
3
Synthesizing Hardware
from a State Diagram

3.1 INTRODUCTION TO FINITE-STATE MACHINE SYNTHESIS

At this point, the main requirements to design an FSM have been covered. However, the ideas

discussed need to be practised and applied to a range of problems. This will follow in later

chapters of the book and provide ways of solving particular problems.

In the development of a practical FSM there is a need to be able to convert the state diagram

description into a real circuit that can be programmed into a PLD, FPGA, or other application-

specific integrated circuit (ASIC). As it turns out, this stage is very deterministic and

mechanized.

FSM synthesis can be performed at a number of levels.

Develop an FSM using flip-flops, which can be:

– D-type flip-flops;

– T-type flip-flops;

– JK-type flip-flops.

Use ahigh-levelHDLsuchasVHDL.This canbeused to enter the state diagramdirectly into the

computer. The HDL can then be used to produce a design based upon any of the above flip-flop

types using one of a number of technologies.

It is also possible to take the state diagramand convert it into aCprogramand, hence, produce

a solution suitable for implementation using a micro-controller.

Byusing thedirect synthesis approach, or anHDL, thefinal designcanbe implementedusing:

� discrete transistor–transistor logic (TTL) or complementary metal oxide–semiconductor

(CMOS) components (direct synthesis);

� PLDs;

� FPGAs;

� ASICs;

� a very large-scale integration chip.

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

Most technologies supportD- andT-typeflip-flops, and in practice thesedevices are used a lot

in industrial designs; therefore, this book will look at the way in which T flip-flops and D flip-

flops canbeused in adesign.Note: JKflip-flops can alsobeused, but these are not covered in this

book.

This chapterwill look at the implementation of an FSMusingT-type flip-flops and thenmove

on to look at designs using D-type flip-flops.

Why T- and D-type flip-flops?

These are the most common types of flip-flop used today. The reason is that the T type can be

easily implemented fromaD type, and theD type requires only six gates (comparedwith the JK

type,which requiresabout10gates).Thismeans thatD-typeflip-flopsoccupy lesschiparea than

JK types. Another reason is that the D-type flip-flop is more stable than the JK flip-flop.

D-type flip-flops are naturally able to reset, in that if theD input is at logic 0, then the flip-flop

will naturally reset on the next clock input pulse (see later on in this chapter). This canbe of great

benefit in the design of FSMs.

Go to Frame 3.1 to find out how to use the T flip-flop.

3.2 LEARNING MATERIAL

Frame 3.1 The T-type flip-flop

A T-type flip-flop can be implemented with a standard D-type flip-flop, as illustrated in

Figure 3.1.

Q

QSET

CLR

D

Q
output

T input

Clk

T Qn Qn=1

0 0 0 No change

1 0 1 Toggle

0 1 0 Toggle

1 1 1 No change

Figure 3.1 Diagram and characteristics of a T flip-flop.

As can be seen from the diagram, theTflip-flop is implemented by using aDflip-flopwith

an exclusive OR gate. The table under the flip-flop shows its characteristics.

In this table, Qn is the present state output of the flip-flop (prior to a clock pulse),

whilst Qn þ 1 is the next state output of the flip-flop (after the clock pulse). The table

shows that the flip-flop will change state on each clock pulse provided that the t input is

high. But if the T input is low, then the flip-flop will not change state.

40 Synthesizing Hardware from a State Diagram

Therefore, use the t input to control the flip-flop, since, whenever the flip-flop is to change

state, simply set the t input high; otherwise it is held low.

Go to Frame 3.2.

Frame 3.2 The T flip-flop example

Consider the simple single-pulsegeneratorwithmemoryexampleofFrame1.13 reproduced

in Figure 3.2.

/P,/L

s0

P,L

s1

/P,L

s2

s _| _|

/s _|

AB
00

AB
10

AB
11

/s

s

_|

AB
01

/P,L

s3

Figure 3.2 State diagram for the single-pulse generator with memory.

Follow the state transitions for secondary state variable A and write down the state

term wherever there is a 0-to-1 or a 1-to-0 transition in A. In the above state diagram

there is a 0-to-1 transition in A between states s0 and s1, and a 1-to-0 transition between

states s2 and s3. Therefore, write down

A � T ¼ s0 � sþ s2:

This equation defines the logic that will be connected to the T input of flip-flop A.

Whenever the FSM is in state s0, and input s is high, the T input of flip-flopAwill be high.

Whenever the T input is high, the flip-flop will toggle. Since in state s0 both flip-flops are

reset, then in state s0, when s goes to logic 1, the next clock pulsewill cause the flip-flopA to

go from 0 to 1.

In state s1, the T input to flip-flop Awill be at logic 0 since there is no term to hold this

input high in these states. Therefore, in state s1 the flip-flop A will not toggle with the

clock pulse. When the FSM reaches state s2, the T input will go high again and the next

clock pulse will cause the flip-flop to toggle back to its reset state as intended. Note that

in state s3 the T input to flip-flop Awill be low again, so the flip-flop will not toggle on

the next clock pulse in state s3.

