
PLS

Verilog

Verilog

Verilog

Table of Contents
Verilog

1. Introduction___ 1
2. How to declare a circuit in Verilog ___ 2

2.1. General declaration__ 2
2.1.1. Module declaration __ 2
2.1.2. Accepted Verilog types ___ 2

2.2. Hierarchical description __ 2
3.Data flow Verilog descriptions___ 4

3.1. How to describe boolean equations ___ 4
3.1.1. Constants __ 4
3.1.2. Truth Table __ 4
3.1.3. Don't care__ 5
3.1.4. How the logic is synthesized ___ 6

3.2. How to describe multilevel logic ___ 6
3.2.1. Gate netlist___ 6
3.2.2. Netlist using arithmetic operators ___ 7
3.2.3. Optimizations___ 8

3.2.3.1. Resource folding and minimization of the number of multiplexers ____________________ 8
3.2.3.2. Recognition of common sub-expressions __ 8
3.2.3.3. Synthesis of well-balanced trees ___ 9
3.2.3.4. Expression simplification ___ 10

3.3. How to include memory elements using PLS prestored library _____________________________ 11
4. Behavioral Verilog descriptions __ 13

4.1. Combinational circuits descriptions using always blocks functions and tasks __________________ 13
4.1.1. Combinational always blocks ___ 13
4.1.2. Truth tables ___ 14
4.1.3. Netlist declaration __ 16
4.1.4. Repetitive or bit slice structure __ 18

4.2. Sequential circuits descriptions using always blocks _____________________________________ 19
4.2.1 Description styles ___ 19
4.2.2. Examples: register and counter descriptions __ 20

4.3. Hierarchy handling through functions and tasks___ 21
5. General examples using all the Verilog styles__ 23

5.1. Example 1: timer/counter (prepbenchmark 2) __ 23
5.2. Example 2: memory map (prepbenchmark 9)___ 27

6. Finite State Machine Synthesis ___ 31
6.1. Verilog template ___ 31

6.1.1. State register and next state equations ___ 31
6.1.2. Latched and non latched outputs ___ 31
6.1.3. Latched inputs ___ 31

6.2. State assignments __ 35
6.2.1. State assignment optimizations __ 35
6.2.2. User controlled state assignment ___ 35

6.3. Symbolic FSM identification ___ 35
6.4. Handling FSMs within your design __ 36

6.4.1. Pre-processing or separate FSM handling __ 36
6.4.2. Embedded FSMs ___ 37

7. Communicating Finite State Machines Synthesis ___ 38
7.1. Introduction __ 38
7.2. Communicating FSMs __ 38

7.2.1. Concurrent communicating FSMs __ 38
7.2.2. Hierarchical or master-slave communicating FSMs___________________________________ 40

Verilog

Verilog

7.3. Always blocks based description __ 42
7.3.1. Modeling ___ 42
7.3.2. Synthesis ___ 43

7.4. Structural composition of FSMs___ 44
7.4.1. Modeling ___ 44
7.4.2. Synthesis ___ 46

8. Verilog Subset for synthesis ___ 47
8.1. Limited Verilog Language Constructs __ 47

8.1.1. always statement ___ 47
8.1.2. for statement __ 47
8.1.3. repeat statement__ 47

8.2. Ignored Verilog Language Constructs __ 47
8.2.1. Ignored Statements ___ 47
8.2.2. Ignored Miscellanous Constructs___ 47

8.3. Unsupported Verilog Language Constructs __ 48
8.3.1. Unsupported Definitions and Declarations ___ 48
8.3.2. Unsupported Statements ___ 48
8.3.3. Unsupported Operators __ 48
8.3.4. Unsupported Gate-Level constructs___ 48

Verilog

Verilog

Verilog

Verilog - 1

Verilog

1. Introduction

Complex circuit or board are commonly designed using a top down methodology.
Different specification are required at each level of the design process. At an
architectural level, a specification corresponds to a block diagram. A block
corresponds to a register transfer block (register, adder, counter, multiplexer, glue
logic, finite state machine,…). The connections are N-bit wires. The PLS Verilog
provides an efficient way to describe both the circuit globally and each block
according to the most efficient "style". The synthesis is then performed with the best
synthesis flow for each block. It is obvious that different synthesis methods will be
used for arithmetic blocks, glue logic, finite state machines, …. The quality of the
synthesis result will depend on the optimization afforded for each block.

The description of the PLS Verilog is design-oriented; the user learns first how to
declare a circuit and how to connect blocks. Structural Verilog allowing a
hierarchical description is introduced in the first part.

The second part focuses first on combinational blocks given by equations or netlist
connecting gates or arithmetic blocks. The corresponding Verilog style is called
"data-flow style".

The third part addresses the more complicated Verilog behavioral style which is
mainly based on the notion of always block. Even if an always block can also be
used to describe combinational blocks its main goal is to declare sequential blocks
sensitive to clock events or levels; of course registers and counters are the first
examples illustrating this style. A powerful hierarchy handling will be afforded
through function and task calls. Indication about PLS optimization is given to the
user so that he understands better the obtained results.

Finally, the description styles and the synthesis of a FSM is presented in the fourth
part.

This manual assumes that the reader is familiar with the basic notions of Verilog.
This manual is aimed at indicating how to use Verilog for synthesis purpose.

Verilog

Verilog - 2

2. How to declare a circuit in Verilog

2.1. General declaration

2.1.1. Module declaration

A circuit description is declared using a module which contains two parts: the I/O
ports and the body. The I/O ports of the circuits are declared. Each port has a name,
a mode (input, output or inout) and a type (See ports A,B,C,D,E in the figure 1). In
the module body, internal signals may be declared. Each internal signal has a name
and a type (See signal T in the figure 1). In figure 1, all bold words are key words of
the Verilog language and are mandatory in the description.

module EXAMPLE (A, B, C, D, E);
input A, B, C;
output D, E;
wire T ;
...

endmodule

Figure 1: module example

2.1.2. Accepted Verilog types

The accepted types in Verilog are:

- the bit types (‘0’, ‘1’, ‘X’, ‘Z’) wire, wand, wor, tri, reg.

- the bit vector type.

- the integer type.

- the memory type (array of registers or integers).

- the supply types supply0 and supply1.

2.2. Hierarchical description

Structural descriptions assemble several blocks and allow to introduce hierarchy in a
design. The basic concepts of hardware structure are the component, the port and
the net. The component is the building or basic block. A port is a component I/O
connector. A net corresponds to a wire between components

In Verilog, a component is represented by a module instantiation. The connections
between components are specified within module instantiation statements. Such a
statement specifies an instance of a component occurring inside of another module
of the circuit. Each module instantiation statement must be given a name. Beside the
name, a module instantiation statement contains an association list that specifies
which actual nets or ports are associated with which local ports of the module
declaration.

Verilog

Verilog - 3

The example in figure 2 gives the structural description of a half adder composed of
4 NAND2 gates. The synthesized top level netlist is shown in figure 3.

module NAND2 (A, B, Y);
input A, B;
output Y;

assign Y = ~(A & B);
endmodule

module HALFADDER (X, Y, C, S);
input X, Y;
output C, S;
wire S1, S2, S3;

NAND2 NANDA (X, Y, S3);
NAND2 NANDB (X, S3, S1);
NAND2 NANDC (S3, Y, S2);
NAND2 NANDD (S1, S2, S);
assign C = S3;

endmodule

Figure 2: Structural description of a half adder

A

B
Y NANDB

A

B
Y NANDC

A

B
Y NANDA

A

B
Y NANDD

X

Y

S

C

S1

S2

S3

Figure 3: Synthesized top level netlist

Verilog

Verilog - 4

3.Data flow Verilog descriptions

3.1. How to describe boolean equations

3.1.1. Constants

Constant values may be assigned to signals. In the example of figure 4, the output
ports ZERO, ONE and TWO have 2 bits width and are assigned respectively to the
constant binary values : 2'b00, 2'b01 and 2'b10. (ZERO[0]=0, ZERO[1]=0,
ONE[0]=1, ONE[1]=0, TWO[0]=0, TWO[1]=1).

module EXAMPLE (ZERO, ONE, TWO);
output ZERO, ONE, TWO;
wire [1:0] ZERO, ONE, TWO;

assign ZERO = 2’b00;
assign ONE = 2’b01;
assign TWO = 2’b10;

endmodule

Figure 4: Constants example

3.1.2. Truth Table

This section describes how to declare boolean equations in various formats. The
standard way to declare a boolean function is to declare its truth table. Consider for
instance the example of figure 5. Instead of declaring globally a truth table, the
output value may be given in a compact way declaring the 0 or 1 values or by
successive decodings of the input variables.

