ns pulse on Input from being propagated to Output. That is, Output
cannot have any pulses smaller than its inertial delay. Note that the
Input's change at time 20ns is long enough to propagate to Output.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE16N-1.htm [12/28/2002 12:50:38 PM]

Transport Delay

Transport Delay

● Must be explicitly specified by user

● Allows for user specified delay

● Passes all input transitions with delay

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE17-2.htm [12/28/2002 12:50:38 PM]

Delta Delay (Note Page)

Delta Delay
-- Notes Page --

VHDL encourages the designer to describe the hardware at whatever
level is appropriate. Timing and delay information may not always be
available when a system is first described in abstract forms. However,
useful system simulations may be made at such levels so that models with
no timing information must be supported.

VHDL maintains its sequential mode and concurrent mode semantics by
the use of delta delay. A delta is essentially an infinitesimal, but
quantized, unit of time. When a signal assignment is made with no
explicit delay (i.e. no after clause), a delay of one delta cycle is assumed.
This maintains the semantics that every signal assignment statement is
actually the scheduling of a future value to be assigned to the signal, and
the simulation cycle described earlier will function correctly. That is, all
active processes continue to execute until they all suspend at wait
statements at which point time advances (by either one delta cycle or by
the minimum simulation time required for any signals to be able to
assume new values).

The following examples will help to explain the concept of the delta
delay further.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE18N-1.htm [12/28/2002 12:50:38 PM]

VHDL Data Types: Scalar Types (cont.) (Note Page)

VHDL Data
Types:

Scalar Types
(cont.)

-- Notes Page --

The enumerated data type allows a user to specify the list of legal values
that a variable or signal of the defined type may be assigned. As an
example, this data type is useful for defining the various states of a FSM
with descriptive names.

The designer first declares the members of the enumerated type. In the
example above, the designer declares a new type binary with two legal
values, ON and OFF.

Note that VHDL is not case sensitive. Typing reserved words in capitals
and variables in lower case may enhance readability, however.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE25N.HTM [12/28/2002 12:50:39 PM]

Scalar Types 4

VHDL Data
Types

Scalar Types 4

● Physical

❍ Can be user defined range

❍ Physical type example

 TYPE resistence IS RANGE 0 to 1000000

 UNITS
 ohm; -- ohm
 Kohm = 1000 ohm; -- 1 K
 Mohm = 1000 kohm; -- 1 M
 END UNITS;

❍ Time units are the only predefined physical type in VHDL

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE26.HTM [12/28/2002 12:50:39 PM]

Access Types

VHDL Data
Types

Access Types

● Access

❍ Similar to pointers in other languages

❍ Allows for dynamic allocation of storage

❍ Useful for implementing queues, fifos, etc.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE31.HTM [12/28/2002 12:50:39 PM]

VHDL Data Types: Subtypes (Note Page)

VHDL Data
Types:

Subtypes

-- Notes Page --

VHDL subtypes are used to constrain defined types. Constraints take the
form of range constraints or index constraints. However, a subtype may
include the entire range of the base type. Assignments made to objects
that are out of the subtype range generate an error at run time. The syntax
and an example of a subtype declaration are shown above.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE32N.HTM [12/28/2002 12:50:39 PM]

VHDL Objects: Scoping Rules (Note Page)

VHDL
Objects:

Scoping Rules

-- Notes Page --

Simple scoping rules determine where object declarations can be used.
This allows the reuse of identifiers in separate entities within the same
model without risk of inadvertent errors.

For example, a signal named data could be declared within the
architecture body of one component and used to interconnect its
underlying subcomponents. The identifier data may also be used again in
a different architecture body contained within the same model.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE36N.HTM [12/28/2002 12:50:40 PM]

Variables

VHDL Objects

Variables

● Variables are used for local storage of data

● Variables are generally not available to multiple
components and processes

● All variable assignments take place immediately

 VARIABLE variable_name : type_name [:=value];

 VARIABLE opcode : BIT_VECTOR (3 DOWNTO 0) := "0000";
 VARIABLE freq : INTEGER;

● Variables are more convenient than signals for the storage
of data

● Variables may be made global

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE37.HTM [12/28/2002 12:50:40 PM]

Signal vs Variables (Cont.)

VHDL Objects

Signals vs Variables (cont. 1)

 ARCHITECTURE variables OF test IS
 SIGNAL a: BIT:='0';
 b, c: BIT:='1';
 BEGIN
 PROCESS (a, b, c)
 VARIABLE out_3, out_4 : BIT;
 BEGIN
 out_3 := a NAND b;
 out_4 := out_3 XOR c;
 END PROCESS;
 END variables;

Time | a b c | out_3 out_4

__

0 | 0 1 1 | 1 0

1 | 1 1 1 | 0 1

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE40.HTM [12/28/2002 12:50:40 PM]

VHDL Objects: Signals vs Variables (cont. 2) (Note Page)

VHDL
Objects:

Signals vs
Variables (cont.

2)

-- Notes Page --

In review, the final result for both of these implementations is the same.
However, the example using variables reached its quiescent state
immediately after the change in a rather than 2 delta cycles later,
although the order of the two assignment statements became important. In
addition, variables have less simulator overhead because there are no
waveforms associated with them. In conclusion then, both signals and
variables serve their purposes in VHDL well, but, although signals can
often be used in place of variables, that practice leads to unnecessary
simulation (and/or delta delays) and added simulator overhead.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE41N.HTM [12/28/2002 12:50:40 PM]

Sequential Statements (Note Page)

Sequential
Statements

-- Notes Page --

Statements in a VHDL process are executed sequentially. A process may
also include a sensitivity list which is declared immediately after the
PROCESS word. This sensitivity list makes the process execute when
there is a transition on any of the specified signals. In the example above,
the sensitivity list includes signals x, y and selector. The process can also
be named; the process in the example above is named select_proc.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE43N.HTM [12/28/2002 12:50:40 PM]

Concurrent Statements

Concurrent
Statements

● All concurrent statements occur simultaneously

● How are concurrent statements processed?

❍ Simulator time does not advance until all concurrent
statements are processed

❍ End result is concurrent behavior with respect to simulator
time

● Some concurrent statements

❍ Block, process, assert, signal assignment, procedure call,
component instantiation

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE44-1.htm [12/28/2002 12:50:41 PM]

Sequential Signal Assignments

Sequential
Signal

Assignments

● Signals can be both sequential and concurrent
statements

● Signals require a delay even with sequential
execution

ARCHITECTURE test1 OF test_mux IS
 SIGNAL a: BIT := '1';
 SIGNAL a: BIT := '0';
BEGIN
 PROCESS (...)
 BEGIN
 a <= b;
 b <= a;
 END PROCESS;
END test1;

● What are the final signal values for a and b in
this case?

● Multiple assignments to the same signal in a

PROCESS are allowed

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE48-1.htm (1 of 2) [12/28/2002 12:50:41 PM]

Sequential Signal Assignments

ARCHITECTURE test1 OF test_mux IS
 SIGNAL a : BIT;
BEGIN
 PROCESS
 BEGIN
 a <= '1';
 a <= '0';
 END PROCESS;
END test1;

● What is the value of a at the end of this process?

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE48-1.htm (2 of 2) [12/28/2002 12:50:41 PM]

Entity Declarations (Note Page)

Entity
Declarations

-- Notes Page --

In this slide the term entity refers to the VHDL construct in which a
component's interface (which is visible to other components) is described.
The first line in an entity declaration provides the name of the entity.

Next, the PORT statement indicates the actual interface of the entity. The
port statement lists the signals in the component's interface, the direction
of data flow for each signal listed, and type of each signal. In the above
example, signals x, y, and enable are of direction IN (i.e. inputs to this
component) and type bit, and carry and result are outputs also of type bit.
Notice that if signals are of the same mode and type, they may be listed
on the same line.

Particular attention should be paid to the syntax in that no semicolon is
required before the closing parenthesis in the PORT declaration (or
GENERIC declaration, for that matter, which is not shown here). The
entity declaration statement is closed with the END keyword, and the
name of the entity is optionally repeated.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE49N.HTM [12/28/2002 12:50:41 PM]

Port Declaration

Port
Declaration

● PORT declaration establishes the interface of the
object to the outside world

● Three parts of the PORT declaration

❍ Name
❍ Mode

❍ Data type

● Sample PORT declaration:

ENTITY test IS
 PORT (name : mode data_type);
END test;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE50-1.htm [12/28/2002 12:50:42 PM]

Architecture Declarations

Architecture
Declarations

● Architecture declarations describe the operation of the
component

● Many architectures may exist for one entity, but only one
may be active at a time

● An architecture is similar to a schematic of the
component

ARCHITECTURE behavior1 OF
half_adder IS BEGIN
 PROCESS (enable, x, y)
 BEGIN
 IF (enable = '1') THEN
 result <= x XOR y;
 carry <= x AND y;
 ELSE
 carry <= '0'
 result <= '0';
 END PROCESS;
END behavior1;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE56-1.htm [12/28/2002 12:50:42 PM]

Packages and Libraries (Note Page)

Packages and
Libraries
-- Notes Page --

VHDL provides the package mechanism so that user-defined types,
subprograms, constants, aliases, etc. can be defined once and reused in
the description of multiple VHDL components. VHDL libraries are
collections of packages, entities, and architectures. The use of libraries
allows the organization of the design task into any logical partition the
user chooses (e.g. component libraries, package libraries to house
reusable functions and type declarations).

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE57N.HTM [12/28/2002 12:50:42 PM]

Packages

Packages

● Items declared inside a package can be made
visible to more than one entity or architecture

● Some valid statements for inclusion in the
package declaration

❍ Basic declarations

■ Types, subtypes

■ Constants

■ Subprograms

■ Use clause

❍ Signal declarations

❍ Attribute declarations

❍ Component declarations

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE58-1.htm [12/28/2002 12:50:42 PM]

Use Clause

Use Clause

● Packages must be made visible before they can be used

● The USE clause makes packages visible to entities and
architectures

 -- use on the binary_new and add_bits3 declarations
USE my_stuff.binary_new, my_stuff.add_bits3;

... ENTITY declaration...

... ARCHITECTURE declaration...

-- use all of the declarations in package my_stuff
USE my_stuff.ALL;

... ENTITY declaration...

... ARCHITECTURE declaration...

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE61-1.htm [12/28/2002 12:50:43 PM]

Libraries (Note Page)

Libraries
-- Notes Page --

Increasingly complex VLSI technology requires configuration and
revision control management. Additionally, it requires efficient reuse of
components when applicable and revision of library components when
necessary.

VHDL uses a library system to maintain designs for modification and
shared use. VHDL refers to a library by an assigned logical name; the
host operating system must translate this logical name into a real file
name and locate it. The current design unit is always compiled into the
Work library; the Work is implicitly available to the user with no need to
declare it. Similarly, the predefined library STD does not need to be
declared before its packages can be accessed via use clauses. The STD
library contains the VHDL predefined language environment, including
the package STANDARD which contains a set of basic data types and
functions and the package TEXTIO which contains some text handling
procedures.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE62N.HTM [12/28/2002 12:50:43 PM]

Register Example (cont.)

Register
Example (cont.

1)

● The following architecture is a first attempt at
the register

● The use of 'STABLE detects for setup violations
in the data input

ARCHITECTURE first_attempt OF 8_bit_reg IS
BEGIN
 PROCESS (clk)
 BEGIN
 IF (enable = '1') AND a'STABLE(x_setup) AND
 (clk = '1') THEN
 b <= a AFTER prop_delay;
 END IF;
 END PROCESS;
END first_attempt;

● What happens if clk or enable was 'X'?

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE65.HTM [12/28/2002 12:50:43 PM]

Register Example (cont.)

Register Example
(cont. 2)

● The following architecture is a second and more robust
attempt

● The use of 'LAST_VALUE ensures the clock is rising
from a 0 value

 ARCHITECTURE behavior OF 8_bit_reg IS
BEGIN
 PROCESS (clk)
 BEGIN
 IF (enable ='1') AND a'STABLE(x_setup) AND
 (clk = '1') AND (clk'LASTVALUE = '0') THEN
 b <= a AFTER prop_delay;
 END IF;
 END PROCESS;
END behavior;

● Elaboration of the IF-THEN-ELSE structure could
define the behavior under all conditions

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE66.HTM [12/28/2002 12:50:43 PM]

Predefined Operators (Note Page)

Predefined
Operators
-- Notes Page --

There are several predefined operators in VHDL that perform various
calculations on their operands. Because VHDL has strong data typing
rules, most of the operators require both operands to be of the same type.
A notable exception to this rule, however, is that physical types may be
multiplied and divided by integers and real numbers with the result being
a physical type. Similarly, although most operators generate results of the
same type as one or both of their operands, the result of an expression
with an relational operator is a Boolean value.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE67N.HTM [12/28/2002 12:50:44 PM]

Transport Delay (Note Page)

Transport
Delay

-- Notes Page --

Because transport delay is not the default, it must be explicitly specified
in the signal assignment statement as shown above. Note the use of the
keyword TRANSPORT specifies that any spikes on the input will be
passed to the output after the 10ns propagation delay.

In this example, the Output will be an inverted copy of Input delayed by
the 10ns propagation delay regardless of the pulse widths seen on Input.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE17N-1.htm [12/28/2002 12:50:44 PM]

VHDL Data Types: Scalar Types (cont.) (Note Page)

VHDL Data
Types:

Scalar Types
(cont.)

-- Notes Page --

The physical data type is used for values which have associated units.
The designer first declares the name and range of the data type and then
specifies the units of the type. Notice there is no semicolon separating the
end of the TYPE statement and the UNITS statement. The line after the
UNITS line states the base unit of of the type. The units after the base
unit statement may be in terms of the base unit or another already defined
unit.

The only predefined physical type in VHDL is time.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE26N.HTM [12/28/2002 12:50:44 PM]

Scalar Types 5

VHDL Data
Types

Scalar Types 5

● The predefined time units are as as follows

 TYPE TIME IS RANGE

UNITS
 fs; -- femtosecond
 ps = 1000 fs; -- picosecond
 ns = 1000 ps; -- nanosecond
 us = 1000 ns; -- microsecond
 ms = 1000 us; -- millisecond
 sec = 1000 ms; -- second
 min = 60 sec; -- minute
 hr = 60 min; -- hour
 END UNITS;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE27-1.htm [12/28/2002 12:50:44 PM]

Compostie Types 3

VHDL Data Types

Composite Types 3

● Records

❍ Used to collect one or more elements of a different types in single
construct

❍ Elements can be any VHDL data type

❍ Elements are accessed through field name

❍ Sample record statement

 TYPE binary IS (ON, OFF);
 TYPE switch_info IS
 RECORD
 status : binary;
 IDnumber : integer;
 END RECORD;

 VARIABLE switch : switch_info;
 switch.status := on; -- status of the switch
 switch.IDnumber := 30; -- number of the switch

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE30-1.htm [12/28/2002 12:50:45 PM]

VHDL Data Types: Access Type (Note Page)

VHDL Data
Types:

Access Type

-- Notes Page --

The VHDL access type will not be discussed in detail in this module; it
will be covered more thoroughly in the 'System Level VHDL' module
appearing in this collection of modules.

In brief, the access type is similar to a pointer in other programming
languages in that it dynamically allocates and deallocates storage space to
the object. This capability is useful for implementing abstract data
structures (such as queues and first-in-first-out buffers) where the size of
the structure may not be known at compile time.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE31N.HTM [12/28/2002 12:50:45 PM]

VHDL Objects: Variables (Note Page)

VHDL
Objects:

Variables

-- Notes Page --

This discussion about VHDL variables does not include global (aka
shared) variables which were introduced in the 1076-1993 standard. The
discussion of shared variables is deferred to the 'System Level VHDL
Module'.

VHDL variables are used within processes for local storage of data.
Because the scope of a VHDL variable is the process in which it is
declared, it cannot be used to pass information to other VHDL processes
or entities.

An important feature of the behavior of VHDL variables is that an
assignment to a VHDL variable results in the variable assuming its new
value immediately (i.e. no simulation time or delta cycles must transpire
as is the case for VHDL signals). This feature allows the sequential
execution of statements within VHDL processes where variables are used
as placeholders for temporary data, loop counters, etc.

Examples of variable declarations and assignments are shown above.
Note that when a variable is declared, it may optionally be given an initial
value as well.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE37N.HTM [12/28/2002 12:50:45 PM]

Signals

VHDL Objects

Signals

● Signals are used for communication between
components

● Signals can be seen as real, physical signals

● Some delay must be incurred in a signal
assignment

 SIGNAL signal_name : type_name [:=value];
 SIGNAL brdy : BIT;
 SIGNAL output : INTEGER := 2;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE38.HTM [12/28/2002 12:50:45 PM]

Signals vs Variables

VHDL Objects

Signals vs Variables

● A key difference between variables and signals is
the assignment delay

 ARCHITECTURE signals OF test IS
 SIGNAL a: BIT:='0';
 b, c: BIT:='1';
 out_1, out_2: BIT;
 BEGIN
 out_1 <= a NAND b;
 out_2 <= out_1 XOR c;
 END signals;

Time | a b c | out_1 out_2

__

0 | 0 1 1 | 1 0

1 | 1 1 1 | 1 0

1+d | 1 1 1 | 0 0

1+2d | 1 1 1 | 0 1

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE39.HTM [12/28/2002 12:50:46 PM]

VHDL Objects: Signals vs Variables (cont. 1) (Note Page)

VHDL
Objects:

Signals vs
Variables (cont.

1)

-- Notes Page --

In this example, variables are used to achieve the same functionality as
the example in the previous slide. In this example, however, when there is
a change in a at time 1, both out_3 and out_4 will also assume their new
values at time 1 because they are variables, and VHDL variable
assignment statements result in the new values being assumed
immediately.

Also note, however, that in this example, the order in which the
statements appear within the process is important because the two
statements are executed sequentially, and the process will only be
executed once as a result of the single change in a.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE40N.HTM [12/28/2002 12:50:46 PM]

Concurrent Statements (Note Page)

Concurrent
Statements

-- Notes Page --

For a list of concurrent statements, there is no prescribed order of
execution; the effect of simultaneous execution is achieved via the use of
the VHDL timing model. Some of the concurrent statement types
provided in VHDL are listed above.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE44N.HTM [12/28/2002 12:50:46 PM]

Assignments

Assignments

● This example will show the concept of sequential and concurrent assignments

ARCHITECTURE test1 OF
test_mux IS
 SIGNAL a : BIT := '1';
 SIGNAL b : BIT := '0';
BEGIN

...more statements...
 a <= b;
 b <= a;
...more statements...

END test1;

ARCHITECTURE test2 OF test_mux IS BEGIN
PROCESS (result)
 VARIABLE a : BIT := '1';
 VARIABLE b : BIT := '0';
BEGIN
...more statements...
 a := b;
 b := a;
...more statements...
 END PROCESS;
END test2;

● What are the final signal values for a and b in both cases?

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE45-1.htm [12/28/2002 12:50:46 PM]

Sequential Signal Assignments (Note Page)

Sequential
Signal

Assignments
-- Notes Page --

VHDL signal assignment statements can appear as either sequential or
concurrent statements. Outside of a process, they are concurrent
statements; inside a process they are sequential statements. In either case,
however, the assigned signal will assume its new value after some
determined delay (of either some specified simulation time delay or one
delta cycle)

The slide above provides two example. In the first example, assume that
the sensitivity list for the process does not list either a or b (it could list
some other signal, such as swap_sig). In that case, a and b will swap
values one delta cycle after the process executes (essentially one iteration
of the type of loop seen in the example two slides before, but the
sensitivity list in this case prevents an endless cycle).

One important feature of sequential signal assignment statements is
illustrated in the second example above. Note that each process only has
one "driver" for each signal that have signal assignment statements within
the process. It is, therefore, possible to have multiple assignment
statements to the same signal within a process. Note that multiple
assignment statements to the same signal would not be possible outside a
process because they would then be concurrent signal assignment
statements with separate "drivers", and a Bus Resolution Function" would
be needed (Bus Resolution Functions will be discussed in the 'Behavioral
VHDL' module).

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/SLIDE48N.HTM (1 of 2) [12/28/2002 12:50:46 PM]

Sequential Signal Assignments (Note Page)

In the second example above, then, the two assignments to a are executed
sequentially. The first schedules a value of '1' to be assigned to a one
delta cycle in the future. The second assignment statement then schedules
a value of '0' also one delta cycle in the future and will override the
assignment from the first statement because it was executed later. That is,
the waveform for a will be modified as a result of executing the second
signal assignment statement so that the assignment to take place one delta
cycle in the future will have a value '0' instead of '1'.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/SLIDE48N.HTM (2 of 2) [12/28/2002 12:50:46 PM]

Port Declaration (Note Page)

Port
Declaration

-- Notes Page --

The PORT declaration describes the interface of the entity to all other
VHDL entities. There are three essential elements to the PORT
declaration: the name, mode, and type of the signals in the interface. A
fourth element (not shown above) in a port declaration is the optional
initial value which may be assigned to each signal if there are no active
drivers on the signal at the start of a simulation.

Note that signals declared in an entity's PORT declaration may
sometimes be referred to as ports.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE50N.HTM [12/28/2002 12:50:47 PM]

Name

Name

● The name of the port can be any valid VHDL identifier

❍ Port signals of the same type or subtype may be on the same line and
separated by commas

PORT (input : direction data_type);

PORT (input, control, data : direction data_type);

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE51-1.htm [12/28/2002 12:50:47 PM]

Entity Declarations

Entity
Declarations

● Generics may be added for readability,
maintenance and configuration

ENTITY half_adder IS

 GENERIC (prop_delay : TIME := 10 ns);
 PORT (x, y, enable: IN bit;
 carry, result: OUT bit);

END half_adder;

● In this case, a generic called prop_delay was
added to the entity and defined to be 10 ns

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE55-1.htm [12/28/2002 12:50:47 PM]

Architecture Declarations (Note Page)

Architecture
Declarations

-- Notes Page --

The architecture declaration describes the operation of the component.
There can be multiple architectures described for each entity. However,
for each instantiation of the entity, one of the possibly several
architectures must be selected.

In the above example, the declaration starts with the keyword
ARCHITECTURE followed by the name of the architecture (e.g.
behavior1) and the name of the entity with which the architecture is
associated. The keyword BEGIN marks the beginning of the architecture
body which may include concurrent signal assignment statements and
processes. Although not shown above, any signals that are used internally
in the architecture description but are not found in the entity's ports are
declared before the BEGIN statement of the architecture body. The
keyword END marks the end of the architecture declaration.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE56N.HTM [12/28/2002 12:50:47 PM]

Packages (Note Page)

Packages
-- Notes Page --

A package contains a collection of user-defined declarations and
descriptions that a designer makes available to other VHDL entities.
Items within a package are made available to other VHDL entities
(including other packages) with a use clause. Some examples of possible
package contents are shown above.

The next two slides will describe the two parts of a VHDL package, the
package declaration and the package body.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE58N.HTM [12/28/2002 12:50:48 PM]

Declaration

Declaration

● An example of a package declaration

 PACKAGE my_stuff IS
 TYPE binary_new IS (ON, OFF);
 CONSTANT PI : REAL : = 3.14;
 PROCEDURE add_bits3 (SIGNAL a, b, en : IN BIT;
 SIGNAL temp_result, temp_carry : OUT BIT);
END my_stuff;

● Procedure body is defined in the "package body"

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE59-1.htm [12/28/2002 12:50:48 PM]

Package Body

Package Body

● The package declaration contains only the declarations of the
various items

● The package body contains subprogram bodies and other
declarations not intended for use by other VHDL entities

 PACKAGE BODY my_stuff IS
 PROCEDURE add_bits3 (SIGNAL a, b, en : IN BIT;
 SIGNAL temp_result, temp_carry : OUT BIT) IS
 BEGIN -- this function can return a carry
 temp_result <= (a XOR b) AND en;
 temp_carry <= a AND b AND en;
 END add_bits3;

END my_stuff;

● How are the packages made visible to entities?

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE60-1.htm [12/28/2002 12:50:48 PM]

Packages: Use Clause (Note Page)

Packages:

Use Clause

-- Notes Page --

Packages are made visible to a VHDL description through the use of the
use clause. This statement comes at the beginning of the entity or
architecture file and makes the contents of a package available within that
file.

The USE clause can select all or only part of a particular package. In the
first example above, only the binary data type and add_bits3 procedure
are made visible. In the second example, the full contents of the package
are made visible by use of the keyword ALL in the use clause.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE61N.HTM [12/28/2002 12:50:48 PM]

Attributes: Register Example (cont.) (Note Page)

Attributes:

Register Example
(cont.)

-- Notes Page --

This first implementation of the 8-bit register uses the 'STABLE attribute
to determine if the input satisfies the setup time requirement of the
register.

However, the example does not consider the possibility of clk assuming
values other than '0' or '1' (i.e. 'X' and 'Z' are also valid states for a
QSIM_STATE type signal).

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE65N.HTM [12/28/2002 12:50:48 PM]

Attributes: Register Example (cont.) (Note Page)

Attributes:

Register Example
(cont.)

-- Notes Page --

This second implementation adds a check for '0' to '1' transitions on clk
by using the 'LASTVALUE attribute on the signal clk.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE66N.HTM [12/28/2002 12:50:49 PM]

Type of Data

Type of Data

● The type of data flowing through the port must
be specified to complete the interface

● Data may be of many different types, depending
on the package and library used

● Some data types defined in the Standard package

❍ Bit, Bit_vector

❍ Boolean

❍ Integer, Real
❍ Time

PORT (input : IN BIT_VECTOR (3 DOWNTO 0));

PORT (output, brdy, data : OUT BIT);

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE54-1.htm [12/28/2002 12:50:49 PM]

Entity Declarations (Note Page)

Entity
Declarations

-- Notes Page --

The entity statement can include additional information.

In this case, the GENERIC declaration creates a parameter to be passed to
the architectures of this entity. The generic prop_delay is created with a
default value of 10 ns. At component instantiation, however, prop_delay
could be set to any value of type time. Any object declared in an entity's
GENERIC declaration is available as a read-only object within any
architecture of that entity. For example, an architecture for the entity
above may contain a signal assignment of the form

a <= b after prop_delay;

Generics are discussed further in the 'Structural VHDL' module.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE55N.HTM [12/28/2002 12:50:49 PM]

Packages: Declaration (Note Page)

Packages:

Declaration

-- Notes Page --

This is an example of a package declaration. The declaration begins with
the keyword PACKAGE and the name of the package followed by the
keyword IS. VHDL declaration statements are then included, such as type
declarations, constant declarations, and subprogram declarations. The
package declaration lists the contents of the package. For many VHDL
constructs, such as types, declarations are sufficient to fully define them.
For a subprogram, however, the declaration only specifies the parameters
required by the function or procedure; the operation of the subprogram
appears later in the package body. The package declaration ends with
END and the package name.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE59N.HTM [12/28/2002 12:50:49 PM]

Packages: Package Body (Note Page)

Packages:

Package Body

-- Notes Page --

The package body contains the functional descriptions for the
subprograms declared in the corresponding package declaration.

Once a package is defined, its contents are made visible to VHDL entities
and architectures via a use clause which is analogous to the include
statement of some other programming languages.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE60N.HTM [12/28/2002 12:50:49 PM]

VHDL Data Types: Scalar Types (cont.) (Note Page)

VHDL Data
Types:

Scalar Types
(cont.)

-- Notes Page --

The predefined time units in the VHDL specified Standard package are
shown here. The range of the time units may vary by simulator
implementation but must at least include the defined integer range when
measured in femtoseconds.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE27N.HTM [12/28/2002 12:50:50 PM]

Composite Types 1

VHDL Data Types

Composite Types 1

● Array

❍ Used to collect one or more elements of a similar type in a single construct
❍ Elements can be any VHDL data type

❍ Sample one-dimensional array (vector)

 TYPE data_bus IS ARRAY (0 TO 31) OF BIT;

0 ...element numbers... 31

0 ...array values... 1

 VARIABLE X: data_bus;
 VARIABLE Y: BIT;

 Y := X(12); -- Y gets value of 13th element from the left

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE28-1.htm [12/28/2002 12:50:50 PM]

Composite Types 2

VHDL Data Types

Composite Types 2

● Another sample one-dimensional array (using the DOWNTO
order)

 TYPE register IS ARRAY (15 DOWNTO 0) OF BIT;

15 ...element numbers... 0

0 ...array values... 1

 VARIABLE X: register;
 VARIABLE Y: BIT;

 Y := X(4); -- Y gets value of 5th element from the right

● DOWNTO keyword orders elements from left to right, with
decreasing element indices

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE29-1.htm [12/28/2002 12:50:50 PM]

VHDL Data Types: Composite Types (cont.) (Note Page)

VHDL Data
Types:

Composite Types
(cont.)

-- Notes Page --

The second VHDL composite type is the record. An object of type record
may contain elements of different types. Again, a record element may be
of any data type, including another record.

A TYPE declaration is used to define a record. Note that the types of a
record's elements must be defined before the record is defined. Also
notice that there is no semi-colon after the word RECORD. The
RECORD and END RECORD keywords bracket the field names. After
the RECORD keyword, the record's field names are assigned and their
data types are specified.

In the above example, a record type, switch_info, is declared. This
example makes use of the binary enumerated type declared previously.
Note that values are assigned to record elements by use of the field
names.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE30N.HTM [12/28/2002 12:50:50 PM]

VHDL Objects: Signals (Note Page)

VHDL
Objects:

Signals

-- Notes Page --

Although signal assignments may resemble variable assignments
syntactically, VHDL signals serve a different purpose. Signals are used to
pass information directly between VHDL processes and entities. As has
already been described, signal assignments require a delay before the
signal assumes its new value. In fact, a particular signal may have a
series of future values with their respective timestamps pending in the
signal's waveform. The need to maintain a waveform results in a VHDL
signal requiring more simulator resources than a VHDL variable.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE38N.HTM [12/28/2002 12:50:51 PM]

VHDL Objects: Signals vs Variables (Note Page)

VHDL
Objects:

Signals vs
Variables

-- Notes Page --

To review, note that some delay must transpire after a VHDL signal
assignment statement before the signal assumes its new value. Examples
will be used in this and the next slide to illustrate the difference between
signals and variables. The example shown above utilizes signals.

