8

Describing Combinational
and Sequential Logic using
Verilog HDL

8.1 THE DATA-FLOW STYLE OF DESCRIPTION:
REVIEW OF THE CONTINUOUS ASSIGNMENT

We have already come across numerous examples in the previous chapters of Verilog designs
written in the so-called data-flow style. This style of description makes use of the parallel
statement known as a continuous assignment. Predominantly used to describe combinational
logic, the flow of execution of continuous assignment statements is dictated by events on signals
(usually wires) appearing within the expressions on the left- and right-hand sides of the
continuous assignments. Such statements are identified by the keyword assign. The keyword
is followed by one or more assignments terminated by a semicolon.

All of the following examples describe combinational logic, this being the most common use
of the continuous assignment statement:

//some continuous assignment statements
assign A=qg[0] , B=qgl[l], C=q [2];

assign out = (~sl & ~s0 & 10) |
(~sl & sO & 11) |
(sl & ~s0 & 1i2) |
(sl & sO & 13);

assign #15{ c out, sum} =a +b +c_in;
The continuous assignment statement forms a static binding between the wire being assigned

on the left-hand side of the = operator and the expression on the right-hand side of the assignment
operator. This means that the assignment is continuously active and ready to respond to any

FSM-based Digital Design using Verilog HDL Peter Minns and Ian Elliott
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-06070-4

198 Describing Combinational and Sequential Logic using Verilog HDL

1 module latch (output g, input data, en);
2 assign g = en ? data : qg;

3 endmodule

data

en

Figure 8.1 Describing a level-sensitive latch using a continuous assignment.

changes to variables appearing in the right-hand side expression (the inputs). Such changes result
in the evaluation of the expression and updating of the target wire (output). In this manner, a
continuous assignment is almost exclusively used to describe combinatorial logic.

As mentioned previously, a Verilog module may contain any number of continuous assign-
ment statements; they can be inserted anywhere between the module header and internal wire/
reg declarations and the endmodule keyword.

The expression appearing on the right-hand side of the assignment operator may contain
both reg- and wire-type variables and make use of any of the Verilog operators mentioned in
Chapter 7.

The so-called target of the assignment (left-hand side) must be a wire, since it is continuously
driven. Both single-bit and multi-bit wires may be the targets of continuous assignment statements.

It is possible, although not common practice, to use the continuous assignment statement to
describe sequential logic, in the form of a level-sensitive latch.

The conditional operator (? :) is used on the right-hand side of the assignment on line 2 of the
listing shown in Figure 8.1. When en is true (logic 1) the output q is assigned the value of the
input data continuously. When en goes to logic 0, the output g is assigned itself, i.e. feedback
maintains the value of g, as shown in the logic diagram below the Verilog listing.

It should be noted that the use of a continuous assignment to create a level-sensitive latch, as
shown in Figure 8.1, is relatively uncommon. Most logic synthesis software tools will issue a
warning message on encountering such a construct.

8.2 THE BEHAVIOURAL STYLE OF DESCRIPTION:
THE SEQUENTIAL BLOCK

The Verilog HDL sequential block defines a region within the hardware description conta-
ining sequential statements; these statements execute in the order they are written, in just the

The Behavioural Style of Descriptfion: the Sequential Block 199

same way as a conventional programming language. In this manner, the sequential block
provides a mechanism for creating hardware descriptions that are behavioural or algorithmic.
Such a style lends itself ideally to the description of synchronous sequential logic, such as
counters and FSMs; however, sequential blocks can also be used to describe combinational
functions.

A discussion of some of the more commonly used Verilog sequential statements will reveal
their similarity to the statements used in the C language. In addition to the two types of sequential
block described below, Verilog HDL makes use of sequential execution in the so-called task
and functionelements of the language. These elements are beyond the scope of this book; the
interested reader is referred to Reference [1].

Verilog HDL provides the following two types of sequential block:

e The always block. This contains sequential statements that execute repetitively, usually in
response to some sort of trigger mechanism. An always block acts rather like a continuous
loop that never terminates. This type of block can be used to describe any type of digital
hardware.

e The initial block. This contains sequential statements that execute from beginning to
end once only, commencing at the start of a simulation run at time zero. Verilog
initial blocks are used almost exclusively in simulation fest fixtures, usually to create
test input stimuli and control the duration of a simulation run. This type of block is not
generally used to describe synthesizable digital hardware, although a simulation model
may contain an initial statement to perform an initialization of memory or to load
delay data.

The two types of sequential block described above are, in fact, parallel statements;
therefore, a module can contain any number of them. The order in which the always and
initial blocks appear within the module does not affect the way in which they execute.
In this sense, a sequential block is similar to a continuous assignment: the latter uses a
single expression to assign a value to a target whenever a signal on the right-hand side
undergoes a change, whereas the former executes a sequence of statements in response to
some sort of triggering event.

Figure 8.2 shows the syntax of the initial sequential block, along with an example
showing how the construct can be used to generate a clock signal.

As can be seen in lines 3 to 8, an initial block contains a sequence of one or more state-
ments enclosed within a begin. . .end block. Occasionally, there is only a single statement
enclosed within the initial block; in this case, it is permissible to omit the begin...end
bracketing, as shown in lines 12 and 13. It is recommended, however, that the bracketing is
included, regardless of the number of sequential statements, in order to minimize the possibility
of syntax errors.

Figure 8.2 also includes an example initial block (lines 14 to 21), the purpose of which is
to generate arepetitive clock signal. A local parameter named PERIODis defined in line 14; this
sets the time period of the clock waveform to 100 time-units. The execution of the initial
block starts at time zero at line 18, where the CLK signal is initialized to logic 0; note that the
signal CLK must be declared as a reg, since it must be capable of retaining the value last
assigned to it by statements within the sequential block. Also note that the initialization of CLK

200 Describing Combinational and Sequential Logic using Verilog HDL

1 //general syntax of the initial sequential block
2 //containing more than one statement
3 injtial
4 begin
5 //sequential statement 1
6 //sequential statement 2
7 ..
8 end
9
10 //general syntax of the initial sequential block
11 //containing one statement (no need for begin...end)
12 injitial
13 //sequential statement
14 localparam PERIOD = 100; //clock period
15 reg CLK;
16 initial
17 begin
18 CLK = 1'b0;
19 forever //an endless loop!
20 # (PERIOD/2) CLK = ~CLK;
21 end

e s B o
|

CLK |
—_— T b | e
1 1 1 1
| | | |
1 1 1 1
0

Figure 8.2 Syntax of the initial block and an example.

could have been included as part of its declaration in line 15, as shown below:

15 reg CLK = 1'b0;

Following initialization of CLK to logic 0, the next statements to execute within the
initial block are lines 19 and 20 of the listing in Figure 8.2. These contain an
endless loop statement known as a forever loop, having the general syntax shown

below:

forever

begin

//sequential statement 1

The Behavioural Style of Descriptfion: the Sequential Block 201

//sequential statement 2
end

In common with the initial block itself, the forever loop may contain a single
statement or a number of statements that are required to repeat indefinitely; in the latter case,
it must include the begin. . .end bracketing shown above. The example shown in Figure 8.2
contains a single delayed sequential assignment statement in line 20 (the use of the hash symbol
within a sequential block indicates a time delay). The effect of this statement is to invert the
CLK signal every 50 time-units repetitively; this results in the CLK signal having the waveform
shown at the bottom of Figure 8.2.

As it stands, the Verilog description contained in lines 14-21 of Figure 8.2 could present
a potential problem to a simulator, in that most such tools have a command to allow the sim-
ulator to effectively run forever (e.g. ‘run —all’ in Modelsim™). The forever loop in lines
19 and 20 would cause a simulator to run indefinitely, or at least until the host computer ran out
of memory to store the huge amount of simulation data generated.

There are two methods by which the above problem can be solved:

1. Include an additional initial block containing a $stop system command.
2. Replace the forever loop with a repeat loop.

The first solution involves adding the following statement:

//n is the no. of clock pulses required
initial # (PERIOD*n) S$stop;

The above statement can be inserted anywhere after line 14 within the module containing the
statements shown in Figure 8.2. The execution of the initial block in line 16 commences at the
same time as the statement shown above (0 s); therefore, the delayed $stop command will
execute at an absolute time equal to n* PERIOD seconds. The result is a simulation run lasting
exactly n clock periods. It should be noted that, in order for the above statement to compile
correctly, the variable n would have to be replaced by an actual positive number or would have to
have been previously declared as a local parameter.

The second solution involves modifying the initial block in lines 1621 of the listing
given in Figure 8.2 to that shown below:

initial
begin

CLK =1'Db0;

repeat (n) //an finite loop
begin

(PERIOD/2) CLK = 1'bl;

(PERIOD/2) CLK = 1'b0;
end

O J oy U W N

202 Describing Combinational and Sequential Logic using Verilog HDL

9 S$stop;
10 end

The repeat loop is a sequential statement that causes one or more statements to be repeated
a fixed number of times. In the above case, the variable n defines the number of whole clock
periods required during the simulation run. In this example, the loop body contains two delayed
assignments to the reg named CLK; consequently, the begin. . .end bracketing is required.

Each repetition of the repeat loop lasts for 100 time-units, i.e. one clock period. Once all of
the clock pulses have been applied, the repeat loop terminates and the simulation is stopped
by the system command in line 9 above.

An important point to note regarding the repeat and forever loops is that neither can be
synthesized into a hardware circuit; consequently, these statements are exclusively used in
Verilog test-fixtures or within simulation models.

Listing 8.1a—e shows the various formats of the Verilog HDL sequential block known as the
always block. The most general form is shown in Listing 8.1a: the keyword always is
followed by the so-called event expression; this determines when the sequential statements in
the block (between begin and end) execute. The @ (event expression) isrequired for
both combinational and sequential logic descriptions.

In common with the initial block, the begin...end block delimiters can be omitted if
there is only one sequential statement subject to the always @ condition. An example of this is
shown in Listing 8.1e.

(a)
1 always (@ (event expression)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5
6 end

(b)
1 always @ (inputl or input2 or input3...)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5
6 end

(c)
1 always @ (inputl, input2, input3...)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5
6 end

(d)
1 always Q(*)
2 begin

The Behavioural Style of Description: the Sequential Block 203

3 //sequential statement 1
4 //sequential statement 2
5
6 end

(e)
1 always @ (a)
2 y=a* a;

Listing 8.1 Alternative formats for the always sequential block: (a) General form of the always
sequential block; (b) always sequential block with or-separated list; (c¢) always sequential block
with comma-separated list; (d) always sequential block with wildcard event expression; (e) always
sequential block containing a single sequential statement.

Unlike the initial block, the sequential statements enclosed within an always block
execute repetitively, in response to the event expression. After each execution of the sequ-
ential statements, the always block usually suspends at the beginning of the block of state-
ments, ready to execute the first statement in the sequence. When the event expression next
becomes true, the sequential statements are then executed again. The exact nature of the event
expression determines the nature of the logic being described; as a general guideline, any of the
forms shown in Listing 8.1 can be used to describe combinational logic. However, the format
shown in Listing 8.1b is most commonly used to describe sequential logic, with some modifica-
tion (see later).

Alsoin common with the initial block, signals that are assigned from within an always
block must be reg-type objects, since they must be capable of retaining the last value assigned
to them during suspension of execution.

It should be noted that the always block could be used in place of an initial
block, where the latter contains a forever loop statement. For example, the following
always block could be used within a test module to generate the clock waveform
shown in Figure 8.2:

1 localparam PERIOD = 100; //clock period
2 regCLK =1"'b0;

always
begin
(PERIOD/2) CLK = 1'bl;
(PERIOD/2) CLK = 1'bO0;
end

~N o U1 W

The always sequential block, shown in lines 3 to 7 above, does not require an event expression
since the body of the block contains sequential statements that cause execution to be suspended
for a fixed period of time.

This example highlights an important aspect of the always sequential block: it must contain
either at least one sequential statement that causes suspension of execution or the keyword

204 Describing Combinational and Sequential Logic using Verilog HDL

always must be followed by an event expression (the presence of both is ambiguous and,
therefore, is not allowed).

The absence of any mechanism to suspend execution in an always block will cause a
simulation tool to issue an error message to the effect that the description contains a zero-delay
infinite loop, and the result is that the simulator will ‘hang’, being unable to proceed beyond time
ZEero.

In summary, the use of an always block in a test module, as shown above, is not
recommended owing to the need to distinguish clearly between modules that are
intended for synthesis and implementation and those that are used during simulation
only.

8.3 ASSIGNMENTS WITHIN SEQUENTIAL BLOCKS:
BLOCKING AND NONBLOCKING

An always sequential block will execute whenever a signal change results in the event
expression becoming true. In between executions, the block is in a state of suspension;
therefore, any signal objects being assigned to within the block must be capable of
remembering the value that was last assigned to them. In other words, signal objects that
are assigned values within sequential blocks are not continuously driven. This leads to the
previously stated fact that only reg-type objects are allowed on the left-hand side of a
sequential assignment statement.

The above restriction regarding objects that can be assigned a value from within a sequential
block does not apply to those that appear in the event expression, however. A sequential block
canbe triggered into action by changes in both regs and/or wires; this means that module input
ports, as well as gate outputs and continuous assignments, can cause the execution of a
sequential block and, therefore, behavioural and data-flow elements can be mixed freely within
a hardware description.

8.3.1 Sequential Statements

Table 8.1 contains a list of the most commonly used sequential statements that may
appear within the confines of a sequential block (initial or always); some
are very similar to those used in the C language, while others are unique to the Verilog
HDL.

A detailed description of the semantics of each sequential statement is not included in
this section; instead, each statement will be explained in the context of the examples
that follow. It should also be noted that Table 8.1 is not exhaustive; there are several
less commonly wused constructs, such as parallel blocks (fork...join) and
procedural continuous assignments, that the interested reader can explore further in
Reference [1].

With reference to Table 8.1, items enclosed within square brackets ([]) are optional, curly
braces ({ }) enclose repeatable items, and all bold keywords must be lower case.

Assignments within Sequential Blocks: Blocking and Nonblocking 205

Table 8.1 The most commonly used Verilog HDL sequential statements.