Figure 5: Truth table

A B S

0 0 1

0 1 1

1 0 0

1 1 1

Verilog

Verilog - 5

The figures 6 and 7 give two equivalent descriptions of the truth table of figure 5.

module EXAMPLE (A, B, S);
input A, B;
output S;

assign S = ((A == 1’b1) && (B == 1'b0)) ? 1’b0 : 1’b1;
endmodule

Figure 6: Truth table example

module EXAMPLE (A, B, S);
input A, B;
output S;

assign S = !((A == 1’b1) && (B == 1'b0));
endmodule

Figure 7: Truth table example

3.1.3. Don't care

The declaration of don't care values is allowed. This means that these values have
no importance for the circuit. They will be assigned later on for logic minimization
purpose.

Figures 9 and 10 describe the truth table of figure 8. In figure 9, the output value is
given by successive decodings of the input variables. In figure 10, the operator "{}"
is the concatenation operator. For example, in figure 8, S=0 if (A,B,C)=1,0,0 or
1,0,1.

Figure 8: Truth table with don't care

module EXAMPLE (A, B, C, S);
input A, B, C;
output S;

assign S = (A == 1'b0) ? 1'b1 : ((B == 1'b0) ? 1'b0 : 1'bx);
endmodule

Figure 9: Truth table example with don't care

A B C S

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 -

1 1 1 -

Verilog

Verilog - 6

module EXAMPLE (A, B, C, S);
input A, B, C;
output S;
wire [2:0] S1;

assign S1 = {A, B, C};
assign S = ((S1 == 3'b000) || (S1 == 3'b001) ||

 (S1 == 3'b010) || (S1 == 3'b011))
? 1'b1
: (((S1 == 3'b100) || (S1 == 3'b101))

? 1'b0
: 1'bx);

endmodule

Figure 10: Truth table example with don't care

3.1.4. How the logic is synthesized

The logic is synthesized by using the basic capabilities of PLS. This means that the
boolean expressions are first minimized. Then these expressions are transformed
according to the targets (binary decision diagrams for Actel, special ordered tree for
Xilinx, various factorized forms for standard cells, etc...). The optimization criteria
directly refer to PLS mappers and synthesis techniques. They are chosen according
to the user requirements specified in the Verilog command (see later on).

3.2. How to describe multilevel logic

3.2.1. Gate netlist

Connection of gates are declared by using Verilog logical operators which are: ~, &,
|, ^, ^~, ~^. This is illustrated in the example of figure 11.

module EXAMPLE (A, B, C, S);
input A, B, C;
output S;

assign S = (A & B) | (~C);
endmodule

Figure 11: Gate netlist description

A

B

C

S

Figure 12: Possible synthesized netlist

Verilog

Verilog - 7

3.2.2. Netlist using arithmetic operators

Arithmetic operators can be used instead of gates. These operators are the Verilog
arithmetic operators: + (addition), - (substraction), * (multiplication), << (left shift),
>> (right shift), as well as the Verilog relational operators : == (equality), !=
(inequality), <, <=, > and >= (ordering).

The number of bits of the operators is given by the width of the operands. In the
example of figure 13, the two adders and the substractor operators have 8 bits. The
synthesized netlist from the previous description is given in figure 14.

Each operator can be instantiated in different manners according to the optimization
criteria (speed, area, trade-off) specified in the synthesis command. This means that
boolean equations are stored for:

-4 types of adders (Carry Skip Adder, Carry Look Ahead Adder, Conditional
Sum Adder, Sequential Adder),

-4 types of substractors based on the previous types of adders,

-comparators (=, /=, >, >=, <, <=) based on the previous types of substractors,

-1 multiplier (Braun multiplier).

These equations are carefully synthesized. If one of the operands is a constant, the
iterative structure is left for a basic gate optimization.

module EXAMPLE (A, B, C, D, S);
input [7:0] A, B, C, D;
output [7:0] S;

assign S = (A + B) - (C + D);
endmodule

Figure 13: Example using arithmetic operators

A

B

C

D

S

+

+

-
8

8

8

8

8

8

8

Figure 14: Synthesized netlist

Verilog

Verilog - 8

3.2.3. Optimizations

3.2.3.1. Resource folding and minimization of the number of multiplexers

The optimizer first shares the operators and then reduces the number of required
multiplexers by permuting the operands of the commutative operators. The example
given in figure 15 illustrates the resource folding and the minimization of the
number of multiplexers. The resulting netlist corresponding to the example
described in figure 15 is shown in the figure 16. It contains 1 adder and 1
multiplexer instead of 2 adders or 1 adder and 2 multiplexers which may have been
instantiated by direct reading.

module EXAMPLE (A, B, C, E, S);
input [7:0] A, B, C;
input E;
output [7:0] S;

assign S = E ? A + B : C + A;
endmodule

Figure 15: Example of resource folding

S +
8

8

8

8

8

C

B

A

E

Figure 16: Synthesized netlist

3.2.3.2. Recognition of common sub-expressions

The optimizer recognizes common sub-expressions. In the example of figure 17, the
optimizer recognizes the sub-expression "E * F". This sub-expression is only
instantiated once and the design is synthesized using only 1 multiplier as shown in
figure 18. For the sub-expressions "A * C" and "C * D", the optimizer shares the
multiplier and instantiates one multiplexer. The adder is also shared . The final
netlist is given in figure 18 and contains 1 adder, 2 multipliers and 1 multiplexer
instead of 2 adders and 4 multipliers for an unoptimized synthesis.

module EXAMPLE (A, B, C, D, E, F, S);
input [7:0] A, B, C, D, E, F;
output [15:0] S;

assign S = B ? C * D + E * F : E * F + A * C;
endmodule

Figure 17: Example of standard sub-expressions

Verilog

Verilog - 9

8

8

8

8

A

D

C

B

S

*

*

+

16

8

E

8

F

8

16

16

Figure 18: Synthesized netlist

3.2.3.3. Synthesis of well-balanced trees

The optimizer synthesizes well-balanced trees if an operator has a large number of
inputs. In the example of figure 19 when recognizing the sub-expression "A + B +
D + E", a multiplexer is instantiated allowing to add C or F to the sub-expression
according to the value of G. The final netlist given in figure 20 contains 4 adders
and 1 multiplexer. For the sub-expression "A + B + D + E" the optimizer creates a
well-balanced minimal depth tree of adders which is a tree of [log2 levels] as 2 input
adders only exist. In the synthesized netlist, data go through at most 3 adders
instead of 4 between the inputs and the output.

module EXAMPLE (A, B, C, D, E, F, G, S);
input [7:0] A, B, C, D, E, F;
input G;
output [7:0] S;

assign S = G ? E + B + D + A + F : A + B + C + D + E;
endmodule

Figure 19: Example of standard sub-expressions and well-balanced trees

Verilog

Verilog - 10

8

8

F

C

G

S

+

+

8

B

8

A

8

8

8

+

+

8

8

8

E

8

D

Figure 20: Synthesized netlist

3.2.3.4. Expression simplification
The optimizer is able to simplify expressions. In the example given in figure 21, it
replaces the expressions [A - 8'b0000_0010 * A + A] and [A- A] by 0, so it replaces
the output S by 0. In the synthesized netlist, all the bits of the output signal S are
connected to the ground and no adder, substracter or multiplier is instantiated.

module EXAMPLE (A, B, S);
input [7:0] A;
input B;
output [7:0] S;

assign S = B ? A - A : A - 8’b0000_0010 * A + A;
endmodule

Figure 21: Example of expressions which are simplified

Verilog

Verilog - 11

3.3. How to include memory elements using PLS prestored library

The instantiation of memory elements is made by prestored module instantiations.
PLS provides predefined modules corresponding to single bit flip-flops and latches
with or without asynchronous clear and preset inputs are described. The flip-flops
are positive edge triggered and the latches are high level sensitive (transparent when
the enable input is 1). These modules are located in the library "asyllib.v".

These modules are :

- DFF (DATA,CLOCK,Q) :
D flip-flop,

- DFFC (DATA,CLEAR,CLOCK,Q) :
D flip-flop with an active high asynchronous Clear,

- DFFP (DATA,PRESET,CLOCK,Q) :
D flip-flop with an active high asynchronous Preset,

- DFFPC (DATA,PRESET,CLEAR,CLOCK,Q) :
D flip-flop with active high asynchronous Clear and Preset,

- DLATCH (DATA,ENABLE,Q) :
D Latch,

- DLATCHC (DATA,CLEAR, ENABLE,Q) :
D Latch with an active high asynchronous Clear,

- DLATCHP (DATA,PRESET, ENABLE,Q) :
D Latch with an active high asynchronous Preset,

- DLATCHPC (DATA,PRESET, CLEAR, ENABLE,Q) :
D Latch with active high asynchronous Clear and Preset,

The full definition of these modules is available for in the file "asyllib.v". You must
include this file in your Verilog desccription if you want to use one of these
modules.

By default, all these memory elements are of size one but for vectored flip-flops and
latches, it is possible to override the size of the module when it is instantiated. An
example is given in figure 22. The synthesized netlist is shown in figure 23.

