
1
Introduction to Finite-State
Machines and State Diagrams
for the Design of Electronic
Circuits and Systems

1.1 INTRODUCTION

This chapter, andChapters 2 and3, iswritten in the formof a linear frame, programmed learning

text. The reason for this is to help the reader to learn the basic skills required to design clocked

finite-state machines (FSMs) so that they can develop their own designs based on traditional T

flip-flops and D flip-flops. Later, other techniques will be introduced, such as One Hot,

asynchronous FSMs, and Petri nets; these will be developed along the same lines as the work

covered in this chapter, but not using the linear frame, programmed learning format.

The text is organized into frames, each frame following on consecutively from the previous

one, butat times the readermaybe redirected toother frames,dependingupon the response to the

questions asked. It is possible, however, to read the programmed learning chapters as a normal

book.

There are tasks set throughout the frames to test your understanding of the material.

Tomake it easier to identify input andoutput signals, inputswill be in lowercaseandoutputs in

uppercase.

Please read the Chapters 1–3 first and attempt all the questions before moving on to the later

chapters. The reason for this approach is that the methods used in the book are novel, powerful,

and when used correctly can lead to a rapid approach to the design of digital systems that use

FSMs.

Chapters 1–5, 9 and10makeuse of techniques to developFSM-based systems at the equation

and gate level, where the designer has complete control of the design.

Chapters 6–8 can be read as a self-contained study of the Verilog hardware description

language (HDL).

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

1.2 LEARNING MATERIAL

Frame 1.1 What is an FSM?

AnFSM is a digital sequential circuit that can follow a number of predefined states under the

control of one ormore inputs. Each state is a stable entity that themachine can occupy. It can

move from this state to another state under the control of an outside-world input.

FSM

p

q

Clock
Y

Z

X

Primary

Inputs

Primary

Outputs

Figure 1.1 Block diagram of an FSM-based application.

Figure 1.1 shows an FSMwith three outside-world inputs p, q, and the clock, and three

outside-world outputs X, Y, and Z are shown. Note that some FSMs have a clock input and

are called synchronous FSMs, i.e. those that do not belong to a type of FSM called

asynchronous FSMs.However,most of this text will deal with themore usual synchronous

FSMs, which do have a clock input. Asynchronous FSMs will be dealt with later in the

book.

As noted above, inputs use lower case and output upper case names.

A synchronous FSM can move between states only if a clock pulse occurs.

Task Drawablockdiagramfor anFSMwithfive inputs x,y, z, t, anda clock, andwith two

outputs P and Q.

Go to Frame 1.2 after attempting this question.

Frame 1.2

The FSM with five inputs x, y, z, t, and a clock, and with two outputs P and Q is shown in

Figure 1.2.

2 Introduction to Finite-State Machines and State Diagrams

FSM

P

Q
Clock

y

z

x

t

Figure 1.2 Block diagram with inputs, outputs, and a clock input.

The reader may wish to go back and reread Frame 1.1 if the answer was incorrect.

Each state of the FSM needs to be identifiable. This is achieved by using a number of

internal (to the FSMblock) flip-flops. An FSMwith four states would require two flip-flops,

since twoflip-flops can store 22 ¼ 4 state numbers.Each state has aunique state number, and

states are usually assigned numbers as s0 (state 0), s1, s2, and s3 (for the four-state example).

The rule here is

Number of states ¼ 2Number of flip�flops;

for which

Number of flip flops ¼ log10ðNumber of statesÞ
log10ð2Þ

:

SoanFSMwith13 stateswould require 24flip-flops (i.e. 16 states, ofwhich13are used in the

FSM); that is:

Number of flip flops ¼ log10ð13Þ
log10ð2Þ

¼ 3:7:

This must be rounded up to the nearest integer, i.e. 4.

Tasks 1. How many flip-flops would be required for an FSM using 34 states?

2. What would the state numbers be for this FSM?

After answering these questions, go to Frame 1.3.