Sequential statement

Description

begin
{ seqg_statements}
end

if (expr)
seq statement
[else
seq_statement |

case (expr)
{ { value,} : seq statement}

[default:seqg statement]
endcase

forever
seq_statement

repeat (expr)

seq_statement

while (expr)
seq_statement

for (expl; exp2; exp3)
seq statement
(time_value) seq statement

@ (event expr) seq statement

Blocking sequential assignment
Nonblocking sequential assignment

Null statement. Also required at the end of each
statement

Block or compound statement. Always required if
there is more than one sequential statement

Conditional statement, expression (expr) must
be in parentheses. The else part is optional and
the statement may be nested. Multiple statements
require begin. . .end bracketing

Multi-way decision, the expression (expr) must be
in parentheses. Multiple values are allowed in each
limb, but no overlapping values are allowed between
limbs. Default limb is required if previous values
donot cover all possible values of expression. Multiple
statements require begin. . .end bracketing

Unconditional loop. Multiple statements require
begin...end bracketing

Fixed repetition of seq_statement a number of
times equal to expr. Multiple statements require
begin. . .end bracketing

Entry test loop (same as C) repeats as long as expr is
nonzero. Multiple statements require begin...end

bracketing

Universal loop construct (same as C). Multiple
statements require begin. . .end bracketing

Suspends a block for time value time-units

Suspends a block until event expr triggers

206 Describing Combinational and Sequential Logic using Verilog HDL

The continuous assignment parallel statement makes use of the = assignment operator
exclusively. As shown in Table 8.1, sequential assignments can make use of two different types
of assignment:

e blocking assignment — uses the = operator;
e nonblocking assignment — uses the <= operator.

The difference between the above assignments is quite subtle and can result in simulation and/or
synthesis problems if not fully understood.

The blocking assignment is the most commonly used type of sequential assignment when
describing combinational logic. As the name suggests, the target of the assignment is updated
before the next sequential statement in the sequential block is executed, in much the same way as
in a conventional programming language. In other words, a blocking assignment ‘blocks’ the
execution of the subsequent statements until it has completed. Another aspect of blocking
sequential assignments is that they effectively overwrite each other when assignments are made
tothe same signal. An example of thisis seen in the Hamming code decoder example at the end of
Chapter 7 (see Listing 7.3), where the decoder outputs are initialized to a set of default values
prior to being conditionally updated by subsequent statements.

On encountering a nonblocking assignment, the simulator schedules the assignment to take
place at the beginning of the next simulation cycle, this normally occurs at the end of the
sequential block (or at the point when the sequential block is next suspended). In this manner,
subsequent statements are not blocked by the assignment, and all assignments are scheduled to
take place at the same point in time.

Nonblocking assignments can be used to assign several reg-type objects synch-
ronously, under control of a common clock. This is illustrated by the example shown in
Figure 8.3.

The three nonblocking assignments on lines 17, 18 and 19 of the listing shown in
Figure 8.3 are all scheduled to occur at the positive edge of the signal named ‘CLK’.
This is achieved by means of the event expression on line 15 making use the event qualifier
posedge (derived from positive-edge), i.e. the execution of the always sequential block
is triggered by the logic 0 to logic 1 transition of the signal named CLK. This particular form
of triggering is commonly used to describe synchronous sequential logic and will be
discussed in detail later in this chapter.

The nonblocking nature of the assignments enclosed within the sequential block means
that the value being assigned to R2 at the first positive edge of the clock, for example, is the
current value of R1,i.e. ‘unknown’ (1 ' bx). The same is true for the value being assigned to R3
atthe second positive edge of CLK; thatis, the current value of R2, whichisalso 1 'bx. Hence,
the initial unknown states of R1, R2 and R3 are successively changed to logic O after three
clock pulses; in this manner, the nonblocking assignments describe what is, in effect, a 3-bit
shift register, as shown in Figure 8.4.

Figure 8.5 shows an almost identical listing to Figure 8.3, apart from the three assig-
nments in lines 17, 18 and 19, which in this case are of the blocking variety. The initial value
of regsR1,R2 and R3 isunknown as before, and the reg RO is initialized at time zero to logic 0.

The effect of the blocking assignments is apparent in the resulting simulation result shown in
Figure 8.5: all three signals change to logic O at the first positive edge of the CLK. This is due to

Assignments within Sequential Blocks: Blocking and Nonblocking 207

1 ‘“timescale 1 ns/ 1 ns

2 module non blocking assignmnts();

3 reg R1, R2, R3, RO, CLK;

4 initial

5 begin

6 RO = 1'b0;

7 CLK = 1'bO;

8 repeat (3)

9 begin

10 #50 CLK = 1'bl;

11 #50 CLK = 1'b0;

12 end

13 Sstop;

14 end

15 always @ (posedge CLK)

16 begin //a sequence of non-blocking assignments

17 R1 <= RO;

18 R2 <= R1;

19 R3 <= R2;

20 end

21 endmodule

Ons | 50ns | 100ns | 150ns | 200ns | 250ns
| S | | S | | I | | S | | I | | I |
non_blocking_assignmnts.CLK]]]
non_blocking_assignmnts.R0O
non_blocking_assignmnts.R1 _
non_blocking_assignmnts R2 |
non_blocking_assignmnis R3_ [|
Figure 8.3 [Illustration of nonblocking assignments.
R1 R2
- CLK CLK CLK

J_Ll‘ CLK

Figure 8.4 Nonblocking assignment equivalent circuit.

208 Describing Combinational and Sequential Logic using Verilog HDL

1 ‘timescale 1 ns/ 1 ns
module blocking assignmnts();

3 reg R1, R2, R3, RO, CLK;

4 initial

5 begin

6 RO = 1'b0;

7 CLK = 1'bO;

8 repeat (3)

9 begin

10 #50 CLK = 1'bl;
11 #50 CLK = 1'b0;
12 end

13 $stop;

14 end

15 always @ (posedge CLK)
16 begin //a sequence of blocking assignments

17 R1 = RO;
18 R2 = R1;
19 R3 = R2;
20 end

21 endmodule

Ons | 50ns | 100ns | 150ns | 200ns | 250ns |
|- | I | |- |- I |- I

blocking_assignmnts.CLK

blocking_assignmnts.RO

blocking_assignmnts.R3

blocking_assignmnts.R2

blocking_assignmnts.R1

Figure 8.5 Illustration of blocking assignments.

the fact that the blocking assignment updates the signal being assigned prior to the next
statement in the sequential block. The result is that the three assignments become what is, in
effect, one assignment of the value of RO to R3. The equivalent circuit of the always block
listed in Figure 8.5 is shown in Figure 8.6.

The choice of whether to use blocking or nonblocking assignments within a sequential block
depends on the nature of the digital logic being described. Generally, it is recommended that
nonblocking assignments are used when describing synchronous sequential logic, whereas
blocking assignments are used for combinational logic.

Describing Combinational Logic using a Sequential Block 209

RO R3

1 7T

- CLK

U

Figure 8.6 Blocking assignment equivalent circuit.

Sequential blocks intended for use within test modules are usually of the initial type;
therefore, blocking assignments are the most appropriate choice.

A related point regarding the above guidelines is that blocking and nonblocking assignments
should not be mixed within a sequential block.

g[z) Cl?(ESCI?IBINC-; COMBINATIONAL LOGIC USING A SEQUENTIAL

The rich variety of sequential statements that can be included within a sequential block means
that the construct can be used to describe virtually any type of digital logic. Figure 8.7 shows the
Verilog HDL description of a multiplexer making use of an always sequential block.

The module header in line 1 declares the output port out as a reg, since it appears on the
left-hand side of an assignment within the sequential block. This example illustrates that
despite the keyword reg being short for register, it is often necessary to make use of the reg
object when describing purely combinational logic.

=

module mux (output reg out, input a, b, sel);

2 always @(a or b or sel)
3 begin
4 if (sel)
5 out = a;
6 else
7 out = Db;
8 end
9 endmodule
a
out
mux
b
sel

Figure 8.7 A two-input multiplexer described using an always block.

210 Describing Combinational and Sequential Logic using Verilog HDL

The event expression in line 2 of the listing in Figure 8.7 includes all of the inputs to the block
in parentheses and separated by the keyword ox. This format follows the original Verilog-1995
style; the more recent versions of the language allow either a comma-separated list or the use of
the wildcard ‘ *’ to mean any reg or wire referenced on the right-hand side of an assignment
within the sequential block.

Regardless of the event expression format used, the meaning is the same, in that any input
change will trigger execution of the statements within the block.

The sequential assignments in lines 5 and 7 are of the nonblocking variety, as recommended
previously. The value assigned to out is either the a input or the b input, depending on the state
of the select input sel.

One particular aspect of using an always sequential block to describe combinational logic is
the possibility of creating an incomplete assignment. This occurs when, for example, an
if.. .else statement omits a final else part, resulting in the reg target signal retaining the
value that was last assigned to it.

In terms of hardware synthesis, such an incomplete assignment will result in a latch being
created. Occasionally, this may have been the exact intention of the designer; however, it is a
more common situation that the designer has inadvertently omitted a final el se or forgotten to
assign a default value to the output. In either case, most logic synthesis software tools will issue
warning messages if they encounter such a situation.

The following guidelines should be observed when describing purely combinational logic
using an always sequential block:

Include all of the inputs to the combinatorial function in the event expression using one of the
formats shown in Listing 8.1b—d.

To avoid the creation of unwanted latches, ensure either of the following is applicable:

— assign a default value to all outputs at the top of the always block, prior to any
sequential statement such as if, case, etc.;

— in the absence of default assignments, ensure that all possible combinations of input
conditions result in a value being assigned to the outputs.

The example in Figure 8.8 illustrates the points discussed above regarding incomplete
assignments.

The designer of the module latch implied listed in Figure 8.8 has used an always
block to describe the behaviour of a selector circuit. The 2-bit input sel1[1:0] selects one of
three inputs a, b or ¢ and feeds it through to the output y.

The assumption has been made that y will be driven to logic Oif sel isequal to 2 'b11. This
is, of course, incorrect: the omission of a final else clause results in y retaining its current
value (since it is a reg), hence the presence of the feedback connection between the y output
and the lower input of the left-hand multiplexer of the circuit shown in Figure 8.8. The synthesis
tool has correctly inferred a latch from the semantics of the if...else statement and the
reg object.

There are two alternative ways in which the listing in Figure 8.8 may be modified in order to
remove the presence of the inferred latch in the synthesized circuit. These are shown in
Figure 8.9a and b, with the corresponding latch-free circuit shown in Figure 8.9c.

Describing Combinational Logic using a Sequential Block 211

1 module latch implied(input a, b, c,
2 input [1:0] sel,
3 output reg vy);
4 always @ (*)//wildcard triggering
5 begin
6 if (sel == 2'b00)
7 y = a;
8 else if (sel == 2'Db01)
9 y = b;
10 else if (sel == 2'bl0)
11 y = C;
12 end
13 endmodule
a 0
b 5 MUX Y
MUX !
c
1
sel[1] sel[1], sel[0]
sel[0]
/\
sel[0]
sel[1]

Figure 8.8 Example showing latch inference.

The listing shown in Figure 8.9a adds a final el se partin lines 12 and 13; this has the effect of
always guaranteeing the output vy is assigned a value under all input conditions. Figure 8.9b
achieves the same result by assigning a default value of logic 0 to output y in line 6.

Of the alternative strategies for latch removal exemplified above, the use of default assign-
ments at the beginning of the sequential block is the more straightforward of the two to apply;
therefore, this is the recommended approach to eliminating this particular problem.

The following examples further illustrate how the Verilog HDL can be used to describe a
combinational logic function using an always sequential block. The first example, shown in
Figure 8.10, describes a three-input to eight-output decoder (similar to the TTL device known as
the 74L.S138).

212 Describing Combinational and Sequential Logic using Verilog HDL

The function of the t t 1138 module is to decode a 3-bitinput (A, B, C), and assert one of eight
active-low outputs. The decoding is enabled by the three G inputs (G1, G2A, G2B), which must
be set to the value (1, 0, 0). If the enable inputs are not equal to (1, 0, 0), then all of the Y outputs
are set high.

This behaviouris described using an always sequential block that responds to changes on all
inputs, starting in line 3 of the listing shown in Figure 8.10. The Youtputs are set to a default value
of all ones in line 5 and this is followed by an i £ statement that conditionally asserts one of the

(a)

1 module data selector (input a, b, c,
2 input [1:0] sel,

3 output reg v);

4 always Q(a, b, c, sel) //same as '*’
5 begin

6 if (sel == 2'b00)

7 y = a;

8 else if (sel == 2'b01)

9 y = b;

10 else if (sel == 2'b10)

11 y = ¢Cc;

12 else //final else removes latch
13 y = 1'b0;

14 end

15 endmodule

1 module data selector(input a, b, c,
2 input [1:0] sel,
3 output reg v);

4 always @ (a or b or c or sel)

5 begin

6 y = 1'b0; //default assignment

7 if (sel == 2'b00)

8 y = a;

9 else if (sel == 2'b01)

10 y = b;

11 else if (sel == 2'bl0)

12 y = C;

13 end

14

15 endmodule

Figure 8.9 Removal of unwanted latching feedback: (a) removal of latch using final

else part; (b) removal of latch using assignment of default output value; (c) synthesized circuit for (a)
and (b).

Describing Combinational Logic using a Sequential Block 213

(©

a 0
y
b 0 MUX
MUX 1
c
1
0
sel[1] sel[1], sel[0]
sel[0]
/\
sel[0]

sel[1]
Figure 8.9 (Continued).

Y outputs to logic 0, depending on the decimal equivalent (0-7) of (A, B, C), in lines 6 and 7
respectively.

Simulation of the tt1138 module is achieved using the Verilog test-fixture shown in
Figure 8.11. The test-fixture module shown in Figure 8.11 makes use of a so-called named
sequential block starting in line 6. The name of the block, gen tests, is an optional label that

1 module ttll138(input A, B, C, Gl, G2A, G2B,

2 output reg [7:0] Y);
3 always @(A, B, C, Gl, G2A, G2B)

4 begin

5 Y = 8'hFF; //set default output
6 if (Gl & ~G2A & ~G2B)

7 Y[{A, B, C}] = 1'b0O;

8 end

9 endmodule

ow»
S

— G1 Y5
—g G2A Y6
—(J G2B Y7

PTTTTTTY

Figure 8.10 Three-to-eight decoder Verilog description and symbol.