The table indicates the values for the various signals at the key times in
the example. At time 1, a new value of 1 is observed on a. This causes the
out_1 assignment statement to be evaluated resulting in a 0 being
assigned to out_1. At time 1+d (i.e. 1 plus 1 delta cycle), out_1 assumes
its new value causing the out_2 assignment statement to be evaluated
resulting in a 1 being assigned to out_2. At time 1+2d, out_2 assumes its
new value of 1. This example, then, requires 2 delta cycles to arrive at its
quiescent state following a change to a (or b, for that matter)

Note that the two signal assignment statements above are actually
concurrent signal assignment statements so that the order in which they
appear in the model is not important. In each case, it is a change (or more
accurately, a transaction) in one of the signals in the "right hand side"
that results in a concurrent signal assignment statement being evaluated.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE39N.HTM [12/28/2002 12:50:51 PM]

Assignments (Note Page)

Assignments
-- Notes Page --

Several examples are presented here to illustrate the subtleties of
sequential and concurrent execution. In the example on the left, the two
signal assignment statements will execute concurrently. The resulting
behavior of signals a and b will be the perpetually swapping of their
values in delta time. This behavior results from each signal assignment
causing a transition one delta cycle in the future. When each signal is then
updated, the signal assignment statements will be evaluated again because
each had a transition in its "right-hand-side". Each signal will then be
assigned a new value seen in the subsequent delta cycle, and the cycle
continues endlessly.

In the example on the right, the variable assignments execute sequentially
because they are inside a process (the only place VHDL variables can
actually exist). The final value of both a and b will be 0 since the first
assignment will copy the contents of b into a, and the second assignment
will not accomplish anything useful since b and a will have the same
value by then.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE45N.HTM [12/28/2002 12:50:51 PM]

Port Declaration: Name (Note Page)

Port
Declaration:

Name

-- Notes Page --

The term "port" in the slide above actually refers to a signal in the port
declaration.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE51N.HTM [12/28/2002 12:50:51 PM]

Port Mode

Port Mode

● The port mode of the interface describes the
direction of the data flow with respect to the
component

● The five types of data flow are

❍ In - data flows in this port and can only be read

❍ Out - data flows out this port and can only be written to

❍ Buffer - data flow can be in either direction but only one
source is allowed at any one time

❍ Inout - data flow can be in either direction with any number
of sources allowed (implies a bus)

❍ Linkage - data flow direction is unknown

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE52-1.htm [12/28/2002 12:50:51 PM]

Port Mode Examples

Port Mode
Examples

● Two examples of port mode use

PORT (input : IN data_type);
PORT (output, brdy, data : OUT data_type);

● In the first case, note that input can only be read
by the component

● In the second case, the signals can only be written
to by the component

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE53-1.htm [12/28/2002 12:50:52 PM]

Port Declaration: Type of Data (Note Page)

Port
Declaration:

Type of Data

-- Notes Page --

Finally, the port must indicate the type of data it will use. Any VHDL-
defined standard type or user-defined type may be used in a port
declaration. Note that a range specification may be declared if an
unconstrained type is used in the type declaration. Some of the data types
defined in the VHDL Standard package are listed above.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE54N.HTM [12/28/2002 12:50:52 PM]

VHDL Data Types: Composite Types (Note Page)

VHDL Data
Types:

Composite Types

-- Notes Page --

VHDL composite types consists of arrays and records. Each object of this
data type can hold more than one value.

Arrays consist of many similar elements of any data type, including
arrays. The array is declared in a TYPE statement. There are numerous
items in an array declaration. The first item is the name of the array.
Second, the range of the array is declared. The keywords TO and
DOWNTO designate ascending or descending indices within the
specified range, respectively. The third item in the array declaration is the
specification of the data type in each element of the array.

In the example above, an array consisting of 32 bits is specified. Note that
individual elements of the array are accessed by using the index number
of the element as shown above. The index number corresponds to where
in the specified range the index appears. For example, X(12) above refers
to the thirteenth element from the left (since the leftmost index is 0) in the
array.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE28N.HTM [12/28/2002 12:50:52 PM]

VHDL Data Types: Composite Types (cont.) (Note Page)

VHDL Data
Types:

Composite Types
(cont.)

-- Notes Page --

This example illustrates the use the DOWNTO designator in the range
specification of the array. DOWNTO specifies a descending order in
array indices so that in the example above, X(4) refers to the fifth element
from the right in the array (again, 0 is the farmost index but is on the right
end in this example).

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE29N.HTM [12/28/2002 12:50:52 PM]

Port Declaration: Port Mode (Note Page)

Port
Declaration:

Port Mode

-- Notes Page --

The mode indicates the direction of the flow of data across that port. This
flow of data is defined with respect to the component.

The five port modes available:

IN --
data flows in this port and the device can only read from this port

OUT --
data flows out this port and the device can write to this port. Note
that until 1076-1993, a component could not read a signal it was
itself driving through an OUT port.

BUFFER --
data can flow in either direction and is read/writable. However, only
one source at a time can drive a buffer; this requires the ability to
disconnect drivers and will be discussed in the 'Behavioral VHDL'
module.

INOUT --
data can flow in either direction and is read/writable. Any number
of sources are allowed to drive the inout port, but a Bus Resolution
Function is then required to determine what values the signal will
assume. Again, this issue will be covered in the 'Behavioral VHDL'
module.

LINKAGE --

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/SLIDE52N.HTM (1 of 2) [12/28/2002 12:50:53 PM]

Port Declaration: Port Mode (Note Page)

data flow direction is unknown. This mode indicates only that a
connection exists.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/SLIDE52N.HTM (2 of 2) [12/28/2002 12:50:53 PM]

Port Declaration: Port Mode Examples (Note Page)

Port
Declaration:

Port Mode
Examples

-- Notes Page --

These two examples show the use of the port mode. The first case
indicates a port of mode IN. This data is coming in the port and can only
be read by the device. The second example shows a port of mode OUT
where the signal may be "driven" by this component. Note that in the
1076-1987 VHDL Standard, a component could not read its own OUT
ports; this was changed in the 1076-1993 VHDL Standard.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE53N.HTM [12/28/2002 12:50:53 PM]

Structural VHDL - Module 2

Structural
VHDL -

Module 2

Table of
Contents

● Structural VHDL - Module 2
❍ Outline
❍ RASSP Roadmap
❍ Module Goals

● Introduction - Structural VHDL
❍ Putting It All Together
❍ Concepts of Structural VHDL

● Component Instantiation
❍ Visibility of Components

■ Component Declaration
❍ Instantiation Statements

■ Components From Packages
■ Generics
■ Generics: An Example

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-2.htm (1 of 2) [12/28/2002 12:50:53 PM]

Structural VHDL - Module 2

■ Generic Map
❍ Restrictions on Instantiation

■ Rules for Actuals and Locals

● Generate Statements
❍ Uses of Generate Statements
❍ FOR-Scheme

■ FOR-Scheme Example
❍ IF-Scheme

■ IF-Scheme Example

● Configuration and Binding
❍ Need for Configuration
❍ Configuration Specification

■ Component Specification
■ Binding Indication
■ Configuration Specification: Example

● Summary
❍ References

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-2.htm (2 of 2) [12/28/2002 12:50:53 PM]

Structural VHDL

Structural VHDL - Module 2

This module was prepared as part of the RASSP Education &
Facilitation effort.

Copyright © 1995, 1996 SCRA

Version 1.0

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/HOME.HTM [12/28/2002 12:50:54 PM]

Structural VHDL

Structural
VHDL

-- Notes Page --

Structural VHDL allows the designer to represent a system in terms of
components and their interconnections. This module discusses the
constructs available in VHDL to facilitate structural descriptions of
designs.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDEHON.HTM [12/28/2002 12:50:54 PM]

Toolbar Fucntionality

Toolbar Functionality

Takes the user up one hierarchical level in the presentation.

Takes the user to the previous section of the presentation.

Takes the user to the previous slide in the presentation.

Takes the user to a listing of all slides with links to each
slide.

Takes the user to a visual representation of the organization
of the slide presentation.

Takes the user to a document, further explaining the
information contained within the slide.

Brings the user to this document, containing information on
the use of the toolbar.

Takes the user to the next slide in the presentation.

Takes the user to the next section of the presentation.

Takes the user down one hierarchical level in the
presentation.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/HELP.HTM [12/28/2002 12:50:55 PM]

Outline

Structural
VHDL -

Module 2

Outline

● Introduction

● Component Instantiation

● Generate Statements

● Configuration and Binding

● Summary

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/OUTLINE.HTM [12/28/2002 12:50:55 PM]

Introduction - Structured VHDL

Introduction -
Structured VHDL

● Circuits can be described like a netlist

● Components can be customized

● Large, regular circuits can be created

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1.HTM [12/28/2002 12:50:55 PM]

Module Goals

Structural
VHDL - Module

2

Module Goals

● Knowledge of structural VHDL concepts

● Understanding of structural VHDL constructs

● Comprehension of the uses for configuration

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1B.HTM [12/28/2002 12:50:55 PM]

RASSP Roadmap

RASSP Roadmap

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1A.HTM [12/28/2002 12:50:56 PM]

Module Goals (Note Page)

Module Goals
-- Notes Page --

The goals of the module are to introduce the concepts and constructs of
structural modeling using VHDL. For example, VHDL has some
powerful utilities that facilitate the design of systems with regular
structures along with certain constructs to support configuration control.
The goal of this module is to bring the student to the point where she/he
will be able to write code using the concepts of structural design in
VHDL.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1BN.HTM [12/28/2002 12:50:56 PM]

Introduction

Introduction
-- Notes Page --

The role of structural VHDL is to describe circuits in terms of sub-
components and interconnections. In this figure the simple logic elements
are used to design a full adder. A structural description looks at the
hardware as a netlist or schematic of the device; the components and
interconnects are seen, but the internal function is hidden.

A structural description can tie together components of any complexity.
A gate level description or the subunits of a microprocessor can be
connected just as readily.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1N.HTM [12/28/2002 12:50:56 PM]

Putting It All Together

Putting It All
Together

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE2.HTM [12/28/2002 12:50:57 PM]

Putting It All Together (Note Page)

Putting It All
Together
-- Notes Page --

This figure captures the main features of a complete VHDL model. A
single component model is composed of one entity and one or many
architectures. The entity represents the interface specification (I/O) of the
component. It defines the components external view, sometimes referred
to as its "pins".

The architecture(s) describe the function or composition of an entity.
There are three general types of architectures. One type of architecture
describes the structure of the design (right hand side) in terms of its sub-
components and their interconnections. A key item of a structural VHDL
architecture is the "configuration statement" which binds the entity of a
sub-component to one of the possible several alternative architectures for
that component.

A second type of architecture, containing only concurrent statements, is
commonly referred to as a dataflow description (left hand side).
Concurrent statements execute when data is available on their inputs.
These statements can occur in any order within the architecture.

The third type of architecture is the behavioral description in which the
functional and possibly timing characteristics are described using VHDL
concurrent statements and processes. The process is a concurrent
statement of an architecture. All statements contained within a process
execute in a sequential order until it gets suspended by a wait statement.

Packages are used to provide a collection of common declarations,

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE2N.HTM (1 of 2) [12/28/2002 12:50:57 PM]

Putting It All Together (Note Page)

constants, and/or subprograms to entities and architectures.

Generics provide a method to communicate static information to a
architecture from the external environment. They are passed through the
entity construct.

Ports provide the mechanism for a device to communication with its
environment. A port declaration defines the names, types, directions, and
possible default values for the signals in a component's interface.

Implicit in this figure is the testbench which is the top level of a self-
contained simulatable model. The testbench is a special VHDL object for
which the entity has no signals in its port declaration. Its architecture
often contains construct from all three of the types described above.
Structural VHDL concepts are used to connect the model's various
components together, Dataflow and behavior concepts are often used to
provide the simulation's start stop conditions, or other desired modeling
directives.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE2N.HTM (2 of 2) [12/28/2002 12:50:57 PM]

Concepts of Structural VHDL

Concepts of
Structural

VHDL

● Structural VHDL describes the arrangement and
interconnection of components

❍ Behavioral descriptions, on the other hand, define responses to
signals

● Structural descriptions can show a more concrete
relation between code and physical hardware

● Structural descriptions show interconnects at any
level of abstraction

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE3.HTM [12/28/2002 12:50:58 PM]

Component Instantiation

Component
Instantiation

● Visibility of Components

● Instantiation statement

● Restrictions on instantiations

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE3A.HTM [12/28/2002 12:50:58 PM]

Component Instantiation

Visibility of
Components

● Component instantiation is one of the building
blocks of structural descriptions

● The component instantiation process requires
component declarations and component instantiation
statements

● Component instantiation declares the interface of the
components used in the architecture

● At instantiation, only the interface is visible

❍ The internals of the component are hidden

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE4.HTM [12/28/2002 12:50:58 PM]

Generate Statements

Generate
Statements

● Uses of generate statements

● FOR-scheme

● IF-scheme

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE12A.HTM [12/28/2002 12:50:58 PM]

Component Instantiation (Note Page)

Visibility of
Components

-- Notes Page --

A component represents an entity/architecture pair. A component
instantiation statement defines a subcomponent of a design and associates
signals with the ports of that subcomponent and associates values with
generics of that subcomponent. An analogy to actual hardware would be
the plugging of a hardware component into a board and making the
electrical connections between the pins of the component and the circuit
board.

In VHDL, the instantiation of components requires two mechanisms, the
Component Declaration and the Component Instantiation. These will be
shown in the subsequent slides.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE4N.HTM [12/28/2002 12:50:59 PM]

Component Declaration

Component
Declaration

● Declares the interface of the component to the
architecture

ARCHITECTURE test OF test_entity IS
 COMPONENT and_gate
 PORT (in1, in2: IN BIT;
 out1: OUT BIT);
 END COMPONENT;
...more statements...

● Necessary if the component interface is not declared
elsewhere (package, library)

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE5.HTM [12/28/2002 12:50:59 PM]

Component Declaration (Note Page)

Component
Declaration

-- Notes Page --

Before a component can be instantiated (i.e. "plugged in"), it must be
declared either in a package, a library, or the architecture declaration
region. An example of the syntax is shown on this slide for the
component and_gate which requires two inputs, in1 and in2, and one
output, out1. Note that no information about how this gate works is given.
Generics can also be included in the component declaration. The
component declaration is used to select the component that will be used
in subsequent component instantiations that appear in the architecture
description.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE5N.HTM [12/28/2002 12:50:59 PM]

Instantiation Statement

Instantiation
Statements

● The instantiation statement maps the interface of the
component to other objects in the architecture

ARCHITECTURE test OF test_entity IS
 COMPONENT and_gate
 PORT (in1, in2 : IN BIT;
 out1 : OUT BIT);
 END COMPONENT;
 SIGNAL S1, S2, S3 : BIT;
BEGIN
 Gate1 : and_gate PORT MAP (in1 => S1,
 in2 => S2, out1 => S3);
END test;

● The instantiation has 3 key parts

❍ Name

❍ Component type

❍ Port map

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE6.HTM (1 of 2) [12/28/2002 12:51:00 PM]

Instantiation Statement

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE6.HTM (2 of 2) [12/28/2002 12:51:00 PM]

Instantiation Statement (Note Page)

Instantiation
Statements

-- Notes Page --

After the component is declared, it must be instantiated. The and_gate
from the previous page is declared and instantiated in a design on this
slide. The instantiation statement must specify at least three pieces of
information to the architecture. First, the component must be named.
Next, the type of the component instantiated must be specified. Finally,
the mapping of the interface to other signals or ports is completed with
the PORT MAP construct.

If the component contained generics, then a generic map could also be
contained in the instantiation. The instantiation statement can be read as
follows. The component named Gate1 is of component type and_gate
which is declared in the architecture declaration region of architecture
test. The signals on its ports are tied as follows, input in1 is tied to the
circuit board signal S1, input in2 is tied to S2, and the output out1 is tied
to circuit board signal S3.

In this example, each signal is explicitly associated to a port on the
component. The use of the arrows makes the association completely
clear. VHDL also allows for positional association which will be shown
in subsequent slide.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE6N.HTM [12/28/2002 12:51:00 PM]

Components From Packages

Components
from Packages

● Component declarations may be made inside
packages

❍ Components do not have to be declared in the architecture body

PACKAGE my_stuff IS
 COMPONENT and_gate
 PORT (in1, in2 : IN BIT;
 out1 : OUT BIT);
 END COMPONENT;
END PACKAGE my_stuff;

USE Work.my_stuff.ALL;
ARCHITECTURE test OF test_entity IS
 SIGNAL S1, S2, S3 : BIT;
BEGIN
 Gate1 : and_gate
 PORT MAP (S1, S2, S3);
END test;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE7.HTM [12/28/2002 12:51:00 PM]

Restrictions on Instantiation

Restrictions
on

Instantiation

● An actual can only be a signal or a formal port
declared in the entity

❍ A port on a component is known as a local and must be
matched with a compatible actual

● The interface of the instantiated component must
match the connecting objects

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE11.HTM [12/28/2002 12:51:00 PM]

Uses of Generate Statement

Uses of
Generate
Statement

● Some structures in digital hardware are repetitive in
nature (RAM, ROM, registers)

● VHDL provides the GENERATE statement to
automatically create regular hardware

● Any VHDL concurrent statement may be included
in a GENERATE statement, including another
GENERATE statement

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE13.HTM [12/28/2002 12:51:01 PM]

Rules for Actuals and Locals

Rules for
Actuals and

Locals

● VHDL has two main restrictions on the association
of locals with actuals

❍ Local and actual must be of same data type

❍ Local and actual must both be readable and writable

■ Locally declared signals are both and can connect to any
local port

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE12.HTM [12/28/2002 12:51:01 PM]

Configuration and Binding

Configuration
and Binding

● Need for configuration

● Configuration statement

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE17A.HTM [12/28/2002 12:51:01 PM]

Generate Statement (Note Page)

Uses of
Generate
Statement
-- Notes Page --

Structural descriptions can more clearly indicate the nature of the
physical hardware used to create the component. However, several digital
devices have large regular structures that can be tedious to implement.
Using a behavioral description or a long structural description could mask
the regular structure of these devices.

VHDL provides the GENERATE statement to automatically create such
structures. The GENERATE statement can be used in conjunction with
any VHDL concurrent statement to create many repetitive objects. A
GENERATE statement may even include other GENERATE statements
for more complex devices. Some common examples include the
instantiation and connection of multiple identical components such as
half adders to make up a full adder, or exclusive or gates to create a parity
tree.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE13N.HTM [12/28/2002 12:51:01 PM]

Generate Statement FOR-Scheme

Generate
Statement

FOR-Scheme

● All objects created are similar

● The GENERATE parameter must be discrete and is
undefined outside the GENERATE statement

● Loop can not be terminated early

name : FOR n IN 1 TO 8 GENERATE
 concurrent-statements
END GENERATE name;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE14.HTM [12/28/2002 12:51:02 PM]

Generate Statement (Note Page)

Generate
Statement

FOR-scheme
-- Notes Page --

VHDL defines two different schemes for the GENERATE statement.
These are the FOR-scheme and the IF-scheme. This slide shows the
syntax for the FOR-scheme.

The FOR-scheme works in a similar manner as the FOR loop. The FOR-
scheme generates the objects for a certain number of times and stops. In
the FOR-scheme, all the objects are the same. The loop variable can be
created in the GENERATE statement but it is undefined outside that
statement.

The syntax for the FOR-scheme GENERATE statement is shown in the
slide. The loop variable in this case is N, but can be any valid VHDL
identifier. The range can be any valid range, but must be discrete. After
the GENERATE statement, the concurrent statements to be generated are
stated. Finally, the GENERATE statement is closed by the END
GENERATE construct.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE14N.HTM [12/28/2002 12:51:02 PM]

FOR-Scheme Example

FOR-Scheme
Example

-- this uses the and_gate component from before
ARCHITECTURE test_generate OF test_entity IS
 SIGNAL S1, S2, S3 : BIT_VECTOR (7 DOWNTO 0);
BEGIN
 G1 : FOR n IN 7 DOWNTO 0 GENERATE
 and_array : and_gate
 GENERIC MAP (2 ns, 3 ns)
 PORT MAP (S1(n), S2(n), S3(n));
 END GENERATE G1;
END test_generate;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE15.HTM [12/28/2002 12:51:02 PM]

Generate Statement IF-Scheme

Generate
Statement
IF-Scheme

● Allows for conditional creation of components

● Can not use ELSE or ELSIF branches with the IF-
Scheme

name : IF (boolean expression)GENERATE
 concurrent-statements
END GENERATE name;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE16.HTM [12/28/2002 12:51:02 PM]

Need for Configuration

Need for
Configuration

● The configuration specification allows the designer
to choose the entity for each component

● What is the need for configuration?

❍ VHDL supports design partitioning

❍ Various pieces of the design work may be parceled out
❍ When the architecture is developed, only the component

interface may be available

❍ There is a need to pull the pieces of the design back together

● Configuration must account for

❍ Entity name can be different than the component name

❍ Entity declaration may have more ports than the component
declaration

❍ Ports on the entity declaration may have different names than
the component declaration

● Configuration is clearly necessary in these cases to
map the correct entity to the component

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE18.HTM [12/28/2002 12:51:03 PM]

IF-Scheme Example

IF-Scheme
Example

ARCHITECTURE test_generate OF test_entity IS
 SIGNAL S1, S2, S3 : BIT_VECTOR (7 DOWNTO 0);
BEGIN
 G1 : FOR N IN 7 DOWNTO 0 GENERATE

 G2 : IF (N=7) GENERATE
 or1 : or_gate
 GENERIC MAP (3ns, 3ns)
 PORT MAP (S1(n), S2(N), S3(N));
 END GENERATE G2;

 G3 : If (N < 7) GENERATE
 and_array : and_gate
 GENERIC MAP (2ns, 3ns)
 PORT MAP (S1(N), S2(N), S3(N));
 END GENERATE G3;

 END GENERATE G1
END test_generate;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE17.HTM [12/28/2002 12:51:03 PM]

Summary

Summary

● Structural VHDL describes the arrangement and
interconnection of components

● Components can be of any level of abstraction -
low level gates or high level blocks of logic

● Generics are inherited by every architecture or
component of that entity

● Generate statements automatically create large,
regular blocks of logic

● Configuration gives the designer control over the
entity and architecture used for a component

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE23.HTM [12/28/2002 12:51:03 PM]

Need for Configuration (Note Page)

Need for
Configuration

-- Notes Page --

The configuration construct allows the designer to choose exactly what
model a component will use. During the design process, various parts of
the design can be parceled off to various teams or people. VHDL
supports this "divide and conquer" strategy. However, once all the pieces
have been developed, they must be brought together in a rational manner.
Architectures may be developed without knowing the exact details of the
components. Therefore, the exact component model must be chosen when
compilation occurs. The configuration statement allows the designer to
choose the component model appropriate for the design.

The configuration statement must account for many differences between
the entity and the component. First, the entity name may be different than
the component name. Second, the entity declaration may have more ports
that the component declaration. A more generic part may have been
developed with additional ports to keep the parts count down. However,
these extra ports cannot be ignored. Finally, the ports of the entity may
have different names than those on the component declaration. These
different port names must be matched.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE18N.HTM [12/28/2002 12:51:04 PM]

Configuration Specification

Configuration
Specification

● The configuration specification must indicate two
pieces of information

❍ Selected components

❍ Entity to bind with

● The basic syntax of the configuration specification

FOR component_specification USE binding_indication;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE19.HTM [12/28/2002 12:51:04 PM]

Configuration Specification (Note Page)

Configuration
Specification

-- Notes Page --

The configuration must specify two pieces of information to the compiler.
First, the effected components must be identified. Second, the entity to
bind the information must be identified. In a configuration, the
component is said to bind with an entity body. The basic syntax of the
configuration specification is given in the slide. The specification must be
given before any BEGIN statement in the architecture definition.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE19N.HTM [12/28/2002 12:51:04 PM]

Component Specification

Component
Specification

● The component_specification can be of several forms

❍ Single component

For A1 : and_gate USE binding_specification;

❍ Multiple components

FOR A1, A2 : and_gate USE binding_indication;

❍ All components

FOR ALL : and_gate USE binding_indication;

All components of this type are affected

❍ Other components

FOR OTHERS : and_gate USE binding_indication;

Components that have not yet been specified are affected

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE20.HTM [12/28/2002 12:51:04 PM]

Configuration Specification: Example

Configuration
Specification:

Example

● This example shows the use of the configuration
specification to allow an entity to fit a component
with a different interface

ENTITY JKFF IS
 PORT (clk, preset, clear, J, K : IN BIT;
 Q, Q_bar : OUT BIT);
END JKFF;

PACKAGE Global_signals IS
 SIGNAL clk, preset, clear : BIT;
END PACKAGE Global_signals;

USE Work.Global_signals;

ENTITY config_test IS
END config_test;

● The configuration statement maps the JKFF entity
to the global signals and the ports of the component

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22.HTM (1 of 2) [12/28/2002 12:51:05 PM]

Configuration Specification: Example

ARCHITECTURE structural OF config_test IS
 SIGNAL S1, S2, S3, S4 : BIT;
 COMPONENT FF
 PORT (J, K: IN BIT; Q, Q_bar : OUT BIT);
 END COMPONENT FF;

 FOR UO : FF USE ENTITY Work.JKFF
 PORT MAP (clk => Global_signals.CLK,
 preset => Global_signals.preset,
 clear => Global_signals.clear,
 J => S1, K => S2,
 Q => S3, Q_bar => S4);

BEGIN
 UO : FF PORT MAP (S1, S2, S3, S4);
END structural;

[Lipsett89]p. 137

Copyright © 1989, Kluwer Academic Publishers. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22.HTM (2 of 2) [12/28/2002 12:51:05 PM]

Binding Indication

Binding Indication

● The binding indication identifies the entity to be used for the
component

● The name of the architecture can also be identified

● Configuration may also be made in a separate configuration
declaration

● Binding indication may also include a PORT MAP and
GENERIC MAP to adapt the entity to the component

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE21.HTM [12/28/2002 12:51:05 PM]

Configuration Specification: Example (Note Page)

Configuration
Specification:

Example
-- Notes Page --

This example shows how to use the configuration statement to bind an
entity to a component.

First, entity JKFF is declared in the Work library. JKFF has five input
ports and two output ports.

The package Global_signals declares signals that are available to all
processes and components in the architecture.

The entity config_test is declared without input or output ports and can be
thought of as the top level testbench in this example.

The architecture is declared with local signals S1, S2, S3, and S4 and the
component FF. The component FF has 2 inputs and 2 outputs. This
component will be adapted to fit the JKFF component in a configuration
specification.

The configuration specification first identifies the effected component. In
this case, U0, the component instantiation of type FF is to be configured.
The entity to be used is then stated (JKFF in the Work library). Since the
interfaces do not match, a PORT MAP is necessary. The clk, preset, and
clear signals of the entity are mapped to the signals declared in
Global_signals with the same names. The J, K, Q, and Q_bar signals are
mapped to the local signals.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/SLIDE22N.HTM (1 of 2) [12/28/2002 12:51:05 PM]

Configuration Specification: Example (Note Page)

Finally, the component instantiation statement maps the components to
the same signals, completing the configuration.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...ial1/VHDL%20Interactive%20Tutorial/SLIDE22N.HTM (2 of 2) [12/28/2002 12:51:05 PM]

References

References

References:

[Lipsett89] Lipsett, R., C. Schaefer, C. Ussery, VHDL: Hardware Description and
Design, Kluwer Academic Publishers, 1989.

For further reading:

Bhasker, J., A VHDL Primer, Prentice Hall, 1995.

Calhoun, J.S., Reese, B., Class Notes for EE-4993/6993: Special Topics in Electrical
Engineering (VHDL), Mississippi State University,
http://www.erc.msstate.edu/mpl/vhdl-class/html, 1995.

Coelho, D.R., The VHDL Handbook, Kluwer Academic Publishers, 1989.

IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1993.

Navabi, Z., VHDL: Analysis and Modeling of Digital Systems, McGraw-Hill, 1993.

Mentor Graphics Corporation, An Introduction to Modeling in VHDL, 1990.

Perry, D.L., VHDL, McGraw-Hill, 1994.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE24.HTM [12/28/2002 12:51:06 PM]

RASSP Roadmap (Note Page)

RASSP
Roadmap
-- Notes Page --

This diagram emphasizes the role of VHDL in the RASSP program.
VHDL can be used for system definition, functional design, hardware-
software partitioning, hardware design and hardware-software integration
and test. The concept of virtual prototyping uses VHDL as the binding
language of choice for all design paradigms.

The most common usage of VHDL prior to RASSP was in the area of
hardware design. The RASSP program has extended VHDL's use to
include executable requirements, performance modeling/system level
design as well as system integration and test.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1AN.HTM [12/28/2002 12:51:06 PM]

Concepts of Structural VHDL (Note Page)

Concepts of
Structural

VHDL
-- Notes Page --

Structural VHDL is concerned with the interconnection and arrangement
of components describing the contents of a design. The behavior is not
explicitly shown. It can be thought of as a physical netlist. A structural
description need not be low level gates; it could represent the connections
between high- level algorithmic elements of a system as well as low-level
circuit elements of an ASIC design.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE3N.HTM [12/28/2002 12:51:06 PM]

Rules for Actuals and Locals (Note Page)

Rules for
Actuals

and Locals
-- Notes Page --

Locals are defined as the ports of the component. VHDL has two
restrictions on the association of locals with actuals. First, the local and
actual must be of the same data type. Second, the local and actual must be
capable of being readable and/or writable. A local of mode IN can only
be associated with an actual of mode IN. Ports of mode OUT behave
similarly. A local INOUT port is generally associated with an INOUT or
OUT actual.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE12N.HTM [12/28/2002 12:51:06 PM]

Components from Packages (Note Page)

Components
from

Packages
-- Notes Page --

This slide shows an example of the component declaration residing inside
a package declaration. The package must be included in the file
containing the architecture. This is done with the use of the USE
statement. The USE statement can be read as follows. Use ALL
components contained in the package my_stuff where the package
my_stuff is contained in the library work. If the only element required
from this package was and_gate, then the USE statement could have been
written:

USE Work.my_stuff.and_gate

Also shown on this slide is the use of positional association. Positional
association is used in the PORT MAP statement shown resulting in
signals S1, S2, and S3 being mapped to in1, in2, and out1, respectively.
Association by name could also be used and the statement may have
been:

PORT MAP (in1 => S1, out1 => S3, in2 => S2);

Note that when using association by name, the order of the signals in the
PORT MAP is not important.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE7N.HTM [12/28/2002 12:51:07 PM]

Generics

Generics

● Generics allow the component to be customized
upon instantiation

● Generics pass information from the entity to the
architecture

● Common uses of generics

❍ Customize timing

❍ Alter range of subtypes

❍ Change size of arrays

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE8.HTM [12/28/2002 12:51:07 PM]

Generic Map

Generic Map

● The GENERIC MAP is similar to the PORT MAP in
that it maps specific values to generics declared in
the component

PACKAGE my_stuff IS
 COMPONENT and_gate
 GENERIC (tplh, tphl : time);
 PORT (in1, in2 : IN BIT; out1 : OUT BIT);
 END COMPONENT;
END PACKAGE my_stuff;

USE Work.my_stuff.ALL;

ARCHITECTURE test of test_entity IS
 SIGNAL S1, S2, S3 : BIT;
BEGIN
 Gate1 : my_stuff.and_gate
 GENERIC MAP (2ns, 3 ns)
 PORT MAP (S1, S2, S3);
END test;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE10.HTM [12/28/2002 12:51:07 PM]

Restrictions on Instantiation (Note Page)

Restrictions
on

Instantiation
-- Notes Page --

Component instantiation must follow some rules to make sure the
interface of the component and other objects match. To make discussion
of this topic easier, the ports on the component are known as locals. Each
local must match with an actual. An actual is a signal or formal port
declared in the entity statement. As the picture above indicates, variables
and constants cannot be associated with a port on a component; signals
are the primary means of communication between VHDL entities and
components.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE11N.HTM [12/28/2002 12:51:07 PM]

IF-scheme Example (Note Page)

IF-scheme
Example
-- Notes Page --

The example here uses the IF-scheme GENERATE statement to make a
modification to the and_gate array. The seventh gate of the array will be
an or_gate when the GENERATE statement runs. In this example, the
or_gate will need to have the same type of interface as the and_gate. The
rest of the array is generated when the G3 generate block runs.

