

VHDL-2008

The Morgan Kaufmann Series in Systems on Silicon
Series Editor: Wayne Wolf, Georgia Institute of Technology

The Designer’s Guide to VHDL, Second Edition
Peter J. Ashenden

The System Designer’s Guide to VHDL-AMS
Peter J. Ashenden, Gregory D. Peterson, and Darrell A. Teegarden

Modeling Embedded Systems and SoCs
Axel Jantsch

ASIC and FPGA Verification: A Guide to Component Modeling
Richard Munden

Multiprocessor Systems-on-Chips
Edited by Ahmed Amine Jerraya and Wayne Wolf

Functional Verification
Bruce Wile, John Goss, and Wolfgang Roesner

Customizable and Configurable Embedded Processors
Edited by Paolo Ienne and Rainer Leupers

Networks-on-Chips: Technology and Tools
Edited by Giovanni De Micheli and Luca Benini

VLSI Test Principles & Architectures
Edited by Laung-Terng Wang, Cheng-Wen Wu, and Xiaoqing Wen

Designing SoCs with Configured Processors
Steve Leibson

ESL Design and Verification
Grant Martin, Andrew Piziali, and Brian Bailey

Aspect-Oriented Programming with the e Verification Language
David Robinson

Reconfigurable Computing: The Theory and Practice of FPGA-Based Computation
Edited by Scott Hauck and André DeHon

System-on-Chip Test Architectures
Edited by Laung-Terng Wang, Charles E. Stroud, and Nur A. Touba

Verification Techniques for System-Level Design
Masahiro Fujita, Indradeep Ghosh, and Mukul Prasad

VHDL-2008: Just the New Stuff
Peter J. Ashenden and Jim Lewis

VHDL-2008

Just the New Stuff

Peter J. Ashenden
Consultant

Ashenden Designs

Jim Lewis
Director of Training

SynthWorks Design, Inc.

Publishing Director Joanne Tracy
Publisher Denise E.M. Penrose
Senior Acquisitions Editor Charles Glaser
Publishing Services Manager George Morrison
Senior Production Editor Dawnmarie Simpson
Assistant Editor Matthew Cater
Production Assistant Lianne Hong
Cover Designer Dennis Schaefer
Cover Image Scott Tysick/Masterfile
Composition Peter J. Ashenden
Copyeditor JC Publishing
Proofreader Janet Cocker
Indexer Joan Green
Interior printer Sheridan Books, Inc.
Cover printer Phoenix Color, Inc.

Morgan Kaufmann Publishers is an imprint of Elsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

 This book is printed on acid-free paper.

© 2008 by Elsevier Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or registered trademarks. In all
instances in which Morgan Kaufmann Publishers is aware of a claim, the product names appear in initial capital or all capital let-
ters. Readers, however, should contact the appropriate companies for more complete information regarding trademarks and regis-
tration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means-electronic,
mechanical, photocopying, scanning, or otherwise-without prior written permission of the publisher.

Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone:
(+44) 1865 843830, fax: (+44) 1865 853333, E-mail: permissions@elsevier.com. You may also complete your request online via the
Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining
Permissions.”

Library of Congress Cataloging-in-Publication Data
Ashenden, Peter J.
 VHDL-2008 : just the new stuff / Peter J. Ashenden, Jim Lewis.
 p. cm.
 Includes index.
 ISBN 978-0-12-374249-0 (pbk. : alk. paper) 1. VHDL (Computer hardware description language)
I. Lewis, Jim. II. Title.

TK7885.7.A846 2007
621.39'2--dc22

 2007039499

ISBN: 978-0-12-374249-0

For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

Printed in the United States.
07 08 09 10 5 4 3 2 1

v

Contents

Preface ix

1 Enhanced Generics 1

1.1 Generic Types 1
1.2 Generic Lists in Packages 6
1.3 Local Packages 11
1.4 Generic Lists in Subprograms 15
1.5 Generic Subprograms 21

1.5.1 Uninstantiated Methods in Protected Types 32
1.6 Generic Packages 36
1.7 Use Case: Generic Memories 43

2 Other Major Features 53

2.1 External Names 53
2.2 Force and Release 63
2.3 Context Declarations 67
2.4 Integrated PSL 70
2.5 IP Encryption 77

2.5.1 Key Exchange 96
2.6 VHDL Procedural Interface (VHPI) 97

2.6.1 Direct Binding 97
2.6.2 Tabular Registration and Indirect Binding 99
2.6.3 Registration of Applications and Libraries 101

3 Type System Changes 103

3.1 Unconstrained Element Types 103
3.1.1 Composite Types 103
3.1.2 Subtype Indications and Constraints 107
3.1.3 Use of Composite Subtypes 109

Variable and Signal Declarations 110
Constant Declarations 110
Attribute Specifications 111
Allocated Objects 111
Interface Objects 112
Summary: Determining Array Index Ranges 117
Type Conversions 118
Alias Declarations and Subtype Attributes 119
Resolved Composite Subtypes 122

3.2 Resolved Elements 123

vi Contents

4 New and Changed Operations 127

4.1 Array/Scalar Logical Operations 127
4.2 Array/Scalar Addition Operators 129
4.3 Logical Reduction Operators 130
4.4 Condition Operator 132
4.5 Matching Relational Operators 133
4.6 Maximum and Minimum 138
4.7 Mod and Rem for Physical Types 140
4.8 Shift Operations 141
4.9 Strength Reduction and 'X' Detection 142

5 New and Changed Statements 143

5.1 Conditional and Selected Assignments 143
5.1.1 Sequential Signal Assignments 143
5.1.2 Forcing Assignments 146
5.1.3 Variable Assignments 147

5.2 Matching Case Statements 149
5.2.1 Matching Selected Assignments 150

5.3 If and Case Generate 151
5.3.1 Configuration of If and Case Generate 155

6 Modeling Enhancements 159

6.1 Signal Expressions in Port Maps 159
6.2 All Signals in Sensitivity List 161
6.3 Reading Out-Mode Ports and Parameters 162
6.4 Slices in Aggregates 166
6.5 Bit-String Literals 167

7 Improved I/O 169

7.1 The To_string Functions 169
7.1.1 Predefined To_string Functions 170
7.1.2 Overloaded To_string Functions 171
7.1.3 The To_ostring and To_hstring Functions 172

7.2 The Justify Function 173
7.3 Newline Formatting 173
7.4 Read and Write Operations 174
7.5 The Tee Procedure 177
7.6 The Flush Procedure 178

8 Standard Packages 179

8.1 The Std_logic_1164 Package 179
8.2 The Numeric_bit and Numeric_std Packages 180
8.3 The Numeric Unsigned Packages 182
8.4 The Fixed-Point Math Packages 182
8.5 The Floating-Point Math Packages 186

Contents vii

8.6 The Standard Package 191
8.7 The Env Package 192
8.8 Operator Overloading Summary 193
8.9 Conversion Function Summary 196
8.10 Strength Reduction Function Summary 204

9 Miscellaneous Changes 207

9.1 Referencing Generics in Generic Lists 207
9.2 Function Return Subtype 208
9.3 Qualified Expression Subtype 209
9.4 Type Conversions 209
9.5 Case Expression Subtype 211
9.6 Subtypes for Port and Parameter Actuals 212
9.7 Static Composite Expressions 213
9.8 Static Ranges 214
9.9 Use Clauses, Types, and Operations 215
9.10 Hiding of Implicit Operations 216
9.11 Multidimensional Array Alias 217
9.12 Others in Aggregates 217
9.13 Attribute Specifications in Package Bodies 219
9.14 Attribute Specification for Overloaded Subprograms 219
9.15 Integer Expressions in Range Bounds 220
9.16 Action on Assertion Violations 221
9.17 'Path_Name and 'Instance_Name 221
9.18 Non-Nesting of Architecture Region 223
9.19 Purity of Now 223
9.20 Delimited Comments 224
9.21 Tool Directives 225
9.22 New Reserved Words 225
9.23 Replacement Characters 226

10 What’s Next 229

10.1 Object-Oriented Class Types 229
10.1.1 Standard Components Library 232

10.2 Randomization 232
10.3 Functional Coverage 235
10.4 Alternatives 235
10.5 Getting Involved 235

Index 237

This page intentionally left blank

ix

Preface

VHDL is defined by IEEE Standard 1076, IEEE Standard VHDL Language Reference Man-
ual (the VHDL LRM). The original standard was approved in 1987. IEEE procedures
require that standards be periodically reviewed and either reaffirmed or revised. The
VHDL standard was revised in 1993, 2000, and 2002. In each revision, new language fea-
tures were added and some existing features enhanced. The aim in each revision was to
improve the language as a tool for design and verification of digital systems.

Since the 2002 revision, there have two parallel efforts to further develop the lan-
guage. The first was the VHDL Procedural Interface (VHPI) Task Force, a subcommittee
of the IEEE P1076 Working Group. The VHPI Task Force prepared an interim amend-
ment to the standard, formally approved by IEEE in March 2007. The amendment is titled
IEEE 1076c, Standard VHDL Language Reference Manual—Amendment 1: Procedural
Language Application Interface.

In the second effort, during 2004 and 2005, the P1076 Working Group undertook
preliminary work toward a new revision of the standard. In June 2005, the board of
Accellera approved formation of a Technical Committee (TC) to continue that work,
funded jointly by Accellera and TC members directly. The Accellera VHDL-TC worked
intensively between September 2005 and June 2006, producing a new draft of the LRM,
P1076/D3.0. This draft was a full revision of the VHDL standard, defining numerous new
and enhanced language features, incorporating minor clarifications and corrections, and
including the VHPI specification from IEEE 1076c. The language defined by this draft is
informally called VHDL-2006. The draft was published for trial use by implementers and
users during the period from June 2006 to June 2007. Feedback has been rolled into a
subsequent draft to be forward to the P1076 Working Group for IEEE standardization.
The final version will be informally called VHDL-2008.

The aim of this book is to introduce the new and changed features of VHDL-2008 in
a way that is more accessible to users than the formal definition in the LRM. We describe
the features, illustrate them with examples, and show how they improve the language as
a tool for design and verification. We assume you are already familiar with earlier ver-
sions of VHDL, specifically VHDL-2002 and VHDL-93. These versions are described com-
prehensively in The Designer’s Guide to VHDL, Second Edition, by Peter Ashenden, also
published by Morgan Kaufmann Publishers. We hope that the present book will be help-
ful not only to early adopters of the new language version, but also to tool implementers
seeking to understand what it is they have to implement.

In addition to the information presented in this book, additional reference informa-
tion is available at the authors’ web sites:

• www.ashenden.com.au

• www.SynthWorks.com

x Preface

Acknowledgments

We sincerely thank David Bishop of Kodak, Bill Logan of Rockwell Collins, and Chuck
Swart of Mentor Graphics for their technical review of various chapters of this book.
Their comments led to significant improvement in our explanations and correction of
coding errors. Presenting code examples for language features yet to be implemented in
tools is a risky business. Having “human compilers” check the code is most valuable. Any
remaining errors are, of course, ours.

We would also like to thank Chuck Glaser, our editor at Elsevier, for his encourage-
ment to develop this book. Chuck has a keen sense of what the market needs, and we
are happy to take his advice.

Finally, we would like to thank you, the reader, in advance for any comments and
corrections. We would love to hear from you, by email at vhdl-book@ashenden.com.au.
We will maintain a list of errata on the web sites mentioned above.

1

Chapter 1

Enhanced Generics

We start our tour of the new features in VHDL-2008 with one of the most significant
changes in the language, enhanced generics. All earlier versions of VHDL since VHDL-87
have included generic constants, which are interface constants for design entities and
components. They are widely used in models to represent timing parameters and to con-
trol the widths of vector ports. When we instantiate an entity or component, we supply
values for the generic constants for that instance. The generic constants in the generic list
are called the formal generics, and the values we supply in the generic map are called
the actual generics. Most of the time, generic constants are referred to just as “generics,”
since the only kind of generics are constants.

In VHDL-2008, generics are enhanced in several significant ways. First, we can
declare generic types, subprograms, and packages, as well as generic constants. Second,
we can declare generics on packages and subprograms, as well as on entities and com-
ponents. The rationale for extending generics in these ways is to increase productivity by
allowing us to declare reusable entities, packages, and subprograms that deal with differ-
ent types of data and that can be specialized to perform different actions. In this chapter,
we will describe each of the new kinds of generics and the new places in which we can
declare generics.

1.1 Generic Types

Generic types allow us to define a type that can be used for ports and internal declara-
tions of an entity, but without specifying the particular type. When we instantiate the
entity, we specify the actual type to be used for that instance. As we will see later,
generic types can also be specified for packages and subprograms, not just for entities
and components.

We can declare a formal generic type in a generic list in the following way:

type identifier

The identifier is the name of the formal generic type, and can be used within the rest
of the entity in the same way as a normally declared type. When we instantiate the entity,
we specify a subtype as the actual generic type. This can take the form of a type name, a
type name followed by a constraint, or a subtype attribute.

2 Chapter 1 — Enhanced Generics

EXAMPLE 1.1 A generic multiplexer

A multiplexer selects between two data inputs and copies the value of the selected
input to the output. The behavior of the multiplexer is independent of the type of
data on the inputs and output. So we can use a formal generic type to represent the
type of the data. The entity declaration is:

entity generic_mux2 is
 generic (type data_type);
 port (sel : in bit; a, b : in data_type;
 z : out data_type);
end entity generic_mux2;

The name data_type is the formal generic type that stands for some type, as yet
unspecified, used for the data inputs a and b and for the data output z. An architec-
ture body for the multiplexer is:

architecture rtl of mux2 is
begin
 z <= a when sel = '0' else b;
end architecture rtl;

The assignment statement simply copies the value of either a or b to the output
z. It is sensitive to all of the inputs. So whenever a, b, or sel change, the assignment
will be re-evaluated. In any instance of the multiplexer, changes on a and b are
determined using the predefined equality operator for the actual type in that
instance.

We can instantiate the entity to get a multiplexer for bit signals as follows:

signal sel_bit, a_bit, b_bit, z_bit : bit;
...

bit_mux : entity work.generic_mux2(rtl)
 generic map (data_type => bit)
 port map (sel => sel_bit, a => a_bit, b => b_bit,
 z => z_bit);

Similarly, we can instantiate the same entity to get a multiplexer for signals of
other types, including user-defined types.

type msg_packet is record
 src, dst : unsigned(7 downto 0);
 pkt_type : bit_vector(2 downto 0);
 length : unsigned(4 downto 0);
 payload : byte_vector(0 to 31);
 checksum : unsigned(7 downto 0);
end record msg_packet;
signal pkt_sel : bit;

1.1 Generic Types 3

signal pkt_in1, pkt_in2, pkt_out : msg_pkt;
...

pkt_mux : entity work.generic_mux2(rtl)
 generic map (data_type => msg_packet)
 port map (sel => pkt_sel,
 a => pkt_in1, b => pkt_in2, z => pkt_out);

VHDL-2008 defines a number of rules covering formal generic types and the ways
they can be used. The formal generic type name can potentially represent any con-
strained type, except a file type or a protected type. The entity can only assume that
operations available for all such types are applicable, namely: assignment; allocation
using new; type qualification and type conversion; and equality and inequality opera-
tions. The formal generic type cannot be used as the type of a file element or an
attribute. Moreover, it can only be used as the type of an explicitly declared constant or a
signal (including a port) if the actual type is not an access type and does not contain a
subelement of an access type. For signals, the predefined equality operator of the actual
type is used for driver update and event detection.

If we have a formal generic type T, we can use it to declare signals, variables, and
constants within the entity and architecture, and we can write signal and variable assign-
ments for objects of the type. For example, the following shows signals declared using T:

signal s1, s2 : T;
...

s1 <= s2 after 10 ns;

and the following shows variables declared using T:

variable v1, v2, temp : T;
...

temp := v1; v1 := v2; v2 := temp;

Since signal and variable declarations require constrained subtypes, the actual type
provided in an instance must be a constrained type if the formal type is used in this way.
If the actual type is not constrained, an error occurs in the instantiation. If the formal
generic type is not used in any way requiring it to be constrained, then the actual type in
an instance need not be constrained.

For both variables and signals, the default initial value is determined using the actual
type in an instance, using the normal rules for the actual type. Thus, if the actual type is
a scalar type, the default initial value is the leftmost value of the type, and if the actual
type is a composite type, the default initial value is an aggregate of the default initial val-
ues for the respective element types.

Declaring constants of a formal generic type might at first seem impossible, since we
can’t specify an initial value if we don’t know the actual type. However, we can use the

4 Chapter 1 — Enhanced Generics

formal generic type to declare a formal generic constant, and then use that within the
entity, for example:

entity e is
 generic (type T; constant init_val : T);
 port (...);
end entity e;

architecture a of e is
begin
 p : process is
 variable v : T := init_val;
 begin
 ...
 end process p;
end architecture a;

The actual value for the generic constant is provided when the entity is instantiated,
and must be of the type specified as the actual generic type. For example, we might
instantiate the entity e within a larger design as follows:

my_e : entity work.e(a)
 generic map (T => std_ulogic_vector(3 downto 0),
 init_val => "ZZZZ");

We can also use this technique to provide values for initializing variables and signals
declared to be of the formal generic type. Note that the generic list in this entity makes
use of one generic (T) in the declaration of another generic (init_val). This was illegal in
previous versions of VHDL, but is now legal in VHDL-2008 (see Section 9.1).

One thing that we cannot do with formal generic types is apply operations that are
not defined for all types. For example, we cannot use the “+” operator to add to values of
a formal generic type, since the actual type in an instance may not be a numeric type.
Similarly, we cannot perform array indexing, or apply most attributes. This may at first
seem an onerous restriction, but it does mean that a VHDL analyzer can check the entity
and architecture for correctness in isolation, independently of any particular instantiation.
It also means we don’t get any surprises when we subsequently analyze an instance of
the entity. Fortunately, as we will see in Section 1.5, there are ways of providing opera-
tions to an instance for use on values of the actual type.

EXAMPLE 1.2 Illegal use of formal generic types

Suppose we want to define a generic counter that can be used to count values of
types such as integer, unsigned, signed, and so on. We can declare the entity as fol-
lows:

entity generic_counter is
 generic (type count_type;
 constant reset_value : count_type);

1.1 Generic Types 5

 port (clk, reset : in bit;
 data : out count_type);
end entity generic_counter;

We might then try to define an architecture as:

architecture rtl of generic_counter is
begin
 count : process (clk) is
 begin
 if rising_edge(clk) then
 if reset = '1' then
 data <= reset_value;
 else
 data <= data + 1; -- Illegal
 end if;
 end if;
 end process count;
end architecture rtl;

The problem is that the “+” operator to add 1 to a value is not defined for all
types that might be supplied as actual types. Hence, the analyzer will indicate an
error in the expression where the operator is applied. To illustrate why this should
be an error, suppose some time after the entity and architecture have been written,
we try to instantiate them in a design as follows:

type traffic_light_color is (red, yellow, green);
...

cycle_lights : entity work.generic_counter(rtl)
 generic map (count_type => traffic_light_color,
 reset_value => red)
 port map (...);

The process in the instance would have to apply the “+” operator to a value of
the actual generic type, in this case, traffic_light_color. That application would fail,
since there is no such operator defined. We will revise this example in Section 1.5 to
show how to supply such an operator to the instance.

Note in passing that the process in this example reads the value of the out-mode
parameter data in an expression. While this was illegal in earlier versions of VHDL, it
is legal in VHDL-2008 (see Section 6.3).

When we declare a generic constant in a generic list, we can specify a default value
that is used if no actual value is provided in an instance. For generic types, there is no
means of specifying a default type. That means that we must always specify an actual
type in an instance. Since the type of objects in VHDL is considered to be a very impor-

6 Chapter 1 — Enhanced Generics

tant property, the language designers decided to insist on the actual type being explicitly
specified.

1.2 Generic Lists in Packages

One of the new places in which we can write generic lists in VHDL-2008 is in package
declarations. A package with a generic list takes the form:

package identifier is
 generic (...);

 ... -- declarations within the package

end package identifier;

The package body corresponding to such a package is unchanged; we don’t repeat
the generic list there. Within the generic list, we can declare formal generic constants and
formal generic types, just as we can in a generic list of an entity or component. We can
then use those formal generics in the declarations within the package.

A package with a generic list is called an uninstantiated package. Unlike a simple
package with no generic list, we cannot refer to the declarations in an uninstantiated
package with selected names or use clauses. Instead, the uninstantiated package serves
as a form of template that we must instantiate separately. We make an instance with a
package instantiation of the form:

package identifier is new uninstantiated_package_name
 generic map (...);

The identifier is the name for the package instance, and the generic map supplies
actual generics for the formal generics defined by the uninstantiated package. If all of the
formal generics have defaults, we can omit the generic map to imply use of the defaults.
(As we mentioned in Section 1.1, if any of the formal generics is a generic type, it cannot
have a default. In that case, we could not omit the generic map in the package instance.)
Once we have instantiated the package, we can then refer to names declared within it
with selected names and use clauses with the instance name as the prefix.

For now, we will assume that the uninstantiated package and the package instance
are declared as design units and stored in a design library. We will refine this assumption
in Section 1.3.

EXAMPLE 1.3 A package for stacks of data

We can write a package that defines a data type and operations for fixed-sized stacks
of data. A given stack has a specified capacity and stores data of a specified type.
The capacity and type are specified as formal generics of the package, as follows:

package generic_stacks is
 generic (size : positive; type element_type);

1.2 Generic Lists in Packages 7

 type stack_array is array (0 to size-1) of element_type;
 type stack_type is record
 SP : integer range 0 to size-1;
 store : stack_array;
 end record stack_type;

 procedure push (s : inout stack_type; e : in element_type);
 procedure pop (s : inout stack_type; e : out element_type);

end package generic_stacks;

The corresponding package body is:

package body generic_stacks is

 procedure push (s : inout stack_type; e : in element_type) is
 begin
 s.store(s.SP) := e;
 s.SP := (s.SP + 1) mod size;
 end procedure push;

 procedure pop (s : inout stack_type; e : out element_type) is
 begin
 s.SP := (s.SP - 1) mod size;
 e := s.store(s.SP);
 end procedure pop;

end package body generic_stacks;

The uninstantiated package defines types stack_array and stack_type for repre-
senting stacks, and operations to push and pop elements. The formal generic con-
stant size is used to determine the size of the array for storing elements, and the
formal generic type element_type is the type of elements to be stored, pushed and
popped.

We cannot refer to items in this uninstantiated package directly, since there is no
specification of the actual size and element type. Thus, for example, we cannot write
the following:

use work.generic_stacks.all; -- Illegal
...
variable my_stack : work.generic_stacks.stack_type; -- Illegal

Instead, we must instantiate the package and provide actual generics for that
instance. For example, we might declare the following as a design unit for a CPU
design:

8 Chapter 1 — Enhanced Generics

library IEEE; use IEEE.numeric_std.all;
package address_stacks is new work.generic_stacks
 generic map (size => 8,
 element_type => unsigned(23 downto 0));

If we analyze this instantiation into our working library, we can refer to it in
other design units, for example:

architecture behavior of CPU is
 use work.address_stacks.all;
 ...
begin
 interpret_instructions : process is
 variable return_address_stack : stack_type;
 variable PC : unsigned(23 downto 0);
 ...
 begin
 ...
 case opcode is
 when jsb => push(return_address_stack, PC);
 PC <= jump_target;
 when ret => pop(return_address_stack, PC);
 ...
 end case;
 ...
 end process interpret_instructions;
end architecture behavior;

This architecture includes a use clause that makes names declared in the pack-
age instance address_stacks visible. References to stack_type, push and pop in the
architecture thus refer to the declarations in the address_stacks package instance.

We can declare multiple instances of a given uninstantiated package, each with dif-
ferent actual generics. The packages instances are distinct, even though they declare sim-
ilarly named items internally. For example, we might declare two instances of the
generic_stacks package from Example 1.3 as follows:

package address_stacks is new work.generic_stacks
 generic map (size => 8,
 element_type => unsigned(23 downto 0));

package operand_stacks is new work.generic_stacks
 generic map (size => 16, element_type => real);

If we then wrote a use clause in a design unit:

use work.address_stacks.all, work.operand_stacks.all;

1.2 Generic Lists in Packages 9

the names from the two package instances would all be ambiguous. This is an applica-
tion of the existing rule in VHDL that, if two packages declare the same name and both
are “used,” we cannot refer to the simple name, since it is ambiguous. Instead, we need
to use selected names to distinguish between the versions declared in the two package
instances. So, for example, we could write:

use work.address_stacks, work.operand_stacks;

to make the package names visible without prefixing them with the library name work,
and then declare variables and use operations as follows:

variable return_address_stack : address_stacks.stack;
variable PC : unsigned(23 downto 0);
variable FP_operand_stack : operand_stacks.stack;
variable TOS_operand : real;
...
address_stacks.push(return_address_stack, PC);
operand_stacks.pop(FP_operand_stack, TOS_operand);

An important aspect of VHDL’s strong-typing philosophy is that two types introduced
by two separate type declarations are considered to be distinct, even if they are structur-
ally the same. Thus the two types declared as

type T1 is array (1 to 10) of integer;
type T2 is array (1 to 10) of integer;

are distinct, and we cannot assign a value of type T1 to an object of type T2. This same
principle applies to formal generic types. Within an entity or a package that declares a
formal generic type, that type is considered to be distinct from every other type, includ-
ing other formal generic types. So, for example, we cannot assign a value declared to be
of one formal generic type to an object declared to be of another formal generic type.

The fact that two formal generic types are distinct can lead to interesting situations
when the actual types provided are the same (or are subtypes of the same base type).
Ambiguity can arise between overloaded operations declared using the formal generic
types. This kind of situation is not likely to happen in common use cases, but it is worth
exploring to demonstrate the way overloading works in the presence of formal generic
types.

Suppose we declare a package with two formal generic types, as follows:

package generic_pkg is
 generic (type T1; type T2);

 procedure proc (x : T1);
 procedure proc (x : T2);
 procedure proc (x : bit);

end package generic_pkg;

10 Chapter 1 — Enhanced Generics

Within the package, T1 and T2 are distinct from each other and from the type bit, so
the procedure proc is overloaded three times. The uninstantiated package can be ana-
lyzed without error. If we instantiate the package as follows:

package integer_boolean_pkg is new work.generic_pkg
 generic map (T1 => integer, T2 => boolean);

we can successfully resolve the overloading for the following three calls to procedures in
the package instance:

work.integer_boolean_pkg.proc(3);
work.integer_boolean_pkg.proc(false);
work.integer_boolean_pkg.proc('1');

On the other hand, if we instantiate the package as

package integer_bit_pkg is new work.generic_pkg
 generic map (T1 => integer, T2 => bit);

the following call is ambiguous:

work.integer_bit_pkg.proc('1');

It could be a call to the second or third of the three overloaded versions of proc in
the package instance. Similarly, if we instantiate the package as

package integer_integer_pkg is new work.generic_pkg
 generic map (T1 => integer, T2 => integer);

the following call is ambiguous:

work.integer_integer_pkg.proc(3);

This could be a call to the first or second of the three overloaded versions of proc.
The point to gain from these examples is that overload resolution depends on the actual
types denoted by the formal generic types in the instances. Depending on the actual
types, calls to overloaded subprograms may be resolvable for some instances and ambig-
uous for others.

The final aspect of packages with generic lists is that we can also include a generic
map in a package, following the generic list. Such a package is called a generic-mapped
package, and has the form

package identifier is
 generic (...);
 generic map (...);

 ... -- declarations within the package

end package identifier;

1.3 Local Packages 11

The generic list defines the generics, and the generic map aspect provides actual val-
ues and type for those generics. While VHDL-2008 allows us to write a generic-mapped
package explicitly, we would not normally do so. Rather, the feature is included in the
language as a definitional aid. An instantiation of an uninstantiated package is defined in
terms of an equivalent generic-mapped package that is a copy of the uninstantiated
package, together with the generic map from the instantiation. This is analogous to the
way in which an entity instantiation is defined in terms of a block statement that merges
the generic and port lists of the entity with the generic map and port map of the instanti-
ation. Since generic-mapped packages are not a feature intended for regular use, we
won’t dwell on them further. We simply mention them here to raise awareness, since the
occasional error message from an analyzer might hint at them.

1.3 Local Packages

In earlier versions of VHDL, packages can only be declared as design units. They are
separately analyzed into a design library, and can be referenced by any other design unit
that names the library. Thus, they are globally visible. In VHDL-2008, packages can also
be declared locally within the declarative region of an entity, architecture, block, process,
subprogram, protected type body, or enclosing package. This allows the visibility of the
package to be contained to just the enclosing declarative region. Moreover, since declara-
tions written in a package body are not visible outside the package, we can use local
packages to provide controlled access to locally declared items.

EXAMPLE 1.4 Sequential item numbering

Suppose we need to generate test cases in a design, with each test case having a
unique identification number. We can declare a package locally within a stimulus-
generator process. The package encapsulates a variable that tracks the next identifi-
cation number to be assigned, and provides an operation to yield the next number.
The process outline is:

stim_gen : process is

 package ID_manager is
 impure function get_ID return natural;
 end package ID_manager;

 package body ID_manager is
 variable next_ID : natural := 0;
 impure function get_ID return natural is
 variable result : natural;
 begin
 result := next_ID;
 next_ID := next_ID + 1;
 return result;
 end function get_ID;

12 Chapter 1 — Enhanced Generics

 end package body ID_manager;
 ...

begin
 ...
 test_case.ID := ID_manager.get_ID;
 ID_manager.next_ID := 0; -- Illegal
 ...
end process stim_gen;

The variable next_ID is declared in the package body, and so is not visible out-
side the package. The only way to access it is using the get_ID function provided by
the package declaration. This is shown in the first assignment statement within the
process body. The package name is used as a prefix in the selected name for the
function. The second assignment statement is illegal, since the variable is not visible
at that point. The package provides a measure of safety against inadvertent corrup-
tion of the data state.

We can write use clauses for locally declared packages. Thus, we could follow
the package declaration in this example with the use clause

use ID_manager.all;

and then rewrite the assignment in the process as

test_case.ID := get_ID;

By writing the package locally within the process, it is only available in the pro-
cess. Thus, we have achieved greater separation of concerns than had we written the
package as a design unit, making it globally visible. Moreover, since the package is
local to a process, there can be no concurrent access by multiple processes. Thus,
the encapsulated variable can be an ordinary non-shared variable. If the package
were declared as a global design unit, there could be concurrent calls to the get_ID
function. As a consequence, the variable would have to be declared as a shared vari-
able of a protected type. This would significantly complicate the design.

As Example 1.4 illustrates, if a package declared within a declarative region requires
a body, then the body must come after the package declaration in the same region. If the
enclosing region is itself a package, then we write the inner package declaration within
the enclosing package declaration, and the inner package body within the outer package
body. If the inner package requires a body, then the outer package requires a body as a
consequence.

A locally declared package need not be just a simple package. It can be an uninstan-
tiated package with a generic list (or, indeed, a generic-mapped package with both
generic list and generic map). In that case, we must instantiate the package so that we
can refer to items in the instance. The same rules apply to locally declared uninstantiated
packages and instances as apply to globally declared packages.

1.3 Local Packages 13

EXAMPLE 1.5 Package for wrapping items with item numbers

We can revise the package from Example 1.4 to make it deal with test cases of
generic type, and to wrap each test case in a record together with a unique ID num-
ber. The numbers are unique across test cases of all types. We achieve this by keep-
ing the previous package as an outer package encapsulating the next_ID variable.
Within that package, we declare an uninstantiated package for wrapping test cases.
The process outline containing the packages is:

stim_gen : process is

 package ID_manager is

 package ID_wrappers is
 generic (type test_case_type);
 type wrapped_test_case is record
 test_case : test_case_type;
 ID : natural;
 end record wrapped_test_case;
 impure function wrap_test_case
 (test_case : test_case_type)
 return wrapped_test_case;
 end package ID_wrappers;

 end package ID_manager;

 package body ID_manager is

 variable next_ID : natural := 0;

 package body ID_wrappers is
 impure function wrap_test_case
 (test_case : test_case_type)
 return wrapped_test_case is
 variable result : wrapped_test_case;
 begin
 result.test_case := test_case;
 result.ID := next_ID;
 next_ID := next_ID + 1;
 return result;
 end function wrap_test_case;
 end package body ID_wrappers;

 end package body ID_manager;

 use ID_manager.ID_wrappers;

14 Chapter 1 — Enhanced Generics

 package word_wrappers is new ID_wrappers
 generic map (test_case_type => unsigned(32 downto 0));
 package real_wrappers is new ID_wrappers
 generic map (test_case_type => real);

 variable next_word_test : word_wrappers.wrapped_test_case;
 variable next_real_test : real_wrappers.wrapped_test_case;

begin
 ...
 next_word_test := word_wrappers.wrap_test_case(X"0440CF00");
 next_real_test := real_wrappers.wrap_test_case(3.14159);
 ...
end process stim_gen;

The process declares two instances of the uninstantiated package ID_wrappers,
one for a test-case type of unsigned, and another for a test-case type of real. The
process then refers to the wrapped_test_case type and the wrap_test_case function
declared in each instance.

Example 1.5 exposes a number of important points about packages. First, a package
declared within an enclosing region is just another declared item, and is subject to the
normal scope and visibility rules. In the example, the ID_wrappers package is declared
within an enclosing package, and so can be referred to with a selected name and made
visible by a use clause.

Second, in the case of package instantiations, any name referenced within the unin-
stantiated package keeps its meaning in each instance. In the example, the name next_ID
referenced within the uninstantiated package ID_wrappers, refers to the variable declared
in the ID_manager package. So, within each of the package instances, word_wrappers
and real_wrappers, the same variable is referenced. Importantly, had the process also
declared an item called next_ID outside the packages but before the instances, that name
would not be “captured” by the instances. They still refer to the same variable nested
within the ID_manager package. The only exception to this rule for interpreting names is
that the name of the uninstantiated package itself, when referenced within the package,
is interpreted in an instance as a reference to the instance. This allows us to use an
expanded name for an item declared within the uninstantiated package, and to have it
interpreted appropriately in the instance. The rules for name interpretation illustrate quite
definitely that package instantiation is different in semantics from file inclusion, as is used
for C header files. The benefit of the VHDL-2008 approach is that names always retain
the meaning they are given at the point of declaration, and so we avoid unwanted sur-
prises.

The third point is that local instantiation of an uninstantiated package is a common
use case, whether the uninstantiated package be locally declared, as in the example, or
globally declared as a design unit. The advantage of local instantiation is that it allows
use of a locally declared type as the actual for a formal generic type. Were local instanti-
ation not possible, the actual type would have to be declared in a global package in

1.4 Generic Lists in Subprograms 15

order to use it in a global package instantiation. Thus, local instantiation improves modu-
larity and information hiding in a design.

EXAMPLE 1.6 Local stack package instantiation

In Example 1.3, we declared an uninstantiated package for stacks as a design unit.
We can instantiate the package to deal with stacks of a type declared locally within a
subprogram that performs a depth-first search of a directed acyclic graph (DAG) con-
sisting of vertices and edges, as follows:

subprogram analyze_network (network : network_type) is

 type vertex_type is ...;
 type edge_type is ...;
 constant max_diameter : positive := 30;

 package vertex_stacks is new work.generic_stacks
 generic map (size => max_diameter,
 element_type => vertex_type);
 use vertext_stacks.all;

 variable current_vertex : vertex_type;
 variable pending_vertices : stack_type;

begin
 ...
 push(pending_stacks, current_vertex);
 ...
end subprogram analyze_network;

The data types used to represent the DAG for analyzing a network are the local
concern of the subprogram. By instantiating the generic_stacks package locally,
there is no need to expose the data types outside the subprogram.

1.4 Generic Lists in Subprograms

The second new place in which we can write generic lists in VHDL-2008 is in subpro-
gram (procedure and function) declarations. A procedure with a generic list takes the
form:

procedure identifier
 generic (...)
 parameter (...) is
 ... -- declarations
begin

16 Chapter 1 — Enhanced Generics

 ... -- statements
end procedure identifier;

Similarly, a function with a generic list takes the form:

function identifier
 generic (...)
 parameter (...) return result_type is
 ... -- declarations
begin
 ... -- statements
end function identifier;

We use terminology analogous to that for packages to refer to subprograms with
generics. Thus, a subprogram with a generic list is called an uninstantiated subprogram.
Note that the new keyword parameter is included to make the demarcation between
the generic list and the parameter list clear. For backward compatibility, including the
keyword is optional. We expect that designers will omit it for subprograms without
generics and include it or not as a matter of taste for uninstantiated subprograms.

VHDL allows us to declare a subprogram in two parts, one consisting just of the
specification, and the other consisting of the specification together with the body. We can
separate a subprogram in this way within a given declarative part, for example, in order
to declare mutually recursive subprograms. In the case of subprograms declared in pack-
ages, we are required to separate the subprogram specification into the package declara-
tion and to repeat the specification together with the subprogram body in the package
body. In the case of uninstantiated subprograms, the generic list is part of the subpro-
gram specification. Thus, if we separate the declaration, we must write the generic list
and parameter list in the specification, and then repeat both together with the body.
Using a text editor to copy and paste the specification into the body makes this easy.

We cannot call an uninstantiated subprogram directly. We can think of it as a tem-
plate that we must instantiate with a subprogram instantiation to get a real subprogram
that we can call. For a procedure, the instantiation is of the form:

procedure identifier is new uninstantiated_procedure_name
 generic map (...);

and for a function, the instantiation is of the form

function identifier is new uninstantiated_function_name
 generic map (...);

In both cases, the identifier is the name for the subprogram instance, and the generic
map supplies actual generics for the formal generics defined by the uninstantiated sub-
program. If all of the formal generics have defaults, we can omit the generic map to
imply use of the defaults. Once we have instantiated the subprogram, we can then use
the instance name to call the instance.

1.4 Generic Lists in Subprograms 17

EXAMPLE 1.7 Generic swap procedure

The way in which we swap the values of two variables does not depend on the
types of the variables. Hence, we can write a swap procedure with the type as a for-
mal generic, as follows:

procedure swap
 generic (type T)
 parameter (a, b : inout T) is
 variable temp : T;
begin
 temp := a; a := b; b := temp;
end procedure swap;

We can now instantiate the procedure to get versions for various types:

procedure int_swap is new swap
 generic map (T => integer);
procedure vec_swap is new swap
 generic map (T => bit_vector(0 to 7));

and call them to swap values of variables:

variable a_int, b_int : integer;
variable a_vec, b_vec : bit_vector(0 to 7);
...

int_swap(a_int, b_int);
vec_swap(a_vec, b_vec);

We can’t just call the swap procedure directly, as follows:

swap(a_int, b_int); -- Illegal

since it is an uninstantiated procedure. Note also that we can’t instantiate the swap
procedure with an unconstrained type as the actual generic type, since the proce-
dure internally uses the type to declare a variable. Thus, the following would pro-
duce an error:

procedure string_swap is new swap generic map (T => string);

since there is no specification of the index bounds for the variable temp declared
within swap.

18 Chapter 1 — Enhanced Generics

EXAMPLE 1.8 Setup timing check procedure

Suppose we are developing a package of generic operations for timing checks on
signals. We include a generic procedure that determines whether a signal meets a
setup time constraint. The package declaration is:

package timing_pkg is
 procedure check_setup
 generic (type signal_type;
 type clk_type; clk_active_value : clk_type;
 T_su : delay_length)
 (signal s : signal_type; signal clk : clk_type);
 ...
end package timing_pkg;

The package body contains a body for the procedure:

package body timing_pkg is
 procedure check_setup
 generic (type signal_type;
 type clk_type; clk_active_value : clk_type;
 T_su : delay_length)
 (signal s : signal_type; signal clk : clk_type) is
 begin
 if clk'event and clk = clk_active_value then
 assert s'last_event >= T_su
 report "Setup time violation" severity error;
 end if;
 end procedure check_setup;
 ...
end package body timing_pkg;

We can now instantiate the procedure to get versions that check the constraint
for signals of different types and for different setup time parameters:

use work.timing_pkg.all;
procedure check_normal_setup is new check_setup
 generic map (signal_type => std_ulogic,
 clk_type => std_ulogic,
 clk_active_value => '1',
 T_su => 200ps);
procedure check_normal_setup is new check_setup
 generic map (signal_type => std_ulogic_vector,
 clk_type => std_ulogic,
 clk_active_value => '1',
 T_su => 200ps);
procedure check_long_setup is new check_setup
 generic map (signal_type => std_ulogic_vector,

1.4 Generic Lists in Subprograms 19

 clk_type => std_ulogic,
 clk_active_value => '1',
 T_su => 300ps);

Note that the procedure check_normal_setup is now overloaded, once for a
std_ulogic parameter and once for a std_ulogic_vector parameter. We can apply
these functions to signals of std_ulogic and std_ulogic_vector types, as follows:

signal status : std_ulogic;
signal data_in, result : std_ulogic_vector(23 downto 0);
...

check_normal_setup(status, clk);
check_normal_setup(result, clk);
check_long_setup(data_in, clk);
...

In each case, the active value for the clock signal and the setup time interval
value are bound into the definition of the procedure instance. We do not need to
provide the values as separate parameters.

VHDL-2008 allows us to declare uninstantiated subprograms and to instantiate them
in most places where we can currently declare simple subprograms. That includes declar-
ing uninstantiated subprograms as methods of protected types, and declaring instances of
subprograms as methods. Since most reasonable use cases for doing this involve use of
generic action procedures, we will defer further consideration to Section 1.5, where we
introduce generic subprograms.

VHDL allows us to overload subprograms, and uses the parameter and result type
profiles to distinguish among them based on the types of parameters in a call. Where we
need to name a subprogram other than in a call, we can write a signature to indicate
which overloaded version we mean. The signature lists the parameter types and, for
functions, the return type, all enclosed in square brackets. This information is sufficient
to distinguish one version of an overloaded subprogram from other versions. We can use
a signature in attribute specifications, attribute names, and alias declarations. Subprogram
instantiations, introduced in VHDL-2008, are a further place in which we name a subpro-
gram. If the uninstantiated subprogram is overloaded, we can include a signature in an
instantiation to indicate which uninstantiated version we mean. In such cases, the unin-
stantiated subprograms typically have one or more parameters of a formal generic type.
We use the formal generic type name in the signature. For example, if we have two unin-
stantiated subprograms declared as

procedure combine
 generic (type T)
 parameter (x : T; value : bit);

20 Chapter 1 — Enhanced Generics

procedure combine
 generic (type T)
 parameter (x : T; value : integer);

the procedure name combine is overloaded. We can use a signature in an instantiation as
follows:

procedure combine_vec_with_bit is new combine[T, bit]
 generic map (T => bit_vector);

VHDL-2008 specifies that a formal generic type name of an uninstantiated subpro-
gram is made visible within a signature in an instantiation of the subprogram. Thus, in
this example, the signature distinguishes between the two uninstantiated subprograms,
since only one of them has a profile with T for the first parameter and bit for the second.
The T in the signature refers to the formal generic type for that version of the sub-
program.

As with packages, we can also include a generic map in a subprogram, following the
generic list. Such a subprogram is called a generic-mapped subprogram. A generic-
mapped procedure has the form

procedure identifier
 generic (...)
 generic map (...)
 parameter (...) is
 ... -- declarations
begin
 ... -- statements
end procedure identifier;

and a generic-mapped function has the form

function identifier
 generic (...)
 generic map (...)
 parameter (...) return result_type is
 ... -- declarations
begin
 ... -- statements
end function identifier;

The generic list defines the generics, and the generic map aspect provides actual val-
ues and type for those generics. Like generic-mapped packages, we would not normally
write a generic-mapped subprogram explicitly, since the feature is included in the lan-
guage as a definitional aid. Hence, we won’t dwell on them further, but simply mention
them here to raise awareness in case an analyzer produces a seemingly cryptic error
message.

1.5 Generic Subprograms 21

1.5 Generic Subprograms

As well as generic constants and types, VHDL-2008 allows us to declare generic subpro-
grams. We declare a formal generic subprogram in a generic list, representing some sub-
program yet to be specified, and include calls to the formal generic subprogram within
the unit that has the generic list. When we instantiate the unit, we supply an actual sub-
program for that instance. Each call to the formal generic subprogram represents a call to
the actual subprogram in the instance. The way we declare a formal generic subprogram
is to write a subprogram specification in the generic list. The specification must be for a
simple subprogram; that is, the subprogram must not contain a generic list itself.

We will illustrate formal generic subprograms with a number of examples based on
typical use cases. One important use case is to supply an operation for use with a formal
generic type declared in the same generic list as the subprogram. Recall, from our discus-
sion in Section 1.1, that the only operations we can assume for a formal generic type are
those defined for all actual types, such as assignment, equality and inequality. We can
use a formal generic subprogram to explicitly provide further operations.

EXAMPLE 1.9 Supplying an operator for use with a formal generic type

In Example 1.2, we attempted to define a counter that could count with a variety of
types. However, our attempt failed because we could not use the “+” operator to
increment the count value. We can rectify this by declaring a formal generic function
for incrementing the count value:

entity generic_counter is
 generic (type count_type;
 constant reset_value : count_type;
 function increment (x : count_type)
 return count_type);
 port (clk, reset : in bit;
 data : out count_type);
end entity generic_counter;

We can then use the increment function in the architecture:

architecture rtl of generic_counter is
begin
 count : process (clk) is
 begin
 if rising_edge(clk) then
 if reset = '1' then
 data <= reset_value;
 else
 data <= increment(data);
 end if;
 end if;

22 Chapter 1 — Enhanced Generics

 end process count;
end architecture rtl;

Having revised the counter in this way, we can instantiate it with various types.
For example, to create a counter for unsigned values, we define a function, add1, to
increment using the “+” operator on unsigned values and provide it as the actual for
the increment generic.

use IEEE.numeric_std.all;
function add1 (arg : unsigned) return unsigned is
begin
 return arg + 1;
end function add1;

signal clk, reset : bit;
signal count_val : unsigned(15 downto 0);
...

counter : entity work.generic_counter(rtl)
 generic map (count_type => unsigned(15 downto 0),
 reset_value => (others => '0'),
 increment => add1) -- add1 is the
 -- actual function
 port map (clk => clk, reset => reset, data => count_val);

In the instance, we specify a subtype of unsigned as the actual type for the for-
mal generic type count_type. That subtype is then used as the subtype of the formal
generic constant reset_value in the instance, so the actual value is a vector of 16 ele-
ments. The subtype is also used for the parameters of the formal generic function
increment in the instance, so we must provide an actual function with a matching
profile. The add1 function meets that requirement, since it has unsigned as its
parameter and result type. Within the instance, whenever the process calls the incre-
ment function, the actual function add1 is called.

We can instantiate the same entity to create a counter for the traffic_light_colour
type defined in Example 1.2. Again, we define a function, next_color, to increment a
value of the type, and provide the function as the actual for the increment generic.

type traffic_light_color is (red, yellow, green);
function next_color (arg : traffic_light_color)
 return traffic_light_color is
begin
 if arg = traffic_light_color'high then
 return traffic_light_color'low;
 else
 return traffic_light_color'succ(arg);
 end if;
end function next_color;

1.5 Generic Subprograms 23

signal east_light : traffic_light_color;
...

east_counter : work.generic_counter(rtl)
 generic map (count_type => traffic_light_color,
 reset_value => red,
 increment => next_color) -- next_color is the
 -- actual function
 port map (clk => clk, reset => reset, data => east_light);

When we declare a formal generic subprogram in a generic list, we can specify a
default subprogram that is to be used in an instance if no actual generic subprogram is
provided. The declaration is of the form

generic list (...;
 subprogram_specification is subprogram_name;
 ...);

The subprogram that we name must be visible at that point. It might be declared
before the uninstantiated unit, or it can be another formal generic subprogram declared
earlier in the same generic list. In the case of an uninstantiated package, we cannot name
a subprogram declared in the package as a default subprogram, since items declared
within the package are not visible before they are declared.

EXAMPLE 1.10 Error reporting in a package

Suppose we are developing a package defining operations to be used in a design
and need to report errors that arise while performing operations. We can declare a
formal generic procedure in the package to allow separate specification of the error-
reporting action. We can also declare a default procedure that simply issues a report
message. We need to declare the default action procedure separately from the pack-
age so that we can name it in the generic list. We will declare it in a utility package:

package error_utility_pkg is
 procedure report_error (report_string : string;
 report_severity : severity_level);
end package error_utility_pkg;

package body error_utility_pkg is
 procedure report_error (report_string : string;
 report_severity : severity_level) is
 begin
 report report_string severity report_severity;
 end procedure report_error;
end package body error_utility_pkg;

24 Chapter 1 — Enhanced Generics

We can now declare the operations package:

package operations is
 generic (procedure error_action
 (report_string : string;
 report_severity : severity_level)
 is work.error_utility_pkg.report_error);

 procedure step1 (...);
 ...

end package operations;

package body operations is

 procedure step1 (...) is
 begin
 ...
 if something_is_wrong then
 error_action("Something is wrong in step1", error);
 end if;
 ...
 end procedure step1;
 ...

end package body operations;

If issuing a report message is sufficient for a given design, it can instantiate the
operations package without providing an actual generic subprogram:

package reporting_operations is new work.operations;
use reporting_operations.all;
...

step1 (...);

If something goes wrong during execution of step1 in this instance, the call to
error_action results in a call to the default generic subprogram report_error defined
in the utility package. Another design might need to log error messages to a file. The
design can declare a procedure to deal with error messages as follows:

use std.textio.all;
file log_file : text open write_mode is "error.log";
procedure log_error (report_string : string;
 report_severity : severity_level) is
 variable L : line;
begin
 write(L, severity_level'image(report_severity);

1.5 Generic Subprograms 25

 write(L, string'(": ");
 write(L, report_string);
 writeline(log_file, L);
end procedure log_error;

The design can then instantiate the operations package with this procedure as
the actual generic procedure:

package logging_operations is new work.operations
 generic map (error_action => log_error);
use logging_operations.all;
...

step1 (...);

In this instance, when something goes wrong in step1, the call to error_action
results in a call to the procedure log_error, which writes the error details to the log
file. Since the actual procedure is declared in the context of the instantiating design,
it has access to items declared in that context, including the file object log_file. By
providing this procedure as the actual generic procedure to the package instance,
the instance is able to “import” that context via the actual procedure.

In many use cases where an operation is required for a formal generic type, there
may be an overloaded version of the operation defined for the actual generic type at the
point of instantiation. VHDL-2008 provides a way to indicate that the default for a generic
subprogram is a subprogram, directly visible at the point of instantiation, with the same
name as the formal generic subprogram and a matching profile. We use the box symbol
(“<>”) in place of a default subprogram name in the generic declaration. For example,
we might write the following in a generic list of a package:

function minimum (L, R : T) return T is <>

If, when we instantiate the package, we omit an actual generic function, and there is
a visible function named minimum with the required profile, then that function is used.
Normally, the parameter type T used in the declaration of the formal generic subprogram
is itself a formal generic type declared earlier in the generic list. We provide an actual
type for T in the instance, and that determines the parameter type expected for the visi-
ble default subprogram. If we define the formal generic subprogram with the same name
and similar profile to a predefined operation, we can often rely on a predefined opera-
tion being visible and appropriate for use as the default subprogram. We will illustrate
this with an example.

EXAMPLE 1.11 Dictionaries implemented as binary search trees

The following package defines an abstract data type for dictionaries implemented as
binary search trees. A dictionary contains elements that are each identified by a key
value. The formal generic function key_of determines the key for a given element.

26 Chapter 1 — Enhanced Generics

No default function is provided, so we must supply an actual function on instantia-
tion of the package. The formal function “<” is used to compare key values. The
default function is specified using the “<>” notation, so if an appropriate function
named “<” is directly visible at the point of instantiation, we don’t need to specify an
actual function.

package dictionaries is
 generic (type element_type;
 type key_type;
 function key_of (E : element_type)
 return key_type;
 function "<" (L, R : key_type)
 return boolean is <>);

 type dictionary_type;

 -- tree_record and structure of dictionary_type are private
 type tree_record is record
 left_subtree, right_subtree : dictionary_type;
 element : element_type;
 end record tree_record;
 type dictionary_type is access tree_record;

 procedure lookup (dictionary : in dictionary_type;
 lookup_key : in key_type;
 element : out element_type;
 found : out boolean);

 procedure search_and_insert (dictionary : in dictionary_type;
 element : in element_type;
 already_present : out boolean);

end package dictionaries;

The package body is shown below, with the body of the search_and_insert pro-
cedure omitted for brevity.

package body dictionaries is

 procedure lookup (dictionary : in dictionary_type;
 lookup_key : in key_type;
 element : out element_type;
 found : out boolean) is
 variable current_subtree : dictionary_type := dictionary;
 begin
 found := false;
 while current_subtree /= null loop
 if lookup_key < key_of(current_subtree.element) then

1.5 Generic Subprograms 27

 lookup (current_subtree.left_subtree, lookup_key,
 element, found);
 elsif key_of(current_subtree.element) < lookup_key then
 lookup (current_subtree.right_subtree, lookup_key,
 element, found);
 else
 found := true;
 element := current_subtree.element;
 return;
 end if;
 end loop;
 end procedure lookup;

 procedure search_and_insert (dictionary : in dictionary_type;
 element : in element_type;
 already_present : out boolean) is
 ...

end package body dictionaries;

In the function lookup, we use the formal generic function key_of to get the key
for a candidate element in the dictionary. We compare the key with the value of the
lookup_key parameter using the formal generic function “<”.

