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The One Hot Technique in
Finite-State Machine Design

5.1 THE ONE HOT TECHNIQUE

The FSMs designed up to now have used secondary state variables to identify each state. This

requires the use of unit distance assignment, where possible, to try to avoid potential glitches in

output signals.

An alternativewould be to assign a flip-flop for each state. Although this may be considered

wasteful, it has the advantage that it would in theory avoid the generation of output glitches,

since each statewould have its ownflip-flop.At anyone time, only oneflip-flopwould be set, i.e.

the one corresponding to the state the FSM was currently in.

This idea is called ‘OneHotting’ and ismuchused inFSMdesigns that are targeted toFPGAs.

This is because FPGAs have an architecture that consists ofmany cells that can be programmed

to be flip-flops, or gates. So a large number of flip-flops is not difficult to achieve. A PLD, on the

other hand, has an architecture with only a limited number of flip-flops controlled from AND/

OR ‘sum of product’ terms.

Another feature of theOneHot technique is that it can require fewer logic levels because there

isno required logic fromother statevariables apart fromtheprimary inputs andprevious state(s).

This can result in faster logic speeds.

The method of implementing a ‘One Hot’ FSM will now be described.

Consider Figure 5.1. In this example of the use of the One Hot technique, the single-pulse

generator with memory problem is revisited. It uses three states (rather than the four-state FSM

used in the original design). This is possible because one does not have to consider unit distance

coding and, hence, there are no secondary state variables.

The equations on the right inFigure 5.1 are the equations necessary to synthesize theFSM.To

understand where these come from, consider the One Hot state diagram.

Initially, the FSM should be in state s0. This can be arranged via an initialization input so that

theflip-floprepresenting state s0 (calledFFS0) is set, andallotherflip-flops (FFS1andFFS2)are

reset.
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Consider state s0. Here, the FSM should remain in state s0 until the condition to exit s0 occurs.

This is, of course, when the primary input signal s becomes logic 1.

However, the flip-flop FFS0 needs a signal on itsD input that will keep it in the set state. The

required signal is

s0 � =s:

This is obtained from the fact that the FSM is in state s0 and the ‘leaving condition’ from state s0

is s, so that while s is not true, i.e. s¼ 0, or /s, the flip-flop should remain set.

This term s0 � /s is known as a ‘hold term’ because it holds the FFS0 set until it is required to

change to the next state, s1.

Also, when the FSM reaches state s2 it will only return to state s0 when the signal s is logic 0.

So there is another term:

s2 � =s:

This is known as the ‘set term’, or ‘turn on’ term, for the flip-flop.

The complete equation for the state s0 flip-flop FFS0 is

s0 � d ¼ s2 � =s|fflfflffl{zfflfflffl}
set term

þ s0 � =s|fflfflffl{zfflfflffl}
hold term

:

Nowconsider state s1. The condition to enter state s1 iswhen the FSM is in state s0 and s¼ 1.

So, the equation for flip-flop FFS1 is

s1 � d ¼ s0 � s:

/P, /L

s0

P,
/L
s1

/P, L

s2

s_|

_|

/s_|

Design equations:

s0.d = s2./s + s0./s

s1.d = s0.s

s2.d = s1 + s2.s

Output is P = s1 

L = s2

The state diagram does not need any secondary state 
variables since each state is represented by a D-type 
flip-flop. 

At initialization, the flip-flops representing s1 and s2 are
reset, while that representing state s0 is set.

Figure 5.1 An example of the use of the One Hot technique.
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Note that the ‘leaving condition’ from s1 is a simple clock pulse. There is no input condition

along the transitional line between s1 and s2; therefore, when the FSM reaches state s1, it will

naturally exit state s1 on the next clock pulse, so a ‘hold term’ is not needed.

Now consider the final state s2.

The condition to enter state s2 is s1, since there is no input condition along the transitional line

between states s1 and s2. There will, however, be a holding term between s2 and s0, which is

s2 � s:

While s ¼ 1 the FSM must remain in state s2. So the equation for FFS2 will be

s2 � d ¼ s1þ s2 � s:

Finally, the output signal is

P ¼ s1;

since only in state s1 will the output P be logic 1; L will only be active in state s2:

L ¼ s2:

The circuit for this FSM is illustrated in Figure 5.2. Note in Figure 5.2 the initialization logic is

fitted retrospectively. In a One Hot system, one of the flip-flops, representing the initial state in

the FSM, needs to be set, while all other flip-flops need to be cleared. If flip-flops without preset
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Figure 5.2 Circuit for the One Hot version of the single-pulse FSM.
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and clear inputs are used, then a synchronous reset scheme needs to be adopted (as seen in

Chapter 3, Frames 3.16 and 3.19).

Nowconsider the two-waybranchFSMdesign inFigure 5.3. In this example, the equation for

FFS0 follows the rules already explained for the first example. In the equation for FFS1,

however, note that there is a term for entering state s1 via s0 (s0 � st) and a term to enter via s3.

The two-way branch leaving state s1 is via s1 � x (to state s2) and s1 � /x (to state s3), and the
combined terms result in

s1 � d ¼ s0 � stþ s3þ s1 � x � =x;

which reduces to

s1 � d ¼ s0 � stþ s3

because the s1 � x � =x terms would reduce to zero:

s1ð=x � xÞ ¼ 0:

TheFSM is held in s1 by complementing the inputs such that the leaving termbetween s1 and s2

(x) is complemented (/x) and the leaving termbetween s1 and s3 (/x) is also complemented (x) so

as to imply a hold in s1. Of course, this leads to

s1ð=x � xÞ as s1ð1 � 0Þ or s1ð0 � 1Þ resulting in the term s1 being zero:

Looking at the state diagram of Figure 5.3, it can be seen that once the FSM reaches state s1 it

should leave this state either via the transition to state s2orvia the transition to state s3on thenext

clock pulse. There is no reason to hold it in state s1.

/P

s0

P

s1

P

s2

/P

s3

st_| x_|

/x_|_|

sp_|

Design Equations:

s0·d = s2·sp + s0·/st

s1·d = s0·st + s3 +

s2·d = s1·x + s2·/sp

s3 = s1·/x  

P = s1 + s2.

Note that in equation

 s1·d = s0·st + s3 + s1(x·/x)

the term s1·(x ·/x) is zero.

See text for explanation.

Figure 5.3 A second example with two-way branch.
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Therefore, the above interpretation for s1 is correct. Hence, the equation

s1 � d ¼ s0 � stþ s3

is the correct one.

Note: in a state diagramwith a two-way branch transitionwith complementary inputs (in this

case x and /x), the two-way branch term is dropped.

The other equations in Figure 5.3 follow in the usual way.

Now consider the following FSM shown in Figure 5.4. In this example there is again a two-

way branch, but this time the exit from each branch path is not complementary. Notice how the

equation for s1 � d contains a term

s1 � ð=x � =yÞ:

This is the required holding term that will hold the FSM in state s1 until either x becomes

logic 1 or y becomes logic 1, i.e. the FSM will remain in state s1 while both x and y are

logic 0.

Note: when using a two-way branch with different inputs along each transitional line (like x

and y), the two inputs (x and y) must be mutually exclusive.