Another example use of the IF-scheme GENERATE is in the conditional
execution of timing checks. Timing checks can be incorporated inside a
GENERATE IF-scheme. For example, the following statement can be
used:

Check_time : IF TimingChecksOn GENERATE

This allows the boolean variable TimingChecksOn to disable timing
check simulation. This parameter can be set in a package or passed as a
generic and can improve simulation speed by shutting off this
computational section.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE17N.HTM [12/28/2002 12:51:07 PM]

Generics (Note Page)

Generics
-- Notes Page --

Generics provide a method for information to be channeled from an entity
(its input source) to a block (e.g. an architecture). It can be supplied either
in a component instantiation or in a configuration specification or
declaration. Generics can be used to pass timing information, control
array widths and data sizes, or set particular control flags (e.g. turn on
timing checks). A generic is much like a variable that is passed to a the
component at the time of instantiation. Generic declarations may contain
default values which can then be overridden during component
instantiations.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE8N.HTM [12/28/2002 12:51:08 PM]

Generics: An Example

Generics: An
Example

● One use of generics is to alter the timing of a certain
component

● It is possible to indicate a generic timing delay and
then specify the exact delay at instantiation

COMPONENT and2 IS
 GENERIC (tplh, tphl : TIME);
 PORT (input1, input2 : IN BIT;
 output : OUT BIT);
END COMPONENT;

● The example above declares the interface to the
and2 component

● The propagation time for high-to-low and low-to-
high transactions can be specified later

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE9.HTM [12/28/2002 12:51:08 PM]

Generic Map (Note Page)

Generic Map
-- Notes Page --

Generics can be mapped in a fashion similar to ports. Generics are not
required in a component but must be specified at instantiation if no
default values are given in the instantiated component's ENTITY. In this
example, the component and_gate is declared in the package my_stuff,
and its generics are tplh and tphl. The values are assigned to the generics
at instantiation in the GENERIC MAP. As in PORT MAP signal
associations, associations may be made by position or by name.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE10N.HTM [12/28/2002 12:51:08 PM]

FOR-scheme Example (Note Page)

FOR-scheme
Example
-- Notes Page --

This slide shows an example of the FOR-scheme. While this is a simple
example, far more complex designs can be generated.

The code generates an array of AND gates. The and_gate component
used previously is employed here. In this case, the GENERATE
statement has been named G1 and is instantiating an array of 8 and_gate
components. The PORT MAP statement maps the interface of each of the
8 gates to a specific element of the signal vectors. The leftmost and_gate
has the seventh element of signals S1, S2, and S3 mapped to its interface.
This continues to the last and_gate of the array (rightmost) where the
zeroth element of S1, S2, and S3 is mapped to its interface.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE15N.HTM [12/28/2002 12:51:08 PM]

Generate Statement IF-scheme (Note Page)

Generate
Statement
IF-scheme
-- Notes Page --

The other form of the GENERATE statement is the IF-scheme. This
scheme allows for conditional creation of objects. One obvious difference
between this scheme and the FOR-scheme is that all the objects created
do not have to be the same. While this IF statement may seem similar to
the IF-THEN-ELSE construct in behavioral VHDL, the IF-scheme does
not allow the use of ELSE or ELSIF branching.

The syntax for the IF-scheme GENERATE statement is shown in this
slide. The boolean expression of the IF statement can be any valid
boolean expression.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE16N.HTM [12/28/2002 12:51:08 PM]

Generics: An Example (Note Page)

Generics: An
Example
-- Notes Page --

This slide gives an example of how generics may be used. In this case,
the component and2 has two generic parameters associated with its
entity. They are tplh and tphl and represent the propagation time for low-
to-high and high-to-low transitions.

Note that since no default values are assigned here, the actual values of
these generics must be set when the component is instantiated or when a
configuration specification is done.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE9N.HTM [12/28/2002 12:51:09 PM]

Component Specification (Note Page)

Component
Specification

-- Notes Page --

The component specification can be of several forms. This slide shows
examples for various types. The component specification identifies those
components to be configured. Both single and multiple components can
be selected. The keyword ALL selects all components of that type. The
keyword OTHERS selects all components not yet configured. The
OTHERS keyword is similar to a default value.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE20N.HTM [12/28/2002 12:51:09 PM]

Binding Indication (Note Page)

Binding
Indication
-- Notes Page --

The binding indication is the second part of the configuration
specification. It identifies the entity to bind with the component and also
maps the two interfaces together. That is, a binding indication associates
component instances with a particular design entity. A particular
architecture of the entity can also be selected at this time. The binding
indication may include a PORT MAP and GENERIC MAP to adapt the
interfaces of the entity and the component.

An alternate method of binding components is to use a configuration
declaration. This is a separate library that specifies the configuration data
for an architecture. This method is mainly used for large scale design and
will not be discussed in this presentation.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE21N.HTM [12/28/2002 12:51:09 PM]

Behavioral VHDL - Module 3 -- Index

Behavioral
VHDL -

Module 3

Table of
Contents

● Behavioral VHDL - Module 3
❍ Outline
❍ RASSP Roadmap
❍ Module Goals

● Introduction to Behavioral Modeling in
VHDL

❍ Example Behavioral VHDL Model
❍ VHDL Processes

■ Process Syntax
■ Let's write a VHDL Model
■ Full Adder Architecture
■ Two Full Adder Processes
■ Complete Architecture
■ Alternate Carry Process

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-3.htm (1 of 4) [12/28/2002 12:51:10 PM]

Behavioral VHDL - Module 3 -- Index

❍ VHDL Sequential Statements
■ A Design Example - 2-bit Counter
■ The Wait Statement
■ Equivalent Processes
■ "wait until" and "wait for"
■ Mix and Match
■ Testbench
■ Things That Look Alike
■ Even Signal Assignment Statement
■ Signal Assignment Statements
■ Inertial vs Transport Delays
■ Subprograms
■ Functions
■ Functions (cont. 1)
■ Procedures
■ Procedure (cont. 1)
■ Bus Resolutions: Smoke Generator
■ Bus Resolution Functions
■ Bus Resolution: Smoke Generator Fixed
■ Null Transactions
■ Entity Statements
■ Blocks and Guards

❍ VHDL Packages

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-3.htm (2 of 4) [12/28/2002 12:51:10 PM]

Behavioral VHDL - Module 3 -- Index

❍ Potential Problems To Avoid
■ Potential Problems to Avoid (cont. 1)
■ Resolving Difficulties

● Case Study of the SDSP Microprocessor
Organization

❍ SDSP Microprocessor Instruction Architecture
❍ SDSP Context and Clock
❍ SDSP Bus Read Timing
❍ SDSP Bus Write Timing
❍ VHDL Models of the SDSP Microprocessor
❍ Organization of the SDSP VHDL Model
❍ The SDSP Testbench
❍ Testbench Body
❍ The SDSP Behavioral Model
❍ The SDSP Read Memory Procedure
❍ SDSP Write Memory Procedure
❍ SDSP Add Procedure
❍ SDSP Behavioral Model
❍ The SDSP Clock Model
❍ SDSP Memory Model
❍ Exercising the SDSP Model
❍ SDSP Benchmark
❍ SDSP Benchmark

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-3.htm (3 of 4) [12/28/2002 12:51:10 PM]

Behavioral VHDL - Module 3 -- Index

❍ SDSP Benchmark
❍ SDSP Benchmark

● Summary
❍ References

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-3.htm (4 of 4) [12/28/2002 12:51:10 PM]

Behavioral Modeling

Behavioral VHDL - Module 3

This module was prepared as part of the RASSP Education &
Facilitation effort.

Copyright © 1995, 1996 SCRA

Version 1.0

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/HOME-3.htm [12/28/2002 12:51:10 PM]

Toolbar Fucntionality

Toolbar Functionality

Takes the user up one hierarchicall level in the presentation.

Takes the user to the previous section of the presentation.

Takes the user to the previous slide in the presentation.

Takes the user to a listing of all slides with links to each
slide.

Takes the user to a visual representation of the organization
of the slide presentation.

Takes the user to a document, further explaining the
information contained within the slide.

Brings the user to this document, containing information on
the use of the toolbar.

Takes the user to the next slide in the presentation.

Takes the user to the next section of the presentation.

Takes the user down one hierarchical level in the
presentation.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/HELP-3.htm [12/28/2002 12:51:10 PM]

Outline

Behavioral
VHDL -

Module 3

Outline

● Introduction

● Behavioral Modeling

● Case Study of the SDSP Microprocessor
Organization

● Summary

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/OUTLINE-3.htm [12/28/2002 12:51:11 PM]

RASSP Roadmap

RASSP Roadmap

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1A-3.htm [12/28/2002 12:51:11 PM]

Module Goals

Behavioral
VHDL -

Module 3

Module Goals

● Comprehension of behavioral VHDL constructs
● Expansion of knowledge of VHDL concepts and

syntax
● Understanding of the application of behavioral

VHDL to a real example

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1B-3.htm [12/28/2002 12:51:12 PM]

Introduction to Behavioral Modeling in VHDL

Introduction to
Behavioral
Modeling in

VHDL

● Abstraction levels of VHDL models
❍ Structural level
❍ Behavioral/structural mixed (i.e., data flow)
❍ Behavioral

● Behavioral Modeling
❍ Functional performance is the goal of behavioral modeling
❍ Timing optionally included in the model
❍ Software engineering practices should be used to develop

behavioral models
■ Structured design
■ Iterative refinement
■ Abstract data typing
■ Loose coupling, strong cohesion

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE2-1.htm [12/28/2002 12:51:12 PM]

Introduction to Behavioral Modeling in VHDL (Note Page)

Introduction
to

Behavioral
Modeling
in VHDL

-- Notes Page --

Using VHDL, a system designer can model a circuit (i.e., a component or
system) at multiple levels of abstraction. In prior lessons, we have
concentrated on the basic elements and the structural forms of describing
models in VHDL. In this module we concentrate on the behavioral view,
that is, describing how the circuit is to perform.

We hide the structure of the design when modeling a circuit behaviorally.
Instead, we are vitally interested in the functionality of the circuit. At the
highest levels of abstraction, we even ignore timing.

When modeling in VHDL it is important to follow standard practices of
software engineering. Otherwise, the model will be hard to maintain,
even by the person who wrote it. In addition, to aid the reuse of models,
even "throw-away" models should be created with care, and with the
thought that others may use it.

Typical model design and coding practices include structuring the design,
iteratively refining a high-level view of the model down to its final form,
employing abstract data typing to hide and encapsulate data, and
organizing the individual model components so that they are loosely
coupled (small number of interface signals) and have strong cohesion

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE2N-2.htm (1 of 2) [12/28/2002 12:51:12 PM]

Introduction to Behavioral Modeling in VHDL (Note Page)

(keep strongly related functions in the same architectural body).

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE2N-2.htm (2 of 2) [12/28/2002 12:51:12 PM]

Example Behavioral VHDL Model

Example
Behavioral

VHDL Model

USE TEXTIO.all, mypackage.all;

ENTITY module is
 PORT (X, Y: in BIT; Z: out BIT_VECTOR(3 DOWNTO 0);
END module;

ARCHITECTURE behavior OF module is
 SIGNAL A, B: BIT_VECTOR(3 DOWNTO 0);
BEGIN
 A(0) <= X AFTER 20 ns; A(1) <= Y AFTER 40 ns
 PROCESS (A)
 VARIABLE P, Q: BIT_VECTOR(3 DOWNTO 0);
 BEGIN
 P := fft(A);
 B <= P AFTER 10 ns;
 END PROCESS;
 Z <= B;
END behavior;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE3-1.htm [12/28/2002 12:51:13 PM]

Example Behavioral VHDL Model (Note Page)

Example
Behavioral

VHDL Model
-- Notes Page --

Here, we see an example of behavioral VHDL which includes the use of
VHDL signals as well as variables. A process is shown which includes a
series of statements executed sequentially. The process itself, however, is
executed concurrently with the assignments to A and Z. The ability to
model both concurrent and sequential events in a VHDL model will be
covered in detail in subsequent sections of this module.

Note that variables are also shown; these are unique to behavioral VHDL
in that they can only be used inside processes. It is important to point out
that this material will not cover shared or global variables added in the
VHDL 93 revisions.

The functionality of the component is defined in the architecture body.
Two signals, A and B are defined internal to the component. Three
statements are defined:

A(0) <= X AFTER 20 ns;
A(1) <= Y AFTER 40 ns;
PROCESS (A);

The process executes the Fourier transform of A using a function and
transfers the results to signal B. All three statements execute concurrently.
The two signal assignment statements are activated whenever a signal in
their respective right-hand sides changes value. The process becomes

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE3N-1.htm (1 of 2) [12/28/2002 12:51:13 PM]

Example Behavioral VHDL Model (Note Page)

active when there is a change in A.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE3N-1.htm (2 of 2) [12/28/2002 12:51:13 PM]

VHDL Processes

VHDL
Processes

● A VHDL process statement is used for all
behavioral descriptions

● Example simple VHDL process

ARCHITECTURE behavioral OF clock_component IS
BEGIN
 PROCESS
 VARIABLE periodic: BIT := '1';
 BEGIN
 IF en = '1' THEN
 periodic := not periodic;
 END IF;
 ck <= periodic;
 WAIT FOR 1 us;
 END PROCESS;
END behavioral;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE4-1.htm [12/28/2002 12:51:13 PM]

Case Study of the SDSP Microprocessor Organization

Case Study of the
SDSP

Microprocessor
Organization

● Simple 32-bit microprocessor with
❍ 32-bit address and data bus
❍ 256-word register file
❍ 3-operand addressing
❍ "Quick" mode for arithmetic and I/O instructions

● On reset, the SDSP PC initialized to zero; all other regs
undefined

● By convention, R0 holds zero - but must be set by
software

● Condition codes:
❍ V: overflow (set by arithmetic result larger that can be represented)
❍ N: negative (set if arithmetic result is negative)
❍ Z: zero (set if arithmetic or logic result is zero)

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE41.HTM [12/28/2002 12:51:13 PM]

Resolving Difficulties

Resolving
Difficulties

● Overloaded items cannot be resolved if the argument
types include common literals. i.e.,
 TYPE twobit IS ('0', '1');
 TYPE fourbit IS ('U', '0', '1', 'Z');
 FUNCTION abc (x: twobit) RETURN INTEGER;
 FUNCTION abc (x: fourbit) RETURN INTEGER;

 y <= abc('0'); --Which function do we use?

❍ Resolve the ambiguity by qualifying the literal:

 y <= abc(twobit'('0');

❍ General tip: Use qualification to avoid numerous problems where the
compiler cannot seem to select a specific meaning, e.g., read (abc,
string'("abcabc"));

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE30.HTM [12/28/2002 12:51:14 PM]

SDSP Microprocessor Organization (Note Page)

SDSP
Microprocessor

Organization
-- Notes Page --

The SDSP processor is a full 32-bit system (both data and instructions). It is
organized along the lines of a RISC architecture. For example, every
instruction is exactly 32-bits in length (plus 32-bit displacement if needed).

To keep the SDSP simple there are a few capabilities missing. For example,
the SDSP has no interrupt capability, nor does it have subroutine support.
But due to the nature of the model, these items can be very easily and
quickly added. The three condition code register bits are updated after each
arithmetic or logical instruction.

Z - zero bit
set if the result is zero

N - negative bit
set if the result of an arithmetic instruction is negative

V - overflow bit
set if a carry or borrow is created from MSB or LSB, respectively

The PC is set to zero on reset, and the values in the other registers are not
specified. By convention, R0 is read-only and always contains zero (not
enforced by hardware). The PC is incremented to point to the next address
after each instruction is fetched.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE41N-1.htm [12/28/2002 12:51:14 PM]

SDSP Microprocessor Instruction Architecture

SDSP Microprocessor
Instruction Architecture

● Arithmetic and Logical (add, sub, mul, div, addq, subq, mulq, divq, land, lor,
lxor, lmask)

8-bit fields

● I/O (ld, st, ldq, stq)

● Shift (shl, shr, shla, shra, rotl, rotr)

● Branch (br*, brq*, bi*, biq*: where *= v, nv, nn, p, np, z, nz)

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE42.HTM (1 of 2) [12/28/2002 12:51:14 PM]

SDSP Microprocessor Instruction Architecture

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE42.HTM (2 of 2) [12/28/2002 12:51:14 PM]

Summary

Summary

● Behavioral VHDL is used to focus on the behavior,
and not the structure, of the device

● Several familiar programming constructs, such as
CASE and IF-THEN-ELSE statements, are
available

● Subprograms allow large parts of code to be
broken down into smaller, more manageable parts

● Bus resolution functions decide the final value of
multiple signal assignments to one signal

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE62A.HTM [12/28/2002 12:51:15 PM]

VHDL Processes (Note Page)

VHDL
Processes
-- Notes Page --

We now turn our attention to a the VHDL process statement. The process
is the key structure in behavioral VHDL modeling. A process is the only
means by which the executable functionality of a component is defined.
In fact, for a model to be capable of being simulated, all components in
the model must be defined using one or more processes.

Statements within a process are executed sequentially (although care
needs to be used in signal assignment statements since they do not take
effect immediately; this was covered in the VHDL Basics module when
the VHDL timing model was discussed). Variables are used as internal
place holders which take on their assigned values immediately.

All processes within an architecture body (or within a whole model for
that matter) are executed concurrently. That is, although statements
within a process are evaluated and executed sequentially, all processes
within the model begin executing concurrently.

In the example process given here, a variable periodic is declared and
assigned the initial condition '1'. As long as en is '1', if periodic changes
value, then a future possible changed value (called a transaction) is
created and saved on a list of transactions for ck by the simulator. The
process then suspends for one microsecond. The signal ck actually
assumes its new value one delta cycle after the process suspends (because
the transaction becomes an event). After the one microsecond suspension,
the process once again executes beginning with the if statement. Note that
only variables can be declared in a process, and signals (which are global

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE4N-2.htm (1 of 2) [12/28/2002 12:51:15 PM]

VHDL Processes (Note Page)

to a process) are used primarily as control (e.g., en in this case), inputs
into a process, or outputs from a process (e.g., ck in this case).

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE4N-2.htm (2 of 2) [12/28/2002 12:51:15 PM]

Process Syntax

Process
Syntax

[process_label :] PROCESS
[(sensitivity_list)]

 process_declarations

BEGIN

 process_statements

END PROCESS [process_label];

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE5-1.htm [12/28/2002 12:51:15 PM]

VHDL Sequential Statements

VHDL
Sequential
Statements

● Assignments executed sequentially in processes
● Sequential statements

❍ {Signal, variable} assignments
❍ Flow control

■ if <condition> then <statements> else <statements> end if;
■ for <range> loop <statements> end loop;
■ while <condition> loop <statements> end loop;
■ case <condition> is when <value> => <statements>;

when <value> => <statements>;
when others => <statements>;
end case;

❍ Wait on <signal> until <expression> for <time>;
❍ Assert <condition> report <string> severity <level>;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE11-1.htm [12/28/2002 12:51:15 PM]

VHDL Packages

VHDL
Packages

● What can you put in a package?
❍ Subprograms (i.e., functions and procedures)
❍ Data and type declarations such as:

■ User record definition
■ User types and enumerated types
■ Constants
■ Files
■ Aliases
■ Attributes

❍ Component declarations

● Entities and Architectures cannot be declared or
defined in a package

● To use a package, make it visible via the "use"
language construct

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE27.HTM [12/28/2002 12:51:16 PM]

Potential Problems to Avoid (Cont.)

Potential
Problems to

Avoid (cont. 1)

● Avoid using shared variables
❍ Debugging potential asynchronous errors can be difficult
❍ Concept likely to change in future VHDL standards

● Overloaded items cannot be resolved by return type
❍ Example: These overloaded functions cannot be disambiguated:

FUNCTION "-" (a, b: natural) RETURN integer;
FUNCTION "-" (a, b: natural) RETURN natural;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE29.HTM [12/28/2002 12:51:16 PM]

Resolving Difficulties (Note Page)

Resolving
Difficulties

-- Notes Page --

Because literals in VHDL are semantically ambiguous (e.g. "abc" can be
a string or a vector of enumerated values 'a', 'b', 'c'), it is often impossible
for the VHDL analyzer to determine the exact type of a literal, and thus
resolve the overloaded function, if it is dependent on the literal.

For instance, note that in the upper example, '0' appears in the definition
for both enumerated types, twobit and fourbit. Therefore, calling abc with
'0' as its parameter does not allow for a distinction between the two
versions of the abc function.

It is a good idea to use qualification when passing literals as subprogram
parameters both to ensure that inadvertent ambiguities are avoided and to
improve the readability of the VHDL code.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE30N-1.htm [12/28/2002 12:51:16 PM]

DSP Microprocessor Instruction Architecture (Note Page)

DSP
Microprocessor

Instruction
Architecture

-- Notes Page --

The instruction mnemonics ending with 'q' are quick instructions. That is,
the second operand is the value of the LSB of the instruction rather than in
r2 or a 32-bit displacement immediately following the instruction.

The shift instruction fills in with 0 for non-arithmetic shifts, and the sign bit
for arithmetic shifts. "n/a" means not applicable, and the contents of that
field are ignored.

Branch instructions are of four types:

br* -
simple branch

brq* -
simple branch where displacement is low-order eight bits of
instruction

bi* -
branch indexed where branch address is pc+displacement+[r1]

biq* -
branch indexed where displacement is low-order eight bits of
instruction

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE42N-1.htm [12/28/2002 12:51:16 PM]

SDSP Context and Clock

SDSP Context and
Clock

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE43.HTM [12/28/2002 12:51:17 PM]

SDSP Benchmark

SDSP Benchmark

 mul r9 r1 r7 ; r7 = x mod q
 mul r8 r4 r6
 sub r8 r9 r8
 addq r5 r5 0 ; x = r9+m if r9 > 0
 brpq next
 add r5 r5 r2
 stq r5 r0 x ; save new seed in mem[x]
next : div r5 r5 r10 ; r5 = r5/scale
 stq r5 r0 result ; save random result in
mem[result]
 ;
 ;------- End of generator algorithm
 ;
 st r5 r9 list ; numbers stored starting from end of
list
 brq again
 ;
 ;------- All 100 numbers generated, so quit
 ;
 done : stq r5 r0 donetrigger ; monitor address bus for
"donetrigger" to stop timing
 idle : brq idle ; busy loop
 end

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE61.HTM [12/28/2002 12:51:17 PM]

References

References

For further reading:

IEEE Stadnard VHDL Language Reference Manual, IEEE Std. 1076-1993.

Ashenden, Peter, The VHDL Cookbook, 1989 (unpublished). Available via ftp from
thor.ece.uc.edu.

Jain, Ravi, The Art of Computer Systems Performance Analysis, John Wiley & Sons,
1991.

Mohanty, S., Krishnaswamy, V., and Wilsey, P., "System Modeling, Performance
Analysis, and Evolutionary Prototyping with Hardware Description Languages",
Proceedings of the 1995 Multiconference on Simulation, pp 312-318.

Navabi, Z., VHDL Analysis and Modeling of Digital Systems, McGraw-Hill, 1993.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE63.HTM [12/28/2002 12:51:17 PM]

Process Syntax (Note Page)

Process
Syntax

-- Notes Page --

The use of "process_label" at the beginning and end of a process is
optional but recommended to enhance code readability.

The "sensitivity_list" is optional in that a process may have either a
sensitivity_list, or it must include "wait" statements. A process cannot
include both a sensitivity_list and wait statements. Wait statements will
be covered in a subsequent section.

The "process_declaration" includes declarations for variables, constants,
aliases, files, and many other things.

The "process_statements" include variable assignment statements, signal
assignment statements, procedure calls, wait statements, "if" clauses,
"while" loops, assertion statements, etc.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE5N-2.htm [12/28/2002 12:51:18 PM]

Let's write a VHDL Model

Let's write a VHDL Model

ENTITY full_adder IS
 PORT (A, B, Cin: IN bit;
 Sum, Cout: OUT bit);
END full_adder;

Can we build the Full Adder's architecture using these gates?

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE6-1.htm [12/28/2002 12:51:18 PM]

Alternate Carry Process

Alternate Carry
Process

Carry: PROCESS(A, B, Cin) BEGIN IF (A = '1' and B
= '1') THEN Cout <= '1'; ELSIF (A = '1' and Cin =
'1') THEN Cout <= '1'; ELSIF (B = '1' and Cin =
'1') THEN Cout <= '1'; ELSE Cout <= '0'; END IF;
END PROCESS Carry;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE10-1.htm [12/28/2002 12:51:18 PM]

VHDL Sequential Statements (Note Page)

VHDL
Sequential
Statements

-- Notes Page --

Sequential statements are used within processes and are executed in a top-
down fashion. The list shown on this page includes many of the
commonly used forms, but the list is not complete. The VHDL Language
Reference Manual (IEEE Std. 1076-1993) provides a complete list.

Each of these statement types will be explained in further sections of this
module. Some of you may note that these control structures operate
almost exactly like their counterparts in Ada except for the assert and
sequential signal assignment statements.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE11N-3.htm [12/28/2002 12:51:18 PM]

A Design Example - 2-bit Counter

A Design
Example -

2-bit Counter

ENTITY count2 IS GENERIC (prop_delay : TIME :=
10ns); PORT (clock : IN BIT; q1, q0: OUT BIT); END
count2; ARCHITECTURE behavior OF count2 IS BEGIN
count_up: PROCESS (clock) VARIABLE count_value:
NATURAL := 0; BEGIN IF clock='1' THEN count_value
:= (count_value+1) MOD 4; q0 <=
bit'val(count_value MOD 2) AFTER prop_delay; q1 <=
bit'val(count_value/2) AFTER prop_delay; END IF;
END PROCESS count_up; END behavior;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE12-1.htm [12/28/2002 12:51:19 PM]

Blocks and Guards

Blocks and
Guards

● Blocks partition the concurrent statements in an
architecture such that conditional activities unique to
each block can occur

● A guarded signal assignment statement generates a
value only if the block guard expression is true. If
false, the assignment is disconnected

● Example

ARCHITECTURE guarded_assignments OF n_1_mux IS
BEGIN
 bi: FOR j IN i'range GENERATE
 bj: BLOCK (s(j) = '1' or s(j) = 'z')
 BEGIN
 x<= guarded i(j);
 END BLOCK;
 END GENERATE;
END guarded_assignments;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE24A.HTM [12/28/2002 12:51:19 PM]

Avoiding Problems

Potential
Problems to

Avoid

● Objects defined by subtypes derived from a base type
are considered being of the same type

❍ Example:

 PROCESS
 SUBTYPE smallintA IS integer (RANGE 0 to 10);
 SUBTYPE smallintB IS integer (RANGE 0 to 15);
 VARIABLE A: smallintA := 5;
 VARIABLE B: smallintB := 8;
 VARIABLE C: integer;
 BEGIN
 B := B * A; --OK
 C := B + 1; --OK
 END PROCESS;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE28.HTM [12/28/2002 12:51:19 PM]

Potential Problems to Avoid (cont. 1) (Note Page)

Potential
Problems to
Avoid (cont.

1)
-- Notes Page --

The use of shared variables requires careful attention to ensure that
correct values are communicated among relevant processes. For example,
if one process writes a shared variable in the same simulation cycle that
another process reads the variable, the VHDL standard does not define
what value is read. Similarly, if two or more processes write to the same
shared variable in the same simulation cycle, the standard does not define
what value should be written to the variable.

Care must be taken if overloaded functions are differentiated solely by
the type of their return values. The previous version of the VHDL
standard, 1076-1987, did not require that differentiations on output types
be supported. The current standard, 1076-1993, however, has included
the requirement that differentiations based solely on output type be
supported.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE29N-1.htm [12/28/2002 12:51:19 PM]

SDSP Context and Clock (Note Page)

SDSP Context
and Clock
-- Notes Page --

The signals shown in the entity are all single-bit except for the address
bus, A_BUS, and the data bus, D_BUS, which are 32-bits each.

The clock is a two-phase clock with non-overlapping phases. Each cycle
of phi1 defines a bus state of which there are three: Ti, T1 and T2. Ti is
the idle state.

