
10.3 Case Study 1: DC Motor Control

10.3.1 Introduction

In this case study, a digital controller is developed to control the speed of a DC

electric motor. The overall control system model will be developed in MATLAB� [9]

and its Simulink� [10] toolbox. The model of the control algorithm will then

be manually converted to VHDL code using a set design translation flow for

implementation as a digital controller using a CPLD. The design issues will be

captured and presented in a way that allows the VHDL code to be generated

automatically. The overall design flow is shown in Figure 10.7.
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Figure 10.7: Motor control case study design flow
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10.3.2 Motor Control System Overview

The control system is a closed-loop controller using PI (proportional plus integral)

control [11, 12]. Other forms of control algorithm such as PID (proportional plus

integral plus derivative) could be used, but the added complexity is unnecessary in this

case. The particular control algorithm was chosen based on the requirements of the

motor (the plant to control) and the required system response. As such, PI control

provides zero steady-sate error in the motor speed (a motor speed steady-state error

would exist if only proportional control was used) and a design simple to implement

and easy to understand. The coefficients of each action within the PI control law are set

to give a response that settles to a steady state in an adequately short time. The initial

step in the design is to create the control system block diagram, shown in Figure 10.8.

The controller receives two analogue signals (voltages): first the command input that

sets the required motor speed, then a feedback input that identifies the actual speed of

the motor. In this control system model, then:

• The motor is modeled as a Laplace transform with the transfer function

[1/(1+0.1s)].

• The analogue input range for the controller is 0 V to+5.0 V, which indicates a

speed in both directions of motor shaft rotation, where:

* 0 V indicates a maximum motor shaft speed in an anticlockwise direction.

* +5.0 V indicates a maximum motor shaft speed in a clockwise direction.

* +2.5 V indicates that the motor shaft is stationary.
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Figure 10.8: Motor control system example with PI control
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• The proportional action (Kp) gain is +2.0, and the integral action gain (Ki) is

+8.0 (not optimized).

• This is a high-level behavioral model (and a linear model of the system) that

does not take into account nonlinear effects such as value limits, slew rate

effects, and any existing motor dead zone.

• The motor model contains a tachogenerator (sensor) that produces an

analogue voltage output in the range 0 V to +5.0 V.

• The command input (required speed) and actual motor speed outputs are

considered to be voltages, and the motor shaft speed uses suitable units (e.g.,

rads/sec).

• The model uses the built-in Simulink� library continuous time blocks, and no

design hierarchy has been developed.

• The digital controller is required to sample analogue signals and to undertake

digital signal processing on the discrete time samples. The sampling frequency

for this design is 100 Hz, a slow sampling frequency compared to many

control systems, but adequate for this application.

• The model uses only continuous time blocks, so when the digital controller

is created, the analogue model prototype must be converted to a digital

approximation. Those parts of the controller to be mapped to a digital

algorithm modeled in VHDL must therefore be identified.

The motor model used is a simple first-order Laplace transform that models the

motor and tachogenerator as a single unit. This was created by monitoring the

tachogenerator output voltage to a step change in motor speed command input

voltage. This is reasonably representative of the motor reaction to larger step

changes in command input, but does not model nonideal characteristics such as a

motor dead zone around a null (zero) command input and the need to minimize

the command input voltage required for the motor to react to a command input

change.

A full analysis of the control system is undertaken to determine that the derived

control algorithm is suitable for the application. This analysis is not, however,

covered in this text.
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At this level of design abstraction (i.e., a simplified model of the system), none of the

implementation issues have been considered and only a mathematical model of the

system exists. But of course, ultimately, the system must be built using electronic

circuits. The basic arrangement created for such a control system is shown in

Figure 10.9. Here, the CPLD implements the digital control algorithm and interfaces
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Figure 10.9: Motor speed control circuit arrangement

664 Chapter 10

www.newnespress.com



to two ADCs (analogue-to-digital converters, to sample the analogue input voltages

for the command input and the feedback) and one DAC (digital-to-analogue

converter, to output an analogue voltage to create the motor voltage). This DAC

output voltage is applied to a transistor power amplifier (because the DAC would not

be able to provide the necessary voltage and current levels required by the DC motor).

