
Appendix B: Counting and
Shifting Circuit Techniques

This appendix contains a number of techniques to help in the development of synchronous

binary counters and shift registers. These are used in some of the designs covered in chapters

throughout the book.

B.1 BASIC UP AND DOWN SYNCHRONOUS BINARY COUNTER
DEVELOPMENT

Thedevelopmentof synchronouspurebinaryup/downcounters canbemechanized toproduce a

general n-stage pure binary counter. This can then be implemented directly using PLDs/

complex PLDs (CPLDs)/FPGA devices. To illustrate how this is achieved, a four-stage

down-counter is described below.

Table B.1 shows a down-counter with Q0 the least significant bit. This counter is to be

designed as a synchronous counter so all flip-flopswill be clocked by the same clock edge.Also,

the flip-flops will be T flip-flops. Most CPLDs and FPGAs can support the T flip-flop, either

directly or by using D-type flip-flops with an exclusive OR input.

The equation for the T input of each flip flop can be obtained by inspection of Table B.1 and

entering a product term for every 0-to-1 and 1-to-0 transition required by each flip flop. For

example, from Table B.1 the equation for flip flop q0 � t will be
q0 � t ¼ s15þ s14þ s13þ s12þ s11þ s10þ s9þ s8þ s7þ s6þ s5þ s4þ s3

þ s2þ s1þ s0 ¼ 1:

Each state where the T flip-flop is to change state (0 to 1 or 1 to 0) is entered into the equation.

This can then bewritten in terms of theQ0Q1Q2Q3outputs, or simply entered into aKaraugh

mapas illustrated inFigureB.1.The statemapofFigureB.1can thenbeused tohelp tominimize

the flip-flop equations.

Since all cellswill be filledwith ones for the q0 � t equation (every cell whose term appears in

the q0 � t equation), then the T input for flip-flop Q0 will be logic 1.
The equation for flip flop q1 � t will be

q1 � t ¼ s14þ s12þ s10þ s8þ s6þ s4þ s2þ s0

¼ =Q0

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

Table B.1 A down-counter.

Q0 Q1 Q2 Q3 State

1 1 1 1 s15

0 1 1 1 s14

1 0 1 1 s13

0 0 1 1 s12

1 1 0 1 s11

0 1 0 1 s10

1 0 0 1 s9

0 0 0 1 s8

1 1 1 0 s7

0 1 1 0 s6

1 0 1 0 s5

0 0 1 0 s4

1 1 0 0 s3

0 1 0 0 s2

1 0 0 0 s1

0 0 0 0 s0

Q0Q1

Q2Q3
00 01 11 10

00

01

11

10

s2s0 s1s3

s8 s10 s11 s9

s12 s14 s13 s15

s4 s5s7s6

Karnaugh state map showing all states

Figure B.1 State map for the counter.

348 Appendix B

from the statemap.An inspection of the statemap of FigureB.1 shows that q1 � tmustminimise

to /q0, since cells s14, s12, s10, s8, s6, s4, s2, and s0 all contain a 1. Following on in this manner,

q2 � t and q3 � t can be obtained thus:
q2 � t ¼ s12þ s8þ s4þ s0

¼ =Q0 � =Q1
q3 � t ¼ s8þ s0

¼ =Q0 � =Q1 � =Q2:
The patterns of equations follow in a general manner and can be expressed in the form

qx � t ¼ =Qðx� 1Þ � =Qðx� 2Þ � =Qðx� 3Þ � . . . � =Qðx� xÞ: ðB:1Þ

Equation (B.1) describes the p terms for a down-counter implemented with T flip-flops. These

equations can be directly entered into a Verilog HDL file for each flip-flop.

An up-counter can be realized by replacing all the /q terms in Equation (B.1) with q terms as

shown in Equations (B.2) and (B.3):

qx � t ¼ Qðx� 1Þ � Qðx� 2Þ � Qðx� 3Þ � . . . � Qðx� xÞ: ðB:2Þ
Or, in general:

qn � t ¼
Yp¼n

p¼1

Qðn� pÞ ðB:3aÞ

with

q0 � t ¼ 1: ðB:3bÞ

For each flip-flop where � is the product (i.e. AND) of each output term. Note that TFF Q0

has its T input at logic 1. This is not covered in Equation (B.3a).

