|. Bhasker

A Practical Primer

Verilog® HDL Synthesis

A Practical Primer

Other books by the same author:

* A Verilog HDL Primer, Star Galaxy Press, Allentown, PA, 1997,
ISBN 0-9656277-4-8.

L A VHDL Synthesis Primer, Second Edition, Star Galaxy Publishing, Allentown, PA,
1998, ISBN 0-9650391-9-6. (Based on IEEE Std 1076.3-1997 Arithmetic Packages,
NUMERIC_BIT and NUMERIC_STD)

. A VHDL Synthesis Primer, Star Galaxy Publishing, Allentown, PA, 1996,
ISBN 0-9650391-0-2.

. A VHDL Primer: Revised Edition, Prentice Hall, Englewood Cliffs, NJ, 1995,
ISBN 0-13-181447-8. (Based on IEEE Std 1076-1993)

* A VHDL Primer, Prentice Hall, Englewood Cliffs, NJ, 1992,
ISBN 0-13-952987-X. (Based on IEEE Std 1076-1987)

® A Guide to VHDL Syntax, Prentice Hall, Englewood Cliffs, NJ, 1995,
ISBN 0-13-324351-6.

U VHDL Features and Applications: Study Guide, IEEE, 1995, Order No. HL5712.
. In Japanese: A VHDL Primer, CQ Publishing, Japan, ISBN 4-7898-3286-4, 1995.

¢ In German: Die VHDL-Syntax (Translation of A Guide to VHDL Syntax), Prentice
Hall Verlag GmbH, 1996, ISBN 3-8272-9528-9.

Verilog- HDL Synthesis
A Practical Primer

30\ arinn

J. BHASKER

Distinguished Member of Technical Staff
Bell Labs, Lucent Technologies

Star Galaxy Publishing
1058 Treeline Drive, Allentown, PA 18103

EELGE [req

Copyright © 1998 Lucent Technologies. All rights reserved.

Published by:
Star Galaxy Publishing
1058 Treeline Drive, Allentown, PA 18103
Phone: 610-391-7296

Cover design: Jennifer Swanker

No part of this book may be reproduced, in any form or by any means, without permission in writing
from the publisher.

WARNING - DISCLAIMER

The author and publisher have used their best efforts in preparing this book and the examples
contained in it. They make no representation, however, that the examples are error-free or are
suitable for every application to which a reader may attempt to apply them. The author and the
publisher make no warranty of any kind, expressed or implied, with regard to these examples,
documentation or theory contained in this book, all of which is provided “as is”. The author and
the publisher shall not be liable for any direct or indirect damages arising from any use, direct
or indirect, of the examples provided in this book.

Verilog® is a registered trademark of Cadence Design Systems, Inc.

Printed in the United States of America
10987654321
Library of Congress Catalog Card Number: 98-61058

ISBN 0-9650391-5-3

Zindagi ka safar, hai ye kaisa safar,
(“Life’s travel, what a travel it is”)

Koi samjha nahi, koi jana nahi,

(“No one has understood it, no one knows about it”)
Hai ye kaisi dager, chalte hai sub mager,
(“What kind of goal it is, still everyone goes through it””)
Koi samjha nahi, koi jana nahi

(“No one has understood it, no one knows about it”)

- A song from an Indian film “Safar”

CONTENTS

Foreword Xiii
Preface XV
CHAPTER 1

Basics 1

1.1. What is Synthesis?, 1
1.2. Synthesis in a Design Process, 3
1.3. Logic Value System, 6
1.4. Bit-widths, 6
1.4.1. Data Types, 6
Net Data Type, 6
Register Data Type, 8
142. Constants, 9
1.4.3. Parameters, 10
1.5. Value Holders for Hardware Modeling, 10

CHAPTER 2
Verilog Constructs to Gates 15

2.1. Continuous Assignment Statement, 16

CONTENTS

2.2

2.3.
24.

2.5.
2.6.
2.7.
2.8.
2.9.

2.10.

2.11.
2.12.
2.13.

2.14.

2.15.

2.16.
2.17.

Procedural Assignment Statement, 17
22.1. Blocking Procedural Assignment, 17
2.2.2. Non-blocking Procedural Assignment, 18
2.2.3. Target of Assignment, 19
2.2.4. Assignment Restrictions, 20
Logical Operators, 21
Arithmetic Operators, 22
2.4.1. Unsigned Arithmetic, 22
2.4.2. Signed Arithmetic, 23
24.3. Modeling a Carry, 24
Relational Operators, 25
Equality Operators, 27
Shift Operators, 28
Vector Operations, 30
Part-selects, 32
Bit-selects, 33
2.10.1. Constant Index, 33
2.10.2. Non-constant Index in Expression, 34
2.10.3. Non-constant Index in Target, 35
Conditional Expression, 36
Always Statement, 37
If Statement, 40
2.13.1. Inferring Latches from If Statements, 41
Case Statement, 45
2.14.1. Casez Statement, 48
2.14.2. Casex Statement, 49
2.14.3. Inferring Latches from Case Statements, 51
2.14.4. Full Case, 52
2.14.5. Parallel Case, 55
2.14.6. Non-constant as Case Item, 58
More on Inferring Latches, 59
Locally Declared Variable, 60
Variable Assigned Before Use, 61
Use Before Assigned, 62
2.15.1. Latch with Asynchronous Preset and Clear, 64
Loop Statement, 66
Modeling Flip-flops, 68
Local Use of Variables, 72
2.17.1. Multiple Clocks, 75

CONTENTS

2.17.2. Multi-phase Clocks, 77
2.17.3. With Asynchronous Preset and Clear, 78
2.17.4. With Synchronous Preset and Clear, 81
2.18. More on Blocking vs Non-blocking Assignments, 84
2.19. Functions, 88
2.20. Tasks, 89
2.21. Using Values x and z, 93
2.21.1. The Value x, 93
2.21.2. The Value z, 93
2.22. Gate Level Modeling, 97
2.23. Module Instantiation Statement, 98

2.23.1. Using Predefined Blocks, 99
Instantiating User-built Multipliers, 99
Instantiating User-specific Flip-flops, 101

2.24. Parameterized Designs, 103

CHAPTER 3
Modeling Examples 107

3.1. Modeling Combinational Logic, 108
3.2. Modeling Sequential Logic, 110
3.3. Modeling a Memory, 111
3.4. Writing Boolean Equations, 113
3.5. Modeling a Finite State Machine, 114
3.5.1. Moore FSM, 114
3.5.2. Mealy FSM, 117
3.5.3. Encoding States, 121

Using Integers, 122
Using Parameter Declarations, 122
3.6. Modeling an Universal Shift Register, 123
3.7. Modeling an ALU, 124
3.7.1. A Parameterized ALU, 124
37.2. A Simple ALU, 126
3.8. Modeling a Counter, 128
3.8.1. Binary Counter, 128
3.8.2. Modulo-N Counter, 129
3.8.3. Johnson Counter, 130
3.8.4. Gray Counter, 132
3.9. Modeling a Parameterized Adder, 133

CONTENTS

3.10.
3.11.

Modeling a Parameterized Comparator, 134
Modeling a Decoder, 136

3.11.1. A Simple Decoder, 136

3.11.2. Binary Decoder, 136

3.11.3. Johnson Decoder, 137

3.12. Modeling a Multiplexer, 139
3.12.1. A Simple Multiplexer, 139
3.12.2. A Parameterized Multiplexer, 140
3.13. Modeling a Parameterized Parity Generator, 141
3.14. Modeling a Three-state Gate, 143
3.15. A Count Three 1’s Model, 144
3.16. A Factorial Model, 146
3.17. An UART Model, 147
3.18. A Blackjack Model, 153
CHAPTER 4
Model Optimizations 157
4.1. Resource Allocation, 158
4.2. Common Subexpressions, 161
4.3, Moving Code, 162
4.4, Common Factoring, 163
4.5. Commutativity and Associativity, 164
4.6. Other Optimizations, 165
4.7. Flip-flop and Latch Optimizations, 166
4.7.1. Avoiding Flip-flops, 166
4.7.2. Avoiding Latches, 167
4.8. Design Size, 168
Small Designs Synthesize Faster, 168
Hierarchy, 169
Macros as Structure, 169
4.9. Using Parentheses, 170
CHAPTER 5
Verification 173
5.1. A Test Bench, 174

5.2.
53.

Delays in Assignment Statements, 176
Unconnected Ports, 178

APPENDIX A

54.
5.5.
5.6.
5.7.
5.8.
5.9.

Missing Latches, 179
More on Delays, 181
Event List, 182
Synthesis Directives, 183

Variable Asynchronous Preset, 185
Blocking and Non-blocking Assignments, 186

59.1.
59.2.

Combinational Logic, 186
Sequential Logic, 188

Synthesizable Constructs

APPENDIX B

A Generic Library

Bibliography

Index

CONTENTS

191

199
209
211

FOREWORD

he topic of Verilog HDL synthesis has been in existence since

1988. However good textbooks on the topic have not covered basic

concepts until now. This practical primer on Verilog HDL synthe-
sis provides a comprehensive and practical description for this new tech-
nology. It takes the mystery out of HDL synthesis, by providing an easy to
understand Verilog language semantic with respect to synthesis technolo-
gy. Bhasker is an expert on synthesis: he has worked in synthesis for more
than fourteen years. He is currently using his expertise in leading the ef-
forts as the chair of IEEE working group for developing a Verilog RTL
synthesis standard (PAR 1364.1) that is based on the OVI! RTL synthesis
subset 1.0 released in April 1998. Bhasker is one of the architects for the
OVI standard on RTL synthesis.

“Verilog HDL Synthesis, A Practical Primer” by J. Bhasker provides
students and practicing logic designers with immediate access to well-
organized information about Verilog HDL synthesis. It is easy to read and
provides a very large number of examples of synthesizable Verilog HDL
models. The reader is led systematically from Verilog HDL language con-
structs, their meaning in synthesis, how synthesis design technology
transforms such constructs into gates, and their impact on design verifica-

1. Open Verilog International

FOREWORD

tion. The book is rich in Verilog HDL model examples and their gate
equivalence. The examples are simple and show the different styles of
logic modeling such as combinational logic, sequential logic, and register
and latched based design, finite state machines, arithmetic units and oth-
ers.

The book is not just unique in covering HDL synthesis for beginners,
but also goes into advanced topics such as how to get optimized logic
from a synthesis model. Resource sharing and allocation is one of the top-
ics covered under model optimization. Another unique topic is design ver-
ification. The book goes into the principles of synthesis model writing to
ensure predictable and verifiable results. Although the chapter is intended
for simulation, the same concepts can be applied for formal verification.

This book is the first comprehensive treatment for Verilog HDL syn-
thesis. Bhasker has taught Verilog HDL and Verilog HDL synthesis at Lu-
cent Technologies for more than three years. The book shows the
knowledge that Bhasker has accumulated during his fourteen years on
synthesis. Although this book is targeted for beginners, expert users can
benefit from the basic principles as well as the advanced modeling topics
in synthesis. Definitely, intellectual property (IP) developers should fol-
low the modeling style recommended in this book.

Vassilios C. Gerousis

Senior Staff Technologist, Motorola, Phoenix, Arizona

Chairman, Technical Coordinating Committee (TCC), Open Verilog Inter-
national

PREFACE

level synthesis. A large number of synthesizable Verilog HDL ex-

amples are provided. Verilog HDL constructs that are supported
for synthesis are described in detail. Furthermore, examples are shown us-
ing these synthesizable constructs collectively to model hardware ele-
ments. Common causes of functional mismatches between the design
model and the synthesized netlist are described in detail and recommenda-
tions are made on how to avoid these.

l l ere is a practical and useful guide to Verilog HDL register-transfer

To many, synthesis appears like a black-box; a design described in
Verilog HDL goes in, and out comes a gate level netlist. It appears as if
there is some mystique in this black-box approach. To take full advantage
and usefulness of a synthesis system, it is important to understand the
transformations that occur during the synthesis process. The purpose of
this book is to expose the black-box myth by describing the transforma-
tions that occur during the synthesis process from a hardware description
language model to a netlist; Verilog HDL is used as the modeling lan-

guage.
The Verilog Hardware Description Language, often referred to as Ver-
ilog HDL, is an IEEE standard (IEEE Std 1364). The language can be

used to describe the behavior, sequential and concurrent, or structure of a
model. It can support the description of a design at multiple levels of ab-

PREFACE

straction ranging from the architecture level to the switch level. The lan-
guage provides support for modeling a design hierarchically and in
addition, provides a rich set of built-in primitives, including logic gates
and user-defined primitives. Precise simulation semantics are associated
with all the language constructs and therefore models written in this lan-
guage can be verified using a Verilog HDL simulator.

Synthesis, in general, has a different meaning to different people. In
this book, I refer to synthesis of a design described in Verilog HDL; this
design describes combinational logic and/or sequential logic. In case of
sequential logic, the clocked behavior of the design is expressly de-
scribed. This precludes talking about logic synthesis (a design described
in terms of primitive gates) and about high-level synthesis (behavior spec-
ified with no clocking information). The synthesis process transforms this
Verilog HDL model into a gate level netlist. The target netlist is assumed
to be a technology-independent representation of the modeled logic. The
target technology contains technology-independent generic blocks such
as logic gates, and register-transfer level (RTL) blocks such as arithmetic-
logic-units and comparators. The succeeding phases of a synthesis pro-
cess, which are technology translation (that is, mapping of generic gates
to specific parts in a library) and module binding (that is, building RTL
blocks using primitive gates) are not described in this book.

It is difficult to write a book on synthesis due to its rapidly evolving
nature. In this book, I have therefore provided the basic information that
will hold true by and large. I have tried to stay clear of ambiguous topics
including implementation-specific issues. Because of the richness of the
Verilog HDL language, there may be more than one way to describe a cer-
tain behavior. This book suggests one or two such modeling styles that are
synthesizable. Again, not all constructs in the language can be synthe-
sized since Verilog HDL was designed to be a simulation language.
Therefore, in this book, I have showed constructs that would be supported
by a majority of synthesis systems.

I have also avoided mentioning the various features of vendor-specific
synthesis tools. However, there are certain cases when it becomes neces-
sary to show an example of an implementation. In such a case, the feature
is shown as it is implemented in the ArchSyn (version 14.0) synthesis sys-
tem developed at Bell Labs, Lucent Technologies.

CAUTION: Not all available synthesis systems may support the
Verilog HDL constructs described in this book. For more details on spe-

PREFACE

cific features of any synthesis system, the reader is urged to consult the re-
spective vendors’ documentation.

A Verilog Synthesis Interoperability Working Group, of which I am
the Chair, is at present working to develop an IEEE standard for RTL syn-
thesis.

This book assumes that the reader knows the basics about the Verilog
HDL language. A good source to get such information is the precursor of
this book “A Verilog HDL Primer”, published by Star Galaxy Press.

This book is targeted to electrical engineers, specifically circuit and
system designers, who are interested in understanding the art of synthesis.
The book does not try to explain any of the synthesis algorithms. My be-
lief is that by understanding what results to expect from synthesis, a de-
signer will be able to control the quality of the synthesized designs by
writing effective design models. This is because the synthesized structure
is very sensitive to the way in which a certain model is written.

This book can be used as a text in a college course. In an electrical en-
gineering curriculum, this book can be used in a VLSI course on
computer-aided design. Students may use this book to write models and
synthesize these using any available synthesis system. The transforma-
tions occurring during the synthesis process can thus be studied. In a com-
puter science course, such as in an algorithms course on computer-aided
design, students may write a simple synthesis program that reads in a sub-
set of Verilog HDL and generates a synthesized netlist. Examples in this
book can be used as test cases to understand the generated netlist.

Professional engineers will greatly benefit from this book when used
as a reference. The presence of many examples with models and their syn-
thesized netlists help an engineer in directly going to the page of interest
and exploring the example models presented there.

Book Organization

Chapter 1 describes the basics of the synthesis process. The basics in-
clude topics such as what is a wire, a flip-flop or a state, and how the sizes
of objects are determined.

PREFACE

Chapter 2 describes the mapping of Verilog HDL constructs to logic
gates. It gives examples of combinational logic and shows how the Ver-
ilog HDL constructs get transformed into basic gates and interconnec-
tions. Styles for modeling sequential logic designs are also described
along with examples for modeling asynchronous preset and clear, syn-
chronous preset and clear, multiple clocks, and multiple-phase clocks.

Occasionally it becomes necessary to use pre-designed blocks in a de-
sign. Chapter 2 further describes how to model structure, including the ca-
pability to model partial structure in a behavior model.

Chapter 3 describes how Verilog HDL constructs are collectively used
to model hardware elements. While Chapter 2 describes the mapping of
Verilog HDL to logic gates, this chapter describes the opposite scenario,
which is, how to model a hardware element in Verilog HDL for synthesis.
Elaborate examples are provided for many common hardware elements,
such as multiplexers, counters, decoders and arithmetic-logic-units.

Chapter 4 describes powerful techniques that can be applied to a Ver-
ilog HDL model to provide quality synthesized netlists. The optimizations
described in this chapter may be performed automatically by a synthesis
system; if not, it may have to be performed manually by the designer to
achieve quality results.

Having synthesized a Verilog HDL model, it is often necessary to val-
idate the synthesized netlist with the input design model. Chapter S pro-
vides testbench writing strategies that can be used to verify the synthesis
results. Because Verilog HDL is not specifically designed to be used as a
synthesis language, functional differences may occur between the design
model and the synthesized netlist. This chapter explains the cause of some
such discrepancies.

In order to illustrate a subset of Verilog HDL supported for synthesis
by a typical synthesis system, Appendix A provides a construct by con-
struct description of what is supported by the ArchSyn synthesis system.
However, such a subset may vary between different synthesis systems.

Appendix B presents the description of logic gates that are used in the
synthesized netlists described in this book.

The synthesized netlists shown in this book are NOT optimized
netlists; thus the logic shown in some cases may be suboptimal. This is
acceptable since the purpose of this book is to show the transformation of
Verilog HDL to gates and not that of demonstrating logic optimization

PREFACE

techniques. Some of the netlists have been optimized purposely so that the
netlist could be captured as a figure in the book.

Conventions

The term designer is referred to in many places in the text. It is used as
a generic term to refer to any reader of this text. In addition, the term “syn-
thesis tool” and “synthesis system” are used interchangeably in the text.
Either of these refers to the program that reads in a Verilog RTL model
and generates a gate level netlist.

In all the Verilog HDL descriptions that appear in this book, reserved
words are in boldface. Occasionally ellipsis (. . .) is used in Verilog HDL
source to indicate code that is not relevant to that discussion. Certain
words such as i f and and are written in Courier font so as to indicate
their special meaning rather than their English meaning.

All examples that are described in this book have been synthesized us-
ing the ArchSyn synthesis system. Logic gates used in the synthesized
netlists are described in Appendix B.

Acknowledgments

I gratefully acknowledge the following individuals for reviewing
drafts of this book and for providing many constructive suggestions for
improvement including many thought-provoking comments. I sincerely
appreciate their time and effort spent in reviewing this book in spite of
their busy work schedules.

i. Cliff Cammings from Sunburst Design
ii. Joe Pick from Synopsys
iii. Doug Smith from VeriBest

iv. Egbert Molenkamp from University of Twente, the Nether-
lands

v. Carlos Roman, Jenjen Tiao, Jong Lee and Sriram Tyagarajan
from Bell Labs, Lucent Technologies

vi. Jim Vellenga and Ambar Sarkar from Viewlogic Systems

PREFACE

Thank you very much!

I would also like to thank Hao Nham for providing an excellent atmo-
sphere here at Bell Labs and for encouraging me to pursue my extra-
curricular activities (writing this book!) in addition to my regular work.

Of course, like my other books, this book would not be possible with-
out the joy of my life, my family, my wife Geetha and my two rajahs,
Arvind and Vinay, who provided me with the delight, pleasure and moti-
vation to write yet another book!

J. Bhasker

August 1998

CHAPTER

BASICS

hardware not only at the gate level and the register-transfer level
(RTL), but also at the algorithmic level. This makes translating a
design described in Verilog HDL to logic gates a non-trivial process.

V erilog HDL is a hardware description language that can describe

This chapter explains the basics involved in the mapping of a Verilog
HDL model to logic gates.

1.1 What is Synthesis?

Synthesis is the process of constructing a gate level netlist from a
register-transfer level model of a circuit described in Verilog HDL.! Fig-
ure 1-1 shows such a process. A synthesis system may as an intermediate
step, generate a netlist that is comprised of register-transfer level blocks
such as flip-flops, arithmetic-logic-units, and multiplexers, interconnected

1. This is the definition used in this book.

CHAPTER 1 Basics

by wires. In such a case, a second program called the RTL module builder
is necessary. The purpose of this builder is to build, or acquire from a li-
brary of predefined components, each of the required RTL blocks in the
user-specified target technology.

Verilog HDL model

v

Synthesis

Target RTL module A
N) ¢ rea and
technology builder timing constraints

' l

Unoptimized Logi Gimi
gate level netlist » Loglc oplimizer

Optimized
gate level netlist

Figure 1-1 The synthesis process.

Having produced a gate level netlist, a logic optimizer reads in the
netlist and optimizes the circuit for the user-specified area and timing con-
straints. These area and timing constraints may also be used by the mod-
ule builder for appropriate selection or generation of RTL blocks.

In this book, we assume that the target netlist is at the gate level. The
logic gates used in the synthesized netlists are described in Appendix B.
The module building and logic optimization phases are not described in
this book.

Figure 1-2 shows the basic elements of Verilog HDL and the elements
used in hardware. A mapping mechanism or a construction mechanism
has to be provided that translates the Verilog HDL elements into their cor-
responding hardware elements. Questions to ask are:

* How does a data type translate to hardware?
* How are constants mapped to logic values?
» How are statements translated to hardware?

Synthesis in a Design Process SECTION 1.2

The following sections discuss these mappings in more detail.

Gnstants \

data types Values
(net, register, parameter) (logic-0, logic-1, don’t-care,
floating, unknown)
statements . . i Elements
(procedural assignment, if, case, . . .) (wire, latch, flip-flop,
structure kALU’ multiplexer, . . .)
k(module, gate, always, . . .) /
Hardware world

Verilog world

Figure 1-2 The two worlds of synthesis.

1.2 Synthesis in a Design Process

Verilog HDL is a hardware description language that allows a designer
to model a circuit at different levels of abstraction, ranging from the gate
level, register-transfer level, behavioral level to the algorithmic level. Thus
a circuit can be described in many different ways, not all of which may be
synthesizable. Compounding this is the fact that Verilog HDL was de-
signed primarily as a simulation language and not as a language for syn-
thesis. Consequently, there are many constructs in Verilog HDL that have
no hardware counterpart, for example, the $display system call. Also
there is no standardized subset of Verilog HDL for register-transfer level
synthesis.

Because of these problems, different synthesis systems support differ-
ent Verilog HDL subsets for synthesis. Since there is no single object in
Verilog HDL that means a latch or a flip-flop, each synthesis system may
provide different mechanisms to model a flip-flop or a latch. Each synthe-
sis system therefore defines its own subset of Verilog HDL including its
own modeling style.

Figure 1-3 shows a circuit that is described in many different ways us-
ing Verilog HDL. A synthesis system that supports synthesis of styles A
and B may not support that of style C. This implies that typically synthesis

CHAPTER 1 Basics

models are non-portable across different synthesis systems. Style D may
not be synthesizable at all.

circuit

models \L

style A style B style C style D

Figure 1-3 Same behavior, different styles.

This limitation creates a severe handicap because now the designer
not only has to understand Verilog HDL, but also has to understand the
synthesis-specific modeling style before a synthesizable model can be
written. The typical design process shown in Figure 1-4 can not always be
followed for Verilog HDL synthesis.

Write Verilog HDL model

Edit model Compile model
¢ See Chapter 5
Verify design
v l N}T
Synthesize design Match?
Gate level netlist Yes
Verify design Done!
Verified and

optimized netlist

Figure 1-4 Typical design process.

Synthesis in a Design Process SECTION 1.2

The problem with this design process is that if the Verilog HDL model
is written without knowing the synthesis modeling style (this assumes that
the model is being written for synthesis; if not, then a non-synthesizable
model may be perfectly okay), only during the synthesis phase will the de-
signer learn about the synthesis-specific modeling restriction and style for
synthesis. A model rewrite may be necessary at this point. Also a lot of
time may have been wasted in the “Write Verilog HDL model” -> “Com-
pile model” -> “Verify” -> “Edit model” loop. Instead, a more practical
design process shown in Figure 1-5 has to be followed for Verilog HDL
synthesis. The synthesis methodology checker is needed to ensure that the
model being written is synthesizable. Note that this must be done within
the first verification loop. In this way, after the verification results have
been checked, a verified synthesizable model exists, which can then be
synthesized.

| Write Verilog HDL model l

—DI Compile model I

| Synthesis methodology checker |

See Chapter 5

Verify design
Edit model ’ /T
No

Synthesize design

* Match?
Gate Ie\fl netlist Yes
Verify design Done!
Verified and

optimized netlist

Figure 1-5 New design process.

CHAPTER 1 Basics

1.3 Logic Value System

The common values used in modeling hardware are:
* logic-0
* logic-1
* high-impedance
* don’t-care
* unknown

All these values are defined explicitly in Verilog HDL except for the
don’t-care value. A synthesis system treats the value x, when it is as-
signed to a variable, as a don’t-care value. Here is the mapping between
the Verilog HDL values and the hardware modeling values:

* 0<-->logic-0

¢ 1 <-->logic-1

* 2z <--> high-impedance

* z <-->don’t-care (in casex and casez statements)
* x<-->don’t-care

* x<-->unknown

1.4 Bit-widths

14.1 Data Types

In Verilog HDL, a variable belongs to one of the two data types:
i. net data type
ii. register data type

Net Data Type
The size of a net is explicitly specified in a net declaration.

wire [4:0] Dak; // A 5-bit wire net.
wor Ax; // l-bit wor net.

Bit-widths SECTION 1.4

When no size is explicitly specified in a net declaration, the default size is
one bit.

Here are the different kinds of net data types that are supported for
synthesis.

wire wor wand tri supply0 supplyl

The wire net is the most commonly used net type. When there are
multiple drivers driving a wire net, the outputs of the drivers are shorted
together. Here is an example.

module WireExample (BpW, Error, Wait, Valid, Clear);
input Error, Wait, Valid, Clear;
output BpW;
wire BpW;
assign BpW = Error & Wait;
assign BpW = Valid | Clear;
endmodule
// Synthesized netlist is shown in Figure 1-6.

) Error

> Hait B

Figure 1-6 Multiple drivers driving a wire net.

The wor nets and wand nets are used when multiple driver resolution
needs to be performed using or-logic and and-logic respectively. Upon
synthesis, multiple drivers of such a net are connected together by an or
gate (for a wor net) and by an and gate (for a wand net). Here is an exam-
ple that shows this effect.

CHAPTER 1

Basics

module UsesGates (BpW, BpR, Error, Wait, Clear):
input Error, wWait, Clear;
output BpW, BpR;
wor BpW;
wand BpR;

assign BpW = Error & Wait;
assign BpW = Valid | Clear;

assign BpR = Error ~ Valid;
assign BpR = ! Clear;
endmodule
// Synthesized netlist is shown in Figure 1-7.

AND2

Cleor >
INRB]

@

s Vaild ‘ :)—’
AND2

XOR?
Figure 1-7 Wand net and wor net have multiple drivers.

The tri net synthesizes just like the wire net.

A supply0 net synthesizes to a wire that is permanently connected to 0
(logic-0), while a supply1 net synthesizes to a wire that is permanently
connected to 1 (logic-1).

Register Data Type

The different kinds of register! types that are supported for synthesis
are:

1. A variable of a register type does not necessarily imply a set of flip-flops in hard-
ware. See next section.

Bit-widths SECTION 1.4
reg integer

A reg declaration explicitly specifies the size, that is, the correspond-
ing number of bits of the variable in hardware. For example,

reg [1:25] Cpt; // 25-bit variable.
reg Bxr; // 1-bit variable.

When no size is explicitly specified in a reg declaration, the default is one
bit.

For an integer type, the maximum size is 32 bits and the number is as-
sumed to be in 2’s complement form. Optionally a synthesis system may
perform data flow analysis of the model to determine the maximum size of
an integer variable. For example,

wire [1:5]) Brqg, Rbu;
integer Arb;

Arb = Brqg + Rbu;

Size of Arb is determined to be 6 bits. An adder of size 6 is sufficient. The
leftmost bit is the carry bit.

The register types: time and real, are not supported for synthesis.

Constants

There are three kinds of constants in Verilog HDL: integer, real and
string. Real and string constants are not supported for synthesis.

An integer constant can be written in either of the following two
forms.

i. Simple decimal
ii. Base format

When an integer is written in a simple decimal form, it is interpreted as a
signed number. The integer is represented in synthesis as 32 bits in 2’s
complement form. If an integer is written in the base format form, then the
integer is treated as an unsigned number. If a size is explicitly specified for
the integer, then the specified size is the number of bits used for the inte-
ger; if not, 32 bits is used for the size. Here are some examples.

CHAPTER 1

143

Basics

30 Signed number, 32 bits

-2 Signed number, 32 bits in 2’s complement

2'b10 Size of 2 bits

6'd-4 6-bit unsigned number (-4 is represented in
2's complement using 6 bits)

'd-10 32-bit unsigned number (-10 is represented in
2's complement using 32 bits)

Parameters

A parameter is a named constant. Since no size is allowed to be speci-
fied for a parameter, the size of the parameter is the same as the size of the
constant itself.

parameter RED = -1, GREEN = 2;
parameter READY = 2'b01, BUSY = 2'bll, EXIT = 2'bl0;

RED and GREEN are two 32-bit signed constants. READY, BUSY and
EXIT are three parameters of size 2 bits each.

1.5 Value Holders for Hardware Modeling

10

The basic value holders in hardware are:
s wire
 flip-flop (an edge-triggered storage element)
» latch (a level-sensitive storage element)

A variable in Verilog HDL can either be of the net data type or the register
data type. For synthesis, a variable of net type maps to a wire in hardware
and a variable of the register type maps either to a wire or a storage ele-
ment (flip-flop or latch) depending on the context under which the vari-
able is assigned a value. Let us look at a variable of register type in more
detail.

In Verilog HDL, a register variable retains its value through the entire
simulation run, thus inferring memory. However, this is too general for
synthesis. Here is an example of a variable that is used as a temporary and
therefore need not be a candidate for a storage element.