Continuingwith example of Figure 5.4, the invariant state s3 is entered fromstate s1, but once

it is entered there is no transition from this state. TheFSMwill remain in state s3 until the FSMis

reinitialized to its initial state of s0. For this reason, the s3 term on the right-hand side of the

equation for s3 is needed.

Figure 5.5 shows an example you might like to attempt on your own. Do not look at the

solution below the figure until you have attempted to do it yourself.

/P

s0

/P

s1

P

s2

P

s3

x_|st_|

y_|

/x_|

Design equations:

s0.d = s2./x + s0./st

s1.d = s0.st + s1.(/x . /y)

s2.d = s1.x + s2.x

s3 = s1.y + s3

P = s2 + s3

Figure 5.4 An example with a two-way branch with noncomplementary inputs.
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The One Hot technique is ideal for large state machines to be implemented using FPGA

devices, since anFPGAcanaccommodate a largenumberofflip-flops.Also, thedevelopmentof

the equations is very easy for a design developed at the logic gate level.

The rest of this chapter looks at a number of more complex FSM examplesmaking use of the

One Hot technique. The following examples illustrate how an FSM can be used to implement

typical design problems where perhaps a microcontroller might have been used. Each example

features ideas that you might wish to incorporate into your own designs.

5.2 A DATA ACQUISITION SYSTEM

Usually, amicrocontroller, or digital signal processor (DSP), is used to implement aDAS. In the

caseof themicrocontroller theADCisbuilt into themicrocontroller chip. For applicationsusing

a microcontroller with built-in ADC, the system will usually make use of integer data values

from theADC.ForDASs requiring high-speed data calculations, aDSPmay be used. These can

s0 s1

s2

s3

s4

s6s5

st_|

x_|

p_|/x_|

/p_|

/q_|q_|sp_|

_|

_|

s0 · d = s5 · sp + s0/st 

s1 · d = s0 · st + s3 · /p

s2 · d = s1 · x

s3 · d = s2 

s4 · d = s1 · /x + s3 · p

s5 · d = s4 · q +s6 + s5 · /sp 

s6 · d = s4 · /q

Solution:

Figure 5.5 Example for the reader. Do not look at the solution below until you have attempted to do it

yourself.
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be obtained using either integer arithmetic circuits or a built-in floating-point processor to carry

out the processing with ‘real’ numbers.

OneproblemwithallDASs is that theyhavefiniteprocessing speed limitations, usuallydue to

the processing limitations of the microprocessor used. To some extent this can be overcome by

using parallel processing and hardware arithmetic circuits.

A totally hardware arrangement could be designed around an FSM controlling hardware

adder/subtractor/multiplier/divider subsystems. This could increase the throughput of such

systems. Alternatively, the FSM could be used to ‘gather’ the data and store it for subsequent

processingbyamicroprocessor orDSP in situationswhere ‘real-time’ processing isnot required.

This next example illustrates a much simpler system looked at in Chapter 2 and illustrated in

Figure 5.6. This basic system could use a flash ADC to allow very fast conversion times. The

overall system makes use of high-speed static RAM to store the converted digital values. The

system is designed to interact with another system. This other system starts the process off by

asserting the st input, and the FSM sends a memory full (f) response in due course.

For now, a state diagram can be developed for this basic system as illustrated in Figure 5.7.

This is much along the lines of the one developed in Frames 2.4–2.10. In this state diagram, the

sequence of control is clear. Once the external system sends a request for the system to start

filling the memory with data (st¼ 1), the following occurs:

� The sample-and-hold circuit is placed into hold mode ready for the ADC (s1).

� The flash ADC is placed into conversion mode and the FSMwaits for the end of conversion

eoc signal to go high, signifying that a conversion has taken place (s2).

� In s3, theFSMselects thememorydevice byasserting (low) its chip select inputCS.TheFSM

will move to s4 only when the ADC eoc signal returns to logic 0.

FSM

Address
Counter

Memory

addr data

Sample
Hold

Flash
ADC

f

CC  R                 CS   W                           eoc     SC
S/H

stMF

Memory
Full

Start

Memory Full 
clk

Initialize FSM

init

Cs    w

Vin

Eoc    sc

Figure 5.6 Basic high-speed DAS.
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� In s4, the FSM activates the memory chips write enable signalW (low).

� In s5, the memory write signal is taken high to write the data into the memory device.

� In s6, thechip select is takenhigh todeselect thememory.Thisensures that thememorychip is

deselected before the address is changed.

� In s7, the address counter is pulsed by making CC¼ 1; the address counter is pulsed on the

rising edge of this signal. In s7, a check is made to see whether the last memory location has

been used (f); if not, the FSM moves around the loop comprising s1 to s7 again.

� This will continue until all the available memory has been filled with data, at which point the

FSM will fall into s8 and assert the mf output to the external device.

Note that theMF signal could be connected to the interrupt input of the remote device so that it

could start the process with st¼ 1 and be interrupted when the task is complete.

The One Hot equations now follow:

s0 � d ¼ =st flip-flop s0 will be set during initialization and held until st ¼ 1

s1 � d ¼ s0 � stþ s7 � =f
s2 � d ¼ s1þ s2 � =eoc
s3 � d ¼ s2 � eocþ s3 � eoc
s4 � d ¼ s3

s5 � d ¼ s4

s6 � d ¼ s5

s7 � d ¼ s6

s8 � d ¼ s7 � f þ s8 will hold in this state until reset:

/R
/CC
s0

S/H=1
R,/CC

s1

SC

s2

S/H=0
/SC,/CS

s3

/W

s4

W

s5

CS,

s6
s7

MF
/CC
s8

Wait for
 start input

Place S/H into
hold mode

Start ADC Select memory
 device

st_| _| eoc_|

_|

_|_|f_|

/f_| Enable write line
to access memory
data bus for writing

Write data into
memory device

De-select memoryIncrement address
memory location

and test for
memory full

Memory full
so stop

Wait for next
initialization

Memory not full
so write next

CC

/eoc_|

Figure 5.7 State diagram for the DAS.

112 The One Hot Technique in Finite-State Machine Design



The outputs are

S=H ¼ s1þ s2

SC ¼ s2

CS ¼ =ðs3þ s4þ s5Þ an active-low signal in states s3 to s5

W ¼ =s4 an active-low signal in state s4 only

MF ¼ s8

R ¼ =s0 an active-low signal in state s0 only

CC ¼ s7 pulsing CC high as s7 is entered; CC goes low on leaving state s7:

These signals can be used to construct aVerilogfile and simulated, as illustrated inFigure 5.8.

From Figure 5.8, it can be seen that the FSM loops four times, ending up in s8 at the end of the

third loop. Note the control of thememory chip select andwrite signals and the address counter

pulses. Also, at the end of the simulation the memory full mf signal goes high in state s8. The

reset is applied to return the FSM to s0.

The system developed in Figure 5.6 allows digitized data to be stored into the memory, but

it does not provide any way of getting access to the data once it has been saved. The reader
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test.R

test.CC
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Figure 5.8 Simulation of the data acquisition FSM controller.
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might like to modify the system to allow this to happen, but some thought needs to be given to

what device is to be used to perform this operation.

The next example illustrates how memory can be controlled in this way.