'include "asyllib.v"

module EXAMPLE (DI, CLK, DO) ;
input [7:0] DI ;
input CLK ;
output [7:0] DO ;

DFF #(8) DFF (DI, CLK, DO);
endmodule

Figure 22: Example of sequential netlist

Verilog

Verilog - 12

CLOCK

DATA Q

CLK

DI(0) DO(0)

DFF

CLOCK

DATA Q DI(1) DO(1)

DFF

CLOCK

DATA Q DI(7) DO(7)

DFF

Figure 23: Synthesized netlist

Verilog

Verilog - 13

4. Behavioral Verilog descriptions

The behavioral Verilog supported in this version includes combinational functions,
combinational and sequential tasks, and combinational and sequential always
blocks.

4.1. Combinational circuits descriptions using always blocks functions and
tasks

4.1.1. Combinational always blocks

A combinational always block assigns values to output boolean functions called
registers in a more sophisticated way than in the data flow style. The value
assignments are made in a sequential mode. The latest assignments may cancel
previous ones. An example is given in figure 24. First the register S is assigned to 0,
but later on for (A & B) == 1’b1 the value for S is changed in 1’b1.

module EXAMPLE (A, B, S);
input A;
input B;
output S;
reg S;

always @(A or B)
begin

S = 1’b0;
if (A & B)

S = 1’b1;
end

endmodule

Figure 24: Combinational always block

The example of figure 24 corresponds to the truth table of figure 25.

Figure 25: Truth table

At the end of the always block, the truth table of the outputs signals has to be
completed. Therefore an output value has to be defined for each input value. This
sequential mode declaration may simplify some descriptions. In the previous
example '0' is treated as a default value before specifying the value '1' for A & B ==
1’b1.

A combinational always block has a sensitivity list appearing within parenthesis
after the word "always @". A always block is activated if an event (value change or
edge) appears on one of the sensitivity list signals. This sensitivity list contains all
condition signals and any signal appearing in the left part of an assignment. In the

A B S

0 0 0

0 1 0

1 0 0

1 1 1

Verilog

Verilog - 14

example of figure 26, the sensitivity list contains three signals which are the A, B
and ADD_SUB signals. Figure 26 and figure 27 give two examples of
combinational always blocks.

module ADD_SUB (A, B, ADD_SUB, S);
input [3:0] A, B;
input ADD_SUB;
output [3:0] S;
reg [3:0] S;

always @(A or B or ADD_SUB)
if (ADD_SUB)

S = A + B;
else

S = A - B;
endmodule

Figure 26: Combinational always block

module EXAMPLE (A, B, S);
input A, B;
output S;
reg S, X, Y;

always @(A or B)
begin

X = A & B;
Y = B & A;
if (X == Y)

S = 1’b1;
end

endmodule

Figure 27: Combinational always block

Some examples described above by "Data flow Verilog descriptions", will be
described again by always blocks.

4.1.2. Truth tables

The truth table of figure 28 is recalled using the data flow style in figure 29 and for
comparison using the behavioral style in figure 30. The conditional assignment in
figure 29 is replaced by an if statement within a always block in figure 30.

8: Truth table

A B S

0 0 1

0 1 1

1 0 0

1 1 1

Verilog

Verilog - 15

module EXAMPLE (A, B, S);
input A, B;
output S;

assign S = ((A == 1’b1) && (B == 1’b0)) ? 1’b0 : 1’b1;
endmodule

Figure 29 : Data flow description of a truth table

module EXAMPLE (A, B, S);
input A, B;
output S;
reg S;

always @(A or B)
begin

if ((A == 1’b1) && (B == 1’b0))
S = 1’b0;

else
S = 1’b1;

end
endmodule

Figure 30: Behavioral description of a truth table

Similarly don't care values are supported in behavioral style. The truth table of
figure 31 is described using the data flow style in figure 32 and using the behavioral
style in figure 33. The selected assignment in figure 32 is replaced by a case
statement within a always block in figure 33.

Figure 31: Truth table with don't care

A B C S

0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 -

1 1 1 -

Verilog

Verilog - 16

module EXAMPLE (A, B, C, S);
input A, B, C;
output S;
wire [2:0] S1;

assign S1 = {A, B, C};
assign S= ((S1 == 3'b000) || (S1 == 3'b001) ||

 (S1 == 3'b010) || (S1 == 3'b011))
? 1'b1
: (((S1 == 3'b100) || (S1 == 3'b101))

? 1'b0
: 1'bx);

endmodule

Figure 32: Data flow description of a truth table with don't care

module EXAMPLE (A, B, C, S);
input A, B, C;
output S;
reg S;
reg [2:0] S1;

always @(A or B or C)
begin

S1 = {A, B, C};
case (S1)

3'b000,
3'b001,
3'b010,
3'b011: S = 1'b1;
3'b100,
3'b101: S = 1'b0;
default: S = 1'bx;

endcase
end

endmodule

Figure 33: Behavioral description of a truth table with don't care

4.1.3. Netlist declaration

For netlist declaration, the always block style does not alter at all the data flow
description. The always block and its sensitivity list are just put ahead. Figure 34
recalls the description of a gate netlist using the data flow style and figure 35 gives
the same description using the behavioral style. The synthesized netlist stays the
same.

module EXAMPLE (A, B, C, S);
input A, B, C;
output S;

assign S = (A & B) | (~C);
endmodule

Figure 34: Gate netlist description using data flow style

Verilog

Verilog - 17

module EXAMPLE (A, B, C, S);
input A, B, C;
output S;
reg S;

always @(A or B or C)
S = (A & B) | (~C);

endmodule

Figure 35: Gate netlist description using behavioral style

The Verilog operators supported in the section 3 : "Data flow Verilog descriptions",
are also supported in always blocks with the same restrictions and the same
optimizations. Please refer to section 3.2 and 3.3 of the section 3 for more details.
Figure 36 recalls an example using Verilog arithmetic operator. The synthesized
netlist is identical. Similarly, for the adder, the 4 types of adders may be instantiated
according to the user requirement.

module EXAMPLE (A, B, C, D, S);
input [7:0] A, B, C, D;
output [7:0] S;
reg [7:0] S;

always @(A or B or C or D)
S = (A + B) - (C + D);

endmodule

Figure 36: Example using arithmetic operators

A

B

C

D

S

+

+

-
8

8

8

8

8

8

8

Figure 37: Synthesized netlist

Verilog

Verilog - 18

4.1.4. Repetitive or bit slice structure

When using always blocks, repetitive or bit slice structure can also be described
using the "for" statement or the "repeat" statement. Figures 38a and 38b give an
example of a 8 bits adder described with such statements.

The "for" statement is supported for constant bounds, stop test condition using
operators <, <=, > or >= and next step computation falling in one of the following
specifications: <var> = <var> + step or <var> = <var> - <step> (where <var> is the
loop variable and <step> is a constant value).

The "repeat" statement is only supported for constant values.

module EXAMPLE (A, B, CIN, SUM, COUT);
input [0:7] A, B;
input CIN;
output [0:7] SUM;
output COUT;
reg [0:7] SUM;
reg COUT;
reg [0:8] C;
integer I;

always @(A or B or CIN)
begin

C[0] = CIN;
for (I = 0 ; I <= 7 ; I = I+1)
begin
 SUM[I] = A[I] ^ B[I] ^ C[I];
 C[I+1] = (A[I]&B[I])|(A[I]&C[I])|(B[I]&C[I]);
end
COUT = C[8];

end
endmodule

Figure 38a: 8 bit adder described with a "for" statement

Verilog

Verilog - 19

module EXAMPLE (A, B, CIN, SUM, COUT);
input [0:7] A, B;
input CIN;
output [0:7] SUM;
output COUT;
reg [0:7] SUM;
reg COUT;
reg [0:8] C;
integer I;

always @(A or B or CIN)
begin

C[0] = CIN;
I = 0;
repeat (8)
begin
 SUM[I] = A[I] ^ B[I] ^ C[I];
 C[I+1] = (A[I]&B[I])|(A[I]&C[I])|(B[I]&C[I]);
 I = I+1;
end
COUT = C[8];

end
endmodule

Figure 38b: 8 bit adder described with a "repeat" statement

4.2. Sequential circuits descriptions using always blocks

We shall consider successively two types of descriptions : sequential always blocks
with a sensitivity list and sequential always blocks without a sensitivity list.

4.2.1 Description styles

The sensitivity list contains a maximum of three edge-triggered events: the clock
signal event wich is mandatory and possibly a reset signal event and a set signal
event. One and only one "if-else" statement is accepted in such a always block. An
asynchronous part may appear before the synchronous part in the first and the
second branch of the "if-else" statement. Signals assigned in the asynchronous part
must be assigned to constant values which must be ‘0’, ‘1’, 'X' or ‘Z’ or any vector
composed of these values. These signals must also be assigned in the synchronous
part which corresponds to the last branch of the "if-else" statement. The clock signal
condition is the condition of the last branch of the "if-else" statement. Figure 39
shows the skeleton of such a always block. Complete examples are shown in part
2.2.