Frame 1.3

The answers to the questions are as follows:

1. How many flip-flops would be required for an FSM using 34 states?

26 ¼ 64

Learning Material 3

would accommodate 34 states. In general:

24 ¼ 16 states; 25 ¼ 32 states; 26 ¼ 64 states; 27 ¼ 128 states; etc:

2. What would the state numbers be for this FSM?

These would be

s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17,

s18, s19, s20, s21, s22, s23, s24, s25, s26, s27, s28, s29, s30, s31, s32, s33.

The unused states would be s34–s63.

Note, in this book, lower case ‘s’will be used to represent states to avoid confusion of state

s0 with the word ‘so’ or ‘So’.

Aswell as containingflip-flops to define the individual states of the FSMuniquely, there is

also combinational logic that defines the outside-world outputs. In addition, the outside-

world inputs connect to combinational logic to supply the flip-flops inputs.

Go to Frame 1.4.

Frame 1.4

Figure 1.3 illustrates the internal architecture for a Mealy FSM.

OutPut
DecoderNext

State
Decoder

Memory
Elements

Flip
Flops

Feed-Forward input to output

Feedback

Next
State

Present
State

Outside
World
Inputs

Outside
World

Outputs

Figure 1.3 Block diagram of a Mealy state machine structure.

4 Introduction to Finite-State Machines and State Diagrams

This diagram shows that the FSM has a number of inputs that connect to the Next State

Decoder (combinational) logic. TheQ outputs of thememory element Flip-Flops connect to

the Output Decoder logic, which in turn connects to the Outside World Outputs.

The Flip-Flops outputs are used as Next State inputs to the Next State Decoder, and it is

these that determine the next state that the FSM will move to. Once the FSM has moved to

this Next State, its Flip-Flops acquire a new Present State, as dictated by the Next State

Decoder.

Note that some of the OutsideWorld Inputs connect directly to the Output Decoder logic.

This is the main feature of the Mealy-type FSM.

Go to Frame 1.5.

Frame 1.5

Another architectural form for an FSM is the Moore FSM.

The Moore FSM (Figure 1.4) differs from the Mealy FSM in that it does not have the feed-

forward paths.

OutPut
DecoderNext

State
Decoder

Memory
Elements

Flip
Flops

Feedback

Next
State

Present
State

Outside
World
Inputs

Outside
World

Outputs

Figure 1.4 Block diagram of a Moore state machine structure.

This type of FSM is very common.Note that theOutsideWorldOutputs are a function of the

Flip-Flops outputs only (unlike the Mealy FSM architecture, where the Outside World

Outputs are a function of Flip-Flops outputs and some Outside World Inputs).

Both the Moore and Mealy FSM designs will be investigated in this book.

Go to Frame 1.6.

Learning Material 5

Frame 1.6

Complete the following:

A Moore FSM differs to that of a Mealy FSM in that it has

___.

This means that the Moore FSM outputs depend on

whereas the Mealy FSM outputs can depend upon ____________________________________.

Go back and read Frame 1.4 and Frame 1.5 for the solutions.

___.

Frame 1.7

Look at the Moore FSM architecture again, but with removal of all of the Outside World

Inputs, apart from the clock.Also remove theOutputDecoding logic.What is left shouldbe a

very familiar architecture. This is shown in Figure 1.5.

Next
State

Decoder

Memory
Elements

Flip
Flops

Feedback

Next
State

Present
State

Outside
World
Inputs

Outside
World

Outputs

Figure 1.5 Block diagram of a Class C state-machine structure.

This architecture is in fact the synchronous counter that is used in many counter applica-

tions. Note that an Up/Down counter would have the additional outside-world input ‘Up/

Down’, which would be used to control the direction of counting.

The Flip-Flops outputs in this architecture are used to connect directly to the outside-

world.Note that, in a synchronous (clock-driven) FSM, one of the inputswould be the clock.

Go to Frame 1.8.

6 Introduction to Finite-State Machines and State Diagrams

Frame 1.8

Historically, two types of state diagramhave evolved: one for the design ofMealy FSMs and

one for the design of Moore-type FSMs. The two are known as Mealy state diagrams and

Moore state diagrams respectively.

These days, amore general type of state diagram can be used to design both theMealy and

Moore types of FSM. This is the type of state diagram that will be used throughout the

remainder of this book.