Suppose we require a dictionary of test patterns that use time values as keys. We
can instantiate the dictionaries package using our test-pattern type as the actual for
element_type and time as the actual for key_type. We need to declare a function to
get the time key for a test pattern:

type test_pattern_type is ...;

function test_id_of (test_pattern : in test_pattern_type)
 return time is
begin
 return ...;
end function test_id_of;

We don’t need to define a function for use as the actual for the formal generic
function “<”. Since the predefined function “<” operating on time values is directly
visible at the point of instantiation, it can be used implicitly as the actual function. As
a result, the test patterns will be sorted into ascending order of time in the dictionary.
We can write the package instantiation as:

package test_pattern_dictionaries is new work.dictionaries
 generic map (element_type => test_pattern_type,
 key_type => time,
 key_of => test_id_of);

We can then call the operations defined in the instance:

28 Chapter 1 — Enhanced Generics

use test_pattern_dictionaries.all;
variable test_set : dictionary_type;
variable generated_test, sought_test : test_pattern_type;
variable was_present : boolean;
...

search_and_insert (test_set, generated_test, was_present);
assert not was_present
 report "Test at " & time'image(test_id_of(generated_test))
 & " previously generated";
...
lookup (test_set, 10 ns, sought_test, was_present);
assert was_present
 report "Test at 10 ns not found in test set";

EXAMPLE 1.12 Dictionary traversal with an action procedure

We can augment the dictionary abstract data type with an operation for traversing a
dictionary to apply an action to each element. We define the traversal procedure as
an uninstantiated procedure within the uninstantiated dictionaries package:

package dictionaries is
 generic (...);
 ...
 procedure traverse
 generic (procedure action (element : in element_type))
 parameter (dictionary : in dictionary_type);

end package dictionaries;

package body dictionaries is
 ...
 procedure traverse
 generic (procedure action (element : in element_type))
 parameter (dictionary : in dictionary_type) is
 begin
 if dictionary = null then
 return;
 end if;
 traverse (dictionary.left_subtree);
 action (dictionary.element);
 traverse (dictionary.right_subtree);
 end procedure traverse;

end package body dictionaries;

1.5 Generic Subprograms 29

Given this augmented package and the same instance as in Example 1.11, we
can use the traverse procedure to count the number of elements in a dictionary. We
first declare an action procedure:

variable test_pattern_count : natural := 0;
procedure count_a_test_pattern
 (test_pattern : in test_pattern_type) is
begin
 test_pattern_count := test_pattern_count + 1;
end procedure count_a_test_pattern;

We need to include the parameter, even though it is not used, since the profile of
the action procedure must match that of the formal generic procedure. We instantiate
the traverse procedure in the declarative part of the design:

procedure count_test_patterns is new traverse
 generic map (action => count_a_test_pattern);

and then call the instance:

count_test_patterns(test_set);
assert test_pattern_count > 0
 report "The test patterns have gone missing!";

We can use a separate instantiation of the traverse procedure to perform a differ-
ent action. For example, if we need to dump a list of test patterns to a file in order of
their time, we would define an action procedure:

type test_pattern_file is file of test_pattern_type;
file dump_file : test_pattern_file;
procedure dump_a_test_pattern
 (test_pattern : in test_pattern_type) is
begin
 write(dump_file, test_pattern);
end procedure dump_a_test_pattern;

In this case, the parameter to the action procedure is used. We instantiate the
traverse procedure in the declarative part of the design:

procedure dump_test_patterns is new traverse
 generic map (action => dump_a_test_pattern);

and then call the instance:

file_open(dump_file, "test_patterns.dmp", write_mode);
dump_test_patterns(test_set);
file_close(dump_file);

30 Chapter 1 — Enhanced Generics

The recursive traverse procedure in Example 1.12 further illustrates the rules we
mentioned in Section 1.3 for interpreting names in uninstantiated units. The reference to
the name traverse within that procedure is interpreted, in each instance of the proce-
dure, as a reference to the instance. Thus each instance is properly recursive. This is the
only situation where we can write a call to an uninstantiated subprogram.

In each of the examples we have seen, the subprogram that we provide as an actual,
either explicitly or implicitly, for a formal generic subprogram has the same parameter
and result type profile as the formal. In fact, the rule is stronger than that. The actual and
formal subprograms must have conforming profiles, which means both are procedures or
both are functions; the parameter and result type profiles of the two subprograms are the
same; and corresponding parameters have the same class (signal, variable, constant, or
file) and mode (in, out, or inout). The purpose of these rules is to ensure that a call to
the formal subprogram will be legal for whatever actual subprogram is provided. As a
counter example, suppose the formal subprogram had a signal parameter of a given
type, and the actual subprogram had a variable parameter of the same type. A call to the
formal subprogram would provide a signal as the actual parameter. However, the actual
subprogram would expect a variable, and would perform variable assignments on it. This
is clearly an error, even though the parameter and result type profiles of the two subpro-
grams match. The additional requirements for profile conformance avoid this kind of
error.

There are two further rules relating to the parameters of generic subprograms. The
first is that, if a formal parameter of a formal generic subprogram has a default value, that
value is used when an actual parameter is omitted, regardless of whether the correspond-
ing formal parameter of the actual subprogram has a default value. An example will help
clarify this. Suppose we declare an entity with a formal generic subprogram, and a corre-
sponding architecture, as follows:

entity up_down_counter is
 generic (type T;
 function add (x : T; by : integer := 1) return T)
 port (...);
end entity up_down_counter;

architecture rtl of up_down_counter is
begin
 count : process (clk) is
 begin
 if rising_edge(clk) then
 if mode = "1" then
 count_value <= add(count_value); -- use default value
 else
 count_value <= add(count_value, -1);
 end if;
 end if;
 end process count;
end architecture rtl;

1.5 Generic Subprograms 31

The formal generic subprogram add has a parameter by with the default value 1. In
the first call to add within the architecture, we omit a value for by, so the default value 1
is used. This allows an analyzer to compile the call with the default value independently
of any instantiation of the enclosing entity that we might write subsequently. For exam-
ple, suppose we instantiate the entity with an actual generic subprogram declared as
follows:

function add_int (a : integer; incr : integer := 0)
 return integer is
begin
 return a + incr;
end function add_int;
...

int_counter : entity work.up_down_counter(rtl)
 generic map (T => integer; add => add_int)
 port map (...);

In this instance, the actual generic subprogram associated with add has the default
value 0 for its second parameter. Despite this, the first call to the subprogram in the
architecture still uses the default value 1 for the by parameter, since that is what is
declared for the formal generic subprogram.

The rule dealing with default values for parameters also applies to the case where
the parameter of the formal generic subprogram has no default value. In that case, a call
must supply a value, even if the actual generic subprogram in an instance has a default
value for the parameter. For example, in the up_down_counter entity, had we declared
the formal generic function add as follows:

function add (x : T; by : integer) return T

the first call within the architecture would have to specify an actual value for the by
parameter. The fact that the function add_int supplied as the actual generic subprogram
in the instance has a default value for its second parameter cannot be used within the
architecture.

The second rule relating to parameters of generic subprograms is that the parameter-
subtype constraints of the actual subprogram apply when the subprogram is called, not
the parameter-subtype constraints of the formal subprogram. To illustrate, suppose we
instantiate the up_down_counter entity with a different function, as follows:

function add_nat (a : natural; incr : natural := 0)
 return natural is
begin
 return a + incr;
end function add_nat;
...

nat_counter : entity work.up_down_counter(rtl)

32 Chapter 1 — Enhanced Generics

 generic map (T => natural; add => add_nat)
 port map (...);

In this instance, the second parameter of the actual generic subprogram is of the
base type integer with a range constraint requiring the value to be non-negative. The
second call within the architecture provides the value –1 for the parameter. While this
conforms to the constraint on the by parameter of the formal generic subprogram, it does
not conform to the constraint on the corresponding parameter of the actual generic sub-
program in the instance. Hence, when the function is called with that value in the
instance, an error occurs.

1.5.1 Uninstantiated Methods in Protected Types

We now return to a discussion of the relationship between uninstantiated subprograms
and protected types, mentioned in passing in Section 1.4. We build on our discussion of
generic subprograms to provide motivating examples of the relationships that can occur.
There are two cases to consider. The first is declaration of an instance of an uninstanti-
ated subprogram as a method of a protected type, and the second is declaration of an
uninstantiated subprogram within a protected type.

Starting with the first case, if we have an uninstantiated subprogram declared outside
a protected type, and we declare an instance of the subprogram within the protected
type declaration, the instance becomes a method of the protected type. The scheme is

procedure uninstantiated_name
 generic (...)
 parameter (...);

type PT is protected
 ...
 procedure instance_name is new uninstantiated_name
 generic map (...);
 ...
end protected PT;

We can declare a shared variable of the protected type and call the method:

shared variable SV : PT;
...

SV.instance_name (...);

On the face of it, there seems no purpose to this scheme. The uninstantiated subpro-
gram, being outside the protected type, cannot refer to the items encapsulated within the
protected type. So there would appear to be no reason for instantiating the subprogram
in the protected type. However, we can provide controlled access to the encapsulated
items via a method of the protected type provided as an actual generic subprogram to
the instance. The refinement to the scheme is:

1.5 Generic Subprograms 33

procedure uninstantiated_name
 generic (...; formal_generic_subprogram; ...)
 parameter (...);

type PT is protected
 method_declaration;
 procedure instance_name is new uninstantiated_name
 generic map (..., method_name, ...);
 ...
end protected PT;

In this scheme, the method has access to the encapsulated items within the protected
type. When the instance invokes the actual generic subprogram, the method is called.

EXAMPLE 1.13 Test-vector set with tracing

Suppose we have an uninstantiated subprogram that gets a test-vector value corre-
sponding to a specified time and that writes the vector value to the standard output
file. The procedure has a formal generic subprogram representing the action to per-
form to get the test vector.

procedure trace_test_vector is
 generic (impure function get_test_vector
 (vector_time : time)
 return test_vector)
 parameter (vector_time : time) is
 variable vector : test_vector;
 use std.textio.all;
 variable L : line;
begin
 write(L, now);
 write(L, string'(": "));
 vector := get_test_vector(vector_time);
 ... -- write test vector
 writeline(output, L);
end procedure trace;

We can declare a protected type representing a set of test vectors to be applied
at various times. The protected type has a method for getting a test vector for a spe-
cific time. We include an instance of the trace_test_vector procedure as a method to
trace a test vector from the particular set represented by a shared variable of the pro-
tected type. The protected type declaration is:

type test_set is protected
 ...
 impure function get_vector_for_time (vector_time : time)
 return test_vector;

34 Chapter 1 — Enhanced Generics

 procedure trace_for_time is new trace_test_vector
 generic map (get_test_vector => get_vector_for_time);

end protected test_set;

We might declare two shared variables of this protected type, representing two
distinct sets of test vectors:

shared variable main_test_set, extra_test_set : test_set;

If we invoke the trace_for_time method on one of the shared variables:

main_test_set.trace_for_time(100 ns);

the instance of the trace_test_vector procedure invokes the actual subprogram pro-
vided for the instance of the protected type. That is, it invokes the
get_vector_for_time method associated with the shared variable main_test_set. If, on
the other hand, we invoke the trace_for_time method on the other shared variable:

extra_test_set.trace_for_time(100 ns);

the instance of the trace_test_vector procedure invokes the get_vector_for_time
method associated with the shared variable extra_test_set. What this reveals is that
each shared variable of the protected type binds its get_vector_for_time method,
which has access to the shared variable’s state, as the actual generic procedure in its
instance of the trace_test_vector procedure. That instance, provided as a method of
the shared variable, thus has indirect access to the shared variable’s state.

The second case to consider is declaration of an uninstantiated subprogram within a
protected type. That uninstantiated procedure is not itself a method, since it cannot be
called. However, it can be instantiated within the protected type to provide a method.
Moreover, each shared variable of the protected type contains a declaration of the unin-
stantiated subprogram. That subprogram can be instantiated, giving a subprogram that
has access to the items encapsulated in the shared variable. We will illustrate these mech-
anisms with an example.

EXAMPLE 1.14 Stimulus list with visitor traversal

For a design requiring signed stimulus values, we can declare a procedure for dis-
playing a signed value to the standard output file, as follows:

procedure output_signed (value : in signed) is
 use std.textio.all;
 variable L : line;
begin
 write(L, value);

1.5 Generic Subprograms 35

 writeline(output, L);
end procedure output_signed;

We also declare a protected type for a list of signed stimulus values:

type signed_stimulus_list is protected
 ...

 procedure traverse_with_in_parameter
 generic (procedure visit (param : in signed));

 procedure output_all is new traverse_with_in_parameter
 generic map (visit => output_signed);

end protected signed_stimulus_list;

The protected type includes an uninstantiated procedure to apply a visitor pro-
cedure to each element in the list of signed values. It instantiates the traversal proce-
dure to provide a method that displays each element. We can use this protected type
to declare a shared variable and then invoke the method to display its element
values:

shared variable list1 : signed_stimulus_list;
...

list1.output_all;

Suppose now we want to use the traversal procedure to accumulate the sum of
element in a list so that we can calculate the average value. We can provide another
action procedure and use it in a further instantiation of the traversal procedure:

variable sum, average : signed(31 downto 0);
variable count : natural := 0;

procedure accumulate_signed (value : in signed) is
begin
 sum := sum + value;
 count := count + 1;
end procedure accumulate_signed;

procedure accumulate_all_list1 is
 new list1.traverse_with_in_parameter
 generic map (visit => accumulate_signed);
...

accumulate_all_list1;
average := sum / count;

36 Chapter 1 — Enhanced Generics

In this case, the instance is a procedure declared externally to the protected
type. However, since it is an instance of a subprogram defined within the shared
variable list1, the instance has access to the encapsulated items within list1. The
instance accumulate_all_list1 thus applies the accumulate_signed visitor procedure
to each element within list1.

If we want to calculate the average value of any list of elements, we need to
wrap these declarations up in a procedure that has a shared variable as a parameter.
That includes declaring the instance of the traversal procedure within the outer pro-
cedure. The complete procedure would be:

procedure calculate_average
 (variable list : inout signed_stimulus_list
 variable average : out signed) is

 variable sum : signed(average’range);
 variable count : natural := 0;

 procedure accumulate_signed (value : in signed) is
 begin
 sum := sum + value;
 count := count + 1;
 end procedure accumulate_signed;

 procedure accumulate_all is
 new list.traverse_with_in_parameter
 generic map (visit => accumulate_signed);

begin
 accumulate_all;
 average := sum / count;
end procedure calculate_average;

In this case, the instance of the traversal procedure is also declared externally to
the protected type. However, it is an instance of the subprogram defined within the
shared variable list provided as a parameter to the calculate_average procedure.
Logically, each time the calculate_average procedure is called, a new instance of the
traversal procedure is defined particular to the actual shared variable provided as the
parameter. The instance thus applies the local accumulate_signed visitor procedure
to each element within the actual shared variable.

1.6 Generic Packages

One of the common uses of packages is to declare an abstract data type (ADT), consist-
ing of a named type and a collection of operations on values of the type. We have seen
in Section 1.2 that we can include a generic list in a package declaration to make the

1.6 Generic Packages 37

package reusable for different actual types and operations. Often, the package for an
ADT is reusable in this way.

Suppose we have an ADT specified in a package with generics, and we want to pro-
vide a further package extending the types and operations of the ADT. To make the
extension package reusable, we would have to provide a generic type to specify an
instance of the ADT named type, along with generic subprograms for each of the ADT
operations. If the ADT has many operations, specifying them as actual generic subpro-
grams in every instance of the extension package would be extremely onerous. To avoid
this, VHDL-2008 allows us to specify an instance of the ADT package as a formal generic
package of the extension package. Once we’ve instantiated the ADT package, we then
provide that instance as the actual generic package of the extension package.

There are three forms of formal generic package declaration that we can write in a
generic list. The first form is:

generic (...;
 package formal_pkg_name is new uninstantiated_pkg_name
 generic map (<>);
 ...);

In this case, formal_pkg_name represents an instance of the uninstantiated_pkg_
name package, for use within the enclosing unit containing the generic list. In most use
cases, the enclosing unit is itself an uninstantiated package. However, we can also spec-
ify formal generic packages in the generic lists of entities and subprograms. When we
instantiate the enclosing unit, we provide an actual package corresponding to the formal
generic package. The actual package must be an instance of the named uninstantiated
packge. The box notation “<>” written in the generic map of the formal generic package
specifies that the actual package is allowed to be any instance of the named uninstanti-
ated package. We use this form when the enclosing unit does not depend on the particu-
lar actual generics defined for the actual generic package.

No doubt, all of this discussion of packages within packages and generics at different
levels can become confusing. The best way to motivate the need for formal generic pack-
ages and to sort out the relationships between the pieces is with an example.

EXAMPLE 1.15 Fixed-point complex numbers

VHDL-2008 defines a new package, fixed_generic_pkg (described in Section 8.4), for
fixed-point numbers represented as vectors of std_logic elements. The package is an
uninstantiated package, with generic constants specifying how to round results, how
to handle overflow, the number of guard bits for maintaining precision, and whether
to issue warnings. The package defines types ufixed and sfixed for unsigned and
signed fixed-point numbers; and numerous arithmetic, conversion and input/output
operations. We can instantiate the package with values for the actual generic con-
stants to get a version with the appropriate behavior for our specific design needs.

Now suppose we wish to build upon the fixed-point package to define fixed-
point complex numbers, represented in Cartesian form with fixed-point real and
imaginary parts. We want the two parts of a complex number to have the same left
and right index bounds, implying the same range and precision for the two parts. We

38 Chapter 1 — Enhanced Generics

can achieve that constraint by defining the complex-number type and operations in a
package with formal generic constants for the index bounds. The complex-number
type is defined using the sfixed type from an instance of the fixed-point package,
and the complex-number operations need to use fixed-point operations from that
instance. Thus, we include a formal generic package in the generic list of the com-
plex-number package, as follows:

library IEEE;
package complex_generic_pkg is
 generic (left, right : integer;
 package fixed_pkg_for_complex is
 new IEEE.fixed_generic_pkg
 generic map (<>));

 use fixed_pkg_for_complex.all;

 type complex is record
 re, im : sfixed(left downto right);
 end record;

 function "-" (z : complex) return complex;
 function conj (z : complex) return complex;
 function "+" (l : complex; r : complex) return complex;
 function "-" (l : complex; r : complex) return complex;
 function "*" (l : complex; r : complex) return complex;
 function "/" (l : complex; r : complex) return complex;

end package complex_generic_pkg;

Within the complex_generic_pkg package, the formal generic package
fixed_pkg_for_complex represents an instance of the fixed_generic_pkg package.
The box notation in the generic map indicates that any instance of
fixed_generic_pkg will be appropriate as an actual package. The use clause makes
items defined in the fixed_pkg_for_complex instance visible, so that sfixed can be
used in the declaration of type complex. The generic constants left and right are
used to specify the index bounds of the two record elements. The operations defined
for sfixed in the fixed_pkg_for_complex instance are also used to implement the
complex-number operations in the package body for complex_generic_pkg, as
follows:

package body fixed_complex_pkg is
 function "-" (z : complex) return complex is
 begin
 return (-z.re, -z.im);
 end function "-";
 ...
end package body fixed_complex_pkg;

1.6 Generic Packages 39

In the “–” operation for type complex, the “–” operation for type sfixed is
applied to each of the real and imaginary parts. The other operations use the sfixed
operations similarly.

In a design, we can instantiate both the fixed-point package and the complex-
number package according to our design needs, for example:

package dsp_fixed_pkg is new IEEE.fixed_generic_pkg
 generic map (fixed_rounding_style => true,
 fixed_overflow_style => true,
 fixed_guard_bits => 3,
 no_warning => false);

package dsp_complex_pkg is new work.complex_generic_pkg
 generic map (left => 3, right => -12,
 fixed_pkg_for_complex => dsp_fixed_pkg);

The first instantiation defines an instance of the fixed-point package, which pro-
vides the type sfixed and operations with the required behavior. The second instan-
tiation defines an instance of the complex-number package with left and right
bounds of 3 and –12 for the real and imaginary parts. The type sfixed and the corre-
sponding operations used within this instance of the complex-number package are
provided by the actual generic package dsp_fixed_pkg. We can use the packages to
declare variables and apply operations as follows:

use dsp_fixed_pkg.all, dsp_complex_pkg.all;
variable a, b, z : complex
variable c : sfixed;
...

z := a + conj(b);
z := (c * z.re, c * z.im);

The second form of formal generic package that we can write in a generic list is:

generic (...;
 package formal_pkg_name is new uninstantiated_pkg_name
 generic map (actual_generics);
 ...);

Again, formal_pkg_name represents an instance of the uninstantiated_pkg_name
package, for use within the enclosing unit containing the generic list. The actual generics
provided in the generic map of the formal generic package specify that the actual pack-
age must be an instance of the named uninstantiated package with those same actual
generics. We generally use this form when the enclosing unit also has another formal
generic package defined earlier in its generic list. The latter generic is expected to have a
generic package that is the same instance as the actual for the earlier generic package.
No doubt that statement is unfathomable due to the packages within packages within

40 Chapter 1 — Enhanced Generics

packages. An example, building on Example 1.15, will help to motivate the need for the
language feature and show how it may be used.

EXAMPLE 1.16 Mathematical operations on fixed-point complex numbers

In Example 1.15, we defined a package for complex number that provided a com-
plex-number type and basic arithmetic operations. We can build upon this package
to define a further package for more advanced mathematical operations on complex
values. We will also use a package of advanced mathematical operations defined for
fixed-point values:

package fixed_math_ops is
 generic (package fixed_pkg_for_math is
 new IEEE.fixed_generic_pkg
 generic map (<>));

 use fixed_pkg_for_math.all;

 function sqrt (x : sfixed) return sfixed;
 function exp (x : sfixed) return sfixed;
 ...

end package fixed_math_ops;

This package has a formal generic package for an instance of the fixed_generic_
pkg package, since the operations it applies to the function parameters of type
sfixed must be performed using the behavior defined for the sfixed type in the pack-
age instance proving the type. This is a similar scenario to that described in Example
1.15.

The advanced complex-number operations must be performed using the same
sfixed type and basic fixed-point operations used to define the complex-number
type and operations. It must also use the advanced fixed-point operations and the
complex-number type and operations, with those types and operations being based
on the same sfixed type and basic fixed-point operations. Thus, the advance com-
plex-number package must have formal generic packages for the fixed-point pack-
age, the fixed-point mathematical operations package, and the complex-number
package, as follows:

package complex_math_ops is
 generic (left, right : integer;
 package fixed_pkg_for_complex_math is
 new IEEE.fixed_generic_pkg
 generic map (<>);
 package fixed_math_ops is
 new work.fixed_math_ops
 generic map (fixed_pkg_for_math =>
 fixed_pkg_for_complex_math);

1.6 Generic Packages 41

 package complex_pkg is
 new work.complex_generic_pkg
 generic map (left => left, right => right,
 fixed_pkg_for_complex =>
 fixed_pkg_for_complex_math));

 use fixed_pkg_for_complex_math.all,
 fixed_math_ops.all, complex_pkg.all;

 function "abs" (z : complex) return sfixed;
 function arg (z : complex) return sfixed;
 function sqrt (z : complex) return complex;
 ...

end package complex_math_ops;

The package body is

package body complex_math_ops is

 function "abs" (z : complex) return sfixed is
 begin
 return sqrt(z.re * z.re + z.im * z.im);
 end function "abs";
 ...

end package body complex_math_ops;

We can now instantiate the packages for a given design. For example, given the
instances dsp_fixed_pkg and dsp_complex_pkg declared in Example 1.15, we can
also declare instances of the advanced fixed-point operations package and the
advanced complex operations package:

package dsp_fixed_math_ops is new work.fixed_math_ops
 generic map (fixed_pkg_for_math => dsp_fixed_pkg);

package dsp_complex_math_ops is new work.complex_math_ops
 generic map (left => 3, right => -12,
 fixed_pkg_for_complex_math => dsp_fixed_pkg,
 fixed_math_ops => dsp_fixed_math_ops,
 complex_pkg => dsp_complex_pkg);

The third form of formal generic package that we can write in a generic list is:

generic (...;
 package formal_pkg_name is new uninstantiated_pkg_name
 generic map (default);
 ...);

42 Chapter 1 — Enhanced Generics

This form is similar in usage to the second form, but replaces the actual generics
with the reserved word default. We can use this third form when the named uninstanti-
ated package has defaults for all of its formal generics. The actual package must then be
an instance of the named uninstantiated package with all of the actual generics being the
same as the defaults. Those actual generics (for the actual generic package) can be either
explicitly specified when the actual package is instantiated, or they can be implied by
leaving the actual generics unassociated. Thus, this third form is really just a notational
convenience, as it saves us writing out the defaults again as actual generics in the generic
map of the formal generic package.

While generic packages might seem to be rather complex to put into practice, we
envisage that most of the time packages using generic packages will be developed by
personnel in support of design teams. They would normally provide source code tem-
plates for designers to instantiate the packages, including instantiating any dependent
packages as actual generics. Thus, the designers would be largely insulated from the
complexity.

For the developers of such packages, however, there are a number of rules relating
to formal and actual generic packages. As we have mentioned, the actual package corre-
sponding to a formal generic package must be an instance of the named uninstantiated
package. To summarize the rules relating to the generic map in the formal generic
package:

• If the generic map of the formal generic package uses the box (“<>”) symbol, the
actual generic package can be any instance of the named uninstantiated package.

• If the formal generic package declaration includes a generic map with actual gener-
ics, then the actual generics in the actual package’s instantiation must match the
actual generics in the formal generic package declaration.

• If the formal generic package declaration includes a generic map with the reserved
word default, then the actual generics in the actual package’s instantiation must
match the default generics in the generic list of the named uninstantiated package.

The meaning of the term “match” applied to actual generics depends on what kind
of generics are being matched. For generic constants, the actuals must be the same value.
It doesn’t matter whether that value is specified as a literal, a named constant, or any
other expression. For a generic type, the actuals must denote the same subtype; that is,
they must denote the same base type and the same constraints. Constraints on a subtype
include range constraints, index ranges and directions, and element subtypes. For
generic subprograms, the actuals must refer to the same subprogram, and for generic
packages, the actuals must refer to the same instance of a specified uninstantiated
package.

In the case of a default generic subprogram implied by a box symbol in the generic
list of the named uninstantiated package, the actual subprogram must be the subprogram
of the same name and conforming profile directly visible at the point where the formal
generic package is declared. For example, if an uninstantiated package is declared as

package pkg1 is
 generic (function "<" (L, R : integer)
 return boolean is <>));

1.7 Use Case: Generic Memories 43

 ...
end package pkg1;

we can declare a second package as follows:

package pkg2 is
 generic (package inst1 is new pkg1 generic map (default));
 ...
end package pkg2;

In this case, any package provided as an actual for inst1 must be an instance of
pkg1, such as the following:

package ascending_pkg1 is new pkg1
 generic map (T => integer);

Since the predefined “<” function for integer is visible at the point of declaring
ascending_pkg1, that function is used as the actual for the generic function “<” in the
instance of pkg1. At the place of declaring the formal generic package inst1 within the
generic list of pkg2, the predefined “<” function for integer is also directly visible, so it is
this function that must be matched as the actual for “<” in any instance of pkg1 supplied
as an actual for inst1. Thus, the following instantiation of pgk2 is legal:

package integer_pkg2 is new pkg2
 generic map (inst1 => ascending_pkg1);

1.7 Use Case: Generic Memories

In this use case, we will explore the use of extended generics for modeling memories.
We will develop a package of operations on memories, with the memory address width
and depth specified by generic constants, and the address and data types specified using
generic types. The package declares a type for signals representing RAM storage, and
operations to read, write, load and dump RAM contents. The package declaration is:

library IEEE;
use IEEE.std_logic_1164.std_logic_vector;

package memories is
 generic (width : positive;
 depth : positive;
 type address_type;
 type data_type;
 pure function to_integer (a : address_type)
 return natural is <>;
 pure function to_address_type (a : natural)
 return address_type is <>;
 pure function to_std_logic_vector (d : data_type)
 return std_logic_vector is <>;

44 Chapter 1 — Enhanced Generics

 pure function to_data_type (d : std_logic_vector)
 return data_type is <>);

 type RAM_type is array (0 to 2**depth - 1) of data_type;

 procedure read_RAM (signal RAM : in RAM_type;
 constant address : in address_type;
 signal data : out data_type);

 procedure write_RAM (signal RAM : out RAM_type;
 constant address : in address_type;
 constant data : in data_type);

 type format_type is (binary, hex);

 procedure load_RAM (signal RAM : out RAM_type;
 constant file_name : in string;
 constant format : in format_type;
 constant start_address : in address_type
 := to_address_type(0);
 constant finish_address : in address_type
 := to_address_type(2**depth - 1);
 variable ok : out boolean);

 procedure dump_RAM (signal RAM : in RAM_type;
 constant file_name : in string;
 constant format : in format_type;
 constant start_address : in address_type
 := to_address_type(0);
 constant finish_address : in address_type
 := to_address_type(2**depth - 1);
 variable ok : out boolean);

end package memories;

The formal generic constants width and depth specify the bit width of memory data
and addresses, respectively. The formal generic types address_type and data_type are
used for memory addresses and data, respectively. The memory has 2depth locations,
indexed from 0 to 2depth – 1, each storing a data_type value. Since we need to use integer
values to index an array storing the memory contents, we need a function to convert an
address to an integer; hence, the formal generic function to_integer. We also specify for-
mal generic functions for use in the load and dump operations: to convert from an inte-
ger to an address_type value, to convert from a std_logic_vector value to a data_type
value, and to convert from a data_type value to a std_logic_vector value. The reason for
the last two is that the load and dump operations will read and write data values using
the same formatting as that used for std_logic_vector values.

1.7 Use Case: Generic Memories 45

The type RAM_type is an array type used in models for signals representing RAM
contents. The procedures read_RAM and write_RAM each have a signal parameter of this
type, as well as parameters for the address and data. The load_RAM and dump_RAM pro-
cedures also have a RAM_type signal parameter, and load from or store to a file whose
name is specified in the file_name parameter. The start and finish addresses are specified
as parameters, with default values specified as integers converted to address_type values
using the formal generic conversion functions. The ok parameter indicates whether the
operation was successful.

The package body is:

package body memories is

 procedure read_RAM (signal RAM : in RAM_type;
 constant address : in address_type;
 signal data : out data_type) is
 begin
 assert to_integer(address) <= 2**depth - 1;
 data <= RAM(to_integer(address));
 end procedure read_RAM;

 procedure write_RAM (signal RAM : out RAM_type;
 constant address : in address_type;
 constant data : in data_type) is
 begin
 assert to_integer(address) <= 2**depth - 1;
 RAM(to_integer(address)) <= data;
 end procedure write_RAM;

 use std.textio.all;

 procedure load_RAM (signal RAM : out RAM_type;
 constant file_name : in string;
 constant format : in format_type;
 constant start_address : in address_type
 := to_address_type(0);
 constant finish_address : in address_type
 := to_address_type(2**depth - 1);
 variable ok : out boolean) is
 file load_file : text;
 variable status : file_open_status;
 begin
 ok := false;
 file_open(f => load_file, external_name => file_name,
 open_kind => read_mode, status => status);
 if status /= open_ok then
 return;
 end if;

46 Chapter 1 — Enhanced Generics

 -- code to read and parse memory file contents
 ...
 file_close(f => load_file);
 ok := true;
 end procedure load_RAM;

 procedure dump_RAM (signal RAM : in RAM_type;
 constant file_name : in string;
 constant format : in format_type;
 constant start_address : in address_type
 := to_address_type(0);
 constant finish_address : in address_type
 := to_address_type(2**depth - 1);
 variable ok : out boolean) is
 file dump_file : text;
 variable status : file_open_status;
 begin
 ok := false;
 file_open(f => dump_file, external_name => file_name,
 open_kind => write_mode, status => status);
 if status /= open_ok then
 return;
 end if;
 -- code to write memory file contents
 ...
 file_close(f => dump_file);
 ok := true;
 end procedure dump_RAM;

end package body memories;

The read_RAM procedure asserts that the address, converted to an integer value, lies
within the index range of the memory array type. It uses the converted address to index
the RAM signal, and assigns the indexed element value to the data signal parameter. The
write_RAM procedure is similar, but updates the indexed element using the data parame-
ter value.

The load_RAM procedure attempts to open the file named by the file_name parame-
ter. If it succeeds, the procedure then reads the file contents. Assuming the file is in Veri-
log memory format, the data values are read as std_logic_vector values, each of the
width specified by the width generic. These values are converted to data_type values
using the formal generic conversion function to_data_type. The dump_RAM procedure is
similar, but converts data_type values to std_logic_vector values using the to_std_logic_
vector formal generic function.

There are several common cases for address and data types. Specifically, addresses
are commonly of type natural, std_logic_vector, or unsigned; and data values are com-
monly of type natural, std_logic_vector, unsigned, or signed. In support of these com-
mon cases, we can define a package of conversion functions as follows:

1.7 Use Case: Generic Memories 47

library IEEE;
use IEEE.std_logic_1164.std_logic_vector;
use IEEE.numeric_std.unsigned;

package memories_support is
 generic (width : positive;
 depth : positive);

 -- Conversions for common actual types for address_type:
 -- natural, std_logic_vector, unsigned

 pure function to_integer (a: natural) return natural;

 -- to_integer [std_logic_vector return natural]
 -- provided by ieee.numeric_std_unsigned

 -- to_integer [unsigned return natural]
 -- provided by ieee.numeric_std

 pure function to_address_type (a : natural) return natural;

 pure function to_address_type (a : natural)
 return std_logic_vector;

 pure function to_address_type (a : natural) return unsigned;

 -- Conversions for common actual types for data_type:
 -- natural, std_logic_vector, unsigned, signed

 pure function to_std_logic_vector (d : natural)
 return std_logic_vector;

 pure function to_std_logic_vector (d : std_logic_vector)
 return std_logic_vector;

 pure function to_std_logic_vector (d : unsigned)
 return std_logic_vector;

 pure function to_std_logic_vector (d : signed)
 return std_logic_vector;

 pure function to_data_type (d : std_logic_vector)
 return natural;

 pure function to_data_type (d : std_logic_vector)
 return std_logic_vector;

48 Chapter 1 — Enhanced Generics

 pure function to_data_type (d : std_logic_vector)
 return unsigned;

 pure function to_data_type (d : std_logic_vector)
 return signed;

end package memories_support;

The package has width and depth generic constants, since these are needed to
determine the vector length for conversions from integer values to vector values. No
to_integer conversions are needed for std_logic_vector or unsigned, since these are pro-
vided by the numeric_std_unsigned and numeric_std packages, respectively. The func-
tion bodies are either identities or wrappers around type conversions or conversion
functions, as shown in the corresponding package body:

package body memories_support is

 pure function to_integer (a: natural) return natural is
 begin
 return a;
 end function to_integer;

 pure function to_address_type (a : natural) return natural is
 begin
 return a;
 end function to_address_type;

 pure function to_address_type (a : natural)
 return std_logic_vector is
 begin
 return IEEE.numeric_std_unsigned.to_stdlogicvector(a,
 depth);
 end function to_address_type;

 pure function to_address_type (a : natural) return unsigned is
 begin
 return IEEE.numeric_std.to_unsigned(a, depth);
 end function to_address_type;

 pure function to_std_logic_vector (d : natural)
 return std_logic_vector is
 begin
 return IEEE.numeric_std_unsigned(d, width);
 end function to_std_logic_vector;

1.7 Use Case: Generic Memories 49

 pure function to_std_logic_vector (d : std_logic_vector)
 return std_logic_vector is
 begin
 return d;
 end function to_std_logic_vector;

 pure function to_std_logic_vector (d : unsigned)
 return std_logic_vector is
 begin
 return IEEE.std_logic_1164.std_logic_vector(d);
 end function to_std_logic_vector;

 pure function to_std_logic_vector (d : signed)
 return std_logic_vector is
 begin
 return IEEE.std_logic_1164.std_logic_vector(d);
 end function to_std_logic_vector;

 pure function to_data_type (d : std_logic_vector)
 return natural is
 begin
 return IEEE.numeric_std_unsigned.to_integer(d);
 end function to_data_type;

 pure function to_data_type (d : std_logic_vector)
 return std_logic_vector is
 begin
 return d;
 end function to_data_type;

 pure function to_data_type (d : std_logic_vector)
 return unsigned is
 begin
 return IEEE.numeric_std.unsigned(d);
 end function to_data_type;

 pure function to_data_type (d : std_logic_vector)
 return signed is
 begin
 return IEEE.numeric_std.signed(d);
 end function to_data_type;

end package body memories_support;

To illustrate use of the memory packages, we develop a memory model for a flow-
through SSRAM with the following entity declaration:

50 Chapter 1 — Enhanced Generics

library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std.all;

entity test_RAM is
 generic (width : positive; depth : positive;
 hex_file_name : string := "");
 port (clk : in std_logic;
 en, we : in std_logic;
 addr : in unsigned(depth-1 downto 0);
 data_in : in std_logic_vector(width-1 downto 0);
 data_out : out std_logic_vector(width-1 downto 0));
end entity test_RAM;

The address is an unsigned vector of depth bits, and the data input and output are
std_logic_vector ports of width bits each. The generic hex_file_name allows us to specify
a file from which to initialize the memory. If the name is an empty string, no initialization
is done. The architecture body is:

architecture rtl of test_RAM is

 package my_memories_support is new work.memories_support
 generic map (width => width, depth => depth);
 use my_memories_support.all;

 package my_memories is new memories
 generic map
 (width => width,
 depth => depth,
 address_type => unsigned(depth-1 downto 0),
 data_type => std_logic_vector(width-1 downto 0));
 use my_memories.all;

 signal RAM : RAM_type;

begin

 RAM_init : process is
 variable ok : boolean;
 begin
 if hex_file_name /= "" then
 load_RAM(RAM => RAM,
 file_name => hex_file_name, format => hex,
 ok => ok);
 assert ok report "Error loading RAM from " & hex_file_name;
 end if;
 wait;
 end process RAM_init;

1.7 Use Case: Generic Memories 51

 RAM_proc : process (clk) is
 begin
 if rising_edge(clk) then
 if en = '1' then
 if wr = '1' then
 write_RAM(RAM, addr, data_in);
 data_out <= data_in;
 else
 read_RAM(RAM, addr, data_out);
 end if;
 end if;
 end if;
 end process RAM_proc;

end architecture rtl;

Since we’re using address and data types that are catered for by the support package,
we instantiate that package in the architecture body, providing the memory depth and
width values as actual generic constants. The use clause for the instance makes all of the
required conversion functions for the address and data types directly visible. Next, we
instantiate the memories package, providing the memory depth and width values as actu-
als for the generic constants, and the address and data port subtypes as actuals for the
address_type and data_type formal generic types. Since functions with the required
names and signatures are directly visible, they are used as actuals for the formal generic
functions. The use clause makes the type and the procedures from the package instance
directly visible. We use RAM_type as the type in a signal declaration for the SSRAM stor-
age. The RAM_init process checks the value of the hex_file_name generic, and if it is not
empty, calls the load_RAM procedure to initialize the SSRAM contents. The RAM_proc
process uses the write_RAM and read_RAM procedures to implement memory operations.

This page intentionally left blank

53

Chapter 2

Other Major Features

The enhancement of generics that we described in Chapter 1 is one of several major new
features in VHDL. In this chapter, we highlight the other major features that bring signifi-
cant new power to the language.

2.1 External Names

One of the characteristics of VHDL is that it allows a verification testbench to be written
in the same language as the design to be verified. However, some aspects of earlier ver-
sions of VHDL make it hard to verify designs. In particular, the scope and visibility rules
are intended to help us manage name spaces in complex designs by enforcing abstrac-
tion of interfaces and hiding of internal information. While they are good for a design in
isolation, they can prevent a testbench from accessing items internal to a design. A test-
bench may need to monitor the state of internal signals, or force internal signals to partic-
ular values.

VHDL-2008 provides a new naming feature, external names, that allows us to write a
testbench that accesses items not normally visible according to the hierarchical scope and
visibility rules. An external name specifies a hierarchical path through the design hierar-
chy to reach a declared constant, shared variable, or signal. Thus, a testbench using an
external name must have sufficient knowledge of the hierarchical structure of the design
for the path to be valid. Validity of the external name is assumed during analysis of the
testbench, and is checked during elaboration of the complete design hierarchy.

An external name is written in the following form:

<< class external_pathname : subtype >>

where the class is one of the object classes constant, signal, or variable; the external
pathname is the hierarchical path; and the subtype specifies a view of the object, in a
way similar to an alias. As an example, a testbench might use the following external
name to monitor the value of a signal within a design under verification:

assert <<signal .tb.duv.controller.state :
 std_logic_vector(0 to 4)>> /= "00000"
 report "Illegal controller state";

Within the testbench, this external name is a reference to a signal nested within the
component labeled controller, which is nested within the component labeled duv, which

54 Chapter 2 — Other Major Features

is within the top-level entity tb. The signal is interpreted as a std_logic_vector indexed
from 0 to 4. When the testbench is analyzed, the existence and type of the signal is not
checked. However, once the complete design hierarchy is elaborated, the signal must
exist and be of an appropriate type to match the subtype specified in the external name.

An external name is just a new form of name for a constant, signal or variable, so we
can use an external name at any place where a name is appropriate, subject to some
rules that we will return to shortly. That means we can refer to a constant or signal value
in an expression, and we can assign to a signal or include it in a port map. The rules for
forming a pathname only allow us to refer to items declared in concurrent regions of a
design (packages, entities, architectures, blocks and generate statements), so an external
variable name can only refer to a shared variable. We can use an external variable name
to invoke a method of the shared variable, for example:

<<variable .tb.duv_behavior.msg_fifo :
 fifo_type>>.put(corrupt_msg);

For an external name that refers to an object of a composite type, we can refer to an
element of the object. For example, given an array signal declared within a design, we
can index the array with an external name as the prefix:

<<signal .tb.duv_rtl.data_bus :
 std_logic_vector(0 to 15)>>(8) <= '1';

One common use case is to declare an alias for an external name. If we do that, we
need only write the full external name in the alias declaration. Thereafter, we can just use
the shorter alias name, making the model more succinct. For example, if we need to refer
to the data_bus signal in several places in a testbench, we could declare an alias for it:

alias duv_data_bus is
 <<signal .tb.duv_rtl.data_bus : std_logic_vector(0 to 15)>>;

and then just use the alias in the assignment and other places:

duv_data_bus(8) <= '1';
sign <= duv_data_bus(0);

In an alias declaration, we have the option of specifying a subtype after the alias
name, giving us a view of the named object as being of that subtype, for example:

alias identifier : subtype is name;

However, when the name we are aliasing is an external name, the subtype is speci-
fied in the external name. We do not repeat the subtype (or specify a conflicting sub-
type!) after the alias name. So the following two alias declarations are illegal:

alias duv_data_bus : std_logic_vector(0 to 15) is -- illegal!
 <<signal .tb.duv_rtl.data_bus : std_logic_vector(0 to 15)>>;

alias duv_data_bus : std_logic_vector(15 downto 0) is -- illegal!
 <<signal .tb.duv_rtl.data_bus : std_logic_vector(0 to 15)>>;

2.1 External Names 55

We can use an external constant name (or an alias of such a name) in an expression,
provided the constant has been elaborated and given a value by the time the expression
is evaluated. In some cases, expressions are evaluated during elaboration of a design. For
example, initial-value expressions and index-bound expressions in declarations are eval-
uated when the declaration is elaborated, so an external constant name appearing in
those places must refer to a constant that has already been elaborated. We can ensure
this is the case by writing the part of the design that includes the constant declaration
prior to the part of the design that contains the external constant name. VHDL’s elabora-
tion rules specify that the design is elaborated in depth-first top-to-bottom order. To illus-
trate how we can take account of this order, suppose we have an entity and architecture
for a design that declares a constant, as follows:

entity design is
 port (...);
end entity design;

architecture rtl is
 constant width : natural := 32;
 ...
begin
 ...
end architecture rtl;

Suppose also that we have a testbench entity and architecture:

entity testbench is
end entity testbench;

architecture directed of testbench is
 signal test_in :
 bit_vector(0 to <<constant .top.duv.width : natural>> - 1);
 ...
begin
 ...
end architecture directed;

We now assemble the design and testbench in a top-level entity and architecture:

entity top is
end entity top;

architecture level of top is
begin
 assert false
 "Width = " &
 integer'image(<<constant .top.duv.width : natural>>);
 duv : entity work.design(rtl);

56 Chapter 2 — Other Major Features

 tb : entity work.testbench(directed);
end architecture level;

In this case, the instance of the design under verification is elaborated before the
testbench instance. Thus, the constant declaration is elaborated and given a value before
the external constant name within the tb instance is elaborated. Had we written the two
instances in the reverse order, the constant would not have been elaborated at the time
of elaborating the external constant name, and an error would occur. The external con-
stant name in the assertion statement, on the other hand, is not evaluated until the model
is executed, by which time the model is completely elaborated. Thus, the external con-
stant name is allowed to precede the instance of the design under test in which the con-
stant is declared.

VHDL-2008 has a related rule regarding elaboration of a signal referenced by an
external signal name. If such a name (or an alias of such a name) is used in a port map,
the signal declaration must have been previously elaborated. The reason is that the hier-
archy of signal nets and drivers is built during elaboration. If a signal used in a port map
is not yet elaborated, the elaborator would have to revisit elaboration of that part of the
design hierarchy once the signal declaration was encountered. In general, allowing such
use of external signal names would make elaboration of signal nets indefinitely compli-
cated. The rule preventing such use allows elaboration to proceed in a well-defined
order, and is not onerous in practice. It usually just requires that the component instance
in which the signal is declared be written before the instance referencing the signal in a
port map. The typical scenario is that a design under verification be instantiated before
the testbench code containing external names.

The pathname in an external name identifies the location of the referenced object
within the design hierarchy. A design hierarchy has an instance of an entity and some
associated architecture at the top level. The entity and architecture can contain declara-
tions of objects. We can identify such an object by naming the entity followed by the
object name. The entity and architecture can also contain nested regions, which can in
turn contain declarations of objects. We can identify an object in such a nested region by
joining the object name onto the name for the region and the name for the top-level
entity. In the case of a block, the name for the region is the block label. In the case of a
generate statement, the name for the region is the generate label. A for-generate also
requires a value to indicate which iteration of the generate to use. In the case of a local
package (see Section 1.3), the name for the region is the package name. Note that we
cannot use the name of an uninstantiated package (see Section 1.2) in this way; we can
only use the name of an instance of the uninstantiated package. In the case of a compo-
nent instance, the name of the region is the component instance label, and the region is
that corresponding to the bound entity and architecture. We can apply these rules recur-
sively to build up a chain of region names, starting from the entity at the top of the
design hierarchy and leading through levels of nesting to identify any object instantiated
within the hierarchy.

The pathnames in the preceding external names are all examples of absolute path-
names, which specify the full chain of region names, starting from the top of the design
hierarchy containing the external name. An absolute pathname starts with a dot symbol
and separates each region name within the pathname with further dot symbols. The

2.1 External Names 57

pathname ends with the simple name of the referenced object. Thus, the absolute path-
name

.tb.duv_rtl.data_bus

refers to the object named data_bus declared within the entity and architecture bound to
the component labeled duv_rtl within the top-level entity tb. Similarly, the absolute path-
name

.tb.duv_rtl.memory(3).addr_bus

refers to the object named addr_bus within the for-generate iteration with index 3 within
the component instance mentioned.

EXAMPLE 2.1 Monitoring states in an embedded state machine

Suppose we are verifying a system that includes a finite-state machine control unit
embedded as a subcomponent. The control unit is described by the following entity
and architecture:

library IEEE; use IEEE.std_logic_1164.all;
entity control is
 port (clk, reset : in std_logic; ...);
end entity control;

architecture fsm of control is
 subtype state_type is std_logic_vector(3 downto 0);
 constant idle : state_type := "0000";
 constant pending1 : state_type := "0001";
 ...
 signal current_state, next_state : state_type;
begin
 state_reg : process (clk) is ...
 fsm_logic : process (all) is ...
end architecture fsm;

Note, in passing, that the fsm_logic process uses the notation all in its sensitivity
list, indicating that the process is sensitive to changes in all signals read within the
process. This new VHDL-2008 feature is described in Section 6.2. The entity and
architecture for the system being designed are:

library IEEE; use IEEE.std_logic_1164.all;
entity system is
 port (clk, reset : in std_logic; ...);
end entity system;

architecture rtl of system is
 component control is

58 Chapter 2 — Other Major Features

 port (clk, reset : in std_logic; ...);
 end component control;
begin
 control_unit : component control
 port map (clk => clk, reset => reset, ...);
 ...
end architecture rtl;

We can define a testbench entity and architecture that traces the sequence of
states in the control unit, writing each to a file:

entity state_monitor is
 generic (state_file_name : string);
end entity state_monitor;

architecture tracing of state_monitor is
 alias fsm_clk is
 <<signal .tb.system_duv.control_unit.clk : std_logic>>;
 alias fsm_state is
 <<signal .tb.system_duv.control_unit.current_state :
 std_logic_vector(3 downto 0)>>;
begin
 monitor : process (fsm_clk) is
 use std.textio.all;
 file state_file : text open write_mode is state_file_name;
 begin
 if falling_edge(fsm_clk) then
 write(L, fsm_state); writeline(state_file, L);
 end if;
 end process monitor;
end architecture tracing;

Note here that the external reference to the clk port of the control_unit instance
treats the port as a signal declared in the region corresponding to the instance. This
reflects the rule in VHDL that a port is a signal declared in the declarative region of
an entity. A generic constant of an instance would similarly be referenced using an
external constant name with a pathname for the instance.

The external references in this architecture assume that the complete design
hierarchy has an entity named tb at the root, and that the instance of the system to
be monitored is labeled system_duv within the top-level architecture. To satisfy
those assumptions, we write the top-level entity and architecture as:

library IEEE; use IEEE.std_logic_1164.all;
entity tb is
end entity tb;

architecture monitoring of tb is
 signal system_clk, system_reset : std_logic;

2.1 External Names 59

 ...
begin
 ... -- clock and reset generation

 system_duv : entity work.system(rtl)
 port map (clk => system_clk, reset => system_reset, ...);

 state_monitor : entity work.state_monitor(tracing)
 generic map (state_file_name => "fsm_states.dat");

end architecture monitoring;

Within the tracing architecture of the state_monitor entity, we write an external
name for the current_state signal with a std_logic_vector subtype. Normally, we
would declare an enumeration type for the states of a finite-state machine. If we
declare such a type locally within the control unit architecture, it would not be
visible to the external monitor. We would not be able to write an external name with
an appropriate subtype for the referenced signal. That is why we used a std_logic_
vector subtype for the state type in this example. If we want to declare an enumera-
tion type for an object that is to be externally monitored, we would have to declare
the type in a package that is visible both in the object declaration and in the monitor.

In some testbenches, the testbench code is written in the same region as an instance
of the design under verification. In those cases, there is no need to specify the absolute
path starting from the top-level entity. Instead, we can use a relative pathname, consist-
ing of the chain of region names starting from the immediately enclosing region, without
the leading dot symbol. For example, if a testbench architecture includes an instance of
the design under verification labeled duv, then the architecture could also contain the
assertion statement:

assert <<signal duv.controller.state :
 std_logic_vector(0 to 4)>> /= "00000"
 report "Illegal controller state";

Since the starting point for the relative pathname is the enclosing architecture region,
the first part of the pathname refers to the component instance, and subsequent parts
refer to items nested within the bound entity and architecture.

An important point to note when we are talking about the innermost region for a rel-
ative pathname is that only concurrent regions are considered. If we write an external
name with a relative pathname within a process or subprogram, that region does not
count, since it is not a concurrent region. Moreover, if the name is within a package that
is declared within a process or subprogram, the package region does not count either.
We need to look outward in the design hierarchy to find an enclosing entity, architecture,
block, or generate statement, or a package that is declared in such a region.

60 Chapter 2 — Other Major Features

EXAMPLE 2.2 Revised state monitoring for an embedded state machine

Returning to the test bench of Example 2.1, we can write the state-monitoring code
directly in the top-level architecture rather than in an instantiated entity and architec-
ture. In that case, we can use relative pathnames, and so do not have to assume the
name of the top-level entity. The revised top-level architecture is:

architecture monitoring of tb is
 signal system_clk, system_reset : std_logic;

 alias fsm_clk is
 <<signal system_duv.control_unit.clk : std_logic>>;
 ...
begin
 ... -- clock and reset generation

 system_duv : entity work.system(rtl)
 port map (clk => system_clk, reset => system_reset, ...);

 monitor : process (fsm_clk) is
 use std.textio.all;
 file state_file : text open write_mode is state_file_name;
 alias fsm_state is
 <<signal system_duv.control_unit.current_state :
 std_logic_vector(3 downto 0)>>;
 begin
 if falling_edge(fsm_clk) then
 write(L, fsm_state); writeline(state_file, L);
 end if;
 end process monitor;

end architecture monitoring;

In this architecture, the alias declarations refer to external names identified with
relative pathnames. The component label system_duv is declared in the same
enclosing architecture region as the alias declarations, so that label is the one used in
the pathnames. Even though the external name aliased to fsm_state is written within
the process region, the innermost region considered is that of the enclosing architec-
ture.

A further form of relative pathname allows us to identify an outer region as the start-
ing point for the pathname. We write such a pathname using one or more leading “^”
symbols in place of names, for example:

<<constant ^.^.comp.c : real>>

2.1 External Names 61

As for the relative pathname without the “^” symbols, we initially start with the
innermost concurrent region enclosing the external name. Then, for each “^” symbol, we
look in the next enclosing region. In the case of instantiated components, the region
enclosing an instance of a bound entity and architecture is the region in which the
instantiation is written. Thus, if we use this form of pathname in an entity or architecture,
we are making a strong assumption about the context in which the entity and architec-
ture are instantiated. Specifically, we are assuming that context also includes the names
written in the pathname. The complete design hierarchy must be built in such a way as
to ensure the assumption is met, otherwise an error will occur during elaboration.

EXAMPLE 2.3 Relative pathname in a nested monitor

Suppose we are verifying a multicore platform, in which each core includes an
instance of a CPU described by the following entity and architecture.

entity CPU is
 ...
end entity CPU;

architecture BFM of CPU is
 use work.CPU_types.all;
 signal fetched_instruction : instruction_type;
 ...
begin
 ...
end architecture BFM;

The architecture includes a signal representing a fetched instruction. The multi-
core platform is described by an entity with a generic constant specifying the num-
ber of cores. The architecture of the entity uses a for-generate statement to replicate
instances of the CPU.

entity platform is
 generic (num_cores : positive);
 port (...);
end entity platform;

architecture BFM_multicore of platform is
 ...
begin
 cores : for core_num in 1 to num_cores generate
 processor : entity work.CPU(BFM) ...;
 ...
 end generate cores;
 ...
end architecture BFM_multicore;

62 Chapter 2 — Other Major Features

We now consider the testbench that instantiates the platform entity and architec-
ture. Again, we use a generic constant to determine the number of cores in the
design under verification. We can include a monitor for each instantiated core by
writing a for-generate statement in the testbench, mirroring that in the platform archi-
tecture.

entity testbench is
 generic (num_cores : positive);
end entity testbench;

architecture test_BFM of testbench is
 ...
begin
 duv : entity work.platform(BFM_multicore)
 generic map (num_cored => num_cores)
 port map (...);

 monitors : for core_num in 1 to num_cores generate
 use work.CPU_types.all, work.CPU_trace.all;
 process is
 begin
 ...
 trace_instruction
 (<<signal
 ^.duv.cores(core_num).processor.fetched_instruction :
 instruction_type>>,
 ...);
 ...
 end process;
 end generate monitors;
end architecture test_BFM;

The process within the generate statement includes an external name referring to
the fetched_instruction signal in the corresponding core instance. The pathname
uses the value of the core_num generate parameter to identify the corresponding
iteration of the generate statement labeled cores in the design under verification.
Since the external name is in a process nested within a generate statement, the gen-
erate statement region is the innermost region used as the starting point for the rela-
tive pathname. For that reason, the pathname starts with a “^” symbol to look
outside the starting region to the enclosing architecture region. The duv component
instance is declared in that region, so it can be used as the next part of the path-
name.