Value Holders for Hardware Modeling SECTION 1.5

wire Acr, Bar, Fra; // A wire is a net type.
reg Trg, Sqp; // A reg is a register type.

always @ (Bar or Acr or Fra)
beg:'u'x1

Trq = Bar & Acr;

Sqp = Trq | Fra;
end

Variable Trq is assigned in the first statement and then used in the right-
hand-side expression of the second statement. Verilog HDL semantics in-
dicate that Trg retains its value through the entire simulation run. Howev-
er, it is not necessary to store the value of Trq as a storage element in
hardware, since it is assigned and used immediately. Figure 1-8 shows the
logic generated.

AND2 bt
OR2

Figure 1-8 Variable Trq is a wire.

Let us look at another example. In this case, variable Trg is used be-
fore its assignment.

wire Acr, Bar, Fra;
reg Trq, Sgp;

always @ (Bar or Acr or Fra)
begin

Sqp = Trq | Fra;

Trq = Bar & Acr;
end

1. begin ... end is a sequential block; all statements that appear within it execute in
sequence.

11

CHAPTER 1

12

Basics

The semantics of this always statement is very clear in Verilog HDL.
Whenever an event occurs on Bar, Acr, or Fra (those in the event list), ex-
ecute the always statement. Since Trg is used before its assignment, Trg
has to hold its value during repeated executions of the always statement,
thus inferring memory. However, it is not clear how to build a latch for
Trq because Trq is not assigned a value under the control of any condition.
A synthesis system may not create a latch in this case and may generate
the circuit shown in Figure 1-9. Variable Trg is synthesized to a wire
again. However, for functionality to match between the Verilog HDL
model and the synthesized netlist, Trg must also be in the event list of the
always statement. More of this is discussed in Chapter 5.

AND2 -
OR2

Trq

Figure 1-9 No latch for variable Trq.

Here is an example where a latch is inferred for a variable.

wire Sat, Ant;
reg Fox, Sout;

always @ (Sat or Ant)

begin
if (! Sat)
Fox = Ant;
Sout = ! Fox;
end

The variable Fox is not assigned in the else-branch of the conditional
statement. Consequently, a latch is inferred for Fox since it needs to retain
its value when Sat is true. The circuit synthesized in shown in Figure 1-
10.

How is a flip-flop inferred? It depends on the modeling style being
followed and the context under which a variable is assigned a value. This

Value Holders for Hardware Modeling SECTION 1.5

Ant 0 o Fox
Sat b. Sou
INRB CK ONF— INRB
FD1S1A

Figure 1-10 Variable Fox is a latch.

and other examples for flip-flop and latch inferencing are discussed in the
next chapter. A memory in hardware can be modeled as an array of flip-
flops or latches.

13

CHAPTER

VERILOG CONSTRUCTS
TO GATES

types and constants to hardware. This chapter describes the map-

ping of statements in Verilog HDL to logic gates in hardware. It
also explains how operators, expressions and assignments are mapped to
hardware. Each section of this chapter describes a particular synthesis
construct or feature in a cookbook style for ease of reading and under-
standing. Most of the synthesized netlists are not optimized and do not
represent minimal hardware.

The previous chapter described the mapping from Verilog HDL

15

CHAPTER 2 Verilog Constructs to Gates

2.1 Continuous Assignment Statement

A continuous assignment statement represents, in hardware, logic that
is derived from the expression on the right-hand-side of the assignment
statement driving the net that appears on the left-hand-side of the assign-
ment. The target of a continuous assignment is always a net driven by
combinational logic.

Here is an example.

module Continuous (StatIn, StatOut);
input StatIn;
output StatOut;

assign StatOut = ~ StatIn; // Continuous assignment.
endmodule
// Synthesized netlist is shown in Figure 2-1.

StatIn \l@c StatOut
INRB

Figure 2-1 Combinational circuit from continuous assignment statement.

The continuous assignment statement describes an inverter that has its in-
put connected to Stat/n and whose output is StarOut. Delays, if any, spec-
ified in a continuous assignment statement are usually ignored by a
synthesis system. For example, in the continuous assignment:

assign #2 EffectiveAB = DriverA | DriverB;

the delay #2 is ignored for synthesis.

16

Procedural Assignment Statement SECTION 2.2

2.2 Procedural Assignment Statement

A procedural assignment statement represents, in hardware, logic that
is derived from the expression on the right-hand-side of the assignment
statement driving the variable that appears on the left-hand-side of the as-
signment. Note that procedural assignments can appear only within an al-
ways staternent!.

There are two kinds of procedural assignment statements:
i. Blocking
ii. Non-blocking

2.2.1 Blocking Procedural Assignment

Here is an example of a blocking procedural assignment statement.

module Blocking (Preset, Count);
input [0:2] Preset;
output [3:0] Count;
reg [3:0] Count;

always @ (Preset)
Count = Preset + 1;
// Blocking procedural assignment.
endmodule
// Synthesized netlist is shown in Figure 2-2.

The blocking procedural assignment statement describes an adder that
takes Preset and the integer 1 as inputs and places the result in the variable
Count.

1. Procedural assignments can appear within an initial statement as well; however an
initial statement is not supported for synthesis.

17

CHAPTER 2 Verilog Constructs to Gates

A1
Prosgtd a J".12 Countl
Preset2 8 I E N z
B2
Presetl aNo3 0R122

Count3

Count2

RBH

Figure 2-2 Combinational circuit from blocking procedural assignment.

T
oD
[SI=

B 0RI3L
0RIZ1 Countd

2.2.2 Non-blocking Procedural Assignment

Here is an example of an non-blocking procedural assignment.

module NonBlocking (RegA, Mask, RegB);
input [3:0] RegA, Mask;
output [3:0] RegB;
reg [3:0] RegB;

always @ (RegA or Mask)
RegB <= RegA & Mask;
// Non-blocking procedural assignment.
endmodule
// Synthesized netlist is shown in Figure 2-3.

The blocking or non-blocking nature of an assignment does not cause any
change to the combinational logic generated from the assignment state-
ment itself, but affects the use of the resultant value later on.

A good recommendation to follow is to use blocking assignments for
modeling combinational logic and to use non-blocking assignments for
modeling sequential logic; more on this is described in later sections.

The subtle differences between a blocking and a non-blocking proce-
dural assignment are explored in section 2.18.

18

Procedural Assignment Statement SECTION 2.2

RegA3
RegB3
Mask3

AND2Z

S Regf?2 A
ReqB2

Mogk2

AND2

Roafi9
A RegqB4

> Mask@ B

AND2

5 RegAl a
Mask1

RegB1

AND2

Figure 2-3 Combinational logic from non-blocking procedural assignment.

2.2.3 Target of Assignment

The target of a procedural assignment is synthesized into a wire, a
flip-flop, or a latch, depending on the context under which the assignment
appears in the Verilog HDL model. For example, if the previously de-
scribed non-blocking procedural assignment statement appeared, say, un-
der the control of a clock as shown in the following example, then the
target is synthesized as a flip-flop.

module Target (Clk, RegA, RegB, Mask);
input Clk;
input {3:0] RegA, Mask;
output [3:0] RegB;
reg [3:0] RegB;

always @ (posedge Clk)
RegB <= RegA & Mask;
endmodule
// Synthesized netlist is shown in Figure 2-4.

19

CHAPTER 2 Verilog Constructs to Gates

0 Q) ‘—.!—)R B3
SR 0000
2]
:HMS b oK ON—
AND2 FO183RX
b3 _ Re@2y
PUL . I J
2
Mosk2 —{g K ONp—
Cik AND2 FD183AX
3 _ Regdi
PUL: I J
2
Sloé b o o
AND2 FD153AX
d RegB1 5
SReaAL A J
7]
:Hod\l B o N
ANDZ FD153AX

Figure 2-4 Target of an assignment is a flip-flop.

2.24 Assignment Restrictions

Any kind of delay, delay control or intra-statement delay, specified in
a procedural assignment (blocking or non-blocking) is ignored by a syn-
thesis system. This can potentially lead to a functional mismatch between
the design model and its synthesized netlist.

#5 RegB <= RegA & Mask;
// Delay control #5 is ignored.
RegB = #2 RegA & Mask;
// Intra-statement delay #2 is ignored.

There is another restriction on using both blocking and non-blocking
assignments in a single model for synthesis.

A target cannot be assigned using a blocking assignment
and a non-blocking assignment.

20

Logical Operators SECTION 2.3

What this means is that if a target is assigned using a blocking (or a non-
blocking) assignment, then the same target can only be assigned again us-
ing a blocking (or a non-blocking) assignment. Here is an example.

Count = Preset + 1;

Count <= Mask; // This is illegal since Count is
// previously assigned using a blocking assignment.

2.3 Logical Operators

The logical operators get directly mapped onto primitive logic gates in
hardware. Here is a model of a full-adder using continuous assignment
statements.

module FullAdder (A, B, CarryIn, Sum, CarryOut);
input A, B, CarrylIn;
output Sum, CarryOut;

assign Sum = (A "~ B) * CarrylIn;
assign Carryout = (A& B) | (B & CarrylIn) |
(A & CarrylIn);
endmodule
// Synthesized netlist is shown in Figure 2-5.

21

CHAPTER 2 Verilog Constructs to Gates

=,

CarryOut

Corryln

Figure 2-5 Logical operators map to primitive logic gates.

2.4 Arithmetic Operators

In Verilog HDL, a reg type is interpreted as an unsigned number and
an integer type is interpreted as a signed number in 2’s complement form
with the rightmost bit as the least significant bit. Thus, to synthesize an

unsigned arithmetic operator, the reg type is used. To get a signed arith-
metic operator, the integer type is used.

The net type is interpreted as unsigned numbers.

24.1 Unsigned Arithmetic

Here is an example that uses an arithmetic operator on unsigned num-
bers.

module UnsignedAdder (Arb, Bet, Lot);
input [2:0] Arb, Bet;
output [2:0] Lot;

assign Lot = Arb + Bet;

endmodule
// Synthesized netlist is shown in Figure 2-6.

22

Arithmetic Operators SECTION 2.4

Bl -3
Bet? i
fri2 P b
> 8 oAI21 Mz |4
Lot2
>
B
S

Ardbl :;
INRBH
OAI2L
NI «&cﬁ " . N2 :
INRBH p+H I Enm{ "2 Lotl

Betd 0A122

L B2 ORI

Ardd

a1 Lﬁm
-| [INRBH

0AI21

Figure 2-6 A 3-bit adder.

In this example, a 3-bit adder is being modeled. The number system for
the operands is unsigned since they are of the net type. The leftmost bit is
the most significant bit.

24.2 Signed Arithmetic

Here is an example in which the operands are signed numbers. This is
achieved by using the integer type.

module SignedAdder (Arb, Bet, Lot);
input [1:0] Arb, Bet;
output (2:0] Lot;
reg [(2:0] Lot;

always @ (Arb or Bet)

begin: LABEL_A
// A sequential block requires a label if local
// declarations are present.
integer ArbInt, BetInt;

23

CHAPTER 2 Verilog Constructs to Gates

ArbInt = - Arb; // Store negative number just to show
//that the + is operating on signed operands.
BetInt = Bet;
Lot = ArbInt + BetInt;
end
endmodule
// Synthesized netlist is shown in Figure 2-7.

Arbg

Bet® a3) G S S
INRBH

o D

ND2

Lot2

Bet1 XNOR2 INRBH

Figure 2-7 Signed adder.

Note that the adder logic with signed operands is the same as that with un-
signed operands since the signed values are represented in 2’s comple-
ment form.

243 Modeling a Carry

It is natural to model a carry by simply using the result size to be one
bit larger than the largest of the two operands. Alternatively, a concatena-
tion could also be used as the target of an assignment with the carry bit
explicitly specified. Here are examples of these.

wire [3:0] CdoBus, Sum:;
wire [4:0] OneUp;

24

Relational Operators SECTION 2.5

wire Bore;

assign OneUp = CdoBus + 1;
assign {Bore, Sum} = CdoBus - 2;

In the first continuous assignment, the result of the operation is five bits
and OneUp[4] has the carry bit. If OneUp were declared as:

wire [3:0] OneUp;

then the carry bit would have been lost. In the second continuous assign-
ment, Bore has the borrow bit of the subtraction operation.

2.5 Relational Operators

The relational operators supported for synthesis are:

Relational operators can be modeled similar to arithmetic operators. In
this case, the logic produced from synthesis is different depending on
whether unsigned or signed numbers are being compared. If variables of a
reg type or a net type are compared, an unsigned relational operator is
synthesized. If integer variables are compared, then a signed relational op-
erator is synthesized. Here is an example of a relational operator that is
used with unsigned numbers.

module GreaterThan (A, B, 2Z);
input [3:0] A, B;
output Z;

assign Z = A[1:0] > B[3:2];

// Variables A and B are of net type.
endmodule
// Synthesized netlist is shown in Figure 2-8.

Here is an example of synthesizing a signed relational operator. In this
case, the operands for the relational operator are integer variables.

26

CHAPTER 2 Verilog Constructs to Gates

A1 z
>—n7 18
INRBH
AND2
Bz RZ
3 z
4 —>
%% [] 1 .'
INRBH gz
>B3 ORI32

Figure 2-8 Unsigned ">" relational operator.

module LessThanEquals (ArgA, ArgB, ResultZ);
input (2:0] ArgA, ArgB;
output ResultZ;
reg ResultZ;
integer ArgAInt, ArgBInt;

always @ (ArgA or ArgB)
begin
ArgAInt = - ArgA;
ArgBInt = - ArgB;
// Store negative values just to show that the
// comparison is on signed numbers.
ResultZ = ArgAInt <= ArgBInt;
end
endmodule
// Synthesized netlist is shown in Figure 2-9.

26

Equality Operators SECTION 2.6

frgh? Y —D_
INRBH N2

ArqB2

a 1 At n
erai=g=B,

1 bt ResultZ
Ao [, = % 8 ResultZ
INRBH 82

ArgBA FoI22 B bRzt
> 0AI21

Araht #’. _Do_

INRBH NR?

Figure 2-9 Signed “<=" relational operator.

2.6 Equality Operators

The equality operators supported for synthesis are:

The operators === (case equality) and !== (case inequality) are not sup-
ported for synthesis.

Equality operators are modeled similar to arithmetic operators in
terms of whether signed or unsigned comparison is to be made. Here is an
example that uses signed numbers. Note that in this case, the operands of
the equality operator are of integer type because values of this type repre-
sent signed numbers.

module NotEquals (A, B, 2);
input [0:3] A, B;
output Z;
reg Z;

always @ (A or B)
begin: DF LABEL
integer IntA, IntB;

IntA = A;

27

CHAPTER 2 Verilog Constructs to Gates

IntB = B;
Z = IntA !'= IntB;
end
endmodule
// Synthesized netlist is shown in Figure 2-10.

Ag
é B)

X0R2

A
A3 B) 2
B3 ¢

0

XOR2 ORY

A2
A

X0R2Z

XO0R2

Figure 2-10 Signed "!=" relational operator.

2.7 Shift Operators

Verilog HDL synthesis supports the left shift (<<) and the right shift
(>>) operators. The vacated bits are filled with 0. The right operand,
which is the amount of shift, may either be a constant or a variable. In
both cases, combinational logic is produced. When shifting by a constant,
simple rewiring is performed. When shifting by a variable, a general-
purpose shifter is synthesized. This is shown in the following examples.

module ConstantShift (DataMux, Address);
input [0:3] DataMux;
output [0:5] Address;

assign Address = (~ DataMux) << 2;

endmodule
// Synthesized netlist is shown in Figure 2-11.

28

Shift Operators SECTION 2.7

+ Dotoltux2 {>¢ Address?
INRB
Datatuxs Bx Addross3
INRB
fddressi
>Datattuat {>c ~
INRB

S Datauxd l: >° Addreeed
INRS

Rddrosed

Addressd

vLO

Figure 2-11 Constant shift.

module VariableShift (MemDataReg, Amount, InstrReg);
input [0:2] MemDataReg;
input [0:1] Amount;
output [0:2] InstrReg;

assign InstrReg = MemDataReg >> Amount;
endmodule
// Synthesized netlist is shown in Figure 2-12.

As per Verilog HDL rules, when performing the left shift operation in
module ConstantShift, the shifted bits from DataMux are not discarded
but simply move into the higher order bits of Address. If Address were the
same size as DataMux, then the high-order bits get shifted out and dis-
carded.

29

CHAPTER 2 Verilog Constructs to Gates

Amountd

-
~

MenDateRegd NO3

InstrReq2 N

MomDotaReq2 In] J

Amountl 81 0AI21
B2
'b INRBH AOI22

s MemDataReg! D. InstrReql

INRBH _& InetrReqd

Figure 2-12 Variable shift.

2.8 Vector Operations

This example shows that vector operands can be used in expressions.
The four bits of A are and’ed with the four bits of B, the result of which is
or’ed with the four bits of C. The result is assigned (starting with the
rightmost bit) to the target net RFile.

module VectorOperations (A, B, C, RFile);
input [3:0] A, B, C;
output (3:0] RFile;

assign RFile = (A& B) | C;
endmodule
// Synthesized netlist is shown in Figure 2-13.

Here is another example where the operands of a logical operator are

vectors. In such a case, a series of logic gates to cover the range of the
vector are produced.

30

Vector Operations SECTION 2.8

RF a2

RFie@

Figure 2-13 Vector operations.

module VectorOperands (Bi, Stdy, Tap):
input (0:3] Bi, Stdy;
output [0:3] Tap;

assign Tap = Bi " Stdy:
endmodule
// Synthesized netlist is shown in Figure 2-14.

Four exclusive-or gates are synthesized since each operand in the right-
hand-side is of size 4.

In the above examples on continuous assignments, there is a one-to-
one correlation between a continuous assignment statement and its syn-
thesized logic. This is because a continuous assignment implicitly de-
scribes the structure.

31

CHAPTER 2 Verilog Constructs to Gates

Big
; Stdyf M

XOR2

Bil
; Stdyl) Top!

XOR2

813
; Stay3 M

XO0R2

82
stz D—LM“Q

X0R2

Figure 2-14 A bank of logic gates.

2.9 Part-selects

Operations using part-selects can be used in a model. Here is an ex-
ample.

module PartSelect (A, C, ZCat);
input [3:0] A, C;
output (3:0] ZCat;

assign ZCat[2:0] = {A[2], C[3:2]};

endmodule
// Synthesized netlist is shown in Figure 2-15.

ZCat[2:0] and C[3:2] are examples of part-selects. Non-constant part-
selects are not supported in Verilog HDL.

32

Bit-selects SECTION 2.10

A2 Do S 2Cat?
INRB INRB

c3 {>c A ZCott
INRB INRB

c2 @c oy ZCatd
INRB INRB

Figure 2-15 Part-select example.

2.10 Bit-selects

A bit-select can be a constant index or a non-constant index.

2.10.1 Constant Index

Here is an example that uses constant values for bit-select indices.

module ConstantIndex (A, C, Reg_File, ZCat);
input [3:0] A, C;
input [3:0] Reg_File;
output [3:0] ZCat;

assign ZCat[3:1] = {A[2], C[3:2])};
assign ZCat[0] = Reg Filel3];
endmodule

// Synthesized netlist is shown in Figure 2-16.

A[2], ZCat[0] and Reg_File[3] are examples of bit-selects. The concatena-
tion operator, { }, is used to generate a bigger array.

33

CHAPTER 2 Verilog Constructs to Gates

A2 A Cat3
n Z 7
03 A 2ot2

INRB

A 2
T%%
INRB
A 7

SReg File3 % By 2Cotd
INRB INRB
c2 *l(>°¥ 2Cat1
A Z A —>
INRB INRB

Figure 2-16 Constant bit-select.

i

2.10.2 Non-constant Index in Expression

It is possible to use a non-constant as an index in a bit-select as shown
in the following model.

module NonComputeRight (Data, Index, Dout);
input [0:3] Data;
input [1:2] Index;
output Dout;

assign Dout = Data [Index] ;

endmodule
// Synthesized netlist is shown in Figure 2-17.

In this case, a multiplexer is generated as shown in the synthesized netlist.

34

Bit-selects SECTION 2.10

Oatal

Index2 w o
INRBH

Datod

- —

Dout

Ooto3

Index1 w
o QO
INRBH

Data?2

Figure 2-17 Non-constant bit-select generates a multiplexer.

2.10.3 Non-constant Index in Target

Here is another example of a non-constant bit-select; this time it is
used on the left-hand-side of an assignment. A decoder is synthesized for
this behavior.

module NonComputeLeft (Mem, Store, Addr);
output [7:0] Mem;
input Store;
input [1:3) Addr;

assign Mem [Addr] = Store;

endmodule
// Synthesized netlist is shown in Figure 2-18.

35

CHAPTER 2 Verilog Constructs to Gates

e 2 Mem3
> Addrl \ > E
INRBH NR3
tore 4
s : z 2 Mem1
Addr3 INRBH ND2 NR3
Do—- A MemZ
Addr2 INRBH NR3 NR3
Memd
-7
M Mom@
po—f — F g
D2 1 NR3
NR3 Mem5
7
8 2 Memb 5
NR3

Figure 2-18 A decoder generated from a non-constant bit-select.

2.11 Conditional Expression

A conditional expression selects between two expressions according
to the value of a condition.

<condition> ? <expressionl> : <expression2>

If the condition is true, select the first expression, else select the second,
Here is an example.

module ConditionalExpression (StartXM, Shiftval,
Reset, StopXM);
input StartxM, Shiftval, Reset;
output StopXM;

36

Always Statement SECTION 2.12

assign StopXM = (! Reset) ? StartXM ~ Shiftval :
StartXM | ShiftVal;
endmodule
// Synthesized netlist is shown in Figure 2-19.

N StopXM
> /
INRB

@

0R2
AND2

StartXt

ShiftVal Z

OR2

Figure 2-19 Logic generated from a conditional expression.

2.12 Always Statement

An always statement is used to model the procedural behavior of a cir-
cuit. Here is an example of an always statement that contains procedural
assignment statements.

module EvenParity (A, B, C, D, 2);
input A, B, C, D;
output Z;
reg Z, Templ, TempZ2;

always @ (A or Bor Cor D)
begin
Templ = A ™ B;
Temp2 = C ~ D;
Z = Templ ~ Temp2;
// Note that the temporaries are really not
// required. They are used here to illustrate the
// sequential behavior of the statements within
// the sequential block.
end

37

CHAPTER 2 Verilog Constructs to Gates

endmodule
// Synthesized netlist is shown in Figure 2-20.

Figure 2-20 Procedural assignment statements.

All variables whose values are read in the always statement must ap-
pear in the event list (the parenthesized list following the “@” symbol);
otherwise the functionality of the synthesized netlist may not match that
of the design model. Here is a simple example that illustrates this point.

module AndBehavior (Z, A, B);
input A, B;
output Z;
xeg Z;

always @ (B)
Z=A& B;
endmodule
// Synthesized netlist is shown in Figure 2-21.

pUBA ,
B Z>—">’
e

ANCZ
Figure 2-21 Incomplete event list.

The semantics of the always statement specifies that whenever an event
occurs on B, the assignment is to be executed and Z gets a value. If any
events occur on A, this has no impact on the value of Z. However, the syn-
thesized netlist of the above module, shown in Figure 2-21, shows an and
gate. Here any time A or B changes, the value of Z is updated. Hence a

38

Always Statement SECTION 2.12

functional mismatch occurs. A synthesis system usually would issue a
warning about such missing variables in the event list.

A good practice is to include all variables read in the always statement
in the event list; this is true only when modeling combinational logic.
When modeling sequential logic, a different kind of event list is required;
this is described later.

A variable declared within an always statement holds a temporary val-
ue and does not necessarily infer a unique wire in hardware as the follow-
ing example shows.

module VariablesAreTemporaries (A, B, C, D, 2);
input A, B, C, D;
output Z;
reg Z;

always @ (A or Bor Cor D)
begin: VAR_LABEL
integer T1, T2;

Tl =A& B;
T2 = C & D;
T1="T1]| T2;
Z=~1T1;
end
endmodule

// Synthesized netlist is shown in Figure 2-22.

AND2

Figure 2-22 One variable can represent many wires.

39

CHAPTER 2 Verilog Constructs to Gates

In the synthesized netlist, the output of the AND2 gate is the variable TI;

so is the output of the OR2 gate. In this example, each assignment to the
integer variable infers a unique wire.

2.13 If Statement

An if statement represents logic that is bonditionally controlled.
Here is an example.

module SelectOneOf (A, B, Z);
input [1:0] A, B;
output [1:0] Z;
reg [1:0] Z;

always @ (A or B)
if (A> B)
Z =A;
else
Z = B;
endmodule
// Synthesized netlist is shown in Figure 2-23.

Figure 2-23 Logic derived from an i f statement.

40

If Statement SECTION 2.13

Here is another example of an i f statement.

module SimpleALU (Ctrl, A, B, 2);
input Ctrl;
input [0:1] A, B;
output [0:1] Z;
reg [0:1] Z;

always @ (Ctrl or A or B)
if (ctrl)
Z =A& B;
else
Z=A4A| B;
endmodule
// Synthesized netlist is shown in Figure 2-24.

Ctril

Figure 2-24 Conditional selection of operations.

2.13.1 Inferring Latches from If Statements

Consider the always statement in the following module.

module Increment (Phy, Ones, Z);
input Phy;
input [0:1] Ones;
output [0:2] Z;
reg [0:2] Z;

41

CHAPTER 2 Verilog Constructs to Gates

always @ (Phy or Ones)
if (Phy)
Z = Ones + 1;

endmodule
// Synthesized netlist is shown in Figure 2-25.

0 0
Onesd 5
ON—
A 2 FD151A
>—4-
Ones! " INRBH INREH 7
1] o>
Phy
K ON—
FD1S1R

Figure 2-25 A variable is synthesized as a latch.

The semantics of the always statement specifies that every time an event
occurs on Phy or Ones (variables present in the event list), the if state-
ment executes and the variable Z gets the value of Ones incremented by 1
if Phy is a 1. If Phy is a 0, the value in Z is retained; this is done using
latches.

A general rule for latch inferencing is that if a variable is not assigned
in all possible executions of an always statement (for example, when a
variable is not assigned in all branches of an i f Statement), then a latch is
inferred.

Here is another example of a variable that is not assigned in all
branches of an i f statement.

module Compute (Marks, Grade);
input [1:4] Marks;
output [0:1] Grade;
reg [0:1] Grade;

42

If Statement SECTION 2.13

parameter FAIL = 1, PASS = 2, EXCELLENT = 3;

always @ (Marks)
if (Marks < 5)
Grade = FAIL;
else if ((Marks >= 5) & (Marks < 10))
Grade = PASS;
endmodule
// Synthesized netlist is shown in Figure 2-26.

Grodel

Morks4
2 ! A \ —cK OoN—

Morks3 A2 4 co
Marks2 B—f
5 ANDZ FD151D
0AIZ21
Graded
o] o—>
'INRBH j/j:m

Marksi Ch o ON—
>t

Bl
)BZ

0RI32 FD1S1D

Figure 2-26 A variable is inferred as a latch.

In this example, what should be the value of Grade if Marks has the value
127 It may be intended to be a don’t care, but from the language semantics
viewpoint, the variable Grade retains its last value, since no value is as-
signed to the variable explicitly when Marks has the value 12. Therefore a
latch is inferred for Grade in keeping with the simulation semantics of a
reg variable.

Arithmetic operations as conditional expressions, as in the previous
example, should be avoided when inferring latches since there is a very
high probability of race condition between the conditionals in the synthe-
sized netlist; this might cause the latched value in the synthesized netlist
to differ from that in the Verilog HDL model.

If a variable is not assigned in all branches of an if statement, and the
intention is not to infer a latch, then the variable must be assigned a value

43

CHAPTER 2 Verilog Constructs to Gates

explicitly in all the branches of the i f statement. If the previous example
is modified by specifying the assignment to the variable in all branches,

the following program is obtained.

module ComputeNoLatch (Marks, Grade);
input [1:4] Marks;
output [0:1] Grade;
reg [0:1] Grade;
parameter FAIL = 1, PASS = 2, EXCELLENT = 3;

always @ (Marks)
if (Marks < 5)
Grade = FAIL;
else if ((Marks >=5) && (Marks < 10))

Grade = PASS;
else
Grade = EXCELLENT;
endmodule

// Synthesized netlist is shown in Figure 2-27.

Mar§8_1‘ g P Grade®
— >
INRBH ND2
Marks3
Marks2 A Gradel
——{B z
PRIZ1 ND2
Marksd
A1
s

0AI21

Figure 2-27 Variable GRADE is not a latch.

In this case, variable GRADE is not a latch because it is assigned a value
in all branches of the i f statement.

Case Statement SECTION 2.14

2.14 Case Statement

A case statement is of the form:

case (<case_expression>)

<case_itemAl>, <case_itemA2>, . . .: <statementA>

<case_itemBl>, <case_itemB2>, . . .: <statementB>

default : <statementD>
endcase

The first branch that has a case item whose value matches the value of the
case expression is selected. A case item may be a constant or a variable.

Here is an example of a case statement.

module ALU (Op, A, B, Z);
input [1:2] Op;
input [0:1] A, B;
output [0:1] Z;
reg [0:1] Z;

parameter ADD = 'b00, SUB = 'b01, MUL = 'bl0,
DIV = 'bll;

always @(Op or A or B)

case (Op
ADD : Z =A+ B;
SUB : Z=A-B;
MUL Z = A* B;
DIV : Z=A/B; // The A/B operation may not be
// supported by some synthesis tools.
endcase
endmodule

// Synthesized netlist is shown in Figure 2-28.

A case statement behaves like a nested i f statement, that is, the value of
the case expression (Op) is checked with the first case item (ADD), if it
does not match, the second case item (SUB) is checked and so on. The
equivalent i f statement for the above case statement is shown next.

45

CHAPTER 2 Verilog Constructs to Gates

A8 i 7
> - gz 1
B3 |pi
[huLte
BT
5
(2] 24
A1 z
Bo
B1 1
 bueme 2
Ihi - 20;
02 [oL 0AI22
{ﬁ Do B2
] INREH Ao1Z2
fro z m
AL 71
+ g? I Z1 3
;)
ROOER 1
52 0AI22
RS yi
lat 2
L{__|B6g
B1
BIVDR
Op1 | IL>IT\IREH

Figure 2-28 A 2-bit ALU.