Learning Material 41

Note that the equation for A � T uses the present state condition to set the t line high. This
isnecessary inorder tomakesure that theflip-flopwill toggleon thenextclockpulse.The logic

being produced here, therefore, is that of the next state decoder of the FSM (see Frame 1.4).

Task Try producing the equation for the input logic for the T input on flip-flop B.

Then go to Frame 3.3 to see the solution.

Frame 3.3

The equation for the T input of flip-flop B is

B � T ¼ s1þ s3 � =s:
Since in state s1 theB � T input needs to be logic 1, so that on the next clock pulse the flip-flop
will change froma reset state to a set state.Note that there is no outsideworld input condition

between states s1 and s2.

The second term s3 � /swill cause theBflip-flop to toggle from its set state to its reset state

in state s3 when the outside world input s¼ 0 on the next clock pulse.

In summary, look for the 0-to-1 or 1-to-0 transition in each flip-flop.

Task Now try the example in Figure 3.3 and also produce the output equations for this

design,but with output L being high in s3 only if a new input R is logic 1.

/K,/L

s0

K,/L

s1

/K,/L

s2

x _| _|

/x_|

AB
00

AB
01

AB

A.T =
B.T =

K =
L =

11

/x

x

_|

AB
10

/K,L

s3

Figure 3.3 State diagram example for implementation using T flip-flops.

Now turn to Frame 3.4.

42 Synthesizing Hardware from a State Diagram

Frame 3.4

The modified state diagram is shown in Figure 3.4.

/K,/L

s0

K,/L

s1

/K,/L

s2

_|x _|

/x_|

AB
00

AB
01

AB
11

/x

x

_|

AB
10

/K,/L
L=R
s3

Figure 3.4 State diagram example for implementation using T flip-flops.

The equations for A � T and B � T are

A � T ¼ s1þ s3 � =x
B � T ¼ s0 � xþ s2:

The outside world outputs are

K ¼ s1 ¼ =A � B
L ¼ s3 � R ¼ A � =B � R:

The equation for L is a Mealy output in which the value of L can only be logic 1 in state

s3, but only if input R is also logic 1. Refer to Frames 3.1–3.3 for the method if

necessary.

Please now turn to Frame 3.5.

Frame 3.5

Task Attempt the following examples. Produce the flip-flop equations and output

equations for each of the state diagrams indicated. If you are not too sure, reread

Frames 3.1–3.4 before starting to do the problems.

Learning Material 43

State diagram in Frame 1.19, Figure 1.22, using the following secondary state variables:

ABC

s0 000

s1 100

s2 110

s3 011

s4 001

State diagram in Frame 2.3, Figure 2.4, using the following secondary state variables:

AB

s0 00

s1 10

s2 11

s3 01

State diagram in Frame 2.12, Figure 2.13, using the following secondary state variables:

ABC

s0 000

s1 100

s2 110

s3 111

s4 011

s5 001

State diagram in Frame 2.9, Figure 2.10, using the following secondary state variables:

ABCD

s0 0000

s1 1000

s2 1100

s3 1110

s4 1111

s5 0111

s6 0011

s7 1011

s8 1001

s9 0001

See Frame 3.6 for the solution to these problems.

44 Synthesizing Hardware from a State Diagram

Frame 3.6

The answers to the problems in Frame 3.5 are as follows.

For the state diagram of Frame 1.19, Figure 1.22:

ABC Answer

s0 000 A � T¼ s0 � sþ s2¼ /A/B/C � sþ AB/C

s1 100 B � T¼ s1þ s3¼ A/B/Cþ /ABC

s2 110 C � T¼ s2þ s4 � /s¼ AB/Cþ /A/BC � /s
s3 011

s4 001 P¼ s1þ s3 � x¼ A/B/Cþ /ABC � x

For the state diagram of Frame 2.3, Figure 2.4:

AB Answer

s0 00 A � T¼ s0 � stþ s2 � /to¼ /A/B � stþ AB � /to
s1 10 B � T¼ s1þ s3 � /st¼ A/Bþ /AB � /st
s2 11

s3 01 P¼ s1þ s2¼ A, TS (active-low)¼ /s1¼ /(A/B)

For the state diagram of Frame 2.12, Figure 2.13:

ABC Answer

s0 000 A � T¼ s0 � dþ s3¼ /A/B/C � dþ ABC

s1 100 B � T¼ s1 � /dþ s4 � /d¼ A/B/C � /dþ /ABC � /d
s2 110 C � T¼ s2 � dþ s4 � /d¼ AB/C � dþ /ABC � /d
s3 111

s4 011 P¼ s3¼ ABC

For the state diagram of Frame 2.9, Figure 2.10:

