
VHDL code by a direct mapping for this small design reduced the design time. The

multiplications were undertaken within the Proportional_Gain and Integrator_Gain

blocks. The design can use either a full 16� 16 multiplier design or a shift-and-add

approach. Given that the multiplications are fixed and relatively simple, a full

multiplier design can be expected to produce a larger hardware design than

necessary.

An internal wordlength of 16 bits is used in this case study and must be considered

in the calculations performed. Where the potential for number overflow existed, this

was prevented either by ensuring that the internal values are never large enough to

create an overflow, or if an overflow situation does occur, by saturating the output

from a computation to the limits set by the wordlength. The internal multiplication

within the integrator gain also produces a number with integer and fractional parts.

Therefore, for a fixed-point calculation, the lower part of the 16-bit wordlength must

be used to represent the fractional part, and the upper part must be used to represent

the integer part. Placing the decimal point in the number is a design decision. If the

finite wordlength creates errors in calculations, that information is fed back to the

original simulation model for the control system and used to modify the controller.

10.4 Case Study 2: Digital Filter Design

10.4.1 Introduction

Digital filters perform the operations of addition, subtraction, multiplication, and

division on sampled data. Among the types of digital filter are the infinite impulse

response (IIR) filter, the finite impulse response (FIR) filter [15], and the

105
106
107
108
109
110
111
112
113
114

 BEGIN

 Wait for 0 ns; Command_ADC_BUSY <= '0';
 Feedback_ADC_BUSY <= '0';
 Wait;

END PROCESS;

END ARCHITECTURE Behavioural;

Figure 10.22: (Continued)

686 Chapter 10

www.newnespress.com

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

computationally efficient cascaded integrator comb (CIC) filter [16]. The CIC filter is

widely used in decimation and interpolation in communications systems:

• Decimation is the process of sample rate reduction. Where a signal is sampled

at a particular sampling rate, a decimator reduces the original sample rate

(fs) to a lower rate (fs/M). For example, if a signal is sampled at 10 kHz and

M=5, a decimator outputs a value once every M samples and discards the

other (M – 1) samples. When M=5, the sample rate is reduced from 10 kHz

to 2 kHz.

• Interpolation is the process of sample rate increase. Where a signal is

sampled at a particular sampling rate, the interpolation process increases

the sample rate (fs) to a higher rate (Lfs). For example, if a signal is sampled

at 10 kHz and L=5, an interpolator outputs a value at an increased

rate of 50 kHz. The input sample is output once every L output values,

and the interpolator will fill the remaining (L – 1) output values with a

zero value.

This idea is shown in Figure 10.23.

Decimation and interpolation functions are used in communications systems and in

circuits such as the digital signal conditioning circuitry within sigma-delta modulator

architecture ADCs and DACs. For example, CIC filters are suited for digital anti-

aliasing filtering prior to decimation; a typical arrangement is shown in Figure 10.24.

Here, the input is applied to the CIC filter, and the output from the CIC filter is

applied to an FIR filter.

↓M

(a) Decimation

(b) Interpolation

↑L

x(n)

x(n)

y(m)

y(m)

Figure 10.23: Decimation and interpolation

System-Level Design 687

www.newnespress.com

A CIC filter used in interpolation is shown in Figure 10.25. Here, the input is applied

to the FIR filter, and the output from the FIR filter is applied to an CIC filter.

In this case study, a third-order digital CIC filter will be developed to filter a single-bit

bitstream pattern. The overall filter model will be developed inMATLAB� [9] and its

Simulink� toolbox [10]. The model of the filter algorithmwill then be manually

converted to VHDL code using a set design translation flow for implementation as a

digital filterusingaCPLD.Thedesign issueswill be capturedandpresented inaway that

allowstheVHDLcodetobegeneratedautomatically.Theoveralldesignflowis shownin

Figure 10.26.