214 Describing Combinational and Sequential Logic using Verilog HDL

must be placed after a colon following the keyword begin. Naming a sequential block in this
manner (both always and initial blocks may be named) allows items, such as regs and
integers, to be declared and made use of within the confines of the block. These locally
declared objects may only be referenced from outside the block in which they are declared by
preceding the object name with the block name; for example, the integer t in the listing of
Figure 8.11 could be referenced outside of the initial block as follows:

gen tests.t

The use of locally declared objects, as described above, allows the creation of a more
structured description. However, it should be noted that, at the time of writing, not all logic
synthesis tools recognize this aspect of the Verilog language.

The integer t is used within the initial block to control the iteration of the for loop
situated between lines 9 and 12 inclusive. The purpose of the loop is to apply an exhaustive set of
input states to the (A, B, C) inputs of the decoder. The syntax and semantics of the Verilog for
loop is very similar to that of its C-language equivalent, as shown below:

for (initialization; condition; increment) begin
sequential statements
end

The above is equivalent to the following:

initialization;
while (condition) begin
sequential statements

increment;
end

In line 10 it can be seen how Verilog allows the 32-bit integer to be assigned directly to 3-bit
concatenation of the input signals without the need for conversion.

The timing simulation results are also included in Figure 8.11; these clearly show the
decoding of the 3-bit input into a one-out-of-eight output during the first 800 ns. During the
last 200 ns of the simulation, the enable inputs are setto 3 'b000 and then 3'b011 in order to
show all of the Y outputs going to logic 1 as a result of the decoder being disabled.

Finally, it should be noted that the very simple description of the decoder given in Figure 8.10
isnotintended to be an accurate model of the actual TTL device; rather, itis a simple behavioural
model intended for fast simulation and synthesis.

A second example is shown in Figure 8.12. This shows the Verilog source description
and symbolic representation of a majority voter capable of accepting an n-bit input word.
The function of this module is to drive a single-bit output named ma j to either alogic 1 or logic O
corresponding to the majority value of the input bits. Clearly, such a module requires an odd
number of input bits greater than or equal to 3 in order to produce a meaningful output.

The module header (lines 2 and 3 of the listing in Figure 8.12) includes a parameter
named n to set the number of input bits, having a default value of 5. The use of a parameter

Describing Combinational Logic using a Sequential Block

215

1 ‘timescale 1 ns/ 1 ns

2 module test ttl138;

3 reg A, B, C, Gl, G2A, G2B;

4 wire [7:0] Y;

5 initial

6 begin : gen tests

7 integer t;

8 {Gl, G2A, G2B} = 3'b100;

9 for (t = 0; t <=7; t =t + 1) begin

10 {A, B, C} = t;

11 #100;

12 end

13 //disable the decoder

14 {Gl, G2A, G2B} = 3'b000;

15 #100;

16 {Gl1, G2A, G2B} = 3'b011;

17 #100;

18 Sstop;

19 end

20 ttll138 uut(.A(Ap),

21 .B(B),

22 .C(C),

23 .G1(G1l),

24 .G2A (G2An),

25 .G2B (G2B),

26 LY (Y));

27 endmodule

Ors,, [199rs , [200ns, (30003 , [406ns, |500n, [60ns 700, [800ns , 900,

test_tti138.gen_tests.t{31:0] 0 1 2 3 4 5 [7 8

test tt138.Y[0] [

test t1138.Y[1] | J

test_tt138.Y[2] | J

test_tti138.Y[3] | J

test_t1138.Y[4] | J

test t1138.Y[5] | [

test_t11138.Y[6] | [

test tt138.Y[7] | [

test tt138.Y[7:0]| _FE [FD [FB [F7 [B [DF [BF [7F] FF
test_ttl138.uut. A |
test tt1138.uut.B |

test tti138.uut.C | [| |

test t11138.uut.G1 |

test_tti138.uut. G2A

1

test_tti138.uut. G2B

Figure 8.11 Test fixture and simulation results for the three-to-eight decoder module.

216 Describing Combinational and Sequential Logic using Verilog HDL

1 // n-bit majority voter, (n must be odd and >= 3)

2 module majn # (parameter n = 5)

3 (input [n-1:0] A, output maj);

4 integer num ones, bit;

5 reg is x;

6 always @ (A)

7 begin

8 is x = 1'b0;

9 num_ones = 0;

10 for (bit = 0; bit < n; bit = bit + 1) begin
11 if ((A[bit] === 1'bx) || (A[bit] === 1'bz))
12 is x = 1'bl;

13 else if (A[bit] == 1'bl)

14 num ones = num ones + 1;

15 end

16 end

17 assign maj = (is_x == 1'bl)? 1'bx

18 (n - num ones) < num ones;

19 endmodule

majn

mm AlN-1:0] maj—

Figure 8.12 Verilog description and symbol for an n-bit majority voter.

makes the majority voter module potentially more useful due to it being scalable, i.e. the user
simply sets the parameter to the desired value as part of the module instantiation.

Two register-type objects, in the form of integers are declared in line 4. The first,
num_ones, is used to keep track of the number of logic 1s contained in the input A, and the
second, named bit, is used as a loop counter within the £or loop situated in lines 10—15. A
single-bit reg named is_x is declared in line 5 to act as a flag to record the presence of any
unknown or high-impedance input bits.

The behaviour of the majority voteris described using an always sequential block commen-
cing in line 6 of the listing show in Figure 8.12. The block is triggered by changes in the input
word A, and starts by initializing is _x and num_ones to their default values of zero. The for
loop then scans through each bit of the input word, first checking for the presence of an unknown
or high-impedance state and then incrementing num_ones each time alogic 1is detected. Note
the use of the case-equality operator (===) in line 11 to compare each input bit of A explicitly
with the meta-logical values 1 'bx and 1 'bz:

(Albit] === 1'bx) || (A[bit] === 1'bz)

On completion of the for loop inline 15, the sequential block suspends until subsequent events
on the input A.

Describing Sequential Logic using a Sequential Block 217

The output ma j is continuously assigned a value based on the outcome of the always block.
The expression in lines 17 and 18 assigns 1'bx to the output subject to the conditional
expression being true, thereby indicating the presence of an unknown or high impedance among
the input bits. In the absence of any unknown input bits, the output is determined by comparing
the number of logic 1s within A (num_ones) with the total number of bits in A (n):

(n — num _ones) < num_ones

Itisleft to the reader to verify that the above expression is true (false), i.e. yields alogic 1 (logic 0)
if num_ones is greater (less) than the number of logic Os in the n-bit input A.

The simulation of a 7-bit majority voter module is carried out using the test module shown in
Figure 8.13. This test module instantiates a 7-bit (n = 7) majority voterinline 5. The initial
block starting in line 6 sets the input to all zeros in line 8 and then applies an exhaustive set of
input values by means of a repeat loop in lines 9-12 inclusive. The expression 1 << 7, used
to set the number of times to execute the repeat loop, effectively raises the number 2 to the
power 7, by shifting a single logic 1 to the left seven times. This represents an alternative to
using the ‘raise-to-the-power’ operator “**’, which is not supported by all simulation and
synthesis tools.

After applying all known values to the A input of the majority voter module, the test module
then applies two values containing the meta-logical states (lines 14—17) in order to verify that the
module correctly detects an unknown input.

Figure 8.13 also shows a sample of the simulation results produced by running the test
module. Inspection of the results reveals that the module correctly outputs alogic 1 when four or
more, i.e. the majority of the inputs, are at logic 1. The behaviour of the internal objects
num_ones and is_x can also be seen to be correct.

8.5 DESCRIBING SEQUENTIAL LOGIC USING A SEQUENTIAL BLOCK

With the exception of the simple level-sensitive latch given in Figure 8.1, Verilog HDL
descriptions of sequential logic are exclusively constructed using the alway s sequential block.
The reserved words posedge (positive edge) and negedge (negative edge) are used within
the event expression to define the sensitivity of the sequential block to changes in the clocking
signal. Figure 8.14 shows the general forms of the always block that are applicable to purely
synchronous sequential logic, i.e. logic systems where all signal changes occur either on the
rising (a) or falling (b) edges of the global clock signal.

The use of both posedge and negedge triggering is permitted within the same event
expression at the beginning of an always block; however, this does not usually imply dual-
edge clocking. The use of both of the aforementioned event qualifiers is used to describe
synchronous sequential logic thatincludes an asynchronous initialization mechanism, as will be
seen later in this section.

Figure 8.15 shows the symbol and Verilog description of what is perhaps the simplest of all
synchronous sequential logic devices: the positive-edge-triggered D-type flip flop.

The module header, in line 1 of the listing in Figure 8.15, declares the output Q to be a reg-
type signal, owing to the fact that it must retain a value in between active clock edges. The use of

the keyword regq is not only compulsory, but also highly appropriate in this case, since Q
represents the state of a single-bit register.

218

Describing Combinational and Sequential Logic using Verilog HDL

1 “timescale 1 ns/ 1 ns
2 module test majn;

3 reg [6:0] Ain;

4 wire M;

5 majn #(.n(7)) maj7(.A(Ain), .maj(M));

6 initial

7 begin

8 Ain = 0;

9 repeat (1 << 7) begin

10 #100;

11 Ain = Ain + 1;

12 end

13 #100;

14 Ain = 7'b1001x01;

15 #100;

16 Ain = 7'b000zz11;

17 #100;

18 Sstop;

19 end

20 endmodule

[|2|'5rpsl ! |3|'0rps| ! |3|'5rpsl ! |4|'on|151 ! |4|'5n|151 ! |5|'0nps| !

test majnmaj7AL] | [T [T LTI LT LI iy
testmajnmaj7 ANl | | [L[L[L [L [1 [1L [1 T

test_majn.maj7.A[2]

—

test_majn.maj7.A[3]

test_majn.maj7.A[4]

test_majn.maj7.A[5]

test_majn.maj7.A[6]

test_majn.maj7.maj

———————— —
I —
| 1 [

test_majn.maj7.is_x

test_majn.maj7.num_ones[31:0]

EEFEREEE FNFFEEEEEFEEEEEEFEEERER]

| 10.5ms | 11.0ms | 11.5ms | 12.0ms | 12.5ms | 13.0ms
I 1 [[1 [[

test_majn.maj7.A[0]

test_majn.maj7.A[1]

test_majn.maj7.A[2]

L

0

test_majn.maj7.A[3]

test_majn.maj7.A[4]

test_majn.maj7.A[5]

test_majn.maj7.A[6]

test_majn.maj7.maj

test_majn.maj7.is_x

mi il

test_majn.maj7.num_ones[31:0]

(@]
el
[
[
LSl
[
[
[
(@]
[l
[
[
LSl
[
[
[
[l
[
LSl
LSl
(=]
[
[l
[l
[~
[l
(]

Figure 8.13 Test fixture and simulation results for the n-bit majority voter.

Describing Sequential Logic using a Sequential Block 219

()

1 always((posedge clock)

2 begin

3 //sequential statement 1

4 //sequential statement 2

5

6 end

o £ 141 F]

(b)

1 always(@ (negedge clock)

2 begin

3 //sequential statement 1

4 //sequential statement 2

5

6 end

o [3 4 4 [}

Figure 8.14 General forms of the always block when describing synchronous sequential logic:
(a) positive-edge-triggered sequential logic; (b) negative-edge-triggered sequential logic.

The always sequential block in lines 2 and 3 contains a single sequential statement (hence
the absence of the begin. . .end bracketing) that performs a nonblocking assignment of the
input value D to the stored output Q on each and every positive edge of the input named CLK. In
this manner, the listing given in Figure 8.15 describes an ideal functional model of a flip flop:
unlike areal device, it does not exhibit propagation delays, nor are there any data sez-up and hold
times that must be observed. To include such detailed timing aspects would result in a far more
complicated model, and this is not required for the purposes of logic synthesis.

As mentioned previously, it is conventional to use the nonblocking assignment operator
when describing sequential logic. However, it is worth noting that the above flip-flop description
would perform identically if the assignment in line 3 was of the blocking variety. This is due to the
fact that there is only one signal being assigned a value from within the always block.

1 module dff (output reg Q, input D, CLK);

N

always @ (posedge CLK)
Q <= D;

w

4 endmodule

—Io o}l——>

>—PCLK

Figure 8.15 A positive-edge-triggered D-type flip-flop.

220 Describing Combinational and Sequential Logic using Verilog HDL

1 “timescale 1 ns/ 1 ns
2 module test dff();

3 reg CLK, D;

4 wire Q;

5 dinitial

6 begin

7 D = 1'b0;

8 repeat (3) @ (negedge CILK) ;
9 D = 1"bl;

10 end

11 initial

12 begin

13 CLK = 1'bO;

14 #100;

15 repeat (4) begin

16 #50 CLK = 1'bl;
17 #50 CLK = 1'b0;
18 end

19 Sstop;

20 end

21 dff dut(.Q(Q), .D(D), .CLK(CLK)):;

22 endmodule

Ons | 100ns 200ns 300ns 400ns
[R Lo (T R (N (1
test_dff.dut.CLK [[[[

test_dff.dut.D [

Figure 8.16 D-type flip-flop test module and waveforms.

Figure 8.16 shows a Verilog test-module and corresponding simulation waveform results
for the D-type flip flop. This test module makes use of two initial sequential blocks to produce
the Dand CLK inputs of the flip flop. Line 8 illustrates the use of the @ (event expression)
statement within a test module; in this case, the repeat loop waits for three conse-
cutive negative-edge transitions to occur on the CLK before setting the data input D to a logic 1.

Inspection of the timing waveforms below the listing in Figure 8.16 shows that the Q output of
the flip flop remains in an unknown state (shaded) until the first O-to-1 transition of the clock; in
other words, the flip-flop is initialized synchronously. In addition, the change in the data input D
appears to occur at the second falling-edge of the clock, despite the fact that the repeat loop
specifies three iterations; this apparent discrepancy is due to the change from the ini tial state
of CLK,i.e. 1 'bx,to 1 'b0 at time zero, being equivalent to a negative edge at the very start of

Describing Sequential Logic using a Sequential Block 221

1 // A 4-bit UP Counter with asynchronous reset
2 module cntr4 (input clock, reset,

3 output reg [3:0] count);

4 always @ (posedge reset or posedge clock)

5 begin

6 if (reset == 1'bl)

7 count <= 4'b0000;

8 else //synchronous part

9 count <= count + 1;

10 end

11 endmodule
cntr4
— reset

count [0..3]
—pclock

Figure 8.17 Verilog description of a 4-bit counter.

the simulation run. Finally, it can be seen that the Q output of the flip-flop changes state
coincident with the rising edge of the clock, in response to the change from logic 0 to logic 1
on the data input at the preceding clock falling edge.