ABCD Answer

s0 0000
A � T ¼ s0 � intþ s4þ s6þ s8 � f

¼ =A=B=C=D � int þ ABCDþ =A=BCDþ A=B=CD � f
s1 1000

s2 1100

s3 1110 B � T¼ s1þ s5¼ A/B/C/Dþ /ABCD

s4 1111

s5 0111 C � T¼ s2 � eocþ s7¼ AB/C/D � eocþ A/BCD

s6 0011

s7 1011
D � T¼ s3 � =eocþ s8 � =f þ s9= � int

¼ ABC=D � =eocþ A=B=CD � =f þ =A=B=CD � =int
s8 1001

s9 0001

RC¼ /s0¼ /(/A/B/C/D) active-low output

S/H¼ s1þ s2¼ A/C/D

Learning Material 45

Frame 3.7

The answers for the state diagram of Frame 2.14, Figure 2.16 are

A � T ¼ s0 � d þ s1 � d þ s2 � =d þ s3þ s7

¼ =A=B=C � d þ A=B=C � d þ AB=C � =d þ ABC þ A=BC

¼ =B=C � d þ AB � =d þ AC

B � T ¼ s1 � =d þ s2 � =d þ s3 � d þ s4þ s6

¼ A=C � =d þ BC � d þ =AB

C � T ¼ s2 � d þ s3 � d þ s4 � d þ s5þ s7

¼ AB � d þ BC � d þ =BC

Z ¼ s5

¼ =A=BC:

The complete cycle of designing an FSMand synthesizing it using T-type flip-flops has been

completed.

T-type flip-flops, as has already been seen in Frame 3.1, can be implemented from a basic

D-typeflip-flop, using an exclusiveORgate. SomePLDs support both theD- andT-typeflip-

flops, so FSM designs can be implemented using these PLDs.

Some PLD devices can be programmed to be eitherD-type or T-type flip-flops. However,

most PLD devices support D-type flip-flops, particularly the cheaper PLD devices, such as

the 22v10. Therefore, it is worthwhile considering how D-type flip-flops can be used to

synthesize FSMs.

As it turnsout, usingD-typeflip-flops to synthesizeFSMsrequires a little thought, so some

timewill be spent looking at the techniques required in order tomake use ofD-type flip-flops

in the design of FSMs. This will be time well spent, since it opens up a large number of

potential devices that can be used to design FSMs.

Turn to Frame 3.8.

SC¼ s2¼ AB/C/D

CS¼ /(s3þ s4þ s5)¼ /(ABCþ BCD) active-low output

W¼ /s4¼ /(ABCD) active-low output

CC¼ s7¼ A/BCD

If you are having difficulty in seeing how the active-low output equations are obtained, skip

forward to Frame3.25 (and Frame 3.26) for an explanation, then return to this frame.

Task Finally, try producing the equations for the state diagram of Frame 2.14,

Figure 2.16; it has already been assigned secondary state variables. The answer

is in Frame 3.7.

46 Synthesizing Hardware from a State Diagram

Frame 3.8 Synthesizing FSMs using D-type flip-flops: the D-type flip-flop
equations

Consider the basic D flip-flop device shown in Figure 3.5.

D Q

clock

Data input

Data Flip-Flop

Asynchronous reset input

Steering Table
Qn Qn+1 D
0 0 0
0 1 1

1 0 0
1 1 1

Figure 3.5 Diagram and characteristics of a D flip-flop.

The D-type flip-flop has a single data input D (apart from the clock input).

� The data line must be asserted high before the clock pulse, for theQ output to be clocked

high by the 0-to-1 transition of the clock.

� For the Q output to remain high, the D input must be held high so that subsequent clock

pulses will clock the 1 on the D input into the Q output.

These two bullet points are very important and should be remembered when using D-type

flip-flops.

Consider the waveforms shown in Figure 3.6 applied to a D flip-flop.

Clk

D

Q

Timing markers for 0-to-1 transistions

Figure 3.6 Incomplete timing diagram for a D flip-flop.

Learning Material 47

Task Complete the timing diagram for the output Q.

Hint: study the content of this frame and the steering table.

Go to Frame 3.9 after completing the diagram.

Frame 3.9

The completed timing diagram is illustrated in Figure 3.7.

Clk

D

Q

Transistion is high during 0-to-1 transistions
of the clock, so not seen by the D flip-flop.

Figure 3.7 Complete timing diagram for a D flip-flop.

The trick here is to look at the value of the D line whenever the clock input makes a

transition from 0 to 1; whatever the D line logic level is, the Q output level becomes.

This is because theD-typeflip-flop sets itsQoutput towhatever theD input logic level is at

the time of the clock 0-to-1 transition.

In the timing waveform, theD input is held high over two clock periods. This means that

the Q output will also be held high over the same two clock periods.

Note the point on the timingwaveformwhen theD inputmakes a transition to logic 1 for a

briefperiod (betweenclockpulses).Theflip-flop isunable to see this transitionof theD input,

so the flip-flop is unable to respond.