Op-amp based analogue circuitry is used on the ADC inputs and DAC outputs as

necessary to provide specific low-power analogue signal conditioning. A power

supply unit provides the necessary voltage and current levels required by the overall

circuit. Finally, a PC is used here to configure the CPLD.

10.3.3 MATLAB�/Simulink� Model Creation and Simulation

Before considering how controller is to be implemented, the control law (algorithm)

must be developed and analyzed. An example Simulink� model for this system is

shown in Figure 10.10.

The controller is placed within a single block (the controller block), and the motor

(motor model) is modeled using as a first-order system a Laplace transform equation.

The motor model also contains the tachogenerator output, so the output from the
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Figure 10.10: Simulink� model for the motor control system case study
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system is modeled as the tachogenerator voltage (which represents the motor shaft

speed). This equation was obtained from the motor itself by applying directly a step

input voltage to the motor and observing the tachogenerator voltage. A signal

generator (signal generator block) allows different signals to be applied to the system.

The design is analyzed using both hand calculations and the Simulink� simulator,

with typical analogue input signals (step, sine wave, DC, triangle, and ramp) as part

of the overall system analysis routine. A frequency response could be undertaken by

generating a model for frequency analysis in MATLAB�.

The PI controller is shown in Figure 10.11.

The control system is simulated, and the gain values for the proportional and integral

actions are set so that the required response is obtained: a stable system with a transient

response that matches the requirements of the design specification. For a proportional

gain of+2.0 and an integral gain of+8.0 (not optimized), the system response (i.e., motor

shaft speed) produces an overdamped response to a step input as shown in Figure 10.12.

10.3.4 Translating the Design to VHDL

After the analysis of the system has been completed, the digital controller model is

translated to VHDL code suitable for simulation and synthesis. This requires that the

VHDL code be generated according to a set design translation flow in the following

eight steps:

1. Translation preparation (according to the nine steps below).

2. Set the architecture details (according to the six steps below).
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Figure 10.11: Simulink� model for the PI controller
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3. Translation from Simulink� model to VHDL code by reading the

Simulink� model, extracting the necessary design information, and

generating the VHDL code.

4. Generate VHDL test bench.

5. Simulate the VHDL code and check for correct operation to validate the

operation of the generated VHDL code.

6. Synthesize the VHDL code and resimulate the design to generate a structural

design based on the particular target technology.

7. Configure the CPLD and validate the operation of the design.

8. Use the controller.

The nine steps of translation preparation are:

1. Identify the parts to be translated into digital (the controller).

2. Remove any unnecessary information, leaving only the controller model.

3. Identify the digital controller interfacing.
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Figure 10.12: Simulation results for step change
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4. Identify the clock and reset inputs, along with any other control signals.

5. Identify any external communications required.

6. Set up the support necessary to include the translation directives (see

architecture details below).

7. Identify the technology directives (any requirements for the target

technology, such as CPLD) and the synthesis tool to be used.

8. Identify any designer directives.

9. Determine what test circuitry is to be inserted into the design and at what

stage in the design process.

The six steps to set the architecture details are:

1. Identify the particular architecture to use.

2. Identify the internal wordlength within the digital signal processing part of

the digital core.

3. Identify any specific circuits to avoid (e.g., specific VHDL code constructs).

4. Identify the control signals required by the I/O.

5. Identify the number system to use (e.g., 2s complement) in the arithmetic

operations.

6. Identify any number scaling requirements to limit the required wordlength

within the design.

The model translation must initially consider the architecture to use either a

processor-based architecture running a software application (standard fixed

architecture processor or a configurable processor) or a custom hardware architecture

based directly on the model. This idea is shown in Figure 10.13.

If the translation is to be performed manually, this can be undertaken by visual reference

to the graphical representation of the model (i.e., the block diagram). If the translation

is to be performed automatically (by a software application), the translation can be

performed using the underlying text based model (i.e., with the Simulink�.mdl file).

A fixed architecture processor is based on an existing CISC or RISC architecture, and

its translation either will generate the hardware design (in HDL) and the processor
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microcode together, or will generate only the processor microcode using an existing

processor design. The configurable processor is a processor design that dynamically

changes specific aspects of the architecture based on the particular application.

