
2
Using State Diagrams to
Control External Hardware
Subsystems

2.1 INTRODUCTION

In real-worldproblems there is often aneed touse external subsystems, suchashardware timers/

counters, analogue-to-digital converters (ADCs), memory devices, and handshake signals to

communicate with external devices.

This chapter looks at how a state diagram (and, hence, an FSM) can be used to control such

devices. This opens up amuchwider range of activities for the FSM and can lead to solutions in

hardware that can be implemented in a relatively short time.

In later chapters, the ideas explored in this chapter will be used to develop some interesting

real-world systems.

2.2 LEARNING MATERIAL

Frame 2.1

One of the most common requirements in an FSM is the need to wait in a state for some

predefined period. For example, a need to turn on an outsideworld output for a certain period

of time, then turn it off again. This could be done by just allocating a number of consecutive

states with the required output held high, but this would be very wasteful of states (and the

correspondingflip-flopsneeded to implement theFSM) for all butvery short delays.Thebest

way of dealing with this kind of requirement is to use an external timer unit that can be

controlled by the FSM.

A typical timer unit might look something like the illustration in Figure 2.1.

The timer unit has two inputs, the clock input clk and the start timer input ts, and a single

output TO. From the timing diagram (Figure 2.1) for this timer unit, the timer output TOwill

go high when the timer start input ts makes a 0-to-1 transition. The output TO will remain

high until the time period has elapsed, after which it will go low.

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

Timer
Module

Clock

Input ts
to start
timer

Output
TO

ts

TO

Timer period

Figure 2.1 Timing module.

In Figure 2.2, TS, an output from the FSM, is used to start the timer prior to the time-out

state. Then, on the next clock pulse the FSM moves into the time-out state. In the time-out

state, the TS signal is returned low and the timer output signal ‘to’ is monitored by the FSM,

which is looking for this ‘to’ signal going low, signalling the end of the timer period. At this

point, the FSM will leave the time-out state.

/TS
sn

TS
sn+1

/TS
sn+2

to

/to_|

Prior to
starting
timer

Start the
timer

Time-out state
wait here till

timer times out

_| _|

Note: The output signal TO is an input signal to the FSM, hence its
lower case name to.

Figure 2.2 State sequence to control the timing module.

Note that theFSMwillwait in state snþ2until the signal ‘to’goes low.Therefore, the time

spent in state snþ 2 will be dictated by the timer unit.

Also note here that the timer output signal ‘to’ is in lower case now, since it is an input

to the FSM, whereas the timer input signal TS is uppercase, since it is an output from

the FSM.

Now please turn to Frame 2.2.

24 Using State Diagrams to Control External Hardware Subsystems

Frame 2.2

An example of how the timer unit could be used now follows.

FSM

Timer

sense

Vcc

gnd

R

C

To
ts

TS

P

st

clk
To process to be

timed

ts

To

Start
timer

Stop timer

to

Figure 2.3 Block diagram showing how to use the timing module.

In Figure 2.3, the FSM is controlling a timer unit. This timer unit happens to be a little

different to the one seen in Frame 2.1 in that it does not have a clock input. It is in fact a timer

based around anRC charging circuit (a practical devicewould be the 555 timer units that are

readily available). This does not alter things in anyway as far as the FSM is concerned. Note

that the actual time delay would be given by

To ¼ 1:1� C � R:

if Timer is a 555 timer chip.

The start input St starts theFSMfromstate s0.The ideahere is to turnon the processP for a

period of time (dictated by theRC time constant of the timer unit), then turn it back off again.

Task Produce the state diagram to do this. Then go to Frame 2.3 for a solution.

Frame 2.3

The state diagram to implement the arrangement shown in Figure 2.3 is shown in Figure 2.4.

The processP is turned on in state s1, since the timer is started in this state, before the FSM

moves into the time-out state s2. TheFSMwill remain in state s2monitoring the timer output

signal ‘to’ until the timer has timed out, and then move to state s3 to stop the process P.