Note: the flip-flop can only update its Q output at the 0-to-1 transition of the clock input.

Go to Frame 3.10.

Frame 3.10

Having covered the basics of the D flip-flop, consider the state diagram in Figure 3.8.
It is, of course, the single-pulse generatorwithmemoryFSMseen inFrame 1.13.Thiswill

be synthesized using D-type flip-flops.

48 Synthesizing Hardware from a State Diagram

The equation for flip-flop A is

A � D ¼ s0 � sþ s1 ¼ =A=B � sþ A � =B ¼ =B � sþ A � =B ðusing Aux ruleÞ:

Note, the D line of flip-flop A needs to be set in state s0 and held set over state s1.

Now consider the equation for flip-flop B:

B � D ¼ s1þ s2þ s3 � s ¼ A � =Bþ A � Bþ =A � B � s ¼ Aþ =A � B � s ¼ Aþ B � s:

Thefirst term sets theD line high in state s1,whilst the second termholds theD line high over

state s2. But what is happening in the third term?

In state s3 theD line needs to be held high if the input s is not logic 1, sincewhen s¼ 0 the

FSMshould return to state s0 (by resetting flip-flopB). Therefore,whilst s¼ 1, the third term

in the equation forB � Dwill be high.When s¼0, this termwill become logic 0and theBflip-

flop will reset, causing the FSM to move to state s0.

Negate the input term (s in this case) with s3 to hold the D input of the flip-flop high.

Rule 1 Whenever there is a 1-to-0 transition with an input term present along a

transitional line of the state diagram, thenAND the statewith the negated input.

Turn to Frame 3.11.

Frame 3.11

Now consider the state diagram shown in Figure 3.9.

This is just a modification of the single-pulse generator FSM which allows the FSM to

producemultiplepulses if inputk ¼ 1andm ¼ 1,andmultiplepulsesevery fourclockcycles

if k ¼ 1 and m ¼ 0.

s0

/P,/L

s1

P,/L

s2

/P,L

s3

/P,L

|s|

_|

/s_|

/s

s

AB
00

AB
10

AB
11

AB
01

Figure 3.8 State diagram for implementing using D flip-flops.

Learning Material 49

s0

/P,/L

s1

P,/L

s2

/P,L

s3

/P,L

k_|s_|

/m_|

/s_|

/s

s

AB
00

AB
10

AB
11

AB
01

m_|

Figure 3.9 State diagram with two-way branch.

The equation for the A flip-flop is

A � D ¼ s0 � sþ s1þ s2 � m:
Thefirst term is to set theA � D input high for thenext clockpulse to set theflip-flopand cause

the FSM to move into state s1.

The second termis tohold theflip-flopsetbetween states s1ands2.Note that the input term

along the transitional line between state s1 and s2 (k) is not present in the second term. This is

because it is not needed. The flip-flop is to remain set regardless of the state of the input k.

Rule 2 A term denoting a transition between two states where the flip-flop remains set

does not need to include the input term.

The third term in the equation for A � D is a bit more complicated. This term is a holding

term for the two-waybranch state s2. In state s2, the transitional pathbetween states s2 and s3

is a 1-to-0 transition. Therefore, apply Rule 1 (defined in Frame 3.10). The term is therefore

s2 � m. The other path, between states s2 and s1, is a 1-to-1 transition.Note: the termdenoted

by the s2 to s1 transition is not present in the equation for A � D. This is because it is not
required. The third rule is as follows.

Rule 3 A two-way branch in which one path is a 1-to-0 transition and the other a 1-to-1

transitionwill always produce a term involving the state and the 1-to-0 transition

with the input along the 1-to-0 transitional line negated. The 1-to-1 transitional

path will be ignored.

Go to Frame 3.12.

Frame 3.12

To see why these three rules apply, look at the state diagram of Frame 3.11 again, which is

reproduced in Figure 3.10 for convenience.

50 Synthesizing Hardware from a State Diagram

Rule 1 Whenever there is a 1-to-0 transition with an input term present along a

transitional line of the state diagram, the state is ANDedwith the negated input.

A1-to-0 transitionwith an input along the transitional line connecting the two states needs

to be ANDedwith the negated input condition along the transitional line in order to hold the

flip-flop set until the input condition along the transitional line becomes true.

A 1-to-0 transition without an input along the transitional line connecting the two states

does not need to be included in the equation, since the FSMwill always be able to follow the

transition and the flip-flop will always be able to reset.

Rule 2 A term denoting a transition between two states where the flip-flop remains set

does not need to include the input term.

In the above state diagram the transitionbetween state s1 and s2 forflip-flopA is s1 � kþ s1

� /k, i.e. it does notmatterwhat state the input k is sinceA is to remain 1 regardless ofwhether

it is in state s1 or s2. Therefore, s1 � kþ s1 � /k¼ s1 by Boolean logical adjacency rule.

