James M. Lee

A Practical Guide to Simulation
and Synthesis in Verilog

CD ROM INCLUDED

VERILOG® QUICKSTART

A Practical Guide to Simulation
and Synthesis in Verilog

Third Edition

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

VERILOG® QUICKSTART

A Practical Guide to Simulation
and Synthesis in Verilog

Third Edition

James M. Lee

Intrinsix Corp.

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

eBook ISBN: 0-306-47680-0
Print ISBN: 0-7923-7672-2

©2002 Kluwer Academic Publishers
New York, Boston, Dordrecht, London, Moscow

Print ©2002 Kluwer Academic Publishers
Dordrecht

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Kluwer Online at: http://kluweronline.com
and Kluwer's eBookstore at: http://ebooks.kluweronline.com

TABLE OF CONTENTS

LIST OF FIGURES xiii
LIST OF EXAMPLES XV
LIST OF TABLES XXi

1 INTRODUCTION 1
Framing Verilog Concepts 3
The Design Abstraction Hierarchy 3
Types of Simulation 4
Types of Languages 4
Simulation versus Programming 5
HDL Learning Paradigms 5
Where To Get More Information 7
Reference Manuals 8
Usenet 8

2 INTRODUCTION TO THE VERILOG LANGUAGE 9
Identifiers 9
Escaped Identifiers 10
White Space 11
Comments 12
Numbers 12
Text Macros 13
Modules 14
Semicolons 14
Value Set 15
Strengths 15

Numbers, Values, and Unknowns 16

vi Verilog Quickstart

3 STRUCTURAL MODELING 19
Primitives 19
Ports 20

Ports in Primitives 20
Ports in Modules 21
Instances 22
Hierarchy 22
Hierarchical Names 24
Connect by Name 26
Top-Level Modules 27
You Are Now Ready to Run Your First Simulations 28
Exercise 1 The Hello Simulation 28
Exercise 2 The 8-Bit Hierarchical Adder 28

4 STARTING PROCEDURAL MODELING 33

Starting Places for Blocks of Procedural Code 34
The initial Keyword 34
The always Keyword 34
Delays 35
begin-end Blocks 36
fork-join Blocks 39
Summary of Procedural Timing 46

5 SYSTEM TASKS FOR DISPLAYING RESULTS 47

What is a System Task? 47
$display and Its Relatives 47
Other Commands to Print Results 49
Writing to Files 51
Advanced File 10 Functions 53
Setting the Default Radix 53
Special Characters 54
The Current Simulation Time 55
Suppressing Spaces in Your Output 56

Periodic Printouts 58
When to Printout Results 59

A Final System Task 59

Exercise 3 Printing Out Results from Wires Buried in the Hierarchy 59

6 DATA OBJECTS 61

Data Objects in Verilog 61
Nets 61

Ranges 63

vii

Implicit Nets 64

Ports 64
Regs 65
Memories 65
Initial Value of Regs 66
Integers and Reals 66
Time and Realtime 67
Parameters 68
Events 68
Strings 69
Multi-Dimensional Arrays 69
Accessing Words and Bits of Multi-Dimensional Arrays 70
Ports and Regs 70
7 PROCEDURAL ASSIGNMENTS 73
Procedural Assignments, Ports and Regs 77
Best Practices with Procedural Assignments 78
Procedural Assignment for Combinatorial Logic 78
Procedural Assignment for Sequential Logic 78
Philosophy of Intra-Assignment Delays for Sequential Assignments 79
Conventions Moving Forward 80

8 OPERATORS 81
Binary Operators 81
Unary Operators 83
Reduction Operators 84
Ternary Operator 85
Equality Operators 86
Concatenations 89
Logical Versus Bit-Wise Operations 91
Operations That Are Not Legal On Reals 92
Working With Strings 93
Combining Operators 93
Sizing Expressions 94
Signed Operations 94
Signed Constants 95

9 CREATING COMBINATORIAL AND SEQUENTIAL LOGIC97

Continuous Assignment 97
Event Control 101
The always Block for Combinatorial Logic 102

Event Control Explained 103

viii

Summary of Procedural Timing

10 PROCEDURAL FLOW CONTROL
The if Statement
The case Statement
Loops
The forever Loop
The repeat Loop
The while Loop
The for Loop
Exercise 4 Using Expressions and case

11 TASKS AND FUNCTIONS
Tasks
Automatic Tasks
Common Uses for Tasks
Functions
Functions and Integers
Automatic Functions
Exercise 5 Functions and Continuous Assignments

12 ADVANCED PROCEDURAL MODELING
Using The Event Data Type
Procedural Continuous Assignments
A Reminder About Ports and Regs
Modeling with Inout Ports
Named Blocks
The Disable Statement
When is a Simulation Done?

13 USER-DEFINED PRIMITIVES

Combinatorial Udps
Optimistic Mux
Pessimistic Mux
The Gritty Details

Sequential UDPS

UDP Instances

The Final Details

Exercise 6 Using UDPs

14 PARAMETERIZED MODULES

Verilog Quickstart

106

109
109
110
114
114
115
116
117
118

125
125
129
130
132
134
135
136

137
137
139
144
144
146
146
149

151
152
152
152
153
154
157
157
158

161

N-Bit Mux
N-Bit Adder
N By M Mux
N By M Ram
Using Parameterized Modules
Parameter Passing by Name
Parameter Passing by Order
Parameter Passing by Named List
Values of Parameters in Module Instances

15 STATE MACHINES
State Machine Types
State Machine Modeling Style
State Encoding Methods
Default Conditions
Implicit State Machines
Registered And Unregistered Outputs
Factors in Choosing a State Machine Modeling Style

16 MODELING TIPS

Modeling Combinatorial Logic
Combinatorial Models Using Continuous Assignments
Combinatorial Models Using the always Block and regs
Combinatorial Models Using Functions
Modeling Sequential Logic
Sequential Models Using always
Sequential Models Using initial
Sequential Models Using Tasks
Modeling Asynchronous Circuits
Modeling a One-Shot
Modeling Asynchronous Systems
Special-Purpose Models
Two-Dimensional Arrays
Z-Detectors
Multiplier Examples
A Proven, Successful Approach to Modeling

17 MODELING STYLE TRADE-OFFS
Forces That Influence Modeling Style
Evolution of a Model
Modeling Style and Synthesis
Is It Synthesizable?

X

162
162
163
164
165
165
165
166
167

169
169
171
179
181
182
183
185

187
187
188
189
192
193
193
193
196
198
198
199
205
205
206
207
217

219
219
220
221
222

X Verilog Quickstart

Learning From Other People’s Mistakes 223
When To Use Udps 230
Blocking and Non-Blocking Assignments 231
18 TEST BENCHES AND TEST MANAGEMENT 233
Introduction to Testing 233
Model Size versus Test Volume 234
Types of Tests 235
Functional Testing 235
Regression Testing 235
Sign-Off 235
System Test versus Unit Tests 236
Creating Test Plans 236
The Basic Test Cycle 237
Hardware Setup and Hold and Response Time 238
The Test Cycle for Combinatorial Models 238
The Test Cycle for Sequential Models 239
Self-Checking Test Benches 241
Response-Driven Stimulus 246
Test Benches for Inouts 249
Loading Files into Verilog Memories 251
Test Benches with No Test Vectors 254
Using A Script To Run Test Cases 254
Modeling Bist 255
The Surround and Capture Method 257
19 MODEL ORGAINZATION 263
File Organization 263
Declaration Organization 265
ANSI Style ports 265
Testcase Organization 266
Including Test Cases 266
Conditionally Running Rests 269
Model Reuse 269
Summary of Model Orgainzation Compile Directives 270
Pre-defined Text Macros 270
20 COMMON ERRORS 271
Mismatched Ports 271
Missing or Incorrect Declarations 272
Missing Regs 272

Missing Widths 273

Reversed Ranges
Improper Use of Procedural Continuous Assignments
Missing initial or always Blocks
Zero-Delay always Loops
initial Instead of always
Missing Initialization
Overly Complex Code
Unintended Storage
Timing Errors
Negative Setup Time
Zero-Delay Races
Tool Specific Pragmas

21 DEBUGGING A DESIGN
Overview of Functional Debugging
Where Are the Errors?
Universal Techniques
Printing Out Messages
“I am here.”
Values
The Log File
Using Waveforms
Interactive Debugging
Going Interactive
The Prompts
Special Keys in Interactive Mode
Command History
The Key File
Traversing and Observing
Back-Tracing Fan-In
Using force and release
Waveforms, Graphical User Interfaces and Other Conveniences
Catching Problems Later in a Simulation
Isolating Differences in Models
Summary of Debugging

22 CODE COVERAGE
Code Coverage and Test Plans
Code Coverage and Fifos
Code Coverage and State Machines
Code Coverage and Modeling Style

xi

274
274
275
275
276
276
277
277
277
278
278
279

281
281
282
282
282
282
283
284
284
286
286
287
289
294
297
303
307
308
309
309
311
312

315
316
319
322
322

Xii Verilog Quickstart

Appedix A GATE-LEVEL DETAILS 325
Primitive Descriptions 325
Logic Gates 325
AND 325
NAND 326
OR 327
NOR 327
XOR 328
XNOR 328
Buffers 329
BUF 329
NOT 329
BUFIFO 330
BUFIF1 330
NOTIFO 331
NOTIF1 332
PULLDOWN 332
PULLUP 333
Switches 333
NMOS and RNMOS 334
PMOS and RPMOS 335
CMOS and RCMOS 336
TRAN and RTRAN 337
TRANIFO and RTRANIFO 337
TRANIF1 and RTRANIF1 338
Instance Details 338
Delays 338
Delay Units 339
Printing Out Time and the Timescale 340
Strengths 340
Displaying Strengths with %v 341
Strength Reduction of Switch Primitives 342

INDEX 343

LIST OF FIGURES

Figure 1-1 Design Abstraction Hierarchy
Figure 1-2 Gate-Level Model Mux Schematic
Figure 2-1 Number Format

Figure 2-2 The Mux Example

Figure 2-3 Three-State Buffer

Figure 2-4 Two Three-State Buffers

Figure 3-1 AND Gate Primitives

Figure 3-2 Gate-Level Model Mux Schematic
Figure 3-3 Connecting Two Muxes

Figure 3-4 Hierarchical 4-Bit Mux

Figure 3-5 Mux4 Hierarchy Expanded

Figure 3-6 Syntax for Connect By Name
Figure 3-7 Adder Schematic

Figure 3-8 Adder2 Schematic

Figure 3-9 Adder4 Schematic

Figure 3-10 Adder8 Schematic

Figure 5-1 Time Format Details

Figure 6-1 Relationships of Ports and Regs
Figure 9-1 Connecting Four Regs to a Wire
Figure 10-1 Rotate Left

Figure 10-2 Logical Shift Left with 0 Fill
Figure 10-3 Rotate Right

Figure 10-4 Logical Shift Right with 0 Fill
Figure 10-5 ALU Test Vector File alu_test.vec
Figure 12-1 Relationships of Ports and Regs

Figure 13-1 Adder Using Five Built-in Primitives

Figure 13-2 Adder Using Two UDPs

Figure 15-1 Moore State Machine

Figure 15-2 Mealy State Machine

Figure 15-3 Modified Moore Machine

Figure 16-1 State Diagram for Alarm System
Figure 17-1 Forces That Act on Modeling Style
Figure 17-2 Synthesizablility flowchart
Figure 18-1 The Basic Test Cycle

Figure 18-2 Test Cycle for Sequential Models
Figure 18-3 Sequential Test Cycle Timing
Figure 18-4 Simplified Sequential Test Cycle
Figure 18-5 Test Bench for an inout

Figure 18-6 Logic Surrounded by BIST
Figure 18-7 Surround and Capture Method
Figure A-1 AND Gate

Figure A-2 NAND Gate

12
14
16
16
21
22
23
24
25
26
29
29
30
30
56
71
99
120
121
121
121
124
144
159
159
170
170
184
200
220
223
237
239
240
240
250
255
258
325
326

Xiv

Figure A-3 OR Gate

Figure A-4 NOR Gate

Figure A-5 XOR Gate

Figure A-6 XNOR Gate

Figure A-7 BUF Gate

Figure A-8 NOT Gate

Figure A-9 BUFIFO Gate

Figure A-10 BUFIF1 Gate

Figure A-11 NOTIFO Gate

Figure A-12 NOTIF1 Gate

Figure A-13 Pulldown

Figure A-14 Pullup

Figure A-15 NMOS or RNMOS Transistor
Figure A-16 PMOS or RPMOS Transistor
Figure A-17 CMOS or RCMOS transistor

Verilog Quickstart

327
327
328
328
329
329
330
330
331
332
332
333
334
335
336

LIST OF EXAMPLES

Example 1 -1 Abstract Model of a Phone
Example 1-2 Verilog for Gate-Level Mux
Example 2-1 Simple Hello Module

Example 2-2 Hello Module without White Space
Example 2-3 Hello Module with Extra White Space
Example 2-4 Illegal Use of White Space
Example 2-5 Comments

Example2-6 Numbers

Example 2-7 Specifying a Text Macro

Example 2-8 Using a Text Macro

Example 2-9 Gate-Level Mux Verilog Code

Example 3-1 Verilog Code for the 2-Input and 4-Input AND Gates

Example 3-2 Verilog for Gate-level Mux

Example 3-3 Hierarchical 2-Bit Mux

Example 3-4 Hierarchical 4-Bit Mux

Example 3-5 Hierarchical Names

Example 3-6 Mux Connected by Name

Example 3-7 Hello Verilog

Example 3-8 Adder Test Module

Example4-1 An initial Block

Example 4-2 An always Block

Example 4-3 Three initial Statements

Example 4-4 Three initial Statements with Delay
Example 4-5 Simple begin-end Block

Example 4-6 begin-end Block with Delay

Example 4-7 Multiple begin-end Blocks

Example 4-8 fork-join Blocks

Example 4-9 Combining begin-end and fork-join Blocks
Example 5-1 Displaying a String

Example 5-2 Displaying a Single Value

Example 5-3 Displaying Multiple Values

Example 5-4 Using Format Specifiers with $display
Example 5-5 Two $display Statements

Example 5-6 Combining $write and $display
Example 5-7 Writing to a File

Example5-8 Writing to Multiple Files

Example 5-9 Printing out the current time with units
Example 5-10 $display with $time

Example5-11 Leading Spaces in $monitor with $time
Example5-12 Spaces Used To Print an §-Bit Value
Example 5-13 Suppressing Leading Spaces and Zeroes
Example 5-14 Periodic Printout

11
11
11
11
12
13
13
13
14
21
22
23
24
26
26
28
31
34
35
35
36
36
37
37
39
41
48
48
48
48
49
50
51
52
55
56
57
57
58
59

Xvi Verilog Quickstart

Example 5-15 Periodic Printout Before the Clock

Example 6-1 Net Declarations

Example 6-2 Incorrect Net Declaration

Example 6-3 Setting Default Net Type

Example 6-4 Port Declarations

Example 6-5 Reg Declarations

Example 6-6 Selecting Bits and Parts of a Reg

Example 6-7 Memory and Reg Declarations

Example 6-8 Selecting Bits in Registers and Words in Memories
Example 6-9 Reg Declaration with Initialization

Example 6-10 Declaring Integers and Reals

Example 6-11 Declaring Variables of Type time

Example 6-12 Parameters

Example 6-13 Events

Example 6-14 Strings

Example 6-15 Multi-Dimensional Arrays of nets

Example 6-16 Multi-Dimensional Arrays of Regs

Example 6-17 Accessing Multi-Dimensional Arrays

Example 6-18 Output as a Reg

Example 7-1 Simple Procedural Assignments

Example 7-2 Procedural Assignments with fork-join
Example 7-3 fork-join with Intra-assignment Delays
Example 7-4 fork-join with Multiple Delays

Example 7-5 fork-join with Simplified Delays

Example 7-6 Effect of Intra-assignment Delays on Time Flow
Example 7-7 Nonblocking Assignments

Example 7-8 Combinatorial Procedural Assignments
Example 7-9 Sequential Procedural Assignment

Example 8-1 Using Operators

Example 8-2 Distinguishing between Bit-wise and Logical Operators
Example 8-3 Using Reduction Operators

Example 8-4 Ternary Operator

Example 8-5 Using the Ternary Operator for a Three-State Buffer
Example 8-6 Module To Test an Operator

Example 8-7 Concatenations

Example 8-8 Bit-wise and Logical operations

Example 8-9 Operators and Strings

Example 8-10 Combinations of Operators for Exclusive NOR
Example 8-11 signed declarations

Example 8-12 Signed Constants

Example 8-13 Effect of Signed Constants

Example9-1 Three-State Buffer Using a Continuous Assignment
Example 9-2 A 128-Bit Adder in a Continuous Assignment
Example 9-3 Continuous Assignment Multiplier

Example 9-4 Connecting Four Regs to a Wire

59
63

63
64
64
65

65
65
66
66
67
67
68
68
69
69
70
70
71
74
74
75
75
76
76
77
78
79
&3
84
85
85
86
89
90
91
93
9%
94
95
95
98
98
99
100

Example 9-5 Alternate Form of Continuous Assignment
Example 9-6 Many forms of Continuous Assignments

Example 9-7 Waiting for an Event

Example 9-8 Mux Using Continuous Assignment
Example 9-9 Mux Using always Block

Example 9-10 always Block Using Comma
Example 9-11 Combinatorial always Block
Example 9-12 Incorrect Mux

Example 9-13 always Explained

Example 9-14 Using wait

Example 9-15 Using wait To Detect an Unknown
Example 9-16 Using always To Detect an Unknown
Example 10-1 Simple if

Example 10-2 if with else

Example 10-3 Nested if with else

Example 104 The case Statement

Example 10-5 case Matching x and z

Example 10-6 Using casez

Example 10-7 Counter Using case

Example 10-8 Counter Using if

Example 10-9 Oscillator Using always

Example 10-10 Oscillator Using forever

Example 10-11 Repeating “Hello Verilog”
Example 10-12 Using repeat in a State Machine
Example 10-13 A while Loop

Example 10-14 A Simple for loop

Example 10-15 A for Loop with Expressions Not Referencing the Same Variable

Example 10-16 Test Bench for the ALU
Example 11-1 Hello Verilog Tasks

Example 11-2 fask with Inputs, Outputs, and External References

Example 11-3 Effect of rask Port Size

Example11-4 Accessing a fask Local Variable from Outside the task
Example 11-5 fask Local and Module Items with the Same Name

Example 11-6 Re-Entrant Task
Example 11-7 Read Cycle task
Example 11-8 Count Bits Function

Example 11-9 Mux with Function and Continuous Assignment
Example 11-10 Divide Function Returning Two 8-Bit Values

Example 11-11 Function with Integers

Example 11-12 Automatic Recursive Function
Example 12-1 Using the event Data Type

Example 12-2 Using Events To Simplify Modeling
Example12-3 A Simple Flip-Flop

Example 12-4 A Flip-Flop with a Bad Reset
Example 12-5 A Flip-Flop with Reset

Xvil

100
100
101

102
102
103
103
103
104
105
106
106
109
110
110
111

112
112
113
114
115
115
116
116
117
118
118
122
126
127
128
128
129
130
131

132
133
134
135
135
137

138
139
140
140

XVviii Verilog Quickstart

Example 12-6 A Flip-Flop with Incorrect Set and Reset
Example 12-7 A Flip-Flop with Correct set and reset
Example 12-8 Incorrect Mux

Example 12-9 Mux with PCA

Example 12-10 Proper Synthesizable Flip-Flop

Example 12-11 inout Port Connected to a Reg

Example 12-12 Reg with Controllable Connection to inout Port
Example 12-13 Named Blocks

Example 12-14 The disable Statement

Example 12-15 disable Used To Model Reset

Example 12-16 Controlling When a Simulation Finishes
Example 13-1 Optimistic Mux UDP

Example 13-2 Pessimistic Mux UDP

Example 13-3 One-Line UDP

Example 13-4 Level-Sensitive D Latch

Example 13-5 Edge-Sensitive D Flip-Flop

Example 13-6 Flip Flop Using Explicit Edge Definitions
Example 13-7 initial Block in a UDP

Example 14-1 parameter Statements

Example 14-2 n-Bit Wide 4-to-1 Mux

Example 14-3 Parameterized Width Adder

Example 14-4 Mux with Parameterized Width and Number of Inputs
Example 14-5 Parameterized RAM

Example 14-6 The defparam Statement

Example 14-7 Using Parameterized Modules

Example 14-8 Parameter Passing by Order

Example 14-9 Parameter Passing by Named List

Example 15-1 Style 1 Moore State Machine

Example 15-2 Style 1 Mealy State Machine

Example 15-3 Style 2 Moore Machine

Example 154 Style 2 Mealy Machine

Example 15-5 Style 3 Mealy Machine

Example 15-6 Style 4 Moore Machine

Example 15-7 Style 5 Moore Machine

Example 15-8 Implicit State Machine Style

Example 15-9 Combinatorial Outputs

Example 15-10 Registered Outputs

Example 15-11 Modified Moore Machine with Registered Outputs
Example 16-1 A 2-to-1 Mux Using Continuous Assignment
Example 16-2 A 4-to-1 Mux Using Continuous Assignment
Example 16-3 Alternate 4-to-1 Mux Using Continuous Assignment
Example 16-4 An 8-Bit Adder Using Continuous Assignment
Example 16-5 Latch Using Continuous Assignment

Example 16-6 The 2-to-1 Mux Using always

Example 16-7 The 4-to-1 Mux Using always

141
141
142
142
144
145
145
146
147
148
149
152
153
154
154
155
156
157
162
162
163
163
164
165
165
166
167
173
174
174
175
176
177
178
182
183
183
185
188
188
189
189
189
190
191

Example 16-8 The 8-Bit Adder Using always

Example 16-9 Simplified 8-Bit Adder Using always
Example 16-10 Mux with Continuous Assignment and Function
Example 16-11 Simple Counter

Example 16-12 A Counter without always

Example 16-13 Sequential Stimulus Block

Example 16-14 Clock Source

Example 16-15 Memory Exerciser

Example 16-16 Tasks for Sequential Code

Example 16-17 Basic One-Shot

Example 16-18 Retriggerable One-Shot

Example 16-19 Behavioral Description of the Alarm
Example 16-20 Alarm Test Bench

Example 16-21 Partial Implementation of Alarm
Example 16-22 Two-Dimensional Array

Example 16-23 Behavioral Z-Detector

Example 16-24 Structural Z-Detector

Example 16-25 An 8-by-8 Booth Multiplier

Example 16-26 Wallace 8-by-8 Multiplier

Example 16-27 A 16-by-16 Multiplier

Example 16-28 A 16-by-16 Wallace Multiplier for Signed Numbers
Example 17-1 Normal D Flip-Flop

Example 17-2 Modified D-Flip-Flop

Example 17-3 Bad Register

Example 17-4 Improved Register

Example 17-5 Tweaked Register

Example 17-6 Bad Adder

Example 17-7 Improved Adder

Example 17-8 Adder Reduced to a Continuous Assignment
Example 17-9 Bad Mux

Example 17-10 Improved Mux

Example 17-11 Bad Barrel Shifter

Example 17-12 Improved Barrel Shifter

Example 17-13 Blocking vs Non Blocking Assignments
Example 18-1 Basic Sequential Cycle Test Bench
Example 18-2 Adder Test Module Repeated

Example 18-3 Using Verilog To Calculate Responses
Example 18-4 Simplifying the Test Bench with a task
Example 18-5 Using a Second Module To Check the Results
Example 18-6 Generating x's for Miscompare

Example 18-7 Printer Abstraction

Example 18-8 Printer Test Bench with Guessed Timing
Example 18-9 Response-Driven Printer Test Bench
Example 18-10 Test Bench for a RAM

Example 18-11 Memory Declaration

Xix

191

192
192
193
194
194
194
195
196
198
199
200
202
204
206
206
207
207
209
211

214
221

221

224
225
226
226
227
227
228
228
229
230
231
241
242
243
244
245
246
247
248
249
250
251

XX

Example 18-12 Reversed Memory Declaration
Example 18-13 Memory File adder8.vec

Example 18-14 Adder Test Bench Reading from a File
Example 18-15 PROM Data File prom.dat

Example 18-16 Simple PROM

Example 18-17 Test Bench with No Vectors

Example 18-18 LESR

Example 18-19 Testing the ALU with a LFSR and MISR
Example 18-20 ALU Modified Capture of Inputs and Outputs

Example 18-21 ALU Test Bench Repeated

Example 19-1 File List of 8 bit Adder adder.vc or adder.f

Example 19-2 Using the file list

Example 19-3 Counter Using “include
Example 19-4 Timing.vh

Example 19-5 System.vh

Example 19-6 Counter with commented ports
Example 19-7 Counter with commented ports
Example 19-8 System Test Bench

Example 19-9 Current_test.v

Example 19-10 Conditional Test

Example 19-11 Adder with two or three inputs
Example 20-1 Missing Initialization

Example 20-2 Negative Setup Time

Example 20-3 Corrected Register

Example 21-1 Initial Block to Create VCD Wave File
Example 21-2 Initial Block to Create SHM Wave File
Example 21-3 Interactive Verilog Module
Example 21-4 Single-Stepping

Example 21-5 always Loop Module

Example 21-6 my.key Command File
Example 21-7 Hierarchical 8-Bit Adder
Example 22-1 Repeat of Counter Using if
Example 22-2 Counter Test Bench #1
Example 22-3 Counter Test Bench #2
Example 22-4 FIFO Model

Example 22-5 Unit Testbench for FIFO Model
Example 22-6 Old Style Counter

Example 22-7 Improved Style Counter
Example 22-8 Test bench for Counters
Example A-1 Delays in Primitive Instances
Example A-2 Time Scales

Example A-3 Strength Declarations

Verilog Quickstart

251
252
252
253
253
254
256
257
259
259
264
264
264
264
265
265
266
267
268
269
269
276
278
278
285
285
287
289
293
301
304
316
317
318
319
320
323
323
324
338
340
341

LIST OF TABLES

Table 2-1 Radix Specifiers

Table 2-2 Numbers and Their Values

Table 3-1 Verilog Primitives

Table 4-1 Procedural Timing keywords

Table 5-1 Format Specifiers

Table 5-2 Screen and File Output Commands
Table 5-3 Enumeration of All Output Commands
Table 5-4 Format Specifiers

Table 6-1 Net Types

Table 8-1 Arithmetic Operators

Table 8-2 Bit-wise Operators

Table 8-3 Logical Operators

Table 8-4 Negation Operators

Table 8-5 Reduction Operators

Table 8-6 Truth Table for Ternary Operator
Table 8-7 Equality Operators

Table 8-8 Truth Table fora ==

Table 89 Truth Table fora ===

Table 8-10 Truth Table fora !=b

Table 8-11 Truth Table fora !==>b

Table 8-12 Truth Table fora < b

Table 8-13 Truth Table for a<=b

Table 8-14 Truth Table fora > b

Table 8-15 Truth Table for a>=>b

Table 8-16 Operator Order of Precedence

Table 8-17 Operators Not Legal on Reals

Table 8-18 Radix Specifiers

Table 9-1 Comparison of Procedural and Continuous Assignments
Table 9-1 Procedural Timing keywords

Table 10-1 Summary of Case Values and Match per Case Type
Table 10-2 ALU Exercise: Explanation of Opcodes
Table 12-1 Summary of Assignment Types

Table 13-1 Basic UDP Table Symbols

Table 13-2 Symbols for Sequential UDP Tables
Table 13-3 Summary of Instance Types

Table 13-4 Complete List of UDP Table Symbols
Table 15-1 State Machine Styles

Table 15-2 Sequential State Encoding

Table 15-3 Mapping State Code To Simplify Outputs
Table 15-4 Gray State Encoding

Table 15-5 States Compared with Outputs

Table 15-6 Outputs as State Code

13
17
20
46
49
51
54
54
62
82
82
82
83
84
86
86
87
87
87
88
88
88
88
89
91
92
95
99
107
113
120
143
153
155
157
158
171
179
179
180
180
181

XXii Verilog Quickstart

Table 15-7 One-Hot State Encoding 181
Table 21-1 Log File Options 284
Table 21-2 Special Keys for Interactive Simulation 294
Table 21-3 Keystroke-Related Commands 303
Table 21-4 Commands for Traversing and Observing 303
Table 21-5 The trace, save, and restart Commands 311
Table 21-6 Debugging Commands, Keystrokes, and Command-Line Options 312
Table A-1 Logic Table for and Primitive 326
Table A-2 Logic Table for nand Primitive 326
Table A-3 Logic Table for or Primitive 327
Table A-4 Logic Table for nor Primitive 327
Table A-5 Logic Table for xor Primitive 328
Table A-6 Logic Table for xnor Primitive 328
Table A-7 Logic Table for buf Primitive 329
Table A-8 Logic Table for not Primitive 329
Table A-9 Logic Table for bufif0 Primitive 330
Table A-10 Logic Table for bufifl Primitive 331
Table A-11 Logic Table for notif0 Primitive 331
Table A-12 Logic Table for notifl Primitive 332
Table A-13 Logic Table for nmos Primitive 334
Table A-14 Logic Table for rnmos Primitive 334
Table A-15 Logic Table for pmos Primitive 335
Table A-16 Logic Table for rpmos Primitive 335
Table A-17 Logic Table for cmos Primitive 336
Table A-18 Logic Table for rcmos Primitive 337
Table A-19 Delay and Precision Units 339
Table A-20 Strengths 341

Table A-21 Switch Strength Reduction 342

1 INTRODUCTION

Welcome to the world of Verilog! Once you read this book, you will join the ranks
of the many successful engineers who use Verilog.

I have been using Verilog since 1986 and teaching Verilog since 1987. I have seen
many different Verilog courses and many approaches to learning Verilog. This book
generally follows the outline of the Verilog class that I teach at the University of
California, Santa Cruz, Extension.

The Verilog language has been updated with the IEEE standardization in 1995, and
now the update to the standard in 2001. In learning Verilog, it is important to
current with the standards, however it should be noted that the Verilog language
itself has changed little compared to the tools, workstations and techniques used by
designers today vs. 1985. This third edition of Verilog Quickstart has been updated
to reflect the current best practices in use today.

This book does not take a “cookie-cutter” approach to learning Verilog, nor is it a
completely theoretical book. Instead, it describes some of the formal Verilog syntax
and definitions, and shows practical uses. Once we cover most of the constructs of
the language, the book examines how style affects the constructs you choose while

2 Verilog Quickstart

modeling your design. This text is not intended as a complete and exhaustive
reference on Verilog. For a comprehensive Verilog reference, I suggest one of the
reference manuals from IEEE, Open Verilog International (OVI) or your tool
vendor.

This book does not cover 100% of the Verilog language; it focuses on the 90% of
Verilog that is used 90% of the time by designers who want to speed up their design
cycle by verifying their designs in simulation and rapidly producing them through
synthesis.

What is Verilog? In 1985, Automated Integrated Design Systems (renamed
Gateway Design Automation in 1986) introduced a product named Verilog. It was
the first logic simulator to seamlessly incorporate both a higher-level language and
gate-level simulation. Before Verilog, there were many gate-level simulators and
several higher-level language simulators, but there was no way to make them work
together easily. About the same time, Gateway added the -XL algorithm to its
product, creating Verilog-XL. It was the addition of this algorithm that put Verilog
on the map.

The XL algorithm sped up gate simulation, thus making Verilog the fastest software
gate-level simulator of the time. It was even faster than some of the then-current
hardware accelerators. Today, there are several simulators that use the Verilog
language.

Why were hardware description languages (HDLs) created? Verilog was invented as
a simulation language. There were other simulation languages in use when Verilog
was created, but Verilog was more complete and easier to use than its predecessors.

There is another key reason why HDLs were created. The United States Department
of Defense (DOD) realized that they had a lot of electronics designed and built for
them, and their products had a long life span. In fact, DOD might use equipment
for upwards of twenty years. Over such periods semiconductor technology changed
quite a bit. DOD realized they needed a technology-independent way to describe
what was in the semiconductors they were receiving. Through a joint effort of the
DOD and several companies, VHDL was created as a hardware description
language to document DOD technology. VHDL and Verilog were developed at the
same time, but independently.

Thus, two of the reasons HDLs were invented are simulation and documentation.
Yet there is another common use for HDLs: Synthesis. Even before Verilog and
VHDL were developed, the makers of programmable array logic (PAL) chips had
created simple languages and tools (such as PALASM) to burn these chips. These
languages accepted only simple equations and could create the correct bit pattern to
make the chip reflect the functionality described in the language. Today, synthesis

Introduction 3

tools are much more robust and Verilog or VHDL may be used to describe many
types of chips.

Why would you want to use an HDL? The simplest reason is to be more productive.
An HDL makes you more productive in three ways:

I Simulation By allowing you to simulate your design, you can see if the design
works before you build it, which gives you a chance to try different ideas.

2. Documentation This feature lets you maintain and reuse your design more
easily. Verilog's intrinsic hierarchical modularity enables you to easily reuse
portions of your design as “intellectual property” or “macro-cells.”

3. Synthesis You can design using the HDL, and let other tools do the tedious
and detailed job of hooking up the gates.

This book focuses on the first two reasons because when you do these steps
correctly, the third—synthesis—is an easily attainable goal. (Chapter 12 covers
some synthesis specifics). I believe that if you truly understand Verilog, synthesis is
not a problem. Furthermore, I think it is fine if not all your code is immediately
synthesizable.

FRAMING VERILOG CONCEPTS

This section reviews some concepts you should already know. Some reflection on
these concepts will help you learn Verilog by understanding how Verilog supports
and opposes concepts you already understand.

The Design Abstraction Hierarchy

A circuit can be described at many levels. Figure 1-1 lists a few of them, from the
abstract to the detailed. (Please note that many of these terms may mean different
things to different people.)

4 Verilog Quickstart

A
System

More
Architectural Abstract
Behavioral
Algorithmic

Register Transfer Level (RTL)
Boolean Equations
Structural
Gates
Switches
Transistors
Polygons
Masks

More
Detailed

Figure 1-1 Design Abstraction Hierarchy

Which of these levels do you think Verilog can be used for? The answer to this
question varies, but Verilog can definitely be used from the system level down to
switches. However, Verilog is most commonly used from behavioral through gate
levels. This book focuses on this commonly used range of design abstraction.

Types of Simulation

There are two types of simulation: Discrete (or event-driven), and continuous.
Continuous simulation consists of a system of equations that represents the design
problem. Simulators such as SPICE use continuous simulation.

However, Verilog (like most digital simulators) is an event-driven simulator.
Simulation is considered event-driven when a change on an input causes a change
on an output, which causes a further change on another input—In other words,
event-driven simulation involves a chain of cause and effect.

Types of Languages

There are two types of HDLs: Loosely typed, and strongly typed. Without going into
too much detail, some of the characteristics of each kind of HDL are described here.

A loosely typed language allows automatic type conversion, which lets you put the
value 137 on an 8-bit bus. A strongly typed language would not permit you to do
this because it would consider 137 to be an integer; an 8-bit bus is an array of 8 bits,
and would not allow you to put an integer into an array.

Introduction 5

Each type of language has its advantages; A loosely typed language will do what
you mean most of the time. A strongly typed language will not allow you to make a
mistake by combining the wrong types of objects. Strongly typed languages have
conversion functions, so you could put the value 137 on an 8-bit bus by calling the
integer to 8-bit array conversion function.

Verilog is a loosely typed language, whereas VHDL is a strongly typed language.
But this fact does not make one language better than the other. If we look at the
implicit type conversions as they take place, we gain an understanding of what
Verilog is doing. Engineers know how to put the value 137 on an 8-bit bus.
Implicitly, we convertthe 1379 to 10001001, and put each of the bits on the bus in
the correct order. For many engineers, a loosely typed language that does what they
mean is just what they want.

Simulation versus Programming

Here is a not-so-simple question: If you assign A an initial value of 3, and B an
initial value of 4 and execute the code below, what happens? What are the final
values of A and B?

w
o
>

There are two possible answers. The final values are both 4, or they swap and A
ends up with a final value of 4 and B ends up a final value of 3. How is this
possible? We don't have enough information about the statements. We don't know
whether they are sequential or concurrent. One key difference between a simulation
language and a typical programming language is that in simulation we need a way
to model both sequential and concurrent behavior. To do this, simulators introduce
a notion of time.

HDL Learning Paradigms
There are two ways to learn an HDL: Start at the abstract and work toward the gate

level, or start at the gate level. Example 1-1 shows an abstract example; Example 1-
2 shows a gate-level example.

Example 1-1 Abstract Model of a Phone

/* Abstract behavioral system describing a telephone */

6 Verilog Quickstart

module office_phone;

parameter min_conversation=1, max_conversation=30,
false=0, true=!false;

event ring, incoming call, answer, make_call, busy;

reg off_hook;

integer seed, missed_calls;

initial begin

seed=43; // seed for call duration
missed_calls=0;
end
always @ incoming_call // someone tries to call us
if (! off_hook) -> ring; // 1f not on the phone it rings

else begin
-> busy; // else they get a busy signal
Sdisplay($Stime," A caller got a busy signal");
missed_calls = missed_calls + 1;

end
always @ring begin // phone is ringing

Swrite($time, " Ring Ring"); //do we want to answer 1t'>
if (Srandom & 'b110) begin // yes we will answer it

-> answer;

off_hook = true;

Sdisplay (" answered") ;
end // no we do not want to answer
else begin // this phone call
missed_calls = missed calls + 1;

Sdisplay (" not answered missed calls =%d",
missed_calls);
end
end

always @make_call
if (off_hook)
Sdisplay (Stime, " cannot make call phone in use");
else
begin
Sdisplay(Stime, " making call");
off_hook = true;

end
always wait (off_hook == true) begin //we are on the phone
// wait the call duration
#(Sdist_uniform(seed, // a uniform distribution

min_conversation,max_conversation))
off_hook = false;
Sdisplay($time," off phone");

end
// might wait about 2 hours between making calls
always #(Srandom & 255) -> make_call;

// someone might call in within 4 hours
always #(Srandom & 511) -> incoming call;

Introduction 7

// Simulate two days worth of calls
initial #(60*24*2) $finish;

endmodule

]

SEL —l>o—|_

|

Figure 1-2 Gate-Level Model Mux Schematic

Example 1-2 Verilog for Gate-Level Mux

module mux (OUT, A, B, SEL);
output OUT;

input A, B, SEL;

not I5 (sel_n, SEL);

and I6 (sel_a, A, SEL);
and I7 (sel_b, sel_n, B);

or I4 (OUT, sel_a, sel_Db);

endmodule

Most engineers have an easier time with the mux description in Example 1-2 than
with that for the phone model in Example 1-1. Therefore, the approach of this book
is to start with some gate-level modeling and work toward the constructs needed to
create the phone model.

WHERE TO GET MORE INFORMATION

This book teaches you the Verilog language and some general techniques for
modeling and debugging. Some information you want might be outside the scope of

8 Verilog Quickstart

this book. Some of the other sources are simulator reference manuals; and the
comp.lang.verilog usenet news group.

Reference Manuals

The IEEE standard for Verilog is 1364, and the IEEE standard may also be used as
areference. Verilog documentation falls into two categories: Reference manuals and
user guides. Reference manuals provide details of a command or construct. User
guides show you how to use a tool. This book falls in between: It teaches you the
Verilog language, shows you how to model in Verilog, and describes the basics of
using Verilog simulators. Verilog 2001 - A guide to the new features of Verilog by
Stuart Sutherland (Kluwer Academic Publishers, ISBN (07923-7568-8) summarizes
changes in the 2001 standard.

Usenet

The usenet is great source for information. There is a news group just for Verilog,
called comp.lang.verilog. This news group sometimes has tips on modeling or news
about Verilog tools. There is also a comp.cad.cadence news group that has news
about Verilog-XL and other tools from Cadence Design Systems, Inc. The
comp.cad.synthesis news group has news about synthesis tools for both Verilog and
VHDL. As with most news groups there is a lot of banter, complaining, and
philosophy mixed in with the occasional good tip. Perhaps the best single piece of
information on the usenet regarding Verilog is the Frequently Asked Questions
(FAQ) about Verilog. This document is updated and posted frequently and lists
currently available tools and publications about Verilog.

2 INTRODUCTION TO THE VERILOG LANGUAGE

This chapter we looks at some of the formal definitions of the Verilog language:
identifiers, white space, comments, numbers, text macros, modules, value set, and
strengths.

IDENTIFIERS

Identifiers are the names Verilog uses for the objects in a design. Identifiers are the
names you give your wires, gates, functions, and anything else you design or use.
The basic rules for identifiers are as follows:

e May contain letters (a-z, A-Z), digits (0-9), underscores (_), and dollar signs
$).

Must start with a letter or underscore.

Are case sensitive (unless made case insensitive by a tool option).

May be up to 1024 characters long.

Other printable ASCII characters may be used in an escaped identifier.

10 Verilog Quickstart

What this means is that you are not limited to eight or sixteen characters to name
things. You have over a thousand characters to use in the name of an identifier, so
use names that make sense to you. Because names can start with a letter or
underscore, and can contain letters and digits, you have quite a bit of flexibility.

Verilog does not have a standard notation for negated or active low signals. In this
book, the standard for active low signals will be the name of the signal followed by
_n. We use this notation to indicate active low signals because the notation is
compatible with both Verilog and VHDL. (VHDL does not allow either leading or
trailing underscores in names.) We make this recommendation to emphasize good
habit from the beginning: Try to use naming conventions that will work both in
Verilog and VHDL. 1t is likely that you will work with both VHDL and Verilog, so
having one naming convention for negated signals is easier to remember.

Verilog is case sensitive, but VHDL and other tools are not. While you are
establishing good habits for naming conventions consider using only one case.
Using a single case for your identifiers will eliminate possible errors of disconnects
when you type a wire name using different capitalization in Verilog, or a short
when you move to a tool that does not consider case if you intend to have similar
names with different capitalization.

Escaped Identifiers

Escaped identifiers allow you to use characters other than those noted above. The
primary use of escaped identifiers is with automated tools and with translators that
take a design from a format that allows names not legal in Verilog and converts the
design and names to Verilog. Escaped identifiers follow these rules:

e Must start with a backslash (\).
¢ Must end with white space.

In Verilog the expression carry/borrow is not an identifier. It is an expression that
says divide carry by borrow. If you want to use an identifier that would not
normally be legal in Verilog, such as carry/borrow or 3sel, you should form an
escaped identifier. An escaped identifier is any sequence of printable characters that
starts with a backslash (\) and ends with white space, so the identifiers \3sel and
\carry/borrow are legal in Verilog.

Introduction to the Verilog language 11
WHITE SPACE

White space is the term used to describe the characters you use to space out your
code to make it more readable. Verilog is not a white-space-sensitive language.
Generally speaking, you can insert white space anywhere in your source code. The
white-space characters are space, tab, and return (or new line). The only place that
Verilog is sensitive to white space is inside quotes. You cannot have a new line
inside quotes. For example, the code in Example 2-1, Example 2-2, and Example 2-
3 is legal:

Example 2-1 Simple Hello Module

module hellol;
initial S$display("Hello Verilog") ;
endmodule

Example 2-2 Hello Module without White Space

module hello2; initial S$display("Hello Verilog") ; endmodule

Example 2-3 Hello Module with Extra White Space

module

hello3;

initial
Sdisplay (
"Hello Verilog"

endmodule

The code in Example 2-4 is illegal in Verilog because there is a new line inside the
quotes:

Example 2-4 lllegal Use of White Space

module hello4;
initial $display ("
Hello Verilog

")
endmodule

12 Verilog Quickstart

COMMENTS

Verilog has two formats for comments: Single-line and block. Single-line comments
are lines (or portions of lines) that begin with “//” and end at the end of a line.
Block comments begin with “/*”, end with “*/°, and may span multiple lines.
Verilog does not allow nested block comments.

Example 2-5 Comments

// this is a comment

/* this is also a comment
that spans multiple lines
*/

NUMBERS

If you have the number 10, do you know what base it is? Is it 10,? 10,97 10,47 How
many bits are needed to hold it? In Verilog, the default is base ten, so the answer is
10y,

In hardware modeling you might want to represent numbers of different bases and
different bit widths. Why does it matter how many bits are used to hold the number?
In simulation, the number of bits may matter for some operations. But for synthesis,
the size of numbers becomes more important. You would not want synthesis to
produce 32 bits of hardware where 8 bits would do, so it is a good habit to tell
Verilog how many bits you want.

You just learned that you need to know the base (or radix) and the number of bits
used to represent a number. You also need to know the value, so there are three
pieces of information needed to form a number: The number of bits, the radix, and
the value. Figure 2-1 shows the notation used in Verilog to fully represent a
number.

number of bits I:| radix value

Figure 2-1 Number Format

Example 2-6 shows some fully specified numbers.

Introduction to the Verilog language 13

Example 2-6 Numbers

8'p10100101
16 'habcd

The number of bits and radix are optional. The default radix is decimal. The default
number of bits is implementation dependent, but is usually 32 bits. In this book we
will assume the default number of bits is always 32.

The letters used for the radix are b for binary, d for decimal, & for hexadecimal, and
o for octal. White space is allowed in numbers, so /I ‘b I is legal, but no space is
allowed between the apostrophe and the radix mark. The radix specifiers are not
case sensitive.

Table 2-1 Radix Specifiers

Radix Mark Radix

‘b 'B Binary

'd 'D Decimal (default)
‘h 'H Hexadecimal

'o 0 Octal

TEXT MACROS

Verilog provides a text macro substitution facility. This is useful to define opcodes
or other mnemonics you wish to use in your code. This is done with the grave
accent key (backwards apostrophe) and the define keyword.

Example 2-7 Specifying a Text Macro

“define mycode 47

In Example 2-7, we defined the macro mycode to be 47. To implement the macro,
we use the accent as shown in Example 2-8.

Example 2-8 Using a Text Macro

b = ‘mycode;

14 Verilog Quickstart
MODULES

The main building block in Verilog is the module. You create modules using the
keywords module and endmodule. You build circuits in Verilog by interconnecting
modules and the primitives within modules. Chapter 3 will introduce Verilog
primitives. Thus far in the book you have seen three modules: the phone module,
the mux module, and the hello module.

SEMICOLONS

Each Verilog statement ends with a semicolon. The only lines that do not need
semicolons are those lines with keywords that end a statement themselves, such as
endmodule.

e

[B]

Figure 2-2 The Mux Example

Let’s look at the mux example we used before and explain each line.

Example 2-9 Gate-Level Mux Verilog Code

module mux (OUT, A, B, SEL);
output OUT;
input A,B,SEL;

not I5 (sel_n, SEL) ;
and I6 (sel_a, A, SEL);
and I7 (sel_b, sel_n, B);

or I4 (OUT, sel_a, sel_b);
0 endmodule

D W Jo U WN

Line 1: module mux(OUT, A, B, SEL);
This line declares the module name and its list of ports.

Introduction to the Verilog language 15

¢ Line 2: output OUT;
This line tells Verilog the direction of the port OUT. OUT is the port name;
output is a Verilog keyword used to declare port directions.

e Line 3: input A, B, SEL;
This line tells Verilog the direction of the ports A, B, and SEL.

e Line 5: not I5 (sel_n, SEL);
This line creates an instance of the built-in primitive not. The first port, sel_n,
is the output, and the signal SEL is connected to the input of this NOT gate. I5
is the instance name of this primitive.

e Lines 6 and 7: and 16 (sel_a, A, SEL); and 17 (sel_b, sel_n, B);
These lines create instances of the built-in primitive AND gate. These gates
have the instance names /6 and I7.

e Line 9: or 14 (OUT, sel_a, sel_b);
This line creates an instance of the built in primitive OR gate.

¢ Line 10: endmodule
This line signals the end of the module.

VALUE SET

For logic simulation, we need more values than just zeroes and ones. You also need
values to describe unknown values and high impedance (not driving). Verilog uses
the values x to represent unknown and z to represent high impedance (not driving).
Any bit in Verilog can have any of the values 0, I, x, or z.

STRENGTHS

Strengths are necessary in switch-level modeling. In Verilog, strengths are
represented in a range from O (high impedance) to 7 (supply). There are four driver
strengths: supply, strong, pull, and weak. There are three capacitive strengths:
large, medium, and small. The capacitive strengths are used for storage nodes in
switch-level circuits. This text is not focused on switch-level modeling and
simulation. For more information on these topics, see an OVI or Cadence Verilog
language reference. The strengths and values combine internally in Verilog to
create a set of 120 possible states for a signal in Verilog.

Where do these 120 possible states come from? Consider the circuit in Figure 2-3.

16 Verilog Quickstart

Cana | >—{oupu]

Figure 2-3 Three-State Buffer

Ifdata is 1 and enable is I, what is output? (Answer: 1.)

If data is 0 and enable is I, what is output? (Answer: 0.)

If data is 1 and enable is 0, what is output? (Answer: z.)

If data is I and enable is x, what is output? (Answer: [or z.)

How is this last answer possible? We can all agree that the answer to the last
question is not 0. Some of you might have chosen x. Consider the circuit in Figure
2-4.

Figure 2-4 Two Three-State Buffers

What is output? The final output should be /, but if the top gate’s output were x, the
result would be x. So the 120 other states are used to express ambiguities and make
the simulation more optimistic.

Numbers, Values, and Unknowns

Is x a number? How do you set a signal to the value unknown? x by itself is an
identifier. If we want the value x we need to make it into a number. To make a

Introduction to the Verilog language 17

number we need a number of bits, a radix, and a value. Therefore I’bx is a number
with the value x.

There are a few more rules about numbers and values. Verilog does not sign extend
values. It extends all values with zero, except those with x or z in the most

significant place. Numbers with x and z in the most significant place extend with x
and z, respectively.

Table 2-2 shows examples of numbers and their binary representation.

Table 2-2 Numbers and Their Values

Number Value Number Value
8'b0 00000000 8'bl 00000001
8'bx KXXKXKKKK 8'hzl zzzz0001

8'blx 0000001x 8'bxl ploo oo el
8'b0x 0000000x 8 'bx0 poveovedl
8 'hx) 0.0.0.0.0.0.0.4 8'hz ZZZZZZZZ

8'hzx zzzzxXxXxXX 8'h0z 0000zzzz

This Page Intentionally Left Blank

3 STRUCTURAL MODELING

One of the easiest ways to model designs in Verilog is with structural modeling,
which is simply connecting devices. Even complex models can exhibit elements of
structural modeling. Whether you are connecting a cache to a processor, or an
inverter to an AND gate, you interconnect the models the same way. This chapter
shows you how to connect your models. By the end of this chapter, you should be
able to model and simulate simple circuits.

Structural modeling is often automated by capturing schematics and writing out
netlists. Using structural modeling, you can model many circuits.

PRIMITIVES

Verilog has a set of twenty-six built-in primitives. These primitives represent built-
in gates and switches. These built-in primitives are listed in Table 3-1

20 Verilog Quickstart

Table 3-1 Verilog Primitives

Logic Gates

and or Xor
nand nor xnor
Buffers

buf bufif0 bufifl
not notif0 notifl

pulldown pullup

Transistors

nmos pmos cmos
rnmos rpmos rcmos
tran tranif0 tranifl
rtran rtranif0 rtranifl

The primitives and, nand, or, nor, xor, and xnor represent simple logic functions
with one or more inputs and one output. Buffers, inverters, and three-state
buffers/inverters are represented by buf, not, bufifl, bufif0, notifl, and notif0. The
pullup and pulldown primitives have a single output and no inputs, and are used to
pull up or pull down a net. MOS-level unidirectional and bidirectional switches are
represented by the remaining primitives.

Appendix A explains each of the primitives in more detail and provides a truth table
foreach.

Note that there are no built-in muxes or flip-flops. This is because there are too
many different types of these to include them all, so Verilog provides user-defined
primitives to model these. User-defined primitives are explained in Chapter 13.

PORTS

Ports in Primitives

The Verilog terminology for a connection or "pin" is port. All the built-in
primitives (gates) have ports. The pullup and pulldown primitives have only one
port. The first port of each of the built-in primitives (gates) is the output. This
allows you, for example, to use the same and primitive to represent a 2-input or 4-

Structural Modeling 21
input AND gate. The only built-in primitives that can have more than one output

port are the buf and not primitives, which can have many outputs, with the last
terminal being the input.

";_..
A O

=

Figure 3-1 AND Gate Primitives

ofo]w]>|

Example 3-1 Verilog Code for the 2-input and 4-Input AND Gates

All of the multiple-input primitives may have as many inputs as you need, so you
could have a 100-input AND gate if you needed it. However, not all Verilog clone
simulators support this.

Ports in Modules

Modules can have ports. Two of the modules you have seen thus far (the phone and
hello modules) did not have ports, but the mux module did. In general, if you are
modeling a self-contained system, you will not have ports. But if you are modeling
something that needs to be connected to something else, you will need ports to make
those connections.

Verilog supports three port directions: input, output, and inout (the keyword for bi-
directional ports). In Verilog, you must declare the ports in two places: First, as part
of the port list in the module. Second, for the direction and size of all the module’s
ports using the input, output, and inout keywords. The 2001 standard allows you to
combine the portlist and direction into a single declaration, as shown in Chapter 19.

22 Verilog Quickstart
INSTANCES

The word instance is not a Verilog keyword. Rather, it is the word we use to mean
make a copy of, or use. When you use a built-in primitive, you make an instance or
copy of the built-in gate and list its connections. When you make an instance of a
built-in gate, you have the option to give it a unique name called an instance name.
When you make an instance of a module you are required to give it an instance
name.

>0) o

Figure 3-2 Gate-Level Model Mux Schematic

oIl b

Example 3-2 Verilog for Gate-level Mux

module mux(OUT, A, B, SEL);
output OUT;

input A, B, SEL;

not I5 (sel_n, SEL);

and I6 (sel_a, A, SEL);
and I7 (sel_b, sel_n, B);

or I4 (OUT, sel_a, sel_Db);

endmodule

As you can see from the mux example, there are four gates in the schematic. The
Verilog code shows four instances, each one corresponding to a gate in the
schematic.

HIERARCHY

We can connect modules inside other modules, creating hierarchy. For example, if
you want to have a 2-bit mux, you can create it by using two 1-bit muxes from
Example 3-2, as shown in Figure 3-3.

Structural Modeling 23

(A0 f——) - M m—
—__1
B[1:0] (1 4s [el

OUT|

EL

o &
e

mux
[0] N lo

(9]
B oot 0]

SEL

mux

Figure 3-3 Connecting Two Muxes

Example 3-3 Hierarchical 2-Bit Mux

module mux2 (OUT, A, B, SEL);
output [1:0] OUT;

input [1:0] A,B;

input SEL;

mux hi (OUT[1], A[1l], B[1l], SEL);
mux lo (OUT[0], A[O], B[O], SEL);

endmodule

You can make an even more hierarchical 4-bit mux by connecting two of these 2-bit
muxes, as shown in Figure 3-4.

24 Verilog Quickstart

(A0 F——ppt
@ [3:2] B 2 | ouT30) |
SEL SEL
mux2

Figure 3-4 Hierarchical 4-Bit Mux

The Verilog for connecting two 2-bit muxes as shown in Figure 34 is shown in
Example 3-4.

Example 3-4 Hierarchical 4-Bit Mux

module mux4 (OUT, A, B, SEL);
output [3:0] OUT;

input [3:0] A,B;

input SEL;

mux2 hi (OUT[3:2], A[3:2], B[3:2], SEL);
mux2 lo (OUT[1:0], A[1:0], B[1:0], SEL);

endmodule

You can use this technique of making primitive instances and module instances to
model most circuits. This technique is sometimes called netlist modeling or
structural modeling. In more complex circuits, you can still use this technique to
connect modules that contain constructs other than instances.

HIERARCHICAL NAMES

Figure 3-5, shows the 4-bit mux hierarchically expanded. There are four copies of
the mux module. Each of the mux modules contains four gate instances, four ports,
and three internal wires. Each of the four copies of the module has a unique

Structural Modeling 25

hierarchical name. With hierarchical names, we can distinguish the copies so it is
possible to uniquely identify each gate, port, and wire.

mux4

mux2 - hi
ux - hi
Gates: IS5 (not), 16,17 (and), 14 (or)
Ports: A, B, SEL, OUT
Wires: sel_n, sel_a, sel_b

Gates: IS (not), 16,17 (and), 14 (or)
Ports: A, B, SEL, OUT
Wires: sel_n, sel_a, sel_b

mux? - lo

mux - hi

Gates: I5 (not), 16,17 (and), I4 (or)
Ports: A, B, SEL, OUT

Wires: sel_n, sel_a, sel_b

mux - lo

Gates: IS5 (not), 16,17 (and), 14 (or)
Ports: A, B, SEL, OUT

Wires: sel_n, sel_a, sel_b

Figure 3-5 Mux4 Hierarchy Expanded

A hierarchical name can reference any object in a simulation. Hierarchical names
have two forms: A downward path from the current module, or a name that starts at
a top-level module and provides a complete path. Verilog uses the dot (.) to separate

the elements in the path of a hierarchical name. Example 3-5 shows some
hierarchical names.

26 Verilog Quickstart

Example 3-5 Hierarchical Names

lo.lo.sel n
mux4.lo.lo.sel n

Connect by Name

All of the hierarchy built by module instances in Example 3-3 and Example 34 are
built by matching the port declaration order to the used to create the connections.
This type of instantiation is called connect by order since the port order must be
known and matched. Verilog also supports a connect by name syntax, where the
port order does not need to be known, but the port names must be known. The
connect by name syntax uses the hierarchical name for the ports to make the
connects. Example 3-6 shows Example 3-4 re-written to use the connect by name
syntax.

Example 3-6 Mux Connected by Name

module mux4cbn (OUT, A, B, SEL);
output [3:0] OUT;

input [3:0] A, B;

input SEL;

mux2 hi(.A(A[3:2]), .B(B[3:2]), .SEL(SEL), .OUT(OUT[3:2]));
mux2 lo(.A(A[1:0]), .B(B[1:0]), .OUT(OUT[1:0]), .SEL(SEL));

endmodule

Figure 3-6 clarifies the syntax for connect by name. The net to be connected to the
port is in the parenthesis.

Period indicating a hierarchical name

Name of port in lower level module

Name of net being connected.

r

. portname(net_to_be_connected)

Figure 3-6 Syntax for Connect By Name

Structural Modeling 27
Top-Level Modules

When the Verilog simulator finishes compiling your modules, the first thing it
reports is which module or modules are “Highest-level modules.” Highest-level or
top modules are modules that no other module has made an instance of. These non-
referenced modules are considered to be at the top of the hierarchy. Usually there is
only one top-level module, the test bench for your circuit. The test bench module is
used to provide inputs or stimulus to a design. Chapter 18 discusses test benches.

Each instantiated module has a unique instance name. Since a top-level module is
not instantiated, it has no instance name. Verilog automatically assigns an instance
name to top-level modules. The instance name of a top-level module is the name of
the module itself.

For example, because there is no test bench module for the mux4, it will be a top-
level module.

28 Verilog Quickstart

You Are Now Ready to Run Your First Simulations

We will take a break now and do some exercises using Verilog.

Exercise 1 The Hello Simulation

As a simple test to see if your Verilog simulator works correctly, enter the code in
Example 3-7 into a file called hello.v.

Example 3-7 Hello Verilog

module hello;
initial S$display("Hello Verilog") ;
endmodule

To run a simulation with most Verilog simulators, you simply type the name of the
simulator and the name(s) of the Verilog file(s).

To run the hello simulation, type verilog hello.v. You should get the results as
shown in Example 3-7 Results.

Example 3-7 Results

Compiling source file "hello.v"
Highest level modules:
hello

Hello Verilog

Verify that you are able to enter a simple Verilog model and run the simulator. If
you have trouble running the simulator, consult the documentation for the
simulator. Once the hello simulation is complete, you are ready to move on to a
more challenging exercise.