A bus transaction (e.g., read or write memory) consists of a T1 state
followed by one or more T2 states. The fetch port is a status signal
indicating an instruction fetch is in progress. The ready port is set by the
memory to indicate that read data is available or write data has been
accepted.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE43N-1.htm [12/28/2002 12:51:20 PM]

SDSP Bus Read Timing

SDSP Bus Read
Timing

* Three
cycles
minimum
to read
data
or
instruction

* 1st,
assert
address
bus

* 2nd,
assert read
and
wait for
ready
from
memory
to go high

* 3rd,
strobe
data into
CPU on
leading
edge
of ready

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE44.HTM [12/28/2002 12:51:20 PM]

SDSP Benchmark

SDSP Benchmark

 ;
 ;---------- Generate 100 random numbers
 ;
 ldq r9 r0 counter ; r9 is loop ctr
 again : subq r9 r9 1 ; decrement counter
 brnq done ; jump out when all 100 #'s
generated
 ;
 ;--- The following code is the random number generator
algorithm
 ;
 ; x_new = a * x_old * mod m
 ; result = x_new/divisor
 ;
 ; Ensure seed is in memory at loc "x" if it isn't already there
from the previous execution
 ; of the algorithm
 ;
 ldq r5 r0 x ; put new seed in reg 5
 div r6 r5 r3 ; r6 = x div q
 mul r7 r6 r3
 sub r7 r5 r7

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE60.HTM [12/28/2002 12:51:21 PM]

Let's write a VHDL model (Note Page)

Let's write a
VHDL model

-- Notes Page --

As was seen in an earlier module, a VHDL model contains an entity and
an architecture. Here the entity, which defines the model's interface to the
outside world, is shown.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE6N-2.htm [12/28/2002 12:51:21 PM]

Full Adder Architecture

Full Adder
Architecture

A | B | Cin | Sum | Cout

0 | 0 | 0 | 0 | 0

0 | 0 | 1 | 1 | 0

0 | 1 | 0 | 1 | 0

0 | 1 | 1 | 0 | 1

1 | 0 | 0 | 1 | 0

1 | 0 | 1 | 0 | 1

1 | 1 | 0 | 0 | 1 for Carry:

1 | 1 | 1 | 1 | 1 Cin

A B 0 1

0 0 | 0 0

0 1 | 0 1

1 1 | 1 1

1 0 | 0 1

for Sum:

Cin

A B 0 1

0 0 | 0 1

0 1 | 1 0

1 1 | 0 1

1 0 | 1 0

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE7-1.htm [12/28/2002 12:51:21 PM]

Complete Architecture

Complete
Architecture

ARCHITECTURE example OF Full_Adder IS
 --Nothing needed in declarative block...
BEGIN

 Summation: PROCESS(A, B, Cin)
 BEGIN
 Sum <= A xor B xor Cin;
 END PROCESS Summation;

 Carry: PROCESS(A, B, Cin)
 BEGIN
 Cout <= (A and B) or
 (A and Cin) or
 (B and Cin);
 END PROCESS Carry;

END Example;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE9-1.htm [12/28/2002 12:51:22 PM]

Alternate Carry Process (Note Page)

Alternate
Carry Process

-- Notes Page --

The Carry output could have been described using programming
language constructs instead of the logic equations shown previously.
Here, a set of nested if-then-else statements is used to implement the table
lookup method. A case statement could also be used.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE10N-3.htm [12/28/2002 12:51:22 PM]

A Design Example - 2-bit Counter (Note Page)

A Design
Example - 2-
bit Counter

-- Notes Page --

In this example, we show a model for a simple 2-bit counter which counts
clock pulses. The component has clock as an input, and two outputs
which represent the LSB and MSB of a two-bit unsigned number.

There are several constructs that you may not have seen before.
bit'val(count_value mod 2) is a function which returns a value of type bit.
count_value is a natural number (i.e. an integer greater than, or equal to,
zero). count_value mod 2 returns the LSB value of the counter value, but
the LSB value is of type natural. Since we want the LSB to be of type bit
instead, we cast it by using the 'val (read as "tic val") attribute on the type
bit.

Another possibly new concept shown here is generic. A generic is like a
port except it is treated as a constant in the architecture. Thus, prop_delay
is a constant which can be set by the modeler when the entity count2 is
instantiated as a component. If the modeler decides not to explicitly set
the value of prop_delay, its value defaults to 10 nanoseconds.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE12N-3.htm [12/28/2002 12:51:22 PM]

The Wait Statement

The Wait
Statement

● The wait statement causes the suspension of a
process statement or a procedure

● wait [sensitivity_clause] [condition_clause]
[timeout_clause];

❍ sensitivity_clause ::= on signal_name {, signal_name}

 wait on CLOCK;

❍ condition_clause ::= until boolean_expression

 wait until Clock = '1';

❍ timeout_clause ::= for time_expression

 wait for 150 ns;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE13-1.htm [12/28/2002 12:51:22 PM]

Entity Statements

Entity Statements

● Entities may contain statements (including processes and procedures),
but the statement can only be

❍ Concurrent assertion statements
❍ Passive concurrent procedure calls
❍ Passive process statements

● Example
 ENTITY multiplexor IS
 PORT (a, b: IN BIT; select: IN BIT; output: OUT BIT);

 BEGIN
 check: PROCESS(a, b)
 BEGIN
 ASSERT a/=b REPORT "a equals b" SEVERITY NOTE;
 END PROCESS;
 END multiplexor;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE24-1.htm [12/28/2002 12:51:22 PM]

Blocks and Guards (Note Page)

Blocks and
Guards

-- Notes Page --

Blocks are used both to define a hierarchy within a design and to group
together signal assignments which are only to be evaluated, and, in fact
potentially connected, when the defined GUARD is true.

The primary reason to organize an architecture as several blocks of
activity is to control the actions of groups of concurrent statements.

A conditional GUARD can be stated at the head of a block. If such a
condition expression exists, then any statement in the block which has the
keyword guarded will disconnect if the expression evaluates to false.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLID24AN.HTM [12/28/2002 12:51:23 PM]

Potential Problems to Avoid (Note Page)

Potential
Problems to

Avoid
-- Notes Page --

Interestingly, even thought VHDL is considered to be strongly typed, the
developers of the language decided to strongly type only with respect to
the base type, not derived subtypes.

Thus, the VHDL analyzer will not be aware of inconsistent subtypes in
the example shown here, and the simulator will execute the statements as
expected. Note, however, that the result after multiplying A and B may be
out of the range of B's subtype.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE28N-1.htm [12/28/2002 12:51:23 PM]

SDSP Bus Read Timing (Note Page)

SDSP Bus
Read Timing

-- Notes Page --

1. During a Ti state, the CPU places an address on A_BUS. T1 is the
next state

2. After the leading edge of phi1, the CPU asserts read to initiate a
read activity in the memory

3. If an instruction is being fetched, fetch is asserted
4. T2 states occur until ready is asserted by the memory
5. The CPU inputs data on rising edge of phi1 and deasserts read (and

fetch).
6. Memory deasserts ready on falling edge of read

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE44N-1.htm [12/28/2002 12:51:23 PM]

SDSP Bus Write Timing

SDSP Bus Write
Timing

* Three
cycles
minimum
to write
data

* 1st,
assert
address
bus and
data bus

* 2nd,
assert
write

* 3rd,
data
written
when
ready
asserted

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE45.HTM [12/28/2002 12:51:24 PM]

SDSP Benchmark

SDSP Benchmark

 ;
 ;----------- constants and data areas for the random generator
 ;
 a : data 16807
 m : data 2147483647 ; (2**31)-1
 q : data 127773 ; m div a
 r : data 2836 ; m mod a
 scale : data 10000000 ; scale factor to produce random
number between 0 and
 214
 x : data 20 ; starting seed (updated each time
algorithm executes)
 result : res 1 ; random result between 1 and 214
 ;
 ;---------- load constants into registers for the generator
algorithm
 ;
 begin : ldq r1 r0 a
 ldq r2 r0 m
 ldq r3 r0 q
 ldq r4 r0 r
 ldq r10 r0 scale

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE59.HTM [12/28/2002 12:51:24 PM]

SDSP Benchmark

SDSP Benchmark

 ;
 ; Random number generator including code to test the
generator
 ;
 ;
 ; Hal Carter, 14 Feb 95 Ver. 1.0
 ; This random number generator is a integer linear-
congruential generator with period
 ; (2**31)-1 as presented in R. Jain, "The Art of Computer
Systems Performance
 ; Analysis, " John Wiley & Sons, pp. 441-444, 1991.
 ;---
 org 0
 lmask r0 r0 r0 ; R0 <- 0
 stq r0 r0 starttrigger ;monitor address start to
start timing monitor
 brg begin ; jump around data segment
 ;
 ;--------- constants and data areas for
 ;--------- testing the generator
 ;
 list : res 100 ; list of random numbers
 counter : data 100
 starttrigger : res 1
 donetrigger : res 1

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE58.HTM [12/28/2002 12:51:24 PM]

Full Adder Architecture (Note Page)

Full Adder
Architecture

-- Notes Page --

A one-bit full adder will be used in the next few pages as an ongoing
example.

One way to describe the function of a full-bit adder is as a look-up table.
In other words, we can define every mapping of the inputs to the outputs,
and encode them as a case statement in the body of the process. Here, the
logic tables used to generate the outputs, Sum and Cout, are shown.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE7N-2.htm [12/28/2002 12:51:25 PM]

Two Full Adder Processes

Two Full Adder
Processes

Summation:
PROCESS(A,
B, Cin)
BEGIN Sum
<= A xor B
xor Cin;
END PROCESS
Summation;
Carry
PROCESS(A,
B, Cin)
BEGIN Cout
<= (A and
B) or (A
and Cin) or
(B and
Cin); END

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE8-1.htm (1 of 2) [12/28/2002 12:51:25 PM]

Two Full Adder Processes

PROCESS
Carry;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE8-1.htm (2 of 2) [12/28/2002 12:51:25 PM]

Complete Architecture (Note Page)

Complete
Architecture

-- Notes Page --

Now we put the entire architecture together. The two processes defined
on the previous slide are placed in the same architecture. Note that the
SUM and CARRY processes execute concurrently.

This model does not exploit explicit time (that is, there are no AFTER
phrases or "wait for" statements. Thus, this model is purely functional. If
timing is important, we can either add delay phrases (i.e., AFTER
clauses) to the signal assignment statements, or use "wait for" statements.

Note that if wait statements are used in a process, the process cannot have
a sensitivity list.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE9N-2.htm [12/28/2002 12:51:25 PM]

The Wait Statement (Note Page)

The Wait
Statement
-- Notes Page --

Wait statements are used to suspend the execution of a process until some
condition is satisfied. Processes in VHDL are actually code loops. The
execution of the last statement in the process is followed by the execution
of the first statement in the process, and process execution continues until
a wait statement is reached. For this reason, every process must have at
least one wait statement (a sensitivity is actually an implied wait
statement which will be described in the next page of this module).

The structure of a wait statement contains optional clauses which can be
used in any combination:

The sensitivity_clause:
the wait statement will only evaluate its condition clause when there
is an event (i.e. a change in value) on at least one of the signals
listed in the sensitivity_clause. If no sensitivity_clause is given, the
signals listed in the condition_clause constitute an implied
sensitivity_clause.

The condition_clause:
an expression which must evaluate to TRUE in order for the process
to proceed past the wait statement. If no condition_clause is given, a
TRUE value is implied when there is an event on a signal in the
sensitivity_clause.

The timeout_clause:
specifies the maximum amount of time the process will remain
suspended at this wait statement. If no timeout_clause is given,

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE13N-3.htm (1 of 2) [12/28/2002 12:51:25 PM]

The Wait Statement (Note Page)

STD.STANDARD.TIME'HIGH-STD.STANDARD.NOW
(effectively until the end of simulation time) is assumed.

Wait statements assist the modeling process by synchronizing
concurrently executing processes, implementing delay conditions into a
behavioral model, or establishing event communications between
processes. Sometimes, wait statements are used to sequence process
execution relative to the simulation cycle.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE13N-3.htm (2 of 2) [12/28/2002 12:51:25 PM]

Equivalent Processes

Equivalent Processes

● "Sensitivity List" vs "wait on"

Summation:
 PROCESS(A, B, Cin)
 BEGIN
 Sum <= A xor B xor Cin;
END PROCESS Summation;

=

Summation: PROCESS
 BEGIN
 Sum <= A xor B xor Cin;
 WAIT ON A, B, Cin;
END PROCESS Summation;

if you put a sensitivity list in a process, you can't have a wait statement!

if you put a wait statement in a process, you can't have a sensitivity list!

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE14-1.htm [12/28/2002 12:51:26 PM]

Null Transactions

Null Transactions

● How can a driver be disconnected (i.e., not influencing
the output at all)?

❍ Use the null waveform element

● Example:
 bus_out <= null after 17 ns;

● What happens if all drivers of a resolved signal are
disconnected?

❍ Use register kind in signal declaration to keep most recently
determined value

❍ Use bus kind in signal declaration if resolution function must
determine the value

❍ Example:
■ signal t: wired_bus bus;
■ signal u : bit register;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE23-1.htm [12/28/2002 12:51:26 PM]

Entity Statements (Note Page)

Entity
Statements

-- Notes Page --

An entity can contain passive statements to perform actions such as
timing or validity checks at the interface of a component. Assertion
statements in an entity, for example, may be used to check that setup and
hold requirements are satisfied.

A passive statement is one which does not change the state of the
behavior. Simply put, the execution of a passive statement does not lead
to any signal assignments.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE24N-1.htm [12/28/2002 12:51:26 PM]

SDSP Bus Write Timing (Note Page)

SDSP Bus
Write Timing

-- Notes Page --

Memory Write:

1. During a Ti state, the CPU places an address on A_BUS. T1 is the
next state

2. After the leading edge of phi1, the CPU asserts write to initiate a
write activity in the memory. Data to be written is placed on
D_BUS.

3. T2 states occur until ready is asserted by the memory
4. Memory deasserts ready on falling edge of write and removes

address and data from A_BUS and D_BUS respectively

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE45N-1.htm [12/28/2002 12:51:26 PM]

VHDL Models of the SDSP Microprocessor

VHDL Models
of the
SDSP

Microprocessor

● The SDSP Testbench
● The SDSP Behavioral Model
● The SDSP Clock and Memory Models

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE46.HTM [12/28/2002 12:51:27 PM]

Two Full Adder Processes (Note Page)

Two Full
Adder

Processes
-- Notes Page --

Defining the SUM and CARRY functions of a full-bit adder as logic gate
circuits can be represented in VHDL as a single sequential assignment
statement:

SUM <= A xor B xor Cin;
CARRY <= A and B or A and Cin or B and Cin;

We can represent these two functions in separate process statements (but
both in the same architecture, as shown here), or together in the same
process statement.

In the example shown, the sensitivity lists are composed of all signals on
the right-hand side of the signal assignment statements. We really don't
need the explicit sensitivity lists since the default in VHDL is to be
sensitive to all right-hand signals. But it doesn't hurt to show them
explicitly. In fact, it makes the process easier to understand.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE8N-2.htm [12/28/2002 12:51:27 PM]

Equivalent Processes (Note Page)

Equivalent
Processes
-- Notes Page --

A process with a sensitivity list, as shown in the process on the left, is
implemented as a wait on "sensitivity list" at the bottom of the process (as
shown in the process on the right). This allows every process with a
sensitivity list to execute once at the beginning of a simulation and
suspend at the bottom waiting for a a relevant signal event to occur. Note
that the VHDL standard prohibits the use of both process sensitivity lists
and wait statements within the same process.

This should help clarify how a process works. When the simulation
begins at time=0, all processes execute until a wait statement is reached.
If the wait statement is at the end of the process, the behavior is exactly as
if a sensitivity list were used. The wait statement prevents the process
from immediately executing from the beginning again. Rather, it waits
until one or more of the signals in the wait statement change value.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE14N-3.htm [12/28/2002 12:51:27 PM]

"wait until" and "wait for"

"wait until"
and "wait for"

● What do these do?

Summation: PROCESS
 BEGIN
 Sum <= A xor B xor Cin;
 WAIT UNTIL A = '1';
END PROCESS Summation;

Summation: PROCESS
 BEGIN
 Sum <= A xor B xor Cin;
 WAIT FOR 100 ns;
END PROCESS Summation;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE15-1.htm [12/28/2002 12:51:27 PM]

Bus Resolution: Smoke Generator Fixed

Bus
Resolution

Smoke Generator
Fixed

● If a signal has a bus resolution function associated
with it, then the signal may have multiple drivers

LIBRARY attlib; USE attlib.att_mvl.ALL;
USE WORK.bus_resolution.ALL;

ENTITY bus IS
 PORT (a, b, c : IN MVL; z : OUT MVL);
END bus;

ARCHITETURE fixed OF bus IS
 SIGNAL circuit_node : wired_and MVL;
BEGIN
 circuit_node <= a;
 circuit_node <= b;
 circuit_node <= c;
 z <= circuit_node;
END fixed;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22G.HTM [12/28/2002 12:51:27 PM]

Null Transactions (Note Page)

Null
Transactions

-- Notes Page --

A null transaction is used to deactivate a signal driver. This is analogous
to putting a tri-state driver in a high-impedance state. In such a case, the
value of the signal is determined by any active drivers. Of course, if there
is more than one active driver at any one time, a Bus Resolution Function
would be needed.

There are two actions that can take place if all drivers of a signal are
disconnected:

1. Use the last known value
2. Require that a bus resolution function specify a value

The keyword register is used if the last known value action is desired,
and the keyword bus if a bus resolution function must specify a value.
These special keywords are used only in the declaration of a signal.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE23N-1.htm [12/28/2002 12:51:28 PM]

Organization of the SDSP VHDL Model

Organization
of the

SDSP VHDL
Model

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE47.HTM (1 of 2) [12/28/2002 12:51:28 PM]

Organization of the SDSP VHDL Model

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE47.HTM (2 of 2) [12/28/2002 12:51:28 PM]

Exersizing the SDSP Model

Exercising the
SDSP Model

● Suppose we wish to determine the effect of memory
access time on the execution of speed of the SDSP?

❍ Modify the SDSP to have a memory access time independent of
the SDSP clock

❍ Add to the SDSP model a means to determine the number of the
clock cycles executed by a DSP benchmark routine

❍ Simulate the SDSP using the benchmark for memory access
speeds of 20, 40, 60, 80, and 100 nsecs

❍ Plot and summarize your results

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE57.HTM [12/28/2002 12:51:29 PM]

SDSP Benchmark (Note Page)

SDSP
Benchmark

-- Notes Page --

The SDSL Benchmark set of slides show a SDSP program, a random
number generator, in part to illustrate how to embed timing marks in the
benchmark routine such that the VHDL model will report cycle times
automatically.

The first thing done in the program is to set R0 to zero followed by a
branch to the beginning of the program. starttrigger and donetrigger are
used to notify the SDSP model when the random number generator
program is beginning and ending. Our purpose here is to count the total
number of clock cycles used by the benchmark program, excluding for
the R0 initialization.

A few VHDL statements need to be added to the SDSP memory model to
look for specific addresses on the bus. When the starttrigger address is
seen, a counter is started which increments each clock cycle. When the
stoptrigger address is seen, the contents of the counter are multiplied by
the clock cycle time and reported via an assert or textio write statement.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE58N-1.htm [12/28/2002 12:51:29 PM]

SDSP Memory Model

SDSP Memory Model

 USE WORK.SDSP_types.ALL;

 ENTITY memory IS
 GENERIC (Tpd : TIME := unit_delay);
 PORT (d_bus : INOUT bus_bit_32 bus;
 a_bus : IN bit_32;
 read, write : IN BIT;
 ready : OUT BIT);
 END memory:

 ARCHITECTURE behavior OF memory IS
 BEGIN
 PROCESS
 CONSTANT low_address : integer := 0;
 CONSTANT high_address : integer := 65535;
 TYPE memory_array is
 array (INTEGER RANGE low_address TO high_address) of
bit_32;
 VARIABLE mem : memory_array;
 VARIABLE address : INTEGER;

 BEGIN -- put d_bus and reply into initial state
 d_bus <= NULL AFTER Tpd;
 READY <= '0' AFTER Tpd;
 WAIT UNTIL (read = '1') OR (write = '1'); -- wait for a
command
 -- dispatch read or write cycle
 address := bits_to_int(a_bus);
 IF address >= low_address AND address <= high_address THEN
 IF write = '1' THEN -- address match for this memory
 ready <= '1' AFTER Tpd;
 WAIT UNTIL write = '0'; -- end of write cycle
 mem(address) := d_bus'delayed(Tpd); -- sample data
 ELSE -- read = '1'
 d_bus <= mem(address) AFTER Tpd; -- fetch data
 ready <= '1' AFTER Tpd;
 WAIT UNTIL read ='0'; -- hold for read cycle
 END IF;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE56.HTM (1 of 2) [12/28/2002 12:51:29 PM]

SDSP Memory Model

 END IF;
 END PROCESSS;
 END behavior;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE56.HTM (2 of 2) [12/28/2002 12:51:29 PM]

Exercising the SDSP Model (Note Page)

Exercising the
SDSP
Model

-- Notes Page --

Now that we have created the SDSP model, we can use it to determine
the effect of memory access time on the execution speed of the SDSP, for
example.

To do this, we first need to ensure the memory timing can be
independently defined.

We then need to add some checks and print statements to determine the
number of clock cycles executed by the SDSP when executing a
benchmark SDSP program.

We then simulate the SDSP with the object code for the benchmark
loaded into the SDSP memory.

Finally, we plot and summarize our results.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE57N-1.htm [12/28/2002 12:51:29 PM]

"wait until" and "wait for" (Note Page)

"wait until"
and "wait for"

-- Notes Page --

Note that the top process suspends indefinitely at the wait statement until
there is an event on A and A has a value of '1';

On the other hand, the bottom process suspends at the wait statement for
100ns (of simulation time, of course) and then proceeds.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE15N-3.htm [12/28/2002 12:51:29 PM]

Mix and Match

Mix and Match

● Within an architecture we have two signals and the
following process:

DoSomething: PROCESS BEGIN WAIT ON AnotherSignal;
ThisSignal <= '1'; WAIT FOR 10 ns; ThisSignal <=
'0'; WAIT UNTIL (AnotherSignal = '1'); ThisSignal
<= '1'; END PROCESS DoSomething;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE16-1.htm [12/28/2002 12:51:30 PM]

Bus Resolution Functions

Bus Resolution
Functions

● VHDL uses bus resolution functions to resolve the final value
of multiple signal assignments
FUNCTION wired_and (drivers : MVL_VECTOR) RETURN MVL IS
 VARIABLE accumulate : MVL := '1';
BEGIN
 FOR i IN drivers'RANGE LOOP
 accumulate := accumulate AND drivers(i);
 END LOOP;
 RETURN accumulate;
End wired_end;

● Bus resolution functions may be user defined or called from a
package

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22F.HTM [12/28/2002 12:51:30 PM]

Organization of the SDSP VHDL Model (Note Page)

Organization
of the SDSP
VHDL Model

-- Notes Page --

The entire model necessary to simulate the SDSP consists of the
testbench (located in file SDSPst.vhd), the SDSP processor model
(located in file SDSPb.vhd), and the memory model (in file memory.vhd).
A package of types used by all models is not shown here.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE47N.HTM [12/28/2002 12:51:30 PM]

The SDSP Testbench

The SDSP Testbench

USE WORK.SDSP_types.ALL;
 ENTITY SDSP_test IS
 END SDSP_test;

 ARCHITECTURE structure OF SDSP_test IS
 COMPONENT clock_gen
 PORT (phi1, phi2 : OUT BIT; reset : OUT BIT);
 END COMPONENT;
 COMPONENT SDSP
 PORT (d_bus : INOUT bus_bit_32 bus;
 a_bus : OUT bit_32; read, write : OUT BIT;
 fetch : OUT BIT; ready : IN BIT;
 phi1, phi2 : IN BIT; reset : IN BIT);
 END COMPONENT;
 COMPONENT memory
 PORT (d_bus : INOUT bus_bit_32 bus;
 a_bus : IN BIT_32; read, write : IN BIT;
 ready : OUT BIT);
 END COMPONENT;

 SIGNAL d_bus : bus_bit_32 bus;
 SIGNAL a_bus : bit_32;
 SIGNAL read, write : BIT;
 SIGNAL fetch : BIT;
 SIGNAL ready : BIT;
 SIGNAL phi1, phi2 : BIT ;
 SIGNAL reset : BIT;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE48.HTM [12/28/2002 12:51:31 PM]

The SDSP Clock Model

The SDSP Clock Model

 USE WORK.SDSP_types.ALL;
 ENTITY clock_gen IS
 GENERIC (Tpw : TIME; -- clock pulse width
 Tps : TIME); -- pulse separation between
phases
 PORT (phi1, phi2 : OUT BIT;
 reset : OUT BIT);
 END clock_gen;

 ARCHITECTURE behavior OF clock_gen IS
 CONSTANT clock_period : TIME := 2*(Tpw+Tps);
 BEGIN
 reset_driver : reset <= '1', '0' AFTER 2*clock_period+Tpw;
 clock_driver : PROCESS
 BEGIN
 phi1 <= '1', '0' AFTER Tpw;
 phi2 <= '1', '0' AFTER Tpw+Tps, '0' after Tpw+Tps+Tpw;
 WAIT FOR clock_period;
 END PROCESS clock_driver;
 END behavior;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE55.HTM [12/28/2002 12:51:31 PM]

The SDSP Memory Model (Note Page)

The SDSP
Memory
Model

-- Notes Page --

Memory is modeled as an array of 32-bit numbers. The length of the
memory is defined as a constant here, but could be made a generic for
more modeling flexibility.

As in the processor model, the input-to-output delay of the memory is
modeled by Tpd. By defining Tpd as a generic, one can evaluate SDSP
performance where the processor and memory differ in execution speeds.

The memory is usually disconnected from d_bus with ready deasserted
while it waits for a read or write command. Upon receiving a read or
write, memory is then read or written.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE56N-1.htm [12/28/2002 12:51:31 PM]

Mix and Match (Note Page)

Mix and
Match

-- Notes Page --

We show here how wait statements can be used to synchronize the
execution of processes, and also how to sensitize a process to signal
changes in another process.

In this example, the DoSomething process does not execute until
AnotherSignal changes value. Then we generate a transaction for
ThisSignal by assigning it a value of '1 and wait for 10 ns. Since the delay
time for ThisSignal <= '1' is only one delta cycle, ThisSignal is updated
to have the value '1' on the next delta cycle.

After waiting 10 ns, DoSomething assigns a value of '0' to ThisSignal;
ThisSignal will actually take on the new value after one delta cycle.
Execution of DoSomething is then suspended until AnotherSignal
becomes '1'. When execution resumes, ThisSignal is set to '1' and the
process immediately repeats from the top.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE16N-3.htm [12/28/2002 12:51:31 PM]

Testbench

Testbench

● Testbenches have three main pusposes
❍ Generate stimulus for simulation
❍ Apply stimulus to the entity under test
❍ Compare output responses with expected values

ENTITY testbench IS
-- no PORT statement necessary
END testbench;

ARCHITECTURE example IS testbench
 COMPONENT entity_under_test
 PORT(...)
 END COMPONENT;
BEGIN
 Generate_waveforms_for_test;
 Instantiate_component;
 Monitoring_statements;
END example;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE16A.HTM [12/28/2002 12:51:31 PM]

Things That Look Alike

Things That Look Alike

● From Project 1's testbench:

ARCHITECTURE example
 OF testbench IS
 .
 .
BEGIN
 MakeReset (RESETsignal, 100 ns);

 MakeClock (CLOCKsignal, 10 ns);
 .
 .
 .
END example;

PROCESS
BEGIN
 MakeReset (RESETsignal, 100 ns);
 WAIT ON RESETsignal;
END PROCESS;

PROCESS
BEGIN
 MakeClock (CLOCKsignal, 10 ns);
 WAIT ON CLOCKsignal;
END PROCESS;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE17-1.htm [12/28/2002 12:51:32 PM]

Bus Resolutions: Smoke Generator

Bus
Resolution

Smoke Generator

● VHDL does not allow multiple concurent signal
assignments to the same signal

❍ Multiple sequential signal assignments are allowed

LIBRARY attlib; USE attlib.att_mvl.ALL;
-- this code will generate an error
ENTITY bus IS
 PORT (a, b, c : IN MVL; z : OUT MVL);
END bus;

ARCHITECTURE smoke_generator OF bus IS
 SIGNAL circuit_node : MVL;
BEGIN
 circuit_node <= a;
 circuit_node <= b;
 circuit_node <= c;
 z <= circuit_node;
END smoke_generator;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22E.HTM [12/28/2002 12:51:32 PM]

Things That Look Alike (Note Page)

Things That
Look Alike
-- Notes Page --

Because VHDL is a rich language, there are several ways to say the same
thing. This example illustrates how the concurrent VHDL statements
shown on the left side (as procedure calls, actually) are equivalent to the
one-statement processes shown on the right. Note that the "sensitivity
list" for each process (actually shown as a wait on statement at the end
each process here) includes the signals on the "right hand side" of the
concurrent statement (which is actually a procedure parameter in each of
the concurrent statements here). That is, the wait statements in the two
processes synchronize the process execution with external signal inputs.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE17N-3.htm [12/28/2002 12:51:32 PM]

Even Signal Assignment Statement

Even Signal
Assignment
Statements!

ARFCHITECTURE example OF
 full_adder is

BEGIN

 Summation: PROCESS(A, B, Cin)
 BEGIN
 Sum <= A xor B xor Cin;
 END PROCESS Summation;

 Carry: PROCESS(A, B, Cin)
 BEGIN
 Cout <= (A and B) or
 (A and Cin) or
 (B and Cin);
 END PROCESS Carry;
END example;

ARCHITECTURE
example OF
full_adder is
BEGIN Sum <= A
xor B xor Cin;
Cout <= (A and
B) or (A and
Cin) or (B and
Cin); END
Example;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE18-1.htm [12/28/2002 12:51:33 PM]

Procedures 2

Procedures (cont. 1)

ARCHITECTURE behavior OF adder IS
BEGIN
 PROCESS (enable, x, y)
 BEGIN
 add_bits3(x, y, enable, result, carry);
 END PROCESS;
END behavior;

With parameter passing, it is possible
to further simplify the architecture

The parameters must be compatible in terms of data flow and
data type

PROCEDURE add_bits3

(SIGNAL a, b, en : IN BIT;
 SIGNAL temp_result,
temp_carry : OUT BIT)

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22D.HTM [12/28/2002 12:51:33 PM]

Even Signal Assignment Statements! (Note Page)

Even Signal
Assignment
Statements!

-- Notes Page --

As in the previous page, we see that the concurrent signal assignment
statements on the right can be described using one-statement processes as
seen on the left.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE18N-3.htm [12/28/2002 12:51:33 PM]

Signal Assignment Statements

Signal Assignment
Statements

ARCHITECTURE stuff OF my_entity IS
 SIGNAL ThisBit : BIT;
 SIGNAL ThisBitVector : BIT_VECTOR(1 to 5)
 SIGNAL ThisInteger : INTEGER;
 SIGNAL ThisString : STRING(1 to 4);
BEGIN
 .
 .
END stuff;

ThisBit <= '1';

ThisBitVector <= "10010";

ThisInteger <= 567 after 10ns;

ThisString <= "VHDL" after 10ns,
 "is " after 20ns,
 "fun!" after 30ns;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE19-1.htm [12/28/2002 12:51:33 PM]

Signal Assignment Statements (Note Page)

Signal
Assignment
Statements

-- Notes Page --

The structure of signal assignment statement allows some flexibility.
However, the signal type of the result on the right hand side must match
the type of the signal being assigned. This is illustrated in the first two
assignments shown on the right.