Rule 3 A two-way branch in which one path is a 1-to-0 transition and the other a 1-to-1

transitionwill always produce a term involving the state and the 1-to-0 transition

with the input along the 1-to-0 transitional line negated. The 1-to-1 transitional

path will be ignored.

In the above state diagram the two-way branch involves a 1-to-0 transition and a 1-to-1

transition. In state s2, flip-flop Awill remain set if m¼ 1 and must reset if m¼ 0.

Go to Frame 3.13.

Frame 3.13

The diagram in Figure 3.11 illustrates all possible conditions for a two-way branch in a state

diagram.

s0
/P, /L

s1
P, /L

s2
/P, L

s3

/P, L

k_|s_|

/m_|

/s_|

/s

s

AB
00

AB
10

AB
11

AB
01

m_|

Figure 3.10 State diagram with two-way branch.

Learning Material 51

ABCD
1101

sn

ABCD
0110
sn+2

ABCD
0101
sn+1

p_| q_|

Da = sn.(/p./q)
Db = sn
Dc = sn.q
Dd = sn./q

Figure 3.11 State diagram segment showing different conditions in a two-way branch.

In particular, note the condition for flip-flop A in a two-way branch with both transitions

being1 to0.The termDA¼ sn � (/p � /q) implies that thenegationof the input termalongeach

transitional line is being used. Only if both p¼ 0 and q¼ 0 will the FSM remain in state sn.

Study the diagram carefully and then go to Frame 3.14.

Frame 3.14

Look at the state diagram segments shown in Figure 3.12.

Sn n

Sn

Sn

s0

p

ABC
100

ABC
010

A·d = Sn·/p

B·d = Sn·p

C·d = no term required

p

/l

ABC
011

ABC
110

ABC
100

ABC
000

ABC
010

1.

2.

A·d =

B·d =

C·d =

A·d =

B·d =

C·d =

Sn+1

Sn+1

Sn+1

Figure 3.12 Some two-way branch examples for the reader.

52 Synthesizing Hardware from a State Diagram

Task Complete the two sets of D flip-flop equations.

When these have been completed, go to Frame 3.15.

Frame 3.15

The answers to the two problems in Frame 3.14 are as follows:

1. A � D ¼ sn � p
B � D ¼ sn

C � D ¼ sn � =p:
2. A � D ¼ sn � =p � l; since both p¼ 0 and l¼ 1 are needed to stay in sn

B � D ¼ sn � p, since there is a 0-to-1 transition between sn and snþ 1

C � D, no term required.

Refer to Frames 3.8–3.14 for the method if required. Now try the following problem.

Task The FSM illustrated in Figure 3.13, which is to be synthesized with D-type flip-

flops, has two states with two-way branches. Produce the equations for the twoD

flip-flops, as well as the output equation for X.

s0
/X

s1
/X

s2
X

s3
/X

s_| q_|

/sp_|/q_|

sp_|
AB

00

AB

10

AB

11

AB

01

s

q

sp
X

clk

Figure 3.13 An example with multiple two-way branches.

Go to Frame 3.16 after completing this example.

Learning Material 53

Frame 3.16

The solution to the problem in Frame 3.15 is

A � D ¼ s0 � sþ s1 � qþ s2 � =sp:
Since s0 � s is a set term, s1 � q is the 1-to-0 transition between s1 and s0, and s2 � /sp is the

1-to-0 transition between s2 and s3:

B � D ¼ s1 � qþ s2 � spþ s3:

Since s1 � q is the set term, s2 � sp is the 1-to-0 transition holding termbetween s2 and s1, and

s3 is the holding term in state s3. Note that there is no way of leaving state s3. The output

equation isX¼ s2,whichmakes theFSMaMooreFSMbecause theoutput is a functionof the

secondary state variables.

Toprovide awayout of s3, and to provide an initializationmechanism, it iswise to provide

a reset input to all FSMs. In any case, one should always provide a means of initializing the

FSM to a known state.

Resetting the flip-flops

If the flip-flops have asynchronous reset inputs (see Figure 3.14), then this is easily

accomplished by a common connection to all reset inputs.

Q

QSET

CLR

D

Q

QET

CLR

D

B

C

Asynchronous
reset

Synchronous
reset

Clock

Clock

Synchronous reset will
reset the flip-flop on the
rising edge of the clock
input

Asynchronous reset will
reset the flip-flop
independently of the clock

D = (B + C).reset

Figure 3.14 Circuit diagrams showing asynchronous and synchronous resetting of a D flip-flop.

If theflip-flopsdonothaveanasynchronousreset input(oranyreset input), thenasynchronous

reset can be provided by ANDing a reset input to eachD input. In the case of the synchronous

input, thereset line(whichisactive-low) isnormallyheldhigh; thisenables the logicforeachflip-

flopD input.Lowering the reset linedisables theANDgatesandresults in theD inputsalsogoing

low.The next clock pulse, therefore,will cause the flip-flops to reset.Note that the flip-flopswill

reset on the rising edge of the clock pulse for positive-edge-triggered flip-flops.