We also need to be able to refer to an object declared in a package referenced by a
design. For objects declared in the package declaration, we can just use the package
name as a prefix in a normal selected name to refer to the object. However, objects

2.2 Force and Release 63

declared in the package body are not visible to designs. They would normally be refer-
enced indirectly using procedures declared in the package declaration. A testbench, on
the other hand, can use an external name to refer to such a hidden object. An object in a
package is not nested within the design hierarchy, but is considered to be nested within
the library containing the package. So the chain of region names starts with the library
logical name (the name defined by a library clause) and leads through the top-level
package name and any nested package names to the referenced object.

A package pathname takes a similar form to an absolute pathname, but starts with an
“@” symbol instead. That is followed by logical name of the library containing the pack-
age, then the package name, then the names of any intervening nested packages, and
finally the object name. For example, given the following package declaration and body
analyzed into the working library:

package p1 is
 ...
end package p1;

package body p1 is
 ...
 package p2 is
 signal s : bit;
 end package p2;
 ...
end package body p1;

we could write the following external name to refer to the signal:

<<signal @work.p1.p2.s : bit>>

2.2 Force and Release

When verifying a design, we often would like to be able to override the value assigned
to a signal in the normal course of design operation and force a different value onto the
signal. One reason for doing this is to set up a test scenario by forcing values to a state
that would normally be arrived at through a complex initialization sequence. Forcing the
values allows us to bypass the sequence and set up the scenario quickly, and so reduce
the verification time significantly. Another reason for forcing values is to inject erroneous
values into the design to ensure that it detects the error or otherwise responds appropri-
ately.

In earlier versions of VHDL, there was no way to override the value assigned to a
signal by the design, other than using commands provided by a simulator. That meant
we could not write VHDL testbench code to force signal values. VHDL-2008 now pro-
vides features for forcing and releasing the values of signals. We can force a signal with a
force assignment of the form

signal_name <= force expression;

64 Chapter 2 — Other Major Features

This is a sequential assignment written within a process forming part of the test-
bench. The effect is to cause a delta cycle and to force the named signal to take on the
value of the expression in that delta cycle, regardless of any value assigned to the signal
by any normal signal assignment. The signal is considered to be active during the delta
cycle, and if the forcing value is different from the previous value, an event occurs on the
signal. Processes sensitive to changes on the signal value would then respond to the
value change in the normal way.

The usual rules relating the type of the expression to the type of the target signal
apply for force assignments. The target signal name can be a normal signal name, or it
can be an external signal name or alias (see Section 2.1). Using external names would be
a common use case, since we would often need to force an internal signal of a design
from a testbench.

Once a signal has been forced, we can update the signal with another force assign-
ment to change the overriding value, again causing the signal to become active and pos-
sibly to have another event. We can do this as often as needed. Eventually, if we want to
stop forcing a signal, we can execute a release assignment of the form

signal_name <= release;

This causes a further delta cycle, with the signal being active. However, since the sig-
nal is no longer forced, the current values of its sources are used to determine the signal
value in the normal way. We can think of this as the design “taking back control” of the
signal.

EXAMPLE 2.4 Simulated corruption of a state machine’s state value

Clocked sequential systems are usually controlled by a finite-state machine. If the
storage for the current state is corrupted, the system may be able to recover by tran-
sitioning from the illegal state back to an initial state. A testbench can verify that a
design under verification recovers correctly by forcing the signal storing the current
state of the state machine to an illegal value. It can then release the signal and moni-
tor recovery. The testbench process is:

verify_state_recovery : process is
 use work.control_pkg.all;
 alias clk is <<signal duv.clk : std_logic>>;
 alias current_state is
 <<signal duv.control.current_state : state_type>>;
begin
 ...
 -- inject corrupt state
 wait until falling_edge(clk);
 current_state <= force illegal_state_12;
 wait until falling_edge(clk);
 current_state <= release;
 -- monitor recovery activity

2.2 Force and Release 65

 ...
end process verify_state_recovery;

Our discussion of force assignments has so far focused on signals. We can also force
and release ports of a design, since they are a form of signal. However, for a port, we
distinguish between the driving value and the effective value. The driving value is the
value presented externally by an entity, and is determined by the internal sources within
the entity. The effective value is the value seen internally by an entity and is determined
by whatever is externally connected to the port, whether that be an explicitly declared
signal or a port of an enclosing entity. Depending on the port mode and the external
connections, the driving and effective values may be different. For example, an inout-
mode port of type std_logic might drive a '0' value, but the externally connected signal
might have another source driving a '1' value. In that case, the resolved value of the sig-
nal is 'X', and that value is seen as the effective value of the inout-mode port.

VHDL-2008 allows us to force the driving and effective values of a signal or port
independently by including a force mode in an assignment. For explicitly declared sig-
nals, where the driving and effective values are the same, the distinction makes no differ-
ence. For ports and signal parameters, we can force the driving value by including the
keyword out in the force assignment:

signal_name <= force out expression;

Alternatively, we force the effective value by including the keyword in in the force
assignment:

signal_name <= force in expression;

Once we’ve forced a port’s or signal parameter’s driving value, we can stop forcing it
by writing a release assignment with the keyword out:

signal_name <= release out;

Similarly, to release a forced effective value, we write a release assignment with the
keyword in:

signal_name <= release in;

We can force and release driving values of ports of mode out, inout, and buffer,
but not ports of mode in. Similarly, we can force and release driving values of signal
parameters of mode out and inout, but not signal parameters of mode in. One of the
VHDL-2008 changes for ports and parameters, described in Section 6.3, is that we can
read the value of an out-mode port or parameter. This means that ports and signal
parameters of all modes except linkage have effective values, and so we can force and
release the effective value of a port or signal parameter of any mode except linkage.

If we omit the force mode (out or in) in a force or release assignment, a default
force mode applies. For assignments to ports and signal parameters of mode in and to
explicitly declared signals, the default force mode is in, forcing the effective value. For

66 Chapter 2 — Other Major Features

assignments to ports of mode out, inout, or buffer, and to signal parameters of mode
out or inout, the default force mode is out, forcing the driving value.

EXAMPLE 2.5 Forcing disconnection of a port’s driving value

Serial buses such as I2C, USB and FireWire have bidirectional connections to the bus’
physical wires. This allows a device to drive the clock and data wires when transmit-
ting data and to sense the clock and data values when receiving. A testbench can
model a broken data driver connection by forcing a 'Z' value on the output part of
the bidirectional port, while allowing the input part of the port to operate normally.
The code in the testbench is

...
-- Test scenario: break in the output connection
<<signal duv.SDA : std_logic>> <= force out 'Z';
-- Monitor device operation under this fault condition
...
-- Restore connection for the next scenario
<<signal duv.SDA : std_logic>> <= release out;
...

VHDL allows us to assign a composite value to a collection of signals by writing the
collection in the form of an aggregate on the left-hand side of the assignment, for
example:

(carry_out, sum) <= ('0' & a) + ('0' & b);

Note, in passing, that this form of aggregate assignment is legal in VHDL-2008 (see
Section 6.4). We cannot, however, write an aggregate of signal names as the target of a
force or release assignment to force or release each of the signal values. Instead, we must
write a separate force or release assignment for each of the signals. For example, if we
want to force and release the driving values of the two ports carry_out and sum, we
would have to write:

sum <= force out unsigned'("00000000");
carry_out <= force out '1';
...

sum <= release out;
carry_out <= release out;

There is a further form of target signal for which we cannot write a force or release
assignment. Suppose we define a resolved signal of a composite type, such as an array
type. By that, we mean a signal with multiple sources, each of which is a composite
value. The resolution function for the signal takes an array of composite values and
determines a composite value as the resolved value of the signal. We cannot write a force
or release assignment with an element of such a signal as the target. We can only force or

2.3 Context Declarations 67

release the signal as a whole. This mirrors the requirements that a process driving such a
signal have a driver for all elements of the signal, and that sources for such a signal be
sources for the entire signal. Note that resolved composite signals are different from sig-
nals of resolved elements, for example, signals of type std_logic_vector. We can force
and release individual elements or slices of those signals, since each element is resolved
individually.

Another case to consider is a force or release assignment written in a subprogram.
VHDL has a rule that a signal assignment written in a procedure that is not contained
within a process can only assign to a signal parameter of the procedure. The rationale is
that assignment to a signal implies a driver for the signal. For signal parameters, the
driver used is the driver for the actual signal provided by the process that calls the proce-
dure. For other signals, a driver for the target signal would be implied for every process
that calls the procedure. Identifying all of the callers in a large model would be very dif-
ficult. Moreover, if the procedure body is written separately from the calling processes,
determining what drivers are created for a given process would be difficult. Thus, the
restriction makes VHDL designs easier to analyze and understand. Force and release
assignments, on the other hand, do not imply drivers. Rather, they would typically occur
in testbench code, often referring to the target signals with external names. For these rea-
sons, VHDL-2008 allows force and release assignments in procedures outside of pro-
cesses to signals other than signal parameters.

One final aspect to discuss is the effect of multiple concurrent force and release
assignments. Since they are sequential assignments written in processes, it is possible that
multiple forces and releases could occur for a given signal during a single simulation
cycle. The VHDL-2008 rules specify that if a force and release both occur, the effect is as
though the release is immediately overridden by the force, and so the signal remains
forced, but with the new force value. The effect of multiple forces is not defined. We
should write our testbench models to avoid that occurring. The effect of multiple
releases, however, is the same as a single release, and a release assignment on a signal
that is not forced has no effect.

2.3 Context Declarations

Complex designs often call upon design units from several libraries and make use of sev-
eral packages. As a consequence, each design unit in the design is preceded by a long
list of library and use clauses, many of which are common to all of the design units.
VHDL-2008 provides a new form of design unit, a context declaration, in which we can
gather a collection of library and use clauses. We can refer to a context declaration before
a design unit, rather than having to repeat the collection of library and use clauses. The
form of a context declaration is

context identifier is
 ... -- library clauses, use clauses and context references
end context identifier;

Within a context declaration, we write library and use clauses in the same form as in
a context clause preceding a design unit. We refer to a declared context with a context
reference of the form

68 Chapter 2 — Other Major Features

context context_name;

or, if we wish to refer to several context declarations:

context context_name, context_name, ...;

We can write a context reference in the context clause preceding a design unit, or
nested within another context declaration. In each case, the context reference is equiva-
lent to replacement by the list of library clauses and use clauses contained within the
named context declaration.

EXAMPLE 2.6 Organization-wide and project context declarations

Suppose the methodology support team in Widgets, Inc., has assembled a library of
reusable components, defined in a package widget_comps in a library with logical
name widget_lib. The components package refers to a utility package, widget_defs,
defining types and operations used across the organization. Both of these packages
reference the standard std_logic_1164 and numeric_std packages defined in library
IEEE. The methodology team can provide a context declaration for use by projects in
the organization:

context widget_context is
 library IEEE;
 use IEEE.std_logic_1164.all, IEEE.numeric_std.all;
 use widget_lib.widget_defs.all;
 use widget_lib.widget_comps.all;
end context widget_context;

This context declaration is analyzed into the widget_lib library. Given that a
design needs to include a library clause for widget_lib in order to refer to the context
declaration, there is no need to include that library clause in the context declaration
itself. A design unit could reference the context declaration as follows:

library widget_lib;
context widget_lib.widget_context;
entity sample is
 ...
end entity sample;

Now suppose the Dongle project within Widgets, Inc., uses additional compo-
nents provided by a third party, Gizmos Corp., defined by a package gizmo_pkg in
library gizmo_IP_lib. The project also maintains a library dongle_lib for verified
design units to be used in the project design flow, and a package dongle_comps
with component declarations for the design units. The project’s EDA support person
can provide a context declaration for these libraries and packages, as well as refer-
ring to the organization’s context declaration:

2.3 Context Declarations 69

context dongle_context is
 library widget_lib;
 context widget_lib.widget_context;
 library gizmo_IP_lib;
 use gizmo_IP_lib.gizmo_pkg;
 use dongle_lib,dongle_comps.all;
end context dongle_context;

The EDA support person analyzes this context declaration into the dongle_lib
library. A designer can then refer to the context in a design unit as follows:

library dongle_lib;
context dongle_lib.dongle_context;
entity frobber is
 ...
end entity frobber;

The reference to dongle_context expands to include the reference to the organi-
zation’s context and the library and use clauses for the third-party IP and the project
repository. The reference to the organization’s context in turn expands to include the
library and use clauses for the standard packages and the organization’s packages.
Thus, the context clause written is equivalent to the following expanded context
clause:

library dongle_lib;
library widget_lib;
library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std.all;
use widget_lib.widget_defs.all;
use widget_lib.widget_comps.all;
library gizmo_IP_lib;
use gizmo_IP_lib.gizmo_pkg;
use dongle_lib.dongle_comps.all;
entity frobber is
 ...
end entity frobber;

VHDL uses library logical names to refer to physical design libraries. The mapping
from a logical name to a physical library is implementation defined, and may vary
between analysis of different design units. In order to avoid confusion when using con-
text declarations, VHDL-2008 requires that a library logical name map to the same physi-
cal library during analysis of a context declaration and analysis of a reference to that
context declaration. For example, if the logical name gizmo_IP_lib in Example 2.6 refers
to /home/dongle/gizmo/gizmo_IP_lib when dongle_context is analyzed, the logical
name must refer to the same physical library when entity frobber is analyzed.

70 Chapter 2 — Other Major Features

As further reinforcement of this principle, we can’t include a context clause before a
context declaration, as we can for other design units. Thus, the following would be
illegal:

library fizz_lib; -- Illegal: precedes context declaration
context frazzle_ctx is
 use fizz_lib.fizz_pkg.all;
end context frazzle_ctx;

Instead, we should write the library clause inside the context declaration, so that it is
included for any design unit that references the context declaration. Another related rule
is that we cannot include a library clause referring to the working library, WORK, within a
context declaration. Nor can we refer to the library name WORK in a use clause. The rea-
son is that WORK is not defined for a context declaration, since context declarations don’t
have preceding context clauses.

Finally, VHDL-2008 defines two standard context declarations within the standard
library IEEE:

context IEEE_BIT_CONTEXT is
 library IEEE;
 use IEEE.NUMERIC_BIT.all;
end context IEEE_BIT_CONTEXT;

context IEEE_STD_CONTEXT is
 library IEEE;
 use IEEE.STD_LOGIC_1164.all;
 use IEEE.NUMERIC_STD.all;
end context IEEE_STD_CONTEXT;

A design based on bit values might refer to the first of these context declarations,
either in the context clause of a design unit or nested within a project context declara-
tion. Similarly, a design based on std_logic values might refer to the second of these con-
text declarations.

2.4 Integrated PSL

PSL is the IEEE Standard Property Specification Language (IEEE Std 1850). It allows spec-
ification of temporal properties of a model that can be verified either statically (using a
formal proof tool) or dynamically (using simulation checkers). VHDL-2008 allows PSL
code to be embedded as part of a VHDL model. This makes design for verification a
much more natural activity, and simplifies development and maintenance of models.
Since PSL is itself a significant language, we won’t describe all of its features in detail in
this book. Instead, we will just describe the way in which PSL can be embedded in
VHDL. For a full description of PSL and its use in verifying designs, the interested reader
is referred to other published books on the subject.1

1. See, for example, Cindy Eisner and Dana Fisman, A Practical Introduction to PSL, Springer, 2006.

2.4 Integrated PSL 71

In VHDL-2008 we can include PSL property, sequence, and default clock declara-
tions in the declarative part of an entity, architecture, block, generate statement, or pack-
age declaration. We can then use the declared properties and sequences in PSL directives
written in the statement parts of entities, architectures, blocks and generate statements.

Any properties that we write in PSL declarations and directives must conform to
PSL’s simple subset rules. In practice, this means that we can only write properties in
which time moves forward from left to right through the property. Two examples from
the PSL standard illustrate this. First, the following property is in the simple subset:

always (a -> next[3] b)

This property states that if a is true, then three cycles later, b is true; that is, time
moves forward three cycles as we scan the property left to right. In contrast, the follow-
ing property is not in the simple subset:

always ((a && next[3] b) -> c)

This property states that if a is true and b is true three cycles later, then c must have
been true at the time a was true. The problem with this property is that time goes back-
ward from b being true to c being true. A tool to check such a property is much more
complex than one to check properties in the simple subset.

PSL directives require specification of a clock that determines when temporal expres-
sions are evaluated. We can include a clock expression in a directive. However, since the
same clock usually applies to all directives in a design, it is simpler to include a default
clock declaration. If we write a default clock declaration in a region of a design, it
applies to any PSL directives written in that region. We can include at most one default
clock declaration in any given region.

There is one case where introduction of PSL embedded within VHDL leads to a pos-
sible ambiguity. Both PSL and VHDL include assert statements, but their meanings differ.
If we write a statement of the form

assert not (a and b) report "a and b are both true";

it could be interpreted as a regular VHDL concurrent assertion statement that is to be
checked whenever either of a or b changes value. Alternatively, in VHDL-2008, it could
be interpreted as a PSL assert directive that requires the property not (a and b) to hold at
time 0. In the interest of backward compatibility, VHDL-2008 interprets such ambiguous
statements as regular VHDL concurrent assertion statements. If we really want to write a
PSL assert directive of this form, we could modify the property so that it is unambigu-
ously a PSL property, for example:

assert next[0] not (a and b) report "a and b are both true";

EXAMPLE 2.7 Pipelined handshake assertion

In their book Assertion-Based Design,1 Foster et al describe a verification pattern for
a system in which handshaking is pipelined. In their example, a system can receive
up to 16 requests before acknowledging any of them. The system counts the number

72 Chapter 2 — Other Major Features

of requests and acknowledgments and includes an assertion that, for every request
with a given request count, there is an acknowledgment with the same count within
100 clock cycles. We can describe the system in VHDL as follows:

library IEEE; context IEEE.IEEE_STD_CONTEXT;
entity slave is
 port (clk, reset : in std_logic;
 req : in std_logic;
 ack : out std_logic;
 ...);
end entity slave;

architecture pipelined of slave is

 signal req_cnt, ack_cnt : unsigned(3 downto 0);

 default clock is rising_edge(clk);

 property all_requests_acked is
 forall C in {0 to 15}:
 always {req and req_cnt = C} |=>
 {[*0 to 99]; ack and ack_cnt = C};

begin

 req_ack_counter : process (clk) is
 begin
 if rising_edge(clk) then
 if reset = '1' then
 req_cnt <= "0000"; ack_cnt <= "0000";
 else
 if req = '1' then req_cnt <= req_cnt + 1; end if;
 if ack = '1' then ack_cnt <= ack_cnt + 1; end if;
 end if;
 end if;
 end process req_ack_counter;
 ...

 assert all_requests_acked;

end architecture pipelined;

The counters for requests and acknowledgments are implemented using the sig-
nals req_cnt and ack_cnt and the process req_ack_counter. We declare a property,

1. Harry D. Foster, Adam C. Krolnik, and David J. Lacey, Assertion-Based Design, Kluwer Academic Publishers,
2003.

2.4 Integrated PSL 73

all_requests_acked that expresses the verification condition for the design. We also
include a default clock declaration for the architecture. It applies to the assert direc-
tive that we write in the statement part of the architecture, asserting that the verifica-
tion condition holds.

In PSL, verification code can be written in verification units (vunit, vprop and
vmode units) that are bound to instances of VHDL entities and architectures. VHDL-2008
considers such verification units as primary design units. Thus, they can be declared in
VHDL design files and analyzed into VHDL design libraries.

A verification unit can include binding information that identifies a component
instance to which directives apply. Alternatively, in VHDL-2008, we can bind a verifica-
tion unit as part of the configuration of a design. One place to do that is in a configura-
tion declaration. If we want to bind one or more verification units to the top-level entity
in a configuration declaration, we include binding information as follows:

configuration config_name of entity_name is
 ... -- use clauses, attribute specifications,
 -- group declarations
 use vunit verification_unit_name, ...;
 for architecture_name
 ...
 end for;
end configuration config_name;

Whenever the configuration declaration is instantiated, either at the top-level of a
design hierarchy or as a component instance within a larger design, the named verifica-
tion units are bound to the instance of the named entity and architecture. That means the
names used in the verification units are interpreted in the context of the entity instance.

We can also bind verification units to component instances that are configured by a
component configuration nested within a configuration declaration. The augmented form
of component configuration, assuming the components are bound to an entity and archi-
tecture, and the architecture is further configured, is:

for instance_name, ... : component_name
 use entity entity_name(architecture_name);
 use vunit verification_unit_name, ...;
 for architecture_name
 ...
 end for;
end for;

In this case, the named verification units are bound to the instances specified in the
component configuration.

The third place in which we can bind verification units in a VHDL design is in a con-
figuration specification in the architecture or block where components are instantiated.
The augmented form, again assuming components are bound to an entity and architec-
ture, is:

74 Chapter 2 — Other Major Features

for instance_name, ... : component_name
 use entity entity_name(architecture_name);
 use vunit verification_unit_name, ...;
end for;

This is similar to the form in a component configuration, but without the nested con-
figuration for the architecture. Indeed, in order to make the syntax of a configuration
specification more consistent with that of a component configuration, VHDL-2008 allows
the reserved words end for to be used in a configuration specification even if there is no
verification unit binding. On the other hand, if verification unit bindings are included, the
end for reserved words are required.

Since a verification unit may include binding information as part of its declaration,
there is potential for that information to conflict with binding information we write in a
configuration. VHDL-2008 prevents such conflict by making it illegal to bind a verifica-
tion unit in a configuration if the declaration of the unit already includes binding infor-
mation. Hence, we would normally only write verification bindings in configurations for
general-purpose verification units, and not for those written with particular instances in
mind. In any case, it would be an error if we wrote a verification unit binding for a com-
ponent instance that had no bound entity and architecture.

In addition to binding verification units directly in their declaration or indirectly in
configurations, VHDL-2008 allows a tool to bind additional verification units through
implementation-defined means. That might include command-line options, script com-
mands, or selection using a graphical user interface.

EXAMPLE 2.8 Binding a verification unit for complementary outputs

Suppose we have a verification unit that ensures two outputs named Q and Q_n are
complementary when sampled on rising edges of a signal named clk. The verifica-
tion unit is:

vunit complementary_outputs {
 assert always Q = not Q_n;
}

We can bind this verification unit to various parts of a design. First, a gate-level
model of a D Flip-flop might be described as follows:

entity D_FF is
 port (clk, reset, D : in bit;
 Q, Q_n : out bit);
end entity D_FF;

architecture gate_level of D_FF is
 component and2 is ...
 ...
begin
 G1 : and2 ...

2.4 Integrated PSL 75

 ...
end architecture gate_level;

A configuration declaration for the D flip-flop can bind the verification unit to
the top-level entity as follows:

configuration fast_sim of D_FF is
 use vunit complementary_outputs;
 for gate_level
 for all : and2
 ...
 end for;
 ...
 end for;
end configuration fast_sim;

We could then instantiate the configuration in a design, and for each instance,
the verification unit complementary_outputs would be bound to the instantiated
entity and architecture.

Second, suppose we instantiate a parallel-in/serial-out shift register within an
RTL design:

entity system is
 ...
end entity system;

architecture RTL of system is
 component shift_reg is
 ...
 end component shift_reg;
 ...
begin
 serializer : shift_reg ...;
 ...
end architecture RTL;

We can write a configuration declaration that binds an entity and architecture to
the component instance and that also binds the complementary_outputs verification
unit:

configuration verifying of system is
 for RTL
 for serializer : shift_reg
 use entity work.shift_reg(RTL);
 use vunit complementary_outputs;
 end for;
 end for;
end configuration verifying;

76 Chapter 2 — Other Major Features

Third, we could specify the same binding information directly in the architec-
ture, rather than in a separate configuration. The revised architecture is:

architecture RTL of system is
 component shift_reg is
 ...
 end component shift_reg;
 for serializer : shift_reg
 use entity work.shift_reg(RTL);
 use vunit complementary_outputs;
 end for;
begin
 serializer : shift_reg ...;
 ...
end architecture RTL;

There are some further points to make about PSL embedded in VHDL. First, since we
can declare properties and sequences within VHDL, we can also specify attribute values
for them. To that end, we can use the reserved words property and sequence in
attribute specifications for declared properties and sequences, respectively. For example:

property SingleCycleRequest is
 always req -> next not req;
sequence ReadCycle is
 { ba; {bb[*]} && {ar[->]; dr[->]}; not bb };

attribute enable_heuristics of
 SingleCycleRequest : propery is true;
attribute enable_heuristics of ReadCycle : sequence is true;

Second, PSL has a rich set of reserved words, some of which may conflict with VHDL
identifiers. In VHDL-2008, the following PSL keywords are VHDL reserved words, and
cannot be used as identifiers:

assert
assume
assume_guarantee
cover
default
fairness
property
restrict
restrict_guarantee
sequence
strong
vmode

2.5 IP Encryption 77

vprop
vunit

Other PSL reserved words are only recognized as such within VHDL code when they
occur in PSL declarations and directives. They can be used as VHDL identifiers, but such
identifiers are hidden within PSL declarations and directives. For example, we can legally
write the following declaration:

function rose (x : boolean) return boolean is ...;

But if we then declare a sequence:

sequence cover_fifo_empty is
 {reset_n && rose(cnt = 0)};

The reference to rose in the sequence declaration is to the PSL built-in function, not
to the declaration written in VHDL.

Finally, PSL includes features for declaring and instantiating macros, and allows for
preprocessor directives. These features can only be used in PSL verification units, not in
other VHDL design units.

2.5 IP Encryption

As designs become more complex, designers are increasingly using intellectual property
(IP) provided by IP vendors. IP providers invest considerable effort in developing their
products, and may be loath to release them without protecting their investment. From the
IP provider’s point of view, there are two potential places where their IP may be com-
promised. First, the IP provider must transmit the IP to a customer. During that process, a
malicious third party could eavesdrop on the transmission and intercept the IP. Second,
the customer must receive, store, and use the IP. During that process, an unscrupulous
customer could reuse the IP without compensating the provider. Hence, the customer is
technically treated as a malicious third party, though it would not be politic to express
the relationship in those terms! The real recipient of the IP is the customer’s tool, which
must use the IP only in ways approved by the IP provider and must avoid disclosing the
IP to the customer.

One way of protecting IP is for the provider to encrypt it in a form that can be
decrypted and used by a customer’s tools, but that cannot be read by the customer.
VHDL-2008 provides a flexible set of features to support such protection. Before we
describe them in detail, we will first review some of the basic principles and protocols
for encryption so that we can understand how to use the language features.

Information to be communicated between two parties can be protected by trans-
forming it with a cipher. A cipher is a function that takes plain text and a string of bits
called a key as input and produces cipher text as output. This process is called encryp-
tion. The reverse process, decryption, takes the cipher text and a key as input and repro-
duces the original plain text. The quality of a cipher is determined by the difficulty of
determining the plain text from the cipher text without the key. A good cipher will yield
significantly different cipher text for minor changes to the key used for encryption.

78 Chapter 2 — Other Major Features

There are two forms of cipher in widespread use. A symmetric cipher uses the same
key for both encryption and decryption. The key is called a secret key, since it must be
kept secret between the communicating parties. Should the secret be revealed to a third
party, they could decrypt any intercepted encrypted information. Examples of symmetric
ciphers are the Data Encryption Standard (DES), and the Advanced Encryption Standard
(AES).

An asymmetric cipher uses a pair of related keys, one for encryption and the other
for decryption. Key pairs are generated in such a way that it is infeasible to determine
either key from the other. Information encrypted with one key of a pair can only be
decrypted with the other key of the pair. Examples of asymmetric ciphers are RSA and
ElGamal. Asymmetric ciphers are used in protocols where each communicating party
generates a key pair. They keep one key of the pair, the private key, secret. They publish
the other key, the public key, through some means of dissemination that associates the
public key with the communicating party’s identity. For example, they might publish it
on their web site. A sender of information can use an asymmetric cipher to protect infor-
mation destined for a recipient. The sender encrypts the information using the recipient’s
public key. Only the recipient can then decrypt the information, since only they have the
corresponding private key.

While asymmetric ciphers can yield more secure communication, they involve signif-
icantly greater computation than symmetric ciphers. For that reason, most applications
involving asymmetric ciphers use a two-stage encryption process called a digital enve-
lope. First a session key is randomly generated, for use in one communication session
only. Next, that session key is used with a symmetric cipher to encrypt the information.
In order to communicate the session key to the recipient so that they can decrypt the
information, the session key is encrypted using an asymmetric cipher with the recipient’s
public key, and sent to the recipient. They are the only party able to decrypt the session
key, since only they have the right private key. They can then proceed to decrypt the
communicated information using the symmetric cipher with the decrypted session key.
The advantage of this approach is that only a relatively small amount of information (the
session key) need be processed using the computationally intensive asymmetric cipher.
The bulk of the information is processed using the lighter-weight symmetric cipher.

One problem that arises in protected communication is the need to verify that
received information did in fact originate with the purported sender, and that it was not
changed in transit (either by corruption or maliciously) by a third party. This problem is
addressed by having the sender transmit a digital signature for the information. The
sender uses a hash function to compute a digest of the information. A hash function
takes a (potentially large) string of bit as input and produces a small string of bits, the
digest, that depends on all of the input bits. A good hash function has the property that
two distinct input strings are highly unlikely to yield the same output string. Examples of
hash functions include SHA1, MD2, MD5, and RIPEMD. Having computed the digest of
the information, the sender encrypts it using an asymmetric cipher with their private key
and transmits the result as the digital signature. A recipient decrypts the signature using
the purported sender’s public key to retrieve the digest. The recipient also independently
calculates the digest of the received information using the hash function. If the two
digests are the same, the information has been received correctly, since only the real
sender’s public key could decrypt the digest correctly, and only the real information
would yield the same digest. If, on the other hand, the digests differ, then either the

2.5 IP Encryption 79

transmitted digest was encrypted with someone else’s key, or the transmitted message
was changed. Either way, the transmission was compromised, and the recipient knows
not to trust the received information.

If we are to apply cryptographic techniques to transmission of VHDL models, we
need to consider the way in which the encrypted information is encoded. Plain-text
VHDL models consist of printable ASCII or Latin-1 characters and are immune to the way
ends of lines are encoded. Consequently, we can store and transmit plain-text models
through a variety of media without being concerned about encodings. However, the pro-
cess of encryption produces a string of bits, which cannot be guaranteed to be inter-
preted as printable characters. We cannot reliably transmit the encrypted model, since
some media might transform sequences of bits interpreted as line ends, or might interpret
sequences of bits as in-band control codes. To avoid these problems, we can encode the
encrypted model using an encoding method that uses printable characters to represent
the string of bits. A sender encrypts information and encodes it for transmission, and a
recipient decodes the received information and decrypts the result. Examples of encod-
ing methods include uuencode, base64, and quoted-printable, all of which are described
by Internet message-transfer standards.

With this overview of cryptography in hand, we can now discuss the features pro-
vided in VHDL-2008 to support cryptographic protection of IP. The features use a stan-
dard set of tool directives (see Section 9.21). A tool directive is an annotation included in
a VHDL design file that provides information to a tool processing the VHDL design. It
does not logically form part of the design itself. For IP protection, VHDL-2008 defines
protect directives that are used by an IP provider’s encryption tool to govern encryption
of sections of a VHDL design and by a customer’s decryption tool to decrypt those sec-
tions. The decryption tool is typically a simulator, synthesis tool, or some other tool that
deals with VHDL code. It uses the decrypted sections of the design, but does not store
them in any form that could be revealed to the customer. Protect directives each takes
one of three forms:

`protect keyword
`protect keyword = value
`protect keyword = (keyword = value, ...)

Like any tool directive, a protect directive starts with the “tick” symbol, and ends at
the end of the line. The keyword or keywords in a protect directive identify the kind of
information conveyed by the directive. Note that we write the keywords in boldface here
to indicate that they have special meanings in protect directives. They are not reserved
words outside of protect directives. The values are literal expressions of various types. If
we have a number of consecutive protect directives, we can merge them into a single
directive. Thus, we can write the sequence of directives

`protect keyword1 = value1
`protect keyword2 = value2
`protect keyword3

equivalently as

`protect keyword1 = value1, keyword2 = value2, keyword3

80 Chapter 2 — Other Major Features

An IP provider starts the process by identifying one or more sections of a VHDL
design file that they want to protect. They edit the design file to wrap each section in an
encryption envelope, consisting of one or more protect directives at the start of the sec-
tion, and a closing protect directive at the end of the section. The simplest form of
encryption envelope is:

`protect begin
... -- protected source code in plain-text form
`protect end

This simply delimits the protected source code, and assumes an encryption tool will
use default information about the ciphers, keys and encoding for encryption. More elab-
orate encryption envelopes precede the begin directive with protect directives specify-
ing ciphers, keys, encoding and other optional information.

The IP provider then processes the design file with an encryption tool to produce a
version of the design file with each encryption envelope replaced by a corresponding
decryption envelope of the following form:

`protect begin_protected
protect directives and encoded encrypted information
`protect end_protected

We will use a series of examples to show how the various directives are used to form
encryption and decryption envelopes for various use cases. In each case we will assume
that the decryption tool has access to the required keys, and that the encryption tool
knows about those keys. We will return to the topic of key exchange in Section 2.5.1.

EXAMPLE 2.9 Simple encryption envelope with symmetric cipher

In one of the simplest use cases, an IP provider wants to provide protected IP to a
customer for use with a single tool. We can use a symmetric cipher, for which the
key is known to both the IP provider and to the customer’s decryption tool. The IP
provider wraps the protected section in the source code in an encryption envelope,
as follows:

entity accelerator is
 port (...);
end entity accelerator;

architecture RTL of accelerator is
`protect data_keyowner = "ACME IP User"
`protect data_keyname = "ACME Sim Key"
`protect data_method = "aes192-cbc"
`protect encoding = (enctype = "base64")
`protect begin
 signal ...
begin
 process ...

2.5 IP Encryption 81

 ...
`protect end
end architecture RTL;

The IP provider leaves the information about the entity’s interface and the name
of the architecture unprotected so that the customer can instantiate the design. The
entire inner workings of the architecture, however, are not to be revealed to the cus-
tomer. The data_keyowner and data_keyname directives specify identifiers that
the encryption and decryption tools can use to retrieve the key. The data_method
directive specifies the cipher to use for encryption and decryption, and the encod-
ing directive specifies the method to use to encode the cipher text produced by the
encryption tool.

The IP provider processes the original source code file with an encryption tool,
which produces a modified file with the encryption envelope replaced by a decryp-
tion envelope:

entity accelerator is
 port (...);
end entity accelerator;

architecture RTL of accelerator is
`protect begin_protected
`protect encrypt_agent = "Encryptomatic"
`protect encrypt_agent_info = "2.3.4a"
`protect data_keyowner = "ACME IP User"
`protect data_keyname = "ACME Sim Key"
`protect data_method = "aes192-cbc"
`protect encoding=(enctype="base64", line_length=40, bytes=4006)
`protect data_block
encoded cipher-text
...
`protect end_protected
end architecture RTL;

The encrypt_agent and encrypt_agent_info directives provide information
about the encryption tool. This can help in tracking down any problems that might
arise. The directives specifying the key, cipher, and encoding method are replicated
in the decryption envelope. In the case of the encoding directive, further informa-
tion about the maximum line length for the encoded cipher text and the number of
bytes of cipher text is also provided. The encoded cipher text then starts immediately
after the data_block directive. The end_protected directive marks the end of the
decryption envelope.

82 Chapter 2 — Other Major Features

EXAMPLE 2.10 Digital envelope encrypted for a single customer

One of the problems with using a symmetric cipher to encrypt IP is that the risk of
the secret key being divulged. We can avoid that risk by using a digital envelope to
transmit the IP. The IP provider includes directives in the encryption envelope to
specify a cipher and key to use to encrypt a session key. The IP provider can also
specify the symmetric cipher to use to encrypt the data with the session key. The
design file with the revised encryption envelope is:

entity accelerator is
 port (...);
end entity accelerator;

architecture RTL of accelerator is
`protect key_keyowner = "ACME IP User"
`protect key_keyname = "ACME Sim Key"
`protect key_method = "rsa"
`protect key_block
`protect data_method = "aes192-cbc"
`protect encoding = (enctype = "base64")
`protect begin
 signal ...
begin
 process ...
 ...
`protect end
end architecture RTL;

The key_keyowner and key_keyname directives specify identifiers that the
encryption tool can use to retrieve the customer’s public key. The key_method
directive specifies the cipher to use to encrypt the session key. The key_block
directive marks the end of the key information. Its presence in the encryption enve-
lope specifies use of a digital envelope, since the preceding key directives can be
omitted, implying default values. The data_method directive specifies the cipher to
use for encryption and decryption with the session key. The encoding directive
specifies the method to use to encode both the encrypted session key and the
encrypted section of the model.

The IP provider processes this source code file with an encryption tool, which
generates a session key and produces a modified file with the encryption envelope
replaced by a decryption envelope specifying a digital envelope:

entity accelerator is
 port (...);
end entity accelerator;

architecture RTL of accelerator is
`protect begin_protected

2.5 IP Encryption 83

`protect encrypt_agent = "Encryptomatic"
`protect encrypt_agent_info = "2.3.4a"
`protect key_keyowner = "ACME IP User"
`protect key_keyname = "ACME Sim Key"
`protect key_method = "rsa"
`protect encoding=(enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded cipher-text for session key
`protect data_method = "aes192-cbc"
`protect encoding=(enctype="base64", line_length=40, bytes=4006)
`protect data_block
encoded cipher-text for model code
...
`protect end_protected
end architecture RTL;

The directives specifying the key and cipher for encrypting the session key are
replicated in the decryption envelope. The encoding directive is also replicated to
specify the encoding for the encrypted session key, augmented with information
about the maximum line length for the encoded cipher text and the number of bytes
in the encrypted session key. The encoded cipher text for the session key then starts
immediately after the key_block directive. Next, the data_method directive speci-
fying the cipher for the model code is replicated in the decryption envelope. The
encoding directive is also replicated here, augmented with information about the
maximum line length and the number of bytes. The encoded cipher text for the
model code starts immediately after the data_block directive. The end_protected
directive marks the end of the decryption envelope.

EXAMPLE 2.11 Digital envelope encrypted for multiple customers or tools

In Example 2.9 and Example 2.10, the IP is encrypted in a form that can be
decrypted by a single customer or by a single tool. If the IP provider wants to distrib-
ute the IP to multiple customers or to a customer for use with multiple tools, he or
she would have to generate multiple versions using the encryption tool, once per
customer. We can avoid this repetition by using a variation on the digital envelope
approach. Again, we specify that a session key be used to encrypt the model code.
However, that session key is then encrypted multiple times, once per customer or
customer’s tool. The revised source file with the encryption envelope is:

entity accelerator is
 port (...);
end entity accelerator;

architecture RTL of accelerator is
`protect key_keyowner = "ACME IP User1"
`protect key_keyname = "ACME Sim Key"

84 Chapter 2 — Other Major Features

`protect key_method = "rsa"
`protect key_block
`protect key_keyowner = "ACME IP User2"
`protect key_keyname = "ACME Synth Key"
`protect key_method = "elgamal"
`protect key_block
`protect key_keyowner = "ACME IP User3"
`protect key_keyname = "ACME P&R Key"
`protect key_method = "aes192-cbc"
`protect key_block
`protect data_method = "aes192-cbc"
`protect encoding = (enctype = "base64")
`protect begin
 signal ...
begin
 process ...
 ...
`protect end
end architecture RTL;

Each group of key directives specifies information for encryption of a session
key for decryption by a given decryption tool. The first two groups specify encryp-
tion using asymmetric ciphers, as is normally done in digital envelopes. However, we
can also use a symmetric cipher to encrypt the session key, as specified in the third
group of key directives.

As in the earlier examples, the IP provider processes this source code file with
an encryption tool, which generates a session key and produces a modified file with
the encryption envelope replaced by a decryption envelope specifying a digital
envelope:

entity accelerator is
 port (...);
end entity accelerator;

architecture RTL of accelerator is
`protect begin_protected
`protect encrypt_agent = "Encryptomatic"
`protect encrypt_agent_info = "2.3.4a"
`protect key_keyowner = "ACME IP User1"
`protect key_keyname = "ACME Sim Key"
`protect key_method = "rsa"
`protect encoding=(enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded cipher-text for session key
`protect key_keyowner = "ACME IP User2"
`protect key_keyname = "ACME Synth Key"
`protect key_method = "elgamal"

2.5 IP Encryption 85

`protect encoding=(enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded cipher-text for session key
`protect key_keyowner = "ACME IP User3"
`protect key_keyname = "ACME P&R Key"
`protect key_method = "aes192-cbc"
`protect encoding=(enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded cipher-text for session key
`protect data_method = "aes192-cbc"
`protect encoding=(enctype="base64", line_length=40, bytes=4006)
`protect data_block
encoded cipher-text for model code
...
`protect end_protected
end architecture RTL;

In this case, the decryption envelope includes a group of key directives and a
key block corresponding to each group of key directives in the encryption envelope.
Each of the targeted decryption tools, when it processes the decryption envelope,
checks whether it has access to the key specified by each group of key directives. If
it has one of the keys, it can use that key to decrypt the session key, and thus
decrypt the model code.

EXAMPLE 2.12 Digital signature for authentication of the provider

Suppose our IP provider delivers encrypted IP by making it available for download
from a file server. They use our public key to deliver the IP in digital envelope form.
An unscrupulous third-party IP provider could seek to besmirch the name of our
trusted IP provider by spoofing their server and providing a buggy version of the IP.
Since the IP is encrypted using our public key, which is widely known, we would
not be aware of the switch.

The solution is for our trusted IP provider to include a digital signature in the
delivered model. The encryption envelope, revised from that in Example 2.11, is:

entity accelerator is
 port (...);
end entity accelerator;

architecture RTL of accelerator is
`protect key_keyowner = "ACME IP User"
`protect key_keyname = "ACME Sim Key"
`protect key_method = "rsa"
`protect key_block
`protect data_method = "aes192-cbc"
`protect digest_keyowner = "GoodGuys IP Author"

86 Chapter 2 — Other Major Features

`protect digest_keyname = "GoodGuys Signing Key"
`protect digest_key_method = "rsa"
`protect digest_method = "sha1"
`protect digest_block
`protect encoding = (enctype = "base64")
`protect begin
 signal ...
begin
 process ...
 ...
`protect end
end architecture RTL;

The digest directives in the encryption envelope specify that a digital signature
should be generated for the model code contained in the envelope. The
digest_method directive specifies the hash function for computing the digest, and
the digest_keyowner, digest_keyname and digest_key_method directives
specify the cipher and key to use to encrypt the digest. The digest_key_method
directive must specify an asymmetric cipher, since digital signatures are predicated
on the use of such ciphers.

The IP provider processes this source code file with an encryption tool, which
computes and encrypts the digest to form the digital signature. It uses the private key
of the key pair specified by the digest key directives. It includes the digest in the
decryption envelope corresponding to the encryption envelope:

entity accelerator is
 port (...);
end entity accelerator;

architecture RTL of accelerator is
`protect begin_protected
`protect encrypt_agent = "Encryptomatic"
`protect encrypt_agent_info = "2.3.4a"
`protect key_keyowner = "ACME IP User"
`protect key_keyname = "ACME Sim Key"
`protect key_method = "rsa"
`protect encoding=(enctype="base64", line_length=40, bytes=256)
`protect key_block
encoded cipher-text for session key
`protect data_method = "aes192-cbc"
`protect encoding=(enctype="base64", line_length=40, bytes=4006)
`protect data_block
encoded cipher-text for model code
...
`protect digest_keyowner = "GoodGuys IP Author"
`protect digest_keyname = "GoodGuys Signing Key"
`protect digest_key_method = "rsa"

2.5 IP Encryption 87

`protect digest_method = "sha1"
`protect digest_block
`protect encoding=(enctype="base64", line_length=40, bytes=16)
`protect digest_block
encoded cipher-text for digest
...
`protect end_protected
end architecture RTL;

Our trusted IP provider places this model on the file server for us to download.
Now suppose the unscrupulous third-party IP provider performs their network hack
and substitutes a buggy model. In their first attempt, they substitute the buggy code,
encrypted with a session key that they generate, and encrypt the session key with
our public key. Our decryption tool successfully decrypts the session key and uses it
to decrypt the model. However, since we want to verify that we have the right
model, the decryption tool computes the digest of the decrypted model using the
hash function specified in the digest_method directive. The tool also uses the pub-
lic key of the key pair identified in the digest key directives to decrypt the transmit-
ted digest. Since the model code is different from the original code provided by the
trusted IP provider, the two digests are not the same. Our decryption tool alerts us to
this fact, and we contact our trusted IP provider to attempt to remedy the problem.

Now suppose the unscrupulous third-party IP provider realizes their ruse was
unsuccessful, and tries a different tack. As well as substituting the buggy model, suit-
ably encrypted, they also generate a digital signature for the buggy model and substi-
tute it for the real digital signature. They use their own private key to encrypt the
digest, and include digest key directives that identify their key pair. Again, our
decryption tool successfully decrypts the model and calculates the digest. The tool
also attempts to decrypt the transmitted digest in order to compare with the com-
puted digest. At this point, there are two possible outcomes. First, if the tool does not
have access to the unscrupulous provider’s public key, it will be unable to proceed
and will warn us that it could not verify the digital signature. Alternatively, if the tool
does have access to the unscrupulous provider’s public key, it will use it to decrypt
the transmitted digest and compare it with the computed digest. In this case, the
digests will match. It will be up to us to check that signature verification was per-
formed with the key we expected. This illustrates that we need to be vigilant when
checking digital signatures, so that we are not duped by a simple key substitution.
We will discuss this more in Section 2.5.1, where we address the issue of key
exchange.

EXAMPLE 2.13 Viewport for accessing a declaration in a protected model

An IP provider may wish to allow limited access to some items declared within the
protected source code. In Examples 2.1 and 2.2 in Section 2.1, we showed a test-
bench monitoring the internal state of the control section of a design under verifica-
tion. An IP provider can allow such access by including a viewport directive in the
encryption envelope. An example is:

88 Chapter 2 — Other Major Features

entity accelerator is
 port (...);
end entity accelerator;

architecture RTL of accelerator is
`protect data_keyowner = "ACME IP User"
`protect data_keyname = "ACME Sim Key"
`protect data_method = "aes192-cbc"
`protect encoding = (enctype = "base64")
`protect viewport=(object="accelerator:RTL.state", access="RW”);
`protect begin
 signal state : std_logic_vector(3 downto 0);
 ...
begin
 process ...
 ...
`protect end
end architecture RTL;

While most of the inner workings of the architecture are not revealed to the cus-
tomer, the viewport directive provides the pathname of the object representing the
internal state signal and grants read/write access. The IP provider processes the
source code file with an encryption tool, which includes the viewport directive in
the decryption envelope:

entity accelerator is
 port (...);
end entity accelerator;

architecture RTL of accelerator is
`protect begin_protected
`protect encrypt_agent = "Encryptomatic"
`protect encrypt_agent_info = "2.3.4a"
`protect viewport=(object="accelerator:RTL.state", access="RW”);
`protect data_keyowner = "ACME IP User"
`protect data_keyname = "ACME Sim Key"
`protect data_method = "aes192-cbc"
`protect encoding=(enctype="base64", line_length=40, bytes=4006)
`protect data_block
encoded cipher-text
...
`protect end_protected
end architecture RTL;

The customer can instantiate the IP in a design and use an external name to refer
to the state signal:

2.5 IP Encryption 89

architecture monitoring of tb is
 ...
begin
 ... -- clock and reset generation

 accelerator_duv : entity work.accelerator(rtl)
 port map (...);

 monitor : process (clk) is
 use std.textio.all;
 file state_file : text open write_mode is state_file_name;
 alias accelerator_state is
 <<signal accelerator_duv.state :
 std_logic_vector(3 downto 0)>>;
 begin
 if falling_edge(clk) then
 write(L, accelerator_state); writeline(state_file, L);
 end if;
 end process monitor;

end architecture monitoring;

While the viewport directive provides access to the internal signal, it does not
provide complete information. The IP provider would also need to provide docu-
mentation describing the type of the signal and other relevant information.

Now that we have seen how protection envelopes are formed in various scenarios,
we will describe the details of VHDL-2008’s IP protection mechanism. As we have men-
tioned, it is based on a set of tool directives. The full list of directives is as follows:

`protect begin

Indicates the beginning of the source code to be encrypted in an encryption
envelope.

`protect end

Indicates the end of an encryption envelope.

`protect begin_protected

Indicates the beginning of a decryption envelope.

`protect end_protected

Indicates the end of a decryption envelope.

90 Chapter 2 — Other Major Features

`protect author = "author name"

Identifies the author of the protected IP. If this directive appears in an encryption
envelope, the encryption tool copies it unchanged to the corresponding decryp-
tion envelope.

`protect author_info = "author info"

Provides further information about the author of the protected IP, such as an
organization name or contact details. If this directive appears in an encryption
envelope, the encryption tool copies it unchanged to the corresponding decryp-
tion envelope.

`protect encrypt_agent = "encrypt agent name"

This directive must appear in a decryption envelope, and identifies the encryp-
tion tool that produced the decryption envelope.

`protect encrypt_agent_info = "encrypt agent info"

This directive may appear in a decryption envelope, and provides further infor-
mation about the encryption tool that produced the decryption envelope.

`protect key_keyowner = "key owner name"

Identifies the owner of a key or key pair used to encrypt a session key.

`protect key_keyname = "key name"

Used together with the key owner name to identify a particular key or key pair
used to encrypt a session key.

`protect key_method = "cipher name"

Specifies the cipher used to encrypt a session key.

`protect key_block

In an encryption envelope, specifies use of a digital envelope. In the corre-
sponding decryption envelope, indicates the beginning of the encoded cipher
text of the session key.

`protect data_keyowner = "key owner name"

Identifies the owner of a key or key pair used to encrypt the source code.

`protect data_keyname = "key name"

Used together with the key owner name to identify a particular key or key pair
used to encrypt the source code.

`protect data_method = "cipher name"

Specifies the cipher used to encrypt the source code.

2.5 IP Encryption 91

`protect data_block

In a decryption envelope, indicates the beginning of the encoded cipher text of
the source code.

`protect digest_keyowner = "key owner name"

Identifies the owner of the key pair used to encrypt the digest in a digital
signature.

`protect digest_keyname = "key name"

Used together with the key owner name to identify a particular key pair used to
encrypt the digest in a digital signature.

`protect digest_key_method = "cipher name"

Specifies the asymmetric cipher used to encrypt the digest in a digital signature.

`protect digest_method = "hash function name"

Specifies the hash function used to compute the digest in a digital signature.

`protect digest_block

In an encryption envelope, specifies use of a digital signature. In the corre-
sponding decryption envelope, indicates the beginning of the encoded cipher
text of the digest.

`protect encoding =
(enctype = "encoding name", line_length = integer, bytes = integer)

In an encryption envelope, this directive specifies the encoding to be used for
cipher text in the corresponding decryption envelope. The line_length keyword
and value are optional and specify the maximum line length for encoded text.
Text longer than this amount is split into multiple lines. The bytes keyword and
value are also optional and are ignored in an encryption envelope in any case.

In a decryption envelope, this directive appears preceding each key, data,
and digest block. It specifies the encoding, maximum line length, and number of
bytes of cipher text encoded in the block.

`protect viewport = (object = "object pathname", access = "access type")

Identifies an object declared within the protected source code for which access
is granted. If this directive appears in an encryption envelope, the encryption
tool copies it unchanged to the corresponding decryption envelope.

The pathname consists of the names of regions enclosing the declaration,
starting with the design unit name and continuing with the names of nested
regions, separated by “.” characters, for example,

"my_entity.cycle_monitor.cycle_count"

92 Chapter 2 — Other Major Features

If the object is declared within an architecture, the design unit name is the
combination of the entity name and the architecture name, separated by a colon,
for example,

"my_entity:RTL.current_state"

If the object is declared within a package body, the design unit name con-
sists of the package name, followed by “:body”, for example,

"IP_pkg:body.trace_file"

The access type string must be one of "R", "W", or "RW" (or the lowercase
equivalents), indicating read access, write access, or read/write access, respec-
tively.

`protect decrypt_license =
(library = "library name",
 entry = "acquisition routine name", feature = "feature name",
 exit = "release routine name", match = integer)

This directive specifies information for acquiring a decryption license. If the
directive appears in an encryption envelope, the encryption tool copies it
unchanged to the corresponding decryption envelope. If the directive appears in
a decryption envelope, a decryption tool must attempt to acquire the specified
license. If acquisition is successful, it continues decrypting the model. Otherwise,
it is expected to stop further decryption.

The library name string identifies the object library in the decryption tool’s
host file system containing routines for license management. The tool should call
the routine identified by the acquisition routine name, passing the feature name
string as an argument, to acquire a license. The tool should compare the return
value of the routine with the match integer. If they are equal, acquisition suc-
ceeded. When the tool has completed decryption, it should relinquish the
license by calling the routine identified by the release routine name.

`protect runtime_license =
(library = "library name",
 entry = "acquisition routine name", feature = "feature name",
 exit = "release routine name", match = integer)

This directive specifies information for acquiring a runtime license. If the direc-
tive appears in an encryption envelope, the encryption tool copies it unchanged
to the corresponding decryption envelope. If the directive appears in a decryp-
tion envelope, a decryption tool must attempt to acquire the specified license. If
acquisition is successful, the tool may continue with analysis and execution of
the model. Otherwise, it is expected not to execute the model. The information
in this directive is the same as that in a decrypt_license directive.

2.5 IP Encryption 93

`protect comment = "comment string"

This directive allows the IP author to provide comments in the model. If the
directive appears in an encryption envelope, either preceding or within the
source code, the encryption tool copies it unchanged to the corresponding
decryption envelope. If it is within the source code, the encryption tool skips
over it when encrypting the source code.

Several directives use strings to specify ciphers, encodings, and hash functions.
VHDL-2008 defines particular string values for these directives. If a tool supports the
given cipher, encoding, or hash function, it must use the defined string value to specify
it. A tool may also support other methods, in which case it uses an implementation-
defined string value. Table 2.1 shows the string values for specifying ciphers. Every tool
must support at least the DES cipher. Table 2.2 shows the string values for specifying
encodings. Every tool must support at least uuencode and base64. Table 2.3 shows the
string values for specifying hash functions. Every tool must support at least SHA1 and
MD5.

TABLE 2.1 Strings for specifying ciphers

String Cipher Cipher type

"des-cbc" DES in CBC mode. Symmetric

"3des-cbc" Triple DES in CBC mode. Symmetric

"aes128-cbc" AES in CBC mode with 128-bit key. Symmetric

"aes192-cbc" AES in CBC mode with 192-bit key. Symmetric

"aes256-cbc" AES in CBC mode with 256-bit key. Symmetric

"blowfish-cbc" Blowfish in CBC mode. Symmetric

"twofish128-cbc" Twofish in CBC mode with 128-bit key. Symmetric

"twofish192-cbc" Twofish in CBC mode with 192-bit key. Symmetric

"twofish256-cbc" Twofish in CBC mode with 256-bit key. Symmetric

"serpent128-cbc" Serpent in CBC mode with 128-bit key. Symmetric

"serpent192-cbc" Serpent in CBC mode with 192-bit key. Symmetric

"serpent256-cbc" Serpent in CBC mode with 256-bit key. Symmetric

"cast128-cbc" CAST-128 in CBC mode. Symmetric

"rsa" RSA. Asymmetric

"elgamal" ElGamal. Asymmetric

"pgp-rsa" OpenPGP RSA key. Asymmetric

94 Chapter 2 — Other Major Features

TABLE 2.2 Strings for specifying encodings

TABLE 2.3 Strings for specifying hash functions

We can now describe the rules for forming an encryption envelope in a model. The
rules allow for considerable flexibility, but we must at least include the begin and end
directives to mark out the source code to be encrypted.

