4

Synchronous Finite-State
Machine Designs

This chapter looks at a number of practical designs using the techniques developed in Chapters 1
to 3. It compares the conventional design of FSMs with the design proposed in the book. This
illustrates how more effective the latter method is in developing a given design. The traditional
method of designing FSMs is common in a lot of textbooks on digital design. It makes use of
transition tables and can become cumbersome to use when dealing with designs having a large
number of inputs. Even for designs having few inputs, the method used in Chapters 1-3 is
quicker and easier to use.

Most designers involved in the development of FSMs make use of unused secondary state
assignments to help reduce the flip-flop input and output equations. This practice is investigated
with some interesting results.

The chapter covers a number of practical system designs. Some have simulation waveforms
showing the FSM design working. The Verilog HDL code used to create the simulations will not
be shown, as Verilog HDL code development is not covered until later on in the book. However,
the respective Verilog codes are available on the CDROM disk that is included with this book, as
are the Verilog tools used to view the simulations.

Eight examples are discussed in this chapter, with each example introducing techniques that
help to solve the particular requirements in the design being investigated.

4.1 TRADITIONAL STATE DIAGRAM SYNTHESIS METHOD

Before continuing with the development of FSM systems based on the synthesization method
covered in Chapters 1-3, it is worth investigating the more popular traditional method of
synthesization used by many system designers. Then see what solutions are obtained by using
both methods. It should be possible to obtain the same results, or at least results that are of a
similar level of complexity (i.e. number of gates).

Consider the state diagram shown in Figure 4.1. This, being a four-state diagram, will
need two D-type flip-flops. Using the traditional synthesization method, begin by con-
structing a state table containing the present state (PS) values and the next state (NS)

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

68 Synchronous Finite-State Machine Designs

AB
10

Figure 4.1 A state diagram used in the comparison.

values for A and B, for all possible values of the input x. One then adds to this the next
states for the inputs Da and Db, for all possible values of x. The result is the state table
shown in Table 4.1.

The values for A and B in Table 4.1 are obtained by inspection of the state diagram in
Figure 4.1. For example, in state sO (PS of AB = 00) in coll the NS of AB for x = 0 will
be 00 in col2; however, if x = 1, the NS of AB =01 in col3 (i.e. sl).

The values for the NS Da and Db values will follow the NS values for AB because in a
D flip flop the output of the flip flop (A, B) follows the Da and Db inputs.

The reader can follow the rest of the rows in Table 4.1 to complete the state table.

Table 4.1 Present state—next state table for the state machine.

coll col2 col3 col4 col5
PS NS NS NS NS
AB AB AB DaDb DaDb
x=0 x=1 x=0 x=1
Rowl 00 00 01 00 01
Row2 01 11 01 11 01
Row3 11 00 10 00 10

Row4 10 11 00 11 00

Dealing with Unused States 69

The next step is to obtain the Da and Db equations from the state table by writing
down the product terms where Da = 1 in both columns x =0 and x = 1.

Consider, for example, Da = 1 when A changes 0 to 1; look for PSA =0to NS A =1
inrow 2, and PSA=1to NS A =1 in row 3 of columns 1, 3 (x = 1):

e when PS AB = 01 (row 2) and x = 0, flip-flop A should set, and the product term /AB/x is
required;

e whenPSAB = 0l andx = 1 (row 2, col3), flip-flop A should be reset, and the term /A Bx is not
required;

e when PS AB =10 (row 4) and x = 0, flip-flop A should set, and the term A/B/x is
required;

e when PS AB = 11 (row 3) and x = 1, flip-flop A should be set, and term ABx is required.

Therefore, the D input terms for Da are
D-a= /AB-/x+A/B-/x + AB-x,
which cannot be reduced. For D-b=/A/B-x 4 /AB-/x + /AB-x + A/B-/x we have
D-b=/A-x+ /AB+A/B-/x.

The output equation for Z = s3 = A/B, since this is a Moore state machine.
Now do the problem using the synthesization method described in Chapters 1—3.

From the state diagram directly:

Da=sl-/x+s2-x+s3-/x
= /AB-/x+AB-x+A/B-/x
Db =s0-x + sl +s3-/x
=/A/B-x+ /AB+A/B
= /A-x+ /[AB+A/B-/x.
This is the same as obtained using the traditional method.
The main advantage of the method used in Chapters 1-3, over the traditional method, is that it
does not require the use of the state table. It is also much easier to use when the number of input

variablesis large (asis the case in large practical FSM designs) since the size of the present state—
next state table increases as more inputs are added.

4.2 DEALING WITH UNUSED STATES

When developing state diagrams that use less than the 2" states for n secondary state variables the
question of what to do with the unused states arises. Consider the state diagram of Figure 4.2.

70 Synchronous Finite-State Machine Designs

ABC
111

s4
/P/Q

ABC
011

Figure 4.2 A state diagram using less than the 2° states.

From the state assignment used in this example there are

Used states Unused states
sO =000 s5 =010

s1 =100 s6 =110

s2 =101 s7 =001
s3=111

s4 =011

The equations for D flip-flops are:
A-d=s0-s+sl+s2+4+s3-z
= +A/B/C-s+A/B+E&+A/BLE+A/BC 2.
The crossed-out literals are a result of applying logical adjacency and the aux rule (see
Appendix A). The result is
A-d=/B/C-s+A/B+AC -z
B-d=s2-y+s3-/7+s4
=A/BC-y+ -ABC- /z+ /ABC
=A/BC-y+BC- /z+ /ABC
C-d=sl-x+s2-y+s3+s4
=A/B/C-x+A-/B/C-y+ +ABC+ -/ABC.

Development of a High/Low Alarm Indicator System 71

Again, the crossed-out terms are using logical adjacency and the aux rule.

C-d=A/B/C-x+AC-y+ BC.
The output equations:

P=sl+s2=A/B/C+A/BC
P=A/B

Q =s2+s3=A/BC+ABC
Q =A/BC + ABC = AC.

If the state machine falls into the unused state s5 (/AB/C) then the result will be

A-d=0,B-d=0,andC -d =0 the state machine falls into sO.

If the state machine falls into unused state s6 (AB/C):
A-d=0,B-d=0,andC-d =0 again, the state machine will fall into s0.
If state machine falls into the unused state s7 (/A/BC):
A-d=0,B-d=0,and C-d =0 with next state being sO again.

This shows that the FSM designed with D-type flip-flops will be self- resetting.

Note that if Tflip-flops are used, then the FSM will not be self-resetting since the T'input either
toggles with T = 1 or remains in its current state with 7 = 0. The only way to ensue that it does
return to sO is to make transitions available for this, as illustrated in Figure 4.3. Clearly, this
requires more product terms in the equations forA -7, B - ¢, and C - t.

In general, if the state machine has a lot of 1-to-1 transitions and few 1-to-0 and
0-to-1 transitions, then T flip-flops may need less terms and, hence, a possible deduction in
logic.

If the state machine has few 1-to-1 transitions the D flip-flop solution may result in fewer
terms. However, the self-resetting features of the D flip-flop may provide a greater advantage in
the overall design.

The rest of this chapter contains anumber of practical examples, making use of the techniques
developed in the first three chapters.

4.3 DEVELOPMENT OF A HIGH/LOW ALARM INDICATOR SYSTEM

Figure 4.4 illustrates a block diagram for the proposed system. In Figure 4.4, the FSM is used to
control an ADC and monitor the converted analogue signal levels until either the low-level limit
or the high-level limit is exceeded. The low- and high-level values are set up on the Lo-word/
Hi-word inputs, which could be dual in-line switches. The comparators are standard 8-bit

72 Synchronous Finite-State Machine Designs

Figure 4.3 The arrangement needed for 7 flip-flops.