10.4.2 Filter Overview

The CIC filter consists of an integrator section and a comb section. The integrator

implements integration of the signal, and the comb implements differentiation on the

signal. The operation of the CIC filter is well explained in many texts, so it is not

considered further here. For use in decimation, the CIC filter has the form shown in

Figure 10.27. This design is for a third-order CIC filter with three integrator and three

FIR filterx(n) y(m)
CIC filter

and
interpolation

Input signal at a
rate of fs

CIC input signal
at a rate of fs

Filter output signal
at a rate of Lfs

Figure 10.25: CIC filter in interpolation

CIC filter
and

decimation
x(n) y(m)FIR filter

Input signal at a
rate of fs

CIC output signal
at a rate of fs/M

Filter output signal
at a rate of fs/M

Figure 10.24: CIC filter in decimation

688 Chapter 10

www.newnespress.com

comb circuits. (A fourth-order CIC filter would use four integrators and four comb

circuits, etc.) Variations on this basic structure are possible. Note that the decimator is

placed between the integrator and comb parts of the design.

The integrator is modeled using Z-transforms as:

OutputðzÞ
InputðzÞ ¼ 1

1� z�1

� �

Idea

Digital filter design
requirements

Capture idea

Create simulation model and
generate filter design

Digital filter design
requirements

Digital filter
simulation model

Translate digital filter model to
VHDL code suitable for

simulation and synthesis

Digital filter
 VHDL code

Digital filter
VHDL test bench

Design translation
directives

Technology directives

Designer directives

Figure 10.26: CIC filter case study design flow

System-Level Design 689

www.newnespress.com

The differentiator is modeled using Z-transforms as:

OutputðzÞ
InputðzÞ ¼ 1� z�1

� �

Each delay block has a control signal to store the input to the delay. Note that

these forms for the integrator and differentiator differ from those presented in

Chapter 7.

10.4.3 MATLAB�/Simulink� Model Creation and Simulation

Before considering how the controller is to be implemented, the algorithm must

be developed and analyzed. An example Simulink� model for this system is

shown in Figure 10.28.

Here, the CIC filter is separated into the integrator and differentiator parts.

Within the integrators, the inputs are sampled at a sampling rate of fs. Within

↓M

x(n)

y(m)

z–1 z–1 z–1

Integrator (× 3 integrators)

Comb (× 3 differentiators)

Decimator

z–1

+

+

+

–

+

–

+

–

z–1

+

+
z–1

+

+

Figure 10.27: Third-order CIC filter in decimation

690 Chapter 10

www.newnespress.com

the differentiators, the inputs are sampled at a sampling rate of (fs/M). In this

model, the CIC filter is intended for use in the digital signal conditioning

circuitry within a sigma-delta ADC design. A single-bit bitstream pattern

(Filter_In) is applied to the filter input, and a 16-bit output from the CIC filter

(Filter_Out) is created. This is achieved by a switch block at the input of the

filter such that:

• When the input is a logic 0, then using 2s complement arithmetic, a value of

–110 is applied to the filter input.

• When the input is a logic 1, then using 2s complement arithmetic, a value of

+110 is applied to the filter input.

The integrator design is shown in Figure 10.29, and the differentiator design is shown

in Figure 10.30.

The design is analyzed using both hand calculations and the Simulink� simulator,

with typical bitstream patterns representing different signal frequencies as part of the

overall system analysis routine. A frequency response could be undertaken by

generating a model for frequency analysis in MATLAB�.

Filter_In

Bit_Stream

Constant1

Integrator_1

Differentiator_1 Differentiator_2 Differentiator_3

In1 Out1

In1 Out1 In1 Out1 In1 Out1 Filter_Out

Filter_Out

Simulation_TimeClock

L Time

In1 Out1 In1 Out1

Integrator_2 Integrator_3

Constant

1

–1

Switch

Figure 10.28: Simulink� model for the CIC filter

System-Level Design 691

www.newnespress.com

10.4.4 Translating the Design to VHDL

After system analysis of the system has been completed, the digital filter model is

translated to VHDL code suitable for simulation and synthesis. This requires that the

VHDL code be generated according to a set design translation in the following eight

steps:

1. Translation preparation (according to the nine steps below).

2. Set the architecture details (according to the six steps below).

3. Translation from Simulink� model to VHDL code by reading the

Simulink� model, extracting the necessary design information, and

generating the VHDL code.