These equations can be obtained directly from aKarnaugh state map similar to that shown in

Figure B.1, but counting in the opposite direction.

B.2 EXAMPLE FOR A 4-BIT SYNCHRONOUS UP-COUNTER
USING T-TYPE FLIP-FLOPS

The following example, illustrated inFigureB.2, is a design for a 4-bit up-counting synchronous

counter using the techniques described above.

The equations for each T flip flop are

q0 � t ¼ 1

q1 � t ¼ Q0

q2 � t ¼ Q0 � Q1
q3 � t ¼ Q0 � Q1 � Q2:

Example for a 4-BIT Synchronous Up-Counter Using T-Type Flip-Flops 349Example for a 4-BIT Synchronous Up-Counter Using T-Type Flip-Flops 349

This counter can be defined in Verilog HDL as illustrated below in the Verilog source file of

Listing B.1.

// Four bit counter design.
// Define the TFF.
module T_FF (q,t,clk,rst);
output q;
input t,clk,rst;
reg q; //q output must be registered - remember?
always @ (posedge clk or negedge rst)
if (rst ¼¼ 0)
q <¼1'b0;

else
q <¼t^q; // TFF is made up with EX-OR gate.

endmodule

// Now define the counter.
module counter(Q0,Q1,Q2,Q3,clk,rst);

input clk, rst; //clk and rst are inputs.
output Q0,Q1,Q2,Q3; // all q/s outputs.

4-bit synchronous binary counter
Clk

reset rst Q0 Q1 Q2 Q3

Q

Q
SET

CLR

DT

Clk

D = Q ^ T ^ is Exclusive OR

Each flip-flop in
the counter is

connected up as
a T-type flip-flop.

Figure B.2 Block diagram of the 4-bit synchronous binary counter.

350 Appendix B

wire t0,t1,t2,t3; //all t inputs are interconnecting wires.

// need to define instances of each TFF defined earlier.
T_FF ff0(Q0,t0,clk,rst);
T_FF ff1(Q1,t1,clk,rst);
T_FF ff2(Q2,t2,clk,rst);
T_FF ff3(Q3,t3,clk,rst);
// now define the logic connected to each t input.
// we use an assign for this.
assign

t0¼1'b1, // this is just following the technique
t1¼Q0, // for binary counter design.
t2¼Q0&Q1, // will generate AND gates..
t3¼Q0&Q1&Q2;
endmodule // end of the module counter.

// Test Bench design to test the circuit under simulation.
module test;
reg clk, rst; // has two inputs which must be registers.
//wire no wires in this part of the design
// since counter is not connected to anything.
counter count(Q0,Q1,Q2,Q3,clk,rst);
initial
begin
$dumpfile(‘‘counter4.vcd’’); // file waveforms..
$dumpvars; //dump all values to the file.

rst¼0; // initialise circuit with rst cleared.
clk¼0; //set clk to normally low.
#10 rst¼1; // after 10 time units raise rst to remove reset.
repeat(17)
#10 clk ¼ �clk; //change clk 17 times every 10 time units.
#20 $finish; //Finish the simulation after 20 time units.

end // end of test block.
endmodule // end of test module.

Listing B.1 The Verilog HDL file for the counter, with test bench.

The complete Verilog HDL source file with test-bench module for the counter is shown in

listing B.1. This contains the T-type flip-flop definition (defined using the behaviouralmethod).

This is followed by the counter definition, which makes use of four instances of the T flip-

flops and also uses an assign block to define the logic connections between the flip-flop

outputs and the T inputs of each flip-flop. Note: old-style input and output is used outside of

the module header.

Followingon from this is the test-benchmodule.This contains an instanceof the4-bit counter

followed by the stimulus to test the counter. Note that there are two $ commands to save the

timing diagramofFigureB.3 so it canbe saved to aWorddocument (for printout)The command
$dumpfile(‘‘counter.vcd’’); names the file to be created with the information. The com-

mand $dumpvars; simply dumps all variables to the file.