8-Bit Comparators

8 8
Vin A B # Hi-word
—»
ADC | 8 A8
8 8
A B 49.6 Lo-word
L A<B
\ v y
SC eoc lo hi
Synchronous FSM
AL
— st
rst LLL JHL
LowX X High
LED LED
System CLK
Reset Vee

Figure 4.4 Block diagram for the High/Low detector system.

Development of a High/Low Alarm Indicator System 73

comparator circuits similar to the standard 7485 devices. These could easily be incorporated into
a PLD/FPGA along with the FSM.

In this application it is assumed that, when the ADC output A exceeds the Hi-word, hi will go
tologic 1. An ADC output less than the Lo-word will make lo go tologic 1. The ADC could be a
separate device or its digital circuits could be implemented on a PLD/FPGA device and an
external R/2R network connected to the chip.

The system is to start when st goes high. It should perform analogue-to-digital conversions ata
regular sampling frequency dictated by the system clock and when either the Hi-word or Lo-
word are exceeded, turn on the appropriate LED indicator and stop. It can be returned to its initial
state by operation of the reset button. Note that in this example the alarm will not sound for an
ADC output that is equal either to Hi-word or Lo-word.

From this specification, a state diagram can be developed. The control of the ADC will follow
in much the same way that was used in Chapter 2.

The two digital comparators being combinational logic will give an output dependent on the
level of the ADC output. When the ADC output is equal to or less than hi-word but greater than
Lo-word, then both lo and hi will be low, signifying that the ADC value is between the two limits.
When the ADC output is greater than Hi-word, then hi will be logic 1 and is to sound the alarm
and turn on the HL indicator. When the ADC outputis less than Lo-word, thenlo becomes logic 1
and the alarm turns on the LL indicator.

A state diagram has been developed as shown in Figure 4.5. Looking at this state diagram, the
system sits in sO from power on reset and waits for the start input to go high. Then the ADC signal
SC is raised to perform an analogue-to-digital conversion. After this the system falls into s2.
Here, the outputs from the two comparators are checked, and if either the Hi-word or the Lo-
word limit has been exceeded then the state machine will fall into s3. If, however, neither limit
has been exceeded, then the state machine will fall back into s1 to perform another analogue-to-
digital conversion.

/(lo+hi) _|

AB

lo+hi_|

Ins3 /LL =lo is in fact LL = /(s3.l0)

In 83 /HL = hi which is HL = /(s3.hi) AB

Both are mealy outputs 01

Note: /(lo + hi) is the same as lo + hi

Figure 4.5 A possible state diagram for the problem.

74 Synchronous Finite-State Machine Designs

Looking at the two-way branch state s2, it is clear that the inverse of 1o + hiis/(lo + hi). Asan
aside, if one applies De Morgan’s rule to /(lo + hi) one gets /lo - /hi, indicating for the transition
from s2 to s1 that both lo and hi must be low.

Moving on to look at s3, one can see that the two outputs HL and LL are dictated by the logic
state of the comparator outputs lo and hi so that in s3 the HL indicator should be active if hi = 1,
whereas the LL indicator should be active if lo = 1.

/HL = hi in s3 indicates that HL must be active low. The output equation for HL. will be
written as

HL = /(s3 - hi),

which means that HL will be logic O when hi = 1, but only when the state machineisin s3. Thisis
defining a Mealy active low output. This is how it was defined in Chapter 3.

In a similar way, LL = /(s3 - lo).

The best way to remember this idea is to think of the /HL = hi equation in the s3 state as
representing the equation HL. = /(s3 - hi), but then written inside the state circle one does not
need to include the s3, as it is implied.

Replacing the state number s3 with its secondary state variable value AB = 01, the two Mealy
outputs can be written as

HL = /(s3-hi) = /(/A-B-hi) and LL=/(s3-lo) = /(/A B lo),

which results in two three-input NAND gates. Remember, active low signals are inverted
(see Chapter 3).

So, from the equation for HL = /(/A - B - hi) it can be seen that, when in state s3, A =0
(/A =1),B = 1,and if hi = 1 then the output of the NAND gate will be zero, which is exactly
what is required to light the LED indicator (active low output).

Having gone into some detail to describe the logic behind the Mealy outputs, the next stepis to
determine the equations for the two flip-flops A and B. Using the method described in Chapter 3
for D flip-flops, these are

A-d=s0-st+sl+s2-/(lo+hi)=/A-/B-st+A-/B+A-B- /hi-/lo.
The equation for A - d could be simplified using the Auxiliary rule to form
A-d=/B-st+A-/B+A-/lo- /hi.
Moving on to flip-flop B:
B-d=sl-eoc+s2-(lo+hi)+s3.=A-/B-eoc+A-B-lo+A-B-hi+ /A-B.
Again, using the Auxiliary rule:

B-d=A-/B-eoc+B-lo+B-hi+ /A-B.

Development of a High/Low Alarm Indicator System 75

The remaining Moore-type outputs are SC = s1 = A - /Band AL = s3 = /AB.

The next stage would be to develop a Verilog HDL file describing the circuit for the FSM,
and comparators. This has been done and is contained on the CDROM in the Chapter 4
folder.

4.3.1 Testing the Finite-State Machine using a Test-Bench Module

In this simulation (Figure 4.6), a test-bench module is added to the Verilog code in order to
test the FSM. To do this, test all paths of the state diagram. In the simulation of Figure 4.6
this has been achieved by first following the path sO — sl — s2 — s3 with a low limit
exceeded and the FSM remains in s3 (A = 0, B = 1) until a reset (rst = 0) is applied. Then,
the sequence is repeated with a Hi limit exceeded, followed by another reset. Finally, the
sequence s0 — sl — s2 — sl — s2 — sl — 52 — sl — s2 — s0 is followed, represent-
ing a no limits exceeded until finally another rst = O resets the FSM back to s0. Thus, in this
way the FSM is tested.

Ons 100ns [200ns |300ns [400ns [500ns |600ns ‘7(|)0ns

o AL
testrst | | | | |

test.st

[E—
test.eoc J_H_V—UW_
[
|

test.hi

test.lo

test.LL
test.HL

test. AL

|
testAl | |
|

test.B

| |

el 1 1 UL
1

|
O
s —

Figure 4.6 Simulation of the FSM controller.

76 Synchronous Finite-State Machine Designs

4.4 SIMPLE WAVEFORM GENERATOR

Sometimes there is a need to generate a waveform to order, perhaps to test a product on an
assembly line. An oscillator could be used for this purpose, but it can be tedious to build an
oscillator to do this if the waveform is not a pure sine wave, square wave, ramp, or triangular. One
way of generating a complex waveform would be to use a microcontroller with a digital-to-
analogue converter (DAC). The complex waveform could be stored into read only memory
(ROM) and accessed via the microcontroller. However, this seems overkill. There are also
potential sampling frequency limitations with the microcontroller. An alternative way would be
touse a clocked FSM. The sampling rate could then be controlled by the clock rate, which would
be limited by that of a PLD or FPGA. The complex waveform is still stored in a ROM but the
ROM is controlled by the FSM.

Consider the block diagram of Figure 4.7. In this system, raising the st input starts the
waveform generator. Each memory location is accessed in sequence and its content, a digitized
sample of the waveform, is sent to the DAC to be converted to an analogue form. When the end of
memory is reached, the address counter simply runs over to the zero location and starts again.