The third assignment shows the use of a single after clause used to
control how much simulation time must pass before the assigned signal
takes on its new value.

As seen in the fourth example, multiple assignments can be made in a
single statements by separating them with commas. This sequence of
assignments is called a "waveform".

If a signal assignment statement has no after clause, a clause equivalent
to "after 1 delta cycle" is implied. Delta cycles are key to the VHDL
timing model and have been previously discussed in the VHDL Basics
module.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE19N-3.htm [12/28/2002 12:51:33 PM]

Inertial vs Transport Delays

Inertial vs Transport Delays

Inertial Timing

ENTITY nand2 IS
 PORT(A, B:IN bit; C:OUT bit);
END nand2;

ARCHITECTURE behaviour OF nand2 IS
BEGIN
 C <= not(A and B) AFTER 25ns;
END behaviour;

Transport Timing

ENTITY nand2 IS
 PORT(A, B:IN bit; C:OUT bit);
END nand2;

ARCHITECTURE behaviour OF nand2 IS
BEGIN
 C <= TRANSPORT not(A and B) AFTER 25 ns;
END behaviour;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE20-1.htm (1 of 2) [12/28/2002 12:51:34 PM]

Inertial vs Transport Delays

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE20-1.htm (2 of 2) [12/28/2002 12:51:34 PM]

Inertial vs Transport Delays (Note Page)

Inertial vs
Transport

Delays
-- Notes Page --

VHDL can model two types of delay in a component:

● Inertial delay - if two events occur on an input of the component
with an interval time less that the defined delay, the output will not
reflect either input event, and

● Transport delay - Any event on an input of the component will be
reflected on the output.

The default timing type is inertial. If you want to model a transport delay,
use the keyword "transport".

Transport delays are typically used to synchronize timing between VHDL
processes and to model systems at high levels where inertial delay effects
are ignored.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE20N-2.htm [12/28/2002 12:51:34 PM]

Subprograms

Subprograms

● Similar to subprograms found in other languages
● Allow repeatedly used code to be referenced many

times without duplication
● Break down large chunks of code in small, more

manageable parts
● VHDL provides functions and procedures for use

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE21A.HTM [12/28/2002 12:51:34 PM]

Functions

Functions

● Produce a single return value
● Called by expression
● Can not modify the parameters passed to it
● Requires a RETURN statement

FUNCTION add_bits (a, b : IN BIT) RETURN BIT IS
BEGIN -- functions can NOT return multiple values
 RETURN (a XOR b);
End add_bits;

FUNCTION add_bits2 (a, b : IN BIT) RETURN BIT IS
 VARIABLE result : BIT; -- variable is local to function
 BEGIN
 result := (a XOR b);
 RETURN result; -- the two functions are equivalent
END add_bits2;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22A.HTM [12/28/2002 12:51:35 PM]

Functions (cont.)

Functions
(cont. 1)

ARCHITECTURE behavior OF adder IS
BEGIN
 PROCESS (enable, x, y)
 BEGIN
 IF (enable = '1') THEN
 result <= add_bits (x, y);
 carry <= x AND y;
 ELSE
 carry, result <= '0';
 END PROCESS;
END behavior;

FUNCTION add_bits

(a, b : IN BIT)

● Functions must be called by other statements
● Parameters use positional association

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22B.HTM [12/28/2002 12:51:35 PM]

Procedures

Procedures

● Produce many output values
● Are invoked by statements
● May modify the parameters
PROCEDURE add_bits3 (SIGNAL a, b, en : IN BIT;
 SIGNAL temp_result, temp_carry : OUT BIT) IS

BEGIN -- procedures can return multiple values
 temp_result <= (a XOR b) AND en;
 temp_carry <= a AND b AND en;

END add_bits3;

● Do not require a RETURN statement

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22C.HTM [12/28/2002 12:51:35 PM]

The SDSP Testbench (Note Page)

The SDSP
Testbench
-- Notes Page --

The testbench declares the three components - clock, SDSP processor,
and memory. The user-defined types shown here to declare the signal
objects are defined in the package SDSP_types.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE48N-1.htm [12/28/2002 12:51:35 PM]

Testbench Body

Testbench Body

 BEGIN
 cg : clock_gen
 PORT MAP (phi1 => phi, phi2 => phi2, reset => reset);
 proc : SDSP
 PORT MAP (d_bus => d_bus, a_bus => a_bus,
 read => read, write => write, fetch => fetch,
ready => ready,
 phi1 => phi1, phi2 => phi2, reset => reset);
 mem : memory
 PORT MAP (d_bus => d_bus, a_bus => a_bus,
 read => read, write => write, ready => ready);
 END structure;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE49.HTM [12/28/2002 12:51:36 PM]

Testbench Body (Note Page)

Testbench
Body

-- Notes Page --

The body of the testbench is simply the instantiation of the three system
components. It should be noted that there is no mechanism defined for
generating test vectors or reading them from a file. To simulate the SDSP,
the user must first write the SDSP object code instructions into simulated
memory using the VHDL simulator support system, and then start the
simulation.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE49N-1.htm [12/28/2002 12:51:36 PM]

The SDSP Behavioral Model

The SDSP Behavioral Model

 USE WORK.SDSP_types.ALL;
 ENTITY SDSP IS
 GENERIC (Tpd : Time
 := unit_delay);
 PORT (d_bus : inout
 bus_bit_32 bus;
 a_bus : out bit_32;
 read, write : out bit;
 fetch : out bit;
 ready : in bit;
 phi1, phi2 : in bit;
 reset:in bit);
 END SDSP;

 USE WORK.SDSP_types.ALL;
 ARCHITECTURE behavior OF SDSP IS
 SUBTYPE reg_addr is NATURAL RANGE 0 to 255;
 TYPE reg_array IS array (reg_addr) OF bit_32;
 BEGIN
 PROCESS
 VARIABLE reg : reg_array;
 VARIABLE PC : bit_32;
 VARIABLE current_instr : bit_32;
 VARIABLE op: bit_8;
 VARIABLE r3, r1, r2 : reg_addr;
 VARIABLE i8 : integer;
 ALIAS cm_i : BIT IS current_instr(19);
 ALIAS cm_V : BIT IS current_instr(18);
 ALIAS cm_N : BIT IS current_instr(17);
 ALIAS cm_Z : BIT IS current_instr(16);
 VARIABLE cc_V, cc_N, cc_Z : bit;
 VARIABLE temp_V, temp_N, temp_Z : bit;
 VARIABLE displacement : bit_32;
 VARIABLE effective_addr : bit_32;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE50.HTM [12/28/2002 12:51:36 PM]

The SDSP Behavioral Model (Note Page)

The SDSP
Behavioral

Model
-- Notes Page --

The next few slides show the behavioral model for the SDSP. The entity
description only provides a description of the ports and the single generic,
Tpd, which is the delay time in the processor between input events and
output signal changes.

The address bus can be modeled as a simple bit vector, but the data bus
must be defined as a resolved bit vector since it can be driven either by
the processor or the memory. The bus indication for d_bus in the port
declaration means that all bits of d_bus can be disconnected at the same
time. Note that aliases are used to provide meaningful names for the
fields of the instruction.

The next few slides will show the memory read and write procedures, a
representative data-path procedure, add, and finally the main routine in
the model which executes the fetch-decode-execute cycle of the SDSP.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE50N-1.htm [12/28/2002 12:51:36 PM]

The SDSP Read Memory Procedure

The SDSP Read
Memory Procedure

 PROCEDURE memory_read (addr : IN bit_32;
 fetch_cycle : IN BOOLEAN;
 result : OUT bit_32) IS
 BEGIN

 a_bus <= addr AFTER Tpd; --start bus cycle
 fetch <= bool_to_bit(fetch_cycle) AFTER Tpd;
 WAIT UNTIL phi1 = '1';

Place
address
on
a_bus

 IF reset = '1' THEN RETURN; END IF;
 read <= '1' after Tpd; -- T1 phase
 WAIT UNTIL phi1 = '1';
 IF reset = '1' then RETURN; END IF;

Assert
read
signal

 LOOP -- T2 phase
 WAIT UNTIL phi2 = '0'; -- end of T2
 IF reset = '1' then RETURN; END IF;
 IF ready = '1' then result := d_bus; EXIT;
 END IF;
 END LOOP;
 WAIT UNTIL phi1 = '1';
 IF reset = '1' THEN RETURN; END IF;

Place
data on
result
bus
when
ready

 read <= '0' AFTER Tpd; -- Ti phase at end of cycle
 END memory_read;

Deassert
read
signal

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE51.HTM [12/28/2002 12:51:37 PM]

The SDSP Read Memory Procedure (Note Page)

The SDSP
Read Memory

Procedure
-- Notes Page --

The memory read and write procedures exactly implement the timing
requirements presented several slides back. Since asynchronous events
cannot be modeled as such in VHDL processes or procedures, we emulate
an asynchronous reset by checking for it after each micro-operation.

It is instructive to examine the flow of execution here with the timing
model diagram to observe how direct the behavior mapping can be.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE51N-1.htm [12/28/2002 12:51:37 PM]

SDSP Write Memory Procedure

SDSP Write Memory
Procedure

PROCEDURE memory_write (addr : IN bit_32; data : IN bit_32) IS

BEGIN
 a_bus <= addr AFTER Tpd; -- start bus cycle
 fetch <= '0' AFTER Tpd;
 WAIT UNTIL phi1 = '1';

Place
address
on a
_bus

 IF reset = '1' THEN RETURN; END IF;
 write <= '1' AFTER Tpd; -- T1 phase
 WAIT UNTIL phi2 = '1';
 d_bus <= data AFTER Tpd;
 WAIT UNTIL phi1 = '1';

Assert
write
signal
and
place
data on
d_bus

 IF reset = '1' THEN RETURN; END IF;
 LOOP -- T2 phase
 WAIT UNTIL phi2 = '0';
 IF reset = '1' THEN RETURN; END IF;
 EXIT WHEN ready = '1'; -- end of T2
 END LOOP;
 WAIT UNTIL phi1 = '1';

Wait
until
data is
written
and
ready
signal is
asserted

 IF reset = '1' THEN RETURN; END IF;
 write <='0' AFTER Tpd; -- Ti phase at end of cycle
 d_bus <= null AFTER Tpd;
END memory_write;

Deassert
write
signal
and
detach
d_bus

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE52.HTM [12/28/2002 12:51:37 PM]

The SDSP Write Memory Procedure (Note Page)

The SDSP
Write Memory

Procedure
-- Notes Page --

Writing memory is coded similarly to the read memory procedure. The
null assignment statement at the end of the procedure disconnects the
processor from d_bus after the write cycle is complete. In other words,
the processor ceases to drive the d_bus port.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE52N-1.htm [12/28/2002 12:51:37 PM]

SDSP Add Procedure

SDSP Add Procedure

 PROCEDURE add (result : INOUT bit_32;
 op1, op2 : IN INTEGER;
 V, N, Z : OUT BIT) IS
 BEGIN
 IF op2 > 0 and op1 > integer'high-op2 THEN -- positive
overflow
 int_to_bits(((integer'low+op1)+op2)-integer'high-1,
result);
 V := '1';
 ELSIF op2 < 0 and op1 < integer'low-op2 THEN -- negative
overflow
 int_to_bits(((integer'high+op1)+op2)-integer'low+1,
result);
 V := '1';
 ELSE
 int_to_bits(op1 + op2, result);
 V := '0';
 END IF;
 N := result(31);
 Z := bool_to_bit(result = X"0000_0000");
 END add;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE53.HTM [12/28/2002 12:51:38 PM]

SDSP Add Procedure (Note Page)

SDSP Add
Procedure
-- Notes Page --

The add procedure is shown here as a representative of the set of
procedures necessary to implement the behavior of each op code.

Data is represented in 2's-complement form. Thus, most of the VHDL
code is used to check for various boundary conditions resulting from the
operation.

In this procedure, the first section of the IF-THEN-ELSE statement
checks for postive overflow, the second for negative overflow and the last
performs addition without overflow of either kind.

If there is positive overflow then it requires that OP2 be greater than zero
and OP1 be greater than the difference between the highest possible
integer represented with 32 bits and OP2. This is the only possible
instance where positive overflow can occur. If positive overflow does
occur, then the result must adjusted to reflect its final representation in 2's
complement form. This modification is shown as the first argument to the
int_to_bits routine and is left as an exercise for the user to verify its
correctness. In this case the V bit is set to '1' to notify the user that
overflow has occurred.

If there is negative overflow then it requires that OP2 be less than zero
and OP1 be less than the difference between the lowest possible integer
represented with 32 bits and OP2. It again is an exercise for the user to
verify the correctness of the first argument to the int_to_bits routine. In
this case the V bit is set to '1' to notify the user that overflow has

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE53N-1.htm (1 of 2) [12/28/2002 12:51:38 PM]

SDSP Add Procedure (Note Page)

occurred..

If no overflow will result from the sum, the operands are added and the
overflow bit, V, is set to '0'. Finally, the N and Z bits are appropriately set
and the procedure exits.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE53N-1.htm (2 of 2) [12/28/2002 12:51:38 PM]

SDSP Behavioral Model

SDSP Behavioral Model

 BEGIN
 -- check for reset active
 IF reset = '1' THEN
 read <= '0' AFTER Tpd;
 write <= '0' AFTER Tpd;
 fetch <= '0' AFTER Tpd;
 d_bus <= null AFTER Tpd;
 PC := X"0000_0000";
 WAIT UNTIL reset = '0';
 END IF;
 -- fetch next instruction
 memory_read(PC, true, current_instr);
 IF reset/= '1' THEN
 add(PC, bits_to_int(PC), 1, temp_V, temp_N, temp_Z);
 --decode & execute
 op := current_instr(31 DOWNTO 24);
 r3 := bits_to_natural(current_instr(23 DOWNTO 16));
 r1 := bits_to_natural(current_instr(15 DOWNTO 8));
 r2 := bits_to_natural(current_instr(7 DOWNTO 0));
 i8 := bits_to_int(current_instr(7 DOWNTO 0));

 CASE op IS
 WHEN op_add =>
 add(reg(r3), bits_to_int(reg(r1)), buts_to_int(reg(r2)),
cc_V, cc_N, cc_Z);
 WHEN op_addq =>
 add(reg(r3), bits_to_int(reg(r1)), i8, cc_V, cc_N, cc_Z);
 WHEN op_sub =>
 subtract(reg(r3), bits_to_int(reg(r1)),
bits_to_int(reg(r2)), cc_V, cc_N, cc_Z);

 WHEN op_land =>
 reg(r3) := reg(r2);
 cc_Z := bool_to_bit(reg(r3) = X"0000_0000");

 WHEN op_ld =>
 memory_read(PC, true, displacement);
 IF reset /= '1' then add (PC, bits_to_int(PC), 1, temp_V,
temp_N, temp_Z);

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE54.HTM (1 of 2) [12/28/2002 12:51:38 PM]

SDSP Behavioral Model

 add(effective_addr, bits_to_int(reg(r1)),
 bits_to_int(displacement), temp_V, temp_N, temp_Z);

 WHEN op_bi => memory_read(PC, true, displacement);
 IF reset /= '1' THEN
 add(PC, bits_to_int(PC), 1, temp_V, temp_N, temp_Z);
 add(effective_addr, bits_to_int(reg(r1)),
bits_to_int(displacement),
 temp_V, temp_N, temp_Z);
 IF ((cm_V and cc_V) OR (cm_N and cc_N) OR (cm_Z and
cc_Z)) = cm_i
 THEN
 PC := effective_addr;
 END IF;
 END IF;
 WHEN op_brq =>
 add(effective_addr, bits_to_int(PC, i8, temp_V, temp_n,
temp_Z);
 if ((cm_V and cc_V) or (cm_N and cc_N) or (cm_Z and cc_Z))
= cm_i
 THEN
 PC := effective_adr;
 END IF;

 WHEN OTHERS => ASSERT false REPORT "illegal instruction"
SEVERITY WARNING;
 end case;
 end if; -- reset /= '1'
 end process;
 end behavior;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE54.HTM (2 of 2) [12/28/2002 12:51:38 PM]

SDSP Behavioral Model (Note Page)

SDSP
Behavioral

Model
-- Notes Page --

Just as with the read and write memory procedures, we check for reset
whenever a wait condition exists in the process.

The process executes a typical processor cycle -- fetch next instruction,
decode the instruction, and execute the instruction. In this model,
decoding is performed by doing type conversion on slices of the
instruction, and execution is performed using a VHDL case statement.

Not all of the instructions are shown since there are quite a few of them.
But the general pattern can be observed.

For example, the ADD operation is performed simply by making a call to
the add procedure. Note that heavy use of casting is done to translate
variable types passing in and out of procedures.

The load operation is shown here to demonstrate the activities that must
take place. Two memory reads are performed; the first is to obtain the
displacement, and the second is to fetch the desired data.

A branch instruction operates in several steps.

1. Read the displacement from memory
2. Calculate the condition
3. Set the PC accordingly

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE54N-1.htm (1 of 2) [12/28/2002 12:51:38 PM]

SDSP Behavioral Model (Note Page)

Note the use of the others clause at the end of the case statement. Even if
all op-code patterns were used in the case statement (which is not the case
here), it is good modeling practice to always use an others clause to
report anomalous modeling behavior.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE54N-1.htm (2 of 2) [12/28/2002 12:51:38 PM]

The SDSP Clock Model (Note Page)

The SDSP
Clock Model

-- Notes Page --

Note that the clock period is defined as twice the clock pulse width, Tpw,
and a very small separation between clock pulses (to ensure non-
overlapping clock phases), Tps. Since these values are constant, we
define them as generics.

The clock is generated by setting phi1 and phi2 to '1' or '0' and using after
clauses to shift the phase of phi2 relative to phi1. The process executes
once each clock period to create the next clock cycle.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE55N-1.htm [12/28/2002 12:51:39 PM]

System Level VHDL - Module 4

System Level
VHDL -

Module 4

Table of
Contents

● System Level VHDL - Module 4
❍ Outline
❍ RASSP Roadmap
❍ Module Goals

● Introduction - What do we mean by
"System Modeling"

❍ Describing RASSP Systems
❍ Advantages of using VHDL
❍ Types of System Models

● Styles and Approaches
❍ Models

■ Evolution of Approaches
❍ System Level VHDL Constructs

■ Aliases

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-4.htm (1 of 4) [12/28/2002 12:51:39 PM]

System Level VHDL - Module 4

■ An Example
■ Foreign Interfaces

■ An Example
■ TEXTIO

■ TEXTIO Procedures
■ Using TEXTIO
■ An Example

■ Assert Statements
■ Assert Statements
■ An Example

■ Abstract Data Types
■ An Example
■ Example Use of QUEUE ADT
■ Queue System VHDL Model
■ Queue Example Declarations
■ Queue Example Declarations 2
■ Architecture Body
■ Queue Example: Architecture Body 2

■ Shared Variables
■ Non-determinism
■ Stack Example
■ Stack Example 2

■ Records

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-4.htm (2 of 4) [12/28/2002 12:51:39 PM]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE25-1.htm
file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE26-1.htm

System Level VHDL - Module 4

■ Data Types
❍ Advantages of Object Oriented VHDL

■ Advantages of OO-VHDL 2
■ Advantages of OO-VHDL 3
■ Advantages of OO-VHDL 4
■ Advantages of OO-VHDL 5
■ Advantage of OO-VHDL 6
■ Advantages of OO-VHDL 7
■ Advantages of OO-VHDL 8
■ Synthesizing OO-VHDL
■ Converting OO-VHDL to Synthesizable

VHDL
❍ Applications of System Level VHDL

■ UVA ADEPT Primitive Modules
■ Token Handling
■ ADEPT Token Handling
■ Basic Module Format: Packages and

Entity
■ Basic Module Format: Architecture
■ Basic Module Format: Architecture
■ Three Module Example
■ Bus Resolution
■ Three Module Example: Simplified

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-4.htm (3 of 4) [12/28/2002 12:51:39 PM]

System Level VHDL - Module 4

Event Sequence
■ Three Module Example: Detailed

Event Sequence
■ Honeywell PML

■ Token Type
■ Handshaking Protocol
■ Bus Resolution
■ Bus Resolution Code
■ Idle State
■ Request State
■ Ack State
■ Busy State
■ Bus Interface Unit
■ Use of BIU
■ Functional Memory Component
■ Functional Memory Interface
■ Steps to Set-up the Functional

Memory
■ Functional Memory Operations
■ More Functional Memory

● Summary
❍ References

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/INDEX-4.htm (4 of 4) [12/28/2002 12:51:39 PM]

home

System Level VHDL - Module 4

This module was prepared as part of the RASSP Education &
Facilitation effort.

Copyright © 1995, 1996 SCRA

Version 1.0

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/HOME-2.htm [12/28/2002 12:51:40 PM]

Toolbar Fucntionality

Toolbar Functionality

Takes the user up one hierarchical level in the presentation.

Takes the user to the previous section of the presentation.

Takes the user to the previous slide in the presentation.

Takes the user to a listing of all slides with links to each
slide.

Takes the user to a visual representation of the organization
of the slide presentation.

Takes the user to a document, further explaining the
information contained within the slide.

Brings the user to this document, containing information on
the use of the toolbar.

Takes the user to the next slide in the presentation.

Takes the user to the next section of the presentation.

Takes the user down one hierarchical level in the
presentation.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/HELP-2.htm [12/28/2002 12:51:40 PM]

Outline

System Level
VHDL -

Module 4

Outline

● Introduction
● Styles and Approaches
● Summary

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/OUTLINE-2.htm [12/28/2002 12:51:41 PM]

What do We Mean by Systems Modeling?

What do We
Mean by

"Systems
Modeling?"

● A system is a group of interdependent items which
together carry out a set of functions over time to
produce desired results given a set of inputs.

● A DSP system is a system whose function is to
process digital signals

● For RASSP, we require the description of a system
to include the behavior of the system in addition to
the structural or physical description

❍ Algorithmic, or
❍ Uninterpreted (e.g., modeled by a queuing network or Petri net),

or
❍ Interpreted as functions

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1-2.htm [12/28/2002 12:51:41 PM]

Module Goals

System Level
VHDL - Module

4

Module Goals

● Understanding of the various system oriented
VHDL constructs

● Comprehension of the advantages of using VHDL at
the system level

● Familiarity with how VHDL is being used at the
system level

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1B-2.htm [12/28/2002 12:51:41 PM]

RASSP Roadmap

RASSP Roadmap

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1A-2.htm [12/28/2002 12:51:42 PM]

Module Goals (Note Page)

Module Goals
-- Notes Page --

This is the fourth in the series of VHDL instructional modules prepared
by the Rapid Prototyping of Application Specific Signal Processors
(RASSP) Education & Facilitation team. Building on the previous three
modules, this module presents examples in which VHDL is used to model
the system at high levels of abstraction.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1BN-2.htm [12/28/2002 12:51:42 PM]

What do we mean by "Systems Modeling"? (Note Page)

What do we
mean by
"Systems

Modeling"?
-- Notes Page --

This slide defines how the term "system" is used in this module. The
RASSP program is concerned primarily with signal processors. Digital
signal processors (DSPs) are special-purpose processing units specifically
designed to run signal processing algorithms efficiently (e.g. Fast Fourier
transforms, discrete cosine transforms, etc.).

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE1N-2.htm [12/28/2002 12:51:42 PM]

Describing RASSP Systems

Describing
RASSP

Systems

● VHDL is a useful hardware description language for
the description and simulation of RASSP systems at
the system level

● There are other means of describing and simulating
at the system level. For example:

❍ Verilog - an HDL based on C
❍ PGM - a graphical queuing network language
❍ VSPEC - a formal language for specifying the constraints and

input/output relations of a system
❍ Ada - a software programming language rich enough to describe

DSP products at the system level
❍ ADEPT - An uninterpreted text and graphics language based on

VHDL and translatable to VHDL
❍ PERFSIM - a queuing network language translatable to VHDL

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE2-3.htm [12/28/2002 12:51:43 PM]

Describing RASSP Systems (Note Page)

Describing
RASSP

Systems
-- Notes Page --

Although VHDL is a versatile hardware description language and is well
suited to describing systems at high levels of abstraction, several
alternatives exist for the system modeler. Many of the alternatives listed
in this slide, however, are not well suited for incrementally refining a
system description as detail is added to the design.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE2N-3.htm [12/28/2002 12:51:43 PM]

Advantages of using VHDL

Advantages of
using VHDL

● VHDL offers several advantages to the system level
designer

❍ Standard language
❍ Fully expressive language
❍ Hierarchical
❍ Configurable
❍ Tool availability
❍ Consistency and completeness checks automatic
❍ Tight coupling to lower levels of design
❍ Supports hybrid modeling

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE3-3.htm [12/28/2002 12:51:43 PM]

Definitions

Styles and
Approaches

● Model - representation of an item in some form
other than the form in which it is to ultimately exist

❍ set of equations
❍ computer program
❍ schematic diagram
❍ queuing network

● Model classification
❍ Interpreted - the model defines the value of system variables for

all time
❍ Uninterpreted - the system variables are undefined in the model

over some interval(s) of time

● What's the purpose of interpreted models?
❍ They very concisely represent the system
❍ They simulate much faster
❍ They provide a mechanism for system conceptualization

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE5-3.htm [12/28/2002 12:51:43 PM]

Types of System Models

Types of
System Models

● Formal Models
❍ Mathematical formulation
❍ Defines constraints on function and performance
❍ Defines relations of outputs to inputs
❍ Has been largely of academic interests; emerging in industrial

practice

● Uninterpreted Models
❍ Behavior described as tokens flowing through a queuing

network or Petri network
❍ Input/output relationships are largely ignored
❍ Primary interest is estimating timing delays between inputs and

outputs in the system being described
❍ Has been largely of academic interest; emerging in industrial

practice

● Interpreted models
❍ Actual behavior is described, at some level of abstraction
❍ Primary interest is defining functions between inputs and

outputs
❍ Has been standard modeling approach in industry for 20+ years

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE4-3.htm [12/28/2002 12:51:44 PM]

Definitions (Note Page)

Styles and
Approaches

-- Notes Page --

To provide a consistent use of terms within this module, some definitions
are provided in this slide.

Uninterpreted models represent the flow of information in a system
without regard to the content of the information. Familiar examples of
these types of models are queuing networks and Petri nets.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE5N-3.htm [12/28/2002 12:51:44 PM]

Models

Models

● Uninterpreted models
An uninterpreted model is one that does not model actual data
values or data-related functionality either internally or
externally. Only control information and control functionality
are modeled.

❍ Generally used to study information flow and performance (and
also known as performance models)

❍ Based on Petri net or queuing net theory

● Interpreted models
An interpreted model is one that models actual data values and
data-related functionality and control-related functionality both
internally and externally.

❍ Used to study function, timing, and performance from high to
low abstraction levels

[Hein95]

Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE6-3.htm [12/28/2002 12:51:44 PM]

The ATT_MVL M ulti-Value Logic Package

System Level
VHDL

Constructs

● For all examples in this section, assume the
existence of a multi-values logic package
ATT_MVL type MVL is 'U', '0', '1', 'Z');

❍ type MVL_VECTOR is array (NATURAL range <>) of MVL;
❍ overloaded logical operators for both MVL and MVL_VECTOR
❍ overloaded "+" and "-" arithmetic operators on MVL_VECTOR
❍ integer-to-MVL_VECTOR conversion functions (int2MVL,

MVL2int)

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE8-3.htm [12/28/2002 12:51:44 PM]

Types of System Models (Note Page)

Types of
System
Models

-- Notes Page --

Some of the many forms in which systems can be described are shown in
this slide. Many of these are easily implemented in VHDL.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE4N-3.htm [12/28/2002 12:51:44 PM]

Models (Note Page)

Models
-- Notes Page --

This slide further contrasts uninterpreted and interpreted models.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE6N-3.htm [12/28/2002 12:51:45 PM]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE7-3.htm

Evolution of
Approaches

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE7-3.htm [12/28/2002 12:51:46 PM]

The ATT_MVL Multi-Value Logic Packages (Note Page)

System Level
VHDL

Constructs
-- Notes Page --

The ATT_MVL logic library supports high-level system modeling in
VHDL and will be the source of some of the syntax examples in the next
few slides. This logic package has multiple logic values and various
functions defined to convert the ATT package to integers. Also, various
operators are overloaded to handle the ATT package.