Learning Material 25

/P, TS
s3

/P, TS
s0

P, TS
s2

P, /TS
s1

st_|

_|

/to_|

/st_|

to

Wait for st
input

Start-timer
and process

Wait for timer to time out
Process remains on

Timer timed out
Stop process

Figure 2.4 State diagram using the Timer module.

Using this arrangement allows the FSM to be held in thewait state for any length of time,

depending only on the value of the RC time constant.

Go to Frame 2.4.

Frame 2.4

Having seen how to control an outsideworld device like a timer, the next stage is to see how

other outside world devices can be controlled. This is really what FSMs are all about,

controlling outside world devices.

Now look at how an FSM can be used to control

� an ADC;

� a memory device.

Controlling an ADC

ADCs are used to convert analogue data into digital form. They are needed to allow digital

computers to be able to process data from the real world (which is essentially analogue in

nature). Most systems that use an ADC will be controlled from a microprocessor

(or microcomputer). However, it is often the case that a system (or part of a system) will

be implemented using a customized chip design, a programmable logic device (PLD), or

even a field programmable logic array (FPGA). Consider the ADC shown in Figure 2.5.

This ADC has (as is usually the case) a Start Conversion input SC and an End Of

Conversion output eoc.

26 Using State Diagrams to Control External Hardware Subsystems

FSM

A

D

Vin

Digital Count

Value

eocSC

SC

eoc

s2s1s0

/SC

s0

SC

s1

/SC

s2

eoc_|_| /eoc_|

Figure 2.5 Controlling an ADC from a state diagram.

The analogue input anddigital outputs are connected to the external circuit and are not part

of the FSM, since they form the data flow part of the system. The FSM is used to control the

system components (the ADC in this case).

The segment of state diagram shows how the ADC is controlled by an FSM.

FSM

Memory

S/H

Flash
ADC

Address
counter

cs w

SC eoc CS W CC RC

f

intackreset

clk

Sample/
Hold

S/H

Address
 counter full

Reset
counter

Counter
clock

Figure 2.6 Block diagram for a small DAS.

Learning Material 27

The FSM starts the ADC conversion in state s1 and waits for the eoc1 signal from the

ADC to say that a digital value is available at the outputs of the ADC. At this point the FSM

will move into state s2. Here, it will wait for eoc to return low before moving on to the next

state.

Now consider the small data acquisition system (DAS) shown in Figure 2.6.

In this system there is an ADC and a number of other outside world devices.

Go to Frame 2.5.

Frame 2.5

This particular example is a bit more complicated than the examples looked at so far;

however, it can be separated out into more manageable parts, as will be revealed.

The diagram shown in Figure 2.6 uses the FSM to control a sample-and-hold (S/H)

amplifier, ADC, a random access memory (RAM) device, and a simple binary counter.

All these outside world components allow the FSM to be able to

� sample a.c. analogue data from the outside world;

� store the data in RAM.

These could be under the control of a remote end device (which could be amicrocomputer).

Before attempting to produce a state diagram for this FSM, discussion is required on how

an FSM can control the RAM and counter.

Consider Figure 2.7, which shows a memory device controlled by an FSM.

Thememory device is written to/read from in snþ3 (on the rising edge of the read orwrite

signal). Note that the memory device has a collection of address input lines (commonly

called the address bus) and a set of data lines called the data bus. If the memory is read, only

the data bus lines will be outputs. If the memory is a RAM, then the data bus lines will be

bidirectional. Thismeans that the /R and /W control signals can be used to condition the data

bus lines tobeeither inputs (when /W is used)oroutputs (when /R is used). Inaddition, there is

a chip select input to select the memory chip.

Further information onmemory device timing

Figure 2.8 shows all the waveforms associated with a memory device.

The address bus selects a particular memory location at time T1 (the address bus lines

changing just after theT1starts). This causes the chip selectCEsignal tobecomeactive (low)

at time T2 (allowing for propagation delays through the logic).

At time T3, the write signalW is activated (active low) and, as a result of this action, the

memory chip data bus is taken out of its normal tri-state condition so it can accept input data.