Setting the stinput low stops the system. The actual sampling rate and, hence, the period of the
waveform can be calculated once the state diagram is completed. The output of the DAC will
need to be filtered to remove the sampling frequency component — this can be accomplished
using a simple first-order low-pass filter section if the sampling frequency is much higher than
the highest synthesized waveform frequency. (Usually, it is to satisfy Shannon’s sampling
theory.)

The state diagram now needs to be developed. A little thought reveals that the block diagram
itself provides an indication of the sequence required.

Address Memory |Data Data
G Bus Bus Latch DAC

l _) 5 aQ _» Vout

A
R

ov Filtered
l l l output
P CC full CS EN LP C ——
Clocked FSM
A rst st
FSM Start
Reset Waveform
genration

Figure 4.7 Block diagram for simple waveform generator.

Simple Waveform Generator 77

1. Initially, the address counter needs to be cleared to provide the necessary zero address for the
first location of the memory. The system should remain in state sO until the start input st is
asserted (high).

2. The memory then needs to be enabled, selected, and allowed to settle, after which the data in
the memory location will be available at the data latch inputs. Then the dataneed to be latched
into the data latch to be available at the input of the DAC.

3. Atthis stage, the address counter needs to be incremented so as to point to the next memory
location and the sequence in 2 repeated again as long as the start input is still asserted (high).

Note that, in this problem, the end of memory location is not an issue, since the address counter
can be allowed to overrun and start from location zero again. This does imply that the waveform
information can be fitted into the memory device so that the waveform is produced seamlessly. It
would be possible to add further logic to the system to ensure that this was always the case, but
this is not done in this example.

The state diagram can now be developed following the sequence of activities described above.

In Figure 4.8, the state diagram is seen to follow the sequential requirements for the system.
Note thatin s3 the P outputis a Mealy output. P is gated with the clock and can only go high when
in s3, and then only when the clock is low. This ensures that the address counter is pulsed (on the
rising edge of P) after the memory enable EN is disasserted (high). Therefore, the memory data
outputs will be tri-state during the change of memory address. The Data Latch ensures that the
DAC always has a valid data sample atits input. Note that an alternative arrangement for output P
would be to provide an additional state between s3 and s1 in which P = 1. This would avoid the
potential for a glitch at P output (as discussed in Chapter 1).

AB AB AB
00 10 11

Cycle time is 3xclk 01
s3 s1 s2 s3 s

it |_| I_l_ P=s3./clk
EN EN = s3

Figure 4.8 The complete state diagram for a simple waveform generator.

78 Synchronous Finite-State Machine Designs

The equations can now be developed:

A-d=5s0-st+ sl +s3
=/A-/B-st+A-/B+ /A-B
=/B-st+A-/B+ /A-B

B-d=sl+s2
=A-/B+A-B
=A.

Outputs are

CC=/s0=/(/A-/B) an active low output.
CS=s0=/A-/B although an active low signal it is only high in sO.
LP=s2=A"-B.
EN =5s0+s3 = /A high in these two states.
P=s3-/clk=/A-B-/clk a Mealy output gated with the clock.

In Verilog, these equations can be entered directly, but using the Verilog convention for
logic:

ANDis & ORis| NOTis~ exclusive OR is".

These equations would be contained in an assign block thus:

assign

A.d=~ B& st|A&~B|~As B,

B.d=A,

CC=~ (~ A & ~ B);

CS=~ A& ~ B,

LP = A&B,

EN=n~ A,

P=~ A&B&~ clk;
Appendix C contains a tutorial on how to produce a Verilog file to simulate a state machine. Also,
much more detail is available in Chapters 6 to 8.

4.4.1 Sampling Frequency and Samples per Waveform

From the state diagram of Figure 4.8 it is apparent that the system cycles though three states for
every memory access, so the sampling period is three times the clock period.

Therefore, for a sampling frequency of 300 x 10 Hz, a clock of 300 x10°x 3 = 900 x 10° Hz
is required. For a critical sampling-rate application, a dummy state could be added to make the
sampling frequency four times the clock frequency (for example).

The size of the memory can be whatever is required for the systems use, and will dictate the
size of the address counter. If the memory is 1 Kbyte, the address counter needs to be

The Dice Game 79

| Ons |100ns |200ns |300ns
| | | | | | | | | | | | | |

testst | |]
wor | UL UUUUUUUUU UL
testrst | |
test.A | | | | | | | | |]
test.B | | | | | | | | ||
test.P [[[[]
test.CC

test.CS —‘
testEN | | [| [[1]
test.LP [[[[[

Figure 4.9 Simulation results for the FSM of the waveform synthesizer.

Number of flip-flops in address counter = In(1024)/In(2) = 10.

The simulation of the FSM is illustrated in Figure 4.9.

4.5 THE DICE GAME

In this example the system consists of seven LED indicators, a p input, and a clock. The block
diagram of the system is shown in Figure 4.10, with a single push switch p. The clock input could
be a simple oscillator circuitusing a 555 timer chip running at 100 Hz so as to provide a flicker to
add effect.

The LED indicators are arranged as illustrated in Figure 4.11 to look more realistic. In this
design itis assumed that low-current LEDs are used with a forward current of 2 mA. This makes
the current-limiting resistors 1800 2 fora 5 V supply. Itis also assumed that the FSM outputs are
open drain. Figure 4.11 illustrates how the seven LED indicators would look for each number
displayed. The situation when all LEDs are off is not shown.

The state machine is simple to develop, as all that is required is to display each number in
sequence, but at a speed that the user cannot follow. The state diagram consists of seven states,
each one to display a given LED pattern. The transition between each state is conditional on the
input p being equal to one for each transition. When the user releases the p button the FSM will
stop in a state. Because of the frequency of the clock, the user will not be able to follow the state
sequence, thus realizing the chance element of the game. Note that if the clock frequency is too
high then all the LED indicators will appear to be on when the p button is pressed. Having a

80

Synchronous Finite-State Machine Designs

Block Diagram of Dice Game

100 Hz

Clock

Figure 4.10 Block diagram of the dice game FSM

FSM

L1

L2

L3

L4

L5

L6

L7

LED1

Vdd=5V

<

e
“LED2

2

2

'
< LED3

MV

«" LED4
¥’ LED5

<" LED6

e
¥ LED7

¥
¥

L1
L3

L5

-
~

O

0O® VOe OO0

o
000 @00 |O0OO0

L2
L4

L6

LED1
LED3

LED5

-
m
v}
ﬂ

o000 O06.0 o0 0O
O

o000 0.0 o0 0O

Dice format and possible LED patterns

Figure 4.11 Dice format for numbers.

LED2

LED4
LED6

The Dice Game 81

ABC ABC ABC
000 010 110

With p=1 the FSM will
cycle through the states sO
to s6 at a rate of 10 ms per
Pl state.

The user will not be able to
follow the sequence at this
rate

ABC
100

L7,/L3,/L4

s6

ABC ABC ABC
011 111 101

Figure 4.12 State diagram for the dice game.

slower clock frequency leads to a flicker effect and, thus, adds to the excitement of the game.
Figure 4.12 shows the state diagram for the system.

4.5.1 Development of the Equations for the Dice Game

A-d=sl-p+s2+s3+s4+s5-/p
—/A-B-/C-p+A-B-/C+A-/B-/C+A-/B-C+A-B-C-p.