[Bhasker95]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE8N-3.htm [12/28/2002 12:51:46 PM]

Aliases

Aliases

● Aliases can significantly improve the readability of VHDL
descriptions by using a shorthand notation for names

● Aliases allow reference to named items in different ways:

SIGNAL data_word: mvl_vector(15 DOWNTO 0);
ALIAS data_bus: mvl_vector (7 DOWNTO 0) IS data_word (15 DOWNTO
8);

● Aliases can rename any named item except labels, loop parameters,
and generate parameters

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE9-3.htm [12/28/2002 12:51:46 PM]

Advantages of Object Oriented VHDL

Advantages of
Object

Oriented VHDL

● Benefit: Better for Incremental Development
● Enables: Abstract modeling & rapid prototyping

Reuse behavior defined in abstract models.
Maintain conceptual relation between models.
Recoding behavior wastes time and introduces errors.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE34-1.htm (1 of 2) [12/28/2002 12:51:47 PM]

Advantages of Object Oriented VHDL

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE34-1.htm (2 of 2) [12/28/2002 12:51:47 PM]

Summary

Summary

● VHDL is suitable for modeling at the system level
due to its acceptance as standard and the number of
design tools available

● Records provide a concise way for tokens to be
implemented in uninterpreted modeling

● Bus resolution functions allow for user defined bus
arbitration

● Shared variables are a new VHDL construct
specifically targeted at system level modeling

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE70-1.htm [12/28/2002 12:51:47 PM]

Applications of System Level VHDL

Applications of
System Level

VHDL

● UVA ADEPT

● Honeywell PML

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE43A.HTM [12/28/2002 12:51:47 PM]

Converting OO-VHDL to Synthesizable VHDL

Converting OO-
VHDL to

to
Synthesizable

VHDL

● Remove any reliance on the message queue
❍ Immediate messages, select and accept statements

● Remove any hierarchy-spanning messages
❍ A component should only communicate with parent, child, or

sibling

● Convert the messaging protocol to a signaling
protocol

● Convert operations to subprograms
● Convert instance variables to signals or variables, as

appropriate
● Add a clock

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE43-2.htm [12/28/2002 12:51:48 PM]

Applications of System Level VHDL (Note Page)

Applications
of System

Level VHDL
-- Notes Page --

Two performance-oriented VHDL-based system level description
methodologies will be presented in this section as additional examples of
the utility of the abstractions supported by VHDL.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLID43AN.HTM [12/28/2002 12:51:48 PM]

UVA ADEPT Primitive Modules

UVA ADEPT

Primitive Modules

● ADEPT has several types of primitives:
❍ Control
❍ Color
❍ Delay
❍ Fault
❍ Hybrid
❍ Miscellaneous

● The ADEPT primitives all have an equivalent Petri
Net and VHDL description

● ADEPT hides the details of the underlying Petri Net
and VHDL

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE44-2.htm [12/28/2002 12:51:48 PM]

More Functional Memory

Honeywell PML
More

Functional
Memory

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE69-1.htm (1 of 2) [12/28/2002 12:51:49 PM]

More Functional Memory

PACKAGE DataIO_defs IS
 -- deferred constant
 CONSTANT IPC_BUFFER SIZE : INTEGER;
 SUBTYPE memory_identifier_type IS INTEGER;
END PACKAGE DataIO_defs;

PACKAGE BODY DataIO_defs IS
 CONSTANT IPC_BUFFER_SIZE : INTEGER := 4096;
END PACKAGE BODY DataIO_defs;

defined in dataio_defs

● The application can partition the Functional Memory
into as many stacks as needed. Each stack gets its
own unique ID number

● Upon demand (after a write command for a new
stack ID), the Functional Memory will dynamically
allocate a block of memory

❍ The size depends on the IPC_BUFFER_SIZE deferred constant
from the dataio_defs package

❍ Stack sizes only limited by physical memory

● No concurrent accesses to stacks with identical IDs

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE69-1.htm (2 of 2) [12/28/2002 12:51:49 PM]

Functional Memory Operations

Honeywell
PML

Functional
Memory

Operations

PROCEDURE
write (SIGNAL ioport: INOUT IPC_integer_type;
 item: IN integer_vector;
 ID: IN memory_identifier_type:= 0;
 offset: IN natural := 0;
 count: IN natural := 0);

PROCEDURE
read (SIGNAL ioport: INOUT IPC_integer_type;
 item: IN integer_vector;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE68-1.htm (1 of 2) [12/28/2002 12:51:49 PM]

Functional Memory Operations

 ID: IN memory_identifier_type := 0;
 offset: IN natural:= 0;
 count: IN natural := 0);

defined in dataio packages

● Two simple procedures: read and write
● Simple parameters:

❍ ioport, the signal to the Functional Memory
❍ item, the vector (integer or real) of data to write/read
❍ ID, indicating which memory stack to access
❍ offset, which will offset the first memory index by the number

given
❍ count, indicates the number of vector elements to read/write. If

count=0, then by default the operation will use the vector size
as the count number

❍ Only ioport and item are required parameters

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE68-1.htm (2 of 2) [12/28/2002 12:51:49 PM]

Honeywell PML: More Functional Memory (Note Page)

Honeywell
PML:

More Functional
Memory

-- Notes Page --

In using Functional Memory, space can be allocated dynamically as
needed, in blocks of a predefined IPC_BUFFER_SIZE.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE69N-1.htm [12/28/2002 12:51:49 PM]

Summary (Note Page)

Summary
-- Notes Page --

This instructional module has illustrated the versatility of VHDL in
supporting abstraction and information encapsulation to facilitate the
description of complex systems. Example system design and description
methodologies based on VHDL were included primarily to illustrate the
VHDL constructs used to support system level modeling.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE70N.HTM [12/28/2002 12:51:50 PM]

References

References

References:

[Berge93] J-M., Fonkoua, A., Maginot, S., Rouillard, J., VHDL '92: The New Features
of the VHDL Hardware Description Language, Kluwer Academic Publishers, 1993.

[Bhasker95] Bhasker, J., A VHDL Primer, Prentice Hall, 1995.

[Hein95] Hein, Karl - Lockheed-Martin ATL, Carpenter, Todd - Honeywell
Technology Center, Kalutkiewicz - Lockheed Sanders, Madisetti, Vijay - Georgia
Technology Institute, •"RASSP VHDL Modeling Terminology and Taxonomy-
Revision 1.0", Proceedings of the 2nd Annual RASSP Conference, July 24-27, 1995. A
more updated version of this document was published in the Proceedings of the VIUF
Fall 1996 Conference and was titled, "Effecting VHDL Model Interoperability in
RASSP through a Common Modeling Taxonomy". This document is also available on-
line at http://rassp.scra.org/public/atl/taxonomy.html.

[Honeywell95] Honeywell Performance Modeling Library, 1995.

[Navabi93] Navabi, Z., VHDL: Analysis and Modeling of Digital Systems, McGraw-
Hill, 1993.

[UM93] Cutright, E.D., Rao, R., Johnson, B.W., Aylor, J.H., A Handbook on the
Unified Modeling Methodology Building Block Set, CSIS, University of Virginia, 1993.

For further reading:

Carpenter, T., Rose, F., Steeves, T., Performance Modeling with VHDL, Honeywell
Systems and Research Center, 1994.

IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-1993.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE71-1.htm (1 of 2) [12/28/2002 12:51:50 PM]

References

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE71-1.htm (2 of 2) [12/28/2002 12:51:50 PM]

Advantages of Using VHDL (Note Page)

Advantages
of Using

VHDL
-- Notes Page --

Some of the advantages in using VHDL as a description language include
its versatility and the fact that it is an accepted standard with broad
support from both government and industry.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE3N-2.htm [12/28/2002 12:51:50 PM]

Evolution of Approaches (Note Page)

Evolution of
Approaches

-- Notes Page --

In this slide the vertical axis consists of three modeling categorizations,
Functional Model, Performance Model, and Operational Specification.
The horizontal axis indicates the availabilities of various tools and
methodologies supporting the categorizations on the vertical axis. Note
that the trend is towards additional support of system modeling at more
abstract levels.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE7N-3.htm [12/28/2002 12:51:50 PM]

Aliases (Note Page)

Aliases
-- Notes Page --

VHDL provides the alias construct to enhance readability in VHDL
descriptions. VHDL supports two types of aliases listed below:

1. Object aliases rename objects
❍ constant
❍ signal
❍ variable
❍ file

2. Non-object aliases rename items that are not objects
❍ function names
❍ literals
❍ type names
❍ attribute names

[Bhasker95]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE9N-3.htm [12/28/2002 12:51:50 PM]

An Example

Aliases

An Example

● An alias of an overloaded subprogram or literal
requires a signature to determine the correct value to
return

TYPE mvl IS ('U', '0', '1', 'Z');
TYPE trinary IS ('0', '1', 'Z');

ALIAS mvl0 IS '0' [RETURN mvl];
ALIAS tri0 IS '0' [RETURN trinary];

PROCEDURE preset_clear (SIGNAL drv: mvl_vector;
 pc_value: INTEGER);
PROCEDURE preset_clear (SIGNAL drv: bit_vector;
 pc_value: INTEGER);

ALIAS pcmvl IS preset_clear(mvl_vector, INTEGER);
ALIAS pcbit IS preset_clear(bit_vector, INTEGER);

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE10-3.htm [12/28/2002 12:51:51 PM]

Foreign Interfaces

Foreign
Interfaces

● VHDL provides for some use of foreign languages
(e.g. C, Fortran, ADA, etc.)

❍ Subprogram or architecture body can have non-VHDL
implementation

❍ Designer has access to previously written code or code difficult
to write in VHDL

● The use of foreign code is mainly implementation
dependent

● Foreign variables, signals, or entities are not
possible

ATTRIBUTE FOREIGN OF name: construct IS
">information/parameters";

[Berge93]

Copyright © 1993 by Kluwer Academic Publishers. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE11-3.htm [12/28/2002 12:51:51 PM]

Data Types

Records

Data Types

● The ADEPT token consists of several data types
TYPE handshake IS (removed, acked, released, present);

● Records can contain records within them

TYPE color_type IS
 RECORD
 tag1 : integer;
 tag2 : integer;
 .
 .
 tag15 : integer;
 boole1 : boolean;
 boole2 : boolean;
 boole3 : boolean;
 END RECORD;

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE33-1.htm [12/28/2002 12:51:51 PM]

Advantages of Object Oriented VHDL (Note Page)

Advantages
of Object
Oriented

VHDL
-- Notes Page --

As an example of a system level modeling methodology using a VHDL-
based framework, the object-oriented VHDL tools provided by Vista
Technologies, Inc. will be presented in this section.

Object-oriented mechanisms allow the interconnection of VHDL
components in the model to be generalized and abstracted away. This
facilitates experimenting with alternative system architectures.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE34N-1.htm [12/28/2002 12:51:52 PM]

Advantages of OO-VHDL 2

Advantages of OO-
VHDL

(Cont.)

● Benefit: No compatibility Problems between Models
● Enables Interoperability among object components

Any object can send/receive from any other object.
Object communication protocol implicity deifined.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE35-1.htm [12/28/2002 12:51:52 PM]

Aliases: An Example (Note Page)

Aliases:

An Example

-- Notes Page --

A signature is required for an alias of a subprogram or an enumeration
literal where the type of the value returned by alias may not discernible. A
signature resolves any ambiguities caused by overloaded subprogram
names and overloaded enumeration literals. A signature is indicated by a
set of outer brackets, "[" and "]", and shows the appropriate type.

[Bhasker95]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE10N-2.htm [12/28/2002 12:51:53 PM]

Foreign Interfaces (Note Page)

Foreign
Interfaces
-- Notes Page --

VHDL allows the functionality of architecture bodies and subprograms to
be described in a foreign language (e.g. C) and interfaced to a VHDL
model. For example, foreign code may be used when it is difficult to
implement the same functionality in VHDL, such as in cases where
complex arithmetic functions not directly available in VHDL are
required.

The interface between VHDL and foreign code is simulator
implementation dependent. VHDL passes the parameters to the foreign
code but has no further information about the foreign code. The use and
structure of foreign code is largely up to the simulator implementation.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE11N-2.htm [12/28/2002 12:51:53 PM]

An Example

Foreign
Interfaces

An Example

ENTITY and_2input IS
 PORT (a, b: IN BIT;
 c: OUT BIT);
END and_2input;

ARCHITECTURE foreign_model OF and_2input IS
 ATTRIBUTE FOREIGN OF foreign_model:
 ARCHITECTURE IS ffand_2input(A, B, C);
BEGIN
END foreign_model;

● The foreign_model architecture is declared as
FOREIGN

❍ No statements are needed in the architecture body as they will
never be executed

❍ The implementation calls the ffand_2input function to perform
the actions for the and_2input entity

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE12-3.htm [12/28/2002 12:51:53 PM]

Text Input Output

Text Input and
Output

● Basic file operations in VHDL are limited to
unformatted input/output

● VHDL provides the TEXTIO package for input and
output of ASCII text

❍ TEXTIO is included in STD library

● The following data types can be used by TEXTIO:
❍ Bit, Bit_vector
❍ Boolean
❍ Character, String
❍ Integer, Real
❍ Time

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE13-3.htm [12/28/2002 12:51:53 PM]

Records

Records

● Records are used to collect one or more elements of
different types in a single construct

● Records are often used in uninterpreted modeling to
represent tokens

● The token record type shown here is from ADEPT

TYPE token IS
 RECORD
 status : handshake;
 color : color_type;
 mon_color : mon_color_type;
 END RECORD;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE32-1.htm [12/28/2002 12:51:54 PM]

Records: Data Types (Note Page)

Records:

Data Types

-- Notes Page --

The handshake data type is an enumerated type consisting of four values.
ADEPT uses a fully interlocked, four cycle handshaking scheme for data
exchange. Once a token is placed by a source, it must be acked by a sink.
It will then be released by the source, and subsequently it will be
removed by the sink to complete the cycle.

Additionally, tokens can have color. The color is defined in a variety
fields in a record of type color_type. The color fields can represent data
length, data type, destination address, source node addresses, or any of a
number of other forms of useful information.

[UM93]

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE33N-1.htm [12/28/2002 12:51:54 PM]

Advantages of OO-VHDL (Cont.) (Note Page)

Advantages
of OO-VHDL

(Cont.)
-- Notes Page --

The OO-VHDL paradigm leads to component descriptions that are
modular and easily interconnected. In addition, the tool automatically
generates the appropriate structural VHDL descriptions so that the user
need not be concerned by amending component entities and testbenches.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE35N-1.htm [12/28/2002 12:51:54 PM]

Advantages of OO-VHDL 3

Advantages of OO-
VHDL

(Cont.)

● Benefit: Can Interface Models with Different Levels of
Abstraction

● Enables: Mixed-level modeling

Operations may be redefined as each model increases in detail.
Polymorphism allows an algorithm (using operations) written for objects of
class X to work on all subclasses of X.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE36-1.htm [12/28/2002 12:51:54 PM]

Foreign Interfaces: An Example (Note Page)

Foreign
Interfaces:

An Example

-- Notes Page --

The foreign model for ffand_2input in this example will be used to
provide the functionality of the architecture body. This code could be in a
library of other models written in the foreign programming language that
may be similarly accessed. An example of a foreign programming
language is the 'C' language.

[Bhasker95]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE12N-2.htm [12/28/2002 12:51:55 PM]

Text Input and Output (Note Page)

Text Input and
Output

-- Notes Page --

The TEXTIO package provides declarations and subprograms for file and
text handling in VHDL. For example, the basic READ and WRITE
operations of the FILE type are not very useful. Therefore, the TEXTIO
package provides subprograms for manipulating text more easily and
efficiently.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE13N-2.htm [12/28/2002 12:51:55 PM]

TEXTIO Procedures

TEXTIO
Procedures

● TEXTIO defines a LINE data type
❍ All read and write operations use the LINE type

● TEXTIO also defines a FILE type of TEXT for use
with ASCII text

● Procedures defined by TEXTIO are:
❍ READLINE(f, k)

■ reads a line of file f and places it in buffer k

❍ READ(k, v,...)
■ reads a value of v of its type from k

❍ WRITE(k, v,...)
■ writes value v to LINE k

❍ WRITELINE(f, k)
■ writes k to file f

❍ ENDFILE(f) returns TRUE at the end of FILE

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE14-3.htm [12/28/2002 12:51:55 PM]

Assert Statement

Assert
Statements

● The ASSERT statement is used for displaying text
when certain conditions are met

● ASSERT statement classifies the text message in
four categories

❍ Note -- relays information about conditions to the user
❍ Warning -- alerts the user to conditions that are not expected, but

not fatal
❍ Error -- relays conditions that will cause the model to work

incorrectly
❍ Failure -- alerts the user to conditions that are catastrophic

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE17-3.htm [12/28/2002 12:51:55 PM]

Records (Note Page)

Records
-- Notes Page --

VHDL record data types contain elements of different VHDL types.
Records are useful in system level modeling because they allow
encapsulation and abstraction to be done easily in the system description.
The example shown in this slide is found in [UM93] and presents a
record named token in which one field (status) is used in an associated
VHDL bus resolution function and the other field (color) carries data.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE32N-1.htm [12/28/2002 12:51:56 PM]

Advantages of OO-VHDL (Cont.) (Note Page)

Advantages
of OO-VHDL

(Cont.)
-- Notes Page --

Components at multiple levels of abstraction can be interconnected in a
single model. This slide also shows another aspect of the OO-VHDL
paradigm where polymorphism is supported to facilitate reuse of
subprograms and types.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE36N-1.htm [12/28/2002 12:51:56 PM]

Advantages of OO-VHDL 4

Advantages of OO-
VHDL

(Cont.)

● Benefit: Can Easily Modify Parts of Behavior
● Enables: Reuse by defining components in terms of other

components

Reduces maintenance costs.
Reduces code bulk.
Clarifies similarities and differences among related components.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE37-1.htm (1 of 2) [12/28/2002 12:51:56 PM]

Advantages of OO-VHDL 4

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE37-1.htm (2 of 2) [12/28/2002 12:51:56 PM]

Synthesizing OO-VHDL

Synthesizing OO-
VHDL

● High-level features of OO-VHDL prevent it from being
synthesized directly

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE42-2.htm [12/28/2002 12:51:57 PM]

Converting OO-VHDL to Synthesizable VHDL (Note Page)

Converting
OO-VHDL to

Synthesizable
VHDL

-- Notes Page --

This slide lists the steps necessary in removing the abstractions inherent
in OO-VHDL so that synthesizable VHDL can be generated.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE43N-2.htm [12/28/2002 12:51:57 PM]

UVA ADEPT Primitive Modules (Note Page)

UVA ADEPT
Primitive
Modules

-- Notes Page --

ADEPT is a performance and reliability analysis tool which provides
several types of primitive modules. Every module has both a VHDL and
a Petri Net description. While ADEPT can hide the VHDL from the
designer, the VHDL descriptions are used in the simulation-based
analyses performed using ADEPT.

[UM93]

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE44N-2.htm [12/28/2002 12:51:57 PM]

ADEPT Token Handling

ADEPT Token Handling

● Defined in "token_definition.pkg"

-- (C) 1993 UVA Center for Semicustom Integrated Systems

-- Used for dependent outputs and data inputs
PROCEDURE place_token (SIGNAL T: INOUT token; tag: color_type;
 mon_tag: mon_color_type; delay: time);
PROCEDURE ack_token (SIGNAL T: INOUT token);
PROCEDURE release_token (SIGNAL T: INOUT token);
PROCEDURE remove_token (SIGNAL T: INOUT token);

-- Used for writing to independent outputs and control inputs
PROCEDURE place_control_token (SIGNAL T: OUT token;
 tag: color_type; mon_tag: mon_color_type; delay: time);
PROCEDURE release_control_token (SIGNAL T: OUT token);
PROCEDURE release_control_token_with_color
 (SIGNAL T: OUT token;
 tag: color_type; mon_tag: mon_color_type);

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE45-2.htm [12/28/2002 12:51:57 PM]

Honeywell PML

Honeywell
PML

● The Honeywell Performance Modeling Library
(PML) is another approach to performance
modeling

❍ PML is a token queuing network
❍ It does not have a rigid underlying mathematical model
❍ Tokens carry the minimal functional information necessary to

model systems

● Features of PML
❍ Library of over 50 generic components
❍ VHDL model automatically keeps track of utilization, latency,

and throughput
❍ Defines a standard token type

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE54-2.htm [12/28/2002 12:51:58 PM]

TEXTIO Procedures (Note Page)

TEXTIO
Procedures

-- Notes Page --

TEXTIO defines two new data types to assist in text handling. The first is
the LINE data type. The LINE type is a text buffer used to interface
VHDL I/O and the referenced file. Only the LINE type may read from or
written to a file.

The second is the FILE type of TEXT. A file of type TEXT may only
contain ASCII characters.

Several of the procedures provided by TEXTIO for handling text
input/output are also listed in this slide.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE14N-2.htm [12/28/2002 12:51:58 PM]

Using TEXTIO

Using TEXTIO

● Reading from a file
❍ READLINE reads a line from the file into a LINE buffer
❍ READ gets data from the buffer

● Writing to a file
❍ WRITE puts data into a LINE buffer
❍ WRITELINE writes the data in the LINE buffer to file

● READ and WRITE have several formatting
parameters

❍ Right or left justification
❍ Field width
❍ Unit displayed (for time)

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE15-3.htm [12/28/2002 12:51:58 PM]

An Example

TEXTIO

An Example

● This procedure displays the current state of a FSM

USE STD.TEXTIO.ALL;
TYPE state IS (reset, good);
PROCEDURE display_state (current_state : IN state) IS
 VARIABLE k : LINE;
 FILE flush : TEXT IS OUT "/dev/tty";
 VARIABLE state_string : STRING (1 to 7);
BEGIN
 CASE current_state IS
 WHEN reset => state_string := "reset ";
 WHEN good => state_string := "good ";
 END CASE;
 WRITE (k, state_string, LEFT, 7);
 WRITELINE (flush, k);
END display_state;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE16-3.htm [12/28/2002 12:51:58 PM]

Assert Statement (Note Page)

Assert
Statement
-- Notes Page --

The ASSERT statement is used to alert the user of some condition inside
the model. When the expression in the ASSERT statement evaluates to
FALSE, the associated text message is displayed on the simulator
console. Additionally, an evaluation of FALSE may halt the simulation
depending on the severity level of the associated ASSERT statement.

The four severity levels, in increasing severity, are listed in this slide.
However, the definitions of the severity levels are somewhat general and
can be modified to suit the designer's needs.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE17N-2.htm [12/28/2002 12:51:59 PM]

Assert Statements

Use of Assert
Statements

● Syntax of the ASSERT statement
ASSERT condition
 REPORT "violation statement"
 SEVERITY level;

● The ASSERT statement will trigger when the
condition is false

● The violation statement must be enclosed in quotes
ASSERT (NOT ((j='1') AND (k='1')))
 REPORT "Set and Reset are both 1"
 SEVERITY ERROR;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE18-3.htm [12/28/2002 12:51:59 PM]

Abstract Data Types in VHDL

Abstract Data
Types

● To enhance modeling efficiency and usefulness,
VHDL supports the notion of abstract data types
(ADT's)

● Examples
❍ Queue data type
❍ Finite state machine data type
❍ Floating and complex data types
❍ Vector and matrix data types

● An abstract data type consists of two things
❍ Data
❍ Operators that manipulate the data

● ADT's are implemented in VHDL through the use of
a set of components which operate in a consistent
integrated data environment

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE20-3.htm [12/28/2002 12:51:59 PM]

Advantages of OO-VHDL (Cont.) (Note Page)

Advantages
of OO-VHDL

(Cont.)
-- Notes Page --

A new component can also be described as a subclass of a previously
described component so that it can inherit much of its behavior from the
original component. The subclass component description then only needs
to include behavior that is unique to it.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE37N-1.htm [12/28/2002 12:51:59 PM]

Advantage of OO-VHDL 6

Advantages of OO-
VHDL

(Cont.)

● Benefit: No Port Declarations Necessary
● Enables: Scalable component to component

communication

Only "handles" required to communicate with other objects.
Communication pathways managed by OO-VHDL.
Trivial to add one more component to testbench.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE38-1.htm (1 of 2) [12/28/2002 12:52:00 PM]

Advantage of OO-VHDL 6

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE38-1.htm (2 of 2) [12/28/2002 12:52:00 PM]

Advantages of OO-VHDL 8

Advantages of OO-
VHDL

(Cont.)

● Benefit: Provides Monitor Capability Today
● Enables: Access control shared resources

Mutual-exclusion provided by OO-VHDL message serialization.
Requesters are blocked until their request is serviced.
Priorities may be placed on monitor operations.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE41-2.htm [12/28/2002 12:52:01 PM]

Synthesizing OO-VHDL (Note Page)

Synthesizing
OO-VHDL
-- Notes Page --

The high-level abstractions used in OO-VHDL models do not allow them
to be synthesized directly. For example, a synthesis tool cannot (and
should not) conjure an implementation for the abstract communication
mechanism used by OO-VHDL components. However, by means of
transformation tools directed or specified by the user, the descriptions of
OO-VHDL models can be translated into synthesizable VHDL code so
that an implementation is generated through a user-directed synthesis
process.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE42N-2.htm [12/28/2002 12:52:01 PM]

UVA ADEPT: Token Handling (Note Page)

UVA ADEPT:

Token Handling

-- Notes Page --

ADEPT has many procedures and functions defined to handle the user-
defined data type token. Some of the procedures and functions are
presented here.

The first four procedures are used for dependent output and data input.
These procedures perform the handshaking necessary for data tokens
which require a fully interlocked communication protocol between a
master and a slave.

The last three procedures handle independent or control tokens. Control
tokens do no handshaking protocol because the master may place and
remove them independently of what the slave does with the tokens.

[UM93]

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE45N-2.htm [12/28/2002 12:52:01 PM]

ADEPT Token Handling (cont.)

ADEPT Token
Handling (cont.)

-- Used to determine status of input and output token
FUNCTION token_present (T: Token) RETURN boolean;
FUNCTION token_acked (T: Token) RETURN boolean;
FUNCTION token_released (T: Token) RETURN boolean;
FUNCTION token_removed (T: Token) RETURN boolean;

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE46-1.htm [12/28/2002 12:52:01 PM]

Three Module Example: Detailed Event Sequence

Three Module
Example

Detailed Event
Sequence

Event Time Delta Description Resolved Signal A Resolved Signal B

1 0 ns 1 Source executes place_token on A present removed

2 5 ns 1 Delay executes place_token on B ---- present

3 5 ns 2 Sink executes ack_token on B ---- acked

4 5 ns 3 Delay executes release_token on B ---- released

5 Delay executes ack_token on A acked ----

6 5 ns 4 Sink executes remove_token on B ---- removed

7 Source executes release_token on A released ----

8 5 ns 5 Delay executes remove_token on A removed ----

1 10 ns 1 Source executes place_token on A present ----

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE53-2.htm [12/28/2002 12:52:02 PM]

Honeywell PML (Note Page)

Honeywell
PML

-- Notes Page --

The Honeywell Performance Modeling Library (PML) is another
approach that uses VHDL for system level performance modeling. The
PML implements a token-based approach. Use of the PML requires a
simulation-based analysis because, unlike ADEPT, the PML does not
have a rigid underlying mathematical (i.e. Petri Net) model. The PML
library, however, offers components with more complex behavior than
the ADEPT modules.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE54N-2.htm [12/28/2002 12:52:02 PM]

Token Type

Honeywell PML

Token Type

● The PML uinterface_token has several fields related to bus
resolution

TYPE uinterface_token IS
RECORD

 -- user fields
 parm1_real : REAL; -- these are
placed first to avoid
 parm2_real : REAL; -- some oddities
on Sparcs
 parm1_int : INTEGER;
 parm2_int : INTEGER;

 -- control flow
 destination : name_type;
 source : name_type;
 t_type : token_type;

 -- performance fields
 size : data_size;
 value : INTEGER;

 -- token tracking or statistics fields
 id : uGIDType;
 start_time : TIME;

 -- communication fields
 priority : INTEGER;
 state : State_Type;
 protocol : Protocol_Type;

 -- user communication tracking and control fields
 collisions : INTEGER;
 retries : INTEGER;
 route : INTEGER;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE55-2.htm (1 of 2) [12/28/2002 12:52:02 PM]

Token Type

END RECORD;

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE55-2.htm (2 of 2) [12/28/2002 12:52:02 PM]

Advantages of OO-VHDL 7

Advantages of OO-
VHDL

(Cont.)

● Benefit: HW and SW Object Communicate as Equals
● Enables: Hardware/Software Codesign

Behavior is described in terms of operations, not just port interfaces.
Single model may contain HW objects, SW objects, or "pre-partitioned"
objects.
OO-VHDL messages provide a common communications medium.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE40-1.htm [12/28/2002 12:52:03 PM]

Advantage of OO-VHDL 6

Advantages of OO-
VHDL

(Cont.)

● Benefit: No Port Declarations Necessary
● Enables: Scalable component to component

communication

Only "handles" required to communicate with other objects.
Communication pathways managed by OO-VHDL.
Trivial to add one more component to testbench.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE39-1.htm (1 of 2) [12/28/2002 12:52:04 PM]

Advantage of OO-VHDL 6

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE39-1.htm (2 of 2) [12/28/2002 12:52:04 PM]

Advantages of OO-VHDL (Cont.) (Note Page)

Advantages
of OO-VHDL

(Cont.)
-- Notes Page --

The standard interface mechanism provided by OO-VHDL allows
functionality which is implemented as software to be described as a
VHDL component and interconnected with VHDL components
describing hardware.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE40N-1.htm [12/28/2002 12:52:04 PM]

Advantages of OO-VHDL (Note Page)

Advantages
of OO-VHDL

(Cont.)
-- Notes Page --

OO-VHDL provides monitor components which can be placed in the
model to facilitate the tracking and recording of model status information
during simulations.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE41N-2.htm [12/28/2002 12:52:04 PM]

ADEPT Token Handling (Cont.) (Note Page)

ADEPT Token
Handling

(cont.)
-- Notes Page --

These four functions are used to check on the value of the status field of
the token being examined. The use of these functions provides a level of
abstraction with regard to how the token structure is implemented in
ADEPT.

[UM93]

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE46N.HTM [12/28/2002 12:52:04 PM]

Basic Module Format: Packages and Entity

Basic Module
Format

Packages and
Entity

-- (C) 1993 UVA Center for Semicustom Integrated Systems -- [1]
LIBRARY package_defs; USE package_defs.basic_defs.ALL; USE
package_defs.token_definition.ALL; USE
package_defs.color_fcns.ALL; USE
package_defs.mon_color_fcns.ALL; ENTITY module_name IS -- [2]
GENERIC (generic_list: generic_types); -- [3] PORT (data_input :
INOUT token; dependent_output : INOUT token; control_input : IN
token; independent_output : OUT token); END module_name;

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE47-1.htm [12/28/2002 12:52:05 PM]

Basic Module Format: Packages and Entity (Note Page)

Basic Module
Format:

Packages and
Entity

-- Notes Page --

The following slides present the standard format for an ADEPT module.
Adherence to this standard format facilitates the maintenance of the
ADEPT library of modules.

ADEPT type and subprogram definitions are provided in a library called
package_defs. Several packages within that library are available. In
ADEPT, the generics are often specified on the schematic to configure
instantiated modules. The data_input and dependent_output ports must be
of INOUT type because these tokens use the four-cycle communication
protocol. The control_input and independent_output are IN and OUT,
respectively, since they are only driven by the token masters.

[UM93]

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE47N-1.htm [12/28/2002 12:52:05 PM]

Basic Module Format: Architecture

Basic Module Format
Architecture

ARCHITECTURE ar_module_name OF module_name IS
BEGIN
process_1:PROCESS
 -- [4]
 VARIABLE variable_names : variable_types;
 BEGIN
 -- [5]
 IF token_present (data_input) AND
 token_removed (dependent_output) THEN
 -- do something
 place_token (dependent_output, color_of (data_input),
 mon_color_of (data_input), delay);
 END IF;
 -- [6]
 IF token_present (control_input) THEN
 -- do something
 place_control_token (independent_output,
 color_of (control_input), mon_color_of (control_input, 0 ns));

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE48-2.htm [12/28/2002 12:52:05 PM]

Three Module Example: Simplified Event Sequence

Three Module
Example

Simplified Event
Sequence

Event Time Description

1 0 ns Source places token on A

2 5 ns Delay places token on B

3 5 ns Sink acks token on B

4 5 ns Delay acks token on A

1 10 ns Source places next token on A

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE52-2.htm [12/28/2002 12:52:06 PM]

Three Module Example: Detailed Event Sequence (Note Page)

Three Module
Example:

Detailed Event
Sequence

-- Notes Page --

This example shows the entire four-cycle sequence of token assignments
made in the passing of tokens in the model. Note that after a token is
acknowledged, the release and removal of that token take place in delta
time (e.g. event 4 and 6 for B in the example).