Exercise 2 The 8-Bit Hierarchical Adder

Now that you know that your Verilog simulator works, try to create some modules.
Use the schematic in Figure 3-7 to create a module adder using the built-in
primitives listed in Table 3-1.

Structural Modeling 29

==
- . —

Cin

Figure 3-7 Adder Schematic

J b

When you write the Verilog for the adder you will need to decide on names for the
three internal wires. You can use any names you prefer, but your wire names must
be legal identifiers. Some suggested wire names are half_carry_ab, for the output of
the top AND gate, half sum for the output of the first EXCLUSIVE-OR, and
half_carry_cin for the output of the second AND gate.

Next, connect two of your adders to create an adder2 as shown in Figure 3-8. You
will need an extra signal, internal_carry, to connect the carry_out of your low-order
adder to the carry_in of your high-order adder. You will also need instance names
for the two adder modules. The simplest instance names to use are Ai and /o.

2 Adder
Lana o e)
1]y Sum

Cin

Adder

(0]

A Cout|
[0] B Sum [0
—1SUM[1:0]|
Cin Cin

Figure 3-8 Adder2 Schematic

Connect two of the adder2s together to form a 4-bit adder as shown in Figure 3-9.

30 Verilog Quickstart

| y l_ .91 | Adder2
A[3:0] [3:2] '\ Cont
B2y Sum—=

Cin
3 Adder2 |
{10} A Cout

[1:0]

[1:0] -
B Sum {sum:0]

Cin ICin
Figure 3-9 Adder4 Schematic

Connect two of the adder4s together to form a 8-bit adder as shown in Figure 3-10.

; -41 | Adder4
Lar o et Gou]
. B um

Cin
3:0 Adder4 |
kol A Cout

(3:0] [3:0]

Sum!
B > Hsumi7:01]

Cin Cin
Figure 3-10 Adder8 Schematic

Finally, simulate your 8-bit adder with the provided test bench fest_adder.v shown
in Example 3-8. You should get the results as shown in Example 3-8 Results.

Structural Modeling

Example 3-8 Adder Test Module

module test adder;
reg [7:0] a,b;
reg carry in ;
wire [7:0] sum;
wire carry_out;

adder8 dut (carry out, sum, a,b, carry in);

initial begin
a=20; b= 0; carry in = 0;

100 if (sum !== 0) Dbegin
Sdisplay("sum is wrong") ;
Sfinish;

end

a=1; b=0; carry in = 0;

100 if (sum !== 1) begin
Sdisplay("sum is wrong") ;
Sfinish;

end

a=0; b=20; carry in = 1;

100 if (sum !== 1) Dbegin
Sdisplay("sum is wrong") ;
Sfinish;

end

a=>5; b=6; carry in = 1;

100 if (sum !== 12) Dbegin
Sdisplay("sum is wrong") ;
Sfinish;
end

a = 200; b = 55; carry in = 1;

100 if (sum !== 0) Dbegin
Sdisplay ("sum is wrong") ;
Sfinish;
end

a =18; b = 200; carry in = 1;

100 if (sun !== 219) begin
Sdisplay ("sum is wrong") ;
Sfinish;
end

Sfinish ;

end

endmodule

32 Verilog Quickstart

Note that the results of this simulation, shown in Example 3-8 Results, did not give
us any meaningful results other than the fact that it finished at time 600. In this
case, this is the correct result for the simulation because if the simulation had
finished at a time before 600, there was an error in one of the adders.

Example 3-8 Results, Output from Exercise 2

Compiling source file "test_adder.v"
Compiling source file "adder8.v"
Highest level modules:

test_adder

IL51 "test adder.v": S$finish at simulation time 600

Chapter 4 examines the parts of Verilog used for modeling test inputs and
collecting results. It explains what the lines in test_adder.v mean and how to
improve this test bench to print out some results.

4 STARTING PROCEDURAL MODELING

Using the structural modeling technique from Chapter 3, you can model many
different types of circuits. One of the reasons that Verilog gained popularity was the
ease with which it allowed mixing behavioral modeling techniques with structural
modeling. Before Verilog, there were both structural modeling and simulation tools,
and there were even behavioral languages and tools, but no one tool combined both
behavioral and structural modeling.

Before the creation of Verilog, you needed to know three languages: One for the
netlist (as in the structural modeling covered in Chapter 3); one to create the
stimulus for your circuit; and one to process the output from the simulation. Using
Verilog is more efficient than older simulators: You only need to learn one
language. In Verilog, you use the same language for structural modeling, behavioral
modeling, creating the stimulus, and analyzing results.

Hopefully you have taken the time to run the simple hierarchical 8-bit adder at the
end of Chapter 3. You will note that the results of that simulation give no indication
of the inputs and outputs of the circuit, so it is difficult to tell if the circuit really
works correctly. Therefore, the first behavioral aspects of the Verilog language we
will look at are the parts of the language you use to print results.

34 Verilog Quickstart

STARTING PLACES FOR BLOCKS OF PROCEDURAL CODE

Procedural Verilog code is like programming in a computer language—with one
large exception: Procedural Verilog code adds a concept of time. With a
programming language, code is started at a particular location, for example, at the
first line or main function. In Verilog, code starts running in one of two places: at
the initial statement and at the always statement. Do not assume that you can have
only these two statements in your code. You can have as many initial statements
and always statements as you want in your simulation or module. However, if all the
code is started at the initial and always statements, how can you know the order in
which the statements will run? This is where the model of time comes into effect.

The initial Keyword

Verilog interprets the initial keyword to mean “start here at time 0.” Do not let the
keyword throw you off track. Sometimes people think the initial keyword is used
only for initialization. The keyword initial is used not only for initialization, but
also as a place for starting code. Look at the test bench for the 8-bit adder. It has an
initial statement with several statements to apply the stimulus and check the results
from the adder.

Verilog starts all initial statements at time 0. The time at which the statements
finish depends on the code in the initial block. When the statements finish, the
initial block is done. However, it is possible to have an initial block that never
finishes.

Example 4-1 An initial Block

initial $display("Hello Verilog");

The most simple initial block was shown in the hello simulation. Example 4-1
repeats this simple initial block that starts at time O and prints out the message
“Hello Verilog.” This initial block is then finished. If you want to do more than one
operation in an initial block, you will need to use a begin-end block or fork-join
block, covered later in this chapter.

The always Keyword

The always keyword is similar in behavior to the initial keyword. Verilog also
begins to run always statements at time 0. The difference between initial and always
statements is what happens when the statements finish running. The always block
starts again when it finishes. An always block is like an initial block with an

Starting Procedural Modeling 35
infinite loop. If we change the hello simulation from an initial to an always as

shown in Example 4-2, the simulation would continue to print until we kill the
simulation. Simulation time would remain stuck at time 0.

Example 4-2 An always Block

always S$display("Hello Verilog");

Remember that always statements can create infinite loops. Some infinite loops are
useful, but we will consider it an error to have a zero-delay always loop.

Just as the initial statement should be remembered as “‘start here at time 0,”
remember the always statement as ‘“‘start here at time O, and when done, start
again.”

Delays

Every statement in Verilog may have a delay before it is run. If we have three initial
statements as in the module in Example 4-3, we know they will all start at time O.
But they must run in some order: Which one will run first? There is really no way to
tell. Not only is there no way to tell, if you run this module on another simulator,
that simulator might run this module in a different order.

Example 4-3 Three Initial Statements

module three initial;

initial S$display("Initial Statement 1");
initial $display("Initial Statement 2");
initial S$display("Initial Statement 3 ") ;

endmodule

The model in Example 4-3 creates a race condition at time 0. If it is important to
have the statements run in a particular order, you can introduce delays to control the
order in which the statements are executed.

36 Verilog Quickstart

Example 4-4 Three Initial Statements with Delay

module three_initial_with delay;

initial #1 $display("Initial Statement 1");
initial S$display("Initial Statement 2") ;
initial #2 S$display("Initial Statement 3") ;

endmodule

In Example 44, all of the initial statements are started at time 0, but now the first
one waits one time unit before it continues. In the meantime, the second statement
(which also started at time O and has no delay) prints out the message “Initial
Statement 2" and is finished. The third statement has a delay of two time units, so it
waits even longer. At time 1, the first statement finishes running, and then at time 2
the third statement finishes running, and the whole simulation is done.

The “# ” symbol is the delay operator in Verilog. The best way to think of # is to
remember that # means “wait for some amount of time.”

begin-end Blocks

Initial and always can have only one statement. However, you will often need more
than a single statement in your design. The begin-end block allows a set of
sequential statements to follow an initial or always statement. Example 4-5 shows a
simple begin-end block.

Example 4-5 Simple begin-end Block

module initial_ begin;

initial
begin
Sdisplay ("Statement 1") ;
Sdisplay ("Statement 2") ;
Sdisplay ("Statement 3") ;
end
endmodule

The statements in the begin-end block are sequential so we know the statements
will execute in the order you would expect. The begin-end block in Example 4-5 has
no delays in it, so this initial statement still finishes at time 0. In begin-end blocks,

Starting Procedural Modeling 37

delays are additive. Example 4-6 shows what happens when we change the block
and introduce delays.

Example 4-6 begin-end Block with Delay

module initial begin_with delay;

initial
begin
#1 Sdisplay("Statement 1") ;
Sdisplay ("Statement 2") ;
#2 Sdisplay ("Statement 3") ;
end
endmodule

Like all initial statements, the initial statement in Example 4-6 starts at time 0. The
begin-end block starts, and the first statement has a delay, so this block waits until
time 1. At time 1, the delay expires, and “Statement 1” is printed. The next
statement has no delay, so at time 1, “Statement 2” is also printed. The third
statement has a delay of two time units. The delay is encountered at time 1.
Therefore, the simulator waits until time 3 before continuing (1 + 2 = 3). At time 3,
“Statement 3” is printed, the begin-end block will be done, and the initial block will
finish.

To gain a better understanding of the sequence statements, consider the situation of
two begin-end blocks that are started from separate initial statements, as shown in
Example 4-7.

Example 4-7 Multiple begin-end Blocks

module initial_two_begin;

initial
begin
#1 sdisplay("Statement 1") ;
Sdisplay ("Statement 2") ;
#2 sdisplay ("Statement 3");
end
initial
begin
Sdisplay ("Block 2 Statement 1");
#2 sdisplay ("Block 2 Statement 2") ;
#2 sdisplay ("Block 2 Statement 3") ;
end

endmodule

38 Verilog Quickstart

Example 4-7 Results shows the output from the simulation of the model in Example
4-7.

Example 4-7 Results 1

Block 2 Statement 1
Statement 1
Statement 2
Block 2 Statement 2
Statement 3
Block 2 Statement 3

Does Example 4-7 Results 1 show the results you expected? Why did we get these
results? The best way to understand the sequence of statements in Example 4-7 is to
trace the sequence of events in the simulator.

Both initial blocks start at the same time. However, the first initial block encounters
a delay, so the first event that occurs is the $display in the second block. To give
you a step-by-step description of what happens, Verilog has a trace mode. Example
4-7 Results 2 shows the results of running the simulation with the trace mode.

Example 4-7 Results 2

I3 "i2b.v" (i2b): INITIAL

14 "i2b.v" (i2b): BEGIN

L4 "i2b.v" (i2b): #1

L10 "i2b.v" (i2b): INITIAL

L1l "i2b.v" (i2b): BEGIN

L12 "i2b.v" (i2b): S$display ("Block 2 Statement 1")
Block 2 Statement 1

L1l "i2b.v" (i2b): #2

SIMULATION TIME IS 1

L4 "i2b.v" (i2b) : #1 >>> CONTINUE

L5 "i2b.v" (i2b): S$display ("Statement 1")
Statement 1

L6 "i2b.v" (i2b): Sdisplay ("Statement 2")
Statement 2

L4 "i2b.v" (i2b): #2

SIMULATION TIME IS 2

L1l "i2b.v" (12b): #2 >>> CONTINUE

L13 "i2b.v" U2b) : S$display ("Block 2 Statement 2")
Block 2 Statement 2

L1l "i2b.v" (i2b): #2

SIMULATION TIME IS 3

L4 "i2b.v" (i2b): #2 >>> CONTINUE

L7 "i2b.v" (i2b): S$display ("Statement 3 ")
Statement 3

L8 "i2b.v" (i2b): END

Starting Procedural Modeling 39

SIMULATION TIME IS 4

L11 "i2b.v" (i2b): #2 >>> CONTINUE

L14 "i2b.v" (i2b): Sdisplay ("Block 2 Statement 3")
Block 2 Statement 3

115 "i2b.v" (i2b): END

You activate the Verilog trace option either with the -f command line option, or by
using the $sertrace system command. However, tracing large designs is not very
practical. As you can see, the trace option produces extensive output even for a
simple test case.

fork-join Blocks

The fork-join block is similar to the begin-end block: It is also used to group
statements. In begin-end blocks, the statements are sequential, and the delays are
additive. In fork-join blocks, the statements are concurrent, and the delays are

independent, or absolute from the time the fork-join block starts.

If the code in Example 4-7 is changed by substituting two fork-join blocks for
begin-end blocks, the behavior will be different, as shown in Example 4-8.

Example 4-8 fork-join Blocks

module 12f;
initial
fork
#1 sdisplay("Statement 1");
Sdisplay ("Statement 2") ;
#2 Sdisplay ("Statement 3") ;
join
initial
fork
Sdisplay ("Block 2 Statement 1");
#2 Sdisplay ("Block 2 Statement 2") ;
#2 sdisplay ("Block 2 Statement 3") ;
join
endmodule

Both initial statements still start at time O, and each initial statement has a fork-join
that starts at time 0. The first statement to run in the first block is the “Statement 2
line because it has no delay. The “Block 2 Statement 1” also runs at time 0. In this
example there are two statements to be run at time 0, and three statements to be run
at time three. The results shown are only one possible result. There is no guarantee

40 Verilog Quickstart

of order when multiple statements need to be run at the same time. Sample results
of this run are shown in Example 4-8 Results 1.

Example 4-8 Results 1

Statement 2
Block 2 Statement 1
Statement 1
Statement 3
Block 2 Statement 2
Block 2 Statement 3

Example 4-8 Results 2 shows the sample results with the frace option.

Example 4-8 Results 2

L3 "i2f.v" (i2f) INITIAL

L4 "i2f.v" (i2f): FORK

L4 "i2f.v" (i2f): #1

L6 "i2f.v" (i2f): Sdisplay ("Statement 2")

Statement 2

L4 "i2f.v" (i2f): #2

L10 "i2f.v" (i2f): INITIAL

L1l "i2f.v" (i2f): FORK

L12 "i2f.v" (i2f): Sdisplay ("Block 2 Statement 1")
Block 2 Statement 1

L1l "i2f.v" (i2f): #2

L1l v"i2f.v" (i2f): #2

SIMULATION TIME IS 1

L4 "i2f.v" (i2f): #1 >>> CONTINUE

L5 "i2f.v" (i2f): Sdisplay ("Statement 1")
Statement 1

SIMULATION TIME IS 2

L4 "i2f.v" (i2f): #2 >>> CONTINUE

L7 "i2f.v" (i2f): $display ("Statement 3")
Statement 3

L8 "i2f.v" (i2f): JOIN

L1l r"i2f.v" (i2f): t2 >>> CONTINUE

L13 "i2f.v" (i2f): $display ("Block 2 Statement 2")
Block 2 Statement 2

L1l "i2f.v" (i2f): #2 >>> CONTINUE

L14 "i2f.v" (i2f): $display ("Block 2 Statement 3")
Block 2 Statement 3

L15 "i2f.v" (i2f): JOIN

As you can see from Example 4-8 Results 2, a fork-join block finishes when its last
statement finishes.

Starting Procedural Modeling 41

Note that fork-join and begin-end blocks are themselves single statements. You can
nest fork-join and begin-end blocks. You can also nest begin-end blocks within
begin-end blocks; fork-join blocks within fork-join blocks; and begin-end blocks
within fork-join blocks.

Although there are four possible ways to nest these blocks, two of the combinations
are generally impractical. Nesting begin-end blocks within begin-end blocks has no
benefit because all the statements are sequential already. When begin-end blocks are
nested, it is usually for control flow, such as in the adder test module at the end of
Chapter 3, in which the inner begin-end blocks contain the statements controlled by
the if. Nesting a fork-join block in a fork-join block is impractical unless there is a
delay outside the inner fork-join block.

Example 4-9 contains two initial blocks and an always block. The first initial block
has only one statement in it: a delay of 50 time units and a $finish keyword. The
first initial statement is necessary to make the simulation terminate; without this
statement, the always block would keep the simulation running forever.

Example 4-9 Combining begin-end and fork-join Blocks

module befjia;
initial #50 S$finish;
initial begin
#1 sdisplay(" b 1");
#1 fork
#1 Sdisplay (" b1l f1");
sdisplay (" b1l f2");
#5 $display (" b1l f3");
#2 begin
Sdisplay (" bl fd4dbil");
#1 Sdisplay (" bl f4b2a";
sdisplay (" bl fd4b3");
end
join
Sdisplay(" b 2");
end

always fork
3 sdisplay(" £ 1");
begin
#1 sdisplay (" £f 2
#2 Sdisplay (" f 2
#3 Sdisplay (" £f 2
end

begin
#10 Sdisplay (" £3b1l");
#9 sdisplay (" f)
#8 Sdisplay (" f

42 Verilog Quickstart

end
5 fork
#1 Sdisplay (" £f4f1");
#2 Sdisplay (" £f4£2");
#3 Sdisplay (" £ 4£3");
join
1 Sdisplay(" £ 5");
join
endmodule

Notice that the always block repeats when the fork-join block finishes running. Can
you can calculate the time at which each of the statements will print out?

Example 4-9 Results 1 shows possible results of simulating the code in Example 4-

9. It is possible that different simulators might execute the statements scheduled for
the same time unit in a different order.

Example 4-9 Results 1

b1l

N

f

[E

Fhho ththFhHh g H o
WhwhbdbdPD N R
o'oo
(YN

PRNNRRRREND

DWW W

oo oo rhm

o
FhrhFhFhFhFh R Ul Fh Fh Fh Fh N O Fhth O O O O +h 2 O U1 +h
P WNR WN

Wi RN
oo O

RPWNERWN

Starting Procedural Modeling 43

£f3 b2

L2 "befjia.v": $finish at simulation time 50

Example 4-9 Results 2 shows the results of the simulation of Example 4-9 with
tracing, so you can see when each statement executes.

Example 4-9 Results 2 Trace Output from Combined begin-end and

fork-join Blocks

12 "befjia.v": initial

L2 "befjia.v": #50

L3 "befjia.v": initial

13 "befjia.v": begin

L4 '"befjia.v": #1

L18 '"befjia.v": always

L18 '"befjia.v": fork

L19 '"befjia.v": #3

L20 "befjia.v": begin

L21 "befjia.v": #1

126 "befjia.v": begin

L27 "befjia.v": #10

L32 '"befjia.v": #5

L38 "befjia.v": #1

SIMULATION TIME IS 1

L4 "befjia.v": #1 >>> CONTINUE

L4 '"befjia.v": Sdisplay (" b 1");
b1l

L5 "befjia.v": #1

L21 '"befjia.v": #1 >>> CONTINUE

L21 "befjia.v": sdisplay (" £f2b1");

f2bl

L22 "befjia.v": #2

138 '"befjia.v": #1 >>> CONTINUE

L38 "befjia.v": sdisplay(" £ 5");
£f5

SIMULATION TIME IS 2

L5 "befjia.v": #1 >>> CONTINUE

L5 "befjia.v": fork

L6 '"befjia.v": #1

L7 "befjia.v": $display (" b1l f2");
bl f2

L8 '"befjia.v": #5

19 '"befjia.v": #2

SIMULATION TIME IS 3

L19 "befjia.v": #3 >>> CONTINUE

L19 "befjia.v": sdisplay(" £ 1");

f1

L22 "befjia.v": #2 >>> CONTINUE

L22 "befjia.v": Ssdisplay (" £f2b2");
f 2 b2

123 "befjia.v": #3

44 Verilog Quickstart

L6 "befjia.v": #1 >>> CONTINUE

16 "befjia.v": Sdisplay (" b1l f1");
b1l f1l

SIMULATION TIME IS 4

19 '"befjia.v": #2 >>> CONTINUE

19 '"befjia.v": begin

L10 "befjia.v": Sdisplay(" b1l f4bil");
blf4i4bl

L1l "befjia.v": #1

SIMULATION TIME IS 5

L32 "befjia.v": #5 >>> CONTINUE

L32 '"befjia.v": fork

133 "befjia.v": #1

L34 "befjia.v": #2

L35 "befjia.v": #3

L1l "befjia.v": #1 >>> CONTINUE

L1l "befjia.v": sSdisplay (" bl f4b2");
bl fd4db2

L12 "befjia.v": Sdisplay (" bl f4db3");
blfd4db3

L13 "befjia.v": end

SIMULATION TIME IS 6

123 "befjia.v": #3 >>> CONTINUE

L23 "befjia.v": Sdisplay (" £f2b3");
£f2Db3

L24 "befjia.v": end

L33 "befjia.v": #1 >>> CONTINUE

L33 "befjia.v": Sdisplay(" £4 f1");
£4f1

SIMULATION TIME IS 7

L8 "befjia.v": #5 >>> CONTINUE

L8 "befjia.v": Sdisplay (" bl f£3");
b1l f3

L14 "befjia.v": join

L15 "befjia.v": S$Sdisplay(" b 2");

b 2

1L16 "befjia.v": end

L34 "befjia.v": #2 >>> CONTINUE

L34 "befjia.v": Sdisplay (" £f4 £2");
£f4 f£f2

SIMULATION TIME IS 8

L35 "befjia.v": #3 >>> CONTINUE

L35 "befjia.v": sdisplay (" f4 f£3")
£f4 f3

L37 "befjia.v": Jjoin

SIMULATION TIME IS 10

L27 "befjia.v": #10 >>> CONTINUE

L27 "befjia.v": Sdisplay (" £f3b1")
f3Db1

L28 "befjia.v": #9

SIMULATION TIME IS 19

L28 "befjia.v": #9 >>> CONTINUE

L28 "befjia.v": Sdisplay (" f3b2");
f 3 b2

7

7

Starting Procedural Modeling

129 "befjia.v"
SIMULATION TIME
L29 '"befjia.v":
129 '"befjia.v":
f 3 b3
L30 '"befjia.v":
139 '"befjia.v"
L18 '"befjia.v":
L18 '"befjia.v":
L19 '"befjia.v":
L20 '"befjia.v":
L21 "befjia.v"
L26 "befjia.v"
L27 "befjia.v":
L32 '"befjia.v":
L38 '"befjia.v":
SIMULATION TIME
121 "befjia.v":
L21 '"befjia.v":
f2bl
L22 '"befjia.v":
L38 '"befjia.v":
L38 "befjia.v":
f 5
SIMULATION TIME
L19 "befjia.v":
L19 "befjia.v":
f1
122 "befjia.v":
122 '"befjia.v":
£f2Db2
L23 "befjia.v"
SIMULATION TIME
L32 '"befjia.v":
L32 '"befjia.v":
L33 '"befjia.v":
L34 '"befjia.v":
L35 '"befjia.v":
SIMULATION TIME
123 "befjia.v":
123 '"befjia.v":
f 2Db3
L24 '"befjia.v":
L33 '"befjia.v":
L33 '"befjia.v":
£f4 f£f1
SIMULATION TIME
L34 "befjia.v":
L34 "befjia.v":
f4 f2
SIMULATION TIME
L35 "befjia.v":
L35 "befjia.v":

£4 f3

#8

Is 27
#8 >>> CONTINUE
Sdisplay (

end
join
always
fork
#3
begin
#1
begin

IS 28
#1 >>> CONTINUE
Sdisplay ("

#2
#1 >>> CONTINUE
Sdisplay ("

IS 30
#3 >>> CONTINUE
Sdisplay ("

#2 >>> CONTINUE
Sdisplay ("

#3

IS 32
#5 >>> CONTINUE
fork

#1

#2

#3

IS 33

#3 >>> CONTINUE
Sdisplay ("

end
#1 >>> CONTINUE
Sdisplay ("

IS 34
#2 >>> CONTINUE
Sdisplay ("

IS 35
#3 >>> CONTINUE
Sdisplay ("

£f3b3");

£f2b1");

£5");

£1");

£f2b2");

£f2b3");

£4 £ 1");

£4 £ 2");

£4 £3");

46 Verilog Quickstart

L37 "befjia.v": join

SIMULATION TIME IS 37

L27 '"befjia.v": #10 >>> CONTINUE

127 '"befjia.v": Sdisplay (" £f3b1l") ;
f3 b1l

128 '"befjia.v": #9

SIMULATION TIME IS 46

128 '"befjia.v": #9 >>> CONTINUE

128 '"befjia.v": S$display (" £f3b2");
f 3 b2

129 '"befjia.v": #8

SIMULATION TIME IS 50

L2 "befjia.v": #50 >>> CONTINUE

12 "befjia.v": $finish;

12 '"befjia.v": $finish at simulation time 50

Summary of Procedural Timing

One of the most important concepts in Verilog modeling is knowing when a
procedural statement will be run. The preceding section introduced most of the key
words and symbols used to control when a procedural statement will be run. A
common cause of incorrect model behavior and even of syntax errors is incorrectly
specifying, or omitting, statements that control when your code should be run. If
you don't know when your code should be run, perhaps the simulator or synthesis
tool will have the same problem.

Table 4-1 Summarizes the keywords presented to determine procedural timing. This
list is expanded as more concepts are introduced.

Table 4-1 Procedural Timing keywords

Keyword Definition

initial Start here at time zero, run only once.

always Start here at time zero, when done, run again.
begin - Sequential grouping of procedural statements.
end

fo;k - Concurrent grouping of procedural statments.
join

Wait some amount of time.

5 SYSTEM TASKS FOR DISPLAYING RESULTS

The hello simulation and the previous chapter’s examples gave you a preview of
one way to print out information: The $display system task. All of the commands to
print out results are relatives of the $display system task.

What Is a System Task?

As you learn the Verilog language, you will see that Verilog is a flexible language
for modeling. There are some special built-in commands for system functions such
as printing messages or reading and writing files. The special commands are called
system tasks and they all begin with the “$” symbol. The “$” symbol is also used to
indicate system functions.

$display and lts Relatives

Using the $display system task is the basic way to print out results. The simplest
form of $display is shown in the hello simulation in Chapter 2 and is repeated in
Example 5-1.

48 Verilog Quickstart

Example 5-1 Displaying a String

Sdisplay ("Hello Verilog") ;

This simple form of $display simply prints the string between the quotation marks,
followed by a new line.

Example 5-2 Displaying a Single Value

sdisplay(a);

The form of $display shown in Example 5-2 prints out the value of a in the default
radix, which is decimal. This is a common way to debug a simulation interactively.
You can use the $display command in your source code or as an interactive
command.

Example 5-3 Displaying Multiple Values

Sdisplay(a, b);
sdisplay(a, , b);

The two lines in Example 5-3 show the values of both a and b. In the first line, the
values a and b are run together, as in 1234. The extra comma in the second
$display line is not a typo: It adds an extra space in the output. Verilog is not white-
space-sensitive, so the language defines the extra comma as a command to insert
extra space in the printout. Use this capability to improve the readability of your
output. Thus, if the first line in Example 5-3 were to yield the possibly ambiguous
value 1234, the second line would eliminate ambiguity by yielding the values 123
and 4.

Example 54 Using Format Specifiers with $display

Sdisplay ("The value of a is %b, The value of b is %b", a, b);

Example 54 shows the most common form of the $display system task. This form
uses format specifiers—in this case, the format specifier %b— and then assigns a
value to the format specifiers. In Example 54, the value of a is assigned as binary
for the first %b and the value of b as binary for the second %b. (Readers familiar
with C programming will notice the similarity to the printffunction.) This form of
$display is most common because of its flexibility to print in any radix and combine
the printing of text with the values.

System Tasks for Displaying Results 49
The general form for $display is

Sdisplay([optional format specifier],[value],[value...]);

The $display command can be used to print out binary, decimal, hexadecimal, or

octal values. The radix is controlled with format specifiers. The most common
format specifiers are listed in Table 5-1.

Table 5-1 Format Specifiers

Symbol Format

%b binary

%d decimal

%h hexadecimal
%o octal

%s string

Other Commands to Print Results

The $display command has several relatives: $write, $strobe, and $Smonitor. $write
and $strobe are very similar to $display,and $monitor is a special, more powerful
command.

Swrite is similar to $display: They both print results when encountered. The only
difference between the two is that $display automatically puts in a new line at the
end of the results, whereas $write does not. If you need to print many results on a
line and need to use more that a single $display statement, use $write statements for
the first part(s) of the line and then a $display for the rest of the line. You could
decide never to use $display, and just use $write and put a new line in manually.

Example 5-5 Two $display Statements

module two_display;
initial
begin
Sdisplay ("first half ");
Sdisplay ("second half") ;
end
endmodule

50 Verilog Quickstart

Example 5-5 Results

first half
second half

Example 56 Combining $write and $display

module write display;
initial
begin
Swrite ("first half ");
Sdisplay (" second half");
end
endmodule

Example 5-6 Results

first half second half

What happens in the case of a value that changes while you are printing it out?
Does Verilog display the old value or the new? If you are using $display, an
alternative is to put more delay before the $display statement. However, there is a
special form of $display called $strobe. If you want to print out your results only
after all values are finished changing at the current time unit, use $strobe. $strobe
waits until just before time is going to advance, then it prints. With $strobe you
always get the new value.

If you want to print results as they change, use the $monitor system task. Unlike
$display, which prints only once, $monitor automatically prints out whenever any
of the signals it is printing changes, so you only need to call it once. Only one
Smonitor can be active at a time. If you want to change what is being printed, just
execute another $monitor system task and the new $monitor becomes the active
print-on-change system task.

Because $monitor can produce a lot of output, there are two more special system
tasks for stopping and restarting $monitor. To stop the $monitor from printing, use
the $monitoroff command. To restart the $monitor, use the $monitoron command.
Remember that there can be only one $monitor active in your simulation at a time.
The last one executed is the only one in effect.

System Tasks for Displaying Results 51
Writing to Files

By default, Verilog puts all the output that goes to your screen into a log file called
verilog.log. You can view the results of your simulation by looking at the log file.
Chapter 21 provides details on the log file.

Along with sending output to the screen and log file, Verilog can write up to thirty-
one additional files at the same time. File output is accomplished by declaring an
integer that is used to represent the file and then opening the file. Once the file is
opened, output commands similar to the ones previously described may be used to
write to the file.

Example 5-7 Writing to a File

module f1;
integer f£;
initial begin
f = Sfopen("'myFile");
Sfdisplay(f, "Hello Verilog File");
end
endmodule

Example 5-7 opens a file called myFile and prints the message “Hello Verilog File”
into it. The file is closed automatically at the end of simulation. Since only thirty-
one files can be opened at a time, the $fclose function can be called to close a file.

For each of the commands covered so far, there is an f prefixed version of the
command for printing data to files. All the file output commands require the first
argument to be the file integer. The other command arguments are just like those
for 8display. Table 5-2 lists the screen and file output commands.

Table 5-2 Screen and File Output Commands

Screen + Log File Output

Sdisplay $fdisplay
Swrite Sfwrite
$strobe $fstrobe
Smonitor Sfmonitor

Even though the addition of files may imply that you can have thirty-two $monitors,
you cannot. There still can only be one $monitor active in a simulation.

52 Verilog Quickstart

The integers used to represent the files have exactly one bit set in them. A single
$fdisplay command can write to more than one file. The trick is to use the “I”
symbol to connect the file numbers, as shown in Example 5-8. One other trick is the
numbering of the files: / is reserved for the screen and log file, so the first file
opened will be 2 and the next, 4. Example 5-8 shows how to write to multiple files.

Example 5-8 Writing to Multiple Files

module f£2;

integer filel, file2;

initial begin
filel = Sfopen("filel") ;
file2 = $fopen("file2");
Sdisplay ("The number used for file 1 is %0d4d", filel);
Sdisplay ("The number used for file 2 is %0d4d", file2);
sfdisplay(filel, "Hello File 1");
sfdisplay(file2, "Hello File 2");
sfdisplay(filel file2, "Hello both files");
$fdisplay (filel file2 | 1, "Hello files and screen");
Sfdisplay(filel, "Good Bye File 1");
Sfdisplay(file2, "Good Bye File 2");
sfclose(filel) ;
Sfclose (file2) ;

end

endmodule

The resulting output in filel is shown in Example 5-8 Results 1 in file 1.

Example 5-8 Results 1 in file1

Hello File 1

Hello both files

Hello files and screen
Good Bye File 1

The resulting output in file2 is shown in Example 5-8 Results 2 in file 2.

Example 5-8 Results 2 in file2

Hello File 2

Hello both files

Hello files and screen
Good Bye File 2

The output on the screen and in the log file are shown in Example 5-8 Results 3.

System Tasks for Displaying Results 53

Example 5-8 Results 3 Output on Screen and in Log File

The number used for file 1 is 2
The number used for file 2 is 4
Hello files and screen

Advanced File IO Functions

Subsequent chapters describe Verilog memories and how to read a file into a
memory. Until the 2001, standard there was no way to read a file into Verilog other
to load data into a memory. The 2001 standard greatly enhances file input and
output capabilities.

The 2001 standard defines $ferror, $fflush, $fgetc, S$fgets, $fread, $fscanf, $fseek,
$fsscanf, $ftel, S$rewind, $sformat, S$swrite, $swriteb, $swriteh, $swriteo and
Sungetc, as new system functions. These functions work on files opened with
$fopen, when $fopen is called with a "mode" similar to the ANSI C fopen function
call. Each of these new functions works similar to the ANSI C functions by the
same name. The details of these functions are not explained in this Quick-Start
book. These functions are similar to the ANSI standard and documentation can be
found in your C and Verilog vendors documentation.

Setting the Default Radix

All of the commands for formatting output can be used with or without format
specifiers. When you use a format specifier, the radix for each value printed out is
set individually. If you do not use a format specifier, the default radix is decimal.
Often it is desirable to print out values without having to use a format specifier.
When debugging, it is inconvenient to have to use a format specifier just to see a
value in a different radix. Thus, Verilog provides four types of each of the output
functions with a different default radix. Table 5-3 shows the output commands and
their default radixes.

54

Verilog Quickstart

Table 5-3 Enumeration of All Output Commands

Decimal

Binary Hexadecimal Octal

$display Sdisplayb S$displayh $displayo

$fdispl
Swrite

Sfwrite
$strobe

ay $fdisplayb $fdisplayh $fdisplayo

Swriteb Swriteh Swriteo
Sfwriteb Sfwriteh Sfwriteo
$strobeb $strobeh $strobeo

$fstrobe Sfstrobeb $fstrobeh $fstrobeo
$monitor Smonitorb Smonitorh Smonitoro
$fmonitor $fmonitorb $fmonitorh $fmonitoro

Special Characters

You have already seen a few of the special characters used for formatting output.
This section lists a few more that are useful to format output. To print a percent
character, use %%. The hierarchical name where the $display command is being
executed can be printed using %m. The %% and %m format specifiers do not have a
companion argument in the comma separated value list following the format string.
Table 54 lists the format specifiers in Verilog.

Table 5-4 Format Specifiers

Symbol Description

%b Binary with leading zeroes

%$0b Binary with no leading zeroes

sV Value and strength

%d Decimal

%0d Decimal with leading spaces truncated
$h Hexadecimal with leading zeroes
%0h Hexadecimal with no leading zeroes
%0 Octal with leading zeroes

%00 Octal with no leading zeroes

%c Character

%s String

%m Hierarchical name

$t Time format

$f real in decimal format

System Tasks for Displaying Results 55

oP
(0]

real 1in exponential format

$g real in the shorter of %$f or %e
%% The % character
\n New line

The Current Simulation Time

The current simulation time can be printed by calling the system function $time or
$realtime. Example 5-10 shows a simple way to print the current simulation time.

The simulation time is normally unit-less, but you can assign time units and
precision. See Appendix A for details on the ‘fimescale directive. $time and

$realtime can be printed out using those units and precision using the $timeformat
system task.

Example 5-9 shows how to use $timeformat, and the results show the differences
between $time and $realtime. When the time scale allows non integer delays,
Stimeformat specifies the number of decimal places to print. $time will have only
the integer portion of the time, but $realtime contains the fractional time units.

Example 5-9 Printing out the current time with units

“timescale 1ns/10ps
module timeformat;

initial
begin
Stimeformat (-9, 2, "ns", 7);
#50 Sdisplay ("It is now %t (time).",Stime);
Sdisplay ("It is now %t (realtime).",Srealtime);
#1.01 Sdisplay ("It is now %t (time).",Stime);
Sdisplay ("It is now %t (realtime).",Srealtime);
#50 Sdisplay ("It is now %t (time).",Stime);
Sdisplay ("It is now %t (realtime).",Srealtime);
#1000 Sdisplay ("It is now %t (time).",Stime);
Sdisplay ("It is now %t (realtime).",Srealtime);
end
endmodule

Figure 5-1 Shows the definition of the arguments to the $timeformat system task
call.

56 Verilog Quickstart

Print the time in terms of nanoseconds (10e-9)

Number of decimal places
Print this after the numbers (usually the units)

Minimum number of spaces to use
$timeformat(-9, 2, "ns", 7);

Figure 5-1 Time format detalls

Example 5-9 Results

It is now 50.00ns (time).
It is now 50.00ns (realtime).
It is now 51.00ns (time).
It is now 51.01lns (realtime).
It is now 101.00ns (time).
It is now 101.0lns (realtime).
It is now 1101.00ns (time).
It is now 1101.0lns (realtime).

Suppressing Spaces in Your Output
Verilog allocates space in your output to accommodate the largest possible value for
the item you are trying to print. This section shows you how to suppress leading

spaces in your output.

When you try to print out the time value using the $display command, as shown in
Example 5-10, you may not get the desired result.

Example 5-10 $display with $time

Sdisplay ("time = $d", Stime);

The output has many leading spaces, as shown in Example 5-10 Results.

Example 5-10 Results

time = 100

System Tasks for Displaying Results 57

Why is there so much space between the equal sign and the time value? How can
you avoid that white space?

Consider Example 5-11 and its results.

Example 5-11 Leading Spaces in $monitor with $time

initial
Smonitor (Stime,
"reset: $b clk: %b load %b: up/"dn: %b data: %h",
reset, clk, ldena, up, data);

Example 5-11 Results

100 reset: 1 clk: 1 load O: up/"dn: 1 da ...

Note that the time value, which is the first item in the $monitor list, is drastically
indented, which could cause the data to wrap to the next line. This may make the
results harder to read. How can you make the $monitor message start at the left
margin?

You know the size of objects in your design from whatever Verilog code you have
written. Consider the Verilog code in Example 5-12 and the results of that code.

Example 5-12 Spaces Used To Print an 8-Bit Value

reg [7:0] a;
initial begin
a=3;
Sdisplay (
"Decimal a='%d', Hex a='%h', Octal a='%0', Binary a='%$b'.",
a, a, a, a);

Example 5-12 Results

Decimal a=' 3', Hex a='03', Octal a='003', Binary
a='00000011".

Note the single quotes (included in both the Verilog code and the output) that allow
you to see the exact sizes of the results.

58 Verilog Quickstart

Consider the “Decimal” results first. a is an 8-bit register. In Verilog, registers are
always unsigned. Because the largest 8-bit number is 255, three spaces are needed
to print the highest value for a. Note that %d does not print leading zeroes.

In the “Hex” results, each character represents 4 bits; therefore two spaces are
needed to display the value for a. Hex provides leading zeroes.

For the “Octal” results, each character represents 3 bits. Thus, three spaces are
needed to display the value for a. Octal provides leading zeroes.

Finally, for the “Binary” results, each character represents 1 bit, so eight spaces are
need to display the value for a. Binary provides leading zeroes.

We can extend this to an explanation of time. Time is a 64-bit unsigned value.
Therefore, the largest value that can be displayed is 18446744073709551615, or
twenty digits. That is why the examples in this section have so many extra spaces.

Now that we know the reason for the extra spaces, we can create a solution. Change

the code in Example 5-12 to the format shown in Example 5-13, and note the
results.

Example 5-13 Suppressing Leading Spaces and Zeroes

Sdisplay ("Dec '%0d', Hex '%0h', Oct '%0o0', Bin '%0b'",
a ,a, a, a);

Example 5-13 Results

Dec. '3', Hex '3', Oct '3', Bin '11'

There are two points to remember here:

1) Verilog normally uses fixed-width fields, which makes creating columnar
output easy.

2) We can override the leading spaces and zeroes by inserting a 0 between % and
the radix code in the format specifier.

PERIODIC PRINTOUTS

The $monitor system task prints automatically when any signal changes, however it
is often deceiving to read the output from $monitor, since many signals can change

System Tasks for Displaying Results 59

in a short period of time, or there may be long periods with no changes. It is often
desirable to print results in a periodic format. You can combine the always, a delay,
and the $display to create a periodic printout. Example 5-14 provides a simple
example of a periodic printout.

Example 5-14 Periodic Printout

always #100 sdisplay (" ..", ...) ;

When to printout results

If you are printing results periodically, you need to choose a good time to print the
results. Think about the basic timing. When do inputs change? When are the
outputs stable? For example, a system with a clock period of 100 with the clock
rising on the even 100s (100, 200, etc.) would likely have signals changing at or
just after the even 100', so printing out just before the clock would be ideal to
capture stable values from the previous cycle.

Example 5-15 Periodic Printout Before the Clock

always
begin
#99 Sdisplay ("...", ..);
#1 ; // rounds out the cycle to 100
end

A FINAL SYSTEM TASK

With an always block as shown in Example 5-14 or Example 5-15, you might
wonder when the simulation will ever stop. Although the $finish system task is not
directly used to print results, it is mentioned here. When a $finish system task is
encountered, simulation terminates, so all periodic printouts will cease. The $finish
task can be issued as $finish; $finish(1); or $finish(2); The difference between the
three versions is the amount of simulation statistics printed.

Exercise 3 Printing Out Results from Wires Buried in the Hierarchy

Now that you know the basics of $display, initial, and always, you can modify the
test bench from Exercise 2 to print out a message at the start of simulation.

60 Verilog Quickstart

You may merely want to print a simple message such as “start of adder testing,” or
column headings for the data you will be printing. Hint: you can do this by
modifying the existing initial block or by adding a new initial block of your own.

Next, modify the test bench by adding some statements to print results every 50 time
units. Use $display to print the results from all the inputs (a, b, and cin) and outputs
(sum and carry_our). How are the results different if you use $strobe? Hint: You
will need to add an always block to do this. You need not worry if your results fail
to print at time O or time 600: As long as you print your results every 50 time units
and have results appearing between 50 to 550 time units, the exercise is successful.

Now that you are printing the top-level signals correctly, try and print out some
signals buried in the hierarchy. Modify the $display or $strobe statements to
include printing out the values from internal carries between the 2-bit adders. There
are three carry signals between the 2-bit adders.

You have now successfully added $display statements to a module. This is one of
the easiest ways to debug a design. With your practice at hierarchical names in
Chapter 3, you can print out any signal in the design from the test bench.

6 DATA OBJECTS

DATA OBJECTS IN VERILOG

This chapter introduces the different types of data you can work with in Verilog:
Nets, regs, integers, times, parameters, events, and strings.

Nets

Nets (sometimes called wires) are the most common data object in Verilog. Nets are
used to interconnect modules and primitives, as discussed in Chapter 3. You used
nets in Exercise 2. There are net types representing wired OR, wired AND, storage
nodes, pullups, and pulldowns. The default net type is a plain wire with no special
properties.

The net types are listed in Table 6-1.

62 Verilog Quickstart

Table 6-1 Net Types

Net Type Description

wire Default net type, a plain wire
tri Another name for wire

wand Wired AND

triand Another name for wand

wor Wired OR

trior Another name for wor

£¥il Wire with built-in pullup

trio Wire with built-in pulldown

supplyl Always 1
supply0 Always 0
trireg Storage node for switch-level modeling

wire is the default net type. You can change the default net type to one of the other
types, but most nets are of type wire. wire and tri are the same type of net. The
reason for having two names for this type of net is that some people may want to
distinguish in their designs those nets that are expected to tri-state from those that
do not. You can use tri to distinguish a net that you expect to have high impedance
values or multiple drivers. If two drivers are driving a net of type wire or tri and one
driver has the value 1 and the other has the value O, the result will be x.

wand and triand are wires that represent wired AND logic. Wired AND logic is
similar to open-collector TTL logic. If any driver on the net is 0, the resulting value
is 0. Verilog does not distinguish between wand and triand. The different names are
only for use in documenting your model.

Wired OR logic is represented with the wor and trior net types. With these net
types, if any driver is a 1, the result is 1. As with the previous net types, wor and
trior are equivalent.

If nothing is driving a wire in TTL logic, the inputs default to 1. You can use the
tril net type to model this situation. If nothing is driving a net of type tril, the
default value is 1. As with zril, if nothing is driving a net of type #ri0, the value is 0.

Use the supplyl and supply0 net types to model power supply nets. These nets are
always 1 or O with a strength of supply. Even if you drive something onto these nets,
they always retain their distinct values.

The trireg net type is used in switch-level modeling for storage nodes. The trireg
net has a capacitive size associated with it. Because trireg is an abstraction of a

Data Objects 63

storage node, the capacitors never decay. See appendix A for the interaction
between capacitive size and gate drive strength.

In Verilog, a wire can be 1 bit wide or much wider. A wire that is more than 1 bit
wide is called a vector in Verilog. (Although such a wire is also known as a bus,
this book uses the term vector for a wire wider than 1 bit.) To declare a wire more
than one bit wide, a range declaration is used.

Ranges

Ranges specify the most-significant and least-significant indexes of a vector. The
maximum width of a vector is dependent on the simulator being used. The IEEE
1364 standard states that a simulator must support at least 1024-bit wide vectors.
Verilog-XL supports vectors up to one million (1,000,000) bits wide, though some
simulators have no limit on width.

You specify the number of bits in a wire with a bit range. The range [7:0] is an 8-bit
range, as is [0:7]. Ranges can be either ascending or descending. Furthermore,

ranges do not need to be zero-based: The range [682:690] is a 9-bit range.

Example 6-1 shows several net declarations.

Example 6-1 Net Declarations

wire a, b, c¢; // Three 1l-bit nets of type wire.
wire [7:0] d, e, f; // Three 8-bit vectors.
supplyl vcc;

supply0 gnd;

trior [26:2] data bus; // A 25-bit vector.

Each net declaration can declare several nets of the same type and size. The range is
associated with the net type declaration, not the net name. Therefore, Example 6-2
is incorrect. The 2001 Verilog standard includes multi-dimensional arrays, which
makes Example 6-2 legal. Since this is a change to the language, individual tool
support of this feature may vary. While the Syntax may now be legal, it is
considered wrong since it is an array of 1 bit wires, vs. the desired 8 bit bus.

Example 6-2 Incorrect Net Declaration

wire al[7:0]; // WRONG although syntax ok in IEEE1364-2001

The left-most index is always the most significant bit. Verilog is only concerned
with the number of bits in the range. Use of ascending and descending ranges is

64 Verilog Quickstart

entirely up to you and your conventions. Verilog does not need the ranges to be
zero- or one-based.

Implicit Nets

In the mux and adder examples, in chapter 3, nets were used even though none were
declared. Verilog implicitly declares nets for every port declaration. Every
connection made in a module instance or primitive instance is also implicitly
declared as a net, if it is not already declared. Nets implicitly declared from a port
declaration carry the size and name of the port and are the default net type, usually
wire. Nets that are implicitly declared because they are part of an instance are 1 bit
wide and of the default net type. If you need a net to be more than 1 bit wide, you
must explicitly declare it.

You can set the default net type by using the Verilog compiler directive
‘default_nettype. This compiler directive sets the net type for all implicitly declared
nets. Compiler directives start with the grave accent key, not the apostrophe.
Example 6-3 shows two settings the default net type.

Example 6-3 Setting Default Net Type

“default_nettype tril;
“default_nettype wand;

Ports

Ports were introduced in Chapter 3 with structural modeling. A port declaration
implies a net of the default type and the same range as port. Ports can be re-declared
as a different net type if desired, however the ranges must match. Example 64
shows port declarations and re-declarations.

Example 6-4 Port Declarations

module portexample(a, b, <, 4d);

input [7:0] a; // implies wire [7:0] a;

input [3:0] b;

tril [3:0] b; // if b 1s not driven it wil be 4'bl111l
inout [7:0] c;

triand [7:0] c; // multiple drivers on c will be anded
output [5:0] d;

wire [7:0] d; // Wrong the ranges dont match!

Data Objects 65
Regs

Regs are used for modeling in procedural blocks. The next chapter explains usage of
the reg. The reg data type does not always imply modeling of a flip-flop, latch, or
other form of register. The reg data type can also be used to model combinatorial
logic. A register can be 1 bit wide or declared a vector, just as with nets. Vector
registers can be accessed a bit at a time or a part at a time. Example 6-5 shows some
register declarations.

Example 6-5 Reg Declarations

reg a, b, c¢; // Three 1l-bit registers.
reg [8:15] d, e, f; // Three 8-bit registers.

Part of a reg can be referenced or assigned to by using a bit- or part-select notation.
Remember that the leftmost bit is the most significant, regardless of how the range
is declared. When you select a part or slice of a register, be sure the range of the
part matches the range direction (ascending or descending) of the original register.
Also, if you select a range that is not within the original register, the result will be
x, and is not an error.

Example 6-6 Selecting Bits and Parts of a Reg

e[15] // Refers to the least significant bit of e.
d[8:11] // Refers to the four most significant bits of d.

Memories

Memories are arrays of registers. A memory declaration is similar to a reg
declaration with the addition of the range of words in the memory. The range of
words can be ascending or descending, as with the range of a vector. The range of
words does not need to be zero- or one-based; it can start anywhere. It is usually
most convenient to declare a memory as zero-based with an ascending range.
Verilog uses 2 bits of computer memory for each bit of simulated memory because a
bit of simulated memory may contain the values 0, 1, x, or zz When referencing a
memory, you can access only the entire word of memory, not the individual bits.

Example 6-7 Memory and Register Declarations

reg [7:0] a, b[0:15], c[971:960];
reg d, e[8:13];

66 Verilog Quickstart

In Example 6-7, a is an 8-bit register, b is a memory of sixteen 8-bit words, and c is
a memory of twelve 8-bit words. The second reg declaration declares d as a 1-bit
register and e as a 1-bit wide memory of six words.

It can be difficult to distinguish memory word references from the reference of a bit
of a register. There is no direct way to reference a bit of a memory. Therefore, word
references in a memory (which look exactly like bit references in a word) can only
be distinguished if you know the data type of the referenced element. Refer to the
declaration to determine whether you are referencing a bit or a word. Example 6-8
shows selecting bits in regs and words in memories.

Example 6-8 Selecting Bits in Regs and Words In Memories

a [3] // Refers to bit three of the register a.
b[3] // Refers to the fourth 8-bit word in the memory b.
b[3]1[3] // This is not legal through 1995 standard.

Initial Value of Regs

The initial value of a reg or array of regs is 'bx (unknown). IEEE1364-2001 defines
a method to initialize a reg as part of the declaration. Example 6-9 shows the
declaration of five regs, a, b, ¢, d, and e: Regs a and c are not given initial values
and default to unknown. As with the other IEEE1364-2001 changes tool support for
these language features may not be immediate or complete. The standard does not
specify an order of evaluation of these initial values versus an initial block with a
procedural assignment to the same reg.

Example 6-9 Reg Declaration with Initialization

reg [7:0] a; // initial wvalue will be 8'bx;
reg [7:0] b = 8'd3; // initial value will be 3
reg [3:0] <, d=3, e=4;

Integers and Reals

Integers in Verilog are usually 32 bits wide. Strictly speaking, the number of bits in
an integer is machine-dependent. Verilog was created when 36-bit machines were
common, so a 36-bit machine would have an integer of 36 bits. Today most
machines work with 32-bit integers. For this book, we assume that integers are 32
bits wide.

Data Objects 67

Integers are signed; regs are unsigned. If you want to do signed arithmetic, use an
integer. Otherwise an integer is similar to a 32-bit reg. Note that it is possible to do
signed math using nets and registers, but your modeled logic must explicitly model
the sign extension.

Integers, reals, and 32-bit registers each physically hold a 32-bit value. The
difference between them is in their interaction with operators and what the data
means.

A reg merely represents bits and is treated as an unsigned integer. An integer is
signed and can hold a negative number. A real holds a floating-point number in
IEEE format.

Integers are declared with the integer keyword, not int as in the C programming
language.

Like integers, reals are 32-bit floating-point values. Integers and reals are difficult
to pass through ports because in Verilog, ports are always bits or bit vectors. Reals

are declared with the real keyword.

Example 6-10 shows how to declare integers and reals.

Example 6-10 Declaring Integers and Reals

integer i, j, k;
real x, y;

Time and Realtime

Verilog uses the time keyword to represent the current simulation time. time is
double the size of an integer (usually 64 bits) and is unsigned. If your model uses a
timescale you can use realtime to store the simulation time and time units. You can
declare variables of type time or realtime in your models for timing checks, or in
any other operations you need to do with time. See Appendix A.

The built in functions $time and $realtime return the current simulation time.

Example 6-11 Declaring Variables of Type time

time tl, t2;
realtime rtl, rt2;

68 Verilog Quickstart

initial begin
#50 tl = Stime;
rtl = Srealtime;

#50 t2 = Stime - Stl;
rt2 = Srealtime - rtl;
end
Parameters

Parameters are run-time constants that take their size from their value
automatically. The default size of a parameter is the size of an integer (32 bits). For
backwards compatibility, you can declare parameters with ranges to make them
bigger or smaller than their default size. Parameters are chiefly useful in creating
modules with adjustable sizes or delays. Even though parameters are run-time
constants, their values can be updated at compilation time. Each instance of a
module with parameters can have different values for those parameters at run time.
Unlike the declarations of net, reg, integer, real, and time, when you declare
parameter, it is assigned a default value. Parameters may be strings. Parameters
may be used in subsequent declarations.

Example 6-12 Parameters

parameter message = "Hello Verilog";
parameter size =8;

parameter delay =3;

parameter prog = size * delay;
parameter msb size -1;

parameter low 0;

wire [msb:0] a; // parameter msb +1 determine width of a
reg [size-1l:low] b; // size and low determine width

Events

Events were first used in the phone example in Chapter 1. They are usually used in
very abstract models. An event does not represent any real hardware. Events have
no value or duration. They are used to signal that something has occurred to trigger
something else to happen. Events cannot be passed through ports.

Example 6-13 Events

event birth;
event acknowledge, parity error;

Data Objects 69
Strings

Verilog does not have a unique string data type. Rather, strings are stored in long
registers using 8 bits (1 byte) to store each character. When declaring a register to

store a string, you must declare a register of at least eight times the length of the
string. Constant strings are treated as long numbers, as shown in Example 6-14.

Example 6-14 Strings

module stringl;
reg[8*13 : 1] s;
initial begin
s = "Hello Verilog";
Sdisplay ("The string %s is stored as %h", s, s);
end
endmodule

The result is shown in Example 6-14 Results.

Example 6-14 Results

The string Hello Verilog is stored as
48656c6c6f20566572696¢c6£67

Multi-Dimensional Arrays

The 2001 IEEE Verilog standard removes some old restrictions and adds new
functionality for multi-dimensional arrays. Example 6-2 becomes legal with the
2001 standard, and the last line of Example 6-8 becomes the selection of a bit
within a word.

Example 6-15 Multi-Dimensional Arrays of nets

wire [7:0] a; // old style array of wires (bus)
wire [7:0] b[7:0]1; // New array of array of wires
wire c¢[7:0]1; // Array of wires.

wire d[7:0]1[7:0]1; // two dimensional array of wires

Example 6-15 shows many possible declarations for single and multi-dimensional
arrays now possible with the IEEE 13642001 standard. Support for multi-
dimensional arrays as with any of the language features may be tool specific.

70 Verilog Quickstart

Example 6-16 shows declarations of three objects: bus, rom and screen. The
declaration of bus is a single 8-bit reg, this declaration is equivalent to the
declarations in Example 6-5. The declaration of rom is an array of 256 regs, 8-bits
wide, equivalent to Example 6-7. The final declaration of screen is a two
dimensional array of 8-bit words.

Example 6-16 Multi-Dimensional Arrays of Regs

reg [7:0] bus, rom[0:255], screen[0:1023][0:767];

Accessing Words and Bits of Multi-Dimensional Arrays

The addition of multi-dimensional arrays adds a much needed syntax to the Verilog
language that also enables selecting a bit from a word in a memory. You can access
a word of a multi-dimensional array, or a bit of a word, but you can not access a
range of words.

Example 6-17 Accessing Multi-Dimensional Arrays

rom [5] // an 8 bit word from rom

rom [5] [6] // A bit of one of the rom words
screen [1][2] // an 8 bit word of screen
screen [1] [2] [3] // a bit from screen

screen [1] // not legal

PORTS AND REGS

Up to this point, examples of ports have been nets going through ports. As you
move towards procedural modeling in Verilog, you may want to have ports that are
regs. It is legal to declare only output ports as registers. It is a common error to
declare input or inout ports as registers.

Because the only way to get a value into a regs is with a procedural assignment,
which will be explained in the next chapter, it neither makes sense nor is legal in
Verilog to have areg as an input port on the inside of a module.

However, a reg may drive an output port, so it is legal for an output port to be areg.
input and inout ports must always be nets, but output ports can be reg. To make an

output port a reg, first declare it as an output then declare it again as a reg. A
simple example is shown in Example 6-18.

Data Objects 71

Example 6-18 Output as a Reg

“define REG _DEIAY 1
module dff (g, clk, d);
input clk, d;

output g;

reg dq;

always @(posedge clk) g <= #(REG_DELAY) d;

endmodule

Figure 6-1 shows the possible relationships of ports and regs. In procedural
modeling, you will often want to declare an inout port as a reg, but this will not
work. An internal reg is needed along with a method to connect the reg to the inout
port. Chapter 12 shows how to connect a reg to an inout port.

inputs: tout
| [- o outputs:

reg or net net only inside D—'— 4]
outside . insi g
net or reg inside outside

inouts: net only inside

4

inouts: net only outside

Figure 6-1 Relationships of ports and regs

This Page Intentionally Left Blank

7 PROCEDURAL ASSIGNMENTS

The data types reg, integer, real, and time can only be assigned values in procedural
blocks of code. These assignments are called procedural assignments. They are
similar to variable assignments in other programming languages. When the
statement is executed, the variable on the left-hand side of the assignment receives a
new value.

The destination of a procedural assignment is never a wire. The procedural
assignment is one of three types of assignments you will learn in Verilog. For now,
just remember that the left-hand side of a procedural assignment is a reg. The left-
hand side can contain an integer, time, or real, but these data types can be thought
of as abstractions of regs.

There are three varieties of the procedural assignment: The simple procedural
assignment, the procedural assignment with an intra-assignment delay, and the
nonblocking procedural assignment, all of which are described in this section.

74 Verilog Quickstart

Example 7-1 Simple Procedural Assignments

module ia;
integer i, 3J;
reg [7:0] a, b;
initial begin

i = 3;
Jj o= 4;
a=1 + 3j;
b=a+ 1;
#10 i = a;
j = b;

end

endmodule

In Example 7-1, the first four assignments occur at time 0, followed by a delay of 10
time units, and then the last two assignments take place. This example shows how
an assignment can have no delay or have a delay before the assignment.

Example 7-2 Procedural Assignments with fork-join

module iafl ;
integer i, Jj;

initial begin
i = 3;
j o= 4;
fork
#1 1
#1 3
join

In
[ER

end
endmodule

In module iafi, what are the final values of i and j? The answer is indeterminate. At
time 0, 1 and; are assigned the values 3 and 4. At time 1, is sampled and its value
assigned to i, and the value of i is sampled and applied to j. Even though the
module contains a fork-join block and the changes should happen at the same time,
we don’t know the result because both values are sampled and changed at the same
time. If the code is changed to use an intra-assignment delay, we can be sure they
will exchange values.