Z = A+ B;

else if (Op == SUB)
Z=A- B;

else if (Op == MUL)
Z =A*%*B;

else if (Op == DIV)
Z=A/ B;

Here is another example of a case statement.

module CaseExample (DayOfWeek, SleepTime);
input [1:3] DayOfWeek;
output [1:4] SleepTime;
reg (1:4] SleepTime;
parameter MON=0, TUE=1, WED=2, THU= 3, FRI =4,
SAT =5, SUN=6;

46

Case Statement SECTION 2.14

always @ (DayOfWeek)
case (DayOfWeek)

MON,
TUE,
WED,
THU: SleepTime = 6;
FRI: SleepTime = 8;
SAT: SleepTime = 9;
SUN: SleepTime = 7;

default: SleepTime = 10; // Enjoy!
// The default covers the case when DayOfWeek
// has value 7.
endcase
endmodule
// Synthesized netlist is shown in Figure 2-29.

D
=

-3
A

DoyOfHeek?2 SlespTined

A

DayOfKeekl

s

0RI22

ORIZ1

SleapTine3

%RBH SleepTinel
E> IN: REH SleepTine2

DoyOrKeek3
>

Figure 2-29 A case statement example.
Here is another example of a case statement.

module SelectAndAssign (CurrentState, RFlag);
input [(0:1) CurrentState;
output [0:1] RFlag;
reg [0:1] RFlag;

parameter RESET = 2'b01, APPLY = 2'bl1l, WAITS = 2'b10,
DONTCARE = 2'b00;

always @ (CurrentState)
case (CurrentState)
RESET: RFlag = WAITS;
APPLY: RFlag = RESET;

47

CHAPTER 2 Verilog Constructs to Gates

WAITS: RFlag = APPLY;
default : RFlag = DONTCARE;
endcase
endmodule
// Synthesized netlist is shown in Figure 2-30.

RF1aq@ 3
CurrentStatel

CurrentStated &O B Z oAI21
INRBH ND2

Figure 2-30 Logic generated from a case statement.

D
@

)

RF togl
7

2.14.1 Casez Statement

In a casez statement, the value z is considered as a don’t-care when it
appears in a case item expression. The ? character can also be used alter-
natively for the character z. Values z and x are not allowed in a case ex-
pression. Additionally, value x cannot appear in a case item expression.
Here is an example of a casez statement.

module CasezExample (ProgramCounter, DoCommand) ;
input [0:3] ProgramCounter;
output [0:1] DoCommand;
reg [0:1]) DoCommand;

always @ (ProgramCounter)
casez (ProgramCounter)
4'b???1 : DoCommand = 0;
4'b??10 : DoCommand = 1;
4'b?100 : DoCommand = 2;
4'b1000 : DoCommand = 3;
default : DoCommand = 0;
endcase
endmodule
// Synthesized netlist is shown in Figure 2-31.

48

Case Statement SECTION 2.14

ProgromCounter3 DoCommand@
ProgramCounter1 bc
INRBH
ADIZ211
ProgramCounter2

A2 DoCammandl

LBy
ProgramCounterd D}?{RBH ? Nk

A0I21

Figure 2-31 Casez statement example.

The casez statement is equivalent to the following i f statement (note
that the ? character in a case item denotes a don’t-care value).

if (ProgramCounter [3])
DoCommand = 0;

else if (ProgramCounter [2:3] == 2'bl0)
DoCommand = 1;

else if (ProgramCounter [1:3]1 == 3'b100)
DoCommand = 2;

else if (ProgramCounter [0:3] == 4'b1000)
DoCommand = 3;
else

DoCommand = 0;

2.14.2 Casex Statement

In a casex statement, the values x and z (? for a z is ok too) in a case
item expression are considered as don’t-care values. These values, for
synthesis purposes, cannot appear as part of the case expression. Here is
an example of a casex statement used to model a priority encoder.

module PriorityEncoder (Select, BitPosition);
input [5:1] Select;
output [2:0] BitPosition;
reg [2:0] BitPosition;

always @ (Select)
casex (Select)

49

CHAPTER 2 Verilog Constructs to Gates

5'bxxxxl : BitPosition
5'bxxxlx : BitPosition
5'bxxlxx : BitPosition
5'bxlxxx : BitPosition
5'blxxxx : BitPosition =
default : BitPosition = 0;
endcase
endmodule
// Synthesized netlist is shown in Figure 2-32.

o
U W N

’

@_% L,,g BitPositond
Selectd
&;. < NR2 B

INRBH ‘7 0AI21
Jolects BitPosltlon2
Select2
>——D°
Select3 NR2
Selact] A ORI211

INREH ~ BitPosition]

—>
NR2

Figure 2-32 A priority encoder using casex statement.

The semantics of this casex statement can best be expressed by its equiva-
lent if statement.

if (Select [1}])
BitPosition = 1;
else if (Select [2])
BitpPosition = 2;
else if (Select (3])
BitPosition = 3;
else if (Select [4])
BitPosition = 4;
else if (Select {5])
BitPosition =5;

50

Case Statement SECTION 2.14

else
BitPosition = 0;

2.14.3 Inferring Latches from Case Statements

A latch may be inferred for a variable assigned in a case statement,
just like in an if statement. If a variable is not assigned a value in all pos-
sible executions of the always statement, such as when a variable is as-
signed a value in only some branches of a case statement, a latch is
inferred for that variable. See the following example.

module StateUpdate (CurrentState, Zip);
input (0:1]} CurrentState;
output [0:1] Zip;
reg [0:1] Zip;

parameter S0 =0, S1 =1, S2=2, S3=3;

always @ (CurrentState)
case (CurrentState)

S0,
S$3: Zip = 0;
S1: Zip = 3;
endcase
endmodule

// Synthesized netlist is shown in Figure 2-33.

Zipl

0 0
Al
e
CurrentStatel 8) —cx . QN'—
S 0AI21 FD1S10

CurrentStated

ND2

@- NR2
INRBH

Figure 2-33 Latch inferred for a variable in a case statement.

51

CHAPTER 2 Verilog Constructs to Gates

The variable Zip is not assigned a value for all possible values of the input
CurrentState. Therefore in keeping with the language semantics of a reg
variable, a latch is inferred for Zip. The synthesized netlist shows the
latch. In terms of latch inferencing, a case statement behaves identical to
an if statement. If a latch is to be avoided, insert an initial value assign-
ment to Zip before the case statement, as shown in the following code.
The explicit assignment to Zip causes it to be defined for all values of
CurrentState, and consequently for all possible executions of the always
statement.

always @ (CurrentState)
begin
Zip = 0; // This statement added.

case (CurrentState)
endcase
end

The rules for inferring latches apply to casex and casez statements equally
as well.

2.14.4 Full Case

In the previous section, we saw that a latch may be inferred for a vari-
able that is not assigned a value for all possible values of a case expres-
sion. Sometimes it is the case that the designer does not expect the case
expression to have any value other than those listed in the case items.
Here is an example.

module NextStateLogic (NextToggle, Toggle);
input [1:0] Toggle;
output [1:0] NextToggle;
reg [1:0] NextToggle;

always @ (Toggle)
case (Toggle)
2'b01 : NextToggle
2'bl0 : NextToggle
endcase

2'bl0;
2'b01;

52

Case Statement SECTION 2.14

endmodule
// Synthesized netlist is shown in Figure 2-34.

NextTogglel

M&C A
INRBH 24 FD1S1D
O

Toggled — ‘bl
AND2

@D ——CK ON—
| 5

NextToggled

NR2 0

FOIS10
Figure 2-34 Latches are inferred for NextToggle.

The designer knows that Toggle cannot have any value other than 2'b01
and 2'b10. This information needs to be passed to the synthesis tool. If
such information is not provided to the synthesis tool, latches are inferred
for NextToggle (the two FD1S1D’s in Figure 2-34) since it is not assigned
a value for the case expression values 2'b00 and 2'b11. Such information
is passed to a synthesis tool via a synthesis directive called full_case. A
synthesis directive is a special code in the model that provides additional
information to a synthesis tool. The full_case synthesis directive is speci-
fied as a Verilog HDL comment in the model associated with the case
statement; since the synthesis directive appears as a comment, it has no ef-
fect on the language semantics of the model.

A synthesis tool on encountering such a directive on a case statement
understands that all possible values (that can occur in the design) of the
case expression have been listed and no other values are possible. Conse-
quently, a variable assigned in all branches of the case statement will nev-
er infer a latch. Here is the case statement in the NextStateLogic module
with the directive specified.

module NextStateLogicFullCase (NextToggle, Toggle);
input [1:0] Toggle;
output [1:0] NextToggle;
reg [1:0] NextToggle;

53

CHAPTER 2

Verilog Constructs to Gates

always @ (Toggle)
case (Toggle) // synthesis full_case
2'b01 : NextToggle = 2'bl0;
2'bl0 : NextToggle = 2'b01;
endcase
endmodule
// Synthesized netlist is shown in Figure 2-35.

Toggle®

q > NextTogqle@

B
A Z
Togglel l>IiRBH NR2

—1A NextTogglel
2z
———B

AND2

Figure 2-35 With full_case synthesis directive: no latches.

As the synthesized netlist shows, no latches are inferred for NextToggle
when the full_case synthesis directive is used.

An alternative way to avoid latches in the above example is to specify
a default branch in the case statement or to make a default assignment to
all variables assigned in a case statement (in this example, NextToggle),
prior to the case statement. Here is an example that uses a default branch
to avoid inferring latches.

always @ (Toggle)
case (Toggle)
2'b01 : NextToggle = 2'bl0;
2'bl0 : NextToggle = 2'b01;
default : NextToggle = 2'b01; // Dummy assignment.
endcase

Here is the always statement that has a default assignment for NextToggle;
no latches are inferred for NextToggle.

always @ (Toggle)
begin

Case Statement SECTION 2.14

NextToggle = 2'b01; // Default assignment.

case (Toggle)

2'b01 : NextToggle = 2'bl0;
2'bl0 : NextToggle = 2'b01;
endcase
end

Caution, use of the full_case directive can potentially lead to a func-
tional mismatch between the design model and the synthesized netlist; see
Chapter 5 for such examples.

2.14.5 Parallel Case

Verilog HDL semantics of a case statement specifies a priority order in
which a case branch is selected. The case expression is checked with the
first case item, if it is not the same, the next case item is checked, if not the
same, the next case item is checked, and so on. A priority order of case
item checking is implied by the case statement. Additionally, in Verilog
HDL, it is possible for two or more case item values to be the same or
there may be overlapping case item values such as in casex and casez
statements; however, because of the priority order, only the first one in the
listed sequence of case items is selected.

To apply the strict semantics of a case statement in synthesis to hard-
ware, a nested if-like structure (priority logic: if this do this, else if this do
this, else . . .) is synthesized. Here is an example of a case statement.

module PriorityLogic (NextToggle, Toggle);
input [2:0] Toggle;
output [2:0] NextToggle;
reg [2:0] NextToggle;

always @ (Toggle)
casex (Toggle)

3'bxxl : NextToggle = 3'b010;
3'bxlx : NextToggle = 3'bl10;
3'blxx : NextToggle = 3'b001;

default : NextToggle = 3'b000;
endcase
endmodule
// Synthesized netlist is shown in Figure 2-36.

56

CHAPTER 2 Verilog Constructs to Gates

Toggtel

Toggle® INRB

NextToggle2

A NextToggled
z
B
ﬁ» AND2
INRB

Figure 2-36 Priority logic selects each branch.

Toggte2

The equivalent behavior of the case statement is expressed in the follow-
ing if statement.

if (Toggle[0] == 'bl)
NextToggle = 3'b010;
else if (Toggle[l] == 'bl)
NextToggle = 3'b110;
else if (Toggle[2] == 'bl)
NextToggle = 3'b001;
else

NextToggle = 3'b000;

What if the designer knows that all case item values are mutually ex-
clusive? In such a case, a decoder can be synthesized for a case statement
control (the case expression is checked for all possible values of the case
item values in parallel) instead of the priority logic (which could poten-
tially be nested deep depending on the number of branches in the case
statement).

The information that all case item values are mutually exclusive needs
to be passed to the synthesis tool. This is done by using a synthesis direc-
tive called parallel_case. When such a directive is attached to a case state-
ment, a synthesis tool interprets the case statement as if all case items are
mutually exclusive. Since the synthesis directive appears as a comment in
the Verilog HDL model, it has no effect on the language semantics of the
model. This implies that no priority logic is synthesized for the case state-
ment control; instead decoding logic is used. Here is the case statement
with the parallel_case directive.

56

Case Statement SECTION 2.14

module ParallelCase (NextToggle, Toggle);
input [2:0] Toggle;
output [2:0] NextToggle;
reg [2:0] NextToggle;

always @ (Toggle)
casex (Toggle) // synthesis parallel_case
3'bxx1l : NextToggle = 3'b010;
3'bxlx : NextToggle = 3'bl10;
3'blxx : NextToggle = 3'b001;
default : NextToggle = 3'b000;
endcase
endmodule
// Synthesized netlist is shown in Figure 2-37.

NextTogglel

NextToggle2
R Z
INRB
NextToggled
Togqle2 w. R>Z xtiogg S
INRB INRB

Figure 2-37 With parallel_case directive: no priority logic.

The equivalent synthesis interpretation for the case statement is as fol-
lows (with only one i f condition guaranteed to be true).

if (Toggle[0] == 'bl)
NextToggle = 3'b010;

if (Togglel[l] == 'bl)
NextToggle = 3'bl110;

if (Toggle([2] == 'bl)
NextToggle = 3'b001;

if ((Togglel[0] != 'bl) &&
(Toggle[l] !'= 'bl) &&

67

CHAPTER 2 Verilog Constructs to Gates

(Toggle[2] = 'bl))
NextToggle = 3'b000;

With the synthesis directive, decoding logic is synthesized for the branch-
ing logic as shown in Figure 2-37. Without the synthesis directive, priority
logic is synthesized as shown in Figure 2-36.

A word of caution. The synthesis directive, parallel_case, can poten-
tially cause a functional mismatch between the design model and the syn-
thesized netlist; Chapter 5 elaborates on this further.

2.14.6 Non-constant as Case Item

In Verilog HDL, it is possible to have a non-constant expression as a
case item. This is shown in the following example of a priority encoder.

module PriorityEncoder (Pbus, Address);
input [0:3] Pbus;
output [0:1] Address;
reg [(0:1] Address;

always @ (Pbus)
case (1'bl) // synthesis full_case
Pbus[0] : Address = 2'b00;
Pbus[l] : Address = 2'b01;
Pbus[2] : Address = 2'b10;
Pbus{[3] : Address = 2'bl1l;
endcase
endmodule
// Synthesized netlist is shown in Figure 2-38.

It is necessary to specify the full_case synthesis directive, otherwise latch-
es are inferred for Address. Alternatively, an initial assignment to Address
before the case statement can also be made to avoid latches; no synthesis
directive is then necessary. This is shown in the following always state-
ment.

always @ (Pbus)
begin
Address = 2'b00;

58 >

Pbusf

More on Inferring Latches =~ SECTION 2.15

Addrecsd

Pbus2 [I>C
Pbusl INRBH

ROI211

g

Pbus3 &(\r
INRBH

ADI21

Rddressl

NR2

Figure 2-38 Priority encoder using case statement.

case (1'bl)
Pbus([0]
Pbus (1]
Pbus{2]
Pbus[3]
endcase
end

2.15 More on Inferring Latches

: Address
: Address
: Address
: Address

2'b00;
2'b01;
2'bl0;
2'bll;

A latch can be inferred by using an incompletely specified if state-
ment or a case statement, that is, if a variable is not assigned a value in all
branches of an i f statement or a case statement, a latch is inferred for that

variable. Here is an example.

module LatchExample (ClockA, CurrentState, NextState);

input ClockAa;

input [3:0] CurrentState;
output [3:0] NextState;
reg [3:0] NextState;

always @ (ClockA or CurrentState)

if (ClockA)

NextState = CurrentState;

59

CHAPTER 2 Verilog Constructs to Gates

endmodule
// Synthesized netlist is shown in Figure 2-39.

CurrentStated o o NextStated
ClockA
FD1S1A
CurrentState2 o of—NextStote2 S
p——iCK -
FD1S1A
CurrentStated NoxtStated
——cx -~
FD1S1A
CurrentStatel n N NextStatel
CK b —

FD1S1A

Figure 2-39 An incompletely specified condition infers a latch.
]
The variable NextState is assigned a value only when ClockA is 1. If
ClockA is 0, NextState retains its previous value, thus inferring a latch.

Locally Declared Variable

A variable declared locally within an always statement is also inferred
as a latch if it is incompletely assigned in a conditional statement (i f
statement or case statement). This is shown in the following module.

module LocalIntLatch (Clock, CurrentState, NextState);
input Clock;
input [3:0] CurrentState;
output [3:0] NextState;
reg [3:0] NextState;

always @ (Clock or CurrentState)

begin: LI
integer Temp;

60

More on Inferring Latches = SECTION 2.15

if (Clock)
Temp = CurrentState;

NextState = Temp;
end
endmodule
// Synthesized netlist is shown in Figure 2-40.

S CurrentStote3 o

Clock

F01S1A

CurrentStote2 o NextState2 5

——iCK aN—
FD151A

CurcentStated o NoxtStated 5

F0151A

CurrentStotel

NextStatel

——CK ONe—
FD1S1A

Figure 2-40 A local integer can also be a latch.

Variable Assigned Before Use

If a variable is assigned and used within a conditional branch, no latch
is necessary as shown in the following module. This is because the value
of variable Temp need not be saved between level changes of Clock.

module LocalIntNoLatch (Clock, CurrentState,
NextState) ;
input Clock;
input [3:0] CurrentState;
output [3:0) NextState;

61

CHAPTER 2 Verilog Constructs to Gates

reg [3:0] NextState;

always @ (Clock or CurrentState)
begin: L1
integer Temp;

if (Clock)
begin
Temp = CurrentState;
NextState = Temp;
end
end
endmodule
// Synthesized netlist is same as one

// shown in Figure 2-40.

Use Before Assigned

If a variable is used before it is assigned in an incompletely specified
conditional statement, then a latch is inferred. Here is such a module.

module RegUsedBeforeDef (ClockZ, CurrentState,
NextState);
input ClockZ;
input [3:0] CurrentState;
output [3:0] NextState;
reg [3:0] NextState;

reg [3:0] Temp;

always @ (ClockZ or CurrentState or Temp)
if (ClockZ2)
begin
NextState = Temp;
Temp = CurrentState;
end
endmodule
// Synthesized netlist is shown in Figure 2-41.

What about if 7emp is an integer?

62

More on Inferring Latches =~ SECTION 2.15

CurrentStute3 [1 A NoxtStote3
1] -
FOISIA FD151A
S CurrmtStote (1 [1 MaxtStata? s
FOI81A FO181A
SCirreniSiste [[4 NextStoted
FO1518 FDISIA
CurrentStote] [4 [4 NortStatad
FOISHA oisiA

Figure 2-41 A variable used before being assigned in a conditional.

module LocalIntUsedBeforeDef (ClockY, CurrentState,
NextState) ;
input ClockY;
input [3:0] CurrentState;
output [3:0] NextState;
reg [3:0] NextState; -

always @ (ClockY or CurrentState)
begin: LI
integer Locallnt;

if (ClockY)
begin
NextState = Locallnt;
LocalInt = CurrentState;
end
end
endmodule

A synthesis system may produce an error in such a case indicating that the
local integer Locallnt is used before its definition. Alternately a synthesis

63

CHAPTER 2 Verilog Constructs to Gates

system may produce a warning and not generate any latches for the local
integer.

2.15.1 Latch with Asynchronous Preset and Clear

If a variable, that is inferred as a latch, is assigned constant values in
some branches of a conditional statement, bits that are 1 get assigned to
the preset terminal of the latch, while those with O get assigned to the
clear terminal. This is shown in the following example.

module AsyncLatch (ClockX, Reset, Set, CurrentState,
NextState) ;
input ClockX, Reset, Set;
input [3:0] CurrentState;
output [3:0] NextState;
reg [3:0] NextState;

always @ (Reset or Set or ClockX or CurrentState)
if (! Reset)
NextState = 12;
else if (! Set)
NextState = 5;
else if (! ClockX)
NextState = CurrentState;
endmodule
// Synthesized netlist is shown in Figure 2-42.

Four latches, with preset and clear terminals as appropriately required, are
synthesized for NextState.

For the above example, a synthesis tool may alternately not generate a
latch with asynchronous preset and clear, but direct the preset clear logic
into the D-input of a simple latch. This is shown in the synthesized netlist
that appears in Figure 2-43.

More on Inferring Latches SECTION 2.15

S CurrentStated
ClockX

:Sot H;
INRBH)

I "a— NextState

Next Stote2

CurrentState2)

I
¥

t!
CurrantState3 N2 r D NoxtStotel
OR2

CurrentStotel

[o1]

FD1S1D

Figure 2-42 Latch with asynchronous preset and clear.

65

CHAPTER 2 Verilog Constructs to Gates

CurrontStated 1 - uNo_xtS_tM_a
g
INRBH B oATaL INRBH . —
FD1S1A
CurrentJtated = 0 NextState3 .
B y A
ND2 B
E::.t . ND2 i
ClookX E L FD1S1A
ND3 0 NoxtState2
CuyrrontState? (>v
INRBH NO3 o N
o ¢Statol FD131R
U e Q.
A \ NextStatel
B Z’ (] —>
AND3
CK QN
FD1S1A

Figure 2-43 Latches with no asynchronous preset and clear.

2.16 Loop Statement

There are four kinds of loop statements in Verilog HDL.
e while-loop
o for-loop g
+ forever-loop
e repeat-loop

The for-loop statement is the one typically supported for synthesis. A for-
loop is implemented by unrolling the for-loop, that is, all statements with-
in the for-loop are replicated, once for each value of the for-loop index.
This puts a restriction on the for-loop bounds, which must therefore eval-
uate to constants. Here is an example of a for-loop statement.

module DeMultiplexer (Address, Line);
input [1:0] Address;

66

Loop Statement ~ SECTION 2.16

output [3:0] Line;
reg [3:0] Line;

integer J;

for (J=3; d>=0; J=J-1)

3

|

f always @ (Address)
if (Address == J)

// Synthesized netlist is shown in Figure 2-44.

i Line(J) = 1;
| else

i Line[J] = 0;
| endmodule

|

Line3
Addressd a3

INRB NR2Z2

A LInal
Address1 ~ 1,3 Z
INRB NRZ

E— L F Yo Line2

NR2 NRZ L ined

Figure 2-44 A for-loop example.

When the for-loop is expanded, the following four if statements are ob-
tained.

if (Address == 3) Linel[3]
if (Address == 2) Line[2]
if (Address == 1) Linel[ll}
if (Address == 0) Line[0]

1; else Line[3)
1; else Line[2]
1
1

; else Line[1l]
; else Line([0]

]
o O oo

67

CHAPTER 2

Verilog Constructs to Gates

2.17 Modeling Flip-flops

68

A flip-flop is inferred from a variable when it is assigned a value in a
special form of always statement. This always statement is of the form:

always @ (<clock_event>)
<statement>

where <clock_event> is one of:

posedge <clock_name>
negedge <clock name>

The semantics of the always statement implies that all statements in
<statement> are to be executed only when a rising edge or a falling edge
of clock occurs. We shall call this special always statement as a clocked
always statement.

When modeling sequential logic, it is recommended that a non-
blocking procedural assignment be used for a variable that is assigned in a
clocked always statement and its value used outside of the always state-
ment; this is to prevent any possibility of functional mismatch between
the design model and its synthesized netlist. Such a target of a non-block-
ing assignment that appears in a clocked always statement accurately
models the behavior of a sequential element.

Here is a simple example.

module PickOne (A, B, Clock, Control, Zee);
input A, B, Clock, Control;
output Zee;
reg Zee;

always @ (negedge Clock) A
if (Control)
Zee <= A;
else
Zee <= B;
endmodule
// Synthesized netlist is shown in Figure 2-45.

Modeling Flip-flops SECTION 2.17

>—-———————g D1 o288 5
Control 0o
>———1SD
> Clock b CK oN—
FL1S2AX

Figure 2-45 Sequential logic synthesized using a special always statement.

The assignment to output Zee occurs only at the falling edge of the clock.
Variable Zee is inferred to be a falling-edge-triggered flip-flop. The flip-
flop shown in the figure has a data-select, that is, the input Control selects
either A or B as the data for the flip-flop.

Here is another example.

module Incrementor (ClockA, Counter) ;
parameter COUNTER_SIZE = 2;
input ClockAa;
output [COUNTER_SIZE-1:0} Counter;
reg [COUNTER_SIZE-1:0] Counter;

always @ (posedge ClockA)
Counter <= Counter + 1;
endmodule
// Synthesized netlist is shown in Figure 2-46.

Counterl
9]

Clockf

CK ON
FD1S3AX

FD1S3AX

Counter®

Figure 2-46 Modeling flip-flops.

The logic in the always statement implies that every time there is a rising
edge on ClockA, variable Counter is incremented. Since Counter is as-

69

CHAPTER 2

70

Verilog Constructs to Gates

signed under the control of a clock edge, rising-edge-triggered flip-flops
are synthesized for Counter.

Here is a model of an up-down counter that shows flip-flops being
modeled.

module UpDownCounter (Control, ClockB, Counter) ;
input Control, ClockB;
output [1:0] Counter;
reg [1:0] Counter;

always @ (negedge ClockB)

if (Control)
Counter <= Counter + 1;
else
Counter <= Counter - 1;
endmodule

// Synthesized netlist is shown in Figure 2-47.

I Counterl
r—01 Q —ot 0

Control |08 a
S0 S0
DK 0 —CPCK N
ClockB FL182RX INRBH FL1S2AX

Counter®

Figure 2-47 Falling-edge-triggered flip-flops inferred.

The variable Counter is assigned under the control of a falling edge of
clock ClockB. Thus, two falling-edge-triggered flip-flops are synthesized
for Counter.

Flip-flop inference rule is simple: If a variable is assigned a value un-
der the control of a clock edge, a flip-flop is generated; an exception to
this rule is when a variable is assigned and used only locally within an al-
ways statement as an intermediate variable.

Here is another example.

Modeling Flip-flops ~ SECTION 2.17

module FlipFlop (Clk, CurrentState, NextState) ;
input Clk;
input [3:0] CurrentState;
output [3:0] NextState;
reg [3:0] NextState;

always @ (posedge Clk)
NextState <= CurrentState;
endmodule
// Synthesized netlist is shown in Figure 2-48.

CurrentStoted -

NextStated

—DCK oNf—
FD1S3AX

CurrentStotel

[=]
[=]

NextStotel

Cik

K ON—
FD153AX

CurrentState3

o
o

NextState3

€K ON—
FD153AX

CurrentStote2 E_—_C

NextState2

CK ON}—
FD1S3ARX

Figure 2-48 Flip-flops inferred from a variable assigned under clock control.

In this example, NextState is assigned a value only if there is a rising edge
on Clk. Thus, four rising-edge-triggered flip-flops (needed to store values
0 through 15) are inferred for reg NextState.

If a falling-edge-triggered flip-flop are to be inferred, then the clock
edge event “posedge CIk”” needs to be replaced by:

negedge Clk

71

CHAPTER 2

72

Verilog Constructs to Gates

Integer variables assigned under the control of a clock edge are also
inferred as flip-flops. Here is an example where an integer variable is as-
signed under clock control. Four flip-flops are inferred for the variable
IntState; the other high-order bits of the variable are optimized away
(since they are not used).

module FlipFlopInt (Clk, CurrentState, NextState);
input Clk;
input [3:0] CurrentState;
output [3:0] NextState;

integer IntState;

always @(posedge Clk)
IntState <= CurrentState;

assign NextState = IntState;
endmodule
// Synthesized netlist is same as Figure 2-48.

Local Use of Variables

In all the above cases, a variable was assigned under the control of a
clock and its value was used outside of the always statement, thus requir-
ing its value to be saved in a flip-flop.

What if a variable is defined globally (outside the always statement)
but used only locally within an always statement? Here is an example.

module GlobalReg (Clk, CurrentState, NextState):
input Clk;
input [3:0] CurrentState;
output [3:0] NextState;
reg [3:0] NextState;

reg [3:0] Temp;

always @(negedge Clk)
begin
Temp = CurrentState;
NextState <= Temp;
end
endmodule

Modeling Flip-flops ~ SECTION 2.17

Even though Temp is assigned under the control of the clock, no flip-flops
are inferred for Temp since it is assigned a value first and then used, all
within the same clock cycle. The synthesized netlist is same as Figure 2-
48. In this case, Temp is merely being used as a temporary (as an interme-
diate variable), and therefore a blocking assignment should be used to re-
flect the fact that the use of Temp in the second statement is the value of
Temp assigned in the first statement. A non-blocking assignment is used
for the NextState assignment as NextState infers flip-flops.

What happens in the above case if we switch the order of the state-
ments around? In this case, since the value of Temp is used before its as-
signment, its value needs to be retained across multiple clock cycles,
thereby inferring flip-flops for Temp. Temp models the internal state of the
always statement. This is shown in the following example, where Temp is
used before its assignment.

module RegUseDef (Clk, CurrentState, NextState);
input Clk;
input [3:0] CurrentState;
output [3:0] NextState;
reg [3:0] NextState;

reg [3:0] Temp;

always @ (negedge Clk)
begin
NextState <= Temp;
Temp = CurrentState;
end
endmodule
// Synthesized netlist is shown in Figure 2-49.

In this case, falling-edge-triggered flip-flops are inferred for variable
Temp, in addition to those for NextState.

What if variables are declared locally within an always statement?

Variables (reg and integer types) declared locally within an always
statement do not infer flip-flops. This may potentially lead to a functional
mismatch between the Verilog HDL model and the synthesized netlist.
Here is an example of a locally declared variable Temp that does not get
inferred as a flip-flop.