1Note that some ADCs have a busy signal instead of the eoc. These ADCs raise the busy signal when SC is asserted,

lowering it when the conversion is complete.

28 Using State Diagrams to Control External Hardware Subsystems

At time T4 (after a suitable time has been allowed for the memory to settle) the writeW

signal is taken high, then the chip select signal CEwill be taken high to deselect thememory

chip. It is during this transition (0 to 1) of the W signal that the data are written into the

memory chip. Note that in somememory chips the CE andW signals appear to go high in T4

Memory

CS

W

R

RWCS

Chip
select

Write
control

Read
control

sn+4sn+3sn+2sn+1sn

Memory
timing

DataAddr

Figure 2.7 Control of a memory device.

CE W R

Address

Bus
Data Bus

Memory

Chip

Address

Bus

CE

W

Data

Bus
etats-irTetats-irT

T1 T2 T3 T4

Chip

Enable

Write Read

Figure 2.8 Timing of the control of a memory device.

Learning Material 29

at the same time. Themicroprocessor will hold CE low long enough to allow theW signal to

write thedata into thememorydevice.This is usuallybecause thepropagationdelay is longer

in the CE path due to additional address decoding logic.

In a system controlled by an FSM, this can be done in thewaveform diagram sequence, as

shown earlier in this frame in Figure 2.7. However, an alternative arrangement could be to

cause the CE signal to be delayed within the memory chip. This would be possible if the

memory was being implemented in an HDL to be contained in an FPGA, perhaps also

containing the FSM.

The main thing here is to ensure that the data can be written into the RAM before it is

deselected.

Note: the signalsCEandWneed tobecontrolledby theFSMwhenever thememory is tobe

written to or read from.

Note that ifW is replacedbyR then thememorycycle is a readmemory cycle inwhichdata

stored in the memory chip will be output from the chip.

The read operation follows the same basic sequence as thewrite signal, and the arguments

discussed earlier about delaying the chip select also apply.

Now go to Frame 2.6 to see how the memory chip can be controlled from an FSM.

Frame 2.6

To access the memory device, the chip select line must be asserted (this means that the chip

select linemust be active, in this case active is logic 0). Then,write data into theRAMdevice

by lowering thewrite signal line. A little later, raise thewrite line to logic 1 towrite the data

into the RAM device.

To read the contents of theRAM, first select the chip select line bymaking it go low, then a

little time later set the read line low.

In most cases, ‘chip select and read’ or ‘chip select and write’ control lines can be raised

high (todisassert them) at the same time. It is usually at thispoint in thecycle that thememory

device is read orwritten; but, if there is a doubt about chip select remaining low long enough

for the write or read operation to take place, then it is best to raise write or read first before

raising the chip select signal.

In practice, the data buswill remain active for a fewnanoseconds (typically 10 ns) in order

for thedata tobewrittenor readbymemory inmemorycontrolledbyamicroprocessor, but in

an FSM-controlled system the design engineer should ensure that this occurs either by

adding another state to the statemachine or by creating a delay on the chip select signal in the

memory device.

The segment of timing diagrams of Figure 2.7 in Frame 2.5 illustrates this process.

When reading from and writing to memory devices, the process of reading and writing is

implied to be from the point of view of the controlling device. The controlling device in a

microprocessor system is themicroprocessor. In our case, the controlling device is the FSM.

Task Tryproducing a segmentof state diagram tocontrol thememorydevice forwriting.

Now go to Frame 2.7 to find out whether it is correct.

30 Using State Diagrams to Control External Hardware Subsystems

Frame 2.7

The segment of state diagram to control the memory illustrated in Frames 2.5 and 2.6 is

illustrated in Figure 2.9.

FSM
f

RWCS

clk

Memory

dataaddr

Address

Counter

sn
CS,W,R

sn+1

/CS,W,R

sn+2

/CS,/W,R

sn+3

/CS,W,R

sn+4

CS,W,R

sn+5

CS,W,R
PC

_|

_|

_|

_|

_|

Memory Write

PCRC

Reset

counter

Pulse

counter

Memory

full

sn+6

/PC

Figure 2.9 Using an FSM to control the writing of data to a memory device.