Example for a 4-BIT Synchronous Up-Counter Using T-Type Flip-Flops 351

The file is saved as a ‘metafile’ and is illustrated in Figure B.3. Thewaveforms of Figure B.3

clearly show the binary counter sequence.

B.3 PARALLEL-LOADING COUNTERS: USING T FLIP-FLOPS

For a parallel loading counter implemented with cheaper PLDs, a synchronous parallel input

maybe required if there isnot anasynchronouspreset andclear input to theflip-flops.This canbe

done by using additional product terms in the qx � t equations.
A general bit slice form with the additional inputs is shown in Equation (B.4) for a TFFx:

qx:t ¼ ptermx � =loadþ px � =Qx � loadþ =px � Qx � load: ðB:4Þ

The load input is used to load the parallel data synchronously into the flip-flop. In this case, the

load input is active high.

In Equation (B.4), the product term ptermx � /load is the normal product term needed for the

counter and is truewhile the load input is not active. The termpx � /Qx � load is the parallel input
term to set the flip-flop, and the term /px � Qx � load is the term to clear the flip-flop.

0ns 100ns 200ns 300ns 400ns

test.clk

test.rst

test.Q0

test.Q1

test.Q2

test.Q3

Figure B.3 Simulated 4-bit binary counter.

352 Appendix B

Figure B.4 shows a general structure of a single flip-flop. All other flip-flops follow the same

general structure. It is assumed here that the active state for the load input is high. Therefore,

during counting mode, load would be low (logic 0).

Equations (B.1), (B.2) and (B.4) may be used to produce parallel-loading up/down-counters

for many applications, including the address counters for FSMs that control memory.

Thus, it is possible to create not only sequential control of the access of memory, but also

random control by way of the parallel inputs.

B.4 USING D FLIP-FLOPS TO BUILD PARALLEL-LOADING COUNTERS
WITH CHEAP PROGRAMMABLE LOGIC DEVICES

TheDflip-flop can be used in place of theTflip-flop to implement parallel-loading synchronous

counters that do not have preset or clear inputs. There are lots of cheaper PLDs that use onlyD

flip-flops and do not have asynchronous preset and clear, so the idea seems attractive.

Consider the circuit of Figure B.5. The bit slice equation for this general model is

qx � d ¼ px � =lþ pterm � l; ðB:5Þ

where l is the parallel loading input and /l the inverted parallel loading input. This defines the

general form for the equations for each flip-flop in the counter chain.

Q

QSET

CLR

D

ptermx

load

px
/Qx

/Qx

Qx

Qx

T = pterm./load + px . /Qx . load + /px .Qx . load

T

pterm . /Qx . /load

px . /Qx . load

/px . Qx . load

Figure B.4 General structure of a single-flip flop for counting and parallel loading.

Using D Flip-Flops to Build Parallel-Loading Counters 353

The individual product term pterm here will depend upon the sequence table. There is

no simple way to do this; therefore, the method is not as easy to implement as that using T

flip-flops.

As an example, consider a simple three-stage synchronous binary up-counter.

B.5 SIMPLE BINARY UP-COUNTER: WITH PARALLEL INPUTS

To illustrate the form in which a physical circuit will take a simple three-stage parallel-loading

pure binary counter is illustrated in Figure B.6.

Looking at Figure B.6, the state sequence illustrates the binary sequence. The state map is

used to help simplify the pterms (shown here in their simplified form) and, finally, the full

equations for the D inputs of each flip-flop.

Note that, compared with the method for designing synchronous parallel-loading up/down-

counters using T flip-flops, this arrangement requires the development of each flip-flop pterm.

In general, there is no systematicway todo this other than toworkout the logic for eachflip-flop.

However, one advantage of using D flip-flops is that the count sequence is not restricted to

pure binary count sequences (i.e. one could developunit distance code sequences, for example).

Of course, the counter could be developed from the Verilog HDL behavioural description

direct, and this would be the more usual way of doing it. The above method, however, gives an

insight into the Boolean equations involved in such counters.

Q

QSET

CLR

D

px

pterm

l

/l

Qx

/Qx

Clk

Qx . d = px . /l + pterm . l

px . /t

pterm . l

+ 5 V

+ 5 V

10K

10K

Parallel loading input

Figure B.5 General bit slice model for of a parallel-loading synchronous counter.