We can precede the begin directive with a key_block directive if we want to spec-
ify use of digital envelopes. We can specify the cipher and key to use to encrypt the ses-
sion key by including a key_method and a key_keyowner directive (and optionally a
key_keyname directive). If we don’t specify the cipher and key, the encryption tool
chooses a default cipher and key. The key_method, key_keyowner and
key_keyname directives can appear in any order, but must immediately precede the
key_block directive. We can include more than one group of key-related directives, as
we described in Example 2.11.

We can also precede the begin directive with a data_method directive if we want
to specify the cipher to use to encrypt the source code. If we are not using digital enve-
lopes and we include a data_method directive, we must also include a
data_keyowner directive and optionally a data_keyname directive to identify the key.
If we are using digital envelopes, the encryption tool generates the session key, so we do
not include directives to identify the key. If we omit the data_method directive, the
encryption tool chooses a default cipher. All of the directives relating to encryption of the
source code must appear together in an encryption envelope.

If we want to include a digital signature, we precede the begin directive with a
digest_block directive. We can specify the cipher and key to use to encrypt the digest
by including a digest_key_method and a digest_keyowner directive (and optionally
a digest_keyname directive). If we don’t specify the cipher and key, the encryption

String Encoding methods

"uuencode" IEEE Std 1003.1™-2001 (uuencode Historical Algorithm)

"base64" IETF RFC 2045, also IEEE Std 1003.1 (uuencode -m)

"quoted-printable" IETF RFC 2045

"raw" Identity transformation; no encoding is performed, and the data
may contain non-printing characters.

Digest method string Required/optional Hash function

"sha1" Required Secure Hash Algorithm 1 (SHA-1).

"md5" Required Message Digest Algorithm 5.

"md2" Optional Message Digest Algorithm 2.

"ripemd-160" Optional RIPEMD-160.

2.5 IP Encryption 95

tool chooses a default cipher and key. Similarly, we can specify the hash function to use
by including a digest_method directive. If we don’t specify a hash function, the encryp-
tion tool chooses a default hash function. The digest_key_method,
digest_keyowner, digest_keyname, and digest_method directives can appear in
any order, but must immediately precede the digest_block directive.

Beyond these specifications, we can include directives to identify the IP author,
describe licenses and viewports, and specify the encoding to use. If we don’t specify the
encoding, the encryption tool chooses a default encoding. We can also include com-
ment directives anywhere within the encryption envelope, including in the source code
between the begin and end directives.

The rules that an encryption tool must follow to form a decryption envelope are
somewhat more prescriptive. Groups of directives must appear in a specified order, even
if the corresponding directives in the encryption envelope appeared in a different order
or distributed among other directives, though not all groups are required in every
decryption envelope. The layout of a decryption envelope is:

`protect begin_protected
author directives
license directives
encrypt agent directives
viewport directives
key block directives
data block directives
digest block directives
`protect end_protected

The author, license, and viewport directives are those that appear in the encryption
envelope, if any. The encrypt_agent directive and optionally and encypt_agent_info
directive are included by the encryption tool. If a digital envelope is used, there is a
group of key block directives for each encryption of the session key. The directives occur
in the following order, with only the key_keyname directive being optional:

key_keyowner directive
key_keyname directive
key_keymethod directive
encoding directive
key_block directive
encoded cipher text for session key

The data block directives occur in the following order, with the data_keyowner
and (optional) data_keyname directives only appearing if a digital envelope is not
being used:

data_keyowner directive
data_keyname directive
data_method directive
encoding directive

96 Chapter 2 — Other Major Features

data_block directive
encoded cipher text for source code

If a digital signature is used, the digest block directives occur in the following order,
with only the digest_keyname directive being optional:

digest_keyowner directive
digest_keyname directive
digest_key_method directive
digest_method directive
encoding directive
digest_block directive
encoded cipher text for digest

2.5.1 Key Exchange

In our description of IP exchange so far we have assumed that the IP provider’s encryp-
tion tool and the customer’s decryption tool each have the required keys. What we have
glossed over is how the tools get the keys. This is a very important topic, since protection
of IP from disclosure relies on the security of the encryption and decryption keys. Should
a key become known to an unauthorized party, the encrypted IP can be decrypted and
disseminated. Normally, when encryption is used to secure communication between two
parties, the parties are assumed to have an interest in the security of the encrypted mes-
sages and can be trusted to keep the keys secret. However, as we mentioned earlier,
when an IP provider delivers a model to a customer, it is the customer’s tool that is really
the communicating party. The IP provider may not trust the customer not to look at the
code or use it in some unauthorized way. A further complication is that the customer
may have to provide his or her tool’s key to an IP provider, creating an opportunity for
the customer to copy the key and subsequently decrypt the code. Given these consider-
ations, we can see that exchange of keys can be quite complicated. VHDL-2008 does not
specify how keys should be exchanged; that is left to negotiation between IP providers,
tool vendors, and customers. The following discussion, drawn from the VHDL standard,
explores some of the issues.

Many applications that require secure exchange of keys rely on public key infrastruc-
ture (PKI). Parties to communication generate, or are given, key pairs for use with asym-
metric ciphers. Each party keeps their private key secret, and publishes their public key,
for example, in a directory. In order to establish that a public key does, in fact, belong to
a given party, the public key is digitally signed by a trusted authority. The signed public
key is represented in the form of a digital certificate, containing the key and the signature.
The trusted authority is called a certification authority (CA). Many PKI systems have a
hierarchy of CAs, allowing a certificate signed by a subordinate CA to be signed by a
superior CA, allowing trust to be distributed hierarchically. One or more root CAs are
required to be globally trusted.

Key exchange for IP protection may be built upon public key infrastructure. For
example, a vendor of a decryption tool may embed a private key of a key pair in the tool
and register the public key with a CA. The tool can then generate a key pair for the tool’s
user, keeping the private key secret and signing the public key with both the vendor’s pri-

2.6 VHDL Procedural Interface (VHPI) 97

vate key and the user’s private key. This allows verification that the public key originates
with the instance of the vendor’s tool owned by the tool user. That public key may then
be used by IP authors to provide IP for that use of that tool only. Similar mechanisms
might also be employed within tools to allow exchange of private keys among tools with-
out disclosure to the tools’ user.

In addition to providing for secure key exchange, a decryption tool must take mea-
sures to ensure that stored keys are not disclosed to the tool user. If a tool user could read
a tool’s stored keys, the user could decrypt IP independently of the tool. One way of
ensuring security of a tool’s keys is for the tool to encrypt its key store using a secret key
embedded in the tool in a disguised manner, and to provide for update and re-encryption
of the secret key in case it is compromised.

2.6 VHDL Procedural Interface (VHPI)

VHPI is an application-programming interface (API) to VHDL tools. Using VHPI, a pro-
gram can access information about a VHDL model during analysis, elaboration, and exe-
cution of the model. VHPI allows development of add-in tools, such as linters, profilers,
code coverage analyzers, timing and power analyzers, and external models, among oth-
ers. Use of the VHPI to develop such tools is quite complex, and is beyond the scope of
this book. Instead, we will describe the way in which we can invoke VHPI programs as
part of a VHDL simulation.

VHPI programs are divided into two classes: foreign models and foreign applications.
A foreign model corresponds to an architecture or a subprogram decorated with the
'FOREIGN attribute. The VHPI program implements the behavior of the architecture or
subprogram, respectively. A foreign application does not have a counterpart in the VHDL
code. It is executed as part of simulation and performs application-specific processing.
Both forms of VHPI program can use API calls to obtain information about the VHDL
model, to react to changes in the simulation state, and to cause changes in the simulation
state.

2.6.1 Direct Binding

If we are to instantiate a foreign model as part of a VHPI design, we need to identify
where the VHPI program code is to be found. Typically, the provider of the foreign
model would provide documentation listing the names of libraries and functions to
which we should refer. The most straightforward method of referring to the VHPI pro-
gram code is to provide the information in the value of the 'FOREIGN attribute in a form
known as direct binding. For a foreign architecture, we write the attribute value in the
following form:

"VHPIDIRECT object_lib_path elab_function exec_function"

The keyword VHPIDIRECT specifies standard direct binding, and must be written in
uppercase. The object_lib_path is a host-dependent path and file name identifying the
binary object library in the host file system. It can contain any characters; however, if a
space character is required, we must precede it with a backslash character, and if a back-
slash character is required, we must double the backslash. The elab_function is the name

98 Chapter 2 — Other Major Features

of a function within the object library that performs elaboration for the foreign architec-
ture. It is called to elaborate each instance of the foreign architecture during elaboration
of the enclosing design. The exec_function is similarly the name of a function in the
object library that performs simulation for the foreign architecture. It is called once for
each instance of the foreign architecture during the initialization phase of simulation.

In the attribute value, we can substitute the keyword null for the object library path.
In that case, the host system locates the object library in an implementation-dependent
way. It might, for example, use an environment variable containing a list of pathnames.
We can also substitute the keyword null for the elaboration function name if the foreign
model does not require any action during elaboration. In both cases, the keyword null
must be written in lowercase.

EXAMPLE 2.14 Foreign processor core model

Suppose a foreign model for a CPU32 processor core is provided in an object library
called cpu32.a that we have installed in the directory /usr/local/cpu32. The
elaboration and execution functions for a bus-functional version are named
cpu32_bf_elab_f and cpu32_bf_exec_f, respectively. An entity and architecture that
use standard direct binding for the bus-functional version are:

entity cpu32 is
 generic (...);
 port (...);
end entity cpu_32;

architecture bus_functional of cpu32 is
 attribute FOREIGN of bus_functional : architecture is
 "VHPIDIRECT /usr/local/cpu32/cpu32.a " &
 "cpu32_bf_elab_f cpu32_bf_exec_f";
begin
end architecture bus_functional;

The attribute value for standard direct binding for a foreign subprogram takes a sim-
ilar form:

"VHPIDIRECT object_library_path exec_function"

In this case, the execution function name identifies a function that performs the
action of the foreign subprogram. It is called whenever the foreign subprogram is called
during simulation. For foreign subprograms, we can substitute the keyword null for the
execution function name. In that case, the execution function name is taken to be the
same as that of the foreign subprogram declared in the VHDL model, using the case of
letters in the VHDL declaration.

2.6 VHDL Procedural Interface (VHPI) 99

EXAMPLE 2.15 Foreign display subprograms

Suppose we are given subprograms that show 7-segment display digits graphically
on the screen during simulation. The subprograms are in the library displaylib.a,
and include a function named create_digit and a procedure named update_digit. We
can declare corresponding foreign subprograms in a package as follows:

package display_pkg is
 impure function create_digit (title : in string)
 return natural;
 attribute FOREIGN of create_digit : function is
 "VHPIDIRECT displaylib.a null";
 procedure update_digit (id : in natural;
 val : in bit_vector(0 to 7));
 attribute FOREIGN of update_digit : procedure is
 "VHPIDIRECT displaylib.a null";
end package display_pkg;

2.6.2 Tabular Registration and Indirect Binding

An alternative way of identifying the VHPI program code for a foreign model is to use a
tabular registry, which is a text file containing the identifying information. A tool can be
supplied with any number of tabular registry files, each describing one or more foreign
models or applications. The way in which we specify use of a tabular registry file is tool-
dependent. It might, for example, involve use of a command-line option or an entry in
an options-setting file. Each line of a tabular registry is an entry describing one foreign
model, foreign application, or library of VHPI programs. The file can also contain com-
ment lines, starting with characters “--”, and blank lines.

A foreign architecture is described by a line of the following form in a tabular
registry:

object_lib_name model_name vhpiArchF elab_function exec_function

The object_lib_name is a logical name for the binary object library containing the
VHPI program code. The host system maps the logical name to a physical object library
in some host-dependent way. The model_name is an identifier for the foreign architec-
ture in the object library. Both the library logical name and the model name can be writ-
ten as a normal identifier or, if non-standard characters are required, as an extended
identifier delimited by backslash characters. The keyword vhpiArchF indicates that the
line in the tabular registry describes a foreign architecture. It must be written using the
combination of uppercase and lowercase letters shown here. The elab_function and
exec_function are the names of the elaboration function and execution function, respec-
tively, in the object library. They serve the same purpose as described in Section 2.6.1,
and, in a similar way, the elaboration function name can be replaced by the keyword
null.

100 Chapter 2 — Other Major Features

Having described a foreign architecture in a tabular registry file, we can specify a
'FOREIGN attribute in the form of an indirect binding to use the foreign architecture for a
VHDL architecture. This form of attribute value is:

"VHPI object_lib_name model_name"

The object_lib_name and model_name identifiers must correspond to the library log-
ical name and model name identifiers specified in an entry in a tabular registry. The for-
eign architecture described in that entry is used for each instance of the VHDL
architecture decorated with the attribute.

EXAMPLE 2.16 Foreign processor core model using indirect binding

Suppose the provider of the CPU32 processor core model described in Example 2.14
also provides a tabular registry file for binding the bus-functional model. The file
contains the following entry:

cpu32lib \cpu32-bf\ vhpiArchF cpu32_bf_elab_f cpu_bf_exec_f

We decorate the architecture with the 'FOREIGN attribute using indirect binding
for the bus-functional model:

architecture bus_functional of cpu32 is
 attribute FOREIGN of bus_functional : architecture is
 "VHPI cpu32lib \cpu32-bf\";
begin
end architecture bus_functional;

Tabular registration and indirect binding for a foreign subprogram are similar. An
entry in a tabular registry file for a foreign procedure takes the form:

object_lib_name model_name vhpiProcF null exec_function

and for a foreign function:

object_lib_name model_name vhpiFuncF null exec_function

In both cases, the object_lib_name and model_name serve the same purpose as for a
foreign architecture, and the exec_function is the name of the function in the object
library that implements the subprogram’s actions. The function name can be replaced by
the keyword null, in which case the execution function is taken to be the same as the
model name. The 'FOREIGN attribute value for indirect binding to a foreign subprogram
is the same as that for indirect binding to a foreign architecture, namely,

"VHPI object_lib_name model_name"

The library name and model name are used in the same way to locate the tabular
registry entry for the foreign subprogram.

2.6 VHDL Procedural Interface (VHPI) 101

EXAMPLE 2.17 Foreign display subprograms using indirect binding

The provider of the display subprograms described in Example 2.15 might provide a
tabular registry file for the subprograms including the following entries:

displaylib create_digit vhpiFuncF null null
displaylib update_digit vhpiProcF null null

The second null in each entry indicates that the execution function names for
the subprograms are the same as the foreign model names, namely, create_digit and
update_digit. We declare the foreign subprograms and use indirect binding in the
'FOREIGN attribute values as follows:

package display_pkg is
 impure function create_digit (title : in string)
 return natural;
 attribute FOREIGN of create_digit : function is
 "VHPI displaylib create_digit";
 procedure update_digit (id : in natural;
 val : in bit_vector(0 to 7));
 attribute FOREIGN of update_digit : procedure is
 "VHPI displaylib update_digit";
end package display_pkg;

2.6.3 Registration of Applications and Libraries

We can use the tabular registration feature described in Section 2.6.2 to describe a VHPI
application to be run as part of a simulation. A line in the file for a foreign application
takes the form:

object_lib_name application_name vhpiAppF reg_function null

The object_lib_name is a logical name identifying the binary object library containing
the program code, and the application_name is an identifier for the foreign application in
the object library. The rules for these names are the same as those for names identifying
foreign models. Thus, they can be written as normal identifiers or extended identifiers.
The keyword vhpiAppF indicates that the line in the tabular registry describes a foreign
application and must be written using the combination of uppercase and lowercase let-
ters shown here. The reg_function is the names of a function in the object library that is
called at the start of simulation, before elaboration or initialization, to initialize the state
of the foreign application. This is all the information we need to supply to the tool to
include a foreign application in a simulation. The registration function performs any fur-
ther application-specific operations required.

102 Chapter 2 — Other Major Features

EXAMPLE 2.18 Registration of a power-estimation application

A third-party tool supplier might provide a tool for estimating dynamic power con-
sumption based on activity during simulation of a model. The tool’s program code is
installed in a binary object library in the host file system, with a logical name power-
estlib mapping to the library file. The application is named powerest, and the regis-
tration function in the library is called powerest_reg_f. The supplier provides a
tabular registry file with the following contents:

-- VHPI tabular registry for the PowerEst foreign application.
-- Map library name powerestlib to the pathname for the
-- powerestlib.a file in your installation.

powerestlib powerestlib vhpiAppF powerest_reg_f null

We invoke the simulator with a command-line option identifying this tabular reg-
istry file to include the power estimator tool in a simulation.

The final form of entry in a tabular registry file describes a library of VHPI programs,
including foreign models or applications. The form of the entry is:

object_lib_name null vhpiLibF reg_function null

As before, the object_lib_name is a logical name identifying the binary object library
containing the program code. The reg_function is the names of a function in the object
library that is called at the start of simulation. It uses the VHPI API to register each for-
eign model or application. This form of registration is convenient when a large suite of
VHPI programs is provided.

103

Chapter 3

Type System Changes

VHDL is a strongly-typed language, which means that every object has a specified type,
specification of types is explicitly stated, and correct use of types is required. One ratio-
nale for strong typing is that it helps tools detect errors early in the design process, usu-
ally during analysis, rather than later during elaboration or execution. This helps
designers avoid the escape of bugs into products. Another rationale is that it provides
extra information to an analyzer, so it can generate code optimized for a particular use of
data. There is a trade-off in supporting these benefits. The type rules can seem somewhat
restrictive or burdensome to the designer. In particular, rules that make it easier for a tool
to implement language constructs can make it harder for a designer to write code
expressing their intent.

In this chapter, we describe two ways in which VHDL-2008 changes the type system
to relax some of the type rules. Both changes deal with rules relating to elements of com-
posite types. The changes imply that tools must do more work to check correctness of
designs and generate corresponding code for simulation. However, they remove restric-
tions that designers have found burdensome in earlier versions of VHDL.

3.1 Unconstrained Element Types

VHDL provides two kinds of composite types, namely, arrays and records. Each contains
elements: all of the same type, in the case of array elements; and of heterogeneous types,
in the case of record elements. In earlier versions of VHDL, the element types for arrays
and records all had to be constrained, meaning the size of any elements that were arrays
had to be fixed. So, for example, if we had a type that was an array of arrays, we could
leave the outer array size unspecified, but the element array size had to be fixed. This
restriction has long been an impediment, but it was not a simple matter to change.
Hence, successive revisions of the VHDL standard left the restriction in place. In VHDL-
2008, however, considerable effort has been invested in revising the type rules to lift the
restriction. We describe the new rules in this section.

3.1.1 Composite Types

In order to fully understand the rules, we first review some terminology used in the
VHDL standard. A type in VHDL just specifies a set of values. A subtype is a subset of val-
ues from a type, determined by a constraint. Those values that meet the constraint are in

104 Chapter 3 — Type System Changes

the subtype, and those that don’t meet the constraint are not in the subtype. The type
from which values of a subtype are drawn is called the base type of the subtype. Note
that a subtype need not be a proper subset of a type. The constraint may be vacuous,
allowing any value from the type to be in the subtype. Thus, a type is considered to be a
subtype of itself.

For an array type, each value is an indexed collection of elements, each of the same
subtype, called the element subtype. An array value has one or more indices, the number
of which determine the dimensionality of the array. Each index comes from an index
subtype, which must contain only discrete scalar values, such as integers or values of an
enumeration type. Thus, a one-dimensional array type, commonly called a vector, has a
single index subtype; a two-dimensional array type, commonly called a matrix, has two
distinct index subtypes; and so on.

A particular value or object of an array type has an index range for each index posi-
tion. The index range has a left bound, a right bound, and a direction; it also determines
the number of elements in the array value. Note that an index range is a distinct concept
from an index subtype; it is a property of an array value or an array object, whereas an
index subtype is a property of an array type. Keeping these concepts distinct in our
minds will help us make sense of the type rules. The connection between the two is that,
if an array value or object is of an array type, the bounds of each index range must
belong to the corresponding index subtype of the array type.

When we declare an array type, we are effectively declaring an array subtype. There
are two forms of array type declaration. One form, called a constrained array declara-
tion, specifies index ranges, for example:

type A1 is array (natural range 0 to 7) of bit;

In this example, we are declaring an anonymous array base type that has natural as
its index subtype and bit as its element subtype. The name A1 denotes a subtype of that
anonymous base type, with the index constraint that the index range for values of the
subtype must have a left bound of 0, a right bound of 7, and an ascending direction.

The other form of array type declaration was called an unconstrained array declara-
tion in earlier versions of VHDL, but in VHDL-2008, it is called an unbounded array dec-
laration. An example is:

type A2 is array (natural range <>) of bit;

Here, we are declaring A2 to be a base type that has natural as its index subtype and
bit as its element subtype. We can treat A2 as a subtype with vacuous constraint; that is,
values of the subtype can have any index range, of either direction, provided the bounds
are values of subtype natural.

VHDL-2008 defines the terms “unconstrained” and “constrained” somewhat differ-
ently from earlier versions of VHDL, since the situation is somewhat more involved. In
VHDL-2008, an array subtype is unconstrained if it has no index constraints, and the ele-
ment subtype is either not a composite type or is an unconstrained type. An uncon-
strained type has no constraints anywhere in its structure where a constraint could apply.
An array subtype is fully constrained if it has index constraints for all of its indices, and
the element subtype is either not a composite type or is a fully constrained type. A fully
constrained type has constraints everywhere in its structure where a constraint could

3.1 Unconstrained Element Types 105

apply. Together, these two categories do not cover all array subtypes, as there are those
with index constraints but not fully constrained element subtypes, and those with no
index constraints but full constrained element subtypes. These “in between” subtypes are
called partially constrained, and have constraints in some places but not in others where
a constraint could apply.

Here are some examples to illustrate the categories of array types. We will also use
these types in further examples in Section 3.1.2. First, array types with non-composite
elements are either unconstrained or fully constrained. Thus

type M_unconstrained is
 array (natural range <>, natural range <>) of bit;

is unconstrained, and

type M_fully_constrained is
 array (natural range 0 to 7, integer range -1 to 1) of bit;

is fully constrained. Note that every index of any array (but not necessarily of its ele-
ments) must be constrained or not. Thus, we could not legally write

type M_illegal is
 array (natural range <>, integer range -1 to 1) of bit;

Now, if we use M_unconstrained as the element subtype in an unbounded array
definition:

type A_unconstrained is
 array (character range <>) of M_unconstrained;

the subtype defined is unconstrained. This was illegal in earlier versions of VHDL, but is
now legal in VHDL-2008. If we use M_fully_constrained in a constrained array definition:

type A_fully_constrained is
 array (character range 'A' to 'Z') of M_fully_constrained;

the subtype defined is fully constrained. This was legal in earlier versions of VHDL, and
remains legal in VHDL-2008. We can define partially constrained array subtypes as
follows:

type A1_partially_constrained is
 array (character range 'A' to 'Z') of M_unconstrained;
type A2_partially_constrained is
 array (character range <>) of M_fully_constrained;

An object of subtype A1_partially_constrained must have 'A' to 'Z' as its index range,
but the index ranges of each element are not specified. This was illegal in earlier versions
of VHDL. An object of subtype A2_partially_constrained does not have its index range
specified, but the index ranges of each element must be 0 to 7 and –1 to 1, respectively.
This was previously legal, and remains legal in VHDL-2008.

106 Chapter 3 — Type System Changes

VHDL-2008 also makes similar extensions to the type rules for records. For a record
type, a value is a collection of elements, each identified by an element name and each of
a specified element subtype. The element subtypes for different elements need not be
the same. Moreover, in VHDL-2008, the element subtypes need not be constrained, as
they were in earlier versions of VHDL. Just as we did for array subtypes, we say that a
record subtype is unconstrained if each element subtype is either not a composite type
or is an unconstrained type. A record subtype is fully constrained if each element sub-
type is either not a composite type or is a fully constrained type. A record subtype that is
neither unconstrained nor fully constrained is partially constrained.

Again, here are some examples illustrating the categories for record types. First, a
record type with non-composite elements is fully constrained:

type R_non_composite_elements is record
 e1 : bit;
 e2 : integer;
end record R_non_composite_elements;

It cannot be unconstrained, since there is no place in the record structure for a con-
straint to apply. An example of a record type declaration defining an unconstrained
record subtype is:

type R_unconstrained is record
 e1 : A_unconstrained;
 e2 : M_unconstrained;
 e3 : bit;
end record R_unconstrained;

In this case, the first two element subtypes are unconstrained and the third is non-
composite, so the subtype is unconstrained. A record type declaration with fully con-
strained elements is:

type R_fully_constrained is record
 e1 : A_fully_constrained;
 e2 : M_fully_constrained;
 e3 : bit;
end record R_full_constrained;

This defines a fully constrained record subtype. The declaration:

type R1_partially_constrained is record
 e1 : A_unconstrained;
 e2 : M_fully_constrained;
 e3 : bit;
end record R1_partially_constrained;

defines a partially constrained record subtype, since the composite element subtypes are
neither all unconstrained nor all fully constrained. Similarly, the declarations:

3.1 Unconstrained Element Types 107

type R2_partially_constrained is record
 e1 : A1_partially_constrained;
 e2 : M_fully_constrained;
 e3 : bit;
end record R1_partially_constrained;

type R3_partially_constrained is record
 e1 : A2_partially_constrained;
 e2 : M_unconstrained;
 e3 : bit;
end record R3_partially_constrained;

both define partially constrained record subtypes, for the same reason.

3.1.2 Subtype Indications and Constraints

Now that we have seen how to declare unconstrained, partially constrained, and fully
constrained subtypes using type declarations, we can turn to the way in which we spec-
ify constraints in subtype declarations and other places. In earlier versions of VHDL, the
only kind of constraint we could apply to a composite subtype was an index constraint
to specify index ranges for an otherwise unconstrained array type. All of the array ele-
ments and subelements of the array type had to be constrained. The situation is different
in VHDL-2008, since we can have array and record types in which some element or sub-
element subtype is an array subtype without an index constraint. We may want to specify
index ranges at various levels in a composite subtype’s nested structure. We will show
how the rules for specifying constraints are extended in VHDL-2008 for that purpose.

There are numerous places in VHDL where we can specify a subtype using a subtype
indication, including in subtype declarations; declarations of elements of composite and
other types; declarations of constants, signals, variables and files; declarations of gener-
ics, ports and parameters; and so on. In each case, the subtype indication takes the form
of the name of a type or subtype followed by a constraint that limits the values that are in
the subtype. We will just use subtype declarations to illustrate the various forms of sub-
type indication, but the same rules apply in other places. The types that we refer to in the
following examples are all defined in Section 3.1.1.

If the type we are constraining is an array subtype with unspecified index ranges, we
can include an index constraint, as we did in earlier versions of VHDL, for example:

subtype S1 is A_unconstrained('x' to 'z');

In this case, since the element subtype for A_unconstrained was also unconstrained,
it remains unconstrained in S1. Thus, S1 is a partially constrained subtype. If we write

subtype S2 is A2_partially_constrained('c' downto 'a');

the subtype S2 is fully constrained, since the element subtype of A2_partially_
constrained is fully constrained.

Now suppose we want to define a subtype of A_unconstrained specifying index
ranges for the top-level array and also for the elements. We can do this as follows:

108 Chapter 3 — Type System Changes

subtype S3 is A_unconstrained('x' to 'z')(0 to 7, 31 downto 16);

The subtype S3 is fully constrained. Values or objects of this subtype must have three
elements indexed from 'x' to 'z', and each element must be a matrix indexed from 0 to 7
in one dimension and from 31 down to 16 in the other. If we want to define a partially
constrained subtype, specifying index ranges for the elements but leaving the index
range at the top level unspecified, we can use the reserved word open in place of an
index range, for example:

subtype S4 is A_unconstrained(open)(0 to 7, 31 downto 16);

Values or objects of this subtype can have any index bounds and direction, provided
each element is a matrix indexed from 0 to 7 in one dimension and from 31 down to 16
in the other. We can also use this notation to specify index ranges for elements of a sub-
type that already has a constraint on the top-level indices, for example:

subtype S5 is
 A1_partially_constrained(open)(0 to 7, 31 downto 16);

In this case, the subtype A1_partially_constrained specifies an index range of 'A' to
'Z', but leaves the index ranges for the elements unconstrained. In the subtype declara-
tion for S5, the use of open for the top-level constraint indicates that we leave the exist-
ing constraint, and skip over to the elements, for which we do specify index ranges.

As in earlier versions of VHDL, we can’t specify index ranges in a subtype indication
if the subtype already has an index constraint at the specified position. So the following
would be illegal:

subtype S6 is A1_partially_constrained('è' to 'ë'); -- illegal

since the constraint 'è' to 'ë' conflicts with the constraint 'A' to 'Z' specified in the subtype
A1_partially_constrained.

If the type we are constraining is a record type or subtype, we can specify index
constraints for the element subtypes. We need to indicate which record element is being
constrained. An example showing the notation we use is:

subtype S7 is R_unconstrained(e1('A' to 'F'));

The subtype S7 is partially constrained with an index range of 'A' to 'F' specified for
the element e1, but no index ranges specified for the elements of e1 or for the element
e2. We could further constrain S7 as follows:

subtype S8 is S7(e1(open)(15 downto 0, 7 downto 0));

In this case, since e1 already includes an index constraint, we skip over it and spec-
ify index ranges for the elements of e1. Again, we leave the element subtype for e2
unconstrained. We can specify constraints for multiple elements as follows:

subtype S9 is S7(e1(open)(15 downto 0, 7 downto 0),
 e2(1 to 3, 1 to 3));

3.1 Unconstrained Element Types 109

Now, having specified constraints in all places where a constraint can apply, the sub-
type S9 is fully constrained.

This notation for specifying constraints for subelements of composite types has suffi-
cient generality to work for any arbitrary nesting. We just need to ensure that the way we
list constraints follows the hierarchy of nesting. At any given level, if the element subtype
is an array subtype, we either specify one or more index ranges in parentheses or use the
reserved word open to skip the level without specifying any index ranges. If the element
subtype at the given level is a record subtype, we write one or more element names, and
for each, we write constraints for the named element subtype. For example, given the
following type declarations:

type T1 is array (integer range <>) of T;
type T2 is array (integer range <>, integer range <>) of T;
type T3 is record
 e1 : T1;
 e2 : T2;
end record T3;
type T4 is array (integer range <>) of T3;
type T5 is array (integer range <>, integer range <>) of T4;

We can write a fully constrained subtype declaration as follows:

subtype S10 is
 T5(1 to 4, 0 to 9)
 (3 downto 0)
 (e1(9 to 99),
 e2(-1 to 1, -1 to 1));

3.1.3 Use of Composite Subtypes

In earlier versions of VHDL, there were rules specifying where we had to use a con-
strained subtype and where we could use an unconstrained subtype. These rules have
been modified in VHDL-2008 to reflect the new category of partially constrained sub-
types. In general, where previously we had to use a constrained subtype, we must now
use a fully constrained subtype. Where previously we could use an unconstrained or a
constrained subtype, we can now use an unconstrained, partially constrained, or fully
constrained subtype. In earlier versions of VHDL, the rules for determining the index
ranges for array objects were somewhat unclear. VHDL-2008 clarifies the rules, and
extends them to deal with determining the index ranges for arrays that are elements or
subelements of larger composite objects. We will go through the cases covered by these
rules and use examples to show how they apply. In each case, it is important to keep in
mind the distinction between an index subtype for an array type and an index range of a
value or object. The cases we are discussing here deal with the way the index ranges for
values or objects are determined from various subtypes in different ways.

110 Chapter 3 — Type System Changes

Variable and Signal Declarations

The first case deals with variable and signal declarations, and includes arrays that are
whole objects and arrays that are elements or subelements of larger objects. In this case,
the subtype of the variable or signal must be a fully constrained subtype, since a tool
must be able to determine the size of the object. For example, if we have a type declared
as:

type signed_matrix is array (1 to 3, 1 to 4) of signed;

we must constrain the element type in order to declare a variable:

variable v : signed_matrix(open)(7 downto 0);

This gives a fully constrained subtype for the variable. A tool can then determine that
the variable needs 3 × 4 × 8 = 96 scalar subelements. The index ranges for the array vari-
able are taken from the fully constrained subtype, and are 1 to 3 for the first dimension
and 1 to 4 for the second dimension. The index range for each element array are also
taken from the fully constrained subtype. So each element has the index range 7 down
to 0.

Constant Declarations

The second case deals with constant declarations, in which we can use unconstrained,
partially constrained, and fully constrained subtypes. We must provide a value for a
declared constant, and the value must belong to the subtype of the constant. The actual
index ranges for the constant are determined jointly from the subtype and from the index
ranges of the value. If the subtype includes a constraint that specifies index ranges at any
given position, those index ranges are used. If the subtype leaves the index ranges unde-
fined at any given position, the index range for that position is the corresponding index
range from the value. In either case, whether the index range be specified by a constraint
or determined from the value, each element of the constant is the element in the same
left-to-right position in the initial value.

To illustrate the rule for constants, suppose we have the following declarations:

type A is array (1 to 3) of bit_vector;
constant C : A := ("0100", "1101", "0010");

The subtype A specifies an index range of 1 to 3 for the top-level array, so that is the
index range used. However, the element subtype of A is unconstrained, so the index
range for each element comes from the initial value’s elements. Those elements are all bit
strings of type bit_vector, with index range 0 to 3. The subelements of the constant value
are thus:

C(1)(0) = '0' C(1)(1) = '1' C(1)(2) = '0' C(1)(3) = '0'
C(2)(0) = '1' C(2)(1) = '1' C(2)(2) = '0' C(2)(3) = '1'
C(3)(0) = '0' C(3)(1) = '0' C(3)(2) = '1' C(3)(3) = '0'

Now suppose we declare a further constant as:

3.1 Unconstrained Element Types 111

constant C1 : A(open)(7 downto 4) := C;

In this case, the subtype for the constant C1 specifies index ranges at both levels: 1
to 3 for the top level and 7 down to 4 for the element level. Since the elements and sub-
elements are assigned from the initial value in left-to-right order, the values are:

C1(1)(7) = '0' C1(1)(6) = '1' C1(1)(5) = '0' C1(1)(4) = '0'
C1(2)(7) = '1' C1(2)(6) = '1' C1(2)(5) = '0' C1(2)(4) = '1'
C1(3)(7) = '0' C1(3)(6) = '0' C1(3)(5) = '1' C1(3)(4) = '0'

One point to note is that, since the intial value is converted to the subtype of the
constant, the initial value doesn’t need to have exactly the same index range as the con-
stant, providing the length matches. For example, given the following declarations

type A2 is array (2 downto 0) of bit_vector;
constant C2 : A2 := C;

the index range of C2 is 2 down to 0, but the index range of the initial value C is 1 to 3.
Elements of C are used to initialize C2 from left to right.

Attribute Specifications

The third case in the rules for determining index ranges deals with attribute values in
attribute specifications, and is similar to the case of constant declarations. Thus, if the
subtype in an attribute specification is an array subtype or includes array elements, the
attribute value must belong to the subtype of the constant, and the actual index ranges
are determined jointly from the subtype and from the index ranges of the specified value.
In a sense, an attribute specification defines a constant value that decorates the named
item. As an example, if we declare an attribute of a composite type:

type string_vector is array (positive range <>) of string;
attribute key_vector : string_vector;

we can decorate an item with the attribute as follows:

attribute key_vector of e : entity is
 ("66A6D 7DF3A 88CE1 8DEEB", "012BD 2BEE9 98634 93FE1");

Since the subtype for the attribute specifies index ranges in neither the top-level nor
the element position, the corresponding index subtypes are used to determine the index
ranges for the attribute value, giving the ranges 1 to 2 for the top level and 1 to 23 for
each element.

Allocated Objects

The fourth case deals with allocation of objects using new. In this case, the allocator
determines the index ranges of the allocated object. If we write an allocator with just a

112 Chapter 3 — Type System Changes

subtype indication, it must specify a fully constrained subtype, and the index ranges are
taken from that subtype. For example, given the following declarations:

type RV is record
 v1 : bit_vector;
 v2 : time_vector;
end record RV;
type RV_ptr is access RV;
variable p : RV_ptr;

we can write an allocator using a subtype indication:

p := new RV_record(v1(0 to 23), v2(0 to 23));

The subtype indication specifies index ranges of 0 to 23 for both elements, so they
are used for the allocated object. The object is then initialized with the default initial
value.

On the other hand, if we write an allocator with a qualified expression, the value in
the expression is converted to the named subtype (see Sections 9.3 and 9.4), and that
determines the index ranges for the allocated object. Where that subtype specifies index
ranges, they are used; and where no index range is specified, an index range is deter-
mined from the corresponding index subtype. For example, given the preceding declara-
tions, we can write an allocator:

p := new RV_record'(v1 => "010", v2 => (2 ns, 4 ns, 6 ns));

Since the subtype RV_record does not specify any index ranges, the index subtypes
for the record elements are used to determine index ranges for the allocated value. For
each element, the index subtype is natural, so the index ranges are 0 to 2.

Interface Objects

The fifth and final case deals with interface objects, namely, generic constants, ports, and
parameters. The declaration of a formal interface object includes a subtype indication,
which may define an unconstrained, partially constrained, or fully constrained subtype.
For each index position in the formal, whether it be at the top level of an array or a sub-
element within the composite structure of the formal, there may or may not be a corre-
sponding index range defined by an index constraint in the subtype. We call the index
range specified in the subtype, if defined, the subtype index range corresponding to a
given index position in the formal. We will now see how to determine the index range
for each index position of the formal. There are several subcases, depending on the dec-
laration of the formal, the actual value or object associated with the formal, and the way
in which the association is written in the relevant generic map, port map, or parameter
list.

In the first subcase, the subtype index range is defined by an index constraint in the
subtype. The index range for the formal is taken from that index constraint. As an exam-
ple, suppose we declare a port of an entity as follows:

3.1 Unconstrained Element Types 113

entity ent1 is
 port (p : out std_logic_vector(0 to 31));
end entity ent1;

Regardless of the actual signal associated with the port in an instance of the entity,
the formal port takes its index range from the subtype, since the subtype defines the
index range. Thus, in an architecture, we can reference the index range as follows:

architecture a of ent1 is
begin
 process is
 begin
 ...
 for i in 0 to 31 loop
 p(i) <= ...
 end for;
 ...
 end process;
end architecture a;

We can declare a signal and associate it with the port of an instance of ent1:

signal s : std_logic_vector(63 downto 32);
...

inst1 : entity work.e(a)
 port map (p => s);

The fact that the actual signal has a different index range does not affect the index
range for the formal port. All it means is that s(63) is associated with p(0), s(62) with
p(1), and so on.

This subcase also applies to subelements of interface objects. For example, suppose
we have a type declared as:

type byte_vector is
 array (natural range <>) of bit_vector(7 downto 0);

We might define a function as follows:

function reduce (v : byte_vector) return bit is
 ...
begin
 for i in v'range loop
 for j in 7 downto 0 loop
 ...
 end loop;
 end loop;
 return ...;
end function reduce;

114 Chapter 3 — Type System Changes

In any call to reduce, the index range for each element of v is 7 down to 0, taken
from the subtype byte_vector, regardless of the index range at the top level of v.

In the second subcase, the subtype index range is undefined, but the array is associ-
ated using subelement association. That means the association list uses named associa-
tion to divide the formal into separate elements or slices and associates each element or
slice with a separate actual value or object. The index range for the formal is then deter-
mined from the index values used in those formal element names or slices. The smallest
index value used is the low bound of the index range of the formal, and the largest index
value used is the high bound. The direction of the index range is the direction of the cor-
responding index subtype taken from the subtype of the formal. To illustrate, we can
revise our earlier example of an entity’s port:

entity ent2 is
 port (p : out std_logic_vector);
end entity ent2;

In this example, we don’t know the index range for p within the architecture body,
so we would have to refer to it using attributes, such as p'range. If we write an instance
of the entity as follows:

inst2 : entity work.ent2(a)
 port map (p(11) => s1, p(12 to 15) => sv);

the index values in the formal element and slice names are used to determine the index
range for the formal p for this instance. The smallest value is 11, and the largest value is
15. The direction for the index range is ascending, since the index subtype for
std_logic_vector is natural, which is ascending. Thus, the index range for p is 11 to 15.
Note that the direction for the index range for the port is determined by the index sub-
type of the port, not by the direction of the range in a slice name in the port map. Had
we written the above instantiation as:

inst2 : entity work.ent2(a)
 port map (p(15) => s1, p(14 downto 11) => sv); -- illegal

the slice name in the port map would be in error. VHDL requires that the direction of the
range in a slice name match the direction of the index range of the array being sliced.

As before, this subcase also applies to subelements of interface objects. For example,
given a type

type bv_pair is array (1 to 2) of bit_vector;

and a port declared in an entity as:

entity ent3 is
 port (p : in bv_pair);
end entity ent3;

we can write an instance of the entity:

3.1 Unconstrained Element Types 115

signal s1, s2 : bit;
signal sv1, sv2 : bit_vector(4 to 7);

inst3 : entity work.ent3
 port map (p(1)(0) => s1, p(1)(1 to 4) => sv1,
 p(2)(0) => s2, p(2)(1 to 4) => sv2);

Here, the index range for the top level of p is determined from the subtype, as in the
first subcase. However, for the elements, the subtype index range is not defined, so the
index range for p comes from the formal element and slice names. Combining these
effects, the index ranges for p are 1 to 2 for the top level, and 0 to 4 for the elements.
Note that the index range determined for the two elements p(1) and p(2) must be the
same. It would be illegal to write the instance as:

signal s1, s2 : bit;
signal sv1, sv2 : bit_vector(4 to 7);

inst3 : entity work.ent3
 port map (p(1)(0) => s1, p(1)(1 to 4) => sv1,
 p(2)(15) => s2, p(2)(11 to 14) => sv2); -- illegal

since that would imply two different index ranges: 0 to 4 for p(1) and 11 to 15 for p(2).
An array must have the same index ranges for all elements.

In the third subcase, the subtype index range is undefined, but the array is associated
as a whole. There are no index values or slice values to identify the index bounds for the
formal. Instead, the index range is determined from the corresponding index range of the
actual or from any conversion functions or type conversions that appear in the associa-
tion between the actual and the formal. We need to consider the various sub-subcases.

The first sub-subcase is a simple association involving no type conversions or con-
version functions in the association between actual and formal. In this sub-subcase, the
index range for the formal is taken from the corresponding index range of the actual. For
example, given our entity declaration with an unconstrained port, as before:

entity ent2 is
 port (p : out std_logic_vector);
end entity ent2;

we might write an instance as follows:

signal s12 : std_logic_vector(15 downto 4);
...

inst4 : entity work.ent2(a)
 port map (p => s12);

In this example, the index range of the formal is not defined, and the association
with the actual provides no index values to use. So the formal takes its index range, 15
down to 4, from the associated actual signal s12.

116 Chapter 3 — Type System Changes

Again, this rule applies to arrays that are subelements of interface objects. Returning
to our entity ent3 with a port of type bv_pair, we can instantiate it as:

signal sv1, sv2 : bit_vector(0 to 7);

inst5 : entity work.ent3
 port map (p(1) => sv1, p(2) => sv2);

As before, the index range for the top level of p is determined from the subtype.
However, for the elements, the subtype index range is not defined and the associations
do not provide index values. Thus, the index range for the elements come from the actu-
als. Combining these effects, the index ranges for p are 1 to 2 for the top level, and 0 to
7 for the elements.

The second sub-subcase arises for an interface object of mode in, inout, or link-
age, when the association with an actual includes a type conversion or conversion func-
tion applied to the actual. In this sub-subcase, the index range for the formal comes from
the result of the conversion. This requires that the conversion define the corresponding
index ranges. For a type conversion, the named type must be a subtype that includes a
constraint defining the relevant index ranges, and for a conversion function, the result
subtype must similarly define the relevant index ranges. To illustrate, suppose we have
an entity with an unconstrained in-mode port, declared as follows:

type signed_vector is (natural range <>) of signed;
...

entity ent4 is
 port (x : in signed_vector);
end entity ent4;

We can associate a signal of type integer_vector with the port, provided we apply a
conversion function. However, the function must specify index ranges in its result sub-
type, since the port subtype has no index ranges specified. A legal example is:

subtype iv3 is integer_vector(1 to 3);
subtype sv3 is signed_vector(1 to 3)(31 downto 0);
signal iv : iv3;
function cvt3 (v : iv3) return sv3;
...

inst6 : entity work.ent4
 port map (x => cvt3(iv));

Since the result subtype of the conversion function specifies the index ranges 1 to 3
at the top level and 31 down to 0 at the element level, those are the ranges used for the
formal in the instance. Had we written a conversion function:

function cvt (v : integer_vector) return signed_vector;

3.1 Unconstrained Element Types 117

we would not be able to use it in the same way, since it does not specify the index
ranges to be used for the formal port in the instance. Similar arguments apply to type
conversions. For example, with the following declarations:

type unsigned_vector is (natural range <>) of unsigned;
subtype uv3 is unsigned_vector(1 to 3)(31 downto 0);
signal uv : uv3;

we could write the following instance of entity ent4:

inst7 : entity work.ent4
 port map (x => sv3(uv));

since the subtype named in the type conversion specifies the index ranges 1 to 3 at the
top level and 31 down to 0 at the element level, whereas the following would be illegal:

inst8 : entity work.ent4
 port map (x => signed_vector(uv));

The third sub-subcase is similar to the second. It arises for an interface object of
mode out, buffer, inout, or linkage, when the association with an actual includes a
type conversion or conversion function applied to the formal. For a type conversion, the
named type must be a subtype that includes a constraint defining the relevant index
ranges, and these are used for the formal. For a conversion function, the parameter sub-
type must similarly define the relevant index ranges, and these are used for the formal.

Note that both the second and the third sub-subcases deal with interface objects of
modes inout and linkage. This mirrors the possibility of including type conversions or
conversion functions in both the formal and actual parts of the association between for-
mal and actual. If that occurs, both sub-subcases apply, and the index ranges determined
must agree.

Summary: Determining Array Index Ranges

Since this case analysis of the way in which index ranges are determined is complex and
multi-level, we’ll summarize it here. For an array object, including a subelement array of
a larger composite object, we determine each index range as follows:

1. For a declared signal or variable: The index range comes from the object’s subtype,
which must be fully constrained.

2. For a declared constant: If the constant’s subtype defines the index range, that index
range is used; otherwise, the index range comes from the corresponding index range
of the constant’s initial value.

3. For an attribute value: The index range comes from the attribute’s subtype and the
specified value, in same way as case 2.

4. For an allocated object: If the allocator is in the form of a subtype indication, the
index range comes from the specified subtype, which must be fully constrained. Oth-
erwise, the allocator is in the form of a qualified expression, and the index range

118 Chapter 3 — Type System Changes

comes from the index range in the qualified expression’s subtype, if defined, or from
the index subtype in the qualified expression’s subtype otherwise.

5. For a formal interface object, there are three subcases:

a. If the formal’s subtype defines the index ranges, they are used.

b. If the formal’s subtype does not define the index ranges, and subelement associ-
ation is used to specify index values for the formal, then the index range uses
the smallest and largest index values as the bounds, and gets the direction from
the index subtype of the formal’s subtype.

c. If the formal’s subtype does not define the index ranges, and the association
with the actual does not specify index values for the formal, then there are three
sub-subcases:

• If there are no conversions involved in the association, then the index range
comes from the actual object.

• If the formal is of mode in, inout, or linkage, and there is a conversion in
the actual part of the association, then the index range comes from the con-
version’s result subtype, which must define a corresponding index range.

• If the formal is of mode out, buffer, inout, or linkage, and there is a con-
version in the formal part of the association, then the index range comes
from the type conversion’s subtype or conversion function’s parameter sub-
type, as appropriate, and that subtype must define a corresponding index
range.

For a formal of mode inout or linkage, if conversions are used in both for-
mal and actual parts, they must both define the same index ranges.

Type Conversions

Now that we’ve covered the rules dealing with the way in which index ranges are deter-
mined for composite objects, we can turn to some further uses of composite subtypes.
One use is as the target of a type conversion. VHDL-2008 makes further changes to the
rules for type conversions (see Section 9.4), but we will focus on the rules relating to
index ranges here. When we convert the type of an array object to a target array subtype,
we produce an array with the same element values, but with different index ranges. If
the target subtype defines index ranges at a given index position, we use those index
ranges. On the other hand, if the target subtype leaves the index ranges undefined, we
determine index ranges for the result based on the index subtype at that position. The
index range starts at the leftmost value of the index subtype and has the same direction,
ascending or descending, as the index subtype. The right bound is then determined by
the required size for the index range.

EXAMPLE 3.1 Type conversions between signed and unsigned vectors

Suppose we have two unconstrained types declared as:

3.1 Unconstrained Element Types 119

type unsigned_vector is (natural range <>) of unsigned;
type signed_vector is (natural range <>) of signed;

and subtypes declared as:

subtype unsigned_vector3 is
 unsigned_vector(1 to 3);
subtype unsigned_byte_vector is
 unsigned_vector(open)(7 downto 0);
subtype unsigned_byte_vector3 is
 unsigned_vector(1 to 3)(7 downto 0);

Given a signal:

signal s : signed_vector(1 to 3)(7 downto 0);

the conversion:

unsigned_vector3(s)

yields an array indexed from 1 to 3 at the top level and from 0 to 7 at the element
level. The top-level index range is specified in the target subtype. The element-level
index range is determined from the index subtype natural, starting from 0 and
ascending for eight elements. Alternatively, the conversion:

unsigned_byte_vector(s)

yields an array indexed from 0 to 2 at the top level and from 7 down to 0 at the ele-
ment level. In this case, the target subtype does not specify an index range and the
top level, so the top-level index range is determined from the top-level index sub-
type. The element-level index range comes from that specified in the target subtype.
Finally, the conversion:

unsigned_byte_vector3(s)

yields an array indexed from 1 to 3 at the top level and from 7 down to 0 at the ele-
ment level, since both index ranges are specified in the target subtype.

Alias Declarations and Subtype Attributes

Another place where we can use a composite subtype is in an alias declaration, to get an
alternative view of an array object. The rules for determining the index ranges in the
view are slightly different from those of type conversions. To start with, the subtype in an
alias declaration must have the same base type as that of the object being aliased. This
means that the bounds of index ranges of the aliased object are guaranteed to belong to
the index subtypes of the alias. If the alias subtype defines index ranges at any given
index position, then those index ranges are used for the alias. On the other hand, if
index ranges are not defined, then the corresponding index ranges of the aliased object
are used for the alias also.

120 Chapter 3 — Type System Changes

EXAMPLE 3.2 Alias of a register file signal

We can declare a register file as follows:

type register_array is array (natural range <>) of bit_vector;
signal register_file : register_array(0 to 15)(31 downto 0);

We can then declare aliases for

alias bigendian_register_file : register_array(open)(0 to 31) is
 register_file;

This alias views the register file as an array with the same index range as the
original, 0 to 15, since the subtype indication does not specify a top-level index
range. Each element, however, is viewed with the index range 0 to 31 specified in
the subtype indication.

One common use of aliases is to provide a normalized view of an unconstrained
port or parameter so that we can write for loops that iterate over corresponding elements
of two potentially different index ranges. In earlier versions of VHDL, using the 'length
attribute was sufficient, since any elements of an unconstrained array type had to be con-
strained with a specific index range. In VHDL-2008, that is no longer the case. We may
have to deal with two ports (or two parameters) that have different index ranges for their
elements as well as for the top-level arrays. To help us with such situations, VHDL-2008
predefines a new attribute, 'element, that gives the element subtype of an array object,
complete with constraints defining the index ranges for the array object. The attribute is
also defined for array subtypes, in which case it just gives the element subtype.

EXAMPLE 3.3 Aliases for normalizing subelements

We can write a function that locates the first bit difference between two arrays of bit
vectors as follows:

type bv_vector is array (natural range <>) of bit_vector;

function find_first_difference (s1, s2 : in bv_vector)
 return natural is
 alias s1_norm : bv_vector(0 to s1'length - 1)
 (0 to s1'element'length - 1) is s1;
 alias s2_norm : bv_vector(0 to s2'length - 1)
 (0 to s2'element'length - 1) is s2;
 variable count : natural := 0;
begin
 assert s1'length = s2'length and
 s1'element'length = s2'element'length;
 for i in s1_norm'range loop
 for j in s1_norm'element'range loop

3.1 Unconstrained Element Types 121

 exit when s1_norm(i)(j) /= s2_norm(i)(j);
 count := count + 1;
 end loop;
 end loop;
 return count;
end function find_first_difference;

The two parameters are of an unconstrained type, allowing the function to oper-
ate on arrays of various lengths and on arrays with various bit-vector element
lengths. The function only requires that, on each call, the two actual parameters have
the same shape. In order to deal with the differences, the function declares aliases
for the parameters. It views each parameter with an index range starting at 0 and
ascending to one less than the length. It views the elements similarly, with an index
range starting at 0 and ascending to one less than length of each bit-vector element.
The alias declaration uses the 'element attribute to get the constrained subtype for
the actual parameter’s elements. Within the function body, the inner for loop also
uses the 'element attribute to get the index range for the elements of the aliases.

VHDL-2008 also predefines the 'subtype attribute for objects. It provides the subtype
of the object, complete with constraints defining index ranges if the object is an array or
has any array subelements. Since the subtype is fully constrained, we can use it to
declare an object with the same index ranges as the actual associated with an uncon-
strained or partially constrained formal.

EXAMPLE 3.4 Swapping variables with unconstrained subelements

Given the type bv_array as defined in Example 3.3, we can declare a procedure to
swap two variables of the type:

procedure swap_bv_arrays (a1, a2 : inout bv_array) is
 variable temp : a1'subtype;
begin
 assert a1'length = a2'length and
 a1'element'length = a2'element'length;
 temp := a1; a1 := a2; a2 := temp;
end procedure swap;

Since the type bv_array is not fully constrained, we cannot use it as the type of
the variable temp. Instead, we use the 'subtype attribute to get a fully constrained
subtype with the same shape as a1. Once we’ve verified that a1 and a2 are the same
shape, we can then swap their values in the usual way using temp as the intermedi-
ate variable.