The following examples illustrate how the always sequential block is used to describe a
number of common sequential logic building blocks.

Figure 8.17 shows the symbol and Verilog description for a 4-bit binary counter having an
active-high asynchronous reset input. The input named reset takes priority over the synchro-
nous clock input and, when asserted, forces the counter output to zero immediately. This
aspect of the behaviour is achieved by means of the reference to posedge reset in the event
expression in line 4 along with the use of the 1 £. . .else statement in lines 6—9 of the listing in
Figure 8.17.

The presence of the event qualifier posedge before the input reset might imply that
the module has two clocking mechanisms. However, when this is combined with the test for
reset ==1"blinline 6, the overall effectis to make reset actas an asynchronous input that
overrides the clock.

When the reset input is at logic 0, a rising edge on the c1ock input triggers the always
block to execute, resulting in the count being incremented by the sequential assignment
statement located within the else part of the i f statement (see line 9).

Consistent with previous sequential logic modules, the 4-bit counter makes use of nonblock-
ing assignments directly to the 4-bit output signal, this having been declared within the module
header as being of type reg, in line 3. Note that Verilog allows an output port such as count to
appear on either side of the assignment operator, allowing the value to be either written to or read
from. This is evident in line 9 of the listing in Figure 8.17, where the current value of count is
incremented and the result assigned back to count.

Figure 8.18 shows a test module and the corresponding simulation results for the 4-bit counter.
The waveforms clearly show the count incrementing on each positive edge of the clock input,
until the asynchronous reset input RST is asserted during the middle of the count = 8 state,
immediately forcing the count back to zero.

222 Describing Combinational and Sequential Logic using Verilog HDL
1 “timescale 1 ns/ 1 ns
2 module test cntr4();
3 reg CLK, RST;
4 wire [3:0] Q;
5 initial
6 begin
7 RST = 1'bl;
8 repeat (3) @ (negedge CLK) ;
9 RST = 1'bO0;
10 repeat (8) @ (negedge CLK) ;
11 RST = 1'bl;
12 @ (negedge CLK) ;
13 RST = 1'b0;
14 end
15 initial
16 begin
17 CLK = 1'b0;
18 #100;
19 repeat (30) begin
20 #50 CLK = 1'bl;
21 #50 CLK = 1'b0;
22 end
23 Sstop;
24 end
25 c¢ntrd4 dut(.clock(CLK), .reset(RST), .count(Q)):;
26 endmodule
Onlsl [|50|0n? [|1'9m? [|1'|5m? [|2'0Imsl [|2.5Imsl [|3.0ms
testonva_arauoook | TUTLTLT U LU0 UL T U O U U
test_cntr4_ardut.reset| |]
testontd ardutcountioll [T 1 L1 LTI LI LT
test.entr4_ardutcounttl) [| [| [L [L [L T L T
test_cntr4_ar.dut.count[2] 1 [
test_cntr4_ar.dut.count[3] M I
test_cntr4_ar.dut.count(3:0] 0 [1[2[3T4[5]6[7]] 0 [1]2[3[4[5]6]7[8[9[A[BICIDIE[F]O[T1]2]
! [|90|0n|S [|1'9m? [|1'|1m|S [|1'|2m? [|1'i’3m?
test_cntr4_ar.dut.clock [] [] [| | | | |
test_cntr4_ar.dut.reset - -]
test_cntr4_ardut.counti] [| [|]
test_cntr4_ar.dut.count[1] | | |
test_cntr4_ar.dut.count[2] |
test_cntr4_ar.dut.count[3] []
test_cntr4_ar.dut.count[3:0] 5] 6 | 7 [8] 0 | 1

Figure 8.18 Verilog test-module and simulation results for the 4-bit counter.

Describing Sequential Logic using a Sequential Block 223

1 //A 4-bit shift register with

2 //asynch active-low reset and shift enable

3 module shift4 (input clock, clrbar, shift, serial,
4 output reg [3:0] q);

5 always @ (negedge clrbar or posedge clock)

6 begin

7 if (clrbar == 1'b0)

8 g <= 4'b0;

9 else if (shift == 1'bl) //synchronous part
10 g <= {gq[2:0], serial};

11 end

12 endmodule

—{ serial shift
— shift
—d clrbar g[0..3]

— clock

Figure 8.19 Verilog description of a 4-bit shift register.

As expected, the 4-bit count value automatically wraps around to zero on the next positive
edge of the clock when the count of all-ones (4 'b1111) is reached.

The next example of a common sequential logic module is given in Figure 8.19, showing the
Verilog description and symbol for a 4-bit shift register. The module header declares an active-
low asynchronous clear input named c1rbar and a synchronous control input named shift,
the latter enables the contents of the shift register (4-bit output reg q) to shift left on the active
clock edge.

The sequential always block is triggered by the following event expression in line 5 of the
listing shown in Figure 8.19:

always (@ (negedge clrbar or posedge clock)

The presence of the qualifier negedge indicates that it is the logic 1 to logic O transition
(negative edge) of the input c1lrbar that triggers execution of the sequential block. This, in
conjunction with the test for clrbar being equal to logic 0, at the start of the if...else
statement in line 7, implements the asynchronous active-low initialization.

Inline 9, the input shi ft is compared with logic 1 at each positive edge of the clock input. If
this is true, then the following statement updates the output g:

q<={ql[2:0], serial} ;

The above sequential assignment shuffles the least significant three bits of q into the three most
significant bit positions while simultaneously clocking the serial data input (serial) into the
least significant bit position. In other words, a single-bit, left-shift operation is performed for
each clock cycle that shift is asserted.

The corresponding test module for the shift register is provided in Figure 8.20. The module
test shift4isverysimilartothe test module showninFigure 8.18 for the 4-bit counter. Two

224

Describing Combinational and Sequential Logic using Verilog HDL
1 ‘timescale 1 ns/ 1 ns
2 module test shiftd();
3 reg CLK, CLRB, SFT, SER;
4 wire [3:0] Q;
5 initial
6 begin
7 CLRB = 1'b0O;
8 SFT = 1'b0;
9 SER = 1'bl;
10 repeat (2) (@ (negedge CLK) ;
11 CLRB = 1'bl;
12 repeat (3) (@ (negedge CLK) ;
13 SFT = 1'bl;
14 repeat (6) (@ (negedge CLK) ;
15 CLRB = 1'b0;
16 @ (negedge CILK) ;
17 CLRB = 1'bl;
18 repeat (6) begin
19 @ (negedge CLK) ;
20 SER = ~SER;
21 end
22 end
23 initial
24 begin
25 CLK = 1'b0;
26 #100;
27 repeat (30) begin
28 #50 CLK = 1'bl;
29 #50 CLK = 1'bO;
30 end
31 Sstop;
32 end
33 shift4 dut(.clock(CLK), .clrbar (CLRB),
34 .shift (SFT), .serial(SER), .g(Q));
35 endmodule
On‘s‘ L ‘50‘0n§ L ‘1'(\)"‘5\' | ‘1'\5"‘8\ L ‘2'9"‘8\ 1 ‘2'5\"18\ | ‘3'0'“8
test_shitt4_arautoock] TUUUUUUUUULUUUUUUUUUUUUUUUUUUUU]
test_shift4_ar.dutclrbar | | L]
test_shift4_ar.dut.shift
test_shift4_ar.dut.serial LI LT L
test_shift4_ar.dutqol] [| [LT LT 1
test shiftd_ar.dutq(1]) [| [LT LI 1
test_shift4_ar.dut.q[2] [LT L
test_shift4_ar.dut.q[3] 1 L L 1L
test_shift4_ar.dut.q[3:0] 0 [1]38]7] F JO J1[2]5]A[5]A[5]B]7] F

Figure 8.20

Verilog test-module and simulation results for the 4-bit shift register.

Describing Sequential Logic using a Sequential Block 225

1 //D-Type FF with asynch. Set and Reset

2 module dff asr (output reg g, gb,

3 input d, clk, set, reset);

4 always ((posedge clk or posedge set

5 or posedge reset)

6 begin

7 if (reset) begin //reset has highest priority

8 q <= 0;

9 gb <= 1;

10 end else if (set) begin //set has second highest
11 q <= 1;

12 gqb <= 0;

13 end else begin //clock when set and reset are low
14 q <= d;

15 gqb <= ~d;

16 end

17 end

18 endmodule

—d B qf—
B
(%]
—>ck © b p—

Figure 8.21 D-type flip-flop with asynchronous set and reset.

initial sequential blocks are used, one to provide an input stimulus and the other a set of
clock pulses; the resulting simulation waveforms are also shown in Figure 8.20.

The previous two examples have shown how a sequential logic module can be described
having either a single active-high or active-low asynchronous reset. The following example
shows how both asynchronous reset and set inputs can be accommodated, if required.

Figure 8.21 shows the Verilog module and symbol for a D-type flip-flop having true and
complementary outputs along with both a set input and a reset input for asynchronous
initialization to either logic 1 or logic O respectively. Note that, in general, although this example
makes use of only active-high control inputs, any combination of active-high and active-low
control can be described by use of the posedge and negedge event qualifiers.

Lines 4 and 5 of the listing given in Figure 8.21 or together three inputs to form the
event expression, one of which (c1lk) is the synchronous clock. This event expression,
combined with the nested if...else...if...else statement, implements the hierarch-
ical reset and set operations in conjunction with synchronous clocking. Notice the use of the
begin...end bracketing to enclose the two assignments that make up each part of the
if.. .else statement.

226 Describing Combinational and Sequential Logic using Verilog HDL

1 //An 8-bit register with synchronous reset
2 module REG8SR (output reg [7:0] Dataout,

3 input [7:0] Datain,

4 input Rst, Clk);

5 always (@ (posedge Clk) //triggers on 'Clk’ only
6 begin

7 if (Rst)

8 Dataout <= 0;

9 else

10 Dataout <= Datain;

11 end

12 endmodule

REG8SR

s Datain[0..7] Dataout[0..7] jummm

— Rst
— Clk

Figure 8.22 Example of a module using synchronous reset.

In certain situations it may be necessary, or indeed desirable, to perform all initialization
synchronously. Inthis case, all assignments to the reg-type outputs of a sequential logic module
are synchronized to the positive or negative edges of the master clock input.

The example shown in Figure 8.22 illustrates how the above can be implemented. The figure
shows a Verilog module and symbol for a fully synchronous 8-bit data register. The event
expressionin line 5 of the listing shown in Figure 8.22 refers only to the positive edge of the C1k
input. Therefore, all assignments to Dataout are subject to this condition, including the reset
operation that occurs when Rst is at logic 1.

The last example in this section is a Verilog design that makes use of various aspects from
previous examples, such as scalability, synchronous clocking and behavioural modelling.

Figure 8.23 shows the listing and symbolic representation for a so-called universal register/
counter capable of performing a number of useful operations, in addition to having scalable
input and output data ports. The latter is achieved by means of a parameter named size
declared in the module header.

The module unireg, as well as being a parallel data register, is capable of performing the
function of an up/down counter as well as providing left and right shifting. The number of bits
that make up the register is defined by a parameter in line 2 of the listing, and, as shown, itis set to
a default value of 8.

Describing Sequential Logic using a Sequential Block

227

O Jo Ul W

NN BB EER R PP B o
WN R OW®OWJO U s WN R O

24
25
26

27

//Scalable Universal Register/Counter
module unireg # (parameter size = 8)
(input clock, serinl, serinr,
input [2:0] mode,
input [size-1:0] datain,
output reg [size-1:0] dataout,
output termcnt);

always Q@ (posedge clock) //synchronous counter

begin
case (mode)

0 : dataout <= 0; //clear

1 : dataout <= datain; //parallel load

2 dataout <= dataout + 1; //increment

3 dataout <= dataout - 1; //decrement

4 : begin //shift left using '<<’ operator
dataout <= dataout << 1;
dataout[0] <= serinl;

end

//shift right using concatenation

5 : dataout <= {serinr, dataout[size-1:1]};

default : dataout <= dataout; //refresh
endcase
end

//continuous assignment to detect zero

assign termcnt = (mode == 3) ? ~|dataout
((mode == 2) ? &dataout : 0);
endmodule
— serinr unireg
— serinl

dataout[0..size]
: datain[0..size]
mode[0..2]

— clock

terment|——

Figure 8.23 A universal counter/register module.

228 Describing Combinational and Sequential Logic using Verilog HDL

The dataout portof the unireg module constitutes the register itself; this is declared in line
6 of the module header. Each operation that the register performs is synchronized with the positive
edges of the c1 ock input; the nature of the operation is determined by a 3-bit control input named
mode declared in line 4. The function selection nature of the mode input is implemented using a
case. . .endcase statement between lines 10 and 22; each possible value of mode corresponds
to one of the unique branches situated in lines 11-21. There are a total of seven operating modes,
the last (mode = 6 or 7) being covered by the final default branch in line 21.

Serial data inputs are provided for left and right shifting, via input ports serinl and
serinr respectively. With reference to the listing in Figure 8.23, lines 15—18 correspond
to the shift left operation (mode = 4), where the register bits are shifted to the left by one
position and the serial data present on input port serinl is loaded into bit O of the register.
This synchronous data movement is achieved through the use of two nonblocking assign-
ments in lines 16 and 17.

A mode value of 5 corresponds to a right shift. This corresponds to line 20 of the listing, where
the concatenation operator is used to move the most significant size-1 bits into the least
significant size-1 bit positions. The leftmost bit (MSB) of the register is loaded with the serial
data applied to the serinr input port.

Operating modes O to 3 are self-explanatory; these correspond to the sequential assignments
situated in lines 11-14 of the listing in Figure 8.23.

The remaining mode of operation is covered by the defaul t branch of the case statement;
this is the refresh mode, corresponding to a mode value of 6 or 7. The default sequential
assignment simply assigns the register with the current value of dataout,i.e. itself. This could
have been achieved in an alternative manner, as shown below:

default: ; // refresh using null statement

The null statement (;) is a ‘do nothing’ statement; in the above context it indicates that the
dataout register is to retain its current value by virtue of not being updated. The choice of
whether to use this method of retaining or refreshing the value stored in a reg-type signal, as
opposed to the method shown in line 21, is a matter of personal preference.