5.3 A SHARED MEMORY SYSTEM

It is often required to be able to access the data stored in memory via some other controlling

device. For example, this could be an external microprocessor to process the stored data in the

memory. The example in Figure 5.9 illustrates how this might be done. In this system the

memory can be accessed by either the FSM or the external system (which could be a micro-

processor or DSP system). The memory is, in effect, ‘shared’. The idea is that during the data-

gathering phase, the FSM has sole access to the memory and deposits digitized samples of data

under its owncontrol.During thedata deliveryphase the external device can access thememory,

but only when there is data to be read.

The external device must wait for the RMA (read memory available) signal going high, for

only when this signal is high will the FSM have disconnected itself from the memory device.

Also, when the external device has completed the read memory transaction, and disconnected

itself from the memory device, it must send an acknowledge signal ack to the FSM so that the

FSMcan revert to its initial state. TheFSM in this system is themaster device. SignalsRMAand

ack form a handshake mechanism.

FSM
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B
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MUX
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EXT.R
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EX.CS
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Ext. Data In

Ext mf

Vin

Start system

Initialise system
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M
_C

S
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Figure 5.9 Block diagram of a shared memory system.
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Note that the FSMuses its SEL signal to control the selection of the tri-state buffers B1 toB4,

so that buffers B1 andB3 are selectedwhenSEL¼ 0.Buffers B2 andB4 are selected bymaking

SEL¼ 1 to allow the external device to control the memory.

The ‘tri-state’ devices are thus connected to the memory device to allow it to be ‘shared’.

� The tri-state buffers B1 to B4 control the connection of the address and data buses.

The two-wayMultiplexerM is used to control thememorydevice from the two sources (FSM

and external device).

� When its control input s0¼ 0, the CS,W, and R control lines from the FSM are connected to

the memory device. Otherwise, the external device has control of these three signals when

s0¼ 1.

The following equations describe the behaviour of the multiplexer:

M CS ¼ CS � =SELþ EXT CS � SEL
M W ¼ W � =SELþ EXT W � SEL
M R ¼ R � =SELþ EXT R � SEL:

Note that the handshake signals RMA and ack are mandatory for this system towork, since the

external device must not have access to the memory unless it receives the RMA¼ 1 from the

FSM. Likewise, only when the external device has disconnected itself from the memory can it

send the ack¼ 1 signal to the FSM.

The state diagram for this system (Figure 5.10) is very similar to that in Figure 5.7, but has

signals to control the memory device connection.
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CC,/PC
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_|

_|_|mf_|
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Write data into
memory device

Deselect memory
 device

Increment memory
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test for
memory full

Memory full
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Wait for next
initialization.

Memory not full
so write next

ack_|
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Figure 5.10 State diagram for the shared memory FSM system.

A Shared Memory System 115



Note that in the state diagram inFigure 5.10 it is assumed that theADC is slower than the time

for the FSM to move from state s3 back round to state s2 and in s3 it waits for eoc to return low

before moving to s4.

The equations for this design can be obtained from the state diagram as follows.

D flip-flop d inputs:

s0 � d ¼ s8 � ackþ s0 � =st
s1 � d ¼ s0 � stþ s7 � =mf

s2 � d ¼ s1þ s2 � =eoc
s3 � d ¼ s2 � eocþ s3 � eoc
s4 � d ¼ s3 � =eoc
s5 � d ¼ s4

s6 � d ¼ s5

s7 � d ¼ s6

s8 � d ¼ s7 � mf þ s8 � =ack:

Output equations:

CC ¼ =s0 active-low output

SEL ¼ s8

RMA ¼ s8

S=H ¼ s1þ s2

SC ¼ s2

CS ¼ =ðs3þ s4þ s5Þ active-low output

W ¼ =s4 active-low output

PC ¼ s7 and assumes that the address counter is positive-edge triggered:

PC reverts to its inactive ðPC ¼ 0Þ state on leaving s7:

5.4 FAST WAVEFORM SYNTHESIZER

Anumberofdesign issueswill be covered in this example, including someaspects of interfacing

to a microprocessor or microcontroller to an FSM-based design.

Afrequencysynthesizer is tobedevelopedbased aroundanFSM.The ideahere is tobeable to

transfer a set of data from amicroprocessor/microcontroller via a parallel portal into amemory

device.Once this is done, the FSM is to read consecutivememory locations and output them to a

DAC. A block diagram of the system is illustrated in Figure 5.11.

Note that the waveform data may be any number of data samples in the memory, depending

upon the waveform period and sampling frequency. Therefore, the memory full signal mf is

actually an ‘end of waveform’ signal, generated by comparing the address bus value with an

‘Address Limit Value’ sent by the controlling device.
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Of course, the total number of waveform samplesmust be able to fit into thememory device,

but the end of waveform must be detected so that when the FSM cycles through to memory

location zero thewaveform at theDACoutput looks continuous and starts at the correct point in

the waveform.

In thisdiagram, theparallel ports to/fromamicrocontroller, say, areused toprovidewaveform

data to the memory. st is the start input and rp is an input to define record mode (logic 1) or

playbackmode (logic0).These two inputs couldbe fromthemicrocontroller or simplyprovided

as user-activated switches.

5.4.1 Specification

On power up, the FSM looks for st asserted. Then, if the rp is logic 1, it will assert its DRDY

output high to let the microcontroller know that it is expecting a data byte. The micro-

controller puts a data byte onto the parallel port outputs d0 to d7. The FSM then writes a

data byte to the memory device and then lowers its DRDY signal, to let the microcontroller

know it has dealt with the data byte. On seeing the DRDY signal go low, the microcontroller

lowers its ack signal line to let the FSM know that the transfer is complete. This process

continues until the memory is full. Note that memory full depends upon the number of

waveform samples placed into the memory device. The microcontroller places a limit value

onto the data lines, so that the FSM has a memory limit value to reach. At this point the

memory full signal mf will go to logic 1.
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244 Latch

Data in
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ack

Data ready
Start
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DRDY   st             rp      CS     WR    RD                mf             CR  PC

clk

FSM initialization

Comparator

Address Limit Value

A           B

init

Figure 5.11 The fast waveform synthesizer block diagram.
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If the input rp is turned to the play position, then the FSM will start to send the data in the

memory repeatedly to the ADC so that thewaveformwill be displayed until such times as the st

input is disasserted.

A state diagramwill be created based upon the specification and then implemented usingOne

Hot equations.

5.4.2 A Possible Solution

This is a relatively complex design making use of a program running on the microcontroller to

control the system via the parallel ports.

The state diagramneeds twomain loop paths: one for recordmode and the other for playback

mode. Bymaking use ofMealy outputs, it is possible to produce a state diagram using 13 states.

This is illustrated in Figure 5.12.

There are, of course other possible solutions, some of which will contain more states

(particularly if the outputs are all Moore). This solution makes use of Mealy outputs so that

themain part of the loop can be used for bothwrite and read operations. TheR andW signals are

active-low signals and are dealt with in the manner discussed in Frame 3.26.

