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The One Hot Technique in
Finite-State Machine Design

5.1 THE ONE HOT TECHNIQUE

The FSMs designed up to now have used secondary state variables to identify each state. This
requires the use of unit distance assignment, where possible, to try to avoid potential glitches in
output signals.

An alternative would be to assign a flip-flop for each state. Although this may be considered
wasteful, it has the advantage that it would in theory avoid the generation of output glitches,
since each state would have its own flip-flop. At any one time, only one flip-flop would be set, i.e.
the one corresponding to the state the FSM was currently in.

Thisideaiscalled ‘One Hotting’ and is much used in FSM designs that are targeted to FPGAs.
This is because FPGAs have an architecture that consists of many cells that can be programmed
to be flip-flops, or gates. So a large number of flip-flops is not difficult to achieve. A PLD, on the
other hand, has an architecture with only a limited number of flip-flops controlled from AND/
OR ‘sum of product’ terms.

Another feature of the One Hot technique is that it can require fewer logic levels because there
isnorequired logic from other state variables apart from the primary inputs and previous state(s).
This can result in faster logic speeds.

The method of implementing a ‘One Hot” FSM will now be described.

Consider Figure 5.1. In this example of the use of the One Hot technique, the single-pulse
generator with memory problem is revisited. It uses three states (rather than the four-state FSM
used in the original design). This is possible because one does not have to consider unit distance
coding and, hence, there are no secondary state variables.

The equations on the right in Figure 5.1 are the equations necessary to synthesize the FSM. To
understand where these come from, consider the One Hot state diagram.

Initially, the FSM should be in state sO. This can be arranged via an initialization input so that
the flip-flop representing state sO (called FFS0) is set, and all other flip-flops (FFS1 and FFS2) are
reset.

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4
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Design equations:

s0-d=s2-/s + s0-/s

s1-:d=s0-s

s2:d=s1+s2-s

Output is P =s1

L=s2

The state diagram does not need any secondary state
variables since each state is represented by a D-type
flip-flop.

At initialization, the flip-flops representing s1 and s2 are
reset, while that representing state s0 is set.

Figure 5.1 An example of the use of the One Hot technique.

Consider state sO. Here, the FSM should remain in state sO until the condition to exit sO occurs.
This is, of course, when the primary input signal s becomes logic 1.

However, the flip-flop FFSO needs a signal on its D input that will keep it in the set state. The
required signal is

sO - /s.

This is obtained from the fact that the FSM is in state sO and the ‘leaving condition’ from state sO
is s, so that while s is not true, i.e. s = 0, or /s, the flip-flop should remain set.

This term sO - /s is known as a ‘hold term’ because it holds the FFSO set until it is required to
change to the next state, s1.

Also, when the FSM reaches state s2 it will only return to state sO when the signal s is logic 0.
So there is another term:

s2 - /s.

This is known as the ‘set term’, or ‘turn on’ term, for the flip-flop.
The complete equation for the state sO flip-flop FFSO is

sO-d=s2-/s+s0 - /s.
S—— Y=

set term hold term

Now consider state s1. The condition to enter state s1 is when the FSM is in state sO and s = 1.
So, the equation for flip-flop FFS1 is

sl -d=s0 - s.
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Note that the ‘leaving condition’ from sl is a simple clock pulse. There is no input condition
along the transitional line between s1 and s2; therefore, when the FSM reaches state s1, it will
naturally exit state s1 on the next clock pulse, so a ‘hold term’ is not needed.

Now consider the final state s2.

The condition to enter state s2 is s1, since there is no input condition along the transitional line
between states sl and s2. There will, however, be a holding term between s2 and s0, which is

s2 - s.
While s = 1 the FSM must remain in state s2. So the equation for FFS2 will be
$2 -d=sl+5s2-s.

Finally, the output signal is

P =sl,
since only in state s1 will the output P be logic 1; L will only be active in state s2:

L =5s2.
The circuit for this FSM is illustrated in Figure 5.2. Note in Figure 5.2 the initialization logic is

fitted retrospectively. In a One Hot system, one of the flip-flops, representing the initial state in
the FSM, needs to be set, while all other flip-flops need to be cleared. If flip-flops without preset

S
s1 flip-flop s2 flip-flop
/s 1d —er s2:d S
s0 flip-flop
L
Clock (clk)
Initialize input

P
Figure 5.2 Circuit for the One Hot version of the single-pulse FSM.
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sp_|

Design Equations:

Note that in equation s0-d = s2-sp + sO-/st
T
s1-d = sO-st + 83 + s1(x"/x) s1-d=s0-st+s3+
the term s1-(x -/x) is zero. s2-d =s1-x + s2:/sp
See text for explanation. s3=s1/x
P=s1+s2.

Figure 5.3 A second example with two-way branch.

and clear inputs are used, then a synchronous reset scheme needs to be adopted (as seen in
Chapter 3, Frames 3.16 and 3.19).

Now consider the two-way branch FSM design in Figure 5.3. In this example, the equation for
FFSO follows the rules already explained for the first example. In the equation for FFSI,
however, note that there is a term for entering state s1 via sO (sO - st) and a term to enter via s3.

The two-way branch leaving state sl is viasl - x (to state s2) and s1 - /x (to state s3), and the
combined terms result in

sl -d=s0-st+s3+sl-x- /x,
which reduces to
sl -d=5s0-st+s3
because the s1 - x - /x terms would reduce to zero:
sl(/x - x) =0.
The FSM is held in s1 by complementing the inputs such that the leaving term between s1 and s2
(x) is complemented (/x) and the leaving term between s1 and s3 (/x) is also complemented (x) so
as to imply a hold in s1. Of course, this leads to
sl(/x - x)assl(1-0)orsl(0-1) resultingin the term sl being zero.
Looking at the state diagram of Figure 5.3, it can be seen that once the FSM reaches state s1 it

should leave this state either via the transition to state s2 or via the transition to state s3 on the next
clock pulse. There is no reason to hold it in state s1.



The One Hot Technique 109

Ix_|

v

Design equations:
s0-d = s2-/x + sO-/st
s1-:d=s0-st + s1:(/x- /y)
s2:d=s1-x+s2:x

s3 =51y +s3
P=s2+s3

Figure 5.4 An example with a two-way branch with noncomplementary inputs.

Therefore, the above interpretation for s1 is correct. Hence, the equation
sl - d=s0 - st+s3

is the correct one.

Note: in a state diagram with a two-way branch transition with complementary inputs (in this
case x and /x), the two-way branch term is dropped.

The other equations in Figure 5.3 follow in the usual way.

Now consider the following FSM shown in Figure 5.4. In this example there is again a two-
way branch, but this time the exit from each branch path is not complementary. Notice how the
equation for s1 - d contains a term

sL- (/x - /).