[UM93]

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE53N-2.htm [12/28/2002 12:52:06 PM]

Honeywell PML: Token Type (Note Page)

Honeywell
PML:

Token Type

-- Notes Page --

The Honeywell PML defines a standard token named uinterface_token.
The token has several fields, including some used by its associated bus
resolution function. The protocol field can be used to implement different
protocols in the system. The priority, collisions, retries and interrupt
fields are used by the bus resolution function.

This token definition is from the RASSP VHDL Token-based
Performance Modeling Interoperability Guideline, Version 2.0. The
current public release version of this document is available at
http://rassp.scra.org/public/tb/honeywell/HONEYWELL-DOCS.html.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE55N-2.htm [12/28/2002 12:52:06 PM]

Handshaking Protocol

Honeywell
PML

Handshaking
Protocol

● Honeywell PML uses a handshaking protocol
similar to that of ADEPT

● Tokens on the bus have one of four values: idle,
request, ack, busy

● Tokens change the state of the token by changing
the state field of the utoken RECORD

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE56-2.htm [12/28/2002 12:52:06 PM]

UVA Adept

UVA ADEPT
Bus

Resolution

● This table shows the bus resolution between the
source, sink, and fixed delay in this three module
example

Dependent Output Data Input Resolution

token released token removed token removed

token present token removed token present

token present token acked token acked

token released token acked token released

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE51-2.htm [12/28/2002 12:52:07 PM]

Three Module Example: Simplified Event Sequence (Note Page)

Three Module
Example:

Simplified Event
Sequence

-- Notes Page --

The three-module example shown in this slide will be used to illustrate
the important events in the passing of tokens from a token master to a
token slave. As the table shows, the relevant events are the placing and
acknowledging of tokens. The other two states in the four-cycle
handshake, releasing and removing, are only required to effect the
interlock in a shared medium.

Note that the fixed_delay module does not acknowledge the source's
token until its output has been acknowledged by the sink module (i.e.
there is no buffering between inputs and outputs). This is an important
characteristic of the communication standard used by ADEPT modules
(unless explicitly stated otherwise, as in the BUFFER module).

[UM93]

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE52N-2.htm [12/28/2002 12:52:07 PM]

Honeywell PML: Handshaking Protocol (Note Page)

Honeywell
PML:

Handshaking
Protocol

-- Notes Page --

The sequence of token states used by the PML utoken is illustrated here.
The sequence is similar to the one used by ADEPT, but because the PML
supports multiple masters simultaneously (with different priorities to
differentiate them), the bus resolution function is more complex than in
ADEPT.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE56N-2.htm [12/28/2002 12:52:07 PM]

Bus Resolution

Honeywell
PML
Bus

Resolution

● Bus resolution function (BRF) resolves a signal
value that has multiple drivers

● BRF and bus interface unit (BIU) characterize the
bus

● Resolution function arbitrates based on token fields
❍ bus state
❍ protocol
❍ priority
❍ token id

● BRF may need to be characterized for different
protocols

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE57-2.htm [12/28/2002 12:52:07 PM]

Steps to Set-up the Functional Memory

Honeywell
PML

Steps to Set-
up the

Functional
Memory

LIBRARY GEN;
USE GEN.dataio.IPC_real_type;

LIBRARY PROC;
USE PROC.ioport_signal.IOPort;

ARCHITECTURE testbench OF fivecpu_testbench IS
 COMPONENT Processor
 PORT (DataPort : INOUT IPC_real_type);
 END COMPONENT;

 COMPONENT Func_Memory_Real
 PORT (DataPort : INOUT IPC_real_type);
 END COMPONENT;
 FOR CPU_1: Processor USE
 CONFIGURATION PROC.PROCESSOR_01;

 FOR MEM: Func_Memory_Real USE ENTITY
 proc.Func_Memory_Real (system);

 SIGNAL token_interconnect : token;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE67-1.htm (1 of 2) [12/28/2002 12:52:08 PM]

Steps to Set-up the Functional Memory

 BEGIN
 MEM:Func_Memory_Real
 PORT MAP (DataPort => IOPORT);
 CPU_1:Processor
 PORT MAP (Data0=> token_interconnect);

not a complete code example

● First, make an instance of the memory
● In the modules that require access to the Functional

Memory, include the ioport_signal USE clause to
instantiate the global signal

❍ USE proc.ioport_signal.ioport, or
❍ USE proc.ioport_signal.ioport_i
❍ No explicit port declarations for the other modeling artifacts are

necessary

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE67-1.htm (2 of 2) [12/28/2002 12:52:08 PM]

Functional Memory Interface

Honeywell PML
Functional Memory

Interface

ENTITY Func_Memory IS
 PORT (DataPort : INOUT IPC_real_type);
END Func_Memory;

ENTITY Func_Memory IS
 PORT(DataPort : INOUT IPC_integer_type);
END Func_Memory;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE66-1.htm (1 of 2) [12/28/2002 12:52:08 PM]

Functional Memory Interface

● Two data types supported: Integers and Reals
● Data written/read from Functional memory are vectors

(integers or reals)
❍ Signal types defined in the base_types package of the GEN library
❍ The bus resolution function will handle all arbitration
❍ Complex data types are supported by user-defined wrapper procedures

(need to convert complex data types into groups of integer or reals)

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE66-1.htm (2 of 2) [12/28/2002 12:52:08 PM]

Functional Memory Component

Honeywell PML
Functional Memory

Component

● Situations arise when the user will want to model the
functional flow of data between processor model
components

❍ More detailed functionality desired

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE65-1.htm (1 of 2) [12/28/2002 12:52:09 PM]

Functional Memory Component

❍ Performance modeling requires application dependent behavioral
information

❍ Modeling control flow
❍ Test boundary conditions

● Functional Memory component allows software tasks to
exchange large amounts of data without impacting
simulation time (no resource utilization)

❍ Supports arbitrary sizes of data
❍ Simple interface
❍ Not a huge burden on simulation runtime performance
❍ Persistent; no synchronized transmitters/receivers needed

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE65-1.htm (2 of 2) [12/28/2002 12:52:09 PM]

Use of BIU

Honeywell PML
Use of BIU

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE64-1.htm [12/28/2002 12:52:09 PM]

Honeywell PML: Functional Memory Component (Note Page)

Honeywell
PML:

Functional
Memory

Component

-- Notes Page --

A configurable Functional Memory Component is provided for storage of
desired model information. It provides a simple interface and supports the
ability to communicate large amounts of information from one
component to another efficiently by providing a shared memory space.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE65N-1.htm [12/28/2002 12:52:10 PM]

Honeywell PML: Functional Memory Component (Note Page)

Honeywell
PML:

Functional
Memory

Component

-- Notes Page --

Two types of Functional Memory Components are provide; one for the
storage of integer data, and another for the storage of real (i.e. floating
point) data. Other forms of data require the use of builtin or user-defined
functions for conversion to type integer or type real for storage.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE66N-1.htm [12/28/2002 12:52:10 PM]

Honeywell PML: Steps to Set-up the Functional Memory (Note Page)

Honeywell
PML:

Steps to Set-up
the Functional

Memory
Operations

-- Notes Page --

This slide shows an example instantiation of a Functional Memory
Component.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE67N-1.htm [12/28/2002 12:52:10 PM]

Honeywell PML: Functional Memory Operations (Note Page)

Honeywell
PML:

Functional
Memory

Operations

-- Notes Page --

This slide shows the parameters used in the read and write procedures
provided to interface with Functional Memory Components easily. Note
that the procedures support selection from among several memory
components as well as accesses of vector data in one operation.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE68N-1.htm [12/28/2002 12:52:10 PM]

Using TEXTIO (Note Page)

Using TEXTIO
-- Notes Page --

TEXTIO requires that all disk access go through a buffer of type LINE.
In addition, the READ and WRITE procedures can further format the
text. The field width of the text is its length if not otherwise specified. If
the text is of type TIME, the unit of time can be specified.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE15N-2.htm [12/28/2002 12:52:10 PM]

TEXTIO: An Example (Note Page)

TEXTIO:

An Example

-- Notes Page --

This example displays the current state of a finite state machine model
execution.

First, the USE clause makes the contents of the TEXTIO package
available. The enumerated type STATE is also declared. The procedure
display_state requires only one input value, the current state of the FSM.

Several local variables are declared. The buffer k of type LINE will be
used for WRITE storage. The FILE flush is of type text and will output to
a file named /dev/tty. This logical name is the standard output or screen in
UNIX. Therefore, the procedure will write to the screen. The variable
state_string holds the text value of the state.

The CASE statement converts the state of the FSM into a text value. The
WRITE statement then writes the value of state_string to the buffer k.
The WRITE statement further specifies that the string should be left
justified and be 7 spaces wide.

Finally, the WRITELINE sends the buffer k to the file flush. The text is
then written to the screen.

Note that this procedure would not work very well for writing to a file.
Since the file is re-initialized every time the procedure is used, the text
would always be written to the beginning of the file. Using TEXTIO to
write to a file requires that the file be passed to the procedure as a

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE16N-2.htm (1 of 2) [12/28/2002 12:52:11 PM]

TEXTIO: An Example (Note Page)

parameter, or the modeler could use a process that implements the same
functionality.

Based on [Navabi93]

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE16N-2.htm (2 of 2) [12/28/2002 12:52:11 PM]

Assert Statements (Note Page)

Assert
Statements

-- Notes Page --

This slide shows the syntax of the ASSERT statement. The ASSERT
statement will trigger when the condition is false. The REPORT
statement to be displayed is enclosed in quotes.

The Set and Reset lines of the J-K flip-flop in this example cannot
simultaneously equal one. Therefore, the ASSERT statement evaluates to
FALSE if this situation is observed during simulation.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE18N-2.htm [12/28/2002 12:52:11 PM]

An Example

Assert Statements

An Example

● This code has similar functionality to that of the TEXTIO
example

❍ Assume good = '1', reset = '0'

PROCEDURE display_state (current_state : IN state) IS
BEGIN
 ASSERT NOT(current_state = '1')
 REPORT "Status of State: good"
 SEVERITY NOTE;
 ASSERT NOT(current_state = '0')
 REPORT "Status of State: reset"
 SEVERITY WARNING;
END display_state;

● ASSERT statements may have some implementation
defined action associated with the various SEVERITY
levels

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE19-3.htm [12/28/2002 12:52:11 PM]

Abstract Data Types in VHDL (Note Page)

Abstract Data
Types in

VHDL
-- Notes Page --

The discussion on Abstract Data Types is adapted from: Sidhatha
Mohanty, V. Krishnaswamy, P. Wilsey, "Systems Modeling, Performance
Analysis, and Evolutionary Prototyping with Hardware Description
Languages," Proceedings of the 1995 Multiconference on Simulation, pp
312-318.

Abstract data types (ADTs) are objects which can be used to represent an
activity or component in behavioral modeling. An ADT supports data
hiding, encapsulation, and parameterized reuse. As such they give VHDL
some object-oriented capability.

An ADT is both a data structure (such as a stack, queue, tree, etc.) and a
set of functions (i.e. operators) that provide useful services on the data.
For example, a stack ADT would have functions for pushing an element
onto the stack, retrieving an item from the stack, and perhaps several user-
accessible attributes such as whether the stack is full or empty.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE20N-3.htm [12/28/2002 12:52:11 PM]

An Example

Abstract Data
Types

An Example

● Data structure: a queue with user-defined attributes
● Operators

❍ Token source
❍ Fork and join
❍ Server
❍ Sink

● To use the queue ADT, set several generic
parameters to define the sizes, distributions, and
other characteristics provided by the ADT

● Example - to define and use a queue

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE21-2.htm [12/28/2002 12:52:11 PM]

Advantages of OO-VHDL (Cont.) (Note Page)

Advantages
of OO-VHDL

(Cont.)
-- Notes Page --

The benefit of using an object-oriented paradigm in VHDL modeling is
that it leads to compact system descriptions which can be modified easily
to facilitate maintainability and complexity management.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE38N-1.htm [12/28/2002 12:52:12 PM]

Advantages of OO-VHDL (Cont.) (Note Page)

Advantages
of OO-VHDL

(Cont.)
-- Notes Page --

The OO-VHDL mechanism abstracts away interconnection details so that
various alternative structural descriptions can be described easily.

Copyright © 1995 Vista Technologies, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE39N-1.htm [12/28/2002 12:52:12 PM]

Basic Module Format: Architecture (Note Page)

Basic Module
Format:

Architecture

-- Notes Page --

The basic architecture is shown here and in the next slide.

Note that the basic behavior of a module first requires that a token (or
tokens) be recognized as present on some relevant input(s). This may be
some prescribed combination of data or control inputs. Once the
appropriate input condition is recognized, the module examines the
relevant output port to ensure that it is available (i.e. the four-cycle
handshake from any previous communication has completed). If the
required output port is available, the module will then perform its
function and place a token on the output.

[UM93]

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE48N-2.htm [12/28/2002 12:52:12 PM]

Basic Module Format: Architecture (cont.)

Basic Module Format
Architecture (cont.)

ELSE
 -- no input token, release token from independent output
 release_control_token (independent_output);
END IF;
-- [7]
IF token_acked (dependent_output) THEN
 -- Pass output acknowledgement back through
 release_token (dependent_output);
 ack_token (data_input);
END IF;
-- [8]
IF token_released (data_input) THEN
 remove_token (data_input);
END IF;
-- [9]
WAIT ON data_input, dependent_output, control_input;
END PROCESS;
END ar_module_name;

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE49-2.htm [12/28/2002 12:52:12 PM]

Three Module Example

Three Module Example

● This example shows the event sequence in a simple three
module example

Time between new tokens on A=step+path_delay= 10 ns

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE50-2.htm [12/28/2002 12:52:13 PM]

UVA ADEPT Bus Resolution (Note Page)

UVA ADEPT
Bus

Resolution
-- Notes Page --

This table illustrates the possible conditions of the status fields for both
the master token driver and the slave token driver. The bus resolution
function (BRF) implements the priorities shown in this table. For
example, if the master drives a token with status present while the slave
drives a token with status acked, the BRF returns the token with status
acked.

[UM93]

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE51N-2.htm [12/28/2002 12:52:13 PM]

Honeywell PML: Bus Resolution (Note Page)

Honeywell
PML:

Bus Resolution

-- Notes Page --

The BRF for the PML is versatile and its returned utoken is based on the
values on four fields of the driven utokens (state, protocol, priority, and
id).

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE57N-2.htm [12/28/2002 12:52:13 PM]

Bus Resolution Code

Honeywell
PML
Bus

Resolution
Code

-- (C) 1995 Honeywell Inc. All rights reserved.
BEGIN
 -- If no drivers, just drive initial token
 IF (s'LENGTH <1) THEN
 RETURN init_token;
 -- If one input, default is single driver
 ELSIF (s'LENGTH = 1) THEN
 RETURN s(s'LOW);
 ELSE
 -- Ensure all drivers have the same protocol
 current_protocol := s(s'LOW).protocol;
 poll_drivers: FOR i IN s'RANGE LOOP
 CASE current_protocol IS

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE58-2.htm [12/28/2002 12:52:13 PM]

Bus Interface Unit

Honeywell
PML

Bus Interface
Unit

● The BIU consists of four processes:
❍ LBRCV receives tokens from local bus
❍ LBTX transmits tokens on the local bus
❍ BIURCV receives tokens from the global bus
❍ BIUTX transmits tokens on the global bus

● The BIU is a generic module that performs
handshaking for other modules

❍ Shields modules from details of the bus

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE63-2.htm [12/28/2002 12:52:14 PM]

Honeywell PML: Use of BIU (Note Page)

Honeywell
PML:

Use of BIU

-- Notes Page --

This slide shows an example use of the BIU. The BIU is placed between
the global bus and the local bus of the module. Different modules may
have different handshaking or timing requirements; the BIU is used to
satisfy these requirements and those of the shared bus.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE64N-1.htm [12/28/2002 12:52:14 PM]

Assert Statements: An Example (Note Page)

Assert
Statements:

-- Notes Page --

The example shown here provides a similar functionality to the TEXTIO
example shown previously. The ASSERT statements are used to display
the current state of an FSM. Note that these ASSERT statements are
concurrent. ASSERTs can be concurrent or sequential depending on
whether they appear inside or outside VHDL processes. In fact, because
they are passive statements (i.e. no assignments are made) ASSERT
statements can also be put in VHDL ENTITY statements.

In the example here, if the "good" state is defined to be 1, then the first
ASSERT will trigger when current_state is not equal to 0. The second
ASSERT statement is set up in a similar fashion.

While this mechanism is similar to the previous TEXTIO example, it can
provide more information to the user and the simulator. The SEVERITY
level may cause the simulator to pause or stop altogether. While these
definitions are implementation defined, they can be useful.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE19N-2.htm [12/28/2002 12:52:14 PM]

Abstract Data Types: An Example (Note Page)

Abstract Data
Types:

An Example

-- Notes Page --

Consider a queue abstract data type. It will have a 1) data structure for
holding tokens and 2) functions for inserting/retrieving tokens in/from the
data structure.

In fact, since a queue is used within a queuing system, we will expand our
definition of operators to include 1) a generator for tokens, 2) a salvager
of tokens, 3) a server, and 4) fork and join operators.

Thus, our queuing system ADT can be used to create an entire system of
queues, servers, and token generators to model a system (e.g. a DSP) at
an uninterpreted (i.e. non-functional) level.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE21N-2.htm [12/28/2002 12:52:14 PM]

Example Use of QUEUE ADT

Example Use of
QUEUE ADT

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22-2.htm [12/28/2002 12:52:15 PM]

Example Use of QUEUE ADT (Note Page)

Example Use
of QUEUE

ADT
-- Notes Page --

As an example, consider a queuing network which is a high-level model
for a 3-CPU multiprocessing computer on a single bus and two ports to
memory. The queue represents the serializing of memory data entering
the bus.

S1 and S2 are identical token sources each supplying three tokens at a
time with inter-arrival times uniformly distributed between 1 and 100
time units. J1 receives all generated tokens and provides a single stream
of tokens to the single queue. Tokens are removed from the queue
whenever any of the three servers, S3, S4, and S5, is free. J2 is a join
which then receives tokens from the servers and destroys them, thus
freeing up the small amount of memory used by a token.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE22N-2.htm [12/28/2002 12:52:15 PM]

Queue System VHDL Model

Queue System
VHDL Model

LIBRARY queue;
USE queue.queue_pkg.all;
USE std.textio.all;

ENTITY open_system is
END open_system;

ARCHITECURE example OF open_system IS

 SIGNAL arc1, arc2, arc3, arc4, arc5, arc6,
 arc7, arc8, arc9, arc10, arc11 : arc bus;
 .
 .
 <component declarations>
 .
 .
 BEGIN
 <architecture>
 END example;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE23-3.htm [12/28/2002 12:52:15 PM]

Queue System VHDL Model (Note Page)

Queue
System VHDL

Model
-- Notes Page --

In this and the next few slides, we will describe the queuing system ADT
and show how to use the ADT to create and exercise the model presented
in the previous slide.

The queue_pkg package contains a number of functions useful for the
queuing system component including overloaded read and write
procedures.

Since we assume there are no system inputs and outputs, the entity
open_system has no ports.

The architecture has three basic parts: 1) a signal list declaration which
declares all signals used to connect the components together to create the
queuing network, 2) the declarations of the queuing system components
(i.e., sources, sink, forks, joins, queue, and servers), and 3) the body
which here will be little more than a netlist of components.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE23N-2.htm [12/28/2002 12:52:16 PM]

Queue Example Declarations

Queue Example Declarations

COMPONENT source1
 GENERIC (out_control : distrib; seed : integer;
 generation : frequency; name : string;
 debug_control : debug := none;
 report_freq : time := 10fs);
 PORT (out_arc : inout arc bus);
 END COMPONENT;

COMPONENT queue1
 generic (queue_length : integer;
 name : string;
 discipline : queue_discipline;
 debug_control : debug := none;
 report_freq : time := 10 fs);

 PORT (in_arc : inout arc bus;
 out_arc : inout arc bus);
 END COMPONENT;

COMPONENT fork1
 generic (out_control : distrib;
 name : string;
 seed : integer;
 generation : frequency;
 debug_control : debug := none;
 report_freq : time := 10 fs);

 PORT (in_arc : inout arc bus;
 out_arc : inout arc_array (1 to
 number_out) bus);
END COMPONENT;

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE24-3.htm [12/28/2002 12:52:16 PM]

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE25-1.htm

Queue Example Declarations (Note Page)

Queue
Example

Declarations
-- Notes Page --

These declarations list the interface signals and generic parameters of the
abstract data type components. The source1, queue1, and fork1
components are declared in this slide.

The ports are used to interconnect the elements of the queuing system.
The generics list the static parameters used to configure particular
component instantiations. For example, the queue length is defined as a
generic. The values in the generic lists are default values in case specific
values are not specified when the components are instantiated.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE24N-2.htm [12/28/2002 12:52:16 PM]

Socket Error

Socket Error
Connection to Remote Host timed out

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE27-2.htm [12/28/2002 12:52:16 PM]

Basic Module Format: Architecture (cont.) (Note Page)

Basic Module
Format:

Architecture
(cont.)

-- Notes Page --

This second part of the architecture description shows how the remaining
three cycles of the handshake protocol (following the placing of a token)
are implemented on both the data input port (if applicable) and the
dependent output port (again, if applicable).

[UM93]

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE49N-2.htm [12/28/2002 12:52:17 PM]

Three Module Example (Note Page)

Three Module
Example
-- Notes Page --

This example shows a simple three module model using ADEPT. The
SOURCE provides tokens to the system at a rate of 1 every 5 ns. The
FIXED_DELAY module introduces another 5 ns fixed delay. The time
between new tokens is, therefore, 10 ns. Finally, the SINK module takes
tokens out of the system.

[UM93]

Copyright University of Virginia Center for Semicustom Integrated Systems. Reprinted with
permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE50N-2.htm [12/28/2002 12:52:17 PM]

Honeywell PML: Bus Resolution Code (Note Page)

Honeywell
PML:

Bus Resolution
Code

-- Notes Page --

This slide shows a small portion of the Honeywell PML bus resolution
function.

In this code, s is a vector of tokens passed to the BRF. If there are no
drivers on the bus, the BRF returns an init_token (with a status of idle).

If there is only one token on the bus, the BRF returns that token.

If there is more than one token being driven, the BRF reads the protocol
of the first token in the token vector s. Note that since all drivers on a bus
must have the same protocol, only the first token needs to be checked.
Multiple protocols on the same bus are supported through the use of the
"CASE current_protocol" block and looping through all of the tokens in
the vector.

To determine which token is to be returned, the BRF loops through all the
tokens in the s token vector to determine the driver with the highest
priority and state, and that token is returned.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE58N-2.htm (1 of 2) [12/28/2002 12:52:17 PM]

Honeywell PML: Bus Resolution Code (Note Page)

file:///E|/temp/Downloads%20Elektroda/VHDLrartu...l1/VHDL%20Interactive%20Tutorial/SLIDE58N-2.htm (2 of 2) [12/28/2002 12:52:17 PM]

Idle State

Honeywell
PML

Idle State

● Current_state of the bus is idle
● If a driver that is not idle is found, set current_state

to that value

CASE current_state IS
 WHEN idle =>
 IF (s(i).state /=idle) THEN
 current_driver := i;
 current_state : = s(i).state;
 END IF;

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE59-2.htm [12/28/2002 12:52:17 PM]

Honeywell PML: Idle State (Note Page)

Honeywell
PML:

Idle State

-- Notes Page --

The value of current_state is defined to be the current state of the bus.
The current_state value of the bus is used by the BRF to determine what
token to return from the vector of token drivers for the bus.

If the state of the bus is idle, the BRF checks the vector of token drivers
for a token with a state other than idle. If a non-idle token is found, that
token is returned by the BRF.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE59N-1.htm [12/28/2002 12:52:17 PM]

Request State

Honeywell
PML

Request State

● Current_state of the bus is request
● If multiple tokens are requesting, the one with

higher priority wins
● Ack or busy tokens become current_state

WHEN request =>
 CASE s(i).state IS
 WHEN idle =>
 WHEN request =>
 IF (s(current_driver) <s(i)) THEN
 current_driver := i;
 END IF;
 WHEN ack | busy =>
 current_driver := i;
 current_state:= s(i).state;
 END CASE;

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE60-2.htm [12/28/2002 12:52:18 PM]

Honeywell PML: Request State (Note Page)

Honeywell
PML:

Request State

-- Notes Page --

If the current_state of the bus is request, execution of the BRF takes place
in CASE statement. The "WHEN idle =>" line is left blank because a
token can not be idle in this CASE block. Note that VHDL requires that
all values in the range of an object be present in a CASE block (a
"WHEN OTHERS =>" statement could have been used here instead to
satisfy this requirement).

If the current token in the s vector is a request, the BRF checks this
token's priority with that of the token that is the current_driver of the bus.
If the new token has a higher priority, the new token becomes the
current_driver. Note that the "<" operator has been overloaded to check
for priority among tokens.

Finally, if the new token in the vector is an ack or busy token, this token
is returned by the BRF and the current_driver and current_state variables
are set accordingly.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE60N-1.htm [12/28/2002 12:52:18 PM]

Ack State

Honeywell
PML

Ack State

● Current_state of the bus is ack
● Multiple acks are not allowed
● Busy tokens set the current_state

WHEN ack =>
 CASE s(i).state IS
 WHEN idle =>
 WHEN request =>
 WHEN ack =>
 WHEN busy =>
 current_driver := i;
 current_driver := busy;
 END CASE;

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE61-2.htm [12/28/2002 12:52:18 PM]

Honeywell PML: Ack State (Note Page)

Honeywell
PML:

Ack State

-- Notes Page --

If the current_state of the bus is ack, the BRF checks the current token in
the vector for the busy state. Because Honeywell does not allow multicast
requests (multiple request tokens on the bus), there can be only one ack
on the bus at a time.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE61N-1.htm [12/28/2002 12:52:18 PM]

Busy State

Honeywell
PML

Busy State

● Current_state of the bus is busy
● Multiple busys are allowed in lossy communication
● Busy token with highest priority wins the bus

WHEN busy =>
 CASE s(i).state IS
 WHEN idle =>
 WHEN request =>
 WHEN ack =>
 WHEN busy =>
 IF (s(current_driver) <s(i)) THEN
 current_driver := i;
 END IF;
 END CASE;
..
RETURN s(current_driver);

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE62-1.htm [12/28/2002 12:52:19 PM]

Honeywell PML: Busy State (Note Page)

Honeywell
PML:

Busy State

-- Notes Page --

Finally, if the current_state of the bus is busy, the BRF selects the busy
token with the highest priority. Once again, the overloaded operator "<"
is used to decide the higher priority.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE62N-1.htm [12/28/2002 12:52:19 PM]

Honeywell PML: Bus Interface Unit (Note Page)

Honeywell
PML:

Bus Interface Unit

-- Notes Page --

The Bus Interface Unit (BIU) is used to isolate a local bus from a global
system bus.

[Honeywell95]

Copyright Honeywell, Inc. Reprinted with permission.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE63N-1.htm [12/28/2002 12:52:19 PM]

VHDL LRM - Introduction

IEEE Standard VHDL Language Reference
Manual

(IEEE Std. 1076-1993)
Sponsors

Design Automation Standards Committee
of the

IEEE Computer Society

and

Automatic Test Program Generation Subcommittee
of

IEEE Standards Coordinating Committee 20

Approved September 15, 1993
IEEE Standards Board
Approved April 14, 1994
American National Standards Institute

Abstract: This standard defines the VHSIC Hardware Description Language (VHDL). VHDL is a formal notation
intended for use in all phases of the creation of electronic systems. Because it is both machine readable and human
readable, it supports the development, verification, synthesis , and testing of hardware designs; the communication of
hardware design data; and the maintenance, modification, and procurement of hardware. Its primary audience are the
implementers of tools supporting the language and the advanced users of the language.

Keywords: Computer, computer languages, electronic systems, hardware, hardware design, VHDL

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1994 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1994 Printed in the United States of America

ISBN 1-55937-376-8

No part of this publication may be reproduced in any form,in an electronic retrieval system or otherwise,without the
prior written permission of the publisher.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_TIT.HTM (1 of 8) [12/28/2002 12:52:20 PM]

VHDL LRM - Introduction

IEEE Standards documents are developed within the Technical Committees of the IEEE Societies and the Standards
Coordinating Committees of the IEEE Standards Board. Members of the committees serve voluntarily and without
compensation. They are not necessarily members of the Institute. The standards developed within IEEE represent a
consensus of the broad expertise on the subject within the Institute as well as those activities outside of IEEE that have
expressed an interest in participating in the development of the standard.

Use of an IEEE Standard is wholly voluntary. The existence of an IEEE Standard does not imply that there are no other
ways to produce, test, measure, purchase, market, or provide other goods and services related to the scope of the IEEE
Standard. Furthermore, the viewpoint expressed at the time a standard is approved and issued is subject to change
brought about through developments in the state of the art and comments received from users of the standard. Every
IEEE Standard is subjected to review at least every five years for revision or reaffirmation. When a document is more
than five years old and has not been reaffirmed, it is reasonable to conclude that its contents, although still of some
value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that they have the
latest edition of any IEEE Standard.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of test, together with
appropriate supporting comments.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of all concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason
IEEE and the members of its technical committees are not able to provide an instant response to interpretation requests
except in those cases where the matter has previously received formal consideration.

Comments on standards and requests for interpretations should be addressed to:

Secretary, IEEE Standards Board
445 Hoes Lane
PO Box 1331
Piscataway, NJ 08855-1331
USA

IEEE Standards documents may involve the use of patented technology. Their approval by the Institute of Electrical
and Electronics Engineers does not mean that using such technology for the purpose of conforming to such standards
is authorized by the patent owner. It is the obligation of the user of such technology to obtain all necessary
permissions.

Introduction
(This introduction is not a part of IEEE Std 1076-1993, IEEE Standard VHDL Language Reference Manual.)

The VHSIC Hardware Description Language (VHDL) is a formal notation intended for use in all phases of the creation
of electronic systems. Because it is both machine readable and human readable, it supports the development,

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_TIT.HTM (2 of 8) [12/28/2002 12:52:20 PM]

VHDL LRM - Introduction

verification, synthesis, and testing of hardware designs; the communication of hardware design data; and the
maintenance, modification, and procurement of hardware.

This document specifies IEEE Std 1076-1993, which is a revision of IEEE Std 1076-1987. The VHDL Analysis and
Standardization Group (VASG) of the Computer Society of the IEEE started the development of IEEE Std 1076-1993
in June 1990. The VASG commissioned a Standardization Steering Committee to drive the standardization effort. The
Steering Committee created standardization chapters in North America, Europe, and Asia-Pacific; administered the
standardization guidelines of the IEEE; and staffed the volunteer positions in the various standardization chapters.