122 Chapter 3 — Type System Changes

Resolved Composite Subtypes

The final place to consider for use of composite subtypes is declaration of resolution
functions. To declare a resolution function for signals of a given type, we write a function
that takes as a parameter an array with elements of that type and that returns a value of
the type. The parameter array type must have an undefined index range, so that signals
with different numbers of drivers can be resolved. In earlier versions of VHDL, an uncon-
strained array type had to have a constrained element subtype. As a consequence, if we
wanted to use resolved signals of a composite type, the signal type had to be con-
strained. We could not, for example, specify a resolved subtype for signals of type
bit_vector, and use it for a mixture of 8-bit, 16-bit, and other length signals. There was
no way for us to express the resolution function. In VHDL-2008, since we can leave the
element subtype of an array unconstrained, we can develop resolved composite subtypes
that are unconstrained. The only requirement on the subtype for the resolution function
parameter is that it be an array with unconstrained index range. The element subtype can
be fully constrained, partially constrained, or unconstrained.

EXAMPLE 3.5 Resolved unconstrained composite signals

Suppose, in the interest of simulation performance for a particular application, we
want to use signals of type bit_vector, resolved using a bit-wise wired-or operation.
The declarations we need are:

type bit_vector_vector is array (integer range <>) of bit_vector;

function resolve_vectors (v : bit_vector_vector)
 return bit_vector is
 variable result : bit_vector(v'element'range)
 := (others => '0');
begin
 for i in v'range loop
 result := result or v(i);
 end loop;
 return result;
end function resolve_vectors;

subtype resolved_bit_vector is resolve_vectors bit_vector;

In the design, if we declare a signal as follows:

signal data_bus : resolved_bit_vector(31 downto 0);

and drive it with four sources, the resolution function will be passed an array of four
32-bit elements, and will be expected to return a 32-bit result.

3.2 Resolved Elements 123

3.2 Resolved Elements

In earlier versions of VHDL, we could declare resolved subtypes and resolved signals to
model signals with multiple sources. This feature is preserved in VHDL-2008. We can
associate a resolution function with a subtype or signal. The purpose of the resolution
function is to determine the resolved value of a signal from the values of the contributing
sources. The source values are passed to the function as an array whose element type is
the same as that of the signal, and the result type of the function is also that of the signal.
Ideally, we declare a signal intended to have only one source with an unresolved sub-
type, and we declare a signal intended to have multiple sources with a resolved subtype.
That way, tools can detect inadvertent connection of multiple sources to signal intended
to have only one source.

While this approach works well for scalar subtype and signals, in earlier versions of
VHDL it led to problems with array signals. We can illustrate the problem using the types
std_ulogic_vector and std_logic_vector, declared in earlier versions as:

type std_ulogic is (...);
type std_ulogic_vector is array (natural range <>) of std_ulogic;
subtype std_logic is resolved std_ulogic;
type std_logic_vector is array (natural range <>) of std_logic;

We would like to be able to use type std_ulogic_vector for signals with only one
source per element, and type std_logic_vector for signal with multiple sources per ele-
ment, for example:

signal s1 : std_ulogic_vector(31 downto 0);
signal s2 : std_logic_vector(31 downto 0);

However, we could not assign the value of one of these signals to the other, unless
we included a type conversion:

s1 <= std_ulogic_vector(s2);

even though we could assign respective elements:

s1(0) <= s2(0);

The reason was that for the element types, std_logic was a subtype of std_ulogic,
whereas std_logic_vector and std_ulogic_vector were, in earlier versions of the lan-
guage, two distinct base types declared by distinct type declarations.

A similar problem arose when we connected signals to ports of components. If a
component had a port of type std_ulogic_vector, because it had only one source for the
port internally, we could not simply connect the port to a signal of type std_ulogic_
vector, even if the port was the only source for the signal. Instead, we needed to include
a type conversion in the port map:

signal s : std_ulogic_vector(0 to 7);
component c is
 port (p : out std_ulogic_vector(0 to 7); ...);

124 Chapter 3 — Type System Changes

end component c;
...

inst : component c
 port map (std_ulogic_vector(p) => s, ...);

While these problems have been part of VHDL since the first version of the standard,
devising a way to fix them has proved to be difficult. Nonetheless, an approach has been
found and incorporated in VHDL-2008. It involves a way of associating a resolution func-
tion with an element type of a composite subtype as part of declaring a new subtype. For
example, in VHDL-2008, the type std_logic_vector is now defined to be a subtype of
std_ulogic_vector, declared as:

subtype std_logic_vector is (resolved) std_ulogic_vector;

The parentheses around the resolution function name, resolved, indicates that the
resolution function is associated with each element of the array type, rather than with the
array type as a whole. Since std_logic_vector is now a subtype of std_ulogic_vector, not
a distinct type, we can freely assign and associate signals and ports of the two types.

The change made in VHDL-2008 is to allow a more general form of resolution indi-
cation to be included in a subtype indication or signal declaration, rather than just nam-
ing a resolution function by itself. The change is backward compatible. If we want to
associate a resolution function with an entire subtype, the resolution indication just con-
sists of the resolution function name, as in previous version of VHDL. For example, in
the declaration of std_logic:

subtype std_logic is resolved std_ulogic;

The resolution indication is just the resolution function name, resolved. In the case
of an array whose elements are to be resolved, we write the resolution function name in
parentheses, as in the declaration of std_logic_vector. We can also resolve the elements
of an array type that is itself an array element type. For example, given the following dec-
laration:

type unresolved_RAM_content_type is
 array (natural range <>) of std_ulogic_vector;

we can declare a subtype with resolved nested elements:

subtype RAM_content_type is
 ((resolved)) unresolved_RAM_content_type;

The degree of nesting of parentheses indicates how deeply nested in the type struc-
ture the resolution function is associated. Two levels indicate that the resolution function
is associated with the elements of the elements of the type.

If we have a record type, one of whose elements is to be resolved, we include the
element name in the resolution indication. For example, given the following record type
with no associated resolution information:

3.2 Resolved Elements 125

type unresolved_status_type is record
 valid : std_ulogic;
 dirty : std_ulogic;
 tag : std_ulogic_vector;
end record unresolved_status_type;

we can declare a subtype with a resolved valid element as follows:

subtype status_resolved_valid is
 (valid wand) unresolved_status_type;

We can include resolution functions with multiple elements of the record type by list-
ing the element names and the resolution function associated with each, for example:

subtype status_resolved_flags is
 (valid wand, dirty wor) unresolved_status_type;

For a record element that is itself of a composite type, we can associate a resolution
function with subelements of the record element by writing a parenthesized resolution
indication for the element. Thus, to resolve the elements of the tag element of the above
record type, we would declare a subtype as follows:

subtype status_resolved_tag is
 (tag(resolved)) unresolved_status_type;

We could combine all of these examples together, resolving all of the scalar sub-
elements, as follows:

subtype resolved_status_type is
 (tag(resolved), valid wand, dirty wor) unresolved_status_type;

This declaration illustrates that we do not have to write the resolution indications for
the record elements in the same order as the declaration of elements in the record types.
The record element names in the resolution indication determine the element with which
the resolution function is associated.

EXAMPLE 3.6 Memory system with tristate bus

We can write a model for a memory system composed of multiple memory devices
with tristate data buses. The entity declaration for the memory system is:

library ieee; context ieee.ieee_std_context;
entity memory_1Mx8 is
 port (ce_n, oe_n, we_n : in std_ulogic;
 a : in unsigned(19 downto 0);
 d : inout std_logic_vector(7 downto 0));
end entity memory_1Mx8;

126 Chapter 3 — Type System Changes

The d port is of type std_logic_vector, since internally there are multiple
sources, one per memory device. The structural architecture is:

architecture struct of memory_1Mx8 is
 component memory_256Kx8 is
 port (ce_n, oe_n, we_n : in std_ulogic;
 a : in unsigned(17 downto 0);
 d : inout std_ulogic_vector(7 downto 0));
 end component memory_256Kx8;
 signal ce_decoded_n : std_ulogic_vector(3 downto 0);
begin
 with to_x01(a(19 downto 18)) select
 ce_decoded_n <= "1110" when "00",
 "1101" when "01",
 "1011" when "10",
 "0111" when "11",
 "XXXX" when others;
 chip_gen : for i in 3 downto 0 generate
 chip : component memory_256Kx8
 port map (ce_n => ce_decoded_n(i),
 oe_n => oe_n, we_n => we_n,
 a => a(17 downto 0), d => d);
 end generate chip_gen;
end architecture struct;

The d port of the component representing the memory devices is of type
std_ulogic_vector, since each device has only one internal source. Nonetheless, we
can connect the d port of each instance directly to the d port of the memory system
entity without type conversion. Had we inadvertently declared the d port of the
entity to be of type std_ulogic_vector, the analyzer would detect the error arising
from multiple sources connected to the unresolved elements.

127

Chapter 4

New and Changed Operations

In VHDL, we model computation by writing expressions that involve application of oper-
ations (operators and functions) to operand values. Each operand is of some type, either
predefined or user-defined. VHDL defines overloaded versions of operations to perform
computation on values of various types. In VHDL-2008, a number of new operations are
introduced, and the variety of types to which existing operations can be applied is
expanded. We describe the new and changed operations in this chapter.

One point to note is that in earlier versions of VHDL, many of the operations were
defined in separate standards. In particular, IEEE Std 1164 specified the package
std_logic_1164, which defined the types std_ulogic, std_logic, std_ulogic_vector, and
std_logic_vector and the operations on those types. Also, IEEE Std 1076.3 specified the
packages numeric_bit and numeric_std, each of which defined the types unsigned and
signed and operations on those types. All of these packages are now included as part of
the VHDL-2008 standard. Other changes to the standard packages are described in Chap-
ters 7 and 8.

4.1 Array/Scalar Logical Operations

VHDL provides logical operators, and, or, nand, nor, xor, and xnor, that each operate
on a pair of values to produce a result. Earlier versions of VHDL provided predefined
and standard overloaded definitions of these operators with the following signatures:

[ScalarType, ScalarType return ScalarType]
[ArrayType, ArrayType return ArrayType]

ScalarType included the types bit, boolean, and std_ulogic, and ArrayType included
arrays of bit, boolean, and std_ulogic (std_ulogic_vector, std_logic_vector, unsigned,
and signed). While this was sufficient for many purposes, there were some common
modeling problems that required one operand to be an array and the other a scalar,
yielding an array result. To meet this requirement, VHDL-2008 provides further over-
loaded definitions of the logical operators with the following signatures:

[ArrayType, ArrayElementType return ArrayType]
[ArrayElementType, ArrayType return ArrayType]

As before, ArrayType includes arrays of bit, boolean, and std_ulogic. ArrayElement-
Type is the scalar element type of the other operand. Thus, for example, we can apply an

128 Chapter 4 — New and Changed Operations

operator such as and to a bit_vector and a bit operand. The bit value is ANDed with
each element of the array to produce an array result.

EXAMPLE 4.1 Select logic

A common problem in coding register read logic is using select bits (each a scalar
value) to select among several registers (array values). One possible coding that
could be used in earlier versions of VHDL is:

genloop : for i in data_bus'range generate
begin
 data_bus(i) <= (a(i) and a_sel) or
 (b(i) and b_sel) or
 (c(i) and c_sel);
end generate;

Here, a_sel, b_sel and c_sel are the scalar select signals, and a, b, and c are the
register values. Note that this coding requires the array indices for the register values
and the data bus to be the same. An alternate solution that uses intermediate
signals is:

signal va_sel, vb_sel, vc_sel :
 std_logic_vector(data_bus'range);
...

va_sel <= (others => a_sel);
vb_sel <= (others => b_sel);
vc_sel <= (others => c_sel);
data_bus <= (a and va_sel) or (b and vb_sel) or (c and vc_sel);

Note that this solution does not require the array indices to be the same. The fol-
lowing third alternative is functionally correct if the select signals are mutually exclu-
sive; however, for larger sized “AND-OR” logic, it results in an inefficient hardware
implementation known as priority select logic.

data_bus <= a when a_sel = '1' else
 b when b_sel = '1' else
 c when c_sel = '1' else
 (others => '0');

With the new overloaded definitions introduced in VHDL-2008, these alterna-
tives can be replaced with the simple assignment:

data_bus <= (a and a_sel) or (b and b_sel) or (c and c_sel);

In each and term, the scalar value is applied to each bit of the array value. In
effect, the scalar value is replicated in the same manner as the intermediate signal
solution, but the statement is much more succinct.

4.2 Array/Scalar Addition Operators 129

4.2 Array/Scalar Addition Operators

The numeric_bit and numeric_std packages define overloaded addition (“+”) and sub-
traction (“–”) operators for unsigned and signed operands. Prior to VHDL-2008, if we
wanted to code an addition with carry in, we had to convert the carry in to an array
value, as follows:

signal c_in : std_logic;
signal a, b : unsigned(7 downto 0);
signal adder : unsigned(8 downto 0);
...

adder <= ('0' & a) + ('0' & b) + ("" & c_in);

Unfortunately, many synthesis tools saw the converted carry in as an additional array
value and implemented two adders, where just a single adder with carry in would
suffice.

In VHDL-2008, additional overloaded version of the “+” and “–” operators are added
to allow the use of a scalar value (such as a std_logic value) with an array value. Hence,
we can rewrite the above code as follows:

adder <= ('0' & a) + ('0' & b) + c_in;

It is interesting to note that this same overloading is supported in one vendor’s non-
standard synthesis package and results in a single adder. The signatures for the new
overloadings are:

[ArrayType, ArrayElementType return ArrayType]
[ArrayElementType, ArrayType return ArrayType]

ArrayType includes unsigned and signed defined in the numeric_bit and
numeric_std packages. ArrayElementType is bit (for the numeric_bit operators) or
std_ulogic (for the numeric_std operators). The same signatures are also defined for
types ufixed and sfixed defined in the new fixed-point packages (see Section 8.4) and
for the type float defined in the new floating-point packages (see Section 8.5).

EXAMPLE 4.2 A conditional incrementer

The new overloading for the “+” operator allows us to use a scalar control signal as
an operand in a conditional incrementer. If the control signal is '0', an unsigned
value is not incremented; if the control signal is '1', the value is incremented. The
declarations and process are:

signal inc_en : std_logic;
signal inc_reg : unsigned(7 downto 0);
...

inc_reg_proc : process (clk) is

130 Chapter 4 — New and Changed Operations

begin
 if rising_edge(clk) then
 inc_reg <= inc_reg + inc_en;
 end if;
end process inc_reg_proc;

Prior VHDL-2008, the conditional incementer would have been coded as:

inc_reg_proc : process (clk) is
begin
 if rising_edge(clk) then
 if inc_en = '1' then
 inc_reg <= inc_reg + 1;
 end if;
 end if;
end process inc_reg_proc;

The use of the integer value 1 as an operand would have implied an adder,
rather than just an incrementer.

4.3 Logical Reduction Operators

In earlier versions of VHDL, the logical operators and, or, nand, nor, xor, and xnor
were defined only as binary operators; that is, they each operated on two operands. The
operands could be bit or boolean values, or they could be arrays of bit or boolean ele-
ments. In the case of array operands, the logical operator is applied to corresponding
array elements to produce an array result. In some models, we need to apply a logical
operator to all of the elements of an array to produce a single scalar result. To do this in
earlier versions of VHDL, we had to write a loop to apply the operator to the elements.

VHDL-2008 extends the definition of logical operators to allow them to be used as
unary operators. Each such logical reduction operator is applied to a single operand that
is an array of bit or boolean elements and produces a bit or boolean result, respectively.
The std_logic_1164 package also defines overloaded logical reduction operators for
std_ulogic_vector operands. Thus, the signature of each logical reduction operator is:

[ArrayType return ArrayElementType]

The reduction and, or, and xor operators form the logical AND, OR, and exclusive
OR, respectively of the array elements. Thus:

and "0110" = '0' and '1' and '1' and '0' = '0'

or "0110" = '0' or '1' or '1' or '0' = '1'

xor "0110" = '0' xor '1' xor '1' xor '0' = '0'

4.3 Logical Reduction Operators 131

In each case, if the array has only one element, the result is the value of that ele-
ment. If the array is a null array (that is, it has no elements), the result of the and opera-
tor is '1', and the result of the or and xor operators is '0'.

The reduction nand, nor, and xnor operators are the negation of the reduction
and, or, and xor operators, respectively. Thus:

nand "0110" = not ('0' and '1' and '1' and '0') = not '0' = '1'

nor "0110" = not ('0' or '1' or '1' or '0') = not '1' = '0'

xnor "0110" = not ('0' xor '1' xor '1' xor '0') = not '0' = '1'

In each case, application to a single-element array produces the negation of the ele-
ment value. Application of nand to a null array produces '0', and application of nor or
xnor to a null array produces '1'.

The logical reduction operators have the same precedence as the unary not and abs
operators. In the absence of parentheses, they are evaluated before binary operators. So
the expression:

and A or B

involves applying the reduction and operator to A, then applying the binary or operator
to the result and B. In some cases, we need to include parentheses to make an expres-
sion legal. For example, the expression:

and not X

is not legal without parentheses, since we cannot chain unary operators. Instead, we
must write the expression as:

and (not X)

EXAMPLE 4.3 Parity of a vector value

Without reduction operators, calculating parity requires the following:

parity <= data(7) xor data(6) xor data(5) xor data(4) xor
 data(3) xor data(2) xor data(1) xor data(0);

With reduction operators, calculating parity becomes

parity <= xor Data;

Since reduction operators have higher precedence than binary logical operators,
the following two asignments produce the same value:

parity_error1 <= (xor data) and received_parity;
parity_error2 <= xor data and received_parity;

However, for readability, parentheses are recommended.

132 Chapter 4 — New and Changed Operations

4.4 Condition Operator

VHDL provides numerous language constructs that use a condition to control what
actions are performed. A condition is an expression that produces a boolean result, for
example, through application of relational and logical operators. In earlier versions of
VHDL, the fact that a condition had to produce a boolean value was a source of inconve-
nience, particularly in models that used bit or std_ulogic values for control signals. We
would typically write a condition using such a control signal as:

if control_sig = '1' then ...

VHDL-2008 provides two new language features that allow us to treat an expression
producing a bit or std_ulogic value as a condition. The first of these features is a condi-
tion operator, “??”, that converts from a bit or std_ulogic value to a boolean value. For
bit, “??” converts '1' to true and '0' to false. For std_ulogic, “??” converts both '1' and 'H' to
true and all other values to false. (We can also overload the operator for other user-
defined types.) Thus, we could rewrite the if-statement condition shown above as:

if ?? control_sig then ...

Normally, we would not apply the condition operator explicitly like this, as the sec-
ond of the new features involves implicit application of the operator in conditions. The
operator is implicitly applied in a condition when the expression could otherwise not be
interpreted as producing a boolean result and there is a unique interpretation using the
condition operator that does produce a boolean result. These potential interpretations
require use of the rules for resolving overloaded operators to determine the type of the
expression. Note that an ambiguous boolean expression is considered a boolean inter-
pretation and still results in an error.

As an example, assuming control_sig is a std_ulogic signal, we would rewrite the if-
statement condition shown above as:

if control_sig then ...

The condition operation is implicitly applied, since that is the one and only way of
getting a boolean result from the expression.

The places where the condition operator is considered for application are:

• after until in a wait statement

• after assert in an assertion statement

• after while in a while loop

• after if or elsif in an if statement

• after when in a next statement or exit statement

• after when in a conditional signal or variable assignment statement

• after if or elsif in an if-generate statement

• in a Boolean expression in a PSL declaration or a PSL directive

4.5 Matching Relational Operators 133

This list includes all of the cases where an expression of type boolean was required
in earlier versions of VHDL.

EXAMPLE 4.4 Std_logic control conditions

With the condition operator implicitly applied, we can write the following in VHDL-
2008:

signal cs1, ncs2, cs3 : std_logic;
...

if cs1 and not cs2 and cs3 then
 ...

Backward compatibility is maintained, so we can still write:

if cs1 = '1' and ncs2 = '0' and cs3 = '1' then
 ...

Note, however, that we cannot write a condition that mixes std_ulogic and bool-
ean operands for a logical operator, such as:

if cs1 and cs3 and ncs2 = '0' then -- illegal
 ...

The “??” operator is only implicitly applied to the entire condition. There is no
overloading for and that has a std_logic left operand and a boolean right operand.

4.5 Matching Relational Operators

VHDL provides ordinary relational operators (“=”, “/=”, “<”, “<=”, “>”, and “>=”) that
return a result of type boolean. We can use the result as a condition to control what
actions are performed in a model. However, if we want to use the result to assign to a
signal of type bit or std_ulogic, we have to resort to a form such as:

control_sig <= '1' when X = Y else '0';

VHDL-2008 has a new set of predefined matching relational operators (“?=”, “?/=”,
“?<”, “?<=”, “?>”, and “?>=”) that return bit or std_ulogic results. This allows us to rewrite
the assignment as:

control_sig <= X ?= Y;

The matching relational operators are predefined with the following signatures for
scalar operands:

[ScalarType, ScalarType return ScalarType]

134 Chapter 4 — New and Changed Operations

ScalarType is one of bit or std_ulogic. For bit operands, the results are the same as
the ordinary relational operators, except that the matching relational versions return '0' or
'1' instead of false or true. For std_ulogic operands, the result values are shown in Tables
4.1, 4.2, and 4.3. VHDL-2008 lists the result values for the “?=” and “?<” operators, and
then defines the results for the remaining operators using the not and or operators for
std_ulogic. Note that for “?<”, “?<=”, “?>”, and “?>=”, an operand value of '–' produces an
assertion-violation error, so the seemingly anomalous results shown in Tables 4.2 and 4.3
are not a concern. They are defined for completeness in case we chose to ignore asser-
tion violations during simulation.

In addition, the “?=” and “?/=” operators are predefined with the signature:

[ArrayType, ArrayType return ArrayElementType]

where ArrayType is any one dimensional array of bit or std_ulogic elements. The array
operands must be of the same length. The array “?=” operator applies the scalar “?=”
operator to corresponding elements of the arrays, and then forms the logical AND of the
resulting values. The array “?/=” operator does the same, but negates the final result.

We can also overload all of these operators. In particular, the “?<”, “?<=”, “?>”, and
“?>=” operators are not predefined for arrays of bit or std_ulogic elements; instead they
are overloaded in the appropriate numeric packages. They are overloaded for signed
and unsigned in numeric_bit and numeric_std; for ufixed and sfixed in fixed_generic_
pkg; for float in float_generic_pkg; for bit_vector in numeric_bit_unsigned; and for
std_ulogic_vector in numeric_std_unsigned. (See Chapter 8 for more details about the
standard packages.) Thus, we must include a use clause for the appropriate package if
we want to apply the operators to bit_vector or std_logic vector operands.

4
.5

M
a

tch
in

g R
ela

tion
a

l O
pera

tors
135

TABLE 4.1 Result values for the “?=” and “?/=” operators on std_ulogic operands

?= Right ?/= Right

Left 'U' 'X' '0' '1' 'Z' 'W' 'L' 'H' '–' Left 'U' 'X' '0' '1' 'Z' 'W' 'L' 'H' '–'

'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' '1' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' '0'

'X' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '1' 'X' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '0'

'0' 'U' 'X' '1' '0' 'X' 'X' '1' '0' '1' '0' 'U' 'X' '0' '1' 'X' 'X' '0' '1' '0'

'1' 'U' 'X' '0' '1' 'X' 'X' '0' '1' '1' '1' 'U' 'X' '1' '0' 'X' 'X' '1' '0' '0'

'Z' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '1' 'Z' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '0'

'W' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '1' 'W' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '0'

'L' 'U' 'X' '1' '0' 'X' 'X' '1' '0' '1' 'L' 'U' 'X' '0' '1' 'X' 'X' '0' '1' '0'

'H' 'U' 'X' '0' '1' 'X' 'X' '0' '1' '1' 'H' 'U' 'X' '1' '0' 'X' 'X' '1' '0' '0'

'–' '1' '1' '1' '1' '1' '1' '1' '1' '1' '–' '0' '0' '0' '0' '0' '0' '0' '0' '0'

136
C

h
a

pter 4
—

N
ew

 a
n

d
 C

h
a

n
ged

 O
pera

tion
s

TABLE 4.2 Result values for the “?<” and “?<=” operators on std_ulogic operands

?< Right ?<= Right

Left 'U' 'X' '0' '1' 'Z' 'W' 'L' 'H' '–' Left 'U' 'X' '0' '1' 'Z' 'W' 'L' 'H' '–'

'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'X' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' '1'

'X' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '1'

'0' 'U' 'X' '0' '1' 'X' 'X' '0' '1' 'X' '0' 'U' 'X' '1' '1' 'X' 'X' '1' '1' '1'

'1' 'U' 'X' '0' '0' 'X' 'X' '0' '0' 'X' '1' 'U' 'X' '0' '1' 'X' 'X' '0' '1' '1'

'Z' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'Z' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '1'

'W' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'W' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '1'

'L' 'U' 'X' '0' '1' 'X' 'X' '0' '1' 'X' 'L' 'U' 'X' '1' '1' 'X' 'X' '1' '1' '1'

'H' 'U' 'X' '0' '0' 'X' 'X' '0' '0' 'X' 'H' 'U' 'X' '0' '1' 'X' 'X' '0' '1' '1'

'–' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '–' '1' '1' '1' '1' '1' '1' '1' '1' '1'

4
.5

M
a

tch
in

g R
ela

tion
a

l O
pera

tors
137

TABLE 4.3 Result values for the “?>” and “?>=” operators on std_ulogic operands

?> Right ?>= Right

Left 'U' 'X' '0' '1' 'Z' 'W' 'L' 'H' '–' Left 'U' 'X' '0' '1' 'Z' 'W' 'L' 'H' '–'

'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' '0' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'U' 'X'

'X' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '0' 'X' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X'

'0' 'U' 'X' '0' '0' 'X' 'X' '0' '0' '0' '0' 'U' 'X' '1' '0' 'X' 'X' '1' '0' 'X'

'1' 'U' 'X' '1' '0' 'X' 'X' '1' '0' '0' '1' 'U' 'X' '1' '1' 'X' 'X' '1' '1' 'X'

'Z' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '0' 'Z' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X'

'W' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' '0' 'W' 'U' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X'

'L' 'U' 'X' '0' '0' 'X' 'X' '0' '0' '0' 'L' 'U' 'X' '1' '0' 'X' 'X' '1' '0' 'X'

'H' 'U' 'X' '1' '0' 'X' 'X' '1' '0' '0' 'H' 'U' 'X' '1' '1' 'X' 'X' '1' '1' 'X'

'–' '0' '0' '0' '0' '0' '0' '0' '0' '0' '–' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X' 'X'

138 Chapter 4 — New and Changed Operations

EXAMPLE 4.5 Assignment of a condition result for a select signal

We can write a Boolean equation for a std_ulogic select signal that includes chip-
select control signals and an address signal. In earlier versions of VHDL, we had to
write an assignment in the following form, including a condition of type boolean:

dev_sel1 <= '1' when cs1 = '1' and
 ncs2 = '0' and addr = X"A5" else '0';

In VHDL-2008, we can use the “?=” operator, which returns a std_ulogic result.
We can combine that result with the std_ulogic control signals to produce a
std_ulogic form of the Boolean equation:

dev_sel1 <= cs1 and not ncs2 and addr ?= X"A5";

We can also use this form of expression in a condition, since the condition oper-
ator, “??” (see Section 4.4), is implicitly applied:

if cs1 and not ncs2 and addr ?= X"A5" then
 ...

or similarly:

if cs1 and ncs2 ?= '0' and addr ?= X"A5" then
 ...

Note that, in a condition, we still have backward compatibility. The following
forms are still valid:

if cs1 = '1' and ncs2 = '0' and addr = X"A5" then
 ...

and

if (cs1 and not ncs2) = '1' and addr = X"A5" then
 ...

4.6 Maximum and Minimum

If we want to find the larger or the smaller of two values, we can write an if statement,
such as:

if A > B then
 greater := A;
else
 greater := B;
end if;

4.6 Maximum and Minimum 139

However, in some cases, it would be more convenient to select the larger or smaller
value as part of an expression. VHDL-2008 allows us to do so using new predefined
maximum and minimum functions, with the following signatures:

[ScalarType, ScalarType return ScalarType]
[DiscreteArrayType, DiscreteArrayType
 return DiscreteArrayType]

Here, ScalarType is any scalar type, and DiscreteArrayType is any discrete array type
(that is, an array type whose elements are of an integer or enumeration type). These are
the types for which the operator “<” is predefined, and the results of the maximum and
minimum functions are defined in terms of the “<” operator applied to the operands. For
example:

maximum(3, 20) = 20 minimum(3, 20) = 3

maximum('a', 'z') = 'z' minimum('a', 'z') = 'a'

Note that for array types, the “<” operator uses dictionary ordering to compare oper-
ands. The two arrays do not have to be of the same length. Corresponding elements are
compared, from left to right, until a pair with differing values is encountered (in which
case the lesser array is the one containing the lesser element of the pair) or until the end
of one array is reached (in which case the lesser array is the shorter of the two). Since the
maximum and minimum functions are defined in terms of the “<” operator, they also use
dictionary ordering for arrays, for example:

maximum(bit_vector'("101"), bit_vector'("100100")) = "101"

minimum(bit_vector'("101"), bit_vector'("100100")) = "100100"

As these examples show, for vectors representing binary-coded numeric values, the
predefined maximum and minimum functions are not consistent with numerical order-
ing. (The same argument also applies to the predefined relational operators.) For this rea-
son, the standard numeric packages define overloaded versions of maximum and
minimum (and the relational operators) that do give results consistent with numerical
ordering.

EXAMPLE 4.6 Maximum function used in a declaration

One use of the maximum and minimum is in expressions in declarations. For exam-
ple, in the following function for saturating addition of unsigned numeric values, we
use the maximum function to determine the longer of the two operand values, and
then declare the result variable to be of that size.

function saturating_add (A, B : unsigned) return unsigned is
 constant size : natural := maximum(A'length, B'length);
 variable result : unsigned(size - 1 downto 0);
 variable c_out : std_ulogic;
begin

140 Chapter 4 — New and Changed Operations

 (c_out, result) := ('0' & A) + ('0' & B);
 if c_out then
 result := (others => '1');
 end if;
 return result;
end function saturating_add;

VHDL-2008 also predefines the maximum and minimum functions as reduction
operations on array values. The signature is:

[ArrayType return ArrayElementType]

Here, ArrayType is an array of any scalar element type (not just a discrete type), and
ArrayElementType is the element type. The maximum function of this form returns the
largest element in the array, and the minimum function returns the smallest element in
the array. Again, the comparisons are performed using the predefined “<” operator for
the element type. Thus,

maximum(string'("WYZ")) = 'Z' minimum(string'("WXYZ")) = 'W'

maximum(time_vector'(10 ns, 50 ns, 20 ns)) = 50 ns

minimum(time_vector'(10 ns, 50 ns, 20 ns)) = 10 ns

For a null array (one with no elements), the maximum function returns the smallest
value of the element type, and the minimum functions returns the largest value of the
element type.

4.7 Mod and Rem for Physical Types

Prior to VHDL-2008, the arithmetic operators “+”, “–”, “*” and “/” were predefined for
physical types, including type time, but the mod and rem operators were not pre-
defined. VHDL-2008 adds predefined mod and rem functions for these types, with the
following signature.:

[PhysicalType, PhysicalType return PhysicalType]

For example, using type time:

 5 ns rem 3 ns = 2 ns
 5 ns mod 3 ns = 2 ns
(–5 ns) rem 3 ns = –2 ns
(–5 ns) mod 3 ns = 1 ns
 1 ns mod 300 ps = 100 ps
(–1 ns) mod 300 ps = 200 ps

4.8 Shift Operations 141

EXAMPLE 4.7 Generating a periodic waveform

We can use the mod operator to simplify generation of a periodic waveform. For
example, the following process creates a triangle wave on the real signal
triangle_wave. T_period_wave defines the period of the output wave, t_offset
defines the offset within the triangle wave, and t_period_sample defines how many
points are in the waveform.

signal triangle_wave : real;
...

wave_proc : process is
 variable phase : time;
begin
 phase := (now + t_offset) mod t_period_wave;
 if phase <= t_period_wave/2 then
 triangle_wave <= 4.0 * real(phase / t_period_wave) - 1.0;
 else
 triangle_wave <= 3.0 - 4.0 * real(phase / t_period_wave);
 end if;
 wait for tperiod_sample;
end process wave_proc;

4.8 Shift Operations

Prior to VHDL-2008, the shift operations (rol, ror, sll, srl, sla, and sra) were pre-
defined only for arrays of bit and boolean elements. The operations can take a positive
shift count, in which case they rotate or shift in the direction suggested by the operator
name. They can also take a negative shift count, in which case they rotate or shift in the
opposite direction. The rotate and logical-shift operations have the expected meanings.
The arithmetic-shift operators also have the expected meaning when shifting right; that
is, they replicate the leftmost bit. However, when shifting left, they replicate the rightmost
bit, treating it as a sign bit. This seems anomalous to many designers, so the operation is
rarely (if ever) used.

The numeric_bit and numeric_std packages used in earlier versions of VHDL defined
overloaded versions of the rol, ror, sll, and srl operators with similar behavior to that
of the predefined operators on bit_vector values. The packages did not, however, over-
load sla and sra, preferring instead to define shift_left and shift_right functions that
perform logical shifts on unsigned values and arithmetic shifts on signed values. A shift
left on a signed value fills the vacated positions with '0', rather than replicating the right-
most bit. This is generally more appropriate for arithmetic circuits.

VHDL-2008 extends the definitions of shift operations to include sla and sra in
numeric_bit and numeric_std. It also defines all of the shift operations in the new arith-
metic packages numeric_bit_unsigned, numeric_std_unsigned, and in the fixed-point
packages (see Chapter 8). In all cases, the overloaded sla and sra operators on signed
values have the same numeric behavior as the shift_left and shift_right functions.

142 Chapter 4 — New and Changed Operations

4.9 Strength Reduction and 'X' Detection

Prior to VHDL-2008, the strength reduction and 'X' detection functions were not uni-
formly implemented throughout the packages based on the std_ulogic type. The pack-
age std_logic_1164 defined the detection function is_X and the strength reduction
functions to_X01, to_X01Z, and to_UX01 for scalar and vector types. The numeric_std
package, however, did not define these functions for unsigned or signed. Instead, we
had to convert values of those types to std_logic_vector in order to use the functions.
The package did, however, define the function to_01 that maps non-logic values to a
value of our choice (the default being '0').

In VHDL-2008, the inconsistency is rectified, and the functions are also defined in the
new fixed-point and floating-point packages based on the std_ulogic type (see Chapter
8). To summarize, the following functions are defined in the packages:

is_X [AType return boolean]
to_X01 [AType return AType]
to_X01Z [AType return AType]
to_UX01 [AType return AType]

In std_logic_1164, AType covers std_ulogic, std_logic, std_ulogic_vector and
std_logic_vector; in numeric_std, AType covers unsigned and signed; in the fixed-point
packages, AType covers ufixed and sfixed; and in the floating-point packages, AType cov-
ers float and its subtypes.

In addition, the function to_01 is defined with the following signature:

to_01 [AType, std_ulogic return AType]

The second parameter is the value to which non-logic values such as 'X' are mapped.
This function is defined in packages numeric_std, numeric_std_unsigned, the fixed-point
packages, and the floating-point packages, with the same types for AType as the other
strength-reduction functions.

EXAMPLE 4.8 Strength reduction and 'X' detection in models

We can use the to_X01 function in behavioral models and ASIC or FPGA input cells
to promote a resistive strength to a driving level as follows:

ncs_x01 <= to_X01(ncs);

We can use the is_X function to detect 'X' values in behavioral models and RTL
code, for example, in the input to a state machine:

assert not is_X(ncs) report "ncs is X" severity error;

143

Chapter 5

New and Changed Statements

VHDL provides various forms of statements for modeling the behavior of hardware and
testbenches. Sequential statements are used to express algorithms within processes and
subprograms, where there is just one thread of control. Concurrent statements, on the
other hand, express multi-threaded control. They are also used to represent structural
decomposition of a design into concurrently operating subsystems.

In this chapter, we look at the enhancements to the statement repertoire in VHDL-
2008. We start with changes to assignment statements, which include new sequential
forms that mirror conditional and selected concurrent assignments. Next, we look at
changes to case statements that allow matching of standard-logic values with don’t care
elements. Finally, we look at extensions to if-generate statements that allow multiple con-
ditions to be checked, and a new case-generate statement.

5.1 Conditional and Selected Assignments

In earlier versions of VHDL, sequential and concurrent signal assignment statements had
different syntactic forms. Sequential signal assignments, appearing in processes and sub-
programs, could only take the simple form of a target signal on the left-hand side and a
list of one or more values and delays on the right-hand side. Concurrent signal assign-
ments, appearing in architectures, could take this simple form, but could also take condi-
tional and selected forms. While we could embed a sequential assignment in an if
statement or a case statement, the differences between the sequential and concurrent
contexts was a cause for confusion among designers.

In this section, we describe the way VHDL-2008 extends assignments. This includes
allowing conditional and selected forms of signal assignments in processes and subpro-
grams, providing for a signal to be forced by a conditional or selected assignment, and
providing selected and conditional variable assignments.

5.1.1 Sequential Signal Assignments

VHDL-2008 extends the allowed forms of signal assignments to be consistent between
the sequential and concurrent contexts. Within a process or subprogram, we can write
conditional and selected signal assignments in the same form as those in architecture
bodies. The effect is equivalent to writing simple signal assignments within if statements
or case statements, but the notation is more succinct.

144 Chapter 5 — New and Changed Statements

EXAMPLE 5.1 Register process using a conditional assignment

A process representing a register with synchronous reset can be written using a con-
ditional signal assignment as follows:

reg : process (clk) is
begin
 if rising_edge(clk) then
 q <= (others => '0') when reset else d;
 end if;
end process reg;

The conditional assignment in the process is equivalent to the if statement:

if reset then
 q <= (others => '0')
else
 q <= d;
end if;

EXAMPLE 5.2 Next-state process for a finite-state machine

Use of selected assignments simplifies description of the next-state logic of a finite-
state machine, as is shown by the following process outline:

next_state_logic : process (all) is
begin
 with current_state select
 idle =>
 next_state <= pending1 when request and busy else
 active1 when request and not busy else
 idle;
 pending1 =>
 ...
 ...
 end case;
end process next_state_logic;

EXAMPLE 5.3 Combined multiplexer and register using a selected assignment

We can model a register with a multiplexer at its input in a single process as follows:

mux_reg : process (clk) is
begin
 if rising_edge(clk) then
 with d_sel select

5.1 Conditional and Selected Assignments 145

 q <= source0 when "00",
 source1 when "01",
 source2 when "10",
 source3 when "11";
 end if;
end process mux_reg;

The selected assignment in the process is equivalent to the case statement:

case d_sel is
 when "00" =>
 q <= source0;
 when "01"
 q <= source1;
 when "10"
 q <= source2;
 when "11"
 q <= source3;
end case;

When we write a conditional or selected signal assignment in a sequential context,
we can include delays and multiple waveform values, just as we do in concurrent con-
texts. For example, in a stimulus-generator process, we could write the assignment:

req <= '1', '0' after T_fixed when fixed_delay_mode else
 '1', '0' after next_random_delay(ran_seed);

If we need to include an inertial or transport delay specification in a sequential
assignment, we write it in the same way as in a concurrent assignment. For example, a
sequential conditional assignment using transport delay could be written as:

wire_out <= transport
 wire_in after T_wire_delay when delay_mode = fixed else
 wire_in after delay_lookup("wire_out");

Likewise, a sequential conditional assignment using inertial delay could be written
as:

with speed_grade select
 z <= reject Tpr inertial
 result after Tpd_std when std_grade,
 result after Tpd_fast when fast_grade,
 result after Tpd_redhot when redhot_grade;

We can also use the reserved word unaffected in a sequential signal assignment to
represent no assignment to the target signal, for example:

146 Chapter 5 — New and Changed Statements

with dut_state select
 dut_req <= '1' when ready,
 '0' when ack,
 unaffected when others;

A related change is that we can use the reserved word unaffected in a simple
sequential signal assignment. This was previously illegal. In VHDL-2008, we can write the
following statements within a process or subprogram:

if dut_busy then
 collision_count := collision_count + 1;
 dut_req <= unaffected;
else
 accepted_count := accepted_count + 1;
 dut_req <= '1';
end if;

The assignment using unaffected is the same as doing nothing (using a null state-
ment), but the design intent is explicitly documented. It is clear that we did not inadvert-
ently omit an assignment.

One aspect of concurrent signal assignments that we cannot include in a sequential
assignment is the reserved word guarded. The effect of including guarded in a concur-
rent assignment is to cause the target signal to be disconnected when a guard signal is
true, and to reconnect when the guard signal becomes false. Reconnection is done by
executing the concurrent assignment. Thus, the guard signal has some external control
over when the concurrent assignment is executed. This would not be appropriate for a
sequential assignment, which should only be executed when control reaches it within
the enclosing process or subprogram.

5.1.2 Forcing Assignments

In Section 2.2, we described the new features in VHDL-2008 for forcing and releasing sig-
nals. Force and release assignments are both forms of sequential signal assignment state-
ments. VHDL-2008 also allows us to write forcing assignments in the form of conditional
and selected assignments within processes and subprograms. A conditional forcing
assignment has the form

signal_name <= force mode
 value when condition else
 ...

and a selected forcing assignment has the form

with expression select
 signal_name <= force mode
 value when choices,
 ...

5.1 Conditional and Selected Assignments 147

The mode is optional, and can be either in or out to specify forcing of the effective
value or the driving value of the target signal, respectively, as described in Section 2.2.
The effect of these statements is to allow us to choose the value to force onto the target,
depending on a number of conditions or on the value of an expression. They provide a
more succinct way of writing the choice than embedding a number of simple forcing
assignments in an if statement or case statement.

EXAMPLE 5.4 Conditional forcing assignment

A conditional forcing assignment can be used to choose between a randomly gener-
ated stimulus value or a directed-test stimulus value in a loop that applies successive
tests. The stimulus value is used to force the effective value of a bidirectional port of
a design under test. The code in the testbench is:

alias dut_d_bus is
 <<signal dut.d_bus:std_logic_vector(15 downto 0)>>;
...

for test_count in 1 to num_tests loop
 dut_d_bus <= force in
 next_random_stim(dut_d_bus'length)
 when test_mode = random else
 directed_stim(test_count);
 wait for test_interval;
end loop;

5.1.3 Variable Assignments

One of the reasons for providing sequential forms of conditional and selected signal
assignments in VHDL-2008 is to provide consistency with concurrent signal assignments.
In the further interest of consistency, VHDL-2008 also provides conditional and selected
forms of variable assignment statement for use in processes and subprograms. A condi-
tional variable assignment has the form

variable_name := value when condition else
 ...

and a selected variable assignment has the form

with expression select
 variable_name := value when choices,
 ...

148 Chapter 5 — New and Changed Statements

EXAMPLE 5.5 Conditional assignment for an intermediate variable

A variable can be used for an intermediate value in a synthesizable process. No
actual storage is implied for the variable, provided it is updated on all execution
paths through the process. A conditional variable assignment allows us to make
assignments to variables in the same succinct form that we can use for signals. Thus,
in the process:

arith_unit : process (all) is
 variable tmp : operand_type;
begin
 tmp := a - b when mode else a + b;
 new_result <= result + scale * tmp;
end process arith_unit;

the assignment to the variable tmp is equivalent to the statements:

if mode then
 tmp := a - b;
else
 tmp := a + b;
end if;

EXAMPLE 5.6 Selected assignment for combined multiplexer and register

We can use a selected variable assignment for an intermediate variable representing
a multiplexer at the input to a register. The process is:

mux_reg : process (clk) is
 variable mux : data_type;
begin
 if rising_edge(clk) then
 with mux_sel select
 mux := in0 when "00",
 in1 when "01",
 in2 when "10",
 in3 when "11",
 (others => 'X') when others;
 reg_out <= (others => '0') when reset else mux;
 end if;
end process mux_reg;

5.2 Matching Case Statements 149

5.2 Matching Case Statements

A case statement in VHDL allows us to perform alternative actions depending on the
value of an expression. We write choice values in each alternative, immediately preced-
ing the “=>” symbol. The choices are compared for exact equality with the expression
value to select an alternative. If the type of the case expression and choices is a vector of
std_logic values, the exact comparison is not always what we want. In particular, we
would like to be able to include don’t care elements ('–') in the choices to indicate that
we don’t care about some elements of the case expression when selecting an alternative.

VHDL-2008 provides a new form of case statement, called a matching case state-
ment, that uses the predefined “?=” operator described in Section 4.5 to compare choice
values with the expression value. We include a question mark symbol after the keyword
case, as follows:

case? expression is
 ...
end case?;

The most common use of a matching case statement is with an expression of a vec-
tor type whose elements are std_ulogic or std_logic values. That includes the standard
types std_ulogic_vector, std_logic_vector, unsigned, signed, and so on. It also includes
vector types that we might define. With a case expression of such a type, we can write
choice values that include '–' elements to specify don’t care matching.

EXAMPLE 5.7 Priority arbiter using don’t care matching

Suppose we have vectors of request and grant signals, declared as follows:

signal request, grant : std_logic_vector(0 to 3);

We can use a matching case statement in a priority arbiter, with request 0 having
highest priority:

case? request is
 when "1---" => grant <= "1000";
 when "01--" => grant <= "0100";
 when "001-" => grant <= "0010";
 when "0001" => grant <= "0001";
 when others => grant <= "0000";
end case?;

Each choice is compared with the case expression using the predefined “?=”
operator. Thus, the first choice matches values "1000", "1001", "100X", "H000", and so
on, and similarly for the remaining choices. This is a much more succinct way of
describing the arbiter than using an ordinary case statement. Moreover, unlike a
sequence of tests in an if statement, it does not imply chained decision logic.

150 Chapter 5 — New and Changed Statements

When we use a matching case statement with a vector-type expression, the value of
the expression must not include any '–' elements. (This is different from the choice val-
ues, which can include '–' elements.) The reason is that an expression value with a '–'
element would match multiple choice values, making selection of an alternative ambigu-
ous. Normally, this rule is not a problem, since we don’t usually assign '–' values to sig-
nals or variables. They usually just occur in literal values for comparison and in testbench
assertions.

In an ordinary case statement, we need to include choices for all possible values of
the case expression. A related rule applies in a matching case statement. Each possible
value of the case expression, except those that include any '–' elements, must be repre-
sented by exactly one choice. By “represented,” we mean that comparison of the choice
and the expression value using the “?=” operator yields '1'. Hence, our choice values
would generally just include '0', '1', and '–' elements, matching with '0', 'L', '1', 'H' ele-
ments in the case expression value. We could also include 'L' and 'H' elements in a
choice. However, we would not include 'U', 'X', 'W', or 'Z' choice elements, since they
only ever produce 'U' or 'X' results, and so never match. As with an ordinary case state-
ment, we can include an others choice to represent expression values not otherwise rep-
resented. Unlike an ordinary case statement, a choice can represent multiple expression
values if it contains a '–' element.

We mentioned that a vector type including std_ulogic or std_logic values is the most
common type for a matching case statement. Less commonly, we can write an expression
of type std_ulogic, std_logic, bit, or a vector of bit elements. These are the other types
for which the “?=” operator is predefined. For std_ulogic or std_ulogic expressions, the
choice values would typically be either '0' (matching an expression value of '0' or 'L') or
'1' (matching an expression value of '1' or 'H'). We would not write a choice of '–', since
that would match all expression values, preventing us from selecting distinct alternatives.
For case expressions of type bit or a vector of bit elements, a matching case statement
has exactly the same behavior as an ordinary case statement. VHDL-2008 allows match-
ing case statements of this form to allow synthesizable models to be written uniformly
regardless of whether bit or std_logic data types are used.

5.2.1 Matching Selected Assignments

Selected assignments in VHDL are shorthand notations for assignments within case state-
ments. This applies to concurrent selected signal assignments in earlier versions of
VHDL, as well as to sequential selected signal and variable assignments in VHDL-2008. In
all of these forms of selected assignment, we can include a “?” symbol after the select
keyword to indicate that the implied case statement is a matching case statement instead
of an ordinary case statement. The rules covering the type of the case expression and the
way in which choices are matched then apply to the selected assignment.

EXAMPLE 5.8 Priority arbiter using matching selected assignment

We can rewrite the priority arbiter from Example 5.7 using a matching selected
assignment as follows:

5.3 If and Case Generate 151

with request select?
 grant <= "1000" when "1---",
 "0100" when "01--",
 "0010" when "001-",
 "0001" when "0001",
 "0000" when others;

5.3 If and Case Generate

Earlier versions of VHDL provide two forms of generate statements. A for-generate state-
ment allows us to include multiple copies of component instances or other concurrent
statements. An if-generate statement allows us to decide whether or not to include con-
current statements based on the value of a condition. If we want to decide between alter-
nate sets of concurrent statements depending on whether a condition is true or false, we
use two if-generate statements with complementary conditions, as follows:

L1: if condition generate
 -- first alternative
 ...
end generate L1;

L2: if not condition generate
 -- second alternative
 ...
end generate L2;

This is somewhat cumbersome, and inconsistent with sequential if statements, in
which we can specify alternates using elsif and else clauses. VHDL-2008 extends the
form of if generate statements to allow us to specify alternatives in a way similar to
sequential if statements. We can rewrite the above pair of if-generate statements as
follows:

L: if condition generate
 -- first alternative
 ...
else generate
 -- second alternative
 ...
end generate L;

We can also include further conditions to test, as follows:

L: if condition1 generate
 -- first alternative
 ...
elsif condition2 generate
 -- second alternative

152 Chapter 5 — New and Changed Statements

 ...
...
else generate
 -- last alternative
 ...
end generate L;

Each of the alternatives can be just a set of concurrent statements, or it can include
declarations as well as concurrent statements. In the latter case, we write begin and end
keywords around the statements, as follows:

L: if condition1 generate
 -- first alternative declarations
 ...
 begin
 -- first alternative statements
 ...
 end;
elsif condition2 generate
 ...
end generate L;

When the model is elaborated, the conditions in the if-generate statement are tested
from first to last until one is found that is true. The corresponding declarations (if any)
and concurrent statements are then included in the elaborated model. If no condition is
true and there is an else generate alternative, the declarations and statements from that
alternative are included. The else generate alternative is optional, allowing for the pos-
sibility of no declarations or statements being included if none of the conditions is true.
Of course, if we omit the else generate alternative and there is only one condition to
test, the if-generate statement collapses down to the pre-VHDL-2008 form.

EXAMPLE 5.9 Boundary conditions in a replicated structure

We often use for-generate statements to replicate cells in a regular structure, and
include nested if-generate statements to deal with the differences between the end
replications and those in the middle. For example, a ripple-carry adder has a half
adder at the least-significant end and has different carry in and out connections for
the cells at the ends and in the middle. We can use a nested if-generate with three
alternatives to deal with the differences:

adder: for i in width-1 downto 0 generate
 signal carry_chain : unsigned(width-1 downto 1);
begin
 adder_cell: if i = width-1 generate -- most-significant cell
 add_bit: component full_adder
 port map (a => a(i), b => b(i), s => s(i),
 c_in => carry_chain(i), c_out => c_out);

5.3 If and Case Generate 153

 elsif i = 0 generate -- least-significant cell
 add_bit: component half_adder
 port map (a => a(i), b => b(i), s => s(i),
 c_out => carry_chain(i+1));
 else generate -- middle cell
 add_bit: component full_adder
 port map (a => a(i), b => b(i), s => s(i),
 c_in => carry_chain(i),
 c_out => carry_chain(i+1));
 end generate adder_cell;
end generate adder;

VHDL-2008 also provides a case-generate statement, in which we specify alternatives
in a similar way to a case statement. We specify a static expression (one whose value can
be computed during elaboration), and choice values for each alternative. The form of a
case-generate statement is:

L: case expression generate
 when choice1 =>
 -- first alternative
 ...
 when choice2 =>
 -- second alternative
 ...
 ...
end generate L;

As in the if-generate statement, each alternative can be just a set of concurrent state-
ments, or it can include declarations as well as concurrent statements, with begin and
end keywords around the statements. The rules governing sequential case statement
expressions and choices also apply to the expression and choices in a case-generate
statement, with the further stipulation that the expression be static. When the model is
elaborated, the expression is evaluated, and the alternative whose choice is the same as
the expression value is selected. The declarations (if any) and the statements from that
alternative are included in the elaborated model.

EXAMPLE 5.10 Alternative structures for a complex multiplier

Multiplication of complex numbers in Cartesian form involves four scalar multiplica-
tions, a subtraction, and an addition. Depending on the constraints that apply to a
design, these operations can be implemented in one clock cycle using multiple
function units, in multiple clock cycles using fewer function units, or in a pipeline.
Suppose we have an enumeration type, defined as follows, for specifying the imple-
mentation to use:

154 Chapter 5 — New and Changed Statements

type implementation_type is
 (single_cycle, multicycle, pipelined);

An entity declaration for a complex multiplier has a generic constant of this type
controlling the implementation:

entity complex_multiplier is
 generic (implementation : implementation_type; ...);
 port (...);
end entity complex_multiplier;

Within the architecture, we use the value of the generic constant in a case-
generate statement to determine what components to instantiate and how to inter-
connect them:

architecture rtl of complex_multiplier is
 ...
begin

 mult_structure : case implementation generate
 when single_cycle =>
 signal real_pp1, real_pp2 : ...;
 ...
 begin
 real_mult1 : component multiplier
 port map (...);
 ...
 end;
 when multicycle =>
 signal real_pp1, real_pp2 : ...;
 ...
 begin
 mult : component multiplier
 port map (...);
 ...
 end;
 when pipelined =>
 signal real_pp1, real_pp2 : ...;
 ...
 begin
 mult1 : component multiplier
 port map (...);
 ...
 end;
 end generate mutl_structure;

end architecture rtl;

5.3 If and Case Generate 155

The case-generate statement includes three alternatives, one for each possible
implementation style. Each alternative can have local declarations and concurrent
statements with the same names and labels as those in other alternatives, as well as
differently named declarations and differently labeled statements.

5.3.1 Configuration of If and Case Generate

One of the main difficulties that has prevented introduction of case-generate statements
and if-generate statements with multiple alternatives in earlier versions of VHDL has been
working out a way of configuring the alternatives. VHDL-2008 handles this by requiring
each alternative to be labeled if it is to be referenced in a configuration declaration. The
alternative labels are in addition to the overall statement label. In an if-generate state-
ment, we include a label before each condition:

L: if A1: condition1 generate
 -- first alternative declarations
 ...
 begin
 -- first alternative statements
 ...
 end;
elsif A2: condition2 generate
 ...
else A3: generate
 ...
end generate L;

We can then use the labels in block configurations for the alternatives within a con-
figuration declaration:

for L(A1)
 ...
end for;

for L(A2)
 ...
end for;

for L(A3)
 ...
end for;

This is similar to the way in which we write a value or a range in a configuration for
a for-generate statement to identify a replication of the generate statement body to con-
figure.