The intra-assignment delay is a special form of the procedural assignment with a
delay in the middle. With the delay on the right-hand side of the equal sign, the
right-hand side is evaluated immediately, but the assignment is delayed. The
operation of a procedural assignment with an intra-assignment delay is sample the
values on the right had side, delay, then assign.

Procedural Assignments 75

Example 7-3 fork-join with Intra-assignment Delays

module iaf2;
integer i, 3J;

initial begin

i = 3;
J = 4;
fork
i = #1 J;
J o= #1 1i;
join
end
endmodule

With the intra-assignment delay, the values of i and j are sampled at time 0. (They
are sampled at time O because there are no delays between them and the initial
statement, which started at time 0). Then there is a delay of 1 and i andj are
assigned their new values. Adding intra-assignment delay creates a special form of
the procedural assignment — with a delay in the middle. With the delay on the right-
hand side of the equal sign, the right-hand side is evaluated immediately, but the
assignment is delayed. The operation of a procedural assignment with an intra-
assignment delay is sample the values on the right had side, delay, then assign.

In Example 7-3, the fork-join block is started at time O and finished at time 1

because a fork-join block finishes when the last statement in the fork-join block is
completed. In this case, both statements take one time unit to complete.

Example 7-4 fork-join with Multiple Delays

module iaf3;
integer i, 3j;

initial begin

i = 3;
j = 4;
fork
#1 1 = #1 3;
#1 j = #1 1i;
join
end
endmodule

Delays can be added before the assignments. Even with these additional delays, they
still exchange values. In Example 7-4, i and j are sampled at time 1 and assigned
their new values at time 2. The module finishes running at time 2. This model is
exactly the same as the one in Example 7-5.

76 Verilog Quickstart

Example 7-5 fork-join with Simplified Delays

module iaf4;
integer i, 3J;

initial begin

i = 3;
J o= 4;
#1 fork
i = #1 3j;
J = #1 i;
join
end
endmodule

The intra-assignment delays do not change the amount of time taken to run the
statement—they merely insert a delay between the sampling and the assignment.
This is more easily visible in Example 7-6.

Example 7-6 Effect of Intra-assignment Delays on Time Flow

module iab;
integer i, 3J;

initial begin
i = 3;
Jj o= 4;
begin
#1 1
#1 3
end
end
endmodule

#1 J;
#1 1i;

Simulation is started at time O at the initial statement, when i andj get their first
values, 3 and 4. Simulation continues until the first #/ and waits until time 1. At
time 1, j is sampled (having the value 4); at time 2, the value 4 is assigned to i, and
the statement is completed.

At time 2, simulation continues to the #/ j = # I i statement, when the simulation
waits until time 3, based on the first #/ in that statement.

At time 3, i is sampled (with the value 4); at time 4 the value 4 is assigned back to .
Without the fork-join block, the statements are sequential and i and j do not
exchange values. Although the extra begin-end blocks add some clarity to your
code, they have no effect on this design and could be removed.

Procedural Assignments 77

There is one more form of the procedural assignment, the nonblocking assignment.
The nonblocking assignment uses a different assignment operator and changes the
amount of time the statement takes to execute. The nonblocking assignment allows
the next statement (in sequential code) to commence sooner, and defers when the
assignment will take place. Example 7-7 shows nonblocking assignments.

Example 7-7 Nonlocking Assignments

module ianb;
integer i, J;

initial begin
i = 3;
j o= 4;
begin
i <= #1 3;
j <= #1 1i;
end
end
endmodule

With the nonblocking assignment, the intra-assignment delay does not block. The
delay in the assignment is hidden. This is the new sequence of events: At time 0, i
and j receive their values, and the inner begin-end block starts. In the first
nonblocking assignment, j is sampled at time 0, and the value 4 is scheduled to be
assigned to i at time 1 (based on the #1).

The assignment statement finishes at time 0. However, the assignment of j to i is
deferred to time 1, because it is a nonblocking assignment. Then the second
nonblocking assignment statement starts at time 0, i is sampled, and the value 3 is
scheduled to be assigned to j at time 1. The begin-ends finish at time 0, but the
behavior does not complete until time 1 when the assignments are completed. The
nonblocking assignment breaks the normal flow of Verilog execution and schedules
the assignment to take place at a later time.

PROCEDURAL ASSIGNMENTS, PORTS AND REGS

The previous chapter ended with the relationship of ports and regs. Now that
procedural assignments have been introduced, the relationship should be more
clear. The left hand side or destination of a procedural assignment must be a reg.
Procedural assignments are a powerful way to create combinatorial or sequential
logic. Chapter 9 will describe how to create combinatorial and sequential logic.
Remember if you want to use the power of the procedural assignment to create
logic, the output of the assignment, and the module will need to be a reg.

78 Verilog Quickstart

BEST PRACTICES WITH PROCEDURAL ASSIGNMENTS

The examples presented up to this point have been abstract, and have shown the
details of the workings of the procedural assignment. The procedural assignment is
the main component of procedural modeling, therefore learning best practices will
minimize errors. The procedural assignment can be used to model two types of
hardware: Combinatorial logic and sequential logic.

Procedural Assignment for Combinatorial Logic

When modeling combinatorial logic it is recommended to use the blocking
procedural assignment with no delays. Example 7-8 shows some combinatorial
logic. Remember that although the reg must be used as the destination of a
procedural assignment, the reg can still be used to model combinatorial logic.

Example 7-8 Combinatorial Procedural Assignments

“define IO _ADDRESS 16'hl234

“define REG _ADDRESS 16'h5678

module addressdecoder (address, wr, rd, reg rd, reg wr,
io_rd, io_wr);

input [15:0] address; // address from processor
input rd, wr; // read and write signals
output reg rd, reg wr; // signals to register block
output io_rd, io_wr; // signals to Io block
reg reg_rd, reg wr; // declared as reg as required
reg io_rd, io_wr; // for procedural assignments
reg io_sel, reg_sel; // internal signals
always @(address or rd or wr)
begin
io sel = (address == 'IO_ADDRESS) ;
reg_sel = (address == "“REG_ADDRESS) ;
io_rd = io_sel & rd;
io_ wr = lo_sel & wr;
reg_rd = reg_sel & rd;
reg wr = reg _sel & wr;
end
endmodule

Procedural Assignment for Sequential Logic

Sequential logic, flip-flops, registers, state machines, etc., are quite natural to model
with the procedural assignment and reg. The best practice to model sequential logic
is to use the non blocking assignment with an intra-assignment delay. Example 7-9
shows a register created with a sequential procedural assignment

Procedural Assignments 79

Example 7-9 Sequential Procedural Assignment

“define REG_DELAY 1

module addressregister (clk, reset, address, reg_ address) ;
input clk, reset;

input [15:0] address;

output [15:0] reg_ address;

reg [15:0] reg address;

always @ (posedge clk)

if (reset)
reg_address <= #(REG DELAY) 16'h00;
else
reg_address <= #(REG_DELAY) address;
endmodule

Philosophy of Intra-assignment Delays for Sequential Assignments

In Example 7-9, the intra-assignment delay is shown as a text macro. This allows
the delay to be zero, one, random, or any other value desired. The delay should be
non-zero, but much shorter than the clock period. Unfortunately some code
checking tools (lint tools) may flag intra-assignment delays for sequential logic as a
warning since synthesis tools ignore these delays. These false warnings should
always be ignored. The more important warning is when the delays are omitted
from sequential logic that is modeled with non-blocking procedural assignments.

One of the benefits of the intra-assignment delay is the visibility and clarity it adds
to a waveform. You can easily tell if a signal arrived in time for the clock and
determine which signals are created as a result of the clock.

One of the most important reasons for using a delay is matching pre-synthesis and
post-synthesis simulations. The clock-to-out delay of flip-flops is non-zero. With the
intra-assignment delay, the clock-to-out delay is modeled. In a pre-synthesis
simulation with gated clocks or generated clocks it is possible that data will be seen
on the wrong edge if the delays are omitted.

Finally, a word about event ordering and bad practices. In general, event ordering
can not be predicted with the exception of a sequence of statements in a single
begin-end block. Different simulators may execute the same code in slightly
different order. A simulation that depends on event ordering rather than timing is
likely to be plagued by zero delay race conditions and may give different results on
different simulators. It may have difficulties matching pre-and post-synthesis
results. Users have been known to use '#0' to nudge event ordering. The #0' should
be avoided and seen as an error. The non-blocking assignment without a delay is

80 Verilog Quickstart

equivalent to '<= #0', since the assignment takes place in this time unit but later.
Therefore, the non-blocking without a delay should be considered an error.

Conventions Moving Forward

The remainder of the book uses the blocking with no delays for combinatorial logic,
and the non-blocking with a text macro for an intra-assignment delay for sequential
logic. You should follow this practice as well with all your hardware models. The

only violations of this convention you will find are either abstract examples or test-
benches.

8 OPERATORS

Operators in Verilog can be divided into several categories. One way to categorize
the operators is by the number of operands they take. For example, the + symbol
takes two operands, as in @ + b. When an operator takes two operands, it is called a
binary operator. Verilog, like most programming languages, has many binary
operators. Verilog also includes unary operators (which take only one operand), and
a ternary operator (which takes three operands).

Another way to group the operators is by the size of what they return. Some
operators, when operating on vectors, return a vector. But two types of operators
return a single-bit value even if they are passed vectors. The operators that return
only a single bit are either reduction or logical operators.

BINARY OPERATORS

Most of the operators in Verilog take two operands, and fall into the category of
binary operators. This includes a set of arithmetic, bit-wise, and logical operators.

82 Verilog Quickstart

Table 8-1 Arithmetic Operators

Symbol Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (remainder)

il Power (exponent) New in IEEE1364-2001

The definitions of the arithmetic operators are similar to other programming
languages. IEEE 1364-2001 adds the power operator that was previously not part of
Verilog.

Table 8-2 Bit-wise Operators

Symbol Description

| OR

& AND

A Exclusive OR

<< Shift left

<<< Signed shift left New in IEEE1364-2001
>> Shift right

>>> Signed shift right New in IEEE1364-2001

The bit-wise |, &, and » operators typically will be used with two operands of the
same size, and return a value of the same size. The shift operators can end up
creating a larger (left shifts) or smaller (right shifts) result. All of the shift operators
except signed shift right >>> zero fill. The signed shift right fills with whatever the
most significant bit of the right left hand operator was.

Table 8-3 Logical Operators

Symbol Description

&& Logical AND
| | Logical OR

All the binary operators take two arguments that are 1 or more bits long and return
aresult of 1 or more bits. Logical operators return a one bit result. There are no size
restrictions on the operands or results. For example, you can add two 8-bit values

Operators 83

and put the result into 4 bits and you would have the four least significant bits. You
could also put the result of that addition into a 9-bit result and you would have the
carry along with the result.

Example 8-1 Using Operators

reg [7:0] a, b, r8;
reg [3:0] r4;
reg [8:0] x9;

rd = a + b ; // Gets the four least significant bits.

r9 = a + b; // Gets the whole result plus a carry out.

rd = a > b; // a shifted right by b bits,
// four least significant bits of the result.
// msb's are filled with =zeros

r8 = a >>> b; // a shifted right by b bits,
// msb's are filled with a[7]

r8 = rd | r9; // all right justified, msb lost.

UNARY OPERATORS

The unary operators take only one operand to their right for input and consist of

negation operators and reduction operators. The unary negation operators are shown
in Table 8-4.

Table 8-4 Negation Operators

Symbol Description

~ Bitwise negation (complement)
! Logical negation

The bit-wise negation operator can be combined with the bit-wise AND, reduction
AND, reduction OR, and exclusive OR operators to make even more bit-wise
functions.

Example 8-2 shows the difference between the bit-wise and logical negations. Bit-
wise operators return a value of the same size as the operand. Logical operators
return only a 1-bit value. Example 8-2 and Example 8-8 show the difference
between bit-wise and logical operators.

84

Verilog Quickstart

Example 8-2 Distinguishing between Bit-wise and Logical Operators

module uop;

reg [7:0] a, b, c;
initial begin
a=0;

b='b10100101;
c='b1100xx%xzZ;
Sdisplay ("Value %b Bitwise '
Sdisplay ("Value %b Bitwise '
Sdisplay("Value %b Bitwise '~'
end
endmodule

%b logica
%$b logica

%b logical '

1 gb",a,~a,'a);
%b",b,~b, !'b);

$b",c,~c,!c);

1
1

Example 8-2 Results

1 '

Value 00000000 Bitwise
Value 10100101 Bitwise '~'
Value 1100xxzz Bitwise '~'

11111111 1logical
01011010 logical
001lxxxx logical

e 1
0

0

[

Other languages such as C, include other unary operators
-”. Verilog does not include these unary operators.

REDUCTION OPERATORS

. For example, “++” and “-

Reduction operators are a special case of the bit-wise operators. The reduction
operators act like unary operators in that they take only one operand. The reduction
operators act on a multiple-bit operand and reduce it to a single bit.

Table 8-5 Reduction Operators

Symbol Description

Reduction AND

| Reduction OR
Reduction
NAND
NOR

exclusive NOR

Reduction
Reduction

Reduction

exclusive OR (parity)

Example 8-3 shows the usage of some of the reduction operators. Reduction
operators operate on a vector and return a single bit. Example 8-3 Results shows the

results of various reduction operators.

Operators 85

Example 8-3 Using Reduction Operators

module redop;

reg [7:0] example[l:5];
integer 1i;

initial begin

example[l] = 0;
example[2] = 'hff;
example[3] = 'b10101101;
example[4] = 'b11001lzz;
example[5] = 'bl111111x;

Sdisplay("reduction operators");
for(i=1; i1<=5; i=i+1)

$display("Value %b, & = %b, | = %b, ~ = %b",
example[i], &example([i], |example[i], ~“example[i]);
end
endmodule

Example 8-3 Results

reduction operators
Value 00000000,
Value 11111111,
Value 10101101,
Value 110011zz,
Value 1111111x,

R R R R R
[T TR TR TR
X Oor o
PR PR RPROo
> o>> > >
[T T
X M oo

TERNARY OPERATOR

The ternary operator takes three operands and uses the question mark (?) and colon
(:) to indicate the operation. A ternary operation is essentially an if-then-else
statement in an expression. The first operand is logically evaluated. If it is true, the
second operand is returned. If the first operand is not true, the third operand is
returned.

Example 8-4 Ternary Operator

result = a ? b : ¢ ;

86 Verilog Quickstart

Table 8-6 Truth Table for Ternary Operator

Result
b
L o

¥ o W

common bits of b and ¢, as is,
mismatched bits are 'bx

The ternary operator is useful for describing 2-to-1 muxes and three-state buffers.

Example 8-5 Using the Ternary Operator for a Three-State Buffer

module bufl6 (out,in,enable); // 16 bit three-state buffer
input [15:0] in;
output [15:0] out;
input enable;
assign out = enable ? in : 16'bz; // This is a continuous
// assignment. It will be
// explained next chapter.
endmodule

EQUALITY OPERATORS

The set of operators used to determine equivalence, greater than, and less than is
similar to other languages you might know, with a few additions. Because Verilog
includes the values of unknown x, and high impedance z, it provides some special
equivalence checks. Because one of the operands in an equality check may be
unknown, the result may also be unknown. Table 8-7 lists the equality operators,
and is followed by truth tables for all the equality operators.

Table 8-7 Equality Operators

Symbol Description

Il

= Equivalence

Il
Il
]

Literal equivalence

= Inequality

L Literal inequality

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

Operators 87

The === and !== operators are special in that they will never return x; their output
is always 0 or 1.

A rule of thumb for equivalence vs. literal equivalence operators is based in
hardware. In hardware there is no x, it would be / or 0. Therefore use == and != for

synthesizable hardware. Test benches should test and catch x and z. Test benches
should use === and |==.

The truth tables for all of the equality operators are shown in Table 8-8 through
Table 8-15.

Table 8-8 Truth Table fora==b

0 1 X z
ol1l X X
110 1 X X

Table 8-9 Truth Table for a ===

0 1 x =z
olr o o o
1lo 1 o o
x|[o o 1 o
2|0 o o 1

Table 8-10 Truth Table fora!=»b

88 Verilog Quickstart

Table 8-11 Truth Table foral==b

0 1 x 1z
olo 1 1 1
1l o 1 1
x|1 1 o 1
z|l2 1 1 o

Table 8-12 Truth Table fora< b

Table 8-13 Truth Table for a<= b

1 x z
o]l 1 X X
110 1 =x x

Table 8-14 Truth Table fora> b

1 X z
o]0 0 X
1 0 X X

Operators 89

Table 8-15 Truth Table fora>=b

If you are not sure of how an operator works, you could write a simple Verilog
module to test it. Example 8-6 shows such a module.

Example 8-6 Module To Test an Operator

/* module to test operators */
module test_op;

reg a,b,result;

reg [1l:4] wvalues;

'define op ==

integer i, j;

initial begin

values = 4'b0lxz; // all possible values
Sdisplay (" A ==B = ") ;
$display (" ") ;

for(i=1; 1i<=4; 1i=1+1)
for(j=1; j<=4; j=j+1) begin
a = values[i];
b = values[j];
result = a ° op b;
Sdisplay (" %b %b %b",a,b,result);
end
end
endmodule

CONCATENATIONS

You can make larger operands with concatenations. Concatenations are legal both
as a result on the left-hand side of the equals and as operands on the right-hand side
of the equals. The concatenation is indicated with curly braces {}.

90 Verilog Quickstart

The repeat operator is a special case of the concatenation, and is indicated with two
sets of curly braces and a number to indicate how many times the value is to be
repeated.

One word of caution: It is illegal to have an unsized number in a concatenation.
Because you use a concatenation to create a specific number of bits, it would be
pointless not to size a constant in a concatenation. However, if you have not
established the habit of sizing the constants in your Verilog code, you will have
problems with concatenation.

Concatenation can be used on both sides of an assignment. You can use
concatenation to create a larger place for a result.

Example 8-7 Concatenations

// This 1is an incomplete example.

// The register declarations are

// included so you can see the size of

// these operands.

reg [3:0] a, b; // Some 4-bit registers.
reg [7:0] ¢, d; // Some 8-bit registers.
reg [11:0] e, f; // Some 12-bit registers.

= {a,b}; // The most significant bit of ¢ is the most
ignificant bit of a.
{b,a,b};
{3{a}}; // Three copies of a make 12-bits.
{4{e==f}} // Make a 4-bit mask of e==f.
{a,d}; // 4 bits + 8 bits = 12 bits.
{2{1'bl,a,1'b0}} // = laaaallaaaal,
// aaaa is the value of a.

O HHOHO®nQ

{a,b} = d;
{a,b,c,d,e,f} = {f,e,d,b,c,a} + 1;

Operators

91

Table 8-16 Operator Order of Precedence

Operators Description

!~ Negation (highest precedence)

* 4% Arithmetic multiplication and
division

+ - Addition and subtraction

<< >> Shifts

< <= > >= Relational

== === I= l== Equality
Bitwise AND

® B Exclusive OR and exclusive NOR

| Bitwise OR

&& Logical AND

|| Logical OR

? o Ternary (lowest precedence)

LOGICAL VERSUS BIT-WISE OPERATIONS

The set of logical operators includes all the relational operators: The logical AND
(&&), logical OR (Il), and negation (!). What distinguishes the logical operators
from the bit-wise operators is the size of the value returned.

Bit-wise operators return a vector of the size of the operands (or destination,
whichever is largest); logical operators return a single-bit value. The logical
negation and relational operators have already been demonstrated in Example 8-2.
The more confusing operators to look at are the logical OR (l) and logical AND
(&&). Example 8-8 compares bit-wise and logical operators.

Example 8-8 Bit-wise and Logical Operations

Bitwise
10101011
& 01010101

00000001

Logical
10101011
&& 01010101

92 Verilog Quickstart

To solve the logical AND operation in Example 8-8, first convert the vector values
to logical values. To convert a vector value to a logical value, ask this question: Is
the value true or false? For a value to be true, it must have at least one bit that is 1.

In Verilog (as in other languages), only O is false. Because Verilog also includes
unknown x and high impedance z as values, a logical value can also be unknown. If
the vector contains x’s or z’s but no 1s, then the logical value of the vector would be
unknown. The convert-to-logical implicit conversion is similar to the reduction OR.
See the reduction OR operation in Example 8-3 for some examples of convert-to-
logical.

The logical AND operation from Example 8-8 is completed as follows:

Example 8-8 Results

10101011 converted to logical =1
&& 01010101 converted to logical = 1

1

OPERATIONS THAT ARE NOT LEGAL ON REALS

The following operators are not legal on reals. Because a real is not treated as a
vector of bits, several operators that work on bits and vectors of bits are not legal for
use with reals. These operators are listed in Table 8-17.

Table 8-17 Operators Not Legal on Reals

Operator Description

£} Concatenation

% Modulus

S Literal equality
& | ~ 7 Bitwise operators
& | Bitwise reduction

<<< << >> >>> Shifts

Operators 93
WORKING WITH STRINGS
Strings are stored in long registers. Each character in the string takes 8 bits. All the

operators that work on registers also work on strings. Example 8-9 demonstrates the
addition and concatenation of strings.

Example 8-9 Operators and Strings

module string?2;
reg[8*13 : 1] sl,s2,s83;
initial begin

sl = "Hello";
s2 = " Verilog";
s3 = "abb";
s3 = 83 + 1;
if ({sl,s2} != "Hello Verilog") begin
Sdisplay("%$s != %s", {sl,s2},
"Hello Verilog");
Sdisplay("$h != %h", {sl,s2},
"Hello Verilog") ;
end
Sdisplay("s3 = %s is stored as %$h",
s3, s3);
end
endmodule

As you can see from the results shown in Example 8-9 Results, when you
concatenate two strings, the zero padding that was in the string remains in the
resulting concatenation. Because strings are merely stored in long registers,
addition to strings will increment the characters in the string, as shown in Example
8-9 Results.

Example 8-9 Results

Hello Verilog != Hello Verilog
000000000000000048656c6c6£000000000020566572696c6f67 1=
48656c6c6f20566572696c6£67

s3 = abc is stored as 00000000000000000000616263

COMBINING OPERATORS

You may be wondering why we are emphasizing exclusive NOR in Example 8-10.
For two reasons: First, you can do things many ways in Verilog and this applies also
to the exclusive NOR. The other reason why these examples are interesting is the
order of precedence and sizing of the expressions.

94 Verilog Quickstart

Example 8-10 Combinations of Operators for Exclusive NOR

reg [7:0] a, b; // Some eight-bit registers.
reg [8:0] r9; // a nine-bit register
r9 =~ (a”b) ; // Exclusive NOR of a and b
r9 = a *~b ; //most significant bit is '1°'.
r9 = a ~"b ;
r9 = ~a ® b;

SIZING EXPRESSIONS

The most significant bit of all the exclusive NOR examples in Example 8-10 is 1.
This is because 0 XNOR O=1. The sizing of the expression is done by first
expanding all of the operands to the largest size of the operands and destination.
Once all the operands have been expanded, the value is computed. If the destination
is smaller than the size of the computed value, the value is truncated. Verilog never
zero fills after computing the result. So, in Example 8-10, the two 8-bit values a and
b are expanded to 9-bit values with the most significant bit 0. Finally, Verilog
performs the operations to generate the 9-bit result.

SIGNED OPERATIONS

Nets, regs, and times in Verilog are unsigned; only infeger and real types are
signed by default. The IEEE 1364-2001 standard enhances net, reg, port and
constant declarations to allow signed values other than infeger and real. An
operation is sign extended when the operands involved are signed. Example 8-11
shows the signed key word added to various declarations. Signed values use 2's
complement format.

Example 8-11 Signed Declarations

module signunsign(a,b,c,d);

input [7:0] a; // unsigned
input signed [7:0] b; // signed
output [7:0] c; // unsigned

output signed [7:0] d; //signed
wire signed [7:0] e; // signed.
reg signed [7:0] f£; // signed.
reg [7:0] g; // unsigned

endmodule

Operators 95
Signed Constants

Chapter 2 introduced the syntax for specifying the radix of constants in Verilog.
The ability to use signed math dictates the need for signed constants. The letter S

can be added between the apostrophe and radix letter to indicate a signed constant
as with the radix specifiers of Chapter 2, the § may be lower case or capitol.

Example 8-12 Signed Constants

4'shf // =1
8'sbl1111111 // '-1"
8'sb01111111 //127

-4'sbl111 // 1 Dbecause -(-1)

Table 8-18 shows all radix specifiers. The effect of signed constants can be seen in
Example 8-13.

Example 8-13 shows three ways to write the expression "minus 12 divided by 3."
Note that -12 and -'d12 both evaluate to the same 2's complement bit pattern, but, in
an expression, the -'d12 loses its identity as a signed negative number.

Table 8-18 Radix Specifiers

Radix Mark Radix

‘b 'B Binary

'sb 'Sb 'sB 'SB Signed Binary

d D Decimal (default)
'sd 'Sd 'sD 'SD Signed Decimal

'h 'H Hexadecimal

'sh 'Sh 'sH 'SH Signed Hexadecimal
‘o '0 Octal

90 'So "0 'S0 Signed Octal

Example 8-13 Effect of Signed Constants

integer I;
I = -12 / 3; // The result is -4.
I =-'d12 / 3; // The result is 1431655761.
I =-'sd 12 / 3; // The result is -4
I = -4'sd 12 / 3; // -4'sdl2 is the negative of

// the 4-bit quantity 1100,
// which is -4. - (-4) = 4.

This Page Intentionally Left Blank

9 CREATING COMBINATORIAL AND SEQUENTIAL
LOGIC

So far you have learned structural modeling and enough high level code to apply
stimulus and to display results from your circuits. You have also read about
Verilog’s rich set of operators and data objects to use as operands. In this chapter
you will learn how to use the operators to model circuits at a higher level of
abstraction than merely structural. At the end of this chapter is an exercise based on
the operators introduced in Chapter 8, and the high level constructs presented in
this chapter.

CONTINUOUS ASSIGNMENT

The continuous assignment is the simplest of the high level constructs. A
continuous assignment is just like a gate: It drives a value out onto a wire. A
continuous assignment is different from a procedural assignment in a few ways.
First, the destination (left-hand side, or LHS) is always a wire. Second, the
continuous assignment is automatically evaluated when any of the operands change.
Unlike a procedural assignment, the continuous assignment cannot occur in a block

98 Verilog Quickstart

of sequential code. The continuous assignment is always a module item by itself.
Finally, a continuous assignment always models combinatorial logic. It is true that
you can create logic that feeds back into itself and mimics storage, but still it is
combinatorial.

Example 9-1 shows a simple 16-bit, three-state buffer using a continuous
assignment.

Example 9-1 Three-State Buffer Using a Continuous Assignment

module bufl6 (out, in,enable); // 1l6-bit, three-state buffer
input [15:0] in;

output [15:0] out;

input enable;

assign out = enable ? in : 16'bz; // Continuous assignment
endmodule

In Example 9-1, the wire out gets either in or z depending on the value of enable.
Whenever enable or in changes, the continuous assignment is evaluated and a new
value for out is calculated.

The continuous assignment can be used with all the operators to create a result of

any size. A single continuous assignment can quickly model large combinatorial
circuits. For example consider, the small modules in Example 9-2 and Example 9-3

Example 9-2 A 128-Bit Adder In a Continuous Assignment

module addl28 (cout, sum, a, b, cin);
// 128 bit adder

input [127:0] a, b;

input cin;

output [127:0] sum;

output cout;

/* This continuous assignment models hundreds
of gates. The MSB of the add, carry is
assigned to cout by making the addition
in 129 bits using a concatenation on the LHS.

*/

assign {cout,sum) = a + b + cin;

endmodule

The continuous assignment in Example 9-2 uses a concatenation on the left-hand
side of the assignment to catch the carry-out bit.

Creating Combinatorial and Sequential Logic 99

Example 9-3 Continuous Assignment Multipiler

module mulé4 (prod, a, b); // Simple multiplier
input [31:0] a, b;

output [63:0] prod;

assign prod = a * b; // Thousands of gates !!!
endmodule

The continuous assignment is a quick and easy way to model when the
combinatorial logic can be expressed as a simple equation. A simple buffer (for
example, assign a=b;), amux using the ternary operator, an arithmetic function, or
a complex set of Boolean operators. These can all be modeled using the continuous
assignment.

Before leaving the continuous assignment, see Table 9-1 to compare the two types
of assignments you’ve learned so far.

Table 9-1 Comparison of Procedural and Continuous Assignments

Assignment LHS When Evaluated Where in module

Type

Procedural reg When encountered Procedural block
Continuous net Whenever RHS changes On its own

LHS = left-hand side (the destination of the assignment);
RHS = right-hand side (the operands in the assignment)

The continuous assignment can be used to connect a register or several registers to a
net. Consider Figure 9-1.

Figure 9-1 Connecting Four Registers to a Wire

Connecting four registers to wires as shown in Figure 9-1 can easily be modeled in
Verilog, as shown in Example 9-4.

100 Verilog Quickstart

Example 9-4 Connecting Four Registers to a Wire

module regnet;
reg a, b, c, 4d;
wire w;

assign w=a;
assign w=b;
assign w=c;
assign w=d;

endmodule

An alternate form of the continuous assignment may be written when a wire is
declared. Example 9-5 shows a simple continuous assignment where the wire ¢ has
the value a | b.

Example 9-5 Alternate Form of Continuous Assignment

module aca;

reg a, b;

wire ¢ = a | b; // shorthand continuous assignment
endmodule

Continuous assignments may also have delays. Multiple continuous assignments
may be combined in one statement and separated by commas. Example 9-6 shows a
few more combinations of continuous assignments.

Example 96 Many forms of Continuous Assignments

module mca;

reg a, b, c, d;

wire y, vb, al, a2;

wire [3:0] bus = {a, b, c, d};
wire #(3,2) parity = "bus;
assign #1 al = a & b,

a2 =c & d,
v=al|a2,
yb = ~y;

endmodule

Example 9-6 shows a continuous assignment as a wire declaration that combines
the four registers into a bus. The next continuous assignment generates parity on the
bus with a rise delay of 3 and a fall delay of 2. The final set of continuous
assignments forms an AND-OR-INVERT gate with a total a-to-y delay of 3 because
each of the continuous assignments has a delay of 1.

Creating Combinatorial and Sequential Logic 101
EVENT CONTROL

For controlling the flow of execution through procedural code, only the delay
operator “#” has been introduced so far. The # is sufficient if you know how much
time you want to delay. But what if you want to delay until the change on a signal?
The change (or edge) operator is the “@” (“at” sign). The @ operator is best
described as “wait for event.” The event that the @ waits for is normally any change
on a signal. The @ can also be used with the event data type. In addition to @,
there are three related keywords for working with edges or events: posedge and
negedge for selecting only one edge, and or for waiting for a change on more than
one signal.

The simplest common model using the @ is a D flip-flop. How does a flip-flop
work? The flip-flop waits for the rising edge of the clock, then the output ¢ gets the
value of d. In Verilog, a D flip-flop can be described as shown in Example 9-7.

Please note that though Example 9-7 presents an accurate description of a D flip-
flop, this would not be the most efficient way to model a flip-flop. The model in
Example 9-7 would be better used to model a wide register, for example, a register
of 64 or 128 bits. Such a register could be modeled like this just by changing the
width of d and ¢. If you wanted to model a single flip-flop, you might be better off
with a user-defined primitive. User-defined primitives are introduced in Chapter 13.

Example 9-7 Waiting for an Event

“define REG_DELAY 1

module dff (clock, d, q);

input d, clock;

output qg;

reg q;

always @(posedge clock)
g <= # ("REG_DELAY) 4d;

endmodule

The behavior of the continuous assignment can be mimicked by using the wait for
event (@) on multiple signals. By looking for all the signals to change, the always
can be used to model combinatorial logic. Example 9-8 and Example 9-9 compare a
mux with a continuous assignment and a mux with an always block.

102 Verilog Quickstart

Example 9-8 Mux Using Continuous Assignment

module muxca(a,b,sel,y);

// mux with continuous assignment
input a,b,sel;
output vy;

assigny =sel ? a : b;

endmodule

Example 9-9 Mux Using always Block

module muxae(a,b,sel,y); // mux with always
input a,b,sel;

output vy;

reg vy;

always @(a or b or sel)
if (sel)
y = aj
else
y = b;

endmodule

Both of the muxes in Example 9-8 and Example 9-9 behave identically for sel/ = 1
or 0. However, they behave differently when sel = x. They will synthesize to similar
logic.

The always Block for Combinatorial Logic

Example 9-9 shows how the a/ways block can be used to model combinatorial logic.
If the code in an always block executes whenever its inputs change, it will model
combinatorial logic. The or keyword is used to separate a list of events for the wair

for event (@) operator. The list of events is often called a sensitivity list. The IEEE
13642001 standard adds two new shorter ways to specify the sensitivity of an
always block; a comma ', can be used instead of the or keyword to separate a
sensitivity list, as shown in Example 9-10.

The new standard also defines the combinatorial sensitivity list using the '@*' as
shown in Example 9-11. As with any of the 2001 updates to the Verilog Language,
the comma and star for sensitivity lists may not be supported by all tools.

Creating Combinatorial and Sequential Logic 103

Example 9-10 always Block Using Comma

module muxaec(a,b,sel,y); // mux with always using comma
input a,b,sel;
output vy;
reg vy;
always @(a, b, sel)
if (sel)
y = aj
else
y = b;
endmodule

Example 9-11 Combinatorial always Block

module muxaes(a,b,sel,y); // mux with always using star
input a,b,sel;
output vy;
reg vy;
always @*
if (sel)
Yy = aj;
else
y = b;
endmodule

Event Control Explained

The mux shown in Example 9-12 anct only when sel changes, so is not an operating
mux and can be built in hardware.

Example 9-12 Incorrect Mux

module bad_mux(a,b,sel,vy); // bad model
input a,b,sel;

output v;

reg vy;

always @sel
if (sel)
Yy = a;

104 Verilog Quickstart

else
y = b;

endmodule

Note that the parentheses are not needed with @ if you are only looking for any
change on a single signal. The parentheses are only necessary if you are going to
use an expression after @.

One final thing to remember about the waitfor event (@): Don’t interpret “always
@A” as “whenever A changes.” Remember that always is defined as a loop that
starts at time 0, then when it finishes, it starts over again. So “always @ A”
describes the situation of waiting for A, and having A change. Consider Example 9-
13.

Example 9-13 always Explained

module not_always;

reg clock;

always begin
#5 clock
#5 clock

0;
1;

end

always @ (posedge clock)begin
Sdisplay("clock edge at %0d4d", Stime);
#11 Sdisplay ("waiting for the clock");
end
endmodule

In Example 9-13, the second always block sees the first rising edge at time 10. The
delay of 11 between the two $display statements expires at time 21. In the
meantime, there was a rising clock edge at time 20 that is missed. This
demonstrates that the always @(posedge clock) does not consistently mean
whenever the clock rises. It means whenever the clock rises and we are waiting for
1t.

The @ can be thought of as an edge-sensitive event control. There is also a level-
sensitive event control: wait. The wait statement will not block execution if its
condition is true. If the condition is not true, it will wait until it becomes true.
Consider Example 9-14:

Creating Combinatorial and Sequential Logic 105

Example 9-14 Using wait

module wait_example;
reg [7:0] a;
reg b;

initial begin
wait (a==3)
Sdisplay("not waiting for a==3 time %0d4d", Stime);
wait (b)
Sdisplay ("not waiting for b time %0d4d", Stime);
wait (a==4)
Sdisplay("not waiting for a==4 time %0d", S$time);
end

initial begin

. Zdzs;l;ay("value of a is now %0d at time %0d", a,Stime);
. Zdisél;ay("value of a is now %0d at time %0d4d",a,Stime);
" };d;sél;ay("value of b is now %0d at time %0d4d",b,Stime);
end
endmodule

In Example 9-14, the first initial block starts and waits until a becomes 3, which
happens at time 3 from the second initial block. The first initial block then
continues and prints its first message at time 3. At time 4, a becomes 4, but nothing
else happens, because now the first always block is waiting for b. Waiting for b by
itself is equivalent to waiting for b to become non-0, b becomes 1 at time 5, so the
second message is printed. The final wait waits for a to become 4, but a is already 4.
Therefore, the wait does not block execution and the third message is also printed.

Example 9-14 Results

value of a is now 3 at time 3
not waiting for a==3 time 3
value of a is now 4 at time 4
value of b is now 1 at time 5
not waiting for b time 5

not waiting for a==4 time 5

While the code in Example 9-14 does not show a great use for the wait, it does show
how wait works. Example 9-15 presents some code that shows a more intelligent
use of wait.

106 Verilog Quickstart

Example 9-15 Using waitTo Detect an Unknown

initial wait (“data_bus === 1'bx) begin
Sdisplay ("Error unknown on the data bus!");
$stop;

end

Example 9-15, which uses the wait statement, is more efficient than Example 9-16,
which uses @. If you are wondering how the condition (“data_bus === 1’bx)
checks for an unknown on the data bus, here is how it works. If you use the
reduction exclusive OR operator on an unknown entity, the result is unknown. Thus
using the reduction exclusive OR on the entire data bus yields an unknown if any of
the bits are unknown. Example 9-16 illustrates a less efficient example of checking
for an unknown on abus.

Example 9-16 Using always To Detect an Unknown

always @databus

if (~data_bus === 1'bx) begin
Sdisplay ("Error unknown on the data bus!");
$stop;

end

Summary of Procedural Timing

One of the most important concepts in Verilog modeling is knowing when a
procedural statement will be run. The remaining key words and symbols that
indicate when a procedural statement will be run were just introduced. A common
cause for incorrect model behavior and even syntax errors is incorrectly specifying,
or omitting, an indication of when your code should be run. If you don't know when
your code should be run, perhaps the simulator or synthesis tool may have the same
difficulty.

Table 9-1 summarizes the keywords presented to determine when a statement will
be run.

Creating Combinatorial and Sequential Logic 107

Table 9-1 Procedural Timing keywords

Keyword Definition

initial Start here at time zero, run only once.

always Start here at time zero, when done, run again.
begin - Sequential grouping of procedural statements.
end

fork - Concurrent grouping of procedural statments.
join

Wait some amount of time.

@ Edge sensative, wait for something to change.

posedge Modifier for '@' change 0-1 or 0-x or x-1.
negedge Modifier for '@' change 1-0 or 1-x or x-0.

wait () Level sensative delay, if the condition is
true, continue with no pause, if false pause
until true.

assign Continuous (concurrent) assignment to net,
evaluated when any input changes.

-> Used only with the event data type to signal
that an abstract event has occurred.

Remember that with the '@', procedural flow must be waiting at the '@’ for the
event to be seen. Other delays or event controls in a loop or block of code may effect
when you are waiting at the '@'.

Also remember that an always loop with no delay or event controls is a zero delay
loop. A zero delay loop does not allow simulation time to advance and your
simulation can hang. An always with only wait statements or a path to avoid the
delay or event controls may potentially be a zero delay loop.

This Page Intentionally Left Blank

10 PROCEDURAL FLOW CONTROL

Verilog has a rich set of procedural statements that can be used for modeling
combinatorial logic or sequential logic. This chapter explains the if, case and
looping constructs.

THE IF STATEMENT

A few of the examples from previous chapters have shown the if (statement. The if in
Verilog has a few quirks. You may have noticed that in Verilog, the if has no
corresponding then or endif. Rather, Verilog has an else. The simple form of ifis
shown in Example 10-1. An if with else is shown in Example 10-2.

Example 10-1 Simple if

if (condition)
statement

110 Verilog Quickstart

Example 10-2 if with else

if (condition)
statement
else
Statement

Each branch of an if can only have a single statement. If you need more than one
statement, then you need to use a begin-end block or a fork-join block.

The condition can be any expression, or even just a single value. If the condition
evaluates to O or unknown, then the condition is considered false, and the ifclause
is not executed. Thus, if the condition evaluates to 1 or more, the if clause is
executed, but ifit evaluates to O or unknown, the else clause executes if it is present.

Because the if has no endif, it is easy to become confused when there are multiple
if ’s with else’s. Consider Example 10-3: Which if does else go with?

Example 10-3 Nested if with else

if (a)

if (B) do_something;
else

just_do_it;

Under what condition does the design “just do it”? Does this happen when A is not
true, and does the indenting make the result appear? The answer is: When A is true
and B is not true. Why? An else is always associated with the immediately
preceding if that does not have an else associated with it. In Example 10-3, the else
is associated with the latest if, which is the if{B).

The if or else clauses may use a begin-end or fork-join when multiple statements are
needed.

Remember, for combinatorial logic with an if should have an else or you might
imply a latch. Sequential logic with an if statement does not need an else if you
intend the reg to hold its old value.

THE CASE STATEMENT

Verilog has three varieties of case statement: case, casex, and casez. The case
statement is a convenient way of decoding multiple conditions or opcodes. Example
104 illustrates a simple 4-to-1 mux using a case statement.

Procedural Flow Control 111

Example 104 The case Statement

module mux4a(y,a,b,c,d, sel) ;
input a,b,c,d;

input [1:0] sel;

output vy;

reg vy;

always @(a or b or ¢ or d or sel)

case (sel)
0: v = a;
1l: yv = b;
2: vy = C;
2'pll v = d;
default : vy = 1'bx;
endcase
endmodule

A case statement begins with the expression case and ends with endcase. The
expression being compared is in parentheses following the keyword case.

Each of the case items (possible matches for the expression being compared to) is
denoted by a colon and followed by a single statement. If more than one statement
needs to be executed for a particular case item, enclose the statements in a begin-
end block or fork-join block. When one case item statement has executed. Flow
automatically resumes at the endcase, this eliminates the need for a break statement
like C uses. If you want multiple conditions to execute the same statement, you can
separate them with commas before the colon. Only the first condition that is true is
executed. The keyword default can be used to catch any of the conditions not
explicitly stated.

In Example 104 for the first three case items, a decimal number was used. This is
acceptable, but inelegant. For the third case item, a more fully specified number in
which also declared the number of bits to be the same as the size of the case
expression (2 bits) was specified. The final case item, default, actually catches
twelve possible case items that exist when either or both of the select lines are
unknown or high impedance. This is shown in Example 10-5.

112 Verilog Quickstart

Example 10-5 case Matching xand z

module mux4b(y,a,b,c,d, sel);
input a,b, c,d;

input [1:0] sel;

output v;

reg y;

always @(a or b or ¢ or d or sel)
case (sel)

2'00 : vy = a;
2'001 : v = b;
2'bl0 : v = c;
2'bll v =d

2'b0x, 2'blx, 2'bzx, 2'bxx,
2'bx1, 2'bx0, 2'bxz, 2'bzz,
2'bz0, 2'bzl, 2'blz, 2'b0z : y = 1'bx;
endcase
endmodule

In the case statement, as with the === operator, x matches x and z matches z.

Although case does not allow wildcards for matches, the casex and casez do. If you
use casez, z or 7 can be used to match any value.

Let’s model a simple loadable counter. This counter has a load and a reset, both of
which are active on the rising edge of the clock, reset has priority over load, and if
load is not set, then the counter counts up or down based on the state of the up
signal. This could be modeled with some if-else statements, but Example 10-6 uses
casez.

Example 10-6 Using casez

“define REG DELAY 1

module counta(clock, reset, load, up, load_data, count);
input clock,reset, load, up;

input [15:0] load_data;

output [15:0] count;

reg [15:0] count;

always @(posedge clock)
casez ({reset,load,up}) // concatenate control signals
3'blzz : count <= 16'h0000;
3'b01? : count <= #(REG_DELAY) load data;
3'b001 : count <= #(REG DEIAY) count + 16'h0001;
3'b000 : count <= #(REG DELAY) count - 16'h0001;
default : count <= #{ REG DELAY) 16'bx;
endcase
endmodule

Procedural Flow Control 113
In Example 10-6, both z and ? are used as wildcards.
Note that casex differs from casez in the don’t care values. In casez, z and ?

represent don’t cares. However, in casex, only x and z are both don’t care. Table 10-
1 summarizes which values will be matched by each type of case statement.

Table 10-1 Summary of Case Values and Match per Case Type

Value Case Casez Casex

0 0 0 0

1 1 1 1

x X X 01l x =z
z z 01l x z 01 xz
? unused 0D 1x 2z unused
default 01 x 2 01xz 01xz=z

The next two examples compare the loadable up-down counter implementations.
Example 10-7 uses the case statement. Since the case matches each bit exactly, it is
necessary to specify many more case items for the reset and load operations.
Example 10-8 repeats the counter using an if statement.

Example 10-7 Counter Using case

‘define REG_DELAY 1

module countb(clock, reset, load, up, load _data, count);
input clock,reset, load, up;

input [15:0] load data;

output [15:0] count;

reg [15:0] count;

always @(posedge clock)
case ({reset,load,up}) // concatenate control signals
3'b100, 3'b101, 3'bl0x, 3'bl0z,
3'b110, 3'bl1ll, 3'bllx, 3'bllz,
3'blx0, 3'blxl, 3'blxx, 3'blxz,
3'blz0, 3'blzl, 3'blzx, 3'blzz
: count <= #('REG DELAY) 16'h0000;
3'b010, 3'b011, 3'b01x, 3'bllz
count <= #(REG_DELAY) load _data;
3'b001 : count <= #('REG _DELAY) count + 16'h0001;
3'b000 : count <= #(REG DELAY) count - 16'h0001;
default : count <= #(REG _DELAY) 16'bx;
endcase
endmodule

114 Verilog Quickstart

Example 10-8 Counter Using if

“defineREG DEIAY 1

module countc (clock, reset, load, up, load data, count) ;
input clock,reset, load, up;

input [15:0] load data;

output [15:0] count;

reg [15:0] count;

always @ (posedge clock)
if (reset)
count <= 16'h0000;

else
if (load)
count <= # ("REG_DELAY) load_data;
else
if (up)
count <= #(REG_DELAY) count + 16'h0001;
else
count <= #("REG_DELAY) count - 16'h0001;
endmodule
LOOPS

The only loop that has been used so far in this book is the always loop. The always
loop combines a starting point for execution with an infinite loop. The rest of the
looping constructs do not imply starting places for execution. They must be
contained in a procedural block of code so they have a starting point.

The forever Loop

The simplest loop is the forever loop. The forever loop is an infinite loop. The
construct initial forever is almost identical in behavior to always. The forever loop
contains a single statement. If you want multiple statements in the forever loop, use
a begin-end block. Like the always statement, a forever loop without delay or event
controls would be a zero-delay loop and inhibits simulation time from advancing.
Even though the forever loop is an infinite loop, there are two ways to stop it. The
first way to stop a forever loop is with a $finish that ends simulation. The second
way is to use the disable statement, which will be presented later in this chapter.

Example 109 and Example 10-10 compare the forever and always loops.

Procedural Flow Control 115

Example 109 Oscillator Using always

module oscl (clock) ;
output clock;
reg clock;
initial begin
clock = 0;
end
always begin
#50 clock = ~clock;
end
endmodule

Here is another version of the oscillator module using the forever loop.

Example 10-10 Oscillator Using forever

module osc2 (clock) ;
output clock;

reg clock;

initial begin

clock = 0;
forever #50 clock = ~clock;
end

endmodule

While the initial forever and the always loop are quite similar. Most synthesis tools
do not synthesize the forever loop. The forever loop should only be used in
behavioral models not intended for logic implementation or test benches.

The repeat Loop

The repeat loop is the next simplest of the looping constructs in Verilog. The repeat
loop takes some expression that will evaluate to an integer, and repeats the loop that
many times. The repeat loop is similar to the forever loop in that it uses a single
statement or a begin-end block.

Example 10-11 is a slight modification of the hello module in which the module
prints “Hello Verilog” five times.

Example 10-11 Repeating “Hello Verilog”

module hellor;
initial repeat(5) Sdisplay("Hello Verilog") ;
endmodule

116 Verilog Quickstart

The repeat loop has uses in state machines, such as the simple shifter state machine
shown in Example 10-12.

Example 10-12 Using repeat in a State Machine

define REG_DELAY 1
module shiftl (clock, start,data, s, out,done) ;
input clock, start;
input [15:0] data;
input [3:0] s;
output [15:0] out;
reg [15:0] out;
output done;
reg done;
always @ (posedge clock)
if (start) begin
done <= #(REG_DELAY) 1'bO0;
out <= #(REG_DELAY) data;
repeat (s) // number of times to shift
@(posedge clock) out <= #(REG_DELAY) out << 1;
@(posedge clock) done <= #(REG_DELAY) 1'bl;
end
endmodule

Please note that this is not the most simulation-efficient way to implement this
shifter. Chapter 17 discusses performance issues and other shifter models will be
presented.

Depending on the usage and synthesis tool, the repeat loop may be synthesizable.

The while Loop

The while loop is executed as long as its condition is true. Example 10-13 counts
the number of 1s in an input signal.

Procedural Flow Control

Example 10-13 A while Loop

117

“define REG DELAY 1
module onecount (clock, start,data, count, done) ;
input clock, start;
input [15:0] data;
reg [15:0] temp_data;
output [3:0] count;
reg [3:0] count;
output done;
reg done;
always @ (posedge clock)
if (start) begin
done <= #("REG_DELAY) 1'b0;
count <= #(REG_DELAY) 1'b0;
temp_data = data;

while (temp_data) begin// continue as long as non zero

@ (posedge clock)

if (temp_datal[0]) count <= #(REG_DELAY) count + 1;

temp_data = temp_data >> 1;
end
@ (posedge clock)
done <= #('REG_DELAY) 1'bl;
end
endmodule

Depending on the usage and synthesis tool, the while loop may be synthesizable.

The for Loop

The expression for the for loop is a bit more complicated. The for loop uses three
expressions separated by semicolons to control the loop. The first expression (the
initialization expression) is executed once before entering the loop the first time.
The second expression (the loop condition) is evaluated to determine if the contents
of the loop should be executed. If the loop condition expression is true, the loop is
entered. The final expression (the increment expression) is evaluated at the end of

the loop.

Example 10-14 is another version of the hello module with a for loop. Notice the
expression i=i+l in the loop. Those familiar with programming in C might try the
++ unary operator. A quick review of Chapter 8 will remind you that Verilog,

unlike C, does not have a ++ operator.

118 Verilog Quickstart

Example 10-14 A Simple forloop

module hellof;

integer i;

initial for(i=0; i<5; i=i+1)
Sdisplay ("Hello Verilog %0d4d", 1i);

endmodule

Because the expressions in the for loop all don’t need to reference the same register
or variable, the for loop in Example 10-15 is also legal.

Example 10-15 A for Loop with Expressions Not Referencing the Same
Variable

module for2;
reg [7:0] a,b,c,d;
initial begin

c =9; // If c==0 the loop will not enter.
b = 3;
d = 0;
for(a = b; c¢; d=a) begin
a=a+ d;
c =c - b;
end

Sdisplay ("a= %d, b=%d, c= %d, d=%d, OK?", a, b, c, 4d) ;
end
endmodule

Depending on the usage and synthesis tool, the for loop may be synthesizable.

With the high level code you have just learned, you can now start to model more
complex behavior. Take a break from the reading and try some exercises to practice
what you have just learned.

Exercise 4 Using Expressions and case

In this exercise you will model a simple arithmetic logic unit (ALU). This will give
you a chance to practice using text macros, the always statement, the case
statement, and some expressions. The ALU has sixteen functions. These are
described below. The ALU has three inputs: The a and b operands (16 bits), and the
function select input (4 bits). The ALU has four outputs: aluout (the 16-bit result), a
zero flag; a parity flag, and a carry flag. The ALU is combinatorial. The carry flag
is the seventeenth bit of the result of addition, subtraction, shifts, and rotates. All of
the operations generate a result in the carry. The zero flag is set if all the low 16
bits of aluout are 0. The parity flag is set if an odd number of bits is set in aluout.

Procedural Flow Control

Here are the opcodes for the ALU:

119

“define move 4'b0000 /*
‘define comp 4'b0001 /*
‘define and 4'b0010 /*
“define or 4'p0011 /*
“define xor 4'b0100 /*
‘define add 4'b0101 /*
“define incr 4'b0110 /*
‘define sub 4'b0111 /*
“define rotl 4'bl1000 /*
“define 1shl 4'b1001

/* out

‘define rotr 4'b1010

out
out
out
out
out
out
out
out
out

b */
complement (b) */
a AND b */

aORbDb */

a XOR b */

a PLUS b */

b PLUS 1*/

a MINUS b */
rotate b left*/

= logical shift left*/

/* out = rotate b right one bit */

“define lshr 4'bl1011

/* out = logical shift b right one bit*/
“define xnor 4'bl1100 /* out
“definenor 4'bl101 /* out
“define decr 4'b1110 /* out

‘define nand 4'bl111 /*

out

a XNOR b */
a NOR b */

b MINUS 1 */
a NAND b */

The operations are detailed in Table

and Figure 104.

102, Figure 10-1, Figure 10-2, Figure 10-3,

120

Table 10-2 ALU Exercise: Explanation of Opcodes

Verilog Quickstart

Opcode Result Carry Explanation

move out=b 0 Data pass-
through

comp bitwise 3l Complement

complement of b

and a AND b Bitwise AND

or a OR b Bitwise OR

Xor a XOR b Bitwise
exclusive OR

add a PLUS b carry Addition

incr b+ 1 carry Increment

sub a-b 1 = no borrow Subtraction with

0 = borrow borrow

rotl see Figure 10-1 Db[15] Rotate left

1shl see Figure 10-2 Db[15] Logical shift
left

rotr see Figure 10-3 b[0] Rotate right

1shr see Figure 10-4 0 Logical shift
right

xnor a XNOR b 1 Bitwise
exclusive NOR

nor a NOR b 1 Bitwise NOR

decr b -1 0 = no borrow Decrement b

nand a nand b 1 Bitwise NAND

» EEE- mm]o

L LS S

e] 5]] []-- I I B

Figure 10-1 Rotate Left

Procedural Flow Control 121

8 sl Gl E
L&A Cd
"""""" Ed—-“(}”

Figure 10-2 Logical Shift Left with 0 Flll

B[] [oe]]I [

o N Se ek
ooy 101 [[]-- BT []
Figure 10-3 Rotate Right

B[]] [3]-R] [[o]
T, NG N N N N
cary] [5] [[B]-B] [2]

Figure 10-4 Logical Shift Right with 0 Fill

Example 10-16 illustrates a test bench for the ALU.

122 Verilog Quickstart

Example 10-16 Test Bench for the ALU

module test_alu;

reg [16+16+4+16+3:1] stim res [1:100]; /* storage for stimulus
and response */
wire [15:0] aluout; /* declare wires for results */

wire =zero,parity,carry;
integer pattern ;

reg [15:0] a,b ; /* declare registers for stimulus */
reg [3:0] f£f;

reg [15:0] aluout_comp; /* declare registers to compare to */
reg zero_comp, parity_comp, carry_comp;

/* instantiate device under test */
alu dut(a,b, £,aluout, zero, parity, carry) ;

initial begin
pattern = 1 ;
Sreadmemh ("alu_test.vec", stim res);
forever run_test;
end

task run_test;
begin

{a,b, £,aluout_comp, zero_comp, parity_conp, carry._ conp} =
stim res[pattern];

if (carry comp === 1'bx) $finish;

#100

if (aluout !'== aluout_comp) begin
Sdisplay (

"compare error on aluout, pattern %d was %b should be %b.",
pattern, aluout,aluout_comp) ;
Sfinish;
end

if (zero !== zero _comp) begin
Sdisplay (
"compare error on zero, pattern %d was %b should be %b.",
pattern, zero, zero_comp) ;
$finish;
end

if (parity !== parity comp) begin
Sdisplay (
"compare error on parity, pattern %d was %b should be %$b.",
pattern, parity,parity_comp) ;
$finish;
end

if (carry !'== carry comp) begin

Procedural Flow Control 123

Sdisplay(
"compare error on carry, pattern %d was %b should be %b.",
pattern, carry,carry comp) ;
$finish;
end

pattern = pattern + 1;
end
endtask
endmodule

The test bench reads in an external set of vectors to apply and expected values to
compare against the ALU outputs. These vectors are in a form readable by Verilog
and are read from the file alu_test.vec, as is specified in the line with the
Sreadmemh command. It is difficult to read these vectors because their bytes are not
neatly aligned. Rather than go to the trouble of deciphering them, it is much easier
to add $display statements into the test bench or ALU to evaluate what is happening
with the vectors.

Please refer back to Chapter 8 on operators to create the functions for the alu. There
are a few tricks in the expressions you will need to figure out to pass the test
patterns. Each of the expressions is simple and can be expressed in a single short
equation.

Enter the vectors shown in Figure 10-5 into a file called alu_test.vec, or better still,
copy them off the disk enclosed with this book.

124

Verilog Quickstart

00000000000004
5807c3b2a%9bba3
14801480014802
091a7£££fb891a8
0000891a0£f6e5b
1bba091al091la2
76e5891alffffs
091a091a200004
0000891a3091a8
0000c3b2c07659
47884788047880
0000c3b2c87653
48094809048090
0000c3b2d614d91
4¢c894c8904c890
0000c3b2dald92
53084308853088
0765e1d9619431
076521496d802b
00009943719428
091a00007££££9
1943 6eee86eee8

Figure 10-5 ALU Test Vector File alu_test.vec

When running this exercise, do not instruct Verilog to compile the file alu_test.vec.
This file cannot be compiled by Verilog. It is read in from the test bench with the
Sreadmemh command. This test bench uses a task, which is explained in the next
chapter. The $readmemh command will be explained in Chapter 18 (regarding test

benches).

11 TASKS AND FUNCTIONS

Chapter 3 discusses structural modeling. Structural modeling is the way to create a
'hardware' hierarchy. Tasks and functions create a 'software' hierarchy similar to
subroutines or procedures in a programming language. Tasks and functions may be
synthesizable depending on their contents and usage.

TASKS

In Verilog, you may use a fask to encapsulate a behavior. A rask is defined in a
module and is invoked when its name is called in procedural code. A task has
access to all the data objects (nets registers, integers, reals, etc.), so it does not need
to have inputs and outputs, though it can have inputs, outputs and inouts. Tasks
may take more than zero time to complete; they can have delays, wait statements,
and event controls in them. Tasks can be used to apply stimulus, simulate bus
cycles, display contents of memories, and many other things. Tasks contain a single
statement. If you want a task to have more than a single statement, use a begin-end
block or a fork-join block.

Example 11-1 is the hello module modified to use a fask.

126 Verilog Quickstart

Example 11-1 Hello Verilog Tasks

module hellot;
initial begin
say_hello;
say_hello;
end

task say _hello;
Sdisplay ("Hello Verilog Tasks!");
endtask

endmodule

The fask in Example 11-1, say_hello, is executed when its name (say_hello) is
encountered in the initial block. This task has no inputs or outputs and uses no data.
The test_alu module in the previous exercise had a task called run_test. The
run_test task did not have any inputs or outputs, but directly accessed and modified
the values on the nets and registers in the module. When the run_test task executed
its procedural assignment into the stimulus registers, the inputs were applied.

When a task has input, output, or inout ports, the port list is not declared the same
way as a module. Instead, the port order is determined by the port declarations.

Example 11-2 is a simple example of a fask that has input and output ports and
references a register that is not in the task.

Tasks and Functions 127

Example 11-2 task with Inputs, Outputs, and External References

module taskl;
integer a, b, c¢, d;
initial begin

a=3;

b=4;

d=12;

add(a,c,b);

4 Sdisplay (" final value for ¢ = %04",c);

en

task add;
input [31:0] inl;
output [31:0] out;
input [31:0] in2;

out = inl + in2 + d;
endtask

endmodule

Example 11-2 shows a task with inputs and outputs. Notice that the order of the
inputs and outputs is determined by the order in which they are declared because
there is no port list. Also note that the ports are declared to be 32 bits wide (which
is the size of an integer), so the ports match the integers declared in the module. If
the size of the ports is not declared, the port size defaults to 1 bit wide. If you run
this module, the final value for ¢ (as you might expect) is 19.