This can be reduced to

A-d=B-/C-p+A-/C+A-/p+A-/B
B-d=s0-p+sl+s2-/p+sd-p+s5+s6-/p
=/A-/B-/C-p+/A-B-/C+A-B-/C-/p+A-/B-C-p
+A-B-C+/A-B-C-/p,

which reduces to

B-d=/A-/C-p+/A-B-/C+A-C-p+A-B-C+B-/p
C-d=s3-p+sd+s5+s6-/p
=A~/B-/C-p—|—A-/B-C—|—A-B-C+/A~B-C‘/p,

82 Synchronous Finite-State Machine Designs

reducing to
C-d=A-/B-p+B-C-/p+A-C.
The outputs (LEDs are active low) are

Ll =(s0+sl)=(/A-/B-/C+/A-B-/C = /A-/C)using active high in sOand slonly.
L2 = (s0+ sl +s2+4s3) = /C using active high in these states only.

L3 = /s6(active low) = /(/A-B - C).

L4 =/s6=/(/A-B-C) low in s6 only;hence invert.
L5=/(s4+s5+s6)=/(A-C+B-C) low in only these states; hence invert.

L6 = /(s2+ s34 s4 4+ 85+ s6) or (sO+sl) only high in sO or sl giving (/A - /C).
L7=/(s1+s3+s5)=/(/A-B-/C+A-/B-/C+A-B-C).

Figure 4.13 illustrates the dice FSM running through each state. The secondary state variables
a, b, and c can be seen to be moving through each state. The outputs L1 to L7 are responding as
expected and are illustrated in Figure 4.11.

|0nlS [|50|n3| [|190n|3 [|J|5I0nIS I 1 |20I0nls
test.p
test.clk 11
testrst] |

test.a \
test.h

test.c
test L1 \

L

’7

test.L2]
L]
L]

—

—

test.L3
test.L4
test.L5
test L6 \

test.L7 L L |

Figure 4.13 Simulation of the dice game.

Binary Data Serial Transmitter 83

|0ns 50ns |100ns |150ns 200ns |250ns |300ns
LS L T e e A O O O A A I |
test.p
test.clk

test.rst J

estlt]] [

test.L2 |
test.L3 u

test.L4 ||

test.L5 L

test.L6 —‘ ’—‘

wo| LU LI 1
Al 1 [
8 |
test.C]ﬁ]7

Figure 4.14 Dice game simulation with p input released showing FSM stopped in s3.

In Figure 4.14, the input p has been simulated as ‘on’ then ‘off’. The FSM is seen to have
stopped in state s3, then started again when p is set to logic 1.

Note that in both simulations the time-scale is in nanoseconds, but in practice the clock would
be slowed down to a 10 ms period.

4.6 BINARY DATA SERIAL TRANSMITTER

The next example involves sending the 4-bit binary codes of a counter to a shift register to be
serially shifted out over a serial transmission line.

Figure 4.15 shows the block diagram for a possible system. The FSM is used to control the
operation of the Binary Counter and the Parallel Loading Shift Register. Both of these devices
could be designed using the techniques described in Appendix B on counting methods. This
leads to a Verilog description (module) for each device.

The system is started by raising the st input to logic 1. This is to cause the FSM to remove
the reset from the Binary Counter and then load the current count value of the counter into
the parallel inputs of the shift register. On releasing the parallel load input LD to logic 1, the
shift register will clock the count value out over its transmit output (TX) at the baud rate
dictated by the clock. When the shift register is empty its RE signal will go high and this

84 Synchronous Finite-State Machine Designs

Reset counter

reset O
Binary Counter
Clock Counter
90 gt 92 g3
CB RC
> »| done
Det
> FSM
rst O—
A A h 4 h 4 st [e——
PO P1 P2 P3 gt D
Parallel Loading Shift S s N\
<« Register (includes Re Ck
counter)
RE

Register empty flag

Figure 4.15 Block diagram of the binary data serial transmitter.

will be seen by the FSM, which will then determine whether the last count value has been
sent. This is seen by the FSM when done = 1, detected by the detector block (an AND gate).
If not the last counter value, then the next count value will be loaded into the shift register
and the sequence repeated until all count values have been sent. At this point the system
will stop and wait for st to be returned to its inactive state before returning the FSM to its
sO state.

From the above description, the state diagram in Figure 4.16 is developed. This state
diagram is correct, but it is difficult to obtain a unit distance code for the secondary state
variables. If a dummy state s7 is added, then a unit distance coding between s6 and sO can
be obtained for the secondary state variables A, B, and C. Note: it is not apparent from
Figure 4.17, but the outputs in state s7 are the same as the state it is going to (s0), apart
from the RC output. The s5 to sl transition is not unit distance. If glitches are produced in
any outputs, then dummy states could be introduced between s5 and sl to establish unit
distance coding. The reader might like to try to establish a unit distance code for the state
diagram. This would require introducing an additional state variable (flip-flop), since all 2°
states have been used in this design.

Using Figure 4.17, the equations for the FSM are obtained from the state diagram and
implemented using D flip-flops:

A-d=sl+5s2+s3+s4
=/A-B-/C+A-B-/C+A-/B-/C+A-/B-C,

Binary Data Serial Transmitter

85

Remove reset
from binary counter

ABC ABC ABC
000 010 110

Load parallel
shift register

Pulse binary
counter
Wait for shift
register to empty
ABC ABC ABC
011 111 101

Wait for st going low Test for end of
toreturntos0. binary count sequence

Figure 4.16 State diagram for the binary data serial transmitter.

Remove reset
from binary counter
ABC ABC ABC
000 010 110

Load parallel
shift register

Pulse binary
counter

Wait for shift
register to empty

ABC ABC ABC
011 111 101
Wait for st goinglow Test for end of
toreturntos0. binary count sequence

Figure 4.17 State diagram with additional dummy state s7 to obtain unit distance code for the secondary

state variables.

86 Synchronous Finite-State Machine Designs

reducing to

A-d=B-/C+A-/B
B-d=5s0-st+sl+s4-re+s54s6-st
=/A-/B-/C-st+/A-B-/C+A-/B-C-te+A-B-C+ /A-B-C-st,

reducing to
B-d=/A-/C-st+/A-B-/C+A-C-te+B-C-st+A-B-C
C-d=s3+s4+s5-done+s6=A-/B-/C+A-/B-C+A-B-C-done+/A-B-C,
reducing to
C-d=A-/B+B-C-done+ /A-B-C.
The outputs (all Moore) are

RC = /s0(active low) = /(/A- /B - /C)
LD = /(s2) = /(AB/C)
CB = s3(active high) =A- /B - /C.
The serial transmitter simulation is shown in Figure 4.18. The state machine is tracked

through its state sequence in the usual way by comparing the A, B, and C values in Figure 4.18
with the state diagram A, B, and C values in Figure 4.17.

n\s | | ‘109"15‘ || PO(\)nS\ || popns\ || FO\On\S ||

testst] | |

e T
testrst] |

test.re] |
test.dong |

test.A L] |

test.B [1] L] |

test.C [] | |
test.RG |
test.LD L] L]

test.CB [] []

Figure 4.18 Simulation of the binary data serial transmitter.

Binary Data Serial Transmitter 87

4.6.1 The RE Counter Block in the Shift Register of Figure 4.15

The shift register in Figure 4.15 has an output RE to flag the point at which the register is empty.
This can easily be obtained by using a four-stage Binary Counter that becomes enabled when the
load input is disasserted (high). The counter can then be clocked with the same clock as the shift
register; then, when it reaches its maximum count 1000, the most significant bitis used as the RE
signal. Table 4.2 illustrates the effect.