Direct mapping starts with the model as presented and directly translates its functions

to a custom hardware HDL code equivalent. Customized mapping uses custom

architecture based on the model, but then determines the most appropriate way to

implement its functions (e.g., by using multiple multiplication blocks or a single

multiplexed multiplier block) based on the application.

No matter what particular architecture is chosen, in addition to generating the

required digital signal processing algorithm hardware (as identified in the system

block diagram), then there would be the need to also generate the necessary

interfacing signals for external circuitry such as ADCs and DACs, and the internal

timing signals for the control of the signal processing operations, along with the

storage and movement of data signals within the design. These interfacing and

internal timing signals would need to be created by an additional circuit creating

the functions of a control unit particular to the design.

In this case study, direct mapping of model functions will be considered, so the

controller shown in Figure 10.11 will be translated. This requires the use of the

following main functional blocks:

• one subtraction block

• one addition block

Architecture

Processor

Custom
Hardware

Fixed architecture

Configurable

Direct mapping

Customized mapping

Figure 10.13: Controller architecture decisions
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• one proportional action

• one integral action (shown as the integral gain and integrator action blocks)

One complication with this model is that it was created using continuous time blocks as

an analogue prototype of the digital controller. The Simulink� model uses Laplace

transforms, which much be approximated to a pulse transfer function for discrete time

implementation. The pulse transfer function G(z) is created from the Laplace (s)

transform form using one of the following methods where T is the signal sampling period:

1. Forward difference or Euler’s method:

s ¼ z� 1

T

2. Backward difference method:

s ¼ z� 1

zT

3. Tustin’s approximation (also referred to as the bilinear transform):

s ¼ 2

T
:
z� 1

zþ 1

These methods are readily applied by hand to transform from s to z.

In this case study, Tustin’s approximation is used. It applies only to the integral action

since the proportional action is simply a multiplication on the sampled data.

The proportional action (using Z-transforms) is:

PðzÞ ¼ Kp:XðzÞ

The integral action (using Z-transforms) is:

IðzÞ ¼ KiT

2

� �
xðzÞ þ xðzÞz�1
� �� �

þ IðzÞz�1

The PI controller block diagram can be remodeled using Z-transforms, as shown

in Figure 10.14. The two storage (z–1) blocks have a common clock signal that controls

when the inputs to the blocks are stored. This control signal must be created. The
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controller block shown in Figure 10.14 forms the digital signal processing core of the

overall controller design. Figure 10.15 shows this core along with the necessary control

unit that generates the internal control signals based on the timing requirements of the

controller. The inputs to the controller are sampled at a sampling frequency of 100 Hz;

this timing is generated from a master input clock. After the algorithm has been run on

the current input signal (and previous inputs along with previous outputs), the current

output is updated. Because these actions are performed in less time than the 100Hz

sampling frequency allows, the design must wait until the next sample is required. This

idea is shown in Figure 10.16.

Signed arithmetic is used inside the control algorithm hardware (2s complement in this case

study). To achieve this, and given that the input is straight binary, the sampled value must

be stored (in a register) and converted to a 2s complement number, as shown in Table 10.3.

Finally, the interconnects between the main functional blocks must be considered.

The inputs are analogue inputs sampled using two AD7575 eight-bit LC2MOS

(leadless chip carrier metal oxide semiconductor) successive approximation ADCs

[13]. The output is an analogue signal created using a single AD7524 eight-bit

buffered multiplying DAC [14]. The internal wordlength is 16 bits, so the eight-bit

input and analogue output is transformed from 16-bit input and output. The eight-bit
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Figure 10.14: Discrete time PI controller
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output circuitry must also include value limiting because the 16-bit internal value

exceeds the value limits set by the eight-bit output.