4. Generate VHDL test bench.

5. Simulate the VHDL code and check for correct operation to validate the

operation of the generated VHDL code.

6. Synthesize the VHDL code and resimulate the design to generate a structural

design based on the particular target technology.

1 1

In1

++

1

Z

Unit Delay
Out1

Figure 10.29: Simulink� model for the integrator

Unit Delay

In1

1 1+–

Out1

1

z

Figure 10.30: Simulink� model for the differentiator

692 Chapter 10

www.newnespress.com

7. Configure the CPLD and validate the operation of the design.

8. Use the filter.

The nine steps of translation preparation are:

1. Identify the parts to be translated into digital (the filter).

2. Remove any unnecessary information, leaving only the filter model.

3. Identify the digital filter interfacing.

4. Identify the clock and reset inputs, along with any other filter signals.

5. Identify any external communications required.

6. Set up the support necessary to include the translation directives (see

architecture details below).

7. Identify the technology directives (any requirements for the target

technology, such as CPLD) and the synthesis tool to be used.

8. Identify any designer directives.

9. Determine what test circuitry is to be inserted into the design and at what

stage in the design process.

The six steps to set the architecture details are:

1. Identify the particular architecture to use.

2. Identify the internal wordlength within the digital signal processing part of

the digital core.

3. Identify any specific circuits to avoid (e.g., specific VHDL code constructs).

4. Identify the control signals required by the I/O.

5. Identify the number system to use (e.g., 2s complement) in the arithmetic

operations.

6. Identify any number scaling requirements to limit the required wordlength

within the design.

The model translation must initially consider which architecture to use, either a

processor-based architecture running a software application (standard fixed

System-Level Design 693

www.newnespress.com

architecture processor or a configurable processor) or a custom hardware architecture

based directly on the model. This idea is shown in Figure 10.31.

If the translation were performed manually, this could be accomplished by visual

reference to the graphical representation of the model (i.e., the block diagram).

If the translation were performed automatically (by a software application),

it could be accomplished using the underlying text based model (i.e., with the

Simulink�.mdl file).

A fixed architecture processor is based on an existing CISC or RISC architecture, and

the translation either will generate the hardware design (in HDL) and the processor

microcode together, or will use an existing processor design and only generate the

processor microcode. The configurable processor is a processor design that dynamically

changes specific aspects of the architecture based on the particular application.

Direct mapping starts with the model as presented and directly translates its

functions to a custom hardware HDL code equivalent. Customized mapping

uses custom architecture based on the model, but then determines the most

appropriate way to implement its functions (e.g., by using multiple multiplication

blocks or a single multiplexed multiplier block) based on the application.

No matter what particular architecture is chosen, in addition to generating the

required digital signal processing algorithm hardware (as identified in the system

block diagram), then there would be the need to also generate the necessary

interfacing signals for external circuitry such as ADCs and DACs, and the internal

timing signals for the control of the signal processing operations, along with the

storage and movement of data signals within the design. These interfacing and

Architecture

Processor

Custom
Hardware

Fixed architecture

Configurable

Direct mapping

Customized mapping

Figure 10.31: Filter architecture decisions

694 Chapter 10

www.newnespress.com

internal timing signals would need to be created by an additional circuit creating

the functions of a control unit particular to the design.

In this case study, direct mapping of model functions will be considered, so the

filter shown in Figure 10.28 will be translated. This requires the use of the

following main functional blocks:

• three integrator blocks

• three differentiator blocks

• one switch block

• two constant values

The input is a single-bit bitstream pattern, and the output is a 16-bit pattern. The

Simulink� model for the overall control system must be reviewed and should

contain:

• information for translation to VHDL

• information not for translation to VHDL

The information not for translation to VHDL includes information such as

visual attributes and software version information, which must be stripped

from the representation of the model used for translation to VHDL.

The Simulink� model code for the filter only is shown in Figure 10.32.

This is the text description of the model shown in Figure 10.28. It consists of

the blocks used, their attributes, and the interconnect between the blocks (lines).