From Table 4.2 it can be seen that when the counter reaches the eighth clock pulse the counter
rolls over to set the most significant bit of the counter D to logic 1. This bit acts as the RE register
empty bit. After shifting out the binary number, the FSM will return to its sO state, where the RC
output will once again go low and reset both the Binary Counter and the RE counter in the shift
register. Note that in this particular design an additional flip-flop E could be added to the binary
counter and this used as the RE output instead

The equations to describe the RE counter can be developed from the material in Appendix B
on counting applications. The equations, using 7-type flip-flops, are

A-t=1
B-t=A
C-t=A-B
D-t=A-B-C
RE = D.

This last example has illustrated how a complete design can be developed in terms of Boolean
equations that can be directly implemented in Verilog HDL (or any other HDL for that matter).

There are examples in Appendix B showing how a synchronous binary counter can be
implemented using T flip-flops. Of course, the counter could be implemented as an asynchro-
nous (ripple-through) counter if desired.

Table 4.2 Illustrating the effect of a binary counter used to determine shift register empty.

Binary counter

Count value

Shift register empty when D = 1
D output stays set

es]
co~———o0cooo|An
SO == OO == OO ov]
—_— O, O =, O = O =O |
O 0NNk W —~=O

88

Synchronous Finite-State Machine Designs

Clk |

Ld

p0

p1

D SETQ

cLrQ

Sht_clk

/Ld

>

Figure 4.19 The 4-bit parallel loading shift register from Equations (B.9) to (B.12).

Also in Appendix B is an example of a parallel loading shift register using D flip-flops. The
equations for a four-stage shift register are repeated below from Appendix B:

Q0-d=din-1d + po- /ld (B.7)
Ql-d=q0-1d+pl-/Id (BS)
Q2-d=ql -1d+p2-/ld (B.9)
Q3-d=q2-1d+p3-/Id (B.10)
Sft_clk = clk - 1d. (B.11)

Figure 4.19 shows the schematic circuit for the 4-bit parallel loading shift register developed

from Equations (B.7)—(B.11).

4.7 DEVELOPMENT OF A SERIAL ASYNCHRONOUS RECEIVER

Often, there is a requirement to use serial transmission and receiving of data in a digital system.
Although there are lots of serial devices on the market, it is useful to be able to implement one’s
own design directly to incorporate into an FPGA device. The advantage of this approach is that
the baud rate and protocols can be dictated by the designer, as can how the device will be
controlled.

In this example, the serial data input is encapsulated into an asynchronous data packet with
start (st) and stop (sp) protocol bits that have been added to the serial transmission packet. These

Development of a Serial Asynchronous Receiver 89

st start bit and sp1, and sp2 stop bits are the protocol bits
do to d7 are the data bits (payload).

st | dO dl | d2 (d3 | d4 |d5 dé (d7 |sp1 | sp2

S MMM
RN N B T

t tot

The FSM controls the operation of the sample data pulse
clock rxck that clocks the shift register (arrowed every third
pulse).

This ensures that the data are sampled near the middle of
the data bit area of the packet Note that the 1-to-0
transition of the start bit st is used to synchronize the
receiver to the beginning of the data packet.

Figure 4.20 Protocol of the serial asynchronous receiver.

are used to provide a means of identifying the data packets as they arrive. This allows the data
packets to arrive at any time and at any selected rate (dictated by the baud rate).

The problem with receiving data is that it is necessary to ensure that the shift register is
clocked with correct data bits. To do this the FSM clock is used to drive an FSM to create a shift
register clock RXCK in the middle of the data bit time period. This RXCK clock pulse can be
seen in Figure 4.20 as the arrowed pulses occurring every third clk pulse. Thus, the clk signal
runs four times faster than the RXCK signal generated by the FSM. Note, the FSM needs to
detect the start of the data packet by looking for the 1-to-0 transition on the receiver input.

The block diagram for the serial asynchronous receiverisillustrated in Figure 4.21. The FSM
is used to create the shift register clock, and to control the operation of the serial asynchronous
receiver. The Divide by 11 Counter is used to count out the 11 bits that make up the protocol
packet. This provides a shift register full signal rxf to indicate to the FSM that a complete data
packet has arrived. The Data Latch is used for collecting the received data from the shift register
to send to the outside world device controlling the asynchronous receiver.

The FSM must wait for start (by monitoring for the st bit change 1 to 0); this is just the first
receive bit coming into the shift register. When detected, shift the data into the shift register. If
the stop bitis not correct, then the FSM canissue an error via signal ERR. Note, in this version the
start bitis tested along with the two stop bits via an AND gate (error detection signal ed) to ensure
packetalignment after the complete packetisreceived, the receiverrx inputis held atlogic 1 by a
pull-up resistor so that the start bit (active low) can be detected. The ack signal is available so that
the outside world device using the system can respond to an error condition (no error means
successful packet received). Healthy data packets will be latched into the data latch ready to be
read by the controlling device.

The signal CDC is used to clear the shift register and set st to logic 1, i.e. the flip-flop
representing the start bit of the shift register needs to be pre-set so that it can be cleared by the
incoming start bit from the serial line.

90 Synchronous Finite-State Machine Designs

Parallel data out — to outside world

e
0Q0 0Q10Q2 0Q3 0Q4 0Q5 0Q6 OQ7 :D_
Data Latch

d3 d4 d5 d6 d7
QsT Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 QSP1 QSP
Shift Register i—
clr X
C A
R
VVYV Vee Receive
data in
Clear Shift Register Divide
& counter
Cor By 11
counter
Start bit Receive Receive| ; ec_e;ve Slhlf:(
Pulse ¥ detection y Register full bit egister cloc
Pata latch ™o CDC o RXCK
PD
clk FSM ed ¢
_ Error detection
DRY ERR ack en rst detection
Data Error in Acknowledge Enable
Ready Received error Device initialise system (controlled by outside
data world device to recover from error)

Figure 4.21 Block diagram of the serial asynchronous receiver.

The en signal is used to enable and start the asynchronous receiver. This is necessary to ensure
that the system starts monitoring the clock so as to issue the shift register clock pulse (RXCK) at
the right time (in the middle of the data bit period).

Figure 4.22 illustrates the state diagram for the system. In Figure 4.22, the FSM waits for the
enable signal en going high and start signal st going low; it then moves through states s1, s2, and
s4 and onto s5 to shift the start bit into the shift register. This is required in order to ensure that the
start bit is detected and then shifted at the right time. In state s5, the shift register clock RXCK is
pulsed to place the start bit into the shiftregister. It then falls into state s6, sending RXCK low and
proceeds to cycle through the second loop consisting of states s5, s6, s7, and s8.

These states count out the clock cycles and produce a shift register clock pulse (RXCK) at the
right time near the middle of each data bit. After all 11 bits have been clocked into the shift
register the 11-bit counter will issue a receive register full signal rxf, and the FSM will now fall
into state s9, where the start and stop bits are tested (ed should be logic 1).Ifed = 0, thenthe FSM
will move into s10 and issue the error signal.

The controlling device can then reset the asynchronous receiver and start again. If no error,
then the FSM moves to s11 to latch the data in the shift register into the data latch ready for the
controlling device to read (OQO to OQ7). It will also issue a data ready signal (DRY) to the
controlling device, which will acknowledge this by raising an ack signal. The FSM can then
move back to s0 via s12 (when ack goes low) to wait for the next data packet. The DRY and ack
signals form a handshake mechanism between the FSM and the controlling device.