The Simulink� model for the overall control system must be reviewed and

should contain:

• information for translation to VHDL

• information not for translation to VHDL

Start

Take sample

Run algorithm

Update output

Wait for next
sample time

Figure 10.16: PI controller operation flowchart

Table 10.3: Binary I/O to internal value mapping

Digital I/O code,
decimal

Digital I/O code
(8-bits), binary

Internal code,
decimal

Internal code
(8-bits), binary

0 00000000 ! –128 10000000
127 01111111 ! –1 11111111
128 10000000 ! 0 00000000
255 11111111 ! +127 01111111
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The information not for translation to VHDL includes information such as visual

attributes and software version information and must be stripped from the

representation of the model used for translation to VHDL. The Simulink�

model code for the controller only is shown in Figure 10.17. This is the text

description of the model shown in Figure 10.11. It consists of the blocks used,

their attributes, and the interconnect between the blocks (lines). Interpreting this

model requires knowledge of its syntax and how the values that can be modified

by the user are represented. The syntax is readable, and the names used are

identifiable by comparison with the block diagram view.

This model for the controller can be remodeled in VHDL, shown in Figure 10.18

as a structural description for the control algorithm. Detailed operation of each

block is defined in separate entity-architecture pairs.

The Xilinx ISETM RTL schematic for the synthesized controller design is shown in

Figure 10.19.

This control algorithm is placed in the overall VHDL structural description of the

controller, as shown in Figure 10.20.

The Xilinx ISETM RTL schematic for the synthesized controller design is shown in

Figure 10.21.

The final step is to generate and simulate a VHDL test bench for the controller.

An example VHDL test bench is shown in Figure 10.22.

10.3.5 Concluding Remarks

This case study design was for a simple digital control algorithm, but it also shows the

main operations required for typical digital control algorithms. The VHDL code to

implement the design within a CPLD was created by mapping the original Simulink�

block diagram to a VHDL code equivalent in which each of the main functional

blocks was presented as a unique entity-architecture pair. The structural design of

the controller top level and the control algorithm were presented, although the details

of the individual operations are left for the reader to implement.

The block diagram was mapped directly to VHDL to implement a custom hardware

design. In many cases, this would result in a large design, particularly when multiple

multiplications are necessary. However here, the ease and rapid development of the

674 Chapter 10

www.newnespress.com



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

System {
Name       "Controller"

    Block {
      BlockType              Inport
      Name       "Command"
      Position       [20, 73, 50, 87]
    }
    Block {
      BlockType              Inport
      Name       "Feedback"
      Position       [140, 225, 170, 240]
      Orientation       "up"
      Port       "2"
    }
    Block {
      BlockType Integrator
      Name       "Integral_Action"
      Ports       [1, 1]
      Position       [355, 155, 385, 185]
    }
    Block {
      BlockType              Gain
      Name       "Integral_Gain"
      Position       [260, 155, 290, 185]
      Gain       "8"
    }
    Block {
      BlockType              Gain
      Name       "Proportional_Gain"
      Position       [285, 65, 315, 95]
      Gain       "2"
    }
    Block {

BlockType              Sum
      Name       "Sum"

Ports       [2, 1]
      Position       [145, 70, 165, 90]
      ShowName       off
      IconShape       "round"
      Inputs       "|+-"
      InputSameDT       off
      OutDataTypeMode       "Inherit via internal rule"

}
    Block {
      BlockType       Sum
      Name       "Sum1"

Ports       [2, 1]
      Position       [430, 70, 450, 90]
      ShowName       off
      IconShape       "round"

46
47
48
49

      Inputs       "|++"
      InputSameDT       off
      OutDataTypeMode       "Inherit via internal rule"
    }

Figure 10.17: Simulink� model for the PI controller
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50
51
52
53
54
55
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58
59
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64
65
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67
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71
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73
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77
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79
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81
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85
86
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    Block {
      BlockType        Outport
      Name                   "Controller_Out"
      Position               [525, 73, 555, 87]
    }
    Line {
      SrcBlock       "Sum"
      SrcPort       1
      Points       [0, 0; 45, 0]
      Branch {

DstBlock "Proportional_Gain"
DstPort 1

      }
      Branch {

Points [0, 90]
DstBlock "Integral_Gain"
DstPort 1

      }
    }
    Line {
      SrcBlock       "Integral_Gain"
      SrcPort       1
      DstBlock       "Integral_Action"
      DstPort       1
    }
    Line {
      SrcBlock       "Proportional_Gain"

SrcPort       1
      DstBlock       "Sum1"

DstPort       1
    }
    Line {
      SrcBlock       "Integral_Action"
      SrcPort       1
      Points       [50, 0]
      DstBlock       "Sum1"
      DstPort       2
    }
    Line {
      SrcBlock       "Command"