Example 11-3 shows both the use of inouts in tasks and the effect of the port range
declaration. The fask increment has only a 3-bit inout port and therefore only
outputs a number between O and 7.

128 Verilog Quickstart

Example 11-3 Effect of task Port Size

module task2;

integer a;

initial begin
a=0;
increment (a) ;
Sdisplay ("a=%0d",a) ;
increment (a) ;
Sdisplay ("a=%0d",a) ;
a=7;
increment (a) ;
Sdisplay ("a=%0d",a) ;

end

task increment;

inout [2:0] x;
X =X + 1;

endtask

endmodule

Tasks create a local name space. You may declare regs, integers, reals, and other
data objects inside a task and not interfere with similarly named items in a module.
Anything declared in a task is accessible from the module that contains the rask by
creating a hierarchical name to the data. Example 114 shows a task with a local
integer. The local integer is both written and read from outside the fask.

Example 11-4 Accessing a taskLocal Variable from Outside the task

module task3;

initial begin
Sdisplay ("total=%0d", count.total) ;
count.total =0;
count;
count;
Sdisplay ("total=%0d",count.total) ;
end

task count;
integer total;

total = total + 1;
endtask

endmodule

You have already seen how to access a value from the parent module in a task. You
have also seen how to access a task local value in the parent module. What happens
when the task and the parent module both have an item with the same name? Both

Tasks and Functions 129

items have unique hierarchical names that allow independent access. Example 11-5
shows a module and a rask that both contain integers named a. The example
demonstrates both the upward and downward references to the two unique integers.
The only trick to the upward reference is that you must know the instance name for
the module. For this example, the module fask4 is not instantiated, so the instance
name is task4. To review hierarchical names, see Chapter 3.

Example 11-5 taskLocal and Module ltems with the Same Name

module task4;

integer a;

initial begin
a=12; // set top level a
t4; // run the task
Sdisplay("top a is %0d4d",a) ;
Sdisplay("lower a is %04",t4.a);

end

task t4;
integer a;
a = taskd.a * 2;
endtask
endraodule

Automatic Tasks

Local data can be declared in a fask. The only problem with local data in a task is
with multiple invocations of a rask. If a task is triggered while it is still running (for
example, if a task is triggered from more than one place or a re-entrant task), this is
legal, but there is only one copy of the local data, so the multiple invocations will be
sharing data.

IEEE1364-2001 adds a new keyword to task declarations automatic. Automatic
tasks do not have static data, the data is allocated when the task is called. Therefore
Example 114 and Example 11-5 would not work with automatic tasks.

Example 11-6 Shows a re-entrant task. If task reentT is instead declared as task
automatic reentT, each invocation of the task will get a unique copy of the data.

130 Verilog Quickstart

Example 11-6 Re-Entrant Task

module reent;
reg [2:0] a,b;
initial begin
a = 3'b001;
b = 3'b101;
reentT (a) ;
Sdisplay (Stime, " a = %d",a);
end

initial begin

#5 reentT (b) ;

Sdisplay(Stime, " b = %d",Db);
end

task reentT;
inout [2:0] x;

#20 x = x + 1;
endtask

endmodule

Example 11-6 shows a task that is invoked from more than one place at the same
time. In this example the task will be called with b while it is operating on a. The
results are quite deterministic; At time O the task is called with a(1) and it delays
until time 20, at time O, x takes the value 1. At time 5 the task is called with b (5).
At time 5, x becomes 5. At time 20, x is incremented (6) and returned to a. At time
25, x is incremented again (7) and returned to b.

Common Uses for Tasks

Example 11-7 illustrates a task that might be used in a processor model to model a
read cycle. This task has ports and references data directly in the module. This task
also takes several clock cycles to complete, unlike the other rasks that take zero
time.

Tasks and Functions 131

Example 11-7 Read Cycle task

module readcycle (clock,data_ready,datain, address, read) ;
input clock,data_ready;

input [31:0] datain;

output [31:0] address;

reg [31:0] address;

output read;

reg read;

reg [31:0] data;

initial begin
do_read('h00001234,data) ;
do_read ('habcdbabe, data) ;
end

task do_read;
input [31:0] location;
output [31:0] bus_value;
begin
@ (posedge clock) address = location;
@(posedge clock) read = 1;
while(! data_ready)
@ (posedge clock) ;
bus_value = datain;
read = 0;
end
endtask

endmodule

The readcycle module is a correct, complete module. But it is not necessarily
complete or correct to model a processor in this way. Instead, the do_read task
would be within a larger module with several other tasks for other processor cycles.
The do_read task directly references the incoming signals clock, data_ready, and
data_in, and directly changes the value of the address register.

Another common use for fasks is to have tasks in a module that are only used
interactively for debugging. These tasks can be activated interactively during a
debugging session to display critical information or to set up particular values. A
task to display the contents of a memory is shown in the parameterized RAM
example in Chapter 14.

Finally tasks may be imbedded into your model or test bench to aid debugging. Most
simulators provide an interface to allow calling tasks from the command line. An
example of an embedded debug task can be found in the ram model in Chapter 14.
It is often a desirable to see the contents of a ram when debugging. The ram model
contains a fask called dump that may be called during simulation.

132 Verilog Quickstart

FUNCTIONS

Functions differ from tasks in three important ways:
1. Functions must return a value.

2. Functions must take zero time.

3. Functions cannot contain delay or event controls.

A function returns a value by assigning a value back to a pseudo-variable
represented by the function name.

When you declare a function, you must also declare the type and size of the return
value. If the size of a function is not declared, it defaults to 1 bit. The size of a
function is declared like any other range declaration, so the number of bits returned
can be from one to one million.

Example 11-8 illustrates a function that returns an integer and counts the number of
bits that are set in a 32-bit input value.

Example 11-8 Count Bits Function

module cbits;

initial begin
Sdisplay ("the answer is %d",count_bits(87));
Sdisplay ("the answer is %d",count_bits('h12345678)) ;
Sdisplay ("the answer is %d",count_bits ('hffff ffff));
end

function integer count_bits;
input [31:0] a;
begin
count_bits = 0;
while(a) begin
if(a[0]) count _bits = count_bits + 1;
a=a>>1 ;
end
end
endfunction

endmodule

Tasks and Functions 133

The count_bits function not only assigns a value to count_bits to set the return
value, but the function uses the pseudo-variable count_bits as a temporary variable
during its calculation.

A function can also be called in a continuous assignment. Whenever any one of the
inputs to the function changes, the function is called. This is consistent with the
behavior of the continuous assignment because a continuous assignment is
reevaluated whenever anything on the RHS changes. Example 11-9 provides an
example of a mux implemented with a function and a continuous assignment.

Example 11-9 Mux with Function and Continuous Assighnment

module muxfunc(y,a,b,c,d, sel);
output [7:0] v;

input [7:0] a,b,c,d;

input [1:0] sel;

assign y = muxfunct (sel,a,b,c,d) ;

function [7:0] muxfunct;
input [1:0] sel;

input [7:0] a,b,c,d;
case(sel)

2'p00 : muxfunct = a;
2'b01 : muxfunct = b;
2'pl0 : muxfunct = c;
2'bll : muxfunct = d;
default : muxfunct = 8'bx;
endcase
endfunction
endmodule

A function generally returns only one value. But there is a trick to make a function
return more than one value: Use the concatenation. Example 11-10 presents an 8-bit
integer divide function that returns both the quotient and remainder of an 8-bit
division.

134 Verilog Quickstart

Example 11-10 Divide Function Returning Two 8-Bit Values

module divfunc;
reg [7:0] a, b, g, r;
initial begin
a=>5; b=3;
doit;
a = 187; b = 3;
doit;
a = 255; b = 18;
doit;
end

task doit;
begin
{q,r} =div(a,b);
sdisplay (
"%d goes into %d %d times with a remainder of %d4d",
b, a, q, r);
end
endtask

function [15:0] div;
input [7:0] dividend, divisor;
reg [7:0] quotient, remainder;
begin
quotient = dividend / divisor;
remainder = dividend % divisor;
div = {quotient,remainder};
end
endfunction

endmodule

This module also has a task that calls the function and displays the results to keep
the code from getting cluttered by excessive $display statements. The results are
shown in Example 11-10 Results.

Example 11-10 Results (for divfunc.v)

3 goes into 5 1 times with a remainder of
3 goes into 187 62 times with a remainder of
18 goes into 255 14 times with a remainder of

WEN

Functions and Integers

The declaration of a function or the inputs to a functions can be declared as integer.
Example 11-11 shows a function with integers and the results.

Tasks and Functions 135

Example 11-11 Function with Integers

module add;
initial begin
Sdisplay ("1l + 2 is %$0d", add(1,2));
Sdisplay ("47 + 32'hffff_ffff is 04",
add (47,32 'hffff ffff));
end

function integer add;
input a, b;
integer a, b;

add = a + b;
endfunction

endmodule

The results are shown below in Example 11-11 results. The 2's complement of -1 is
32'hfftf.

Example 11-11 Results

1+ 2 1is 3
47 + 32'hffff ffff is 46

Automatic Functions

IEEE 1364-2001 adds a new keyword to function declarations automatic. Automatic
functions do not have static data, the data is allocated when the function is called.
Therefore with an automatic function it is now possible to create recursive
functions. Example 11-12 shows a simple exmaple.

Example 11-12 Automatic Recursive Function

function automatic integer factorial;

input I;
if(I==1)
factorial = 1;
else

factorial = I * factorial (I-1);
endfuction

136 Verilog Quickstart

Exercise 5 Functions and Continuous Assignments

Now that you know about functions and continuous assignments, modify your result
from the previous exercise so a function calculates carry and aluout. Assign the
values to aluout and carry from the function in a continuous assignment. Use two
more continuous assignments; One to calculate zero and one to calculate parity.
Test your new ALU using the same test bench from the previous exercise.

12 ADVANCED PROCEDURAL MODELING

USING THE EVENT DATA TYPE

In Chapter 1, the phone example used the wait for event (@) operator and the
signal event (->) operator. The signal event (->) is an operator that only works with
the event data type and the wait for event (@) operator. Events have no value or
duration. All they do is indicate something happened. Example 12-1 shows how the
signal event operator (->) works.

Example 12-1 Using the event Data Type

module show event;
event the event, something else;

always @ the event begin
Sdisplay ("The event happened at time %0d4d", S$time);
-> gomething_ else;

end

138 Verilog Quickstart

always @ something else S$display ("something else happened") ;

initial begin
2 -> the_event;
5 —-> something else;
1 -> the_ event;

end

endmodule

At time 0, both always blocks in Example 12-1 start and wait for their events. At
time 2, the initial block signals the_event; the first always block continues, prints its
message, and signals the other always block; and the second always block also
prints its message. At time 7, the initial statement signals something else and the
second block prints its message again. Finally, at time 8, the initial block signals
the first always block, which signals the second always block, and both messages
print.

The example shown in Example 12-1 has no practical application. What is a good
use for the signal event operator (->) ? Suppose you are modeling a processor that
has several things that it does, such as fetch, execute, and store. You could model
each part of the behavior with a separate always block. You could also use the
signal data type to model conditions such as reset, errors, or completion. Example
12-2 is a partial example of a processor model.

Example 12-2 Using Events To Simplify Modeling

module event_processor (clock,);
input clock, ...;
event fetch, execute, store, reset, error, halt;

initial -> reset;

always @ (reset or fetch) begin
@ (posedge clock) ...
. // code that does a fetch cycle
@ (posedge clock) ...
—-> execute
end

always @ execute begin
@ (posedge clock)
. // code that does an execute cycle
@ (posedge clock) ...
if (some condition) -> store;
if (something bad) -> error;
if (opcode == halt_code) -> halt;
end

Advanced Procedural Modeling 139

always @ error begin
sdisplay ("processor error occurred") ;
$stop;

end

The event data type is generally not used for synthesizable code. One of the best
places to use the event data type is in testbenches. Test benches for complex systems
often need to go through reset or pre-load sequences before a test can be applied.
The reset or pre-load code could be common to many tests and an event may be
used to signal when the actual test sequence may begin.

PROCEDURAL CONTINUOUS ASSIGNMENTS

So far you have learned how to use the procedural assignment (which is like a
typical assignment in a programming language) and the continuous assignment
(which acts like combinatorial logic). The procedural continuous assignment has
unique characteristics, and it shares characteristics with each of the other two
assignments, but is identical to neither. The procedural continuous assignment
overrides the normal behavior of a reg.

Example 12-3 illustrates a simple flip-flop module.

Example 12-3 A Simple Flip-Flop

module ffl(qg,clk,d);

output qg;
reg dqd;
input clk,d;

always @(posedge clk)
g <= # (" REG_DELAY) d;
endmodule

If we want to add an asynchronous reset to the flip-flop, we could modify the first
always block to be sensitive to changes on both clk and reset, or we could add a
second always block, as seen in Example 124.

140 Verilog Quickstart

Example 12-4 A Flip-Flop with a Bad Reset

module ff2bad(g,clk,d,reset) ;
output qg;
reg q;
input clk, d, reset;
always @ (posedge clk)
g <= #(> REG_DELAY) d;
always @Qreset
if (reset) g<=#(REG_DELAY) O;
endmodule

The module in Example 124 looks like it might work. But what happens if reset is
high for many clock cycles? The g=0 statement executes when reset first occurs, but
if the clock signal arrives, the g=d statement can also execute. Thus, the flip-flop
does not stay reset because both the procedural assignments have the same
precedence.

The procedural continuous assignment has higher precedence than the procedural
assignment, so this module can be fixed as shown in Example 12-5.

Example 12-5 A Flip-Flop with Reset

module ff2(qg,clk,d, reset);
output g;
reg q;
input clk, d, reset;
always @ (posedge clk)
g <= # ("REG_DELAY) d;
always @Qreset
if (reset)
assign g=0;
else
deassign g;
endmodule

As you can see, the procedural continuous assignment (PCA) consists of two
statements: The assign and deassign. Whenever reset changes, the if evaluates the
state of reset. If reset is 1, then the assign statement is executed and the value of ¢
is overridden to 0. Even if the statement g-d is executed, the value of g remains O.
When reset changes and the value is not 1, the deassign statement is executed and ¢
reverts to its normal behavior, and the value of ¢ changes the next time the g=d
statement is executed.

To further examine the behavior of the PCA, set can be added to the module, as
shown in Example 12-6.

Advanced Procedural Modeling 141

Example 12-6 A Flip-Flop with Incorrect Set and Reset

module ff3bad (g, clk,d, reset, set) ;
output qg;
reg d;
input clk, d, reset, set;
always @(posedge clk)
g <= #(REG_DELAY) d;
always @reset
if(reset)
assign g=0;
else
deassign q;
always @set
if(set)
assign g=1;
else
deassign qg;
endmodule

With this module, it was easy to add the sef condition by duplicating and modifying
the reset code. But there is a problem with this module: What happens when both
set and reset are 1? That is an illegal condition. When set and reset are both 1, and
one of them goes to 0, a deassign statement executes. Once a deassign statement is
executed, the behavior of g reverts to normal (since the PCA is no longer overriding
the procedural assignment), and the g=d statement will have effect.

Note this sequence of events: d is 0; clock is 0; reset is 1; therefore ¢ is 0. Next, set
goes to 1, so g goes to 1. Finally, reset goes to 0. The deassign statement is
executed, but g stays 1, its former value. (Remember, set is still 1.) Now the clock
rises and the g=d statement executes. Because the deassign statement was executed,
there is no override in effect for g and g goes to O even though set is 1. Therefore
Example 12-6 is a bad model.

Example 12-7 is the final flip-flop model with set and reset working properly.

Example 12-7 A Flip-Flop with Correct set and reset

module ff3(qg,clk,d,reset, set);
output g;
reg d;
input clk, d, reset, set;
always @(posedge clk)
g <= #(REG_DELAY) d;
always @(reset or set)
case({reset,set})
2'000: deassign q;
2'bl0: assign g=0;

142 Verilog Quickstart

2'b01: assign g=1;
default: assign g=1'bx;
endcase
endmodule

You have just seen only one part of the behavior of the procedural continuous
assignment (PCA), the overriding of the normal behavior of a reg.

Consider, for a moment, the following mux-like module.

Example 12-8 Incorrect Mux

module muxlbad(y,a,b,c,d, sel);
input a,b,c,d;
input [1:0] sel;
output v;
reg v;
always @(sel)
case(sel)
2'b00
2'b01
2'bl0
2'bll
endcase
endmodule

o
QN oY

~e

LS

So what is wrong with the mux in Example 12-8? The output y will only change
when sel changes. If sel is 0 and a changes, the output y will not change. Thus, this
is not a good mux. One way to fix this mux would be to make the always block
sensitive to all the inputs changing. You could do this by changing @(sel) to @(sel
ora or b or c or d). This section of the book is about the PCA, so Example 12-9
shows how to fix this mux using the PCA.

Example 12-9 Mux with PCA

module mux2 (y,a,b,c,d,sel);
input a,b,c,d;
input [1:0] sel;
output y;
reg y;
always @(sel)
case(sel)
2'b00 : assign y
2'b01l : assign y
2'bl0 : assign y
2'bll : assign y
endcase

205w

Advanced Procedural Modeling 143

endmodule

Using the PCA, whenever sel changes, a different assignment is executed. Just as
with the continuous assignment, the left-hand side (LHS) of an active PCA gets a
new value whenever the right-hand side (RHS) changes. Now this module behaves
like a mux.

To summarize the PCA: It overrides the normal behavior of a reg. Only one PCA
can be active on a reg at a time. The last PCA executed is the PCA in effect. The
deassign statement stops the effect of the PCA and the next procedural assignment
to the reg takes effect normally.

With the introduction of the PCA you have seen all three types of assignments
summarized in Table 12-1:

Table 12-1 Summary of Assignment Types

Assignment Type LHS When Evaluated Where in Module
Procedural reg When In procedural
assignment encountered block
Continuous net Whenever RHS On its own
assignment changes

Procedural reg When In procedural
continuous encountered, block
assignment then whenever

RHS changes,
Until deassign

LHS = Left Hand Side (destination of assignment)
RHS = Right Hand Side (operands in assignment)

The procedural continuous assignment is generally not used in synthesizable code.
The previous examples were used to illustrate the behavior of the procedural
continuous assignment. Example 12-10 has nothing to do with the procedural
continuous assignment but illustrates the proper coding technique for a
synthesizable flip-flop.

144 Verilog Quickstart

Example 12-10 Proper Synthesizable Flip-Plop

module £f_syn(qg, clk,d, reset, set) ;

output qg;

reg g;

input clk, d, reset, set;

always @(posedge clk or posedge reset or posedge set)

if (reset)
g <= #(REG_DELAY) 0;
else
if (set)
g <= # ('REG_DELAY) 1;
else

g <= # ('REG_DELAY) d;
endmodule

A REMINDER ABOUT PORTS AND REGS

In Chapter 4, you learned that only output ports can be regs, and that inout ports
must be nets. Now that you are about to try to use inout ports, this is worth
repeating because you will generate an error if you try to declare an input or inout
port as a reg. Figure 12-1 shows the possible relationships of ports and regs. In high
level modeling you will often want to declare an inout port as a reg, but this will not
work. Actually, you only want to declare the output side of an inout port as a reg.

inputs: D [outputs:

reg or net net only inside D—'— 2 1 ‘

outside T ine g o
net or reg inside | outside

inouts: net only inside

¥
f

inouts: net only outside

Figure 12-1 Relationships of ports and regs

MODELING WITH INOUT PORTS

Because inout ports cannot be regs, how is it possible to do high level modeling
with inouts? The key is to have a reg for the output and a continuous assignment to
the port. When sampling the input side of the inout, put a z in the reg, and read the
port. When driving a value out, place the value in the output reg.

Advanced Procedural Modeling 145

Example 12-11 inout Port Connected to a Reg

module iol(data, read, write);
inout data;

input read, write;

reg port_reg, internal reg;

always @read
if(read)
port_reg = internal_reg;
else
port_reg = 1l'bz ;

always @(posedge write)
internal reg = data;

assign data = port_reg ;

endmodule

Example 12-11 shows an output reg directly connected to an inout port through a
continuous assignment.

Putting a z in the output reg is like turning off the driver on the port. This model
can be simplified by making the continuous assignment control whether or not the
reg is connected. Example 12-12 shows how the continuous assignment was
changed so the reg can be disconnected from the inout port.

Example 12-12 Reg with Controllable Connection to inout Port.

module io2(data, read, write);
inout [15:0] data;

input read, write;

reg [15:0] internal_reg;

always @(posedge write)
internal reg = data;

assign data = read ? internal_reg: 16'bz ;

endmodule

The io2 module illustrates how the io/ module could easily be expanded to be more
than 1 bit, and how the module could be simplified by using a continuous
assignment to turn off a reg from driving an inout port.

146 Verilog Quickstart
NAMED BLOCKS

In Chapter 4, the begin-end and fork-join blocks were introduced. Both of these
blocks can also be named. Naming a block allows the block to have local variables.
Named blocks can be referenced with the disable statement to stop the execution in
the block. (The disable statement is introduced in the next section.) To name a
block, place a colon and the name for the block directly after the begin or fork
statement. Example 12-13 shows both named begin-end and fork-join blocks with
local regs.

Example 12-13 Named Blocks

module nameblock;
reg a;
initial begin : bl
reg a;
a=1;
end
initial fork :I2
reg a;
a = 0;
join
endmodule

In this module, the three regs are unique regs. The regs each have a unique
hierarchical name. The top level a is just named a; the other two regs are b/.a and
b2.a. The block names can be any legal Verilog identifier. The block names 5/ and
b2 are used for simplicity.

THE DISABLE STATEMENT

The disable statement is a way of stopping execution in a named block or task. The
disable statement is useful for handling time-outs and reset conditions. The disable
can even be used within a named block or task to stop itself. To use the disable
statement, insert the disable keyword and the name of the block or task. Example
12-14 illustrates some examples.

Advanced Procedural Modeling 147

Example 12-14 The disable Statement

moduledisablel;
initial begin

do_it;

Sdisplay("Finished do it at time %0d4d",Stime) ;
end

initial begin
#55 disable do_it;
end

task do_it;
forever
#10 Sdisplay("doing it at time %0d4",Stime) ;
endtask

endmodule

The code in Example 12-14 finishes at time 55. Normally the task do_it would
never finish due to the forever loop in it. The disable of do_it causes the task to
immediately exit, so at time 55 the task exits and the message “Finished do it at...”
prints. The output from Example 12-14 is shown below in Example 12-14 Results.

Example 12-14 Results (for disable1.v)

Compiling source file "disablel. v"
Highest level modules:
disablel

doing it at time 10
doing it at time 20
doing it at time 30
doing it at time 40
doing it at time 50
Finished do it at time 55

If you disable a begin-end block inside an always statement, what happens? The
begin-end block immediately finishes. Because an always statement is a loop that
starts again from the top when its statement finishes, the begin-end block starts
again from the top. This behavior makes the disable an easy way to implement a
reset for large segments of high level code. Example 12-15 shows a partial model of
a complex CPU in which disable is used for reset.

148 Verilog Quickstart

Example 12-15 disable Used To Model Reset

module cpu;
reg reset, clock;

initial begin
clock = 0;
reset = 1;
#10 reset
#10 reset
#10 reset
#20 $finish;

end

~e N

0
1
0

~

always #1 clock = ~ clock;

always begin : fetch
@ (posedge clock)
if (reset) disable fetch;
Sdisplay ("fetch process ready") ;
// there would be code here for
// the ongoing fetch process
#10000 sdisplay ("fetch process done") ;
// in a real processor the fetch process
// might be an infinite loop
end

always begin : execute
@ (posedge clock)
if (reset) disable execute;
Sdisplay ("execute process ready") ;
// there would be code here for
// the ongoing execute process
#10000 sdisplay ("execute process done") ;
// 1in a real processor the execute process
// might be an infinite loop
end

always @ (posedge reset)
begin
disable fetch;
disable execute;
end

endmodule

The last always block that checks for reset handles the asynchronous nature of
reset. Thus, the other blocks do not need to check for reset through their code. The
fetch and execute blocks check for reset, and then disable themselves so that they
will not continue if reset is still asserted. It is important that there is a delay or
event control between the start of an always loop and the statement that self-disables
the block. If there is no delay or event control, the always loop may become a zero-

Advanced Procedural Modeling 149
delay infinite loop under the condition that it self-disables. Zero-delay always loops
stop the progression of simulation time and your simulation freezes or hangs.
WHEN IS A SIMULATION DONE?

There are three ways a simulation can terminate:

1. When the simulation runs out of events to process.

2. When the simulation encounters a $finish command.

3. Through user intervention.

A simulation such as the hello simulation finishes when it has evaluated all
available high level statements, or gates to evaluate. Most simulations include
clocks that never terminate, so it is unlikely that many simulations will be
terminated by running out of events to process.

The simplest way to ensure a simulation will terminate in a timely fashion is to

include a $finish in the test bench. This is often done with a statement similar to the
one shown in Example 12-16.

Example 12-16 Controlling When a Simulation Finishes

initial #1000 $finish;

With this statement, we know the simulation will terminate at time 1000. The only
problem with this method is that if more stimulus is added, the simulation might
terminate before the end of the stimulus. So if you use a separate initial block like
this to end your simulation, be sure to calculate how far you want it to run before it
terminates.

Often the $finish statement is included at the end of the stimulus (or elsewhere in
the test bench) to check for the final test having been applied. If the correct
conditions to terminate the simulation never occur (for example, if your code
includes a zero-delay always loop), the simulation may never end on its own.

If the simulation does not terminate on its own by running out of events to process
or by encountering a $finish statement, the only other way to stop Verilog is through
user intervention. To manually stop Verilog, press Control-C (in most systems), or
click the stop or interrupt button if you are using a graphical user interface. Once
you have interrupted Verilog, you can issue the $finish; command manually on a

150 Verilog Quickstart

command line, or issue the exit command from a menu of a graphical interface
system.

13 USER-DEFINED PRIMITIVES

Although the aim of this book is to teach high level modeling in Verilog, the book
would not be complete without mentioning user-defined primitives (UDPs). A UDP
describes a piece of logic with a truth table. UDPs can be either combinatorial or
sequential. As you may recall, the Verilog primitive set does not include any muxes,
AND-OR-INVERT gates, or flip-flops. You can model all of these simple functions
with UDPs.

Why use UDPs? For some types of logic, a truth table may be the easiest way to
model them. The main reason UDPs are used is performance: Verilog evaluates
UDPs quickly, and UDPs take up only a small amount of memory. For example, a
mux is typically modeled with an inverter, two AND gates, and an OR gate. These
four gates can be replaced with a single UDP. Flip-flops, which take even more
gates to model than a mux, can be replaced by a UDP. The most common use for
UDPs is in modeling a library of ASIC cells or standard components.

152 Verilog Quickstart
COMBINATORIAL UDPS

The simplest thing you might want to model with a UDP is a mux. If you want to
model a mux, is the mux optimistic or pessimistic? If the two inputs are 1, and the
select is unknown, is the output 1 or x? Because it is your UDP, you get to choose
which result you want.

Optimistic Mux

This mux is optimistic because if the inputs are the same and the select is unknown,
the input still propagates.

Example 13-1 Optimistic Mux UDP

primitive omux(y, sel, a, b);

output vy;
input sel, a, b;
table

// This is an optimistic line.
// This one too!

endtable

endprimitive

Pessimistic Mux

This mux does not include lines for an unknown select. Therefore it is more
pessimistic than the mux in Example 13-1 because the output will be unknown.

User-Defined Primitives 153

Example 13-2 Pessimistic Mux UDP

primitive pmux(y, sel, a, b);
output vy;

input sel, a, b;

table

// s ab: Y

1

J

PR OO
vV O
oo

RPORFr O

endtabl
endprimitive

The Gritty Details

UDPs always have scalar inputs (1 bit wide). Combinatorial UDPs can have up to
ten inputs (you would not want to create a table larger than that anyway). UDPs in
original Verilog have only one output. The current IEEE 1364 standard provides for
multiple-output UDPs, but this is not common yet. Just as with the built-in
primitives, the output port must be the first port in the port list.

UDPs start to look a bit like modules except that module-endmodule is replaced by
primitive-endprimitive. The other major difference between UDPs and modules is
that instead of the usual module contents, there is only the fable-endtable construct
in the body of the UDP. Table 13-1 shows the symbols used so far, and what they
mean.

Table 13-1 Basic UDP Table Symbols

Symbol Description

0 Logic 0
1 Logic 1
X Unknown
? Match 0, 1, or x

If a set of inputs is not covered by a line in the table, the output will be unknown.
One of the most common errors in creating UDPs is to omit one or more
combinations of inputs, with the result that the output unexpectedly becomes
unknown. Verilog produces an error message if two lines in a UDP describe the
same condition with different outputs. Verilog issues a warning if two lines contain
the same input and output description.

154 Verilog Quickstart

The order of the columns in the table entries is determined by the port list, not by
the order that the ports are declared in the input statement(s). Although the
comment just after the rable keyword is not required, it is good modeling practice to
label the columns of the table. As you can see from the examples, each line of the
table contains the set of inputs, followed by a colon, then the output, and ends with
a semicolon. White space is not required in the table so the code in Example 13-3 is
legal but difficult to read.

Example 13-3 One-Line UDP

primitive umux(y, sel, a, b); output y; input sel, a, b;
table 007:0;01?:1;1?0:0;1?1:1; endtable

endprimitive

SEQUENTIAL UDPS

Because Verilog does not include a set of built-in latches and flip-flops, latches and
flip-flops are commonly modeled with UDPs, as shown below in Example 13-4 and
Example 13-5.

Example 13-4 Level-Sensitive D Latch

primitive dlatch(qg, ena, 4d);

output qg;

reg q;

input ena, d;

table

// e d :
10
11
02 :

endtable

endprimitive

I 0 0 Q

//no change on low enable

User-Defined Primitives 155

Example 13-5 Edge-Sensitive D Flip-Flop

primitive dff(qg,clk,d);
output g;

reg q;

input clk, d;

table

// ¢ d :

* 0 RO

-; //no change on falling clock

r
r
£
? -; //no change on steady clock

0 U 0 Q

endtable
endprimitive

The sequential UDP differs slightly from the combinatorial UDP. First, the output is
declared as a reg to alert Verilog that this is a sequential UDP, not a combinatorial
one. Next, notice that the table has an extra column, separated by colons. This field
represents the current state of the output. The final column is the next output. There
are also a few new symbols used in the table, as listed in Table 13-2.

Table 13-2 Symbols for Sequential UDP Tables

Symbol Description

r Rising a change from 0 to 1
f Falling a change from 1 to 0
¥ Any change

- The output remains unchanged

The r and f are quick ways to show a transition. The primitive in Example 13-6
describes exactly the same table as for the flip-flop in Example 13-5.

156 Verilog Quickstart

Example 13-6 Flip Flop Using Explicit Edge Definitions

primitive dffl(qg,clk,d);

output g;

reg q;

input clk, d;

table

// clk d :
(01) 0 :
(01) 1 :
(10) ? :
?(??) ¢

endtable

endprimitive

: gt
O.
l.
//no change on falling clock

//no change steady clock, data changing

DVERIVIEN KV o]

]
!
7

7

Any transition on any of the input signals may be used. A UDP may be edge-
sensitive to a clock, but level-sensitive to set and reset signals. In a sequential UDP,
each row of the table may only contain one transition. There is no way to specify
edges on two signals at the same time.

One of the most common problems with sequential UDPs is that the output can
unexpectedly go to x. This is usually caused by omitting a condition from the UDP’s
table. In a sequential UDP, all transitions that do not affect the output must be
specified, otherwise the output will go to x. That is why (in the D flip-flop
examples) there is an entry for when the clock is steady and the data change. If that
line were omitted, when the clock is steady and data changed, the output would go
to x. With an edge-sensitive UDP, the output must be specified for all edges of all
inputs, or the output will become unknown. In the dff and dff! primitives, the
transitions of clock from O to x, x to 1,1 tox, and x to O are not specified, so any of
these will set the output to x.

Sequential UDPs are limited to nine inputs (instead of the ten allowed by
combinatorial UDPs) because the previous output is counted as one of the inputs for
the table.

A sequential UDP may have its output initialized by adding an initial statement to
the UDP. The initial statement in a UDP may only set the output of the UDP to a
constant. The procedural assignment setting the register to a constant is the only
statement allowed in an initial block in a UDP.

User-Defined Primitives 157

Example 13-7 Initial Block in a UDP

primitive dff2(qg,clk,d);
output g;

reg q;

input clk, d;

initial g = 0;

table
// cd a: gt
PO ?: 0;
P 1 ? 0 1;
n?: ?: —-; //no change on falling clock
? ks ? -; //no change on steady clock
endtable
endprimitive

UDP INSTANCES
UDP instances look exactly like instances of built-in primitives. UDP instances
optionally have instance names and delay specifiers. See Appendix A for more

details on primitive instances.

Table 13-3 summarizes the differences between built-in primitive instances, user-
defined primitive instances, and module instances.

Table 13-3 Summary of instance Types

Instance Type Instance Port Order Port Size Delay Name Of
Name Specification Device
Built-in Optional Output 1 bit Optional Built in
primitive first reserved
names
UDP Optional Output 1 bit Optional User-
first defined
Module Required User- User- None User-
defined defined defined

THE FINAL DETAILS
UDPs may not use z (high impedance) in their input or output specifications. UDPs
with more inputs are more error prone and use more memory, so it is not

recommended to use UDPs with more than six inputs.

Table 134 provides a list of all the UDP table symbols used in Verilog.

158

Verilog Quickstart

Table 13-4 Complete List of UDP Table Symbols

Symbol Where Meaning
0 Input or Logic 0
output
1 Input or Logic 1
output
X Input or Unknown
output
? Input only Any of 0 1 or x
b Input only Either 1 or 0
(mn) Input only A change from m to n
r Input only Rising edge (01)
P Input only Possible rising edge (01) (0x) (x1)
f Input only Falling edge (10)
n Input only Possible negative edge (10) (1x)
(x0)
% Input only Any edge (?7?)
- Sequential No change
output
Exercise 6 Using UDPs

Start with the 8-bit adder from exercises 2 and 3, repeated in Figure 13-1. This 1 bit
adder used several built-in primitives. All of those gates can be replaced with two
UDPs. Design two combinatorial UDPs. The first UDP should have three inputs,
and generate a sum. The second UDP should have the same three inputs and
generate a carry. Now create an adder module just like the one from exercise 2, but
instead of the gate instances, you will have instances of your two new primitives as
shown in Figure 13-2. Simulate the new adder with the 2-, 4-, and 8-bit adders from
exercise 2 and the test bench. You should get the same results.

User-Defined Primitives 159

[a]

)
=))

Cin

Figure 13-1 Adder Using Five Buliit-in Primitives

[a] UDPI
carry_gen Cout

UDP2
| B : sum_gen Sum

Cin
Figure 13-2 Adder Using Two UDPs

This Page Intentionally Left Blank

14 PARAMETERIZED MODULES

One big advantage of designing with Verilog is the ability to parameterize modules.
You can design a generic adder and decide how many bits you need later. You can
use the same parameterized adder as a 5-bit adder in one place and as a 64-bit adder
elsewhere. Parameters are often used to describe the word size of a module, the
number of words in a memory, or even delays. Delays are more commonly set up
with a specify block that can be annotated with actual delays from an SDF file.

There are two Verilog keywords associated with parameters: parameter and
defparam. When you define a parameterizable module, use the parameter keyword.
When you instantiate a parameterized module, you can use the defparam statement
to override the default value of parameters in the module.

parameters are used as constants. The only legal way to change the value of a
constant is with the defparam statement, parameters and defparam statements are
evaluated only during compilation. parameters cannot be changed during
simulation time. The values are set at compile time. parameters are by default 32-
bit values. It is not common, but the size of a parameter may be changed by
specifying arange in the same way wire and register ranges are declared.

162 Verilog Quickstart

Various formats of the parameter statement are shown in Example 14-1.

Example 14-1 parameter Statements

parameter <parameter name> = <default value> ;

parameter size = 4;
parameter [3:0] width = 2;
parameter [1:11*8] hello_message = "hello word";

The best way to learn parameters is to see them in use.

N-BIT MUX

Example 14-2 illustrates a module of a n-bit wide 4-to-1 mux. It has a default word
size of 32 bits.

Example 14-2 n-Bit Wide 4-to-1 Mux

module nmux4 (a,b,c,d,sel,vy);

// Parameterized n bit wide 4 to 1 mux.
parameter size = 32; // default to 32 bits
input [size-1 : 0] a,b,c,d;

input [1:0] sel;

output [size-1 :0] vy;

reg [size-1 :0] vy;

always @ (a or b or ¢ or d or sel)
case (sel)

0 : vy =a;
1 :y=Dh;
2 1y =cC;
3 : vy =4d;
default : y = 'bx; // will automatically size to fit
endcase
endmodule
N-BIT ADDER

Example 14-3 shows a model of a simple parameterized adder. The adder has two
inputs and an output that defaults to 32 bits.

Parameterized Modules 163

Example 14-3 Parameterized Width Adder

module nadder (cout, sum, a,b,cin);

// Parameterized n bit wide behavioral adder
parameter size = 32; // default to 32 bits
input [size-1 : 0] a,b;

input cin;

output [size-1 :0] sum;

output cout;

assign {cout,sum} = a + b + cin;

endmodule

N BY MMUX

Example 14-4 illustrates a more complicated model: A mux that has both
parameterized width and a parameterized number of inputs. Because Verilog does
not have an easy way to model a parameterized number of inputs, this model takes
all the inputs as one long vector.

Example 14-4 Mux with Parameterized Width and Number of Inputs

module muxMtol (Z, SEL, D);

// number of bits wide
// number of inputs
; // number of select lines

parameter N
parameter M
parameter S

non
N 0

parameter W = M * N;
‘define DTOTAL W-1
‘define DWIDTH N-1
‘define SELW S-1:
‘define WORDS M-1

input [DTOTAL] D;
input [* SELW] SEL;
output [DWIDTH] Z;

integer i;
reg [DWIDTH] tmp, Z; // tmp will be use to minimize events

always @(SEL or D) begin
for(i=0; i < N; i =1+ 1) // for bits in the width
tmp[i] = DIN*SEL + i];
Z = tmp;
end

endmodule

164 Verilog Quickstart

NBY MRAM

Example 14-5 shows a simple memory model with parameterized width, a number
of words (address bits), and delays. This is an extremely simple memory model and
does not completely model all the behaviors of a static RAM.

Example 14-5 Parameterized RAM

/* module for a simple parameterized ram */

module ram(data, address, read, write);

parameter width 16 ; //default word size

parameter abits 8 ; // default number of address bits

parameter twdh = 10; // write data hold
parameter trd = 25; // rd to output delay
input [abits-1 : 0] address;

inout [width-1 : 0] data;

input read, write;

// declare the internal storage

reg [width-1 : 0] imem [0 : (l<<abits)-1] ;
/*
Simple behavior of a static type ram
write occurs when write is 1.
to act more like a real static ram, if the data changes
while write is asserted the data in the memory is changed
*/
always @(write or data)

if (write)
twdh imem[address] = data ;
assign #trd data = read ? imem[address] : 'bz;

/*
convenience task for displaying the contents of the memory
during interactive debug

*/

task dump;
input [31:0] low, high;
integer i;
begin
for(i=low; 1 <= high; i=i+1)
Sdisplay("imem[%h] = %h",i,imem[i]);
Sstop;
end
endtask

endmodule

Parameterized Modules 165
USING PARAMETERIZED MODULES

The parameter statements in parameterized modules set default values for the
parameters. The parameter default values may be overridden on an instance-by-

instance basis with the defparam statement. The format for the defparam statement
is shown in Example 14-6.

Parameter Passing by Name

Example 14-6 The defparam Statement

defparam <instance name>.<parametername> = <value>

Example 14-7 uses the parameterized adder and creates three instances. One
instance is 5 bits wide, one instance is the default 32 bits wide, and one instance is
expanded to 128 bits wide.

Example 14-7 Using Parameterized Modules

module use_defparam;

wire [4:0] a5, b5, c¢5; // some 5 bit wires

wire [31:0] a32, b32, c32; // some 32 bit wires
wire [127:0] biga, bigb, bigc; // some 128 bit wires
wire xX,v,z;

// create some instances of the n bit adder
nadder al (z,a5,b5,c5,x);

nadder a2 (z,a32,b32,c32,x);

nadder a3 (z,biga,bigb,bigc,x);

defparam al.size =
defparam a3.size = 128;

endmodule

Parameter Passing by Order

Parameters can be passed by order directly in the statement creating the instance.
Example 14-8 shows the syntax for parameter passing by order. The parameter
passing by order syntax is shorter and more compact for simple modules with few
parameters. The ram module in Example 14-5 has 4 parameters. Using the
parameter passing by order you can pass some or all of the parameters but there is

166 Verilog Quickstart

no way to pass just the later parameters. For example if we had only wanted to pass
trd to the ram module we would still need to pass the first three parameters.

Example 14-8 Parameter Passing by Order

module use_defparam order;

wire [4:0] a5, b5, c5; // some 5 bit wires

wire [31:0] a32, b32, c32; // some 32 bit wires
wire [127:0] biga, bigb, bigc; // some 128 bit wires
wire x,v,z, read, write;

wire [31:0] data;

wire [3:0] address;

// create some instances of the n bit adder
nadder #(5) al (z,a5,b5,c5,x);

nadder a2 (z, a32,b32,c32,x);

nadder #(128) a3 (z,biga,bigb,bigc,x);

// The ram example has 4 parameters

ram #(32,4,2,7) rl(address, data, read,write);

endmodule

Parameter Passing by Named List

IEEE 1364-2001 adds a new syntax for passing parameters by name, the syntax is
quite similar to the module port connect by name syntax. The parameter passing by
named list is compact and passes the parameters in the module instance statement;
it eliminates the need for passing all the parameters if you only want to pass one of
the latter parameters.

Parameterized Modules 167

Example 14-9 Parameter Passing by Named List

module use_defparam_named_list;

wire [4:0] a5, b5, c¢5; // some 5 bit wires

wire [31:0] a32, b32, c32; // some 32 bit wires
wire [127:0] biga, bigb, bigc; // some 128 bit wires
wire x,y,z, read, write;

wire [15:0] data;

wire [7:0] address;

// create some instances of the n bit adder
nadder #(.size{5)) al (z,a5,bb5,c5,x);

nadder a2 (z,a32,b32,c32,x);

nadder #(.size(128)) a3 (z,biga,bigb,bigc, x) ;
// The ram example has 4 parameters

ram #(.twdh(2), .trd(7)) rl(address, data, read,write);

endmodule

Values of parameters in module instances

A parameter that is not passed will have its default value. If a parameter value is an
equation such as Win Example 14-4, the value is recalculated if any of the values in
the equation are passed. It is possible to bypass the equation by passing a value to a
calculated parameter.

This Page Intentionally Left Blank

15 STATE MACHINES

STATE MACHINE TYPES

There are two types of state machines: Mealy machines and Moore machines. You
can model both types of machines in Verilog. The difference between Mealy and
Moore machines is in how outputs are generated. In a Moore machine, the outputs
are a function of the current state. This implies that the outputs from the Moore
machine are synchronous to the state changes. In a Mealy machine, the outputs are
a function of both the state and the inputs.

A state machine can be broken down into three parts: The state register, the next-
state logic, and the output logic.

A state machine can be depicted as shown in Figure 15-1.

170

next-state

inputs logic

state
register

Figure 15-1 Moore State Machine

Verilog Quickstart

output
logic outputs

Figure 15-1 can be modified to bring the inputs through to the output logic, thus

creating a Mealy state machine, as shown in Figure 15-2.

next-state
inputs logic

state
register

Figure 15-2 Mealy State Machine

output
logic outputs

To model a state machine in Verilog, you must model each of the three parts of the

state machine.

State Machines 171

STATE MACHINE MODELING STYLE
Because a state machine is made up of three parts, you have a choice whether to
model each section independently, or to try to combine the parts into one section of

the model.

Table 15-1 shows some interesting combinations:

Table 15-1 State Machine Styles

Style State Register Next-State Logic Output Logic
1 Separate Separate Separate
2 Combined Combined Separate
3 Separate Combined Combined
4 Combined Combined Combined
5 Combined Separate Combined

In the first style, each of the functional blocks is modeled in a separate always
block. The state register logic is modeled as an always block, and the next-state
logic and output logic are separate always blocks, representing combinatorial logic.
Because the output section can be modeled as either sensitive only to changes on
state or also sensitive to changes on inputs, you can use this to model both Mealy
and Moore machines. This style is the most modular; it may take a few more lines
of Verilog code, though it may be the easiest to maintain.

The second style combines the next-state logic and the state register. This style is a
good style to use because the next-state logic and state register are strongly related.
This style is more compact than the first, and may even be more efficient because
the next-state logic is only evaluated on clock edges, rather than whenever an input
changes. If your state machine has many inputs that change frequently, this may be
a better style to use than the first. This style has the output as a separate section so
you can use this style to model both Mealy and Moore machines.

The third style leaves the state register in a separate always block, while combining
the next-state logic and the output logic. Because the next-state logic and the output
logic may be combinatorial, combining them still allows for modeling both Mealy
and Moore machines. However, this grouping does not tend to help the readability
of your code; styles 1 and 2 are easier to model and maintain.

The fourth style combines everything into one always block. The always block is
sensitive only to the clock for the state register, so this implies the outputs only
change with the state. Thus this style will only create Moore machines.

172 Verilog Quickstart

The fifth and final style combines the state register and output logic into one always
block, so again, this only creates Moore machines.

To demonstrate all these styles, with Moore and Mealy variations on them, we will
use a simple example. This example won’t be the traffic light controller, vending
machine, or a completely trivial state machine, but instead an automatic food
cooker. This cooker has a supply of food that it can load into its heater when
requested. The cooker then unloads the food when the cooking is done.

Besides clock, the inputs to this state machine are start (which starts a
load/cook/unload cycle); temp_ok (a temperature sensor that detects when the heater
is done preheating); done (a signal from a timer or sensor that detects when the
cooking cycle is complete); and quiet (a final input that selects if the cooker should
beep when the food is ready).

The outputs from the machine are load (a signal that sends food into the cooker);
heat (a signal that turns on the heating element, which has its a built-in temperature
control); unload (a signal that removes the food from the cooker and presents it to
the diner); and beep (a signal that alerts the diner when the food is done).

State Machines 173

Example 15-1 Style 1 Moore State Machine

module auto_oven_style_1_moore(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;

output load, heat, unload, beep;

reg load, heat, unload, beep;

reg [2:0] state, next_state;

“define IDLE 'b000
“define PREHEAT 'b001
“define LOAD 'b010
“define COOK 'b011
“define EMPTY 'b100

// State register block
always @ (posedge clock)
state <= #(REG_DELAY) next_state;
// next state logic
always @(state or start or temp_ok or done) begin
next_state = state; // default to stay in current state
case (state)
"IDLE: i1f (start) next_state='PREHEAT;
"PREHEAT: if (temp_ok) next_state = “LOAD;
"LOAD: next_state = “COOK;
"COOK: if (done) next_state='EMPTY;
"EMPTY: next_state = “IDLE;
default: next_state = “IDLE;
endcase
end

// Output logic
always @(state) begin

if (state == "LOAD) load = 1; else load = 0;
if (state == “EMPTY) unload =1; else unload = 0;
if (state == "EMPTY && quiet == 0) beep =1; else beep = 0;
if (state == ‘PREHEAT ||
state == “LOAD ||
state == "COOK) heat = 1; else heat =0;
end
endmodule

In style 1, as shown in Example 15-1, each section of the state machine is modeled
with a separate always block. Style 1 can be used to represent either a Moore
machine or a Mealy machine for our automatic oven. The difference between the
two styles is seen in the different behavior of the guier input and beep output. With
the Moore machine the diner must wait through the entire EMPTY state for the
beeper to be quiet. The Mealy version of this is for those diners who want the beeper
to sound, and then jump up to turn it off, as shown in Example 15-2.

174 Verilog Quickstart

Example 15-2 Style 1 Mealy State Machine

module auto_oven_style_1 mealy(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;

output load, heat, unload, beep;

reg load, heat, unload, beep;

reg [2:0] state, next_state;

“define IDLE 'b000
“define PREHEAT 'b001
“define LOAD 'b010
“define COOK 'b011
‘define EMPTY 'b100

// State register block
always @ (posedge clock)
state <= #(REG_DELAY) next_state;
// next state logic
always @(state or start or temp_ok or done) begin
next_state = state; // default to stay in current state
case (state)
“IDLE: if (start) next_state='PREHEAT;
"PREHEAT: if (temp_ok) next_state = “LOAD;
"LOAD: next_state = “COOK;
"COOK: if (done) next_state= EMPTY;

“EMPTY: next_state = “IDLE;
default: next_state = “IDLE;
endcase

end

// Output logic
always @(state or quiet) begin

if (state == "LOAD) load = 1; else load = 0;
if (state == “EMPTY) unload =1; else unload = 0;
if (state == "EMPTY && quiet == 0) beep =1; else beep = 0;
if (state == ‘PREHEAT ||
state == “LOAD
state == "COOK) heat = 1; else heat =0;
end
endmodule

Style 2 can also be used to express both Moore and Mealy machines. Example 15-3
and Example 154 are just slightly shorter because the next-state logic and register
are combined into one block of code. This also eliminates the need for the
next_state temporary variable.

Example 15-3 Style 2 Moore Machine

module auto_oven_style 2_moore(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);
input clock, start, temp_ok, done, quiet;

State Machines 175

output load, heat, unload, beep;
reg load, heat, unload, beep;
reg [2:0] state;

‘define IDLE 'b000
“define PREHEAT 'b001
“define LOAD 'b010
“define COOK 'b011
‘define EMPTY 'b100

// State register block
always @ (posedge clock)begin
case (state)
“IDLE: if (start) state='PREHEAT;
"PREHEAT: if (temp_ok) state <= #(REG_DELAY) " LOAD;
"LOAD: state <= #(REG_DELAY) " COOK;
“COOK: if (done) state='EMPTY;
"EMPTY: state <= #(REG_DELAY) 'IDLE;
default: state <= #(REG_DELAY) " IDLE;
endcase
end
// Output logic
always @(state) begin

if (state == "LOAD) load = 1; else load = 0;
if (state == 'EMPTY) unload =1; else unload = 0;
if (state == “EMPTY && quiet == 0) beep =1; else beep = 0;
if (state == ‘PREHEAT ||
state == "LOAD ||
state == "COOK) heat = 1; else heat =0;
end
endmodule

Example 15-4 Style 2 Mealy Machine

module auto_oven_style_2_mealy(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;

output load, heat, unload, beep;

reg load, heat, unload, beep;

reg [2:0] state;

‘define IDLE 'b000
“define PREHEAT 'b001
“define LOAD 'b010
“define COOK 'b011
‘define EMPTY '©100

// State register block
always @ (posedge clock)begin
case (state)
“IDLE: if (start) state='PREHEAT;
"PREHEAT: if (temp_ok) state <= #(REG_DELAY) 'LOAD;
"LOAD: state <= #(REG_DELAY) " COOK;
"COOK: if (done) state='EMPTY;

176 Verilog Quickstart

“EMPTY: state <= #(REG_DELAY) ' IDLE;
default: state <= #(REG_DELAY) 'IDLE;
endcase
end
// Output logic
always @(state or quiet) begin

if (state == "LOAD) load = 1; else load = 0 ;
if (state == ‘EMPTY) unload =1; else unload = 0;
if (state == “EMPTY && quiet == 0) beep =1; else beep = 0;
if (state == “PREHEAT ||
state == ‘LOAD |
state == "COOK) heat = 1; else heat =0;
end
endmodule

Style 3 combines the next-state logic and output logic. In Example 15-5, this
modeling will result in a Mealy machine. It is possible to use this style to describe a
Moore machine.

Example 15-5 Style 3 Mealy Machine

module auto_oven_style 3_mealy(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;

output load, heat, unload, beep;

reg load, heat, unload, beep;

reg [2:0] state, next_state;

“define IDLE 'b000
“define PREHEAT 'b001
“define LOAD 'b010
“define COOK 'b011
“define EMPTY 'b100

// State register block
always @ (posedge clock)
state <= #('REG_DELAY) next_state;

// next state logic
always @(state or start or temp_ok or done or quiet) begin
next_state = state; // default to stay in current state
case (state)
“IDLE: 1if (start) next_state="PREHEAT;
"PREHEAT: if (temp_ok) next_state = "LOAD;
"LOAD: next_state = “COOK;
"COOK: if (done) next_state='EMPTY;

“EMPTY: next_state = “IDLE;
default: next_state = ‘IDLE;
endcase

//output logic
if (state == "LOAD) load = 1; else load = 0;

State Machines 177

if (state == "EMPTY) unload =1; else unload = 0;
if(state == "EMPTY && quiet == 0) beep =1; else beep = 0;
if (state == "PREHEAT ||
state == 'LOAD
state == 'COOK) heat = 1; else heat =0;
end
endmodule

Style 4 combines everything into one big block, which yields a Moore machine.

Example 15-6 Style 4 Moore Machine

module auto_oven_style_4_moore(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;

output load, heat, unload, beep;

reg load, heat, unload, beep;

reg [2:0] state;

“define IDLE '000

“define PREHEAT 'b001

“define LOAD 'b010

“define COOK 'b011

“define EMPTY 'b100

// State register Dblock
always @(posedge clock)begin
case (state)

"IDLE: if (start) state="PREHEAT;
"PREHEAT: if (temp_ok) state <= #(REG_DELAY) " LOAD;
"LOAD: state <= #(REG_DELAY) " COOK;
"COOK: if (done) state="EMPTY;
"EMPTY: state <= #(REG_DELAY) IDLE;
default: state <= #(REG_DELAY) IDLE;

endcase
if(state == "LOAD) load <= #(REG _DELAY) 1;
else load <= #(REG_DELAY) O;
if (state == "EMPTY) unload <= #(REG_DELAY) 1;
else unload <= #(REG_DELAY) O0;
if (state == “EMPTY && quiet == 0) beep <= #(REG_DELAY) 1;
else beep <= #(REG_DELAY) O0;
if (state == ‘PREHEAT ||
state == "LOAD ||
state == "COOK) heat <= #(REG_DELAY) 1;
else heat <= #(REG_DELAY) O;
end
endmodule

Style 5 combines the state register and output sections, and results in either a Moore
machine or registered outputs.

178 Verilog Quickstart

Example 15-7 Style 5 Moore Machine

module auto_oven_style_5_moore(clock, start, temp_ok, done,
quiet, load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;

output load, heat, unload, beep;

reg load, heat, unload, beep;

reg [2:0] state, next_state;

“define IDLE 'b000
“define PREHEAT 'b001
“define LOAD 'b010
‘define COOK 'b011
‘define EMPTY 'b100

// State register block
always @(posedge clock) begin

state <= #(REG_DELAY) next_state;
// Output logic

if(state == "LOAD) load <= #(REG_DELAY) 1;
else load <= #(REG_DELAY) O0;
if (state == “EMPTY) unload <= #(REG_DELAY) 1;
else unload <= #("REG_DELAY) O0;
if (state == "EMPTY && quiet == 0) beep <= #(REG_DELAY) 1;
else beep <= #(REG_DELAY) O0;
if (state == 'PREHEAT ||
state == "LOAD ||
state == “COOK) heat <= #(REG_DELAY) 1;

else heat <= #(REG_DELAY) O0;
end

// next state logic
always @(state or start or temp_ok or done) begin
next_state = state; // default to stay in current state
case (state)
"IDLE: if (start) next_state='PREHEAT;
"PREHEAT: if (temp_ok) next_state = “LOAD;
"LOAD: next_state = “COOK;
"COOK: if (done) next_state="EMPTY;
"EMPTY: next_state = “IDLE;
default: next_state = "IDLE;
endcase
end

endmodule

With all of these styles to choose from, which one is best? Which one will result in
the smallest synthesized circuit? These are not easy questions to answer. Style 2 is
both compact and allows for both Mealy and Moore machines, so this is a good all-
around style to use. As for synthesized results, state encoding will have a greater
effect on ultimate size than any of these variations in style.

State Machines 179

STATE ENCODING METHODS
State encoding can have a great effect on circuit size and performance, and can also
influence the amount of glitching produced by a circuit. With all that said, you

should note that most synthesis tools can encode or re-encode states.

The state encoding used in the previous examples is a simple sequential numbering,
as shown in Table 15-2.

Table 15-2 Sequential State Encoding

State Code
IDLE 000
PREHEAT 001
LOAD 010
COOK 011
EMPTY 100

A common sense approach to state encoding might be to assume that the heat
output needs to be on for the states PREHEAT, LOAD, and COOK. So the states
could be encoded with one of the bits set for all of those states. This would have the
effect of simplifying the output logic. The heat output is now simplified to state[2].

Table 15-3 Mapping State Code To Simplify Outputs

State Code
IDLE 000
PREHEAT 100
LOAD 111
COOK 110
EMPTY 001

Another approach that may minimize glitching is to “Gray code” the state
encoding. “Gray code” is another method of binary counting; in Gray code during
each transition, only one bit changes. This is easy for some state machines and
difficult or impossible for state machines that branch in many directions. For the
automatic oven, we could encode the states as shown in Table 15-4.

180 Verilog Quickstart

Table 15-4 Gray State Encoding

State Code
IDLE 000
PREHEAT 100
LOAD 110
COOK 111
EMPTY 101

In this encoding between each state, only one bit changes (either sets or clears). The
only transition in this model that violates this Gray code rule is the transition from
EMPTY to IDLE, during which two of the bits clear.

For each of the encodings shown in Table 15-2, Table 15-3, and Table 15-4, only
three flip-flops are used to encode the states. Because the state machine has five
states, the minimum number of flip-flops to use is three. If you are not concerned

about using the minimum number of flip-flops, there are other encodings you can
use.

If you want to get the outputs out as quickly as possible, we can re-encode the states
to an encoding of output = state. To start the output = state encoding, let’s look at
all the states in reference to the outputs, as shown in Table 15-5.

Table 15-5 States Compared with Outputs

State LOAD HEAT UNLOAD BEEP
IDLE 0 0 0 0
PREHEAT 0 1 0 0
LOAD 1 1 0 0
COOK 0 1 0 0
EMPTY 0 0 1 1

Now we can add a state encoding to Table 15-5, yielding the data in Table 15-6.

State Machines 181

Table 15-6 Outputs as State Code

State State Code LOAD HEAT UNLOAD BEEP
IDLE 00000 0 0 0 0
PREHEAT 01000 0 1 0 0
LOAD 11000 1 1 0 0
COOK 01010 0 1 0 0
EMPTY 00101 0 0 1 1

This state encoding has a bit for each output and extra bits for states that do not
have unique outputs. The states PREHEAT and COOK both have the same outputs,
so they need to have two different encodings. The last bit, used for the BEEP output,
can be removed for optimization since it is the same as UNLOAD. This method of
encoding uses four or five flip-flops, so it yields a larger circuit than do the other
encoding methods.

A final state encoding method is called “one-hot.” In this encoding method there is
exactly one flip-flop set per state. This method may take even more flip-flops, but

can sometimes produce faster circuits. One-hot state encoding is shown in Table 15-
7.

Table 15-7 One-Hot State Encoding

State Code

IDLE 10000
PREHEAT 01000
LOAD 00100
COOK 00010
EMPTY 00001

Which state encoding is best for a particular design depends on your design goals.
Does the design need to be fast or small? Is glitching a concern? Is simultaneous
switching a concern for power and glitching? These are the questions that most
influence the choice of a state encoding.

DEFAULT CONDITIONS

Each of the state machine examples included a default clause. Those examples used
3 bits for state, but only five states were used. Thus it may be possible for the state
machine to glitch into one of the three remaining illegal states. One other reason for

182 Verilog Quickstart

including the default clause is that when simulation starts, the state machine is in
an unknown state, and the default clause gets it on track with the first clock.