This is the required holding term that will hold the FSM in state s1 until either x becomes
logic 1 or y becomes logic 1, i.e. the FSM will remain in state s1 while both x and y are
logic 0.

Note: when using a two-way branch with different inputs along each transitional line (like x
and y), the two inputs (x and y) must be mutually exclusive.

Continuing with example of Figure 5.4, the invariant state s3 is entered from state s 1, but once
itisentered there is no transition from this state. The FSM will remain in state s3 until the FSM is
reinitialized to its initial state of sO. For this reason, the s3 term on the right-hand side of the
equation for s3 is needed.

Figure 5.5 shows an example you might like to attempt on your own. Do not look at the
solution below the figure until you have attempted to do it yourself.
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Solution:

80 - d=s5"-sp + s0/st
sl-d=s0-st+s3-/p
s2-d=sl-x
s3-d=s2
s4-d=sl-/x+s3-p
sS-d=s4-q+s6+5s5-/sp
s6-d=s4-/q

Figure 5.5 Example for the reader. Do not look at the solution below until you have attempted to do it
yourself.

The One Hot technique is ideal for large state machines to be implemented using FPGA
devices, since an FPGA can accommodate alarge number of flip-flops. Also, the development of
the equations is very easy for a design developed at the logic gate level.

The rest of this chapter looks at a number of more complex FSM examples making use of the
One Hot technique. The following examples illustrate how an FSM can be used to implement
typical design problems where perhaps a microcontroller might have been used. Each example
features ideas that you might wish to incorporate into your own designs.

5.2 A DATA ACQUISITION SYSTEM

Usually, a microcontroller, or digital signal processor (DSP), is used to implement a DAS. In the
case of the microcontroller the ADC s builtinto the microcontroller chip. For applications using
a microcontroller with built-in ADC, the system will usually make use of integer data values
from the ADC. For DASs requiring high-speed data calculations, a DSP may be used. These can
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Figure 5.6 Basic high-speed DAS.

be obtained using either integer arithmetic circuits or a built-in floating-point processor to carry
out the processing with ‘real” numbers.

One problem with all DASs is that they have finite processing speed limitations, usually due to
the processing limitations of the microprocessor used. To some extent this can be overcome by
using parallel processing and hardware arithmetic circuits.

A totally hardware arrangement could be designed around an FSM controlling hardware
adder/subtractor/multiplier/divider subsystems. This could increase the throughput of such
systems. Alternatively, the FSM could be used to ‘gather’ the data and store it for subsequent
processing by amicroprocessor or DSP in situations where ‘real-time’ processing is notrequired.

This next example illustrates a much simpler system looked at in Chapter 2 and illustrated in
Figure 5.6. This basic system could use a flash ADC to allow very fast conversion times. The
overall system makes use of high-speed static RAM to store the converted digital values. The
system is designed to interact with another system. This other system starts the process off by
asserting the st input, and the FSM sends a memory full (f) response in due course.

For now, a state diagram can be developed for this basic system as illustrated in Figure 5.7.
This is much along the lines of the one developed in Frames 2.4-2.10. In this state diagram, the
sequence of control is clear. Once the external system sends a request for the system to start
filling the memory with data (st = 1), the following occurs:

e The sample-and-hold circuit is placed into hold mode ready for the ADC (s1).

e The flash ADC is placed into conversion mode and the FSM waits for the end of conversion
eoc signal to go high, signifying that a conversion has taken place (s2).

o Ins3, the FSM selects the memory device by asserting (low) its chip select input CS. The FSM
will move to s4 only when the ADC eoc signal returns to logic 0.
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Wait for Place S/H into Start ADC Select memory
start input hold mode device

Enable write line
to access memory
data bus for writing

If|

Memory not full

Memory full so write next

so stop
Wait for next
initialization

Increment address De-select memory Write data into

memory location memory device
and test for
memory full

Figure 5.7 State diagram for the DAS.

o In s4, the FSM activates the memory chips write enable signal W (low).

e In s5, the memory write signal is taken high to write the data into the memory device.

e Ins6,the chip selectistaken high to deselect the memory. This ensures that the memory chip is
deselected before the address is changed.

e In s7, the address counter is pulsed by making CC = 1; the address counter is pulsed on the
rising edge of this signal. In s7, a check is made to see whether the last memory location has
been used (f); if not, the FSM moves around the loop comprising s1 to s7 again.

e This will continue until all the available memory has been filled with data, at which point the
FSM will fall into s8 and assert the mf output to the external device.

Note that the MF signal could be connected to the interrupt input of the remote device so that it
could start the process with st = 1 and be interrupted when the task is complete.
The One Hot equations now follow:

sO - d = /st flip-flop sO will be set during initialization and held until st = 1
sl -d=s0-st+s7-/f

s2 -d=s1+5s2- [eoc

s3 -d=s2-eoc+s3 - eoc

4 -d=s3
s5-d=s4
s6 - d =55
s7-d=-s6
s8 -d=s87 - f+s8 will hold in this state until reset.
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The outputs are

S/H=sl+s2

SC =52

CS = /(s34 s4 +55)
W= /s4

MF = s8

R=/s0

CC =¢7

an active-low signal in states s3 to s5

an active-low signal in state s4 only

an active-low signal in state sO only

pulsing CC high as s7 is entered; CC goes low on leaving state s7.

These signals can be used to construct a Verilog file and simulated, as illustrated in Figure 5.8.
From Figure 5.8, it can be seen that the FSM loops four times, ending up in s8 at the end of the
third loop. Note the control of the memory chip select and write signals and the address counter
pulses. Also, at the end of the simulation the memory full mf signal goes high in state s8. The

reset is applied to return the

FSM to s0.

The system developed in Figure 5.6 allows digitized data to be stored into the memory, but
it does not provide any way of getting access to the data once it has been saved. The reader
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Figure 5.8

Simulation of the data acquisition FSM controller.
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might like to modify the system to allow this to happen, but some thought needs to be given to
what device is to be used to perform this operation.
The next example illustrates how memory can be controlled in this way.

5.3 A SHARED MEMORY SYSTEM

It is often required to be able to access the data stored in memory via some other controlling
device. For example, this could be an external microprocessor to process the stored data in the
memory. The example in Figure 5.9 illustrates how this might be done. In this system the
memory can be accessed by either the FSM or the external system (which could be a micro-
processor or DSP system). The memory is, in effect, ‘shared’. The idea is that during the data-
gathering phase, the FSM has sole access to the memory and deposits digitized samples of data
under its own control. During the data delivery phase the external device can access the memory,
but only when there is data to be read.

The external device must wait for the RMA (read memory available) signal going high, for
only when this signal is high will the FSM have disconnected itself from the memory device.
Also, when the external device has completed the read memory transaction, and disconnected
itself from the memory device, it must send an acknowledge signal ack to the FSM so that the
FSM canrevert toits initial state. The FSM in this system is the master device. Signals RMA and
ack form a handshake mechanism.