A state diagram shows each state of the FSM and the transitions to and from that state to

other states. The states are usually drawnas circles (but somepeople like to use a square box)

and the transitionbetween states is shownasanarrowed line connecting the states (Figure1.6).

s0 s1

State 2State 1

Transitional
line between

two states

_|

Figure 1.6 Transition between states.

In addition to the transitional line between states there is an input signal name (Figure 1.7).

s0 s1

State 2State 1

Transitional
line between
two states

In this case the transition
will occur when the clock
pulse occurs, moving the
FSM from s0 to s1, but

only if st = 1

Clock pulse (0 to 1 transition)

st

Figure 1.7 Outside-world input to cause transition between states.

In the above diagram, the transition between state s0 and s1 will occur only if the Outside

World Input st¼ 1 and a 0-to -1 transition occurs on the clock input.

Learning Material 7

Task What changes would be needed to the state diagram of Figure 1.9 to make the

transition between s0 and s1 occur when input st¼ 0?

After attempting this question, go to Frame 1.9.

Frame 1.9

The answer is shown in Figure 1.8.

s0 s1

State 2State 1

Transitional
line between
two states

In this case the transition
will occur when the clock
pulse occurs and input st
is at logic 0, moving the

FSM from s0 to s1

Clock pulse (0 to 1 transition)

/st

Figure 1.8 Outside-world input between states.

Here, st has been replaced with /st, indicating that st must be logic 0 before a transition to s1

can take place), i.e. /st means ‘NOT st’; hence, when st¼ 0, /st¼ 1.

Note that outside-world inputs always lie along the transitional lines.

The state diagrammust also show how the outside-world outputs are affected by the state

diagram. This is achieved by placing the outside-world outputs either

� inside the state circle/square (Figure 1.9), or

� alongside the state circle/square.

In this diagram, outside-world outputs P and Q are shown inside the state circles. In this

particular case,P is logic 1 in state s0, and changes to logic 0when theFSMmoves to state s1.

Output Q does not change in the above transaction, remaining at logic 0 in both states.

Inputs like st are primary inputs; outputs like P and Q are primary outputs.

Task Draw a block diagram showing inputs and outputs for the state diagram of

Figure 1.9.

8 Introduction to Finite-State Machines and State Diagrams

s0 s1

State 2State 1

/st

Outside World Input st

 /P,/QP, /Q

Outside World Outputs

Figure 1.9 Showing placing of outside-world outputs.

Now go to Frame 1.10.

Frame 1.10

The block diagram will look like Figure 1.10.

FSM

st

Clock

Q

P

Outside World
Input st

Outside World
Outputs P and Q

Figure 1.10 The block diagram for state diagram of Figure 1.9.

This is easily obtained from the state diagram since inputs are located along transitional

lines and outputs inside (or along side) the state circle.

Recall that in Frame 1.2 each state had to have a unique state number and that a number of

flip-flops were needed to perform this task. These flip-flops are part of the internal design of

theFSMand are used to produce an internal count sequence (theyare essentially acting like a

synchronous counter, but one that is controlled by the outside-world inputs). The internal

count sequenceproducedby theflip-flops is used to control theoutside-worlddecoder so that

outputs can be turned on and off as the FSM moves between states.

Learning Material 9

In Frames 1.4 and1.5 the architecture for theMealy andMooreFSMswere shown. In both

cases, the memory elements shown are the flip-flops discussed in the previous paragraph.

At this stage it isperhapsworthwhile lookingat a simpleFSMdesign indetail to seewhat it

looks like. This will bring together all the ideas discussed so far, as well as introducing a few

new ones. However, try answering the following questions before moving on to test your

understanding so far:

Tasks 1. A Mealy FSM differs from a Moore FSM in (See Frames 1.4 and 1.5.)

2. The circles in a state diagram are used to. . .. (See Frames 1.8 and 1.9.)

3. Outside World Inputs are shown in a state diagram where? (See Frames 1.8

and 1.9.)