A brief description of the state diagram is now given.
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Figure 5.12 One Hot State diagram for the waveform synthesizer FSM.
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Onoperationof the start input st the statemachinewill leave state s0 to s1where itwill remove

the address counter reset CR before moving, on the next clock pulse, to s2 to raise its ready flag

DRDY. On receiving the DRDY signal from the FSM, themicrocontroller (via its parallel port)

will enable the tri-state data buffer connecting the parallel port to the memory data bus so that

data can bewritten to the latter – this bymaking rp¼ 1. This will also disable the other tri-state

bufferused for reading thememorydata.Themicrocontrollerwill raise its acksignal toallowthe

FSMtomove to state s3, thememorychip selectwill beactivated (CS¼ 0) toenable thememory

device, and on moving to s4 the memory write W will be lowered, since rp¼ 1 (write mode).

Note that inmemory playmode rp¼ 0 it will be the read signal line that will be lowered in state

s4.Onmoving to s5, theCSandW (orR)will be raised to perform thememorywrite (ormemory

read) of that particular memory location.

The FSM will, on the next clock pulse, move to s6 to deselect the memory chip before

moving on to s7, where it will raise the PC signal to pulse the address counter. A test will

be performed to see whether the memory is full. If the memory is not full, then the

state machine will follow the path s7 to s9, where it will lower the DRDY flag if in record

mode (rp¼ 1) and wait for an ack from the microcontroller (this allows the microcontroller

to prepare the next data byte to be sent to the memory). On reaching state s12 the state

machine will move on to state s2 to repeat the operation for the next memory location. Note,

as usual, PC is lowered on leaving s7.

This will continue until all of the memory is full. When this happens, the transition from

s7 will be to s8, not s9, and the state machine will send its usual DRDY to zero and wait for

acknowledgement from the microcontroller. On receiving the acknowledgement flag ack, it

will wait in s10 for the user to set the rp input to zero (indicating that the system is now in

playback mode).

In playback mode, the state machine will move to state s11 to reset the address counter and

thereby back to s2 to repeat the loop s2, s3, s4, s5, s6, s7, s9, and s2 repeatedly while rp¼ 0 and

st¼ 1. In this loop, the memory is being read, but now, since rp¼ 0, the address counter will

continue to roll over to zero after running through thememoryup to thememory limit value until

the start input st¼ 0.

Note that the FSM waits for ack to be disasserted in states s8 and s9 to complete the

handshakes.

A reset can be added to the system to force it back to state s0 at anypoint in the state sequence.

Development of the One Hot equations from the state diagram can now be undertaken.

5.4.3 Equations for the d Inputs to D Flip-Flops

s0 � d ¼ s0 � =st hold term only

s1 � d ¼ s0 � stþ s1 � =rp
s2 � d ¼ s1 � rpþ s11þ s12 � rpþ s9 � =rp � stþ s2 � =ack
s3 � d ¼ s2 � ack
s4 � d ¼ s3

s5 � d ¼ s4

s6 � d ¼ s5
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s7 � d ¼ s6

s8 � d ¼ s7 � mf þ s8 � ack
s9 � d ¼ s7 � =mf þ s9 � =ðrp � =ackÞ � =ð=rp � stÞ note hold term for two-way branch

s10 � d ¼ s8 � =ackþ s10 � =ð=rp � ackÞ
s11 � d ¼ s10 � =rp � ack
s12 � d ¼ s9 � rp � =ackþ s12 � =ðrpÞ:

The output equations follow.

5.4.4 Output Equations

CR ¼ =ðs0þ s11Þ
DRDY ¼ s2þ s3þ s4þ s5þ s6þ s7þ s10þ s11þ s12 alternatively; DRDY

¼ =ðs8þ s9 � rpÞ as an active-low signal

CS ¼ =ðs3þ s4þ s5Þ
W ¼ =ðs4 � rpÞ
R ¼ =ðs4 � =rpÞ
PC ¼ s7:

These can all be implemented in Verilog HDL directly.

5.5 CONTROLLING THE FINITE-STATE MACHINE
FROM A MICROPROCESSOR/MICROCONTROLLER

In order to develop the program, one needs a programmer’s model to illustrate the connection

interface between the FSM and the microcontroller.

From Figure 5.13 it can see that themicrocontroller needs to use a byte-wide output port to send

waveform data to the memory, and two additional bits to form a handshake between the micro-

controller and the FSM. There is also a need for a byte-wide output port to send the memory limit

value. The main purpose of the microcontroller is to generate the waveform data to be used by the

FSM-based synthesizer. It is beyond the scopeof this book togo intohow thismight bedone, but the

individual digital values could be computedby themicrocontroller to be sent to thememorydevice.

Listing 5.1 illustrates a program fragment for possible execution on themicrocontroller. The

program is written in C, which is very common for microcontroller programming.

//–- includes needed by the program ––––––––––––––––––––––––-
#include <microcontroller.h> // standard C header file for the particular
microcontroller.

//––––-printer port register addresses ––––––––––––––––––––––
#define dataport 0x300 // address for port data outputs (change to suit
microcontroller)
#define ackdryrp 0x301 // address for handshake bits and rp (change to suit
microcontroller)
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#define memlim 0x302 // address for the memory limit portal.
#define MAX 1024 // Limit of memory size – can be

// changed to suit your requirements. Not used in this example.
unsigned char mem_limit_value; // location to save limit value in.
// C Fuction prototypes used by the program.
void get_data(void); // used to get the data from the FSM.
void Send_data_to_FSM(void); // Use to send data to the parallel port.
int i;
unsigned char inbyte, outbyte;
unsigned char array [MAX];
//––main program function––––––––––––––––––––––––––––
int main(void)
{

get_data(); // a C function that deals with the data you want to send.
Send_data_to_FSM(); // see below.
// could do other things here.

return (0); terminate the C program here.
} // end of main program.
// The C functions now follow.
void Send_data_to_FSM(void)
{

mem_limit_value = 255; //get the memory limit value to send.
MemLim = mem_limit_value; // send limit value to its portal.
for(i¼ 0; i < sizeof(array); iþþ)
{

do { // wait for data ready flag to go low from FSM.
inbyte¼ ackdryrp; // input from the ackdry port register.
inbyte &¼ 0x01; //mask all bits except the drdy bit.

} while(inbyte !¼ 0x00); //keep on looping until data ready flag set
from FSM (active-low).
//––––––––––––––––––––––––––––––––––––––––––––––––––––-

outbyte¼ array [i]; //get next data byte to send to FSM from array.
dataport¼ outbyte; // send it to FSM.
ackdryrp |¼ 0x02; //set ack bit to tell FSM
do { // wait for drdy to go high again.

inbyte¼ acktryrp;
inbyte &¼ 0x01;

}while(inbyte !¼ 0x01);
} // end of for loop.

} // end of C function to send data to FSM.
void get_data(void)
{ // just generate data for a ramp waveform. Simple example.

for (i¼ 0; i < mem_limit_value; iþþ)
{

array [i]¼ i;
}

} // end of get_data;

Listing 5.1 Example C code to control the waveform synthesizer.
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Listing 5.1 is very generic and would need to be tailored to a particular microcontroller. It is

made up of a main program function main () which calls two C functions.

In this example, the first of these functions, get_data (), is used to create a simple ramp

waveform by writing bytes to an array with the line

array [i]¼ i;
up to a memory limit value. The for loop simply increments the i value from 0 up to

mem_limit_valandstores it intoconsecutiveelementsof thearray.Note,mem_limit_val
would be the value sent to the ComparatorA inputs in Figure 5.11 to activate the mf signal when

the address inputs from the counter were the same as the ‘Address Limit Value’.