Development of a Serial Asynchronous Receiver

91

ABCD ABCD ABCD ABCD
0000 1110
Wait for Q

enable
Wait for st 1 to 0 transtition then
clock into shift register

ABCD
1111

Pulse data
into shift reg.
Test for
shift reg

I’Xf_l full.

ABCD

1101
RXCK Shift reg. full

S9 /So check stop

3 clk 2nd clk
received ABCD received

0110

ack | froprn), ed|

Bits true
ack from controlling No start/stop bit errors
device so return to state sO so transfer data /ed_|
for next data packet from shift reg.
to data latch
and send data
Ready (DRY) to Start/Stop

controlling device bit error

Note: so initial signals are ABCD
/CDC, /PD, /ERR, /RXCK,/DRY 0101

Figure 4.22 State diagrams for the serial asynchronous receiver.

The device enable signal en will be left high until all data packets have been received.

Note that the state assignments miss s3, which was removed from the state diagram during
development when state s3 was no longer needed (owing to an error in the design at that time).

State diagram development tends to be an iterative process.

4.7.1 Finite-State Machine Equations

A-d=s0-en- /st+sl+s2+sd+s5+s8

B-d=sl 452+ s4 +s5-rxf 4+ 57+ s8 +s9 +s510 +s11 - /ack
C-d=s2+s4+5s5 /rxf +s6+s7+s8+59-ed+sll +sl12-ack
D-d=s4+585+5s6+s7+s8+59: /ed+5s10

RXCK = s5 = ABCD

PD = dry = s11 = /ABC/D

ERR =510 = /AB/CD.

The reader may like to complete these to form the equations in terms of A, B, C, and D.

The complete asynchronous serial receiver block is simulated, together with all the modules

in Figure 4.21, in Appendix B.

92 Synchronous Finite-State Machine Designs

4.8 ADDING PARITY DETECTION TO THE SERIAL RECEIVER SYSTEM

The foregoing example could be improved upon by making the first stop bit sp1 into a parity bit.
The parity bit would require combinational logic to check each bit of the protocol packet for
either even parity or odd parity. This would require an exclusive OR block made up of the 11 bits
of the packet.

For example, odd parity would require an odd parity output OP at the Transmitter of

OP = bo b1"b22b3 b4 b5 b62b7 b8 b9 b10.
Or, including the protocol bits:
OP,;; = stAd0”d1~d27~d37d4~d52d6"d7~OP, "sp.

This output would be tested by the FSM for logic 1. Iflogic O, this would indicate that one or more
of the received bits was faulty.
Note that even parity EP can be detected by complementing the OP signal:

EP, = /OP,.

To implement the parity detector term, two input exclusive OR gates are cascaded with the last
exclusive OR gate providing the OP,, signal. The output of the parity block at the receiver is P.

Theinputsd0,dl, . .., d7 will be obtained from the output of the shift register in each case (see
Figure 4.21).

4.8.1 To Incorporate the Parity

The parity detector inputs are connected to the outputs of the shift register and its output OP,
made available as an input to the FSM via the last two bit comparator comparing OP, and OP,, |
in Figure 4.23.

Figure 4.24 shows the new protocol with the parity bit OP, (shown in lower case)
replacing spl.

Figure 4.25 shows the additional parity block added to the block diagram. This version detects
stop and parity bit errors at the output of the shift register; the start bit has not been tested (but
could be included if desired).

Figure 4.26 illustrates the modified state diagram with ODD parity detection. Note that
the input parity bit OP,,; must be compared with the generated parity bit OP,. If both
are the same, then there is no parity error. This comparison can be made with a 2-bit
exclusive NOR gate having an output P (OP, == OP,) being logic 1 if there is no
parity error and logic 0 otherwise. This output is an input p to the state machine (see
Figure 4.25).

In state s9, the bit sp is checked to find out whether the whole packet has been input, and s11
now tests for an odd parity error. In either case a failure will resultin the FSM aborting the receive
packet process and falling into state s10 to await a reset from the controlling device. The logic
used in Figure 4.21 could be used to detect for start and stop bits if desired.

Adding Parity Detection to the Serial Receiver System

93

st

d4

Parity Generator at the

transmission serial device.
sp

st
do

d5
dé

dz
Parity checker at the receiver serial device

OP,
OP,+1
Odd parity error generation and
detection P =1 when number —\—_)Z>__(>_ P
of 1s is odd, zero otherwise Parity
detection

Figure 4.23 Arrangement of the parity generation and detection logic.

Serial signal protocol example

st start bit and sp1 and sp2 stop bits are the protocol bits
do to d7 are the data bits (payload)

st | dO di | d2 |d3 | d4 (d5 dé |d7 |opn | sp2

Ck TIIITIIITIIITIIITIIITIIITIIITIIITIIITIIITIII
tt

ttrrtr et

Shift register clocked inside each data bit area

Parity bit opn is the receive parity bit from the transmitter

Figure 4.24 Protocol with parity detection bit added.

94

Synchronous Finite-State Machine Designs

Parallel data out — to outside world
QST —pf
R - P
0OQ0 0Q1 0Q2 0Q3 0Q4 OQ5 0Q6 OQ7 . Block
Data Latch asP—p|
d0 d1 d2 d3 d4 d5 d6 d7
QSt Q0 Q1 Q2 Q3Q4 Q5 Q6 Q7 OPnQSP,
Shift Register —
clr xo Rx
) 1
R Receive
—’\/\/\/—VCC Data in
Clear Shift Register Divide
& counter
C clr By 1"
counter
Start bit Receive Regeive Re(l:etive Sl‘»hiE
Pulse v detection v Reg full bits v register clocl
Data latch ot cbc xf o RXCK
sp [€—
clk FSM
DRY ERR ack en rst p
¢ ¢ t Parity check
Data Errorin Acknowledge Enable .
Ready Received error Device Reset system (controlled by outside

data

world device to recover from error)

Figure 4.25 Block diagram with parity block added.

4.8.2 D-Type Equations for Figure 4.26

In the following equations, the variable P is the output of the parity check (OP, = OP,;)
connected to the input p of the FSM. See Figure 4.23.

A-d=s0-en- /st+ sl + 52+ s4 + 85+ s8 +s9-sp
= /A/B/C/D -en- /st+A/B/C/D + AB/C/D + ABC/D + ABCD

+/ABCD + AB/CD - sp

B-d=5sl+452+s4+s5 -rxf +s7 48459 /sp+s10+sll +s12- /ack
— A/B/C/D + AB/C/D + ABC/D + ABCD - rxf + /A/BCD + /ABCD
+AB/CD - /sp + /AB/CD + A/B/CD + /ABC/D - Jack

C-d=s2+s4+5s5 /rxf +s6+s7+s8+sll-p+sl2+s13-ack
=AB/C/D + ABC/D + ABCD - /rxf + A/BCD + /A/BCD + /ABCD
+A/B/CD-p+ /ABC/D+ /A-/B-C- /D -ack

D-d=s4+4s5+s6+s7+s8+59+sl0+sll-/p
— ABC/D + ABCD + A/BCD + /A/BCD + /ABCD + AB/CD

+ /AB/CD +A/B/CD - p.