73

CHAPTER 2 Verilog Constructs to Gates

CurrentStated b a b P NoxtStoted
—PCK ON— —CcpCK ON
FD152AX FD152AX
NextStatel
CurrentStatel o o b a
Clk pb—DCK ONl— CK ONjp—
>3
FD1S2RX FO152AX
CurrentState3 N NextState3
D Q 0 Q
——CDCK ONp— —PCK ON—
FD1S2A/X FO152RX
CurrentState2 o " " o NextStateZ
—PCK ON— CK ON|—
FD152AX FD152A%

Figure 2-49 A variable used before its definition is inferred as a flip-flop.

module LocalVarAssignUse (Clk, CurrentState,
NextState) ;
input Clk;
input [3:0] CurrentState;
output [3:0] NextState;
reg [3:0] NextState;

always @ (posedge Clk)
begin: LabelA
reg [3:0] Temp;

Temp = CurrentState;
NextState <= Temp;
end
endmodule

No flip-flops are inferred for Temp since it is locally declared within the
always statement and a value is assigned to the variable and used immedi-
ately in the same clock edge. Flip-flops are inferred for NextState (as this

74

Modeling Flip-flops SECTION 2.17

is used outside the always statement). The synthesized netlist is same as
the one shown in Figure 2-48.

However, a potential for mismatch exists between the design model
and its synthesized netlist if the order of the above statements are re-
versed. This is because no flip-flops are inferred for locally declared vari-
ables. Here is such a model.

module LocalVarUseAssign (Clk, CurrentState,
NextState) ;
input Clk;
input [3:0] CurrentState;
output [3:0] NextState;
reg [{3:0] NextState;

always @(posedge Clk)
begin: LabelA
reg [3:0] Temp;

NextState <= Temp;
Temp = CurrentState;
end
endmodule

The synthesized netlist is the same as in Figure 2-48. Notice that on every
clock edge, NextState always get the value of Temp assigned in the previ-
ous clock cycle, but not so in the synthesized netlist. The recommendation
here is to avoid using locally declared variables in this fashion. Hopefully
a synthesis tool will issue a warning if no flip-flops are inferred for Temp.

2.17.1 Multiple Clocks

It is possible to have a single module that has multiple clocked always
statements. Here is such an example of multiple clocks used in a single
model.

module MultipleClocks (Vtl5Clock, AddClock, AdN,
ResetN, SubClr, SubN, DslClock, DslAdd, DslSub);
input Vtl15Clock, AddClock, AdN, ResetN, SubClr,
SubN, DslClock;
output DslAdd, DslSub;
reg Ds1Add, DslSub;

75

CHAPTER 2

76

Verilog Constructs to Gates

reg AddState, SubState;

always @ (posedge Vt15CIlock)

begin

AddState <= AddClock “~ (AdN | ResetN) ;
SubState <= SubClr ~ (SubN & ResetN);

end

always @ (posedge Dsl1Clock)

begin

Ds1Add <= AddState;
Ds1Sub <= SubState;

end

endmodule
// Synthesized netlist is shown in Figure 2-50.

AddClock

AdN

ResetN
>

Ds1Clock

OR2

D XNOR2

RddState

CK

ON—

FB153AX

KON

Yt15C1ock

SubN

SubClr

XOR2
AND2

X

SubState

FD

1S3AX

Ds1Sub

ON—

FD153AX

=]

cK

ON}F—

FD1§3AX

Figure 2-50 Multiple clocks within an always statement.

This module has two always statements. The statements in the first always
statement are controlled by a positive edge of clock VtI/5Clock, while the
statements in the second always statement are controlled by the positive
edge of clock DsIClock.

A restriction usually imposed by a synthesis system is that a variable
cannot be assigned under the control of more than one clock. For exam-
ple, it would be illegal to assign to AddState in the second always state-

ment.

Modeling Flip-flops =~ SECTION 2.17

2.17.2 Multi-phase Clocks

It is possible to have a single module with multiple clocked always
statements in which different edges of the same clock are used. Here is
such an example in which two different phases of the same clock are used.

module MultiPhaseClocks (Clk, A, B, C, E);
input Clk, A, B, C;
output E;
reg E, D;

always @ (posedge Clk)
E<=D| C;

always @ (negedge Clk)
D<= A & B;
endmodule
// Synthesized netlist is shown in Figure 2-51.

D

—iD 0 3
q 0 —>
>—a
H B —CDCK ONf—
AND2 FD152AX ORe thoN—
C FD1S3AX
Clk

Figure 2-51 Different edges of the same clock within a single module.

In this module, the statements in the first always statement are controlled
by the positive edge of Clk, while the statements in the second always
statement are controlled by the negative edge of Clk.

A restriction usually imposed by a synthesis system in this case is that
a variable cannot be assigned under two different clock conditions or for
that matter, under different clock edges. For example, it would be illegal
to assign a value to D in the first always statement.

77

CHAPTER 2 Verilog Constructs to Gates

2.17.3 With Asynchronous Preset and Clear

So far we have talked about synthesizing simple D-type flip-flops.
What if we wanted to infer a flip-flop with asynchronous preset and clear?
To generate such a flip-flop, a special form of if statement has to be
used. This is best shown with an example template.

always @ (posedge A or negedge B or negedge C . . .
or posedge Clock)

if (A) // posedge A.

<statement> // Asynchronous logic.
else if (! B) // negedge B.

<statement> // Asynchronous logic.
else if (! C) // negedge C.

<statement> // Asynchronous logic.
... // Any number of else if’s.
else // posedge Clock implied.

<statement> // Synchronous logic.

The event list (the parenthesized list following the @ symbol) in the al-
ways statement can have any number of edge events, either posedge or
negedge. One of the events must be a clock event. The remaining events
specify conditions under which asynchronous logic are to be executed.
The always statement has exactly one if statement with many else
if’s. Each if corresponds to one edge in the event list. The last else
implicitly corresponds to the clock edge. The conditions for the if state-
ments must match the edge type specified in the event list. For example, if
“posedge A” is present in the event list, then the i f statement starts of as:

if (A4)
If “negedge B” is present in event list, then the i f statement starts of as:

if (! B)

The statements within each 1f branch (except the last) represents asyn-
chronous logic, while the statement in the last else branch represents
synchronous logic.

If a variable is assigned a value in any of the asynchronous sections
and is also assigned in the synchronous part, that variable will get synthe-

78

Modeling Flip-flops SECTION 2.17

sized as a flip-flop with asynchronous preset and or clear. Depending on
the value being assigned, the flip-flop could either be a flip-flop with asyn-
chronous preset (if a non-zero value is assigned), or a flip-flop with asyn-
chronous clear (if a zero value is being assigned), or a flip-flop with both.

Here is an example of an up-down counter with asynchronous preset
and clear.

module AsyncPreClrCounter (Clock, Preset, UpDown,
Clear, PresetData, Counter);
parameter NUM_BITS = 2;
input Clock, Preset, UpDown, Clear;
input [NUM_BITS-1:0] PresetData;
output [NUM _BITS-1:0] Counter;
reg [NUM _BITS-1:0] Counter;

always @ (posedge Preset or posedge Clear or
posedge Clock)
if (Preset)
Counter <= PresetData;
else if (Clear)
Counter <= 0;

else // Implicit posedge Clock.
begin // Synchronous part.
if (UpDown)
Counter <= Counter + 1;
else
Counter <= Counter - 1;
end
endmodule

// Synthesized netlist is shown in Figure 2-52.

Having an asynchronous data input such as PresetData can cause a prob-
lem. Consider when Preset is 1 and then PresetData changes. The change
of PresetData does not reflect in the Verilog HDL model while the change
propagates to Counter in the synthesized netlist. Avoid or be careful when
using asynchronous data inputs.

Here is another example of inferring a flip-flop with asynchronous
preset and clear.

79

CHAPTER 2 Verilog Constructs to Gates

W(L%D» =
o

)iy
\ R
FLISXX
M 12 ALLSIX

Figure 2-52 Flip-flops with asynchronous preset and clear.

module AsyncFlipFlop (ClkA, Reset, Set, CurrentState,
NextState);
input ClkA, Reset, Set;
input [3:0] CurrentState;
output [3:0] NextState;
reg [3:0] NextState;

always @ (negedge Reset or negedge Set or negedge ClkA)
if (! Reset)
NextState <= 12; // Stmt A.
else if (! Set)
NextState <= 5; // Stmt B.
else
NextState <= CurrentState; // Stmt C.
endmodule
// Synthesized netlist is shown in Figure 2-53.

Since NextState is assigned a value under the control of a clock edge (St-
mt C) and it is also assigned asynchronously (Stmt A and B), a falling-
edge-triggered flip-flop with asynchronous preset and clear is synthe-
sized. This is shown in Figure 2-53. Note that four flip-flops are required.
The first flip-flop (the leftmost bit of NextState) has both asynchronous
preset and clear terminals since it needs to be preset on Reser and cleared
on Ser. Similarly, the fourth flip-flop has both asynchronous preset and
clear terminals since it needs to be preset on Ser and cleared on Reset. The

80

Modeling Flip-flops =~ SECTION 2.17

CurrentStated
b e —

L aNoxtShrhO 3

ON|
FD152CX

CurrentStated

NextStated

‘Do_ X con N~
INRBH FD1SZKX

CurrentStatel 3 NextStatel

—CPCK o ON—

FD1520X

CurrentStote2 ND2 PO NoxtState2

C«A

PCK ONf—
FD1528X

Figure 2-53 Flip-flops with asynchronous preset and clear.

second flip-flop has only a preset terminal since a 'bl is asynchronously
assigned in both the conditions, while the third flip-flop has only a clear
terminal since a 'b0 is assigned under both the conditions.

2.17.4 With Synchronous Preset and Clear

What if we want to model a flip-flop with synchronous preset and
clear? In such a case, simply describe the synchronous preset and clear
logic within a clocked always statement (an always statement with a clock
event). Here is an example.

module SyncPresetCounter (Clock, Preset, UpDown,
PresetData, Counter);
parameter NBITS = 2;
input Clock, Preset, UpDown;
input [0:NBITS-1] PresetData;
output [0:NBITS-1] Counter;
reg [0:NBITS-1] Counter;

always @ (negedge Clock)
if (Preset)

81

CHAPTER 2

82

Verilog Constructs to Gates

Counter <= PresetData;
else
if (UpDown)
Counter <= Counter + 1;
else
Counter <= Counter — 1;
endmodule
// Synthesized netlist is shown in Figure 2-54.

AL
PresetDatal m p w2 - :
— Z 0o Counterd
Proset Bl :
\JD SD
¢ %) XOR? :
Lok PCK O o o
FL182AX FLISZAX
UpDown
% Counterl
PresetDotad INRBH

Figure 2-54 Synchronous preset clear synthesized as combinational logic.

There are two approaches to synthesize this model. One approach is to di-
rect the PresetData input into the synchronous preset input of the synthe-
sized flip-flops; alternatively, the PresetData could be directed directly
into the data input of the flip-flops. The synthesized netlist shown here
shows the latter option; a synthesis system may optionally synthesize to
the alternate approach.

Let us look at another example.

module SyncFlipFlop (ClkB, Reset, Set, CurrentState,
NextState) ;
input C1kB, Reset, Set;
input [3:0] CurrentState;
output [3:0] NextState;
reg [3:0] NextState;

always @ (negedge ClkB)
if (! Reset)
NextState <= 12;

else if (! Set)

NextState
else

<=5;

Modeling Flip-flops

NextState <= CurrentState;

endmodule

SECTION 2.17

// Synthesized netlist is shown in Figure 2-55.

CurrentState3 D
be '—l

ND2

NoxtState3

NextStotel

NextStated

NO2 K oN—
s CurrentStotel o b N FD1S2RX
Reset c
- AND3 | Sex oN—
*t FO152X
CixB
CurrentState@ ™
T A&o—’
INRBH

E INRBH

0RI21

CurrentState2

E INRBH

ND3

x

Q|

ON
FOLS2RX

NextStoteZ

FD1S2RX

Figure 2-55 Not a synchronous preset and clear flip-flop.

From this example, it appears that all the inputs to NextState, the value 12,

the value 5, and the variable CurrentState, should be multiplexed using

appropriate select lines into the D-input of the inferred flip-flops for Next-

State. This is exactly what occurs as shown in the synthesized netlist in
Figure 2-55. So then, how can we infer flip-flops with synchronous preset

and clear? A synthesis system may provide a solution for this by provid-

ing a special option for directing the synthesis system to generate a syn-
chronous preset clear flip-flop.

83

CHAPTER 2 Verilog Constructs to Gates

2.18 More on Blocking vs Non-blocking Assignments

In the previous sections, we have recommended that only non-
blocking procedural assignments be used for modeling sequential logic
(except for intermediate variables for which blocking assignments should
be used) and that only blocking procedural assignments be used for mod-
eling combinational logic. While these recommendations are followed in
all examples in this text, in this section, we mix blocking and non-
blocking assignments to illustrate the semantic differences, as it applies to
synthesis, between the two kinds of procedural statements.

There is a difference between how non-blocking and blocking assign-
ments are treated for synthesis because of the language semantic differ-
ence. In a blocking assignment, the assignment to the left-hand-side target
completes before the next statement in the sequential block is executed
(there is no difference between blocking and non-blocking if only one
statement is present in the always statement). In a non-blocking assign-
ment, the assignment to the left-hand-side target is scheduled for the end
of the simulation cycle (assignment does not occur immediately) before
the next statement is executed. Let us look at an example.

module FlagBits (ClockB, Strobe, Xflag, Mask,
RightShift, SelectFirst, CheckStop);
input ClockB, Strobe, Xflag, Mask;
output RightShift, SelectFirst, CheckStop;
reg RightShift, SelectFirst, CheckStop;

always @ (negedge ClockB)
begin
RightShift = RightShift & Strobe; // Blocking
SelectFirst <= RightShift | Xflag: // Non-blocking
CheckStop <= SelectFirst " Mask; // Non-blocking
end
endmodule
// Synthesized netlist is shown in Figure 2-56.

The always statement has a sequential block with three assignment state-
ments, the first one is a blocking procedural assignment and the next two
are non-blocking assignments. Since all these assignments occur under
the control of a clock edge, falling-edge-triggered flip-flops are synthe-

More on Blocking vs Non-blocking Assignments SECTION 2.18

-] RIghtShIFt

Strobe ' I_cc“ n—

AND2 FD1S2RX
ClockB

b CheckStop 3

0 j
J—' XOR2
2
Xflag. 8 L b on— o 4 mr—
FO152RX

Mask 0R? FD152RX

SelectFirst.

Figure 2-56 Non-blocking vs blocking procedural assignment.

sized for RightShift, SelectFirst and CheckStop. However, the difference is
in the way the information is connected to the data input of these flip-
flops. Because the assignment to RightShift is a blocking assignment, the
new value of RightShift is available for use in the second assignment. This
implies that the data input of the RightShift flip-flop should be used to gate
into the data input of the SelectFirst flip-flop. Because SelectFirst is a non-
blocking assignment, the use of SelectFirst in the third assignment refers
to the old value of SelectFirst, not to the value being assigned in the sec-
ond statement. Consequently, it is the flip-flop output of SelectFirst (old
value) that feeds the data input of the CheckStop flip-flop. The difference
explained can also be confirmed in the synthesized netlist shown in Figure
2-56.

Here is another example that highlights the difference between block-
ing and non-blocking assignments in synthesis.

module NonBlockingExample (ClockZ, Merge, ER, Xmit,
FDDI, Claim);
input ClockZ, Merge, ER, Xmit, FDDI;
output Claim;
reg Claim;
reg FCR;

always @ (posedge ClockZ)

begin
FCR <= ER | Xmit; // Assignment 1.

85

CHAPTER 2 Verilog Constructs to Gates

if (Merge)
Claim <= FCR & FDDI; // Assignment 2.
else
Claim <= FDDI;
end
endmodule
// Synthesized netlist is shown in Figure 2-57.

I 2 FCR a 01 d Claim

R 7 0o
8 50

Xmit

—bCK aNf— ANDZ oK oN—

OR2 FD153AX FL153AX

FODI
Merge
ClockZ

Figure 2-57 Non-blocking assignments.

There are three assignment statements in this example. Statements within
the sequential block execute sequentially. However, the target of a non-
blocking assignment is always assigned a value in the future (at the end of
the current simulation time). Therefore in keeping with the language se-
mantics of a non-blocking assignment, the use of FCR in assignment 2 is
the old value of FCR and not the value assigned in assignment 1. Thus in
the synthesized netlist, the output of the flip-flop for FCR is used to feed
into the logic for Claim.

Let us now look at the same example when blocking procedural as-
signments are used.

module BlockingExample (ClockZ, Merge, ER, Xmit, FDDI,
Claim);
input ClockZ, Merge, ER, Xmit, FDDI;
output Claim;
reg Claim;

reg FCR;
always @ (posedge ClockZ)

begin
FCR = ER | Xmit; // Assignment 1.

More on Blocking vs Non-blocking Assignments SECTION 2.18

if (Merge)
Claim = FCR & FDDI; // Assignment 2.
else
Claim = FDDI;
end
endmodule

// Synthesized netlist is shown in Figure 2-58.

Claim

FODI _ D!

ER T so
Xmit 1 PCK ON—
8

FLIS30X
0Rz AND2

B

Merge
ClockZ

Figure 2-58 Blocking assignments.

In this case, the assignment to FCR must complete first before assignment
2 is done. Thus to mimic the language semantics, the right-hand-side ex-
pression of assignment 1 must be used to form the logic for the data for
Claim. This is shown in the synthesized netlist. In addition, no flip-flop is
inferred for FCR since its value is assigned and then used; the value of
FCR does not have to be saved between different iterations of the always
statement.

Chapter 5 explains the rationale behind the recommendation for using
non-blocking assignments for sequential logic and for using blocking as-
signments for combinational logic; this is to prevent any possibility of a
functional mismatch between the Verilog HDL model and its synthesized
netlist. Note that this is only a recommendation; in many cases, it may be
perfectly okay to use either of the two assignments, as long as the seman-
tic differences are understood.

87

CHAPTER 2 Verilog Constructs to Gates

2.19 Functions

A function call represents combinational logic since a function call is
part of an expression in Verilog HDL. A function call is synthesized by
expanding the function call into in-line code. Any local variable declared
within the function is treated as a pure temporary; such a variable gets
synthesized as a wire.

Here is an example of a function call.

module FunctionCall (XBC, Dataln);
output XBC;
input [0:5] DatalIn;

function [0:2) CountOnes;
input (0:5] A;
integer K;
begin
CountOnes = 0;

for (K=0; K<=5; K=K+ 1)
if (A(K])
CountOnes = CountOnes + 1;
end
endfunction

// If number of ones in Dataln is greater than 2,
// return 1 in XBC.
assign XBC = CountOnes (Dataln) > 2;

endmodule

// Synthesized netlist is shown in Figure 2-59.

After in-line expansion of the function call and further in-line expansion
of the for-loop statement, the following code is obtained.

CountOnes = 0;

if (DataIn[0]) CountOnes = CountOnes + 1;
if (DataIn[l]) CountOnes = CountOnes + 1;
if (DataIn[2]) CountOnes = CountOnes + 1;
if (DataIn[3]) CountOnes = CountOnes + 1;
if (DataIn[4]) CountOnes = CountOnes + 1;

88

Tasks SECTION 2.20

Ootalnl E Zb
> "
ND3
s Dotaln2

DotoIn3 L L]) » XBC

!
4
Dotalnt No4

0R2 oRI211

O

0R2

DatalnS
—_—

Datalng 0A1211

0AJ211

Figure 2-59 A function call example.

if (DataIn[5]) CountOnes = CountOnes + 1;
XBC = CountOnes > 2;

2.20 Tasks

A task call can represent either combinational logic or sequential logic
depending on the context under which the task call occurs. By this, we
mean that the output parameters of a task call may imply memory depend-
ing on the context in which they are assigned. For example, if a task call
occurs in a clocked always statement (always statement with a clock
event), then an output parameter in a task call may be synthesized as a
flip-flop; this is determined by using the flip-flop inference rules. A syn-
thesis system implements a task call by expanding the task call in-line
with the rest of the code; in effect, no separate hierarchy for the task call is
maintained.

Here is an example of a task call that represents pure combinational
logic.

89

CHAPTER 2 Verilog Constructs to Gates

module CombTask (ShA, ShB, ShCarryIn, ShSum,
ShCarryOut) ;
input [0:2] ShA, ShB;
input ShCarryIn;
output [0:2] ShSum;
output ShCarryOut;
reg [0:3] TempCarry;

task AddOneBitWithCarry;
input A, B, CarryIn;
output Sum, CarryOut;
begin
Sum =A™ B " CarryIn;
CarryOut = A & B & CarryIn;
end
endtask

always @ (ShA or ShB or ShCarryIn)
begin: EXAMPLE
integer J;

TempCarry[0] = ShCarrylIn;

for (U=0; J<3; J=J0+1)
AddOneBitWithCarry (ShA[J), ShB[J],
TempCarry[J), ShSum[J], TempCarry[J+1]);
end

assign ShCarryOut = TempCarry(3];
endmodule
// Synthesized netlist is shown in Figure 2-60.

After in-line expansion of the task call and the for-loop statement by the
synthesis tool, the following code is obtained.

TempCarry[0] = ShCarryIn;

ShSum[0] = ShA{0] ~ ShB[0) ~ TempCarry[O0];
TempCarry(l} = ShA (0] & ShB[0] & TempCarry([0];
ShSum[1] = ShA[1] ~ ShB[1l] * TempCarry[l];
TempCarry[2] = ShA[1l] & ShB[1] & TempCarry[l];
ShSum(2] = ShA[2] ~ ShB[2] * TempCarryl2];

Tasks SECTION 2.20

- SnAP N
B8 XORZ OR2 XORZ A) 8h5m2
ShCarryln 8
AND2
-1 A
Z A . j) ShCorryOut
B z E >—"‘—>
AND2 ® AND2 XOR2
ANDZ 5h5|nl.E
A
i ShSund
B >
ShA2 AND2
T -
XOR2
ShAL
> 1
XOR2
SnB1 N 2
>t b

AND2

Figure 2-60 A task call example: combinational logic.

TempCarry[3] = ShA[2] & ShB{2] & TempCarryl2];
ShCarryOut = TempCarryl[3];

Next is an example of a task call that occurs under the control of a
clock edge.

module SynTask (BytelIn, ClockFa, ByteOut);
input (3:0] Byteln;
input ClockFa;
output (3:0] ByteOut;

task ReverseByte;
input [3:0] A&;
output [3:0] Z;
integer J;
begin
for (U=3; J>=0; J=J-1)
Z[J] = A[3-J};
end
endtask

91

CHAPTER 2 Verilog Constructs to Gates

always @ (negedge ClockFa)
ReverseByte (Byteln, ByteOut);
endmodule
// Synthesized netlist is shown in Figure 2-61.

ByteIn3 ByteOutd

> TisckFa ccn_ﬂn}——
FO152AX

ByteIn2
ByteOutl

t+—————PCK ON—
FD162AX

ByteInd
ByteOut3

—d CK 0N|>—
FD152AX

ByteInl ByteQut2

g
FD1S2AX

Figure 2-61 A task call example: synchronous logic.

In this example, variable ByteOut is assigned a value under the control of
clock ClockFa; thus, ByteOut gets synthesized as a flip-flop. The code af-
ter in-line expansion of the task call looks like this.

ByteOut[3] = ByteIn[0];
ByteOut[2] = ByteIn(1l];
ByteOut(1l] = ByteIn(2];
ByteOut[0] = ByteIn[3];

92

Using Valuesxand z SECTION 2.21

2.21 Using Values x and z

Verilog HDL has two non-logical values: x (unknown) and z (high-
impedance). In this section, we specify the domain under which these val-
ues can be used for synthesis. Use caution when using these values in a
synthesis model as they can potentially cause a functional mismatch be-
tween the design model and the synthesized netlist.

2.21.1 The Value x

The value x can be assigned to any variable in an assignment state-
ment. In such a case, x is treated as a don’t-care for synthesis purposes. A
synthesis system may intelligently select either a logic-0 or a logic-1 for
the value x that leads to optimal logic.

Reset = 'bx; // Assign a don’t-care value to Reset.
// Synthesis system will automatically select
// logic-0 or logic-1.

When value x is used in a case item of a case statement (not casex,
casez), the branch corresponding to that case item is considered never to
execute for synthesis purposes.

case (In)
2'bx : Out = In; // This branch will never occur for
// synthesis.
default : Out = ~ In;
endcase

Thus a functional mismatch may occur; a synthesis tool may report a
warning in such a case. Avoid using x in a case item of a case statement
(not casex, casez).

2.21.2 The Value z

The value z is used to generate a three-state gate. The value z can be
assigned to a variable in an assignment statement; however for synthesis,
such an assignment must occur under the control of a condition, either in
an if statement, or in a case statement. Here is an example.

93

CHAPTER 2 Verilog Constructs to Gates

module ThreeState (Ready, DataInA, DataInB, Selectl);
input Ready, DataInA, DatalnB;
output Selectl;
reg Selectl;

always @ (Ready or DataInA or DatalInB)

if (Ready)
Selectl = 1'bz;
else
Selectl = DataInA & DataInB;
endmodule

// Synthesized netlist is shown in Figure 2-62.

Sotalf A Selectl

B TBUS
DatalnB
AND2

Ready

INRB

Figure 2-62 A conditional z value assignment produces a three-state gate.

A three-state gate can also be obtained by assigning the value z in a
conditional expression, as shown in the next example.

module CondExprThreeState (Dnt, GateCtrl, Vcs);
input Dnt, GateCtrl;
output Vcs;

assign Vcs = GateCtrl ? Dnt : 1'bz;
endmodule

// Synthesized netlist is shown in Figure 2-63.

Furthermore, when the value z is used in a case item of a case state-

ment (not casez, casex), the branch corresponding to the case item is con-
sidered as never to execute for synthesis purposes.

case (Select)
2'blz : DBus = | AFlow; // This branch will never

Using Valuesxand z SECTION 2.21

O
GateCtrl INRB

Dnt {:FKN Ves

Figure 2-63 Three-state gate using a conditional expression.

// execute for synthesis.
2'bll : DBus = ~ AFlow;
default : DBus = & AFlow;
endcase

Thus a functional mismatch may occur in such a case; a good synthesis
tool will report a warning. A good rule to follow is to simply avoid using
the value z in a case item of a case statement (not casex, casez).

If a variable is assigned a value z in an always statement in which the
variable is also inferred as a flip-flop, then it becomes necessary to save
the enabling logic of the three-state also in a flip-flop. Here is the same ex-
ample as above except that the always statement is controlled by a clock
event.

module ThreeStateExtraFF (Clock, Ready, DatalnA,
DataInB, Selectl);
input Clock, Ready, DataInA, DatalnB;
output Selectl;
reg Selectl;

always @ (posedge Clock)

if (Ready)
Selectl <= 'bz;
else
Selectl <= DataInA & DataInB;
endmodule

// Synthesized netlist is shown in Figure 2-64.

Notice that two flip-flops are synthesized, one for Select] and one for the
condition Ready. If the extra flip-flop for Ready is not desired, the model
should be rewritten by separating the three-state logic and the flip-flop in-

95

CHAPTER 2 Verilog Constructs to Gates

Ready

K Selectl
Clock Foa>
9c CK aN C TBUS
FD153AX

s DatalnfA a - -
DatalnB y
>————18

AND2

CK ON}—
FD1S3AX

Figure 2-64 Extra flip-flop holding the three-state enable value.

ferencing logic into two separate always statement as shown next in mod-
ule ThreeStateNoExtraFF. The behavior of the two modules,
ThreeStateExtraFF and ThreeStateNoExtraFF is different; in the former
case, the output is directly dependent on Clock, in the latter case, output is
not directly dependent on the Clock, but is directly dependent on Ready.

module ThreeStateNoExtraFF (Clock, Ready, DatalnA,
DataInB, Selectl);
input Clock, Ready, DatalInA, DataInB;
output Selectl;
reg Selectl, TempSelectl;

// Sequential logic:
always @ (posedge Clock)
TempSelectl = DataInA & DatalInB;

// Combinational logic:
always @ (TempSelectl or Ready)

if (Ready)
Selectl = 'bz;
else
Selectl = TempSelectl;
endmodule

// Synthesized netlist is shown in Figure 2-65.

96

Gate Level Modeling SECTION 2.22

S DatoInA a

s DataInB 8 z 0

Clock AND2
> K ON—

FD1S3AX

Tempbelectl

Selectl

INRB

Ready

Figure 2-65 No extra flip-flop.

Notice that in this case a temporary variable TempSelect! is introduced
that is used to communicate between the first always statement (sequential
part) with the second always statement (combinational part). Only one
flip-flop is synthesized for TempSelectl.

2.22 Gate Level Modeling

Gate level primitives can be instantiated in a model using gate instan-
tiation. The following gate level primitives are supported for synthesis.

and, nand, or, nor, not, xor, xmnor, buf,
bufif0, bufifl, notif0, notifl

Synthesizing a gate primitive simply generates logic based on the gate be-
havior, which eventually gets mapped to the target technology. Synthesiz-
ing any of the last four listed primitives (three-state gate primitives),
synthesizes a three-state gate in the appropriate target technology with ad-
ditional combinational logic to support the behavior of the three-state
gate. Here is an example that drives the and of two inputs onto a bus if
control is 1, else it drives the or of the two inputs.

module GateLevel (A, B, Ctrl, Zbus);
input A, B, Ctrl;
output Zbus;
// Not necessary to declare nets AndOut and OrOut.
// The instance names, Al, 0l, etc. are also optional
// but are recommended for simulation debugging.

97

CHAPTER 2 Verilog Constructs to Gates

and Al (AndOut, A, B); // First terminal is output,
// other two are inputs.
or 01 (OrOut, A, B);
bufif0 Bl (Zbus, AndOut, Ctrl); // First terminal is
// output, second terminal is input, and third
// terminal is control.
bufif0 B2 (Zbus, Orout, ! Ctrl);
endmodule
// Synthesized netlist is shown in Figure 2-66.

Figure 2-66 Gate instantiations.

Delays, if any, in gate instantiations are ignored by a synthesis system.
This can potentially lead to functional mismatches between the Verilog
HDL model and the synthesized netlist.

2.23 Module Instantiation Statement

A module instantiation statement can be written within a module dec-
laration. A synthesis system treats such a module instance as a black box
and does not take further action, that is, the module instance appears in
the synthesized netlist as if it were a primitive component. Here is an ex-
ample of a full-adder module that contains one module instantiation state-
ment. Notice that in the synthesized netlist, shown in Figure 2-67, the
module MyXor appears just as it is described in the top level module
FullAdderMix.

98

Module Instantiation Statement SECTION 2.23

module FullAdderMix (A, B, CarryIn, Sum, CarryOut);
input A, B, CarryIn;
output Sum, CarryOut;
wire Sft; // Sft need not be declared.