Verilog

Verilog - 20

always @(<posedge | negedge> CLK or
<posedge | negedge> RST or
<posedge | negedge> SET)

...
begin

if (RST == <1’b0 | 1’b1>)
// an asynchronous part may appear here
// signals must be assigned to constant values (‘0’, ’1’, 'X'

// or ‘Z’ or any vector composed of these values)
else
if (SET == <1’b0 | 1’b1>)

// an asynchronous part may appear here
// signals must be assigned to constant values (‘0’, ’1’, 'X'

// or ‘Z’ or any vector composed of these values)
else

// synchronous part
// signals assigned in the asynchronous part must also be
// assigned here

end

Figure 39: Sequential always block with an asynchronous reset and set

4.2.2. Examples: register and counter descriptions

The example of figure 40 gives the description an 8 bit register using a always
block.

module EXAMPLE (DI, CLK, DO);
input [7:0] DI;
input CLK;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK)
DO = DI ;

endmodule

Figure 40: 8 bit register using an always block

The example of figure 41 gives the description of an 8 bit register with a clock
signal and an asynchronous reset signal and figure 42 describes an 8 bit counter.

module EXAMPLE (DI, CLK, RST, DO);
input [7:0] DI;
input CLK, RST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge RST)
if (RST == 1’b1)

DO = 8’b00000000;
else

DO = DI;
endmodule

Figure 41: 8 bit register with asynchronous reset using an always block

Verilog

Verilog - 21

module EXAMPLE (CLK, RST, DO);
input CLK, RST;
output [7:0] DO;
reg [7:0] DO;

always @(posedge CLK or posedge RST)
if (RST == 1’b1) then

DO = 8’b00000000;
else

DO = DO + 8’b00000001;
endmodule

Figure 42: 8 bit counter with asynchronous reset using an always block

4.3. Hierarchy handling through functions and tasks

The declaration of a function or a task aims at handling blocks used several times in
a design. They must be declared and used in a module. The heading part contains
the parameters: input parameters for functions and input, output and inout
parameters for tasks. The content is similar to the combinational always block
content. Recursive function and task calls are not supported.

Example of figure 43 shows a function declared within a module. The "ADD"
function declared here is an one bit adder. This function is called 4 times with the
right parameters in the architecture to create a 4 bit adder. The same example
described with a task is shown in figure 44.

module EXAMPLE (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
wire [1:0] S0, S1, S2, S3;

function [1:0] ADD;
input A, B, CIN;
reg S, COUT;

begin
S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
ADD = {COUT, S};

end
endfunction

assign S0 = ADD (A[0], B[0], CIN),
S1 = ADD (A[1], B[1], S0[1]),
S2 = ADD (A[2], B[2], S1[1]),
S3 = ADD (A[3], B[3], S2[1]),
S = {S3[0], S2[0], S1[0], S0[0]},
COUT = S3[1];

endmodule

Figure 43: Function declaration and function call

Verilog

Verilog - 22

module EXAMPLE (A, B, CIN, S, COUT);
input [3:0] A, B;
input CIN;
output [3:0] S;
output COUT;
reg [3:0] S;
reg COUT;
reg [1:0] S0, S1, S2, S3;

task ADD;
input A, B, CIN;
output [1:0] C;
reg [1:0] C;
reg S, COUT;

begin
S = A ^ B ^ CIN;
COUT = (A&B) | (A&CIN) | (B&CIN);
C = {COUT, S};

end
endtask

always @(A or B or CIN)
begin

ADD (A[0], B[0], CIN, S0);
ADD (A[1], B[1], S0[1], S1);
ADD (A[2], B[2], S1[1], S2);
ADD (A[3], B[3], S2[1], S3);
S = {S3[0], S2[0], S1[0], S0[0]};
COUT = S3[1];

end
endmodule

Figure 44: Task declaration and task enable

Verilog

Verilog - 23

5. General examples using all the Verilog styles

The following examples have been described to illustrate the structural, data flow
and behavioral Verilog styles explained in this section.

5.1. Example 1: timer/counter (prepbenchmark 2)

Example 1 is an 8-bit timer/counter. It includes a loadable comparator and a
multiplexor which allows the binary up-counter to be preloaded from either a
latched value or a value available from a data bus. The block diagram is shown in
figure 45.

REGISTER

D[7:0]
Q[7:0]

LE

CLK

RST

REGISTER

D[7:0]
Q[7:0]

LE

CLK

RST

COUNTER

D[7:0]
Q[7:0]

LD

CLK

RST

COMPARATOR

A[7:0]

A = B

B[7:0]

A[7:0]

B[7:0]

Y[7:0]

2:1 MUX

SEL

· ·
·

· ·

CLK
RST

SEL

LDCOMP

LDPRE

DATA2[7:0]

DATA1[7:0]

DATA0[7:0]

Figure 45: Example 1: an 8-bit timer/counter

Figure 52 gives the Verilog description of this example. It is a mixture of structural
and data flow styles.

In the top level module named “PREP2” the register, counter and comparator blocks
are declared as modules and their descriptions are given at the beginning of the
Verilog file. The multiplexor is described in a data flow style using the “assign”
statement. Figure 46 gives the top level Verilog description of the 8-bit
timer/counter.

Verilog

Verilog - 24

module TOP_LEVEL (CLK, RST, SEL, LDCOMP, LDPRE,
DATA1, DATA2, DATA0);

input CLK, RST, SEL, LDCOMP, LDPRE;
input [7:0] DATA1, DATA2;
output [7:0] DATA0;
wire [7:0] QPRE, QCOMP, QX, YX;
wire LD;

PREP2_REG ONE (CLK, RST, LDPRE, DATA2, QPRE);
PREP2_REG TWO (CLK, RST, LDCOMP, DATA2,

QCOMP);
PREP2_COUNT THREE (CLK, RST, LD, YX, QX);
PREP2_COMP FOUR (QX, QCOMP, LD);
assign YX = (SEL == 1'b0) ? DATA1 : QPRE;
assign DATA0 = QX;

endmodule

Figure 46: The Verilog top level description of the 8-bit timer/counter

The module “PREP2_REG” describes the register used in this example. The block
diagram is shown in figure 47.

D[7:0]
Q[7:0]

CLK
RST

2:1 MUX
· Q[7:0]

RST

CLK

LE

D[7:0]

QX[7:0]
QY[7:0]

DFFC

Figure 47: The register block diagram

This register has a clock input: CLK, an asynchronous reset input: RST and an
enable input: LE which allows the transfer of the input data D[7:0] to the output
data Q[7:0] when a clock rising edge occurs. The register is described as a simple
register without enable command. Its input data is connected to the output data of a
multiplexor. The command port of the multiplexor is connected to the enable port
LE. The input data of the multiplexor is connected to the input data D[7:0] and
output data Q[7:0] of the register. In the Verilog description, an internal signals: QX
is declared. QX is used to connect the output data of the multiplexor to the input
data of the simple register without enable.

Figure 48 gives the Verilog description of the register.

Verilog

Verilog - 25

module PREP2_REG (CLK, RST, LE, D, Q);
input CLK, RST, LE;
input [7:0] D;
ouput [7:0] Q;
reg [7:0] Q;
wire [7:0] QX;

assign QX = (LE == 1'b0) ? Q : D;
always @(posedge CLK or posedge RST)

if (RST == 1’b1)
Q = 8’b0 ;

else
Q = QX ;

endmodule

Figure 48: The Verilog register description

The module “PREP2_COUNT” describes the counter. Figure 49 gives the block
diagram.

DFFC

D[7:0]
Q[7:0]

CLK
RST

2:1 MUX

· Q[7:0]

RST

CLK

LD

D[7:0]

QX

QY

8'h01

INCR

Figure 49: The counter block diagram

This counter has a clock input: CLK, an asynchronous reset input: RST and an
enable input: LD which allows the transfer of the input data D[7:0] to the output
data Q[7:0] when a clock rising edge occurs. If LD is low Q[7:0] is loaded with
(Q[7:0] + 1). The incrementation is described using the Verilog operator “+”. 8'h01
is the notation used to express 1 in hexadecimal mode on 8 bits. Figure 50 gives the
Verilog representation.