Addr Sample &
Counter Memory Hold
Data
< B s/
3 < H | Vin
| ADC L
Shared A
Memory
A
cswr
L J
Ext. Data In N B
439 >
==
‘ Ext. Data Out
EXTR <
EXTW 3] yux |«
EXCS
s0 4
A
—
Ext mf +
PC CC SEL CS W R SC eoc
P mf FSM Start system
<«——{RVMA st ——
- Initialise system
— ack init ———

Figure 5.9 Block diagram of a shared memory system.
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Note that the FSM uses its SEL signal to control the selection of the tri-state buffers B1 to B4,
so that buffers B1 and B3 are selected when SEL = 0. Buffers B2 and B4 are selected by making
SEL = 1 to allow the external device to control the memory.

The ‘tri-state’ devices are thus connected to the memory device to allow it to be ‘shared’.

e The tri-state buffers B1 to B4 control the connection of the address and data buses.
The two-way Multiplexer M is used to control the memory device from the two sources (FSM
and external device).

e When its control input sO = 0, the CS, W, and R control lines from the FSM are connected to
the memory device. Otherwise, the external device has control of these three signals when
sO=1.

The following equations describe the behaviour of the multiplexer:

M_CS =CS - /SEL + EXT.CS - SEL
MW =W - /SEL + EXT_W - SEL
MR =R - /SEL+EXTR - SEL.

Note that the handshake signals RMA and ack are mandatory for this system to work, since the
external device must not have access to the memory unless it receives the RMA = 1 from the
FSM. Likewise, only when the external device has disconnected itself from the memory can it
send the ack = 1 signal to the FSM.

The state diagram for this system (Figure 5.10) is very similar to that in Figure 5.7, but has
signals to control the memory device connection.

FSM has memory. Place S/H into Start ADC Select memory
Wait for start input hold mode device

Imf_| Enable write line
— to access memory

data bus for writing

Memory not full
so write next

Memory full Increment memory Deselect memory Write data into
so stop address and device memory device

Wait for next test for

initialization. memory full

Figure 5.10 State diagram for the shared memory FSM system.
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Note that in the state diagram in Figure 5.10 it is assumed that the ADC is slower than the time
for the FSM to move from state s3 back round to state s2 and in s3 it waits for eoc to return low
before moving to s4.

The equations for this design can be obtained from the state diagram as follows.

D flip-flop d inputs:
sO - d=s8 - ack +s0 - /st
sl -d=s0-st+s7 - /mf
s2 -d=sl+s2- [eoc

3 -d=-5s2-eoc+s3 - eoc

s4 - d=15s3- Jeoc

5 - d=s4

s6 - d =55

s7T - d=s6

s8 - d =s7 - mf +s8 - /ack.

Output equations:

CC=/s0 active-low output

SEL = s8

RMA = s8

S/H=sl+s2

SC=s2

CS = /(s3 4+ s4 +s5) active-low output

W= /s4 active-low output

PC =57 and assumes that the address counter is positive-edge triggered.

PC reverts to its inactive (PC = 0) state on leaving s7.

5.4 FAST WAVEFORM SYNTHESIZER

A number of design issues will be covered in this example, including some aspects of interfacing
to a microprocessor or microcontroller to an FSM-based design.

A frequency synthesizer is to be developed based around an FSM. The idea here is to be able to
transfer a set of data from a microprocessor/microcontroller via a parallel portal into a memory
device. Once this is done, the FSM is to read consecutive memory locations and output them to a
DAC. A block diagram of the system is illustrated in Figure 5.11.

Note that the waveform data may be any number of data samples in the memory, depending
upon the waveform period and sampling frequency. Therefore, the memory full signal mf is
actually an ‘end of waveform’ signal, generated by comparing the address bus value with an
‘Address Limit Value’ sent by the controlling device.
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Figure 5.11 The fast waveform synthesizer block diagram.

Of course, the total number of waveform samples must be able to fit into the memory device,
but the end of waveform must be detected so that when the FSM cycles through to memory
location zero the waveform at the DAC output looks continuous and starts at the correct point in
the waveform.

Inthis diagram, the parallel ports to/from a microcontroller, say, are used to provide waveform
data to the memory. st is the start input and rp is an input to define record mode (logic 1) or
playback mode (logic 0). These two inputs could be from the microcontroller or simply provided
as user-activated switches.

5.4.1 Specification

On power up, the FSM looks for st asserted. Then, if the rp is logic 1, it will assert its DRDY
output high to let the microcontroller know that it is expecting a data byte. The micro-
controller puts a data byte onto the parallel port outputs dO to d7. The FSM then writes a
data byte to the memory device and then lowers its DRDY signal, to let the microcontroller
know it has dealt with the data byte. On seeing the DRDY signal go low, the microcontroller
lowers its ack signal line to let the FSM know that the transfer is complete. This process
continues until the memory is full. Note that memory full depends upon the number of
waveform samples placed into the memory device. The microcontroller places a limit value
onto the data lines, so that the FSM has a memory limit value to reach. At this point the
memory full signal mf will go to logic 1.
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If the input rp is turned to the play position, then the FSM will start to send the data in the
memory repeatedly to the ADC so that the waveform will be displayed until such times as the st
input is disasserted.

A state diagram will be created based upon the specification and then implemented using One
Hot equations.

5.4.2 A Possible Solution

This is a relatively complex design making use of a program running on the microcontroller to
control the system via the parallel ports.

The state diagram needs two main loop paths: one for record mode and the other for playback
mode. By making use of Mealy outputs, it is possible to produce a state diagram using 13 states.
This is illustrated in Figure 5.12.

There are, of course other possible solutions, some of which will contain more states
(particularly if the outputs are all Moore). This solution makes use of Mealy outputs so that
the main part of the loop can be used for both write and read operations. The R and W signals are
active-low signals and are dealt with in the manner discussed in Frame 3.26.

A brief description of the state diagram is now given.

State s0O output initial states are:
/CR, /DRDY, CS, W, R, /PC

Irp-st_| | Wait here for play
A Mode (rp=0)
Irp-ack_|

Write data to memory path:
s0, s1, s2, s3, s4, s5, s6, s7, s9, s12,
s2..

Read memory path:

Wait in s10 for rp to go low. Then:
510, s11, s2, s3, s4, s5, s6, 57, s9, s2.
until mf high again, then return to s8,
s10, s11 path and repeat the
sequence again.

Will stop when st is taken low in s9.