4. OutsideWorld Outputs are shown in a state diagram where? (See Frame 1.9.)

5. The internal flip-flops in an FSM are used to (See Frame 1.10.)

Go to Frame 1.11

Frame 1.11 Example of an FSM: a single-pulse generator circuit with
memory

The ideahere is todevelopacircuit basedonanFSMthatwill producea single output pulse at

its primary output P whenever its primary input s is taken to logic 1. In addition, a primary

outputL is to be set to logic 1whenever input s is taken to logic 1, and cleared to logic 0when

the input s is released to logic 0. Output L acts as a memory indicator to indicate that a pulse

has just beengenerated.TheFSMis tobeclockdriven, so it alsohas an input clock.Theblock

diagram of this circuit is shown in Figure 1.11.

Single-Pulse
Generator

with
Memory

FSM

Input s

Clock

Output L

Output P

Figure 1.11 Block diagram of single-pulse with memory FSM.

A suitable state diagram is shown in Figure 1.12.

Inthisstatediagramthesling(loopgoingtoandfroms0) indicatesthatwhile inputs is logic0

(/s) theFSMwill remaininstates0regardlessofhowmanyclockpulsesareapplied to theFSM.

Only when input s goes to logic 1 (s) will the FSMmove from state s0 to s1, and then only

whenaclockpulsearrives.Once in state s1, theFSMwill set its outputsPandL to logic1, and

on the next clock pulse the FSM will move from state s1 to state s2.

10 Introduction to Finite-State Machines and State Diagrams

The reasonwhy theFSMwill stay in state s1 for onlyoneclockpulse is because, in state s1,

the transition from this state to state s2 occurs on a clock pulse only. Once the FSMarrives in

state s2 it will remain there whilst input s ¼ 1. As soon as the input s goes to logic 0 (/s) the

FSM will move back to state s0 on the next clock pulse.

Since the FSM remains in state s1 for only a single clock pulse, and since P ¼ 1 only in

state s1, the FSMwill produce a single output pulse. Note that the memory indicator L will

remain at logic 1 until s is released, so providing the user with an indication that a pulse has

been generated.

Note in the FSM state diagram (Figure 1.12) that each state has a unique state identity s0,

s1, and s2.

Note also that each state has been allocated a unique combination of flip-flop states:

� state s0 uses the flip-flop combination A ¼ 0, B ¼ 0, i.e. both flip-flops reset;

� state s1 uses the flip-flop combination A ¼ 1, B ¼ 0, i.e. flip-flop A is set;

� state s2uses the flip-flopcombinationA ¼ 0,B ¼ 1, i.e. flip-flopA is reset, flip-flopB is set.

The A and B flip-flops values are known as the secondary state variables.

The flip-flop outputs are seen to define each state. TheA andB outputs of the twoflip-flops

could be used to determine the state of the FSM from the state of the A and B flip-flops. The

code sequence shown in Figure 1.12 follow a none unit distance coding, sincemore than one

flip-flop changes state in some transitions.

Go to Frame 1.12.

Frame 1.12 The output signal states

It would also be possible to tell in which state the output Pwas to be logic 1, i.e. in state s1,

where the flip-flop output logic levels are A ¼ 1 and B ¼ 0.

Therefore, the output P ¼ A � =B (where the middot is the logical AND operation). Note

that the flip-flops are used to provide a unique identity for each state.

Similarly, output L is logic 1 in states s1 and s2 and, therefore, L ¼ s1þ s2.

L ¼ s1þ s2 ¼ A � =Bþ =A � B:

/P,/L

s0

P,L

s1

/P,L

s2

_|s _|

/s _|

AB
00

AB
10

AB
01

/s s

Secondary State Variables

Sling Sling

Figure 1.12 State diagram for single-pulse with memory FSM.

Learning Material 11

Also, see that since each state can be defined in terms of the flip-flop output states, the

outside-world outputs can also be defined in terms of the flip-flop output states since the

outside-world’s output states themselves are a function of the states (P is logic one in state s1,

and state s1 is defined in terms of the flip-flop outputs A � =B).

L is defined by A � =Bþ =A � B:

The allocation of uniquevalues offlip-flopoutputs is rather an arbitrary process. In theory,

any values can be used so long as each state has a unique combination. This means that one

cannot have more than one state with the flip-flop values of say A � =B.
In practice, it is common to assign flip-flop values so that the transition between each state

involves only oneflip-flop changing state. This is knownas following aunit distancepattern.