Verilog

Verilog - 26

module PREP2_COUNT (CLK, RST, LD, D, Q);
input CLK, RST, LD;
input [7:0] D;
output [7:0] Q;
reg [7:0] Q ;
wire [7:0] QX, INCR;

assign QX = (LD == 1'b1) ? INCR : D;
assign INCR = Q + 8'h01;
always @(posedge CLK or posedge RST)

if (RST == 1’b1)
Q = 8’b0 ;

else
Q = QX ;

endmodule

Figure 50: The Verilog counter description

The module “PREP2_COMP” describes the comparator used in this example. This
comparator has two inputs : A[7:0] and B[7:0] and one output: EQ which is equal to
one if the inputs are equal. It is described in data flow style. Figure 51 gives the
Verilog description.

module PREP2_COMP (A, B, EQ);
input [7:0] A, B;
output EQ;

assign EQ = (A == B);
endmodule

Figure 51: The Verilog comparator description

The complete description is given below in figure 52.

module PREP2_REG (CLK, RST, LE, D, Q);
input CLK, RST, LE;
input [7:0] D;
output [7:0] Q;
reg [7:0] Q;
wire [7:0] QX;

assign QX = (LE == 1'b0) ? Q : D;
always @(posedge CLK or posedge RST)

if (RST == 1’b1)
Q = 8’b0 ;

else
Q = QX ;

endmodule

module PREP2_COUNT (CLK, RST, LD, D, Q);
input CLK, RST, LD;
input [7:0] D;
output [7:0] Q;
reg [7:0] Q;
wire [7:0] QX, INCR;

Verilog

Verilog - 27

assign QX = (LD == 1'b1) ? INCR : D;
assign INCR = Q + 8'h01;
always @(posedge CLK or posedge RST)

if (RST == 1’b1)
Q = 8’b0 ;

else
Q = QX ;

endmodule

module PREP2_COMP (A, B, EQ);
input [7:0] A, B;
output EQ;

assign EQ = (A == B);
endmodule

module TOP_LEVEL (CLK, RST, SEL, LDCOMP, LDPRE,
DATA1, DATA2, DATA0);

input CLK, RST, SEL, LDCOMP, LDPRE;
input [7:0] DATA1, DATA2;
output [7:0] DATA0;
wire [7:0] QPRE, QCOMP, QX, YX;
wire LD;

PREP2_REG ONE (CLK, RST, LDPRE, DATA2, QPRE);
PREP2_REG TWO (CLK, RST, LDCOMP, DATA2, QCOMP);
PREP2_COUNT THREE (CLK, RST, LD, YX, QX);
PREP2_COMP FOUR (QX, QCOMP, LD);
assign YX = (SEL == 1'b0) ? DATA1 : QPRE;
assign DATA0 = QX;

endmodule

Figure 52: Complete Verilog representation of the 8-bit timer/counter

5.2. Example 2: memory map (prepbenchmark 9)

Example 2 implements a memory mapped I/O scheme of different sized memory
spaces common to microprocessor systems.

Addresses are decoded when the address strobe (AS) is active according to an
address space and each space has an output indicating that it is active. Addresses
that fall outside the boundary of the decoder active a bus error (BE) signal.

Figure 53 represents the block diagram of this example. Figure 54 gives the outputs
value according to the inputs value and figure 55 gives the Verilog description.

Verilog

Verilog - 28

A[15:8]

ADDRESS
STROBE

CLK

RST

BUS
ERROR

A[7:0]

H
G
F
E
D
C
B
A

Q7
Q6
Q5
Q4
Q3
Q2
Q1
Q0

CLK

RST

AS

AL

AH

Q

BE

Figure 53: Example 2: a memory map

Figure 54: Example 2: table

RST AS CL
K

AH & AL A B C D E F G H BE

1 X X X 0 0 0 0 0 0 0 0 0

0 0 ¤ X 0 0 0 0 0 0 0 0 0

0 X * X A B C D E F G H BE

0 1 ¤ FFFF to
F000

1 0 0 0 0 0 0 0 0

0 1 ¤ EFFF to
E800

0 1 0 0 0 0 0 0 0

0 1 ¤ E7FF to
E400

0 0 1 0 0 0 0 0 0

0 1 ¤ E3FF to
E300

0 0 0 1 0 0 0 0 0

0 1 ¤ E2FF to
E2C0

0 0 0 0 1 0 0 0 0

0 1 ¤ E2BF to
E2B0

0 0 0 0 0 1 0 0 0

0 1 ¤ E2AF to
E2AC

0 0 0 0 0 0 1 0 0

0 1 ¤ E2AB 0 0 0 0 0 0 0 1 0

0 1 ¤ E2AA to
0000

0 0 0 0 0 0 0 0 1

(*) Changes take place only on the active edge of the clock

Verilog

Verilog - 29

This example is described using the behavioral style. It uses a single always block
whose sensitivity list contains two signals which are the clock signals : CLK and the
asynchronous reset signal : RST. In the asynchronous part the outputs Q[7:0] and
BE are assigned to zero. In the synchronous part several “if” statement are used to
assigned the output according to the values of the AS, AH and AL inputs.

module PREP9 (CLK, RST, AS, AL, AH, BE, Q);
input CLK, RST, AS;
input [7:0] AL, AH;
output BE;
output [7:0] Q;
reg [7:0] Q;
reg BE;

always @(posedge CLK or posedge RST)
begin

if (RST == 1'b1)
begin

Q = 8'h00;
BE = 1'b0;

end
else

if (AS == 1'b1)
begin

BE = 1'b0;
if ((AH >= 8'hF0) && (AH <= 8'hFF))

Q = 8'h80;
else if ((AH <= 8'hEF) && (AH >= 8'hE8))

Q = 8'h40;
else if ((AH <= 8'hE7) && (AH >= 8'hE4))

Q = 8'h20;
else if (AH == 8'hE3)

Q = 8'h10;
else if (AH = 8'hE2)

if ((AL <= 8'hFF) && (AL >= 8'hC0))
Q = 8'h08;

else if ((AL <= 8'hBF) && (AL >= 8'hB0))
Q = 8'h04;

else if ((AL <= 8'hAF) && (AL >= 8'hAC))
Q = 8'h02;

else if (AL = 8'hAB)
Q = 8'h01;

else
begin

Q = 8'h00;
BE = 1'b1;

end
else
begin

Q = 8'h00;
BE = 1'b1;

end
end
else
begin

Verilog

Verilog - 30

Q = 8'h00;
BE = 1'b0;

end
endmodule

Figure 55: Example 2: Verilog description of a memory map

Verilog

Verilog - 31

6. Finite State Machine Synthesis

6.1. Verilog template

A finite state machine can be “hidden” in a Verilog description. Such a finite state
machine description contains at least one sequential always block declaration or at
most two always blocks: a sequential one and a combinational one. The sensitivity
list of the sequential always block must contain at least one signal which is the
clock signal and at most two signals which are the clock and the reset signals. For
the clock a rising or a falling edge can be declared. The reset is not mandatory. If it
is declared, it has to be an asynchronous signal. In the sequential always block, an
“if” statement specifies an asynchronous reset if it exists and a synchronous part
assigning the state variable.

6.1.1. State register and next state equations

• The state variables have to be assigned within the sequential always block.

• The type of the state register can be integer or bit_vector.

• The next state equations must be described in the sequential always block using a
"case" statement or outside the always block like the non latched outputs.

6.1.2. Latched and non latched outputs

• The non latched outputs must be described in a combinational always block or
using data flow conditional statements ("assign <output> = <condition> ? <value>:
...").

• The latched outputs must be assigned within the sequential always block like the
state register.

• Note that presently the vectored outputs are not recognized as outputs of the FSM.

6.1.3. Latched inputs

• The latched inputs must be described using internal signals representing the output
of the flip-flops. These internal signals have then to be assigned in a sequential
always block with the latched inputs. This sequential always block must be the one
where the state register is assigned as showed in figure 58. Figure 58 gives the
Verilog description of the FSM described in figure 56 where the two inputs A and B
are latched.

The figure 56 represents a Moore FSM. This FSM has two outputs: Z0 which is a
latched output and Z1 which is a non latched output. This machine will be described
twice. The first description uses a simple sequential always block (cf. figure 57).
The second description uses both a sequential always block and a combinational
one (cf. figure 58).

Verilog

Verilog - 32

1

3 2

A A

4

Z0

Z0 Z1

Z0 is a latched output
Z1 is a non latched output

5

A+B

A+B

Z1Z1

Z1

Z1

Figure 56: Graphical representation of a Moore FSM

The FSM represented in figure 56 is described in figure 57 using a sequential
always block for the state register, the latched output Z0 and the next state logic,
and a conditional assignment for the output Z1.

module FSM (RESET, CLOCK, A, B, Z0, Z1);
input RESET, CLOCK, A, B;
output Z0, Z1;
reg Z0;
integer STATE;

always @(posedge CLOCK or posedge RESET)
if (RESET == 1’b1)

STATE = 1;
else

case (STATE)
1: begin

Z0 = 1’b1;
if (A)

STATE = 2;
else

STATE = 3;
end
2: begin

Z0 = 1’b0;
STATE = 4;

end
3: STATE = 5;
4: if (A | B)

STATE = 1;
 else

STATE = 5;
5: STATE = 3;

Verilog

Verilog - 33

default: STATE = 1;
endcase

assign Z1 = (STATE == 1); // Z1 is not latched
endmodule

Figure 57: Verilog description of a Moore FSM

Note that in figure 57, the "case" statement describing the next state logic and the
state register assignment in the sequential always block has a "default" branch. In
this branch the state register must be assigned to the reset value and this value is
used for simplification.