156 Chapter 5 — New and Changed Statements

EXAMPLE 5.11 Configuring a replicated structure with boundary differences

In Example 5.9 we showed a structure for a ripple carry adder, in which differences
among bit positions were handled by alternatives of an if-generate statement. We can
revise the statement to include labels in each alternative:

adder: for i in width-1 downto 0 generate
 signal carry_chain : unsigned(width-1 downto 1);
begin
 adder_cell: if most_significant: i = width-1 generate
 add_bit: component full_adder
 port map (a => a(i), b => b(i), s => s(i),
 c_in => carry_chain(i), c_out => c_out);
 elsif least_significant: i = 0 generate
 add_bit: component half_adder
 port map (a => a(i), b => b(i), s => s(i),
 c_out => carry_chain(i+1));
 else middle: generate
 add_bit: component full_adder
 port map (a => a(i), b => b(i), s => s(i),
 c_in => carry_chain(i),
 c_out => carry_chain(i+1));
 end generate adder_cell;
end generate adder;

We can now write a configuration declaration for the enclosing entity and archi-
tecture:

configuration widget_cfg of arith_unit is
 for ripple_adder
 for adder

 for adder_cell(most_significant)
 for add_bit: full_adder
 use entity widget_lib.full_adder(asic_cell);
 end for;

 for adder_cell(middle)
 for add_bit: full_adder
 use entity widget_lib.full_adder(asic_cell);
 end for;

 for adder_cell(least_significant)
 for add_bit: half_adder
 use entity widget_lib.half_adder(asic_cell);
 end for;

5.3 If and Case Generate 157

 end for; -- adder
 end for; -- ripple_adder
end configuration widget_cfg;

The block configuration “for adder ... end for” configures the for-generate
statement. Within it, we have three block configurations, one for each alternative of
the if-generate statement. We identify each alternative with a combination of the if-
generate statement label (adder_cell) and the alternative label (most_significant,
least_significant, and middle, respectively). The configuration information for each
alternative is only acted upon during elaboration if the corresponding condition is
true and the alternative is included in the design hierarchy.

We handle configuration of alternatives in a case-generate statement in a similar way,
by including a label before the choice value or values in each alternative. The form is:

L: case expression generate
 when A1: choice1 =>
 -- first alternative
 ...
 when A2: choice2 =>
 -- second alternative
 ...
 ...
end generate L;

We also write the configuration information in a similar way, including the label for
the alternative in parentheses after the generate statement label.

EXAMPLE 5.12 Configuring the alternative structures for the complex multiplier

We can revise the case-generate statement in Example 5.10 to include alternative
labels, allowing the alternatives to be configured:

mult_structure : case implementation generate
 when single_cycle_mult: single_cycle =>
 ...
 when multicycle_mult: multicycle =>
 ...
 when pipelined_mult: pipelined =>
 ...;
end generate mutl_structure;

We can now write a configuration declaration for the complex multiplier:

configuration wallace_tree of complex_multiplier is
 for rtl

158 Chapter 5 — New and Changed Statements

 for mult_structure(single_cycle_mult)
 for real_mult1 : multiplier
 use entity work.multiplier(wallace_tree);
 ...
 end for;

 for mult_structure(multicycle_mult)
 for mult : multiplier
 use entity work.multiplier(wallace_tree);
 ...
 end for;

 for mult_structure(pipelined_mult)
 for mult1 : multiplier
 use entity work.multiplier(wallace_tree);
 ...
 end for;

 end for; -- rtl
end for wallage_tree;

The alternative labels in an if-generate or case-generate statement allow us to config-
ure the alternatives of the statement. If we do not need to write an explicit configuration
for an alternative, we can leave the alternative unlabeled. In the examples in the first part
of Section 5.3, we weren’t concerned with configuration for any of the alternatives, so we
omitted labels from all alternatives.

Earlier versions of VHDL did not allow for an alternative label in the single alterna-
tive of an if-generate statement and did not allow for specification of an alternative label
in a corresponding block configuration. VHDL-2008 provides for backward compatibility
by allowing a block configuration for an if-generate statement to omit the alternative
label and surrounding parentheses. In that case, the block configuration applies to the
first alternative of the if-generate statement, and the information in the block configura-
tion is used only if the first condition in the if-generate statement is true.

159

Chapter 6

Modeling Enhancements

One of the main purposes of VHDL is modeling the behavior of hardware. This chapter
describes a number of features in VHDL-2008 that make the modeling task easier. All of
the modeling tasks described here can be expressed in earlier versions of VHDL, but not
as succinctly.

6.1 Signal Expressions in Port Maps

When we instantiate a component in VHDL, we write a port map to specify the signals
connected to the ports of the instance. If an input port is to be tied to a fixed value, we
can write an expression in the port map in place of a signal name. In earlier versions of
VHDL, the expression was required to be static; that is, the expression’s value could not
change during execution of the model. A common example is a simple literal value rep-
resenting tying an unused input high or low:

inst : component adder32
 port map (..., carry_in => '0', ...);

In VHDL-2008, the rules for writing an expression in a port map are generalized to
include nonstatic expressions involving the values of signals. This allows us to include a
small amount of functional logic in a port map, and avoids the need to express the logic
with a separate assignment statement and an intermediate signal. If the expression is not
static, the port association is defined to be equivalent to association with an anonymous
signal that is the target of a signal assignment with the expression on the right-hand side.

EXAMPLE 6.1 Select logic in a port map

Suppose an I/O controller connected to a CPU bus is to be enabled when bus con-
trol signals indicate a read from I/O address space and the bus address matches the
controller’s address. We can include the select logic in the port map for the controller
instance:

io_ctrl_1 : entity work.io_controller(rtl)
 port map (en => rd_en and io_sel and addr ?= io_base,
 ...);

160 Chapter 6 — Modeling Enhancements

This is a much more succinct way of expressing the model than the equivalent:

signal en_tmp : std_ulogic;
...

en_tmp <= rd_en and io_sel and addr ?= io_base;

io_ctrl_1 : entity work.io_controller(rtl)
 port map (en => en_tmp,
 ...);

Most of the time, it is a straightforward matter to determine whether an expression in
a port map is static, denoting a fixed value for the port, or nonstatic, implying connection
to additional logic. However, if the expression is in the form of a function call applied to
a signal name, there are two possible interpretations, one as a nonstatic expression
implying connection to logic, and the other as a conversion function implying a change
of representation of a value. An example of the latter is:

signal s : signed;
component abstract_ALU is
 port (a : in integer; ...);
end component;
...

ALU : component abstract_ALU
 port map (a => to_integer(s), ...);

The reason for making the distinction is that the interpretation as a nonstatic expres-
sion introduces a delta delay between the input signal changing value and the port
changing value, whereas the interpretation as application of a conversion function does
not. If we were to write a function with one parameter representing some computational
logic, for example:

function increment (x : unsigned) return unsigned;

and use it in a port map:

op_counter : component reg16
 port map (d_in => increment(op_count), ...);

it would not be clear how to interpret the expression. Under the rules of earlier versions
of VHDL, the expression would be interpreted as a conversion function, which is not
what we want. To make the intention explicit, we can include the reserved work iner-
tial in the port association to imply an inertial signal assignment of the expression to the
anonymous intermediate signal. Thus, we would write the port map as

op_counter : component reg16
 port map (d_in => inertial increment(op_count), ...);

6.2 All Signals in Sensitivity List 161

Under the VHDL-2008 rules, if we omit the reserved word and the expression can be
interpreted as application of a conversion function or a type conversion, then that inter-
pretation takes precedence.

6.2 All Signals in Sensitivity List

The sensitivity list of a process statement specifies the signals that cause the process to
resume execution. For a process representing combinational logic, we should include all
of the input signals of the logic in the sensitivity list. If we omit an input signal, a synthe-
sis tool would infer latch-based storage, since the output would remain unchanged when
the omitted signal changed.

Using earlier versions of VHDL, ensuring that all input signals are included in a sen-
sitivity list is cumbersome and error prone. We must carefully check the body of the pro-
cess and any subprograms called by the process to assemble the list of signals that are
read. If we subsequently revise the model code, we must remember to update each pro-
cess’s sensitivity list if we update the process’s statements. In VHDL-2008, writing and
maintaining processes representing combinational logic is much simpler. We can replace
the list of signals in the sensitivity list with the reserved word all, indicating that the pro-
cess is sensitive to all signals read by the process.

EXAMPLE 6.2 Combinational logic for a finite-state machine

One place where assembling the sensitivity list for a combinational process often
causes problems is the next-state and output logic for a finite-state machine. The
logic has, as inputs, the current state signal and signals whose values determine the
next state and the output values. An example is:

next_state_logic : process (all) is
begin
 out1 <= '0'; out2 <= '0'; ...
 case current_state is
 when idle =>
 out1 <= '1';
 if in1 and not in2 then
 out2 <= '1';
 next_state <= busy1;
 elsif in1 and in2 then
 next_state <= busy2;
 else
 next_state <= idle;
 end if;
 ...
 end case;
end process next_state;

162 Chapter 6 — Modeling Enhancements

As we revise the finite-state machine, we might include more signals as inputs.
Using the reserved word all instead of explicitly listing the input signals makes the
process easier to write and maintain.

The list of signals to which the process is made sensitive also includes signals read in
subprograms called directly or indirectly by the process. A proviso, however, is that a
subprogram declared in a separate design unit from the process must only read its signal
parameters. It cannot read signals declared globally in packages or signals identified
using external names (see Section 2.1). The rationale for this restriction is to ensure the
analyzer can assemble the sensitivity list for the process just by analyzing the enclosing
design unit. It also means that we can perform a similar analysis to understand a process.
We don’t get any surprises from unexpected external signals becoming inputs to the logic
implied by a process.

6.3 Reading Out-Mode Ports and Parameters

In many designs, we compute a value and assign it to an output port, and then use the
value in further computations within the design. There are two ways in which we might
do this. On one hand, the value might be used to implement further behavior of the
design. An example is a circuit with both active-high and active-low outputs. We derive a
value for the active-high output, and then negate it for the active-low output. One the
other hand, the value might be used in verification of the design’s functionality. The
computation using the value is passive and does not imply additional hardware.

VHDL provides two modes for output ports, out and buffer. An out-mode port is
intended to be used for cases where there is no internal use of the port’s value. Prior to
VHDL-2008, we could not read the value of an out-mode port. A buffer-mode port is
intended to be used for cases where the port’s driving value is used internally. As the
name suggests, a hardware buffer is implied between the driver assigning values to the
port and the external connections. The value used internally is taken from the inside of
the buffer.

Prior to VHDL-2002, there were somewhat restrictive rules governing connection of
buffer-mode ports of a component instance to the buffer-mode and out-mode ports of
an enclosing entity. These restrictions made it very difficult to use buffer-mode ports
effectively, so designers largely ignored them. It became common practice to declare an
internal signal in a design, to use that signal internally, and to include a separate signal
assignment to drive the signal’s value onto an out-mode port.

In VHDL-2002, the rules for buffer-mode ports were relaxed, allowing them to be
connected to external out-mode and buffer-mode ports. It is no longer necessary to
resort to an internal signal when a port’s driving value is needed internally as an input to
further logic. Nonetheless, the practice persists, both for backward compatibility with
previous versions of VHDL, and because many designers are not aware of the change.

6.3 Reading Out-Mode Ports and Parameters 163

EXAMPLE 6.3 True and complement outputs for a flip-flop

A flip-flop having both true (active-high) and complement (active-low) outputs can
be modeled using out-mode ports and an internal signal as follows:

entity Dff is
 port (clk, d : in bit; q, q_n : out bit);
end entity Dff;

architecture rtl of Dff is
 signal q_int : bit
begin
 ff : process (clk) is
 begin
 if clk = '1' then
 q_int <= d;
 end if;
 end process ff;
 q <= q_int;
 q_n <= not q_int;
end architecture rtl;

By deriving the active-low output from the active-high internal signal, we avoid
having a synthesis tool infer two separate flip-flops. Under the relaxed rules for
buffer-mode ports in VHDL-2002, we can rewrite this model as follows:

entity Dff is
 port (clk, d : in bit; q : buffer bit; q_n : out bit);
end entity Dff;

architecture rtl of Dff is
begin
 ff : process (clk) is
 begin
 if clk = '1' then
 q <= d;
 end if;
 end process ff;
 q_n <= not q;
end architecture rtl;

In VHDL-2008, the restriction on reading out-mode ports is also removed. The value
of an out-mode port seen internally is the same as the value being driven onto the port.
Thus, an out-mode port has the same behavior in VHDL-2008 as a buffer-mode port.
However, the rationale for allowing reading of an out-mode port is to support verifica-
tion of a design’s behavior, as opposed to implying a hardware buffer. We should choose

164 Chapter 6 — Modeling Enhancements

between out and buffer modes for a port depending on whether we intend to imply
hardware buffering or passive verification, respectively. The choice of port mode docu-
ments our intention. Note that this choice would be made as a convention, rather than
being enforced by the language definition. A tool has no way of distinguishing between
the two ways of using a port.

EXAMPLE 6.4 Reading an out-mode port for verification

Suppose we wish to verify that the outputs of a device are all 'Z' within a required
interval of the device being disabled and remain all 'Z' until the device is enabled.
The output values are not required internally to implement any functionality for the
device. Hence, we declare the output ports using out mode, as follows:

entity device is
 generic (T_z : delay_length);
 port (en : in std_ulogic;
 d_out : out std_ulogic_vector(7 downto 0); ...);
end entity device;

We can read the values driven onto the output ports in verification code in the
architecture:

architecture verifying of device is
begin
 d_out <= ... when to_x01(en) = '1' else
 ... when to_x01(en) = '0' else
 "XXXXXXXX";
 assert (to_x01(en'delayed(T_z)) = '0' and d_out = "ZZZZZZZZ")
 or to_x01(en) = '1';
end architecture verifying;

VHDL-2008 also removes the restriction on reading the value of an out-mode param-
eter of a procedure. Out-mode parameters can be either signal parameters or variable
parameters. In the case of an out-mode signal parameter, when we call the procedure
and pass an actual signal, the procedure is passed a reference to the actual signal. The
value we get when we read the parameter within the procedure is the current value of
the actual signal.

In the case of an out-mode variable parameter, the rules are slightly different. The
formal parameter of the procedure is treated like a local variable, and is initialized when
the procedure is called. It does not take on the value of the actual parameter variable at
that stage. As we make assignments to the parameter within the procedure, the local
value is updated. When we read the parameter, we get that local value. Eventually, when
the procedure returns, the final value of the parameter is copied to the actual variable.

To illustrate this behavior, consider the following procedure:

procedure do_funny (p : out positive) is
 variable tmp : positive;

6.3 Reading Out-Mode Ports and Parameters 165

begin
 tmp := p;
 p := tmp * 2;
end procedure do_funny;

Suppose we call the procedure as follows:

variable v : positive := 10;
...

do_funny(v);

When the procedure is called, the parameter p is initialized, not with the value of v,
but with the default initial value for positive, namely, 1. Thus, the value read and
assigned to tmp is 1, and the value assigned to p in the last statement is 2. When the pro-
cedure returns, the final value of p, namely, 2, is copied out to v.

EXAMPLE 6.5 Checking an out-mode status parameter

A procedure to read multiple items from a line of input might have an out-mode
parameter to indicate whether items were read successfully. We can use the parame-
ter as the actual to textio read procedures, and check that each call succeeded
before continuing, as follows:

procedure read_time_and_int (L : inout line;
 T : out time; I : out integer;
 good : out boolean) is
begin
 read(L, T, good);
 if not good then
 report "Read of time failed" severity failure;
 return;
 end if;
 read(L, I, good);
 if not good then
 report "Read of integer failed" severity failure;
 end if;
end procedure read_time_and_int;

If the procedure could not read the value of the out-mode parameter good, it
would have to declare an internal variable to pass to the read procedures, and copy
the value to good upon returning. The ability to read the out-mode parameter
makes the procedure simpler and easier to maintain.

166 Chapter 6 — Modeling Enhancements

6.4 Slices in Aggregates

An array aggregate provides a way of forming an array from a collection of elements. In
earlier versions of VHDL, we could only form an aggregate from individual elements. In
VHDL-2008, the rules are extended to allow us to form an aggregate from a mixture of
individual elements and slices of the array. For example, a bit_vector array aggregate
could be written as follows:

('0', "1001", '1')

This forms a 6-element vector from the single element '0', the vector value "1001"
and the single element '1'. The vector value forms a slice of the final aggregate value. The
effect is similar to concatenating the element and array values. While this illustrates the
idea, a more powerful use of the feature involves writing an aggregate as the target of an
assignment statement. We can write a signal assignment target in the form of an aggre-
gate of signal names. In VHDL-2008, the names can be a mixture of element-typed sig-
nals and array-typed signals. Elements of the right-hand-side value are assigned to the
matching signals or signal elements.

EXAMPLE 6.6 Binary addition with carry out

We can add two 16-bit unsigned numbers to get a 17-bit result, with the most-signifi-
cant bit being the carry out of the addition, and the least-significant 16 bits being the
sum. We can assign to separate signals representing the carry out and the sum as fol-
lows:

signal a, b, sum : unsigned(15 downto 0);
signal c_out : std_ulogic;
...

(c_out, sum) <= ('0' & a) + ('0' & b);

The operands a and b are zero-extended and added to produce a 17-bit result.
This is assigned to the aggregate target comprising the scalar signal c_out and the 16-
bit vector sum. Since we use positional association in the aggregate, c_out matches
the leftmost element and sum matches the rightmost 16 elements.

We can also use named association in array aggregates. If we want to include an
association for a slice of the aggregate, we specify a range of index values for the slice.
For example, given signals declared as follows:

variable status_reg : bit_vector(7 downto 0);
variable int_priority, cpu_priority : bit_vector(2 downto 0);
variable int_enable, cpu_mode : bit;

We can write the assignment:

6.5 Bit-String Literals 167

(2 downto 0 => int_priority,
 6 downto 4 => cpu_priority,
 3 => int_en, 7 => cpu_mode) := status_reg;

This specifies that the bits of the status_reg value are assigned in left-to-right order
to cpu_mode, cpu_priority, int_en, and int_priority, respectively. When we include slices
in an aggregate, the direction of the aggregate’s index range is taken from the direction
of ranges used to specify the slices. Thus, in this above example, the direction is
descending, since “2 downto 0” and “6 downto 4” are both descending ranges. All the
ranges used in this way must have the same direction. Thus, it would be illegal to write
the example using “2 downto 0” for one range and “4 to 6” for the other.

6.5 Bit-String Literals

VHDL allows us to use a bit-string literal to specify a value for a vector of '0' and '1' ele-
ments in binary, octal, or hexadecimal form. The rules for bit-string literals in earlier ver-
sions of VHDL were somewhat restrictive. In particular, the resulting vector value had to
be a multiple of three in length for octal literals or a multiple of four in length for hexa-
decimal literals. Moreover, every bit had to be stated explicitly, as there was no provision
for zero extension or sign extension. Finally, only '0' and '1' elements could be specified.
There was no provision for “metalogical” values, such as 'X' or 'Z'.

VHDL-2008 enhances bit-string literals considerably. First, we can specify elements
other than just '0' and '1'. In an octal literal, any non-octal-digit character is expanded to
three occurrences of that character in the vector value. Thus, the literal O"3XZ4" repre-
sents the vector value "011XXXZZZ100". Similarly, in a hexadecimal literal any non-hexa-
decimal-digit character is expanded to four occurrences of the character. Thus, the literal
X"A3––" represents the vector value "10100011––––––––". In a binary literal, any non-bit
character just represents itself in the vector. Thus, B"00UU" represents the vector "00UU".
While this may seem vacuous at first, the benefit of allowing this in binary literals will
become clear when we look at other enhancements.

Note that expansion of non-digit characters does not extend to embedded under-
scores, which we might add for readability. Thus, O"3_X" represents "011XXX", not
"011___XXX". Also, expansion on non-digit characters is not limited to those defined in
std_ulogic, though that is the most common use case. We could write the literal X"0#?F"
to represent the string value "0000####????1111".

The second enhancement is provision for specifying the exact length of the vector
represented by a literal. This allows us to specify vectors whose length is not a multiple
or three (for octal) or four (for hexadecimal). We do so by writing the length immediately
before the base specifier, with no intervening space. For example, the literal 7X"3C" rep-
resents the 7-element vector "0111100", 8O"5" represents "00000101", and 10B"X" rep-
resents "000000000X". If the final length of the vector is longer than that implied by the
digits, the vector is padded on the left with '0' elements. If the final length is less than
that implied by the digits, the left-most elements of the vector are truncated, provided
they are all '0'. An error occurs if any non-'0' elements are truncated, as they would be in
the literal 8X"90F".

168 Chapter 6 — Modeling Enhancements

The third enhancement is provision for specifying whether the literal represents an
unsigned or signed number. We represent an signed number using one of the base spec-
ifiers UB, UO, or UX. These are the same as the ordinary base specifiers B, O, and X.
When a sized unsigned literal is extended, it is padded with '0' elements, and when ele-
ments are truncated, they must be all '0'.

We represent a signed number using one of the base specifiers SB, SO, or SX. The
rules for extension and truncation are based on those for sign extension and truncation
of 2s-complement binary numbers. When a sized signed literal is extended, each element
of padding on the left is a replication of the leftmost element prior to padding. For exam-
ple, the literal 10SX"71" is extended to "0001110001", 10SX"88" is extended to
"1110001000", and 10SX"W0" is extended to "WWWWWW0000". When a sized signed lit-
eral is truncated, all of the elements removed at the left must be the same as the leftmost
remaining element. For example, the literal 6SX"16" is truncated to "010110", 6SX"E8" is
truncated to "101000", and 6SX"H3" is truncated to "HH0011". However, 6SX"28" is
invalid, since, prior to truncation, the vector would be "00101000". The two leftmost ele-
ments removed are each '0', which differs from the leftmost remaining '1' element. The
literal would have to be written as 6SX"E8" for this reason. The rationale for this rule is
that it prevents the signed numeric value represented by the literal being inadvertently
changed by the truncation.

The remaining enhancement is provision for specifying a vector value in decimal.
For this, we use the base specifier D. All of the characters in the literal must then be dec-
imal digits (or underscores); we cannot specify other characters, such as 'Z' or 'X', since it
would not be clear which elements of the vector would correspond to those characters.
If we omit a size specification in a decimal bit-string literal, the number of elements rep-
resented is the smallest number that can encode the value. For example, the literal D"23"
represents the vector "10111", D"64" represents "1000000", and D"0003" represents
"11". A decimal bit-string literal is treated as representing an unsigned number. If the lit-
eral must be extended, the vector is padded on the left with '0' elements. For example,
12D"10" represents "000000001010". It can never be legal to specify a size requiring
truncation, since the leftmost element prior to truncation is always '1'.

169

Chapter 7

Improved I/O

Previous versions of VHDL provided fairly basic forms of binary and text I/O. In this
chapter, we describe additions to the I/O and string conversion features provided by
VHDL-2008.

7.1 The To_string Functions

In previous versions of VHDL, converting a value to a string required the use of the
'image attribute or the write procedures from the textio package. These options were
very limiting. The 'image attribute was only defined for scalar types, and the write proce-
dures were only defined for the predefined scalar types and for bit_vector. VHDL-2008
adds predefined to_string operations as a flexible alternative for string conversion. As a
function, to_string is overloadable, supports scalar and composite types, and can have
multiple parameters. In addition, for all bit-based array types, octal and hexadecimal
string conversion functions are defined: to_ostring and to_hstring, respectively (see Sec-
tion 7.1.3).

EXAMPLE 7.1 Writing messages using to_string

One use of these functions is in assert statements, for example:

assert expected_val = read_val
 report "Expected Val /= Actual Val." &
 " Expected = " & to_string(expected_val) &
 " Actual = " & to_string(read_val)
 severity error;

Another use is with VHDL’s built-in write procedure (not std.textio.write) as
follows:

if expected_val = read_val then
 err_cnt := err_cnt + 1;
 write(output,
 "%%%Error: Expected Val /= Actual Val." &
 " Expected = " & to_string(expected_val) &
 " Actual = " & to_string(read_val) &

170 Chapter 7 — Improved I/O

 " at time: " & to_string(now));
end if;

This call to the write procedure has a similar effect to a sequence of calls to the
write procedures defined in the textio package, followed by a call to the writeline
procedure. However, it is clearly much more concise.

7.1.1 Predefined To_string Functions

A basic form of to_string is predefined with the following signature.

to_string[AType return string]

AType includes all scalar types and single dimensional array types whose element
types contain only character literals. The string return value for various types is formed as
follows:

• For a value of an enumeration type other than character, if the value is a character
literal, to_string returns the value as a single-element string; otherwise, the function
returns the name of the identifier in lower case letters in a string. For example,

to_string(bit'('0'))

returns the string "0", and

to_string(file_open_status'(OPEN_OK))

returns the string "open_ok".

• For a character value, to_string returns the character in a single-element string. Note
that this may be different from the result for non-character types. In the case of
control-character values, the result is a single-element string containing the control
character, not a string containing the name of the control character.

• For a one-dimensional array value containing only character literals, to_string returns
a string of the same length as the array containing the element values converted to
type character. For example, to_string(bit_vector'("0110")) returns the string of char-
acters "0110".

• For a value of an integer type, to_string returns the decimal literal. There is no expo-
nent and no insignificant leading zeros. If the result is negative, the decimal literal is
preceded immediately by a minus sign without any intervening space.

• For a value of a floating point type, including real, to_string returns the decimal lit-
eral in standard form consisting of a normalized fraction and an exponent in which
the sign is present and the “e” is in lowercase. There are no insignificant leading or
trailing zeros. (Note that the floating point types referred to here are the abstract
numeric types, not the types defined in the new floating-point packages described in
Section 8.5.)

7.1 The To_string Functions 171

• For a value of a physical type, to_string returns the decimal literal as an integer, a
space, and the unit name. There is no exponent and no insignificant leading zeros. If
the result is negative, the decimal literal is preceded immediately by a minus sign
without any intervening space.

7.1.2 Overloaded To_string Functions

The basic to_string operations handle most of the required cases. However, there are
additional predefined forms of to_string for values of types time and real. First, the fol-
lowing predefined forms provide textio-style formatting:

function to_string (value: time; unit : time)
 return string;

function to_string (value: real; digits: natural)
 return string;

The version for type time formats the value as an integer or real literal in multiples of
unit. In the version for type real, digits specifies the number of digits that are to appear
to the right of the decimal point.

Second, for type real, the following predefined form of to_string provides C-style
formatting of the value:

function to_string (value: real; format: string)
 return string;

The format parameter should contain a C-style format specification, such as is used
in the C printf command. For example, assuming the variable x has the value 52.5:

• to_string (value => x, format => "%f") returns "52.5"

• to_string (value => x, format => "%5.2f") returns "52.50"

• to_string (value => x, format => "%E") returns "5.250000E+01"

• to_string (value => x, format => "%6.2e") returns "5.25e+01"

• to_string (value => (x*10.0), format => "%g") returns "525"

The basic to_string operations are predefined for the vector types defined in pack-
ages std_logic_1164, numeric_bit and numeric_std, since the types just contain character
elements ('0', '1', 'L', 'H', and so on). However, the fixed-point and floating-point pack-
ages described in Chapter 8 overload the basic operations to provide more useful results.
In particular, the overloaded versions defined for the fixed-point types ufixed and sfixed
return a string with a radix point (a ‘.’ character) at the appropriate position, for example,
"1001.0010". The overloaded version for the floating-point type float returns a string
with colon characters between the sign, exponent, and fraction bits, for example,
"0:111011:00010001110".

172 Chapter 7 — Improved I/O

7.1.3 The To_ostring and To_hstring Functions

In addition to binary string conversion, VHDL-2008 also adds octal and hexadecimal
string conversion functions, to_ostring and to_hstring, respectively, for all bit-based
array types. The signatures for these functions are:

to_ostring[BitArrayType return string]

to_hstring[BitArrayType return string]

BitArrayType includes bit_vector defined in the package standard, std_ulogic_vector
defined in std_logic_1164, unsigned and signed defined in numeric_std, and unsigned
and signed defined in numeric_bit. For these types, characters are implicitly added to the
left of the array value to make the length a multiple of 3 (for to_ostring) or 4 (for
to_hstring), so that complete octal or hexadecimal digits can be formed. The characters
are added as follows:

• For an array of type bit_vector, '0' characters are added.

• For an array of type std_ulogic_vector, std_logic_vector, or unsigned, if the leftmost
element of the array is 'Z' or 'X', then 'Z' or 'X' characters, respectively, are added;
otherwise, '0' characters are added.

• For an array of type signed, the characters added are the same as the leftmost ele-
ment of the array.

For array types based on either std_ulogic or std_logic, if all of the elements corre-
sponding to an octal or hexadecimal digit contain 'Z' then the resulting character is 'Z'.
Otherwise, to_X01 is applied to the group of elements. If the result contains an 'X', the
octal or hexadecimal digit is 'X'. If the result contains only '0' and '1' values, they are con-
verted to a normal octal or hexadecimal digit in upper case.

BitArrayType is supported for the fixed-point types ufixed and sfixed defined in the
fixed-point package (see Section 8.4). For these types, characters before the radix point
are handled as for unsigned and signed, respectively. Then the radix point is included in
the string. For characters following the radix point, '0' characters are added to the right of
the array value to make the length of the fractional part (after the radix point) a multiple
of 3 (for to_ostring) or 4 (for to_hstring). The fractional part is then converted as for
unsigned values. For values in which the radix-point position lies outside the index
range, to_ostring and to_hstring extend the value to include the radix point in the result.
For example, a to_hstring operation for the value "10100" with index range 7 down to 3
would result in the string "A0.0", corresponding to the binary number 10100000.0. Simi-
larly, a to_hstring operation for the value "10100" with index range –3 down to –7 would
result in "0.28" (0.0010100 in binary).

BitArrayType is also supported for type float in the floating-point package (see Sec-
tion 8.5). For this type, characters are added to the left of the array value string to make
the length a multiple of 3 (for to_ostring) or 4 (for to_hstring). If the left most element of
the array is 'Z' then 'Z' characters are added; otherwise, '0' characters are added.

Note that for consistency, there is also a to_bstring operation defined for each of the
types. However, it is simply an alias for the to_string function. There are further aliases

7.2 The Justify Function 173

defined for the operations: to_binary_string, to_octal_string, and to_hex_string. Some
designers may consider these to be more readable than the shorter function names.

7.2 The Justify Function

One facility provided by the write operations in the textio package but not provided by
the to_string functions is the ability to justify a string representation in a field of a given
width. This is useful for tabular formatting of output. VHDL-2008 adds a justify function
to the textio package to provide fixed-width formatting for string values. The function is
defined as follows:

function justify (value : string;
 justified : side := right;
 field : width := 0) return string;

The value parameter contains the string value to be formatted, and the justified and
field parameters are used in the same way as in the write procedures in textio. When the
field parameter is greater than the length of value, the value is justified within the string
by adding spaces to the left or right of the result for right, depending on the justified
parameter. If the field parameter is less than or equal to the length of value, the value is
returned unchanged.

EXAMPLE 7.2 Tabular formatting of trace output

Suppose we wish to write trace output from a model and have it formatted in fixed-
width columns. Each line of output consists of the current simulation time, a 16-bit
unsigned value in hexadecimal format, and an integer counter value. We can write
the values using the following write procedure call:

write(output, justify(to_string(now, ns), width => 10),
 justify(to_hstring(out_vec), width => 6),
 justify(to_string(count), width => 10));

Successive calls might yield the following output:

 20 ns XXXX 0
 120 ns ZZ00 1
 220 ns FFC0 10
 320 ns 0000 31

7.3 Newline Formatting

In some applications, we need to create a message string that would be too long to fit on
a single line of output. If we are using write or writeline operations, we could split the
message and write each line with a separate operation. However, VHDL does not guaran-
tee that lines written by different processes during the same simulation cycle will not be

174 Chapter 7 — Improved I/O

interleaved. If we are generating a message using an assert or report statement, we
would not want the additional text associated with an assertion violation to be included
with each line of the message.

VHDL-2008 allows us to create multiline messages in these cases by using the line-
feed character (LF) as a newline character. This interpretation applies to a report string in
an assert or report statement and to a string written to a file of type text using a write,
writeline, or tee procedure (see Section 7.5). The host operating system translates the LF
character to whatever convention is used to represent a new line. For example, a UNIX
based system would represent the new line using just the LF character, whereas a Win-
dows system would represent it using a carriage return (CR) followed by a LF.

EXAMPLE 7.3 Multiline output to a text file

We can use LF characters in a multiline message written to the standard output text
file using a write procedure call:

write(output, "%%%ERROR data value miscompare." & LF &
 " Actual value = " & to_hstring(data) & LF &
 " Expected value = " & to_hstring(expdata) & LF &
 " at time: " & to_string(now));

7.4 Read and Write Operations

In earlier versions of VHDL, textual I/O operations were limited to values of predefined
types, for which read and write operations were defined in the standard textio package.
VHDL-2008 broadens the support for textual I/O by adding operations for all of the stan-
dard types in their respective packages. It also adds octal and hexadecimal I/O and
enhances the string I/O capability.

The basic I/O operations added in each package are:

procedure write (L : inout line; value : in AType;
 justified : in side := right;
 field : in width := 0);

procedure read (L : inout line; value : out AType;
 good : out boolean);

procedure read (L : inout line; value : out AType);

These operations behave in the same way as the corresponding operations for pre-
defined types in the textio package. The write operation executes as if the following call
to the textio package write operation were executed with the to_string operation (see
Section 7.1) applied to the parameter:

write (L, to_string(value), justified, field);

7.4 Read and Write Operations 175

The new write operations are defined for std_ulogic_vector and std_logic_vector in
the std_logic_1164 package, for unsigned and signed in numeric_std, for unsigned and
signed in numeric_bit, for ufixed and sfixed in the fixed-point packages (see Section
8.4), and for float in the floating-point packages (see Section 8.5).

Each read procedure skips white space, and then reads std_logic values until it
encounters white space or a non-std_ulogic value, or until it has read value'length char-
acters. Underscore characters (“_”) embedded within the value are skipped, though it is
an error if two underscores appear consecutively. The procedure must read enough char-
acters to fill all of the elements of the value array, so it is an error if a space or an invalid
character is encountered before value'length characters are read. The read procedures
for ufixed and sfixed also accept a radix point (“.”) in the input, though it is an error if
the radix point is not at the appropriate position. Specifically, the characters before the
radix point must fill elements of the value parameter with non-negative indices, and the
characters after the radix point must fill elements with negative indices. An error occurs if
the radix point is encountered at a position other than between the characters corre-
sponding to indices 0 and –1. Similarly, the read procedures for float accept “:” and “.”
delimiters between the sign, exponent, and fraction parts of the input, though it is an
error if they are not at the appropriate positions.

The support for octal and hexadecimal I/O takes the form of the following proce-
dures:

procedure owrite (L : inout line; value : in AType;
 justified : in side := right;
 field : in width := 0);

procedure hwrite (L : inout line; value : in AType ;
 justified : in side := right;
 field : in width := 0);

procedure oread (L : inout line; value : out AType;
 good : out boolean);

procedure oread (L : inout line; value : out AType);

procedure hread (L : inout line; value : out AType;
 good : out boolean);

procedure hread (L: inout line; value : out AType);

These operations also behave in the same way as the corresponding operations for
predefined types in the textio package, but with octal or hexadecimal conversion
applied. The owrite and hwrite operations execute as if the following calls to the textio
package write operation were executed with the to_ostring and to_hstring operations
(see Section 7.1) applied to the parameters:

write (L, to_ostring (value), justified, field); -- owrite

write (L, to_hstring (value), justified, field); -- hwrite

176 Chapter 7 — Improved I/O

The operations are defined for the predefined type bit_vector, for std_ulogic_vector
and std_logic_vector defined in the std_logic_1164 package, for unsigned and signed in
numeric_std, and for unsigned and signed in numeric_bit. The behavior of the oread
and hread operations in these cases is as follows. Each operation must read sufficient
characters to fill the value argument, or an error occurs. Since value need not be a multi-
ple of 3 (for oread) or 4 (for hread) in length, the length is rounded up to the nearest
multiple of 3 or 4 to determine how many characters to read. Oread (hread) starts by
skipping white space. It then reads octal (hexadecimal) digits until it encounters white
space or a non-octal (non-hexadecimal) character other than “_”, or until it has read suf-
ficient characters to fill the value argument. Underscore characters embedded within the
octal (hexadecimal) value are skipped. Oread converts each octal digit (0–7) to its 3-bit
representation, and hread converts each hexadecimal digit (0–9, a–f, or A–F) to its 4-bit
representation. For array types based on std_ulogic or std_logic, the characters 'X' and 'Z'
are also permitted. For octal, these characters are repeated 3 times in the result; hence, a
'Z' input is expanded to "ZZZ". Similarly, for hexadecimal, these characters are repeated 4
times in the result; hence, a 'Z' input is expanded to "ZZZZ". If conversion of characters
to groups of 3 or 4 elements result in more elements than the length of the value argu-
ment, only the rightmost elements are used. Depending on the values of the discarded
elements, an error may occur. If the type of the value argument is bit_vector,
std_ulogic_vector, std_logic_vector, or unsigned, an error occurs if any of the discarded
elements are '1'. For example, an hread that reads the characters "82" ("10000010" in
binary) into a 6-bit unsigned value produces an error, since the two discarded bits are
"10". If the type of the value argument is signed, an error occurs if the discarded ele-
ments are not all the same as the leftmost element used for the value argument. For
example, an hread that read the characters "7F" into a 6-bit signed value produces an
error, since the two discarded bits are "01", and the leftmost bit used for value is '1'.

The octal and hexadecimal write and read operations are also defined for types
ufixed and sfixed in the fixed-point packages (see Section 8.4). The behavior of the
oread and hread operations in these packages is as follows. Oread and hread each reads
the value prior to the radix point as described above for unsigned or signed (depending
on whether the value parameter is ufixed or sfixed, respectively). For the characters fol-
lowing the radix point, oread and hread each reads the value as described above for
std_ulogic_vector; however, instead of discarding elements on the left, the operations
discard elements on the right. An error occurs if an element discarded on the right is a '1'.
The radix point may be explicitly included in the input, but an error occurs if it is not at
the appropriate position (that is, between the characters corresponding to indices 0 and –
1 of the value parameter). The radix point may also be omitted, in which case it is
assumed at the appropriate position.

Finally, the octal and hexadecimal write and read operations are defined for the type
float in the floating-point packages (see Section 8.5). The behavior of the oread and
hread operations depends on whether “:” or “.” delimiters are used in the input to sepa-
rate the sign, exponent, and fraction parts of a floating-point number. When “:” delimiters
are used (with the input formatted as “S:EEEE:FFFFFFFF”), the sign bit, the exponent, and
the fraction are each read as separate octal or hexadecimal values using the same rules as
described above for std_ulogic_vector values. When a ‘.’ delimiter is used (with the input
formatted as “SEEEE.FFFFFFFF”), the rules described above for reading ufixed values are
used. The value read before the radix point forms the part of the result comprising the

7.5 The Tee Procedure 177

sign and exponent elements, and the value read after the radix point forms the fraction
part of the result. When no delimiters are used in the input, the entire float value is read
as a single hexadecimal value as described above for std_ulogic_vector values.

Note that, for consistency, there are also definitions of binary I/O operations in each
of the packages. However, they are simply aliases for the basic operations, defined as
follows:

alias bwrite is write [line, AType, side, width];

alias bread is read [line, AType, boolean];

alias bread is read [line, AType];

In addition to the enhanced I/O operations for binary, octal, and hexadecimal val-
ues, VHDL-2008 adds enhanced I/O operations for character strings. The new swrite pro-
cedure in package textio writes a string value in the same way as the write procedure
overloaded for a string value parameter. The difference is that there are no other over-
loaded versions of swrite, so we do not have to use type qualification when writing a
string literal. We can write a call such as:

swrite(L, "The answer is: ");

Compare this with a call to the write operation:

write(L, string'("The answer is: "));

We need to use the type qualification to distinguish the type of the string from other
character array types (such as bit_vector) for which write is defined. Use of swrite to
write string literals makes the model much clearer.

The new sread procedure in package textio reads string-based tokens. It is defined
as follows:

procedure sread (L : inout line;
 value : out string; strlen : out natural);

The procedure skips leading white space and then reads consecutive non-white
space characters, up to as many as will fit in the value parameter. The number of charac-
ters read is returned in the strlen parameter. If a white-space character stops reading
before value is filled, the result in strlen will be less than the length of value. The
remaining unfilled characters in value are not specified and should not be used. If no
valid characters are read (for example, if the input is blank up to the end of the line), the
strlen result value is 0.

7.5 The Tee Procedure

The textio package in previous versions of VHDL provided the file output for displaying
messages to a user-interface. If we also wanted to log the messages in a separate file for
subsequent analysis, we had to duplicate the write operations: once to output and once
to the separate file. VHDL-2008 adds a tee procedure to the textio package that writes a

178 Chapter 7 — Improved I/O

line both to the file output and to a separate named file. This allows us to avoid repli-
cated write operations. The definition of tee is:

procedure tee (file F : text; L : inout line);

The effect of TEE is the same as the statements:

write (output, L.all & LF);
writeline (F, L) ;

EXAMPLE 7.4 Logging output messages

Suppose we wish to write trace messages to a simulator’s user interface and to log
the messages to a file named trace.log. We can do this using calls to tee in place of
writeline, as follows:

use std.textio.all;
file tracefile : text open write_mode is "trace.log";
variable L : line;
...

swrite(L, justify(to_string(now, ns), field => 10) &
 " starting operation ");
tee(tracefile, L);
...

7.6 The Flush Procedure

VHDL-2008 adds a predefined file flush procedure that requests that the effect of all pre-
vious calls to the write procedure for a file be completed. The procedure flush is pre-
defined for all file types as follows:

procedure flush (file F : FT);

When the flush procedure is called, the file must be opened in write or append
mode; otherwise, an error occurs.

One use of flush is to ensure that all outstanding write operations to an external file
are completed before read operations are performed on a separate file object associated
with the same external file. Another use is to ensure that prompt messages written to a
user interface appear before read operations take input from the user interface. It is
important to note, however, that the flush operation simply requests that the host operat-
ing system complete the outstanding writes. It does not guarantee that the request will be
met. In particular, host systems that use distributed network file systems may find it diffi-
cult to reliably honor flush requests.

179

Chapter 8

Standard Packages

In earlier versions of VHDL, the predefined types were declared in the package standard,
specified in the VHDL Standard Language Reference Manual (LRM). Other standard types
were specified in packages defined by separate IEEE standards. They included the pack-
ages math_real, math_complex, std_logic_1164, numeric_bit, and numeric_std. In
VHDL-2008, all of these packages are included as part of the VHDL LRM, and so are now
considered to be part of VHDL. VHDL also adds a number of new packages, including
packages for fixed-point and floating-point numbers represented as vectors of std_ulogic
elements, and a package providing access to the simulation environment. Furthermore,
VHDL-2008 adds operations to the standard packages to provide a consistent feature set
across the suite. This includes a consistent set of conversion functions and the I/O oper-
ations to_string, read, write, and so on. In this chapter, we summarize the contents of the
packages.

8.1 The Std_logic_1164 Package

The std_logic_1164 package defines the types std_ulogic, std_logic, std_ulogic_vector
and std_logic_vector, as well as operations on these types. VHDL-2008 makes the follow-
ing enhancements to the package:

• In earlier versions, std_ulogic_vector and std_logic_vector were declared as separate
types. That meant many of the operations had to be declared in two overloaded
forms, one for each type. It also made it difficult for us to mix the two types in
designs where some signals had multiple resolved sources and others had only a sin-
gle source. In VHDL-2008, the std_logic_1164 package is revised to take advantage
of the new features for resolving elements of composite types (see Section 3.2). The
type std_logic_vector is now a subtype of std_ulogic_vector. Each of the array oper-
ations in the package is defined just for the std_ulogic_vector type and can be
applied to std_logic_vector values.

• The VHDL-2008 version of the package defines array/scalar logic operations for
std_ulogic and std_ulogic_vector values, mirroring those that are predefined for bit/
bit_vector and boolean/boolean_vector (see Section 4.1).

• The package adds logical reduction operations for std_ulogic_vector values (see Sec-
tion 4.3).

180 Chapter 8 — Standard Packages

• The matching relational operators (see Section 4.5) are predefined: “?=”, “?/=”, “?>”,
“?>=”, “?<”, and “?<=” for std_ulogic, and “?= ”and “?/=” for std_ulogic_vector.

• The maximum and minimum functions are predefined for std_ulogic and
std_ulogic_vector (see Section 4.6).

• The package defines overloaded shift operations (sll, srl, rol, ror) for
std_ulogic_vector. It does not add sra or sla, since those operations assume a
numeric interpretation for a vector. Overloaded version of the arithmetic shift opera-
tions are added to numeric_std_unsigned instead (see Section 8.3).

• The condition operator (“??”) is defined for std_ulogic, allowing logical expressions
that yield std_ulogic values to be used as Boolean conditions (see Section 4.4).

• The package defines a complete set of string conversion functions and text I/O pro-
cedures (see Chapter 7). Many of these operations provide the same functionality as
operations in the non-standard std_logic_textio package provided by some tool ven-
dors. To ease the transition from that package to the standard packages, VHDL-2008
provides an empty version of std_logic_textio package. Legacy code that included a
use clause referring to std_logic_textio to gain access to the I/O operations can con-
tinue to do so. The difference is that the operations will actually be provided by the
std_logic_1164 package instead.

• The package defines the strength reduction function to_01 (see Section 8.10), to be
consistent with other standard packages.

• All assertion messages produced by the package now start with the name of the
package and the operation producing the message.

In addition to the new operations provided in std_logic_1164, the package defines a
number of aliases:

• To_std_logic_vector and to_slv are defined as aliases for the conversion function
to_stdlogicvector. Many designers have been puzzled by the absence of underscores
in to_stdlogicvector, compared to the type name std_logic_vector, and find the
inconsistency to be annoying. The first alias name rectifies this. The second alias
name, to_slv, satisfies those who prefer shorter names, for example, to reduce
typing.

• Similarly, to_std_ulogic_vector and to_sulv are defined as aliases for the conversion
function to_stdulogicvector, and to_bit_vector and to_bv are defined as aliases for
the conversion function to_bitvector.

8.2 The Numeric_bit and Numeric_std Packages

Each of the numeric_bit and numeric_std packages defines the types unsigned and
signed, representing binary-coded integers as vectors of bit or std_ulogic elements, as
well as operations on these types. VHDL-2008 makes the following enhancements to the
packages:

8.2 The Numeric_bit and Numeric_std Packages 181

• The previous version of the numeric_std package defined unsigned and signed as
arrays of the resolved element type std_logic. There was no provision for unresolved
elements. Since VHDL-2008 provides for resolution information to be added to ele-
ments when declaring subtypes (see Section 3.2), the numeric_std package revises
the way the types are defined. The package defines two array types with unresolved
std_ulogic elements, unresolved_unsigned and unresolved_signed, for use where a
signal has only one source. The types unsigned and signed are now declared as sub-
types with the same resolution function applied to elements as that used for
std_logic. All of the operations in numeric_std are defined for the unresolved types,
but can also be used with the resolved subtypes.

In order to reduce the amount of typing required for the unresolved types, the
package defines two aliases, u_unsigned and u_signed, for unresolved_unsigned
and unresolved_signed, respectively.

• Both the numeric_bit and numeric_std packages define array/scalar addition and
subtraction operations (see Section 4.2).

• The packages define array/scalar logic operations (see Section 4.1) and logical reduc-
tion operations (see Section 4.3).

• The packages define maximum and minimum functions, which compare the
numeric values represented by the operands to determine the result. Overloaded
versions are also defined with one of the parameters being of type integer or
natural.

• The packages define overloaded sla and sra operators (see Section 4.8). In the case
of numeric_bit, these operators differ from the behavior of the predefined operators
on arrays of bit elements. Their behavior is more appropriate for vectors represent-
ing binary-coded numbers.

• The packages define two functions, find_leftmost and find_rightmost, that return the
index of the leftmost and rightmost element, respectively, that has a nominated
value. Comparison of elements is done using the matching equality operator. Thus,
for example, find_leftmost(V, '1') returns the index of the leftmost occurrence of '1'
or 'H' in the unsigned value V. If there is no such element, the function returns –1.
The functions are declared as follows:

function find_leftmost (arg : ArrayType; Y : std_ulogic)
 return integer;

function find_rightmost (arg : ArrayType; Y : std_ulogic)
 return integer;

where ArrayType is unsigned or signed.

• The packages define overloaded matching relational operations, “?=”, “?/=”, “?>”,
“?>=”, “?<”, and “?<=”. These operations compare the numeric values represented by
the operands. The numeric_std version return an 'X' result if any of the operand ele-
ments is a metalogical value (a value other than '0', '1', 'L', or 'H').

182 Chapter 8 — Standard Packages

• The numeric_std package defines a complete set of strength reduction operations, in
addition to the to_01 operation that was defined in the earlier version. The package
also defines the is_X function. These operations are all summarized in Section 8.10.

• The packages define a complete set of string conversion functions and text I/O pro-
cedures (see Chapter 7).

• All assertion messages produced by the packages now start with the name of the
package and the operation producing the message.

8.3 The Numeric Unsigned Packages

While VHDL provides the numeric_std package defining the unsigned type and associ-
ated operations, there are occasions when we would like to interpret a std_ulogic_vector
value as representing a binary-coded number. Having to convert explicitly between that
type and unsigned is inconvenient and clouds the intent of a model. VHDL-2008 allevi-
ates this problem by providing the package numeric_std_unsigned. It provides the same
set of operations on std_ulogic_vector values as are provided by numeric_std for
unsigned values. Thus, we can perform arithmetic operations on std_ulogic_vector val-
ues without including type conversions.

VHDL-2008 also provides the numeric_bit_unsigned package. It performs an analo-
gous purpose for bit_vector values, providing the same operations as are provided by
numeric_bit for unsigned values.

8.4 The Fixed-Point Math Packages

Many digital-signal processing applications involve mathematical operations on non-
integral data. While we could use floating-point representation and hardware, that would
be excessively resource-intensive in many cases. Instead, we can use a fixed-point repre-
sentation, in which the radix point (analogous to the base-10 decimal point) is assumed
to have a fixed position. VHDL-2008 defines a number of packages for fixed-point math
that we describe in this section. The packages are all defined in the library IEEE.

For simple cases, fixed-point math amounts to integer math with scaling by a power
of 2. More generally, we need to take account of rounding and overflow. The main
VHDL-2008 fixed-point package, fixed_generic_pkg, has formal generic constants so that
we can choose the rounding and overflow behaviors that are most appropriate for our
application. The package is defined as follows:

package fixed_generic_pkg is
 generic (
 fixed_round_style : fixed_round_style_type
 := fixed_round;
 fixed_overflow_style : fixed_overflow_style_type
 := fixed_saturate;
 fixed_guard_bits : natural := 3;
 no_warning : boolean := false

8.4 The Fixed-Point Math Packages 183

);
 ...

The types fixed_round_style_type and fixed_overlow_style_type are enumeration
types defined in the package fixed_float_types. The fixed_round_style generic deter-
mines the rounding behavior for operations in the package: either fixed_round, if results
are to be rounded to the nearest representable value, or fixed_truncate, if results are to
be truncated toward zero to the next smallest representable value. The fixed_overflow_
style generic determines the behavior on overflow: either fixed_saturate, if an overflow-
ing result is to remain at the largest representable value, or fixed_wrap, if modulo-based
behavior is required. The fixed_guard_bits generic specifies the number of extra bits of
precision to use for division operations. Finally, the no_warning generic allows suppres-
sion of warning messages on conditions such as non-matching operand lengths and
occurrence of metalogical values.

Since the package has generics, we must instantiate it in order to make use of it (see
Section 1.2). The IEEE library includes an instance that has the default values for all of the
generics. It is defined as:

package fixed_pkg is new IEEE.fixed_generic_pkg
 generic map (
 fixed_round_style => IEEE.fixed_float_types.fixed_round,
 fixed_overflow_style =>
 IEEE.fixed_float_types.fixed_saturate,
 fixed_guard_bits => 3,
 no_warning => false
);

The package fixed_generic_pkg (and any instance of it) defines types for unsigned
and signed fixed-point representation in the form of vectors of std_ulogic elements. The
base type for unsigned representation is unresolved_ufixed, declared as:

type unresolved_ufixed is array (integer range <>) of std_ulogic;

The name u_ufixed is defined, for convenience, as an alias to unresolved_ufixed.
For signals with multiple sources, the type ufixed is defined as a subtype of
unresolved_ufixed with resolved elements (see Section 3.2):

subtype ufixed is (resolved) unresolved_ufixed;

Objects of these types must have a descending (downto) index range. The whole-
number part of the value is on the left of the vector, down to index 0, and the fractional
part is on the right, starting at index –1. For example, given the following declaration of
a fixed-point signal A:

signal A : ufixed(3 downto -3) := "0110100";

the whole-number part is A(3 downto 0), and the fractional part is A(–1 downto –3).
The range of values represented is 0 to just less than 16 in steps of 0.125 (one eighth).
The value represented by the default initial value is 0110.1002 = 6.510.

184 Chapter 8 — Standard Packages

This example shows a number with both whole-number and fractional parts. In gen-
eral, we can declare number with just a whole-number part (the right index being 0) or
just a fraction part (the left index being –1). Indeed, we can declare numbers in which
the radix point is completely outside the index range of the vector. For example, in the
following:

variable X : ufixed(9 downto 2);
variable Y : ufixed(-5 downto -14);

X is an 8-bit vector representing values in the range 0 to 1020 in steps of 4, and Y is a 10-
bit vector representing values in the range 0 to just less than 0.0625 (one sixteenth) in
steps of 2–14.

The base type defined in the package for signed representation is unresolved_sfixed,
declared as:

type unresolved_sfixed is array (integer range <>) of std_ulogic;

As for the unsigned representation, there is an alias, u_sfixed, and a subtype with
resolved elements, sfixed. Likewise, the index range for a signed value must be descend-
ing (downto), with the radix point being assumed between index 0 and index –1. The
difference is that the signed type and subtypes use 2s-complement binary representation,
with the leftmost bit being the sign bit. Thus, for example, the signal:

signal S : sfixed(3 downto -3);

represents values from –8 to just less than 8 in steps of 0.125.
The fixed-point math packages perform operations with full precision. This is illus-

trated in the following example:

signal A4_2 : ufixed(3 downto -2);
signal B3_3 : ufixed(2 downto -3);
signal Y5_3 : ufixed(4 downto -3);
...

Y5_3 <= A4_2 + B3_3;

The whole-number part of the addition result is one bit larger than the larger of the
two operand whole-number parts. In this example, the operand whole-number parts are
4 bits and 3 bits, respectively, so the result’s whole-number part is 5 bits. The fractional
part of the result is the larger fractional part of the operands. In this example, the oper-
ands’ fractional parts are 2 bits and 3 bits, respectively, so the result has a 3-bit fractional
part. We summarize the operations provided by the packages and the sizes of the opera-
tion results in Section 8.8.