The second C function takes the content of the array and sends it to the FSMmemory, via the

dataport of the microcontroller:

outbyte¼ array [i]; //get next data byte to send to FSM from array.
dataport¼ outbyte; // send it to FSM.
ackdry¼ 0x02; //set ack bit to tell FSM.

To control this operation, and to synchronize the FSM to the microcontroller, the dry and ack
signals are used as handshake signals. Themicrocontroller uses do–while loop constructs to

perform these operations.

7            6          5          4           3            2          1          0

d7        d6        d5         d4         d3         d2         d1         d0

- - - - - rp         ack      DRDY

Output
port

Port
with
input

&
output

bits

To the 244 data latch of frequency synthesizer (see Figure 5.11)

To/from FSM
(see Figure 5.11)

Parallel Port Registers - these could be directly from a microcontroller

Limit
value
output
port

To A side of comparator (see Figure 5.11)

Figure 5.13 Parallel port registers and their bit functions.
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do { // wait for data ready flag to go low from FSM.
inbyte¼ ackdry; // input from the ackdry port register.
inbyte &¼ 0x01; //mask all bits except b1, the dry bit.

}while (inbyte !¼ 0x00); //keep on looping until data ready flag
cleared from FSM.

Thedo–while loop is used to read in the status of the drdy bit(inbyte¼ ackdry). This is
then stripped of all bits except the bit b0 dry with the instruction inbyte &¼ 0x01. This
is compared with 0x00, and if not equal (!¼) causes the do–while loop to repeat until dry

is set to zero,making thewhile(inbyte!¼0x00) false and causing the program to fall out

of thedo–while loop. In this way, the program cannot get past the firstdo–while loop until

dry¼ 0. The second do–while loop looks for drdy to go high before getting the next data

value from the array to send to the FSM.

The programcontinues to repeat the actions again until all the data in the array have been sent

to the FSM memory.

This short description shouldgiveyouan insight intohowthewaveformdata canbe sent to the

FSM. For the generation ofmore complex data, e.g. sinewaves and exponentially decaying sine

waves, a more complex get_data() function would need to be developed.

5.6 A MEMORY-CHIP TESTER

An FSM-based test system can be used to test memory chips prior to fitting them onto a

circuit board. Fitting memory chips direct from the manufacture can be expensive if a faulty

memory device is discovered at the final testing stage of production and the defective

memory has to be removed, particularly if the device is soldered directly onto the printed

circuit board.

Thememory tester could typically be used in the Goods Inward Department of a factory that

was using a large number ofmemory chips. Thiswould alloweachmemory chip to be tested and

could form the basis of a quality control on overall quality of thememory chips received from a

particular manufacturer. The memory tester should be easy to use by an unskilled operator and

function as a ‘go–no-go’ tester.

The basic idea is towrite some data into thememory chip and read the data back to check that

they are the same. In such a test, any location found to be faultywould deem thememory chip to

be faulty and it would, therefore, be rejected.

Figure 5.14 illustrates the blockdiagram for thememory tester. In this version, the data 55hex

(0101 0101 binary) is written into each consecutive memory location, then read back and

compared using the digital bitwise comparator. The bitwise comparison follows the Boolean

equation

Bitn ¼ =ðAn^BnÞ;

where ^ is the exclusive OR operator. This operation is (with the NOToperator /) the exclusive

NOR i.e. exclusiveORnegated. n represents the bit being ex-NORed. The ex-NORoperation is

shown below for completeness.
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The systemcanbe startedby raising input st, the start input. TheFSMwill control thememory

operations and test the fab input to determine whether what was written is the same as what is

read.

A more sophisticated version could be developed in which each memory location is

tested with the data 55 hex, then retested with the data AA hex to check for adjacent stuck at

1 or 0 faults. Other tests, such as checking adjacent memory locations to test for inter-

memory location faults, could also be included; however, for this simple tester the 55 hex

data will suffice.

The output ‘A¼ B’ connected to the fab input of the FSM is the logical product of all 8-bit

comparisons bit0–bit7; so, if all exclusive NOR outputs are at logic 1, then the ‘A¼ B’ output

will be logic 1. This is expressed mathematically as
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Figure 5.14 Block diagram for the memory tester.
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‘A ¼¼ B’ ¼ fab ¼
Yn¼7

n¼0
=ðAn B̂nÞ;

whereAn and Bn are bit n on eachA andB input and� indicates that each /(An ^ Bn) is ANDed

(i.e. product).

The state diagram for thememory tester is illustrated in Figure 5.15. In this state diagram, the

initial states of the outputs have not been shown, but they can, of course, be deduced from the

state diagram, since each state shows the change of outputs. So, for example, RC¼ 0 in s0, then

in s1 it becomes RC¼1, and remains so for all other states in the diagram. Likewise, CS¼ 0 in

s1, so itmust beCS¼ 1 in s0. Followingon, the other initial values in s0 areP¼ 0, ERROR¼ 0,

OK¼ 0,W¼ 1, RD¼ 1. Note that the state diagram has been allocated a set of secondary state

variables ABCD. These are not needed in the One Hot design, but they are used later on when a

comparison with the more conventional method used in Chapter 4 is made.

In states s1, s2, and s3, thedata55hex iswritten into thecurrentmemory locationpointed toby

the address counter. States s4, s5, and s6 are used to read thememory location and in state s6 the

FSM tests fab. If fab¼ 1, then the memory location is OK and the FSM proceeds to pulse the

address counter in s8andchecks to seewhether allmemory locationshavebeen tested in state s9.

If not, the whole process is repeated.
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1100

ABCD
0100

ABCD
1101

ABCD
1001
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0011

Note:  the secondary state variables are not needed 
for the One Hot solution, but are included here for a 
comparison with a conventional design.

Outputs:

OK=s10
ERROR=s11
RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
WR=/s2
RD=/(s5+s6)
P=s8.

ABCD
0001

CS,RD
s7

Figure 5.15 State diagram for the memory tester.
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In the case of a goodmemorychip theFSMwill loop around the states s1 to s9 repeatedlyuntil

the memory full indicator forces the FSM into state s10. The only way out of this state is via a

system reset. This ensures that, after a memory test, the system waits for operator intervention.

At any time amemory location is found to be faulty, the FSMwill drop into s11 and stop. The

only way out of s11 is via a system reset.

The One Hot equations for the memory tester are given in Figure 5.16.

The state diagram of Figure 5.15 has a Moore output P. The rising edge of P will clock the

address counter on entering state s8,P being lowered on leaving s8. Thememory chip enable is

disasserted in s7 prior to this action. The address counter only responds to the rising edge ofP, so

that on the next clock pulse the state of full can be tested in state s9.

5.7 COMPARING ONE HOT WITH THE MORE CONVENTIONAL DESIGN
METHOD OF CHAPTER 4

In Figure 5.15, a set of secondary statevariables has been provided so that this example could be

implemented with four flip-flops. If this was done, the D-type equations would be as shown in

Figure 5.17.

This, of course, uses the same technique used in Chapter 4, not the One Hot method. You

might like to complete the equations and minimize to compare with the One Hot solution

above.