Go to Frame 3.17.

54 Synthesizing Hardware from a State Diagram

Frame 3.17

Task Try producing the D flip-flop equations and the output equations for each of the

following state diagrams. If you are not too sure, then reread Frames 3.8 to 3.16 again

before starting to do the problems.

State diagram in Frame 1.19, Figure 1.22, using the following secondary state variables:

ABC

s0 000

s1 100

s2 110

s3 011

s4 001

State diagram in Frame 2.3, Figure 2.4, using the following secondary state variables:

AB

s0 00

s1 10

s2 11

s3 01

State diagram in Frame 2.12, Figure 2.13, using the following secondary state variables:

ABC

s0 000

s1 100

s2 110

s3 111

s4 011

State diagram in Frame 2.9, Figure 2.10, using the following secondary state variables:

ABCD

s0 0000

s1 1000

s2 1100

s3 1110

s4 1111

Learning Material 55

s5 0111

s6 0011

s7 1011

s8 1001

s9 0001

See Frame 3.18 for the solution to these problems.

Frame 3.18

The solutions to the problems in Frame 3.17 are as follows.

State diagram in Frame 1.19, Figure 1.22:

ABC Answer

s0 000 A � D¼ s0 � sþ s1¼ /A/B/C � sþ A/B/C¼ /B/C � sþ A/B/C

s1 100 B � D¼ s1þ s2¼ A/C

s2 110 C � D¼ s2þ s3þ s4 � s¼ AB/Cþ /ABCþ /A/BC � s¼ AB/Cþ /ABCþ /ACs

s3 011

s4 001 P¼ s1þ s3 � x¼ A/B/Cþ /ABC � x with x input

State diagram in Frame 2.3, Figure 2.4:

AB Answer

s0 00 A � D¼ s0 � stþ s1þ s2 � to¼ /B � stþ A/Bþ A � to
s1 10 B � D¼ s1þ s2þ s3 � st¼ Aþ B � st
s2 11

s3 01 P¼ s1þ s2¼ A

TS¼ /s1¼ /(A/B) active-low output

State diagram in Frame 2.12, Figure 2.13:

ABC Answer

s0 000 A � D ¼ s0 � d þ s1þ s2

¼ =A=B=C � d þ A=B=C þ AB=C

¼ =B=C � d þ A=B=C þ AB=C

¼ =B=C � d þ A � =C
s1 100

s2 110 B � D ¼ s1 � =d þ s2þ s3þ s4 � d
¼ A=B=C � =d þ AB=C þ ABC þ =ABC � d
¼ A=C � =d þ ABþ BC � d

s3 111

56 Synthesizing Hardware from a State Diagram

State diagram in Frame 2.9, Figure 2.10:

ABCD Answer

s0 0000 A � D ¼ s0 � intþ s1þ s2þ s3þ s6þ s7þ s8 � =f
¼ =B=C=D � intþ A=C=Dþ AB=Dþ =BCDþ A=BD � =f

s1 1000

s2 1100

s3 1110 B � D ¼ s1þ s2þ s3þ s4

¼ A � =B=C=Dþ A=C=D � E þ ABC

¼ A=C=Dþ ABCs

s4 1111

s5 0111 C � D ¼ s2 � eocþ s3þ s4þ s5þ s6

¼ AB=D � eocþ ABC þ BCDþ =ACD
s6 0011

s7 1011 D � D ¼ s3 � =eocþ s4þ s5þ s6þ s7þ s8 � f þ s9 � int
¼ ABC � =eocþ CDþ A=BD � f þ =A=BD � ints8 1001

s9 0001
RC¼ /s0¼ /(/A/B/C/D)

S/H¼ s1þ s2¼ A/C/D

SC¼ s2¼ AB/C/D

CS¼ /(s3þ s4þ s5)¼ /(ABCþ BCD)

W¼ /s4¼ /(ABCD)

CC¼ s7¼ A/BCD

Note: active-low outputs are shown here with right-hand side negated.

Task Oncethesehavebeencompleted, trytakingthesingle-pulsegeneratorexampleofFrame

3.10, Figure 3.8, and produce the D-type flip-flop equations and output equations.

Finally,produceacircuitdiagramfortheFSMusingD-typeflip-flopswithasynchronous

reset inputs and other logic gates.When complete, go to Frame 3.19.