SrcPort       1
      DstBlock       "Sum"

DstPort       1
    }
    Line {
      SrcBlock       "Feedback"

SrcPort       1
      DstBlock       "Sum"

DstPort       2
    }98

99
100
101
102
103
104
105

    Line {
      SrcBlock       "Sum1"
      SrcPort       1
      DstBlock       "Controller_Out"
      DstPort       1
    }
  }

Figure 10.17: (Continued)
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LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
USE ieee.std_logic_unsigned.all; 

ENTITY Control_Algorithm IS 
    PORT ( Command             : IN   STD_LOGIC_VECTOR (15 downto 0); 
           Feedback            : IN   STD_LOGIC_VECTOR (15 downto 0); 
           Controller_Out      : OUT  STD_LOGIC_VECTOR (15 downto 0); 
           Integrator_Store_1  : IN   STD_LOGIC; 
           Integrator_Store_2  : IN   STD_LOGIC; 
           Reset               : IN   STD_LOGIC); 

END ENTITY Control_Algorithm; 

ARCHITECTURE Structural OF Control_Algorithm IS 

SIGNAL   Error         :  STD_LOGIC_VECTOR (15 downto 0); 
SIGNAL   Proportional  :  STD_LOGIC_VECTOR (15 downto 0); 
SIGNAL   Int_1         :  STD_LOGIC_VECTOR (15 downto 0); 
SIGNAL   Int_2         :  STD_LOGIC_VECTOR (15 downto 0); 
SIGNAL   Int_3         :  STD_LOGIC_VECTOR (15 downto 0); 
SIGNAL   Int_4         :  STD_LOGIC_VECTOR (15 downto 0); 
SIGNAL   Integral      :  STD_LOGIC_VECTOR (15 downto 0); 

COMPONENT Adder IS 
    PORT ( Data_In_1 : IN   STD_LOGIC_VECTOR (15 downto 0); 
           Data_In_2 : IN   STD_LOGIC_VECTOR (15 downto 0); 
           Data_Out  : OUT  STD_LOGIC_VECTOR (15 downto 0)); 

END COMPONENT Adder; 

COMPONENT Subtractor IS 
    PORT ( Data_In_1 : IN   STD_LOGIC_VECTOR (15 downto 0); 
           Data_In_2 : IN   STD_LOGIC_VECTOR (15 downto 0); 
           Data_Out  : OUT  STD_LOGIC_VECTOR (15 downto 0)); 

END COMPONENT Subtractor; 

COMPONENT Integral_Gain IS 
    PORT ( Data_In  : IN   STD_LOGIC_VECTOR (15 downto 0); 
           Data_Out : OUT  STD_LOGIC_VECTOR (15 downto 0)); 

END COMPONENT Integral_Gain; 

COMPONENT Proportional_Gain IS 
    PORT ( Data_In  : IN   STD_LOGIC_VECTOR (15 downto 0); 
           Data_Out : OUT  STD_LOGIC_VECTOR (15 downto 0)); 

END COMPONENT Proportional_Gain; 

Figure 10.18: VHDL model for the control algorithm
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COMPONENT Delay IS 
    PORT ( Data_In   :  IN   STD_LOGIC_VECTOR (15 downto 0); 
           Data_Out  :  OUT  STD_LOGIC_VECTOR (15 downto 0); 
           Store     :  IN   STD_LOGIC; 
           Reset     :  IN   STD_LOGIC); 

END COMPONENT Delay; 

BEGIN

I1 : Subtractor 
     PORT MAP  ( Data_In_1  =>  Command, 
                 Data_In_2  =>  Feedback, 
                 Data_Out   =>  Error); 
       
I2 : Proportional_Gain 
     PORT MAP  ( Data_In    =>  Error, 
                 Data_Out   =>  Proportional); 
I3 : Adder 
     PORT MAP  ( Data_In_1  =>  Proportional, 
                 Data_In_2  =>  Integral, 
                 Data_Out   =>  Controller_Out); 