This has not been done in the example abovebecause there are twoflip-flopchanges between

states s1 and s2.

The single-pulse generator with memory state diagram could be made to follow a unit

distance pattern by adding an extra state. This extra state could be inserted between states s2

and s0, having the same outputs for P and L as state s2.

Go to Frame 1.13.

Frame 1.13

The completed state diagram with unit distance patterns for flip-flops is shown in

Figure 1.13.

/P,/L

s0

P,L

s1

/P,L

s2

_|s _|

/s _|

AB
00

AB
10

AB
11

/s

s

_|

AB
01

/P,L

s3

Additional
Dummy state

Figure 1.13 State diagram for single-pulse generator with memory.

Note that the added state has the unique name of s3 and the unique flip-flop assignment of

A ¼ 0andB ¼ 1. It alsohas theoutputsP ¼ 0, as itwouldbe in state s0 (the state it is going to

go towhen s ¼ 0). Also, L is retained at logic 1 until the input s is low, since L is thememory

indicator and needs to be held high until the operator releases s.

In this design, the additionof the extra state hasnot added anymoreflip-flops to thedesign,

since two flip-flops can have a maximum of 22 ¼ 4 states (recall Frames 1.2 and 1.3).

12 Introduction to Finite-State Machines and State Diagrams

The single pulse generatorwithmemoryFSM is to have an additional input added (called r)

whichwill,whenhigh (logic1), cause theFSMtoflash thePoutputat theclock rate.Whenever

the r input is reverted to logic 0, the FSMwill resume its single pulsewithmemory operation.

Tasks 1. Draw the block diagram for the FSM.

2. Draw the state diagram for this modified FSM.

Go to Frame 1.14 to see the result.

Frame 1.14

The block diagram is shown in Figure 1.14.

Single-Pulse
Generator

with
Memory

FSM

Input s

Clock

Output L

Output P

New
input

r

Figure 1.14 Block diagram for the FSM.

The new state diagram is shown in Figure 1.15.

/P,/L

s0

P,L

s1

/P,L

s2

_|s _|

/s _|

AB
00

AB
10

AB
11

/s

/r_|

AB
01

/P,L

s3

r_|

s

Figure 1.15 Single-pulse generator with multi-pulse feature.

The additional input has been added and a new transition from s2 to s1. Note that, when

r ¼ 1, the FSM is clocked between states s1 and s2. This will continue until r ¼ 0.

In this condition, thePoutputwill pulse onandoff at the clock rate as long as input r is held

at logic 1.

Learning Material 13

An alternative way of expressing output L

In the state diagram of Figure 1.15, L ¼ s1þ s2þ s3 ¼ A � =Bþ A � Bþ = A � B ¼
Aþ =A � B. Therefore, L ¼ Aþ B. See Appendix A and the auxiliary rule for the method

of how this Boolean equation is obtained.

An alternative way of expressing L is in terms of its low state:

L ¼ =ðs0Þ ¼ =ð=A � =BÞ:
This implies that when A ¼ 0 and B ¼ 0; L ¼ 0.

Dealing with active-low signals

The state diagram fragment inFigure 1.16 illustrateshowanactive-low signal (in this case

CS) that is low in states s4, s5 and s6 is obtained.

s4
/CS,W,R

s5
/CS,/W,R

s6
/CS,W,R

s7
CS,W,R

CS = /(s4 + s5 +s6)

W = /s5

s4
s5
s6

CS (active low)

s4
s5
s6

CS (active low)

s4 s5 s6 CS
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

Dealing with active low Outputs

Figure 1.16 Dealing with active-low outputs.

Also, the active-lowsignalW is obtained aswell. From this it canbe inferred that, to obtain

the active-lowoutput, all states inwhich the output is lowmust be negated. This is a common

occurrence in FSMs and will be used quite often.

Finally:

� If anoutput is high inmore states than it is low, then the active-lowequationmight produce

a minimal result.

� If the output is low in more states than it is high, then the active-high form of the output

equation will produce the more minimal result.

Go to Frame 1.15.