Interpreting this model requires knowledge of its model syntax and how the

values that can be modified by the user are represented in the model. The syntax

is readable, and the names used can be identified by comparison with the block

diagram view.

To create a digital design to implement the filter, a control unit is needed within the

design to generate the necessary timing signals to control the operation of the filter

parts from master clock and reset inputs. The basic structure for this is shown in

Figure 10.33.

System-Level Design 695

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

 System {
 Name "comb_filter_1"
 Block {
 BlockType FromWorkspace
 Name "Bit_Stream"
 Position [25, 78, 90, 102]
 VariableName "Filter_In"
 SampleTime "0"
 }
 Block {
 BlockType Constant
 Name "Constant"
 Position [135, 20, 165, 50]
 }
 Block {
 BlockType Constant
 Name "Constant1"
 Position [135, 145, 165, 175]
 Value "-1"
 }
 Block {
 BlockType SubSystem
 Name "Differentiator_1"
 Ports [1, 1]
 Position [355, 215, 395, 275]
 TreatAsAtomicUnit off
 }
 Block {
 BlockType SubSystem
 Name "Differentiator_2"
 Ports [1, 1]
 Position [455, 215, 495, 275]
 TreatAsAtomicUnit off
 }
 Block {
 BlockType SubSystem
 Name "Differentiator_3"
 Ports [1, 1]
 Position [550, 215, 590, 275]
 TreatAsAtomicUnit off
 }
 Block {
 BlockType ToWorkspace
 Name "Filter_Out"
 Position [715, 230, 775, 260]
 VariableName "Filter_Out"
 MaxDataPoints "inf"
 SampleTime "-1"
 SaveFormat "Structure"
 }
 Block {
 BlockType SubSystem
 Name "Integrator_1"
 Ports [1, 1]
 Position [330, 66, 395, 114]
 TreatAsAtomicUnit off
 }

Figure 10.32: Simulink� model for the CIC filter

696 Chapter 10

www.newnespress.com

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

 }
 Line {
 SrcBlock "Bit_Stream"
 SrcPort 1
 DstBlock "Switch"
 DstPort 2
 }
 Line {
 SrcBlock "Constant"
 SrcPort 1
 Points [25, 0; 0, 45]
 DstBlock "Switch"
 DstPort 1
 }
 Line {
 SrcBlock "Constant1"
 SrcPort 1
 Points [25, 0; 0, -60]
 DstBlock "Switch"
 DstPort 3
 }
 Line {
 SrcBlock "Switch"
 SrcPort 1
 DstBlock "Integrator_1"
 DstPort 1
 }
 Line {
 SrcBlock "Integrator_1"
 SrcPort 1
 DstBlock "Integrator_2"
 DstPort 1
 }
 Line {
 SrcBlock "Integrator_2"
 SrcPort 1
 DstBlock "Integrator_3"
 DstPort 1
 }

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

 Block {
 BlockType SubSystem
 Name "Integrator_2"
 Ports [1, 1]
 Position [430, 66, 495, 114]
 TreatAsAtomicUnit off
 }
 Block {
 BlockType SubSystem
 Name "Integrator_3"
 Ports [1, 1]
 Position [530, 66, 595, 114]
 TreatAsAtomicUnit off
 }
 Block {
 BlockType Switch
 Name "Switch"
 Position [235, 75, 265, 105]
 InputSameDT off

Figure 10.32: (Continued)

System-Level Design 697

www.newnespress.com

The CIC filter can be remodeled in VHDL, shown in Figure 10.34 as a structural

description for the filter. Detailed operation of each of the blocks is defined in

separate entity-architecture pairs.

10.4.5 Concluding Remarks

In this case study, a third-order CIC digital filter was developed as a Simulink� block

diagram and translated to a VHDL model for implementation within a CPLD. The

structural VHDL description for the CIC filter section of a digital core was

developed. The following VHDL code is also needed to configure the CPLD:

• top-level design containing the CIC filter and the control unit

• switch block details

• integrator details

• differentiator details

The block diagram was mapped directly to VHDL to implement a custom hardware

design. In many cases, this would result in a large design, particularly where

multiple repeated operations are needed. However, the ease and rapid development

of the VHDL code by direct mapping for this small design reduced design time.