The default clause may cause synthesis to generate more logic, so a trade-off must
be made between the security of having a default clause and the potential size
savings of not having it.

IMPLICIT STATE MACHINES

In all of the previous state machine examples, the three sections of the state
machine were obvious (or explicit) in the coding style. The automatic oven design
could also be coded as an implicit state machine. This style can be easier to code
and maintain in an abstract model. In this style, only the behavior of the state
machine is seen. The values of the outputs can also be seen, but the state register
and next-state logic are implied.

Example 15-8 Implicit State Machine Style

module auto_oven_implicit(clock, start, temp_ok, done, quiet,
load, heat, unload, beep);

input clock, start, temp_ok, done, quiet;

output load, heat, unload, beep;

reg load, heat, unload, beep;

initial begin // set all outputs to the off state

load = 0;
heat = 0;
unload = 0;
beep = 0;

always begin
@ (posedge clock) ; //stay IDLE at least one clock

while(! start) @(posedge clock) ;

// do nothing until a start
heat =1 ; // turn on heating element
load = 1;
@ (posedge clock) ; //stay PREHEAT at least one clock
while(! temp_ok) @(posedge clock) ; // wait to heat up
load = 1;

@ (posedge clock) load = 0;
@ (posedge clock) ;
// stay in COOK at least one clock cycle
while(! done) @(posedge clock) ;
// wait to finish cooking
heat = 0;
unload = 1;
if (! quiet) beep =1;
@ (posedge clock) unload = 0;

State Machines 183

beep =0;
end
endmodule

You have also already seen two other examples of implicit state machines. In
chapter 6, when introducing the looping constructs, the modules shiftl and
onecount were simple, synthesizable implicit state machines.

REGISTERED AND UNREGISTERED OUTPUTS

The modeling of the output section of the state machine may infer that the outputs
are either registered, or combinatorial. Registered outputs are available sooner after
the clock and are less subject to glitching. One great disadvantage of registered
outputs is that the machine becomes larger due to the extra flip-flops. Because the
outputs are synchronous, this implies that machines with registered outputs are only
Moore machines. Changing the Verilog for the output section to be registered
instead of combinatorial is a simple matter of changing the always block to execute
only on a clock, rather than a change on any inpug.

Example 15-9 Combinatorial Outputs

always @(state or quiet) begin

if (state == "LOAD) load = 1; else load = 0;
if (state == “EMPTY) unload = 1; else unload = 0;
if (state == "EMPTY && quiet == 0) beep = 1; else beep = 0 ;
if (state == ‘PREHEAT ||
state == “LOAD
state == "COOK) heat = 1; else heat =0;
end
endmodule

Example 15-10 Registered Outputs

always @(posedge clock) begin

if(state == ° LOAD)
load <= #(° REG_DELAY) 1;
else
load <= #(° REG_DELAY) O0;
if (state == * EMPTY)
unload <= #(° REG_DELAY) 1;
else
unload <= #(° REG_DELAY) O0;
if (state == °~ EMPTY && quiet == 0)

beep <= #('REG_DELAY) 1;
else

Administrator
Inserted Text
gis

184

Verilog Quickstart

beep <= #(° REG_DELAY) O0;

if (state == " PREHEAT ||
state == " LOAD ||
state == COOK)
heat <= #("REG_DELAY) 1;
else
heat <= # (' REG_DELAY) O0;
end
endmodule

Example 15-10 will produce its outputs delayed by one clock. This may work for
some machines, but it may make others out of sync.

Since it is highly desirable to have registered outputs for high speed machines or to
eliminate glitching, a modified Moore machine may be used to create registered

outputs in sync with the state machine.

next-state
logic

state

inputs

register

Figure 15-3 Modified Moore Machine

output
logic

output
register outputs

The modified Moore machine allows for registered outputs as shown in Example

15-11.

State Machines 185

Example 15-11 Modified Moore Machine with Registered Outputs

always @(posedge clock) begin

if (next_state == ° LOAD)
load <= #(> REG_DELAY) 1;
else
load <= #(> REG_DELAY) O0;
if (next_state == ° EMPTY)
unload <= #(° REG_DELAY) 1;
else
unload <= #(° REG_DELAY) O0;
if (next_state == " EMPTY && quiet == 0)
beep <= # (' REG_DELAY) 1;
else
beep <= # (' REG_DELAY) O0;
if (next_state == ' PREHEAT |
next_state == ' LOAD |
next_state == ° COOK)
heat <= #(' REG_DELAY) 1;
else
heat <= #(' REG_DELAY) O;
end
endmodule

FACTORS IN CHOOSING A STATE MACHINE MODELING STYLE

There are many ways to model a state machine. How do you know which style to
use and how to encode your states? There are a number of different goals you may
have for your state machine: Maximum frequency, area, clock-to-output delay,
glitch-free outputs, minimal input setup time, minimum simultaneous switching,
minimal power, or ease of maintenance. Each of these goals dictates a different style
or encoding method.

For a state machine to have the highest possible frequency, the next-state logic must
be as small as possible. In a logic type such as CMOS (where AND gates are fast),
one-hot encoding may generate the fastest next-state logic because each state bit is
usually set from the outputs of only AND gates. In other state encodings, there tend
to be AND/OR networks driving each state bit.

For minimal clock-to-output delay, a state machine where the outputs come directly
from flip-flops is best. The output-equals-state encoding or registered output style
state machines both have outputs that come directly from flip-flops, making either
of these styles the best choices for state machines requiring fast clock-to-output
times.

186 Verilog Quickstart

For minimal simultaneous switching and minimal power in CMOS, a state machine
with the states Gray-coded might be the best solution. The Gray-coded state
machines only change 1 bit per transition.

If the state machine is visualized as a flow, the implicit state machine makes it easy
to model and maintain. Inserting or removing behavior from this type of state
machine is easiest.

If high speed or glitch free outputs are desired, a style 1 modified Moore Machine
may be the best choice.

16 MODELING TIPS

Most circuits are either sequential or combinatorial. The Verilog constructs can be
used to model both combinatorial and sequential circuits, and it is possible to create
models in Verilog that are neither combinatorial or sequential. (However, if a model
is neither sequential nor combinatorial it may not be possible to built it in actual
hardware.) This chapter provides modeling rules for both combinatorial as well as
sequential circuits.

In addition to presenting styles for combinatorial and sequential circuits, this
chapter presents tips for synchronous and asynchronous circuits such as one-shots,
and special-purpose models such as two-dimensional arrays.

MODELING COMBINATORIAL LOGIC

Combinatorial logic is always synthesizable. What Verilog constructs can you use
for combinatorial logic? You can use nets (wire, tri, tril, tri0, trior, wand, etc.) for
modeling combinatorial logic. You can even use Verilog regs for modeling
combinatorial logic!

188 Verilog Quickstart
Combinatorial Models Using Continuous Assighments

What constructs can you use to assign a value to a net? You can only use the
continuous assignment. The continuous assignment always models combinatorial
logic. (There is one exception, which is shown in Example 16-5.) Example 16-1,
Example 16-2, Example 16-3 and Example 16-4 show simple, common
combinatorial circuits.

Example 16-1 A 2-to-1 Mux Using Continuous Assignment

module mux2ca(y, sel, a, b) ;
output [3:0] vy;

input [3:0] a, b;

input sel;

assign y = sel ? a : b;

endmodule

Example 16-1 shows a 2-to-]l mux modeled with a continuous assignment. One
advantage of this model is that it could be used to model a mux of any bus width. In
this case, a 4-bit wide mux is shown.

Example 16-2 A 4-to-1 Mux Using Continuous Assignment

module mux4ca(y, sel, a, b, c, 4d) ;
output [3:0] vy

input [3:0] a, b, c, d;

input [1:0] sel;

assign y = sel[l] ? (sel[0] 2 d : c) : (sel[0] ? b : a) ;

endmodule

Example 16-2 shows a simple 4-to-] mux using a continuous assignment, using
nested ternary operators.

The continuous assignment for a 4-to-l mux has a more complex expression, and is
a bit harder to read. An alternate expression for the 4-to-l mux is shown in
Example 16-3. With both of these 4-to-1 mux examples, if the sel input is unknown
the output is d.

Modeling Tips 189

Example 16-3 Alternate 4-to-1 Mux Using Continuous Assignment

module mux4caa(y, sel, a, b, ¢, d);
output [3:0] v;

input [3:0] a, b, c, d;

input [1:0] sel;

assign y = (sel == 2'b00) ? a :
(sel == 2'b01) ? b :
(sel == 2'b10) ? ¢ d;

endmodule

Example 16-4 An 8-Bit Adder Using Continuous Assignment

module adder8ca(carry_out, sum, a, b, carry in);
output carry_out;

output [7:0] sum;

input [7:0] a, b ;

input carry_in;

assign {carry_out,sum} = a + b + carry in;
endmodule

The 8-bit adder from exercise 2 in chapter 3 could be simplified into a single
continuous assignment, as shown in Example 16-4.

Example 16-5 Latch Using Continuous Assignment

module calatch(out, data, enable);
output out;

input data, enable;

assign out = enable ? out : data;

endmodule

The continuous assignment in Example 16-5 forms a level-sensitive latch, a mux
feeding back into itself. Is this example combinatorial or sequential? (Answer: It’s a
bit of both!) Because this continuous assignment forms a feedback loop to itself,
some synthesis tools may not allow it.

Combinatorial Models Using the always Block and regs

You can also use the always block to model combinatorial logic. If an always block
runs in zero time, and runs whenever any of the inputs changes, it is modeling

190 Verilog Quickstart

combinatorial logic. The reg data types are used in always blocks, but regs do not
always imply that a latch or flip-flop or some other sequential logic is being
modeled. As you will see, a reg can be used for combinatorial modeling. The
examples in this section illustrate the 2-to-1 mux, the 4-to-1 mux, and the 8-bit
adder using always blocks and regs.

If you intend to model combinatorial logic using the always block, be sure to model
all branches in your logic, or you may imply a latch. All if statements must have
else clauses. All case statements must either have a default clause or all cases
specified. Otherwise, a latch will be implied, and you will not have combinatorial
logic.

Example 16-6 The 2-to-1 Mux Using always

module mux2r(y, sel, a, b) ;
output [3:0] v;

input [3:0] a, b;

input sel;

reg [3:0] vy;
always @(sel or a or b)

if (sel)
y = aj
else
y = b,
endmodule

Example 16-6 is functionally equivalent to Example 16-1. Both are synthesizable 2-
to-I muxes. Review Chapters 8 and 10, and you will find the models behave
differently when sel is x; However synthesis will produce similar hardware for both
models.

In Example 16-7 the mux4 is modeled in a procedural block. You can use a case
statement to improve readability. Notice how Example 16-7 is easier to read than
Example 16-2, in which a continuous assignment was used.

Modeling Tips 191

Example 16-7 The 4-to-1 Mux Using always

module mux4r(y, sel, a, b, c, d) ;
output [3:0] y;

input [3:0] a, b, ¢, d;

input [1:0] sel;

reg [3:0] vy;
always @(sel or a or b or ¢ or d)
begin

case (sel)
0: v = a;
1: yv = b;
2: y = C;
3: vy = d;
endcas
end
endmodule

The adder in Example 16-8 is still combinatorial even though it uses an integer, the
repeat loop, and the if statement. This is definitely not the best way to model an
adder, but it shows how many constructs can be used to model a combinatorial
circuit.

Example 16-8 The 8-Bit Adder Using always

module adder8r (carry_out, sum, a, b, carry in);
output carry_out;

output [7:0] sum;

input [7:0] a, b ;

input carry_in;

reg [7:0] sum;
reg carry_out;
integer temp;
always @(a or b or carry_in) begin
temp = a;
repeat (b) begin
temp = temp + 1;
end
if(carry_in) temp = temp + 1;
carry_out = temp[8];
sum = temp[7:0] ;
end

endmodule

Example 16-9 is a simplified 8-bit adder using the always loop.

192 Verilog Quickstart

Example 16-9 Simplified 8-Bit Adder Using always

module adder8s(carry_out, sum, a, b, carry in);
output carry_ out;

output [7:0] sum;

input [7:0] a, b ;

input carry_in;

reg [7:0] sum;
reg carry_out;
always @(a or b or carry_in)
{carry out, sum) = a + b + carry in;
endmodule

Combinatorial Models Using Functions
Any combinatorial logic modeled with an always block can quickly be modified to

be a continuous assignment and function combination. Example 167 can be
rewritten as a continuous assignment with a function, as shown in Example 16-10.

Example 16-10 Mux with Continuous Assignment and Function

module mux4caf(vy, sel, a, b, c, 4d) ;
output [3:0] y;

input [3:0] a, b, c, d;

input [1:0] sel;

assign y = muxf(a, b, ¢, d, sel);

function [3:0] muxf;
input [3:0] a, b, c, d;
input [1:0] sel;
case (sel)

0: muxf = a;

1: muxf = b;

2: muxf = c;

3: muxf = d;
endcase
endfunction

endmodule

Example 16-10 is the 4-to-]l mux rewritten as a continuous assignment and
function. With this simple example there is little advantage to choosing either
modeling style. Some of the advantages of using the function and continuous
assignment combination are as follows:

Modeling Tips 193

e Functions are always combinatorial, so there is no doubt about what type of
logic is being modeled.

e The same function can be used more than once within the same module.

e If a behavioral model has blocks of similar logic, you can combine them into a
common function that is called more than once.

In summary, the behavioral constructs to model combinatorial logic are the
continuous assignment, the always block that triggers on any signal change, and the
function.

MODELING SEQUENTIAL LOGIC

Sequential logic is most often modeled with always blocks. What other constructs
can you use to model sequential logic? A flip-flop can be created with the built-in
Verilog primitives or a sequential user-defined primitive (UDP). You can even use
an initial block to model sequential logic.

Sequential Models Using always

A simple block of sequential code is shown in Example 16-11. Most simple
sequential logic is just a block of code that is synchronous with a clock. This model
is not a good model for synthesis due to the lack of reset and use of the initial
statement. Chapter 17 will discuss the interaction of initial, reset and synthesis.

Example 16-11 Simple Counter

“define REG_DELAY 1

module counter (clock, out);

input clock;

output [7:0] out;

reg [7:0] out;

initial out <= #('REG_DELAY) O0;

always @ (posedge clock) out <= #(REG_DELAY) out + 1;
endmodule

Sequential Models Using initial

Sequential logic does not have to be started with an always block. A counter can be
modified by using only an initial statement and still function correctly. A counter
using only an initial statement is shown in Example 16-12. It is important to note,
even though this counter simulates identically to the previous example, It will not
be synthesizable by most tools.

194 Verilog Quickstart

Example 16-12 A Counter without always

module counterf (clock, out);
input clock;
output [7:0] out;
reg [7:0] out;
initial
begin
out = 0;
forever @ (posedge clock) out <= #(REG_DELAY) out + 1;
end
endmodule

In Example 16-12, the initial block will never finish but the counter still functions
correctly.

Sequential blocks are not limited to being synchronous to a clock. Sequential blocks
can be used to generate clocks or other stimulus.

Example 16-13 Sequential Stimulus Block

module stimulus;
reg a, b, c;
initial
begin
a = 0;
#100 a
#100 b
#500 c
end
endmodule

o

Example 16-13 is considered to be a sequential block of code because it changes
value in a sequence and time elapses between its statements.

Example 16-14 Clock Source

module clock_cource;
reg clock;
always
begin
#50 clock
#50 clock
end
endmodule

Example 16-14 is also sequential because it changes a value and time elapses.

Modeling Tips 195

A more complicated sequential block could use a combination of waiting for values
to change and time delays.

Example 16-15 Memory Exerciser

module memex (clock, start, address, data,
read, write, ready);

input clock, start, ready;

output [31:0] address;

inout [31:0] data;

output read, write;

reg read, write, running, drive_data;

reg [31:0] data_reg, address;

initial
begin
running =0;
drive_data = 0;

read = 1'bz;

write = 1 'bz;

data_reg = 32'bz;

address = 32'bz;
end

assign data = drive_data ? data_reg : 32'bz;

always @start
if(start)
@ (posedge clock) begin
running = 1;
drive_data = 1;
for(address

0; address <= 32'hffff ffff;

address = address + 1)
begin
#10 data_reg = -~address;
@ (posedge clock) write = 1;

40 write = 0;
@ (posedge ready) @(posedge clock)

’

end
drive_data = 0;
for(address = 0; address <= 32'hffff ffff;
address = address + 1)
begin

@ (posedge clock) read = 1;
@ (posedge ready)

if (data !== ~address)
Sdisplay ("memory error at location %h", address);
@ (posedge clock) # 40 read = 0;
end
running = 0;

read = 1'bz;
write = 1'bz;

196 Verilog Quickstart

address = 32'bz;
end
endmodule

Example 16-15 is a memory exerciser. It waits for a start signal, then it waits for a
clock. It cycles through each location in a memory and performs a write cycle and
writes into each location data equal to the complement of the address. The write
cycle is a sequence of events: First there is a time delay, then the data register is set.
The model then waits for a clock and provides a pulse on the write signal. The
memory responds with the ready signal when it is done with the write, so the model
waits for the ready signal before continuing. The write sequence continues through
all of the memory locations and then all of the location go through a read sequence.

Sequential Models Using Tasks

Most of the sequential behavior in the memory exerciser models either the read
cycle or write cycle. The sequential code for the read and write cycles could be
moved into tasks. With the complexity of the read and write cycles removed, the
memory exerciser could then be expanded to run other memory test patterns. The
new model for the memory exercise is shown in Example 16-16.

Example 16-16 Tasks for Sequential Code

module memex2 (clock, start, address, data,
read, write, ready);

input clock, start, ready) ;

output [31:0] address;

inout [31:0] data;

output read, write;

reg read, write, running, drive_data;

reg [31:0] data_reg, address;

initial

begin
running =0;
drive_data = 0;
read = 1'bz;
write = 1'bz;
data_reg = 32'bz;
address = 32'bz;

end

assign data = drive_data ? data_reg : 32'bz;

always @start
if(start)

Modeling Tips 197

@ (posedge clock) begin
running = 1;
drive_data = 1;
for(address 0; address == 32'hffff_ffff;

address = address + 1)
write_cycle(-address) ;
drive_data = 0;

for(address 0; address == 32'hffff_ffff;

address address + 1)
read_cycle(~address);

drive_data = 1;

for(address = 0; address == 32'hffff_ ffff;
address = address + 1)
write_cycle({32{address[0]}});

drive_data = 0;

for(address 0; address == 32'hffff ffff;

address = address + 1)
read_cycle({32{address[0]}});
running = 0;
read = 1'bz;
write = 1'bz;
end

task write_cycle;
input [31:0] data_in;
begin
#10 data_reg = data_in;
@ (posedge clock) write = 1;
40 write = 0;
@ (posedge ready) @(posedge clock) ;
end
endtask

task read_cycle;
input [31:0] data_in;
begin
@ (posedge clock) read = 1;
@ (posedge ready)
if (data !'== data_in)
S$display ("memory error at location %h", address);
@ (posedge clock) # 40 read = 0;
end
endtask

endmodule

Example 16-16 moves the read and write cycles into tasks. With the simplification
that results from moving the complicated sequences into tasks, it is easy to expand
the memory exerciser to write and test alternating patterns of 1s and Os, in addition
to the earlier test of using the complement of the address as the data.

198 Verilog Quickstart

In conclusion, initial, always, and tasks are used to model sequential code.
Sequential code always uses regs and begin-end blocks. Combinatorial logic may
also be modeled using all of these constructs, so the real distinction is that time
advances in the block of code either by using the time delay operator (#) or by using
the wait for event operator (@).

MODELING ASYNCHRONOUS CIRCUITS

The simplest asynchronous circuit is a one-shot. This section starts with a simple
one-shot and expands into a full-blown asynchronous system and test bench.
Modeling a One-Shot

One-shots can be tricky to model. The disable statement in Verilog makes

retriggerable one-shots easy to model. A basic one-shot with a positive edge trigger
is shown in Example 16-17.

Example 16-17 Basic One-Shot

module oneshot (trigger,out) ;
input trigger;
output out;
reg out;
parameter timeConstant = 100;
initial out = 0;
always @ (posedge trigger)
begin
out = 1;
timeConstant out = 0;
end
endmodule

The one-shot in Example 16-17 may work for you, but it has a few potential
problems. What happens if the trigger signal is held high? What happens if the
trigger signal rises again during the time constant? For this one-shot, the answer to
both of those questions is: Nothing happens. This one-shot starts timing at the first
positive edge and then ignores the trigger signal until the time constant expires.

A retriggerable one-shot can be modeled. The retriggerable one-shot will still be
edge sensitive, but if the trigger signal has a second rising edge during the time
constant, the timing will start all over again. Thus, the output will fall only after the
time constant expires after the last rising edge. The retriggerable one-shot is shown
in Example 16-18.

Modeling Tips 199

Example 16-18 Retriggerable One-Shot

module roneshot (trigger, out) ;
input trigger;
output out;

reg out;

event start;

parameter timeConstant = 100;
initial out = 0;

always @(posedge trigger)
begin
disable time_out;
#0 -> start;
end

always @start
begin : time_out
out = 1;
timeConstant out = 0;
end
endmodule

The retriggerable one-shot makes use of a named begin-end block for the time
constant. The named block can then be disabled with the disable statement. The
first always block disables and then starts the time_out block to be sure that the
entire time constant delay is used before out is set to 0. The disable will have no
effect if the time_out block is not running, that is, in the case of a trigger that is not
a retrigger. If the time_out block is running (that is, if it is a retrigger), the disable
statement stops the block, out is not set to 0, and because the time_out block is in an
always loop, the one-shot will be ready to run again. The signal of the event start
will start the time_out block running. The #0 allows the always to get to the @start
so it can be retriggered.

Modeling Asynchronous Systems

You have already seen a model of a one-shot, which is the simplest of asynchronous
circuits. This next set of examples will go through the entire design process of a
slightly more complex asynchronous system. First, a simple behavioral model of the
system will be developed. The behavioral model will use some of the less common
behavioral constructs to develop a working model quickly. The working model will
then be used to develop a comprehensive test bench. (A following chapter, Chapter
17, will go into more detail about test benches.) The comprehensive test bench will
then be used to verify the detailed implementation model of the system. Because this
is an asynchronous circuit, we cannot use synthesis tools to help with the
implementation.

200 Verilog Quickstart

The system we will design is a simple self-arming alarm system. The alarm system
has two inputs: sense and disarm. The alarm has two outputs, armed and alarm.
The sense input is low whenever a door is open. When everything is secure, the
sense input is high. The disarm input is momentarily low when the system should
be disarmed. The armed output is high when the alarm is armed. The alarm output
is high for five minutes after the alarm is armed and the sense input goes low. The
alarm arms itself from the disarmed state when the sense input is high for five
uninterrupted minutes. If the alarm output goes high, after five minutes, it goes low
again, and waits five minutes for sense to go high before rearming.

This model will have three asynchronous features. The first is the five-minute timer,
which itself is asynchronous because it is reset by the sense signal when the system
waits for five minutes of no lows on the sense input. Secondly, the system is
asynchronous because it will go from an armed state to an alarm state instantly
when the sense input goes low. The final asynchronous feature is the disarm signal,
which quiets the alarm output signal and sets the machine into a disarmed state

instantly.
time—ou(
time-out W

or disarm sense

Figure 16-1 State Diagram for Alarm System

Using the state diagram shown in Figure 16-1 and the general textual description of
the alarm, the alarm can be described in a Verilog behavioral model, as shown in
Example 16-19.

Example 16-19 Behavioral Description of the Alarm

module alm(sense, disarm, armed, almOut);
input sense, disarm; // both active low
output armed, almOut;

// use parameters to describe some states
parameter S_disarmed = 0;
parameter S_armed = 1;

Modeling Tips

201

parameter S_tripped = 2;

integer state; // the state variable
initial state = S_disarmed;

reg timeout; // the only other signal we should need.
initial timeout = 0;
event never;

// The alarm output is high when the alarm is tripped.
assign almOut = (state == S_tripped);

// The alarm is armed if in state armed or tripped

assign armed = (state == S_armed) || (state == S_tripped);

// all state changes are a result of the
// inputs or timeout signal
always @(sense or disarm or timeout)
case (state)
S_disarmed
casez ({sense,disarm, timeout})
3'blll: state = S_armed;
endcase

S_armed
casez ({sense,disarm, timeout})
3'b?0?: state = S_disarmed;
3'b01?: state = S_tripped;
endcase

S_tripped
casez ({sense,disarm, timeout})
3'b?0?: state = S_disarmed;
3'b??1: state = S_disarmed;
endcase
endcase

// describe the asynchronous resettable time

// first the reset condition
always @(negedge sense or negedge disarm)
if (state == S_disarmed || state == S_tripped)
disable timer;

always begin : timer
timeout = 0;
wait (state == S_disarmed && sense == 1
|| state == S_tripped) // wait to start the timer
5 timeout = 1;
@never ; // wait forever after the timer times out;
end

endmodule

202 Verilog Quickstart
The behavior of the alarm system can now be verified by creating a test bench and

checking the behavior of the system. Once you have verified the system and test
bench, it is time to describe the system’s implementation more closely.

Example 16-20 Alarm Test Bench

module testAlm;

reg sense, dis;
alm dut (sense, dis, armed, almOut);

// sense and dis active low;

initial begin
Smonitor ("%$t: sense %b, disarm %$b, armed %b, almOut %b",

Stime, sense, dis, armed, almOut);

// first test that the alarm will disarm
// and not arm too soon
Sdisplay("initialize, and try disarm");
sense = 1 ; dis =0; // door closed, try to disarm
#1 check(0,0);
Sdisplay ("Open and close door during auto arming period.");
Sdisplay ("Check that it does not arm too soon but does");
Sdisplay ("arm after 5 minutes of closed doors.");
sense = 0 ; dis = 1; // door open not trying to disarm
#10 check(0,0);
sense =1; // door closed
#1 check(0,0) ;
sense =0; // door open
#1 check(0,0);
Sdisplay ("Holding door open a long time.");
#9 check(0,0);
sense =1; // door closed
#4 check(0,0) ;

// allow a total of 6, the system should arm
#2 check(1,0);

// try to disarm
Sdisplay("Try to disarm.");
sense = 1 ; dis = 0; // door closed, try to disarm
#1 check(0,0);

// arm / disarm cycle works ok,

// allow it to rearm and see if it trips
Sdisplay("arm/disarm cycle works, try to trip.");
dis = 1;

#4 check (0,0);

// allow a total of 6, the system should arm
#2 check(1,0);
Sdisplay ("Trip and disarm.");

// trip the alarm and try to disarm

Modeling Tips 203

sense = 0;
#1 check(1,1);
sense = 1;
#1 check(1,1);

dis = 0;
#1 check(0,0);
dis = 1;

Sdisplay("rearm, trip and test timeout.");
#4 check(0,0);
#2 check(1,0);
// allow to rearm, trip check timeout
sense = 0;
#1 check(1,1);
sense = 1;
#1 check(1,1);
#5 check(0,0);

#100 $finish;
end

reg [(8*5) :0] states[0:3];
initial begin

states[0] = "IDLE";
states[2] = "ARMED";
states[3] = "ALARM";
end
task check;
input arm,out;
if (armed!==arm | almOut !== out)
begin
Sdisplay (

"ERROR\n%t: improper state, %b%b (%s), should be %s",
Stime, armed, almOut,
states[{armed,almOut}], states[{arm,out}]);

$stop;

end

else

Sdisplay("%$t: %s OK!",Stime,states[{arm,out}]);
endtask

endmodule

The implementation is now possible because the desired behavior has been modeled
and a comprehensive test bench has been developed. Because the final
implementation will be based on some target technology, we will not attempt a final
implementation here. What we will do is take a step towards implementation by
using a combination of structural and behavioral modeling techniques. The timing
element, a resistor, a capacitor, and a discharge transistor will be modeled
behaviorally. Some SR flip-flops will be modeled structurally, and the “glue logic”
that determines the functionality will be modeled with continuous assignments. The
difficult part of the design will be creating the correct equations for the state

204 Verilog Quickstart
transitions. Because the state transition logic needs the most tuning to get it right,

the continuous assignments will make modifying it easy. The continuous
assignments will map easily into some final technology for final implementation.

Example 16-21 Partial Implementation of Alarm

‘timescale 1s/lms

module srff(sb, rb, g, gb);
input sb, rb;

output g, gb;

nand #0.001 (g, sb, gb);
nand #0.001(gb, g, rb);
endmodule

module mytimer (start, out, disc);

// timer start active low, once released, delay will start
// output will rise after time constant

input start; // active low

output out; // high when time expires

output disc; // high when discharging

parameter timeConstant = 5;

parameter disTime = 0.1;

reg cx; // abstraction of resistor - capacitor

buf #0.01 opa (out, cx); // opamp or comparator
buf #0.01 opb (down, cx); // opamp or comparator
nand #0.001 ng (g, start, gb);

nand #0.001 ngb (gb, down, q);

buf (disc, q);

always @ (posedge q) begin : discharge
disable charge;
disTime cx = 0;
end

always @(negedge g) begin : charge
disable discharge;
#timeConstant cx=1;
end

endmodule

module alm(sense, dis, armed, almOut);

// sense active low

// dis disarm active low

input sense, dis;

output armed, almOut;

srff ffl (armb,r,armed, armedb) ;

srff ££f2 (tripb, r,almOut, almOutb) ;

srff ff3 (almto, almclr, almrto, almrtob);
mytimer t2 (tstartb, to, disc);

assign armb = ~(armedb & almOutb & sense & to);

Modeling Tips 205

assign tripb = ~(armed & almOutb & ~sense);
assign r= ~(~dis | almrto);
assign tstartb = ~(almOutb & ~sense
|| almOutb & ~dis || almrto);
assign almto = ~(armed & almOut & to & ~disc);
assign almclr = ~(armedb & almOutb & ~to & ~disc | ~dis);
endmodule

Example 16-21 shows a step toward the final implementation of the alarm. The
model has enough structure that the final implementation can be easily mapped.
The timer (which is partially analog) has a simple mapping of its elements into
actual components. The voltage comparitors that determine the charge state of the
capacitor are modeled as buffers. The resistor-capacitor timing element is modeled
as behavioral code. The set and reset signals to each of the flip-flops are active low.
Continuous assignments are used to model the logic that feeds the flip-flops. To
make the equations as simple to write as possible, the bit-wise complement operator
is used to invert each of the continuous assignments and make them active low. It is
much easier to debug the circuit at this mixed behavioral and structural level than it
would be to try and go directly from the behavioral model shown in Example 16-19
to some final implementation.

SPECIAL-PURPOSE MODELS

Two special-purpose modeling tips have demonstrated their usefulness over the
years: multidimensional arrays and Z-detectors. The two-dimensional model can be
expanded to three or more dimensions. The usefulness of the Z-detector will be
explained as it is presented.

Two-Dimensional Arrays

Verilog supports only one-dimensional arrays of registers, integers, or times. What
do you do if you need a two- (or more) dimensional array? There is an old
programmer’s trick that works well here. An index for a two-dimensional array can
be computed as an index into a single-dimensional array. Example 16-22 shows a
parameterized two-dimensional array of 32-bit registers.

206 Verilog Quickstart

Example 16-22 Two-Dimensional Array

module array2d;

parameter m = 10; // number of rows
parameter n = 12; // number of columns
reg [31:0] my_array[O:(m * n - 1)];

task store;
input [31:0] row, col, wvalue;

my_ arrayl[row * n + col] = value;
endtask

function [31:0] retrieve;
input [31:0] row, col;

retrieve = my_ arrayl[row * n + col];
endfunction

endmodule

The task (for storing) and the function (for retrieving values from the two-
dimensional array) are not required in a two-dimensional array. However, they are
included in Example 16-22 to clarify how you index into the two-dimensional array.

Z-Detectors

Detecting Zs can have two uses. A common use for detecting Zs might be in a test
bench that verifies when other modules should and should not be driving a signal. A
more interesting use for detecting Zs would be to model special three-state logic.
Some circuits use a special voltage that is applied to a pin to make the chip enter a
programming, setup, or diagnostic mode. Because Verilog does not have a concept
of voltage associated with a logic level, the value Z can be used to represent the
special voltage when applying test vectors.

Example 16-23 Behavioral Z-Detector

module zdetb(in,out) ;
input in;

output out;

reg out;

always @in

if(in === 1'bz)
out = 1;

else
out = 0;

endmodule

Modeling Tips 207

Example 16-23 is a simple behavioral description for a Z-detector. If you were
modeling a test bench that was going to check when a bus was being driven, the
behavioral approach is the best solution. If you wanted to model the library cell that
detects the special voltage on an input to put a chip in a special mode, a structural
approach might be more appropriate.

Example 16-24 Structural Z-Detector

module zdets (in,out) ;
input in;

output out;

tril hi;

tri0 1lo;

nmos (hi,in,1'bl);
nmos (lo, in,1'bl) ;

xor (out,hi,lo);
endmodule

Example 16-24 uses the properties of the mos switch primitives in Verilog to create
a structural model for the Z-detector. The two unidirectional nmos transistors split
the signal and feed it both to a pulldown and pullup. Rather than using wire type
nets and pullup and pulldown primitives, the model can just use the #ril and tri0 net
types. When the input is driven, the same signal will drive both nets. When the
input is not driven (Z), the two nets will go to different values, and the difference
will be detected by the xor gate.

MULTIPLIER EXAMPLES

If your design requires a multiplier you will find there are many algorithms for
multipliers. You must then choose how you want to implement your multiplier and
what the trade-offs will be. There is a dizzying array of ways to build a multiplier. A
few examples of multipliers and their trade-offs are presented in this section.

Example 16-25 An 8-by-8 Booth Multiplier

module boothmul (C, A, B);

output [15:0] C; // definition of direction
input [7:0] A;
input [7:0] B;

reg [15:0] STAGEO; // reduce width from stage to stage
reg [15:2] STAGEl; // reduce width from stage to stage
reg [15:4] STAGE2; // reduce width from stage to stage
reg [15:6] STAGE3; // reduce width from stage to stage

208

Verilog Quickstart

wire [7:0] NREG; // start register N

wire [15:0]
wire [15:0]
wire [15:0]
wire [15:0]

assign NREG
assign MREG

MREG; // start register M
M2REG; // 2*M

NMREG; // ~M+1

NM2REG; // 2*(~M+1)

A;
{{8{BI[71}},B};

// calculate the different operators. The values in the

registers

// M2REG, NMREG,NM2REG are the results of the booth decoder.

assign M2REG
assign NMREG
assign NM2RE

MREG<<1;
~MREG+1 ;
(~MREG+1)<<1;

G

// build the references to the outputs

assign C[0]
assign C[1]
assign CI[2]
assign C[3]
assign C[4]
assign C[5]
assign C[6]
assign C[7]
assign CI[8]
assign CI[9]
assign C[10]
assign C[11]
assign C[12]
assign C[13]
assign C[14]
assign C[15]

STAGEO [0] // 0 bits ready
STAGEO[1] // 1 bits ready
STAGEL [2] // 2 bits ready
STAGE1L [3] // 3 bits ready
STAGE2 [4] // 4 bits ready
STAGE2 [5] // 5 bits ready

STAGE3[6] // 6 bits ready
STAGE3 [7] // 7 bits ready
STAGE3[8] // 8 bits ready
STAGE3 [9]1; // 9 bits ready
STAGE3[10]; // 10 bits ready
STAGE3 [11]; // 11 bits ready
STAGE3[12]; // 12 bits ready
STAGE3[13]; // 13 bits ready
STAGE3 [14]; // 14 bits ready
STAGE3[15]; // 15 bits ready

always @(NREG or MREG)

begin

// stage zero is calculated by a subset of calculation
//rules because m<-1> = 0

case ({NREG[l] NREG[0]})

2'b00
2'b01
2'b10
2'bll
endcase

assign STAGEO
assign STAGEO
assign STAGEO
assign STAGEO

o

// clear stage register
MREG; // MREG into MSB
NM2REG; // NM2REG into MSB
NMREG; // NMREG into MSB

case ({NREG[3],NREG[2],NREG[1]}}

3'b000
3'b001
3'b010

assign STAGEL
assign STAGEL
assign STAGEL

STAGEO[15:21];
STAGEO[15:2]+MREG[13:0];
STAGEO[15:2]+MREG[13:0];

Modeling Tips 209

3'b011 : assign STAGEL

3'b100 : assign STAGElL

3'b101 : assign STAGEL

3'b110 : assign STAGEL

3'bl11 : assign STAGEL
endcase

STAGEO[15:2]+M2REG([13:0];
STAGEO[15:2]+NM2REG[13:0] ;
STAGEO[15:2]+NMREG[13:0];
STAGEO[15:2]+NMREG([13:0];
STAGEO[15:27;

case ({NREG[S] NREG[4],NREG[3]})
3'b000 a551gn STAGE2 STAGE1l [15:4];
3'b001 : assign STAGE2 STAGEl [15:4]1+MREG[11:0];
3'b010 : assign STAGE2 STAGEl [15:4]1+MREG[11:0];
3'b011 : assign STAGE2 STAGE1l [15:4]1+M2REG[11:0];
3'b100 : assign STAGE2 STAGE1l [15:4]+NM2REG[11:07];
3'b101 : assign STAGE2 STAGEl [15:4]1+NMREG[11:0];
3'b110 : assign STAGE2 STAGEl [15:4]1+NMREG[11:0];
3'bl11 : assign STAGE2 STAGE1l [15:4];

endcase

case ({NREG[7] NREG[6],NREG[5]})
3'b000 : a551gn STAGE3 = STAGE2
3'b001 : assign STAGE3 STAGE2
3'b010 : assign STAGE3 STAGE2[15:6]+MREG[9:017 ;
3'b011 : assign STAGE3 STAGE2[15:6]+M2REG[9:0];
3'b100 : assign STAGE3 STAGE2[15:6] +NM2REG[9:0];
3'b101 : assign STAGE3 STAGE2[15:6]+NMREG[9:01] ;
3'b110 : assign STAGE3 STAGE2 [15:6]+NMREG[9:01] ;
3'b1l11 : assign STAGE3 STAGE2[15:61];

endcase

15:67];
15:6]+MREG[9:0] ;

end
endmodule

A Booth multiplier like the one shown in Example 16-25 is good for a highly
pipelined machine, with each of the stages being another level. However, this is a
poor choice for a single-cycle multiplier.

The Booth multiplier can be modified to implement a Wallace multiplier, which is a
fast way to design a single cycle multiplier as shown in Example 16-26.

Example 16-26 Wallace 8-by-8 Multiplier

module walmult8 (C,A,B);
output [15:0] C;
input [7:0] A&;
input [7:0] B;

{8{B[0]}} & A;

{8{B[1]}} & A;

{8{B[2]}} & A;

wire [7:0] stage0_0
wire [7:0] stage0_1
wire [7:0] stage0_2

210

Verilog Quickstart

wire
wire
wire
wire
wire

wire
wire
wire
wire

wire
wire
wire
wire

wire
wire

wire
wire

carry_save_add stagel_1(stagel_carryl,

carry_save_add stagel_2 (stagel_carry2,

[7:0]
[7:0]
[7:0]
[7:0]
[7:0]

[9:0]
[9:0]
[9:0]
[9:0]

[10:0]
[10:0]
[12:0]
[12:0]

[14:0]
[14:0]

[15:0]
[15:0]

stage0_3 = {8{B[3]1}}
stage0_4 = {8{B[4]}}
stage0_5 = {8{BI[5]}}
stageO0_6 = {8{B[6]}}
stage0_7 = {8{B[7]1}}

stagel_suml;
stagel_carryl;
stagel_sum?2;
stagel_carry2;

stage2_suml;
stage2_carryl;
stage2_sum?2;
stage2_carry?2;

stage3_sum;
stage3_carry;

staged_sum;
staged_carry;

{1'b0, stagel_1,

PR RR
By

stagel_suml,
{2'b0, stage0_0),

{stage0_2, 2'b0});
stagel_sum2,
{2'b0, stagel_3},

{1'b0, stagel_4,

{stagel_5, 2'b0});

defparam stage2_1.WIDTH = 11;

carry_save_add stage2_1 (stage2_carryl,
{1'b0, stagel_6,

1'b0},

1'b0),

stage2_suml,

{stage0_7, 3'b0},

(1'b0, stagel_carry2});

defparam stage2_2.WIDTH = 13;

carry_save_add stage2_2 (stage2_carry?2,

{2'b0, stagel_carryl,
3'b0});

{stagel_sum2,

defparam stage3.WIDTH = 15;

carry_save_add stage3 (stage3_carry,

2'b0},

stage2_sum2,
{3'b0, stagel_suml},

stage3_sum,

{2'b0, stage2_sum2},

{1'b0, stage2_carry2,

{stage2_suml, 4'b0});

defparam staged .WIDTH = 16;

carry_save_add staged (staged_carry,

stage3_sum},

{stage3_carry,
{stage2_carryl,

staged_sum,

1'b0},

5'b0}) ;

1'b0},

1'b0},

{1'b0,

Modeling Tips 211
assign C = staged4_sum + {staged_carry, 1'b0);
endmodule
module carry_save_add(carry, sum, a, b, c) ;
parameter WIDTH = 10;
output [WIDTH-1:0] carry;
output [WIDTH-1:0] sum;
input [WIDTH-1:0] a;
input [WIDTH-1:0] b;
input [WIDTH-1:0] c;
integer 1i;
reg [WIDTH-1:0] carry;
reg [WIDTH-1:0] sum;
reg [1:0] result;
always@(a or b or c)
begin
for(i = 0; i < WIDTH; 1 =1 + 1)
begin
result = al[i] + b[i] + c[i];
sum[i] = result[O0];
carry[i] = result[1];
end
end
endmodule
Because the Wallace multiplier uses parameterized modules, it can easily be

extended to a larger multiplier, as shown in Example 16-27.

Example 16-27 A 16-by-16 Multiplier

module walmull6 (C,A,B);
output [31:0] C;
input [15:0]1 A;
input [15:0] B;

wire [15:0] stage0_0 = {16{B[0]1}} &
wire [15:0] stageO0_1 = {16{B[1l]>} &
wire [15:0] stage0_2 = (16{B[2]}} &
wire [15:0] stage0_3 = {16{B[3]}} &
wire [15:0] stage0_4 = {16{B[4]}} &
wire [15:0] stage0_5 = {16{B[5]}} &
wire [15:0] stageO0_6 = {16{B[6]}} &
wire [15:0] stage0_7 = {16{B[7]}} &
wire [15:0] stage0_8 = {16{B[8]}} &
wire [15:0] stage0_9 = {16{B[9]}} &

wire [15:0] stage0_10
wire [15:0] stageO_11
wire [15:0] stage0_12
wire [15:0] stage0_13

{16{B[10]1}}
{le{B[11]}}
{16{B[12]1}}
(16{B[13]}>

>

%W?’k’ﬁ’?_’ﬁ’{l’w{l’

bl

PP

212

Verilog Quickstart

wire [15:0]
wire [15:0]
wire [17:0]
wire [17:0]
wire [17:0]
wire [17:0]
wire [17:0]
wire [17:0]
wire [17:0]
wire [17:0]
wire [17:0]
wire [17:0]
wire [20:0]
wire [20:0]
wire [20:0]
wire [20:0]
wire [18:0]
wire [18:0]
wire [23:0]
wire [23:0]
wire [24:0]
wire [24:0]
wire [28:0]
wire [28:0]
wire [26:0]
wire [26:0]
wire [31:0]
wire [31:0]
wire [32:0]
wire [32:0]

carry_ save_add

carry_save_add

carry_save_add

carry_save_add

carry_ save_add

{16{B[14]
{16{B[15]

stage0_14 =
stage0_15 =

stagel_sum0;
stagel_carry0;
stagel_suml;
stagel_carrvl;
stagel_sum2;
stagel_carry2;
stagel_sum3;
stagel_carry3;
stagel_sum4;
stagel_carry4d;

stage2_sum0;
stage2_carry0;
stage2_suml;
stage2_carryl;
stage2_sum?2;
stage2_carry2;

stage3_sum0;
stage3_carry0;
stage3_suml;
stage3_carryl;

staged_sum0;
staged_carry0;
staged_suml;
staged_carryl;

stage5_sum;
stageb_carry;

stage6_sum;
stageb6_carry;

stagel_0 (stagel_carryO0,
stage0_0},
stage0_1,
(stagel_2, 2
stagel_1 (stagel_carrvyl,
stage0_3},
stage0_4,
{stagel_5, 2'
stagel_2 (stagel_carry?2,

{2'b0,
{1'b0,

{2'b0,
{1'b0,

{2'00,
(1'b0,
{stage0_8, 2
stagel_3 (stagel_carry3
{2'D0,
(1'b0,

bO0});

b0});

1'b0},

1'b0},

1'b0),

stagel_sum0,

stagel_suml,

stagel_sum2,
stagel_61},
stage0_7,

'b0});

, stagel_sum3,

stage0_9},
stage0_10,

{stage0_11, 2'b0});

stagel_4 (stagel_carry4,

1'b0},

stagel_sum4,

Modeling Tips

213

{2'b0, stagel0_12},
{1'b0, stage0_13, 1'b0},
{stage0_14, 2'b0});

defparam stage2_0.WIDTH = 21;

carry save_add stage2_0(stage2_carry0, stage2_sum0,
{3'b0, stagel_suml},
{2'b0, stagel_carryl, 1'b0},
{stagel_sum2, 3'b0});

defparam stage2_1.WIDTH = 21;

carry_save_add stage2_1 (stage2_carryl, stage2_suml,
{3'b0, stagel_carryl},
{1'b0, stagel_sum3, 2'b0},
{stagel_carry3, 3'b0});

defparam stage2_2.WIDTH = 19;

carry_save_add stage2_2 (stage2_carry2, stage2_sum2,
{1'b0, stagel_sumd},
{stagel_carry4, 1'b0},
{stage0_15, 3'b0}) ;

defparam stage3_0.WIDTH = 24;

carry save_add stage3_0 (stage3_carry0, stage3_sum0,
{6'b0, stagel_sumO},
{5'b0, stagel_carry0, 1'b0},
{stage2_sum0, 3'b0});

defparam stage3_1.WIDTH = 25;

carry_save_add stage3_1 (stage3_carryl, stage3_suml,
{4'b0, stage2_carry0},
{1'b0, stage2_suml, 3'b0},
{stage2_carryl, 4'b0}} ;

defparam staged4_O0.WIDTH = 29;

carry_save_add staged_0(staged_carry0, staged_sumO,
{5'b0, stage3_sum0},
{4'b0, stage3_carry0, 1'b0},
{stage3_suml, 4'b0});

defparam stage4_1.WIDTH = 27;

carry_save_add staged_1 (staged_carryl, staged_suml,
{2'b0, stage3d_carryl},
{1'b0, stage2_sum2, 7'b0},
{stage2_carry2, 8'b0});

defparam stage5.WIDTH = 32;

carry_save_add stage5(stage5_carry, stage5_sum,
{3'b0, staged_sumO},
{2'b0, staged_carry0, 1'b0},
{staged4_suml, 5'b0});

defparam stage6.WIDTH = 33;

carry_save_add stageb (stage6_carry, stageb_sum,
{1'b0, stage5_sum},
{stageb_carry, 1'b0},
{staged_carryl, 6'b0});

214

Verilog Quickstart

assign C = stage6_sum + {stage6_carry, 1'b0};

endmodule

module carry_save_add(carry, sum, a, b, c);

parameter WIDTH = 18;
output [WIDTH-1:0] carry;
output [WIDTH-1:0] sum;
input [WIDTH-1:0] a;
input [WIDTH-1:0] b;
input [WIDTH-1:0] c;
integer i;

reg [WIDTH-1:0] carry;
reg [WIDTH-1:0] sum;

reg [1:0] result;

always@(a or b or c)

begin
for(i = 0; 1 < WIDTH; 1 =1 + 1)
begin
result = a[i]l + b[i] + c[i];
sum[i] = result[O0];
carry[i] = result[l];
end
end
endmodule

Example 16-26 and Example 16-27 are good examples

of Wallace multipliers for

positive numbers. But what about negative numbers? Example 16-28 shows the

Wallace multiplier modified for negative numbers.

Example 16-28 A 16-by-16 Wallace Multiplier for Signed Numbers

module swalmull6 (c,a,b);

output [31:00] c; // product (2's complement number)
input [15:00] a; // multiplier (2's complement #)
input [15:00] b; // multiplicand (2's complement #)

wire [15:00] a; // multiplier
wire [15:00] b; // multiplicand
wire [15:00] ci; // carry in bits required when recode 1is

// negative

wire [16:00] r0; // recoded multiplicands

wire [18:02] r1;
wire [20:04] «r2;
wire [22:06] r3;
wire [24:08] r4;
wire [26:10] «r5;
wire [28:12] «r6;
wire [30:14] «r7;

Modeling Tips

215

wire [31:16] se;

// stage one results
wire [20:00] sl1_s1;
wire [21:01] sl_c1;
wire [26:04] sl_s2;
wire [27:05] s1_c2;
wire [31:10] sl_s3;
wire [32:11] sl1_c3;

// stage two results
wire [26:00] s2_s1;
wire [27:01] s2_cl;
wire [31:05] s2_s2;
wire [32:06] s2_c2;

// stage three results
wire [31:00] s3_s1;
wire [32:01] s3_cl;

// stage four results
wire [31:00] sum;
wire [32:01] carry;

// final product
wire [31:0] c;

// look at multiplier and recode multiplicand
rcd2 rcO(a[01:00],b,r0,ci[01:007])

rcd3 rcl(a[03:01],b,rl,ci[03:02])
rcd3 rc2(al[05:03],b,r2,ci[05:04])
rcd3 rc3(al[07:05],b,r3,ci[07:06])
rcd3 rc4(al[09:07],b,r4,ci[09:08])
rcd3 rc5(al[ll:09]1,b,r5,ci[11:10])
rcd3 rcé6(al[l3:11]1,b,r6,ci[13:12])
rcd3 rc7(all5:13]1,b,r7,ci[15:14])

// create sign extention for 2's complement numbers

assign se = {~r7[30], 1'bl, ~r6[28], 1'bl, ~r5[26], 1'bl,
~r4[24], 1'bl, ~xr3[22], 1'bl, -r2[20], 1'bl,
~rl[18], 1'bl, ~r0[1l6], 1'b0};

// three sections to create stage 1 results
defparam cl.WIDTH = 21;
carry_save_add cl(sl_cl,sl_s1,
{4'hl, // constant 1 is se carryin
se[l1l6], ci[15:00]},
{2'h0, se[18:17], r0[16:00]11},
(sel[20:19], r1[18:02], 2'h0}) ;
defparam c2.WIDTH = 23;
carry_save_add c2(sl_c2,sl_s2,{4'h0,se[22:21],r2[20:041},
{2'h0,se[24:23],r3[22:06],2'h0},
{se[26:25],r4([24:08],4'h0});
defparam c3.WIDTH = 22;

216 Verilog Quickstart

carry save_add c3(sl_c3,s1_s3,{3'h0,se[28:27],r5[26:101]1},
{1'h0,se[30:29],r6[28:12],2'h0},
{se[31], r7[30:14], 4'h0});

// two sections to create stage 2 results
defparam c4.WIDTH 27;
carry _save_add c4d(s2_cl,s2_s1,{6'h00,s1_s1[20:0011},
(5'h00,s1_c1([21:01]1,1'h0),
{s1_s2[26:04]1,4'h0});

defparam c¢5.WIDTH 27;

carry save_add c5(s2_c2,s82_s2,{4'h0,s1_c2[27:05]},
{s1_s3[31:10],5'h00},
{sl_c3[31:11],6'h00));

// one section for stage 3 results
defparam c6.WIDTH 32;
carry_save_add c6(s3_cl,s3_s1,{5'h00,s2_s1[26:00]1},
{4'h0 ,s2_c1([27:01]1,1'h0 1},
{s2_s2[31:05],5'h00});

// one section for stage 3 results

defparam c7.WIDTH 32;

carry_save_add c7(carry,sum,s3_s1[31:00],
{s3_c1[31:01],1'h0 1},
{s2_c2[31:06],6'h00});

// final stage should be carry lookahead adder
assign c¢ sum + {carry[31:01],1'b0};

endmodule

module rcd2 (a,b,rec,ci);

input [2:1] a;
input [15:0] b;
output [16:0] rec;
output [1:0] ci;
// note that rcd2 is a case of rcd3 with 1lsb of a = 0
reg [16:0] rec;
reg [1:0] ci;
always @(a or b)
case (a)
0: begin rec = 17'h00000; ci = 0; end // 00 ==> 0 * b
1: begin rec = {b[l1l5],b}; ci = 0; end // 01 ==> 1 * b
2: begin rec = {~b,1'b0}; ci = 2; end // 10 ==> -2 * Db
3: begin rec = {~b[1l5],~b}; ci =1; end // 11 ==> -1 * b
default: begin rec = 17'h00000; ci = 0; end
endcase

endmodule

Modeling Tips 217

module rcd3 (a, b, rec,ci) ;
input [2:0] a;

input [15:0] b;

output [16:0] rec;
output [1:0] ci;

reg [16:0] rec;
reg [1:0] ci;
always @(a or b)
case (a)
0: begin rec = 17'h00000; ci = 0; end // 000 ==> 0 * b
1: Dbegin rec = {b[1l5],b}; ci = 0; end // 001 ==> 1 * b
2: begin rec = {b[l1l5],b}; ci = 0; end // 010 ==> 1 * b
3: begin rec = {b,1'b0}; ci = 0; end // 011 ==> 2 *
4. begin rec = {~b,1'b0}; ci = 2; end // 100 ==> -2 * b
5: Dbegin rec = {~b[1l5],~b}; ci = 1; end // 101 ==> -1 * b
6: begin rec = {~b[15],~b); ci = 1; end // 110 ==> -1 * b
7: begin rec = 17'h00000; ci = 0; end // 111 ==> 0 * b
default: begin rec = 17'h00000; ci = 0; end
endcase
endmodule

module carry_save_add(carry, sum, a, b, c);
parameter WIDTH = 21;
output [WIDTH-1:0] carry;
output [WIDTH-1:0] sum;
input [WIDTH-1:0] a;
input [WIDTH-1:0] b;
input [WIDTH-1:0] c;
integer 1i;

reg [WIDTH-1:0] carry;
reg [WIDTH-1:0] sum;

reg [1:0] result;

always@(a or b or c)

begin
for(i = 0; 1 < WIDTH; i1 =1 + 1)
begin
result = a[i] + b[i] + c[i];
sum[i] = result[O0];
carry[i] = result[l];
end
end
endmodule

A Proven, Successful Approach to Modeling

The final tip in this chapter is the use of progressive refinement, as demonstrated
with the alarm examples. First, a behavioral model of the desired system answers
this question: “What do you think you are designing?” Next, you should develop a

218 Verilog Quickstart

set of tests to exercise the operating functions. This step answers the question:
“Does it work the way you expect it to?” With these two questions answered, you
can be confident about what you are designing, and you have a set of tests to prove
that the design works correctly.

Once you know exactly what you are building and have a set of tests, you can start
to work on more detailed models. Each of the more detailed models can be tested
with the original tests to insure correct functionality. Finally, a model of the
ultimate implementation can be verified with the original tests.

Many people are hesitant to start with a behavioral model because they think it may
be a waste of time. They may think: “If I am not drawing schematics or writing
synthesizable code, I am not working toward my final implementation. So why do
it?” The time spent developing and testing a behavioral model pays off as a huge
time savings in the design and debugging of the final model. It was much easier to
debug the behavioral model of the alarm than to debug the partial implementation.
Developing the test bench for the behavioral model was easier because it was easier
to distinguish whether the error was in the test bench or in the model.

When you are working on a larger system with more than one functional block, the
payoff of starting with behavior models is even more pronounced. Each block can be
modeled rapidly at the behavioral level. The blocks can be tested together as a
system. The interactions between functional blocks in a system are often the source
of unforeseen behaviors. These unforeseen interactions can be observed and
debugged. By debugging the system early in the design cycle, you can avoid
redesign later in the design cycle. As you complete more detailed descriptions of
each of the functional blocks, you can still test the entire system by using behavioral
descriptions for some of the blocks and more detailed descriptions for others.

Using behavioral design and testing early in the design cycle will shorten your
design cycle by building the right system the first time. It is much easier to build
something correctly if you know you are building the correct thing.

17 MODELING STYLE TRADE-OFFS

This chapter might be subtitled, Zen and the Art of Verilog Modeling. This chapter
marks a departure from the previous chapters (full of syntax and examples) into
why you would want to make certain modeling decisions.

Two obvious questions in the construction of a model are, “Will it simulate
quickly?” and, “Will it synthesize into what I want to build?” Although simulation
performance and synthesis are two considerations for modeling (and the choices you
make as you write a model), they are not the only considerations in choosing a
modeling style.

FORCES THAT INFLUENCE MODELING STYLE

So far in this book, the only forces influencing your models have been “write it fast”
or “use this new construct.” As new constructs were introduced in this book, you
were encouraged to use each of them in a model, so the “use this construct” force on
modeling style is an artifact of the learning process. The most common force on
modeling style is “write it fast.” The old adage “haste makes waste” still applies
today. A hastily written model may appear to have the correct functionality, but it

220 Verilog Quickstart

may be terribly inefficient for simulation, or it may not be synthesizable. As
mentioned in Chapter 1, there are three basic reasons for using a hardware
description language: Simulation, documentation, and synthesis. Therefore, these
three are also forces that act on modeling style.

[Modeling style]

Figure 17-1 Forces That Act on Modeling Style

As shown in Figure 17-1, your modeling style may be affected by different forces.
These forces may be pulling your modeling style in different directions. It would be
naive to think there is only one force on modeling style, and that there is only one
“correct” model for a given circuit. Unfortunately, many people have tried this “one
correct model” approach and have not realized that they were costing themselves
time and productivity.

Evolution of a Model

Every model starts with the write-it-fast approach, but where does the model go
from there? You can hope that the model will be revised, move in the direction of
documentation, and become a good reference for the design. Is a model that
represents good documentation the final step in the evolution of model? No: You
need to use the correct model for each job.

Consider for a moment a flip-flop: Which input changes more often, the data or the
clock? Of course, the answer is dependent on the circuit that contains the flip-flop.
In most cases, the clock input changes more often than the data. Sometimes the
clock may change a thousand or more times before the data changes. You can apply
this knowledge to a flip-flop model and see the impact on simulation performance.

Modeling Style Trade-Offs 221

Example 17-1 Normal D Flip-Flop

module ndff (g, clock, data);
input clock, data;
output qg;
reg q;
always @ (posedge clock)

g <= #(REG_DELAY) data;
endmodule

Example 17-1 shows the simple model for a normal D flip-flop we have been using.
What happens if the clock changes one thousand times more often than the data?
The expression ¢ = data would be executed one thousand times more than is
needed. You can modify the module so that it is only executed when the data
actually changes.

Example 17-2 Modified D-Flip-Flop

module mdff (g, clock, data);

input clock, data;

output qg;

reg q;

always @data @ (posedge clock)
g <= #(REG_DELAY) data;

endmodule

Example 17-2 shows how the flip-flop can be modified to wait first for the data to
change and then wait for the clock to change. The two flip-flop models behave
identically, but the second one may potentially be a thousand times faster. Before
you get carried away and change all of your flip-flops, be aware that this trick has to
be applied properly. If your data change at about the same rate as your clock, there
may be no advantage to this modified flip-flop. You should also be aware that most
modern simulators automatically optimize your flip-flops, so this model may
actually go slower. This example is only meant to show that by taking into
consideration the operating conditions of your models, you may be able to improve
their simulation performance.