It is useful at this stage to do a comparison between the One Hot method and the method that

uses secondary state variables in the last example.

Outputs:

OK=s10
ERROR=s11
RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
WR=/s2
RD=/(s5+s6)
P=s8.

One Hot Design Equations:
s0·d = s0·/st
s1·d = s0·st + s9·/full
s2·d = s1
s3·d = s2
s4·d = s3
s5·d = s4
s6·d = s5  (no hold term since two-way branch)
s7·d = s6.fab
s8·d = s7
s9·d = s8 (no hold term since two-way branch)
s10·d = s9·full + s10
s11·d = s6·/fab + s11

Figure 5.16 The One Hot equations for the memory tester.
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The One Hot design is simple, uses more flip-flops but has simple combinational logic. The

design using secondary state variables needs to be assigned a unique secondary state coding and

has more complex combinational logic. However, it requires only four flip-flops. The One Hot

arrangementneeds12flip-flopsand15gates,whereas thesecondary state implementationneeds

four flip-flops and 13 gates. A hidden advantage of the One Hot design is that it makes more

efficient use of the space on an FPGA device.

5.8 A DYNAMIC MEMORY ACCESS CONTROLLER

DMAcontrollers are used in somecomputer systems inorder toallowdata tobemoved fromone

part of thememory system to another or frommemory to a peripheral device (such as a printer or

disk drive for example). If these data moves were done by the computing microprocessor, this

would tie themicroprocessor upand slowdown thecomputing system.ThePChas a special chip

called theDMAcontroller, the8257 (now largely integrated into anASICdevice), that performs

these tasks.

This next example gives some idea of how a simple DMA controller could be developed

around an FSM. The design could be integrated into an FPGA.

Outputs:

OK=s10
ERROR=s11
RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
WR=/s2
RD=/(s5+s6)
P=s8.

D Flip Flop Design Equations:

A·d = s0·st + s1 + s4 + s5 + s6·fab+ s7 + s9·/full.

B·d = s3 + s4 + s5 + s6 + s11.

C·d = s1 + s2 + s3 + s4 + s9·full.

D·d = s6·fab + s7 + s8 + s9·full.

Figure 5.17 Memory tester design implemented with four flip-flops.

One Hot Secondary state

Complexity Simple Need to define the state

Number of flip-flops 12 4

Combinational logic Simple Complex
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Figure 5.18 shows a possible arrangement for a DMA controller. The source and destination

addresses need to be supplied by the microprocessor, as well as the number of words to be

transferred (Byte Counter). The size of the data could be bytes (8 bits), words (16 bits) or even

doublewords (32bits), since thedesigncanbe scalable. In thisdesign, it is assumed that theseare

deliveredvia an input port, but registers could be providedwith address decoding for amemory-

mapped DMA controller.

The dashed line marks the boundary of the DMA controller. The Memory Pool/Peripheral

Device is external.

ADMAcontrollermust be able to isolate itself from thememory/peripheral devicewhen not

being used, and this is achieved using tri-state devices.

Essentially, the DMA controller is designed to respond to an input st. At this point it should

accept the source, destination addresses, and the number of words/bytes to be transferred. Then

it should interrupt the microprocessor to let it know it is about to take over the memory/

peripheral. The microprocessor will then isolate itself from these devices and send the

load signal high to let the DMA controller know this has been done, and also provide it with

the source/destination addresses and the byte count. At this point, the DMAcontroller will load

the source, destination counters, and the byte counter.

Note that the registers are clocked synchronously with the system clock (on negative edge of

clk) but enabled via the FSM output ec. The DMA controller now has enough information to

carry out the transaction. This involves:

1. Selecting the source address and reading its content into a buffer.

2. Selecting the destination address and depositing the buffer content into this address.

DMA
Controller

Memory
Pool

and/or
Peripheral

device

Address bus

Data bus

Source
Address

Destination
Address

Byte
Count

st          load     ACK

CE

W

R
init INT

Figure 5.18 Block diagram of a possible DMA controller.
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3. Decrementing the byte counter and advancing the source and destination address counters.

4. Repeating 1 to 3 until all data transactions are completed (indicated by the byte counter

reaching zero).

The DMA controller can now be developed in more detail. Clearly, a parallel-loading up

counter is needed for both the source address and the destination address. Also, a parallel-

loading down counter is required for the byte counter. Appendix B describes how these can be

simply designed in detail.

Since the source and destination counter outputs need to be connected to the address bus, they

should have tri-state buffers to isolate them from the memory/peripheral address bus when the

DMA controller is not in use. The source or the destination address counters are used one at a

time to avoid bus contention. The DMA controller will also need a data register and buffer

connected so that the data read from one memory location can be fed to another memory

location. This data buffer acts as a holding registerwithin theDMAcontroller. The buffer needs

to be isolated from the memory/peripheral data bus when not being used. Finally, all these

internal devices need to be controlled by the FSM.

Figure 5.19 illustrates a possible block diagram for the DMA controller. Figure 5.19 shows a

lot of detail and contains internal signals used by the FSM to control the operation of the DMA

controller.
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Figure 5.19 Detailed block diagram for the DMA controller system.
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TheFSMmust carry out the transactions 1 to 4 detailed above. These, in turn, need to be defined in

terms of the actions required to control the hardware in Figure 5.19. These actions will involve:

1. Waiting for the start signal st.

2. Providing an interrupt to the microprocessor to get it to isolate itself from the memory.

3. Waiting for a load signal from the microcontroller; when obtained, loading the source,

destination, and byte count into the relevant counters.

Then:

4. The source memory needs to be selected and data read from the memory into the data holding

register.

5. The source address needs to be isolated from the memory and the destination memory

selected.

6. The data in the holding register needs to be transferred into the output buffer B3 and stored

into the memory destination address.

After all this:

7. The byte counter needs to be decremented and checked to seewhether all bytes of data have

been transferred.

8. If there aremorebytes to transfer, then theFSMneeds to repeat 1 to7again.This is to continue

until all bytes are transferred, indicated by the byte counter being decremented to zero.

The state diagram for the DMA controller can now be developed. The final form of this state

diagram is illustrated inFigure5.20.Study thisdiagram togetherwith thediagramofFigure5.19

to see how the DMA controller is controlled from the FSM.
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Figure 5.20 The state diagram for the DMA controller FSM.

130 The One Hot Technique in Finite-State Machine Design



A number of points need to be considered:

1. When reading the sourcememory location (states s4 to s7), the chip select and read signalsCE

and R need to be kept active while data is transferred into the holding register (s6 and s7)

before theyaredisasserted (to their high state in states s8ands9 respectively).This is different

to the way in which memory read cycles have been done in other examples.

2. Writing thedata from theoutputbuffer follows themoreusual arrangement,whereby thechip

is selected (s11), thenwrite is selected (s13), andfinallybothCEandWare deselected (s14 for

W, s15 for CE) to write the data into the memory destination location.

3. Note that the source, destination, and byte count registers are enabled via the EC output from

the FSM in state s16, and that the system clock clk clocks the data on the negative clock edge.

The One Hot equations can now be determined.