354 Appendix B

B.6 CLOCK CIRCUIT TO DRIVE THE COUNTER (AND FINITE-STATE
MACHINES)

There aremany circuit arrangements for crystal oscillators, but the one shown in Figure B.7 is a

common one that is often used. It is included for completeness.

Thecircuit inFigureB.7providesovertone suppressionvia the twocapacitorsC1andC2with

values to keep the capacitive reactance small, as indicated in Figure B.7.

B.7 COUNTER DESIGN USING DON’T CARE STATES

In somedesigns, use canbemadeof states that donot appear in the count sequence.This can lead

to a reduction in the number of gates used in the logic of the counter.

Consider the twisted ring counter, so called because it has eachflip-flop connected in the form

of a ring, but with a twist in the connection between the last flip-flop and the first. Figure B.8

illustrates the state sequence and a design method using a state map to highlight the don’t care

states.

Q0 Q1 Q2 State
0 0 0 s0
1 0 0 s1
0 1 0 s2
1 1 0 s3
0 0 1 s4
1 0 1 s5
0 1 1 s6
1 1 1 s7

00 01 11 10

0

1

Q0 Q1
Q2

s0 s2 s3 s1

s4 s6 s7 s5

q0 . d = /Q0

q1 . d = Q0 . /Q1 + /Q0 . Q1

q2 . d = Q2 . /Q1 + Q2 . /Q0 + /Q2 . Q1 . Q0

q0 . d = p0 . /l + (/Q0) . l

q1 . d + p1 . /l + (Q0 . /Q1 + /Q0 . Q1) .l

q2 . d + p2 · /l + (Q2 . /Q1 + Q2 . /Q0 + /Q2 . Q1 . Q0) . l

State sequence

State map

pterms

 Full equations with
 parallel loading

 inputs

Figure B.6 Illustrating the form of the equations for the three-stage pure binary synchronous counter

with parallel inputs.

Counter Design using Don’t Care States 355

Q

Q
SET

CLR

D

+ 5 V

+ 5 V

10K

510

C2

C1

510

Crystal
F0

F0

Xc1 @ F0 should tend towards 0

Xc2 @ F0 proportional to 510 ohms

10K

Figure B.7 Typical crystal oscillator circuit.

Q0 Q1 Q2 Q3 State
0 0 0 0 s0
1 0 0 0 s1
1 1 0 0 s3
1 1 1 0 s7
1 1 1 1 s15
0 1 1 1 s14
0 0 1 1 s12
0 0 0 1 s8

00 01 11 10

00

01

11

10

Q0 Q1
Q2 Q3

s0 X s3 s1

s8 X X X

s12 s14 s15 X

X X s7 X

Q0 . d = s0 + s1 + s3 + s7 + (don’t care terms) = /Q3

Q1 . d = s1 + s3 + s7 + s15 + (don’t care terms) = Q0

Q2 . d + s3 + s7 + s15 + s14 + (don’t care terms) = Q1

Q3 . d + s7 + s15 + s14 + s12 + (don’t care terms) = Q2

State sequence

State map with don’t care
terms (X) included.

Figure B.8 Twisted ring counter design making use of don’t care terms.

The state sequence table in FigureB.8 shows the required sequence for the counter. From this

it is apparent that states s2, s4, s5, s6, s9, s10, s11 and s13are not part of the sequence, so these are

made don’t care terms (marked as X) in the state map.

From the state sequence table, and state map of Figure B.8, the equations for each flip-flopD

input (Qx � d) can be obtained, looking for 0-to-1 and 1-to-1 transitions in each column of the

sequence table. Thedon’t care terms are then added to the endof each equation. Finally, the state

map is used to obtain the minimized equations.

For example, in equationQ0 � d, states s0, s1, s3 and s7 are combinedwith don’t care terms s2,

s4, s5 and s6 to obtain /Q3 (as highlighted by the dotted lines in FigureB.8). The other equations

are dealt with in a similar manner.