Figure 5.12 One Hot State diagram for the waveform synthesizer FSM.
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On operation of the start input st the state machine will leave state sO to s1 where it will remove
the address counter reset CR before moving, on the next clock pulse, to s2 to raise its ready flag
DRDY. On receiving the DRDY signal from the FSM, the microcontroller (via its parallel port)
will enable the tri-state data buffer connecting the parallel port to the memory data bus so that
data can be written to the latter — this by making rp = 1. This will also disable the other tri-state
bufferused for reading the memory data. The microcontroller will raise its ack signal to allow the
FSM tomove to state s3, the memory chip select will be activated (CS = 0) to enable the memory
device, and on moving to s4 the memory write W will be lowered, since rp = 1 (write mode).
Note that in memory play mode rp = 0 it will be the read signal line that will be lowered in state
s4. Onmoving tos5, the CS and W (or R) will be raised to perform the memory write (or memory
read) of that particular memory location.

The FSM will, on the next clock pulse, move to s6 to deselect the memory chip before
moving on to s7, where it will raise the PC signal to pulse the address counter. A test will
be performed to see whether the memory is full. If the memory is not full, then the
state machine will follow the path s7 to s9, where it will lower the DRDY flag if in record
mode (rp = 1) and wait for an ack from the microcontroller (this allows the microcontroller
to prepare the next data byte to be sent to the memory). On reaching state s12 the state
machine will move on to state s2 to repeat the operation for the next memory location. Note,
as usual, PC is lowered on leaving s7.

This will continue until all of the memory is full. When this happens, the transition from
s7 will be to s8, not s9, and the state machine will send its usual DRDY to zero and wait for
acknowledgement from the microcontroller. On receiving the acknowledgement flag ack, it
will wait in s10 for the user to set the rp input to zero (indicating that the system is now in
playback mode).

In playback mode, the state machine will move to state s11 to reset the address counter and
thereby back to s2 to repeat the loop s2, s3, s4, s5, 56, s7, 89, and s2 repeatedly while rp = 0 and
st = 1. In this loop, the memory is being read, but now, since rp = 0, the address counter will
continue to roll over to zero after running through the memory up to the memory limit value until
the start input st = 0.

Note that the FSM waits for ack to be disasserted in states s§ and s9 to complete the
handshakes.

A reset can be added to the system to force it back to state sO at any point in the state sequence.

Development of the One Hot equations from the state diagram can now be undertaken.

5.4.3 Equations for the d Inputs to D Flip-Flops

sO - d=s0- /st hold term only

sl -d=s0-st+sl- /ip

2-d=sl -1p+sll+sl2 -rp+s9 - /rp-st+s2 - /ack
s3 -d=-5s2-ack

s4 - d=5s3

S -d=s4

s6 - d =55
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s7-d
s8 - d =s7 - mf +s8 - ack
$9 -d=s7 - /mf+s9 - /(rp - /ack) - /(/rp - st) note hold term for two-way branch
$10 - d =8 - Jack +s10 - /(/rp - ack)
sll - d=s10- /rp - ack
s12 - d=s9 - 1p - Jack +s12 - /(1p).

The output equations follow.

5.4.4 Output Equations

CR = /(s0+sl1)
DRDY = s2 + 83 + s4 + 55 + s6 457 4510 4- s11 4 s12 alternatively, DRDY

= /(s8 4+ 59 - rp) as an active-low signal
CS = /(53 + s4 +s5)

W= /(s4 - 1p)
R=/(s4 - /ip)
PC = s7.

These can all be implemented in Verilog HDL directly.

5.5 CONTROLLING THE FINITE-STATE MACHINE
FROM A MICROPROCESSOR/MICROCONTROLLER

In order to develop the program, one needs a programmer’s model to illustrate the connection
interface between the FSM and the microcontroller.

From Figure 5.13 it can see that the microcontroller needs to use a byte-wide output port to send
waveform data to the memory, and two additional bits to form a handshake between the micro-
controller and the FSM. There is also a need for a byte-wide output port to send the memory limit
value. The main purpose of the microcontroller is to generate the waveform data to be used by the
FSM-based synthesizer. It is beyond the scope of this book to go into how this might be done, but the
individual digital values could be computed by the microcontroller to be sent to the memory device.

Listing 5.1 illustrates a program fragment for possible execution on the microcontroller. The
program is written in C, which is very common for microcontroller programming.

//-- includes needed by the program -----——-—--—---—-———————————-
#include <microcontroller.h> // standard C header file for the particular
microcontroller.

/) —==—- printer port register addresses ————————-—-—-————————————
#define dataport 0x300 // address for port data outputs (change to suit
microcontroller)

#define ackdryrp 0x301 // address for handshake bits and rp (change to suit
microcontroller)
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#define memlim 0x302 // address for the memory limit portal.
#define MAX 1024 // Limit of memory size — can be
// changed to suit your requirements. Not used in this example.

unsigned char mem limit value; // location to save limit value in.
// C Fuction prototypes used by the program.
void get data(void); // used to get the data from the FSM.
void Send data to FSM(void); / Use to send data to the parallel port.
int i;
unsigned char inbyte, outbyte;
unsigned char array [MAX] ;
//—-main program function-—--—-—--—--—-———————————~——~—————
int main (void)
{

get data(); // a C function that deals with the data you want to send.

Send_data to_FSM(); // see below.

// could do other things here.
return (0); terminate the C program here.
} // end of main program.
// The C functions now follow.
void Send data to FSM(wvoid)
{

mem limit value = 255; //get the memory limit value to send.

MemLim = mem limit value; // send limit value to its portal.

for(i=0; i < sizeof (array); i++)

{
do{ // wait for data ready flag to go low from FSM.
inbyte =ackdryrp; // input from the ackdry port register.
inbyte &= 0x01; //mask all bits except the drdy bit.
} while (inbyte != 0x00); //keep on looping until data ready flag set

from FSM (active-low) .

[ m e
outbyte =array[i] ; //get next data byte to send to FSM from array.
dataport =outbyte; // send it to FSM.
ackdryrp |= 0x02; //set ack bit to tell FSM
do{ // wait for drdy to go high again.

inbyte =acktryrp;

inbyte &= 0x01;
} while (inbyte !'= 0x01);
} // end of for loop.

} // end of C function to send data to FSM.

void get data (void)

{ // just generate data for a ramp waveform. Simple example.

for (1=0; i <mem limit value; i++)
{
array[i] =1i;
}
} // end of get_data;

Listing 5.1 Example C code to control the waveform synthesizer.
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Figure 5.13 Parallel port registers and their bit functions.

Listing 5.1 is very generic and would need to be tailored to a particular microcontroller. It is
made up of a main program function main () which calls two C functions.

In this example, the first of these functions, get_data (), is used to create a simple ramp
waveform by writing bytes to an array with the line

array[i] =1i;
up to a memory limit value. The for loop simply increments the i value from O up to
mem limit wvalandstoresitintoconsecutive elementsofthearray. Note,mem limit val
would be the value sent to the Comparator A inputs in Figure 5.11 to activate the mf signal when
the address inputs from the counter were the same as the ‘Address Limit Value’.