Frame 3.19

The complete design for the single-pulse generator with memory is given below;

The design equations

A � D ¼ s0 � sþ s1 ¼ A=Bþ =B � s
B � D ¼ s1þ s2þ s3 � s ¼ Aþ B � s

P ¼ s1 ¼ A=B and L ¼ B:

s4 011 C � D ¼ s2 � d þ s3þ s4 � d
¼ AB=C � d þ ABC þ =ABC � d
¼ AB � d þ ABC þ BC � d

P ¼ s3 ¼ A � B � C

Learning Material 57

The circuit diagram of Figure 3.15 shows the memory elements (flip-flops), input decoding

logic (A � D and B � D logic), and output decoding logic (for the output P).

Q

QSET

CLR

D

Q

QSET

CLR

D

A

/B

s
Clk

Asynchronous reset

BA

L

P

/B/A

Figure 3.15 Circuit for the single-pulse generator with memory using an asynchronous reset.

If flip-flopswith asynchronous reset inputs are not available, then a synchronous reset can

be used, ANDed with the A � D and B � D logic, as illustrated in Figure 3.16.

Q

QSET

CLR

D

Q

QSET

CLR

D

A

/B

s

Clk

Synchronous reset

BA

L

P

/B/A

Additional AND gate needed to allow
input B.d to become zero when reset is

zero

Figure 3.16 Circuit for the single-pulse generator with memory using a synchronous reset.

In this illustration, the reset line is connected to the AND logic of each D input. Note the

additionof theextraANDgate to the input logicofB � D so thatwhenreset¼0,B � D¼0also.

Go to Frame 3.20.

58 Synthesizing Hardware from a State Diagram

Frame 3.20

So now, all aspects of designing FSMs have been covered: from initial specification, to

construction of the state diagram, to synthesizing the circuit used to implement the FSM.

A run through the complete design process will now be undertaken. Consider these steps for

the single-pulse generator FSM.

The Specification
The block diagram showing inputs and outputs is first constructed (Figure 3.17). This would

be supplemented with awritten specification describing the required behaviour of the FSM.

Single-Pulse

Generator

with Memory

s

Clock input

P

L

reset

x

Figure 3.17 Block diagram for the single-pulse generator with memory.

‘The FSM is to produce a single pulse at its output P whenever the input s goes high. No

other pulse shouldbeproduced at the output until shasgone low, thenhighagain. In addition,

anoutputL is to indicate that thePpulsehas takenplace, tobe cancelledwhen sgoes low.The

L output can be disabled by asserting input x to logic 1.’

The next step is to produce the state diagram. This is not a trivial step, since it requires the

use of a number of techniques developed during this programme of work. This is the skilled

part of the development process.

Go to Frame 3.21.

Frame 3.21

The state diagram is shown in Figure 3.18.

Now assign secondary state variables to the state diagram in order to continue with the

synthesis of the FSM. Then, develop the equations for the flip-flops next state decoder, and

output logic.

The design equations

A � D ¼ ðs0 � sþ s1Þ � reset ¼ ðA=Bþ =B � sÞ � reset
B � D ¼ ðs1þ s2þ s3 � sÞ � reset ¼ ðAþ B � sÞ � reset
P ¼ s1 ¼ A=B
L ¼ s2 � xþ s3 � x ¼ B � x:

Finally, the circuit is produced from theequations (Figure3.19).Note that outputL is aMealy

output because it used the input x.

Learning Material 59

The design can then be simulated to ensure that it is functioning according to the original

specification.

Simulation

Note here that the output L is conditional upon input x, so that it can only be logic 1 in states

s2 and s3, and then only if input x is logic 1 also. This is illustrated in the waveforms in

Figure 3.20.

s0
/ P,/ L

s1
P,/ L

s2
/ P,L=x

s3

/ P,L=x

s

/s

/s

s

AB

00

AB

10

AB

11

AB
01

Figure 3.18 State diagram for the single-pulse generator with memory.

Q

QSET

CLR

D

Q

QSET

CLR

D

A

/B

s

Clk

Synchronous reset

BA

P

/B/A

x
L

Figure 3.19 Circuit diagram of the single-pulse generator with memory.

60 Synthesizing Hardware from a State Diagram

Clk

A

B

P=A/B

L

s

s0s3s2s1s0

Moore output

Mealy output

x

Figure 3.20 Timing diagram for the single-pulse generator with memory.

Go to Frame 3.22.

Frame 3.22

In some cases there is a need to use three-way (or more) branches. This has been avoided up

until now, but the rules can be used to resolve all pathways. However, each path must be

mutually exclusive.

Consider the diagram in Figure 3.21.

s0

s1

s3

s2

ABC

011

ABC

100

ABC

101

ABC

100

A.d = s0(x+y+z) since any path takes A to 1.

B.d = s0.(/x. /y . /z)

C.d = s0.(/x./y) no need to include z

x_|

y_|

z_|

Figure 3.21 State diagram segment with three-way branch.

Learning Material 61

Here, the input A � d for flip-flop A has 0-to-1 transition in all three paths. To meet the

requirements for the D flip-flop, all leaving terms (x, y, and z) need to be logically ORed to

provide a transition when any input becomes active.