Modeling Style and Synthesis

There are some people who will argue, “If a model is not synthesizable, why write
it?” The rebuttal is simple: “Why synthesize a circuit that has the wrong function?”
Simulation has to come first. Simulation answers the important question: “Are you
designing the correct system?” To answer that question the predominant forces on
modeling style are “write it fast” and “simulation performance.” Once you have
verified that you are designing the correct system, you can make any changes to

222 Verilog Quickstart

your models that are needed for synthesis. If you start with synthesis as your only
consideration, you may never answer the question, “Are you designing the correct
system?”

Is It Synthesizable?

The answer to this question depends on which version of which tool you are using,
and how you modeled your design. Unfortunately, the rules are not exactly the same
for each of the available synthesis tools. Every construct in Verilog is synthesizable.
Not all combinations of all constructs are synthesizable. With each release of a
synthesis tool, more combinations of constructs become synthesizable.

There are some basic rules you can follow to insure that something is synthesizable.
Change the question from “Is it synthesizable?” to “Is it combinatorial or
sequential?” If your model is neither combinatorial nor sequential, or you can’t
determine which one it is, most likely the synthesis tool won’t be able to either, and
your model is not synthesizable. If each part of your circuit is either combinatorial
or sequential, it should be synthesizable.

If you have a continuous assignment, it is combinatorial logic, so it is synthesizable.
The only exceptions to this might be feedback, or complex operators like
multiplication and division. Functions used to model combinatorial logic are also
synthesizable. An always block that is executed whenever any of the inputs changes
also models combinatorial logic and is synthesizable.

Sequential logic is also synthesizable, but not all sequential logic synthesizes. If you
have only one edge of one clock, it is synthesizable. The one edge refers to the
active clock edge. Asynchronous set and reset are synthesizable so it is legal to have
three edges in the sensitivity list of the always statement..

These are most of the basic rules for determining whether a model is synthesizable.
There are more detailed rules (such as how to model reset) that may vary from tool
to tool. Figure 17-2 shows a simple flow chart to determine if a model is likely to be
synthesizable.

Modeling Style Trade-Offs 223

Continuous
assignment

Combinatorial J

ensitive
toall
inputs

Mggﬁ %a" [Not Synthesizable]

E:>[Combinatorial]

Sequential/registers
State machine

[Not synthesizable]

Figure 17-2 Synthesizablility flowchart

Appendix B lists all the modules in this book along with a checklist of their
synthesizablility.

LEARNING FROM OTHER PEOPLE’S MISTAKES

With enough experience using Verilog, you will develop a skill for writing good
models. This next set of examples is designed to help you avoid some common
pitfalls. These examples highlight common modeling style errors made by novice
Verilog users. Each example has its problems highlighted, with alternate improved
models. By showing you these bad modules, I hope you can avoid these common
problems.

224 Verilog Quickstart

Example 17-3 Bad Register

module regl6b(g, d, clk, clr_n);
input [15:0] d;

input clk, clr_n;

output [15:0] g;

reg [15:0] q;

initial g = 0;

always
begin
if(clr_n != 0)
@ (posedge clk) #1 g = d;
else
#1 g = 0;
end
endmodule

What are some of the problems with Example 17-3? Is the clear signal (clr_n)
synchronous or asynchronous? What happens when clr_n is held low?

The most obvious problem is when clr_n is held low for a long time. This model
executes at every time unit. This would be a huge waste of CPU time.

A more subtle problem is the case of how clr_n interacts with the clock (clk). This
model creates a one-time-unit glitch on the output in some cases when clear is
asserted. If clear is not asserted (c/r_n = 1), the model waits for the clock, and the
output (g) gets a new value one time unit after the clock. If the model is waiting for
the clock, and then clear is asserted, the output does not change until the clock rises,
whereupon the output will change to the then current value of the input (d). The
always loop will recycle to the top, where it checks clear and then one unit later the
output will go to 0.

This model also samples its input d one time unit after the clock. This is typically
called negative setup time, and is generally undesirable.

Example 17-3 certainly is not efficient for simulation. It is not good documentation
for the design because the behavior of reset is quite confusing. It can be improved in
many ways.

Modeling Style Trade-Offs 225

Example 17-4 Improved Register

module regl6i(g, d, clk, clr_n);
input [15:0] d;

input clk, clr_n;

output [15:0] qg;

reg [15:0] q;

always @ (posedge clk)

if(clr_n)
a <= #1 d;
else
a <= #1 0;
endmodule

What improvements does Example 17-4 show over Example 17-3? Many! First, it is
now easy to see that clr_n is synchronous because this model is only evaluated after
the clock rises. Because the model does not needlessly set the output to 0 every time
unit when clr_n is held low, the model will use less CPU time.

You may have noticed that the begin-end block is removed. The begin-end block is
not needed because there is only one statement (the if) in the always block. Omitting
the begin-end block around a single statement is a matter of preference. It is
definitely not needed, though some designers may feel it improves readability.
However, the extra begin-end block may waste a small amount of CPU time because
it is an extra statement to compile or execute.

The expression for the if was also changed. The discussion for this change is similar
to that for the removal of the begin-end block. It is a matter of preference. The
meaning is unchanged, but the code is simplified.

The most significant change in functionality is the subtle change from #/ ¢ = d; to
q <= #I d; This changes what was probably a subtle error in Example 17-3. In both
cases there is a clock-to-output delay of one. However, the first case had negative
setup time and the second case had zero setup time. Negative setup is rarely
modeled intentionally. What is negative setup time? Without completely revisiting
the subject of setup time, you should have learned in any logic design course that
negative setup time simply means a change in the input data after the clock is
propagated to the output. Normal setup time is described as follows: First the input
is stable; then the clock rises; and finally the state of the input at or before the clock
is propagated to the output. How did Example 17-3 accomplish negative setup time?
First, the model waited for the clock, next, the model waited one more time unit;
and then one unit after the clock, it sampled the value of the input (d) and
propagated it to the output (g).

226 Verilog Quickstart

The negative setup time was corrected in Example 17-4 by using the intra-
assignment delay. In this case, the model waites for the clock, sampled the input
immediately, and then waites one time unit to propagate it to the output. The
assignment is also changed from a blocking to a non-blocking assignment to be
consistent with the preferred style.

The initial statement is also removed. Initializing flip-flops to a default value is
generally a bad practice since it may lead to post-synthesis simulation mismatches.
This flip-flop has a clear input which should be used to get the circuit into a known
state.

The model in Example 17-4 is clearly an improvement, but is this the best possible
example? It expresses the functionality clearly, so it is good documentation; it will
synthesize; and it is more efficient for simulation. The model could be further
tweaked for increased simulation performance.

Example 17-56 Tweaked Register

module regl6t(g, d, clk, clr_n);
input [15:0] d;

input clk, clr_n;

output [15:0] q;

reg [15:0] q;

always @(d or clr_n) @(posedge clk)
if(clr_n)
g <= #1 d;
else
g <= #1 0;
endmodule

Example 17-5 may be more efficient for simulation as explained at Example 17-2.

Example 17-6 Bad Adder

module add32b(o, a, b) ;
input [31:0] a, b;
output [31:0] o;

reg [31:0] o;

always
#1 o = a + b;

endmodule

Modeling Style Trade-Offs 227

Example 17-6 is just a small step above the worst classic error. The worst classic
error would have been to omit the #/. If the delay were omitted, this would be a
zero-delay always loop. Because simulation time would not advance with a zero-
delay always loop, nothing would work. In this case the novice user noticed the
zero-delay always loop and added the #/ to make the simulation work. Of course,
this is huge waste of CPU time to recalculate a 32-bit addition at every time unit,
independently of the inputs changing.

Example 17-7 Improved Adder

module add32i(o, a, b) ;
input [31:0] a, b;
output [31:0] o;

reg [31:0] o;

always @(a or b)
#1 o = a + b;

endmodule

Example 17-7 is more efficient for simulation because the addition is performed
only if one of the inputs changes.

Example 17-8 Adder Reduced to a Continuous Assignment

module add32ca(o, a, b) ;
input [31:0] a, b;
output [31:0] o;

assign #1 o = a + b;

endmodule

Example 17-8 further reduces the adder. The reg declaration is removed and the
always block is replaced by a continuous assignment. Why write more code than
you need? The continuous assignment is a fast and efficient way to model many
functions.

A mux can also be modeled inefficiently by someone new to Verilog.

228 Verilog Quickstart

Example 17-9 Bad Mux

module muxl6b(o, a, b, s) ;
input [15:0] a, b;

input s;

output [15:0] o;

reg [15:0] o;

initial o = 0;

always
begin
if(s ==1)
#1 o = b;
else
#1 o = a;
end
endmodule

Example 17-9 repeats many errors you have seen before. It is evaluated at every
time unit needlessly, and it wastes CPU time. It has an extraneous begin-end. It has
an initial block that serves no useful purpose.

Example 17-10 Improved Mux

module mux16i(o, a, b, s);
input [15:0] a, b;

input s;

output [15:0] o;

assign #1 o = s ? b : a;

endmodule

Example 17-10 is only evaluated when the inputs change.

It is starting to look like using the continuous assignment is the most efficient way
to model. However, modeling style is not as simple as that. There are cases in which
the continuous assignment would be very inefficient to use. The continuous
assignment is evaluated whenever any of the inputs change: If you have a complex
expression with many inputs, a lot of unnecessary calculation may take place.

The final bad model is a barrel shifter.

Modeling Style Trade-Offs 229

Example 17-11 Bad Barrel Shifter

module bs32b(out, 1in, s);
input [31:0] in;

input [3:0] s;

output [31:0] out;

reg[31:0] out;
reg internal_clock;

initial out = 0;
initial
fork
internal_clock = 0;
forever #10 internal_clock = ~internal_clock;
join

always @ (posedge internal_clock)
begin
out = 1n << s;
end

endmodule

Example 17-11 repeats some style errors you have seen before, such as the extra
begin-end block. You have seen the merits of removing extra initial blocks inserted
for arbitrary initialization. This model evaluates the shift at every clock,
independently of the inputs changing, and you have seen that error before as well.

The biggest inefficiency in Example 17-11 is the clock. In large systems, the clock
is evaluated more often than anything else. Efficient generation and distribution of
the clock can make a big difference in model performance. It does not make sense
that each module in a system reproduces the clock; the clock should be generated
externally and passed into the module. If you had a thousand or more instances of a
module that generated the clock internally, you would spend most of your time in
simulation generating a clock. The statement internal_clock = ~internal_clock
makes this clock generator even more inefficient and time consuming because the
computer must calculate the complement.

Finally, because Example 17-11 has an internal clock generator, it is not
synthesizable.

230 Verilog Quickstart

Example 17-12 Improved Barrel Shifter

module bs32i(out, in, s, clock);
output [31:0] out;

reg [31:0] out;

input [31:0] in;

input [3:0] s;

input clock;

always @ (posedge clock)
out <= #('REG_DELAY) in << s;

endmodule

Example 17-12 cleans up the barrel shifter in a number of ways. The clock is now
passed in rather than regenerated. The port declarations are in the same order as the
ports list. If you look carefully at the past several examples, you will notice that the
port declarations are not always in the same order as the port list. There is no
requirement in Verilog that the port declaration order match the port list order, but
matching the orders improves readability.

WHEN TO USE UDPS

User-defined primitives (UDPs) are fast and efficient in Verilog. To model a flip-
flop in Verilog, you might need to use four or more gates. But the same flip-flop
might be modeled with a single user-defined primitive. An AND-OR-INVERT gate
might require the use of three Verilog built-in primitives (two ands and a nor) but
could be modeled with a single UDP. In general, Verilog simulators can evaluate a
UDP as fast as they can a built-in primitive.

When designing a library for Verilog, as a general rule you should use a UDP if you
can replace three or more gates. The only time you might not want to use a UDP is
if there are many inputs. UDPs allow up to ten inputs. However, in practice,
anything more than six inputs is difficult to write.

In a typical large circuit there are many instances of flip-flops. If the flip-flops are
modeled efficiently with UDPs, the simulation performance will be noticeably
improved.

The UDPs most commonly used are flip-flops, muxes, and AND-OR gates. In each
of these common usages, the UDP replaces three or more primitive instances.

Modeling Style Trade-Offs 231

BLOCKING AND NON-BLOCKING ASSIGNMENTS

Chapter 4 introduced both the blocking and non-blocking procedural assignments,
however no rules were presented explaining the best usage of each. When to use a
blocking or non blocking assignment is a matter of style or personal preference.
However this simple rule can avert modeling problems: For combinatorial logic use
blocking assignments with no delays; for sequential logic use nonblocking
assignments and unit delay.

Example 17-13 Blocking vs Non Blocking Assighments

module queuectl(. . .); // this is an incomplete example
... // details omitted for clarity
// Sequential logic
always @ (posedge clock) begin
if (myWrite) begin
write <= #1 1;
writeData <= #1 busData;
end
else
begin
write <= #1 0;
end
end

always @ (readPtr or writePtr)
if (readPtr == writePtr)
gEmpty = 1;
else
gEmpty = 0;

endmodule

Most of the examples in this book use blocking assignments for simplicity, Example
17-13 shows the preferred style of using zero delay blocking assignments for
combinatorial logic and unit delay non-blocking assignments for sequential logic.

The advantage of this style for combinatorial logic is that the combinatorial logic is
zero delay independent of the number of stages of logic. Since the actual depth and
delay of the combinatorial logic is be determined by the synthesis tool, the delay in
the source Verilog is irrelevant. An interesting side effect of this strategy is that a
logic error resulting in a combinatorial feedback loop will be easy to detect as a zero
delay oscillation in simulation.

The advantage of using the unit delay blocking assignment for sequential logic is
two fold. It reduces the possibility of race conditions in simulation, and it makes it

232 Verilog Quickstart

easier to understand the results of simulation. Since synthesis ignores the delays,
there is no harm in including them in the simulation.

If a simulated register has zero clock-to-q delay, it is possible that the data from this
register can get to the next register before the clock. Although it is possible that the
final implementation of a circuit will result in enough delay in the clock signal to
mimic this condition of the data arriving at the next stage before the clock, rarely is
data faster than the clock. Using a clock to q delay of one will eliminate these races
in the verilog code and more closely model the final circuit.

Debugging a circuit is also simplified when the registers have clock-to-q delay. If
you look at a result wave form from a simulation that had zero delay, it is difficult
to know if a change that occurs with a clock was seen at that clock or caused by that
clock. With a unit delay, it is quite easy to see that a signal changed as a result of
the clock, and the value of that signal is seen on the edge of the clock.

18 TEST BENCHES AND TEST MANAGEMENT

INTRODUCTION TO TESTING

Once you have written your model, you are not even half done. Developing tests for
your designs can take much more time and more code than the original models.
Typical designs require three to ten times more effort for creating the tests than for
developing the original designs.

You might well ask: “If it takes more time and more code to test a model, why is
testing being introduced so late in the book?” The answer is that Verilog makes
writing your tests easier by using the same techniques for writing tests as you use to
write your models. In this chapter, you will use all the constructs that you have
already learned to test models.

While you develop the test suite and behavior model for the alarm model in Chapter
16 or for any other complex system, you will undoubtedly find mismatches between
the assumptions of behavior in the model and the assumptions of behavior in the
test suite. The differences are resolved by fixing either the model or the test suite,
until a single correct set of behaviors is found. The process of enhancing the model

234 Verilog Quickstart

and enhancing the test bench can be one of the most time-consuming parts of the
design cycle.

Developing a good set of tests can make the difference between a design that
behaves properly the first time, and a design that does not perform correctly under
some conditions. While you develop your test suites, you can add $monitor,
Sdisplay, and custom checking tasks to check for correct responses.

The code to apply tests often becomes repetitious. As with any Verilog module, if
the same several lines of code are repeated many times, it becomes obvious that a
task would be a more effective modeling technique. You may find that you use fasks
more often in creating test benches than in the course of designing circuits.

Model Size versus Test Volume

The main purpose of modeling with Verilog is to determine if you are designing
and building the correct circuit or system. When you model a design, you are trying
to describe how your circuit should act. When you write tests, you are trying to
simulate the environment in which the circuit will function, and to exercise all of
the functionality of your circuit. Your tests should try to exercise every possible
scenario that the circuit may encounter.

As mentioned earlier, writing the tests can take much more code and time than the
model being tested. Consider the case of the 8-bit adder and its test bench described
in chapter 3. All the code for the 8-bit adders requires only 33 lines of Verilog. The
test bench, which applies only six tests and does not fully test the design, requires
48 lines. (The test_adder test bench is not the most efficient way to create a test
bench; it was written to be easy to understand while you were first learning how to
model in Verilog.)

The test bench for the alu model in Chapter 10, which is compact and uses an
external data file, may need even more code than some implementations of the alu.
When you consider the additional code that was written to generate that external
data file (alu_test.vec), the volume of test code is much greater than the volume of
code in the alu model.

For a simple, loadable counter example, it might take an expert about 15 minutes to
model the counter, 30 minutes to create a test bench, and 15 minutes to debug the
design. Most of the errors found during debugging will be in the test bench.

Some approaches to testing a new design involve modeling an entire system around
it. For example, to test a model for a disk controller, the disk and a computer
interacting with the disk controller might be modeled. In a case like this, there may

Test Benches and Test Management 235

be a hundred times more code written to test the circuit than to model the circuit
itself.

TYPES OF TESTS

Functional Testing

The most common types of tests written for a model are called functional tests
because they test the expected functionality. These tests apply the expected inputs
and look for correct responses. During the development of your model, your first
tests will exercise what you expect to happen. Functional tests do not necessarily
test every possible manufacturing fault, nor do they necessarily test every possible
set of inputs.

Regression Testing

During the progress of a design, you should develop a set of tests with known
responses. Each time you make a change to the design, you should rerun the tests
and compare the results from the new model to the results from the old model. This
rerunning of tests and matching the results to a known, good set of results is called
regression testing. The purpose of regression testing is to verify that no errors are
introduced into the circuit as the design evolves.

Sign-Off

When your design is ready for fabrication, you will need a set of tests that will be
run against the design when it is fabricated. The purpose of these tests is different
from that of the functional tests. The purpose of the sign-off tests is to detect any
manufacturing faults. There are special simulators (called fault simulators) that can
determine if your tests exercise and detect all possible manufacturing faults. It may
be possible to exercise your circuit to catch all possible manufacturing faults with
many less vectors than you used for functional testing.

Another concern when writing sign-off tests is the simulator(s) that your vendor
will support for sign-off. Most ASIC vendors support Verilog-XL as a sign-off
simulator. The simulators that vendors support are important because the vendors
have verified that these simulators (with their libraries) produce the same results as
the circuits they fabricate. You want the circuits which a vendor fabricates for you
to behave the same as your simulations.

236 Verilog Quickstart
System Test versus Unit Tests

A unit test is a test that tests an individual module, or a small set of modules, that
form a functional unit in your design. A system fest is a test that tests a larger group
of modules that forms a complete system. A large design project will have a
combination of both system and unit tests.

In a large design, many of the problems are found in the interconnections between
the parts of the system. The best way to find these is by using system tests. In system
tests of a microcomputer system, software may be written and then run on the
simulated system.

Unit tests should be written for every functional unit in a large design. It is much
easier to debug a problem using a unit test. However, it might be easier to find a
problem using system tests because system tests tend to exercise a circuit more fully,
and run the circuit through many more cycles. Therefore, systems tests tend to catch
more errors. When a problem is found with a system test, you can write a unit test to
reproduce and debug the problem.

Typically, a large system design is partitioned into functional units. As you model
each unit in Verilog, you should develop unit tests. As units become functional, they
can be combined into subsystems, and you can develop subsystem tests. Next, all the
modules can be combined into a system, often by adding further modules to build a
complete system (including the operating environment). Systems tests are developed
and run against the simulated system. The more tests you can run in simulation, the
better the chance that the final design will be built without errors.

After all the, functional or behavioral models have been verified at the unit and
system levels, each module can be refined either manually or through synthesis.
Each of the refined modules can then be regression tested using the unit and system
tests to ensure that no errors have been introduced during design evolution.

Both unit and system tests are used in creating a comprehensive test suite for your
design. The techniques for developing unit and system tests are similar.
CREATING TEST PLANS

Before creating a Verilog model for a circuit a specification or plan should be
created. Before creating a test module you should create a test plan. A test plan

should look at all the functions of the model and list tests to be written.

A test plan for the adder could be:

Test Benches and Test Management 237

e Test smallest possible sum

e Test carry in

e Test sums with and without carry in
e Test a sum that overflows

A test plan for the ALU exercise could simply be:
e Test all possible functions

Given a description for a loadable up - down counter with reset, similar to the
examples in Chapter 10. A test plan for the counter could be:

Test Reset

Test Load

Test Count up
Test Count down

Test plans do not need to be long or detail each test. The test plan should at least
outline the general tests you plan to write. Without a plan you will likely forget to
test something. Please see Chapter 22 regarding code coverage for a correlation
between test plans and code coverage.

THE BASIC TEST CYCLE

Apply Stimulus
Allow DUT to Respond
Check Results '

Figure 18-1 The Basic Test Cycle

Figure 18-1 shows the basic test cycle. Any test needs to follow this simple three
step process. First apply stimulus. Second allow the device under test time to

238 Verilog Quickstart

respond. Third, observe the outputs and check the results. The cycle can then repeat
for the next test.

Hardware Setup and Hold, and Response Time

Testbenches need to model the timing of the expected circuit. The test bench needs
to provide inputs with adequate setup time and hold time. The test module must
allow the model enough time to respond. The pre-synthesis model may be able to
respond in near zero time, but the final implementation may need significant time
to respond.

The Test Cycle for Combinatorial Models

The adder test module, first shown in the structural modeling chapter, is repeated in
Example 18-2 below. This model uses a simple cycle for applying the stimulus,
allowing the circuit to respond, and checking the results. Inputs are applied
immediately at time zero. The test bench allows 100 time units for the adder to
respond. The 100 time units would allow enough time for even a slow gate level
adder to respond. The results are checked (by the if statement), and the cycle
repeats. The inputs to a combinatorial model can be changed immediately after the
results are checked. The applying of the stimulus and results checking are in the
same begin-end block, so there is no race between when the results are checked and
the new input is applied. If the inputs were applied from one initial or always block,
and the results were being checked in a different initial or always block, the timing
should allow the results to be checked before the stimulus is changed.

Test Benches and Test Management 239

The Test Cycle for Sequential Models

— — — — —
—— —

T —— — —

Apply Stimulus

@lmk Edge
Allow DUT@
Check Results

Figure 18-2 Test Cycle for Sequential Models

Figure 18-2 shows the test cycle for sequential models. Depending on the test and
the model, the reset cycle may be optional. The reset itself may be one of the tests.
In complicated models the reset may be a long sequence for example, initializing
several devices on a bus.

The basic test cycle for the sequential device involves applying stimulus, waiting for
the active edge of the clock, then checking the results, since a sequential device is
likely to have setup and hold requirements. The test cycle timing should take all
factors into account.

240 Verilog Quickstart

Required Setup Active Clock Edge

Time . :
Required Hold Time
/_ Circuit Response Time

Clock s 1 3 | : I | ——

Inputs

Outputs

Figure 18-3 Sequential Test Cycle Timing

Figure 18-3 Shows a possible test cycle timing. It is quite possible that the setup,
hold and response times are near zero for a pre-synthesis model, however after
synthesis the model may require significant setup, hold, and response times.
Considering all of these times may appear complicated, but it can be greatly
simplified. The test cycle for the combinatorial circuit combined the time for
checking the result and applying the next test. The same technique can be applied to
the sequential test cycle. A single time can be located where the results can be
checked and the next stimulus applied. Figure 184 shows an example of the
simplified timing.

Active Clock Edge

Check Results,
Then, Apply New
Stimulus Here

Clock _ | | |

Inputs . i

Outputs

Figure 18-4 Simplified Sequential Test Cycie

Test Benches and Test Management 241

As an example if the clock has a cycle time of 10, the circuit has setup and hold
requirements of 1, and a response time of 7, Then a time of 8 units after the clock
could be used for applying the stimulus and checking the results. Example 18-1
shows a skeleton for the test cycle just described.

Example 18-1 Basic Sequential Cycle Test Bench

reg clock, inl, in2;
wire out;

mymod dut (clock, inl, in2, out);

initial begin // clock generator
#5 clock = 0;
#5 clock = 0;

end

inital begin // stimulus and response checking
@ (posedge clock)

#8 inl = ... set up stimulus - first test
@ (posedge clock)

#8 if (... check resuts - first test

inl = ... set up stimulus - second test
@ (posedge clock)

#8 1f(... check resuts - second test

inl = ... set up stimulus - third test

@ (posedge clock)

#8 if(... check resuts - third test

In Example 18-1 the test sequence itself looks at the generated clock. This has
several advantages. If the clock period is changed, the stimulus stays synchronized
with the clock. The test does not need to calculate and anticipate when the active
edges of the clock will occur. There was no need to calculate any complicated
timing for the test bench. One improvement can be made here is to make the #8 a
text macro or parameter so timing can be maintained more easily if the clock period
or circuit response time changes.

Similar to the combinatorial test cycle example; If the inputs were applied from one
initial or always block, and the results were being checked in a different initial or
always block, the timing should allow the results to be checked before the stimulus
is changed. Please see Chapter 22 for an additional example.

SELF-CHECKING TEST BENCHES

The test bench for the 8-bit adder is a self-checking test bench: The test bench
automatically checks the results from the adder and reports any errors. The test

242 Verilog Quickstart

bench for the alu model is also self-checking. There are many ways to build a self-
checking test bench. The basic idea is to automatically check the response from the
circuit and detect any differences from the expected results. Self-checking test
benches are the easiest to use as regression tests because, after you run a self-
checking test bench, it is easy to tell if the tests pass or fail.

How should you generate the correct answers for a self-checking test bench? In the
test bench for the 8-bit adder, the correct answers were hard-coded into the test
bench. This choice of modeling style was based on your presumed level of Verilog
experience at the time that this test bench was introduced. That test bench could be
improved in three ways. First, Verilog could be made to do the math and calculate
the expected response. Second, the repeated code for each test could be simplified
and put into a task. A third alternative for self-checking is to compare the response
from two different circuits, typically a behavioral model and a gate-level model.

Example 18-2 Adder Test Module Repeated

module test_adder;
reg [7:0] a,b;

reg carry ;

wire [7:0] sum;

adder8 dut (carry_out, sum, a,b,carry);

initial begin
a=20; b=20; carry = 0;

100 if (sum !== 0) begin
Sdisplay("sum is wrong") ;
Sfinish;

end

a=1; b= 0; carry = 0;

100 if (sum !== 1) begin
Sdisplay("sum is wrong") ;
Sfinish;

end

a=0; b= 0; carry = 1;

100 if (sum !== 1) begin
Sdisplay("sum is wrong") ;
Sfinish;

end

a=>5; b=6; carry = 1;

100 if (sum !== 12) begin
Sdisplay("sum is wrong") ;
Sfinish;

end

Test Benches and Test Management

243

a = 200; b = 55; carry = 1;

100 if (sum !== 0) begin
Sdisplay("sum is wrong");
Sfinish;

end

a =18; b = 200; carry = 1;

100 1if (sum !== 219) begin
Sdisplay("sum is wrong") ;
Sfinish;
end
Sfinish ;
end
endmodule

Example 18-2 repeats the adder test module from Chapter 3. This was the first test
bench introduced. It is an example of a simple, self-checking test bench, but what
about some improvements? The test bench can be improved to calculate the correct
responses, or the repeated code could be moved into a rask. These and other possible

modifications will be shown and discussed.

Example 18-3 Using Verilog To Calculate Responses

module test_adder_vc;
reg [7:0] a,b;

reg carry ;

wire [7:0] sum;

adder8 dut (carry out, sum, a,b,carry);

initial begin
a=0; b= 0; carry = 0;

100 if (sum ! == a + b + carry) Dbegin
Sdisplay("sum is wrong") ;
Sfinish;
end

a=1; b= 0; carry = 0;

100 if (sum !== a + b + carry) begin
Sdisplay("sum is wrong") ;
Sfinish;
end

a=0; b=20; carry = 1;

100 if (sum !== a + b + carry) Dbegin
Sdisplay("sum is wrong") ;
$finish;

end

244 Verilog Quickstart

a=>5; b= 6; carry = 1;
100 if (sum !== a + b + carry) begin
Sdisplay("sum is wrong") ;
$finish;
end

a = 200; b = 55; carry = 1;

100 if (sum !== a + b + carry) Dbegin
Sdisplay("sum is wrong") ;
$finish;
end
a =18; b = 200; carry = 1;
100 if (sum !== a + b + carry) begin
Sdisplay("sum is wrong") ;
$finish;
end
$finish ;
end
endmodule

Example 18-3 is a minor improvement on Example 18-2. Now Verilog calculates
the correct responses, so the chance of a human-introduced error is minimized.
However, this test bench still does not check the result on carry_out, and has a
section of code that is repeated several times.

Example 18-4 Simplifying the Test Bench with a task

module test_adder_t;
reg [7:0] a,b;

reg carry ;

wire [7:0] sum;

adder8 dut (carry out, sum, a,b,carry);

initial begin
test (0, 0, 0);
test (1, 0, 0) ;
test (0, 0, 1) ;
test (5, 6, 1) ;
test (200, 55, 1);
test (18, 200, 1) ;
$finish ;

end

task test;
input [7:0] ax, bx;
input cx;
begin

Test Benches and Test Management 245

a = ax; b = bx; carry = cx;
#100 if({carry_out, sum} !== ax + bx + cx) begin
Sdisplay("result is wrong") ;
$finish;
end
end
endtask

endmodule

Example 18-4 simplifies the test bench by using a task to replace the repeated
section of code. Because the checking code has been condensed into a task, it is also
easy to check carry_out. Notice the additional code in the task to calculate and
check carry_out.

Example 18-5 Using a Second Module To Check the Results

module test_adder c;

reg [7:0] a,b;

reg carry ;

wire [7:0] sum, sum_check;

adder8 dut (carry out, sum, a, b, carry);
nadder check_adder (carry_check, sum check, a, b, carry):;
defparam check_adder.size =8;

initial begin
test (0, 0, 0);

test (1, 0, 0) ;
test (0, 0, 1) ;
test (5, 6, 1);

test (200, 55, 1);
test (18, 200, 1);
$finish ;

end

task test;
input [7:0] ax, bx;
input cx;

begin

a = ax; b = bx; carry = cx;

#100 if(sum !== sum_check) begin
Sdisplay("sum is wrong") ;
Sfinish;
end

if(carry_out !== carry_check) begin
Sdisplay("carry is wrong") ;
Sfinish;

end

246 Verilog Quickstart

end
endtask

endmodule

In Example 18-5, an instance of a behavioral adder is used to check the results from
the gate-level adder. This approach—running two models and checking the
results—is useful to determine if you have built a model according to the
specification in the behavioral model. The second adder instance nadder is an
instance of the parameterized behavioral adder from Chapter 14. Each of the adders
is connected to separate output wires and the fask fest compares the outputs.
Another approach shown in Example 18-6 to comparing the results from modules
in parallel is to connect the outputs to the same output wires and use the reduction
exclusive OR to look for any x. If the two circuits are putting out the same result,
the result will be both correct and known. If the circuits disagree on any output, the
result will be an x.

Example 18-6 Generating x's for Miscompare

module test_bench;

reg clk;

parameter half_period = 5;

reg[7:0] stimulusl, stimulus2; // input stimuli to models
wire[7:0] responsel,response2; // results from models
wire error_flag = "{responsel,response2};

// instantiate models to be compared
behav_model dutl (responsel,response?2,stimulusl, stimulus2);
rtl_model dut2 (responsel,response2,stimulusl,stimulus2};

always begin
clk = 0;
#half_period clk = 1;

#half_period if(error_flag===1'bx) begin

Sdisplay ("error at time ",S$time) ;
S$displayb(responsel, ,response2); //x(s) mark bad bit(s)
Sfinish;
end
end
endmodule

RESPONSE-DRIVEN STIMULUS

Because Verilog uses the same language for modeling and stimulus, your stimulus
can respond to your circuit. Stimulus can be simply written to apply different inputs

Test Benches and Test Management 247

at different times. But what if the circuit is not ready for the input? You may need to
rewrite your stimulus to get the correct timing. For example, assume you are
designing a bus protocol controller that waits for a request, responds with a grant,
and then expects data. You could write the stimulus to simply be time based, and
guess how long it will take from the request to the grant, and guess when to apply
the data. Instead, you could write a test that applies the request, then waits for the
grant and then applies the data. Using the response-driven method, if the design
parameters change and the time between the request and the grant changes, the test
does not need to be rewritten.

Perhaps the simplest case for response-driven stimulus is a printer. The rate at
which a printer can accept data is not constant. The rate depends upon the size of
the printer’s buffer, and whether the printer can keep printing as fast as the data are
transferred to it.

Example 18-7 Printer Abstraction

module printer (data, strobe, ack);
input [7:0] data;

input strobe;

output ack; reg ack;

parameter buffer_size =4; // size of the internal buffer

parameter print_time = 25; // time to print a character
parameter buffer write_time = 10;

time done; // the next time the buffer will be empty
initial begin ack = 0; done = 0; end

always @ (posedge strobe) begin
if(done > Stime + buffer size * print_time) #print_time;
// buffer full
if (done > S$time) done = done + print_time;
// calculate next empty time
else done = S$time + print_time;
buffer write_time ack = 1;
Swrite("%c", data); // print it
1 ack = 0;
end
endmodule

Example 18-7 dynamically calculates the next time a printer can accept more data,
based on the incoming data rate, the size of the buffer, and the print speed. This
abstraction represents the model of a printer being able to accept data. If this printer
were being designed by your design group, they could also modify the size of the
buffer, the speed of the buffer, and the speed of the print mechanism.

If your job is to write a test bench to send the message “this is a test message”, how
will you time the sending of the characters to the printer? One approach would be to
send them slowly. Perhaps a delay of 100 between them would be conservative, but

248 Verilog Quickstart

that may not accomplish the goal of sending them as fast as the printer can accept
them. Another approach might be to guess the timing in this fashion: send the first
four characters (the size of the buffer) with a delay of 11 (the buffer write time plus
the acknowledge time). With what timing would the fifth character be sent?

Example 18-8 Printer Test Bench with Guessed Timing

module print_test_1;
reg [7:0] data;
reg strobe;

printer dut (data, strobe, ack) ;
initial begin

strobe = 0; data ="t"; #1 strobe = 1;
#10 strobe = 0; data ="h"; #1 strobe = 1;
#10 strobe = 0; data ="i"; #1 strobe = 1;
#10 strobe = 0; data ="s"; #1 strobe = 1;
#25 strobe = 0; data = " "; #1 strobe = 1;
#25 strobe = 0; data ="1i"; #1 strobe = 1;
#25 strobe = 0; data ="s"; #1 strobe = 1;
#25 strobe = 0; data = " "; #1 strobe = 1;
#25 strobe = 0; data ="a"; #1 strobe = 1;
#25 strobe = 0; data = " "; #1 strobe = 1;
#25 strobe = 0; data ="t"; #1 strobe = 1;
#25 strobe = 0; data ="e"; #1 strobe = 1;
#25 strobe = 0; data ="s"; #1 strobe = 1;
#25 strobe = 0; data ="t"; #1 strobe = 1;
#25 strobe = 0; data = " "; #1 strobe = 1;
#25 strobe = 0; data ="m"; #1 strobe = 1;
#25 strobe = 0; data ="e"; #1 strobe = 1;
#25 strobe = 0; data ="s"; #1 strobe = 1;
#25 strobe = 0; data ="s"; #1 strobe = 1;
#25 strobe = 0; data ="a"; #1 strobe = 1;
#25 strobe = 0; data ="g"; #1 strobe = 1;
#25 strobe = 0; data ="e"; #1 strobe = 1;
#25 strobe = 0; data ="\n"; #1 strobe = 1;
#25 $finish;

end
endmodule

In the test module in Example 18-8, the test bench must be modified to send the
data at the correct rate each time the design team makes a change in the printer
design. This means you will have to spend time modifying the timing in the test
bench, rather than designing a better printer or test bench.

With the guessed timing in Example 18-8, the test bench and printer modules
appear to work, the test message is printed properly, and the finish time is 553. Is
this the optimal time? The test bench shown in Example 18-9 also prints the

Test Benches and Test Management 249

complete message correctly, but finishes at simulation time 478, so the guessed
timing was incorrect.

Example 18-9 Response-Driven Printer Test Bench

module print_test_2;
reg [1:8] data;
reg strobe;
parameter message_length = 23;
parameter [l : 8*message_length] message
= "this is a test message\n";
integer 1i,73;

printer dut (data, strobe, ack);
initial begin
strobe = 0;
for (i=0; i<message_length; i=1i+1) begin
for(j=1; j<=8; j=j+1) datalj] = message[j+1i*8];
#1 strobe = 1;
@ (posedge ack) strobe =0; // wait for the response
end // for
$finish;
end

endmodule

In Example 18-9, all the timing is removed from the test bench. Instead, the test
bench gets its timing from the device under test. Test benches driven by the circuit’s
response can be used to simplify the timing, as shown here, or the test bench can
apply a different set of inputs depending on the output from a circuit.

TEST BENCHES FOR INOUTS

Test benches for inouts can be a daunting problem. The key to writing a test bench
for an inout is to recognize that there are two parts of the test bench for each inout
port: There is a wire connected to the port and a register for driving the input. The
state of the port is observed on the wire. Values to be driven into the inout port are
placed in the register. The register is connected to the port with a continuous
assignment. Figure 18-5 graphically depicts the register, the wire, and the
continuous assignment required when providing a test bench for an inout. When
you need to observe the value being driven out from the module under test, the
register must either not be driving or else be disconnected. The simplest way to
make a register not drive is to place a ‘bz in it. The continuous assignment that
connects the register to the port could also be used to disconnect the register from
the port by using the conditional operator (? :).

250 Verilog Quickstart
Apply stimulus in the register.

Continuous assignment connecting
the register to the wire.

[

Observe results on
Device the wire.
under test.

Figure 18-5 Test Bench for an inout

The most important thing to remember about applying stimulus to an inout is that
you need both a register and a wire. Connect the wire to the port and the register to
the wire with a continuous assignment.

Example 18-10 Test Bench fora RAM

module test_inout;

reg [7:0] address; // drive address into the ram

reg [15:0] data_reg; // drive data into the ram

wire [15:0] data; // actual wire connected to the ram
reg read, write; // control signals, active high

assign data = data_reg; // connect the register to the wire
ram dut (data, address, read, write); // device under test

initial begin
data_reg = 16'bz; read = 0; write =0; // set all off
address =0 ; // test location 0;
#100 if (data !== 16'bz)
Sdisplay("Data port did not turn off.");
data_reg = 16'hfeed; write = 1; // drive data in
#100 write = 0 ; data_reg = 16'bz;

#100 if(data !== 16'bz) // make sure it turns off
Sdisplay("Data port did not turn off.");
read = 1; // read the data back out
#100 if(data !== 16'hfeed)
Sdisplay("Data is wrong.");
Sfinish;
end
endmodule

Example 18-10 is a simple test bench for the RAM model shown in Chapter 7. Only
one location in the RAM is exercised. The wire data is connected to the inout port

Test Benches and Test Management 251

on the RAM. The register data_reg is used to drive in an input value. 16’bz is
placed in data_reg when the test bench is not driving the inout port.

LOADING FILES INTO VERILOG MEMORIES

A Verilog memory might be used as a RAM or ROM to hold a program, or might
simply be a holding place for test vectors to be applied. As a refresher, Example 18-
11 shows a simple memory declaration. The width of the words in the memory is 8§
bits, with bit 7 being the most significant bit. There are 256 words in the memory,
with the first word being 0. By default, the memory is initialized to all x’s.

Example 18-11 Memory Declaration

reg [7:0] ROM [0 :255] ;

There are two system tasks for reading a file into the memory, $readmemh
(hexadecimal format) and $readmemb (binary format). Each of the tasks takes
between two and four arguments. The last two arguments are optional and are
usually omitted. The first argument is the name of the file to read in, and the second
is the name of the memory to be loaded. You can optionally specify the starting and
ending addresses as the third and fourth arguments.

The file is read into the memory in this order: The first line of the file is read into
the first word of the memory. This may seem trivial, but the first word of the
memory is the leftmost index, not the index numbered 0. Thus, reading the same
file into the memories in Example 18-11 and Example 18-12 would yield different
results. In Example 18-12, the first line of the file would read into location 255 in
the memory so declared.

Example 18-12 Reversed Memory Declaration

reg [7:0] ROMB [255:0];

The file to be read in can be created with any text editor, or created from Verilog
using a $fdisplay or $fstrobe command. The format of the file is simply numbers in
hexadecimal format for $readmemh, or binary for $readmemb, separated by white
space. The files may contain comments and the numbers may be uppercase or
lowercase. The digits may be separated by underscores for clarity.

252 Verilog Quickstart

Example 18-13 Memory File adder8.vec

// aaaaaaaa bbbbbbbb carry in
00000000_00000000_0
00000001_00000000_0
00000000_00000000_1
00000101_00000110_1
11001000_00110111_1
00010010_11001000_1

The contents of Example 18-13 could be placed into a file adder8.vec. Example 18-
14 shows the adder test bench modified to read the patterns in from the file. The test
bench applies the patterns using a continuous assignment, uses a for loop to
increment the index into the memory, and checks the results using a task. The for
loop is hard-coded to loop through the first six locations (0 to 5), so this needs to
match the file.

Example 18-14 Adder Test Bench Reading from a File

module test_adder_ f;

wire [7:0] a, b, sum;

wire carry;

reg [8+8+1:1] stim[0:10];

integer index;

adder8 dut (carry_out, sum, a,b,carry);

assign {a,b,carry} = stim[index]; // apply stimulus from
// the memory

initial begin

Sreadmemb ("adder8.vec", stim) ;

for (index=0; index<6; index=index+1)

test;

Sfinish ;

end

task test;
begin
#100 if({carry out, sum} !== a + b + carry) begin
Sdisplay("result is wrong");
$finish;
end
end
endtask

endmodule

Files can also be in hexadecimal format and can include addresses. Unfortunately,
the Verilog format does not match one of the industry standards you may know. In
Verilog, the address is simply a hexadecimal number preceded by the @ symbol.

Test Benches and Test Management 253

The data shown in Example 18-15 could be read into the PROM shown in Example
18-16. The last two lines in the file are read into the last 32 locations in the PROM.
The comments at the end of the lines are for clarity only. The locations a0 through
df are not specified, and remain unknown or unchanged after loading this file.

Example 18-15 PROM Data File prom.dat

/* prom.dat data file */

54 68 69 73 20 77 61 73 20 77 72 69 74 74 65 // 00 - 0Of
6e 20 62 79 20 4a 61 6d 65 73 20 4c 65 65 20 // 10 - 1f
61 73 20 61 6e 20 65 78 61 64 70 6¢c 65 20 66 // 20 - 2f
69 6c 65 0a 31 32 33 34 35 36 20 69 66 20 79 // 30 - 3f
6f 75 20 61 72 65 20 72 65 61 64 69 6e 67 20 // 40 - 4f
74 68 69 73 0Oa 37 38 39 31 30 20 59 6f 75 20 // 50 - 5f
68 61 76 65 20 74 6f 6f 20 6d 75 63 68 20 74 // 60 - 6f
69 6d 65 20 6f 6e 20 79 6f 75 72 20 68 61 6e // 70 - Tf
64 73 21 0Oa 2a 2a 43 51 20 64 65 20 4e 31 44 // 80 - 8f
44 4b 2a 2a 00 00 00 00 00 00 00O 00 00 OO0 00 // 90 - 9f
@el

4e 6f 74 68 69 6e 67 20 6d 6f 72 65 20 74 6f // e0 - ef
20 73 61 79 00 00 00 00 00 00 00O 00 OO OO0 00 // fO - ff

Example 18-16 Simple PROM

module sprom(address, data);
input [7:0] address;

output [7:0] data;

reg [7:0] rom[0:255];

assign #45 data = rom[address]; // entire functionality
initial S$Sreadmemh ("prom.dat", rom);
endmodule

The $readmemh or $readmemb task invocations do not need to be in the module
that declares a memory array. The name of the memory being loaded may be a
hierarchical name; for example, you could load all of your memories from the test
bench. You do not need to load the memories at time O from an initial statement;
they can be loaded at any time during the simulation. If the file you are trying to
load cannot be read, Verilog issues a warning, and simulation continues without the
file. Make sure that the files exist or you may be debugging a simulation with
incorrect results because you overlooked the warning.

If you want to check that the correct number of locations is read, you can use the
start and end address optional arguments to the $readmemh or $readmemb system
tasks. If Verilog does not read the correct number of values from the file, a warning
message will be printed. The start and end addresses are also useful to reverse the

254 Verilog Quickstart

direction of loading if you declared the range of words backwards or wish to load a
range backwards.

TEST BENCHES WITH NO TEST VECTORS

The simplest test bench contains an instantiation of a module to be tested;
declarations of registers for the inputs; and wires for the outputs. Example 18-17
shows a test bench with no vectors. Why would you want to do this? This allows the
test vectors to be applied, and results to be checked, interactively.

Example 18-17 Test Bench with No Vectors

module test_adder_nv;
reg [7:0] a,b;

reg carry ;

wire [7:0] sum;

adder8 dut (carry_out, sum, a,b,carry):;

endmodule

Using the test bench in Example 18-17, you could enter Verilog interactively and
manually specify values for a, b, and carry, and then observe the results. This type
of test bench gets you into simulation as rapidly as possible and lets you experiment
with your models. Chapter 21 (on debugging) describes how to use Verilog
interactively.

USING A SCRIPT TO RUN TEST CASES

You can set values of registers, load files into memories, or trigger tasks you coded
into your modules specifically for debugging—all interactively. If you designed a
microprocessor system, the main stimulus is most likely the program loaded into
memory, and you may have coded a task to reset the processor. A sequence of tests
might be to load a program, reset the processor, let it run, load the next program,
and so on. This sequence of loading programs may be repeated for several test
programs. You can write a script of interactive commands to run a set of test cases.
Interactive commands are read into Verilog using the -i command line argument, or
interactively using $inpur. An interactive command file can even trigger the loading
of another interactive command file.

The advantage of using a command script is you don’t have to code all of your tests
into a test bench in advance. As your tests develop or as you debug interactively,

Test Benches and Test Management 255

you can begin to build a set of scripts for your test cases, rather than modifying test
benches or test vector files.

MODELING BIST

Built-in self-test (BIST) is a technique for applying stimulus and collecting
responses within a circuit. BIST requires the modeling of a linear feedback shift
register (LFSR) to generate input patterns and a multiple-input shift register
(MISR) to collect the responses. The LESR uses a polynomial to generate a known
sequence of pseudo-random inputs. The MISR uses another polynomial to generate
a unique signature for the tests. The art of using the optimum polynomials is not
discussed here, and is the subject of other texts. When the circuit is in test mode, the
inputs are switched from their normal function to be connected to the LFSR, and the
outputs are connected to the MISR. The LFSR is initialized to a known value and a
fixed number of clocks is applied. At the end of the clocking sequence, the value in
the MISR is compared to the correct signature and the pass/fail status is determined.
The entire logic added for BIST includes muxes for the inputs; the LFSR and
MISR; and a simple state machine to control the test sequence. The added BIST
circuitry indicates pass or fail status either through a single pin or in some status
register.

LFSR

MISR

Figure 18-6 Logic Surrounded by BIST

Figure 18-6 depicts logic surrounded by BIST. As you can see, there are two main
elements, the LFSR and MISR. The LFSR needs to be designed to apply a unique
set of test vectors that stimulate the circuit in a meaningful way in the smallest
number of clock cycles. The LFSR is driven by a polynomial depicting which bits
are fed back into the shift register. Finding the correct polynomial is matter of
research, trial and error, or simulation.

256 Verilog Quickstart

Example 18-18 LFSR

module test_lfsr;
reg [31:0] lfsr;
reg bit;

reg [32:0] count;

initial begin
1lfsr = 1;
count = 0;
forever begin
bit =1fsr[30]"1fsr[6]"-1fsr[4]"1fsr[1]"1fsr[0];
1fsr = {bit,1lfsr[31:1]1};
count = count + 1;

if(lfsr == 0) begin
Sdisplay("lfsr died at zero after %d cycles", count);
$finish;

end

if(lfsr == 1) begin
$display("returned to 1 after %d cycles", count);
$finish;

end

if (count[32]) begin
$display ("I must have repeated somewhere...");
$finish;
end
end // forever
end // initial
endmodule

Example 18-18 illustrates a module to test the polynomial for a LESR. In this case,
the LFSR uses as feedback the exclusive-OR of bits 30, 6, 4, 1, and 0. The test will
report if the LFSR dies (goes to 0, where it will get stuck), gets stuck in a loop, or
returns to its initial value. It is possible that the LFSR will eventually find a pattern
that continually repeats. However, in this case the LFSR will return to its initial
value after cycling through every other non-0 value. This module will take a long
time to run because it runs through more than a million combinations.

Once you have determined the size and polynomial for the LFSR, you need to
design the MISR. The size of the MISR determines how likely it will be to get a
false positive result. Example 18-19 shows how to test the ALU with a simple LFSR
and MISR. The BIST circuitry is abstracted in the model. A more complete model
would have a pin to start the test; a clock or test-clock input; a state machine to run
the tests; and an extra output pin or two indicating when the test is done and the
status of the test.

Test Benches and Test Management 257

Example 18-19 Testing the ALU with a LFSR and MISR

module alu_lfsr;

reg [35:0] 1lfsr; // 16 + 16 + 4 -1

reg bit;

reg [31:0] misr;

wire [15:0] a,b, aluout;

wire [3:0] £;

wire zero,parity,carry;

parameter final_ signature = 32'hab592_2a45;
parameter test_cycles = 1023;

initial begin
1lfsr
misr
repeat (test_cycles) begin
bit = 1fsr[30]"1lfsr(6]"1lfsr(4]~1fsr[1]~1fsr[0] ;
lfsr = {bit,lfsr[35:1]}; // applies stimulus
#100 // wait for result, modify misr

1;
0;

misr = {misr([0],misr[31:1]} ~ {aluout,zero,parity,carry};
end
if (misr !== final_signature)begin

S$display("Signature mismatch: expected %h, got %$h",
final_signature,misr);
end else begin
S$display("tested OK") ;
end
end

assign {f,a,b} = 1lfsr ; // apply stimulus from lfsr

alu dut(a,b, f,aluout, zero,parity, carry) ;
endmodule

THE SURROUND AND CAPTURE METHOD

The surround and capture method is used for generating unit tests out of system
tests, or for testing a submodule that is normally only tested in a larger test case. As
the name suggests, the module to be tested is surrounded, and its inputs and outputs
are captured to a file. The captured values can then be played back in a new test
bench against different versions of the module and checked for equivalence. Figure
18-7 shows a system in which a submodule’s inputs and outputs are being captured.

258 Verilog Quickstart

e Capture signals and
RN write out to a file

Submodule
to be
isolated

Figure 18-7 Surround and Capture Method

The system tasks $fdisplay or $fstrobe are used to write the values to a file. In
which module should you put the tasks to capture the inputs and outputs? The
easiest place to capture the inputs and outputs of a submodule is in the submodule
itself. In the submodule, you can easily see all the inputs and outputs, and you also
know when the inputs and outputs are valid. The second easiest place to capture the
inputs and outputs is from the module that instantiated the submodule. Once you
have decided where to do the capture, you need to know when to capture the values.
If there is one time in your circuit when the inputs are stable and the outputs have
reached their output for the current input, that is the best time to capture. Typically
the time when both the input and outputs are stable is just before the inputs are
going to change again. For example, if your system has a clock with a cycle time of
100, and each rising clock causes the next set of changes, the best time to capture
the inputs and outputs might be to wait for the clock to rise, then wait 90 time units
more, then use $fdisplay to send the values to a file.

Test Benches and Test Management 259

Example 18-20 ALU Modified Capture of Inputs and Outputs

module alu (a, b, £, aluout, zero,parity, carry) ;
input [3:0] f£;
input [15:0] a;
input [15:0] b;
output [15:0] aluout;
output =zero;
output parity;
output carry;

/* Code inserted into alu to write vectors. */
integer fo;
initial begin

fo = $fopen("alu_test.vec");

forever @(f) #10 if(l'bx === "a)
Sfdisplayh(fo, {16'bl,b,f,aluout,zero,parity,carry});
else

sfdisplayh(fo, {a,b,f,aluout,zero,parity,carry});
end
/* end write vectors */
// functionality of ALU omitted for clarity
endmodule

Example 18-20 shows how an ALU in a RISC processor was modified to capture
the ALU’s inputs and outputs. The result of this capture was the file alu_test.vec
that you used in chapter 6. In this case, the inputs and outputs are determined to be
stable 10 time units after the f input changes. Notice that the code also checks for
some cases when the a input is unknown; in such a case, the capture code merely
writes out known values. Replaying a vector file containing unknowns may not
always work, so it may be necessary to ensure that only known values are written
out.

Once the vectors have been captured to a file, you need to create a new test bench
that will play the vectors back into the module. The module that plays the vectors
back should apply the inputs, allow time for the outputs to settle, and then check the
outputs. The test bench for the ALU used in chapter 6 is an example of a module
that plays back captured vectors.

Example 18-21 ALU Test Bench Repeated

module test_alu;

reg [16+16+4+16+43:1] stim res[1:100]; /*stimulus, response */
wire [15:0] aluout; /* declare wires for results */

wire zero,parity,carry;

integer pattern ;

reg [15:0] a,b ; /* declare registers for stimulus */

260 Verilog Quickstart

reg [3:0] f£;

reg [15:0] aluout_comp; /* declare registers to compare to */
reg zero_comp, parity comp, carry_comp;

/* instantiate device under test */
alu dut (a,b, £f,aluout, zero,parity, carry) ;
initial begin

pattern = 1 ;

Sreadmemh ("alu_test.vec", stim res);

forever run_test;
end

task run_test;
begin

{a,b, f,aluout_comp, zero_comp, parity_comp,carry_comp} =
stim_res[pattern];

if (carry_comp === 1'bx) $finish;

#100

if (aluout !== aluout_comp) begin
Sdisplay (

"compare error on aluout, pattern %d was %b should be %$b.",
pattern, aluout,aluout_comp) ;
$finish;
end

if (zero !== zero_comp) begin
sSdisplay (
"compare error on zero, pattern %d was %b should be %$b.",
pattern, zero,zero_comp) ;
$finish;
end

if (parity !== parity_ comp) begin
Sdisplay (
"compare error on parity, pattern %d was %b should be %b.",
pattern, parity,parity_comp) ;
$finish;
end

if (carry !== carry_comp) begin
Sdisplay (
"compare error on carry, pattern %$d was %b should be %$b."
pattern, carry,carry_comp);
$finish;
end

’

pattern = pattern + 1;
end
endtask
endmodule

Test Benches and Test Management 261

Once you have captured the vectors, and have created the new test module, it is
important to test the vectors and new test module against the module with which
you captured the vectors. You may have captured the vectors at the wrong times or
applied them with the wrong timing, so double-check them against the original
submodule before using them to test other versions of the submodule.

The resulting test module and test vectors form a unit test for the submodule, and
these serve as a quick verification of correct implementation. This test bench is
satisfactory as a check-off (or regression) test. Unfortunately, because the tests
embodied in the test vectors may be difficult to understand, it may be difficult for
you to isolate the cause of any discrepancies.

This chapter merely introduces basic aspects of testing. To further automate testing
in Verilog, and to improve your testing technique, you should be aware that there
are many additional built-in Verilog commands and external programs you can use
for testing.

For example, you may have noticed that $readmemh was used to read the file of test
vectors. This is the simplest way to read files of stimulus into Verilog. If you have a
large number of signals or a large number of test vectors, you will have to allocate a
large amount of memory in Verilog to hold the test vectors. This might not be
practical for a large circuit. Verilog has some system tasks that are more efficient in
handling the reading and writing of files for test vectors. These routines are
Sincpattern_write (to write out a file of test vectors); $incpattern_read (to read in
the file and apply the stimulus); and $compare or $strobe_compare (for comparing
the response from the circuit to the expected values).

This Page Intentionally Left Blank

19 MODEL ORGANIZATION

Throughout this book modeling concepts have been presented without particular
attention to organization of the models.

FILE ORGANIZATION

You may have noticed that the examples on CDROM with this book are in files
where the file name matches the module name. It is standard practice to have only
one module in a file and to give the file the same name as the module, with .v
appended.

Verilog simulators allow you to supply a list of files to simulate. As you build more
complex circuits, the file list is a way to organize your design. For example the 8 bit
adder design should be in 5 files as shown in Example 19-1. For many tools you can
create a text file with the list of files. This list is often suffixed with .vc (verilog
commands) or .f (file). Many simulators accept this list of files by using a -f option,
as in Example 19-2. The Silos simulator included with this book includes a project
manager where you specify the files in your project.

264 Verilog Quickstart

Example 19-1 File List of 8 bit Adder adder.vc or adder.f

adderl.v
adder2.v
adder4d.v
adder8.v
test_adder.v

Example 19-2 Using the file list

verilog -f adder.vc

Simply listing the design files is not the only organizational trick you can use.
Verilog includes an ‘include compile directive. The “include in verilog is similar to
the #include in 'C. It allows another file to be part of the current file. It is typically
used for common declarations such as REG_DELAY used in many of the examples
in this book. Generally, included files have the extension .vk (verilog header) or .v
(verilog). Example 19-3 shows a simple counter that includes two files. The
timing.vh file in Example 19-4 is included outside the module since the “timescale
directive must be outside a module. The system.vh file in Example 19-5 defines
common information for the system. It could be included inside or outside the
module.

Example 19-3 Counter Using “include

‘include "timing.vh"
module counterl (count, reset, clk) ;
‘include "system.vh"
output ['BUSWIDTH-1:0] count;
input reset, clk;
reg [*BUSWIDTH-1:0] count;
always @ (posedge clk or posedge reset)
if (reset)
count <= #(REG_DELAY) '"BUSWIDTH 'Db0;
else
count <= #("REG_DELAY) count + "BUSWIDTH 'bl;
endmodule

Example 19-4 Timing.vh

“timescale Ins/Ins

‘define REG_DELAY 1

// “define REG_DELAY O

// “define REG_DELAY S$random %3

Model Organization 265

Example 19-5 System.vh

‘define BUSWIDTH 8

The “include can include a full file path name. Standard practice suggests that
“include should only have the file name and not the path. This allows the files to be
more portable and moved around your system or to another system. The verilog
simulator allows you to specify a set of directories to search for the included files.
For many simulators the command line option is +incdir.

DECLARATION ORGANIZATION

The port declarations of all the modules in this book have been simple and
undocumented. A better practice is to declare 1 port per line and comment the use
of the port. Example 19-6 shows an improvement of the port declarations. The ports
are now one per line and commented. The output port and its reg re-declaration are
combined into a single line. This improves the readability of this module.

Example 19-6 Counter with commented ports

‘include "timing.vh"
module counter?2 (

count, // output, width is BUSWIDTH
reset, // active high asynchronous reset
clk // rising edge clock

)

‘include "system.vh"
output [BUSWIDITH-1:0] count; reg [BUSWIDTH-1:0] count;
input reset;

input clk;
always @(posedge clk or posedge reset)
if (reset)
count <= #(REG_DELAY) "BUSWIDTH 'b0;
else

count <= #(REG_DELAY) count + “BUSWIDTH 'bl;
endmodule

ANSI Style ports

You may have noticed that the output count is repeated three times. Once in the
port list, a second time when the direction is declared and a third time for the reg
declaration. The input puts are declared twice , and could have been declared three
times if we had re-declared the inputs as wires (which they are by default).

266 Verilog Quickstart

The IEEE 1364-2001 standard now defines ANSI style port declarations. If you are
familiar with ANSI C, you will see the benefit of using the ANSI style declaration
to eliminate some of this redundancy. Check your simulator and synthesis tools
before moving to the new style. Example 19-7 shows the counter with ANSI style
ports.