74
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96
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I4 : Integral_Gain 
     PORT MAP  ( Data_In    =>  Error, 
                 Data_Out   =>  Int_1); 
I5 : Delay 
     PORT MAP  ( Data_In    =>  Int_1,
                 Data_Out   =>  Int_2, 
                 Reset      =>  Reset, 
                 Store      =>  Integrator_Store_1); 

I6 : Adder 
     PORT MAP  ( Data_In_1  =>  Int_1, 
                 Data_In_2  =>  Int_2, 
                 Data_Out   =>  Int_3); 

I7 : Adder 
     PORT MAP  ( Data_In_1  =>  Int_3, 
                 Data_In_2  =>  Int_4, 
                 Data_Out   =>  Integral); 

I8 : Delay 
     PORT MAP  ( Data_In    =>  Integral,
                 Data_Out   =>  Int_4, 
                 Reset      =>  Reset, 
                 Store      =>  Integrator_Store_2); 

END ARCHITECTURE Structural;

Figure 10.18: (Continued)
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Figure 10.19: Digital control algorithm synthesis results (CoolrunnerTM-II CPLD)
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LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
USE ieee.std_logic_unsigned.all;

ENTITY Controller IS 
    PORT ( Command_ADC_BUSY  : IN   STD_LOGIC; 
           Command_ADC_TP    : OUT  STD_LOGIC; 
           Command_ADC_RD    : OUT  STD_LOGIC; 
           Command_ADC_CS    : OUT  STD_LOGIC; 
           Command_ADC_Data  : IN   STD_LOGIC_VECTOR (7 downto 0);
           Feedback_ADC_BUSY : IN   STD_LOGIC; 
           Feedback_ADC_TP   : OUT  STD_LOGIC; 
           Feedback_ADC_RD   : OUT  STD_LOGIC; 
           Feedback_ADC_CS   : OUT  STD_LOGIC; 
           Feedback_ADC_Data : IN   STD_LOGIC_VECTOR(7 downto 0);
           Controller_DAC_WR : OUT  STD_LOGIC; 
           Controller_DAC_CS : OUT  STD_LOGIC; 
           Controller_Out    : OUT  STD_LOGIC_VECTOR(7 downto 0);
           Master_Clock      : IN   STD_LOGIC; 
           Master_Reset      : IN   STD_LOGIC); 

END ENTITY Controller; 

ARCHITECTURE Structural OF Controller IS 

SIGNAL Command_Int         :  STD_LOGIC_VECTOR (15 downto 0); 
SIGNAL Feedback_Int        :  STD_LOGIC_VECTOR (15 downto 0); 
SIGNAL Controller_Out_Int  :  STD_LOGIC_VECTOR (15 downto 0); 
SIGNAL Store_Command       :  STD_LOGIC; 
SIGNAL Store_Feedback      :  STD_LOGIC; 
SIGNAL Update_Out          :  STD_LOGIC; 
SIGNAL Integrator_Store_1  :  STD_LOGIC; 
SIGNAL Integrator_Store_2  :  STD_LOGIC; 

COMPONENT Control_Algorithm IS 
    PORT ( Command : IN  STD_LOGIC_VECTOR(15 downto 0);
           Feedback : IN  STD_LOGIC_VECTOR(15 downto 0);
           Controller_Out : OUT STD_LOGIC_VECTOR(15 downto 0);
           Integrator_Store_1 : IN  STD_LOGIC; 
           Integrator_Store_2 : IN  STD_LOGIC; 
           Reset              : IN  STD_LOGIC); 

END COMPONENT Control_Algorithm; 

Figure 10.20: VHDL model for the controller
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           Feedback_ADC_CS       : OUT  STD_LOGIC;     
           Controller_DAC_WR     : OUT  STD_LOGIC; 
           Controller_DAC_CS     : OUT  STD_LOGIC; 
           Store_Command         : OUT  STD_LOGIC; 
           Store_Feedback        : OUT  STD_LOGIC; 
           Update_Out            : OUT  STD_LOGIC; 
           Integrator_Store_1    : OUT  STD_LOGIC; 
           Integrator_Store_2    : OUT  STD_LOGIC); 
END COMPONENT Control_Unit; 