The last output port of the uniregmoduleis awire-type signal named termcnt, whichis
a shortened form of ‘terminal count’. The purpose of this output is to indicate when the register
has reached the maximum or minimum value when operating in count-up or count-down mode
respectively.

The flexible nature of the dat aout register length makes it difficult to compare it with a fixed
maximum value such as 8 ' hFF; this problem is overcome by the use of the conditional operator
and the bitwise reduction operators, as shown in the continuous assignment in lines 25 and 26 of
the listing of Figure 8.23, and repeated below:

assign termcnt = (mode == 3) ? ~|dataout: ((mode == 2) ? &dataout: 0);

The above expression detects when the operating mode is either ‘count-up’ (2) or ‘count-down’
(3) and respectively assigns the reduction AND or the reduction NOR of dataout to the
terment port. It is straightforward to appreciate that the expression will result in a logic 1 if
mode is equal to 2 (3) and all of the register bits are logic 1 (logic 0), otherwise the above
expression will be a logic 0.

Describing Memories 229

Figure 8.24 includes a listing of a test module named Test unireg, the purpose of which
is to allow simulation of the universal register/counter described above. The module contains
adeclaration of alocal parameter (test _size)inline 3 thatis effectively a constant value for
use within the enclosing module. In this case, the local parameter test size is assigned the
value 4. This corresponds to the number of bits contained in the parallel data input reg, and data
output wire, connected to the register (see lines 7 and 9), as well as being used to override the
value of the parameter that sets the width of the instantiated universal register/counter
(size). This latter use of a local parameter, to determine the value of a parameter usedina
scalable module, is implemented in line 12 of the test module shown in Figure 8.24.

The test module shown in Figure 8.24 includes two initial sequential blocks, the first of
which generates a repetitive clock signal in lines 20—25 inclusive. The second initial block,
spanning lines 26—49, generates a sequence of stimulus signals to exercise the various operating
modes of the universal register/counter. The results of running the simulation are shown below the
listing in Figure 8.24.

After clearing the register to zero by forcing the mode input to zero, the register is
then set to counting-up mode (2) for 30 clock cycles. Inspection of the simulation
waveforms clearly shows the data output bits counting up in binary, during which the
terminal count (termcnt) output goes high coincident with a data output value of all
ones.

The test module then sets the mode control to count-down mode (3) for a further 30 clock
cycles. The data output bits follow a descending sequence and, as expected, the terminal
count output is asserted when the state of all zeros is reached. The other operating modes of
the universal register/counter are activated by subsequent statements in the initial block,
shifting left (mode = 4) and shifting right (mode = 5), parallel load (mode = 1) and
refresh (mode = 7) between lines 38 and 47; the simulation is stopped by the system
command in line 48.

8.6 DESCRIBING MEMORIES

This section presents some very simple modules that can be used as rudimentary
simulation models of RAM and ROM. These modules lack the timing accuracy and
sophistication of the Verilog simulation models that are occasionally provided by
commercial memory-device manufacturers. However, they can nevertheless be used
effectively whenever a fast, functional model is required as part of a larger system
simulation.

The Verilog descriptions discussed in this section serve to further reinforce some of the
aspects that have already been covered, such as scalability and the use of parameters, as well as
behavioural modelling with sequential blocks. In addition to these important elements of
Verilog, the memory models presented here make use of other features not yet covered in
previous chapters; these are as follows:

e arrays — the principle mechanism used to model a memory;
e bidirectional ports — the ability to use a single port as an input or output;
e memory initialization — loading a memory array with values from a file.

230 Describing Combinational and Sequential Logic using Verilog HDL

1 ‘timescale 1 ns/1 ns
2 module Test unireg();

3 localparam test size = 4; //size of the unireg

4 //inputs

5 reg clock, serinl, serinr;

6 reg [2:0] mode;

7 reg [test size-1:0] datain;

8 //outputs

9 wire [test size-1:0] dataout;

10 wire termcnt;

11 //instantiate the unireg module, 4-bits in size
12 unireg #(.size(test _size))

13 mut (.clock (clock),
14 .serinl (serinl),

15 .serinr (serinr),

16 .mode (mode) ,

17 .datain (datain),

18 .dataout (dataout),
19 .termcnt (termcnt)) ;

20 initial //generate a 100 ns clock

21 Dbegin

22 clock = 0;

23 forever

24 #50 clock = ~clock;
25 end

26 initial //apply test inputs

27 begin

28 serinl = 0;

29 serinr = 1;

30 mode = 0;

31 datain = 'h9;

32 #200 mode = 2;

33 repeat (30) //wait for 30 clock edges
34 @ (posedge clock);

35 mode = 3;

36 repeat (30)

Figure 8.24 Test module and simulation results for universal register/counter.

Describing Memories 231

37 @ (posedge clock) ;
38 mode = 4;
39 repeat (8)
40 @ (posedge clock);
41 mode = 5;
42 repeat (8)
43 @ (posedge clock);
44 mode = 1;
45 #400 mode = 2;
46 #800 mode = 7;
47 #1000;
48 Sstop;
49 end
50 endmodule
OYT:S 1 1 1 1":8 1 1 1 2":3 1 1 1 3":8 1 1 1 4mls 1 1
TesLunireg mutclock [TILULU UL TUT UL TUU U U UU U LU DU DU T UUU UL
Test_unireg.mut.mode[2:0] 0] 2 | 3
Test_unireg.mut.datain[3:0]
Test_unireg.mut.serinl
Test_unireg.mut.serinr
Test_unireg.mut.terment 1 1|
Test_unireg. mutaataoutio] I [1 (LML LML U U U ULl
Test_unieg. mut dataout{1] ML L L L L L L rLr
Test_unireg.mut.dataout[2] | | | | | | | | | |]
Test_unireg.mut.dataout[3] [1]]
[Test_unireg.mut.dataout(3:0] ORI [[ATI [TTTTTTIdTTd[AdITITTTTTTTd[44T49 T[]
||6m|s|||7ms|||8m|s|||9ms||
Testunireg mutciook JUUUUUUUIUUTUU LTI U UUTU T IUU SIS U UU U UUUOU]
Test_unireg.mut.mode[2:0] | 4 | 5 17 2 | 7
Test_unireg.mut.datain[3:0]
Test_unireg.mut.serinl
Test_unireg.mut.serinr
Test_unireg .mut.terment [
Test_unireg.mut.dataout/0] [| [[[— yJguyuuyuuyu
Test_unireg.mut.dataout[1] | | [| LI 111
Test_unireg.mut.dataout[2] [| [| [|
Test_unireg.mut.dataout[3] |]
Test_unireg.mut.dataout[3:0] [543 0 1] F [9TTI[I[Aq 1

Figure 8.24 (Continued).

The Verilog language does not support the creation of a new and distinct composite type such
as an array or record; instead, an array of regs can be declared using the following syntax (an
array of wires can be declared in a similar manner):

//An array of m, n-bit regs
reg [n-1:0] mem[0O:m-1] ;

232 Describing Combinational and Sequential Logic using Verilog HDL

The above line declares an array having m elements, each one comprising an n-bit reg. In
this manner, the object named mem can be viewed as a two-dimensional array of bits, i.e.
a memory.

The capabilities of the Verilog language in terms of array handling were considerably
enhanced with the release of the Verilog-2001 standard, with multidimensional arrays and
the ability to reference an individual bit directly being two of the key improvements. The
aforementioned new features provided by the update are not required by the simple memory
models presented here, however; for further information, see Reference [2].

The other feature commonly made use of in memory models is bidirectional data commu-
nication. Most RAMs make use of a bidirectional three-state data bus to allow both read and
write accesses using a single set of bus wires. The Verilog language provides for this by means of
the inout port mode, along with the built-in simulation support for the high-impedance state in
conjunction with the resolution of multiple signal drivers. It should be noted that the inout port
is modelled as a wire having one or more drivers. During a read operation, for example, the
inout portis driven by the value being accessed from the memory array; otherwise it is driven
to the high-impedance state. During a write operation to a RAM, the portis driven by an external
source which, combined with the high-impedance value being driven onto the data bus by the
memory module itself, automatically resolves to a value to be written into the memory array.

Figure 8.25 shows the symbol and Verilog description of a simple and flexible RAM module.
The model is general purpose insofar as it provides scalable address and data buses, allowing
different-sized memories to be instantiated.

Line 4 of the listing of the module named ram declares the parameters Awidthand Dwidth.
These define the width of the addre s s and da t a ports subsequently declared in lines 6 and 7 of
the module header. Three active-low control signals are declared in line 5, having the following
functionality:

e web — write-enable, writes data into the memory array when low;

e ceb — chip-enable, enables the memory for reading or writing;

e oeb — output-enable, drives the data from the memory array onto the data port during a read
operation.

The length of the memory array is equal to the number 2 raised to the power of the number of
address input bits, i.e. 2*"*4“" The local parameter declared on line 8 computes this value by
means of the shift-left operator (since, as mentioned previously, not all simulators support the
“* operator).

The localparam Length is then used in the declaration of the memory array in line 9 of
the listing in Figure 8.25.

Lines 11 and 12 describe the logic for a memory read operation using a continuous assign-
ment, as repeated below:

assign data = (~ceb & ~oeb & web) ?
mem[address] : 'bz;

The above statement is executed whenever a change occurs in any of the signals on the right-
hand side of the assignment operator (=); this includes all of the memory control inputs, as well
as the address value.

Describing Memories 233

1 //A generic static random access memory

2 //Awidth 1is no. of address lines

3 //Dwidth is no. of data lines

4 module ram # (parameter Awidth = 8, Dwidth = 8)
5 (input web, oeb, ceb,

6 inout [Dwidth-1:0] data,

7 input [Awidth-1:0] address);

8 localparam Length = (1 << Awidth);

9 reg [Dwidth-1:0] mem[O:Length-1]1; //memory array

10 //memory read
11 assign data = (~ceb & ~oeb & web) ?
12 mem[address] : 'bz;

13 //memory write

14 always @ (posedge web) //occurs on 0-1 transition on web
15 if ((ceb == 1'b0) && (oeb == 1'bl))

16 mem[address] = data;

17 endmodule

ram
web (oA y b pigih)
ceb
oeb

data[Dwidth:0]
address[Awidth:0]

Figure 8.25 Verilog description and symbol for a simple RAM.

The inclusion of the condition that ‘write-enable’ must be a logic 1 during a read limits the
possibility of a so-called bus contention, the result of trying to perform a read and a write
simultaneously.

The memory word being read is accessed using the familiar array indexing notation ([])
found in the C language and also when accessing individual bits or bit ranges of a multi-bit reg
orwire.

It should be pointed out that the Verilog-1995 language does not allow part- or bit-selects to be
used in conjunction with an array access, this being one of the enhancements introduced with the
update resulting in Verilog-2001. This limitation does not affect the simple memory models
discussed here, since all accesses to memory arrays are to whole words only.

The use of a continuous assignmentin lines 11 and 12 of the listing in Figure 8.25 is consistent
with the definition of the data port as mode inout, effectively making it behave as awire.
The continuous assignment will drive the bidirectional data ports of the memory module with
the high-impedance state if the condition preceding the ‘?” is false.

234 Describing Combinational and Sequential Logic using Verilog HDL

The memory write operation is implemented by the sequential always block in lines
14-16 of the listing in Figure 8.25. The incoming data value is latched into the memory
array at the rising edge of the active-low ‘write-enable’ control input, providing the
memory is enabled and not attempting to perform a read. In this case, the bidirectional
data ports of the memory are being used as input wires; the Verilog simulator automati-
cally resolves the value on the data port from the combination of the high-impedance state
being assigned by the continuous assignment in lines 11 and 12 and the value being driven
onto the port from the external source.

Figure 8.26 shows the Verilog source description of a test module for the ram model of
Figure 8.25. Animportant aspect of the testmodule test ramis the requirement to declare the
local signal to be connected to the bidirectional data port of the ramas awireratherthana reg,
as would normally be the case if it were purely an input.

The wire named data,declared and continuously assigned in lines 9 and 10, must be driven
to the high-impedance state when the memory is being operated in read mode.

In order to achieve the above, the test module makes use of a single-bit reg, named
tri cntr (short for tri-state control), to control when the data to be written, data reg, is
driven onto the bus wire data. During write operations, tri cntr is set high to enable the
data_reg values to be written to the memory array, whereas during read operations
tri cntr is forced to logic O with the corresponding effect of making the data bus wire
high impedance.

A 16-byte RAM isinstantiated in the test module in lines 35-38, by overriding the address and
data width parameters with the numbers 4 and 8 respectively. The initial sequential block,
starting atline 11, performs a sequence of 10 writes to the address locations 0 to 9; the data being
written is an alternating sequence containing the hexadecimal values 8' h55 and 8 ' hAA. At
the end of this sequence of writes the address is reset back to zero and the data bus wire is
driven to the high impedance state by setting tri cntr to logic O in line 26. The second
repeatloop situated between lines 27 and 32 then performs 10 read operations from addresses
0to 9, as above.

Figure 8.27 shows a block diagram to illustrate the structure of the test module described in
Figure 8.26.

Simulation of the test-module results in the waveforms shown below the listing in Figure 8.26.
As shown, the write operations occur as a result of the webar pulses being applied during the
middle of each valid address and data value interval. The resulting stored values are then read out
by disabling the datareg source by lowering tri cntr, and then applying a sequence of
oebar pulses while incrementing the address.

A ROM can be used wherever there is a need to store and retrieve fixed data during a
simulation. For example, a set of test patterns could be stored in a ROM and subsequently
used as test data (both stimulus and responses) for a module under test during the execution of a
test module.

An embedded microcontroller may make use of an external ROM to store the fixed machine
code program it will fetch and execute as part of a system-level simulation.

A simple Verilog model of a ROM, along with the corresponding symbolic representation, is
given in Figure 8.28. In common with the RAM described above, the memory is designed to be
scalable, having parameters to define the width of both the address bus and the data bus declared
as part of the module header.