MyXor X1 (.In0(A), .Inl(B), .Out(Sft));

assign CarryOut = A & B & CarryIn;
assign Sum = Sft ~ CarryIn;
endmodule
// Synthesized netlist is shown in Figure 2-67.

X St
A 6 oul_ :)D Sum
8 Inl

MYXDR XOR2

Caorryln

CorryQut

-)
e J

AND2

"

AND2

Figure 2-67 A module instance mixed with behavior.

2.23.1 Using Predefined Blocks

Module instantiation statements are often used to instantiate pre-
defined blocks when a designer is not satisfied with the quality of circuits
produced by a synthesis tool. A designer may also have a library of pre-
defined blocks such as memories. In such a case, the designer may prefer
to instantiate a predefined block using a module instantiation statement in-
stead of writing a behavioral description for the block. Thus a module in-
stantiation statement provides flexibility in controlling the logic that is
synthesized, and allows mixing of one or more predefined blocks as well.

Instantiating User-built Multipliers

As a first example, consider the case where a designer is not happy
with the multiplication logic generated by a synthesis tool. This logic
might have been generated from the following code.

99

CHAPTER 2 Verilog Constructs to Gates

module MultiplyAndReduce (OpdA, OpdB, ReducedResult) ;
input [1:0] OpdA, OpdB;
output ReducedResult;
wire [3:0] Test;

assign Test = OpdA * OpdB; // Multiply operator.
assign ReducedResult = & Test;
endmodule

In this example, the designer may instantiate a predefined multiplier as
follows.

module PreDefMultiplyAndReduce (OpdA, OpdB,
ReducedResult) ;
input [1:0] OpdA, OpdB;
output ReducedResult;

wire [3:0] Test;

MyMult M1 (.Inputl (OpdA), .Input2 (OpdB),
.Result (Test));

assign ReducedResult = & Test;
endmodule
// Synthesized netlist is shown in Figure 2-68.

f ReducedResult
z
B

AND2

Tost3

>g& InAl Outd Tost?
~oste |

0pdi8 |10Ap Out?
OpdBl _ [1nB1 Qut
0pdB8 11086 Outd]

MYMULIT] Test1

Testd

AND2

Figure 2-68 Instantiating a predefined multiplier.

100

Module Instantiation Statement SECTION 2.23

Instantiating User-specific Flip-flops

A flip-flop is yet another case where a designer may want to control
the type of flip-flop being generated. Normally a flip-flop is inferred for a
variable that is assigned a value within a clocked always statement. How-
ever, such a synthesized flip-flop may not be optimal for the design. A de-
signer may want to use a custom-made flip-flop instead of the flip-flop
generated by the synthesis tool. This can be modeled again by instantiat-
ing the predefined flip-flop as a module instance. Here is an example.

module PreDefFlipFlop (Dclock, Request, DayP,

DelS, Fop);
input Dclock, Request, DayP, DelS;
output Fop;
reg Fop;
wire NewRequest; // Optional.

MyFlipFlop LabelF1l (.Data (Request), .Clock (Dclock),
.0 (NewRequest)) ;
// The above module instantiation statement replaces the
// following always statement:
// always @ (posedge Dclock)
// NewRequest = Request;

always @ (NewRequest or DayP or DelS)
if (NewRequest)

Fop = DayP;
else
Fop = DelS;
endmodule

// Synthesized netlist is shown in Figure 2-69.

Here is another example. This is a 3-bit up-down counter that shows
how a pre-built D-type flip-flop is used along with its remaining behavior.
The key statements that are necessary to be added are the module instanti-
ation statements. With such a model, a synthesis system retains the pre-
built component in the synthesized design to achieve the desired result;
this is shown in the synthesized netlist.

101

CHAPTER 2 Verilog Constructs to Gates

D

DelS Fap
LapelF1 z
SRequest [ngtg 0_4—{@0—8 R2
INRB

Delack Clock
Seelotk (Cloc oND?
MYFLIPFLOP

DayP

Z

NewRequest AND2

Figure 2-69 Instantiating a predefined flip-fiop.

module UpDownCntr (ClkA, UpDown, PresetClear, Q0, Q1,
Q2);
input ClkA, UpDown, PresetClear;
output Q0, QI, 02;
wire Bit01, Bitll, Bitl2, Bitl3, Qn0, Onl, Qn2;

assign Bit(01 = UpDown ~ Q0;
assign Bitll = Bit01 ~ QOnl;

assign Bit12 = UpDown ~ Q1;
assign Bitl3 = Bit01 | Bitl2;
assign Bit21 = Bitl3 ~ On2;

SpecialFF
Lg0 (.D(Qn0), .Clk(ClkA), .PreClr(PresetClear),
.0(Q0), .Qbar(Qn0)),
Lgl (.D(Bitll), .Clk(ClkA), .PreClr(PresetClear),
.Q(Q1), .Qbhar(@Qnl)),
Lg2 (.D(Bit21), .Clk(ClkA), .PreClr(PresetClear),
-Q(Q2), .Qbar(Qn2));
endmodule
// Synthesized netlist is shown in Figure 2-70.

102

Parameterized Designs ~ SECTION 2.24

I Bitz1
- i
wel_Jp i j Bit11 L Bt D—‘—D o,
Cih Cx XoR2 i D q4 Ch o)
. il — o ol 1 w® XOREJProCr

PrenstClor ECIALFF HRZ | —PreCic CIALFF
- 1] w2

a

VN

08

Figure 2-70 Using a special flip-flop.

2.24 Parameterized Designs

Parameters in Verilog HDL provide a powerful mechanism to model
parameterized designs. Here is a simple example of an N-bit register.

module NbitRegister (Data, Clock, Q);
parameter N = 3;
input [MN1:0] Data;
input Clock;
output [N-1:0] Q;
reg [N-1:0] Q;

always @ (negedge Clock)
Q <= Data;
endmodule
// Synthesized netlist is shown in Figure 2-71.

The module NbitRegister when synthesized produces a 3-bit register. The
module is a parameterized module since the size of the register has been
specified using a parameter which can be modified easily or overwritten
by instantiating it from another module. For example, if a 4-bit register is
required, one way is to just change N in the module NbitRegister to 4 and
resynthesize. The other alternative is to instantiate NbitRegister in a differ-
ent module and specify a new value for N; this approach has the advantage
that the parameterized module NbitRegister does not have to be modified.
Here is a module that instantiates two 2-bit registers. The new parameter
values, that is, the new values for N, are specified using the # symbol.

103

CHAPTER 2 Verilog Constructs to Gates

Qg

> Dotad "

Cloek

FO182RX

Oatal (¢}

FD1S2RX

Data?2 02

CK ONl—
FO1S2AX

Figure 2-71 A parameterized register.

module ResolveBuses (BusA, BusB, BusControl, Clock,
FinalBus) ;
parameter NBITS = 2;
input [NBITS:1] BusA, BusB;
input BusControl, Clock;
output [NBITS:1] FinalBus;

wire [NBITS:1) SavedA, SavedB;

RegisterFile # (NBITS) RfOne {.Data(BusA),
.Clock(Clock), .Q(Saveda)):
RegisterFile # (NBITS) RfTwo (.Data(BusB),
.Clock(Clock), .Q(SavedB)) :

assign FinalBus = BusControl ? SavedA : SavedB;

endmodule
// Synthesized netlist is shown in Figure 2-72.

104

Parameterized Designs = SECTION 2.24

S BueAl b o—
—DCK ON
FD152AX P
bkt FinalBusl
>
BusControl b‘;):;
INRBH oArz2
Buef2 PR
FTnalBus2
—>
—<DCK ON
Clock
sk ¢ FD152AX
BusB? > il
—PCK ON
FD1§2AX
BueB1 n o—
L ek o
FD152AX

Figure 2-72 Instantiating a parameterized register.

Chapter 3 shows many more modeling examples that show the collec-
tive usage of many Verilog HDL constructs.

105

CHAPTER

MODELING
EXAMPLES

n Chapter 2, we looked at the synthesis of Verilog HDL statements
I into gates. In this chapter we look at an orthogonal view, that is the

task of modeling hardware elements for synthesis and how Verilog
HDL can be used to achieve this. As before, we show both the Verilog
HDL model and the schematic for the synthesized output.

This chapter also provides a number of more complicated Verilog
HDL synthesis examples. These models illustrate the usage of Verilog
HDL constructs collectively to model a design that can be synthesized.

Sequential logic and combinational logic can be synthesized from a
Verilog HDL description. There are two main styles for describing combi-
national logic:

i. Using continuous assignment statements: This is the most
natural style, since it explicitly shows the parallelism in the
hardware. It also implicitly shows the structure.

107

CHAPTER 3 Modeling Examples

ii. Using procedural assignment statements in a sequential block
of an always statement: The statements describe the composi-
tion of intermediate values within a combinational logic
block; this is because the language semantics specify that all
statements in a sequential block execute sequentially.

Sequential logic elements, that is, flip-flops and latches, can be in-
ferred by writing statements within an always statement using styles de-
scribed in Chapter 2. It is best not to synthesize a memory as a two-
dimensional array of flip-flops because this is an inefficient way to imple-
ment a memory. The best way to create a memory is to instantiate a pre-
defined memory block using a module instantiation statement.

3.1 Modeling Combinational Logic

One good approach for describing combinational logic is to use con-
tinuous assignment statements. An always statement can also be used to
describe combinational logic; however, the synthesized logic may not be
apparent from the description. If combinational logic is described using
continuous assignment statements, then the synthesized logic is implicit
in the description. Consider the following model of a built-in self-test cell.

module BistCell (BO, B1, DO, D1, 2);
input B0, B1, DO, DI1;
output Z;
wire S1, S2, S3, S4;

assign S1 =~ (BO & D1);

assign S2 = ~ (DO & B1);

assign S3 = ~ (52 | S1);

assign S4 = S2 & S1;

assign Z = ~ (5S¢4 | S3);
endmodule

// Synthesized netlist is shown in Figure 3-1.

Notice the structure of the synthesized circuit is very similar to that of the
continuous assignment statements.

Here is the same model, but this time the cell is described using an al-
ways statement.

108

Modeling Combinational Logic SECTION 3.1

54 ¢
; o
B o ? 53 B INRB
o |) B INRB e
> INRB oz
AND2 s2
o A
>* 1 INRB Z
Bt 7 B
2 8 AND2

AND2
Figure 3-1 Combinational logic from continuous assignments.
module BistCellReg (B0, B1, DO, D1, Z);

input B0, B1, D0, DI1;

output Z;

reg Z;

reg S1, S2, S3;

always @ (B0 or D0 ox Bl or DI)

begin
S1 =~ (B0 &D1);
52 =~ (DO & B1);
S3=~(S2] 81);
S1=252& S1;
Z=~(S1]| 83);

end

endmodule

In module BistCell, each wire declared corresponded to a unique wire in
the synthesized netlist. Not so with reg variable S/ in module BistCellReg.
Notice that the variable S/ is used as a temporary in more than one place
and does not represent one wire. The synthesized circuit still remains the
same as that shown in Figure 3-1; however, the one-to-one mapping be-
tween the variables in the always statement and the nets in the synthesized
netlist is not present.

Here is an example of a combinational logic model of a 2-to-1 multi-
plexer with an enable.

module Mux2Tol (A, B, Select, Enable, ZeeQ);
input [1:0] A, B;
input Select, Enable;

109

CHAPTER 3 Modeling Examples

output [1:0] ZeeQ;
assign ZeeQ = (Enable) ? (Select ? A : B) : 'bz;

endmodule
// Synthesized netlist is shown in Figure 3-2.

Enable ’I
INRBH

slect

INRBH I

ng "T (= ET

Figure 3-2 A 2-to-1 multiplexer.

3.2 Modeling Sequential Logic

The following sequential logic elements can be modeled.
i. flip-flop: see section 2.17.

ii. flip-flop with asynchronous preset and or clear: see section
2.17.

iii. flip-flop with synchronous preset and or clear: see section
2.17.

iv. latch: see section 2.15.
v. latch with asynchronous preset and or clear: see section 2.15.

110

Modeling a Memory SECTION 3.3

3.3 Modeling a Memory

A memory is best modeled as a component. Typically, synthesis tools
are not efficient at designing a memory. More traditional techniques are
generally used to build a memory. Once having built this module, it can
then be instantiated in a synthesis model as a component using the module
instantiation statement.

module ROM (Clock, OutEnable, Address, Q, Qbar);
input Clock, OutEnable;
input [M-1:0] Address;
output [{N-1:0] Q, QObar;

// Memory description here (might not be
// synthesizable) .

endmodule

module MyModule (. . . };
wire Clk, Enable;
wire [M-1:0] Abus;
wire [N-1:0] Dbus;

ROM R1 (.Clock(Clk), .OutEnable(Enable),
.Address(Abus), .Q(Dbus), .Qbar());

endmodule

A register file can be modeled as a two-dimensional reg variable (a
two-dimensional reg variable is referred to as memory in Verilog HDL),
which can then be synthesized. Here is an example of a register file.

module RegFileWithMemory (Clk, ReadWrite, Index,
DatalIn, DataOut) ;
parameter N= 2, M= 2;
input Clk, ReadWrite;
input [1:N] Index; // Range need not be that large.
input [0:M-1] Dataln;
output [0:M-1] DatalOut;
reg [0:M-1] DataOut;

111

CHAPTER 3 Modeling Examples

reg [0:M-1] RegFile [0:N1];

always @ (negedge Clk)
if (ReadWrite)
DataQut <= RegFile[Index];
else
RegFile(Index] <= Dataln;
endmodule
// Synthesized netlist of a 2-by-2 register file is
// shown in Figure 3-3.

S Rig=p =3 NN
D |
Datalnl FOIN2AX
[- Aoz RegFite 8.1
Datalnd ._DJ DatoOut?
t4) D o—>
Index] w2 N3 B
Wi Im L Dok ovf—
Ll FDIP2RX

I_ RogFTto_1_t FOLNRAX

RogFTle_1_8 FOLNCRX

Figure 3-3 A 2-by-2 register file.

Note that there are a total of six flip-flops synthesized, four for the register
file RegFile and two for DataOut.

112

Writing Boolean Equations SECTION 3.4

3.4 Writing Boolean Equations

Boolean equations represent combinational logic. Boolean equations
are best represented using continuous assignment statements. Here is an
example of a Gray code to binary code convertor using boolean equations.

ABC Binary Code

000 000
001 001
011 o010
010 o011
110 100
111 101
101 110
100 111

module GrayToBinary (A, B, C, Bc0, Bcl, Bc2);
input A, B, C;
output Bc0, Bcl, Bc2;
wire NotA, NotB, NotC;

assign NotC = ~ C;
assign NotB = ~ B;
assign NotA = ~ A;

assign BcO0 = (A& B& NotC) | (A& B& C) |
(A & NotB & C) | (A & NotB & NotC) ;
assign Bcl = (NotA & B& C) | (NotA & B & NotC) |
(A & NotB& C) | (A & NotB & NotC) ;
assign Bc2 = (NotA & NotB & C) | (NotA & B & NotC) |
(A& B& C) | (A& NotB & NotC) ;
endmodule
// Synthesized netlist is shown in Figure 3-4.

113

CHAPTER 3 Modeling Examples

Bc2

XOR2

Bel

B Q37 Bed
INRBH INRB

Figure 3-4 Gray to binary logic.

3.5 Modeling a Finite State Machine

3.5.1 Moore FSM

In a Moore finite state machine, the output of the circuit is dependent
only on the state of the machine and not on its inputs. This is described
pictorially in Figure 3-5. Since the outputs are dependent only on the]
state, a good way to describe a Moore machine is to use an always state-
ment with a case statement. The case statement is used to switch between ;
the various states and the output logic for each state is described in the ap- |
propriate branch. The always statement can have the clock event in its]
event list to indicate that it is a clocked always statement. This models the
condition of a finite state machine going from state to state synchronously |
on every clock edge. The machine state itself is modeled using a reg vari-
able (a variable of reg data type).

Here is an example of a Moore finite state machine. A reg variable/
MooreState is used to model the machine state which can have either of
the four states. The event list indicates that the state transitions occur syn-}
chronously on every rising clock edge.

module MooreFSM (A, ClkM, Z);
input A, ClkM;
output Z;

114

Modeling a Finite State Machine SECTION 3.5

Output Outputs
logic

Next P t
Inputs resen
state
D Next s.tate i Machine state
logic state :|>

(sequential) (combinational)

(combinational)

| Figure 3-5 A Moore finite state machine.
reg Z;

parameter S0 =0, S1 =1, S2=2, 83 =3;
reg (0:1] MooreState;

always @ (posedge ClkM)
case (MooreState)
S0 :
begin
Z<=1;
MooreState <= (! A) ? S0 : S82;
end
S1 :
begin
Z <= 0;
MooreState <= (! A) ? 80 : S2;
end
S2
begin
Z <= 0;
MooreState <= (! A) ? S2 : S3;
end
S3:
begin
Z<=1;
MooreState <= (! A) ? S1 : S3;
end
endcase
endmodule
// Synthesized netlist is shown in Figure 3-6.

115

CHAPTER 3 Modeling Examples

FOLSAX

30

Figure 3-6 The synthesized netlist for the Moore FSM model.

When this model is synthesized, three flip-flops are inferred; two to hold
the value of the machine state (MooreState) and one for the output Z.
States are encoded using sequential state assignment.

In the previous example, the output is also saved in a flip-flop. What if
a non-latched output is required? In this case, the assignments to Z can be
separated out into a second always statement, as shown in the model next.

module MooreFSM2 (A, ClkM, Z);
input A, ClkM;
output Z;
reg Z;

parameter S0 =0, S1 =1, $2=2, S3=3;
reg [0:1] MooreState;

always @ (posedge ClkM)
case (MooreState)
S0 : MooreState <= (! A) ? S0 : S2;
S1 : MooreState <= (! A) ? 80 : S2;
S2 : MooreState <= (! A) ? §2 : §3;
S3 : MooreState <= (! A) ? S1 : S3;
endcase

// Shows clearly that output is dependent on
// only state.
always @ (MooreState)

case (MooreState)

S0 :2=1;
S1:2=0;
S2 :2Z2=0;

116

Modeling a Finite State Machine SECTION 3.5

S3:2Z2=1;
endcase
endmodule
// Synthesized netlist is shown in Figure 3-7.

E‘FD”
H —
121 P
B "

>“—&o—-~ % w121 f
e FDLS3MX u N

FO153AX
GRI22

v

Figure 3-7 No latched output.

35.2 Mealy FSM

In a Mealy finite state machine, the output is dependent both on the
machine state as well as on the inputs to the finite state machine. This is
shown pictorially in Figure 3-8. Notice that in this case, outputs can
change asynchronously with respect to clock.

!
> Output Outputs
Next Present logic
Next state| state Machine state
Input logic state
oy) (sequential) (combinational)
combinationa

Figure 3-8 A Mealy finite state machine.

One of the best ways of describing a Mealy finite state machine is by
using two always statements, one for describing the sequential logic, and
one for describing the combinational logic (this includes both next state
logic and output logic). It is necessary to do this since any changes on in-

117

CHAPTER 3 Modeling Examples

puts directly affect the outputs used to describe the combinational logic.
The state of the machine is modeled using a reg variable.

Here is an example of a Mealy finite state machine. Variable
MealyState holds the machine state, while NextState is used to pass infor-
mation from the combinational logic always statement to the sequential
logic always statement. Input Reset asynchronously resets the state to
ST0.

module MealyFSM (A, ClkB, Reset, Z);
input A, C1lkB, Reset;
output Z;
reg 2Z;

parameter ST0O = 4'b00, ST1 = 4'b01, ST2 = 4'b10;
reg [0:1] MealyState, NextState;

// Sequential logic:
always @ (posedge Reset or posedge C1kB)
if (Reset)
MealyState <= STO;
else
MealyState <= NextState;

// Combinational logic:
always @ (MealyState or A)
case (MealyState)
STO :
begin
Z=(Aa) ?1:0;
NextState = (A) ? ST2 : STO;
end
ST1 :
begin
Z=(A)?21:0;
NextState = (A) ? ST0 : ST1;
end
ST2 :
begin
Z=0;
NextState = (A) ? ST1 : ST2;
end
default : // default behavior; required, else

118

Modeling a Finite State Machine SECTION 3.5

// latches are inferred for Z and NextState.
begin
Z = 0; NextState = STO;
end
endcase
endmodule
// Synthesized netlist is shown in Figure 3-9.

Tealystatel MeclyStoted

q [:2 Nextitutel Next Stated

of—

ND2 FD1S30X

0A132
D‘ Keg N AND2
Cik8 r FO1530X

Reset
l———————— Al
J A2
A
B y :
0RI21

NOZ bc z
INRBH

Figure 3-9 The synthesized netlist for the Mealy FSM example.

Two flip-flops are inferred to hold the value of the variable MealyState
with the specified state assignment. The default branch in the case state-
ment can be avoided by specifying the case statement as “full case”, as
shown next.

always @ (MealyState or A)
case (MealyState) // synthesis full_case

STO :
begin
Z=1(A4)?1:0;
NextState = (A) ? ST2 : STO;
end
ST1 :
begin

119

CHAPTER 3 Modeling Examples

Z=(A)?1:0;
NextState = (A) ? ST0 : ST1;
end
ST2 :
begin
Z=0;
NextState = (A) ? ST1 : ST2;
end
endcase

In this case, no latches are inferred for Z and NextState since the full_case
synthesis directive states that no other case item values can occur. Howev-
er, the preferred style for not inferring latches is to use the default branch.

Here is another example of a Mealy FSM, this one uses one-hot state
encoding.

module MealyFSM2 (A, ClkC, Reset, Z);
input A, ClkC, Reset;
output Z;
reg Z;

parameter STO = 2'd0, STI = 2'dl, ST2 = 2'd2;
reg [0:2] NextState, MealyState;

// Sequential logic:
always @ (posedge Reset or posedge ClkC)
if (Reset)
begin
MealyState <= 0;
MealyState[ST0} <= 1'bl;
end
else
MealyState <= NextState;

// Combinational logic:

always @ (MealyState or A)

begin
NextState = 3'b0; // Default assignment.
Z=1'b0;

case (1'bl)
MealyState[5T0] :

120

Modeling a Finite State Machine SECTION 3.5

if (A)
begin
Z=1'bl;
NextState[ST2]
end
else
NextState[ST0] = 1'bl;
MealyState[ST1]:
if (A)
begin
Z=1'bl;
NextStatelST0]
end
else
NextState[ST1] = 1'bl;
MealyState[ST2] :
if (4)
NextState[ST1)
else
NextState[ST2]
endcase
end
endmodule
// Synthesized netlist is shown in Figure 3-10.

H
(=Y
o
[l

H
[y
o
[y
~

il
[
o
ful'y
~

il
[uny
o
[ty
~

o

e

Figure 3-10 One-hot encoding state machine example.

35.3 Encoding States

There are many ways to model the machine states of a finite state ma-
chine. Described here are some of the most common ones. The

121

CHAPTER 3 Modeling Examples

MooreFSM module described earlier is used as an example in describing
these encodings.

Using Integers

The simplest way is to assign integer values to states.

integer MooreState;
case (MooreState)

0: ...
MooreState = 2;

endcase

The problem with this approach is that since it is impractical to list all
possible values an integer can take, to avoid latches either the default case
branch must be specified or the full_case synthesis directive must be used.
Another problem with this approach is not good readability.

Using Parameter Declarations

Another option is to declare parameters and use these in the case
statement.

parameter S0 =0, S1 =1, $2 =2, 83 = 3;
reg [0:1] MooreState;
case (MooreState)
SO0 : ...
MooreState = S2;
S1:
endcase
The advantage of this approach is that the state encodings are described

explicitly in one place and can be changed easily. If either the parameter
declarations or the integer values are used directly, a synthesis system

122

Modeling an Universal Shift Register SECTION 3.6

uses the minimum number of bits needed to encode the integer value. In
the above example, only two bits are needed for state encoding since the
maximum integer value is 3.

What if a different encoding has to be specified? This can be done by
describing each state as a vector of bits.

parameter S0 = 3'b000, S1 = 3'b001, S2 = 3'b010,
S3 =3'100;

reg [0:2] MooreState;
case (MooreState)
S0 : . ..
MooreState = S2;
S1 :
endcase
In this case, the number of bits required for state encoding is dictated by
the number of bits in the parameter which in this example is 3 bits. Of

course, the machine state MooreState must be made wide enough to hold
the new size of three bits.

3.6 Modeling an Universal Shift Register

Here is a synthesis model of a 3-bit universal shift register. The uni-
versal shift register performs the following functions:

i. hold value
ii. shift left
iii. shift right
iv. load value
This universal register can be used as a serial-in, serial-out shift regis-
ter, parallel-in, serial-out shift register, serial-in, parallel-out shift register,

and as a parallel-in, parallel-out shift register. Here is the state table for the
3-bit universal shift register.

123

CHAPTER 3 Modeling Examples

Function Inputs Next state
(5051y (Qf2] 0[1) Q[0])
Hold 0 0 QI2) o[1] 0[0] |
Shift left 0 1 QI[1] Q0] RightIn
Shift right 1 0 LeftIn Q2] Q1]
Load 1 1 ParIn(2]} ParIn[1l] ParIn[0]

The synthesis model follows.

module UnivShiftRegister (Clock, Clear, LeftIn,
RightIn, S0, S1, ParIn, Q);
input Clock, Clear, LeftIn, RightIn, S0, S1;
input [2:0] ParlIn;
output [2:0] Q;
reg [2:0] O;

always @ (negedge Clear or posedge Clock)
if (! Clear)
Q <= 3'b000;
else
case ({S0, S1})
2'b00 : ;
2'b01 :
Q <= {Q[1:0], RightIn};
2'bl0 :
Q <= {LeftIn, Q[2:1]};
2'bll :
Q <= Parln;
endcase
endmodule
// Synthesized netlist is shown in Figure 3-11.

3.7 Modeling an ALU

3.7.1 A Parameterized ALU

Here is an example of a parameterized N-bit arithmetic-logic-unit that
performs an exclusive-or, less than, and an increment-by-1 operation.

124

Modeling an ALU

#0122

(AI22

Fo18%GX F

122

SECTION 3.7

0122

0A12

BYV 2

8

FOI53EX

]
- iz
Lettls

‘ FBISEX

>§3§_ﬂn

Figure 3-11 A 3-bit universal shift register.

module ArithLogicUnit (A, B, Select, CompareOut,
DataOut) ;
parameter N = 2;
input {N1:0] A, B;
input [2:0] Select;
output CompareQut;
output [N-1:0] DataOut;
reg CompareQut;
reg [N-1:0] DataOut;

parameter OP_XOR = 3'b001, OP_INCRA = 3'b010,
OP_LT = 3'bl100;

always @ (A or B or Select)
case (Select)
OP_INCRA :
begin
DataOut = A + 1;

125

CHAPTER 3 Modeling Examples

CompareQut = 'bx;
end
OP_XOR :
begin
DataOut = A ~ B;
CompareQOut = 'bx;
end
OP_LT :
begin
CompareOut = A < B;
DataOut = 'bx;
end
default :
begin
CompareQut = 'bx;
DataOut = 'bx;
end
endcase
endmodule
// Synthesized netlist is shown in Figure 3-12.

A different size ALU can be synthesized by specifying a different val-
ue for the parameter when it is instantiated. This is shown in the following
example for a 4-bit ALU.

module FourBitALU (A, B, Sel, Cmp, Data);
parameter ALU _SIZE = 4;
input [ALU SIZE-1:0] A, B;
input [2:0] Sel;
output Cmp;
output [ALU SIZE-1:0] Data;

ArithLogicUnit #(ALU_SIZE) InstA (A, B, Sel,
Cmp, Data);
endmodule

37.2 A Simple ALU

Here is a model of a different simple arithmetic-logic-unit. This logic
unit performs four functions: add, nand, greater-than and exclusive-or. A
continuous assignment statement with a conditional expression is used to
model the arithmetic-logic-unit.

126

Modeling an ALU SECTION 3.7

Select2

-] Z
DotaQutd .
mredf 1 R
Seloctd L
NO3

/

Selectl A ; 0 l- CompareQut
INRB Z
2 O
8¢ B1 D
4
: > O B2
INRBH A0132 NR4

L-
INRBH

DotoOutl

0RI22

Al
>l
INRBH

B2

A0I22

Figure 3-12 A 2-bit ALU.

module CustomALU (A, B, OpCode, DataZ, CompZ);
parameter NBITS = 2;
input [NBITS-1:0] A, B;
input [1:0] OpCode;
output [NBITS-1:0) DataZ;
output CompZ;
parameter ADD OP = 0, NAND OP =1, GT_OP = 2,
XOR_OP = 3;

assign DataZ =(OpCode == ADD OP) ? A+ B :
(OpCode == NAND_OP) ? ~ (A & B)
(OpCode == XOR_OP) ? A" B :
'bx;

assign CompZ = (OpCode == GT_OP) ? A > B : 'bXx;

endmodule
// Synthesized netlist is shown in Figure 3-13.

127

CHAPTER 3 Modeling Examples

OpCoded
>— 3l
2 = N
- _'B»—L b1 1
B 2 a2
p el 2 o122
.4
IR,
. 1 o
—E}L e i =
f e L >
N2 b B - 2 oA122
v N I
81) 0122
L 1
> /
NOR?
I
OCodel? I
] > ol
Z
01 NR2
B2
ToeeH f0r32

Figure 3-13 A 2-bit custom ALU,

3.8 Modeling a Counter

3.8.1 Binary Counter

Here is a model for a parameterized N-bit binary up-down counter
with synchronous preset and preclear controls. The counting is synchro-
nized to the rising edge of a clock.

module BinaryCounter (Ck, UpDown, PresetClear,

LoadData, DataIn, Q, QON);
parameter NBITS = 2;

input Ck, UpDown, PresetClear, LoadData;
input [NBITS-1:0] DatalIn;

output [NBITS-1:0] Q;

output [NBITS-1:0] ON;

reg [NBITS-1:0} Counter;

128

Modeling a Counter SECTION 3.8

always @ (posedge Ck)
if (PresetClear)
Counter <= 0;
else if (~ LoadData)
Counter <= Dataln;
else if (UpDown)
Counter <= Counter + 1;
else
Counter <= Counter - 1;

assign Q = Counter;

assign QN = ~ Counter;
endmodule
// Synthesized netlist of a 2-bit binary counter is
// shown in Figure 3-14.