The second C function takes the content of the array and sends it to the FSM memory, via the
dataport of the microcontroller:

outbyte =array[i] ; //get next data byte to send to FSM from array.
dataport =outbyte; // send it to FSM.
ackdry=0x02; //set ack bit to tell FSM.

To control this operation, and to synchronize the FSM to the microcontroller, the dry and ack
signals are used as handshake signals. The microcontroller uses do—while loop constructs to
perform these operations.
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do{ // wait for data ready flag to go low from FSM.
inbyte =ackdry; // input from the ackdry port register.
inbyte &= 0x01; //mask all bits except bl, the dry bit.
} while (inbyte != 0x00); //keep on looping until data ready flag
cleared from FSM.

The do—while loopisusedtoread in the status of the drdy bit (inbyte = ackdry) . Thisis
then stripped of all bits except the bit b0 dry with the instruction inbyte &= 0x01. This
is compared with 0x00, and if not equal (!=) causes the do—while loop to repeat until dry
is setto zero, making thewhile (inbyte !=0x00) false and causing the program to fall out
of the do—while loop. In this way, the program cannot get past the first do—while loop until
dry = 0. The second do—while loop looks for drdy to go high before getting the next data
value from the array to send to the FSM.

The program continues to repeat the actions again until all the data in the array have been sent
to the FSM memory.

This short description should give you an insight into how the waveform data can be sent to the
FSM. For the generation of more complex data, e.g. sine waves and exponentially decaying sine
waves, a more complex get data () function would need to be developed.

5.6 A MEMORY-CHIP TESTER

An FSM-based test system can be used to test memory chips prior to fitting them onto a
circuit board. Fitting memory chips direct from the manufacture can be expensive if a faulty
memory device is discovered at the final testing stage of production and the defective
memory has to be removed, particularly if the device is soldered directly onto the printed
circuit board.

The memory tester could typically be used in the Goods Inward Department of a factory that
was using a large number of memory chips. This would allow each memory chip to be tested and
could form the basis of a quality control on overall quality of the memory chips received from a
particular manufacturer. The memory tester should be easy to use by an unskilled operator and
function as a ‘go—no-go’ tester.

The basic idea is to write some data into the memory chip and read the data back to check that
they are the same. In such a test, any location found to be faulty would deem the memory chip to
be faulty and it would, therefore, be rejected.

Figure 5.14 illustrates the block diagram for the memory tester. In this version, the data 55 hex
(0101 0101 binary) is written into each consecutive memory location, then read back and
compared using the digital bitwise comparator. The bitwise comparison follows the Boolean
equation

Bitn = /(An~Bn),
where # is the exclusive OR operator. This operation is (with the NOT operator /) the exclusive

NOR .e. exclusive OR negated. n represents the bit being ex-NORed. The ex-NOR operation is
shown below for completeness.
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Figure 5.14 Block diagram for the memory tester.
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The system can be started by raising input st, the start input. The FSM will control the memory
operations and test the fab input to determine whether what was written is the same as what is
read.

A more sophisticated version could be developed in which each memory location is
tested with the data 55 hex, then retested with the data AA hex to check for adjacent stuck at
1 or O faults. Other tests, such as checking adjacent memory locations to test for inter-
memory location faults, could also be included; however, for this simple tester the 55 hex
data will suffice.

The output ‘A = B’ connected to the fab input of the FSM is the logical product of all 8-bit
comparisons bit0—bit7; so, if all exclusive NOR outputs are at logic 1, then the ‘A = B’ output
will be logic 1. This is expressed mathematically as
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Outputs:

0000 0011 OK=s10
ERROR=s11

RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
St_| WR=/s2

RD=/(s5+s6)

P=s8.

Note: the secondary state variables are not needed
for the One Hot solution, but are included here for a
comparison with a conventional design.

Figure 5.15 State diagram for the memory tester.

‘A==B =fab= [ /(An Bn),

where An and Bn are bitn on each A and B input and IT indicates that each /(An * Bn) is ANDed
(i.e. product).

The state diagram for the memory tester is illustrated in Figure 5.15. In this state diagram, the
initial states of the outputs have not been shown, but they can, of course, be deduced from the
state diagram, since each state shows the change of outputs. So, for example, RC = 01in s0, then
in s1 it becomes RC =1, and remains so for all other states in the diagram. Likewise, CS = 0 in
sl,soitmustbe CS = 11ins0. Following on, the other initial values in sO are P = 0, ERROR = 0,
OK =0, W=1,RD = 1. Note that the state diagram has been allocated a set of secondary state
variables ABCD. These are not needed in the One Hot design, but they are used later on when a
comparison with the more conventional method used in Chapter 4 is made.

Instatessl,s2,and s3, the data 55 hex is written into the current memory location pointed to by
the address counter. States s4, s5, and s6 are used to read the memory location and in state s6 the
FSM tests fab. If fab = 1, then the memory location is OK and the FSM proceeds to pulse the
address counter in s8 and checks to see whether all memory locations have been tested in state s9.
If not, the whole process is repeated.
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One Hot Design Equations:
s0-d = s0-/st
s1-d = s0-st + s9-/full
s2-d=s1
s3:d=s2
s4-:d =83
sb:d = s4
s6-d = s5 (no hold term since two-way branch)
s7-d = s6-fab
s8d=s7
s9-d = s8 (no hold term since two-way branch)
§10-d = s9-full +s10
s11-d = s6-/fab + s11
Outputs:

OK=s10

ERROR=s11

RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
WR=/s2

RD=/(s5+s6)

P=s8.

Figure 5.16 The One Hot equations for the memory tester.

Inthe case of a good memory chip the FSM will loop around the states s1 to s9 repeatedly until
the memory full indicator forces the FSM into state s10. The only way out of this state is via a
system reset. This ensures that, after a memory test, the system waits for operator intervention.

Atany time a memory location is found to be faulty, the FSM will drop into s11 and stop. The
only way out of s11 is via a system reset.

The One Hot equations for the memory tester are given in Figure 5.16.

The state diagram of Figure 5.15 has a Moore output P. The rising edge of P will clock the
address counter on entering state s8, P being lowered on leaving s8. The memory chip enable is
disasserted in s7 prior to this action. The address counter only responds to the rising edge of P, so
that on the next clock pulse the state of full can be tested in state s9.

5.7 COMPARING ONE HOT WITH THE MORE CONVENTIONAL DESIGN
METHOD OF CHAPTER 4

InFigure 5.15, a set of secondary state variables has been provided so that this example could be
implemented with four flip-flops. If this was done, the D-type equations would be as shown in
Figure 5.17.

This, of course, uses the same technique used in Chapter 4, not the One Hot method. You
might like to complete the equations and minimize to compare with the One Hot solution
above.