COMPONENT Input_Register IS 
    PORT ( Data_In   :  IN   STD_LOGIC_VECTOR (7 downto 0); 
           Data_Out  :  OUT  STD_LOGIC_VECTOR (15 downto 0); 
           Store     :  IN   STD_LOGIC; 
           Reset     :  IN   STD_LOGIC); 
END COMPONENT Input_Register; 

COMPONENT Output_Register IS 
    PORT ( Data_In   :  IN   STD_LOGIC_VECTOR (15 downto 0); 
           Data_Out  :  OUT  STD_LOGIC_VECTOR (7 downto 0); 
           Store     :  IN   STD_LOGIC; 
           Reset     :  IN   STD_LOGIC); 
END COMPONENT Output_Register; 

BEGIN

COMPONENT Control_Unit IS 
    PORT ( Master_Clock          : IN   STD_LOGIC; 
           Master_Reset          : IN   STD_LOGIC; 
           Command_ADC_BUSY      : IN   STD_LOGIC; 
           Command_ADC_TP        : OUT  STD_LOGIC; 
           Command_ADC_RD        : OUT  STD_LOGIC; 
           Command_ADC_CS        : OUT  STD_LOGIC; 
           Feedback_ADC_BUSY     : IN   STD_LOGIC; 
           Feedback_ADC_TP       : OUT  STD_LOGIC; 
           Feedback_ADC_RD       : OUT  STD_LOGIC; 

I1 : Control_Algorithm 
     PORT MAP(  Command              =>  Command_Int,
                Feedback             =>  Feedback_Int,
                Controller_Out       =>  Controller_Out_Int,
                Integrator_Store_1   =>  Integrator_Store_1, 
                Integrator_Store_2   =>  Integrator_Store_2, 

Figure 10.20: (Continued)
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I2 : Control_Unit 
     PORT MAP(  Master_Clock         =>  Master_Clock, 
                Master_Reset         =>  Master_Reset, 
                Command_ADC_BUSY     =>  Command_ADC_BUSY, 
                Command_ADC_TP       =>  Command_ADC_TP, 
                Command_ADC_RD       =>  Command_ADC_RD, 
                Command_ADC_CS       =>  Command_ADC_CS, 
                Feedback_ADC_BUSY    =>  Feedback_ADC_BUSY, 
                Feedback_ADC_TP      =>  Feedback_ADC_TP, 
                Feedback_ADC_RD      =>  Feedback_ADC_RD, 
                Feedback_ADC_CS      =>  Feedback_ADC_CS, 
                Controller_DAC_WR    =>  Controller_DAC_WR, 
                Controller_DAC_CS    =>  Controller_DAC_CS, 
                Store_Command        =>  Store_Command, 
                Store_Feedback       =>  Store_Feedback, 
                Update_Out           =>  Update_Out, 
                Integrator_Store_1   =>  Integrator_Store_1, 
                Integrator_Store_2   =>  Integrator_Store_2); 

I3 : Input_Register 
     PORT MAP ( Data_In              =>  Command_ADC_Data, 
                Data_Out             =>  Command_Int, 
                Store                =>  Store_Command, 
                Reset                =>  Master_Reset); 
      
       
I4 : Input_Register 
     PORT MAP ( Data_In              =>  Feedback_ADC_Data, 
                Data_Out             =>  Feedback_Int, 
                Store                =>  Store_Feedback, 
                Reset                =>  Master_Reset);  

I5 : Output_Register 
     PORT MAP ( Data_In              =>  Controller_Out_Int, 
                Data_Out             =>  Controller_Out, 
                Store                =>  Update_Out, 
                Reset                =>  Master_Reset);  

           END ARCHITECTURE Structural; 

                Reset                =>  Master_Reset); 

Figure 10.20: (Continued)
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Figure 10.21: Digital controller synthesis results (CoolrunnerTM-II CPLD)
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LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
USE ieee.std_logic_unsigned.all; 

ENTITY Test_Controller_vhd IS 
END Test_Controller_vhd; 