B.8 SHIFT REGISTERS

A special form of synchronous counter is the shift register. Quite often, a parallel-loading shift

register is required (see examples in Chapter 4). The bit slice form for each stage of the parallel-

loading shift register is obtained from Equations (B.6a) and (B.6b):

Q0 � d ¼ din � ldþ p0 � =ld ðB:6aÞ
Qx � d ¼ Qðx� 1Þ � ldþ px � =ld; ðB:6bÞ

where in this case the active state for the load input ld is low and din is data input.

Note that if serial input is to be zero, make din¼ 0. The shift register design is using D flip-

flops.

These equations could be used to create a four bit parallel loading counter thus:

Q0 � d ¼ din � ldþ p0 � =ld ðB:7Þ
Q1 � d ¼ Q0 � ldþ p1 � =ld ðB:8Þ
Q2 � d ¼ Q1 � ldþ p2 � =ld ðB:9Þ
Q3 � d ¼ Q2 � ldþ p3 � =ld ðB:10Þ
Sft clk ¼ clk � ld ðB:11Þ

In Equation (B.7), the first term is the serial data input. In Equations (B.8)–(B.10), the first term

denotes that the output of each flip-flop will connect into the input of the next (i.e. a standard

shift-register connection). In addition, Equation (B.11) defines the shift clock. This is disabled

during parallel loads.

Figure B.9 shows the four-state shift register developed from the Equations (B.7)–(B.11).

Note that, in practice, the equations would be converted into Verilog HDL code direct for

synthesization. The equations converted into Verilog HDL are:

Q0d ¼ din&ld | po&�ld;
Q1d ¼ Q0&ld | p1&�ld;
Q2d ¼ Q1&ld | p2&�ld;
Q3d ¼ Q2&ld | p3&�ld;
Sft_clk ¼ clk&ld;

Shift Registers 357

The above shift register, once converted into Verilog HDL code, can then be simulated for

correct operation. Figure B.10 shows such a simulation. The Verilog coding is available in the

Appendix B folder on the CDROM.

In Chapter 4, the asynchronous serial receiver systemmade use of a shift register to store the

incoming binary data and present them to a data latch. In addition, a divide-by-11 counter was

used to keep track of the number of binary bits received and alert the FSM when a complete

packet was received (receive shift-register full).

The details and Verilog code for the two modules are now described.

B.9 ASYNCHRONOUS RECEIVER DETAILS OF CHAPTER 4

FigureB.11 (which isFigure4.21 repeatedhere for convenience) illustrates thedifferentmodule

blocks needed to make up the complete receiver. Each module in this diagram and its Verilog

modules will be described below.

The associated test-bench modules and complete code for the asynchronous receiver are

available on the CDROMdisk that is supplied with this book. The FSM is described in detail in

Section 4.7, with the state diagram Figure 4.22.

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

Q SET

CLR

D

Clk

lD

din

p0 p3p2p1

/Ld

Sht_clk

Four bit parallel loading shift register

Figure B.9 Four-stage shift register developed from Equations (B.7)–(B.11).

358 Appendix B

0ns 100ns 200ns 300ns 400ns

test.clk

test.rst

test.p0

test.p1

test.p2

test.p3

test.ld

test.din

test.Q0

test.Q1

test.Q2

test.Q3

Figure B.10 Simulation of a four-stage shift register with din¼ 0.

Data Latch

Shift Register

FSM

Divide
By 11

Counter

QST Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 QSP1 QSP2

PD

clk

st CDC rxf rxo RXCK

ed

DRY ERR ack en rst

Paralle data out – to outside world

Receive
data in

Error detection
detection

Receive
 bit

Receive Shift
Register clock

Receive
Register full

Clear Shift Register
 & counter

Start bit
detectionPulse

Data latch

Data
ready

Error in
received

data

Acknowledge
error

 Enable
 device Initialize system (controlled by outside

world device to recover from error)

rx

OQ0 OQ1 OQ2 OQ3 OQ4 OQ5 OQ6 OQ7

R

 d0 d1 d2 d3 d4 d5 d6 d7

Vcc

clr

clr

Figure B.11 Asynchronous receiver block diagram from Chapter 4.

B.9.1 The 11-Bit Shift Registers for the Asynchronous Receiver Module

This is an 11-bit shift registerwith a start bit, eight data bits (d0 to d7), and two stop bits (sp1 and

sp2).