This design included no multiplications, so the multiplier implementation required

in other digital filter designs was not needed.

An internal wordlength of 16 bits was required for this design, which has to be

accommodated in the calculations. When number overflow was possible in the

CIC filterBit_Stream Filter_Out

Control Unit

Filter control signals

Master_Clock

Master_Reset

Figure 10.33: Digital filter control

698 Chapter 10

www.newnespress.com

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

 library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY CIC_Filter IS
 Port (Bit_Stream : IN STD_LOGIC;
 Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Filter_Out : OUT STD_LOGIC_VECTOR (15 downto 0));
END ENTITY CIC_Filter;

ARCHITECTURE Structural OF CIC_Filter IS

SIGNAL Internal_1 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_2 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_3 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_4 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_5 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_6 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_7 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Internal_8 : STD_LOGIC_VECTOR(15 downto 0);
SIGNAL Integrator_1_Store : STD_LOGIC;
SIGNAL Integrator_2_Store : STD_LOGIC;
SIGNAL Integrator_3_Store : STD_LOGIC;
SIGNAL Differentiator_1_Store : STD_LOGIC;
SIGNAL Differentiator_2_Store : STD_LOGIC;
SIGNAL Differentiator_3_Store : STD_LOGIC;

COMPONENT Switch IS
 PORT (Bit_Stream : IN STD_LOGIC;
 Data_In_1 : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_In_2 : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0));
END COMPONENT Switch;

COMPONENT Plus_One IS
 PORT (Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0));
END COMPONENT Plus_One;

47

Figure 10.34: VHDL model for the CIC filter

System-Level Design 699

www.newnespress.com

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

 Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC);
END COMPONENT Differentiator;

COMPONENT Control_Unit is
 PORT (Master_Clock : IN STD_LOGIC;
 Master_Reset : IN STD_LOGIC;
 Integrator_1_Store : OUT STD_LOGIC;
 Integrator_2_Store : OUT STD_LOGIC;
 Integrator_3_Store : OUT STD_LOGIC;
 Differentiator_1_Store : OUT STD_LOGIC;
 Differentiator_2_Store : OUT STD_LOGIC;
 Differentiator_3_Store : OUT STD_LOGIC);
END COMPONENT Control_Unit;

BEGIN

I1: Switch
 PORT MAP (Bit_Stream => Bit_Stream,
 Data_In_1 => Internal_1,
 Data_In_2 => Internal_2,
 Data_Out => Internal_3);

I2 : Plus_One
 PORT MAP (Data_Out => Internal_1);

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

COMPONENT Minus_One IS
 PORT (Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0));
END COMPONENT Minus_One;

COMPONENT Integrator IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0);

Store : IN STD_LOGIC;
 Reset : IN STD_LOGIC);
END COMPONENT Integrator;

COMPONENT Differentiator IS
 PORT (Data_In : IN STD_LOGIC_VECTOR (15 downto 0);
 Data_Out : OUT STD_LOGIC_VECTOR (15 downto 0);

92
93
94

I3 : Minus_One
 PORT MAP (Data_Out => Internal_2);

Figure 10.34: (Continued)

700 Chapter 10

www.newnespress.com

127
128
129
130
131
132
133
134
135
136
137

 Data_Out => Filter_Out,
 Store => Differentiator_3_Store,
 Reset => Master_Reset);

I10 : Control_Unit
 PORT MAP (Master_Clock => Master_Clock,
 Master_Reset => Master_Reset,
 Integrator_1_Store => Integrator_1_Store,
 Integrator_2_Store => Integrator_2_Store,
 Integrator_3_Store => Integrator_3_Store,
 Differentiator_1_Store => Differentiator_1_Store,

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

I4 : Integrator
 PORT MAP (Data_In => Internal_3,
 Data_Out => Internal_4,
 Store => Integrator_1_Store,
 Reset => Master_Reset);