INRBH

i
’f Y ,D‘ o
LoaiOata 1 w2 r TNOR2 3 z
ADIZ2 AQL22]::‘
o122

=" X o

FD1S3AX

Provetliea

Figure 3-14 A 2-bit up-down, loadable, clearable binary counter.

3.8.2 Modulo-N Counter

Here is a model of a modulo-N binary up-counter. This counter has

only a synchronous preclear control and all transitions occur on the rising
clock edge.

// Number of bits in counter: NBITS
// Modulo: UPTO
module ModuloN_Cntr (Clock, Clear, Q, OBAR);
parameter NBITS = 2, UPTO = 3;
input Clock, Clear;
output [NBITS-1:0] Q, QOBAR;
reg [NBITS-1:0] Counter;

129

CHAPTER 3

3.8.3

130

Modeling Examples

always @ (posedge Clock)
if (Clear)
Counter <= 0;
else
Counter <= (Counter + 1) % UPTO;

assign Q = Counter;

assign QOBAR = ~ Counter;
endmodule
// Synthesized netlist for a modulo-3 counter is shown
// in Figure 3-15.

01
o b a
% 2
Clear CK N C b o 0BAR1
HRS FD1S3AX NRS
FOL53AX | 0BARD
00

Clock

Figure 3-15 A modulo-3 binary counter.

Johnson Counter

A Johnson counter is a shift-type counter. Here is an example of a 3-
bit Johnson counter stream.

000
001
011
111
110
100
000

The keys to modeling a Johnson counter are:

i. If the most significant bit (the leftmost bit) of the counter is a
1, then a O has to be shifted in from the right.

Modeling a Counter SECTION 3.8

ii. If the most significant bit is a 0, then a 1 has to be shifted in
from the right.

Here is the model for a parameterized N-bit Johnson counter with an asyn-
chronous preclear control.

module JohnsonCounter (ClockJ, PreClear, Q);
parameter NBITS = 3;
input ClockJ, PreClear;
output [1:NBITS] Q;
reg [1:NBITS] Q;

always @ (negedge PreClear or negedge ClockdJ)
if (! PreClear)
Q<= 0;
else
begin
if (! Qf1])
Q<= {Q[1:NBITS-1], 1'bl};
else
Q<= {Q[1:NBITS-1], 1'b0};
end
endmodule
// Synthesized netlist for a 3-bit Johnson counter is
// shown in Figure 3-16.

131

CHAPTER 3 Modeling Examples

(153 a D —>
De
SO
Clockd N N
d CKCDNG" g CKC ON ON—
FL1S2EX FD1S2EX
Q1
PreCleor]
D1 a Q2
D9
S0
O ONF—
FL1S2EX

Figure 3-16 A 3-bit Johnson counter.

384 Gray Counter

A Gray counter is a binary counter with the following conversion log-
ic:
i. The first Gray bit (the leftmost bit) is the same as the first bi-
nary bit.
ii. The second Gray bit is determined by xor’ing the second bi-
nary bit with the first binary bit, and so on; that is, each pair
of adjacent bits are xor’ed to get the next Gray bit.

For example, a binary count of 4'b1100 corresponds to a Gray count of
4'b1010. Here is a Verilog HDL model for a parameterized N-bit Gray up-
counter with synchronous preclear.

module GrayCounter (ClockG, Clear, Q, QN);
parameter NBITS = 3;
input ClockG, Clear;
output [1:NBITS] Q, ON;

reg [1:NBITS] Counter, GrayCount;
integer K;

always @ (posedge ClockG)

132

Modeling a Parameterized Adder SECTION 3.9

if (Clear)
Counter <= 0;
else

Counter <= Counter + 1;

always @ (Counter)
begin

GrayCount[1] = Counter([l];

for (K= 2; K <= NBITS; K = K+1)

GrayCount[K] = Counter[K-1] ~ Counter(K];
end

assign Q = GrayCount;
assign ON = ~ GrayCount;
endmodule

// Synthesized netlist for a 3-bit Gray counter is shown
// in Figure 3-17.

p g s Coonter?]
roll ey, @ L e iBot
. [4 —
w2 FOIX F:E:D):)j}" et rossonx | | R o
=3 A2 Mo o

=

s |
aall3

of

Cout Comtert g.,

_B: Bm
el

Figure 3-17 A 3-bit Gray counter.

3.9 Modeling a Parameterized Adder

Here is a model for a parameterized N-bit adder with carry input and
carry output. The leftmost bit is the most significant bit. Figure 3-18
shows the synthesized netlist for a 3-bit adder with carry-in and carry-out.

133

CHAPTER 3 Modeling Examples

module AddWithCarryInCarryOut (OpdA, OpdB, CarrylIn,
CarryOut, Sum);
parameter NUMBITS = 3;
input [NUMBITS:1] OpdA, OpdB;
input CarrylIn;
output CarryOut;
output [NUMBITS:1] Sum;

assign {CarryOut, Sum} = OpdA + OpdB + CarrylIn;
endmodule
// Synthesized netlist for a 3-bit parameterized adder
// is shown in Figure 3-18.

E INRBH 012 B W12 N2 Rl
gy -

YNOR2

n R2L
P L%D;m P -
22

Figure 3-18 A 3-bit adder with carry-in and carry-out.

3.10 Modeling a Parameterized Comparator

Here is a model for a parameterized N-bit binary comparator. The in-
put vectors are treated as unsigned quantities and a numerical comparison
is made.

134

Modeling a Parameterized Comparator =~ SECTION 3.10

module Comparator (A, B, EQ, GT, LT, NE, GE, LE);
parameter NUMBITS = 2;
input [NUMBITS:1] A, B;
output EQ, GT, LT, NE, GE, LE;

reg [5:0] ResultBus;
// Bit 5 is EQ, bit 4 is GT, 3 is LT, 2 is NE,
// 1is GE and 0 is LE.

always @ (A or B)
if (A == B)
ResultBus = 6'b100011;
else if (A < B)
ResultBus = 6'b001101;
else // (A > B)
ResultBus = 6'b010110;

assign {EQ, GT, LT, NE, GE, LE} = ResultBus;
endmodule
// Synthesized netlist for a 2-bit comparator is shown
// in Figure 3-19.

S L
a2] ND2
N
B2 IREH 0AI31 0R2 ﬁi
|| W2 ' LE
N {@
O E
RS h’

INRBH

Figure 3-19 A 2-bit comparator.

135

CHAPTER 3 Modeling Examples

3.11 Modeling a Decoder

3.11.1 A Simple Decoder

Here is an example of a simple 2-by-4 decoder circuit. This is a com-
binational circuit modeled purely using continuous assignment state-
ments. Delays specified with the assignment statements, if any, are
typically ignored by a synthesis system.

module SimpleDecoder (A, B, Enable, DecodeQut) ;
input A, B, Enable;
output [0:3] DecodeOut;
wire Abar, Bbar;

assign Abar = ~ A;
assign Bbar = ~ B;
assign DecodeOut[0]
assign DecodeOut([1]
assign DecodeOut([2]
assign DecodeOut[3]

endmodule

// Synthesized netlist is shown in Figure 3-20.

1]
t

(Enable & Abar & Bbar) ;
(Enable & Abar & B);
(Enable & A & Bbar) ;
(Enable & A & B) ;

I on
[

t
l

DecodeOut @

=]
~

B {>¢
INRBH NO3

DocodeQut2

INRBH ND3

i OecodeOut 1

Enable -

ND3 NO3 OecodeQut 3

Figure 3-20 A simple 2-by-4 decoder.

3.11.2 Binary Decoder

Here is a model of a parameterized N-bit binary decoder.

136

Modeling a Decoder =~ SECTION 3.11

module BinaryDecoder (SelectAddress, DecodeOut) ;
parameter SBITS = 2;
parameter OUT BITS = 4; // Should be 2 to power of SBITS
input [SBITS-1:0] SelectAddress;
output [OUT_BITS-1:0] DecodeOut;
reg [OUT_BITS-1:0] DecodelOut;

integer k;

always @ (SelectAddress)
for (k= OUT_BITS-1; k>=0; k=k-1)
DecodeOut(k] = (k == SelectAddress) ? 'bl : 'b0;
endmodule
// Synthesized netlist of a 2-bit binary decoder is shown
// in Figure 3-21.

DecodeOut3
Selectfiddressd % >Z 0
INRB

R2

Dc DocooeDut!
3 SelectAddresst 3]
INRB

WR2

ry

l; 2) Docodeut2
2 W2 DecodeOutd

Figure 3-21 A 2-bit binary decoder.

3.11.3 Johnson Decoder

Here is a model of a parameterized N-bit Johnson decoder with an en-
able control.

module JohnsonDecoder (S, En, Y);
parameter N = 3;
input [0:N1] S;
input En;
output [0:2*N-1] Y;
reg [0:2*N-1] Y;

reg [0:2*N-1] Address:
integer J;

137

CHAPTER 3 Modeling Examples

always @ (S or En)
if (En == 'bl)
begin
Address = 0;

for (5=0; J<N; =0+ 1)
if (S[J])
Address = Address + 1;

if (S[0])
Address = 2*N - Address;

= 'b0;
Y[Address] = 'bl;
end
else if (En == 'b0)
Y = 'b0;
else
Y = 'bx;
endmodule

// Synthesized netlist for a 3-bit Johnson decoder is
// shown in Figure 3-22.

138

Modeling a Multiplexer =~ SECTION 3.12

L
$1 %
INRBH NR2
En
z Yo YS
,Sg B Jl_xJ Z
ND2 NR3
5 o
O
NR2 Y[%
52 B Z
A Z yi
INRBH NR3 d Y2
B z
Z
— NR3
- Z
ND2
INRBH NR3

Figure 3-22 A 3-bit Johnson decoder.

3.12 Modeling a Multiplexer

3.12.1 A Simple Multiplexer

Here is a model of a 4-by-1 multiplexer circuit. In this case, a bit-
select in a continuous assignment statement has been used to model the
combinational logic.

module SimpleMultiplexer (Dataln, SelectAddr, MuxOut);
input [0:3] Dataln;
input [0:1] SelectAddr;
output MuxOut;

assign MuxOut = DataIn[SelectAddr];

139

CHAPTER 3 Modeling Examples

endmodule
// Synthesized netlist is shown in Figure 3-23.

AL
A2

SelectAddr 1 B1
’ l I>I°NRBH Bz AOI22
Datalnd

AL

Datalnl

MuxOut 3

Dataln3

2 |
Z -
SelectAddrd BL
>} B2
INRBH - ROI22
Dataln2

Figure 3-23 A 4-by-1 multiplexer.

3.12.2 A Parameterized Multiplexer

Here is a model of a parameterized multiplexer. The number of bits
per word and the number of words in the multiplexer are modeled as pa-
rameters. The input data lines are represented as a single array DataBus.
The multiplexer has select lines which are non-encoded, and an enable
signal. Inverted outputs are also provided. All outputs are three-state’ed |
based on the Enable condition.

module BinaryMultiplexer (DataBus, Select, Enable,
Y, Ybar);
parameter NBITS = 2, WORDS = 2;
input [NBITS * WORDS-1:0] DataBus;
// DataBus is a linearized 2D array.
input [WORDS-1:0] Select; // Decoded select lines.
input Enable;
output [NBITS-1:0] Y, Ybar:;
reg [NBITS-1:0] Y, Ybar;

integer K;

function [WORDS-1:0] GetWordIndex;

140

Modeling a Parameterized Parity Generator =~ SECTION 3.13

// Gets the first index that has value 1.
input [WORDS-1:0] DecodedSelect;
integer Inx;
begin

GetWordIndex = 0;

for (Inx = WORDS - 1; Inx >=0; Inx = Inx - 1)
if (DecodedSelect|[Inx] == 'bl)
GetWordIndex = Inx;
end
endfunction

always @ (DataBus or Select or Enable)
if (Enable == 'bl)
begin
for (K=0; K< NBITS; K=K+ 1)
Y[K] = DataBus|[GetWordIndex(Select) * NBITS
+ K];

Ybar = ~ Y;
end
else if (Enable == 'b0)
begin
Y = 'bz;
Ybar = 'bz;
end
else
begin
Y = 'bx;
Ybar = 'bx;
end
endmodule
// Synthesized netlist of a 2-by-2 multiplexer is shown

// in Figure 3-24.

313 Modeling a Parameterized Parity Generator

Here is a model of a parameterized N-bit parity generator circuit. The
model provides both an odd parity and an even parity output.

141

CHAPTER 3 Modeling Examples

3 DatoBus?

[INRBH
Encble

P L N
Selectd

. 2
Selectl J@o—_‘
[: IRBH B2

OatoBus

TBUS

NR2 Y9

DotoBue3

TBUS Z o
DatoBusl

Figure 3-24 A 2-by-2 binary multiplexer.

module ParityGenerator (DataIn, OddPar, EvenPar);
parameter NBITS = 4;
input [NBITS-1:0] Dataln;
output OddPar, EvenPar;

assign EvenPar = * Dataln;

assign OddPar = ~ EvenPar;
endmodule
// Synthesized netlist of a 4-bit parity generator is
// shown in Figure 3-25.

DotoIn3 3 3 OddPor
Datalng D— INRBH
XOR2
XNOR2 EvenPar
Datalnl
g Dataln2 DO—'
XNOR2

Figure 3-25 A 4-bit parity generator.

142

Modeling a Three-state Gate =~ SECTION 3.14

3.14 Modeling a Three-state Gate

A three-state gate is modeled by assigning the value z to a variable
under the control of a condition. Here is an example.

module ThreeStateGates (ReadState, CpuBus, MainBus);
input ReadState;
input [0:3] CpuBus;
output [0:3] MainBus;
reg [0:3] MainBus;

always @ (ReadState ox CpuBus)
if (ReadState)
MainBus = 4'bz;
else
MainBus = CpuBus;
endmodule
// Synthesized netlist is shown in Figure 3-26.

5 ReadState _
CpuBus3 MoinBus3 5
TBUS
5 CpuBue?2
MalnBus2
—‘—"—‘B’I RD TBUS

MainBusl

CpuBusi

18U

>

S CpuBus@ MainBus®

TBUS

i

Figure 3-26 A bank of three-state gates.

The variable MainBus is three-state’ed as long as ReadState is true. If
ReadState is false, the value of CpuBus is assigned to MainBus.

143

CHAPTER 3 Modeling Examples

3.15 A Count Three 1’s Model

Here is a model that detects three 1’s in a data stream appearing on in-
put Data. The input is checked on every falling edge of clock. If three
consecutive 1’s are found on the input, the output is set to true, else it is
set to false.

module Count3Ones (Data, Clock, Reset, SegFound);
input Data, Clock, Reset;
output SegFound;
reg SegFound;

parameter PATTERN SEARCHED FOR = 3'bll1l;
reg [2:0] Previous;

always @ (negedge Clock)
if (Reset)
begin
Previous <= 3'b000;
SegFound <= 1'b0;
end
else
begin
Previous <= {Previous[1:0], Data};
SeqFound <= {Previous == PATTERN_SEARCHED_FOR);
end
endmodule
// Synthesized netlist is shown in Figure 3-27.

b a SeqFound 3
0
3 Reset |
NR2 CK ON
Date X —}—
FD132AX
INRBH

Clock

rd

Figure 3-27 Circuit counts three consecutive ones.

144

A Count Three 1’s Model SECTION 3.15

Synthesis infers four flip-flops for this model, three for variable Previ-
ous and one for SeqFound. However, optimization reveals that one of the
flip-flops for Previous is not necessary and hence it is removed. In this
model, the output is latched since it is assigned a value under the control
of a clock edge. If a latched output is not desired, then the assignment to
SeqFound must be done outside the always statement. Such a module is
shown next.

module NoLatchedOutput (Data, Clock, Reset, SegFound);
input Data, Clock, Reset;
output SegFound;

parameter PATTERN_SEARCHED FOR = 3'bl1l1;
reg [2:0] Previous;

always @ (negedge Clock)
if (Reset)
Previous <= 3'b000;
else
Previous <= {Previous([1:0], Data};

assign SeqFound = (Previous == PATTERN_SEARCHED_ FOR) ;
endmodule
// Synthesized netlist is shown in Figure 3-28.

p p Previovel B . Previous? AND3
Rosot s i
— B
b ' po_of—]

N2 PK OH—
FOLS2AX FD152AX

LClock
>

Figure 3-28 No latched output.

In this module, the output SeqFound is not latched. Synthesis infers three
flip-flops for variable Previous; note that in this case, all the bits of Previ-
ous have to be latched.

145

CHAPTER 3 Modeling Examples

3.16 A Factorial Model

Here is a model that generates the factorial of a number given in Data.
The result is output in Result and Exponent as mantissa and exponent re-
spectively. The exponent is base 2. The input Reset causes the model to
reset.

module Factorial (Reset, Start, Clk, Data, Done,
Result, Exponent) ;
input Reset, Start, Clk;
input [4:0] Data;
output Done; // Acknowledge signal.
reg Done;
output {7:0] Result, Exponent;
reg [7:0] Result, Exponent;

reg [4:0] InLatch;

always @ (posedge Clk)
begin: BLOCK_A
integer NextResult, J;

if ((Start && Done) || Reset)
begin
Result <= 'bl;
Exponent <= 'b0;
InLatch <= Data;
Done <= 'b0;
end
else
begin
if ((InLatch > 1) && (! Done))
begin
NextResult = Result * InLatch;
InLatch <= InLatch - 1;
end
else
NextResult = Result;

if (InLatch <= 1)
Done <= 'bl;

146

An UART Model SECTION 3.17

for (U=1; J<=5; g=J+ 1)
begin
if (NextResult > 256)
begin
NextResult = NextResult >> 1;
Exponent <= Exponent + 1;
end
end

Result <= NextResult;
end
end
endmodule

When synthesized, flip-flops are inferred for InLatch, Result, Exponent
and Done.

3.17 An UART Model

Here is a model of a synthesizable UART circuit. This circuit converts
RS-232 serial input data into parallel data out, and the parallel input data
into RS-232 serial data out. The data byte is 8 bits in length. There are
four major blocks in this UART model, as shown in Figure 3-29: RX, the
receiver block, TX, the transmitter block, DIV, the clock divider and MP,
the microprocessor block.

The first block DIV is a frequency divider. This block has 2 modes of
operation, the normal mode and the test mode. In the test mode, the UART
chip runs 16 times faster than in the normal mode. Also, the transmission
data rate of the UART chip is 16 times faster than the receiving rate. Each
block is initialized by setting the reset line low by applying a 0 to port MR.
The TX block accepts 8-bit parallel data from the microprocessor interface
(MP) block and transmits it serially to the RS-232 port through port
DOUT. Conversely, the RX block receives serial data input, and sends it in
8-bit parallel format to the MP block. Again, the transmitter runs at 16
times the speed of the receiver. The microprocessor interface (MP) block
asynchronously controls the parallel data flow between the RX / TX blocks
and the microprocessor data bus.

147

CHAPTER 3

(CLK

Modeling Examples

7

CK DIv TSN

RESET

TES
ENABL

ENA

A<

CK

)DIN

RESET

ENA
DIN

ad
Ha
[2:0lLnoa

DOUT

CK

ENA

LOAD

CK

UDINJ[0:7]
CSN
AS
WRN
RDN

RESET

| UDIN[0:7)
CSN

AS

WRN
RDN

ay
01v1iS
{£:0]LYAXY fe—

LOAD

V1S
[ARAE
€1V1S

TXDAT(0:7] |

I

RESET

P DIN[7:0]

DOUT
TX 1re

TBRE

LOAD_TX

STAT4

STATS

MP

Figure 3-29 The UART circuit.

The UART top-level model glues all these blocks together using mod-
ule instantiations. The microprocessor entity, MP, is described in the
structural style, that is, using module instances. The remaining three are
described using the behavioral style. In this chapter, only the behavioral
blocks are described.

Here is the behavioral model for the transmitter block 7X. This model
is a synthesizable model. Rising-edge-triggered flip-flops are inferred for
variables TBR, TR, TRE, TBRE, DOUT, CBIT and PA; this is because
these variables are assigned values under the control of clock CK.

module TX (CK, RESET, ENABLE, TLOAD, DIN, DOUT,
TRE, TBRE);
input CK, RESET, ENABLE, TLOAD;
input [7:0] DIN;
output DOUT, TRE, TBRE;

148

An UART Model SECTION 3.17

reg DOUT, TRE, TBRE;

reg [7:0] TBR, TR;
reg [3:0] CBIT;
reg PA;

always @ (posedge CK)
begin
if (! RESET)
begin
TRE <= 'bl;
TBRE <= 'bl;
DOUT <= 'bl;
CBIT <= 4'b0;
PA <= 'b0;
end
else if (TLOAD)
begin
TBR <= DIN;
TBRE <= 'b0;
end
else if (ENABLE)
begin
if (! TBRE && TRE)
begin
TR <= TBR;
TRE <= 'b0;
TBRE <= 'bl;
end

if (! TRE)
case (CBIT)
4'b0000:
begin
DOUT <= 'b0;
CBIT <= CBIT + 1;
end
4'b0001, 4'b0010, 4'b0011, 4'b0100,
4'b0101, 4'b0110, 4'b0111, 4'b1000:
begin
DOUT <= TR[0]);
PA <= PA "~ TR[O0];
TR <= {1'bl, TR[7:11};

149

CHAPTER 3 Modeling Examples

CBIT <= CBIT + 1;

end
4'b1001:
begin
DOUT <= PA;
PA <= 'b0;

TR <= {1'bl, TR([7:1]};
CBIT <= CBIT + 1;

end

4'b1010:

begin
DOUT <= TR[O0];
TR <= {1'bl, TR[7:1]1};
CBIT <= CBIT + 1;

end
4'b1011:
begin
DOUT <= TR[0];
TRE <= 1'bl;

TR <= {1'bl, TR(7:11};
CBIT <= 4'b0000;
end
endcase
end // if (ENABLE)
end // @(posedge CK)
endmodule

Here is the behavioral model for the receiver block RX. This model is
also synthesizable. Flip-flops are inferred for variables START, CBIT,
CSAM, DI, PI, SR, DR, DOUT, PERR, FERR and OERR.

module RX (CK, RESET, ENA, DIN, RD, DR, Dour,

PERR, FERR, OERR);

input CK, RESET, ENA, DIN, RD;

output DR;

reg DR;

output [7:0] DOUT;

reg [7:0] DOUT;

output PERR, FERR, OERR;

reg PERR, FERR, OERR, START;

reg [3:0] CBIT, CSAM;

150

An UART Model SECTION 3.17

reg DI, PI;
reg [7:0] SR;

always @ (posedge CK)
begin
if (! RESET)
begin
CBIT <= 0;
CSAM <= 0;
START <= 0;
PI <= 0;
DR <= 0;
PERR <= 0;
FERR <= 0;
OERR <= 0;
end
else // if (RESET)
begin
if (RD)
DR <= 0;

if (ENA)
if (! START)
begin
if (! DIN)
begin
CSAM <= CSAM + 1;
START <= 1;
end
end
else if (CSAM == 8)
begin
DI <= DIN;
CSAM <= CSAM + 1;
end
elge if (CSAM == 15)
case (CBIT)

0:
begin
if (DI ==1)
START <= 0;
else

CBIT <= CBIT + 1;

151

CHAPTER 3 Modeling Examples

CSAM <= CSAM + 1;
end
1, 2,3,4,5,6, 7, 8:
begin
CBIT <= CBIT + 1;
CSAM <= CSAM + 1;
PI <= PI ~ DI;
SR <= (DI, SR[7:1]};

end
9:
begin
CBIT <= CBIT + 1;
CSAM <= CSAM + 1;
PI <= PI ~ DI;
end
10:
begin
PERR <= PI;
PI <= 0;
if (! DI)
FERR <= 1;
else
FERR <= 0;
if (DR)
OERR <= 1;
else
OERR <= 0;
DR <= 1;
DOUT <= SR;
CBIT <= 0;
START <= 0;
end
endcase

else // ((0 <= CSAM < 8) || (8 < CSAM < 15))
CSAM <= CSAM + 1;

end // 1f (! RESET)
end // @(posedge CK)
endmodule

152

A Blackjack Model = SECTION 3.18

Here is a synthesizable model for the divider block DIV. This circuit
produces a pulse every sixteen clock cycles. If input TESTN is 0, ENA is
set to a 1. Variable COUNT is inferred as flip-flops.

module DIV (CK, RESET, TESTN, ENA);
input CK, RESET, TESTN;
output ENA;

reg [3:0] COUNT;

always @ (posedge CK)
if (! RESET)
COUNT <= 0;
else if (! TESTN)
COUNT <= 4'hF;
else
COUNT <= COUNT + 1; // Increment counter.

// Combinational part:

assign ENA = (COUNT == 15);
endmodule

3.18 A Blackjack Model

Here is a synthesizable model of a blackjack program. This program is
played with a deck of cards. Cards 2 to 10 have values equal to their face
value, and an ace has a value of either 1 or 11. The object of the game is to
accept a number of random cards such that the total score (sum of values
of all cards) is as close as possible to 21 without exceeding 21.

The input InsertCard indicates when the program is ready to accept a
new card. A card is accepted at the rising edge of Clock if InsertCard is
true. Input CardValue has the value of the card. If a sequence of cards is
accepted such that the total falls between 17 and 21, then output Won is set
to true, indicating that the game has been won. If total exceeds 21, then
the program checks to see if an ace was accepted as a 1 or a 11; if it was
accepted as a 11, the value of ace is changed to 1 and the program gets
ready to accept a new card; if not, output Lost is set to true indicating that
it has lost. If either Won or Lost is set, no more cards are accepted. The
game can be reset by setting NewGame to true.

153

CHAPTER 3 Modeling Examples

module Blackjack (CardValue, Clock, InsertCard,
NewGame, TotalPoints, Won, Lost);
input [0:3] CardValue;
input Clock, InsertCard, NewGame;
output (0:5] TotalPoints;
output Won, Lost;
reg Won, Lost;

reg AceAvailable, AceValueIsll;
reg [0:5] TotPts;
parameter TRUE = 1'bl, FALSE = 1'b0;

always @ (posedge NewGame or posedge Clock)
if (NewGame)
begin
Won <= FALSE;
Lost <= FALSE;
AceAvailable = FALSE;
AceValuelIsll = FALSE;

TotPts = 0;
end
else // posedge Clock
if (InsertCard && ! Won && ! Lost)
begin
if (Cardvalue == 4'd1l1l)
begin
AceAvailable = TRUE;
AceValuelIsll = TRUE;
end

TotPts = TotPts + CardValue;

if ((TotPts >= 17) && (TotPts <= 21))

Won <= TRUE;
else if ((TotPts >= 22) && (TotPts <= 31))
begin
if (AceAvailable && AceValuelIsll)
begin

AceValueIsll = FALSE;
TotPts = TotPts — 10;
end
else
Lost <= TRUE;

1564

f

A Blackjack Model

end
end

assign TotalPoints = TotPts;
endmodule

SECTION 3.18

155

CHAPTER

MODEL
OPTIMIZATIONS

his chapter describes optimizations that can be performed on a Ver-
ilog HDL model to improve the circuit performance. In a C pro-
gramming language compiler, an optimizer produces optimized
machine code: code is rearranged, moved around, and so on, to reduce the
C code execution time. Such optimizations may also be performed by a
logic optimizer. Also in synthesis, the logic generated is very sensitive to
the way a model is described. Moving a statement from one place to an-
other or splitting up expressions may have a profound impact on the gen-
erated logic; it might increase or decrease the number of synthesized gates
and change its timing characteristics.

Figure 4-1 shows that different endpoints for best area and best speed
are reached by a logic optimizer depending on the starting point provided
by a netlist synthesized from Verilog HDL. The various starting points are
obtained by rewriting the same Verilog HDL model using different con-
structs. Unfortunately, no algorithms are yet known that determine what

167

CHAPTER 4 Model Optimizations

coding style or optimizations produce the desired balance between area
and delay.

* starting point

Style
Style 1

Delay,

Figure 4-1 Different writing styles produce different area-delay trade-off.

This chapter explores some of these optimizations that may be per-
formed by a designer by rewriting appropriate code in the Verilog HDL
synthesis model. These optimizations provide a way to reduce the number
of arithmetic and relational operators in the design yielding better quality
designs. Synthesis run-times may also be reduced.

4.1 Resource Allocation

Resource allocation refers to the process of sharing an arithmetic-
logic-unit (ALU) under mutually-exclusive conditions. Consider the fol-
lowing i f statement.

if (MAX > 100)
JMA = SMA + BMA;
else
JMA = SMA - CMA;

If no resource allocation is performed, the "+" and "—" operators get syn-
thesized into two separate ALUs. However, if resource allocation is per-

158

Resource Allocation SECTION 4.1

formed, only one ALU is necessary that performs both the "+" and "-"
operations. This is because the two operators are used under mutually-
exclusive conditions. A multiplexer is also generated; it is needed at the
second input port of the ALU to direct inputs BMA and CMA. Figure 4-2
shows the hardware synthesized for the i f statement when no resource al-
location is performed. Figure 4-3 shows the same example when resource
allocation is performed.

SMA BMA CMA

L !

i|i TOING N\
MUX

JMA

Figure 4-2 Without resource allocation.

MAX 100

BMA CMA

J

Input select

AMUX
\

Figure 4-3 With resource allocation.

Notice that with sharing an ALU, a multiplexer has been introduced at
one of the inputs of the ALU that contributes to the path delay. However,

159

CHAPTER 4

160

Model Optimizations

the amount of logic generated has been reduced due to sharing of the
ALU. This is again a trade-off that a designer may have to make, if such a
capability is not provided by the synthesis tool. In timing-critical designs,
it may be better if no resource sharing is performed.

There are other variations of sharing that a synthesis tool may auto-

matically enforce. Operators that are usually shared are:

i. relational operators

ii. addition

iii. subtraction

iv. multiplication

v. division
Usually it is not worthwhile to generate an ALU that does an addition and
a multiplication. Multiplication and division operators are typically

shared amongst themselves. When sharing with other operators, the fol-
lowing possibilities exist:
i. Same operator, same operands: definitely must share. Exam-
pleA+B,A+B

ii. Same operator, one different operand: trade-off, since one
multiplexer will be introduced. Example: A + B, A + C

iii. Same operator, different operands: trade-off since two multi-
plexers are introduced. Example: A + B, C+ D

iv. Different operators, same operands: useful to share. Example:
A+B,A-B

v. Different operators, one different operand: trade-off since one
multiplexer introduced. Example: A + B,A - C

vi. Different operators, different operands: trade-off since two
multiplexers introduced. Example: A + B, C — D

Possibility (i) is the best case to share followed by (iv), (ii, v) and (iii, vi).