The incoming data (din) connect to the sp2 flip-flop and are shifted into the sp1 flip-flop. The

last flip-flop in the shift register is the start-bit flip-flop, since this is the first data bit into the shift

register. This is illustrated in Figure B.12a.

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

QSP2 Q6 .. Q5...Q2 Q1Q7QSP1 Q0 QST

ClearClk

din

(a)

0ns 50ns 100ns 150ns 200ns 250ns 300ns

test.rst

test.clk

test.din

test.QST

test.Q0

test.Q1

test.Q2

test.Q3

test.Q4

test.Q5

test.Q6

test.Q7

test.QSP1

test.QSP2

(b)

Figure B.12 (a) The shift-registers circuit. (b) Simulation of the shift-register module.

360 Appendix B

The Verilog HDL code for the shift register is shown in Listing B.2.

// Define DFF
module D_FF(q,d,clk,rst);
output q;
input d,clk,rst;
reg q;
always @ (posedge clk or negedge rst)
if (rst¼¼0)

q<¼1'b0;
else

q<¼d;
endmodule

Listing B.2 Verilog module for the shift register.

Listing B.3 gives the module used to build the shift register.

//- -
// define shift register
// The shift register clock is rxclk which
// is controlled by the fsm.
// The protocol bits (st, sp1, and sp2) are
// shifted into their own FF's.
//- -

module shifter(rst,clk,din,QST,Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7,QSP1,QSP2);
input clk,rst,din;
output QST,Q0,Q1,Q2,Q3,Q4,Q5,Q6,Q7,QSP1,QSP2;
wire dst,d0, d1, d2, d3, d4, d5, d6, d7, dsp1, dsp2 ;

D_FF_qstd(QST,dst,clk,rst);
D_FF q0d(Q0,d0,clk,rst);
D_FF q1d(Q1,d1,clk,rst);
D_FF q2d(Q2,d2,clk,rst);
D_FF q3d(Q3,d3,clk,rst);
D_FF q4d(Q4,d4,clk,rst);
D_FF q5d(Q5,d5,clk,rst);
D_FF q6d(Q6,d6,clk,rst);
D_FF q7d(Q7,d7,clk,rst);
D_FF qsp1d(QSP1,dsp1,clk,rst);
D_FF qsp2d(QSP2,dsp2,clk,rst);
assign
// note the way that the flip flops have been connected up.
dst¼ Q0,
d0 ¼ Q1,
d1 ¼ Q2,
d2 ¼ Q3,
d3 ¼ Q4,
d4 ¼ Q5,
d5 ¼ Q6,

Asynchronous Receiver Details of Chapter 4 361

d6 ¼ Q7,
d7 ¼ QSP1,
dsp1 ¼ QSP2,
dsp2 ¼ din;

endmodule

Listing B.3 Test-bench module for the shift register.

A simulation of the shift register, illustrated in Figure B.12b, indicates that it is working

correctly.

A study of the din waveform and the output from the shift register at around the 300 ns

point shows that the shift register has received the incoming data, together with the protocol

bits.

B.9.2 Divide-by-11 Counter

The counter uses a synchronous pure binary up-counting sequence that counts up to 11 (1101

binary) and then stops. Its output is theRXFsignal. This goeshighwhen theeleventhclockpulse

is received.

Figure B.13a illustrates the divide-by-11 counter. This is made up of four T-type flip-

flops (shown here as D types with exclusive OR gate feedback in the circuit diagram). The

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D
Q0 Q2Q1 Q31

t0

t1

t2

t3

clk

rst

stop

stop

stop

stop

Divide by 11 counter with inhibit control

RXF output (receive
register full rxf input to

FSM)

q0
q1

q2

q0

(a)

Figure B.13 (a) Schematic circuit diagram of the divide-by-11 counter with inhibit control. (b) The

divide-by-11 counter simulation.

362 Appendix B

four-input NAND gate provides a stop control to inhibit the counter when the count value

reaches 11 (Q3Q2Q1Q0 ¼ 1011). The reset input rst is used to reset the counter back to

zero.