ARCHITECTURE Behavioural OF Test_Controller_vhd IS  

COMPONENT Controller 
PORT( 
  Command_ADC_BUSY     : IN  STD_LOGIC; 
  Command_ADC_Data     : IN  STD_LOGIC_VECTOR(7 downto 0); 
  Feedback_ADC_BUSY    : IN  STD_LOGIC; 
  Feedback_ADC_Data    : IN  STD_LOGIC_VECTOR(7 downto 0); 
  Master_Clock         : IN  STD_LOGIC; 
  Master_Reset         : IN  STD_LOGIC;           
  Command_ADC_TP       : OUT STD_LOGIC; 
  Command_ADC_RD       : OUT STD_LOGIC; 
  Command_ADC_CS       : OUT STD_LOGIC; 
  Feedback_ADC_TP      : OUT STD_LOGIC; 
  Feedback_ADC_RD      : OUT STD_LOGIC; 
  Feedback_ADC_CS      : OUT STD_LOGIC; 
  Controller_DAC_WR    : OUT STD_LOGIC; 
  Controller_DAC_CS    : OUT STD_LOGIC; 
  Controller_Out       : OUT STD_LOGIC_VECTOR(7 downto 0)); 
END COMPONENT; 

SIGNAL Command_ADC_BUSY    :  STD_LOGIC := '0'; 
SIGNAL Feedback_ADC_BUSY   :  STD_LOGIC := '0'; 
SIGNAL Master_Clock        :  STD_LOGIC := '0'; 
SIGNAL Master_Reset        :  STD_LOGIC := '0'; 
SIGNAL Command_ADC_Data    :  STD_LOGIC_VECTOR(7 downto 0) := (others=>'0'); 
SIGNAL Feedback_ADC_Data   :  STD_LOGIC_VECTOR(7 downto 0) := (others=>'0'); 

SIGNAL Command_ADC_TP      :  STD_LOGIC; 
SIGNAL Command_ADC_RD      :  STD_LOGIC; 
SIGNAL Command_ADC_CS      :  STD_LOGIC; 
SIGNAL Feedback_ADC_TP     :  STD_LOGIC; 
SIGNAL Feedback_ADC_RD     :  STD_LOGIC; 
SIGNAL Feedback_ADC_CS     :  STD_LOGIC; 
SIGNAL Controller_DAC_WR   :  STD_LOGIC; 
SIGNAL Controller_DAC_CS   :  STD_LOGIC; 
SIGNAL Controller_Out      :  STD_LOGIC_VECTOR(7 downto 0); 

Figure 10.22: VHDL test bench for the controller
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BEGIN 

uut: Controller PORT MAP( 
  Command_ADC_BUSY   =>  Command_ADC_BUSY, 
  Command_ADC_TP     =>  Command_ADC_TP, 
  Command_ADC_RD     =>  Command_ADC_RD, 
  Command_ADC_CS     =>  Command_ADC_CS, 
  Command_ADC_Data   =>  Command_ADC_Data, 
  Feedback_ADC_BUSY  =>  Feedback_ADC_BUSY, 
  Feedback_ADC_TP    =>  Feedback_ADC_TP, 
  Feedback_ADC_RD    =>  Feedback_ADC_RD, 
  Feedback_ADC_CS    =>  Feedback_ADC_CS, 
  Feedback_ADC_Data  =>  Feedback_ADC_Data, 
  Controller_DAC_WR  =>  Controller_DAC_WR, 
  Controller_DAC_CS  =>  Controller_DAC_CS, 
  Controller_Out     =>  Controller_Out, 
  Master_Clock       =>  Master_Clock, 
  Master_Reset       =>  Master_Reset); 

Reset_Process : PROCESS 
 BEGIN 

 Wait for 0 ns;  Master_Reset <= '0'; 
 Wait for 5 ns;  Master_Reset <= '1'; 
 Wait; 

END PROCESS; 

Clock_Process : PROCESS 
 BEGIN 

 Wait for 0 ns;  Master_Clock <= '0'; 
 Wait for 10 ns; Master_Clock <= '1'; 
 Wait for 10 ns; Master_Clock <= '0'; 

END PROCESS; 

ADC_Data_Process : PROCESS 
 BEGIN 

        Wait for 0 ns;    Command_ADC_Data <= "00000000";    
                          Feedback_ADC_Data <= "00000000"; 
 Wait; 

END PROCESS; 

ADC_Busy_Process : PROCESS 

Figure 10.22: (Continued)

System-Level Design 685

www.newnespress.com