Describing Memories

235

w N

O ~J o U1 b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39

//test module for a 16-byte RAM

“timescale 1 ns/ 1 ns
module test ram;

reg webar, oebar, csbar;

reg [7:0] datareg;

reg tri cntr; //data hi-z control

reg [3:0] address;

//three-state buffer for data input/output

wire [7:0] data = (tri cntr == 1'bl)?
datareg : 8'bz;

initial

begin : test

tri cntr = 1'bl; //make data available

webar = 1'bl; oebar = 1'bl;
csbar = 1'bl; datareg = 8'b01010101;
address = 4'd0;
#10 csbar = 1'b0;
repeat (10) //perform 10 writes
begin
#10 webar = 1'b0;
#10 webar = 1'bl;
#10 address = address + 1;
datareg = ~datareg;
end
address = 4'd0;

tri cntr = 1'b0; //make data high impedance

repgat (10) //perform 10 reads
begin

#10 oebar 1'b0;

#10 oebar = 1'bl;

#10 address = address + 1;
end
Sstop;

end

ram #(.Awidth(4), .Dwidth(8))
ram ut (.web (webar),
.oeb (oebar), .ceb(csbar),

.data (data), .address (address)):;

endmodule

Figure 8.26 Test module and simulation results for the simple RAM.

236 Describing Combinational and Sequential Logic using Verilog HDL

0'\18 [! ‘ 5(\)ns\ [‘ 1\00r\1$ [‘ 1\50r\1$ [‘ 2\()0"\]5 ! ! ‘ 2\50'\18 [‘ s\oons
testram.ram _ut.address[3:0] 0 | 1 | 2 | 31 41 5 1 6 1 7 1 81 9]
testram.datareg(7:0] 56 | AA [55 | AA [55 | AA | 55 [AA | 55 [AA |
testram.tri_cntr LI

testram.csbar ||

testram.webar

testram.oebar

testram.ram_ut.data[7:0] 55 | AA] 55 | AA] 55 | AA [55 | AA | 55 [AA |
‘ B\OOWS I ‘ 3\50'?5 ! ‘ 4POTS ! ‘ 4‘?0?3 [‘ S\OOTS [‘ 5;50?3 [‘ 600ns
testram.ram_utaddress[3:0] |g [0 [1 [2 | 3 [4 [5 [6 [7 | 8 [9
testram.datareg[7:0] [AA] 55

testram.tri_cntr
testram.csbar

testram.webar | |

testram.oebar

testram.ram_ut.data[7:0] |AA[ZZ[54 ZZ|A4 ZZ|55 ZZ[AA ZZ ZZ|AA ZZ 55| ZZ|AA ZZ 55| ZZ|AA

Figure 8.26 (Continued).

As in the case of the RAM module of Figure 8.25, the module rom in Figure 8.28 uses a
localparamto calculate the length of the memory using the number of address bits at line 6,
and then goes on to declare the actual memory array at line 7. The behaviour of the model is
encapsulated in a single continuous assignment in line 8 of the listing in Figure 8.28; this
statement assigns the contents of the memory array mem, indexed at location address, to the
data output port, providing that the output enable control input oeb is asserted. Note that, in the
case of the ROM, the data output port is of mode outputrather than inout, since data are only
everread from the module. With the output enable control input atlogic 1, the data outputis setto
the high-impedance state.

The actual contents of the ROM array mem are not specified anywhere in the Verilog
description shown in Figure 8.28. For this type of ROM description, the stored data are defined
externally, in an ASCII text file, and loaded into the memory array at the beginning of the

ram_ut
/ test \

reg ram
webar P web

reg
cebar P ceb

| re9 «+—» data[7:0]
oebar P oeb
data[0..7]
tri_cntr
address[0..3]

address|0..3]

datareg|0..7]

initial block

three-state buffer

Figure 8.27 Block diagram of the module test ram.

Describing Memories 237

//a scalable read only memory module

module rom # (parameter Awidth = 8, Dwidth = 8)
(input oeb,
output [Dwidth-1:0] data,
input [Awidth-1:0] address);

g w N

6 localparam Length = (1 << Awidth);
7 reg [Dwidth-1:0] mem[0:Length-1]1; //memory array

8 assign data = (oeb == 1'b0) ? mem[address] : 'bz;

9 endmodule

rom
(279N Dwidth)

—(oeb

data[Dwidth:0]

1 address[Awidth:0]

Figure 8.28 Verilog description of a ROM.

simulation. This method of initializing a ROM can also be used for a RAM, if required. It also
provides a convenient way of loading a large amount of data into a memory from a file generated
by a third-party tool, such as an assembler.

There are two ‘system commands’ that are available for loading a memory array from a text
file:

e Sreadmemb (‘“‘filename’’ , array name);
e Sreadmemh (‘““filename’’ , array name);

The difference between the two functions lies in the format used to represent the stored data
within the text file; the first function requires the data to be entered into the text file in binary,
whereas the second makes use of a text file containing hexadecimal values.

Listing 8.2 shows the contents of an example text file containing binary data values for
loading into a memory array. The first line specifies the numeric address, in hexadecimal format,
of the starting location. This is usually equal to zero. Subsequent use of the @hex address
delimiter allows the memory to be initialized in discrete sections with different blocks of data.

@0
1010 0000 1111 1011 0010 1001 0110 1110
01111101 1011 1111 0000 0001 0010 0101

238

Describing Combinational and Sequential Logic using Verilog HDL

1010 0000 1111 1011 0010 1001 0110 1110
0111 1101 1011 1111 0000 0001 0010 0101

Listing 8.2 Contents of the file rom data.txt

The actual data values are listed in the order they will be stored in memory separated by white
space, such as one or more space characters or the new-line character. If the number of values

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

‘timescale 1 ns/ 1 ns
module Test rom();

wire [3:0]

Data;

reg [4:0] Address;

reg oebar;

initial //initialise rom with data from file
Sreadmemb ("rom data.txt", dut.mem);

rom #(.Awidth(5),

dut (.oeb (oebar),
.data (Data),

.address (Address)) ;

initial
begin
Address

repeat (32

begin
oebar

0;
)

= 1'bl;

#25 oebar =

#50 oebar

#25;

1'b0;
1'bl;

Address = Address + 1;

end
Sstop;
end
endmodule

Ons
| I

20‘0n‘5 1

40‘0n‘S [

.Dwidth (4))

GO‘OH‘S [

//read entire rom contents

Bo\on\s [

1'9“? [

1'\2“\3 11

Test_romdut.address[4:0]

00 | of

02 | 03

04 [05

06 [07

08 [09

0A | 0B

oC [oD

Test_rom.dut.oeb

L S

Testfromdut.data[S:O]laAZOZFZB22ZQZGZEZ7ZDZBZFZOZ12

Figure 8.29

Verilog test-module for the ROM.

Describing Memories 239

contained within the text file is less than the size of the memory array, then the remaining
memory array locations are undefined.

The text file name field *“*filename’’ isa valid path name to the text file containing the data.
The exact format used here depends on the operating system of the computer used to perform the
Verilog simulation, but generally the name of the text file is all that is required if the file is in the
same location (folder or directory) as the Verilog source files that make use of it.

The call to the system commands $readmemb () and $readmemh () may be made from
within the actual memory module itself,in which case the array name field refers to the name
of the memory array defined within the enclosing module, e.g. mem in the listing shown in
Figure 8.28.

In the present example, the initialization of the ROM memory array is performed within
the test-module Test rom, shown in Figure 8.29. Here, an initial block in lines 6 and 7,
containing a single statement, loads the binary data shown in Listing 8.2 into the memory array:

Sreadmemb ("' rom data.txt'', dut.mem) ;

As shown above, the reference to mem must be preceded by the instance name of the rom
being instantiated in lines 8—11 of the listing shown in Figure 8.29. The default values of the
address and data widths of the ROM are overridden such that a ‘32 x 4’ (32 words, 4-bits per
word) memory is instantiated; this corresponds to the memory array values defined by the
rom_data.txt file shown in Listing 8.2.

The remainder of the test module shown in Figure 8.29 corresponds to an initial block
between lines 12 and 24 that reads each stored value out from the memory array, from location
0to31. Theresulting simulation waveforms shown below the listing in Figure 8.29 illustrate this
process; careful inspection of the data values output during the periods when oebar is asserted
reveals that they are identical to those stored in the text file rom data.txt.

The last example in this section on Verilog memories shows an alternative approach to
describing a ROM. Listing 8.3 shows the source description of amodule named rom_case. As
the name suggests, this variation of a ROM makes use of the Verilog case...endcase
sequential statement.

//read only memory using a case statement
module rom case # (parameter Awidth = 8, Dwidth = 8)
(input oeb,
output [Dwidth-1:0] data,
input [Awidth-1:0] address);

g w N

o reg [Dwidth-1:0] data i;

7 always @ (address)

8 begin

9 case (address) //define rom contents
10 0: data i = 'h88;

11 1: data_i = 'h55;

12 2: data_i = 'haa;

13 3: data_i = 'h55;

14 4: data i = 'hcc;

15 5: data_i = 'hee;

240 Describing Combinational and Sequential Logic using Verilog HDL

16 6: data 1 = "hff;

17 7: data_i = 'hbb;

18 8: data_i = 'hdd;

19 9: data i = 'hll;

20 10: data i = 'h22;

21 11: data_i = 'h33;

22 12: data i = 'h44;

23 13: data i = 'h55;

24 14: data i = 'h66;

25 15: data i = 'h77;

26 default: data i = 'h0; //use "‘x' or ‘0'
27 endcase

28 end

29 //three-state buffer

30 assign data = (oeb == 1'b0) ? data_i: 'bz;

31 endmodule

Listing 8.3 Verilog description for the ROM using a case statement.

The module header is identical to that of the module shown in Figure 8.28; this is
followed by the declaration of a reg named data_1i having Dwidth bits. This object acts
as a signal to hold the output of the case statement, prior to being fed through the ‘three-
state buffer’ at line 30.

The always block in line 7 responds to events on the input address only; the enclosed case
statement then effectively maps each address value to the appropriate data value. In this manner,
the ‘contents’ of the memory are explicitly defined within the module itself, rather than being
contained in an external file. This may restrict this approach to the description of relatively small
memories, due to having to specify each value explicitly within the module text.

Where the number of data values is less than the capacity of the memory (2*"*9"), the
default branch in line 26 must be included to cover the unused memory locations. A default
value of x rather than zero will result in a smaller logic circuit if the ROM is to be implemented in
the form of a combinational logic circuit, since an x is interpreted as a ‘don’tcare’ condition by a
logic synthesis software tool.

8.7 DESCRIBING FINITE-STATE MACHINES

This section describes how the Verilog HDL can be used to create concise behavioural-style
descriptions of FSMs. The underlying building block of many digital systems, the FSM is a
vitally important part of the digital system designer’s toolbox. The behavioural statements
provided by Verilog facilitate the quick and straightforward creation of synchronous FSM
simulation models, once the state diagram has been drawn. This, when combined with the wide
availability of powerful logic synthesis software tools, makes the realization of state machines
extremely efficient and rapid.

Figure 8.30 shows the block diagram structure of a general synchronous FSM. As shown in
Figure 8.30, the FSM comprises two major blocks connected in a feedback configuration: the

Describing Finite-State Machines 241

Input[m-1:0] OUTPUT/NEXT-STATE LOGIC
STATE REGISTER - | |P[M-1:0] OP[k-1:0] [l Output[k-1:0]
=1 D[n-1:0] Q[N-1:0] r———————-1 PS[n-1:0] NS[n-1:0]
Present-State[n-1:0]

Clock > Clock

Reset

Next-State[n-1:0]

Reset——

Figure 8.30 General FSM block diagram.

STATE REGISTER and the OUTPUT/NEXT-STATE LOGIC. There are several possible
variations on the basic structure; however, the state register generally consists of a collection
of n flip-flops (where 2" must be greater than or equal to the number of FSM states), and the
OUTPUT/NEXT-STATE LOGIC block contains the combinational logic that predicts the next
state and the output values.

The general block diagram shown in Figure 8.30 represents the so-called Mealy FSM,
where the k output bits depend both on the n state bits and the m input bits. Initialization of
the FSM may be provided through the use of an asynchronous Reset input that forces all
of the state flip-flops into a known state (usually zero). One possible disadvantage of the
Mealy FSM architecture is the fact that the Output can change asynchronously, in
response to asynchronous changes in the Input. This can be removed by making the
outputs depend only on the Present-State signal, i.e. the output of the state register.
This modified structure is better known as the Moore FSM. This section will present
guidelines and examples on how to construct Verilog behavioural descriptions of both
Mealy and Moore FSMs.

The starting point in the design of any FSM is the state diagram. This graphical
representation provides a crucially important visual description of the machine’s beha-
viour, allowing the designer to determine the number of states required and establish the
logical transitions between them. Once the number of states has been determined, the next
step is to assign a unique binary code to each state; this is known as the state assignment.
In Verilog, the state assignment can be defined in a number of different ways, using:

e local parameters;
e parameters declared as part of the module header;
e the "define compiler directive.

The first of these is perhaps the most obvious choice, since the state values are likely to
be a set of fixed codes referenced from within the module describing the FSM. The
following line of Verilog illustrates how a set of state values is defined for an FSM having
four states:

localparam sO = 2'b00,
sl =2"'001,

242 Describing Combinational and Sequential Logic using Verilog HDL

s2 =2'b10,
s3=2"'bll;

From the point of the above declaration, the symbolic names s0. . .s 3 can be used instead of the
binary codes, making the description more readable.

Defining the state values as a set of in-line parameters within the module header provides the
additional flexibility of being able to reassign them when the FSM module is instantiated, as
shown below:

//module header with in-line parameters
module fsm # (parameter sO =0,

sl =1,
s2 =2,
s3 = 3)

(input clk, ..., output...);
//overriding default parameter values
fsm#(.s0(2

)y
s1(0),
s2(3),
.s3 (1))
F1(.clk(CLK),)7

The third approach makes use of the " define compiler directive in a similar manner to the
way in which #define is used in the C/C+4+ languages to perform text substitution. The
compiler directives come before the module header, as shown by the following example:

“define WAIT 4'b001
“define IDLE 4'b011
“define ACK1 4'b101
“define ACK2 4'b110

module fsm(...);

Within the body of the fsm module above, reference is made to the defined state values as
follows:

//identifier must be prefixed by grave-accent character
Present-State <= "IDLE;

The STATE REGISTER block shown in Figure 8.30 is described by an always sequential
block; therefore, the output signal it assigns to must be declared as a reg-type object, as shown

below:

reg[n-1:0] Present-State; //number of states must be <= 2"

Describing Finite-State Machines 243

The typical format of the state register sequential block is shown in Listing 8.4.