5.8.1 Flip-Flop Equations

s0 � d ¼ s18 � =stþ s0 � =st s10 � d ¼ s9

s1 � d ¼ s0 � stþ s1 � =load s11 � d ¼ s10

s2 � d ¼ s1 � load s12 � d ¼ s11

s3 � d ¼ s2þ s17 � =done s13 � d ¼ s12

s4 � d ¼ s3 s14 � d ¼ s13

s5 � d ¼ s4 s15 � d ¼ s14

s6 � d ¼ s5 s16 � d ¼ s15

s7 � d ¼ s6 s17 � d ¼ s16

s8 � d ¼ s7 s18 � d ¼ s17 � doneþ s18 � st:
s9 � d ¼ s8

5.8.2 Output Equations

INT ¼ s1

LD ¼ =s2 active-low signal

B1 ¼ s3þ s4þ s5þ s6þ s7þ s8þ s9

B2 ¼ s11þ s12þ s13þ s14

B3 ¼ s12þ s13þ s14

CE ¼ =ðs4þ s5þ s6þ s7þ s8þ s11þ s12þ s13þ s14Þ active-low signal

R ¼ =ðs5þ s6þ s7Þ active-low signal

W ¼ =s13 active-low signal

EC ¼ s16

DPI ¼ s6

M ¼ ðs0þ s1þ s2þ s18Þ; considering the high signal levels

instead of low signal levels

ACK ¼ s18:
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TheFSMblock is simulated inFigure5.21. In this simulation, themain loopcomprisingof states

s3 to s17 is traversed twice. On the second loop, the done input is true (logic 1) and the FSM

moves to s18 before returning back to state s0. This proves the operation of the FSM.

5.9 HOW TO CONTROL THE DYNAMIC MEMORY ACCESS
FROM A MICROPROCESSOR

TheDMAsystemis startedwith the start input,which in thepreviousdesignwouldneed tobevia

an output port from the microprocessor. This is sometimes useful, since it avoids the need for

address decoding logic.

A more appropriate way would be to have this signal via the memory (or I/O map) of the

microprocessor. Normally, this would require using a byte-wide port.

In Figure 5.22, the start signal st is generated by a microprocessor using a spare address

location. The address used here is 380 hex or 11 1000 0000 binary for this purpose. A typical

memory or Input/Output access cycle is illustrated, from which it is clear that when the chip

enable Ce and the IOWare both low (as would be generated by the microprocessor) the output

from the address decoding logic corresponding to the address 380 hexwould go high. The next
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Figure 5.21 Simulation of the DMA FSM block.
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clock pulse from the microprocessor clock (T3 rising edge) would clock the st value into the

D-type flip-flop.

Themicroprocessorwould need to use an address (386 hex in this case) to reset theDflip-flop

at anappropriate time.However, before this, themicroprocessorwouldneed towait for theACK

response from the FSM.

Figure 5.23 illustrates how this could be done, together with the generation of the st

signal. In Figure 5.23, the additional data latch is used to store the state of the FSM output

ACK. The FSM raises the ACK signal line and clocks it into the data latch with the pak

signal (added to the FSM for this purpose). The microprocessor can read the ACK signal by

addressing 381 hex, which takes the tri-state buffer out of its tri-state, thus setting bit d0 of

the data bus to that of the ACK signal stored in the D-type flip-flop during the memory or IO

read cycle of the microprocessor.

TheACKsignalwill be readby themicroprocessor in theT4state on the rising edgeofCEand

IOR signals during the read cycle (see Figure 5.24) into an appropriate internal register within

the microprocessor.

The state diagram fragment shown inFigure 5.25 shows the relevant state sequence needed to

use themicroprocessormemory or IOmapped control. Note that this can be usedwith the other

states of Figure 5.20 in the DMA controller.

Of course, this example is based upon hypothetical microprocessor bus timing, but it does

illustrate a possible method.

   T1        T2      T3       T4     T1      T2
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386h to clear latch

CE

IOW
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Figure 5.22 Generating a start signal from a microprocessor for the FSM.
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5.10 DETECTING SEQUENTIAL BINARY SEQUENCES
USING A FINITE-STATE MACHINE

A very common requirement in communication and computer network systems is to detect

binary sequences. The following example illustrates the idea and can be scaled up and changed

to detect other sequences.

One common approach is to insert a shift register into the transmission line and use

digital comparators to detect the incoming binary stream after the number of bits corre-

sponding to the binary code have been shifted into the shift register. This, of course,

introduces an n-bit delay. So, to detect a 4-bit code introduces a 4-bit delay. If the code to be

detected is longer (e.g. 8 or 16 bits), or other devices are to be added to the line to detect

other codes, then the delay increases.

An alternative approach is tomonitor the transmission line passively in real time and process

the binary bits in an FSM. This will not introduce any delay.

Consider a system such as the one shown in Figure 5.26. In this system, the FSMmonitors the

input binary sequence continuously looking for the sequence d¼ 1101 (this could be any

sequence in practice, but this one will suffice).

The FSM needs to synchronize to 4-bit data streams; in Figure 5.26, the first data stream is

1011, then the next 1101 (the required sequence), followed by the sequence 0011. The outputM

should go high at the end of the sequence 1101.
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Figure 5.23 The whole arrangement for writing to and reading from the FSM.
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   T1        T2      T3       T4      T1      T2
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Figure 5.24 The arrangement for reading the ACK signal from the FSM.
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State Diagram fragment showing FSM interaction with the Microprocessor

Figure 5.25 Illustrationof the state sequenceneeded forusing themicroprocessormemoryor IOmapped

control.
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The best way to develop the state diagram for this application is to start with a state diagram

that follows the required sequence; see Figure 5.27, where the required sequence d¼ 1101 is

detected in state s4, where the FSM stops.

However, it is necessary to go through the 4-bit sequence and return to state s0 if the required

sequence isnotdetected.This is shown inFigure5.28,where the state diagram is seen tocater for

all possible combinations.

For example, an input sequence of d¼ 1100 would follow states s0, s1, s2, s3, s0. An input

sequence1111would followstates s0, s1, s2, s7, s0; and so on. In thisway, theFSMkeeps in step

with the incoming binary sequence.

Once the correct sequence is found, the FSM will stop in state s4.

The FSM clock needs to synchronize with the middle of the data bits being monitored; this

could be done using the same technique used in the asynchronous receiver design of Figure 4.20

in Section 4.7.

The design can be implemented using the One Hot method, resulting in the following

equations:

s0 � d ¼ s3 � =d þ s7

s1 � d ¼ s0 � d
s2 � d ¼ s1 � d
s3 � d ¼ s2 � =d

s4 � d ¼ s3 � d þ s4

s5 � d ¼ s0 � =d
s6 � d ¼ s5þ s1 � =d
s7 � d ¼ s6þ s2 � d

d input sequence

M output 
(goes high 
when sequence
 detected)

reset

clk

FSM
101111010011

rst

Figure 5.26 Binary sequence detector.

d_| /d_|d_| d_|
M/M

s0 s1 s2 s3 s4

State diagram showing detection of 
required sequence

Required sequence 1101
detected in state s4 

Figure 5.27 State diagram segment to detect required sequence.
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and output

M ¼ s4:

This design can be built up in Verilog and simulated as illustrated in Figure 5.29. This

simulation runs through all possible paths of the state diagram in order to test out the FSM

logic.

d_| d_| /d_| d_|

/d_|

/d_| /d_| d_|

_| _|

_|

M/M
s0 s1 s2 s3 s4

s5 s6 s7

Figure 5.28 State diagram completed for all possible input combinations.
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Figure 5.29 Simulation of the sequence detector.
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In the first sequence, the simulation is seen to follow the sequence s0, s5, s6, s7, s0. This is

followedby the sequence s0, s1, s2, s3, s4,withM¼ 1.After this, theFSMis reinitializedback to

s0 for another sequence by lowering rst and pst (asynchronous initialization). Then, the

sequence s0, s1, s2, s7, s0 occurs. This is followed by other sequences to complete the testing

of all paths through the state diagram. Note that during the last sequence, i.e. s0, s5, s6, the

asynchronous initialization forces the FSM back to s0.