In the case ofB � d there are three 1-to-0 transitionpaths; this canbe dealtwith byusing the
1-to-0 negation rule for all three paths, as shown.

In the case of C � d there are two 1-to-0 transitions and one 1-to-1 transition. In this

case the 1-to-0 negate rule is applied to the two 1-to-0 transition paths, both ANDed

because they both have to be true to keep the FSM in s0. The 1-to-1 transition is, as

usual, ignored.

Go to Frame 3.23.

Frame 3.23

Task Consider the state diagram fragment in Figure 3.22.

Complete the equations for A � d, B � d, and C � d.

s0

s1

s2

s3

s4

s5

s6

x_|

y_|

z_|

_|

_|

_|

ABC
010

A.d =

B.d =

C.d =

ABC
010

ABC
110

ABC
100 ABC

101

ABC
011

ABC
111

Figure 3.22 Incomplete three-way branch example.

When completed, go to Frame 3.24.

62 Synthesizing Hardware from a State Diagram

Frame 3.24

The three equations are illustrated in Figure 3.23.

s0

s1

s2

s3

s4

s5

s6

x_|

y_|

z_|

_|

_|

_|

ABC

010

A.d = s0.y + s1 + s2 + s3 + s4 + s5 + s6.

B.d = s0./y + s1 + s3 + s4 + s6.

C.d = s0.z + s2 + s3 + s5 + s6.

ABC

010
ABC

110

ABC

100
ABC

101

ABC

011
ABC

111

Figure 3.23 Solution to the three-way branch example.

In the equation forB � D, the term s0 � /y is keeping the FSM in state s0. In the equation for

C � D, the term s0 � z will hold the FSM in state s0 until z¼ 1. So the rules for D flip-flops

developed earlier still apply.

Go to Frame 3.25.

Learning Material 63

Frame 3.25 Recapon how to dealwithmultistateMoore active-lowoutputs

In some state diagram designs there is a need to write an output equation in its ‘active-

low’ form rather than in its ‘active-high’ form. This is particularly true when control-

ling memory devices, where the chip select line from the FSM to the memory device is

often active-low. If this signal was dealt with as an active-high signal, then all states

where the chip select line was not active would have to be written into the equation for

chip select (CS).

The illustration in Figure 3.24 shows a typical example.

s4
/CS,W,R

s5
/CS,/W,R

s6
/CS,W,R

s7
CS,W,R

CS = /(s4 + s5 +s6)

W = /s5

s4
s5
s6

CS (active low)

s4
s5
s6

CS (active low)

s4 s5 s6 Cs

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

Dealing with active low Outputs

Figure 3.24 Dealing with active-low inputs.

In this example, CS is logic 0 (active) in states s4, s5 and s6, but high again in state s7.

The three states s4, s5 and s6 are all ORed and the whole OR expression inverted (NOR).

This can, if preferred, bewritten either in theNOR form, or, by applyingDeMorgan’s rule in

the form of an AND gate with all inputs inverted.

Go to Frame 3.26.

64 Synthesizing Hardware from a State Diagram

Frame 3.26

Now consider the situation when an output is to be active-low, but only in a particular state,

and then only if a particular input is at a certain logic level (Mealy active-low output). How

can this be represented in a state diagram? Figure 3.25 illustrates how.

s4
/CS,W,R

s5
/CS,

/W=/x,
R

s6
/CS,
W,

/R=x

s7
CS,W,R

W = /(s5 • /x) Here W is
logic 0, but only in state s5, and
then only if input x is logic 0

R = /(s6 • x) Here R is logic 0,
but only in state s6, and then
only if input x is logic 1

Dealing with active low Outputs

Figure 3.25 Dealing with active-low outputs.

In state s5, the outputW is represented by

=W ¼ =x:

This implies that, in state s5,W is tobe logic0,butonly in state s5, andonly if input x is logic0.

When the equation forW is written, it also needs to contain the state s5 as

W ¼ =ðs5 � =xÞ:
Note the whole of the right-hand side of the equation is inverted to provide the active-low

output.

In a similar manner, in state s6 the output R is represented as

=R ¼ x;

indicating that, in state s6,outputR is tobe logic0,butonly if inputx is logic1.Theequation is

written as

R ¼ =ðs6 � xÞ:

Here, as with theW signal, the whole right-hand side of the equation is also inverted.

Learning Material 65

3.3 SUMMARY

This chapter has looked at the method of synthesizing a logic circuit from the state diagram.

Methods have been developed to make this process simple and effective for implementation

using bothT-type flip-flops andD-type flip-flops. Thesemethods are used in the development of

further examples in Chapter 4.

At this point, the main techniques to be used in the development of synchronous design of

FSMs have been completed and the rest of the book follows a more traditional format.

There is one more method to be considered in synchronous design, namely that of the ‘One

Hot’ technique, which will be dealt with in Chapter 5.

66 Synthesizing Hardware from a State Diagram