New capabilities in this version of the language include groups, shared variables, hierarchical pathnames, and a facility
to include foreign models in a VHDL description. Some of the existing capabilities were extended or modified to
facilitate initial and incremental creation of a design hierarchy. New shift/rotate operators were added to the language.
The delay model of the language was modified to support pulse rejection. The syntactic consistency of the language
was enhanced. Finally, resolutions of ambiguities and inconsistencies addressed by the Issue Screening and Analysis
Committee (ISAC) of the VASG were incorporated into this revision of the language.

The VHDL 92 standardization effort consisted of five major phases: definition of VHDL 92 requirements, language
design, language documentation, design validation, and balloting. The following working documents were developed
during each phase of the standardization effort:

 Requirements Definition: VHDL 92 Requirements
 VHDL 92 Design Objectives Document
 Language Design: Language Change Specifications
 Language Documentation: Draft and Final Language Reference Manuals
 Design Validation: Validation Reports
 Ballot Response Document: Balloting

Numerous volunteers in North America, Europe, and Asia-Pacific contributed to development of VHDL 92. The
Standardization Steering Committee consisted of the following:

 Moe Shahdad Steering Committee Chair
 Stan Krolikoski VASG Chair
 Victor Berman North-American Chapter Chair
 Jean Mermet European Chapter Chair
 Kazuyuki Hirakawa Asia-Pacific Chapter Chair
 Jacques Rouillard
 Ron Waxman
 John Hillawi
 Andreas Hohl

The following volunteers led the various working groups of the standardization effort:

 Requirements Definition Jacques Rouillard
 Language Design Doug Dunlop
 Language Documentation Paul Menchini
 Design Validation Alex Zamfirescu
 Ballot Comment Resolution Clive Charlwood

In addition, the following volunteers in the North America, European, and Asia-Pacific standardization chapters
contributed to the VHDL 92 standardization effort by participating in the requirements gathering, requirements
analysis, design review, documentation review, design validation, and balloting:

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_TIT.HTM (3 of 8) [12/28/2002 12:52:20 PM]

VHDL LRM - Introduction

 Mart Altmäe Eric Gutt Zainalabedin Navabi
 Stephen A. Bailey Andrew Guyler Wolfgang Nebel
 Daniel Barclay William A. Hanna Mary Lynne Nielsen
 Jean-Michel Bergé John Hines Bill Paulsen
 David Bernstein Masaharu Imai Hitomi Sato
 Bill Billowitch Kenichi Kanehara Ken Scott
 Dominique Borrione Krishna Kumar Sunder Singhani
 Mark Brown Oz Levia Chuck Swart
 Tedd Corman Serge Maginot Atushi Takahara
 Alain Fonkoua Erich Marschner Cary Ussery
 Rita Glover Gabe Moretti Eugenio Villar

IEEE Std 1076 is being maintained by the VASG. This group has been established to resolve issues that may arise with
the language and to develop its future versions. The working documents of the VASG are available from the Computer
Society Standards Secretariat, Computer Society of the IEEE, 1730 Massachusetts Ave. N.W., Washington, DC 20036,
1-202-371-0101, and also from the IEEE Standards Department, 445 Hoes Lane, Piscataway, NJ 08855, 1-800-678-
IEEE. The working documents are not formally approved documents; however, they do reflect current status of the
working group's direction.

As a result of the standardization activity leading to the development of IEEE Std 1076-1993, a number of working
groups were formed to address areas that could not be adequately address within the scope of standardization:

 Working Group Project Authorization Request (PAR) Number

 Shared Variables 1076.a
 Analog Extensions 1076.1
 Math Package 1076.2
 Synthesis Package 1076.3
 Timing Methodology 1076.4

Interested parties should contact the Chair of the Design Automation Standards Committee (DASC) to participate in
these activities. Development of IEEE Standard VHDL 1076-1987 IEEE Standard VHDL was developed through the
work of the VASG, a working group within the Design Automation Standards Subcommittee (DASS) of the Design
Automation Technical Committee (DATC) of the Computer Society of the IEEE. The work of the VASG was jointly
sponsored by the DATC and by the Automatic Test Program Generation (ATPG) subcommittee of IEEE Standards
Coordinating Committee 20 (SCC20). Larry Saunders was the Chair of the VASG; Ron Waxman was Chair of the
DASS; Al Lowenstein was the Chair of the ATPG subcommittee. In the foreword to IEEE Std 1076-1987, Ronald
Waxman (then Chair of DASS) and Larry Saunders (then Chair of VASG) acknowledged the efforts of Erich
Marschner and Moe Shahdad as the principal designers of VHDL. They felt that the hard work and professionalism of
the designers contributed significantly to the final result, and they wished the dedication of Marschner and Shahdad to
be recognized. The creation of IEEE Std 1076-1987 began in February 1986 with the adoption of VHDL version 7.2 as
the baseline language. In order to assist the voluntary standardization process of the IEEE, the Air Force Wright
Aeronautical Laboratories contracted with CAD Language Systems Inc. (CLSI) to support the IEEE in the analysis of
VHDL language issues, extension of the baseline language, and preparation of the draft and final definitions of the
IEEE Std 1076-1987. This work was performed under contracts F33615-82-C-1716 and F33615-86-C-1050. The CLSI
Project Manager for the IEEE standardization effort was Moe Shahdad, and the CLSI Technical Lead was Erich
Marschner. The Air Force point of contact was John Hines, and Ron Waxman, Chair of the DASS, was the IEEE
coordinator. Many individuals from many different organizations participated in the development of IEEE Std 1076-
1987. In particular, the following people attended meetings of the VASG:

 Dean Anderson Ching Hsiao Thomas Panfil

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_TIT.HTM (4 of 8) [12/28/2002 12:52:20 PM]

VHDL LRM - Introduction

 Kevin Anderson Paul Hubbard Steve Piatz
 Larry Anderson Youm Huh Signe Post
 Jim Armstrong John Jensen Jean Pouilly
 Lisa Asher Bob Johnson Bob Powell
 James Aylor Susan Johnston Kim Rawlinson
 Jwahar Bammi George Konstantino Joel Rodriguez
 Peter Barck Stan Krolikoski Cary Sandvig
 Daniel Barclay Rick Lazansky Larry Saunders
 Dave Barton Jean Lester Lowell Savage
 Bill Beck Roger Lipsett Tim Saxe
 Victor Berman Shin-ming Liu Dick Schlotfeldt
 Ken Caron Al Lowenstein Peggy Schmidt
 Hal Carter Bruce Lundeby Ken Scott
 Marc Casad Mark Macke Moe Shahdad
 Moon Jung Chung Robert Mackey Arina Shainski
 Patti Cochran Erich Marschner Alec Stanculescu
 Dave Coelho Paul Menchini Stephen Sutherland
 Doug Dunlop Lynn Meredith Tom Tempero
 Cathy Edwards Jean Mermet Jacques Tete
 Thomas Elliot Ellen Mickanin Tim Thorp
 Mike Endrizzi Kieu Mien Le Tuan Tran
 Dave Evans Dwight Miller Stan Wagner
 Deborah Frauenfelder Kent Moffat Rich Wallace
 Mark Glewwe Bob Morris Karen Watkins
 Prabhu Goel Jim Morris Ron Waxman
 William Guzek Dan Nash Isaiah White
 Jeff Haeffele John Newkirk Greg Winter
 Charlie Haynes Tim Noble Craig Winton
 John Hines Ghulam Nurie Dan Youngbauer
 Mike Hirasuna Leslie Orlidge
 Ray Hookway Ed Ott

1993 Development Record

The following persons were members of the balloting group that approved this standard for submission to the IEEE
Standards Board:

 William J. Abboud Akira Hasegawa William R. Paulsen
 Mostapha Aboulhamid Greg Haynes Joseph Pick
 David Ackley Frank Heile Robert Piloty
 Guy Adam John I. Hillawi Jean Pouilly
 Gordon Adshead Robert Hillman Jan Pukite
 David G. Agnew John Hines Sai V. Ramamoorthy
 Gus Anderson Atsunobu Hiraiwa Edward P. Ratazzi
 Kenneth R. Anderson Kazuyuki Hirakawa William E. Reeves
 Walter Anheier Charles Homes John P. Ries
 James R. Armstrong Paul W. Horstmann Jean-Paul Rigault
 Stephen A. Bailey Tamio Hoshino Fred Rose
 Pete Bakowski Andy Huang Charles W. Rosenthal
 Peter E. Barck Stephen C. Hughes Jacques Rouillard
 Daniel S. Barclay Robert Stephen Hurley Paul Rowbottom
 Graham J. Barker Monique Hyvernaud Susan Runowicz-Smith

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_TIT.HTM (5 of 8) [12/28/2002 12:52:20 PM]

VHDL LRM - Introduction

 John K. Bartholomew Kazuhiko Iijima William E. Russell, Jr.
 Jean-Michel Berge Masaharu Imai Michael Ryba
 Victor Berman Nagisa Ishiura Ashraf M. Salem
 David B. Bernstein Michel Israel Hitomi Sato
 Dinesh Bettadapur David Jakopac Larry F. Saunders
 William D. Billowitch Curtis Jensen Paul Scheidt
 Martin J. Bolton John E. Jensen Paul W. Schlie
 Thomas H. Borgstrom Susan M. Johnston Kenneth E. Scott
 Dominique Borrione Hilary J. Kahn Jorge Seidel
 Mark Brown Masaru Kakimoto Francesco Sforza
 Patrick K. Bryant Takashi Kambe Moe Shahdad
 Walter H. Burkhardt Osamu Karatsu Ravi Shankar
 Rosamaria Carbonell Jake Karrfalt Takao Shinsha
 Steven Carlson Steve Kelum Isao Shirakawa
 Todd P. Carpenter Khozema Khambati Lee A. Shombert
 Harold W. Carter Choon B. Kim Supreet Singh
 Shir-Shen Chang Eskil Kjelkerud Sunder Singhani
 Clive R. Charlwood Paul Knese John Sissler
 Luc Claesen Tokinori Kozawa Djahida Smati
 Carl Cleaver Albert J. Kreutzer J. W. Smith
 David A. Clough Stanley J. Krolikoski Dennis Soderberg
 David Coelho Howard K. Lane Jay R. Southard
 John Colley Kin Sing Lau Joseph J. Stanco
 Frank Conforti Oz Levia Alec G. Stanculescu
 Tedd Corman Paul A. Lewis Balsha R. Stanisic
 Robert A. Cottrell Stephen Lim Charles Swart
 Michael Crastes Alfred Lowenstein Atsushi Takahara
 Brian A. Dalio Martin J. Lynch Kiyotaka Teranishi
 Joseph P. Damore Don MacMillen Jacques Tete
 Carlos Dangelo Serge Maginot Jose A. Torres
 Mark Davoren Leon I. Maissel Carl W. Traber
 Joanne DeGroat Erich Marschner S. Tracey
 Antonie deJager Peter Marwedel Andy S. Tsay
 Allen Dewey Gayle Matysek Jean Pierre Tual
 Joseph P. Dorocak Pankaj Mayor Cary Ussery
 Glenn E. Dukes George A. Mazoko Radha Vaidyanathan
 Dr. Michael Dukes Robert L. McGarvey Sai K. Vedantam
 Douglas D. Dunlop Sean McGoogan Kerry Veenstra
 Nikil D. Dutt William S. McKinney James H. Vellenga
 Thomas D. Eberle Paul J. Menchini Ranganadha R. Vemuri
 Rodney Farrow Jean Mermet Venkat V. Venkataraman
 Saverio Fazzari Dwight L. Miller Eugenio Villar
 Jacques P. Flandrois John T. Montague Malcolm Wallace
 Alain Fonkoua Gabe Moretti Xinning Wang
 Barbara Fredrick David S. Morris Karen E. Watkins
 Edmond Fumo Wolfgang Mueller Ronald Waxman
 Benoit A. Gennart Pradipto Mukherjee J. Richard Weger
 Vassilios Gerousis Jack Mullins Ron Werner
 Alfred S. Gilman Shinichi Murai Gregory Whitcomb
 Rita Glover Satish Nagarajan Francis Wiest
 Yogesh Goel Jayant L. Nagda Paul S. Williams
 Rich Goldman Hiroshi Nakamura John C. Willis
 Kenji Gotoh Michael P. Nassif G. Winter

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_TIT.HTM (6 of 8) [12/28/2002 12:52:20 PM]

VHDL LRM - Introduction

 James Graves Zainalabedin Navabi James L. Wong
 Arnold Greenspan Sivaram Nayudu Akihiko Yamada
 Brent L. Gregory Dr. Wolfgang H. Nebel Hiroto Yasuura
 Brian Griffin Richard E. Neese Ping Yeung
 Paul-Marie Grojean Gordon Newell Joseph M. Youmans
 Steve Grout Meyer Elias Nigri Will W. Young
 Laurence T. Groves Ryo Nomura Simon Young
 Andrew Guyler Nancy Nugent Tonny Yu
 Jeffrey J. Haeffele John W. O'Leary Tetsuo Yutani
 Claes L. Hammar Tetsuya Okabe Alex Zamfirescu
 William A. Hanna Vincent Olive Guoqing Zhang
 James P. Hanna Yoichi Onishi Reinhard Zippelius
 John W. Harris Catherine Ozenfant
 Damon C. Hart Curtis Parks

When the IEEE Standards Board approved this standard on September 15, 1993, it had the following membership:

 Wallace S. Read, Chair Donald C. Loughry, Vice Chair
 Andrew G. Salem, Secretary

 Gilles A. Baril Jim Isaak Don T. Michael*
 José A. Berrios de la Paz Ben C. Johnson Marco W. Migliaro
 Clyde R. Camp Walter J. Karplus L. John Rankine
 Donald C. Fleckenstein Lorraine C. Kevra Arthur K. Reilly
 Jay Forster* E. G. "Al" Kiener Ronald H. Reimer
 David F. Franklin Ivor N. Knight Gary S. Robinson
 Ramiro Garcia Joseph L. Koepfinger* Leonard L. Tripp
 Donald N. Heirman D. N. "Jim" Logothetis Donald W. Zipse

 *Member Emeritus

Also included are the following nonvoting IEEE Standards Board liaisons:

 Satish K. Aggarwal
 James Beall
 Richard B. Engelman
 David E. Soffrin
 Stanley I. Warshaw

 Mary Lynne Nielsen
 IEEE Standards Project Editor

This standard has been adopted for Federal Government use.

Details concerning its use within the Federal Government are contained in Federal Information Processing Standards
Publication 172-1, VHSIC Hardware Description Language (VHDL). For a complete list of publications available in

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_TIT.HTM (7 of 8) [12/28/2002 12:52:20 PM]

VHDL LRM - Introduction

the Federal Information Processing Standards series, write to the Standards Processing Coordinator, Computer Systems
Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899.

file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/1076_TIT.HTM (8 of 8) [12/28/2002 12:52:20 PM]

	Local Disk
	VHDL Interactive Tutorial
	VHDL Interactive Tutorial
	Software License
	Copyright Information
	About the CD-ROM
	Teleport Pro °T®§
	Getting Started
	file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/PAGE.HTM
	map
	map
	map
	map
	Basic VHDL - Module 1
	1076 -- Table of Contents
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM-Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM-Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	VHDL LRM- Introduction
	Outline
	Toolbar Fucntionality
	Outline
	Need for Education
	Basic VHDL Module Goals
	RASSP Roadmap
	Module Goals (Note Page)
	Need for Education (Note Page)
	Putting It All Together
	Putting it all Together (Note Page)
	Concepts and History of VHDL
	History of VHDL
	Gajski and Kuhn's Y Chart
	History of VHDL (Note Page)
	Why Use VHDL?
	Gajski and Kuhn's Y Chart (Note Page)
	Sample VHDL Design Process
	VHDL Simulation Models
	Why use VHDL? (Note Page)
	Putting it all Together (Note Page)
	Behavioral Specification
	Structural Specification
	VHDL Models of Hardware (Note Page)
	Behavorial Model
	VHDL Basics
	Data Flow Specification
	Sample VHDL Design Process: Structural Specification (Note Page)
	Behavioral Model (Note Page)
	Structural Model
	Example With Delta Delay
	Data Types
	Summary
	Delta Delay (cont.)
	Delta Delay: An example w/ Delta Delay (Note Page)
	Data Types (Note Page)
	Scalar Types
	Objects
	Some Explanations
	Putting It All Together
	Attributes
	List of Operators
	Predefined Operators: some Explanations (Note Page)
	References
	RASSP Roadmap (Note Page)
	Sample VHDL Design Process: Behavioral Specification (Note Page)
	Sample VHDL Design Process: Data-Flow Specification (Note Page)
	Structural Model (Note Page)
	Timing Model
	Timing Model (Note Page)
	Delay Types
	Example Without Delta Delay
	Delta Delay (Note Page)
	VHDL Data Types: Scalar Types (Note Page)
	Scalar Types 2
	Summary
	VHDL Objects (Note Page)
	Constants
	Sequential vs. Concurrent
	Delay Types (Note Page)
	Inertial Delay
	Delta Delay
	Delta Delay: An example w/o Delta Delay (Note Page)
	VHDL Data Types: Scalar Types (cont.) (Note Page)
	Scalar Types 3
	Subtypes
	VHDL Data Types: Summary (Note Page)
	VHDL Objects: Constants (Note Page)
	Scoping Rules
	Signals vs Variables (Cont.)
	Sequential vs. Concurrent (Note Page)
	Sequential Statements
	Entity and Architecture Declarations
	Packages and Libraries
	Libraries
	Attributes (Note Page)
	Register Example
	Predefined Operators
	Predefined Operators: List of Operators (Note Page)
	Inertial Delay (Note Page)
	Transport Delay
	Delta Delay (Note Page)
	VHDL Data Types: Scalar Types (cont.) (Note Page)
	Scalar Types 4
	Access Types
	VHDL Data Types: Subtypes (Note Page)
	VHDL Objects: Scoping Rules (Note Page)
	Variables
	Signal vs Variables (Cont.)
	VHDL Objects: Signals vs Variables (cont. 2) (Note Page)
	Sequential Statements (Note Page)
	Concurrent Statements
	Sequential Signal Assignments
	Entity Declarations (Note Page)
	Port Declaration
	Architecture Declarations
	Packages and Libraries (Note Page)
	Packages
	Use Clause
	Libraries (Note Page)
	Register Example (cont.)
	Register Example (cont.)
	Predefined Operators (Note Page)
	Transport Delay (Note Page)
	VHDL Data Types: Scalar Types (cont.) (Note Page)
	Scalar Types 5
	Compostie Types 3
	VHDL Data Types: Access Type (Note Page)
	VHDL Objects: Variables (Note Page)
	Signals
	Signals vs Variables
	VHDL Objects: Signals vs Variables (cont. 1) (Note Page)
	Concurrent Statements (Note Page)
	Assignments
	Sequential Signal Assignments (Note Page)
	Port Declaration (Note Page)
	Name
	Entity Declarations
	Architecture Declarations (Note Page)
	Packages (Note Page)
	Declaration
	Package Body
	Packages: Use Clause (Note Page)
	Attributes: Register Example (cont.) (Note Page)
	Attributes: Register Example (cont.) (Note Page)
	Type of Data
	Entity Declarations (Note Page)
	Packages: Declaration (Note Page)
	Packages: Package Body (Note Page)
	VHDL Data Types: Scalar Types (cont.) (Note Page)
	Composite Types 1
	Composite Types 2
	VHDL Data Types: Composite Types (cont.) (Note Page)
	VHDL Objects: Signals (Note Page)
	VHDL Objects: Signals vs Variables (Note Page)
	Assignments (Note Page)
	Port Declaration: Name (Note Page)
	Port Mode
	Port Mode Examples
	Port Declaration: Type of Data (Note Page)
	VHDL Data Types: Composite Types (Note Page)
	VHDL Data Types: Composite Types (cont.) (Note Page)
	Port Declaration: Port Mode (Note Page)
	Port Declaration: Port Mode Examples (Note Page)
	Structural VHDL - Module 2
	Structural VHDL
	Structural VHDL
	Toolbar Fucntionality
	Outline
	Introduction - Structured VHDL
	Module Goals
	RASSP Roadmap
	Module Goals (Note Page)
	Introduction
	Putting It All Together
	Putting It All Together (Note Page)
	Concepts of Structural VHDL
	Component Instantiation
	Component Instantiation
	Generate Statements
	Component Instantiation (Note Page)
	Component Declaration
	Component Declaration (Note Page)
	Instantiation Statement
	Instantiation Statement (Note Page)
	Components From Packages
	Restrictions on Instantiation
	Uses of Generate Statement
	Rules for Actuals and Locals
	Configuration and Binding
	Generate Statement (Note Page)
	Generate Statement FOR-Scheme
	Generate Statement (Note Page)
	FOR-Scheme Example
	Generate Statement IF-Scheme
	Need for Configuration
	IF-Scheme Example
	Summary
	Need for Configuration (Note Page)
	Configuration Specification
	Configuration Specification (Note Page)
	Component Specification
	Configuration Specification: Example
	Binding Indication
	Configuration Specification: Example (Note Page)
	References
	RASSP Roadmap (Note Page)
	Concepts of Structural VHDL (Note Page)
	Rules for Actuals and Locals (Note Page)
	Components from Packages (Note Page)
	Generics
	Generic Map
	Restrictions on Instantiation (Note Page)
	IF-scheme Example (Note Page)
	Generics (Note Page)
	Generics: An Example
	Generic Map (Note Page)
	FOR-scheme Example (Note Page)
	Generate Statement IF-scheme (Note Page)
	Generics: An Example (Note Page)
	Component Specification (Note Page)
	Binding Indication (Note Page)
	Behavioral VHDL - Module 3 -- Index
	Behavioral Modeling
	Toolbar Fucntionality
	Outline
	RASSP Roadmap
	Module Goals
	Introduction to Behavioral Modeling in VHDL
	Introduction to Behavioral Modeling in VHDL (Note Page)
	Example Behavioral VHDL Model
	Example Behavioral VHDL Model (Note Page)
	VHDL Processes
	Case Study of the SDSP Microprocessor Organization
	Resolving Difficulties
	SDSP Microprocessor Organization (Note Page)
	SDSP Microprocessor Instruction Architecture
	Summary
	VHDL Processes (Note Page)
	Process Syntax
	VHDL Sequential Statements
	VHDL Packages
	Potential Problems to Avoid (Cont.)
	Resolving Difficulties (Note Page)
	DSP Microprocessor Instruction Architecture (Note Page)
	SDSP Context and Clock
	SDSP Benchmark
	References
	Process Syntax (Note Page)
	Let's write a VHDL Model
	Alternate Carry Process
	VHDL Sequential Statements (Note Page)
	A Design Example - 2-bit Counter
	Blocks and Guards
	Avoiding Problems
	Potential Problems to Avoid (cont. 1) (Note Page)
	SDSP Context and Clock (Note Page)
	SDSP Bus Read Timing
	SDSP Benchmark
	Let's write a VHDL model (Note Page)
	Full Adder Architecture
	Complete Architecture
	Alternate Carry Process (Note Page)
	A Design Example - 2-bit Counter (Note Page)
	The Wait Statement
	Entity Statements
	Blocks and Guards (Note Page)
	Potential Problems to Avoid (Note Page)
	SDSP Bus Read Timing (Note Page)
	SDSP Bus Write Timing
	SDSP Benchmark
	SDSP Benchmark
	Full Adder Architecture (Note Page)
	Two Full Adder Processes
	Complete Architecture (Note Page)
	The Wait Statement (Note Page)
	Equivalent Processes
	Null Transactions
	Entity Statements (Note Page)
	SDSP Bus Write Timing (Note Page)
	VHDL Models of the SDSP Microprocessor
	Two Full Adder Processes (Note Page)
	Equivalent Processes (Note Page)
	"wait until" and "wait for"
	Bus Resolution: Smoke Generator Fixed
	Null Transactions (Note Page)
	Organization of the SDSP VHDL Model
	Exersizing the SDSP Model
	SDSP Benchmark (Note Page)
	SDSP Memory Model
	Exercising the SDSP Model (Note Page)
	"wait until" and "wait for" (Note Page)
	Mix and Match
	Bus Resolution Functions
	Organization of the SDSP VHDL Model (Note Page)
	The SDSP Testbench
	The SDSP Clock Model
	The SDSP Memory Model (Note Page)
	Mix and Match (Note Page)
	Testbench
	Things That Look Alike
	Bus Resolutions: Smoke Generator
	Things That Look Alike (Note Page)
	Even Signal Assignment Statement
	Procedures 2
	Even Signal Assignment Statements! (Note Page)
	Signal Assignment Statements
	Signal Assignment Statements (Note Page)
	Inertial vs Transport Delays
	Inertial vs Transport Delays (Note Page)
	Subprograms
	Functions
	Functions (cont.)
	Procedures
	The SDSP Testbench (Note Page)
	Testbench Body
	Testbench Body (Note Page)
	The SDSP Behavioral Model
	The SDSP Behavioral Model (Note Page)
	The SDSP Read Memory Procedure
	The SDSP Read Memory Procedure (Note Page)
	SDSP Write Memory Procedure
	The SDSP Write Memory Procedure (Note Page)
	SDSP Add Procedure
	SDSP Add Procedure (Note Page)
	SDSP Behavioral Model
	SDSP Behavioral Model (Note Page)
	The SDSP Clock Model (Note Page)
	System Level VHDL - Module 4
	home
	Toolbar Fucntionality
	Outline
	What do We Mean by Systems Modeling?
	Module Goals
	RASSP Roadmap
	Module Goals (Note Page)
	What do we mean by "Systems Modeling"? (Note Page)
	Describing RASSP Systems
	Describing RASSP Systems (Note Page)
	Advantages of using VHDL
	Definitions
	Types of System Models
	Definitions (Note Page)
	Models
	The ATT_MVL M ulti-Value Logic Package
	Types of System Models (Note Page)
	Models (Note Page)
	file:///E|/temp/Downloads%20Elektroda/VHDLrartutorial1/VHDL%20Interactive%20Tutorial/SLIDE7-3.htm
	The ATT_MVL Multi-Value Logic Packages (Note Page)
	Aliases
	Advantages of Object Oriented VHDL
	Summary
	Applications of System Level VHDL
	Converting OO-VHDL to Synthesizable VHDL
	Applications of System Level VHDL (Note Page)
	UVA ADEPT Primitive Modules
	More Functional Memory
	Functional Memory Operations
	Honeywell PML: More Functional Memory (Note Page)
	Summary (Note Page)
	References
	Advantages of Using VHDL (Note Page)
	Evolution of Approaches (Note Page)
	Aliases (Note Page)
	An Example
	Foreign Interfaces
	Data Types
	Advantages of Object Oriented VHDL (Note Page)
	Advantages of OO-VHDL 2
	Aliases: An Example (Note Page)
	Foreign Interfaces (Note Page)
	An Example
	Text Input Output
	Records
	Records: Data Types (Note Page)
	Advantages of OO-VHDL (Cont.) (Note Page)
	Advantages of OO-VHDL 3
	Foreign Interfaces: An Example (Note Page)
	Text Input and Output (Note Page)
	TEXTIO Procedures
	Assert Statement
	Records (Note Page)
	Advantages of OO-VHDL (Cont.) (Note Page)
	Advantages of OO-VHDL 4
	Synthesizing OO-VHDL
	Converting OO-VHDL to Synthesizable VHDL (Note Page)
	UVA ADEPT Primitive Modules (Note Page)
	ADEPT Token Handling
	Honeywell PML
	TEXTIO Procedures (Note Page)
	Using TEXTIO
	An Example
	Assert Statement (Note Page)
	Assert Statements
	Abstract Data Types in VHDL
	Advantages of OO-VHDL (Cont.) (Note Page)
	Advantage of OO-VHDL 6
	Advantages of OO-VHDL 8
	Synthesizing OO-VHDL (Note Page)
	UVA ADEPT: Token Handling (Note Page)
	ADEPT Token Handling (cont.)
	Three Module Example: Detailed Event Sequence
	Honeywell PML (Note Page)
	Token Type
	Advantages of OO-VHDL 7
	Advantage of OO-VHDL 6
	Advantages of OO-VHDL (Cont.) (Note Page)
	Advantages of OO-VHDL (Note Page)
	ADEPT Token Handling (Cont.) (Note Page)
	Basic Module Format: Packages and Entity
	Basic Module Format: Packages and Entity (Note Page)
	Basic Module Format: Architecture
	Three Module Example: Simplified Event Sequence
	Three Module Example: Detailed Event Sequence (Note Page)
	Honeywell PML: Token Type (Note Page)
	Handshaking Protocol
	UVA Adept
	Three Module Example: Simplified Event Sequence (Note Page)
	Honeywell PML: Handshaking Protocol (Note Page)
	Bus Resolution
	Steps to Set-up the Functional Memory
	Functional Memory Interface
	Functional Memory Component
	Use of BIU
	Honeywell PML: Functional Memory Component (Note Page)
	Honeywell PML: Functional Memory Component (Note Page)
	Honeywell PML: Steps to Set-up the Functional Memory (Note Page)
	Honeywell PML: Functional Memory Operations (Note Page)
	Using TEXTIO (Note Page)
	TEXTIO: An Example (Note Page)
	Assert Statements (Note Page)
	An Example
	Abstract Data Types in VHDL (Note Page)
	An Example
	Advantages of OO-VHDL (Cont.) (Note Page)
	Advantages of OO-VHDL (Cont.) (Note Page)
	Basic Module Format: Architecture (Note Page)
	Basic Module Format: Architecture (cont.)
	Three Module Example
	UVA ADEPT Bus Resolution (Note Page)
	Honeywell PML: Bus Resolution (Note Page)
	Bus Resolution Code
	Bus Interface Unit
	Honeywell PML: Use of BIU (Note Page)
	Assert Statements: An Example (Note Page)
	Abstract Data Types: An Example (Note Page)
	Example Use of QUEUE ADT
	Example Use of QUEUE ADT (Note Page)
	Queue System VHDL Model
	Queue System VHDL Model (Note Page)
	Queue Example Declarations
	Queue Example Declarations (Note Page)
	Socket Error
	Basic Module Format: Architecture (cont.) (Note Page)
	Three Module Example (Note Page)
	Honeywell PML: Bus Resolution Code (Note Page)
	Idle State
	Honeywell PML: Idle State (Note Page)
	Request State
	Honeywell PML: Request State (Note Page)
	Ack State
	Honeywell PML: Ack State (Note Page)
	Busy State
	Honeywell PML: Busy State (Note Page)
	Honeywell PML: Bus Interface Unit (Note Page)
	VHDL LRM - Introduction