I5 : Integrator
 PORT MAP (Data_In => Internal_4,
 Data_Out => Internal_5,
 Store => Integrator_2_Store,
 Reset => Master_Reset);

I6 : Integrator
 PORT MAP (Data_In => Internal_5,
 Data_Out => Internal_6,
 Store => Integrator_3_Store,
 Reset => Master_Reset);

I7 : Differentiator
 PORT MAP (Data_In => Internal_6,
 Data_Out => Internal_7,
 Store => Differentiator_1_Store,
 Reset => Master_Reset);

I8 : Differentiator
 PORT MAP (Data_In => Internal_7,
 Data_Out => Internal_8,
 Store => Differentiator_2_Store,
 Reset => Master_Reset);

I9 : Differentiator
 PORT MAP (Data_In => Internal_8,

138
139
140
141

 Differentiator_2_Store => Differentiator_2_Store,
 Differentiator_3_Store => Differentiator_3_Store);

END ARCHITECTURE Structural;

Figure 10.34: (Continued)

System-Level Design 701

www.newnespress.com

integrators, it was prevented either by ensuring that the internal values encountered are

never large enough to create an overflow situation, or if an overflow situation could

occur, saturating the output from a computation to the limits set by the wordlength.

10.5 Automating the Translation

The two case studies presented provide a snapshot of two possible target applications

for the automatic generation of VHDL code from a system-level simulation model.

A number of design implementation issues were raised and solved for these two

scenarios. However, for automating the translation process into VHDL, the

translation steps must be adaptable to a more generic application. Any possible

approach to automating model translation, however, must:

1. be capable of being manually undertaken (i.e., by hand) if required

2. allow the designer to enter specific requirements for the particular

application

3. be presented to the designer in a way that is familiar to his or her particular

engineering domain and technical language

4. not intentionally restrict the designer to such an extent that the translation

tool cannot be used

5. be aware that different versions of the software can vary the syntax of the

underlying text file containing the model description, so a translation

tool written for one version of the simulation software must be validated

for a different version

6. select a software programming language appropriate to the end use of the

application

7. select an architecture appropriate to the required operation and coding

styles in VHDL

8. be developed in a modular manner so that the translation tool can be readily

modified and enhanced

9. consider timing issues in the underlying digital logic

10. consider testability issues for the designs to be implemented

702 Chapter 10

www.newnespress.com

11. Effectively and efficiently deal with design hierarchy

12. Consider the circuit functions that are required to support the algorithm

modelled at the high level of description, but which are not modelled

at this level. For example, in digital designs there would be the need to

include some form of circuit control. This would be required to perform

synchronisation of signals around the circuit and ensure that the correct

data flow is provided. In addition, specific control signals for signal

sampling (e.g. through and ADC) and output updating (e.g. through

a DAC) would be required

13. Include the capability for automatic documentation creation as part of

the translation process. This can be in the form of document formats

such as plain text, postscript, portable document format (PDF) and

hypertext markup language (HTML)

10.6 Future Directions

The area of ESL design is still emerging, and various activities are undertaken in defining

the direction for ESL design. However, there is a basic need to combine into a single and

robust design methodology multiple design methods, EDA tools, and implementation

technologies. With the area of ESL design dynamically changing, designers must be

aware of the technologies, ESL design methodologies, and EDA tools that are becoming

available to provide the right approach for the types of complex electronic systems

being developed. This will come from the collaboration between the developers and

the design community. Initially, a number of different approaches will be adopted;

those showing the most promise will ultimately become industry standards, adopted

and formally developed by one or more of the professional bodies.

Alongside the systems-level design methods and EDA tools being developed to solve

the complex problems encountered today and expected in the future, there is still the

need for electronic circuit and computer software designers who work at the most

detailed level of design. Advances at this detailed level allow more complex systems to

be developed of smaller size, in less time, and at lower cost. No matter how complex a

system becomes, the devil will always remain in the details, so the need for effective

communication and collaboration among the designers working at all levels of

abstraction will always exist.

System-Level Design 703

www.newnespress.com