Example 19-7 Counter with commented ports

“include "timing.vh"
“include "system.vh"
module counter3 (
output reg [BUSWIDTH-1: 0] count, // output
input wire reset, // active high asynchronous reset
input wire clk // rising edge clock
)i
always @ (posedge clk or posedge reset)
if (reset)
count <= #(REG_DELAY) "BUSWIDTH 'b0;
else
count <= #(REG_DELAY) count + “BUSWIDTH 'bl;
endmodule

TESTCASE ORGANIZATION

When running simulations for a large system there will be many test cases. This
does not always imply that there are many testbenches. There many be many more
test cases than testbenches. A simple example of many test cases with a single test
bench is system with an embedded processor. The test bench may be exactly the
same, but a different program may be run on the processor. A system regression
script may run the simulator again and again with either a different file name
passed to the simulator, or with a new program file copied or linked to the file the
simulated memory always reads.

Often, it is a good idea for each test case to have its own directory. This way the test
can have unique input and output files, and the results remain in the test directory.
The user or system test script would then change into the directory where the
desired test is located and then run.

Including Test Cases

If each test case has a unique directory we can make use of two powerful techniques
to simplify creating a set of tests for a complex system. Imagine a complex system
with many devices on a bus, and one bus master is responsible for initializing the
bus, then conducting the tests. The system reset and initialization sequence is

Model Organization 267

common, but each test is conducted by a unique set of write and read commands
issued on the bus. Each unique test sequence will be in a file called current_test.v
and in its own directory. The test bench has the reset sequence and then includes the
current_test.v file.

Example 19-8 System Test Bench

module system_ testbench;

event start_tests;
reg passed;

initial begin
reset = 1;
passed = 1;
repeat (6) @(posedge clk) ; // need 6 clocks of reset
wait (ready) // system responds with ready after internal
reset finishes
write(BOARD1, "BOARD1_CONFIG); // initialize system boards
write (*BOARD2, BOARD2_CONFIG) ;
write (" BOARD3, “BOARD3_CONFIG) ;
read_until ('BOARD4, ‘BOARD4_STATUS, ‘READY) ;
-> gtart tests;
end

task done;
begin
if (passed)
Sdisplay ("Passed") ;
else
Sdisplay ("ERROR: Test Failure.");
repeat (3) @(posedge clk); // 3 clocks for bufferes to
flush
Sfinish;
end
endtask

“include "current_test.v"
endmodule

There are many interesting things in this test bench. The event start_tests is used to
signal the test sequence(s) to start once the system is initialized. The system
initialization sequence is abstracted via text macros. A global variable passed is
declared and initialized to true. If a test fails passed is set to zero. There is a task
done which is called from the current test upon success or failure. The task also
runs some additional time to allow the system to complete what was doing. Often in
complex systems, a test may pass or fail, but the next few cycles are interesting.

The write, read, and read_until, tasks are assumed to be declared in the test bench,
and cycle through the bus protocol for this system. Their details are not important.

268 Verilog Quickstart

Example 19-9 Current_test.v

integer i, 3j;
reg ['BUSWIDTH-1 :0] datal, data2;
initial begin

@ start_tests

for (i=0; i< "MAX BOARD1l; i=i+1)

write(BOARD1+i, 1); // write address = data pattern;
for(i=0; i< "MAX_BOARD1l; i=i+1)
begin
read (BOARD1+1i, datal) ;
if (datal !== 1)
begin
passed = 0;
done ;
end
end

initial begin
@ start_tests
for(§=0; j< “MAX BOARD2; j=7+1)
write(BOARD2+3j, j); // write address = data pattern;
for (§=0; j< MAX_BOARD2; j=j+1)

begin
read (BOARD2+j, datal);
if (data2 !== j)
begin
passed = 0;
done ;
end
done ;
end

This current_test.v does some interesting things. Since it is included in the module
but not in a begin-end block, it can declare some additional data it needs, i, j, datal,
and data2. This test also has two initial blocks that wait for the start_tests event
before they begin testing. In this example a data equals address test in run by first
writing data to two boards in parallel, then reading them back in parallel. The test
competes by calling done on the first failure or when all is complete. Note, it is
assumed that the write and read tasks (not defined) can read and write two boards at
the same time. It is also assumed that the second board finishes after the first.

Remember the exact details of this test are not important, the important concept to
learn is that the test can be broken between the test bench and the test sequence, and
we can have many test sequences run by having a unique current_test.v in many test
case directories.

Model Organization 269
Conditionally Running Rests

Often breaking tests up based on a design configuration or desired test mode
simplifies testing. For example it might be desirable to run a simple test rather than
a full test. Conditional compilation may be used to modify the test sequence.

Example 19-10 Conditional Test

initial begin
@ start_tests
‘ifdef SIMPLETEST
write ('BOARD2+2, 32'hl1234_5678);
read (> BOARD2+2, data2);

if(data2 !'== 32'hl234_5678) passed = 0;
“else
for(j=0; Jj< “MAX_BOARD2; j=3j+1)
write ('BOARD2+j, Jj); // write address = data pattern;
for(j=0; j< "MAX_BOARD2; j=j+1)
begin
read (" BOARD2+j, data2);
if (data2 !== j)
begin
passed = 0;
done ;
end
“endif
done ;
end

The “ifdef, “else and "endif can be used to conditionally compile different sections
of code. In Example 19-10, if SIMPLETEST is defined a single write-read is done,
then it proceeds to done after the “endif, otherwise it runs the whole test.

MODEL REUSE

Similar models often can be constructed using a single module, where parameters
may not work well. Example 19-11 shows an adder that can have two or three
inputs.

Example 19-11 Adder with two or three inputs

module add23 (
a,
b,

“ifdef ADD3
c,

270 Verilog Quickstart

“endif
sum

)i

output [7:0] sum;
input [7:0] a, b;
‘ifdef ADD3

input [7:0] c;
“endif

assign sum =

‘ifdef ADD3

Cc +
“endif

a+ b ;
endmodule

Example 19-11 is a simple example of how conditional compilation can make
models configurable. More common examples may be slight differences in a design
depending on a FPGA or ASIC implementation.

SUMMARY OF MODEL ORGANIZATION COMPILE DIRECTIVES

The “ifdef can be used for conditional compilation of models. The definitions
checked may be set with the “define construct or with a command line option
+define+.

Compile Directive Description

* include Includes another file, avoid using
path names.

“ifdef Starts conditional compilation.

“else Alternate conditional compilation.

“endif Ends conditional compilation.

“ifndef Starts conditional compilation. New
in 2001 standard.

“elsif Alternate conditional compilation.

New in 2001 standard.

Pre-defined Text Macros

Most tools define unique text macros to allow conditional compilation of tool
specific code. For example Verilog-XL predefines verilog, and Silos predefines
silos.

20 COMMON ERRORS

Before moving on to Chapter 21, which covers debugging, it may save some time to
look at some of the common modeling errors and how to correct them.

MISMATCHED PORTS

One of the first things to double-check in a simulation is the port connections.
Mismatched ports are extremely common. They are most common in designs
developed by more than one person. Port mismatches are differences between a
module’s declaration and its connections when instantiated.

There are three types of mismatched port problems:
e incorrect number of ports

e incorrect size of ports
¢ incorrect order of ports

272 Verilog Quickstart

Verilog warns you if there are too many or too few port connections. Verilog also
warns you if the port sizes between the declaration and instantiation are
mismatched. There is no single clear warning if the order of ports is mismatched.

Mismatched port order is the most common of the port connection errors. Again,
there may be no warning at all if the incorrect hookup results in a legal circuit.
Mismatched port order may also result in any number of Verilog error or warning
messages. If you switch the order of two signals that are of different sizes, you
might get a port size mismatch warning message. If you connect an output port of
an instaniated module to a reg in the current module, you may get an error message
about an illegal declaration.

The best way to avoid mismatched ports is to adopt some simple rules for port
order. For simple modules with one output (such as a mux), use the same rules as
those that apply to the Verilog built-in primitives: State the output first, then the
inputs followed by the control input. For an adder, you might code the design by
starting with the most significant output and proceed to the least significant input.
For example, carry_out, sum, a, b, and carry_in. For more complex logic, make up
rules of your own: Are clocks described first or last? Do inputs come first, or do
outputs? Should ports be in alphabetical order?

Even having a good set of rules for port order does not always prevent mismatched
port order. Whenever you create an instance of a module, compare the instance
against its declaration.

MISSING OR INCORRECT DECLARATIONS

Missing declarations can generate various warning and error messages. A missing
reg declaration might generate a message about an illegal assignment or missing
declaration. A missing width declaration can generate a warning about mismatched
port sizes, illegal use of bit selects or part selects, and other messages.

Missing Regs

In behavioral modeling, most of the data objects you use in the model are regs. In
Verilog, you must declare a reg before you use it. There are two places where you
might forget a reg declaration: Your outputs may need to be declared as regs;
internal storage and temporary variables may need to be declared as regs.

Look at every procedural assignment. The object on the left-hand side of the
assignment must be declared as a reg (or possibly as an integer, real, or time). The
error messages for a missing reg declaration points to the procedural assignment. If

Common Errors 273

you have an error message about the left-hand side of a procedural assignment,
chances are you are missing a reg declaration.

Missing Widths

Missing width declarations can be more difficult to find than missing reg
declarations. It is possible that no error or warning message will be issued for a
missing width declaration. It is easy to forget to declare the width of a port, net, reg,
or function. Carefully check each of your modules for the width of each of these.

Each port of a different width needs to be declared separately. If the width of a port
is not declared, it defaults to a width of 1 bit. For example, you might discover the
error of having a 1-bit-wide port when you wanted a wider bus. This error could
appear as a port size mismatch in an upper module instead of the submodule, where
the error actually occurred. Error messages about illegal bit or part selects may
occur if the module with the missing port width uses bits of the bus separately. It is
possible that no error message will be generated, but the circuit may give incorrect
results due to only passing around 1 bit of information when several were expected.

All buses (multibit wires or vectors) used within a module must be declared. You
might have omitted a net and width declaration, with the result that you see not an
error message, but only incorrect behavior. Verilog generates implicit nets for every
undeclared wire name that is used in a module or primitive instance. If an implicit
net is generated due to a missing declaration, a warning about port size mismatches
may be issued. If you declare a net but omit its width, there may be no error
message—merely incorrect results. This is especially true if that net is used only in
continuous assignments. If you are expecting to use any multibit nets, carefully
check their width declarations.

By default, regs are only 1 bit wide. Because regs are primarily used in procedural
assignments, there may be no error or warning messages generated from a missing
or incorrect width. The only symptom of a missing or incorrect range (width) may
be incorrect behavior. A reg only holds as large a value as the declared width
allows. A common type of error would be to check an 8-bit reg for the value 256 or
greater than 255. Carefully look at all assignments and comparisons of regs and
make sure that the reg is declared large enough to hold the largest required value.

By default afunction returns only 1 bit. If you want to return a multibit value from a
function, the width of the function must be declared. The error of omitting the width
of a function does not generate any error or warning message. A function with a
width of 1 bit can only return the value 1 or 0, so this error manifests itself only in
incorrect behavior.

274 Verilog Quickstart
Reversed Ranges

When you declare the range of a port, net, reg, or function, you are declaring width,
the index of the most significant bit (MSB), and the index of the least significant bit
LSB). The left index is always the index of the MSB and the right index is the
index of the LSB. If the index of the MSB is greater than the index of the LSB, the
range is descending. If the index of the MSB is less than the index of the LSB, the
range is ascending. Both ascending and descending ranges are legal in Verilog.

You can use both ascending and descending ranges within the same module. Once
the range is declared for an object, it must always be used with that same range.
You cannot use an ascending range part select on an object declared with a
descending range. Using ascending and descending ranges on the same object
causes an error message.

A more subtle error (one that can be more difficult to debug) occurs when you
connect something that is declared to be ascending to something that is declared to
be descending. The connection could occur in a module instance, procedural
assignment, or continuous assignment. Although connecting objects with reversed
ranges is not an error, such a practice can be confusing. MSBs are always connected
to MSBs, so the resulting bit indexes are reversed. The best way to avoid the
confusion created by reversed ranges is to adopt a standard of using only ascending
or descending ranges for your project.

In sum, incorrect declarations can cause misleading error messages or merely
incorrect behavior. This section did not list every possible problem, but tried to
highlight some of the more common errors of this type. You have to check that the
declaration of each object you use matches its use and your expectations. For
example, a novice might be unsure when to declare a net versus a reg. If you are
unsure what should be a net and what should be a reg, reread the sections of
Chapter 9 that compare procedural and continuous assignments. Omitting a range
from a declaration results in a width of only 1 bit. The most common range-related
error occurs when values are too large for the declared range.

IMPROPER USE OF PROCEDURAL CONTINUOUS ASSIGNMENTS

Modeling reset is the most common usage for the procedural continuous
assignment. Often novice users inadvertently create procedural continuous
assignments while trying to resolve syntax errors. Remember that if you have a reg
declaration and the assign keyword, you have a procedural continuous assignment.
If you are not trying to model reset, the procedural continuous assignment is
generally the wrong construct to use.

Common Errors 275

If your goal is to model sequential logic, you should generally remove the assign
keyword and change your code to use procedural assignments.

If you are trying to model combinatorial logic, there are two possible methods of
removing a procedural continuous assignment: Remove the reg declaration and
always block, and change the code to be a continuous assignment; or remove the
assign keyword and change the code to a procedural assignment.

If you have the assign keyword inside an always block, you have created a
procedural continuous assignment and it is most likely the wrong thing to do.

MISSING INITIAL OR ALWAYS BLOCKS

The compiler catches this type of error, but the error message may simply indicate a
syntax error. The key questions to ask are these: When do you want the code to run?
and When did you tell Verilog to run it? You will recall that initial and always are
the only two starting places for behavioral code in Verilog.

There are many constructs in Verilog that can go directly into a module. However,
some statements (such as begin-end, if, and case) cannot go directly into a module.
They all need a starting place. A common error is to omit an always statement and
some event specification. For example, if you have a case statement in a module
that is not started by an initial or always, this is an error, and Verilog prints an
error message.

Look at each block of code in your modules and make sure you know when you
want them to run. Ensure that your Verilog description matches the point at which
you expect your code to run.

ZERO-DELAY ALWAYS LOOPS

A zero-delay always loop prevents other code within your simulation from
progressing beyond time 0. If you have an always loop with no delay or event
operators in it, perhaps your model would be better off using a continuous
assignment because your model would be simpler, and more correct.

Most commonly, every always statement is immediately followed by the wait for
event (@) operator. If you have any always loops without the wait for event
operator, you may unintentionally introduce a zero-delay always loop. If you do not
have an @ but have the wait() (level-sensitive delay operator), you may still have a
zero-delay loop when the condition for the wait() is true.

276 Verilog Quickstart

Examine each of your always loops and answer these two questions: When does this
always loop run? How long does this always loop take to run?

INITIAL INSTEAD OF ALWAYS

An initial block runs only once. If you use an initial block to model the function of
your circuit, the block runs only once. Most models are supposed to run more than
once. For example, whenever the inputs change. If you start the behavior of your
model with only an initial block, the model will run only once and at time 0. Of
course there are exceptions, because there are looping constructs you could put
inside the initial block.

You should reserve the initial block for stimulus and initialization. Look at each
initial block and ask yourself: When should this code run? If the code should run
once, starting at time O, then it is a valid initial block. If the code should run when
the inputs change, you should model with an always block.

MISSING INITIALIZATION

Every wire and reg in Verilog starts out unknown. Any circuit that depends on a
known value to get started needs some form of initialization. Make sure that any
counter or state machine has a reset or some way to get into a known state. The
simplest case of a missing initialization is a clock generator.

Example 20-1 Missing Initialization

module cgen_ni (clock) ;
output clock; reg clock;
always #50 clock = ~clock;
endmodule

The clock generator in Example 20-1 seems to generate a clock with a period of
100. What is the initial value of clock? The clock output starts out unknown. The
complement of an unknown is an unknown, so this clock never outputs anything
other than an unknown.

State machines modeled with a case statement can use a default clause to get the
state register into a known state. Using a default also reduces the chances that the
final hardware can get stuck in an unknown state.

There must be some way for each of the regs in every model to get to a known
value. Try to avoid adding an initial statement to set each reg. If each reg is

Common Errors 277

arbitrarily initialized, the model may work in simulation, but the hardware may not.
There is no way to know the power-up state of every flip-flop. The preferred method
to ensure a known state is to use load and reset signals driven from the stimulus to
model the way the final hardware is reset to a known state.

OVERLY COMPLEX CODE

If a section of code looks confusing, it has a good chance of being wrong. Extra
code tends to creep into modules during the initial debugging process. To suppress
compiler errors, a novice may add additional code, additional declarations, or may
create procedural continuous assignments. A simple bidirectional buffer that could
be modeled with only two continuous assignments could grow to have two
temporary regs, two always blocks, if statements, and procedural continuous
assignments, for a total of ten or more lines of code.

If a section of code looks too complex for the function you intend to be modeled, it
is likely that the model started off with the wrong construct. Start with the basics: Is
the function being modeled combinatorial or sequential? What constructs are best
for that type of logic?

UNINTENDED STORAGE

Regs and always blocks are a powerful and versatile way to model almost anything
in Verilog. To avoid storing a value unintentionally, you must know when values in
regs are updated. Occasionally a reg retains an old value when the value should
change. Remember that a reg will hold a value forever until that value is changed. If
your intended model is combinatorial, make sure that the code is evaluated
whenever any inputs change. For combinatorial logic, each if should have an else,
and all branches of case statements must be specified or a default clause is needed.

TIMING ERRORS

Behavioral modeling can create some timing situations that are incorrect (or even
impossible) in hardware. You must carefully model each section of code, bearing in
mind when it should run, when it should sample values, and when it updates those
values.

The style guideline of using blocking for combinatorial logic and unit delay non
blocking for sequential logic presented in Chapters 9 and 16 may help reduce
timing errors from race conditions.

Administrator
Inserted Text
Un

278 Verilog Quickstart
Negative Setup Time
Negative setup time is easily modeled in Verilog. Negative setup is simply sampling

an input after the clock. Example 20-2 shows a simple register with negative setup
time.

Example 20-2 Negative Setup Time

module reg _ns(qg, clock, d) ;
output q; reg q;

input d, clock;

always @(posedge clock) #1 g <= d;
endmodule

At first glance, the negative setup merely looks like a clock-to-qg delay. If you look
carefully at the code, you will notice that d is actually sampled one time unit after
the clock. This is a negative setup. The clock-fo-g delay can be maintained without
the negative setup by using the intra-assignment delay as shown in Example 20-3.

Example 20-3 Corrected Register

module reg ok (g, clock, d);
output q; reg qg;

input d, clock;

always @ (posedge clock) g <= #1 d;
endmodule

Carefully examine when inputs are sampled relative to the clock. Make sure the
timing of the sampling is representative of a real circuit.

Zero-Delay Races

In Verilog it is possible to perform many operations in zero time. Even though
operations take place in zero time, they still have some order in which they must
occur. A net or reg can change values many times during the same time unit. If a
model is sampling a net or reg during the same time unit when it changes, does the
model see the final value, the previous value, or an intermediate value?

In gate-level modeling, regs and combinatorial circuits typically have delays, so
zero-delay race conditions are eliminated. In behavioral modeling, regs and
combinatorial circuits can have zero delay. Thus it is possible that a value may be
sampled before it has a chance to change, or a value may be sampled after it
changed when in fact the previous value was desired. It is also possible that a circuit

Common Errors 279

may behave properly with zero-delay races. It is best to avoid zero-delay races
because they can cause unpredictable results. The easiest way to avoid zero-delay
races it to model regs and/or combinatorial logic with unit delays.

Make sure you know when values are sampled and generated. Use a delay between
sampling and generating new values. Remember to allow for delay between the time
that new values are generated and when they are sampled to ensure sampling the
new values.

TOOL SPECIFIC PRAGMAS

Tool specific pragmas should be avoided. Improper use of directives such as
full_case or parallel_case may create logic that simulates differently from the
resulting synthesized logic.

This Page Intentionally Left Blank

21 DEBUGGING A DESIGN

It is obviously much easier and less expensive to find and debug an error in your
Verilog code than in a completed chip. In Verilog you can watch the exact sequence
of events, look at values buried within the circuit, and even see what is driving a
multiply driven signal. It takes technique, strategy, and experience to find errors
quickly and correct them. This chapter explains a few basic techniques and provides
strategies for when to apply those techniques.

OVERVIEW OF FUNCTIONAL DEBUGGING

During functional debugging, you check the assumptions of behavior in the model
against the assumptions of behavior in the test bench, and against the assumptions
you make while observing and interpreting results. Debugging can be as simple as
manually applying stimulus and looking at the resulting printouts or waveforms.
Debugging can get as complicated as trying to determine if an error is in a program
running on a simulated computer, in the simulation models, or in the test bench.

One thing to remember about debugging is this: The more information you extract
from the simulation, the slower the simulation will go. Printing information to the

282 Verilog Quickstart

screen, saving values to a file, or sending signals to a waveform all slow down
simulation. If you print out every value in your circuit at every simulation time, the
simulator will spend all its time writing out values, and you will spend all your time
analyzing them. A more efficient approach is to start out by examining a few
critical signals and then narrowing the scope of your debugging. Working on a
small, focused portion of the circuit at a time has a minimal effect on the simulator
and allows you to understand all the values you are examining.

Where Are the Errors?

During functional debugging, you are as likely to find errors in the test bench as you
are in the design. Because there can be more code in the test bench than in the
model, you may actually find more errors in the test bench! Another common place
to find errors is in the interconnection between modules. If the original specification
was subject to interpretation, the assumptions made in one module may not match
the assumptions in a connected module.

During the debugging, remember that errors can be anywhere—so look carefully at
everything before you rush to correct anything.

UNIVERSAL TECHNIQUES

There are some universal debugging techniques that work no matter what you are
debugging. These techniques are looking at values, and seeing what is active. These
are universal techniques since they work with Verilog, software, and even
oscilloscopes.

Printing Out Messages

The easiest way to find out what is going on inside your models is to print out
messages. There are two basic types of messages to print out: messages that indicate
when code is running, and messages that report on values that are received or
generated.

“l am here.”

The simplest type of message to print out is a message that indicates where a block
of code is running. You can add a $display statement inside an always block to
indicate when certain tests are about to start, or to indicate the completion of a test.

Debugging a Design 283

Adding a $display statement to an always block can tell you when that block was
triggered. Even a function can have $display statements in it. Knowing what is
running gives you some insight into the functionality of the design. Knowing
whether or not a critical test or event takes place can greatly narrow down the
search for bugs.

Values

Adding statements to print out the values received and generated by a function or
always block allows you to check visually for proper behavior of a block of code.
You can then determine if an error is caused by values passed in, or by the values
generated.

This method of printing out values can rapidly isolate errors. For example, if you
are debugging the ALU exercise with the provided test bench (Chapter 10), the test
bench prints out only which pattern number failed. You have no idea which of the
ALU’s sixteen operations is incorrect. Simply printing the function code input to
the ALU isolates a problem within one-sixteenth of the circuit.

In exercise 3 (Chapter 5), values from several levels of hierarchy were printed from
the test bench. You can print values from the test bench or add statements into the
modules themselves to print out critical values.

If you are printing values out from many areas within the circuit, it may become
difficult to determine the origin of a message and the values to which it refers.
Make sure that the messages you create clearly indicate where the values are
coming from and when.

Be careful when you print out values. If you mistakenly print out values when they
are changing, and use a $display statement, it is possible that you will see some old
and new values being printed. This can clearly make it difficult to interpret results.
Thus, it is imperative that the values are stable when the $display task runs.

Look carefully at the results from exercise 3 (Chapter 5). The inputs change every
100 time units. The results should be printed every 50 time units. Thus, at time 150,
the printout should be correct, and easy to interpret. But at time 100, it is possible
that your printout shows the new inputs with the old outputs. An alternative to
Sdisplay is $strobe, which waits until everything has finished changing at the
current time before $strobe prints out a message.

The most common task used to print values is $monitor, which prints out whenever
any of the signals it is monitoring changes. The output from S$monitor can be
difficult to interpret if you are looking for the timing between changes. There may
be ten lines printed one time unit apart, and then no printouts for a thousand time

284 Verilog Quickstart

units, depending on the activity of the signals being monitored. Even though you
may be printing out the simulation time along with the signals, you may not easily
see the timing relationships. In conclusion, use $monitor to see a sequence of
changes and not timing; use $display or $strobe for periodic printouts, or for
printouts triggered by interesting sequences of events.

The Log File

All output that goes to the screen also goes into a log file. By default, the log file is
named verilog.log. You can specify a different name for the log file with the -/
command-line option. There are two additional commands, $nolog and $log, that
that you can use within Verilog to turn logging off, turn it back on, and open a new

log file for following results.

A summary of log file commands and options is shown in Table 21-1.

Table 21-1 Log File Options

Command Where used Description

-1 filename Invocation Set the name of the log
command line file

$nolog Interactive Turn off logging
command

$log Interactive Turn on logging into
command verilog.log

$log("filename") Interactive Start logging into
command filename

USING WAVEFORMS

Waveforms are a great tool for visualizing both the values and the timing of
circuits. Every Verilog simulator has a waveform tool. All these tools allow you to
select signals to be written to the waveform display. Some allow interactive,
marching waveform displays; others are only postprocessors that let you look at
waveforms after simulation is complete. All waveform displays allow you to
measure the distance between edges of signals. Consult the documentation for the
tool set you are using for exact instructions on using a waveform tool.

This technique is limited by how much data you can analyze with a graphical
waveform. All the data from a small circuit that runs for a short time can be

Debugging a Design 285

displayed and analyzed in a waveform. There is usually too much data from a large
simulation for effective graphical viewing and analysis.

Waveforms are the easiest way to verify the timing of critical signals. It is often
much easier to analyze timing information with a graphical waveform than with a
textual printout.

You can run a simulation and save a set of waveforms and then compare those
waveforms to the waveforms from another simulation run. Graphical analysis of the
differences between regression tests can be an easy way to see if a difference in test
results is critical or acceptable.

Example 21-1 Initial Block to Create VCD Wave File

initial begin

Sdumpfile("myfile.vcd"); // file name for wave data
Sdumpvars (0, dut) ; // dump all starting at dut hierarchy
end

The most common format for wave data is VCD format. VCD stands for Value
Change Dump. VCD is not a particularly efficient format, but it is recognized by
most wave display tools. Example 21-1 shows an initial block you can add to your
code to generate a full wave database for you design; be sure to use a proper file
name and select the hierarchical name for what to dump.

Example 21-2 Initial Block to Create SHM Wave File

initial begin
$shm_open ("waves.shm") ;
$Sshm_probe (dut, "AS");
end

An alternate format for wave files is SHM, SHM stand for Simulation History
Manager. SHM format is used by Cadence products. Example 21-2 shows an initial
block that will generate a wave file in SHM format.

Many other formats for wave files exist. Consult the documentation for your
simulator and wave viewer for complete details. Most simulators and wave viewers
support the industry standard VCD format and commands.

A common problem when looking at wave files is trying to figure out what data is
seen at a clock edge if the data changes at the same time as the clock. If you follow
the suggestion for unit delay sequential blocks, it will be clear what data is seen at
the clock, and what changes are as a result of the clock.

286 Verilog Quickstart

INTERACTIVE DEBUGGING

Interactive debugging is the ultimate way of finding problems in a simulation. You
can look at any value; see what is driving a wire; change values on wires and regs;
set breakpoints; add signals to a waveform display; and so on. The entire simulation
becomes an open book for you to look at.

This book has attempted to be simulator-independent. This section provides details
on interactive debugging using commands native to Verilog-XL™. Some clone
simulators may include some or all of these commands and features by the same
name or by using other commands. Companies that primarily use simulators other
than Verilog-XL often have some copies of Verilog-XL for debugging use.

Going Interactive

The main command for going interactive is $stop. The $stop command is a
breakpoint that stops simulation and places the simulator into interactive mode.
There are other ways to put the simulator into interactive mode. It is often desirable
to start the simulator in interactive mode. You can start the simulator in interactive
mode by using the -s command-line option. The -s stands for “stop at time 0.” It is
equivalent to having initial $stop; in one of your Verilog modules.

You can also put Verilog into interactive mode by interrupting it. You can start
Verilog in the normal fashion, and they hit the interrupt key. The interrupt key can
be a button in a graphical user interface, or a keyboard key. The interrupt key is
most commonly Control-c. For the purposes of this section, Control-c is used as the
interrupt key. If your system uses a different key, use that one instead.

Another way of entering the interactive mode is hitting a breakpoint. Verilog-XL
includes a number of specialized breakpoint commands for breaking on edges of
signals, on particular values, or at a particular time. All of these breakpoint
commands are similar to encountering a $stop statement. If you are using the
graphical user interface to Verilog-XL, the menu commands for breakpoints use
these special commands. Breakpoints are usually set after Verilog is in interactive
mode. To enter the interactive mode, start Verilog with the -s command-line option.
Breakpoints are typically added by typing interactive commands or by using a
graphical user interface.

Now we will turn to examples of using Verilog interactively. Enter the small
module in Example 21-3 and run it in Verilog. Verilog always needs at least one
module to work with, so this is the smallest example you can use to demonstrate
interactive Verilog.

Debugging a Design 287

Example 21-3 Interactive Verilog Module

module interact;
initial S$stop;
endmodule

The Prompts

Once Verilog has completed compiling the module you will see an interactive
prompt on your screen. Verilog numbers the prompts for history and reuse. The first
prompt is CI>. If you have run Example 21-3, your screen should look like
Example 21-3 Results 1.

Example 21-3 Results 1

Compiling source file "interact.v"
Highest level modules:
interact

L2 "interact.v": S$stop at simulation time 0
Type ? for help
cl >

Verilog does not have a special language for interactive debugging. You use the
same commands you have already learned (in behavioral modeling) for interactive
debugging. There are a few special keystrokes, and a few commands, that are most
useful for interactive debugging that will be introduced in this chapter.

Each prompt is like an initial statement. What can you do at an initial statement?
The first simulation in exercise 1 (Chapter 3) was to print “Hello Verilog,” so try to
do that interactively. Type $display(“Hello Verilog!”), at the C1> prompt. Did it
print out “Hello Verilog!”? The most common error in interactive debugging is to
forget the semicolon. In Verilog, each statement must end with a semicolon, and
interactive statements are no exception to this rule. If you forgot the semicolon, your
screen will look like Example 21-3 Results 2. You will see a prompt with no
number; this is a continuation prompt, and Verilog is asking you to complete the
statement.

288 Verilog Quickstart

Example 21-3 Results 2

Compiling source file "interact.v"
Highest level modules:
interact

L2 "interact.v": S$stop at simulation time O
Type ? for help

Cl > sdisplay("Hello Verilog interactive")
>

If you forgot the semicolon, add it now. If you included the semicolon, you already
have the printed message on your screen.

How do you end an interactive simulation? The same way you end a regular

simulation: with $finish. Type $finish; as an interactive command and see what
happens. Your simulation should appear as in Example 21-3 Results 3.

Example 21-3 Results 3

Compiling source file "interact.v"
Highest level modules:
interact

L2 "interact.v": S$stop at simulation time 0
Type ? for help

Cl > Sdisplay("Hello Verilog interactive")
>

Hello Verilog interactive

C2 > S$finish;

C2: $finish at simulation time O

4 simulation events

End of VERILOG-XL

Now that you have entered interactive mode, typed a few commands, and exited
interactive mode, some of the output needs careful inspection and explanation. Just
before the first prompt, the message L2 "interact.v": $stop at simulation time 0 was
printed. This message explains why the simulator is in interactive mode. The
message tells us that line 2 (L2) of the file interact.v caused a $stop. The message
also reports the current simulation time, which is time 0.

Likewise, after you typed the $finish; the simulator reports C2: $finish at simulation
time 0. The C2: indicates that interactive command 2 is what caused the $finish.
These little indicators of what is causing a breakpoint or finish become more
important when you have many possible breakpoints.

Debugging a Design 289
Special Keys in Interactive Mode

You have already learned that it is important to remember the semicolons in
interactive mode, just as in Verilog source files. There are two other equally
important keys. The period key has a special meaning in interactive Verilog; it
means “continue.” The comma key means “single step”, or executed as a single
statement. Enter the module in Example 21-4 and start Verilog with the -s option,
verilog -s sstep. v.

Example 21-4 Single-Stepping

module sstep;

initial begin
Sdisplay("this is
Sdisplay("this is
$stop;
Sdisplay("this is
Sdisplay("this is

end

endmodule

first message");
second message") ;

oo

third message");
fourth message");

L o

If you remembered the -s option, your screen should look like Example 21-4 Results
L.

Example 21-4 Results 1

verilog -s sstep.v

Compiling source file "sstep.v"
Highest level modules:

sstep

Type ? for help
Ccl >

Notice that there is no line or command indicating when or why Verilog went into
interactive mode. Add a few interactive breakpoints: type #10 3stop,; and then #100
$stop;. Your screen should now look like Example 21-4 Results 2.

290 Verilog Quickstart

Example 21-4 Results 2

verilog -s sstep.v

Compiling source file "sstep.v"
Highest level modules:

sstep

Type ? for help
Cl > #10 Sstop;
C2 > #100 S$stop;
C3 >

There are now three $stops in your simulation. The first is in the module sstep, and
the other two are from interactive commands. The $stop in sstep.v is set for time 0
after the first two $display statements. To tell Verilog to continue running the
simulation until the next $stop, a special key (period) is used. Type a period, then
press Return, and you should have the results shown in Example 21-4 Results 3.

Example 21-4 Results 3

verilog -s sstep.v

Compiling source file "sstep.v"
Highest level modules:

sstep

Type ? for help

Cl > #10 Sstop;

C2 > #100 Sstop;

C3 > .

this is a first message
this is a second message

L5 "sstep.v": $stop at simulation time 0
c3 >

Notice that Verilog tells us this $stop occurred from executing line 5 of the sstep.v
file. Now try single stepping. What is the next command to run? The comma key is
used to single step in Verilog. Type a comma and press Return. The screen should
now look like Example 21-4 Results 4.

Debugging a Design 291

Example 21-4 Results 4

verilog -s sstep.v

Compiling source file "sstep.v"
Highest level modules:

sstep

Type ? for help

Cl > #10 S$stop;

C2 > #100 S$stop;

C3 >

this is a first message

this is a second message

L5 "sstep.v": $stop at simulation time 0
c3 > ,

L6 "sstep.v": Sdisplay("this is a third message");
this is a third message

C3 >

Try two more single steps in a row: enter comma, comma, and then press Return.
Notice that the fourth message executes. The end on line 8 of sstep.v is reached.
Simulation time advances to 10 and the #10 of the #10 $stop; (entered as command
1) has elapsed and the balance of command 1 is ready to continue. Example 21-4
results 5 shows the current state of the simulation.

Example 21-4 Results 5

verilog -s sstep.v

Compiling source file "sstep.v"
Highest level modules:

sstep

Type ? for help

Cl > #10 S$stop;

C2 > #100 sstop;

C3 >

this is a first message

this i1s a second message

L5 "sstep.v": S$stop at simulation time 0

c3 > ,

L6 "sstep.v": Sdisplay("this is a third message");
this is a third message

c3 >,

L7 "sstep.v": S$display ("this is a first message");
this is a first message

L8 "sstep.v": end

SIMULATION TIME IS 10

Cl: #10 >>> CONTINUE

C3 >

292 Verilog Quickstart

Because it is now time 10, what happens if you enter #20 $stop, and then continue?
At what time will the simulation stop? It will stop at time 30. Each interactive
prompt is like an initial statement, except the commands do not have to start at time
0, they start at the current time. Because the current time is 10, 10 + 20 = 30, and
time 30 will be the new breakpoint. Try it: You should get the results shown in
Example 21-4 Results 6.

Example 21-4 Results 6

verilog -s sstep.v

Compiling source file "sstep.v"
Highest level modules:

sstep

Type ? for help

Cl > #10 sstop;

C2 > #100 Sstop;

C3 > .

this is a first message

this is a second message

L5 "sstep.v": S$stop at simulation time 0
c3 >,

L6 "sstep.v": Sdisplay("this is a third message");
this is a third message

c3 >, ,

L7 "sstep.v": Sdisplay("this is a first message");
this is a first message

L8 "sstep.v": end

SIMULATION TIME IS 10

Cl: #10 >>> CONTINUE

C3 > #20 Sstop;

c4 >

Cl: $stop at simulation time 10

c4 > .

C3: S$stop at simulation time 30

c4 >

The first period continued the simulation until command 1 finished executing its
$stop. The second period continued simulation until the new $szop (just entered as
command 3) executes.

Another way to start an interactive debugging session is to use Control-c to
interrupt the running simulation. Example 21-5 is a simple module that contains an
always loop. If you run this module in Verilog, the simulation will never terminate
on its own.

Debugging a Design 293

Example 21-5 always Loop Module

module loop;
integer count;
always
#1 count = count + 1;
endmodule

Simulate the module in Example 21-5. The simulation starts, and then nothing
more is printed out. Type Control-c. Verilog responds by entering interactive mode.
Now you can see the value of count. Now type $display(count); and note that the
value of count is unknown because it was never initialized. Because the always loop
take one time unit, the time shows how many times the simulation went through the
loop before you hit Control-c. The results of this simulation are shown in Example
21-5 Results 1.

Example 21-5 Results 1

verilog loop.v

Compiling source file "loop.v"
Highest level modules:

loop

VERILOG interrupt at time 13272
Type ? for help
Cl > sdisplay(count);
X
c2 >

Because Verilog is in interactive mode, you can even set the value of count, and
continue the simulation. Type count = 0; to set count to a known value, single step
it a few times, continue the simulation, interrupt it again, and then finish it. Results
are shown in Example 21-5 Results 2.

294

Example 21-5 Results 2

Verilog Quickstart

C2 > gount = 0;

C3 > i

SIMULATION TIME IS 13272

L4 "zdloop.v": #1 >>> CONTINUE

L4 "zdloop.v": count = count + 1;

L3 "zdloop.v": always

L4 "zdloop.v": #1

SIMULATION TIME IS 13273

L4 "zdloop.v": #1 >>> CONTINUE

L4 "zdloop.v": count = count + 1;
L3 "zdloop.v": always
C3 >

VERILOG interrupt at time 24705
C3 > Sdisplay(count) ;

11433
C4 > S$finish;

>>> count

>>> count

C4: S$finish at simulation time 24705

End of VERILOG-XL

32'h2,

The special keystrokes used in interactive simulation are shown in Table 21-2.

Table 21-2 Special Keys for Interactive Simulation

Keystroke Description

Continue simulation

' Single step

Control-c Interrupt simulation

Command History

When you type $history; Verilog shows you a list of all the commands you have
typed so far in the current simulation. Example 21-4 Results 7 shows the output for
the history command. The commands marked with asterisks are active commands.
Command 2 is active because it has not finish running. Command 4 is the currently
running history command. Commands 1 and 3 have finished running and are no

longer active.

Debugging a Design 295

Example 21-4 Results 7

C4 > Shistory;

Command history:

Cl #10

Sstop;
c2* #100

$stop;
C3 #20

$stop;

C4* shistory;

c5 >

Now add one more command to explore reactivating and deactivating commands.
Type forever #5 $display(“This message repeats”); Type 1 <Return> which
reactivates command 1 (the #70 $stop;), which should now stop at time 30. Type 3
<Return> which reactivates command 3 (the #20 $stop;), which should now stop at
time 40. Type 4 <Return> to reactivate the history command to see what has
happened. Your screen should now look like Example 21-4 Results 8.

Example 21-4 Results 8

C5 > forever #5 sdisplay("This message repeats");
ce > 1
c6 > 3
C6 > 4

Command history:
Cl* #10

$stop;
c2* #100

$stop;
C3* #20

$stop;
C4* shistory;
C5* forever

#5

Sdisplay ("This message repeats");

c6 >

Now continue the simulation twice more and note that the command 1 and
command 3 breakpoints have taken their new times. The screen should now look
like Example 21-4 Results 9.

296 Verilog Quickstart

Example 21-4 Results 9

Cc6 >

This message repeats

Cl: S$stop at simulation time 40
c6 >

This message repeats

This message repeats

C3: Sstop at simulation time 50
c6 >

Now type five commas and then press Refurn and see what happens. You can see
the next five statements execute. Rerun the history command: Command 4 will
show that commands 2 and 5 are still active. Your results should look like Example
21-4 Results 10.

Example 21-4 Results 10

Cé6 > ,,,.,,

SIMULATION TIME IS 50

C5: #5 >>> CONTINUE

C5: S$display("This message repeats");
This message repeats

C5: forever

C5: #5

SIMULATION TIME IS 55

C5: #5 >>> CONTINUE

C5: S$display("This message repeats");
This message repeats

C5: forever
c6e > 4
Command history:
cl #10

$stop;
c2* #100

$stop;
C3 #20

$stop;

C4* Shistory;
C5* forever
#5
Sdisplay ("This message repeats") ;

Cc6 >

Entering the number for a command reactivates the command: How do you
deactivate a command? If you wanted to continue running the simulation until the
breakpoint at time 100 caused by command 2, the message from command 5 would
repeat many more times. Deactivate command 5 by typing -5. Look at the history

Debugging a Design

297

again and continue the simulation. You should now see the results shown in

Example 21-4 Results 11.

Example 21-4 Results 11

cé6 > -5
cé6 > 4

Command history:
Ccl #10

$stop;
c2* #100

$stop;
C3 #20

$stop;
C4* Shistory;
C5 forever

#5
Sdisplay ("This message repeats");
cée >
C2: $stop at simulation time 100
Cc6 >

Another period or comma and the simulation will end the simulation because there

is nothing left to execute.

The Key File

Verilog creates a record of your keystrokes in a file called verilog.key. Look at the

verilog.key file shown in Example 21-4 Results 12.

298 Verilog Quickstart

Example 21-4 Results 12 The verilog.key File

#10 Sstop;
#100 $stop;
#20 S$stop;
Shistory;
forever #5 $display("This message repeats") ;
1

3

4

4

-5

4

The keystroke file contains everything you typed during the Verilog interactive
session. You can use the keystroke file to replay the simulation. Copy or rename the
keystroke file to a new name, such as copy.key. Copy or rename the log file to a new
name, for example, copy.log. This will prevent the old log file and keystroke file
from being overwritten by a subsequent simulation. Now rerun the previous
simulation with the command verilog -s sstep.v -i copy.key. Note how the entire
simulation instantly repeats, as shown in Example 21-4 Results 13.

Example 21-4 Results 13 Replayed Simulation

verilog -s sstep.v -I copy.key
Highest level modules:
sstep

Type ? for help

Cl > #10 S$stop;

C2 > #100 S$stop;

C3 >

this is a first message

this is a second message

L5 "sstep.v": $stop at simulation time 0
c3 > ,

L6 "sstep.v": $display("this is a third message") ;
this is a third message

c3 >, ,

Debugging a Design 299

L7 "sstep.v": Sdisplay("this is a fourth message");
this is a fourth message

L8 "sstep.v": end

SIMULATION TIME IS 10

Cl: #10 >>> CONTINUE

C3 > #20 Sstop;

c4 > .

Cl: $stop at simulation time 10
c4 > .

C3: S$stop at simulation time 30
C4 > Shistory;

Command history:

Cl #10

$stop;
c2* #100

$stop;
Cc3 #20

$stop;

C4* Shistory;

C5 > forever #5 S$display("This message repeats");
cé6 > 1
c6 > 3
C6 > 4

Command history:
Cl* #10

$stop;
C2* #100

$stop;
C3* #20

$stop;
C4* Shistory;
C5* forever

#5

Sdisplay ("This message repeats");

C6 >

This message repeats

Cl: S$stop at simulation time 40
c6 >

This message repeats

This message repeats

C3: S$stop at simulation time 50
C6 > viii

SIMULATION TIME IS 50

C5: #5 >>> CONTINUE

C5: Sdisplay("This message repeats");
This message repeats

C5: forever

C5: #5

SIMULATION TIME IS 55

C5: #5 >>> CONTINUE

300 Verilog Quickstart

C5: Sdisplay("This message repeats");
This message repeats

C5: forever

Cé6 > 4

Command history:
Cl #10

$stop;
c2* #100

$stop;
C3 #20

$stop;
C4* Shistory;
C5* forever

#5

Sdisplay ("This message repeats") ;

CcC6 > -5
Co6 > 4

Command history:
Cl #10

$stop;
Cc2* #100

$stop;
C3 #20

$stop;
C4* Shistory;
C5* forever

#5
Sdisplay ("This message repeats") ;
coe > .
C2: S$stop at simulation time 100
c6e > ,

48 simulation events
End of VERILOG-XL

Compare copy.key and verilog.key: There are no differences. Compare verilog.log
and copy.log. The only differences are the clock times reported by the simulator.

There are two ways of replaying a keystroke file. You can use the -i command line
option to read in a keystroke file. The other way to read in a keystroke file is by
using the $input() command. Enter the commands in Example 21-6 into a file
called my.key.

Debugging a Design 301

Example 21-6 my.key Command File

Sdisplay ("This message is from my.key");
Sdisplay ("This message is also from my.key");
#10 Sstop;

Rerun sstep.v with just the -s option: verilog -s sstep.v. At the first prompt, type
Sinput("my.key”); Notice that the commands from the file my.key are read in and
acted upon as if you had typed them. Example 21-6 Results 1 shows the resulting
output.

Example 21-6 Results 1

verilog -s sstep.v

Compiling source file "sstep.v"
Highest level modules:

sstep

Type ? for help

Cl > Sinput("my.key");

C2 > Sdisplay("This message is from my.key");
This message is from my.key

C3 > Sdisplay("This message is also from my.key");
This message is also from my.key

C4 > #10 sSstop;

C5 > .

this is a first message

this is a second message

L5 "sstep.v": $stop at simulation time 0

C5 >

If you want, you can reactivate command 1; you could use S$input to read in
copy.key; or you can finish the simulation.

You can create command files to help automate common sequences of interactive
commands. You can create the command files by editing keystroke files or you can
create them from scratch.

There are a few remaining details to complete the discussion on keystroke and
command files. The -k command line option allows you to specify an alternate file
for writing the keystrokes. The command $nokey turns off the capture of keystrokes.
The command $key turns keystroke writing back on, or can change the name of the
file capturing the keystrokes.

302 Verilog Quickstart
A brief demonstration of all the keystroke file options can be shown by running

Example 21-3 with the command verilog interact.v -k interact.key and by typing
the additional commands as shown in Example 21-3 Results 4.

Example 21-3 Results 4 On the Screen

verilog interact.v -k interact.key
Highest level modules:
interact

L2 "interact.v": S$stop at simulation time 0
Type ? for help

Cl > sSdisplay("hello");

hello

C2 > S$nokey;

C3 > Sdisplay("You can't see me");

You can't see me

C4 > skey;

C5 > S$display("this is in the key file");
this is in the key file

C6 > Skey("another.key");

C7 > S$display("this is in the other key file");
this is in the other key file

c8 >

9 simulation events

End of VERILOG-XL

Example 21-3 Results 5 Contents of interact. key

Sdisplay("hello");
$nokey;

Example 21-3 Results 6 Contents of verilog.key

Sdisplay("this is in the key file");
Skey ("another.key") ;

Example 21-3 Results 7 Contents of another.key

Sdisplay("this is in the other key file");

A summary of keystroke and command script commands and options is shown in
Table 21-3.

Debugging a Design 303

Table 21-3 Keystroke-Related Commands

Command Where Used Description

-k filename Invocation Set the name of the
command line keystroke file

$nokey Interactive Turn off logging of
command keystrokes

Skey Interactive Turn on keystroke
command logging into

verilog.key file

Skey (“filename”") Interactive Turn on keystroke
command logging into filename

-1 filename Invocation Read in interactive
command line commands from filename

$input (“filename”) Interactive Read in interactive
command commands from filename

Traversing and Observing

Now that you know the basics of running a simulation in interactive mode, you are
ready to run a simulation and traverse through the design and observe values. When
a simulation is interactive, you can navigate through the design and observe the
values anywhere in the circuit. The commands and examples shown in this section
are specific to Verilog-XL. However, other simulators may support these or similar
commands.

Table 21-4 lists the primary commands for traversing and observing a design. Each
module in Verilog has a unique hierarchical name. The location you are observing
the circuit from is called the current scope. The first command, $showscopes, asks
Verilog what scopes, or hierarchical locations, are available from the current scope.
The second command, $scope, changes the current scope.

Table 21-4 Commands for Traversing and Observing

Command Explanation

Sshowscopes Show what scopes are available
$scope Change scope

$list Show source code and current values
Sdisplay Observe wvalues

Show current scope

304 Verilog Quickstart
A hierarchical 8-bit adder will be used as an example because it is a simple circuit,

but contains enough hierarchy to make traversing interesting. Example 21-7 runs
the adder until there are some known values, and demonstrates traversing.

Example 21-7 Hierarchical 8-Bit Adder

/*This file contains the hierarchical adders
adder8 - 8-bit adder made from two 4-bit adders
adder4d - 4-bit adder made from two 2-bit adders
adder2 - 2-bit adder made from two 1-bit full adders
adder - 1-bit full adder made from Verilog primitives

*/

module adder8 (carry_out, sum, a,b,carry):;

output carry_out;

output [7:0] sum;

input [7:0] a, b ;

input carry;

adder4 hid (carry_out, sum[7:4], al7:4], bl[7:4], int_carry);
adder4 lo4d (int_carry, sum[3:0], al[3:0], b[3:0], carry);

endmodule

module adder4 (carry_out, sum, a,b,carry):;
output carry_out;

output [3:0] sum;

input [3:0] a, b ;

input carry;

adder2 hi2(carry_out, sum[3:2], al[3:2], b[3:2], int_carry);
adder2 1lo2 (int_carry, sum[1l:0], al[l:0], b[l:0], carry);

endmodule

module adder2 (carry_out, sum, a,b,carry);
output carry_out;

output [1:0] sum;

input [1:0] a, b ;

input carry;

adder hi (carry out, sum[l], al[l]l, bl[l], int_carry);
adder 1lo (int_carry, sum[0], al[0], b[0], carry);
endmodule

module adder (cout, sum, x,y,cin) ;

output sum, cout;

input x,y,cin;

// using xor, and, nor gates to implement a full
// adder (addbit)

Debugging a Design 305

xXOor x1 (half_sum,x,vy),
x2 (sum,half_sum,cin);

and al (ov,half_sum,cin),
a2 (half_carry,x,vy);

or ol (cout,ov,half_carry);

endmodule

Example 21-7 shows the circuit that will be used for demonstrating hierarchical
traversal. Example 21-7 Results 1 shows the initial scope and a method to traverse
into the least significant 2-bit adder.

Example 21-7 Results 1

verilog adder8.v test_add.v -s
Compiling source file "adder8.v"
Compiling source file "test_add.v"
Highest level modules:

test_adder

Type ? for help

Cl > # 550 Sstop;

c2 >

Cl: sSstop at simulation time 550

C2 > S$showscopes;

Directory of scopes at current scope level:
module (adder8), instance (dut)

Current scope is (test_adder)
Highest level modules:
test_adder

C3 > S$scope(dut) ;

C4 > Sshowscopes;

Directory of scopes at current scope level:
module (adder4), instance (hi4)
module (adder4), instance (lo4)

Current scope is (test_adder.dut)
Highest level modules:
test_adder

C5 > S$Sscope(lod);

C6 > Sshowscopes;

Directory of scopes at current scope level:
module (adder2), instance (hi2)
module (adder2), instance (lo2)

Current scope is (test_adder.dut.lod)

306 Verilog Quickstart

Highest level modules:
test_adder

The primary reason for traversing the hierarchy is to observe the value of some
signal buried in the hierarchy. Example 21-7 Results 2 shows the values of all the
inputs and outputs of this module along with the source code, and the value of an
internal signal.

Example 21-7 Results 2

C7 > $list;
// adder8.v
28 module adder4 (carry_out, sum, a, b, carry);
29 output

29 carry_out; // = St0

30 output [3:0]

30 sum; // = 4'hb, 11 (scalared)

31 input [3:0]

31 a, // = 4'h2, 2 (scalared)

31 b; // = 4'h8, 8 (scalared)

32 input

32 carry; // = Stl

34 adder?2

34 hi2 (carry_out, sum[3:2], al[3:2], Db[3:2],
int_carry) ;

35 adder?2

35 lo2 (int_carry, sum[1:0], a[l1l:0], b[1l:0],
carry) ;

37 endmodule
C8 > Sdisplay(int_carry) ;
0
C9 > Sdisplayb(sum) ;
1011

The command $list decompiles the module at the current scope. This is the easiest
way to see the values of the inputs and outputs. As Verilog-XL decompiles or lists
the source code, it adds comments showing the current value of each of the ports in
both hexadecimal and decimal. The numbers in the left-hand column are the line
numbers from the original source file. Looking at the decomposed source and values
of inputs and outputs may provide important clues when debugging a circuit. On
large circuits, it may not be effective to use $list if the modules are large and $list
would generate too much output to be readable.

Another effective command to observe values is $display. The $display command
can be used to display the value of any signal in any radix. Since $scope was used to
traverse into a particular hierarchy, the hierarchical names of the displayed signals

Debugging a Design 307

are relative to the current scope. Interactive debug is the most common place of
using the alternate forms of $display.

If you forget where you have traversed to in the hierarchy, the colon (:) special
interactive command shows where in the hierarchy you currently are. To traverse
back to the top, set the scope to the top-level module. You can also traverse directly
to any scope. Example 21-7 results 3 demonstrates these commands.

Example 21-7 Results 3

Cl10 >

Command 9

Scope is (test_adder.dut.lo4)
Cl0 > Sscope (test_adder) ;

cl1 >

Command 10

Scope 1is (test_adder)

Cll > Sscope(dut.lod);

cl2 >

Command 11

Scope is (test_adder.dut.lo4)

Back-Tracing Fan-In

Just knowing the value of a signal is not always sufficient to understand the
behavior (or misbehavior) or a circuit. Sometimes it is necessary to see what is
driving a wire (especially if a wire is driven by more than one source). The
command $showvars shows all the drivers of a wire.

You can use the combination of the $scope command and the $showvars command
to back-trace the source of a signal as far as needed to isolate the ultimate source of
the values you are looking for. This is demonstrated in Example 21-7 Results 4.

308 Verilog Quickstart

Example 21-7 Results 4

Cl2 > $showvars (int_carry);
int_carry (test_adder.dut.lod4) wire = StO0
St0 <- (test_adder.dut.lod4.lo2.hi): or ol (cout, ov,
half_carry);
Cl3 > S$scope(test_adder.dut.lo4.lo02.hi);
Cl4 > Sshowvars(ov, half_carry);
ov (test_adder.dut.lod4.lo2.hi) wire = St0
St0 <- (test_adder.dut.lod4.lo2.hi): and al(ov, half_ sum,
cin) ;
half_carry (test_adder.dut.lo4.lo2.hi) wire = StO
St0 <- (test_adder.dut.lo4.lo2.hi): and a2 (half_carry, x,
v);
Cl5 > S$showvars(x,Vy);
X (test_adder.dut.lo4.lo2 .hi) wire = Stl
Stl <- (test_adder.dut): port 3
vy (test_adder.dut.lo4.lo02.hi) wire = St0
St0 <- (test_adder.dut): port 4
Clé > S$scope(test_adder.dut);

Cl7 > S$list;

// adder8.v

17 module adder8(carry_out, sum, a, b, carry);

18 output

18 carry_out; // = St0

19 output [7:0]

19 sum; // = 8'hdb, 219 (scalared)

20 input [7:0]

20 a, // = 8'hl2, 18 (scalared)

20 b; // = 8'hc8, 200 (scalared)

21 input

21 carry; // = Stl

23 adder4

23 hid (carry_out, sum[7:4], al[7:4]1, bl[7:4],
int_carry);

24 adder4

24 lo4 (int_carry, sum[3:0], a[3:0], b[3:01],
carry) ;

26 endmodule
Cl8 > S$showvars(a,b) ;

Using force and release

You can use the Verilog-XL force command to set a net to an expression or to a
fixed value. For example you could use force to change an AND gate into an OR
gate. The release command simply undoes force, and the net goes back to its
previous behavior.

Example 21-7 Results 5 briefly demonstrates force and release.

Debugging a Design 309

Example 21-7 Results 5

C20 > S$showvars (ov);
ov (test_adder.dut.lo4.lo02.hi) wire = StO0
St0 <- (test_adder.dut.lod4.lo2.hi): and al(ov, half_ sum,
cin) ;
C21 > force ov = half _sum | cin;
C22 > S$showvars (ov) ;
ov (test_adder.dut.lo4.lo2.hi) wire = Stl
Node is in forced state from: Command 21
Stl <- (test_adder.dut.lo4.lo2.hi): and al(ov, half_sum,
cin) ;
C23 > release ov;
C24 > S$showvars (ov) ;
ov (test_adder.dut.lo4.lo2.hi) wire = StO0
St0 <- (test_adder.dut.lo4.lo02.hi): and al(ov, half_ sum,
cin) ;

Waveforms, Graphical User Interfaces, and Other Conveniences

Waveforms and graphical user interfaces make it easier for you to traverse hierarchy
and observe values. Graphical tools can greatly reduce your debugging time by
enhancing visualization of values, simplifying hierarchy traversal, and simplifying
the selection of signals to display. The techniques demonstrated by Example 21-7
and its results can be repeated using the graphical tools provided with your
simulator.

Each set of graphical tools is a little different, but all such tools provide the same
basic functionality (demonstrated with Example 21-7) of traversing hierarchy and
observing values.

CATCHING PROBLEMS LATER IN A SIMULATION

Catching an error in simulation can be difficult. If an error occurs early in a
simulation, you might catch it with tracing from the start. If an error occurs after a
large amount of simulation has occurred, it is often more difficult to find and isolate
the problem. Looking through a large amount of trace output to find the problem
might take a long time. You could run the simulation without tracing until near the
time when you expect the error to occur, and then turn on tracing with $settrace.
You can turn off tracing with the $cleartrace command. Tracing always tells you
the details of what happened in a simulation.

The traverse-and-observe method is the most common debugging method. However,
the trick is to know when to traverse and observe, and to find an easy way to get to
the correct simulation time at which to start the traversing and observing.

310 Verilog Quickstart

You have seen how to add a $stop interactively or in your source code to try and
stop when you think an error is going to occur. Often you may find that you want to
start over again and look at the simulation at an earlier time. The command $reser
resets simulation time to 0, so you can start again and set earlier breakpoints or try
other techniques.

If you want to have a known point in the simulation to return to and resume
simulation from other than time 0, you can create a save-restore file. At any time
during simulation you can issue the $save command and Verilog-XL creates a
snapshot of the current simulation. You can return to the saved state of the
simulation two ways. The $restore command reads back in a saved simulation
snapshot. The -r command line option lets you jump back into a previously saved
snapshot. The combination of $save and -r allows you to save where you are in your
debugging process, exit, and then resume your simulation later.

The $save and $restore commands help you return to a state of simulation that
might otherwise be difficult to reach. If you are debugging a problem that only
occurs after several hours of simulation, you can use $save to save the circuit a few
hours into the simulation. As you are debugging, rather than starting from time 0
each time you are looking for the error, you can restore and save the time it took to
get to that state. You can have as many save-restore files as you have disk space.

Table 21-5 lists the commands and options for tracing, saving, and restoring.

Debugging a Design 311

Table 21-5 The irace, save, and restart Commands

Command Where Used Description

-t Invocation Start tracing at time
command 0
line

$settrace Interactive Turn on tracing
command

Scleartrace Interactive Turn off tracing
command

Sreset Interactive Reset to time 0
command

-r filename Invocation Restart from saved
command file
line

$save (" filename") Interactive Save current
command simulation state

Srestart (" filename") Interactive Load in previous
command simulation state

ISOLATING DIFFERENCES IN MODELS

How do you figure out what is wrong when a difference occurs between a behavioral
model and a gate-level model? How do you determine what is wrong when one
behavioral model works and another one, which is supposedly equivalent, does not?