14 Introduction to Finite-State Machines and State Diagrams

Frame 1.15

Theprevious frameshave considered theflip-flopoutput patterns.These are often referred to

as the secondary state variables (Figure 1.17).

Single Pulse
Generator

with
Memory

FSM

Input s

Clock
Output L

Output P

Secondary State Variables
A and B inside

Primary OutputsPrimary Inputs

Figure 1.17 Block diagram showing secondary state variables in the FSM.

These are called secondary state variables because they are (from the FSM architecture

viewpoint) internal to the FSM. Consider the Outside World inputs and outputs as being

primary; then, it seems sensible to call the flip-flop outputs secondary state variables (state

variables because they define the states of the state machine).

The outputs in theFSMare seen to bedependent upon the secondary statevariables orflip-

flops internal to the FSM. Looking back to Frame 1.5, see that Moore FSM outputs are

dependent upon the flip-flop outputs only. The Output Decoding logic in the single-pulse

generator with memory example is

P ¼ s1 ¼ A � =B
(see Frame 1.13) and

L ¼ s1þ s2þ s3 ¼ A � =Bþ A � Bþ =A � B ¼ Aþ =A � B ¼ Aþ B

(auxiliary rule again), i.e. it consists of one AND gate and an OR gate. This means that the

single-pulse generator with memory design is a Moore FSM.

How could the single-pulse generator design be converted into a Mealy FSM?

Onewaywould be tomake the outputP depend on the FSM being in state s1 (A � =B), but
also gate it with the clock when it is low. This would make the P output have a pulse width

equal to the clock pulse, but only in state s1, and only when the clock is low. This would be

providing a feed-forward path from the (clock) input to the P (output).

Task How could the state diagram be modified to do this?

Try modifying the state diagram, then go to Frame 1.16 to check the answer.

Learning Material 15

Frame 1.16

The modified state diagram is shown in Figure 1.18.

/P,/L

s0

P=/clk,
L
s1

/P,L

s2

s _| _|

/s _|

AB
00

AB
10

AB
11

/s

s

_|

AB
01

/P,L

s3

Additional
Dummy state

Figure 1.18 State diagram with Mealy output P.

Notice that, now, the output P is only equal to logic 1 when

� the FSM is in state s1 where flip-flop outputs are A ¼ 1 and B ¼ 0;

� the clock signal is logic 0.

The FSM enters state s1, where the P output will only be equal to logic 1 when the clock is

logic 0. The clockwill be logic 1when the FSMenters state s1 (0-to-1 transition); it will then

go to logic0 (whilst still in state s1) andPwill go to logic1.Then,when theclockgoesback to

logic 1, the FSMwillmove to state s2 and the flip-flop outputswill no longer beA � =B, so the
Poutputwill go lowagain.Therefore, thePoutputwill onlybe logic1 for the time theclock is

zero in state s1.

The timing diagram in Figure 1.19 illustrates this more clearly.

ThewaveformsshowbothversionsofP (under theAandBwaveforms inFigure1.19).Ascan

be seen, theMooreversion raisesP for thewhole duration that the FSMis in state s1,whereas

the Mealy version raises P for the time that the clock is low during state s1.

However, the bottom waveform for the Mealy P output illustrates what can happen as a

result of a delay in the /clk signal, along with the change of state from s0 to s1(/A/B to A/B).

Here, a glitch has been produced in the P signal as a result of the delay between clk and its

complement /clk, after theA signal change. This is brought about by the clk signal causingA

to change to logic 1while the /clk signal is still at logic 1due to thedelaybetween the clk and /

clk signals. This must be avoided.

This example is not unique; different delays can result in other unexpected outputs

(glitches) from signal P. Essentially, if two signal changes occur, then a glitch can be

produced in P as a result in the delays between signals (static 1 hazards).

Note that theP output signal is delayed in time as a result of the delays in signalsA,B, and

the /clk.Thisdelay isnot so important as longas it doesnotoverrun theclockperiod (which in

most practical cases it will not).

16 Introduction to Finite-State Machines and State Diagrams

It is best not to use the clock signal to create Mealy outputs. Also, as will be discussed in

Chapter 3, it is wise, where possible, to use a unit distance coding for A and B variables to

avoid two signal changes from occurring together; but more on this later.