The FSM represented in figure 56 is described in figure 58 using a sequential
always block for the state register and the latched output Z0, and a combinational
always block for the output Z1 and the next state logic.

module FSM (RESET, CLOCK, A, B, Z0, Z1);
input RESET, CLOCK, A, B;
output Z0, Z1;
reg Z0, Z1;
integer STATE, NEXTSTATE;

always @(posedge CLOCK or posedge RESET)
if (RESET == 1’b1)

STATE = 1;
else

begin
STATE = NEXTSTATE;
case (STATE)

1: Z0 = 1’b1;
2: Z0 = 1’b0;

endcase
end

always @(A or B or STATE)
begin

Z1 = 1’b0; // default value
case (STATE)

1: begin
Z1 = 1'b1;
if (A)

NEXTSTATE = 2;
else

NEXTSTATE = 3;
end
2: NEXTSTATE = 4;
3: NEXTSTATE = 5;
4: if (A | B)

NEXTSTATE = 1;
 else

NEXTSTATE = 5;
5: NEXTSTATE = 3;
default: NEXTSTATE = 1;

endcase
end

endmodule

Figure 58: Verilog description of a Moore FSM

Verilog

Verilog - 34

Figure 59 gives the Verilog description of the FSM described in figure 56. In this
description, the inputs A and B are latched.

module FSM (RESET, CLOCK, A, B, Z0, Z1);
input RESET, CLOCK, A, B;
output Z0, Z1;
reg Z0;
integer VALUE;
reg A_FF, B_FF;
always @(posedge CLOCK or posedge RESET)
begin

if (RESET == 1’b1)
VALUE = 1;

else
begin

case (VALUE)
1: begin

Z0 = 1’b1;
if (A_FF == 1’b1)

VALUE = 2;
else

VALUE = 3;
end
2: begin

Z0 = 1’b0;
VALUE = 4;

end
3: VALUE = 5;
4: if (A_FF | B_FF)

VALUE = 1;
 else

VALUE = 5;
5: VALUE = 3;
default: VALUE = 1;

endcase
A_FF = A; // A_FF is latched
B_FF = B; // B_FF is latched

end
end
assign Z1 = (VALUE == 1); // Z1 is not latched

endmodule

Figure 59: Verilog description of a Moore FSM with latched inputs

Verilog

Verilog - 35

6.2. State assignments

When using on of the templates which are described above, commonly no automatic
state assignment method is invoked. The state codes are explicitly given in the
description. But in PLS, automatic state assignment can be selected and five
automatic state assignments are available.

6.2.1. State assignment optimizations

The user may select the optimized compact or one-hot or Gray or Johnson or
sequential state assignment. If the encoding is not specified then PLS uses the user
state assignment.

6.2.2. User controlled state assignment

The user can use for the state identification an integer or a bit string. This
identification defines the code associated with the state.

If the state identification is an integer, the code associated with the state is the
binary string corresponding to the integer ("0..011" for 3 for example).

Finally, if a bit string value is used as state identification, it will be used as its code.

So, by default, if the encoding is not specified, the PLS encoding is the one written
in the Verilog specification. Note that if the user gives one hot encoding string value
as identification of the states ("00…100" for the third state), “false” one hot state
assignment will be performed. This means that the code "00100" will generate the
canonical product term !Y1.!Y2.Y3.!Y4.!Y5 instead of only Y3 to identify this state
like it does in the one hot encoding.

6.3. Symbolic FSM identification

This original feature addresses the case where Verilog signals can be identified to
play the role of internal and output variables in a classical finite state machine
definition. This means that a deterministic application "(State Variable) x (Inputs) ->
(Next State Variable)" can be identified. For this purpose, all internal latched
variables and signals are scanned. Their assignments are analyzed. If together with
"input like variables" they define such an application, this template will be
considered as a FSM template; of course the determinism propriety is checked and
then all state assignments may be applied to this variable. Thus much looser
templates can be identified. An example of such a description is given in figure 60.

Verilog

Verilog - 36

module FSM (CLOCK, A, B, Z1);
input CLOCK, A, B ;
output Z1 ;
reg Z1;
integer VALUE, NEXTVALUE;

always @(posedge CLOCK)
VALUE = NEXTVALUE;

always @(A or B or VALUE)
begin

Z1 = 1'b0; // default value
if (VALUE == 1)
begin

Z1 = 1'b1;
if (A == 1'b1)

NEXTVALUE = 2;
else

NEXTVALUE = 3;
end
else if (VALUE == 2)

NEXTVALUE = 4;
else if (VALUE == 3)

NEXTVALUE = 5;
else if (VALUE == 4)

if ((A == 1'b1) || (B == 1'b1))
NEXTVALUE = 1;

else
NEXTVALUE = 5;

else if (VALUE == 5)
NEXTVALUE = 3;

else NEXTVALUE = 1;
endmodule

Figure 60: Verilog description of a Moore FSM

Such a description can also be synthesized by PLS using the five automatic state
assignments or the user controlled state assignment.

6.4. Handling FSMs within your design

Commonly FSMs are embedded in a larger design. So the problem is how to handle
them within a design. The user will have several options. He may want to handle
them individually, under his control to optimize them specifically, or he wants just
to let them embedded in the description. In this last case, he may ask to the
synthesis tool to “recognize” or “extract” them.

6.4.1. Pre-processing or separate FSM handling

In this case, the user will write in different files. For each FSM, he creates a file and
then he synthesizes each file separately specifying the encoding for each FSM and
the type of flip-flops in case of explicit description. During synthesis, a netlist is
synthesized for each Verilog file. The user has to assemble them. If the netlists are
in EDIF format, the designer can use the textual command which allows the merge
of EDIF netlists; if they are in XNF format (Xilinx format) and if the designer uses

Verilog

Verilog - 37

Xilinx tools, he can use the Xilinx command which allows the merge of XNF
netlists; finally if they are in an other format, the user has to merge them manually.

6.4.2. Embedded FSMs

In this case the user does not want to declare separately the FSMs. Commonly, he
will use a always block style It may then be useful that the synthesis tool recognize
and extract them. For this the user will ask for this automatic recognition in the
Verilog by selecting the option “FSM Extraction”. Then three possibilities are
offered:

a) The user does not give any information about encoding. If the optimization
criterion is area, the optimized compact state assignment is automatically chosen for
all the FSMs. If the optimization criterion is speed, the one-hot state assignment is
automatically chosen for all the FSMs.

b) A single common encoding is specified by the designer; it will be identical for all
the FSMs and it may be the optimized compact, the one-hot, the Gray, the Johnson
or the sequential encoding. The user can also specify a global synthesis criterion and
a global power for his design.

c) Specific options can be given for each FSM. For this purpose, a synthesis
directive file is specified. This file defines the module name of the FSMs and a
dedicated encoding, a synthesis criterion and a power for each FSM. The specific
options defined in the synthesis directive file overrides the global options. For
example, if there are three FSMs embedded in the design, each FSM has to be
described in a separated entity named FSM1, FSM2 and FSM3. The architecture
corresponding to each FSM is named ARCH. If the designer wants to use the
optimized compact encoding for FSM1 with an area optimization criterion, one-hot
encoding for FSM2 with a speed optimization criterion and a power of 2, and Gray
encoding for FSM3, the directive file given in figure 61 can be used.

directive -module FSM1 -c OPT -crit AREA
directive -module FSM2 -c ONE -crit SPEED -power 2
directive -module FSM3 -c GRAY

Figure 61: Example of synthesis directive file

Note that in this case, if no encoding has been declared for a given FSM, the global
encoding value will be used. So, the global options are the default options. For
example, if the designer wants to use the optimized compact encoding for FSM1
and FSM2 with an area optimization criterion, and the one-hot encoding for FSM3,
he may select the optimized compact encoding for the global encoding and ask for
an area global optimization criterion and he may give a directive file. This file must
contain the following line: “directive -module FSM3 -c one”, giving the specific
options for the FSM3 synthesis.

Note that in this case, after synthesis, there is only one resulting netlist for all the
design.

Verilog

Verilog - 38

7. Communicating Finite State Machines Synthesis

7.1. Introduction

Two finite state machines communicate if the transition predicate of a FSM depends
on the state or the output of the other one. Two communicating FSMs may be
connected in a concurrent mode or in a hierarchical (master-slave) mode. In the last
mode, one of the FSMs stays in the same state while the state of the other one
changes.

For communicating FSMs, two composition techniques will be used. The first one
considers a global module connecting several FSMs described by always blocks.
The second one connects in a structural mode the different FSMs. Each FSM can
then be described using any accepted FSM description style.

7.2. Communicating FSMs

7.2.1. Concurrent communicating FSMs

Figure 62 shows two communicating FSMs: FSM1 (figure 62.a) and FSM2 (figure
62.b). FSM1 has three input signals (“A”, “B”, “Z0”) and two outputs signals
(“IsA”, “IsB”). FSM2 has one input signal (“sig”) and one output signal (“Z0”).
These two FSMs communicate by state tests and by an output signal. For example,
in figure 62, FSM1 goes from state “S1” to state “S2” if FSM2 is in state “SS3”.
These two FSMs communicate also by the output signal “Z0” sent by FSM2 to
FSM1.