It is useful at this stage to do a comparison between the One Hot method and the method that
uses secondary state variables in the last example.
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D Flip Flop Design Equations:

A-d =50-st+s1+s4+s5+s6-fab+ s7 + s9/full.
B:d=s3+s4+s5+s6+s11.
C-d=s1+s2+s3+s4+s9full.

D-d = s6-fab + s7 + s8 + s9-full.

Outputs:

OK=s10

ERROR=s11

RC=/s0
CS=/(s1+s2+s3+s4+s5+s6)
WR=/s2

RD=/(s5+s6)

P=s8.

Figure 5.17 Memory tester design implemented with four flip-flops.

One Hot Secondary state
Complexity Simple Need to define the state
Number of flip-flops 12 4
Combinational logic Simple Complex

The One Hot design is simple, uses more flip-flops but has simple combinational logic. The
design using secondary state variables needs to be assigned a unique secondary state coding and
has more complex combinational logic. However, it requires only four flip-flops. The One Hot
arrangement needs 12 flip-flops and 15 gates, whereas the secondary state implementation needs
four flip-flops and 13 gates. A hidden advantage of the One Hot design is that it makes more
efficient use of the space on an FPGA device.

5.8 A DYNAMIC MEMORY ACCESS CONTROLLER

DMA controllers are used in some computer systems in order to allow data to be moved from one
part of the memory system to another or from memory to a peripheral device (such as a printer or
disk drive for example). If these data moves were done by the computing microprocessor, this
would tie the microprocessor up and slow down the computing system. The PC has a special chip
called the DMA controller, the 8257 (now largely integrated into an ASIC device), that performs
these tasks.

This next example gives some idea of how a simple DMA controller could be developed
around an FSM. The design could be integrated into an FPGA.
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Figure 5.18 Block diagram of a possible DMA controller.

Figure 5.18 shows a possible arrangement for a DMA controller. The source and destination
addresses need to be supplied by the microprocessor, as well as the number of words to be
transferred (Byte Counter). The size of the data could be bytes (8 bits), words (16 bits) or even
double words (32 bits), since the design can be scalable. In this design, itis assumed that these are
delivered via an input port, but registers could be provided with address decoding for a memory-
mapped DMA controller.

The dashed line marks the boundary of the DMA controller. The Memory Pool/Peripheral
Device is external.

A DMA controller must be able to isolate itself from the memory/peripheral device when not
being used, and this is achieved using tri-state devices.

Essentially, the DMA controller is designed to respond to an input st. At this point it should
accept the source, destination addresses, and the number of words/bytes to be transferred. Then
it should interrupt the microprocessor to let it know it is about to take over the memory/
peripheral. The microprocessor will then isolate itself from these devices and send the
load signal high to let the DMA controller know this has been done, and also provide it with
the source/destination addresses and the byte count. At this point, the DMA controller will load
the source, destination counters, and the byte counter.

Note that the registers are clocked synchronously with the system clock (on negative edge of
clk) but enabled via the FSM output ec. The DMA controller now has enough information to
carry out the transaction. This involves:

1. Selecting the source address and reading its content into a buffer.
2. Selecting the destination address and depositing the buffer content into this address.
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3. Decrementing the byte counter and advancing the source and destination address counters.
4. Repeating 1 to 3 until all data transactions are completed (indicated by the byte counter
reaching zero).

The DMA controller can now be developed in more detail. Clearly, a parallel-loading up
counter is needed for both the source address and the destination address. Also, a parallel-
loading down counter is required for the byte counter. Appendix B describes how these can be
simply designed in detail.

Since the source and destination counter outputs need to be connected to the address bus, they
should have tri-state buffers to isolate them from the memory/peripheral address bus when the
DMA controller is not in use. The source or the destination address counters are used one at a
time to avoid bus contention. The DMA controller will also need a data register and buffer
connected so that the data read from one memory location can be fed to another memory
location. This data buffer acts as a holding register within the DMA controller. The buffer needs
to be isolated from the memory/peripheral data bus when not being used. Finally, all these
internal devices need to be controlled by the FSM.

Figure 5.19 illustrates a possible block diagram for the DMA controller. Figure 5.19 shows a
lot of detail and contains internal signals used by the FSM to control the operation of the DMA
controller.

Ext

Source
Addr
e - CNT1 Memory DataBus . Ext
Pool < P> Dzt
clk @ A Bus
CE W R
load
Destination Clk enable ¢ ¢ T Ext
Addr P Sel  Mux —— CE
CNT2 CEW R — w
> B2 A
o
clk g"
— A - L
a
load
Clk enable |
Byte
Count CNT3
O
clk
([) load
Clk enabl

done B2 ECLDB1 M CEW R DPI B3
FSM —— Ck
st load ACK INT FSM initialize

Ff oy

Figure 5.19 Detailed block diagram for the DMA controller system.
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The FSM must carry out the transactions 1 to 4 detailed above. These, in turn, need to be defined in
terms of the actions required to control the hardware in Figure 5.19. These actions will involve:

1. Waiting for the start signal st.

2. Providing an interrupt to the microprocessor to get it to isolate itself from the memory.

3. Waiting for a load signal from the microcontroller; when obtained, loading the source,
destination, and byte count into the relevant counters.

Then:

4. The source memory needs to be selected and data read from the memory into the data holding
register.

5. The source address needs to be isolated from the memory and the destination memory
selected.

6. The data in the holding register needs to be transferred into the output buffer B3 and stored
into the memory destination address.

After all this:

7. The byte counter needs to be decremented and checked to see whether all bytes of data have
been transferred.

8. Ifthere are more bytes to transfer, then the FSM needs torepeat 1 to 7 again. This is to continue
until all bytes are transferred, indicated by the byte counter being decremented to zero.

The state diagram for the DMA controller can now be developed. The final form of this state
diagramisillustrated in Figure 5.20. Study this diagram together with the diagram of Figure 5.19
to see how the DMA controller is controlled from the FSM.

Load addresses
and byte count.

Return interrupt
to zero.

Interrupt

Idle state .
microprocessor

Select mux
+ source addr's

De-select
memory

De-select
read

Clock data Read mode.
Select into latch.

destination Enable data out

address to memory

Write data into
destination.

Select write

Clock data int
ock data o for Memory

output data latch Determine

if all done.

Clock source/ De-select
destination & destination
byte counter address.

Wait for st low
as an acknowledge

from remote device. /done—l

Figure 5.20 The state diagram for the DMA controller FSM.
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A number of points need to be considered:

1. Whenreading the source memory location (states s4 to s7), the chip select and read signals CE
and R need to be kept active while data is transferred into the holding register (s6 and s7)
before they are disasserted (to their high state in states s8 and s9 respectively). This is different
to the way in which memory read cycles have been done in other examples.