An Asynchronous Serial Transmitter System 95

ABCD ABCD ABCD ABCD
0000 1000 1100 1110

Wait for
enable

Test for st low
At 2" clock

ABCD

0111 ABCD

111

Pulse data
into shift reg.
Test for
shift reg

full.

ack_| 3% clk 20 clk
ABCD received ABCD received rxf_|
0110 1001 ABCD

9 @ 2
Check for

Shift reg. full
Parity bit error

ABCD

So check stop
Bits true

Ack from controlling No stop or parity bit
device so return to state sO errors So transfer data /sp_l
for next data packet from shift reg. To data /] p_|

latch and send data
Ready (DRY) to

controlling device Stop or parity

Bit error

Note: so initial signals are ABCD
/CDC, /PD, /ERR, /RXCK,/DRY 0101

Figure 4.26 The state diagram with odd parity added to FSM.

The outputs are as they were in the state diagram of Figure 4.22, except for
ERR = s10 = /AB/CD
PD = dry =s12 = /ABC/D
RXCK=s5=A-B-C-D.

The FSM part can be simulated, and this is illustrated in Figure 4.27. In this simulation, the test
sequence is

s0,s1,s2,s4,s5,56,57,58,55,589,s11,s12,s13,50,s1,s2,54,55,59,510, 50, s1,s2,s4,s5,s9,
s11,s10.
This ensures that all paths of the state diagram have been tested.

This should now be followed by a series of tests of all the other components, i.e. the shift
register, the divide-by-11 counter, and the parity block, before going on to test the whole system.

4.9 AN ASYNCHRONOUS SERIAL TRANSMITTER SYSTEM

Having developed an asynchronous receiver module, an asynchronous transmitter is required to
complete the serial device. Figure 4.28 shows the block diagram for an asynchronous serial
transmitter.

96 Synchronous Finite-State Machine Designs

Ons |200ns |400ns |600ns |800ns
N O e e e s O A |

testrst| | Il
test.clk I
[] [1]

. |1.o

test.st

test.sp

]
test.rxf
||
[
,_|
I

test.en

test.ack

test.A

test.B

test.C

test.D
|_|
I

test.PD

test.CDC

test RXCK N [l
test. ERR} []
test.DRY []

1
B
test.p | |_

Figure 4.27 Simulation of the FSM for the serial receiver.

InFigure 4.28, the input Data Latch provides the data to be transmitted and the protocol bits st
and sp are set to their expected values before being loaded into the Shift Register via the LD
output from the FSM. Note that there is no need for a slower transmit clock, as the FSM can
provide the shift register pulse at the right time.

The sequence is started by data being presented onto the parallel data inputs then the send
inputbeing sent high by the controlling device. The FSM then loads the data into the shiftregister
and starts transmitting it out to line. The Divide by 11 Counter records the point at which the
packet has been sent to line by raising the Transmit Register Empty (txe) signal high. The FSM
can then send a Request To Send (RTS) signal to the controlling device to inform it that the data
packet has been sent. The controlling device can set the ack signal high to say it has acknowl-
edged this operation.

A possible solution is illustrated in Figure 4.29.

It is important to ensure that the clock signal to the shift register is the same frequency as the
one used in the asynchronous receiver block. If it is not, then the receiver will not be able to
receive the data packets. Even if the two clocks are different by only a small amount, a frame
error could arise. This is when the difference in clock speeds produces a small difference in
the total packet time and, hence, one or more data bits can be lost. In effect, start and stop bits
must be sent and received correctly.

An Asynchronous Serial Transmitter System 97

Parallel data in — from outside world
St=0 —p
YV b by vy e
d1 d5 i

Generator
do d2 d3 d4 dé6 d7 47 Block
Data Latch Sp=1 »

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

yyvyvvvyvy ¥ v

st d0 d1 d2 d3 d4 d5 d6 d7 OPn sp

«©

Shift Register —
Id TX
C '
Parity generator
Block Connected

to data Latch outputs

and St and sp bits Transmit

Data out

Load Shift Register Divide
& clear counter
Qar By 11
From controller counter
Transmit Shllft R;(eg
Pulse y Reg empty cloc
Data latch send LD txe CLKOUT
PD
clk FSM
RTS ack rst
Data Acknowledge .
Transmitted From controller Reset system (controlled by outside
To controller world device to reset the system)

Figure 4.28 Block diagram for an asynchronous serial transmitter.

Total packet time = 11 x 1/(clock frequency).

For example, if the transmitter shift register clock is | MHz (usually referred to as the baud rate),
then

Total packet time = 11 x 1/(1 x 10°) = 11 x 1 ps = 11 psin duration.

The receiver shift register clock does have a tolerance; this is a result of the fact that the data are
sampled within a four-clock window (see Figure 4.20) and a small difference in the two packet
lengths can be accommodated.

In some commercial Universal Asynchronous Receiver Transmitter (UART) devices, 16
(rather than 4) is used for the clk signal used to generate the shift register clock (RXCK), givinga
greater resolution for detecting the logic value of the data bits.

Generally, if the clocks in both the transmitter and the receiver are of a high accuracy (as one
would expect from crystal oscillators), then there is usually not a problem. It would be easy to
restructure the receiver state diagrams of Figures 4.22 and 4.26 to accommodate a higher
resolution shift register clock by adding more states in the loop comprising s5 to s8, and adding
states between s1 to s5 for the start bit. However, such a design could make use of the One Hot
method covered in Chapter 5.

Note that the FSM clock is four times that of the baud rate.

The state diagram for the asynchronous transmitter is illustrated in Figure 4.29. In this
state diagram, the shift register is clocked every four FSM clock pulses as it moves between

98 Synchronous Finite-State Machine Designs

ABCD ABCD ABCD ABCD
0000 1000 1010 1110

Shift reg.

Load data Load shift reg. settling time

latch with data latch
data + st & sp bits

accept data
packet to send

fack_| ABCD ABCD
0110 0100

Produce
clkout
pulse every
4FSM clk

Check for
Dummy state All data shifted out shift reg.
to obtain unit sosend RTS to empty

distance coding controlling device.

Wait for acknowledge
from controlling device

ABCD
0101 ABCD
NOTE: Clk _| must be same as receiver FSM clock 1101

Controller can set send to logic 1 for duration of data packets
transactions with ack and RTS as handshakes between the controller
and asynchronous transmitter.

Figure 4.29 State diagram for the asynchronous serial transmitter.

s4, s8, 89, and s5. Note that for a 1 us baud rate the transmitter FSM clock would need to be
4 MHz.

4.9.1 Equations for the Asynchronous Serial Transmitter

A-d=s0-send + sl +s2+s3 +s4+s5- /txe
=/B-/C-/D-send+A-/B-/D+A-C-/D+A-B-/D+B-/C-/D- /txe
B-d=352+53+s4+s5+s8+59+s6- /ack
=A-C-/D+B-/C+ /A-B-/D- Jack
C-d=sl+s2+s5 -txe+s6+s7-ack
=A-/B-/D+/A-B-/D -txe+ /A-C-/D
D-d=s4+s8
=A-B-/C-/D+A-B-/C-D
=A-B-/C
PD=sl=A-/B-/C-/D
CLKOUT =s4=A-B-/C- /D
LD=/s2=/(A-/B-C- /D)
RTS=s6=/A-B-C-/D.

An Asynchronous Serial Transmitter System 99

A simulation of the FSM results in the waveforms of Figure 4.30. In this simulation, the test
sequence is s0, s1, s2, s3, s4, 8, 59, s5, s4, 58, s9, 55, s6, 57, s0.

Using the asynchronous transmitter and receiver FSMs just described, it would be possible
with modern FPGAs to run at quite high baud rates, as illustrated below.