S1

S2

S3 S4

S5

S7S6

FSM2 in state SS3

A A

B.Z0

IsA IsA

IsB IsB

FSM2 in state SS3

FSM2 in state SS3

FSM2 in state SS3 FSM2 in state SS3

FSM2 in state SS3

FSM2 in state SS3 FSM2 in state SS3

FSM2 in state SS3 FSM2 in state SS3

B+B.Z0

Figure 62.a: FSMs communicating by states (FSM1)

Verilog

Verilog - 39

SS1

sig

sig

SS2

SS3

sig

sig

Z0

Figure 62.b: FSMs communicating by states (FSM2)

Communicating FSMs by state tests can be transformed into communicating FSMs
by output signals. So, if a FSM is sensitive to a state of another FSM, a signal
identifying this state has to be created. Figure 63 gives the same communicating
FSMs than in figure 62, but in figure 63 they communicate by output signals instead
of states. In FSM2 the output signal “got_one” identifying the state “SS3” has been
created and in FSM1 the transition predicate “FSM2 in state SS3” has been replaced
by “got_one”.

S1

S2

S3 S4

S5

S7S6

got_one

A A

B.Z0 B+B.Z0

IsA IsA

IsB IsB

got_one

got_one got_one

got_one got_one

got_one got_one

got_one got_one

Figure 63.a: FSMs communicating by output signals (FSM1)

Verilog

Verilog - 40

SS1

sig

sig

SS2

SS3

sig

sig
got_one

got_one

Z0, got_one

Figure 63.b: FSMs communicating by output signals (FSM2)

7.2.2. Hierarchical or master-slave communicating FSMs

Two FSMs communicate in a hierarchical (master-slave) mode if one of the FSMs
stays in the same state while the state of the other one changes. As for the
concurrent communicating FSMs, the communication is made by output signals or
by states.

Let FSM1 and FSM2, two finite state machines communicating in a hierarchical
(master-slave) mode. S1 and S2 are respectively a state of FSM1 and FSM2. A state
S1 of FSM1 is said to be a “communication state” with respect to FSM2 if either:

- it exists a state S2 of FSM2, origin of at least one transition labelled by a
predicate which is a function of S1. In this case, S1 is said to be a “call state”

for
FSM1, or

- it exists a state S1 of FSM1, origin of at least one arc labelled by a predicate
which is a function of S2. In this case, S1 is called a “waiting state” for

FSM1.

A self loop on a waiting state is called a “waiting transition”. The states destination
of the other transitions (excluding the self loop) issued from a waiting state are
referred as “return states”.

Figure 64 shows two communicating hierarchical FSMs. The master FSM in figure
64.a has three input signals (“A”, “B”, “got_one”) and three output signals (“IsA”,
“IsB”, “get_sig”). The slave FSM in figure 64.b has two input signals (“sig”,
“get_sig”) and one output signal (“got_one”). The two FSMs communicate by
output signals: “got_one” is sent by the slave FSM to the master and “get_sig” is
sent by the master FSM to the slave. Note that the states with double circles are the
waiting states. For the master FSM, the waiting states are (“S1”, “S3”, “S4”, “S6”,
“S7”) and the slave FSM has one waiting state (“SS4”).

Verilog

Verilog - 41

S1

S2

S3 S4

S5

S7S6

A A

B B

IsA IsA

IsB IsB

got_one

S0 get_sig

get_sig

get_sig get_sig

get_sig

get_sig

get_sig get_sig

got_one

got_one got_one

got_one got_one

got_one

got_one

got_one

got_one

Figure 64.a: Master FSM

SS1

sig

sig

SS2

SS3

sig

sig

SS4

got_one

got_one

got_one got_one

get_sig get_sig

Figure 64.b: Slave FSM

Note that these two FSMs in fact communicate by states and the transformation
through an output signal communication as explained above has been achieved. The
output signal “got_one” identifies the state “SS3” and the output signal “get_sig”
identifies the states “S0”, “S2” and “S5”. “S0”, “S2” and “S5” are call states for the
master FSM and “ SS3” is a call state for the slave FSM.

Verilog

Verilog - 42

7.3. Always blocks based description

7.3.1. Modeling

Communicating FSMs can be declared by an module containing different always
blocks. In this type of description, both communicating FSMs by states and by
output signals are accepted.

Figure 65 shows such a description for the example of figure 64. The master FSM is
described by the first always block and the slave FSM is described the second one.
The internal signals “VALUE1” and “VALUE2” represent respectively the state
register of the master FSM and the slave FSM. The communication between the two
always block is described by using the state registers modeled by the “VALUE1”
and VALUE2” signals. In the “MASTER_FSM” always block, tests are made on
the value of “VALUE2” (“if (VALUE2 == 3) ...”) and in the “SLAVE_FSM”
always block a test is made on the values of “VALUE1“ (“if ((VALUE1 == 0) ||
(VALUE1 == 2) || (VALUE1 == 5)) ...”).

module FSM_HIER (RESET, CLK, A, B, SIG, IS_A, IS_B);
input RESET, CLK, A, B, SIG ;
output IS_A, IS_B ;
reg IS_A, IS_B ;
integer VALUE1, VALUE2;

// MASTER_FSM
always @(posedge RESET or posedge CLK)

if (RESET == 1'b1)
VALUE1 = 0;

else
case (VALUE1)

0: VALUE1 = 1;
1: if (VALUE2 == 3)

VALUE1 = 2;
 else

VALUE1 = 1;
2: if (A == 1'b0)

VALUE1 = 3;
 else

VALUE1 = 4;
3: begin

if (VALUE2 == 3)
VALUE1 = 5;

else
VALUE1 = 3;

IS_A = 1'b0;
end
4: begin

if (VALUE2 == 3)
VALUE1 = 5;

else
VALUE1 = 4;

IS_A = 1'b1;
end
5: if (B == 1'b0)

VALUE1 = 6;
 else

VALUE1 = 7;

Verilog

Verilog - 43

6: begin
if (VALUE2 == 3)

VALUE1 = 2;
else

VALUE1 = 6;
IS_B = 1'b0;

end
7: begin

if (VALUE2 == 3)
VALUE1 = 2;

else
VALUE1 = 7;

IS_B = 1'b1;
end

endcase

// SLAVE_FSM
always @(posedge RESET or posedge CLK)

if (RESET == 1'b1)
VALUE2 = 4;

else
case (VALUE2)

1: if (SIG == 1'b1)
VALUE2 = 2;

 else
VALUE2 = 1;

2: if (SIG == 1'b0)
VALUE2 = 3;

 else
VALUE2 = 2;

3: VALUE2 = 4;
4: if ((VALUE1 == 0) ||
 (VALUE1 == 2) ||
 (VALUE1 == 5))

VALUE2 = 1;
 else

VALUE2 = 4;
endcase

endmodule

Figure 65: Verilog description of 2 hierarchical FSMs communicating by states

7.3.2. Synthesis

It may be useful for optimization that the synthesis tool recognizes and extracts the
FSMs. For this the user will ask for this automatic recognition in the Verilog by
selecting the option “FSM Extraction”. Two possibilities are then offered:

a) The user does not give any information about encoding. If the optimization
criterion is area, the optimized compact state assignment is automatically chosen for
all the FSMs. If the optimization criterion is speed, the one-hot state assignment is
automatically chosen for all the FSMs.

b) A single common encoding is specified by the designer; it will be identical for all
the FSMs and it may be the optimized compact, the one-hot, the Gray, the Johnson
or the sequential encoding. The user can also specify a global synthesis criterion and
a global power for his design.