2. Writing the data from the output buffer follows the more usual arrangement, whereby the chip
isselected (s11), then write is selected (s13), and finally both CE and Ware deselected (s14 for
W, s15 for CE) to write the data into the memory destination location.

3. Note that the source, destination, and byte count registers are enabled via the EC output from
the FSM in state s16, and that the system clock clk clocks the data on the negative clock edge.

The One Hot equations can now be determined.

5.8.1 Flip-Flop Equations

sO - d =518 - /st+s0 - /st s10 - d =s9
sl -d=s0"-st+sl - /load sll - d =510

s2 - d=sl - load s12 - d =sl1

$3 - d=s2+sl7 - /done s13 - d=sl2

4 - d=-5s3 sl4 - d =513

5 -d=s4 s15 - d =sl4

$6 - d =55 s16 - d =sl15

s7-d=-s6 s17 - d =sl16

s8 - d=y¢7 s18 - d =s17 - done +s18 - st.
s9 - d =58

5.8.2 Ouiput Equations
INT = sl
LD = /s2 active-low signal
Bl =53+ 54 +5s5+s6+ 57 +5s8+5s9
B2 =511 4512 +s13 +s14
B3 =12 + 13 + 514
CE = /(s4 +s5+36+s7+s8+sll+s12+5s13+s14) active-low signal
R=/(s5+s6+s7) active-low signal
W = /s13 active-low signal
EC =sl6
DPI = s6
M = (sO+ sl +s2+5s18); considering the high signal levels
instead of low signal levels
ACK =s18.
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Figure 5.21 Simulation of the DMA FSM block.

The FSM block is simulated in Figure 5.21. In this simulation, the main loop comprising of states
s3 to s17 is traversed twice. On the second loop, the done input is true (logic 1) and the FSM
moves to s18 before returning back to state sO. This proves the operation of the FSM.

5.9 HOW TO CONTROL THE DYNAMIC MEMORY ACCESS
FROM A MICROPROCESSOR

The DMA systemiis started with the start input, which in the previous design would need to be via
an output port from the microprocessor. This is sometimes useful, since it avoids the need for
address decoding logic.

A more appropriate way would be to have this signal via the memory (or I/O map) of the
microprocessor. Normally, this would require using a byte-wide port.

In Figure 5.22, the start signal st is generated by a microprocessor using a spare address
location. The address used here is 380 hex or 11 1000 0000 binary for this purpose. A typical
memory or Input/Output access cycle is illustrated, from which it is clear that when the chip
enable Ce and the IOW are both low (as would be generated by the microprocessor) the output
from the address decoding logic corresponding to the address 380 hex would go high. The next
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Figure 5.22 Generating a start signal from a microprocessor for the FSM.

clock pulse from the microprocessor clock (T3 rising edge) would clock the st value into the
D-type flip-flop.

The microprocessor would need to use an address (386 hex in this case) to reset the D flip-flop
atan appropriate time. However, before this, the microprocessor would need to wait for the ACK
response from the FSM.

Figure 5.23 illustrates how this could be done, together with the generation of the st
signal. In Figure 5.23, the additional data latch is used to store the state of the FSM output
ACK. The FSM raises the ACK signal line and clocks it into the data latch with the pak
signal (added to the FSM for this purpose). The microprocessor can read the ACK signal by
addressing 381 hex, which takes the tri-state buffer out of its tri-state, thus setting bit dO of
the data bus to that of the ACK signal stored in the D-type flip-flop during the memory or IO
read cycle of the microprocessor.

The ACK signal will be read by the microprocessor in the T4 state on the rising edge of CE and
IOR signals during the read cycle (see Figure 5.24) into an appropriate internal register within
the microprocessor.

The state diagram fragment shown in Figure 5.25 shows the relevant state sequence needed to
use the microprocessor memory or IO mapped control. Note that this can be used with the other
states of Figure 5.20 in the DMA controller.

Of course, this example is based upon hypothetical microprocessor bus timing, but it does
illustrate a possible method.
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Figure 5.23 The whole arrangement for writing to and reading from the FSM.

5.10 DETECTING SEQUENTIAL BINARY SEQUENCES
USING A FINITE-STATE MACHINE

A very common requirement in communication and computer network systems is to detect
binary sequences. The following example illustrates the idea and can be scaled up and changed
to detect other sequences.

One common approach is to insert a shift register into the transmission line and use
digital comparators to detect the incoming binary stream after the number of bits corre-
sponding to the binary code have been shifted into the shift register. This, of course,
introduces an n-bit delay. So, to detect a 4-bit code introduces a 4-bit delay. If the code to be
detected is longer (e.g. 8 or 16 bits), or other devices are to be added to the line to detect
other codes, then the delay increases.

An alternative approach is to monitor the transmission line passively in real time and process
the binary bits in an FSM. This will not introduce any delay.

Consider a system such as the one shown in Figure 5.26. In this system, the FSM monitors the
input binary sequence continuously looking for the sequence d = 1101 (this could be any
sequence in practice, but this one will suffice).

The FSM needs to synchronize to 4-bit data streams; in Figure 5.26, the first data stream is
1011, then the next 1101 (the required sequence), followed by the sequence 0011. The output M
should go high at the end of the sequence 1101.
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Figure 5.24 The arrangement for reading the ACK signal from the FSM.
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Figure 5.25 Illustration of the state sequence needed for using the microprocessor memory or IO mapped
control.
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dinput sequence

101111010011 —» FSM
—» M output

clk (goes high

rst when sequence

detected)
reset ]

Figure 5.26 Binary sequence detector.

The best way to develop the state diagram for this application is to start with a state diagram
that follows the required sequence; see Figure 5.27, where the required sequence d = 1101 is
detected in state s4, where the FSM stops.

However, it is necessary to go through the 4-bit sequence and return to state s0 if the required
sequence is not detected. This is shown in Figure 5.28, where the state diagram is seen to cater for
all possible combinations.

For example, an input sequence of d = 1100 would follow states s0, s1, s2, s3, sO. An input
sequence 1111 would follow states s0, s1, 52, s7, s0; and so on. In this way, the FSM keeps in step
with the incoming binary sequence.

Once the correct sequence is found, the FSM will stop in state s4.

The FSM clock needs to synchronize with the middle of the data bits being monitored; this
could be done using the same technique used in the asynchronous receiver design of Figure 4.20
in Section 4.7.

The design can be implemented using the One Hot method, resulting in the following
equations:

sO - d=s3- /d+5s7

sl-d=s0-d
s2-d=sl-d
s3-d=s2-/d

4 -d=5s3-d+s4
s5-d=s0"-/d

$6 - d=s5+sl - /d
7 -d=s6+s2-d

State diagram showing detection of
required sequence

OLOL B0 9@

Required sequence 1101
detected in state s4

Figure 5.27 State diagram segment to detect required sequence.
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/d_|

Figure 5.28 State diagram completed for all possible input combinations.

and output
M = s4.