In state sn, all controls are disasserted. In sn þ 1 the chip select line CS is active; then,

in state sn þ 2, the write control line W is active. In state sn þ 3,W is deactivated to write

the data into the memory, and it is at this point that the data are written into the memory

device. Finally, in state sn þ 4, the chip select CS is raised to deselect the memory

device.

To read or write to a memory device, the data transaction will occur in the memory

element currently accessed by the address bus. To access another memory element,

another address needs to be selected; this is done by the address counter. This is what the

counter in Figure 2.6 (and in Figure 2.9) is being used for. In this case, each memory

location is selected in sequence by incrementing the binary counter after accessing each

memory location.

Note that in state sn þ 5 the signal PC is set high. This increments the counter, thereby

incrementing the address to point to the next consecutive memory location.

Learning Material 31

The counter can be reset to zero by sending the signal RC to logic 0. It can be incremented by

the FSMwith a pulse to the PC signal. In this way, eachmemory location of thememory can be

accessedsequentially.Notethat theaddresscounter is incrementedafterdisassertingthememory

chip. This is because the address on thememory chip should not be changedwhile it is selected.

Go to Frame 2.8.

Frame 2.8

Task Having seen how the individual outsideworld devices are controlled inFigure 2.6, try

to produce a state diagram to implement the FSM used to control the system.

The FSM is to wait in state s0 until it receives an interrupt signal from the remote end

device over the int signal line. When this occurs, the FSM is to

� obtain a sample of data;

� perform an analogue-to-digital conversion;

� store the converted value into the memory device;

� increment the counter to point to the next available memory location.

The FSM should keep on doing this until thememory device is full. The FSMwill know this

when the f input (from the counter) goes high.

At this point, the FSM is to send an acknowledge signal to the remote end device using the

ACK signal line; then, once the signal line int is low (remember, it was asserted high at the

beginning of the sequence), it is to return to state s0 ready for another cycle.

When completed, go to Frame 2.9.

Frame 2.9

The complete state diagram is illustrated in Figure 2.10. Your state diagram may not look

quite like this one, as there is more than one way of drawing a state diagram and there is no

‘one’ correct solution. However, the diagram in Figure 2.10 is very concise.

Thefirst thing to note is that the reset lineRCused to hold thememory address counter reset

is held active (asserted) in state s0. Thereafter, it is held in its disasserted state (i.e. RC¼ 1).

Not all states show this, but the sequential nature of the state diagram implies it.

When the int input is asserted, the FSMmoves into state s1, removing the reset from the

address counter and simultaneously asserting the sample-and-hold amplifier S/H¼ 1.

On the next clock pulse, the FSMmoves to state s2, where (with the S/H still set) the start

conversion signal of the ADC is asserted SC¼ 1. At this point, the FSMwaits for the end of

conversion signal eoc¼ 1; then, on the next clock pulse, it moves to state s3, where the S/H

signal is disasserted (S/H¼ 0), since the ADC has converted the analogue data into digital

form.While in state s3 the chip select in asserted (CS¼ 0) and the FSMwaits in state s3 for

eoc to be returned low. When this happens, on the next clock pulse the FSM moves to s4,

where the memory device write signal lineW is asserted low to set up the memory data bus

lines as inputs. This allows the ADC digital output value to be input to the memory.

32 Using State Diagrams to Control External Hardware Subsystems

The next clock pulsewillmove the FSM into state s5,whereW is disasserted high, thereby

writing the ADC value into the memory chip.

TheFSMnowmoves into state s6on the next clockpulse to deselect thememory (CS¼1).

Go to Frame 2.10.

Frame 2.10

At this stage in the FSM cycle, the FSM is in state s6.

The state machinewill nowmove to state s7, where CCwill be asserted high. On the next

clockpulse, the statemachinemoves to s8,whereCCwill go low.The0-to-1 transitionon this

signal line, caused by the FSMmoving from state s6 to s7, will cause the address counter to

increment. Note that, in state s6, the CS andW signals are now both high (disasserted).