If we want to assign a fixed-point value to an object, one way is to use a string lit-
eral, for example:

signal A4 : ufixed(3 downto -3);
...

8.4 The Fixed-Point Math Packages 185

A4 <= "0110100"; -- string literal for 6.5

Alternatively, we can apply a conversion function, to_ufixed or to_sfixed, to an inte-
ger or real value. In this case, we need to specify the index range for the conversion
result. There are two forms of conversion function. For the first form, we specify the left
and right indices for the result, for example:

A4 <= to_ufixed(6.5, 3, -3); -- pass indices

For the second form, we provide an object whose index range is used:

A4 <= to_ufixed(6.5, A4); -- sized by A4

In this example, the only use of A4 by the to_ufixed function is to read its left and
right indices to determine the index range of the result. If A4 were an out-mode signal or
variable, reading would be legal in VHDL-2008; reading of out-mode objects is a change
introduced in this revision of the language (see Section 6.3).

The use of a string literal in an arithmetic expression is problematic, since the index
range of such a literal is ascending (to) and starts with integer'low. Fixed-point numbers
must have descending index ranges. Instead we can use integer literals, real literals, and
qualified string literals, as shown in the following examples:

subtype ufixed4_3 is ufixed(3 downto -3);
signal A4, B4 : ufixed4_3;
signal Y5 : ufixed (4 downto -3);
...

-- Y5 <= A4 + "0110100"; -- illegal,
Y5 <= A4 + ufixed4_3'("0110100");
Y5 <= A4 + 6.5; -- overloading with real
Y5 <= A4 + 6; -- overloading with integer

In the assignment marked “illegal,” the index range of the string literal would be
integer'low to integer'low + 6. The type qualification in the next assignment avoids this
problem and results in a bit-string value with index bounds taken from the subtype
ufixed4_3. We can safely apply the addition operator to this value and the operand A4,
giving a result with index range 4 down to –3.

If we need to change the size of an expression result, we can use a resize function.
As for the conversion functions, there are two forms, one in which we specify the left
and right index values and the other in which we provide an object whose index range is
used. For example, in the following accumulator assignment, since the addition result is
one bit larger than the accumulator, we need to resize the result:

signal A4_3 : ufixed(3 downto -3);
signal Y7_3 : ufixed(6 downto -3);
...

-- Y7_3 <= Y7_3 + A4_3; -- illegal, result too big

186 Chapter 8 — Standard Packages

Y7_3 <= resize(arg => Y7_3 + A4_3,
 size_res => Y7_3,
 overflow_style => fixed_wrap,
 round_style => fixed_truncate);

The overflow_style and round_style parameters allow us to control the way the
value is processed if it cannot be represented exactly. The default values for these param-
eters are taken from the generics of the package. If those values are satisfactory, we can
omit them in the resize call. This is shown in the following example, which uses the
form of the function specifying left and right index values for the result:

Y7_3 <= resize (arg => Y7_3 + A4_3,
 left_index => 7,
 right_index => -3);

Full-precision arithmetic can lead to some unexpected results in expressions involv-
ing multiple operators. Consider, as an example, the following declarations and assign-
ment:

signal A4, B4, C4, D4 : ufixed(3 downto 0);
signal Y6 : ufixed(5 downto 0);
signal Y7A, Y7B : ufixed(6 downto 0);
...

Y6 <= (A4 + B4) + (C4 + D4);

The expression in the assignment is built as a balanced tree. Each of the additions
A4 + B4 and C4 + D4 yields a 5-bit result, so the final result size is 6 bits. However, if we
build the expression in a cascaded fashion, the result size is 7 bits. We can see this most
clearly by explicitly parenthesizing the expression:

Y7A <= ((A4 + B4) + C4) + D4;

The addition A4 + B4 yields a 5-bit result. This added to C4 yields a 6-bit result, and
the 6-bit result added to D4 yields a 7-bit result. Since addition is associative, the follow-
ing unparenthesized expression yields the same 7-bit result:

Y7B <= A4 + B4 + C4 + D4;

8.5 The Floating-Point Math Packages

The fixed-point math packages described in the previous section allow us to represent
non-integral values with constant absolute precision over a given range. In some applica-
tions, however, we would prefer to use a floating-point representation, in which we can
represent a greater dynamic range with a given number of bits, and have constant rela-
tive precision over the range. VHDL provides abstract floating-point types, including the
type real, built into the language. However, they are defined to use IEEE 64-bit double-

8.5 The Floating-Point Math Packages 187

precision representation. That may not be the best choice for all applications. VHDL-2008
provides a set of packages for binary-coded floating-point representation and operations
in which we can control the range and precision and many aspects of the way arithmetic
operations are performed. Floating-point values are represented using the same princi-
ples as IEEE-standard floating-point, specified in IEEE Std 743 and IEEE Std 854, with a
sign bit, an exponent field, and a fraction field. However, we can choose the field widths
that are appropriate for our application.

The main floating-point math package, float_generic_pkg, is defined as:

package float_generic_pkg is
 generic (
 float_exponent_width : natural := 8;
 float_fraction_width : natural := 23;
 float_round_style : round_type := round_nearest;
 float_denormalize : boolean := true;
 float_check_error : boolean := true;
 float_guard_bits : natural := 3;
 no_warning : boolean := false;
 package fixed_pkg is new IEEE.fixed_generic_pkg
 generic map (<>)
);

The package uses the generics to govern the behavior of operations. The generics
float_exponent_width and float_fraction_width are used to determine the default size of
results from the to_float conversion functions. The rounding mode for operations is spec-
ified by the generic float_round_style: round_nearest, round_zero (truncation),
round_inf (round up toward infinity) and round_neginf (round down toward negative
infinity). The enumeration type round_type is defined in fixed_float_types. Denor-
malized numbers are a form of floating-point numbers that represent very small values
near zero. If the generic float_denormalized is true, operations in the package deal with
denormalized values; otherwise, all numbers are treated as normalized. The generic
float_check_error controls detection of invalid numbers and overflow, float_guard_bit
specifies the number of extra bits of precision used within operations before the result is
rounded, and no_warning allows suppression of warning messages. Finally, the generic
fixed_pkg allows us to specify an instance of the fixed-point package (see Section 8.4)
whose types are to be used for the conversion functions between fixed-point and
floating-point types.

As for the fixed-point package, the IEEE library includes an instance of
float_generic_pkg with default values for the generics. The package float_pkg is defined
as follows:

package float_pkg is new IEEE.float_generic_pkg
 generic map (
 float_exponent_width => 8,
 float_fraction_width => 23,
 float_round_style => IEEE.fixed_float_types.round_nearest,
 float_denormalize => true,
 float_check_error => true,

188 Chapter 8 — Standard Packages

 float_guard_bits => 3,
 no_warning => false,
 fixed_pkg => IEEE.fixed_pkg
);

If we are using a combination of fixed-point and floating-point numbers in an appli-
cation and need to instantiate the packages ourselves, we should instantiate the fixed-
point package first, and then use the instance as the actual for the fixed_pkg generic in
our instance of the floating-point package. For example, we might instantiate the fixed-
point package as follows:

package my_fixed_pkg is new IEEE.fixed_generic_pkg
 generic map (
 fixed_round_style => IEEE.fixed_float_types.fixed_round,
 fixed_overflow_style => IEEE.fixed_float_types.fixed_wrap,
 fixed_guard_bits => 2,
 no_warning => true
);

and then instantiate the floating-point package:

package my_float_pkg is new IEEE.float_generic_pkg
 generic map (
 float_exponent_width => 6,
 float_fraction_width => 18,
 float_round_style => round_zero,
 float_denormalize => false,
 float_check_error => true,
 float_guard_bits => 2,
 no_warning => true,
 fixed_pkg => my_fixed_pkg
);

The package float_generic_pkg (and each instance of the package) defines the base
type for floating point numbers, unresolved_float. The alias u_float is a convenient short-
hand for this type. There is also a subtype, float, which has resolved elements, for signals
that have multiple sources. The declarations are:

type unresolved_float is array (integer range <>) of std_ulogic;

alias u_float is unresolved_float;

subtype float is (resolved) unresolved_float;

Objects of these types must have descending (downto) index ranges, for example:

signal A : float(8 downto -23)
 := "01000000110100000000000000000000";

8.5 The Floating-Point Math Packages 189

The sign bit is at index A'left (bit 8 in this example), the exponent is indexed from
A’left – 1 down to 0 (7 down to 0 in the example), and the fraction is indexed from –1
down to A'right (–1 down to –23 in the example). Unlike fixed-point numbers, floating-
point numbers must have the sign, exponent, and fraction all present. The smallest float-
ing-point representation supported by the package has a range of 3 down to –3. In prac-
tice, we would expect representations to be 16 bits or more, with at least 6 bits for the
exponent and at least 10 bits for the fraction. For the sign bit, 0 is positive, and 1 is neg-
ative. The exponent field is an unsigned binary value representing the actual exponent
biased by 2e – 1 – 1 (where e is the width of the exponent field). Thus, for the signal A
declared above, the bias is 127. The actual fraction is normalized to the range of 1.0 to
just less than 2.0. Since the bit to the left of the radix point would always be 1, it is not
explicitly represented. Instead, the fraction field of a floating-point number just contains
the bits to the right of the radix point, with a 1 bit implied to the left of the radix point.

We can use these properties of the representation to analyze the bit string used as
the default initial value for the signal A above. The leftmost bit is 0, so the number is pos-
itive. The next 8 bits, A(7 downto 0), are 10000001. As an unsigned number, this is 129.
We subtract the bias, 127, to give an actual exponent of 2. The fraction field is
101000000000000000000000. We include the implied 1 bit to give an actual fraction of
1.101. Thus, the value represented is +1.1012 × 22 = 1.625 × 4 = 6.5.

The packages declare a number of subtypes and aliases for IEEE standard floating-
point representations. For IEEE Std 754 single-precision numbers, the declarations are:

subtype unresolved_float32 is unresolved_float(8 downto -23);

alias u_float32 is unresolved_float32;

subtype float32 is float(8 downto -23);

For IEEE Std 754 double-precision numbers (corresponding to double float in C,
float*8 in Fortran, and real in VHDL), the declarations are:

subtype unresolved_float64 is unresolved_float(11 downto -52);

alias u_float64 is unresolved_float64;

subtype float64 is float(11 downto -52);

For IEEE Std 854 extended-precision numbers (corresponding to long double in C
and float*16 in Fortran), the declarations are:

subtype unresolved_float128 is
 unresolved_float (15 downto -112);

alias u_float128 is unresolved_float128;

subtype float128 is float(15 downto -112);

190 Chapter 8 — Standard Packages

The IEEE floating-point number standards reserve a number of representations for
special purposes. In particular, numbers with all 0 or all 1 bits in the exponent field have
the following meanings:

• Positive zero: 0 00000000 00000000000000000000000

• Negative zero: 1 00000000 00000000000000000000000

• Positive infinity: 0 11111111 00000000000000000000000

• Negative infinity: 1 11111111 00000000000000000000000

Note that there are two representations of 0, one positive and the other negative.
Operations on floating-point values generally treat them as equivalent. In addition to
these representations, a number with all 1 bits in the exponent field and at least one 1 bit
in the fraction field (such as 1 11111111 00000000000000000000001) is called Not-a-
Number, or NaN. Such values can result from otherwise illegal operations, such as divi-
sion of zero by zero, or square root of –1.

Here are some further examples of floating-point numbers. First, the following is a
large float32 value (though not largest, as that is just less than 2**128).

0 11111110 00000000000000000000000
= +1 × 2254 – 127 × (1.0 + 0.0)
= 2127 = 1.70141 × 1038

Next, the following is the smallest float32 value, without using denormals:

0 00000001 00000000000000000000000
= +1 × 21 – 127 × (1.0 + 0.0)
= 2–126 = 1.17549 × 10–38

Finally, the following is a small float32 value using denormals (though not the
smallest):

0 00000000 10000000000000000000000
= +1 × 21 – 127 × (0.0 + 0.5)
= +1 × 2–126 × 0.5
= 2–127 = 5.87747 × 10–39

For floating-point math operations, the result always has the largest of the exponent
sizes and fraction sizes of the operands. Most often, the numbers are all of the same size,
as in the following example:

signal A32, B32, Y32 : float(8 downto -23);
...

Y32 <= A32 + B32;

Further details of overloaded operations and result sizes are provided in the tables in
later sections of this chapter.

8.6 The Standard Package 191

If we want to assign a value to a floating-point object, we can either use a string lit-
eral or we can apply a to_float conversion function to an integer or real number. This is
similar to the way in which we assign values to fixed-point objects (see Section 8.4). In
the case of conversion functions, we can specify the result size either by specifying the
exponent and fraction size, or by providing an object whose index range is used. These
approaches are shown in the following example:

signal A_fp32 : float32;
...
A_fp32 <= "01000000110100000000000000000000";
A_fp32 <= to_float(6.5, 8, -32); -- pass sizes
A_fp32 <= to_float(6.5, A_fp32); -- size using A_fp32

As with fixed-point math, use of string literals in an expression is problematic, since
their index ranges are ascending (to) and start with integer'low. The solution is the
same, namely, using type-qualified string literals or using overloaded operations that
accept integer or real operands. These are shown in the following example:

signal A, Y : float32;
...

-- Y <= A + "01000000110100000000000000000000"; -- illegal
Y <= A + float32'("01000000110100000000000000000000");
Y <= A + 6.5; -- overloading with real
Y <= A + 6; -- overloading with integer

8.6 The Standard Package

The predefined types and association operations in VHDL are defined in the package
standard, residing in the library std. In practice, most tools have built-in implementations
of the package, rather than interpreting the VHDL source code directly. VHDL-2008
enhances package standard by adding a number of new types and by extending the set
of operations association with predefined types.

• The types boolean_vector, integer_vector, real_vector, and time_vector are now
predefined. Each is an unconstrained type with natural as the index type, much like
the predefined type bit_vector in earlier versions. The predefined operations on
boolean_vector are the same as those defined for bit_vector. The predefined opera-
tions on integer_vector include the relational operators (“=”, “/=”, “<”, “>”, “<=”, and
“>=”) and the concatenation operator (“&”). The predefined operations on
real_vector and time_vector include the equality and inequality operators (“=” and
“/=”) and the concatenation operator (“&”).

• The array/scalar logic operations and logical reduction operation (see Sections 4.1
and 4.3) are predefined for bit_vector and boolean_vector, since they are arrays with
bit and boolean elements, respectively.

192 Chapter 8 — Standard Packages

• The matching relational operators “?=”, “?/=”, “?>”, “?>=”, “?<”, and “?<=” are pre-
defined for bit and boolean. Further, the operators “?=” and “?/=” are predefined for
bit_vector and boolean_vector. (See Section 4.5.)

• The condition operator “??” is predefined for bit (see Section 4.4).

• The operators mod and rem are predefined for time, since it is a physical type (see
Section 4.7).

• The maximum and minimum operations are predefined for all of the predefined
types (see Section 4.6).

• The functions rising_edge and falling_edge are predefined for bit and boolean. Prior
to VHDL-2008, the bit versions of these functions were declared in the package
numeric_bit. However, that was mainly to provide consistency with the std_logic
versions defined in the std_logic_1164 package. They rightly belong with the defini-
tion of the type on which they operate; hence, VHDL-2008 includes them in the
package standard. The VHDL-2008 revision of the numeric_bit package redefines
the operations there as aliases for the predefined versions.

• The to_string operations are predefined for all scalar types and for bit_vector (see
Section 7.1). Further, the to_bstring, to_ostring, and to_hstring operations and asso-
ciated aliases are predefined for bit_vector.

8.7 The Env Package

Previous version of the VHDL standard defined the language, but did not specify any
means of accessing the simulation environment. VHDL-2008, as well as including the
VHPI procedural interface (see Section 2.6), also includes a new environment package
called env, resident in the library std. The package defines the following procedures:

procedure stop (status: integer);
procedure stop;

procedure finish (status: integer);
procedure finish;

When the procedure stop is called, the simulator stops and accepts further input
from the user interface (if interactive) or command file (if running in batch mode). When
the procedure finish is called, the simulator terminates; simulation cannot continue. The
versions of the procedures that have the status parameter use the parameter value in an
implementation-defined way. They might, for example, provide the value to a control
script so that the script can determine what action to take next.

The env package also defines a function to access the resolution limit for the simula-
tion:

function resolution_limit return delay_length;

One way in which we might use this function is to wait for simulation time to
advance by one time step, as follows:

8.8 Operator Overloading Summary 193

wait for env.resolution_limit;

Since the resolution limit, and hence the minimum time by which simulation
advances, can vary from one simulation run to another, we cannot write a literal time
value in such a wait statement. The use of the resolution_limit function allows us to write
models that adapt to the resolution limit used in each simulation. We need to take care in
using this function, however. It might be tempting to compare the return value with a
given time unit, for example:

if env.resolution_limit > ns then -- potentially illegal!
 ... -- do coarse-resolution actions
else
 ... -- do fine-resolution actions
end if;

The problem is that we are not allowed to write a time unit smaller than the resolu-
tion limit used in a simulation. If this code were simulated with a resolution limit greater
than ns, the use of the unit name ns would cause an error. So the code can only succeed
if the resolution limit is less than or equal to ns. We can avoid this problem by rewriting
the example as:

if env.resolution_limit > 1.0E–9 sec then
 ... -- do coarse-resolution actions
else
 ... -- do fine-resolution actions
end if;

For resolution limits less than or equal to ns, the test returns false, so the “else” alter-
native is taken. For resolution limits greater than ns, the time literal 1.0E-9 sec is trun-
cated to zero, and so the test returns true. Thus, even though the calculation is not quite
what appears, it produces the result we want.

8.8 Operator Overloading Summary

In this section, we summarize the operations defined in the standard packages. Table 8.1
summarizes the operand and result types for overloaded operations defined in the pack-
ages std_logic_1164, numeric_std, numeric_bit, numeric_std_unsigned, numeric_bit_
unsigned, fixed_generic_pkg, and float_generic_pkg. The table does not include the pre-
defined operators on the various types. In the table, the notation use is as follows:

• LogicArrayType: arrays of std_ulogic elements

• NumericArrayType: signed, unsigned, ufixed, sfixed, float, bit_vector with opera-
tions in numeric_bit_unsigned visible, or std_ulogic_vector with operations in
numeric_std_unsigned visible

• RealArrayType: ufixed, sfixed, or float

• ArrayElementType: the element type of the operand array or arrays

194 Chapter 8 — Standard Packages

TABLE 8.1 Operand and result types

 Operators Left Right Result

Binary and, or, nand, nor,
xor, xnor

std_ulogic std_ulogic std_ulogic

LogicArrayType LogicArrayType LogicArrayType

LogicArrayType std_ulogic LogicArrayType

std_ulogic LogicArrayType LogicArrayType

not std_ulogic std_ulogic

LogicArrayType LogicArrayType

Unary reduction and, or,
nand, nor, xor, xnor

LogicArrayType std_ulogic

=, /=, <, <=, >, >= NumericArrayType NumericArrayType boolean

NumericArrayType integer boolean

integer NumericArrayType boolean

RealArrayType real boolean

real RealArrayType boolean

?=, ?/=, ?<, ?<=, ?>, ?>= NumericArrayType NumericArrayType ArrayElementType

NumericArrayType integer ArrayElementType

integer NumericArrayType ArrayElementType

RealArrayType real ArrayElementType

real RealArrayType ArrayElementType

rol, ror, sll, srl LogicArrayType integer LogicArrayType

sla, sra NumericArrayType integer NumericArrayType

Binary +, –, *, /, mod,
rem

NumericArrayType NumericArrayType NumericArrayType

NumericArrayType integer NumericArrayType

integer NumericArrayType NumericArrayType

RealArrayType real RealArrayType

real RealArrayType RealArrayType

(continues)

8.8 Operator Overloading Summary 195

Table 8.2 summarizes the result size and/or index range for operations with array
results. For arrays representing unsigned or signed integer values, only the size is rele-
vant, as the leftmost bit is the most significant bit and the rightmost bit is the least signif-
icant bit. For fixed-point and floating-point values, the specific index bounds are
relevant, as described in Sections 8.4 and 8.5. The notation for types is the same as that
used in Table 8.1. In addition, L represents the left operand, R represents the right oper-
and, A represents the array operand in the case where the other operand is scalar, and
Result represents the result of the operation.

TABLE 8.2 Result sizes and index ranges

Table 8.1 Continued

 Operators Left Right Result

Binary +, – NumericArrayType std_ulogic NumericArrayType

std_ulogic NumericArrayType NumericArrayType

Unary –, abs signed, sfixed, float signed, sfixed, float

maximum, minimum NumericArrayType NumericArrayType NumericArrayType

NumericArrayType integer NumericArrayType

integer NumericArrayType NumericArrayType

RealArrayType real RealArrayType

real RealArrayType RealArrayType

Operator Result Type Result Size and/or Range

Array/array and, or,
nand, nor, xor, xnor

ArrayOfBits Result'length = L'length = R'length

Fixed, Float: Result 'range = L'range

Array/scalar and, or,
nand, nor, xor, xnor

ArrayOfBits Result 'length = A'length

Fixed, Float: Result 'range = A'range

not ArrayOfBits Result 'length = R'length

Fixed, Float: Result 'range = R'range

rol, ror, sll, srl, sla,
sra

ArrayOfBits Result 'length = A'length

Fixed, Float: Result 'range = A'range

+, –, *, /, rem, mod float maximum(L'left, R'left) down to minimum(L'right, R'right)

(continues)

196 Chapter 8 — Standard Packages

8.9 Conversion Function Summary

In this section, we summarize the conversion functions defined in the standard-logic and
numeric packages. In order to present the information in more compact form, we have
used some abbreviations for types and the packages in which the functions are defined:
bv = bit_vector, slv = std_logic_vector, sulv = std_ulogic_vector, 1164 = std_logic_1164,
nbu = numeric_bit_unsigned, nsu = numeric_std_unsigned, ns/b = numeric_std and
numeric_bit, fixed = fixed_generic_pkg, and float = float_generic_pkg.

Table 8.3 shows the functions that convert between bit and std_ulogic scalar types,
and between vectors of these types. The first parameter is the value to be converted.
Those functions that convert from an abstract numeric value to a vector representation
have a second parameter, size, to specify the result size.

Table 8.2 Continued

Operator Result Type Result Size and/or Range

Binary +, – unsigned, signed maximum(L'length, R'length) – 1 down to 0

ufixed, sfixed maximum(L'left, R'left) + 1 down to minimum(L'right, R'right)

* unsigned, signed L'length + R'length – 1 down to 0

ufixed, sfixed L'left + R'left + 1 down to L'right + R'right

/ unsigned, signed L'length – 1 down to 0

ufixed L'left – R'right down to L'right – R'left – 1

sfixed L'left – R'right + 1 down to L'right – R'left

rem unsigned, signed R'length – 1 down to 0

ufixed, sfixed minimum(L'left, R'left) down to minimum(L'right, R'right)

mod unsigned, signed R'length – 1 down to 0

ufixed minimum(L'left, R'left) down to minimum(L'right, R'right)

sfixed R'left down to minimum(L'right, R'right)

Unary –, abs signed R'length – 1 down to 0

sfixed R'left + 1 down to R'right

minimum, maximum DiscreteArrayType Result 'length = A'length

Fixed, Float: Result 'range = A'range

unsigned, signed maximum(L'length, R'length) – 1 down to 0

ufixed, sfixed, float minimum(L'left, R'left) down to minimum(L'right, R'right)

8.9 Conversion Function Summary 197

TABLE 8.3 Conversions between bit and standard-logic types

Table 8.4 shows the functions that convert from the various numeric types to the
unsigned and signed types defined in numeric_std and numeric_bit. The first parameter
is the value to be converted, and the second parameter is either the size of the result
(size) or a value of the result type whose size is used for the result (size_res).

The conversions from fixed-point representation have a third parameter,
overflow_style (abbreviated to overflow in the table), of type fixed_overflow_style_type.
The default value is the value of the generic fixed_overflow_style. The fourth parameter,
round_style (abbreviated to round), is of type fixed_round_style_type and defaults to the
value of the generic fixed_round_style.

The conversions from float have a third parameter, round_style (abbreviated to
round), of type round_type, with the default being the value of the package generic
float_round_style. The fourth parameter is check_error (abbreviated to chk_err), of type
boolean, for controlling error checking during the conversion. The default is the value of
the package generic float_check_error.

Function Return Parameter 1 Parameter 2 Package

to_std_ulogic std_ulogic bit 1164

to_bit bit std_ulogic 1164

to_bv bit_vector sulv 1164

natural size nbu

to_sulv sulv bv 1164

slv 1164

natural size nsu

ufixed fixed

sfixed fixed

float float

to_slv slv bv 1164

sulv 1164

natural size nsu

ufixed fixed

sfixed fixed

float float

198 Chapter 8 — Standard Packages

TABLE 8.4 Conversion functions yielding unsigned and signed values

Table 8.5 shows the functions that convert from numeric types to the ufixed and
sfixed types defined in fixed_generic_pkg and instances of that package. In the case of
conversion functions defined in the floating-point packages, the definitions of ufixed and
sfixed come from the instance of fixed_generic_pkg supplies as an actual generic pack-
age to the instance of float_generic_pkg. The first parameter of each function is the value
to be converted. Following this are either two parameters, left_index and right_index
(abbreviated to L_index and R_index in the table), to specify the index bounds of the
result, or a single parameter, size_res, for a value whose index range is used for the
result. For the conversions from natural or unsigned to ufixed, and for the conversions
to integer or signed to sfixed, the default for right_index is 0. Additional parameters
specify overflow and rounding modes (overflow_style and round_style), the number of
guard bits to use (guard_bits), whether error checking is required (check_error), and
whether operands of type float use denormalized representation (denormalize). The
default values for the overflow_style, round_style, and guard_bits parameters come from
the generics of the fixed_generic_pkg package; the default values for the check_error
and denormalize parameters come from the generics of the float_generic_pkg package.
Note that there are also versions of to_ufixed and to_sfixed with no parameters beyond
the first unsigned or signed parameter. (This is not an error in the table layout!) These
versions simply return the value of the parameter as a fixed-point value with no frac-
tional part (that is, indexed from one less than the length down to 0).

Function Return Param 1 Param 2 Param 3 Param 4 Package

to_unsigned unsigned natural size ns/b

size_res

ufixed size overflow round fixed

size_res overflow round

float size round chk_err float

size_res round chk_err

to_signed signed integer size ns/b

size_res

sfixed size overflow round fixed

size_res overflow round

float size round chk_err float

size_res round chk_err

8
.9

C
on

version
 Fu

n
ction

 Su
m

m
a

ry
199

TABLE 8.5 Conversion functions yielding ufixed and sfixed values

Function Return Param 1 Param 2 Param 3 Param 4 Param 5 Param 6 Param 7 Package

to_ufixed ufixed sulv L_index R_index fixed

size_res

unsigned

L_index R_index overflow round

size_res overflow round

natural L_index R_index overflow round

size_res overflow round

real L_index R_index overflow round guard

size_res overflow round guard

float L_index R_index overflow round chk_err denorm float

size_res overflow round chk_err denorm

(continues)

200
C

h
a

pter 8
—

Sta
n

d
a

rd
 P

a
cka

ges

Table 8.5 Continued

Function Return Param 1 Param 2 Param 3 Param 4 Param 5 Param 6 Param 7 Package

to_sfixed sfixed ufixed fixed

sulv L_index R_index

size_res

signed

L_index R_index overflow round

size_res overflow round

integer L_index R_index overflow round

size_res overflow round

real L_index R_index overflow round guard

size_res overflow round guard

float L_index R_index overflow round chk_err denorm float

size_res overflow round chk_err denorm

8.9 Conversion Function Summary 201

Table 8.6 shows the functions that convert from numeric types to the float type
defined in fixed_generic_pkg and instances of that package. Again, the definitions of
ufixed and sfixed come from the instance of fixed_generic_pkg supplied as an actual
generic package to the instance of float_generic_pkg. The first parameter of each func-
tion is the value to be converted. Following this are either two parameters,
exponent_width and fraction_width (abbreviated to exponent and fraction in the table),
to specify the sizes of the corresponding fields in the result, or a single parameter,
size_res, for a value whose index range is used for the result. Additional parameters
specify the rounding mode (round_style) and whether denormalized representation is
used (denormalize). The default values for the field size, round_style and denormalize
parameters come from the generics of the package.

TABLE 8.6 Conversion functions yielding float values

The final group of conversion functions is shown in Table 8.7. These function con-
vert from binary-coded vectors to abstract integer or real types. As in the preceding
tables, the first parameter is the value to be converted, and subsequent parameters spec-
ify overflow and rounding modes (overflow_style and round_style), whether error
checking is required (check_error), and whether operands of type float use denormal-

Function Return Param 1 Param 2 Param 3 Param 4 Param 5 Package

to_float float sulv exponent fraction float

size_res

unsigned

exponent fraction round

size_res round

signed exponent fraction round

size_res round

ufixed exponent fraction round denorm

size_res round denorm

sfixed exponent fraction round denorm

size_res round denorm

integer exponent fraction round

size_res round

real exponent fraction round denorm

size_res round denorm

202 Chapter 8 — Standard Packages

ized representation (denormalize). The default values for these subsequent parameters
come from the generics of the respective packages.

TABLE 8.7 Conversion functions yielding integer and real values

In addition to the declarations of the conversion functions, there are aliases for
convenience and enhanced readability: the function to_bv has aliases to_bitvector and
to_bit_vector; the function to_sulv has aliases to_stdulogicvector and to_std_ulogic_
vector; and the function to_slv has aliases to_stdlogicvector and to_std_logic_vector.

For each binary-coded numeric type, there is a resize function, shown in Table 8.8.
The versions yielding bit_vector, std_ulogic_vector, unsigned, and signed results have a
parameter new_size to specify the result size, or a parameter size_res for an object
whose index range is used for that of the result. The versions that yield fixed-point
results have either two parameters (left_index and right_index) to specify the index
bounds of the result, or a parameter (size_res) for an object whose index range is used
for that of the result. They also have parameters to specify overflow and rounding modes
(overflow_style and round_style), with default values coming from the package generics.
Similarly, the versions that yield floating-point results have either two parameters to spec-
ify the field sizes for the result (exponent_width and fraction_width), and subsequent
parameters specify rounding modes (round_style), whether error checking is required
(check_error), and whether the operand and result use denormalized representation
(denormalize_in and denormalize_out, respectively). The default values for these subse-
quent parameters come from the package generics.

Function Return Param 1 Param 2 Param 3 Param 4 Package

to_integer natural bv nbu

natural sulv nsu

natural unsigned ns/b

integer signed

natural ufixed overflow round fixed

integer sfixed overflow round

integer float round chk_err float

to_real real ufixed fixed

sfixed

float round chk_err denorm float

8
.9

C
on

version
 Fu

n
ction

 Su
m

m
a

ry
203

TABLE 8.8 Resizing functions

Function Return Param 1 Param 2 Param 3 Param 4 Param 5 Param 6 Param 7 Package

resize bv bv new_size nbu

size_res

sulv sulv new_size nsu

size_res

unsigned unsigned new_size ns/b

size_res

signed signed new_size

size_res

ufixed ufixed L_index R_index overflow round fixed

size_res overflow round

sfixed sfixed L_index R_index overflow round

size_res overflow round

float float exponent fraction round chk_err den_in den_out float

size_res round chk_err den_in den_out

204 Chapter 8 — Standard Packages

Resizing an unsigned vector of type bit_vector, std_ulogic_vector or unsigned to
produce a larger vector involves filling leftmost bits with '0'. Resizing these types to pro-
duce a smaller vector involves truncating the leftmost bits. For type signed, producing a
larger vector involves filling the leftmost bits with copies of the operand’s sign bit, and
producing a smaller vector involves truncating the leftmost bits while retaining the sign
bit.

Resizing a fixed-point value is similar. A ufixed vector is extended on the left or right
by filling bits with '0'. An sfixed vector is extended on the left by replicating the sign bit
and extended on the right by filling bits with '0'. Reducing the size of a fixed-point vector
is more complicated, and depends on the overflow and rounding modes. If the vector is
to be truncated on the right, a rounding mode of fixed_truncate causes the truncated bits
to be discarded and the rightmost result bit to be unchanged, whereas a rounding mode
of fixed_round causes the result to be rounded based on the values of the discarded bits
and the rightmost result bit. If the vector is to be truncated to the left and the operand
value is out of the representable range for the result, the value returned depends on the
overflow style. For fixed_saturate, the largest representable value (for ufixed or for posi-
tive sfixed values) or the most negative representable value (for negative sfixed values)
is returned. For fixed_wrap, the leftmost bits are simply truncated, which, in the case of
sfixed values, may result in a change of sign.

Resizing a floating-point value is much more involved than resizing integral and
fixed-point values. It involves determining the class of value represented by the operand
(normal, denormal, zero, infinity, or NaN), resizing the exponent and fractional parts,
rounding according to the round_style parameter, renormalizing or representing as a
denormal if required, checking for errors, and transforming overflow to infinity.

8.10 Strength Reduction Function Summary

VHDL-2008 expands the definition of the strength reduction functions so that they are
defined for the entire family of types based on std_ulogic. Functions of the following
form are defined:

function to_01 (S : uType; XMAP : std_ulogic := '0')
 return uType;

function to_X01 (S : uType) return uType;

function to_X01Z (S : uType) return uType;

function to_UX01 (S : uType) return uType;

The type uType includes std_ulogic, std_ulogic_vector, unresolved_unsigned,
unresolved_signed, unresolved_ufixed, unresolved_sfixed, and unresolved_float. The
value returned by each function for each operand element value is shown in Table 8.9.
The functions to_X01, to_X01Z, and to_UX01, when applied to vector operands, convert
each operand element according to the table to yield the corresponding result element.
The to_01 function, however, behaves differently. Provided all of the elements are '0', '1',
'L', or 'H', they are converted according to the table. However, if any element is a meta-

8.10 Strength Reduction Function Summary 205

logical value (a value other than '0', '1', 'L', or 'H'), all elements of the result are set to the
value of the xmap parameter. Thus, we can test any element of the result to determine
whether there were any metalogical elements in the operand.

TABLE 8.9 Strength reduction mappings

VHDL-2008 also expands the definition of the 'X' detection functions so that they are
defined for the entire family of types based on std_ulogic. The function definitions are of
the form:

function is_X (S : uType) return boolean;

The version for std_ulogic returns true if the operand is a metalogical value, or false
otherwise. The versions for vector types return true if any element of the operand is a
metalogical value, or false otherwise.

Function 'U' 'X' '0' '1' 'Z' 'W' 'L' 'H' '–'

to_01 xmap xmap '0' '1' xmap xmap '0' '1' xmap

to_X01 'X' 'X' '0' '1' 'X' 'X' '0' '1' 'X'

to_X01Z 'X' 'X' '0' '1' 'Z' 'X' '0' '1' 'X'

to_UX01 'U' 'X' '0' '1' 'X' 'X' '0' '1' 'X'

This page intentionally left blank

207

Chapter 9

Miscellaneous Changes

In this chapter, we describe various miscellaneous semantic and syntactic changes to
constructs in VHDL-2008 not mentioned in earlier chapters. Many of the changes are
relaxations to rules previously in VHDL, and will make some modeling tasks easier.
Other changes are clarifications or corrections to minor inconsistencies in the language
definition.

9.1 Referencing Generics in Generic Lists

In earlier versions of VHDL, a formal generic declared within a given generic list could
not be used to declare other generics in that list. The same rule also applied to ports
declared within a port list and to parameters declared in a subprogram’s parameter list. In
VHDL-2008, the rule is relaxed for generics. Thus, we can use one generic to declare
subsequent generics in the list. Among other possibilities, this means we can use the
value of a generic constant to constrain the size of a subsequent generic of an array type.
This was one of the motivations behind the change.

EXAMPLE 9.1 Individual propagation delay generics for array port elements

Suppose we want to use generic constants to specify the propagation delays for an
adder. The entity is declared with input and output ports that are arrays whose sizes
are determined by a generic constant. We want to specify individual propagation
delays for corresponding input and output port elements. The entity declaration is:

entity adder is
 generic (width : positive;
 Tpd_ab_s : time_vector(width - 1 downto 0));
 port (a, b : in bit_vector(width - 1 downto 0);
 c_in : in bit;
 s : out bit_vector(width - 1 downto 0);
 c_out : out bit);
end entity adder;

The generic constant width is used in the declaration of the second generic con-
stant, Tpd_ab_s, to ensure that there is a matching propagation delay for each ele-

208 Chapter 9 — Miscellaneous Changes

ment of the input and output ports. We can instantiate the entity in a design as
follows:

subtype byte is bit_vector(7 downto 0);
signal op1, op2, result : byte;
signal c_out : bit;
...

byte_adder : entity work.adder
 generic map (width => byte'length,
 Tpd_ab_s => (7 downto 1 => 120 ps,
 0 => 80 ps))
 port map (a => op1, b => op2, c_in => '0',
 s => result, c_out => c_out);

In this instance, an actual value is given for width, and that is used to determine
the index range for Tpd_ab_s, as well as for the ports. Note that we don’t have to
write the actual generics in this order. The values are determined for generics in the
order of their occurrence in the generic list, not the generic map. Thus, we could
have written the generic map as:

 generic map (Tpd_ab_s => (7 downto 1 => 120 ps,
 0 => 80 ps),
 width => byte'length)

though to do so might look a bit strange.

We saw several other examples of generics being used in the declarations of other
generics in our discussion of generic types, subprograms, and packages in Chapter 1.
Supporting these features was another motivation for making the change.

9.2 Function Return Subtype

In earlier version of VHDL, the value returned by a function had to belong to the subtype
defined as the function’s return type. For example, in the following function:

subtype byte is bit_vector(7 downto 0);

function f (x : byte) return byte is
begin
 return '0' & x(6 downto 0);
end function f;

the result had to be a bit vector indexed from 7 down to 0. However, the result is a bit
vector indexed from 0 to 7, due to the rules for determining the index range of a concat-
enation result. Thus, in earlier versions of VHDL, this function would have caused an
error when executed.

9.3 Qualified Expression Subtype 209

In VHDL-2008, the rules for a function result returned by a return statement are
relaxed. The value of the return expression is implicitly converted to the result subtype
of the function. As a consequence, the above function does not produce an error. The
conversion of the result value simply remaps the indices to the required range and
direction.

9.3 Qualified Expression Subtype

In a change related to that described in Section 9.2, the rules for qualified expressions are
relaxed. In earlier versions of VHDL, a type qualification stated the precise subtype of an
expression. The value of the expression was required to be of that subtype. In VHDL-
2008, the value is converted to the stated subtype. However, it still has to have the same
base type as the stated subtype.

To illustrate the fine distinctions, suppose we declare a subtype, byte, as we did in
Section 9.2, along with some variables:

subtype byte is bit_vector(7 downto 0);
variable x : byte;
variable y : IEEE.numeric_bit.unsigned(7 downto 0);

If we wanted to write an expression of the subtype byte comprising a '0' bit concat-
enated with the low-order 7 bits of x, we would have written the following in earlier ver-
sions of VHDL:

byte(bit_vector'('0' & x(6 downto 0)))

The qualified expression

byte'('0' & x(6 downto 0))

was illegal in earlier versions of VHDL, since the index range of the concatenation result
is 0 to 7. A bit vector with that index range is not in the subtype of bit vectors with index
ranges 7 down to 0. In VHDL-2008, the shorter qualified expression is legal, and converts
the value to have an index range of 7 down to 0. Note that the following qualified
expression is not legal:

byte'(y)

The value of y is a vector whose base type is unsigned, which is different from the
base type of byte, namely, bit_vector. It is not correct to state that an unsigned value is a
bit_vector value. Hence, a qualified expression is not appropriate; we should use a type
conversion instead.

9.4 Type Conversions

In VHDL-2008, the rules for type conversions of array types are relaxed. Previously,
when converting an expression of an array type to some other target array type, the ele-

210 Chapter 9 — Miscellaneous Changes

ments of the expression and the target type had to be the same. Moreover, the types of
the indices of the expression and the target had to be the same or had to be integer
types. Under the revised VHDL-2008 rules, an array can be converted to any other array
type, provided the elements can be converted to the target element type. If the target
type is in fact a subtype that specifies the index bounds, then the converted expression
must have the required number of elements.

To illustrate, suppose we have array types and signals declared as follows:

type exception_type is (int, ovf, div0, undef, trap);
type exception_vector is array (exception_type) of bit;
signal d_in, d_out: bit_vector(31 downto 0);
signal exception_reg : exception_vector;

In VHDL-2008, the type conversions:

exception_vector(d_in(4 downto 0))

yields a vector of bits indexed from int to trap, with each element being the matching
element of the slice of d_in, from left to right. Since the element types for the expression
and the target type are both bit, conversion of the elements is trivial. In this example, the
target type is also a subtype that specifies the index bounds, so the converted expression
is required to have five elements.

We can also convert in the reverse direction:

bit_vector(exception_reg)

In this case, the target type is unconstrained, so the index range of the result comes
from the index subtype defined for bit_vector, namely, natural. The subtype natural is
declared to be an ascending range with a left bound of 0. This direction and left bound
are used as the direction and left bound of the type-conversion result. The right bound
comes from the number of elements. Thus, the result is a bit_vector value indexed from
0 to 4. We could assign that result to a slice of the d_out signal:

d_out(31 downto 27) <= bit_vector(exception_reg);

in which case matching elements are assigned left to right.
The rule that the element types of the converted expression and the target type must

be convertible allows us to perform the following conversions:

variable i_vec : integer_vector(1 to 10);
variable r_vec : real_vector(1 to 10);
...

i_vec := integer_vector(r_vec);
r_vec := real_vector(i_vec);

Since we can convert between values of type integer and real, we can also convert
between arrays with integer and real elements, respectively. Each element of the con-
verted expression is converted to the element subtype of the target type.

9.5 Case Expression Subtype 211

9.5 Case Expression Subtype

VHDL allows the expression in a case statement to be of a one-dimensional character-
array type, that is, a one-dimensional array whose elements include character literals.
Examples of such types are bit_vector, std_logic_vector, and similar types. In earlier ver-
sions of VHDL, if we wrote such an expression in a case statement, the index range had
to be locally static. In other words, we had to be able to determine the index bounds and
direction at analysis time. The reason was that the case choices would be array aggre-
gates or strings, and the analyzer needed to be able to check that they were all of the
same correct length. An example showing where these rules are inconvenient is the
following:

variable s : bit_vector(3 downto 0);
variable c : bit;
...

case c & s is
 ...
end case;

This would be illegal in earlier versions of VHDL, since the index range of the
expression is not locally static. Instead, we would have to rewrite the example as:

variable s : bit_vector(3 downto 0);
variable c : bit;
subtype bv5 is bit_vector(0 to 4);
...

case bv5'(c & s) is
 ...
end case;

VHDL-2008 avoids this and other inconveniences by allowing the case expression
not to have a locally static index range. All that is statically required is that the choices
have the same length. When the case statement is executed, the value of the expression
must have the same length as the choices. Thus, in VHDL-2008, we can complete the
above example as follows:

variable s : bit_vector(3 downto 0);
variable c : bit;
...

case c & s is
 when "00000" => ...
 when "10000" => ...
 when others => ...
end case;

212 Chapter 9 — Miscellaneous Changes

All of the choices are of length five, so that determines the required length for the
result of the concatenation.

A related change in VHDL-2008 is that an array aggregate containing others is
allowed as a choice in a case statement, provided the index range of the case expression
is locally static. For example, we can write a case statement as follows:

variable s : bit_vector(3 downto 0);
...

case s is
 ('0', others => '1') => ...
 ('1', others => '0') => ...
 ...
end case;

In this example, the index range of the expression s can be determined at analysis
time as being 3 down to 0. That means the analyzer can use the index range for the
choice values. If the analyzer cannot work out the index range for the case expression, it
cannot determine the index values represented by others in the aggregates.

9.6 Subtypes for Port and Parameter Actuals

Earlier versions of VHDL required that, for a scalar port, the actual signal be of exactly
the same subtype as the port, including having exactly the same bounds and direction. A
similar restriction applied to signal parameters of subprograms. For example, given the
following component declaration:

component counter is
 port (count : out natural; ...);
end component counter;

we could not use an integer signal as the actual signal:

signal count_int : integer;
...

my_counter : counter
 port map (count => count_int, ...);

This would appear to be a reasonable thing to do, since the counter output is always
a non-negative integer, and the count_int signal can legally take on any integer value.
However, the type integer has different bounds from the subtype natural, so the associa-
tion was not allowed. The motivation for the restriction was to avoid subtype checks
slowing down simulation. For example, consider the procedure:

procedure monitor_count (signal count : in natural;
 max_val : in natural) is
begin

9.7 Static Composite Expressions 213

 loop
 assert count <= max_val;
 wait on count;
 end loop;
end procedure monitor_count;

If we supplied an integer signal as an actual parameter, as follows:

signal count_int : integer;
...

monitor_count (count_int, 50); -- not legal

each time there was an event on the signal parameter within the procedure, we would
need to check that the new value belonged to the subtype of the parameter.

VHDL-2008 changes the subtype rules for scalar ports and scalar signal parameters to
partially relax the subtype requirements, in a way that makes reasonable cases legal but
that avoids the need for runtime subtype checks. Under the new rules, a port of mode
out, inout, or buffer can be connected to a signal of a different subtype, provided the
signal’s subtype includes at least the values in the ports subtype. So, for example, the sig-
nal could be of type integer and the port of the subtype natural, since integer includes
all of the values in natural. Similarly, a port of mode in or inout can be connected to a
signal of a different subtype, provided the port’s subtype includes at least the values in
the signal’s subtype. Since ports of mode inout are included in both conditions, the sub-
types of an inout-mode port and the connected signal must have the same bounds,
though they no longer need to have the same direction. The same rules apply to signal
parameters of subprograms (though such parameters cannot be of mode buffer, of
course).

9.7 Static Composite Expressions

VHDL requires expressions in a number of places to be locally static, meaning that they
can be evaluated during analysis. An example is an expression used as a choice in a case
statement. Earlier versions of VHDL limited the forms of locally static expressions pro-
ducing composite results. For example, a concatenation of two strings was not locally
static, even if the strings were locally static literals.

VHDL-2008 expands the kinds of expressions that are considered to be locally static.
A locally static expression can be of a composite type, provided the subtype of each of
the primaries in the expression is locally static and has a locally static subtype. The list of
allowed primaries is expanded to include array and record aggregates, indexed array
elements, array slices, and selected record elements. The operators in the expression can
be any of the predefined operators or functions, or any of the operators or functions
defined in the standard packages std_logic_1164, numeric_bit, numeric_std, numeric_
bit_unsigned, and numeric_std_unsigned.

To illustrate a consequence of these changes, given the following declarations:

214 Chapter 9 — Miscellaneous Changes

constant unsigned_const : unsigned(5 downto 0) := "000000";
type unsigned_ROM_array is array (0 to 255) of unsigned(7 downto 0);
constant unsigned_ROM : unsigned_ROM_array := (...);

it is now legal to write a case statement with the following choices:

case unsigned_value is
 "00" & unsigned_const => ...
 ("00" & unsigned_const) + 1 => ...
 unsigned_ROM(128) => ...
 ...
end case;

9.8 Static Ranges

In many modeling scenarios, we would like to use the index range of one object to
declare another object. If the declaration requires the index range to be globally static,
we can sometimes run into problems, as this example illustrates:

entity shifter is
 port (d : in bit_vector; ...);
end entity shift_in;

architecture rtl of shift_in is
begin
 ff_gen : for i in d'range generate
 ...
 end generate ff_gen;
end architecture rtl;

In earlier versions of VHDL, this was illegal. The range used to define the for-
generate parameter must be a globally static range; that is, it must be determined at elab-
oration time. The earlier rules for globally static ranges permitted use of an attribute,
provided the prefix was of a globally static subtype. In this example, the subtype of d is
bit_vector, which is not globally static.

VHDL-2008 addresses this and similar problems by recognizing that it is not the
index range of the declared subtype of d that we are interested in. Rather, it is the index
range of d itself, which is determined at elaboration time from the actual signal associ-
ated with the port. VHDL-2008 revises the rules for globally static expressions and ranges
to allow use of attributes that provide information about the range of a prefix, provided
the prefix is one of the following:

• a signal or port

• a constant or generic constant

• a type or subtype

• a globally static function call

9.9 Use Clauses, Types, and Operations 215

• a variable that is not of an access type, or a variable of an access type whose desig-
nated subtype is fully constrained

For these prefixes, we can use attributes such as 'range, 'left, 'right, 'length, and
'ascending, since they provide information about the range of the prefix that is deter-
mined at elaboration time.

9.9 Use Clauses, Types, and Operations

VHDL allows a name declared in a package to be made visible in another design unit
with a use clause. We commonly write

use package_name.all;

to make all of the names declared in the package visible. Alternatively, we can list indi-
vidual names to identify which of the names declared in the package become visible, for
example:

use package_name.identifier;

According to the rules of earlier versions of VHDL, strictly, if the name listed was the
name of a type declared in the package, only the type name was made visible. None of
the predefined operations for the type were also made visible. Moreover, for enumera-
tion types, none of the enumeration literals were made visible, and for physical types,
none of the unit names were made visible.

VHDL-2008 extends the rules for use clauses to make using type names more useful.
If we write a type or subtype name in a use clause, then as well as that name becoming
visible, the following additional items declared in the package become visible:

• All of the predefined operations on the type, provided they are not hidden by over-
loaded version also declared in the package.

• Overloaded versions of predefined operations on the type declared in the package.

• For an enumeration type or subtype, all of the enumeration literals. This includes any
character literals of the type.

• For a physical type or subtype, all of the unit names for the type.

For example, suppose we declare the following package:

package stuff_pkg is

 type color_type is (red, orange, yellow, green, blue, violet);
 subtype warm_color is color_type range red to yellow;

 function "<" (c1, c2 : color_type) return boolean;
 function pretty (c : color_type) return boolean;

 type resistance is range 0 to 1E9 units

216 Chapter 9 — Miscellaneous Changes

 Ohm;
 kOhm = 1000 Ohm;
 MOhm = 1000 kOhm;
 end units;

 subtype weak_logic is
 IEEE.std_logic_1164.std_logic range 'W' to 'H';

end package stuff_pkg;

Then the use clause

use stuff_pkg.color_type;

makes not only the type color_type visible, but also the enumeration literals red through
violet, the predefined operations on color_type other than “<”, and the overloaded “<”
operator declared in the package. It does not make the function pretty visible, since it is
not an overloaded version of a predefined operation. If we write the use clause

use stuff_pkg.warm_color;

it makes the subtype warm_color visible, along with all of the enumeration literals for
color_type (not just those in the subtype) and the operations for color_type.

If we write the use clause

use stuff_pkg.resistance;

it makes the type resistance visible, along with the unit names Ohm, kOhm, and MOhm,
and the predefined operations on resistance.

Finally, if we write the use clause

use stuff_pkg.weak_logic;

all we get is the subtype name weak_logic made visible, since none of the enumeration
literals or operations are declared in the package stuff_pkg.

9.10 Hiding of Implicit Operations

Earlier versions of VHDL had a subtle interaction between the rules for use clauses and
the rules for overloading predefined operations. This interaction caused a problem dur-
ing development of the numeric_bit_unsigned and numeric_std_unsigned packages.
When we declare a type in a package, the predefined operators for the type are implicitly
declared in that package. For example, the type std_logic_vector is declared in package
std_logic_1164, and so the predefined operators such as “<” are also declared implicitly
in std_logic_1164. If we were to declare an overloaded version of “<” for
std_logic_vector in the same package, it would hide the predefined version. A use clause
for the package with the overloaded operator would make the overloaded version visi-
ble, not the predefined version.

9.11 Multidimensional Array Alias 217

On the other hand, we can write a separate package that defines overloaded opera-
tors. The package numeric_std_unsigned does just that for the std_logic_vector type. It
declared overloaded comparison operators that perform arithmetic comparisons, whereas
the predefined comparison operators in std_logic_1164 perform lexicographic com-
parisons.

Now suppose we write a design unit that uses both std_logic_1164 and
numeric_std_unsigned:

library IEEE;
use IEEE.std_logic_1164.all, IEEE.numeric_std_unsigned.all;
...

The question is, which version of the “<” is visible in the design unit? Since the two
versions are declared in different packages, under the old VHDL rules, the explicitly
declared version did not hide the implicitly declared version. Since the use clauses made
two version potentially visible, neither version was made visible. VHDL-2008 revises the
rules for use clauses so that an overloaded version of a predefined operation explicitly
declared in one package, when used by a use clause, hides the use of an implicitly
declared version from another package. So in the above example, the “<” operator
explicitly declared in numeric_std_unsigned is made visible, and the implicit version
from std_logic_1164 remains hidden.

9.11 Multidimensional Array Alias

VHDL allows us to write an alias for an object, and to specify a subtype with which to
view the object. For example, we can write:

signal s : bit_vector(15 downto 0);
alias bigendian_s : bit_vector(0 to 15) is s;

In earlier versions of VHDL, the rules for aliases of arrays were unclear, and prohib-
ited aliases of multidimensional array objects. Thus, the following was illegal in earlier
versions of VHDL:

type bit_matrix is
 array (natural range <>, natural range <>) of bit;
signal s : bit_matrix(15 downto 0, 15 downto 0);
alias bigendian_s : bit_matrix(0 to 15, 0 to 15) is s;

VHDL-2008 clarifies the rules and removes the restriction, making the above example
legal.

9.12 Others in Aggregates

VHDL allows an array aggregate to include an others choice, provided the index range
of the array can be determined from the context. We need the index range in order to
work out what index values are implied by the others choice. In earlier versions of

218 Chapter 9 — Miscellaneous Changes

VHDL, the rules identifying where an array aggregate could include others omitted a
number of useful cases. VHDL-2008 rectifies the omissions.

One place where earlier versions of VHDL did not allow us to use others in an
array aggregate was as a default value for a generic constant declared to be of a con-
strained array type. For example, the aggregate in the following declaration would be
illegal in earlier versions of VHDL:

entity adder32 is
 generic (Tpd : time_vector(31 downto 0)
 := (others => 100 ps));
 port (a, b : in bit_vector(31 downto 0);
 (s : out bit_vector(31 downto 0));
end entity adder32;

While we could certainly write out an aggregate with 32 elements, or rewrite the
aggregate as:

(31 downto 0 => 100 ps)

this would be less convenient. VHDL-2008 rectifies the omission, making the aggregate
in the generic list above legal. Moreover, when combined with the change described in
Section 9.1, the following becomes legal in VHDL-2008:

entity adder is
 generic (width : positive;
 Tpd : time_vector(width-1 downto 0)
 := (others => 100 ps));
 port (a, b : in bit_vector(width-1 downto 0);
 (s : out bit_vector(width-1 downto 0));
end entity adder;

Other places where aggregates with others were previously omitted but are now
allowed are:

• As an actual expression in a port map associated with a port (or an element of a
port) that is of a fully constrained array subtype.