Now for another example.

Task Producea statediagramfor anFSMthatwill generate a101pattern in response tom

going high. The input m must be returned low before another 101 pattern can be

produced.

After attempting this task, go to Frame 1.17.

Frame 1.17

Thesolution to thisproblem is touse thebasicarrangementof the single-pulsegenerator state

diagram and insert more states to generate the required 101 pattern. This will be developed

stage by stage so as to build up the complete design (Figure 1.20).

Start byfirstwaiting for the input s to become logic 1. Therefore, in state s0,wait for s ¼ 1.

Once the input s ¼1 and the clock changes 0 to 1, the FSM is required to move into the next

state s1, where P will be raised to the logic 1 level.

The next state s2will be used to generate the required logic 0 at theP output. And then the

next state s3 will be needed to generate the last P ¼ 1.

Note that the FSMmust leave state s3 on a clock pulse so that P ¼ 1 for the duration of a

single clock pulse only.

clk

A

B

P=A/B

P=A/B ^ /clk

L

s

s0s3s2s1s0

Moore Output

Mealy Output (ideal)

/clk

Mealy Output due to
Clock and other signal

delays

P=A/B ^ /clk

Figure 1.19 Timing diagram showing Moore and Mealy outputs.

Learning Material 17

Thefinal state required is tomonitor for the input s ¼ 0 condition. This state should return

the FSM back to state s0.

Task Complete the FSM state diagram.

Now go to Frame 1.18.

Frame 1.18

The completed state diagram is shown in Figure 1.21.

/P

s0

P

s1

/P

s2

_|s _|

/s _|

/s

_|

P

s3

/P

s4

_|

s

Figure 1.21 Complete state diagram for the 101 pattern-generator.

TheBooleanequation forP in thisdiagramisP ¼ s1þ s3.However, it is possible tomake theP

outputaMealyoutput that isonlyequal toonewhen instatess1ands2,andonly ifan inputy ¼ 1.

Then:

P ¼ s1 � yþ s3 � y;

s0
/P

s0
/P

s1
P

s0
/P

s1
P

s2
/P

s0
/P

s1
P

s2
/P

s3
P

Wait for s going high to
start sequence

s_|

s_|

s_|

s_|

_|

_| _|

_| _| _|

When s=1 move to s1
and raise P

On next clock pulse
move to s2 and

lower P

On next clock pulse move to s3 and make P=1

Figure 1.20 Development of the 101 pattern-generator sequence.

18 Introduction to Finite-State Machines and State Diagrams

since Pmust be high in both states s1 and s3, but only when the input y is high.

A note on slings

A sling has been used for each state with an outside-world input along the transitional line.

This is not really necessary, because slings are not used to obtain the circuits to perform the

FSM function in modern state diagrams. In fact, they are really only included for cosmetic

reasons, to improve the readabilityof thedesign.Fromnowon, slingswill onlybeusedwhere

they improve the readability of the state diagram.

Task Now try modifying the state diagram tomake it produce a 1010 sequence of clock

pulses (in thesamemanner shown inFigure1.21,butwith thePoutputpulse in state

s3 to be conditional on a new input called x. If x ¼ 0, the FSM should produce the

output sequence 1000 atP. If x ¼ 1, then the output sequence at P should be 1010.

After drawing the state diagram, move to Frame 1.19.

Frame 1.19

The modified state diagram is shown in Figure 1.22.

/P

s0

P

s1

/P

s2

_|s _|

/s _|

/s

_|

P=x
s3

/P

s4

_|

s

Figure 1.22 Modified state diagram with output P as a Mealy output.

In this state diagram, the input signal x is used as a qualifier in state s3 so that the outputP is

only logic 1 in this state when the clock is logic 1.

In state s3, the output P will only produce a pulse if the x input happens to be logic 1.

A pulse will always be produced in state s1.

It can be seen that if x ¼ 0, thenwhen the input s is raised to logic 1, the FSMwill produce

the sequence 1000 at output P.