Verilog

Verilog - 44

7.4. Structural composition of FSMs

7.4.1. Modeling

In this case, the global interconnection is a structural composition of the FSMs. The
communication is restricted to output exchange signals. Therefore, if a transition of
the slave FSM depends on a state of the master FSM, a signal identifying the state
in the master FSM is sent to the slave FSM as explained in § V.2.1. Figure 66 gives
the Verilog description of the example of figure 64.

module MASTER_FSM (A, B, GOT_ONE, RESET, CLK,
 IS_A, IS_B, GET_SIG);

input A, B, GOT_ONE, RESET, CLK;
output IS_A, IS_B, GET_SIG;
reg IS_A, IS_B;
integer STATE;

assign GET_SIG = (STATE == 0) || (STATE == 2) ||
 (STATE == 5);

always @(posedge RESET or posedge CLK)
if (RESET == 1'b1)

STATE = 0;
else

case (STATE) is
0: STATE = 1;
1: if (GOT_ONE == 1'b1)

STATE = 2;
 else

STATE = 1;
2: if (A == 1'b0)

STATE = 3;
 else

STATE = 4;
3: begin

if (GOT_ONE == 1'b1)
STATE = 5;

else
STATE = 3;

IS_A = 1'b0;
end
4: begin

if (GOT_ONE == 1'b1)
STATE = 5;

else
STATE = 4;

IS_A = 1'b1;
end
5: if (B == 1'b0)

STATE = 6;
 else

STATE = 7;
6: begin

if (GOT_ONE == 1'b1)
STATE = 2;

else
STATE = 6;

Verilog

Verilog - 45

IS_B = 1'b0;
end
7: begin

if (GOT_ONE == 1'b1)
STATE = 2;

else
STATE = 7;

IS_B = 1'b1;
end

endcase
endmodule

Figure 66.a: Verilog description of the master FSM

module SLAVE_FSM (CLK, RESET, SIG,
 GET_SIG, GOT_ONE);

input CLK, RESET, SIG, GET_SIG;
output GOT_ONE;
integer STATE;

assign GOT_ONE = (STATE == 3);
always @(posedge RESET or posedge CLK)

if (RESET == 1'b1)
STATE = 4;

else
case (STATE)

1: if (SIG == 1'b1)
STATE = 2;

 else
STATE = 1;

2: if (SIG == 1'b0)
STATE = 3;

 else
STATE = 2;

3: STATE = 4;
4: if (GET_SIG == 1'b1)

STATE = 1;
 else

STATE = 4;
endcase

endmodule

Figure 66.b: Verilog description of the slave FSM

module FSM_HIER (RESET, CLK, A, B, SIG, IS_A, IS_B);
input RESET, CLK, A, B, SIG;
output IS_A, IS_B;
wire GET_SIG;
wire GOT_ONE;

MASTER_FSM MASTER (A, B, GOT_ONE, RESET,
 CLK, IS_A, IS_B, GET_SIG);

SLAVE_FSM SLAVE (CLK, RESET, SIG, GET_SIG,
GOT_ONE);

endmodule

Figure 66.c: Verilog description of the interconnection of the 2 FSMs

Verilog

Verilog - 46

7.4.2. Synthesis

For each FSM, all the synthesis options are available: the state assignment, the
optimization criterion and the power.

As for the first composition technique, it may be useful that the synthesis tool
recognizes and extracts the FSMs. For this the user will ask for this automatic
recognition in the Verilog by selecting the option “FSM Extraction”. Then, the three
possibilities already offered for the embedded FSMs in the “Finite State Machine
Synthesis” section are available:

a) The user does not give any information about encoding. If the optimization
criterion is area, the optimized compact state assignment is automatically chosen for
all the FSMs. If the optimization criterion is speed, the one-hot state assignment is
automatically chosen for all the FSMs.

b) A single common encoding is specified by the designer; it will be identical for all
the FSMs and it may be the optimized compact, the one-hot, the Gray, the Johnson
or the sequential encoding. The user can also specify a global synthesis criterion and
a global power for his design.

c) Specific options can be given for each FSM. For this purpose, a synthesis
directive file is specified. This file defines the module names of the FSMs and a
dedicated encoding, the choice of the flip-flops, a synthesis criterion and a power
for each FSM. The specific options defined in the synthesis directive file overrides
the global options. For example, if there are three FSMs embedded in the design,
each FSM has to be described in a separated module named FSM1, FSM2 and
FSM3. If the designer wants to use the optimized compact encoding for FSM1 with
an area optimization criterion, one-hot encoding for FSM2 with a speed
optimization criterion and a power of 2, and Gray encoding for FSM3, the directive
file given in figure 67 can be used.

directive -module FSM1 -c OPT -crit AREA
directive -module FSM2 -c ONE -crit SPEED -power 2
directive -module FSM3 -c GRAY

Figure 67: Example of synthesis directive file

Note that in this case, if no encoding has been declared for a given FSM, the global
encoding menu will be used. So, the global options are the default options. For
example, if the designer wants to use the optimized compact encoding for FSM1
and FSM2 with an area optimization criterion, and the one-hot encoding for FSM3,
he may select the optimized compact encoding for the global encoding and ask for
an area global optimization criterion and he may give a directive file. This file must
contain the following line: “directive -module FSM3 -c one”, giving the specific
options for the FSM3 synthesis.

Verilog

Verilog - 47

8. Verilog Subset for synthesis

8.1. Limited Verilog Language Constructs

This section describes the Verilog constructs which are restricted by PLS.

8.1.1. always statement

PLS Verilog supports two kinds of always block, one using only edge-triggered
events (a maximum of three) and the other using only value-change events.

8.1.2. for statement

PLS Verilog only supports for loop which are bounded by static variables.

8.1.3. repeat statement

PLS Verilog only supports repeat loop using a constant value.

8.2. Ignored Verilog Language Constructs

This section describes the Verilog constructs which are parsed and ignored by PLS.

8.2.1. Ignored Statements

• specify statement.

• initial statement.

• system function call.

• system task enable.

8.2.2. Ignored Miscellanous Constructs

• delay specifications.

• scalared and vectored declarations.

• small, large and medium charge storage strengths.

• weak0, weak1, highz0, highz1, pull0, pull1 driving strengths.

Verilog

Verilog - 48

8.3. Unsupported Verilog Language Constructs

This section describes the Verilog constructs which are unsupported by PLS.

8.3.1. Unsupported Definitions and Declarations

• primitive definition.

• macromodule definition.

• time declaration.

• event declaration.

• triand, trior, tri0, tri1, and trireg net types.

8.3.2. Unsupported Statements

• deassign statement.

• defparam statement.

• disable statement.

• event control.

• force statement.

• release statement.

• fork statement.

• forever statement.

• while statement.

8.3.3. Unsupported Operators

• case equality and inequality operators (=== and !==).

• division and modulus operators (/ and %) when the second operand is ot a
power of two.

8.3.4. Unsupported Gate-Level constructs

• nmos, pmos, rnmos and rpmos MOS Switches.

• tran, tranif0, tranif1, rtran, rtranif0 and rtranif1 Bidirectional Pass
Switches.

• cmos and rcmos CMOS Gates.

• pullup and pulldown Sources.

	MAIN CONTENTS
	Verilog
	1. Introduction
	2. How to declare a circuit in Verilog
	2.1. General declaration
	2.1.1. Module declaration
	2.1.2. Accepted Verilog types

	2.2. Hierarchical description

	3. Data flow Verilog descriptions
	3.1. How to describe boolean equations
	3.1.1. Constants
	3.1.2. Truth Table
	3.1.3. Don't care
	3.1.4. How the logic is synthesized

	3.2. How to describe multilevel logic
	3.2.1. Gate netlist
	3.2.2. Netlist using arithmetic operators
	3.2.3. Optimizations
	3.2.3.1. Resource folding and minimization of the number of multiplexers
	3.2.3.2. Recognition of common sub-expressionsv
	3.2.3.3. Synthesis of well-balanced trees
	3.2.3.4. Expression simplification

	3.3. How to include memory elements using PLS prestored library

	4. Behavioral Verilog descriptions
	4.1. Combinational circuits descriptions using always blocks functions and tasks
	4.1.1. Combinational always blocks
	4.1.2. Truth tables
	4.1.3. Netlist declaration
	4.1.4. Repetitive or bit slice structure

	4.2. Sequential circuits descriptions using always blocks
	4.2.1 Description styles
	4.2.2. Examples: register and counter descriptions

	4.3. Hierarchy handling through functions and tasks

	5. General examples using all the Verilog styles
	5.1. Example 1: timer/counter (prepbenchmark 2)
	5.2. Example 2: memory map (prepbenchmark 9)

	6. Finite State Machine Synthesis
	6.1. Verilog template
	6.1.1. State register and next state equations
	6.1.2. Latched and non latched outputs
	6.1.3. Latched inputs
	6.2. State assignments
	6.2.1. State assignment optimizations
	6.2.2. User controlled state assignment
	6.3. Symbolic FSM identification
	6.4. Handling FSMs within your design
	6.4.1. Pre-processing or separate FSM handling
	6.4.2. Embedded FSMs

	7. Communicating Finite State Machines Synthesis
	7.1. Introduction
	7.2. Communicating FSMs
	7.2.1. Concurrent communicating FSMs
	7.2.2. Hierarchical or master-slave communicating FSMs

	7.3. Always blocks based description
	7.3.1. Modeling
	7.3.2. Synthesis

	7.4. Structural composition of FSMs
	7.4.1. Modeling
	7.4.2. Synthesis

	8. Verilog Subset for synthesis
	8.1. Limited Verilog Language Constructs
	8.1.1. always statement
	8.1.2. for statement
	8.1.3. repeat statement

	8.2. Ignored Verilog Language Constructs
	8.2.1. Ignored Statements
	8.2.2. Ignored Miscellanous Constructs

	8.3. Unsupported Verilog Language Constructs
	8.3.1. Unsupported Definitions and Declarations
	8.3.2. Unsupported Statements
	8.3.3. Unsupported Operators
	8.3.4. Unsupported Gate-Level constructs