1 always @ (posedge Clock or posedge Reset)
2 begin

3 if (Reset == 1'bl)

4 Present-State <= s0;

5 else

6 Present-State <= Next-State;

7 end

Listing 8.4 General format of state register always block.

As described in previous sections, the sequential block shown in Listing 8.4 describes
synchronous sequential logic with active-high asynchronous initialization (active-low asyn-
chronous initialization is equally possible).

On each 0-to-1 transition of the Clock signal, the Present-State is updated by the
incoming Next-State value in line 6, the latter being produced by the OUTPUT/
NEXT-STATE LOGIC block. Now the Present-State signal is an input to the
OUTPUT/NEXT-STATE LOGIC block; therefore, it responds to this input change, com-
bined with the current values of the inputs, by updating the Next-State output value. The
feedback signal Next-State is now ready for the next positive edge of the clock to occur,
thereby updating the Present-State in a cyclic manner.

Itis good practice to split the OUTPUT/NEXT-STATE LOGIC block into two separate parts,
one for the outputs and another for the next state. This results in a more readable and, therefore,
maintainable description. Listing 8.5 shows the outline Verilog source description for the ‘next-
state’ part of this block.

1 always @ (Present-State, Inputl, Input2, Input3...)
2 begin

3 //consider each possible state
4 case (Present-State)

5 sO0: if (Inputl == 1'b0)

6 Next-State <= sl;

7 else

8 Next-State <= s0;

9 sl: ...;

10 s2: ...;

11 default: Next-State <= s0;
12 endcase

13 end

Listing 8.5 General format of next-state always block.

As shown in Listing 8.5, the next-state always block describes combinational logic; there-
fore, the guidelines discussed in Section 8.2 must be observed in order to ensure that Next -
State is assigned a value under all possible conditions. (This is achieved in Listing 8.5 by
means of the default branch in line 11.)

The always sequential block must be sensitive to changes in both the Present-State
signal and all of the FSM inputs, as shown in line 1. The case. . .endcase statement, situated

244 Describing Combinational and Sequential Logic using Verilog HDL

between lines 4 and 12 inclusive, considers each possible state and assigns the resulting
Next-State depending on the input conditions. In this manner, the next-state part of the
block describes the flow around the state machine’s state diagram in terms of behavioural
statements. The fact that the Next -State signal is assigned values by an always sequential
block means that it must be declared in a similar manner to the Present-State signal, as
follows:

reg [n-1:0] Next-State; //output of combinational behaviour

The default branch (line 11) of the case statement is required to define the behaviour of the
FSM for any unused states; these states result from the fact that the number of used states may be
less than the number of possible states. If the FSM finds itself in an unused state, then the safest
approach is to move it directly and unconditionally to the reset state, otherwise the designer
may take the slightly more risky approach of treating all unused states as don’t care states, in
which case the default branch would be

default: Next-State <= 'bx;

The part of the OUTPUT/NEXT-STATE LOGIC block shown in Figure 8.30 that drives the
FSM outputs may be described using either an additional always block or by means of
continuous assignments. The choice between these approaches depends upon the complex-
ity of the output logic. For Moore-type FSMs, the outputs depend only on the present state;
therefore, the expressive capabilities of the continuous assignment are usually adequate.
The potentially more complicated output logic of a Mealy FSM may require the use of a
sequential block, in which case it is important to remember to qualify the outputs as being
of type reg.

The following extract illustrates the use of the continuous assignment to describe the output
logic of a simple Mealy FSM:

assign Outputl = ((Present-State == s0)
&& (Inputl == 1'b0)) ||
((Present-State == s2)

&& (Input2 ==1'bl));

Here, the outputOutput 1 depends directly on both the present state and the inputs. A variation
on the use of separate sequential blocks, for the state-register and next-state feedback logic, is to
combine these in asingle always block. This approach has the advantage of making the Verilog
description more concise and involves combining the sequential logic behaviour shown in
Listing 8.4 with the combinational logic behaviour shown in Listing 8.5, as shown in Listing 8.6.

reg[n-1:0] state; //single state register

always (@ (posedge clock or posedge reset)
begin
if (reset ==1)

o U W N

Describing Finite-State Machines 245

7 state <= State0;

8 else

9 case (state)

10 Statel: if (Inputl == 0)
11 state <= State?2;

12 else

13 state reg <= readlone;
14 State2: if (Input2 ==1)
15 state <= State3;

16 else

17 state <= State2;

18

19 default: state <= 3'bxxx
20 endcase

21 end

Listing 8.6 General format of combined state-register and next-state logic always block.

Another consequence of using a combined sequential block for the state register and next-
state logic is the removal of the need for two separate reg-type signals for present state and next
state. As shown in Listing 8.6, only a single declared regnamed stateisrequiredinline 2; the
behavioural description both assigns to (lines 7, 11, 15....) and reads from (line 9) this combined
signal. The combined sequential block is triggered by positive edges on either the clock or reset
input (assuming asynchronous active-high initialization is being employed). After testing for
the reset condition in line 6, the behaviour is much the same as that of the next-state logic givenin
Listing 8.5, making use of the case. . .endcase statement to consider each state and input
condition to implement the sequential behaviour described by the state diagram.

In effect, the statements between lines 9 and 20 of the source listing shown in Listing 8.6
describe a self-contained synchronous feedback logic system where the signal state is the
output of a set of D-type flip-flops and the inputs of the flip-flops are described by the
combination of the case and 1 £. . .else statements.

The following example FSM designs serve to illustrate the points discussed above further.
The first example is concerned with the description of an FSM to control the timers used by two
people playing a game of timed chess, and the second looks at a simple combination lock with
automatic locking mechanism.

8.7.1 Example 1: Chess Clock Controller Finite-State Machine

Figure 8.31 shows the block diagram of a system used by two chess players to record the
amount of time taken to make their respective moves. The players, referred to as Player-A and
Player-B, each have their own timer (TIMER-A and TIMER-B), the purpose of which is to
record the total amount of time taken in hours, minutes and seconds for their moves since the
commencement of the game.

The exact details of the timer internal operation are beyond the scope of this discussion, since
we are primarily concerned with the description of the FSM that controls them. The timer control
inputs, en and rst, shown in Figure 8.31, operate as follows:

e rst — when logic 1, resets the time to zero hours, zero minutes and zero seconds.

246 Describing Combinational and Sequential Logic using Verilog HDL

TIMER-A TIMER-B
Timer Timer,
g 2 5 [

Player-A's Button Player-B's Button

T !
i 1 Chess Clock FSM

Ta
Cir
Tb

Reset
Clock

J B

CLOCK

Figure 8.31 Block diagram of chess clock system.

e en — when logic 1, enables the time to increment from the current time value. When en is
logic 0, the current elapsed time is held constant.

Atthe start of anew game, the Reset input is asserted to initialize the system and clear both
timers to zero time. This is achieved by means of the C1 r output of the Chess Clock FSM being
driven high, thereby asserting the reset (r s t) input of both timers. Each chess player has a push-
button, which when pressed applies a logic 1 to their respective inputs, Pa and Pb, of the Chess
Clock FSM. After resetting the timers, the player who is not making the first move presses their
push-button in order to enable the other player’s timer to commence timing.

For example, if Player-A is to make the first move, then Player-B starts the game by pressing
their push-button. This has the effect of activating the Ta output of the Chess Clock FSM block
shown in Figure 8.31, in order to enable TIMER-A to record the time taken by Player-A to make

Describing Finite-State Machines 247

Stop
[Ta, [Tb, ClIr

RunA
Ta, /Tb, /CIr

/Ta,/Tb,/Clr

Figure 8.32 State diagram for chess clock controller FSM.

the first move. Once Player-A completes the first move, Player-A’s button is pressed in order to
stop their own timer and start Player-B’s timer (Ta is negated and Tb is asserted).

For the purposes of this simulation, it is assumed that the Pa and Pb inputs are asserted
momentarily for at least one clock cycle, and the potential problems resulting from switch
bounce and metastability [3] may be neglected.

In the unlikely event that both players press their buttons simultaneously, the Chess Clock
FSM is designed to disable both timers by negating Ta and Tb.

This will hold each player’s elapsed time until play recommences in the manner described
above, i.e. Player-A (Player-B) presses their push-button to re-enable TIMER-B (TIMER-A).

The state diagram for the Chess Clock FSM is shown in Figure 8.32. As shown, the FSM
makes use of four states having the names shown in the upper half of the state circles. The states
of the FSM outputs Ta, Tb and C1r are listed in the lower half of every state circle; those outputs
preceded by ‘/’ are forced to logic 0, whereas those without ‘/ are forced to logic 1. The
presence of the output states within each of the state circles indicates that the Chess Clock FSM is
of the Moore variety.

The values of the inputs, Pa and Pb, are shown alongside each corresponding state transition
path (arrow) using a format similar to that used to show the state of the outputs. The movement
from one state to another occurs on the rising edge of the C1ock input. Where the number of
transitions shown originating from a given state is less than the total number possible, the
remaining input conditions result in a so-called sling, i.e. the next state is the same as the current
state.

For example, the state named RunA in Figure 8.32 has two transitions shown on the diagram
corresponding to the input conditions (Pa, Pb) = (1, 0) and (1, 1). The remaining input
conditions, (Pa, Pb) = (0, 0) and (0, 1), cause the state machine to remain in the current state;

248 Describing Combinational and Sequential Logic using Verilog HDL

hence, there exists a sling in state RunA corresponding to the condition that the Pa input is at
logic 0 and the Pb input can be either logic O or logic 1, the latter indicating the presence of a
don’t care condition for input Pb.

The asynchronous, active-high Reset input forces the FSM directly into the state named
Stop, irrespective of any other condition.

The FSM depicted visually by the state diagram shown in Figure 8.32, is described in a
behavioural style by the Verilog HDL listing given in Listing 8.7.

module chessclkfsm(input reset, Pa, Pb, clock,
output Ta, Tb, Clr);

N -

3 //ascending state assignment
4 localparam RunA = 0, RunB =1, Stop =2, Wait = 3;

5 reg[1:0] state;

6 //combined state register and next state sequential block
7 always @ (posedge clock or posedge reset)
8

begin
9 if (reset)
10 state <= Stop;
11 else
12 case (state)
13 RunA:
14 casex ({ Pa, Pb})
15 2'b0x: state <= RunA;
16 2'bl0: state <= RunB;
17 2'bll: state <=Wait;
18 endcase
19 RunB:
20 casex ({ Pa, Pb})
21 2'bx0: state <= RunB;
22 2'b01: state <= RunA;
23 2'bll: state <=Wait;
24 endcase
25 Stop:
26 case ({ Pa, Pb})
27 2'p00: state <= Stop;
28 2'b01: state <= RunA;
29 2'p10: state <= RunB;
30 2'bll: state <= Wait;
31 endcase
32 Wait:
33 if (Pa == Pb)
34 state <= Wait;
35 else if (Pa == 1"'bl)
36 state <= RunB;
37 else

38 state <= RunA;

Describing Finite-State Machines 249

39 endcase
40 end

41 //Moore output assignments depend only on state

42 assign Ta = state == RunA;
43 assign Tb = state == RunB;
44 assign Clr = state == Stop;

45 endmodule
Listing 8.7 Verilog description of the Chess Clock FSM.

The module chessclkfsmmakes use of a local parameter to define the state values. Each
state name shown in the state diagram of Figure 8.32 is assigned a value inline 4. This is followed
by the declaration of a 2-bit reg to hold the state of the FSM; this description makes use of the
single always block approach outlined in Listing 8.6.

The sequential always block spanning lines 7-40 of the listing shown in Listing 8.7
describes the state register and next-state logic. The presence of a don’t-care condition in one
of the state transitions for states RunA and RunB suggests the use of a special variation of the
case statement known as casex.

The use of casexinstead of caseinlines 14 and 20 allows the explicituse of the ‘don’t-care’
value (x) within the literals specified in lines 15 and 21. In effect, this means that one or more of
the inputs can be either logic 0 or logic 1, e.g. lines 14 and 15 are equivalent to the following:

14 case ({ Pa,Pb})
15 2'b00, 2'b01: state <= RunA;
16

The case statement considers each possible value of state; in this example there is no
requirement for a default branch, since the number of states is equal to a power of 2.
State Stop has four unique next states, hence the need for a nested case...endcase
statement with four branches, or limbs, situated in lines 27-30 inclusive. The case
statement gives equal priority to each of the individual limbs or branches enclosed within
the bounds of case. . .endcase; hence, the matching expressions must be nonoverlapping
or mutually exclusive. As seen previously, multiple values may be specified on a single
branch, so long as none of these values appears within any other of the branches within the
statement.

The next-state behaviour of the Wait state is described using a nested if...else
statement in order to illustrate the flexibility of the Verilog language. It is straightforward to
appreciate that the semantics of the statement in lines 33-38 inclusive of the source
description in Listing 8.7 are equivalent to the state transitions shown on the state diagram
of Figure 8.32, bearing in mind that there is a sling condition corresponding to input values
(Pa, Pb) = (0, 0) and (1, 1).

It should be noted that, despite the priority implied by the nested 1 £. . .else. . .if statement
semantics, the circuitry resulting from synthesis of this description will not include any
prioritized logic. This is due to the fact that the conditions specified in each part of the
if. . .else statement are mutually exclusive.

250 Describing Combinational and Sequential Logic using Verilog HDL

The outputs Ta, Tb and C1 r, of the Chess Clock FSM, are of the Moore variety, i.e. dependent
on the state of the machine only. These are generated by means of the continuous assignments in
lines 42—44 of the source description shown in Listing 8.7. Each output is generated by
continuously comparing the value of the state-register state with the local parameter value
corresponding to the state in which the output is asserted.

In this simple example, each output is asserted in only one state; therefore, the logic of the
outputs amounts to little more than a single AND gate.

The output logic can be further simplified by encoding the states of the FSM with values that
match the outputs. In the present example, the output values are unique for each state, so this
would involve simply defining the state values to be the same as the output values, i.e. replace the
local parameter declarations with those shown in lines 4—7 of Listing 8.8.

3 //state assignment matches outputs Ta, Tb, Clr
4 localparam RunA = 3'b100,

5 RunB = 3'b010,

6 Stop = 3'b001,

7 Wait = 3'b000;

8 reg[2:0] state; //no. of state bits = no. of outputs

39 default: state <= 3'bx;
40 endcase

41 //outputs are equal to state bits
42 assign Ta = state[2] ;

43 assign Tb = state[l] ;

44 assign Clr = state[0] ;

Listing 8.8 Alternative state assignment to match outputs.