The system could be modified so that it continues indefinitely to monitor the incoming

sequence, providing anM¼ 1outputwhenever the correct sequence is detected. This can easily

be done by makingM a Mealy output in state s3, so that

M ¼ s3 � d:
If d is not 1 in state s3, neither isM. Of course, state s4 is no longer needed in this case.

Figure 5.30 shows the final state diagram In Figure 5.30, theM output ismade aMealy output

in s3 so that the FSM can return to s0 after any sequence. In this way the FSM can continue to

monitor incoming sequences forever and remain synchronized to the 4-bit pattern.

In Figure 5.31, the sequence detector can be seen to return to s0 after detecting the 1101

sequence. Note: the outputM is only 1 when d¼ 1.

The same technique could be applied for longer sequences, making use of more states and

more flip-flops.

One limitation of the sequence detector of Figure 5.30 is that it is limited to detecting one

particular binary sequence, in this case 1101. It would bemore useful to have an FSM that could

accept any binary sequence without having to redesign the state diagram.

In Figure 5.30, the FSM looks at the line bits with the same variable d. Instead, the d input

could be compared bit by bit with a number of digital 1-bit comparators (exclusiveNORgates),

each one having a bit of the code to compare the incoming bits with. Figure 5.32 illustrates a

possible arrangement. In this case, a more realistic 8-bit code is to be detected.

Also note that the code to be detected can be stored into a data latch prior to starting the

detectionprocess.This systemcanbeused todetect up to255different codes (assuming thecode

0000 0000 is not used).

d_| /d_|d_|

_|

/d_| /d_| d_|

_| _|

_|

M=d/M

s0 s1 s3s2

s5 s7s6

The equation for M is now
M = s3.d

Figure 5.30 Final state diagram for continuous monitoring for the d¼ 1101 sequence.
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Figure 5.31 Final simulation of the sequence detector.
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Figure 5.32 Comparators used to compare each bit with a pre-stored code.
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The codeC0 toC7 is loaded into the data latch and is presented as a registered code RC0 toRC7

and connected to one input of the single-bit digital comparators.

The input bits from line d are all connected to the other comparator inputs, so that eight

compared bits d0 to d7 are available to the FSM.

Figure 5.33 shows the full system: an additional input to the FSMen is used to start the system

and an additional output LD is used to latch the code value to be detected.

The state diagram for the FSM is illustrated in Figure 5.34. The state diagram of Figure 5.34

follows the same basic idea developed in the state diagram of Figure 5.30, but for a byte-wide

code. Note that rather than compare each d bit at the line, the FSM now compares each bit after

it has been compared with the desired code with the 1-bit comparators, first bit d0, then d1,

through to bit d7.

Now the FSM is a fixed sequence that can detect any possible 8-bit code. All that needs to be

done is load the required code into the data latch before starting the detector. The system can be

disabled at any time by disasserting the input en. This will cause the system to stop at the end of

the current sequence then return to state s0.

A little thought shows that the same FSM could be used to detect a number of different codes

one after the other by simply changing the codes in sequence.

One aspect of the system not yet discussed is how to synchronize the system to the line bit

stream. One way to do this would be to start the system off with a synchronization bit stream

code, say 10101010xx, prior to starting the code detection process, where x is an additional bit

that could be either 0 or 1. This could be broadcast by the sender.

The additional bits are needed to allow the FSM to load the data latchwith the desired code to

be detected. The sameFSMcould be used for this, since all that needs to be done is to load up the

synchronization code.Once the synchronization byte is detected (viaM) the code to be detected

would be loaded into the data latch and the code detection sequence started.
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Figure 5.33 Full system of the general 8-bit binary code detector.
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The One Hot equations can be obtained directly from the state diagram of Figure 5.34:

s0 � d ¼ s9 � =enþ s0 � =en
s1 � d ¼ s0 � en
s2 � d ¼ s1þ s9 � enþ s16

s3 � d ¼ s2 � d0
s4 � d ¼ s3 � d1
s5 � d ¼ s4 � d2
s6 � d ¼ s5 � d3
s7 � d ¼ s6 � d4
s8 � d ¼ s7 � d5
s9 � d ¼ s8 � d6
s10 � d ¼ s2 � =d0
s11 � d ¼ s3 � =d1þ s10

s12 � d ¼ s4 � =d2þ s11

s13 � d ¼ s5 � =d3þ s12

s14 � d ¼ s6 � =d4þ s13

s15 � d ¼ s7 � =d5þ s14

s16 � d ¼ s15

/M
s0
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Initialize input starts FSM in s0.  Controlling device loads code to be 
detected into data latch.  Then enables detector with En=1.  FSM latches 
this code into the data latch with Ld signal.
Thereafter, FSM cycles through states according to data input received.
Controlling device can stop the detector at the end of any sequence by 
lowering En to 0 and stopping the FSM in state s0.

Figure 5.34 The state diagram for the FSM-based byte-wide code detector.
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with outputs

M ¼ s9 � d7
LD ¼ s1:

Of course, the code to be detected could be any length, since the state diagram could be

developed for any particular length following the same basic idea.

Thesimulation inFigure5.35shows thesysteminwhich thecode tobe identified is11001011.

This code is first loaded into the latch via the C0 to C7 inputs. The simulation then presents a

number of serial d input sequences, with the last one being the one the system is trying to detect.

TheM output goes high at the end of this sequence.

The complete system, comparator, octal latch and FSM as connected up in Figure 5.33 is

simulated and illustrated in Figure 5.36. Only the system inputs and output signals are visible

here (see block diagram in Figure 5.33), along with the FSM state sequence so that the

state sequence of the state machine in Figure 5.34 can be followed. Note that the sequence

to be detected in this simulation is C[7:0]¼ 11001011. This sequence is detected at the end of

the simulation at around 700 ns into the simulation, and can be clearly seen in the bottom two

signals (d input andM output).
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Figure 5.35 Simulation of the FSM sequence detector using a code 11001011.
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5.11 SUMMARY

This chapter has explored the use of the One Hot technique to implement FSMs. These are

particularly useful for implementation inFPGAdevices andhave the advantage of not requiring

secondary state variables. The hand calculations are much easier to perform and can be

converted into Verilog HDL easily. Also, owing to the large size of FPGAs, large FSM designs

can be implemented without the need to consider secondary state variable assignment.
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Figure 5.36 Simulation of the complete 8-bit sequence detector.
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