In state s8 the FSM can move, either to state s1, if the signal f is disasserted low (hence

repeating the sequence s1 to s8), or, if signal f is asserted, the FSM canmove from s8 into s9.

The signal f is used to indicate whether the address counter has reached the end of the

memory. If it has not reached the end of the memory (f ¼ 0) then another cycle is started,

otherwise the FSMmoves into state s9 where the ACK signal will be asserted high to let the

external device know that the FSMhas completed its tasks. The FSMwill wait for the signal

int going low.

Bywaiting for int to go low, the FSMwill be ready for the next low to high transition on int

to start the next cycle of operations. Note that the external device will need to lower the int

signal to complete the handshake. On seeing int go low, the FSM lowers the ACK signal to

complete the handshake.

The forgoingexample isquite acomplexoneandshowshowanFSMcanbeused tocontrol

a complex sequence to control a number of outside world devices.

s0
/RC

s1
S/H=1,

RC

s2
SC

s3
S/H=0,

/SC, /CS

s4
/W

s5
W

s6
CS

s7
CC=1

s8
CC=0

s9

int_|

eoc_|

f_|

/int_|

_|

/eoc_|

_|

||

_|

/f_|

ACK

/ACK

Figure 2.10 State diagram for the DAS.

Learning Material 33

As seen from this example, the development of a state diagram is largely an intuitive

process. However, by applying the techniques discussed in this book the reader

can become experienced in developing their own state diagrams to control external devices.

Some of the ideas put forward in this text are as follows:

� ANDing clock and other input signals to an outside world output to form Mealy outputs

(Frame 1.16, Figure 1.18);

� using dummy states to obtain unit distance coding (Frames 1.12 and 1.13);

� using an external timer to provide a wait state (Frame 2.1);

� using theFSMtocontrol outsideworlddevices likeADC(Frame2.4)andmemorydevices

(Frame 2.5).

The steps necessary to get from a state diagram to a functional circuit are verymechanical

and will be discussed in Chapter 3.

However, before looking at Chapter 3, there are a number of other techniques that need to

be considered.

Move on to Frame 2.11.

Frame 2.11

Consider the block diagram of an FSM in Figure 2.11.

FSM

d

P

Clock

Data input

Output

Figure 2.11 Block diagram for the data-input FSM.

In this particular FSM, a single clock pulse is required at the outputPwhenever thed input

is asserted high twice.

Task Tryproducing a state diagram for this one, then turn toFrame2.12 to see a solution.

34 Using State Diagrams to Control External Hardware Subsystems

Frame 2.12

The block diagram of Frame 2.11 is repeated in Figure 2.12.

FSM

d

P

Clock

Data input

Output

Figure 2.12 Block diagram for the data-input FSM.

Thepoint to note here is tomonitor the input for change.This implies the need tomonitord

for two assertions.

Themonitoringofd is very important in this example, since theFSMmustdeterminewhen

d has been asserted twice. To do this, monitord going high, thenmonitord going low (at this

point, d has gone high then low once). Continue to monitor d going high again, followed by

monitoring d going low (at this point, d has gone high then low twice).

The state diagram is shown in Figure 2.13.

/P
s0

/P
s1

/P
s2

P
s3

/P
s4

/d_|d_|

d_|

_|

/d_|

Output P = s3 = /A.B.C.

ABC
000

ABC
101

ABC
111

ABC
011

ABC
010

Figure 2.13 State diagram to detect two 1-to-0 transitions of d input.

In this state diagram, the FSMmonitors the d input going high, then low (s0 and s1), then

monitors d going high again (s2 and s3). In state s3, the FSM knows that d has been asserted

twice, so the outputP is allowed to become asserted high. The FSMmoves out of state s3 on

the next clock pulse and waits in state s4 for the d input to go low before moving back into

state s0. So, inputs with multiple assertions must be monitored by the FSM.

Note that in Figure 2.13 the state assignments between s0 and s1 and between s4 and s0

arenot unit distance.Youmight like to try toobtainaunit distancecoding for the statediagram.