In such cases, one of the first things to check is timing. Are both models for the
circuit expecting inputs at the same time? Are the inputs being provided at the
proper times? Different models often have different output timing. A behavioral
model might have zero or unit delay, but a gate-level model may have some longer
delay associated with the actual gates. Is the circuit taking longer than expected by
the test bench or other connection modules to produce correct outputs, or are you
just looking for the outputs too soon?

Another common gate-level problem involves unknowns. Use the techniques shown
earlier in this chapter to back-trace the source of any unknowns. If the unknowns
lead back to flip-flops or registers, perhaps the these are not properly reset.

Another source of unknowns is differences in how certain conditions are handled.
The behavioral model for a mux might have a known output when the two inputs
are known, but the select might be unknown, and the gate-level model might pass
the unknown to the output.

312 Verilog Quickstart

Unknowns may cause other types of mismatches. The pre-synthesis model may have
used x to indicate a don't care condition to synthesis. After synthesis these x's will
become / or 0.

If timing is the only difference between two simulations, is the timing of both
models acceptable? Can you modify the test bench to accept both timings? If
unknowns constitute the difference, can the circuits and stimulus be modified to
eliminate the unknowns? If the difference is functional, which model is correct?
Once you know the incorrect behavior, debug it!

SUMMARY OF DEBUGGING

There is no magic secret to debugging a design. Debugging is a process of looking
for common errors and then observing the operation of the circuit. With experience,
you will develop techniques that are a combination of the commands presented here
and other commands. This chapter did not list every possible interactive or
debugging command, but it provides the basic, tried-and-true commands and
techniques that form the basis of an effective debugging process. Table 21-6
summarizes the commands, special keystrokes, and command-line options related to
debugging explained in this chapter.

Table 21-6 Debugging Commands, Keystrokes, and Command-Line
Options

Command/Keystroke Where Used Description

-5 Invocation Stop at time 0
before any
execution

-1 filename Invocation Set the name of the
log file

$nolog Interactive Turn off logging

Slog Interactive Turn on logging
into verilog.log
file

$log (" filename") Interactive Start logging into
filename

Interactive Continue simulation

. Interactive Single step

control-c Interactive Interrupt
simulation

-k filename Invocation Set the name of the

keystroke file

Debugging a Design 313

Command/Keystroke Where Used Description

$nokey Interactive Turn off logging of
keystrokes

Skey Interactive Turn on keystroke
logging into
verilog.key file

Skey("filename") Interactive Turn on keystroke
logging into
filename

-i filename Invocation Read in interactive
commands from
filename

$input (" filename") Interactive Read in interactive
commands from
filename

$showscopes Interactive Show what scopes
are available

$scope Interactive Change scope

$list Interactive Show source code
and current values

Sdisplay Interactive Observe values

Interactive Show current scope
Sstop Source code Enter interactive
or interative mode

=t Invocation Start tracing at
time 0

$settrace Interactive Turn on tracing

Scleartrace Interactive Turn off tracing

Sreset Interactive Reset to time 0

-r filename Invocation Restart from saved
file

Ssave (" filename") Interactive Save current
simulation state

Srestart (" filename") Interactive Load in previous

simulation state

This Page Intentionally Left Blank

22 CODE COVERAGE

Code coverage is a method by which you measure test benches and models. Code
coverage tools can help you answer some difficult questions:

¢ Have I created enough test cases?

¢ Have I written any code that never gets run?

¢ Where are the bottlenecks in my simulation performance?

Code coverage tools answer these questions by monitoring the activity in the
simulation and measuring the number of times each statement is executed. Code
coverage can be used during the design phase and initial testing phase to find
sections or lines of design that are not tested.

Code coverage, sometimes called code profiling, can also be used to increase
simulation performance. Simulation performance can be tuned by locating the lines
of code the simulator executes most frequently. Once the heavily executed lines
have been identified, the designer can look to optimize the heavily executed code.

As designs become more complicated, it is important to measure that every branch
of each if and case statement is executed as part of the simulations. If you find
statements that are not executed, you need to write more tests that try to exercise the

316 Verilog Quickstart

previously non-executed statements. If you cannot write tests that exercise the non-
executed parts of your code, you may have cases in which it is not possible to
execute those statements. The non-executed statements may require an impossible
set of conditions to be executed. In this case the code may be dead code and should
be removed. In other cases, the code may simply be difficult to test.

Code coverage and fault simulation are both ways to measure how well a design is
tested; Code coverage measures if each line of the code is executed, while fault
simulation determines if each potential manufacturing fault can be observed. Code
coverage is not a replacement for fault simulation and both may be needed as part of
your design flow. 100% code coverage does not ensure 100% fault coverage.

Many simulators have code coverage capabilities. The Silos simulator that
accompanies this book makes code coverage quite simple. Enable code coverage
from the menu before running simulation. Then select view line report. If the source
is open, annotations indicate which lines were executed and which lines were not.

CODE COVERAGE AND TEST PLANS

Code coverage can be used as a tool to gauge the effectiveness of a test plan.
Example 22-1 is a repeat of the counter from Chapter 10. A test plan for this
counter was identified in Chapter 18.

Example 22-1 Repeat of Counter Using if

module countc(clock, reset, load, up, load _data, count);
input clock,reset, load, up;

input [15:0] load_data;

output [15:0] count;

reg [15:0] count;

always @ (posedge clock)
if (reset)
count <= 8'b0;

else
if (load)
count <= #(REG_DELAY) load_data;
else
if (up)
count <= #("REG_DELAY) count + 1;
else

count <= #(REG_DELAY) count - 1;
endmodule

Code Coverage 317

Below is the test plan from Chapter 18. To test the loadable up down counter, four
basic tests were identified:

e Test Reset

o Test Load

¢ Test Count up

¢ Test Count down

If this test plan is complete, code coverage should prove it. The test bench in
Example 22-2 does not follow the test plan; it tests only reset and up.

Example 22-2 Counter Test Bench #1

“timescale 1Ins/lns

“define REG_DELAY 1

“disable codecoverage

module test_counterl;

reg up, load, clk, reset;
reg [15:0] load_data;

wire [15:0] count;

always begin// generate clock

#5 clk =0;
#5 clk =1;
end

// 1instantiate device under test
countc dut(.clock(clk), .reset(reset), .up(up), .load(load),
.load_data(load _data), .count(count));

initial begin // counter test sequence
reset = 1;
@ (posedge clk) #3 if (count !== 16'h0000)
begin
Sdisplay ("Counter reset error");
$finish;
end
reset = 0; load = 0; up = 1;
@ (posedge clk) #3 if (count !== 16'h0001)
begin
Sdisplay ("Counter count to 1 error");
$finish;
end
@(posedge clk) #3 if (count !== 16'h0002)
begin
Sdisplay ("Counter count to 2 error");
Sfinish;
end
$finish;
end
endmodule
“enable_codecoverage

318

Verilog Quickstart

The test bench in Example 22-2, follows the basic test cycle for sequential models,
described in Chapter 18. It applies stimulus, waits for the clock, then allows the
circuit to respond, and checks results. The test bench also defines the timing for the
module. Code coverage of the test bench is disabled. Since we expect no errors from
the counter we expect many of the lines containing error checks in the test bench to

be skipped.

Example 22-3 shows the test bench improved to follow the test plan.

Example 22-3 Counter Test Bench #2

‘timescale 1lns/lns
“define REG_DELAY 1
“disable_codecoverage
module test_counter?2;

reg up, load, clk, reset;
reg [15:0] load _data;
wire [15:0] count;

always begin // generate clock

#5 clk =0;
#5 clk =1;
end

// instantiate device under test
countc dut(.clock(clk), .reset(reset), .up(up),
.load _data(load_data), .count(count));

initial begin // counter test sequence

reset =1 ; // Reset test plan #1
@ (posedge clk) #3 if (count !== 16'h0000)
begin
Sdisplay ("Counter reset error") ;
Sfinish;
end

load_data = 16'hl234;
reset = 0; load = 1; // Load test plan #2

@ (posedge clk) #3 if (count !== 16'hl1234)
begin
Sdisplay ("Counter load error");
Sfinish;
end
load = 0; up = 1; //Up test plan #3
@ (posedge clk) #3 if (count !== 16'hl1235)
begin
Sdisplay ("Counter up error") ;
Sfinish;
end
up =0; // Down test plan #4
@(posedge clk) #3 if (count !== 16'hl1234)

begin

.load(load) ,

Code Coverage 319

Sdisplay ("Counter count down error");
Sfinish;
end
Sfinish;
end
endmodule
‘enable_codecoverage

CODE COVERAGE AND FIFOS

A FIFO (first in first out buffer) is a good example of code that is difficult to
exercise completely. Conditions such as reading from an empty FIFO or writing to
afull FIFO may never appear.

Testing a model with a FIFO is complicated: This model can be fully tested with a
unit level test bench. The unit level test bench can control the rate of the reads and
writes, therefore the conditions of empty and reading from an empty FIFO can be
tested. The condition of full and writing to a full FIFO can also be tested. Example
22-4 shows a simple FIFO model.

Example 22-4 FIFO Model

module fifo(reset, wr_data, wr_strobe,
rd_data, rd_strobe, full, empty);

input reset;

input [7:0] wr_data;

input wr_strobe;

output [7:0] rd_data;

input rd_strobe;

output full, empty;

reg [7:0] fifo [0:15]; // 16 deep fifo

reg [3:0] rd_ptr, wr_ptr;

always @ (posedge wr_strobe or posedge reset)
if (reset)
wr_ptr <= #(REG_DELAY) 4 ' hO;

else
if (full)
wr_ptr <= #(REG_DELAY) wr_ptr; // hold
else
begin
wr_ptr <= #(REG_DELAY) wr_ptr + 4 'hl;
fifo [wr_ptr] <= #(REG_DELAY) wr_data;
end

always @ (posedge rd_strobe or posedge reset)
if (reset)
rd_ptr <= #(REG_DELAY) 4'h0;

320 Verilog Quickstart

else
if (empty)
rd_ptr <= #(REG_DELAY) rd_ptr; // hold
else
rd_ptr <= #(REG_DELAY) rd ptr + 4'hl;

assign rd_data = fifo[rd_ptr];

assign empty = (rd_ptr == wr_ptr);
assign full = (rd_ptr == (wr_ptr + 4'hl));
endmodule

Is it possible that less than 100% coverage is a good thing? Yes! The unit level test
bench for the FIFO Example 22-5 tests the FIFO 100%. In the system context, the
FIFO should become full and empty. However it would be a functional error if the
system simulation read from an empty FIFO or wrote to a full FIFO. The system
level code coverage should show that read from empty and write to full code is not
executed.

Code coverage is the easiest way to ensure the difficult conditions FIFO full and
FIFO empty are tested in the system context. Keep in mind that the FIFO itself
should not have 100% coverage in the system context, since the system should
never read from an empty FIFO or write to a full FIFO.

Example 22-5 is a unit level test bench for the FIFO model. This test bench
stimulates the FIFO for 100% line and expression coverage.

Example 22-5 Unit Testbench for FIFO Model

‘timescale 1ns/lns

“define REG_DELAY 1

“disable_codecoverage

module test_fifo;

reg reset;

reg [7:0] wr_data, last_data, expect_data;
reg wr_strobe;

wire [7:0] rd_data;

reg rd_strobe;

wire full, empty;

fifo dut (reset, wr_data, wr_strobe,
rd_data, rd_strobe, full, empty);

initial
begin
last_data = 8'hff;
reset = 1'bl;

Code Coverage

321

#10 reset = 1'bO0;
fork
write_data;
read_data;
join
end

task write_data;
begin
wr_data = 0;
while (!full)
begin
wr_data = wr_data +1;
#1 wr_strobe = 1 ;
#1 wr_strobe = 0 ;
end
Sdisplay (
"Attempting to write to full fifo, last data was %h",
wr_data) ;
last_data = wr_data;
wr_data = 8'hee; // error data
#1 wr_strobe = 1;
#1 wr_strobe = 0 ;
if (! full)
Sdisplay (
"Error, No longer full after write to full fifo");
#1 wr_strobe = 1;
#1 wr_strobe = 0 ;
if (! full)
Sdisplay (
"Error, No longer full after write to full fifo");
end //task
endtask // write_data

task read_data;
begin
expect_data = 0;
while (expect_data <= last_data)
begin
wait (!empty)
expect_data = expect_data + 1;
if (rd_data !== expect_data)
Sdisplay (
"Exrror: Wrong read data read %h expected %$h",
rd_data, expect_data);
#1 rd_strobe = 1;
#1 rd_strobe = 0;
#17 ; // slow read rate
end // while

Sdisplay ("Attempting to read beyond the end of the fifo");

322 Verilog Quickstart

if(rd_data !== expect_data)
Sdisplay ("Error: Wrong read data read %h expected %h",
rd_data, expect_data);
1

#1 rd_strobe ;
0;

#1 rd_strobe
if (!lempty)
$display ("Error, No longer empty after read from fifo");
if (rd_data !== expect_data)
Sdisplay("Error: Wrong read data read %h expected %$h",
rd_data, expect_data);

#1 rd_strobe
#1 rd_strobe
if (!empty)
S$display("Error, No longer empty after read from fifo");

end //task

endtask

endmodule

“enable_codecoverage

1
0

’
’

CODE COVERAGE AND STATE MACHINES

Complex state machines may have many paths and branches. Even with a good test
plan, how can you determine if all the paths are tested? Code coverage! Code
coverage can help find untested or untestable parts of a state machine.

As with the case of the FIFO less than 100% coverage may be acceptable for state
machines. Next state logic implemented with a case statement should include a
default. A properly designed state machine should never hit the default case.

CODE COVERAGE AND MODELING STYLE

Modeling style can have an effect on code coverage. An obsolete modeling style
from the early days of Verilog and logic synthesis was composed of only continuous
assignments and instances of registers. This style gives erroneously high coverage.
Example 22-6 shows a loadable counter done in this obsolete style. Many statements
on a single line hamper readability and code coverage. A single statement per line is
the best way to have readable code and ensure accurate code coverage information.
Example 22-7 shows the counter in an improved style.

Example 22-6 Old Style Counter

module count_old(elk, reset, load, ldata, count, match);
input clk, reset, load;
input [7:0] 1ldata;

Code Coverage 323

output [7:0] count;

output match;

wire [7:0] next_count;

assign next_count=load ? ldata : count + 1;
assign match=(count==1data) ;

reg8 count_reg(clk, reset, next_count, count);
endmodule

module reg8(clk, reset, d, q) ;
input clk, reset;

input [7:0] d;

output [7:0] q;

reg [7:0] q;

always @(posedge clk or posedge reset)

if (reset)
q <= #("REG_DELAY) 8'h00;
else
g <= #('REC_DELAY) d;
endmodule

The counters in Example 22-6 and Example 22-7 are functionally equivalent simple
loadable counters. The counter has an added feature: The match output from the
counter is a combinatorial circuit showing that the current count output matches the
load input data.

Example 22-7 Improved Style Counter

module count_new(clk, reset, load, ldata, count, match);
input clk, reset, load;

input [7:0] ldata;

output [7:0] count; reg[7:0] count;

output match; reg match;
always @(posedge clk or posedge reset)
if (reset)
count <= #(REG_DELAY) 8'h00;
else
if (load)
count <= #(REG_DELAY) ldata;
else

count <= #(REG_DELAY) count + 8'h01;
always @ count
if (count==1data)
match = 1'bl;
else
match = 1'b0;
endmodule

324 Verilog Quickstart

The coding style of Example 22-7 with one statement per line improves readability
and makes code coverage easy to observe. Using complex continuous assignments is
discouraged for the same reasons. One statement per line is greatly preferred over
the style used in Example 22-6. Example 22-6 used complex continuous
assignments as for the match output and next_count signal.

Example 22-8 is a test bench that does an incomplete job of testing the counters.
The match output from the counters will never be true. The load input is changed,
but not true at a positive edge of the clock. This test bench does not check any of the
outputs. It is only used as an example to demonstrate code coverage.

When you run this example, look initially at line coverage. You will see the first
counter has 100% line coverage, but that the new style counter never tests load or
match. If you look at an expression coverage report, you can see that the
(count==ldata) expression is never true for either counter.

Example 22-8 Test bench for Counters

“define REG_DELAY 1

“disable_codecoverage

module test_coverage;

reg clk, reset, load;

reg [7:0] 1ldata;

wire [7:0] countl, count2;

wire matchl, match2;

count_old dutl(clk, reset, load, ldata, countl, matchl);
count_new dut2(clk, reset, load, ldata, count2, match2);

always begin

#5 clk = 0;
#5 clk = 1;
end
initial
begin

ldata = 8'h22; load = 1'b0; reset = 1'Dbl;
@ (posedge clk)
ldata = 8'h22; load = 1'b0; reset = 1'Db0;
@ (posedge clk)
ldata = 8'h22; load = 1'bl; reset = 1'b0;
@ (negedge clk)
ldata = 8'h22; load = 1'b0; reset = 1'b0;
repeat (3) @(posedge clk) ;
$finish;
end
endmodule
“enable_codecoverage

Appendix A GATE-LEVEL DETAILS

Chapters 2 and 3 briefly introduced the built-in primitives. This appendix will
briefly describe each of the built-in primitives and the options when instantiating
them. The delay and strength options for primitive instances will be explained.

PRIMITIVE DESCRIPTIONS

Logic Gates

AND

>

Figure A-1 AND Gate

326 Verilog Quickstart

The and primitive can have two or more inputs, and has one output. When all of the
inputs are “1” then the output is “1”.

Table A-1 Logic Table for and Primitive

0 1 x =z
0 0 0 0 0
1 0 1 K X
X 0 X X x
z 0 x x x
NAND

Figure A-2 NAND Gate

The nand primitive can have two or more inputs, and has one output. When all of
the inputs are “1” then the output is “0”.

Table A-2 Logic Table for nand Primitive

N X B O

o Y =
M M O -
- - L
E A L

Gate-Level Details 327

OR
Figure A-3 OR Gate

The or primitive can have two or more inputs, and has one output. When any of the
inputs is “1” then the output is “1”.

Table A-3 Logic Table for or Primitive

0 1 X z
0 0 1 X X
1 1 1 1 1
x X 1 x b
z X 1 X X
NOR
Figure A-4 NOR Gate

The nor primitive can have two or more inputs, and has one output. When any of
the inputs is “1” then the output is “0”.

Table A-4 Logic Table for nor Primitive

N ¥ P O

¥ X o pP|e
o o o o=
- = -
K HW o XN

328 Verilog Quickstart

XOR

D) -

Figure A-5 XOR Gate

The xor primitive can have two or more inputs, and has one output. When an odd
number of inputs is “1” then the output is “1”, unless any input is “x”. When any of

[T3T]

the inputs is “x” then the output is “x”.

Table A-5 Logic Table for xor Primitive

0 1 X z
0 0 1 x x
1 1 0 x x
X X .4 xX xX
z X X X X
XNOR
Figure A-6 XNOR Gate

The xnor primitive can have two or more inputs, and has one output. When an odd
number of inputs is “1” then the output is “0”, unless any input is “x”. When any of

(T3]

the inputs is “x” then the output is “x”.

Table A-6 Logic Table for xnor Primitive

N X = O

0
d:
0
X
X

XX P o=
I L
®OoX X XN

Gate-Level Details 329

Buffers
BUF
Figure A-7 BUF Gate

The buf primitive has one input and can have one or more outputs. The output(s)
pass the same value as the input, except an input of “z” produces an output of “x”.

Table A-7 Logic Table for buf Primitive

Input | Output

0 0

1 1

X x

z X

NOT

Figure A-8 NOT Gate

The not primitive has one input and can have one or more outputs. The output(s)
pass the opposite value as the input, except an input of “x” or “z” produces an
output of “x”.

Table A-8 Logic Table for not Primitive

Input | Output

0 0
1 1
b X

X

4

330 Verilog Quickstart

BUFIFO

Figure A-9 BUFIFO Gate

The bufif) primitive has two inputs, (data and control) and one output. When the
control input is “0” the output passes the same value as the data input, except that
an input of “z” produces an output of “x”. When the control input is “1” the output
is “z”. The port order of the primitive is output, input, control.

The remaining logic tables in the section show both strength and value. Verilog
uses a notation of three characters, two for the strength, and one for the value. Table
A-20 lists the two character codes used for the strength and the value is 0, I, x, or z.

Table A-9 Logic Table for bufif0 Primitive

Control
Data | 0 1 X z

0 St0 HiZ StL StL
1 Stl HiZ StH StH
X StX HiZ StX StX
z StX HiZ StX sStX
BUFIF1

Figure A-10 BUFIF1 Gate

The bufifl primitive has two inputs, (data and control) and one output. When the
control input is “1” the output passes the same value as the data input, except that
an input of “z” produces an output of “x”. When the control input is “0” the output

[T}

is “z”. The port order of the primitive is output, input, control.

Gate-Level Details 331

Table A-10 Logic Table for bufif? Primitive

Data 0 1 X z

0 HiZ St0 StL StL
1 HiZ stl StH StH
ble HiZ StX StX sStX
Z HiZ StX StX sStX

NOTIFO

Figure A-11 NOTIFO Gate

The notif0 primitive has two inputs, (data and control) and one output. When the
control input is “0” the output passes the opposite value as the data input, except
that an input of “z” produces an output of “x”. When the control input is “1” the
output is “z”. The port order of the primitive is output, input, control.

Table A-11 Logic Table for notif0 Primitive

Data 0 1 X z

0 stl HiZ StH StH
1 St0 HiZ StL StL
x StX Hiz stX StX
z StX Hiz StX StX

332 Verilog Quickstart

NOTIF1

Figure A-12 NOTIF1 Gate

The notifl primitive has two inputs, data and control and one output. When the
control input is “1” the output passes the opposite value as the data input, except
that an input of “z” produces an output of “x”. When the control input is “0” the

@9

output is “z”. The port order of the primitive is output, input, control.

Table A-12 Logic Table for notif1 Primitive

Data 0 1 X z

0 HiZ stl StH StH
1 HiZ St0 StL StL
ble HiZ StX StX StX
Z HiZ StX StX StX

PULLDOWN

Figure A-13 Pulldown

The pulldown primitive has only one terminal. It outputs a O of strength pull (pu0).
When nothing else is driving a net stronger than the pulldown, the pulldown will
drive the net to 0.

Gate-Level Details 333

PULLUP

Figure A-14 Puliup

The pullup primitive has only one terminal. It outputs a I of strength pull (pul).
When nothing else is driving a net stronger than the pullup, the pullup will drive
the net to 1.

Switches

Verilog supports simulating transistors as switches. There are switch models of
unidirectional and bi-directional switches. There are model of both ideal and
resistive switches. Table A-21 details the signal strength reduction through the
switches.

334 Verilog Quickstart

NMOS and RNMOS

<

Figure A-15 NMOS or RNMOS Transistor

The nmos and rnmos primitives are abstractions of unidirectional switches. When
the gate input is 1, this input is passed to the output, otherwise the output is high
impedance. The difference between the nmos and rnmos is the nmos passes the
input to the output with the strength unchanged, but the rnmos passes the value to
the output with a decreased strength. The port order of the primitive is output,
input, gate.

The output strength from any of the transistor primitives is dependent on the
strength of the input. The input strength for the following tables is strong, unless
otherwise noted.

Table A-13 Logic Table for nmos Primitive

Data 0 1 X zZ

0 HiZ St0 StL StL
1 HiZ stl StH StH
x HiZ StX StX StX
z HiZ HiZ HiZ HiZ

Table A-14 Logic Table for rnmos Primitive

Data 0 1 X z

0 HiZz Pu0 PulL PuL
1 HiZ Pul PuH PuH
b d HiZ PuX PuX PuX
Z HiZ HiZ HiZ HiZ

Gate-Level Details 335

PMOS and RPMOS

<

Figure A-16 PMOS or RPMOS Transistor

The pmos and rpmos primitives are abstractions of unidirectional switches. When
the gate input is 0, this input is passed to the output, otherwise the output is high
impedance. The difference between the pmos and rpmos is the pmos passes the
input to the output with the strength unchanged, but the rpmos passes the value to
the output with a decreased strength. The port order of the primitive is output,
input, gate.

Table A-15 Logic Table for pmos Primitive

Data 0 1 X z

0 St0 HiZ StL StL
1 stl HiZ StH StH
X StX HiZ StX StX
Z HiZ HiZ HiZ HiZ

Table A-16 Logic Table for romos Primitive

Data 0 1 X z

0 Pul HiZ PuL PuL
1 Pul HiZ PuH PuH
b d PuX HiZ PuX PuX
Z HiZ HiZ HiZ HiZ

336 Verilog Quickstart

CMOS and RCMOS

{:}

Figure A-17 CMOS or RCMOS transistor

The cmos and rcmos primitives are the equivalent or nmos and pmos (or rnmos and
rpmos) primitives connected back to back. The primitive has four terminals. The
port order is output, input, ngate, pgate.

Table A-17 Logic Table for cmos Primitive

ngate pgate 0O 1 X z

0 0 St Stl StX HiZ
0 1 HiZ HiZ HiZ HiZ
0 X StL StH StX Hiz
0 Z StL StH StX HiZ
1. 0 st0 stl StX HiZ
1 7 Sto stl StX HizZ
1 X sSt0 stl StX HiZ
1 z sSt0 S5tl StX HiZ
x 0 5t0 Stl StX HiZ
% 1 StL StH StX HiZ
X X StL StH StX HiZ
X z StL StH StX HiZ
A 0 St0 Stl StX HiZ
Z 1 StL StH StX HiZ
z x StL StH StX HiZ
Z Z StL StH StX HiZ

Gate-Level Details 337

Table A-18 Logic Table for rcmos Primitive

ngate pgate 0 1 X z

0 0 Pul Pul PuX HiZ
0 1 HiZ HiZ HiZ HiZ
0 X PuL PuH PuX HiZ
0 z PuL PuH PuX HiZz
1 0 Pul Pul PuX HiZ
1 1 Pu0 Pul PuX Hiz
1 X Pul Pul PuX HiZz
1. z Pu0 Pul PuX HiZz
X 0 Pul Pul PuX Hiz
X 1 PuL PuH PuX HiZ
x X PuL PuH PuXx HiZ
x Z PuL PuH PuX Hiz
Z 0 Pul Pul PuX HiZ
z 1 PuL PuH PuX HiZ
A e PuL PuH PuXx HiZ
z z PuL PuH PuX HiZ

TRAN and RTRAN

The tran and rtran primitives are bidirectional pass gates. They have only two
terminals that are the bidirectional data pins. Delay specifications are not allowed
on these primitives. The rtran primitive is resistive, and the strength is reduced as
the value passes through.

TRANIF0 and RTRANIFO

The tranifO0 and rtranif0 primitives are bidirectional pass gates. They have three
terminals. The first two are the bidirectional data pins, the third is the control input.
When the control input is 0, data passes between the two bidirectional data pins.
Delay specifications on these primitives are only turn on and turn off delays. The
rtranif0 primitive is resistive, and the strength is reduced as the value passes
through.

338 Verilog Quickstart

TRAN1F1 and RTRANIF1

The tranifl and rtranifl primitives are bi-directional pass gates. They have three
terminals. The first two are the bi-directional data pins, the third is the control
input. When the control input is /, data passes between the two bi-directional data
pins. Delay specifications on these primitives are only turn on and turn off delays.
The rtranifl] primitive is resistive, and the strength is reduced as the value passes
through.

INSTANCE DETAILS

When you create an instance of one of the built-in primitives, the instance name is
optional as you learned in chapter 3. There are other optional arguments you may
specify when creating primitive instances: delays and strengths.

Delays

A primitive may have from zero to nine delay specifications. If a primitive instance
has no delay specification the primitive is zero delay. A primitive may have separate
delays for both rise (to /) and fall (to 0) time. A primitive that can output high
impedance (such as bufifl, bufif0, and the switches) has an optional turn off (to z)
delay. The delay to x is always the least of the delays specified. If a single delay is
specified, it is used for both rise and fall (and turn off if applicable).

Delays are declared with the # delay operator. The order of the delays is rise, fall,
and turnoff.

Example A-1 Delays in Primitive Instances

module delays;

and al (y, a, b), a2 (w, d, e, f) ; // zero delay and gates
and #1 a3 (x, a, ¢, e), a4 (z, e, f); // unit delay and gates
and #(3,2) ab(c, w, z); // rise delay of 3, fall delay of 2
bufifl #(3,2,4) bl(x, a,b); // turn off time is 4

bufif0 #(2:3:4,1:2:3,3:4:5) b2 (£, e, d) ; // min:typ:max
endmodule

Example A-1 shows primitive instances with between zero and nine delays
specified. Notice that similar to reg and wire declarations where the range in the
specification applies to each declaration, the delay(s) affect each of the instances in
the declaration. The instances a3 and a4 are both unit delay, and that delay of 1 is
used for both rise and fall time. Instance a5 illustrates specifying separate rise and

Gate-Level Details 339

fall delays. When multiple delays are specified they are enclosed in parentheses.
Instance bl shows adding the third delay specification of turn off time.

Each of the delay specifications can be expanded to be a minimum, typical, and
maximum delay specification. When the min, typical, and max delays are specified
they are separated by colons as shown with instance b2.

Delay Units

All the delays throughout the book were unitless. In behavioral modeling a delay of
one could mean anything. In the phone example in chapter 1 a delay unit was
interpreted as one minute. In gate-level modeling you might want to use delays with
units such as 1 nanosecond or 1 picosecond.

Verilog allows both the specification of a delay unit and a delay precision on a per-
module basis. The delay unit and precision are declared with the “timescale
compiler directive.

The main drawback to using delay units is that if you use them on one module you
must use them on all modules. When you declare a delay unit and precision, that
declaration applies to all following modules. You can declare the unit and precision
for just one module and have that declaration carry forward to all your other
modules: Just make sure that the file with the delay unit and precision declaration is
the first one compiled. If you compile a module before a “timescale directive and a
“timescale directive appears later in the source, Verilog will issue an error message
and abort compiling your files.

Table A-19 Delay and Precision Units

Code Definition

fs femtoseconds
ps picoseconds

ns nanoseconds

us microseconds
ms milliseconds
s seconds

Table A-19 lists the units that can be used in a timescale declaration. The timescale
declaration goes outside a module, just before the module. The delay unit and
precision are a combination of 1, 10, or 100, and one of the unit codes in Table A-
19.

340 Verilog Quickstart

Example A-2 Time Scales

‘timescale 1lns / 100ps
module modl;

// #1.1 in this module = 1.1 ns
endmodule

“timescale 100ps / 1 ps
module mod?2;

// #2 in this module = 200 ps
endmodule

Example A-2 shows two modules with their timescales. With the addition of the
time unit and precision, decimal delays are possible. Timescales and decimal delays
are usable for both behavioral and gate-level modeling, but most delays in
behavioral modeling are unitless. Behavioral modeling tends to be more abstract
and delays less important than delays in gate-level models.

Printing Out Time and the Timescale

The format code %t will print out the value of $time or $realtime including the
units.

Strengths

As mentioned in chapter 2, Verilog supports seven levels of strength. A behavioral
statement such as a register or continuous assignment always drives with a strength
of strong. By default all gate instances drive with strength strong, with the
exception of the pullup, pulldown, and resistive transistors which are pull, or are
decreased by one strength level.

A primitive instance may optionally include the drive strengths from the drive0 and
drivel columns of Table A-20 to indicate the drive strength of the gate.

Gate-Level Details 341

Table A-20 strengths

value %v drive0 drive1 Description

0 Hi highz0 highzl High impedance

1 Sm - > Small capacitor
2 Me - B Medium capacitor
3 We weakO weakl Weak drive

4 La - - Large capacitor
5 Pu pull0 pulll Pull drive

6 St strong0 strongl Strong drive

7 Su supply0 supplyl Supply drive

The drive strength of an instance is specified before the delay and the order of
strength declarations may be either strengthl or strengthO first. Example A-3 shows
declarations including strengths and delays.

Example A-3 Strength Declarations

module strength;

nand (strong0, highzl) ocl(z, a, b) oc2(w, d4d, e);

buf (weakl, weak0) #6 wimpo (out, in);

myudp (pullO, pulll) #(2:3:4,1:2:3) ul(g, ¢, d, r, s);
endmodule

Instances ocl and oc2 in Example A-3 could be an example of a TTL open collector
NAND gate such as the 7401. As you may know, open collector drivers have strong
drive low, but no drive high, so they need a pullup resistor to achieve a value of 1.
The example buffer shows combining the syntax for specifying strengths with the
syntax of specifying a delay.

The final instance, u/, is an example of a user-defined primitive. The user-defined
primitive myudp is assumed to be declared elsewhere. UDP instances also allow the
specification of both strengths and delays.

Displaying Strengths with %v

The format code %v provides more information than %b. The output produced by
%y is three characters, which describe in more detail the value and strength of a net.
The first two characters describe the strength as described in Table A-20. The third
character describes the value. Two new value codes are added to the 0, I, X, Z set.
The two new codes are H and L. The value H represents either a / or a Z. The value
L represents either a 0 or a Z.

342 Verilog Quickstart

Nets in Verilog may be one of 120 possible values. All of these values can be
printed out with %v. Some of the values do not print out as nicely as the codes from
Table A-20. These values print out the strength portion of the value with a two-digit
numeric code. Values such as 65X and 24/ can be printed out by %v. If the third
character in the value is X, the first number represents the zero strength and the
second number represents the one strength. If the third character in the value is 0 or
1, then the first two numbers represent a possible range of strength for the value.

Strength Reduction of Switch Primitives

Table A-21 shows the output strength for the switch primitives. The nmos, pmos,
cmos, tran, tranif0, and tranifl primitives are considered to be ideal devices since
the strength is not reduced through them, except that supply strength is reduced to
strong. The rnmos, rpmos, rcmos, rtran, rtranif0, and rtranifl primitives are
considered to be resistive devices since the strength is reduced through them.

Table A-21 Switch Strength Reduction

Input Strength Ideal Device Output Resistive Device Output
Strength Strength

supply strong pull

strong strong pull

pull pull weak

weak weak medium

large large medium

medium medium small

small small small

high impedance high impedance high impedance

All this detail with strengths is important for switch-level modeling, but is not used
in behavioral modeling.

INDEX

#include, 264

- negative numbers, 95 $
- no change, 155 $, 47
- subtraction, 82 $cleartrace, 309
See also Command line option $display, 47, 234
for debug, 283
/ specifying format, 49
I, 83 supressing spaces, 56
1=, 87 $dumpfile, 285
I==, 87 $dumpvars, 285
$fclose, 51
" $fdisplay, 52, 258
$ferror, 53
and white space, 11 Sfflush, 53
" 10 $fgetc, 53
’ $fgets, 53
$finish, 59, 149
36, 46, 107 $fmonitor, 51

$fopen, 51, 53

344

$fread, 53
$fscanf, 53
$fseek, 53
$fsscanf, 53
$fstrobe, 258
$ftel, 53
$twrite, 51
$incpattern, 262
$input, 300
Skey, 301
$list, 306
$monitor, 50, 234
$monitoroff, 50
$monitoron, 50
$nokey, 301
$random, 264
example, 5
$readmemb, 251
$readmemh, 251
$realtime, 55, 67, 340
$restart, 309
$rewind, 53
$save, 309
$scope, 303
$settrace, 309
$sformat, 53
$shmopen, 285
$shmprobe, 285
$showscopes, 303
$showvars, 307
$stop, 286
$strobe, 49, 50
$strobe_compare, 262
$swrite, 53
$time, 55, 67, 340
$timeformat, 55
$ungetc, 53
$write, 49

%

%, 82
%%, 54
%0b, 54
%0d, 54

Verilog Quickstart

%0h, 54
%00, 54
%b, 54

%c, 54

%d, 54

%e, 54

%f, 54

%h, 54
%m, 54
%0, 54

%s, 54

%t, 54, 340
%v, 54, 341

&
&, 82
&&, 83

*

* 82
* any change, 155
)

E

, continue, 294

. connect by name, 26
. hierarchical names, 25
. run, 294

/

/, 82
¥, 12
i, 12

?

?
in testbench, 249
in case statement, 113
in udp table, 153

7., 85, 188

Index

@

@, 101, 107
memory address, 253
with ->, 137

A

A

, 82

N

“defaultnettype, 64

“define, 13, 270

“else, 269

“endif, 269

‘ifdef, 269

‘include, 264

“timescale, 55, 67, 264, 339

+ addition, 82
++, 117
+define, 270
+incdir, 265

<
<<, 82
<<, 82
<=

less than or equal to, 87

non blocking assignment, 77
non blocking when to use, 231

synthesis, 231

when to use non blocking, 231

345

synthesis, 231
==, 87

synthesis, 87
===,87

>
->, 107, 137, 267
>=, 87

>>, 82

>>>, 82

0
0
value, 15

1
1
value, 15

2
2001 standard, 66, 69, 82, 94, 102,
166, 266

A

abstraction
levels, 4
active low signals, 10
adder, 191
schematic, 28
simulation, 28
address in file, 253
alarm, 200
always, 34, 46, 107
combinatorial for synthesis, 190
explained, 104
sensitivity list, 102
sequential, 193
synthesis, 193
synthesizable combinatorial logic,
102
zero delay, 149

346

and
bitwise, 82
built in gate, 20
built in primitve, 326
logical, 83
reduction, 85
ANSI ports, 266
arithmetic operators, 82
arrays
of regs, 65
two-dimensional, 205
ascending range, 63
assign, 107, 140
improper use, 275
assignment
blocking vs non blocking, 231
conditional, 85, 98
continuous, 97
nonblocking, 77
procedural, 73
quasi-continuous. See procedural
continuous assignment
with delays, 75
assignments
procedural continuous, 139
procedural for combinatorial
logic, 231
procedural for sequential logic,
231
asynchronous, 199
asynchronous circuits, 198
automatic functions, 135
automatic tasks, 129

B
base, 12
default, 13
default for printing, 53
printing, 48
begin -end, 46, 107
begin-end, 36
disabling, 146
named, 146
nesting, 41

Verilog Quickstart

with delay, 37
behavioral model pay off, 218
bi-directional switches, 333
binary, 13
binary operators, 82
BIST, 255
bit range, 63
bit selection, 65
bit width
of declarations, 63
of expressions, 83
of logical expressions, 83
of reduction expressions, 83
of unary expressions, 83
bit width of expressions, 94
blocking assignment, 231
Booth multiplier, 207
breakpoint, 286
buf, 329
built in gate, 20
buffer
three-state, 86, 98
bufif0, 330
built in gate, 20
bufifl, 330
built in gate, 20
building block, 14
built in primitive instance, 338
bus, 63

C
case, 111,113
case equality. See literal equivalence
case sensitive names, 9
casex, 111, 113
casez, 112, 113
cleartrace, 309
clock, 194
clock-to-q delay, 232
cmos, 336
built in primitive, 20
combinatorial, 98, 102, 323
if, 110
udp, 152

Index

combinatorial logic, 78, 188

functions, 192
combinatorial logic synthesis, 187
command history, 294
command line option

-f, 263

-1, 298

-k, 301

-1, 309

-s, 286
comments, 12

nesting, 12
comp.cad.cadence, 8
comp.cad.synthesis, 8
comp.lang.verilog, 7
compiler directive

‘defaultnettype, 64

“define, 13

\timescale, 67
complement operators, 83
concatenations, 89
concurrent, 5
conditional assignment, 98
condtional assignment, 85
connect by name, 26
connect by order, 26
connecting, 19
continuous assignement

in net declaration, 100

synthesis, 188
continuous assignment, 97, 188

and function, 133
continuous assignment buffer, 98
continuous simulation, 4
control-c, 293
counter, 112, 323

D
deassign, 140
debug, 234
decimal, 13
declaration
array of reg, 65
bit index, 63

347

bus, 63
event, 68
implicit net, 64
integer, 66
memory, 65
net, 63
net with continuous assignement,
100
parameter, 68
range, 63
real, 66
realtime, 67
reg, 65
time, 67
vector, 63
declarations
missing width, 273
declartion
port, 64
declatation
string, 69
decompile, 306
default
and code coverage, 322
default net type, 64
defaultvalue
parameter override, 165
define, 13, 270
defparam, 165
delay, 36
in primitive instance, 338
max, 339
min, 339
proper use for synthesis, 232
random, 264
turn off, 338
typical, 339
units, 339
descending range, 63
design unit, 14
dff, 101
disable, 146
display, 234
for debug, 283
suppressing spaces, 56

348 Verilog Quickstart

documentation, 3 fgets, 53
dump file, 285 FIFO, 319
dump task file
for memory, 164 closing, 51
dumpfile, 285 include, 264
dumpvars, 285 numbers, 52
opening, 51
E printing to, 51
edge sensative reading, 253
udp, 154 test vector, 259
edge sensitive writing, 258
always, 101 files
else, 110, 269 multiple, 52
endcase, 111 finish, 59, 149
endfunction, 132 finishing simulation, 149
endif, 269 flip-flop, 101
endmodule, 14 modified for speed, 221
endprimitive, 153 synthesizable, 143
endtable, 153 with reset, 140
endtask, 125 fmonitor, 51
equal, 86 fopen, 51, 53
equivalence, 87 for, 117
escaped identifiers, 10 for loop, 117
event, 101, 137, 267 force, 308
example, 5 forever, 114
using, 137 forever loop, 114
event list, 102 fork - join, 39, 46, 107
event-driven simulation, 4 disabling, 146
events, 68 named, 146
example, 5 nesting, 41
expression format
bit width of, 94 time, 55
truncation, 94 fread, 53
frequently asked questions, §
F fs, 339
-f, 263 fscanf, 53
fall time, 338 fseek, 53
fanin, 307 fsscanf, 53
fault simulation, 235 fstrobe, 258
fclose, 51 ftel, 53
fdisplay, 51, 258 full_case, 279
ferror, 53 function, 132
fflush, 53 and continuous assignment, 133
fgetc, 53 automatic, 135

synthesis, 192

Index

with continuous assignment, 192
Functional Testing, 235
fwrite, 51

G

gate
instance, 22
gate instance, 338
with strength, 341
gate level modeling, 22
gates, 19, 20
Gateway Design Automation, 2
Gray code, 179, 180

H

hexadecimal, 13
hierarchical names, 25
hierarchy, 22

traversing interactively, 303
high impedance

continuous assignment buffer, 98
Highest level modules, 27
history, 294

/
-1, 298
Identifiers, 9
escaped, 10
IEEE standard, 8
IEEE1364-2001, 21, 66, 69, 82, 94,
102, 129, 135, 166, 266
if, 109, 114, 316
ifdef, 269
illegal left hand side assignment, 272
illegal part select, 274
implicit net declaration, 64
implicit state machine, 182
incdir, 265
include, 264
incpattern, 262
inferred latches, 277
inferred registers, 277
initial, 34, 46, 107
in UDP, 156

349

inout, 21
in testbench, 249
test bench, 250
inout port
and task, 127
modeling with, 144
input, 21, 300
input port
and task, 127
instance, 22
built in primitive, 338
gate, 22
of module, 24
primitive, 22
user defined primitive, 157
integer, 66
interactive simulation prompt, 287
internet
newsgroups, 7
interrupt, 286
invert operators, 83
inverter, 329

K
-k, 301
key, 301
keys in interactive simulation, 289
keystroke file, 298
replaying, 298

L
la, 341
language

loosely typed, 5

strongly typed, 5
large, 15
large capacitor, 341
latches

inferred, 277
length

for identifiers, 9
level sensitive, 104
lexical conventions, 9
LFSR, 255

350 Verilog Quickstart

list, 306 multiplier
literal equivalence, 87 Booth, 207
log file, 51, 284 Wallace, 209
logic mux
combinatorial, 78 2-bit, 22
sequential, 78 2-to-1, 188
logical expression, 91 4-bit, 23
logical operators, 82 4-to-1, 188
loop Schematic, 22
always, 35, 114 structural explained, 14
for, 117 synthesizable, 190
forever, 114 with always, 102
repeat, 115 with continuous assignment, 101
while, 116 with PCA, 142
zero delay, 275
loosely typed language, 5 N
low active n, 54
signals, 10 named
begin-end, 146
M fork-join, 146
macro text, 13 Named Blocks, 146
max delay, 339 names
me, 341 hierarchical, 25
Mealy, 169 legal charaters, 9
medium, 15 length, 9
medium capacitor, 341 rules for, 9
memory nand
dump task, 164 built in gate, 20
reg declaration, 65 built in primitive, 326
memory address nanoseconds, 55
specifying in file, 253 negated
min delay, 339 signals, 10
MISR, 255 Negation, 83
modeling Negative setup time, 278
structural, 19 negedge, 101, 107
modeling style, 220 nested
module, 14 if, 110
module instance, 24 nesting
monitor, 50, 234 begin-end, 41
monitoroff, 50 comments, 12
monitoron, 50 fork-join, 41
Moore, 169 net, 61
ms, 339 declaration, 63

mult-bit wire, 63 default type, 62, 64

Index

implicit, 64

range, 63

types, 61
net declaration

with continuous assignement, 100
netlist, 19, 24
nmos, 334

built in primitive, 20
nokey, 301
non blocking assignment, 231
nor

built in gate, 20

built in primitive, 327
not, 329

built in gate, 20
not equal, 86
notif0, 331

built in gate, 20
notif1, 332

built in gate, 20
now, 55
ns, 55, 339
number

unknown, 16
number format, 12
numbers, 12, 17

default radix, 13

(0]
octal, 13
one hot, 181
one-shot, 198
operations
signed, 94
operators
|, 83
=, 87
==, 87
%, 82
&, 82
&&, 83
*, 82
k)
/, 82

arithmetic, 82
binary, 82
bit-wise, 82
bitwise, 91
concatenation, §9
equality, 86
logical, 82, 91
precedence, 91
reals, 92
reduction, 83
repeat, 90
strings, 93
ternary, 85
testing, 89
unary, 83
or
bitwise, 82
built in gate, 20
built in primitve, 327
for events, 102
logical, 83
reduction, 85
oscillation
zero delay in simulation, 231
oscillator, 115
output, 21
output port
and task, 127

351

352

P
PAL, 2
PALASM, 2
parallel_case, 279
parameter, 68, 161
default value, 68
overriding default value, 165
range, 161
part selection, 65
pass gate, 333
PCA, 139
phone, 5
pmos, 335
built in primitive, 20
polynomial, 255
port, 20, 64
ports, 21
and registers, 70, 71, 144
and tasks, 125
ANSI, 266
mismatch, 271
module, 21
primitive, 20
posedge, 101, 107
precedence of operators, 91
primitive, 153
instance, 22
primitive instance, 338
with strength, 341
primitives, 19
print on change, 50
printing
log file, 51
signed values, 95
printing results, 48
procedural assignment, 73
procedural continuous assignment,
139, 274
programmable array logic, 2
progressive refinement, 217
prompt, 287
ps, 339
pu, 341
pull, 15, 341

Verilog Quickstart

pull0, 341

pulll, 341

pulldown, 332
built in primitive, 20
net with, 61

pullup, 333
built in primitive, 20
net with, 61

Q

qualified expression, 85
quasi-continuous assignment. See
procedural continuous assignment
questions
frequently asked, 8
quitting simulation, 149, 286

R
-1, 309
race conditions, 231
eliminating, 232
radix, 12
default, 13
default for printing, 53
printing, 48
Radix Specifiers, 13
RAM
test bench, 250
ram model, 164
random, 264
example, 5
range, 63
reversed, 274
rcmos, 336
built in primitive, 20
readmemb, 251
readmemh, 251
real, 66
operators with, 92
realtime, 55, 340
reduction of strength, 342
reg, 65
and port declarations, 70
initial value, 66

Index

parameterized declaration, 162
registers

inferred, 277
Regression Testing, 235
release, 308
repeat, 115, 191
repeat loop, 115

synthesis, 191
repeat operator, 90
response driven stimulus, 247
restart, 309
results

log file, 51

print on change, 50
rewind, 53
rise time, 338
rnmos, 334

built in primitive, 20
rpmos, 335

built in primitive, 20
rtran, 337

built in primitive, 20
rtranif0, 337
rtranifl, 338

built in primitive, 20

S
-s, 286
s, 339
save, 309
schematic, 19
schematics, 19
scope, 303
Self-Checking Test Benches, 241
semicolon, 14, 288
sensitivity list, 102
sequential, 5

if, 110

udp, 154
sequential logic, 78, 193
settrace, 309
sformat, 53
shift operators, 82
shm, 285

shmopen, 285
shmprobe, 285
showscopes, 303
showvars, 307
sign extension, 17
signaling an event ->, 137
signed operations, 94
signed constant, 95
signed values
printing, 95
simulation, 3
simulation performance, 219
Simulation types
continuous, 4
discrete, 4
single step, 289
Sizing Expressions, 94
sm, 341
small, 15
small capacitor, 341
space
suppressing, 56
SPICE, 4
st, 341
start here at time 0, 34
state, 15
state machines
and synthesis, 178
best style, 178
choosing a style, 185
default state, 181
encoding, 179
explicit, 173
implicit, 182
Mealy, 169
Moore, 169
stimulus
response driven, 247
stop, 286
storage node, 61
strength, 15, 340
inprimitiveinstance, 341
reduction, 334
strength reduction, 342
string

353

354

printing, 48
strings, 69, 93
operators with, 93
strobe, 50
strobe_compare, 262
strong, 15, 341
strong0, 341
strongl, 341
Structural modeling, 19, 24
style
code coverage, 322
su, 341
supply, 15, 341
supply0, 61, 341
supplyl, 61, 341
switches, 19, 333
swrite, 53
syntax error, 275
syntax errors, 46, 106
synthesis, 3, 221
<=, 231
=, 231
asynchronous, 199
combinatorial always, 190
combinatorial logic, 187
continuous assignement, 188
delays, 232
equality, 87
flowchart for checking, 223
functions, 192
repeat loop, 191
state machines, 178
synthesizable, 222
synthesizable flip-flop, 143
system tasks, 47
system test, 236

T
table, 153
task, 125

and sequential models, 196

automatic, 129

in test bench, 245
terminal, 21

Verilog Quickstart

ternary operator, 85, 188
test

functional, 235
test coverage, 237
test cycle, 240
test plan, 236, 316
test sequence

for sequential models, 241
test vector

capture, 261
test vectors, 259
text macro, 13
then, 109
three-state buffer, 86, 98, 330
three-state inverter, 331, 332
time, 55, 67, 340

format, 55
timeformat, 55
timescale, 55, 67, 264, 339
timing

procedural, 46
top level module, 27
tracing, 39, 309
tran, 337

built in primitive, 20
tranif0, 337

built in primitive, 20
tranifl, 338

built in primitive, 20
traversing hierarchy, 303
tri, 61
tri0, 61
tril, 61
triand, 61
trior, 61
trireg, 61
truncation, 94
truth table, 151
typical delay, 339

U

UDP, 151
combinatorial, 152
instances, 157

Index

sequential, 154
symbols, 158
When to use, 230
with initial, 156
ungetc, 53
unit delay, 232
unit test, 236
unknown in simulation, 276
unknown value, 16
unknowns
detecting, 106
us, 339
Usenet, 7, 8
user defined primitive, 151

v

value set, 15
values, 15
VCD
file, 285
format, 285
vector, 63
range, 63
width, 63

w
wait, 104, 107
wait for event, 101
Wallace multiplier, 209
wave
file, 285
wave display, 284
wave file, 284
wave form, 232
we, 341
weak, 15, 341
weak0, 341
weakl, 341
when, 46, 106
while, 116
while loop, 116
white-space, 11
and qoutes, 11
wire, 61

355

default type, 62

implicit declaration, 64

mult-bit, 63
wire declaration

with continuous assignement, 100
wires, 61

X
X
in debug, 246
value, 15
X in simulation, 276
XL algorithm, 2
xnor
built in gate, 20
built in primitive, 328
xor
bitwise, 82
built in gate, 20
built in primitive, 328
reduction, 85

V4

z
value, 15

Z-Detector, 206

zero delay, 232

zero delay loop, 275

zero delay oscillation, 231

zero delay races, 278

zero time, 278

	Verilog Quickstart: Practical Guide to Simulation & Synthesis in Verilog (3rd Ed.)
	Copyright
	Contents
	List of Figures
	List of Examples
	List of Tables

	Ch1 Introduction
	Framing Verilog Concepts
	Design Abstraction Hierarchy
	Types of Simulation
	Types of Languages
	Simulation vs Programming
	HDL Learning Paradigms

	Where to Get More Information
	Reference Manuals
	Usenet

	Ch2 Introduction to Verilog Language
	Identifiers
	Escaped Identifiers

	White Space
	Comments
	Numbers
	Text Macros
	Modules
	Semicolons
	Value Set
	Strengths
	Numbers, Values, and Unknowns

	Ch3 Structural Modeling
	Primitives
	Ports
	Ports in Primitives
	Ports in Modules

	Instances
	Hierarchy
	Hierarchical Names
	Connect by Name
	Top-Level Modules
	You are Now Ready to Run Your First Simulations

	Exercise 1 The Hello Simulation
	Exercise 2 The 8-Bit Hierarchical Adder

	Ch4 Starting Procedural Modeling
	Starting Places for Blocks of Procedural Code
	The initial Keyword
	The always Keyword
	Delays
	begin-end Blocks
	fork-join Blocks
	Summary of Procedural Timing

	Ch5 System Tasks for Displaying Results
	What is a System Task?
	$display and its Relatives
	Other Commands to Print Results
	Writing to Files
	Advanced File IO Functions
	Setting the Default Radix
	Special Characters
	The Current Simulation Time
	Suppressing Spaces in Your Output
	Periodic Printouts
	When to printout results

	A Final System Task
	Exercise 3 Printing Out Results from Wires Buried in the Hierarchy

	Ch6 Data Objects
	Data Objects in Verilog
	Nets
	Ranges
	Implicit Nets

	Ports
	Regs
	Memories

	Initial Value of Regs
	Integers and Reals
	Time and Realtime
	Parameters
	Events
	Multi-Dimensional Arrays
	Accessing Words and Bits of Multi-Dimensional Arrays

	Ports & Regs

	Ch7 Procedural Assignments
	Procedural Assignments, Ports & Regs
	Best Practices with Procedural Assignments
	Procedural Assignment for Combinatorial Logic
	Procedural Assignment for Sequential Logic
	Philosophy of Intra-assignment Delays for Sequential Assignments
	Conventions Moving Forward

	Ch8 Operators
	Binary Operators
	Unary Operators
	Reduction Operators
	Ternary Operator
	Equality Operators
	Concatenations
	Logical vs Bit-Wise Operators
	Operating that are Not Legal on Reals
	Working with Strings
	Combining Operators
	Sizing Expressions
	Signed Operations
	Signed Constants

	Ch9 Creating Combinatorial & Sequential Logic
	Continuous Assignment
	Event Control
	The always Block for Combinatorial Logic
	Event Control Explained
	Summary of Procedural Timing

	Ch10 Procedural Flow Control
	The if Statement
	The case Statement
	Loops
	The forever Loop
	The repeat Loop
	The while Loop
	The for Loop

	Exercise 4 Using Expressions and case

	Ch11 Tasks & Functions
	Tasks
	Automatic Tasks
	Common Uses for Tasks

	Functions
	Functions and Integers
	Automatic Functions

	Exercise 5 Functions and Continuous Assignments

	Ch12 Advanced Procedural Modeling
	Using the Event Data Type
	Procedural Continuous Assignments
	A Reminder about Ports & Regs
	Modeling with inout Ports
	Named Blocks
	The disable Statement
	When is a Simulation Done?

	Ch13 User-Defined Primitives
	Combinatorial UDPs
	Optimistic Mux
	Pessimistic Mux
	The Gritty Details

	Sequential UDPs
	UDP Instances
	The Final Details
	Exercise 6 Using UDPs

	Ch14 Parameterized Modules
	N-Bit Mux
	N-Bit Adder
	N by M Mux
	N by M RAM
	Using Parameterized Modules
	Parameter Passing by Name
	Parameter Passing by Order
	Parameter Passing by Named List
	Values of parameters in module instances

	Ch15 State Machines
	State Machine Types
	State Machine Modeling Style
	State Encoding Methods
	Default Conditions
	Implicit State Machines
	Registered & Unregistered Outputs
	Factors in Choosing a State Machine Modeling Style

	Ch16 Modeling Tips
	Modeling Combinatorial Logic
	Combinatorial Models Using Continuous Assignments
	Combinatorial Models Using the always Block and regs
	Combinatorial Models Using Functions

	Modeling Sequential Logic
	Sequential Models Using always
	Sequential Models Using initial
	Sequential Models Using Tasks

	Modeling Asynchronous Circuits
	Modeling a One-Shot
	Modeling Asynchronous Systems

	Special-Purpose Models
	Two-Dimensional Arrays
	Z-Detectors

	Multiplier Examples
	A Proven, Successful Approach to Modeling

	Ch17 Modeling Style Trade-Offs
	Forces that Influence Modeling Style
	Evolution of a Model
	Modeling Style and Synthesis
	Is It Synthesizable?

	Learning from Other People's Mistakes
	When to Uses UDPs
	Blocking and Non-Blocking Assignments

	Ch18 Test Benches & Test Management
	Introduction to Testing
	Model Size vs Test Volume

	Types of Tests
	Functional Testing
	Regression Testing
	Sign-Off
	System Test vs Unit Tests

	Creating Test Plans
	The Basic Test Cycle
	Hardware Setup and Hold, and Response Time
	The Test Cycle for Combinatorial Models
	The Test Cycle for Sequential Models

	Self-Checking Test Benches
	Response-Driven Stimulus
	Test Benches for inouts
	Loading Files into Verilog Memories
	Test Benches with No Test Vectors
	Using a Script to Run Test Cases
	Modeling BIST
	The Surrounding and Capture Method

	Ch19 Model Organization
	File Organization
	Declaration Organization
	ANSI Style ports

	Testcase Organization
	Including Test Cases
	Conditionally Running Rests

	Model Reuse
	Summary of Model Organization Compile Directives
	Pre-defined Text Macros

	Ch20 Common Errors
	Mismatched Ports
	Missing or Incorrect Declarations
	Missing Regs
	Missing Widths
	Reversed Ranges

	Improper Use of Procedural Continuous Assignments
	Missing initial or always Blocks
	Zero-Delay always Loops
	initial Instead of always
	Missing Initialization
	Overly Complex Code
	Unintended Storage
	Timing Errors
	Negative Setup Time
	Zero-Delay Races

	Tool Specific Pragmas

	Ch21 Debugging Design
	Overview of Functional Debugging
	Where are the Errors?

	Universal Techniques
	Printing Out Messages
	"I am here."
	Values

	The Log File

	Using Waveforms
	Interactive Debugging
	Going Interactive
	The Prompts
	Special Keys in Interactive Mode
	Command History
	The Key File
	Traversing and Observing
	Back-Tracing Fan-In
	Using force and release
	Waveforms, Graphical User Interfaces, and Other Conveniences

	Catching Probelms Later in a Simulation
	Isolating Differences in Models
	Summary of Debugging

	Ch22 Code Coverage
	Code Coverage and Test Plans
	Code Coverage and FIFOs
	Code Coverage and State Machines
	Code Coverage and Modeling Style

	AppA Gate Level Details
	Primitive Descriptions
	Logic Gates
	AND
	NAND
	OR
	NOR
	XOR
	XNOR

	Buffers
	BUF
	NOT
	BUFIF0
	BUFIF1
	NOTIF0
	NOTIF1
	PULLDOWN
	PULLUP

	Switches
	NMOS and RNMOS
	PMOS and RPMOS
	CMOS and RCMOS
	TRAN and RTRAN
	TRANIF0 and RTRANIF0
	TRAN1F1 and RTRANIF1

	Instance Details
	Delays
	Delay Units
	Printing Out Time and the Timescale
	Strengths
	Displaying Strengths with %v
	Strength Reduction of Switch Primitives

	Index