FSM clock Receiver Transmitter clock Baud rate
RXCK CLKOUT

4 MHz 1 MHz 1 MHz 1 mega baud

8§ MHz 2 MHz 2 MHz 2 mega baud

16 MHz 4 MHz 4 MHz 4 mega baud

32 MHz 8 MHz 8 MHz 8 mega baud

80 MHz 20 MHz 20 MHz 20 mega baud

Both transmit and receiver units use the same FSM clock frequency generated with their own

clock circuits.

The higher baud rates would need to use twisted-pair cables over relatively short transmission
distances up to around 1 m. Transmission line effects would need to be taken into account, but
this is beyond the scope of this book.

|0ns| . |10(|JnSI - |20(|)I’ISI . |30(|)nsl - |40(|Jns
test.rst J
= IR
testsend) | ||
test.bxe \
test.ack]—‘

test.CLKOUT [] []

test.PD [] [
test.LD |]
test.RTS ’—‘
w| |] B
test.B
test.C []]
test.D [1 |]

Figure 4.30 Simulation of the serial transmitter FSM.

100 Synchronous Finite-State Machine Designs

4.10 CLOCKED WATCHDOG TIMER

Most microcontrollers these days have abuiltin watchdog timer (WDT). The WDT is an addressable
device that can be written to on a regular basis. The idea is that the timer (usually a down counter) is
regularly written to reinitialize it to aknown count value. Between writes, the counter will be clocked
towards zero. If the microcontroller does not write to the WDT between countdown periods, then the
counter will reset to zero and this action can be used to reset the microcontroller.

The WDT thus acts as a safeguard to prevent the microcontroller from running out of control
(jumping to an instruction that is not part of the program sequence), perhaps due to a transient in
the power system.

Another use is in a microprocessor-based system where the operating system (perhaps a real-
time operating system) can regularly reset the WDT and, hence, provide a means of determining
a microprocessor system failure.

The application program running on the microcontroller needs to write regularly to the WDT
to prevent it from reaching the reset state.

Although most microcontrollers have this feature, a lot of microprocessor systems do not.
Therefore, a circuit would need to be designed for this purpose.

The clocked FSM system shown in Figure 4.31 is a basic system designed to perform the
action of a WDT. The system needs to be designed around the specific memory/IO cycle timing
of the microprocessor. In Figure 4.31 the memory/IO write cycle is based around a four-clock
pulse cycle time T1 to T4.

| |
| |
R I — | |
wpp | | I I I
| | | | |
| | [| | |
clk
Address ce - WDP Down
) ; | FSM .
Ader Decoding Counter To
reset
iow T Microprocessor
o Initialize
initialize counter

Figure 4.31 Block diagram for a WDT for a microprocessor system.

Clocked Watchdog Timer 101

The system is controlled by an FSM that monitors the chip enable ce controlled by the address
decoding logic. This can respond to a particular address from the microprocessor. In addition,
the iow signal controlled by the microprocessor is also monitored by the FSM. When the
microprocessor addresses the WDT, ce goes low, followed by iow in the T2 clock period. On the
rising edge of the T3 clock period, the WDT pulse is generated. The FSM must produce this
watchdog pulse (WDP) at exactly the right time in the write cycle (T3 period). Both the FSM and
the down counter are clocked by the same microprocessor clock clk.

In Appendix B, the design of a down binary counter is described and Section B.1 shows how this
can be done. To provide this counter with a fixed starting value (to count down from), the flip flips of
the counter can be preset to aknown value, using a parallel loading counter (see Section B.3). This is
the purpose of the initialize inputin Figure 4.31 (essentially a parallel load input to the down counter).

Note that this same input provides the initial state for the FSM (which will be state zero). The
WDP will provide frequent reinitialization pulses to the down counter and, thus, prevent it from
reaching its zero state (which would otherwise cause a microprocessor reset).

A suitable state diagram is illustrated in Figure 4.32, wherein the FSM waits in state sO for the
microprocessor to write to the address of the WDT. This will cause ce to go low during the T1
state of the memory/10 cycle (see Figure 4.31) so that on the T2 rising clock edge the FSM will
move into s1. Here, it waits for the microprocessor to lower iow; then, on the next clock pulse
(T3), the FSM will move into state s2, where it will lower the WDP output signal. On the next
clock pulse (T4), the FSM will move to s3, raising the WDP, and wait for the ce signal to go high.
This will occur at the end of the memory/I1O write cycle and will be seen by the FSM on the rising
edge of T1.

The equations for the FSM that follow are from Figure 4.32.

AB
10
/ce_|(T2)
fiow_|(T3)
_I(T4)
AB AB

01 11

Each clock pulse corresponds to a T state

Figure 4.32 State diagram for the WDT.

102 Synchronous Finite-State Machine Designs

4.10.1 D Flip-Flop Equations

A-d=5s0-/ce+sl
=/A-/B-/ce+A-/B
=/B-ce+A-/B
B-d=sl-/iow+s2+5s3- /ce
=A-/B-/iow+A-B+ /A-B- /ce
=A-/iow+A-B+B- /ce.

4.10.2 Output Equation
WDP = /(s2) = /(A - B).

The equation for ce would depend upon the desired address assigned to the WDT. For example, if
the address assigned was 300h (11 0000 0000 binary), then the equation would result in

ce=/(a9-a8- /a7 /a6- /a5 /a4 - /a3 - /a2 /al - [a0).

Ons ‘SOns ‘100ns ‘150ns 200ns
Lrr et rrr et

test.rst

= [T UL L

test.ce

test.iow

test. WDP

test.A

test.B

Figure 4.33 The WDT FSM simulation.

Summary 103

There could be additional qualifier signals, i.e. in a PC using the IO memory map the signal /aen
would be required in order to distinguish between dynamic memory access (DMA) cycles and
IO cycles (see Chapter 5 for DMA). Also, the /iow signal would be needed to identify a write
cycle.

The above equation for ce would then be

ce=/(a9-a8-/a7- /a6- /a5 /a4 - /a3 - /a2 - /al - /a0 - /aen - /iow).

The equations to describe the down counter are repeated below from Appendix B for conve-
nience.

Qn-t= Hi:rll (/gp) for an n-stage counter, with the first T mflip-flop qO - 7 input = 1.

This equation expands to

Q0-r=1
Ql-t=/q0
Q2-t=/q0-/ql

Q3-1=/q0-/ql-/q2
Q4-t=/q0-/ql-/q2- /q3.

for a four-stage down counter.

Note that the counter needs an asynchronous initialization signal connected to each T flip-flop
to form the parallel loading input logic (see Equation (B.4) and Figure B.4).

Figure 4.33 shows the FSM in action. The output WDP goes low during state s2 after the
address-decoding ce and iow have been detected going low in sequence. The FSM state
transitions are clearly seen in the flip-flop A and B outputs.

Note thatin the above simulation there are additional clock pulses. These have been generated
by the test bench generator to test for the FSM remaining in states sO and s1 until changes in the ce
and iow signals occur. This would not happen in practice, since the microprocessor has control of
iow and the address-decoding logic ce.

4.11 SUMMARY

Inthis chapter, anumber of practical examples have been developed using the block diagram and
state diagram approach developed in the Chapters 1-3. These have then been implemented in
terms of D-type flip-flops. You may well decide to use some of these examples in your own
designs, or expand upon them to make them fit your own requirements.

In the next chapter, the idea of having a state for each D-type flip-flop will be introduced,
leading to systems that do not need secondary state variables.