Resource allocation may also be performed manually by rewriting the
model. Here is such an example.

if (! ShReg)

DataOut = AddrLoad + ChipSelectN;
else if (ReadWrite)

DataOut = ReadN + WriteN;

Common Subexpressions SECTION 4.2

else
DataOut = AddrLoad + ReadN;

// After manual resource allocation:

if (! ShReg)
begin
Templ = AddrLoad;
Temp2 = ChipSelectN;
end
else if (Readwrite)
begin

Templ = ReadN;
Temp2 = WriteN;
end
else
begin
Templ = AddrLoad;
Temp2 = ReadN;
end

DataOut = Templ + Temp2;
The modified model guarantees only one adder and the multiplexers at the

input ports of the adder are implied by the i f statement. The original ex-
ample may synthesize with three adders.

4.2 Common Subexpressions

It is often useful in practice to identify common subexpressions and to
reuse computed values where possible. Here is a simple example.

Run = R1 + R2;

Car = R3 - (R1 + R2);

// Assume that the second assignment is executed every
// time the first statement is executed. Note that this
// assumption may not be true if either of the statements
// is inside an if statement or a case statement.

161

CHAPTER 4 Model Optimizations

If a synthesis tool does not identify common subexpressions, two adders
would be generated, each computing the same result, that of R/ + R2. A
logic optimization tool may or may not be able to identify such common
logic, thus leading to larger designs. Therefore it is useful to identify com-
mon subexpressions and to reuse the computed values. For the previous
example, we could replace the second assignment by:

Car = R3 - Run;

The problem of identifying common subexpressions becomes more im-
portant if larger blocks such as multipliers are used.

4.3 Moving Code

It may so happen that within a for-loop statement, there is an expres-
sion whose value does not change through every iteration of the loop.
Also typically a synthesis tool handles a for-loop by unrolling the loop the
specified number of times. In such a case, redundant code is introduced
for the expression whose value is invariant of the loop index. Again a log-
ic optimizer may or may not be smart enough to optimize such logic. Per-
forming the optimizations at a higher level, that is, within the model,
would help the optimizer in working on more critical pieces of the code.
Here is an example of such a for-loop.

Car = . .

for (Count = 1; Count <= 5; Count = Count + 1)
begin

Tip = Car - 6;
// Assumption: Car is not assigned a new value within
// the loop.
end
The right-hand-side expression in the assignment statement is invariant of

the loop index, that is, the value computed in variable Tip is independent
of the loop index Count. However, a synthesis tool may generate five sub-

162

Common Factoring SECTION 4.4

tracters, one for each loop iteration, thus generating extra logic. In this
case, only one subtracter is really necessary.

The best way to handle this case is to move the loop-invariant expres-
sion out of the loop. This also improves simulation efficiency. This is
shown in the following example.

Car=. . .
Temp = Car — 6; // A temporary variable is introduced.

for (Count = 1; Count <= 5; Count = Count + 1)
begin

Tip = Temp;
// Assumption: Car is not assigned a new value within
// the loop.
end
Such movement of code should be performed by the designer to produce

more efficient code; this gives the logic optimizer a better starting point to
begin optimizations.

44 Common Factoring

Common factoring is the extraction of common subexpressions in
mutually-exclusive branches of an if statement or a case statement. Here
is an example.

if (Test)
Ax=A& (B+ C);
else

By=(B+C) | T;

The expression “B+C” is computed in mutually-exclusive branches of an
if statement. However, instead of the synthesis tool generating two
adders, it is useful to factor out the expression and place it before the if
statement. This is shown next.

163

CHAPTER 4 Model Optimizations

Temp = B+ C; // A temporary variable is introduced.

if (Test)

Ax = A & Temp;
else

By = Temp | T;

By performing this common factoring, less logic is synthesized (in the

above example, only one adder gets synthesized), a logic optimizer can
now concentrate on optimizing more critical areas.

4.5 Commutativity and Associativity

In certain cases, it may be necessary to perform commutative opera-
tions before performing some of the earlier mentioned optimizations.
Here is an example where performing a commutative operation before
common subexpression identification helps in identifying common subex-
pressions.

Run = R1 + R2;

.Car = R3 - (R2 + R1);

Applying commutativity rules to the expression “R2 + R1” helps in identi-
fying the common subexpression “RI + R2” that is also used in the first
assignment.

Similarly, associativity rules can be applied before using any of the
earlier described optimizations. Here is an example.

Lam=A+ B+ C;
Bam=C+ A~ B;
Notice that applying associativity and commutativity rules on the expres-

sion in the first statement identifies “C + A” as a common subexpression.
After subexpression identification, the example appears like this.

164

Other Optimizations SECTION 4.6

Temp = C + A; // A temporary variable is introduced.
Lam = Temp + B;
Bam = Temp — B;

If associativity and commutativity are not used, a synthesis tool may
generate three adders and one subtracter; after subexpression identifica-
tion, it may generate only two adders and one subtracter, thus providing
increased savings in logic.

4.6 Other Optimizations

In general, there are two other optimizations that a synthesis tool has
no problem handling. These are:

i. Dead-code elimination
ii. Constant folding

These optimizations are usually performed by a synthesis system and a
designer does not have to worry about it. These optimizations are nonethe-
less explained below.

Dead code elimination deletes code that never gets executed. For ex-
ample,

if (2 > 4)
Oly = Sdy & Rdy;

Clearly, there is no need to synthesize an and gate since the assignment
statement will never get executed and represents dead code.

Constant folding implies the computation of constant expressions dur-
ing compile time as opposed to implementing logic and then allowing a
logic optimizer to eliminate the logic. Here is a simple example.

parameter FAC = 4;

Yak = 2 * FAC;

165

CHAPTER 4 Model Optimizations

Constant folding computes the value of the right-hand-side expression
during compile time and assigns the value to Yak. No hardware need be
generated. This leads to savings in logic optimization time.

4.7 Flip-flop and Latch Optimizations

4.7.1 Avoiding Flip-flops

It is important to understand the flip-flop inference rules of a synthesis
tool. These rules may vary from one synthesis tool to another. If the infer-
ence rules are not followed, a synthesized netlist may have many more
flip-flops than are really necessary. Here is a case in point.

reg PresentState;
xreg (0:3] Zout;
wire ClockA;

always @ (posedge ClockAa)
case (PresentState)
0 :
begin
PresentState <= 1;
Zout <= 4'b0100;
end
1:
begin
PresentState <= 0;
Zout <= 4'b0001;
end
endcase

Here the intention appears to be to store the value of PresentState in a flip-
flop (rising-edge-triggered). After synthesis, not only is there a flip-flop
for PresentState, there are also four flip-flops for Zout. This is because
Zout 1s assigned under the control of a clock. It may or may not be the in-
tention to generate flip-flops for Zout. If not, then a case statement needs
to be written in a separate always statement in which Zout is assigned, this

166

Flip-flop and Latch Optimizations SECTION 4.7

time not under the control of the clock. The modified example that gener-
ates only one flip-flop is shown next.

always @ (posedge ClockA) // Flip-flop inference.
case (PresentState)
0 : PresentState <= 1;
1 : PresentState <= 0;
endcase

always @ (PresentState) // Combinational logic.
case (PresentState)
0 : Zout = 4'b0100;
1 : Zout = 4'b0001;
endcase

4.7.2 Avoiding Latches

A variable that does not have a value assigned in all branches of a case
statement or an if statement can lead to a latch being built. This is be-
cause in Verilog HDL, a reg variable (assigned within an always state-
ment) infers memory, and thus if the variable is not assigned a value in all
branches of a conditional statement, the value needs to be saved in memo-
ry. Here is an example.

reg Luck;

always @ (Probe or Count)
if (Probe)
Luck = Count;

What is the value of Luck when Probe is 0?7 It must be the old value of
Luck. Thus the value of Luck needs to be saved; a latch is created for this
variable.

The best way to avoid latches is to first determine from the synthesis
tool how many latches have been inferred. A designer now needs to go
back and check if each latch inferred really needs to be a latch. It could be
that the designer never intended for a latch or the designer forgot to speci-
fy values under all conditions. The best rule is to check the latches that get
synthesized and go back and determine why each latch got synthesized
and fix code if necessary to avoid any unwanted latches.

167

CHAPTER 4 Model Optimizations

Here are two ways of avoiding a latch for the above example. In the
first approach, assign a value to the variable in the else branch as well.

always @ (Probe or Count)
if (Probe)
Luck = Count;
else // Else clause added.
Luck = 0;

In the second approach, initialize the value of the variable before the if
statement.

always @ (Probe or Count)
begin
Luck = 0; // Value of variable is explicitly
// initialized.
if (Probe)
Luck = Count;
end

4.8 Design Size

Small Designs Synthesize Faster

Experimental studies have shown that logic circuits of size between
2000 to 5000 gates are best handled by a logic optimizer. This implies that
in a Verilog HDL model, always statements must not be inordinately long.
A design should be structured into multiple always statements or multiple
modules.

There is no correlation between the gates produced and the number of
lines of Verilog HDL code. A 2500-gate circuit could have been synthe-
sized from a 10-line Verilog HDL code (may have a for-loop and/or vec-
tors) or from 10,000 lines of Verilog HDL code (maybe from a large case
statement with simple assignments).

Synthesis run-times, mainly logic optimization, are exponential with
design size. Thus it is critical to keep the sizes of sub-blocks within a de-
sign manageable.

168

Design Size SECTION 4.8

Hierarchy

It is useful to retain the hierarchy of a Verilog HDL model in terms of
always statements. This enables a hierarchy of sub-circuits to be produced
by the synthesis tool that a logic optimizer can effectively handle.

Quite often, a synthesis tool might automatically preserve the hierar-
chy of a large datapath operator. For example,

reg [15:0]) Zim, Rim, Sim;

Zim = Rim + Sim;

In this case, a synthesis tool may preserve the 16-bit adder as a separate
hierarchy.

Macros as Structure

Synthesis is not the right mechanism to build a memory such as a
ROM or a RAM. RAMs are usually available predefined in a technology
library. When a module such as a RAM is required, it is better to treat this
as a component, instantiate this in the model, and then synthesize the in-
stantiating model. A synthesis tool merely creates a black box for the
RAM into which the designer would later link in the RAM module.

Similar actions may be necessary if a designer has a statement of the
form:

Cyr = Rby * Ytr ; // 1l6-bit arguments.

and expects the synthesis tool to implement an efficient multiplier. The de-
signer may have a better designed multiplier. Again in this case, it is better
for the designer to instantiate a multiplier as a component, rather than use
a multiplication operator which, upon synthesis, may or may not produce
an efficient multiplier.

169

CHAPTER 4 Model Optimizations

4.9 Using Parentheses

When writing Verilog HDL code, the designer must be aware of the
logic structure being generated. One such important point is the use of pa-
rentheses. Here is an example.

Result = Rhi + Rlo — PhyData + MacReset;
A synthesis tool when synthesizing the right-hand-side expression follows

the Verilog HDL rules for expression evaluation, that is, left to right, and
builds a circuit as shown in Figure 4-4. The logic structure generated may

Rhi Rlo

PhyData

MacReset

Result

Figure 4-4 Without using parentheses.

end up having a longer critical path. A better alternative is to use paren-
theses, such as:

Result = (Rhi + Rlo) — (PhyData — MacReset) ;

which results in a smaller critical path. The synthesized circuit is shown in
Figure 4-5. Using parentheses may also help identify opportunities for
identifying common subexpressions.

Recommendation: Use parentheses liberally in an expression to con-
trol the structure of the synthesized logic.

170

Using Parentheses SECTION 4.9

. PhyData MacReset
Rhi Rlo

Result

Figure 4-5 After using parentheses.

171

CHAPTER

VERIFICATION

¥ aving synthesized a Verilog HDL model into a netlist, it is impor-
@ tant to verify the functionality of the synthesized netlist to ensure
~ that it still matches the intended functionality. This step is impor-
tant since a synthesis system may make certain assumptions or interpreta-
tions of the Verilog HDL code that may not match those intended by the
model writer.

In this chapter, we assume that this verification step is performed us-
ing simulation which verifies the functionality between the design model
and its synthesized netlist. We illustrate some cases of functional mis-
matches between the design model and its synthesized netlist that might
possibly occur, describe their cause, and provide recommendations for
avoiding them.

In this chapter, we assume that the synthesis process produces a syn-
thesized netlist in Verilog HDL as shown in Figure 5-1. A Verilog HDL
netlist is a collection of module instances interconnected by nets.

173

CHAPTER 5 Verification

C Design model)—) Synthesis —)(Netlist)

Figure 5-1 A netlist is produced from synthesis.

5.1 A Test Bench

One approach to verifying functionality is to simulate the netlist with
the same set of stimulus as used during design model simulation, save the
results in a results file and compare to see if the results are identical. This
scenario is shown in Figure 5-2.

(Design model)—) Synthesis % Netlist)

Verilog simulation Verilog simulation

If not OK

Compare Read this chapter

GOOD!

Figure 5-2 Verification by simulation.

174

A Test Bench SECTION 5.1

Another approach is to write a test bench; a test bench is a model writ-
ten in Verilog HDL that applies stimulus, compares the output responses,
and reports any functional mismatches. Figure 5-3 shows such a scenario.
A test bench for a full-adder is shown next. The stimulus is read from a
vector file “Inputs.vec”; its contents are of the form:

100
000
101
011
111

Stimulus

Test bench

. . ——————> Match ?
/ Simulation
Design model
Synthesis

Figure 5-3 Using a common test bench.

module TestBenchFA;
parameter WORDS = 5;
reg {1:3] MemV [1:WORDS];
reg A, B, Cin;
wire SumBeh, CoutBeh, SumStr, CoutStr;
integer J;

// Instantiate the design module under test:
FA_RTL F1 (A, B, Cin, SumBeh, CoutBeh) ;

// Instantiate the synthesized netlist module:
FA_Netlist F2 (A, B, Cin, SumStr, CoutStr);

175

CHAPTER 5 Verification

initial
begin
// Read the file with input vectors:
$readmemb (*Inputs.vec", MemV);

// Apply each vector to both design module and
// synthesized netlist module:
for (J=1; J<= WORDS; J=J+ 1)
begin
{A, B, Cin} = MemV(J];
#5; // Wait for 5 time units for circuit to settle.

// If output values do not match:

if ((SumBeh !== SumStr) || (CoutBeh !== CoutStr))

$display ("****Mismatch on vector $b *****n
MemV([J]) ;

else

$display ("No mismatch on vector $b", MemV([J]);
end
end
endmodule

This test bench prints all mismatch violations that occur.

In the following sections, we see examples of how mismatches may
occur that may be caused due to different interpretations by synthesis (as
compared to Verilog HDL language semantics).

5.2 Delays in Assignment Statements

Delays specified in a design model may cause a functional mismatch
between the model and the synthesized netlist. Here is an example of an
adder model that uses a delay in a continuous assignment, and its synthe-
sized netlist.

module Adder (A, B, C);
input [0:3] A, B;
output [0:3] C;

assign #5 C = A + B;
endmodule

176

Delays in Assignment Statements SECTION 5.2

// The synthesized netlist is:
module AdderNetList (A0, Al, A2, A3, B0, Bl1, B2, B3,
co, C1, c2, C3);
input A0, Al, A2, A3, B0, Bl1l, B2, B3;
output C0, CI1, C2, C3;

OAI21 CO0_1 (C2_1, S248, S310, C0);
ND2 $310_1 (5248, c2_1, S310);
XOR2 5248 1 (A0, B0, S248);
AQI22 C2_2 (S241, S244, Al, B1l, C2_1);
OAI122 C1_1 (5295, 5244, S299, S241, Cl);
INRB 8299 1 (5244, 5299);
OAI22 8244 1 (B1, S242, Al, S243, S244);
INRB S243_1 (B1, §243);
INRB S242_1 (A1, S242);
INRB 8295_1 (5241, $295);
OAI22 85241 1 (S291, S237, S238, S239, S§241);
INRB S291_1 (5240, S291);
OAI21 C2_1 (5237, §240, S334, C2);
ND2 S$334_1 (5237, 5240, S334);
OAI22 S240_1 (B2, S$238, A2, S239, 5240);
INRB S239_1 (B2, $239);
INRB S238_1 (A2, $238);
ND2 S$237_1 (A3, B3, S237);
OAIZ22 C3_1 (B3, $235, A3, S236, C3);
INRB S236_1 (B3, $236);
INRB 8235_1 (A3, S235);

endmodule

If vectors from a stimulus file were applied, say every 1 ns, and all the
module instances in the netlist represent behavioral models with no delay,
the results between the design model and the netlist will be skewed be-
cause of the difference in delays. The correct approach in such a case is:

i. Either to delete all delays from the design model,

ii. Or to apply the stimulus with a period greater than 5 ns: a bet-
ter rule.

When delays are present in the models for the library modules, these
delays must also be considered in determining the stimulus period.

Recommendation: To avoid delays in a design model from causing
functional mismatches, the maximum delay in the model must be comput-

177

CHAPTER 5 Verification

ed. The stimulus application time must be greater than this maximum de-
lay.

5.3 Unconnected Ports

It could happen that a synthesized netlist has a module instance with
an unconnected input port. Such a case is shown in the following exam-
ple.

module A0I22 (A, B, D, 2);
input A, B, D;
output Z;
reg T1, T2, C;

always @ (A oxr Borxr D)

begin
Tl =2A& B;
T2 =C& D; // C is never assigned a value.
Z=1(T1]| T2);
end
endmodule

// Its synthesized netlist is:
module A0I22 NetList (A, B, D, Z);
input A, B, D;
output Z;

AND2 S0_1 (A, B, T1_1);

AND2 S1_1 (, D, T2_1); // First port is open.
OR2 52 1 (T1_1, T2_1, T2 0);
INRB S3 1 (T2_0, 2);

endmodule

// Note: A logic optimizer has not yet been used; it
// could potentially remove a redundant gate.

Notice that in the synthesized netlist, the first input of the AND2 module
instance SI_I is open. During the simulation of module AOI22_NetList,
the open input takes the value z', whereas the unassigned value of C in
module AOI22" takes on a default value of x. The fact that different val-
ues are used for C during the design model simulation and the synthesized

178

Missing Latches SECTION 5.4

netlist simulation, a potential exists for functional mismatch to occur due
to different values being the default in the two different domains.

Recommendation: A good synthesis system will issue warning mes-
sages about a value used before being assigned (such as variable C in the
module AOI22). Pay attention to these warnings.

5.4 Missing Latches

In Chapter 2, we described rules for inferring latches. We also de-
scribed an exception to the rule, that is, a variable does not infer a latch if
it is used as a temporary. However, there are a few other cases where a
variable may not infer a latch, even though it appears from the code se-
quence that it should.

Let us consider the first case.

wire Control, Jrequest;
reg DebugX;

always @ (Control or Jrequest)
if (Control)
DebugX = Jrequest;
else
DebugX = DebugX;

In this always statement, variable DebugX is assigned in all branches of
the if statement. However, data flow analysis reveals that the value of
DebugX needs to be saved (since its value is used before an assignment
when Control is false). In this case, a synthesis system may produce a
warning message about variable DebugX being used before its assignment
and also about a potential functional mismatch that may occur between
the design model and its synthesized netlist.

Let us reiterate the rules for inferring latches once more:

i. In Verilog HDL, an unassigned variable of reg type has a default value of x and a
variable of a net type has a default value of z.

ii. Behavior of logic gates used in the synthesized netlists are described in Appendix
B.

179

CHAPTER 5 Verification

i. A variable is assigned in a conditional statement (i f or case),
and

ii. Vanable is NOT assigned in all branches of the conditional
statement, and

iii. Value of variable needs to be saved between multiple invoca-
tions of the always statement.

All the three conditions must be satisfied before a variable is inferred as a
latch. In the above always statement, DebugX violates rule (ii). Therefore
no latch is produced for DebugX.

Here is another example.

always @ (Control)
begin
if (Control)
DebugX = Jrequest;
else
DebugX = Bdy;

Bdy = DebugX;
end

In this always statement, it appears that there should be a latch for either
DebugX or Bdy. There is no latch for DebugX since it violates rule (ii).
There is no latch for Bdy since it violates rule (i). Language semantics
however indicate that value for Bdy needs to be saved. A synthesis system
in this case may not produce a latch; instead it may issue a warning mes-
sage about Bdy being used before its assignment and in addition, produce
a warning message about a potential for functional mismatch that may oc-
cur.

In the following always statement, no latch is produced for DebugX
since it violates rule (ii) but a latch is produced for Bdy.

always @ (Control)
begin
if (Control)
DebugX = Jreguest;
else
DebugX = Bdy;

180

More on Delays SECTION 5.5

if (Jrequest)
Bdy = DebugX;
end

What about the following always statement?

always @ (Control)

begin
if (Control)
DebugX = Jrequest;
else

DebugX = Bdy;

if (Jrequest)
Bdy = DebugX;
else
Bdy = 'bl;
end

There are no latches for DebugX and Bdy. However language semantics
indicate that Bdy needs to be saved. A synthesis system may not produce a
latch; it may generate a warning about the variable being used before its
assignment and that there is a potential for a functional mismatch.

5.5 More on Delays

Delays are often ignored by a synthesis system. The fact that they are
ignored may simply cause simulation results to differ between the synthe-
sized netlist and the design model. A case in point.

LX = #3 'bl;
if (Conda)
LX = #5 'b0;

Model simulation shows a value of 1 on LX after 3 ns and the value going
to O after 5 ns if the condition CondA is true. However, since a synthesis
system ignores delays, if CondA is true, the net effect is as if a 0 is as-

181

CHAPTER 5 Verification

signed to LX and the appropriate hardware gets synthesized to reflect this.
Notice that if the synthesized netlist is simulated, the value of LX will not
go to 1 if CondA is true.

Recommendation: Avoid inserting delays into a design model that is
to be synthesized. If necessary, lump total delays for a variable in one
place.

5.6 Event List

Quite often, a synthesis system ignores the event list of an always
statement during synthesis. This can lead to functional mismatches if
proper care is not taken in modeling. Here is a simple example.

always @ (Read)
Grt = Read & Clock;
// Synthesized netlist is shown in Figure 5-4.

Read

Clock

AND2
Figure 5-4 Netlist is sensitive to both Read and Clock.

The synthesized netlist, as shown in Figure 5-4, evaluates on all changes
of Read and Clock, while the always statement executes only on changes
to Read.

Here is another example of an always statement with an incomplete
event list that may cause functional mismatches.

reg Rst;
reg [3:0] Pbus, Treg;

always @ (Rst)

if (Rst)
Treg = 0;

182

Synthesis Directives SECTION 5.7

else
Treg = Pbus;

The variable Pbus is not in the event list of the always statement. However
in the synthesized netlist, any changes on Pbus will propagate into Treg if
the i f condition is false. This is not consistent with the design model se-
mantics and thus a functional mismatch occurs.

Recommendation: For an always statement without a clock event (that
is, when modeling combinational logic), include all variables read in the
always statement in the event list.

5.7 Synthesis Directives

The two synthesis directives we have seen so far, full_case and
parallel_case, can potentially cause functional mismatches to occur be-
tween the design model and the synthesized netlist. The problem is that
these directives are recognized only by a synthesis tool and not by a simu-
lation tool. In either of the cases, if the designer is not careful in specify-
ing the directive, mismatches can occur.

Here is an example of a full_case synthesis directive.

reg [1:0] CurrentState, NextState;

case (CurrentState) // synthesis full_case

2'b01 : NextState = 2'bl0;
2'b10 : NextState = 2'b01;

endcase

The full_case directive tells the synthesis tool that all possible values that
can possibly occur in CurrentState have been listed and the value of Next-
State is a don’t-care for all other cases, and therefore, the synthesis tool
should not generate latches for NextState. However this may not be true in
simulation. It could happen that CurrentState for some reason, gets a val-
ue of 2'b00. In such a case, the case statement simulates as if NextState
value is saved, but in the synthesized netlist, the value of NextState may
not be saved.

Here is an example of a parallel_case synthesis directive.

183

CHAPTER 5 Verification

case (1'bl) // synthesis parallel_case
Gatel : Maskl = 1;
Gate2 : Mask2 = 1;
Gate3 : Mask3 = 1;

endcase

Simulation semantics of the case statement (the parallel_case directive is
ignored since it is a comment) specifies that if Gatel is a 1, then assign 1
to Maskl, else if Gate2 is a 1, assign 1 to Mask2, else if Gate3 is a 1, as-
sign 1 to Mask3. However, with the parallel_case directive, instead of a
priority if-structure being synthesized, a parallel decoder is synthesized.
This can cause functional mismatches to occur. What if both Gate3 and
Gatel were 1 at the same time? In the case statement, the first branch is
taken, whereas in the synthesized netlist, both branches 1 and 3 are en-
abled. Here is the semantics for the case statement expressed using an if
statement.

if (Gatel)
Maskl = 1;

else if (Gate2)
Mask2 = 1;

else if (Gate3)
Mask3 = 1;

This 1s the semantics of the synthesized netlist.

if (Gatel)
Maskl = 1;

if (Gate2)
Mask2 = 1;

if (Gate3)
Mask3 = 1;

Recommendation: Use caution when using the synthesis directives:
full_case and parallel_case. Use only if really necessary.

184

Variable Asynchronous Preset SECTION 5.8

5.8 Variable Asynchronous Preset

When synthesizing an asynchronous preset clear flip-flop, the recom-
mendation is to assign only constant values under the asynchronous con-
ditions. If a variable is asynchronously read, there is a potential for a
functional mismatch to occur. Here is an example.

module VarPreset (ClkZ, PreLoad, LoadData, PrintBus,
QuickBus) ;
input ClkZ, PreLoad;
input [1:0] LoadData, PrintBus;
output [1:0] QuickBus;
reg [1:0] QuickBus;

always @ (negedge PreLoad or posedge ClkZ)
if (! PreLoad)
QuickBus <= LoadData; // Asynchounous data assign.
else
QuickBus <= PrintBus;
endmodule
// Synthesized netlist is shown in Figure 5-5.

PrintBusd QuickBus®
p PO o
4
LoadData® | INRBH NR2 o o
FD1S3CX
Prel_ood @:}
1 M2
CkZ NR2 70 QuickBusl
0 o>
PrintBusl INRBH
—p™ep N—
LoadDatal f 2 FO153CX
NR2

Figure 5-5 Variable asynchronous preset.

185

CHAPTER 5 Verification

Two flip-flops with asynchronous preset and clear are synthesized for the
variable QuickBus. The variable LoadData is connected to the preset clear
inputs of the flip-flops through other logic. When PreLoad is active (is 0)
and LoadData changes, the outputs of the flip-flops are immediately af-
fected because of the asynchronous data change. However in the design
model, any change on LoadData has no effect on the output QuickBus.
Thus there is a mismatch.

Recommendation: Avoid asynchronously reading a variable and as-
signing it to a flip-flop; else ensure that there are no changes on asynchro-
nous data when the asynchronous conditions are active.

5.9 Blocking and Non-blocking Assignments

In Chapter 2, we recommended that:

* blocking assignments be used for modeling combinational
logic, and

* non-blocking assignments be used for modeling sequential
logic; blocking assignments may be used for variables that
are assigned and used, all within an always statement.

In this section, we explain why this recommendation is important to be
followed; else there is a risk of getting functional mismatches.

5.9.1 Combinational Logic

Blocking assignments mirror the dataflow in a combinational circuit.
Consider the following always statement.

reg TM, TN, TO, TZ;

always @ (Aor Bor Cor Dor E)

begin
TM = A & B;
TN =C & D;
TO=TM | TN | E;
TZ = ! TO;

end

186

Blocking and Non-blocking Assignments SECTION 5.9

All the assignments are blocking assignments. Statements within the se-
quential block imply to compute the value of TM first, then execute the
second statement, assign to TN, then go to third statement, assign to 70,
and so on. This mimics the dataflow through the combinational logic.

Let us now change all these to non-blocking assignments.

reg TM, TN, TO, TZ;

always @ (Aor Bor Cor Dor E)
begin

TM <= A & B;

TN <= C & D;

TO<=TM | TN | E;

TZ <= ! TO;
end

When the first assignment statement executes, TM does not get updated
immediately but is scheduled to be assigned at the end of the current sim-
ulation cycle. Since all statement executions occur sequentially and in
zero time, so when the third statement is executed, the old value of 7M is
used to compute the value of TO (TM has not been assigned its new value
yet). Consequently, the output 7Z does not reflect the and-or-invert behav-
ior of the logic. The problem is that TM, TN, and TO all get updated at the
end of the current simulation cycle and these updated values are not used
again to reevaluate the logic.

A solution to this problem is to place variables TM, TN and TO also in
the event list of the always statement, such as:

reg TM, TN, TO, TZ;

always @ (Aor Bor Cor Dor Eoxr TMor TN or TO)
begin

T™™M <= A & B;

TN <= C & D;

TO<=TM | TN | E;

TZ <=1 TO;
end

187

CHAPTER 5

5.9.2

188

Verification

In this case, when TM, TN or TO changes, the always statement is re-
evaluated and eventually 7Z does get the correct value. So there are two
problems that have been identified:

* non-blocking assignments do not show the logical flow
* need to put all targets of assignments in the event list

These problems can simply be avoided by using blocking assignments
when modeling combinational logic and are therefore recommended.

Sequential Logic

Let us first consider what happens if blocking assignments are exclu-
sively used for modeling sequential logic. Consider the following two al-
ways statements.

always @ (posedge CIlkA) // Label AwA
. = DataOut; // Read value of DataOut.

always @ (posedge ClkA) // Label AwB
DataOut = . . .; // Using blocking assignment.

The always statement, labeled AwB, assigns a value to DataOut in a
blocking fashion and the always statement, labeled AwA, reads the value
of DataOut. If these always statements were simulated in the sequence
shown (a simulator orders the always statements to be executed in se-
quence based on event changes in the event list), and if CIkA had a posi-
tive edge, the always statement AwA reads the current value of DataOut
first and then the always statement AwB causes a new value to be assigned
to DataOut. If the order of the always statements were reversed (or if a
simulator chooses to reorder the execution of the always statements), exe-
cution of the always statement AwB occurs first causing DataOut to be as-
signed a new value in zero time. Subsequently, the read of DataOut in the
always statement AwA uses the new updated value of DataOut. Thus it ap-
pears that depending on the order in which the always statements are exe-
cuted, different results are obtained. The problem is really caused by the
fact that when both always statements are ready for execution, the assign-
ment to DaraOut occurs in zero time and completes. So depending on
which always statements gets executed first, the read of DataOut in AwA
will either be an old value of DataOut or a new value of DataOut.