If x ¼ 1, then when s is raised to logic 1, the FSM will produce a 1010 sequence at the

outputP. This FSM is an example of aMealy FSM, since the outputP is a function of both the

state and the input x, i.e. the input x is fed forward to the output decoding logic. Therefore, the

equation for P is

P ¼ s1þ s3 � x:

Learning Material 19

Itwould be easy tomodify the FSMso that the 1000 sequence atP is produced if x ¼ 1 and

the 1010 sequence is produced if x ¼ 0.

Tasks 1. Produce the Boolean equation for P in state s3 that would satisfy this require-

ment.

2. Then, assign a unit distance code to the state diagram (refer to Frames 1.12 and

1.13 for why).

3. Finally, produce a timing diagram of the modified FSM.

After this, go to Frame 1.20.

Frame 1.20

The answer to Task 1 in Frame 1.19 is as follows: the Boolean equation for P which will

produce a P 1010 sequence when x ¼ 0 is

P ¼ s1þ s3 � =x:
Note that in this case the qualifier for P is NOT x, rather than with x.

The answer to Task 2 in Frame 1.19, with regard to assigning a unit distance code to the

state diagram, is shown in Figure 1.23.

/P

s0

P

s1

/P

s2

_|s _|

/s _|

/s

_|

P=/x
s3

/P

s4

_|

ABC
000

ABC
100

ABC
110

ABC
011

ABC
001

s

Figure 1.23 State diagram with unit-distance coding of state variables.

The equation for P in s3 (it could be written outside the state circle if there is not enough

room to show it inside the state circle) is conditional on the x input being logic 0. It is very

likely that you will have come up with a different set of values for the secondary state

assignments to those obtained here. This is perfectly all right, since there is no real preferred

set of assignments, apart from trying to obtain a unit distance coding.

Somecheatinghas takenplace here, since the transition between states s2 and s3 is not unit

distance (since flip-flops A and C both change states). A unit distance coding could be

obtained if an additional dummy state is added (as was the case in Frame 1.13 for the single-

pulse generator with memory FSM).

20 Introduction to Finite-State Machines and State Diagrams

However, in this example, one must be careful where one places the dummy state. If a

dummy state is added between states s1 and s2, for example, then it would alter the P output

sequence so that instead of producing, say, 1010, the sequence 10010 would be produced.

A safe place to add a dummy statewould be between states s3 and s4, or between states s4

and s0, since they are outside the ‘critical’ P-sequence-generating part of the state diagram.

Move to Frame 1.21 for the timing waveform diagram solution.

Frame 1.21

The answer to Task 3 in Frame 1.19 is as follows.

A solution is shown in Figure 1.24 based on the secondary state assignment that was used

earlier, so your solution could well be different.

Clk

A

B

C

s

x

P= A/B/C + /ABC/x

s0 s1 s2 s3 s4 s0 s0

Note: P does not become logic 1 until x=0 in
state s3, and P goes to logic 0 when FSM
leaves state s3, even though x still logic 0

Figure 1.24 Timing diagram showing the effect of input x on output P.

Note that in this solution the input x has been change to logic 0 in the middle of the clock

pulse in state s3 just to illustrate the effect that this would have on the outputP. Note that the

output pulse on P is not a full clock high period in state s3.

This is a very realistic event, since the outside-world input x (indeed, any outside-world

input) can occur at any time.

1.3 SUMMARY

At this point, the basics of what an FSM is and how a state diagram can be developed for a

particular FSM design have been covered:

� how the outputs of the FSM depend upon the secondary state variables;

Summary 21

� that the secondary statevariables canbe assigned arbitrarily, but that following aunit distance

code is good practice;

� anumberof simpledesignshave shownhowaMealyorMooreFSMcanbe realized in theway

in which the output equations are formed.

However, the state diagram needs to be realized as a circuit made up of logic gates and flip-

flops; this part of the development process is very much a mechanized activity, which will be

covered in Chapter 3.

Chapter 2 will look at a number of FSM designs that control outside-world devices in an

attempt to provide some feel for the designof state diagrams for FSMs.Thepacewill be quicker,

as it will be assumed that the preceding work has been understood.

22 Introduction to Finite-State Machines and State Diagrams