This design can be built up in Verilog and simulated as illustrated in Figure 5.29. This
simulation runs through all possible paths of the state diagram in order to test out the FSM
logic.
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Figure 5.29 Simulation of the sequence detector.
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In the first sequence, the simulation is seen to follow the sequence s0, s5, s6, s7, sO. This is
followed by the sequence s0, s1, 2,53, s4, with M = 1. After this, the FSM s reinitialized back to
sO for another sequence by lowering rst and pst (asynchronous initialization). Then, the
sequence s0, s1, s2, s7, sO occurs. This is followed by other sequences to complete the testing
of all paths through the state diagram. Note that during the last sequence, i.e. s0, s5, s6, the
asynchronous initialization forces the FSM back to s0.

The system could be modified so that it continues indefinitely to monitor the incoming
sequence, providing an M = 1 output whenever the correct sequence is detected. This can easily
be done by making M a Mealy output in state s3, so that

M =53 -d.

If dis not 1 in state s3, neither is M. Of course, state s4 is no longer needed in this case.

Figure 5.30 shows the final state diagram In Figure 5.30, the M output is made a Mealy output
in s3 so that the FSM can return to s0 after any sequence. In this way the FSM can continue to
monitor incoming sequences forever and remain synchronized to the 4-bit pattern.

In Figure 5.31, the sequence detector can be seen to return to sO after detecting the 1101
sequence. Note: the output M is only 1 whend = 1.

The same technique could be applied for longer sequences, making use of more states and
more flip-flops.

One limitation of the sequence detector of Figure 5.30 is that it is limited to detecting one
particular binary sequence, in this case 1101. It would be more useful to have an FSM that could
accept any binary sequence without having to redesign the state diagram.

In Figure 5.30, the FSM looks at the line bits with the same variable d. Instead, the d input
could be compared bit by bit with a number of digital 1-bit comparators (exclusive NOR gates),
each one having a bit of the code to compare the incoming bits with. Figure 5.32 illustrates a
possible arrangement. In this case, a more realistic 8-bit code is to be detected.

Also note that the code to be detected can be stored into a data latch prior to starting the
detection process. This system can be used to detect up to 255 different codes (assuming the code
0000 0000 is not used).

The equation for M is now
M=s3-d

Figure 5.30 Final state diagram for continuous monitoring for the d = 1101 sequence.
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Figure 5.31 Final simulation of the sequence detector.
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Figure 5.32 Comparators used to compare each bit with a pre-stored code.
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Figure 5.33 Full system of the general 8-bit binary code detector.

The code CO to C7 is loaded into the data latch and is presented as a registered code RCO to RC7
and connected to one input of the single-bit digital comparators.

The input bits from line d are all connected to the other comparator inputs, so that eight
compared bits dO to d7 are available to the FSM.

Figure 5.33 shows the full system: an additional input to the FSM en is used to start the system
and an additional output LD is used to latch the code value to be detected.

The state diagram for the FSM is illustrated in Figure 5.34. The state diagram of Figure 5.34
follows the same basic idea developed in the state diagram of Figure 5.30, but for a byte-wide
code. Note that rather than compare each d bit at the line, the FSM now compares each bit after
it has been compared with the desired code with the 1-bit comparators, first bit dO, then d1,
through to bit d7.

Now the FSM is a fixed sequence that can detect any possible 8-bit code. All that needs to be
done is load the required code into the data latch before starting the detector. The system can be
disabled at any time by disasserting the input en. This will cause the system to stop at the end of
the current sequence then return to state s0.

A little thought shows that the same FSM could be used to detect a number of different codes
one after the other by simply changing the codes in sequence.

One aspect of the system not yet discussed is how to synchronize the system to the line bit
stream. One way to do this would be to start the system off with a synchronization bit stream
code, say 10101010xx, prior to starting the code detection process, where x is an additional bit
that could be either O or 1. This could be broadcast by the sender.

The additional bits are needed to allow the FSM to load the data latch with the desired code to
be detected. The same FSM could be used for this, since all that needs to be done is to load up the
synchronization code. Once the synchronization byte is detected (via M) the code to be detected
would be loaded into the data latch and the code detection sequence started.
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Initialize input starts FSM in s0. Controlling device loads code to be
detected into data latch. Then enables detector with En=1. FSM latches

this code into the data latch with Ld signal.

Thereafter, FSM cycles through states according to data input received.
Controlling device can stop the detector at the end of any sequence by
lowering En to 0 and stopping the FSM in state s0.

Figure 5.34 The state diagram for the FSM-based byte-wide code detector.

The One Hot equations can be obtained directly from the state diagram of Figure 5.34:

sO - d=s9 - /en+s0 - /en

sl -d=s0-en

$2 -d=sl+s9 -en+sl6
s3-d=s2-d0

s4 - d=s3-dl

S -d=s4-d2

6 -d=s5-d3
s7-d=-s6-d4

8§ -d=s7-d5

9 -d=-s8-d6

s10 - d =52 - /dO

sll - d=s3 - /dl +5sl10
s12 - d=s4 - /d2 4+ 511
s13 - d=s5-/d3+sl12
sld - d =56 - /d4 + 513
sl5 - d=s7- /d5+sl4
sl6 - d =sl15
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Figure 5.35 Simulation of the FSM sequence detector using a code 11001011.

with outputs

M =59 -d7
LD =sl.

Of course, the code to be detected could be any length, since the state diagram could be
developed for any particular length following the same basic idea.

The simulationin Figure 5.35 shows the system in which the code to be identifiedis 11001011.
This code is first loaded into the latch via the CO to C7 inputs. The simulation then presents a
number of serial d input sequences, with the last one being the one the system is trying to detect.
The M output goes high at the end of this sequence.

The complete system, comparator, octal latch and FSM as connected up in Figure 5.33 is
simulated and illustrated in Figure 5.36. Only the system inputs and output signals are visible
here (see block diagram in Figure 5.33), along with the FSM state sequence so that the
state sequence of the state machine in Figure 5.34 can be followed. Note that the sequence
to be detected in this simulation is C[7:0] = 11001011. This sequence is detected at the end of
the simulation at around 700 ns into the simulation, and can be clearly seen in the bottom two
signals (d input and M output).
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Figure 5.36 Simulation of the complete 8-bit sequence detector.

5.11 SUMMARY

This chapter has explored the use of the One Hot technique to implement FSMs. These are
particularly useful forimplementation in FPGA devices and have the advantage of not requiring
secondary state variables. The hand calculations are much easier to perform and can be
converted into Verilog HDL easily. Also, owing to the large size of FPGAs, large FSM designs
can be implemented without the need to consider secondary state variable assignment.