Learning Material 35

Apossible solution is as follows. A dummy state needs to be added to the state diagram, a

possible placewould be between s3 and s4 (call it s5). Then, the following unit distance state

assignment could be applied: s0 ¼ 000, s1¼ 100, s2 ¼ 110, s3¼ 111, s5(dummy) ¼ 011,

s4¼ 001.

Go to Frame 2.13.

Frame 2.13 A sequence detector

Consider the example shown in Figure 2.14.

FSM

d

Z

Clock

Data input

Output

Figure 2.14 Block diagram for the 110 sequence detector.

This detector has the timing diagram shown in Figure 2.15.

clk

d

Z

d is sampled on the rising
edge of the clock

s0 s1 s4s3s2 s0s5

Figure 2.15 Possible timing diagram for the 110 sequence detector.

Note, d is sampled on the 0-to-1 transition of the clock (shown by the arrows in n

Figure 2.15).

36 Using State Diagrams to Control External Hardware Subsystems

The FSM changes state on the 0-to-1 clock transition also. The timing diagram illustrates

how the FSM is to do this.

In the timing diagram of Figure 2.15, d follows a 110 sequence. In practice, of course, one

needs to produce an FSM that can identify the 110 sequence from all other possible

sequences. Only the 110 sequence, however, should produce a Z output pulse.

Task Assume that the d input is a succession of pulses, i.e. 1 ! 0 ! 1 ! 0 is two D

pulses. Try producing a state diagram for such an FSM.

Hint Produce the state diagram for detecting the required 110 sequence first, then add to

this state diagram the necessary transitions to cover all other sequences.

Go to Frame 2.14 to see the solution.

Frame 2.14

The state diagram for the 110 sequence detector is shown in Figure 2.16.

s0
/Z

s1 s3s2

s4s5
Z

s6
/Z

s7
/Z

d_|/d_|d_|

/d_|

/d_|

d_|

_|

_|

Unused states go back to
s0

ABC
000

ABC
100

ABC
110

ABC
111

ABC
011

ABC
001

ABC
101

ABC
010

d_|

/d_|
d_|

_|

Figure 2.16 State diagram for the 110 sequence detector.

Thesequences0, s1, s2, s3, s4ands5detects the110sequence (note theassumption that the

d input is a succession of pulses).

The loop back terms catering for all other sequences are to return the FSMback to state s0

in order to keep on detecting the 110 sequence. The timing diagram of Figure 2.15 should

help to explain the different transitions.

Learning Material 37

Note that the state diagramaboveuses six states. The secondary statevariables alloweight

states; therefore, there are twostates that arenot used.Whatwouldhappen if theFSMwere to

fall intooneof these twounused states?Theanswer to this question is that theFSMwouldnot

be able to get out of the unused state and the FSM would ‘hang’.

To avoid this calamity, it is common to direct all unused states back to state s0 so that the

FSMcan recover from thismisadventure.This is shown inFigure2.16,where states s6 and s7

are directed back to state s0 on the next clock pulse.

Note that when using D-type flip-flops to implement the state machine, getting into an

unusedstatewill automaticallycause theFSMtoreset to state s0; therefore, it isnotnecessary

to connect unused states back to s0 in this case. More on this later.

2.3 SUMMARY

This chapter has dealt with theway inwhich FSMs can be used to control external hardware in a

digital system. Later chapters will illustrate how these and other external devices can be

controlled by an FSM. One of the implications from this work is that many of the applications

normally developed using microcontrollers can be implemented using FSMs and hardware

logic. The block diagram and state diagram approach seen in Chapters 1 and 2 can be used, in

conjunction with modern HDLs to make this possible. The advantage, in some cases, will be a

design that uses less logic than a similar design using a microcontroller. You will see this

possibility later on when you have read later chapters.

For now, the next stage in our work is to see how a state diagram can be used to create a logic

circuit to realize the design. This work is covered in Chapter 3.

38 Using State Diagrams to Control External Hardware Subsystems