Blocking and Non-blocking Assignments SECTION 5.9

To avoid this simulation behavior dependence, it is best to force the
assignment to occur at a later time, a time after which all reads are guaran-
teed to have been completed. This can be achieved by using the non-
blocking assignment. In such a case, the read of DataOut occurs at the
current time, while a new value is assigned to DataOut at the end of the
current simulation step (that is, after all reads are completed). This makes
the behavior of the model insensitive to the order of the always state-
ments. Here are the always statements with non-blocking assignments
used.

always @ (posedge ClkA) // Label AwA
. = DataOut; // Read value of DataoOut.
always @(posedge CIlkA) // Label AwB
DataOut <= . . .; // Using non-blocking assignment.

So we see that if a variable is assigned a value in one always statement and
its value read external to that always statement, the assignment should be
a non-blocking procedural assignment.

What if the assignment and reading of a variable all occur in the same
clocked always statement? In such a case, blocking assignments may be
used.

reg [9:0] Total;

always @ (negedge ClkB)

begin
Total = LoadValue + 2; // Blocking assignment.
if (Total == 21) // Value assigned in previous

// statement used.
NumBus <= ControlBus;
else
NumBus <= DataBus;
end

Total is a variable assigned and then read within the same always state-
ment. In this case, we would like the assignment to Total to be completed
before the if condition is evaluated. Total is a temporary; a value is as-

189

CHAPTER 5 Verification

signed to it and then read. Thus a blocking assignment is suitable for
Total.

If a non-blocking assignment is used, such as:

reg [9:0] Total;

always @ (negedge ClkB)

begin
Total <= LoadValue + 2; // Non-blocking assignment.
if (Total == 21) // 01d value of Total read.
NumBus <= ControlBus;
else

NumBus <= DataBus;
end

then the value of Total when the if condition is evaluated is the old value
of Total, not the value that is scheduled to be assigned to it in the previous
assignment.

Therefore, the recommendation is to use non-blocking assignments
for variables that are read outside of the always statement in which they
are assigned. Additionally, for variables that are assigned and used only
within an always statement, use blocking assignments.

190

APPENDIX

SYNTHESIZABLE
CONSTRUCTS

%0 give an idea of what Verilog HDL constructs are synthesizable,
this appendix provides a listing of the synthesizable Verilog HDL
constructs that are recognized by the ArchSyn synthesis system,
v14.0. This subset may not be the same for all synthesis tools.

Constructs that have relevance only to simulation, and not to synthe-
sis, are identified as “ignored constructs” and constructs that are not syn-
thesizable are marked as “not supported”. The constructs are categorized
as follows:

i. Supported: Constructs that get synthesized into hardware.
ii. Not supported: Synthesis terminates when such a construct is
present in the input file.

iii. Ignored: Warning messages are issued during synthesis, ex-
cept for declarations.

191

APPENDIX A Synthesizable Constructs

In the following tables, the first column specifies the Verilog HDL
feature, the second column indicates whether the feature is supported or
not, and the third column is for comments and exceptions.

192

Synthesizable Constructs APPENDIX A

Lexical Conventions
Operators Supported Case equality and case
inequality not supported.
White Space and Comments Supported
Numbers Supported
Strings Not supported
Identifiers, Keywords, and Supported System names are ignored.
System Names
Text Substitutions Supported
Data Types
Value Set Supported
Registers and Nets Supported
Vectors Supported
Strengths Ignored
Implicit Declarations Supported
Net Initialization Not supported | The wires are initially uncon-
nected.
Net Types Supported
Memories Supported
Integers Supported
Times Not supported
Real Numbers Not supported
Parameters Supported

193

APPENDIX A Synthesizable Constructs

194

Expressions
Operators Supported Case equality and case ine-
quality not supported.
Operands
Net and Register Bit Supported
Addressing
Memory Addressing Supported
Strings Not supported
Minimum, Typical, Maxi- | Ignored
mum Delay Expressions
Expression Bit Lengths Supported
Assignments
Continuous Assignments | Supported Delay values and drive
strength values ignored.
Procedural Assignments | Supported

Gate and Switch Level Modeling

Gate and Switch Declara- | Supported Strengths and delays not sup-
tion Syntax ported.

AND, NAND, NOR, OR, Supported

XOR, and XNOR Gates

BUF Gate Supported

NOT Gate Supported

BUFIF1, BUFIFO, Supported

NOTIF1, and NOTIF0

Gates

MOS Switches Not supported

Synthesizable Constructs

APPENDIX A

Gate and Switch Level Modeling

Bidirectional Pass Not supported
Switches

CMOS Gates Not supported
PULLUP and PULL- Not supported
DOWN Sources

Implicit Net Declarations | Supported
Logic Strength Modeling | Not supported
Strengths and Values of Not supported
Combined Signals

Mnemonic Format Not supported
Strength Reduction by Not supported
Non-Resistive Devices

Strength Reduction by Not supported
Resistive Devices

Strengths of Net Types Ignored

Gate and Net Delays Ignored

Gate and Net Name Not supported
Removal

User-Defined Primitives

Not Supported
Behavioral Modeling
Procedural Assign- Supported Time declaration is not sup-
ments ported.
Timing controls as delays are
ignored.

Timing controls as events are not
supported.

195

APPENDIX A Synthesizable Constructs

196

Behavioral Modeling
Conditional Statement | Supported
Case Statement Supported

Looping Statements

Forever Loop

Not supported

Repeat Loop Supported Repeat expression has to be a
constant.

While Loop Not supported

For Loop Supported Assignments to the FOR index

have to be constant assignments.

Procedural Timing
Controls

Delay timing controls are
ignored, event timing controls
are not supported.

Block Statements Supported Time declaration, and event dec-
laration are not supported.
Structured Procedure
Initial Statement Ignored
Always Statement Supported
Task Supported Time and event declarations are
not supported.
Function Supported Time declaration, and event dec-
laration are not supported.
Tasks and Functions
Tasks and Task Supported | Time and event declarations are not
Enabling supported.

Functions and Func-
tion Calling

Supported | Time declaration and event declara-
tion are not supported

Synthesizable Constructs APPENDIX A

Disabling of Named Blocks and Tasks

Not supported

Procedural Continuous Assignments

Not supported

Hierarchical Structures

Modules Supported
Top-Level Modules Supported
Module Instantiation | Supported
Overriding Module Supported DEFPARAM is not supported.
Parameter Values
Macro Modules Supported
Ports Supported
Hierarchical Names Not supported
Automatic Naming Supported System generated names not sup-
ported.
Scope Rules Supported
Specify Blocks
Not supported

197

APPENDIX

A GENERIC
LIBRARY

his appendix describes the components used in the synthesized
netlists shown in the text. Functionality of each component is speci-
fied using comments.

module AND2 (A, B, Z);
input A, B;
output Z;
// Z =1A&B;
endmodule

module AO0I21 (Al, A2, B, 2);:
input A1, A2, B;
output Z;
//'Z=1 ((Al & A2) | B);
endmodule

199

APPENDIX B A Generic Library

module A0I211 (Al, A2, Bl, B2, Z);
input A1, A2, Bl1, B2;
output Z;
// Z2=1 ((Al & A2) | B1 | B2);
endmodule

module AOI22 (Al, A2, Bl, B2, Z);
input Al, A2, B1l, B2;
output Z;
//Z=1 ((Al & A2) | (Bl & B2));
endmodule

module BN20T20D (A, ST, STN, PADI, Z, PADO);
input A, ST, STN, PADI;
output Z, PADO;
// Bidirectional buffer.

// Z = PADI;
// PADO = 0O when (!A && !STN) else
// 1 when (A && ST) else
/7 'bz;
endmodule

module BUF (A4, 2);
input A;
output Z;
// Z =A;
endmodule

module FD1P3AX (D, SP, CK, Q, ON);
input D, SP, CK;
output Q, QON;
// Positive edge-triggered, positive-level sample,
// static D-type FF.
endmodule

module FD1S1A (D, CK, Q, ON);

input D, CK;

output Q, ON;

// Positive-level sense static D-type FF (latch).
endmodule

200

A Generic Library APPENDIX B

module FDIS1B (D, CK, PD, Q, QN);
input D, CK, PD;
output Q, ON;
// Positive-level sense, positive asynchronous
// preset, static D-type FF (latch).
endmodule

module FDI1S1D (D, CK, CD, Q, QN);
input D, CK, CD;
output O, ON;
// Positive-level sense, positive asynchronous
// clear, static D-type FF (latch).
endmodule

module FDI1S1E (D, CK, CDN, Q, ON);
input D, CK, CDN;
output O, ON;
// Positive-level sense, negative asynchronous clear,
// static D-type FF (latch).
endmodule

module FDI1S1F (D, CK, PD, CDN, Q, QN);
input D, CK, PD, CDN;
output O, ON;
// Positive-level sense, negative asynchronous clear,
// positive asynchronous preset, static '
// D-type FF (latch).
endmodule

module FD1S2AX (D, CK, Q, ON);

input D, CK;

output Q, ON;

// Negative edge-triggered, static D-type FF.
endmodule

module FDI1S2BX (D, CK, PD, Q, ON);
input D, CK, PD;
output Q, ON;
// Negative edge-triggered, positive asynchronous
// preset, static D-type FF.
endmodule

201

APPENDIX B A Generic Library

202

module FD1S2CX (D, CK, PD, Q, QN);
input D, CK, PD;
output Q, ON;
// Negative edge-triggered, positive asynchronous
// preset, positive asynchronous clear,
// static D-type FF.
endmodule

module FD1S2DX (D, CK, CD, Q, ON);
input D, CK, CD;
output Q, ON;
// Negative edge-triggered, positive asynchronous
// clear, static D-type FF.
endmodule

module FDIS2EX (D, CK, CDN, Q, ON);
input D, CK, CDN;
output Q, ON;
// Negative edge-triggered, negative asynchronous
// clear, static D-type FF.
endmodule

module FD1S2FX (D, CK, PD, CDN, Q, ON);
input D, CK, PD, CDN;
output O, ON;
// Negative edge-triggered, negative asynchronous
// clear, positive asynchronous preset, static
// D-type FF.
endmodule

module FD1S2GX (D, CK, PD, CDN, Q, ON);
input D, CK, PD, CDN;
output Q, ON;
// Negative edge-triggered, negative asynchronous
// preset, static D-type FF.
endmodule

module FD1S2IX (D, CK, CD, Q, QN);
input D, CK, CD;
output Q, ON;
// Negative edge-triggered, positive synchronous

A Generic Library APPENDIX B

// clear, static D-type FF.
endmodule

module FD1S2JX (D, CK, PD, O, ON);
input D, CK, PD;
output Q, ON;
// Negative edge-triggered, positive synchronous
// preset, static D-type FF.
endmodule

module FDIS2NX (D, CK, PDN, CD, Q, ON);
input D, CK, PDN, CD;
output Q, ON;
// Negative edge-triggered, positive asynchronous
// clear, negative asynchronous preset, static
// D-type FF.
endmodule

module FD1S20X (D, CK, PD, CD, Q, ON);
input D, CK, PD, CD;
output Q, ON;
// Negative edge-triggered, positive synchronous
// clear, positive synchronous preset, static
// D-type FF.
endmodule

module FD1S3AX (D, CK, Q, ON);

input D, CK;

output Q, ON;

// Positive edge-triggered, static D-type FF.
endmodule

module FD1S3BX (D, CK, Q, ON);
input D, CK;
output Q, ON;
// Positive edge-triggered, positive asynchronous
// preset, static D-type FF.
endmodule

module FD1S3CX (D, CK, Q, ON);
input D, CK;
output Q, ON;

203

APPENDIX B A Generic Library

204

// Positive edge-triggered, positive asynchronous
// clear, positive asynchronous preset, static
// D-type FF.

endmodule

module FDI1S3EX (D, CK, CDN, O, ON) ;
input D, CK, CDN;
output Q, ON;
// Positive edge-triggered, negative synchronous
// clear, static D-type FF.
endmodule

module FL1S2AX (DO, D1, CK, SD, O, QN) ;
input D0, D1, CK, SD;
output Q, ON;
// Negative edge-triggered, data select front end,
// scan FF.
endmodule

module FL1S2EX (D0, D1, CK, SD, CDN, Q, ON) ;
input DO, D1, CK, SD, CDN;
output Q, ON;
// Negative edge-triggered, data select front end,
// negative asynchronous clear, scan FF.
endmodule

module FL1S3AX (DO, D1, CK, SD, Q, ON);
input DO, D1, CK, SD;
output Q, ON;
// Positive edge-triggered, data select front end,
// scan FF.
endmodule

module FL1S3CX (D0, D1, CK, SD, Q. ON);
input D0, DI, CK, SD;
output Q, ON;
// Positive edge-triggered, data select front end,

// positive asynchronous clear, positive asynchronous

// preset, scan FF.
endmodule

A Generic Library APPENDIX B

module FL1S3EX (D0, D1, CK, SD, CDN, Q, QON);
input D0, D1, CK, SD, CDN;
output Q, ON;
// Positive edge-triggered, data select front end,
// negative asynchronous clear, scan FF.
endmodule

module FS0SID (S, R, CD, Q, QN);
input S, R, CD;
output Q, ON;
// Positive-level S input, positive-level R input,
// positive asynchronous clear, R-S FF (latch).
endmodule

module INRB (A, Z);
input A4;
output Z;
// Z=1A;
endmodule

module INRBH (A, Z);

input A4;

output Z;

// Z =1 A; (same as INRB)
endmodule

module ND2 (A, B, 2);
input A, B;
output Z;
//Z="(A&B);
endmodule

module ND3 (A, B, C, 2);
input A, B, C;
output Z;
//Z=1 (A&B&C);
endmodule

module ND4 (A, B, C, D, 2);
input A, B, C, D;
output Z;

205

APPENDIXB A Generic Library

// 2=t (A&B&C&D);
endmodule

module NR2 (A, B, 2);
input A, B;
output Z;
//'Z2=1(A] B);
endmodule

module NR3 (A, B, C, Z);
input A, B, C;
output Z;
//2=1(A]|B]|C);
endmodule

module NR4 (A4, B, C, D, Z);
input A, B, C, D;
output Z;
//Z=V(A|B]C|D;
endmodule

module OAI21 (Al, A2, B, Z);
input A1, A2, B;
output Z;
//'Z=1% ((Al | A2) & B);
endmodule

module OAI22 (Al, A2, Bl, B2, Z);
input A1, A2, Bl1, B2;
output Z;
//'Z =1 ((Al]| A2) & (Bl | B2));
endmodule

module OAI4321 (Al, A2, A3, A4, B1, B2, B3, C1, C2, D, 2);
input A1, A2, A3, A4, B1, B2, B3, C1, C2, D;

output Z;
//'Z=1((Al | A2 | A3 | A4) & (Bl | B2 | B3)
// & (Cl &C2) & D);

endmodule

206

A Generic Library

module OR2 (A, B, Z);
input A, B;
output Z;
//'Z=A1|B;
endmodule

module OR4 (A, B, C, D, 2);
input A, B, C, D;
output Z;
//Z=A|B]|C]|D;
endmodule

module TBUS (D, CK, CKN, Q);
input D, CK, CKN;

output Q;

// Q = 'bz when (! CK && CKN),

// ‘b0 when (CK && ! D),

// 'bl when (! CKN && D) ;
endmodule

module XNOR2 (A, B, Z);
input A, B;
output Z;
//'Z=1](AAB);
endmodule

module XOR2 (A, B, Z);
input A, B;
output Z;
// Z =AAB;
endmodule

module XOR2Z (A, B, Z, 21);
input A, B;
output Z, 21;
//Z=A*B; Z1 =1 (A]| B);
endmodule

APPENDIX B

207

BIBLIOGRAPHY

. Bhasker J., A Verilog HDL Primer, Star Galaxy Press, Allentown, PA,
1997, ISBN 0-9656277-4-8.

. IEEE Standard Hardware Description Language Based on the Verilog
Hardware Description Language, IEEE Std 1364-1995, IEEE, 1995.

. Lee James, Verilog Quickstart, Kluwer Academic, MA 1997, ISBN 0-
7923992-7-7.

. Palnitkar S., Verilog HDL: A Guide to Digital Design and Synthesis,
Prentice Hall, NJ, 1996, ISBN 0-13-451675-3.

. Sagdeo Vivek, The Complete Verilog Book, Kluwer Academic, MA,
1998, ISBN 0-7923818-8-2.

. Smith Douglas, HDL Chip Design, Doone Publications, AL, 1996,
ISBN 0-9651934-3-8.

. Sternheim E., R. Singh and Y. Trivedi, Digital Design with Verilog
HDL, Automata Publishing Company, CA, 1990, ISBN 0-9627488-0-
3.

. Thomas D. and P. Moorby, The Verilog Hardware Description Lan-
guage, Kluwer Academic, MA, 1991, ISBN 0-7923912-6-8.

Q

209

INDEX

$display 3
2’s complement 9,22

A

adder 17, 133, 165

addition 160

algorithmic level 1

ALU 124,158

always statement 12,17, 37, 41, 51,
68, 89, 95, 101, 108, 114, 145,
166, 168, 180, 182, 186, 188

and primitive 97

architecture level xvi

ArchSyn synthesis system xvi, 191

area constraints 2

area-delay trade-off 158

arithmetic operator 22, 158

arithmetic-logic-unit xvi, 1, 124, 158

assignment statement 136, 176

associativity 164

associativity rule 164

asynchronous clear 64, 78, 79, 80

asynchronous condition 185

asynchronous logic 78

asynchronous preclear 131

asynchronous preset 64, 78, 79, 80

asynchronous preset clear flip-
flop 185

B

base format form 9

behavioral description 99

behavioral model 177

binary code 113

binary comparator 134

binary counter 128,132

binary decoder 136

bit-select 33,139

black box 98

blackjack 153

blocking assignment 73, 186, 188

blocking procedural assignment 17,
84

boolean equation 113

buf primitive 97

bufif0 primitive 97

bufifl primitive 97

built-in primitive xvi

built-in self-test cell 108

C

carry 24

carry bit 24

carry input 133

carry output 133

case equality 27

case expression 45, 52

case inequality 27

case item 45, 52, 56, 58, 94, 120

211

INDEX

case item expression 48

case statement 45, 51, 59, 93, 94, 114,
119, 122, 161, 180

casex statement 6, 49, 55

casez statement 6, 48, 55

circuit performance 157

clock edge 70, 77, 80, 89, 91, 114, 145

clock event 68, 78,95, 114, 183

clocked always statement 68, 81, 89,
114

clocked behavior xvi

combinational circuit 136

combinational logic xvi, 18, 39, 88, 89,
107, 108, 113, 117, 139, 186,
188

comment 53

common factoring 163

common subexpression 161,163, 164,
170

common subexpression
identification 164

commutative operation 164

commutativity 164

commutativity rule 164

comparator xvi, 134

concatenation 24

concatenation operator 33

concurrent behavior xv

conditional branch 61

conditional expression 36, 94, 126

conditional statement 12, 60, 64, 180

constant 9

constant folding 165

constant index 33

constant shift 28

continuous assignment 16, 21, 25, 31

continuous assignment
statement 16, 107, 108, 113,
126, 136, 139

counter xviii

critical path 170

custom-made flip-flop 101

D

data flow analysis 9,179
data type 2

dataflow 186

datapath operator 169
dead-code elimination 165
decoder xviii, 35, 56, 136
decoding logic 56

default branch 54,119

212

delay 20, 136, 176, 181
delay control 20
design size 168
designer xix

divider block 153
division 160
don’t-care 6, 48, 49
don’t-care value, D 6
D-type flip-flop 78

E

edge event 78

edge-triggered storage element 10
efficient code 163

enable control 137

encoding states 121

equality operator 27

even parity 141

event list 12, 38, 42, 78, 182, 187, 188
exponent 146

expression 88,162,170

extraction 163

F

factorial 146

falling edge 68, 70, 144

falling-edge-triggered flip-flop 69,
70,71, 73, 80

flip-flop 1, 3,10, 12, 19, 68, 70, 78, 79,
81, 89, 95, 101, 108, 145, 166

forever-loop 66

for-loop 66

for-loop statement 88, 90, 162

full case 52,119

full_case directive 53

full_case synthesis directive 58, 120,
122,183

full-adder 21,98

function 88

function call 88

functional mismatch 20, 39, 58, 68,
87,93,179, 185, 186

functional mismatches 55

functionality 174

G

gate instantiation 97 |
gate level 1 |
gate level modeling 97

gate level netlist xv ’
gate level primitive 97

Gray code 113 /

Gray counter 132
Gray to binary 114

H

hardware element xviii
hierarchy 89, 169
high-impedance 93
high-impedance value, Z 6
high-level synthesis xvi

I

IEEE Std 1364-1995 xv

if statement 40, 43, 45, 50, 52, 59, 67,
78,161,179, 180

ignored construct 191

inference rule 70, 166

inferring latch 179

initial statement 17

initial value assignment 52

in-line 89

in-line code 88

in-line expansion 88, 90, 92

integer 9,72

integer register 73

integer type 9, 22,27

intermediate variable 73

intra-statement delay 20

invariant 162

inverter 16

J
Johnson counter 130, 131
Johnson decoder 137

L

latch 3,10, 12, 19, 42, 43, 51, 58, 59,
108, 167

latch inferencing 42

left shift operator 28

level-sensitive storage element 10

local variable 88

locally declared variables 73

logic circuit 168

logic gate xvi

logic optimization 168

logic optimization tool 162

logic optimizer 2,157, 162, 164, 168,
178

logic structure 170

logic synthesis xvi

logic-0 6,8,93

INDEX

logic-1 6, 8,93

logical operator 21

loop index 162

loop iteration 163

loop statement 66
loop-invariant expression 163

M

machine code 157

machine state 114

mantissa 146

Mealy finite state machine 117

memory 10, 13,108, 111, 167

mismatch violation 176

modeling flip-flop 68

module binding xvi

module builder 2

module declaration 98

module instance 98, 101, 173, 177

module instantiation statement 98,
108, 111

modulo-N counter 129

Moore finite state machine 114

multi-phase clocks 77

multiple clocks 75

multiple driver resolution 7

multiple drivers 7

multiplexer xviii, 1, 34, 109, 139, 140,
159

multiplication 160

multiplication logic 99

multiplication operator 169

multiplier 99, 169

multiply operator 100

mutually exclusive 56

mutually-exclusive branch 163

mutually-exclusive condition 158

N

named constant 10

nand primitive 97

negative edge 77

negedge 68,78

net 16

net data type 6, 10, 11

net declaration 7

net type 22

netlist xvi, 173, 177

next state logic 117

non-blocking assignment 73, 86, 186,
188, 189

non-blocking procedural

213

INDEX

assignment 18, 68, 84, 189
non-constant bit-select 35
non-constant expression 58
non-constant index 34
non-encoded select lines 140
non-logical value 93
nor primitive 97
not primitive 97
not supported construct 191
notif0 primitive 97
notifl primitive 97

o

odd parity 141

one-hot state encoding 120
optimization 157

or primitive 97

output logic 117

output parameter 89
output response 175

P

parallel case 55

parallel data 147

parallel_case synthesis directive 56,
183

parameter 10, 103, 122, 126, 140

parameter declaration 122

parameterized adder 133

parameterized ALU 124

parameterized binary decoder 136

parameterized comparator 134

parameterized decoder 136

parameterized design 103

parameterized Gray counter 132

parameterized Johnson counter 131

parameterized Johnson decoder 137

parameterized module 103

parameterized multiplexer 140

parameterized parity generator 141

parameterized register file 104

parentheses 170

parity generator 141

part-select 32

path delay 159

posedge 68,78

positive edge 77

predefined block 99

predefined flip-flop 101

predefined multiplier 100

primitive component 98

priority encoder 49, 58

214

priority logic 55

priority order 55

procedural assignment 17, 20, 37

procedural assignment
statement 17, 108

procedural behavior 37

R

RAM 169

real 9

real type 9

receiver block 150

redundant code 162

reg 9,11

reg declaration 9

reg register 73

reg type 22

register 103

register data type 6, 8, 10, 11

register file 111

register type 8

register-transfer level xv, 1

relational operator 25, 158, 160

repeat-loop 66

reserved word xix

resource allocation 158

results file 174

reuse 161

right shift operator 28

rising clock edge 114

rising edge 68, 128, 153

rising-edge-triggered flip-flop 70,71,
166

ROM 169

RS-232 147

RTL 1

RTL block xvi, 2

RTL subset xvii

run-time 158

S

sequential behavior xv

sequential block 11, 37, 84, 86, 108,
187

sequential logic xvi, 18, 39, 68, 89,
107,117, 186, 188

sequential logic element 108

sequential state assignment 116

serial input 147

sharing 158

shift operator 28

shift register 123

shifter 28

shift-type counter 130

signed arithmetic 23

signed arithmetic operator 22
signed number 9, 23, 27
simple decimal form 9
simulate 174

simulation 173, 189
simulation cycle 187
simulation efficiency 163
simulation language 3
simulation semantics xvi
simulation time 86
simulation tool 183
simulator 188

state assignment 119

state encoding 122

state table 123

state transition 114

stimulus 174

stimulus application time 178
stimulus file 177

stimulus period 177

string 9

structure xv, 31

subtracter 162, 165
subtraction 160

subtraction operation 25
supply0 7

supplyO net 8

supplyl 7

supplyl net 8

supported construct 191
switch level xvi

synchronous clear 81, 83
synchronous logic 78
synchronous preclear 128, 129, 132
synchronous preset 81, 83, 128
synthesis 1

synthesis directive 53, 56, 183
synthesis full_case 54, 119
synthesis methodology checker 5
synthesis modeling style 5
synthesis parallel_case 57
synthesis process xvi
synthesis run-time 168
synthesis system xix
synthesis tool xix, 183
synthesizable constructs 191
synthesized netlist xviii, 173

INDEX

T

target netlist xvi, 2

target technology xvi, 2
task 89

task call 89,92

technology translation xvi
test bench 175

three-state 95

three-state gate 93,97, 143
time type 9

timing constraints 2
timing-critical design 160
trade-off 160

transmitter block 148

tri 7

tri net 8

two-dimensional reg variable 111

U

UART 147

unconnected input port 178
unconnected port 178

universal shift register 123
unknown 93

unknown value, U 6

unrolling 66

unsigned arithmetic 22
unsigned arithmetic operator 22
unsigned number 9, 22
up-down counter 70, 79, 101, 128
user-built multiplier 99
user-defined primitive xvi
user-specific flip-flop 101

A%

value x 93

value z 93

variable 6,179

variable shift 28

vector 30

vector file 175

vector operand 30

vectors 177

verification 173

verification results 5

Verilog Hardware Description
Language xv

Verilog HDL xv

Verilog simulator xvi

215

w

wand 7

while-loop 66

wire 2,7,10,11, 19, 39, 88
wire net 8

wor 7

X

x value 6,93
xnor primitive 97
Xor primitive 97

Z
z value 6,93

Order Form

% Fax orders: (610) 391-7296

% Telephone orders: Call toll free (888) 727-7296
% On-line orders: SGalaxyPub@aol.com

% Web site orders: http://users.aol.com/SGalaxyPub

% Postal orders: Star Galaxy Publishing, Suite 401, 1058 Treeline Drive, Allentown, PA 18103.

Yes!!!! Please send me:

copies of A VHDL Synthesis Primer, Second Edition by J. Bhasker, ISBN 0-9650391-9-6, $59.95*

copies of A Verilog HDL Primer by J. Bhasker, ISBN 0-9656277-4-8, $59.95*

__copies of Verilog HDL Synthesis, A Practical Primer by J. Bhasker, ISBN 0-9650391-5-3, $59.95*
* For orders of 3 or more, see http://users.aol.com/SGalaxyPub for discount schedule

I understand that I may return the books for a full refund - for any reason, no questions asked.

Name:

Address:

City: State: Zip: -
Telephone: () Email:

Sales tax:

Please add 6% for books shipped to Pennsylvania addresses.

Shipping:

O Delivery less than 1 week : $5.00 for first book, $0.50 for each additional book via UPS Ground or equivalent.
O Delivery 1 to 2 weeks : $3.00 per book via USPS Priority Mail

O International addresses: $7.00 to $15.00 per book via air mail depending on country

Payment:

(3 Cheque (payable to Star Galaxy Publishing)

3 Credit card: O VISA O MasterCard O AMEX
O Card number:
0 Name on card: Exp. date: /
(3 Signature:

Call toll free and order now!

Order Form

% Fax orders: (610) 391-7296

% Telephone orders: Call toll free (888) 727-7296
¥ On-line orders: SGalaxyPub@aol.com

¥ Web site orders: http://users.aol.com/SGalaxyPub

¥ Postal orders: Star Galaxy Publishing, Suite 401, 1058 Treeline Drive, Allentown, PA 18103.

Yes!!!! Please send me:
__copies of A VHDL Synthesis Primer, Second Edition by J. Bhasker, ISBN 0-9650391-9-6, $59.95*
__copies of A Verilog HDL Primer by J. Bhasker, ISBN 0-9656277-4-8, $59.95*

__copies of Verilog HDL Synthesis, A Practical Primer by J. Bhasker, ISBN 0-9650391-5-3, $59.95*
* For orders of 3 or more, see http://users.aol.com/SGalaxyPub for discount schedule

I'understand that I may return the books for a full refund - for any reason, no questions asked.

Name:

Address:

City: State: Zip: -
Telephone: () Email:

Sales tax:

Please add 6% for books shipped to Pennsylvania addresses.

Shipping:

O Delivery less than 1 week : $5.00 for first book, $0.50 for each additional book via UPS Ground or equivalent,
O Delivery 1 to 2 weeks : $3.00 per book via USPS Priority Mail

O International addresses: $7.00 to $15.00 per book via air mail depending on country

Payment:

O Cheque (payable to Star Galaxy Publishing)

O Credit card: O VISA O MasterCard O AMEX
O Card number:
(O Name on card: Exp. date: /
O Signature:

Call toll free and order now!