The Verilog code for this module is illustrated in Listing B.4 (all variables in lower case).

// define TFF
// Needed for the divide by 11 asynchronous counter.
module T_FF (q,t,clk,rst);
output q;
input t,clk,rst;
reg q;
always @ (posedge clk or negedge rst)
if (rst ¼¼ 0)

q<¼1'b0;
else

q<¼t^q;
endmodule

// Now define the counter.
module divideby11(Q0,Q1,Q2,Q3,clk,rst,RXF);

Divide by 11 counter showing details of counter outputs

Divide by 11 counter showing only the terminal inputs and outputs
 to the asynchronous receiver

0ns 50ns 100ns 150ns 200ns 250ns 300ns

test.rst

test.clk

test.RXF

0ns 50ns 100ns 150ns 200ns 250ns 300ns

test.rst

test.clk

test.Q0

test.Q1

test.Q2

test.Q3

test.RXF

(b)

Figure B.13 (Continued)

Asynchronous Receiver Details of Chapter 4 363

input clk, rst; //clk and rst are inputs.
output RXF,Q0,Q1,Q2,Q3; // all q/s outputs.
wire t0,t1,t2,t3,stop; //all t inputs are interconnecting wires.

// need to define instances of each TFF defined earlier.
T_FF ff0(Q0,t0,clk,rst);
T_FF ff1(Q1,t1,clk,rst);
T_FF ff2(Q2,t2,clk,rst);
T_FF ff3(Q3,t3,clk,rst);

// now define the logic connected to each t input.
// use an assign for this.
assign
t0¼1'b1&stop, // this is just following the technique
t1¼Q0&stop, // for binary counter design.
t2¼Q0&Q1&stop, // will generate AND gates..
t3¼Q0&Q1&Q2&stop,
stop ¼ �(Q0&Q1&�Q2&Q3), // to detect 11the clock pulse.
RXF ¼ �stop;
endmodule // end of the module counter.

Listing B.4 Verilog module for the divide-by-11 counter.

Note that the simulation stopsat theeleventhclockpulsedue to theNANDgate.This isused to

raise the RXF signal via an inverter operation. The RXF (receive register full flag) is used to

inform the FSM that the receiver shift register is full. It is cleared by the FSM after transferring

the shift register data bits to the octal data latch.

The simulation of this module is illustrated in Figure B.13b.

B.9.3 Complete Simulation of the Asynchronous Receiver Module
of Chapter 4

The complete asynchronous receiver with FSM defined in Section 4.7 can now be simulated.

The complete Verilog code is contained on the CDROM.

The simulation of the asynchronous receiver is shown in Figure B.14. Here, the only signals

visible are those of the complete block, although the secondary statevariables are also displayed

to showtheFSMstate sequence.The simulation starts byassertingenhigh, then theFSMsection

(signals not seen here) controls the operation of the shift register, divide-by-11 counter, and

output data latch.

The data are presented to the user when signal DRY goes high and acknowledged by the user

bringing signal ack high. TheFSM, in response, lowersDRY(andPD), and the user (optionally)

lowers ack to acknowledge the end of the transaction. Prior to loading receiveddata into the data

latch its contents are unknown (or the last received).

364 Appendix B

B.10 SUMMARY

This appendix has introduced simple ways to develop synchronous up and down pure binary

counters, with or without parallel-loading inputs that can be used in a PLD or FPGA device. It

has also described how parallel-loading shift registers can be developed and used.

These techniquesmaybeused todevelopVerilogHDLmodules foruse in someof thedesigns

covered in this book.Bit slice equations havebeen developed to allowcounters and shift register

circuits to be constructed directly in equation form in Verilog HDL.

Finally, some of these ideas have been used in the development of an asynchronous serial

receiver, complete with their Verilog modules.

0ns 200ns 400ns 600ns 800ns 1.0µs

test.rst

test.clk

test.din

test.en

test.ack

test.DRY

test.ERR

test.A

test.B

test.C

test.D

test.OQ0

test.OQ1

test.OQ2

test.OQ3

test.OQ4

test.OQ5

test.OQ6

test.OQ7

Figure B.14 The complete asynchronous receiver simulation.

Summary 365