• As an actual expression associated with a slice of a parameter in a subprogram call,
or with a slice of a generic in a generic map, or with a slice of a port in a port map.

• As the right-hand side of an assignment statement where the assignment target is an
element of an object and the element is of a fully constrained array type.

• As the right-hand side of an assignment statement where the assignment target is a
slice of an object.

9.13 Attribute Specifications in Package Bodies 219

9.13 Attribute Specifications in Package Bodies

Earlier versions of VHDL did not allow attribute declarations or specification in package
bodies. This omission is rectified in VHDL-2008. As a consequence, the following is now
legal, whereas it was illegal in previous versions:

package utility_pkg is
 type lookup_ROM is array(0 to 15) of bit_vector(7 downto 0);
 constant lookup : lookup_ROM;
end package utility_pkg;

package body utility_pkg is

 function get_cpu_time return delay_length;
 attribute foreign of get_cpu_time : function is
 "VHPIDIRECT libutility get_cpu_time";
 ...

 constant lookup : lookup_ROM := (...);

 attribute logic_block : boolean;
 attribute logic_block of lookup : constant is true;

end package utilty_pkg;

The package declaration contains an attribute specification to decorate the function
get_cpu_time with the 'foreign attribute. This allows the function, declared privately
within the package body, to have a VHPI implementation. The package body also
declares the synthesis attribute 'logic_block and decorates the deferred constant lookup
with the attribute. These attribute declarations and specifications are all now legal in
VHDL-2008.

9.14 Attribute Specification for Overloaded Subprograms

The way attribute specifications for overloaded subprograms were defined in earlier ver-
sions of VHDL led to some undesirable consequences in some cases. One of the rules
was that, if we wrote an attribute specification for a name, and there were multiple over-
loaded subprograms of that name, then all of the overloaded versions were decorated.
The problem arose if a given name was used for both procedures and functions. For
example, suppose we declared the following subprograms and tried to decorate them:

procedure add (a, b : in integer; s : out integer);
procedure add (a, b : in real; s : out real);
function add (a, b : integer) return integer;
function add (a, b : real) return real;

attribute built_in : boolean;

220 Chapter 9 — Miscellaneous Changes

atribute built_in of add : procedure is true;
attribute built_in of add : function is false;

The problem was that, in earlier versions of VHDL, the subprogram identified by the
names did not take account of the subprogram kind in the attribute specification. That
caused us to run foul of the rule that all of the items identified by the name had to be of
the specified kind. Thus, in the example, the name add in both attribute specifications
identifies all four overloaded versions. Even though two are not procedures for the first
specification, and two are not functions for the second specification. We could avoid this
problem by writing separate attribute specifications for each subprogram, using a signa-
ture to differentiate them, but that would require four attribute specifications instead of
two:

atribute built_in of
 add[integer, integer, integer] : procedure is true;
atribute built_in of
 add[real, real, real] : procedure is true;
attribute built_in of
 add[integer, integer return integer] : function is false;
attribute built_in of
 add[real, real return real] : function is false;

Clearly, this is more cumbersome. VHDL-2008 tidies up the rules for attribute specifi-
cations by taking account of the kind of item. If the name identifies multiple overloaded
subprograms, only those of the specified kind are actually decorated. Thus, we can
legally write the original two attribute specifications above. Only the two procedures are
decorated with the attribute value true, and only the two functions are decorated with
the attribute value false.

9.15 Integer Expressions in Range Bounds

In certain cases in earlier versions of VHDL, we could not use a numeric literal as one
bound for a range and a more complex expression as the other bound. An example is a
for loop written as follows:

for i in 0 to 2**N - 1 loop ...

where N is a constant of type integer. A similar problem could arise in a for generate
statement and in an index range for an array type definition.

The underlying reason, in earlier versions of VHDL, was that the bounds are both of
the predefined type universal_integer, but VHDL only implicitly converted the bounds
from universal_integer values to integer if both were simple expressions consisting just
of a numeric literal or an attribute value. If that was not the case, the bounds were
required to be of a type other than universal_integer. In the example above, the fact that
the right bound is a more complex expression prevented the implicit conversion being
performed, leaving both bounds of the type universal_integer, which was illegal.

9.16 Action on Assertion Violations 221

VHDL-2008 rectifies the anomaly by removing the requirement that both bounds be
simple expressions for the implicit conversion to integer to apply. Instead, the implicit
conversion is done if both bounds are of type universal_integer, regardless of the com-
plexity of the expressions. Thus, in the above example in VHDL-2008, the conversion is
performed, leading to the loop parameter i being of type integer.

9.16 Action on Assertion Violations

Assertion statements and report statements allow specification of the severity level (note,
warning, error, or failure) associated with a message. Earlier versions of VHDL did not
specify the effect of different severity levels, beyond saying that it should be included in
the message. Different simulators have taken different approaches. Most will stop execu-
tion on some given severity level or greater, but they differ in the threshold at which they
stop. Some stop on error or failure, whereas others stop only on failure. This has caused
portability problems for users writing simulation control scripts and for developers of
packages that include assertions.

VHDL-2008 recommends that a simulator continue execution for an assertion or
report statement with severity level of error or less. This should help reduce the portabil-
ity problems, as tool implementers converge upon the recommendation.

9.17 'Path_Name and 'Instance_Name

VHDL includes two predefined attributes, 'path_name and 'instance_name, that give
string values representing the path through the design hierarchy from the root to the pre-
fix item. These attributes were introduced in VHDL-93.

One omission from the rules for forming the attribute values in earlier versions of
VHDL was provision for overloaded operators. Both attributes included the name of a
subprogram enclosing an item, but only allowed for an identifier to represent the subpro-
gram name. An overloaded operator, on the other hand, has an operator symbol in quo-
tation marks as its name. VHDL-2008 amends the rules to allow for this scenario. Thus,
given the following design hierarchy:

entity e is
end entity e;

architecture a of e is
begin
 proc : process is
 type T is ...
 function "+" (a, b : T) return T is
 variable s : integer;
 begin
 ...
 end function "+”;
 begin
 ...

222 Chapter 9 — Miscellaneous Changes

 end process proc;
end architecture a;

the value of s'pathname is the string

:e:proc:"+":s

and the value of s'instance name is the string

:e(a):proc:"+":s

In VHDL-2000, protected types for shared variables were introduced. A protected
type encapsulates declarations and is instantiated when a shared variable is elaborated.
Thus, a shared variable constitutes part of the hierarchy of a design. The path to an item
declared within a protected type descends through a shared variable. Nonetheless, nei-
ther VHDL-2000 nor VHDL-2002 made provision for a shared variable’s name in rules for
the 'path_name and 'instance_name attributes. VHDL-2008 rectifies this omission. To
illustrate, suppose we declare a protected type in a package as follows:

package sharing_pkg is
 type int_mailbox is protected
 ...
 end protected int_mailbox;
end package sharing_pkg;

package body sharing_pkg is
 type int_mailbox is protected body
 variable int : integer := 0;
 ...
 end protected body int_mailbox;
end package body sharing_pkg;

We then declare a shared variable of this type within an architecture:

entity e is
end entity e;

architecture a of e is
 shared variable v : work.sharing_pkg.int_mailbox;
begin
 ...
end architecture a;

The value of int'path_name for the encapsulated variable within the instance v is:

:e:v:int

Similarly, the value of int'instance_name for that encapsulated variable is:

:e(a):v:int

9.18 Non-Nesting of Architecture Region 223

Note that in both cases, the path does not go through the package in which the pro-
tected type is declared. Rather, the path follows the instantiation hierarchy through the
shared variable.

9.18 Non-Nesting of Architecture Region

In versions of VHDL prior to 2002, there were some anomalies relating to the way in
which entity and architecture names were defined. A literal interpretation of the rules
meant that entity and architecture names could not be referenced. Since this was clearly
not intended, different implementations of VHDL made different interpretations, resulting
in some incompatibilities between tools.

In those earlier versions, the declarative part of an architecture was intended to be an
extension of the declarative part of the corresponding entity. However, it was not clear
where the architecture name itself was declared. Problems became apparent when the
architecture name was the same as the entity name, a common practice for many design-
ers. Under some interpretations of the rules for scope and visibility of names, the archi-
tecture name hid the entity name, whereas under other interpretations, making the entity
and architecture names the same was illegal.

VHDL-2002 sought to clarify the rules by specifying that an architecture was no
longer to be considered as an extension of the entity’s declarative part. Instead, the archi-
tecture formed a nested declarative region, logically positioned within and at the end of
the entity declarative part. Thus, the architecture name was officially declared within the
entity, and could hide the entity name if it was the same. This approach very neatly
solved the naming problems with minimal change to the scope and visibility rules. How-
ever, the nesting structure could become apparent in a number of ways, and turned out
not to be what users wanted. In practice, VHDL implementers did not revise their tools to
conform with the new rules, and so the old problems remained.

VHDL-2008 reverts the rules for architectures to specify that an architecture is logi-
cally an extension of the corresponding entity declarative part. Moreover, the scope and
visibility rules are revised to clarify the issues that led to different interpretations in earlier
versions of VHDL. In particular, an architecture name is no longer considered to be
declared within the entity declaration. Rather, an architecture name is given special con-
sideration, and the places where it makes sense to refer to it are explicitly listed. As
implementations converge on the new rules, the inconsistencies and incompatibilities
from earlier versions of VHDL should disappear.

9.19 Purity of Now

VHDL-93 introduced the distinction between pure and impure functions. Essentially, a
pure function returns the same result when called with the same parameters, whereas an
impure function, by virtue of being allowed to reference items outside its declaration,
may return different results.

The standard function now, defined in package standard, has no parameters and
returns the current simulation time. Clearly, since the simulation time can change from
one call to another, the function should be impure, and in VHDL-93 it was. In VHDL-

224 Chapter 9 — Miscellaneous Changes

2002, its declaration was changed to pure in order to address some concerns in another
standard related to VHDL. However, this caused more problems than it solved, particu-
larly since that other standard was revised to avoid the concerns. VHDL-2008 rectifies the
anomaly by changing the declaration of now back to an impure function.

9.20 Delimited Comments

Earlier versions of VHDL have single-line comments, starting with the characters “--” and
extending to the end of the line. VHDL-2008 keeps this style of comment, but also adds
delimited comments, starting with the characters “/*” and extending to the closing char-
acters “*/”. The opening and closing characters can be on different lines, or can be on
the same line. Moreover, there can be further VHDL code on the line after the closing
characters. Some examples are:

/* This is a comment header that describes
 the purpose of the design unit. It contains
 all you ever wanted to know, plus more.
*/

library IEEE; context IEEE.IEEE_STD_CONTEXT;
entity thingumy is
 port (clk : in std_logic; -- keeps it going
 reset : in std_logic /* start over */
 /* other ports to be added later */);
end entity thingumy;

Since the text in comments is ignored, it may contain comment delimiters. Mixing
comment styles can be quite useful. For example, if we use delimited comments in a sec-
tion of code, and we want to “comment out” the section, we can use single-line
comments:

-- This section commented out because it doesn't work
-- /* Process to do a complicated computation
-- involving lots of digital signal processing.
-- */
-- dsp_stuff : process is
-- begin
-- assert 2 + 2 = 4; -- make sure we’re in the right universe
-- ...
-- end process dsp_stuff;

However, we should be aware that comments do not nest. For example, the follow-
ing is ill-formed:

-- Here is the start of the comment: /* A comment extending
 over two lines */

9.21 Tool Directives 225

The opening “/*” characters occur in a single-line comment, and so are ignored. Sim-
ilarly, we cannot reliably use delimited comments to comment out a section of code,
since the section might already contain a delimited comment:

/* Comment out the following code:
signal count : unsigned(5 downto 0); /* event counter */
*/

In this case, the occurrence of the characters “*/” on the second line closes the com-
ment started on the first line, making the orphaned delimiter “*/” on the third line illegal.
Provided we avoid pitfalls such as these, delimited comments are a useful addition to the
language.

9.21 Tool Directives

In Section 2.5, we mentioned that protect directives for IP protection are a form of tool
directives. VHDL-2008 adds tool directives as a way of embedding information for use by
tools in a VHDL model. A tool directive takes the form:

` identifier ...

The grave accent character (sometimes called a “back-tick”) is followed by an identi-
fier that determines the action to be performed or the kind of information provided. The
rest of the text on the line, if any, provides any further information required. The direc-
tive finishes with the end of the line. VHDL-2008 defines protect directives, with the
identifier protect, but does not define any other kinds of directives. Implementations may
define their own kinds of directives and place requirements on the text that follows the
identifier.

9.22 New Reserved Words

As new features are added to VHDL, new reserved words are usually required. In VHDL-
2008, the new reserved words added are

context

Used in context declarations and context references (see Section 2.3).

default

Can be used in the generic map of a formal generic package (see Section 1.6).

force

Used in a simple forcing assignment (see Section 2.2) and in conditional and
selected forcing assignments (see Section 5.1.2).

226 Chapter 9 — Miscellaneous Changes

parameter

Optionally precedes the parameter list in a subprogram (see Section 1.4).

release

Used in a release assignment (see Section 2.2).

In addition, the following PSL reserved words are also VHDL-2008 reserved words

assert
assume
assume_guarantee
cover
default
fairness
property
restrict
restrict_guarantee
sequence
strong
vmode
vprop
vunit

Note that assert was previously a reserved word, but now gains another use. Also,
default has two uses, one in a PSL default clock declaration, and the other in the generic
map of a formal generic package.

Since a reserved word cannot be used as an identifier, there is potential for backward
incompatibility. If a model written in an earlier version of VHDL uses one of the new
reserved words as an identifier, it is not legal VHDL-2008. However, most tools provide
options to analyze a model using the rules of earlier versions of the language and allow
a design to be composed of design units written in a mixture of language versions. So, in
practice, backward incompatibility is not an insurmountable problem.

9.23 Replacement Characters

Earlier versions of VHDL allowed certain characters in models to be replaced with others.
Specifically,

• A vertical bar (“|”) could be replaced by an exclamation mark (“!”).

• The number-sign characters (“#”) in a based numeric literal could be replaced by
colon characters (“:”).

• The double-quote characters (“"”) in a string literal could be replaced by percent
characters (“%”).

Most VHDL users are unaware that such replacements were permitted. Nonetheless,
they were allowed in the initial version of the language, since at that time, some comput-

9.23 Replacement Characters 227

ers used the EBCDIC character code, which did not include the replaced characters. In
VHDL-2002, replacement characters were included in a list of deprecated features. The
axe falls in VHDL-2008.

This page intentionally left blank

229

Chapter 10

What’s Next

In this final chapter, we look into the near future and give a preview of some features
that are being developed by the Accellera VHDL Technical Committee (the VHDL-TC).
The focus of the new features is verification and system-level modeling. From a language
perspective, VHDL already provides some support for these modeling tasks, in the form
of records, access types (pointers), and protected types (shared variables). The new fea-
tures being developed include class types, verification data structures, randomization,
and functional coverage. As much as possible, the new features will build on existing
features in the language. Where no existing features meet a need, the new features
added will be designed to integrate with the syntax and semantics of other existing
features.

The language features described in this chapter are currently being actively worked
on in committee. There is a great deal more to each of the proposals than is presented
here. However, since the details are still subject to revision, it is too early to publish
them. We present an overview to whet the appetite and encourage participation in the
development process. The long-term plan is to evolve VHDL from a Hardware Descrip-
tion Language to a Verification and Hardware Description Language.

10.1 Object-Oriented Class Types

Class types are a foundation feature for both data structures and randomization. Briefly, a
class type encapsulates data and provides operations, called methods, to access and
update the data. An object is an instance of a class type. A subclass can inherit data and
operations from a superclass, and in doing so, can override the implementation of inher-
ited operations. References to objects can be polymorphic, meaning that they can refer to
an object of a nominated class or of any subclass. When a method is invoked via a poly-
morphic reference, the overriding method of the referenced object’s specific class is exe-
cuted. This is referred to as dynamic dispatch.

The object-oriented features under development involve basing class type on pro-
tected types, since the latter already provide encapsulation of data and methods. We can
view a protected type as a class type without inheritance or dynamic dispatch. A side
benefit of this approach is that it simplifies the prototyping of data structures and com-
munication protocols using the existing language. For example, if we are to use object-
oriented features for verification, we need to implement a number of data structures,
including lists, FIFOs, mailboxes, transaction interfaces, scoreboards, and memories. We

230 Chapter 10 — What’s Next

can already build many of these data structures using protected types. However, the class
extension increases their parameterizability, and hence, reusability.

EXAMPLE 10.1 Using protected class types for FIFO communication

A protected class type definition for a simple bounded FIFO is similar to a protected
type as currently provided in VHDL, requiring a declaration and a body:

type BoundedFIFO is protected class
 procedure put (e : in element_type); -- methods
 procedure get (e : out element_type);
end protected class BoundedFIFO;

type BoundedFIFO is protected class body

 constant size : positive := 20;
 type element_array is array (0 to size-1) of element_type;

 variable elements : element_array;
 variable head, tail : natural range 0 to size-1 := 0;
 variable count : natural range 0 to size := 0;

 procedure put (e : in element_type) is
 begin
 if count = size then wait until count < size; end if;
 elements(head) := e;
 head := (head + 1) mod size; count := count + 1;
 end procedure put;

 procedure get (e : out element_type) is ...

end protected class body BoundedFIFO;

The class declaration contains the publicly visible data members and methods, in
this case, just the methods put and get. The body contains the private data members
and the implementations of the methods. The implementation of the put method in
this example illustrates a new form of conditional wait that allows a method to sus-
pend until a condition becomes true. This is an enhanced form of concurrency con-
trol included in the proposal.

Among the other features included in the class proposal, beyond the basic object-
oriented features, is provision for objects of class types to be included as subprogram
parameters and ports of components and entities. Moreover, the proposal adopts Java-
like interface definitions and multiple inheritance. An interface (as in the Java sense)
specifies methods that a class must implement. A given class may implement more than

10.1 Object-Oriented Class Types 231

one interface, as well as inheriting from a superclass. The interface feature provides a
very powerful abstraction mechanism, as the following example illustrates.

EXAMPLE 10.2 Communication interfaces

A modular design involves a number of components that communicate with one
another. Communication involves a producer putting data into a communications
data structure and a consumer getting data from the data structure. We can express
the notions of putting and getting as two distinct interfaces that can be implemented
by a wide variety of different data structures. The details of an implementation are
not relevant to a producer or consumer, only the signature of each interface. Thus,
we define two interfaces as follows:

type putable is interface
 procedure put (e : in element_type);
 procedure try_put (e : in element_type; ok : out boolean);
end interface putable;

type getable is interface
 procedure get (e : out element_type);
 procedure try_get (e : out element_type; ok : out boolean);
end interface getable;

A mailbox class might implement the putable and getable interfaces as follows:

type mailboxPCType is protected class implements putable, getable
 impure function flag_up return boolean;
 procedure put (e : in element_type);
 procedure try_put (e : in element_type; ok : out boolean);
 procedure get (e : out element_type);
 procedure try_get (e : out element_type; ok : out boolean);
end protected class mailboxPCType;

The class body would include implementations of the flag_up function and the
four procedures.

For a parameter of a subprogram or a port of a component or entity, we can
specify an interface as the type rather than a specific concrete class type, as shown in
the components declared in the following model:

entity tlm is
end entity tlm;

architecture structural of tlm is

 component producer is
 port (shared variable data_source : inout putable);
 end component producer;

232 Chapter 10 — What’s Next

 component consumer is
 port (shared variable data_sink : inout getable);
 end component consumer;

 shared variable MailBox : mailboxPCType;

begin

 u_producer : producer port map (data_source => MailBox);
 u_consumer : consumer port map (data_sink => MailBox);

end architecture tlm;

For the producer and consumer components, we could bind any entities that
communicate through the putable and getable interfaces, respectively. Moreover, we
could use any concrete class that implements the interfaces, such as the mailboxPC-
Type class, to connect the components.

10.1.1 Standard Components Library

Object-oriented language features allow factoring of common code into abstract super-
classes, with the inheriting subclasses refining behavior by adding data members and
overriding methods. These aspects are put to good use in other object-oriented lan-
guages to provide suites of reusable data structures. Examples are the Standard Template
Library in C++, the Java collections library, and the Booch Components in Ada.

The VHDL-TC is planning to develop a standard components library along a similar
vein. It will include packages defining class types for data structures, using formal
generic types for the contained elements. The library will also include packages defining
reusable verification components, such as communication interfaces and classes and sup-
port for stimulus generators and checkers. The plan is, ultimately, to provide components
similar in nature to those that support the Advanced Verification Methodology (AVM) and
the Verification Methodology Manual (VMM).

10.2 Randomization

One problem in verifying a design with a large verification space and numerous config-
urable features is how to write enough test cases to adequately test all of the features. For
some designs, using the algorithmic features of the VHDL is sufficient to generate the test
cases. For other designs, randomization is more appropriate. The randomization proposal
under consideration by the VHDL-TC introduces three forms of randomization: basic ran-
domization, class-based randomization, and procedural randomization. These features
are similar to those of SystemVerilog; however, their syntax is consistent with other VHDL
constructs.

The intent of basic randomization is to provide individual random values. Basic ran-
domization is implemented in a predefined class providing function methods RandReal,
RandInt, RandSlv, RandUnsigned, and RandSigned. Since these functions are encapsu-

10.2 Randomization 233

lated in a class, the seed is also stored in the class and does not need to be passed as a
parameter in a procedure call. Each of the functions has parameters that allow the result
to be scaled to a particular range of values.

In class-based randomization, related objects are included as data members of a
class. Within the class, relationships are written between the class members. During ran-
domization (using a built-in method), class members are randomized taking these rela-
tionships into account. In this manner, meaningful values can be generated to specify a
transaction or a sequence of transactions.

EXAMPLE 10.3 Randomized bus traffic

A class to generate random bursts of traffic on a bus is shown below. In this class,
BurstLen specifies the number of values to generate, and BurstDelay specifies the
number of cycles to insert between bursts. BurstLen is randomized with values
between 1 and 10, inclusive, and BurstDelay is randomized as a function of Burst-
Len. If BurstLen is less than 3, BurstDelay has a value between 1 and 6, inclusive;
otherwise, BurstDelay has a value between 3 and 10, inclusive.

type TxPacketCType is class

 rand variable BurstLen : integer; -- Public Variables
 rand variable BurstDelay : integer;

 constraint BurstPkt is (
 BurstLen in (1 to 10);
 BurstDelay in (1 to 6) when BurstLen <= 3 else
 BurstDelay in (3 to 10);
);

end class TxPacketCType;

A combination of basic and class-based randomization is shown below. The call
to randomize generates a random value for both BurstLen and BurstDelay. Since
these objects are public class members, their value can be accessed directly using the
same “.” notation that is used for records.

TxProc : process
 variable TxPacket : TxPacketCTType;
 variable RV : RandClass;
begin
 ...
 TxOuterLoop: loop

 TxPacket.randomize;

 for i in 1 to TxPacket.BurstLen loop
 DataSent := RV.RandSlv(0, 255, DataSent'length);

234 Chapter 10 — What’s Next

 Scoreboard.PutExpectedData(DataSent);
 WriteToFifo(DataSent);
 end loop;

 wait for TxPacket.BurstDelay * tperiod_Clk - tpd;
 wait until Clk = '1';

 end loop TxOuterLoop;
 ...
end process TxProc;

Procedural randomization is a proposed enhancement to VHDL’s sequential con-
structs. A RandCase feature provides random choice among statements, and a sequence
feature allows randomly or deterministically ordered sequences of statements to be
executed.

EXAMPLE 10.4 Random permutation

We can use the RandCase feature to choose a random permutation of statements to
execute. The code below loops three times, randomly selecting a statement to exe-
cute in each iteration. The RandCase feature uses weights to express relative fre-
quencies of choice among the alternatives. After a statement has been executed, the
weight for that alternative is set to 0, preventing the alternative from being executed
a second time.

I0 := 1; I1 := 1; I2 := 1;
for i in 1 to 3 loop

 randcase is
 with I0 =>
 CpuWrite(CpuRec, DMA_WORD_COUNT, DmaWcIn);
 I0 := 0; -- modify weight

 with I1 =>
 CpuWrite(CpuRec, DMA_ADDR_HI, DmaAddrHiIn);
 I1 := 0; -- modify weight

 with I2 =>
 CpuWrite(CpuRec, DMA_ADDR_LO, DmaAddrLoIn);
 I2 := 0; -- modify weight

 end randcase;

end loop;
CpuWrite(CpuRec, DMA_CTRL, START_DMA or DmaCycle);

10.3 Functional Coverage 235

10.3 Functional Coverage

Functional coverage is intended to supplement other forms of coverage. Tool based code
coverage provides information about what parts of a design are exercised during a simu-
lation. However, it cannot test whether an aspect of the specification for the design is
actually implemented. Functional coverage features, on the other hand, allow us to mea-
sure the occurrence of difference categories of data values during a simulation. We can
thus determine whether processing of categories of interest has been exercised. To mea-
sure functional coverage, we specify a bin (a value or range of values) for each category
of a data object. During simulation, for each bin, the tool records the number of transac-
tions that produce values in the bin. We can analyze the result to identify bins for which
no transactions occurred, and adjust our stimulus generation or randomization con-
straints accordingly.

The VHDL-TC plans to incorporate functional coverage features into a future exten-
sion of VHDL. The details of language features are yet to be determined.

10.4 Alternatives

One question that comes up frequently is, why update VHDL? Instead, why not adopt
SystemVerilog as the verification language? The answer is much simpler than one would
expect. From a language perspective, VHDL already includes many system-level model-
ing features, such as records, access types (pointers), and protected types. Many of these
features can be enhanced with relatively little impact on the language, and new features
can be added in a way that integrates cleanly with existing features. From a project per-
spective, organizations using VHDL already have significant experience using the lan-
guage. If a verification engineer is needed for a project, the organization has a pool of
people familiar with VHDL. A person from that pool can build on their existing knowl-
edge of VHDL, provided the language includes the necessary verification features. If they
were to adopt SystemVerilog, they would not only have to learn a language that is quite
idiomatically different, but they would also have to manage a multilingual design/verifi-
cation environment. Both of these issues would adversely affect their productivity.

10.5 Getting Involved

Standards development is a volunteer-run effort, and depends on your participation. As
you become an experienced VHDL design and/or verification engineer, it is both your
right and responsibility to participate. You can participate by submitting enhancement
requests, participating in the standards groups, helping with funding, and helping with
vendor support.

One person can make a difference. No matter how hard the VHDL-TC works, with-
out your ideas, the group may overlook the changes you desire. You can submit your
enhancement requests using the web page at http://www.eda.org/vasg.

VHDL standards are co-developed by IEEE and Accellera. Currently most of the new
technical development is done by the Accellera VHDL-TC. The IEEE VHDL Analysis and
Standardization Group (VASG) resolves issues with the current IEEE VHDL standard and

236 Chapter 10 — What’s Next

conducts balloting for new IEEE versions of the standard. For more information about the
Accellera VHDL-TC, see http://www.accellera.org/vhdl, and for more information about
the IEEE VASG, see http://www.eda.org/vasg.

Volunteers run these standards groups, and members tend to work on what interests
them personally. For a request to become a proposal and then a language feature, some-
one has to champion it. The best way to make this happen is to participate. Participation
is open to anyone who has the background and is willing to invest the time. You can join
the technical subcommittees, participate in email reflectors, attend teleconferences,
attend in-person meetings, and actively participate in all discussions. Most technical deci-
sions are held at a level where everyone can contribute. When decisions have conflicting
choices, the issue is put to a member vote. To have a member vote in the Accellera
VHDL-TC, your company must join Accellera. To have a member vote in the IEEE VASG,
you need to join the parent group, IEEE Design Automation Standards Committee (DASC,
see http://www.dasc.org) and maintain an active history of voting participation.

While much of the work is volunteer based, the task of integrating the language
change proposals and editing the standard is a time-intensive task and is undertaken by a
paid technical editor. This person is a VHDL expert with deep language design knowl-
edge. Currently, this position is funded through Accellera. If your company is able,
please encourage them to become an Accellera member and help fund future revisions
of the VHDL standard.

Finally, ongoing evolution of VHDL requires vendor support. Part of achieving this is
to understand why vendors implement standards. For an EDA vendor, supporting a stan-
dard is a business decision. In general, this means they support the features their custom-
ers request. Hence, you can influence the process by learning the new features and
making the vendors aware of the ones that are important to you. The person with the
most power is the person who funds your tool licenses. Make sure they are aware of
what you need and make sure to forward your requests through them.

237

Index

Page numbers in bold face denote
whole sections and subsections that
address a topic.

A

abs operator, 195, 196
absolute pathname, 56
abstract data type (ADT), 36
access type, 3

allocator, 3
index range, 111, 117

viewport, 92
action procedure, example, 23, 28, 34
active, 64
actual, index range, 115, 118
adder, configuration example, 156
addition, aggregate target example,

166
addition operator (+), 194, 195

array/scalar operands, 129, 181
Advanced Encryption Standard (AES)

cipher, 78, 93
Advanced Verification Methodology

(AVM), 232
aggregate

array, 166, 212, 213
assignment target, 66, 166
index range, 217
others, 212, 217
range, 166
record, 213
slice, 166

alias, 64
array, 217
external name, 54
index range, 119
unconstrained port or parameter,

120
all, sensitivity list, 57, 161
allocator, 3

index range, 111, 117
analysis, 53
and operator, 127, 130, 194, 195
application name, 101
arbiter

matching case example, 149
matching selected assignment

example, 150

architecture
declarative region, 11, 223
foreign, 97, 98, 99
in pathname, 56

array, 103
aggregate, 166, 212, 213
alias, 217
constrained, 104
discrete type, 139
element, 213
index range, 117
reduction operator, 130
resolved element, 124
slice. See slice
std_ulogic elements, 193
subtype, 107
to_string result, 170
type, 104, 209
unbounded, 104
unconstrained element type, 103

ascending attribute, 215
assertion message, 180, 182
assertion statement, 169, 221

ambiguity with PSL, 71
condition operator (??), 132
newline, 174

assertion violation, 221
assignment, 3, 218

aggregate target, 66, 166
signal. See signal assignment
variable. See variable assignment

asymmetric cipher, 78
attribute, 3

index range, 111, 117, 214
attribute specification, 76

overloaded subprogram, 219
package body, 219

author of protected IP, 90, 95

B

base type, 104
base64 encoding method, 79, 93, 94
binary bit-string literal, 167
binary search tree, example, 25
binary string conversion, 172
binding, verification unit, 73
bit type, 191, 196

condition operator (??), 132

bit_vector type, 191, 193, 196
bit-string literal, 167

length, 167
signed, 168
unsigned, 168

block configuration, 155, 157, 158
block statement, 11

declarative region, 11
in pathname, 56

Blowfish cipher, 93
boolean type, 191
boolean_vector type, 191
box symbol (<>), 25, 37, 42
bread alias, 177
buffer mode port, 162
bwrite alias, 177

C

carriage return, 174
carry, 129

aggregate target example, 166
case statement

choice, 149, 211
expression subtype, 211
matching, 149

case-generate statement, 151
alternative label, 157
configuration, 155

CAST-128 cipher, 93
certification authority (CA), 96
character, replacement, 226
character, to_string result, 170
check_error parameter, 197, 198,

201, 202
choice

aggregate
others, 217

case statement, 149, 211
matching case statement, 150

cipher, 77, 90, 94
specification, 93

cipher text, 77
class type, 229
combinational logic, 161
comment

delimited, 224
IP protection, 93, 95

238 Index

communication, interface example,
231

complementary outputs
flip-flop example, 163
verification unit example, 74

complex multiplier
case-generate statement example,

153
configuration example, 157

complex number, example, 37, 40
component configuration, verifica-

tion unit binding, 73
component instance, 56, 159

verification unit binding, 73
composite subtype, 109
composite type, 3, 103, 107

static expression, 213
concatenation operator (&), 191
concurrent region, 54, 59
concurrent signal assignment, 143
concurrent statement, 152, 153
condition, 132

matching operator example, 138
condition operator (??), 132, 180, 192
conditional assignment, 143

force, 146
conditional incrementer, example,

129
conditional signal assignment, 143
conditional variable assignment, 147
configuration declaration, 155

verification unit binding, 73
configuration specification

verification unit binding, 73
conforming profile, 30, 42
constant

declaration, 107
external name, 53, 55
generic

See generic constant
generic type, 3
index range, 110, 117
initial value, 110, 117

constrained array, 104
constrained subtype, 3, 109
constraint, 103, 107, 116, 117, 121

index, 104, 112
context clause, 67

before context declaration, 70
context declaration, 67

example, 68
standard, 70

context reference, 67
control condition, example, 133
conversion

function, 185, 191, 196

in actual part, 116
in association, 115, 118
example, 46
in formal part, 117
in port map, 160, 161

result subtype, 209
subtype, 112
type, 3, 209

in actual part, 116
in association, 115, 118
element type, 210
in formal part, 117
implicit, 220
index range, 118, 210
in port map, 161

counter, generic example, 4, 21
coverage, 235

D

Data Encryption Standard (DES)
cipher, 78

decimal bit-string literal, 168
declaration, 152, 153

PSL, 71
declarative region, 11

architecture, 223
decryption, 77
decryption envelope, 80, 89, 95
decryption license, 92, 95
decryption tool, 79

key exchange, 96
default clock declaration, 71
default generic, 42
default initial value, 3
default, reserved word, 42
default subprogram, 23, 25
default value

generic constant, 5, 218
parameter, 30

delay
generic example, 207
in signal assignment, 145

delimited comment, 224
delta cycle, 64
delta delay, 160
denormalize parameter, 202
denormalize parameter, 198, 201
denormalize_in parameter, 202
denormalize_out parameter, 202
DES cipher, 93
design unit, 6, 11, 67

verification unit, 73
dictionary, example, 25, 28
digest, 78, 91, 94, 96
digital envelope, 78, 94, 95

example, 82, 83
digital signature, 78, 94, 96

example, 85
direct binding, 97
directive

protect, 77, 225
PSL, 71
tool, 89, 225

disconnection, 146
discrete array type, 139
division operator (/), 194, 195
don’t care (–), 149
driver, 3
driving value, 65, 147
dump memory, 43
dynamic dispatch, 229

E

effective value, 65, 147
elaboration, 53, 55

generate statement, 152
elaboration function, 98, 99
element

array, 213
formal, 114
index range, 120
unconstrained type, 103

element attribute, 120
element subtype, 104, 106, 108, 120
element type, type conversion, 210
ElGamal cipher, 78, 93
encoding, 79, 91, 95

specification, 93
encryption, 77
encryption envelope, 80, 89, 94
encryption tool, 79, 90, 95

key exchange, 96
entity

declarative region, 11
instantiation, 11
in pathname, 56

enumeration literal, 215
enumeration type

to_string result, 170
in use clause, 215

env package, 192
equality operator (=), 2, 3, 133, 191,

194
equality operator, matching (?=), 133,

149, 180, 181, 192, 194
error reporting, example, 23
event, 3, 64
execution function, 98, 99, 100
exit statement, condition operator

(??), 132

Index 239

expanded name, 14
exponent_width parameter, 201, 202
expression

port map, 159
range bounds, 220
static, 159, 213

external name, 53
alias, 54
signal, 64

F

falling_edge function, 192
field, 173
FIFO, class type example, 230
file declaration, 107
file type, 3
find_leftmost function, 181
find_rightmost function, 181
finish procedure, 192
finite-state machine

combinational logic example, 161
external name example, 57, 60
force example, 64

fixed_float_types package, 183
fixed_generic_pkg package, 37, 40,

182, 193, 196
fixed_guard_bits generic, 183
fixed_overflow_style generic, 183
fixed_overlow_style_type, 183
fixed_pkg package, 182
fixed_round_style generic, 183
fixed_round_style_type, 183
fixed-point math package, 182
flip-flop, example, 163
float type, 188, 193, 201
float_check_error generic, 187
float_denormalized generic, 187
float_exponent_width generic, 187
float_fraction_width generic, 187
float_generic_pkg package, 186,

193, 196
float_guard_bit generic, 187
float_pkg package, 186
float_round_style generic, 187
float128 type, 189
float32 type, 189
float64 type, 189
floating point type, to_string result,

170
floating-point math package, 186
flush procedure, 178
force, 63, 146

aggregate target, 66
default mode, 65
mode, 65, 147

multiple, 67
in subprogram, 67

foreign application, 97
registration, 101

foreign architecture, 97, 98, 99
foreign attribute, 97, 100
foreign model, 97
foreign subprogram, 97, 98, 100
for-generate statement, 151

parameter, 214
formal

element, 114
index range, 112, 115, 118
slice, 114
subtype, 118

fraction_width parameter, 201, 202
fully constrained subtype, 104, 108,

110, 112, 117, 121
function

conversion, 185, 191, 196
in actual part, 116
in association, 115, 118
in formal part, 117
in port map, 160, 161

generic list, 15
predefined, 213
resolution. See resolution function
return subtype, 208

function call, in port map, 160
functional coverage, 235

G

generate statement
case-generate. See case-generate

statement
if-generate. See if-generate

statement
in pathname, 56

generic
default, 42
formal, 207
matching, 42

generic constant, 1, 4
actual, 1

aggregate, 218
declaration, 107
default value, 5, 218
external name, 58
formal, 1
index range, 112
matching, 42

generic list, 4, 11, 21, 207
in package, 6
in subprogram, 15

generic map, 6, 11, 16, 39, 42

generic package, 36
actual, 37, 42
formal, 37, 42
matching, 42

generic subprogram, 21, 32
actual, 21
call, 21
formal, 21
matching, 42

generic type, 1
actual, 1, 3
constant, 3
default, 5
distinct, 9
formal, 1, 3

in signature, 19
matching, 42
operation defined by generic sub-

program, 21
operations not defined, 4
signal, 3
variable, 3

generic-mapped package, 10, 12
generic-mapped subprogram, 20
getable interface, 231
greater than operator (>), 133, 191,

194
greater than operator, matching (?>),

133, 180, 181, 192, 194
greater than or equal operator (>=),

133, 191, 194
greater than or equal operator,

matching (?>=), 133, 180, 181,
192, 194

guard signal, 146
guard_bits parameter, 198
guarded signal assignment, 146

H

handshake assertion, example, 71
hash function, 78, 91, 95

specification, 93
hexadecimal bit-string literal, 167
hexadecimal read and write, 175
hexadecimal string conversion, 172
hiding, 216
hread procedure, 175
hwrite procedure, 175

I

identification number, example, 11,
13

ieee_bit_context, 70

240 Index

ieee_std_context, 70
if statement, condition operator (??),

132
if-generate statement, 151

alternative label, 155
omitted, 158

condition operator (??), 132
configuration, 155

impure function, 223
incrementer, generic function

example, 21
index constraint, 104, 107, 112
index range, 104, 107, 109

actual, 115, 118
aggregate, 217
alias, 119
allocator, 111, 117
array, 117
attribute, 111, 117, 214
constant, 110, 117
element, 120
formal, 112, 115, 118
generic constant, 112
interface object, 112, 118
operator result, 195
parameter, 112
port, 112
signal, 110, 117
static, 214
subtype, 112
type conversion, 118, 210
variable, 110, 117

index subtype, 104, 109
indirect binding, 99
inequality operator (/=), 3, 133, 191,

194
inequality operator, matching (?/=),

133, 180, 181, 192, 194
inertial delay, 145
inertial, in port map, 160
infinity, 190
inheritance, 229
initial value, 4

constant, 110, 117
default initial value, 3

instance_name attribute, 221
instantiation

component, 56
package, 6, 14, 37, 39, 42, 56
subprogram, 16, 19

integer type, to_string result, 170
integer_vector type, 191
interface object

index range, 112, 118
mode, 116

interface type, 230

IP encryption, 77
is_X function, 142, 182, 205

J

justify function, 173

K

key, 77, 94
exchange, 96
method, 90
name, 90
owner, 90

L

label
block statement, 56
case-generate alternative, 157
component instance, 56
generate statement, 56
if-generate alternative, 155, 158

latch inference, 161
left attribute, 215
left_index parameter, 198, 202
length attribute, 120, 215
less than operator (<), 133, 139, 191,

194
less than operator, matching (?<),

133, 180, 181, 192, 194
less than or equal operator (<=), 133,

191, 194
less than or equal operator, matching

(?<=), 133, 180, 181, 192, 194
library clause, in context declaration,

67
library name, 63, 69
library, registration, 101
license, 95

decryption, 92
runtime, 92

line feed, 174
literal

bit-string, 167
length, 167
signed, 168
unsigned, 168

enumeration, 215
load memory, 43
local package, 11
locally static, 212, 213
logging, example, 178
logical operator, 191, 194, 195

array/scalar operands, 127, 179,
181, 191, 195

reduction, 130, 179, 181

M

macro, 77
mailbox, class example, 231
matching case statement, 149
matching equality operator (?=), 133,

149, 180, 181, 192, 194
matching generic, 42
matching greater than operator (?>),

133, 180, 181, 192, 194
matching greater than or equal oper-

ator (?>=), 133, 180, 181, 192,
194

matching inequality operator (?/=),
133, 180, 181, 192, 194

matching less than operator (?<),
133, 180, 181, 192, 194

matching less than or equal operator
(?<=), 133, 180, 181, 192, 194

matching relational operator, 133,
180, 181, 192, 194

matching selected assignment, 150
maximum function, 138, 180, 181,

192, 195, 196
MD2 hash function, 78, 94
MD5 hash function, 78, 93, 94
memory

example, 43
tristate bus example, 125

message writing, example, 169
method, 19, 54

class type, 229
uninstantiated subprogram, 32

minimum function, 138, 180, 181,
192, 195, 196

mod operator, 140, 192, 194, 195
mode

force, 65, 147
interface object, 116
port, 213

model name, 99, 100
monitor, example, 61
multiplexer

generic example, 2
selected assignment example, 144
variable assignment example, 148

multiplication operator (*), 194, 195

N

named association, 114

Index 241

aggregate, 166
NaN, 190
nand operator, 127, 130, 194, 195
negation operator (–), 195, 196
new, 3
new_size parameter, 202
newline, 173
next statement, condition operator

(??), 132
next-state process, selected assign-

ment example, 144
no_warning generic, 183, 187
nor operator, 127, 130, 194, 195
normalizing subelement, example,

120
not operator, 194, 195
not-a-number (NaN), 190
now function, 223
null statement, 146
numbering, example, 11, 13
numeric_bit package, 127, 180, 193,

196, 213
addition operator (+), 129
subtraction operator (–), 129

numeric_bit_unsigned package,
182, 193, 196, 213

numeric_std package, 127, 180, 193,
196, 213

addition operator (+), 129
subtraction operator (–), 129

numeric_std_unsigned package,
182, 193, 196, 213

O

object, 229
object library, 97, 99, 100, 101, 102
object-oriented class type, 229
octal bit-string literal, 167
octal read and write, 175
octal string conversion, 172
open, index range, 108
OpenPGP cipher, 93
operation

implicit, 216
predefined, 215

operator
index range, 195
in pathname, 221
predefined, 213
result size, 195
summary, 193

or operator, 127, 130, 194, 195
oread procedure, 175
others, in aggregate, 212, 217
output file, 177

overflow, 182
overflow_style parameter, 197, 198,

201, 202
overloading, 9, 19, 193, 216, 219

profile, 19, 25, 30
owrite procedure, 175

P

package
declarative region, 11
generic list, 6
generic. See generic package
generic-mapped, 10, 12
instantiation, 6, 14, 37, 39, 42, 56
local, 11
in pathname, 56
pathname, 63
uninstantiated, 6, 12, 37, 39, 42,

56
meaning of names, 14

package body, 6, 12, 16
attribute specification, 219

parameter
actual, 212

aggregate, 218
class type, 230
declaration, 107
default value, 30
for-generate statement, 214
index range, 112
interface type, 231
out mode, 5

reading, 162
signal, 162, 213

reading, 164
subtype, 31, 117, 118, 212
unconstrained, 120
variable, reading, 164

parameter list, 16
parameter, reserved word, 16
parity, example, 131
partially constrained subtype, 105,

107, 109, 110, 112
path_name attribute, 221
pathname, 53, 56

absolute, 56
package, 63
relative, 59, 60
viewport, 91

periodic waveform, example, 141
permutation, randomization exam-

ple, 234
physical type

to_string result, 171
in use clause, 215

plain text, 77
polymorphic, 229
port

actual, 212
aggregate, 218

buffer mode, 162
class type, 230
declaration, 107
external name, 58
force, 65
index range, 112
interface type, 231
mode, 65, 213
out mode

reading, 162
release, 65
subtype, 212
type, 1
unconstrained, 120

port map, 56
expression, 159

power estimation, foreign application
example, 102

predefined operation, 215
private key, 78
procedural randomization, 234
procedure, generic list, 15
process statement

declarative region, 11
sensitivity list, 161

processor core, foreign model
example, 98, 100

profile, conformance, 30, 42
propagation delay, generic example,

207
property declaration, 71

attribute, 76
Property Specification Language

See PSL
protect directive, 77, 225
protected type, 3, 32, 229

declarative region, 11
method, 19, 54

uninstantiated subprogram,
32

PSL, 70
declaration, 71

condition operator (??), 132
default clock declaration, 71
directive, 71

condition operator (??), 132
macro, 77
property declaration, 71

attribute, 76
reserved word, 76, 226
sequence declaration, 71

242 Index

attribute, 76
simple subset, 71
verification unit, 73

public key, 78
public key infrastructure (PKI), 96
pure function, 223
putable interface, 231

Q

qualified expression, 3, 112, 117, 209
quoted-printable encoding method,

79, 94

R

randcase, 234
randomization, 232

bus traffic example, 233
procedural, 234

range
aggregate, 166
bounds, 220
static, 214

range attribute, 215
raw encoding method, 94
read memory, 43
read procedure, 174
real, to_string result, 171
real_vector type, 191
record, 103

aggregate, 213
element, 213
resolved element, 124
subtype, 108
type, 106
unconstrained element type, 103

reduction operator, 130, 140, 179,
181, 191, 194

register
conditional assignment example,

144
selected assignment example, 144
variable assignment example, 148

register file, alias example, 120
registration

foreign application or library, 101
tabular, 99

registration function, 101, 102
relational operator, 191, 194

matching, 133, 180, 181, 192, 194
relative pathname, 59, 60
release, 63

aggregate target, 66
default mode, 65

mode, 65
multiple, 67
in subprogram, 67

rem operator, 140, 192, 194, 195
replacement character, 226
replicated structure

configuration example, 156
if-generate statement example,

152
report statement, 221

newline, 174
reserved word, 225

PSL, 76, 226
resize function, 185, 203
resolution function, 122, 123
resolution indication, 124
resolution_limit function, 192
resolved composite subtype, 122

signal assignment, 66
resolved element, 123, 179, 181
resolved signal, 123
resolved subtype, 123
result subtype, 116, 118
return statement, 209
right attribute, 215
right_index parameter, 198, 202
RIPEMD hash function, 78, 94
rising_edge function, 192
rol operator, 141, 180, 194, 195
ror operator, 141, 180, 194, 195
round_style parameter, 197, 198,

201, 202
rounding, 182
RSA cipher, 78, 93
runtime license, 92, 95

S

scalar type, 3
scope, 14, 53
search tree, example, 25
secret key, 78
select logic

logical operator example, 128
port map example, 159

selected assignment, 143
force, 146
matching, 150

selected name, 6, 9
selected signal assignment, 143

matching, 150
selected variable assignment, 147

matching, 150
sensitivity, 64
sensitivity list, all, 57, 161
sequence declaration, 71

attribute, 76
serial bus, example, 66
Serpent cipher, 93
session key, 78, 95
seven-segment display, foreign sub-

program example, 99, 101
severity level, 221
sfixed type, 184, 193, 198

to_string result, 171
SHA1 hash function, 78, 93, 94
shared variable, 34

external name, 53
in pathname, 222

shift operator, 141, 180, 181, 194, 195
signal

assignment. See signal assignment
declaration, 107, 124
disconnection, 146
driver, 3
event, 3
expression in port map, 159
external name, 53, 56, 64
force, 63
generic type, 3
guard, 146
index range, 110, 117
parameter, 162, 213

reading, 164
release, 63
resolved, 123
source, 123

signal assignment, 3, 143
condition operator (??), 132
conditional, 143
delay, 145
guarded, 146
resolved composite target, 66
selected, 143

matching, 150
signature, 19, 220
signed

bit-string literal, 168
type conversion example, 118

signed type, 127, 180, 193, 197
addition operator (+), 129
subtraction operator (–), 129

size parameter, 197
size_res parameter, 197, 198, 201,

202
sla operator, 141, 180, 181, 194, 195
slice, 213, 218

aggregate, 166
formal, 114

sll operator, 141, 180, 194, 195
source, 123
sra operator, 141, 180, 181, 194, 195

Index 243

sread procedure, 177
srl operator, 141, 180, 194, 195
stack, package example, 6, 15
standard components library, 232
standard package, 191
static, 212, 213

expression, 159, 213
range, 214

status parameter, example, 165
std_logic type, 127, 179
std_logic_1164 package, 127, 179,

193, 196, 213
std_logic_textio package, 180
std_logic_vector type, 127, 179, 196
std_ulogic type, 127, 179, 193, 196,

204
condition operator (??), 132

std_ulogic_vector type, 127, 179,
193, 196, 204

numeric interpretation, 182
stimulus, force example, 147
stimulus list, example, 34
stop procedure, 192
strength reduction function, 142, 180,

182, 204
string conversion function, 180, 182
string literal

fixed-point, 184
floating-point, 191

subclass, 229
subelement association, 114, 118
subprogram

affecting process sensitivity, 162
attribute specification, 219
body, 16
call, 16

generic subprogram, 21
declaration, 16
declarative region, 11
default, 23, 25
foreign, 97, 98, 100
generic

See generic subprogram
generic list, 15
generic-mapped, 20
instantiation, 16, 19
uninstantiated, 16, 19

meaning of names, 30
method, 32

subtraction operator (–), 194, 195
array/scalar operands, 129, 181

subtype, 103
array, 107
case expression, 211
composite, 109
constrained, 3, 109

conversion, 112
declaration, 107
element, 104, 106, 108, 120
in external name, 53, 59
formal, 118
fully constrained, 104, 108, 110,

112, 117, 121
function result, 208
index, 104, 109
index range, 112
parameter, 31, 117, 118, 212
partially constrained, 105, 107,

109, 110, 112
port, 212
qualified expression, 209
record, 108
resolved, 123
resolved composite, 122
result, 116, 118
unconstrained, 104, 107, 109, 110,

112
subtype attribute, 121
subtype indication, 107, 112, 117,

124
actual generic type, 1

superclass, 229
swap procedure

generic example, 17
unconstrained subelement exam-

ple, 121
swrite procedure, 177
symmetric cipher, 78

example, 80

T

tabular formatting, example, 173
tabular registration, 99
tee procedure, 177

newline, 174
test case, example, 13
test pattern, example, 27
test vector, example, 33
testbench, 53
textio package, 174
time type, 192

mod and rem operators, 140
to_string result, 171

time_vector type, 191
timing check, procedure example, 18
to_01 function, 142, 180, 182, 204
to_binary_string alias, 173
to_bit function, 197
to_bit_vector alias, 180, 202
to_bitvector alias, 202
to_bitvector function, 180

to_bstring alias, 172, 192
to_bv alias, 180
to_bv function, 197
to_float function, 191, 201
to_hex_string alias, 173
to_hstring function, 172, 192
to_integer function, 202
to_octal_string alias, 173
to_ostring function, 172, 192
to_real function, 202
to_sfixed function, 185, 200
to_signed function, 198
to_slv alias, 180
to_slv function, 197
to_std_logic_vector alias, 180, 202
to_std_ulogic function, 197
to_std_ulogic_vector alias, 180, 202
to_stdlogicvector alias, 202
to_stdlogicvector function, 180
to_stdulogicvector alias, 202
to_stdulogicvector function, 180
to_string function, 169, 192

overloaded forms, 171
predefined, 170

to_sulv alias, 180
to_sulv function, 197
to_ufixed function, 185, 199
to_unsigned function, 198
to_UX01 function, 142, 204
to_X01 function, 142, 204
to_X01Z function, 142, 204
tool directive, 89, 225
transport delay, 145
tristate bus, memory example, 125
Twofish cipher, 93
type, 103

array, 104, 209
base, 104
composite, 3, 103, 107

static expression, 213
conversion, 3, 209

in actual part, 116
in association, 115, 118
element type, 210
in formal part, 117
implicit, 220
index range, 118, 210
in port map, 161

distinct, 9
generic. See generic type
port, 1
record, 106
scalar, 3
in use clause, 215

type qualification
See qualified expression

244 Index

U

u_float alias, 188
u_float128 alias, 189
u_float32 alias, 189
u_float64 alias, 189
u_sfixed alias, 184
u_signed alias, 181
u_ufixed alias, 183
u_unsigned alias, 181
ufixed type, 183, 193, 198

to_string result, 171
unaffected, 145
unbounded array, 104
unconstrained element type, 103
unconstrained parameter, alias, 120
unconstrained port, alias, 120
unconstrained subtype, 104, 107, 109,

110, 112
resolved composite, 122

uninstantiated package, 6, 12, 37, 39,
42, 56

meaning of names, 14
uninstantiated subprogram, 16, 19

meaning of names, 30
method, 32

unit name, 215
universal_integer type, 220
unresolved_float type, 188, 204
unresolved_float128 type, 189
unresolved_float32 type, 189
unresolved_float64 type, 189
unresolved_sfixed type, 184, 204
unresolved_signed type, 181, 204
unresolved_ufixed type, 183, 204
unresolved_unsigned type, 181, 204
unsigned

bit-string literal, 168
type conversion example, 118

unsigned type, 127, 180, 193, 197
addition operator (+), 129
subtraction operator (–), 129

use clause, 8
in context declaration, 67
type, 215
visibility, 216

uuencode encoding method, 79, 93,
94

V

variable
assignment. See variable assign-

ment
declaration, 107
generic type, 3
index range, 110, 117
in package, 11
parameter, reading, 164
shared, 34

external name, 53
in pathname, 222

variable assignment, 3, 147
condition operator (??), 132
conditional, 147
selected, 147

matching, 150
verification, example, 164
Verification Methodology Manual

(VMM), 232
verification unit, 73

binding, 73
example, 74

VHDL Procedural Interface (VHPI),
97

VHPIDIRECT, 97
viewport, 91, 95

example, 87
visibility, 14, 53, 216
visitor, example

See action procedure, example

W

wait statement, condition operator
(??), 132

waveform, 145
while loop, condition operator (??),

132
white space, 175, 177
work library, 70
write memory, 43
write procedure, 169, 174

flush, 178
newline, 174

writeline procedure, newline, 174

X

X detection, 142, 205
xnor operator, 127, 130, 194, 195
xor operator, 127, 130, 194, 195

Z

zero, 190