The output continuous assignments, situated in lines 42—44 of the listing given in Listing 8.7,
would be replaced by the corresponding lines shown in Listing 8.8. As shown, each outputisnow
mapped directly to the corresponding bit of the state register.

Another consequence of modifying the state assignments, as described above, is the
need to change the number of state bits to match the number of outputs. The replacement
state-register declaration, in line 8 of Listing 8.8 now declares a register having 3-bits;
therefore, the next-state behaviour must be modified by the addition of a default
branch in line 39, so that the additional (23 — 4 = 4) unused states are covered by the
case statement.

Simulation of the Chess Clock FSM module chessclkfsm is achieved by means of
the simple test module shown in Figure 8.33. The resulting timing waveforms are also
shown in Figure 8.33, where the relationship between the inputs, state and outputs can be
seen to follow that defined by the state diagram. Most Verilog simulation tools provide a
facility whereby the values of the state waveform can be displayed in terms of the state
names used on the state diagram, as is the case here. This is a significant visual aid
when attempting to analyse, understand and verify the behaviour of an FSM using
simulation.

Describing Finite-State Machines

251

=

i

H = O 00 J oy !

= o

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35

‘timescale 1 ms / 1 ms
module Test chessclkfsm();

reg RES, A, B, CLK;
wire Ta, Tb, Clrt;

//generate a 10 Hz clock
initial
begin
CLK = 1"'b0;
forever
#50 CLK = ~CLK;
end

//generate inputs
initial
begin
RES=1'bl; A=1"'b0; B 1'b0;
#200 RES = 1'b0;
#200;
A=1"bl;
#550 A = 1'b0;
#350 B =1"bl;
#750 B =1"'b0;
#400;
A=1"'bl; B=Dbl;
#350;
A=1'b0; B=1"'b0;
#450;
A=1"bl;
#800;
Sstop;
end

//instantiate the FSM
chessclkfsm mut (.reset (RES),
.Pa (A), . Pb(B), . clock (CLK),
.Ta (Ta), .Tb (Tb), .Clr (Clrt));
endmodule

Figure 8.33 Test module and simulation waveforms for chess clock FSM.

252 Describing Combinational and Sequential Logic using Verilog HDL

Test_chessclkfsm.RES | |

Test_chessclkfsm.CLK
Test_chessclkfsm.A [| [

Test_chessclkfsm.B [I | |

Test_chessclkfsm.Ta]
Test_chessclkfsm.Tb | [| |
Test_chessclkfsm.CIrt [|
Test_chessclkfsm.mut.state[1:0] Stop | RunB | RunA Wait [RunB

Figure 8.33 (Continued).

8.7.2 Example 2: Combination Lock Finite-State Machine with Automatic
Lock Feature

The second example of an FSM-based design is a rather more complex system that makes use of
several modules, both combinational and sequential. This example also serves to illustrate the
interaction of an FSM with other synchronous sequential modules, all described in abehavioural
style and clocked by a common clock signal.

Figure 8.34 shows the block diagram of a so-called ‘digital combination lock’ system. At the
heart of the system there is an FSM, labelled CONTROLLER in the figure, the function of which
is to detect when a user has entered the correct four-digit secret code via the Key Pad Switches,
shown at the left-hand side of Figure 8.34.

The user sees a keypad with eight active-low push-button switches (SW[O0]...SW[7]). The
first four (SWJO...3]) are hardwired into the system via a four-to-one multiplexer; these
represent the code switches. It is up to the user to connect the multiplexer inputs to the keypad
switches corresponding to the secret code; in this manner, the secret access code is hardwired
into the system.

The eight-input AND gate, connected to all of the switches in Figure 8.34, provides an output
named allsw that goes to logic O if any switch is pressed. The output of the four-to-one
multiplexer, named mux_out, will go to logic 0 if the switch being pressed corresponds to the
multiplexer select address input sel[0. . 1]. In this manner, the multiplexer is able to select
each switch in the code in sequence; the output mux_out will go low only if the correct switch
has been pressed.

The input push-button switches are asynchronous inputs by nature, whereas the combination
lock system operates entirely synchronously. It is impossible to predict for how long any push-
button will be pressed; therefore, the duration of the logic 0 pulses coming into the system on
signalsmux _out and allswisentirely unpredictable. If the aforementioned signals were fed
directly into the FSM, then a single key depression lasting 0.5 s, for example, would be
interpreted as a sequence of approximately n inputs, where

n=0.5/clock period.
The above problem is overcome by means of the simple ‘edge detector’ circuit shown in

Figure 8.35. The system makes use of two of these circuits, labelled DET1 and DET?2 in
Figure 8.34. As shown in Figure 8.35, the circuit is essentially a synchronous 2-bit shift

“WA)SAS YO0[UOIRUIqUIOD JO WeRISRIP Yoo[g ¢S NS

olms

1esp
NET ndu| %2010 ZHOL
H01D < plelete]
— e
noswi] SaYOIMS ped Aoy
W _— e e o e S —
— o o o o o o o
do o 00 6 00
H0P G—9
WS4001 wskue < PPoPRP abpe o ¢
) msje N
[0:1Imsjes 10891 45— FAEN]
yoop 44— oo |e (v |e o |n
5 souwnue ERERERERERERE:
mshue < SEMdERBRNZ
pa3o0] F1pabo0]
MS8POd — 1303903
wuefe H wiee >
3000 g3— 8
inoewl gg——— 510010p S
MS3p0D = uebpe q—— 1 = ©
Y3 TI0Y1INOD NE[no xnw xnw |
0

pas paxo0]

pos wieje

U

Aeidsiq yuswbag-, 198

il

254 Describing Combinational and Sequential Logic using Verilog HDL

edge_in q0
- —
D Q D Q detected
nq1
CLK 'Qp— CLK 1Qp———mmmm
clock
>

Figure 8.35 Logic diagram of edge detector edgedet.

register with the output of the first flip-flop ANDed with the inverse of the output of the
second flip-flop.

This simple circuit performs both synchronization and edge detection, in that it produces a
single clock-cycle-length logic 1 pulse at the output named detected, near to the point when
theinput, edge in,undergoesalogic 1 tologic O transition, regardless of how long edge in
remains at logic 0.

Neglecting the usual problems of metastability [3], which result whenever there is a need to
interface between asynchronous and synchronous domains, the logic circuit of Figure 8.35
provides an effective means of interfacing the push-button switches to the FSM.

The outputs, codesw and anysw, of the two edge detectors feed directly into the FSM
LOCKFSM. The fact that the edge detectors and the FSM are clocked by the same signal ensures
synchronization between the two separate modules such that if a key is pressed, and it is the
correctkey (i.e. the four-to-one multiplexeris selecting the key), the 1ock f smreceives alogic 1
pulse on both codesw and anysw during the same clock cycle. The arrival of the two pulses
indicates the correct key was pressed and the FSM then advances to the next state.

The Verilog descriptions of the D-type flip-flop and the edge detector are shown in Listings 8.9
and 8.10 respectively.

1 module dff (output reqg g, input d, clk);
2 always @ (posedge clk) g <= d;

3 endmodule
Listing 8.9 Verilog source description of D-type flip-flop.

1 module edgedet (input edge in,
2 output detected,
3 input clock) ;

4 wire g0, gl;

5 dff dff0(.q(g0), .d(edge_in), .clk(clock));
[dff dffl(.qg(gl), .d(g0), .clk(clock));

7 assign detected = g0 & ~ql;

8 endmodule

Listing 8.10 Verilog source description of edge detector.

Describing Finite-State Machines 255

The block diagram of Figure 8.34 includes a timer module (TIMER) labelled T1. This
module interfaces with the FSM via signals ent imer (enable timer) and t imeout (timer
timed out) and is clocked by the same master clock as the FSM and edge detectors, ensuring
synchronization.

The function of the timer is to provide an automatic locking mechanism, returning the
system to the locked state after a delay of 30 s subsequent to the system entering the
unlocked state.

The master clock signal is intended to have a frequency of 10 Hz, so the timer imple-
ments the required delay by counting to 300;, as shown in the Verilog source description
shown in Listing 8.11.

1 module Timer (input Clock, Start, output Timeout) ;
2 //time delay value in clk pulses

3 localparam NUMCLKS = 300;

4 reg[8:0] g;

5 always @ (posedge Clock)

6 begin

7 if (!Start]| (g == NUMCLKS))
8 q<=9'b0;

9 else

10 g<=g-+1;

11 end

12 //decode counter output
13 assign Timeout = (g == NUMCLKS) ;

14 endmodule

Listing 8.11 Verilog source description of automatic lock timer.

The Timer module behaviour is entirely synchronous: with the input named Start atlogic
0, the timer is disabled and the count g held at zero.

The FSM starts the timer when it enters the unlocked state by asserting entimer
(connected to timer input Start), this allows the count g to increment on each
clock edge until it reaches the terminal value NUMCLKS (300,(), at which point the
Timeout output of the timer goes high for one clock cycle and the count returns to
Zero.

The FSM responds to the logic 1 on its timeout input by returning to state sO, where the
locked output returns high. By returning to state sO, the FSM also negates the entimer
output, thereby disabling the timer until the next time it is required.

The remaining module, as yet not discussed, in the block diagram of Figure 8.34, is the
seven-segment decoder named SEGDISP. This module is purely combinational and drives
an active-low seven-segment display unit that displays the state of the system, based on the
values of the alarm and locked outputs of the FSM: ‘L’ for locked, ‘U’ for unlocked
and ‘A’ for alarm. The Verilog behavioural description of the module is given in List-
ing 8.12.

256 Describing Combinational and Sequential Logic using Verilog HDL

1 module segdisp (input locked,alarm,
2 output SA, SB, SC, SD, SE, SF, SG) ;

3 regl[6:0] seg;

4 always @ (locked or alarm)

5 begin

6 if (alarm == 0)

7 seg = 7'b0001000; //display ‘A&
8 else if (locked == 0)

9 seg = 7'b1000001; //display ‘U’
10 else

11 seg = 7'b1110001; //display I/
12 end

13 assign {SA, SB, SC, SD, SE, SF, SG} = seg;

14 endmodule

Listing 8.12 Verilog source description of seven-segment display decoder.

Figure 8.36 shows the state diagram for the 1 ock £ sm module at the heart of the combination
lock system.

The FSM is initialized by asserting the asynchronous reset input, this forces it into state s0,
where the 1locked and alarm outputs are both at logic 1, indicating the system is locked and
notin a state of alarm (alarmis active-low). The 2-bit se 1 sw output of the Lockfsmis set to
zero, thereby selecting the first input push-button in the sequence via the four-to-one multi-
plexer. The timer is disabled on account of entimer being at logic 0.

What happens next depends on which of the eight push-button switches is pressed. If the first
switch in the code sequence is pressed (SW[0]), then the input signals codesw and anysw go
high simultaneously, causing the FSM to move into state s1, where it remains until a subsequent
key is pressed.

In state s1 the se1sw output of the FSM is set to 1, thereby selecting the second input of the
multiplexer, this being connected to the second switch in the code sequence, SW[1]. Pressing
SWI1] in state s1 asserts both codesw and anysw again, advancing the FSM into state s2.

On entering state s2, the FSM changes selsw to 2, thereby selecting the third input of the
multiplexer, this being connected to the third switch in the code sequence, SW[2].

In a similar manner to that described above, pressing switches SW[2] followed by SW[3]
causes the Lock f smto enter the unlock state, having pressed all four keys (SW[0]. . .SW[3])
inthe correct order. The 1 ocked output goes tologic 0 and the seven-segment display shows the
letter ‘U’.

As shown in Figure 8.36, the ent imer output of the FSM is now asserted, thereby enabling
the timer. The 1ockfsm will remain in the unlock state for as long as the timeout input
remains at logic 0 (assuming the asynchronous reset input is not asserted).

As discussed above, this corresponds to a duration equal to 300,(clock periods or 30 s,
whereupon the FSM will return to state sO and reassert the 1ocked output.

In any of the Lockfsm states (s0, s1, s2 and s3), pressing the incorrect key pad switch will
result in a pulse arriving from anysw, via the eight-input AND gate, but there will be no such

Describing Finite-State Machines 257

sO
locked,
alarm,

/entimer,

reset

timeout

/codesw,
anysw

locked,

alarm,
/entimer,
selsw =1

/codesw,
anysw

unlock

wron

Jocked, "Tlocked,
/alarm, alarm,
/entimer, entimer,
selsw =0

selsw =0

/codesw,
anysw

s2
locked,
alarm,

/entimer,

selsw =

/codesw,
anysw

codesw,
anysw

s3
ocked,
alarm,

/entimer,

selsw =3

Figure 8.36 Combination lock FSM (1ock f sm) state diagram.

pulse on codesw, due to the fact that the currently selected multiplexer input will not be

asserted low.
The state diagram of Figure 8.36 shows that, under these circumstances, the FSM will move to

state wrong, indicating that the incorrectkey was pressed. In this particular state, the active-low
alarm output is asserted and the display unit outputs the code for the letter ‘A’.

The absence of any transitions leaving state wrong indicates the presence of an
unconditional state transition leading from the wrong state back to itself (a ‘sling’), i.e.
the only way to exit the alarm state is to force an asynchronous reset. Needless to say, the
clear input would, therefore, have to be located in a secure environment, enabling only a
qualified operator to reset the alarm.

The Verilog behavioural description of the 1 ockfsm module is shown in Listing 8.13.

1 module lockfsm(input clock, reset,

258 Describing Combinational and Sequential Logic using Verilog HDL

2 codesw, anysw,

3 output reg[1:0] selsw,

4 output locked, alarm, entimer,

5 input timeout) ;

6 localparam s0=3'b000, s1=3'b001, s2=3'b010,
7 s3=3"'b011,

8 wrong=3'b100, unlock=3"'b101;

9 reg[2:0] lockstate;

10 always @ (posedge clock or posedge reset)
11 begin

12 if (reset == 1'bl)

13 lockstate <= s0;

14 else

15 case (lockstate)

16 sO0 : if (anysw & codesw)
17 lockstate <= s1;

18 else if (anysw)

19 lockstate <= wrong;
20 else

21 lockstate <= s0;

22 sl : if (anysw & codesw)
23 lockstate <= s2;

24 else if (anysw)

25 lockstate <= wrong;
26 else

27 lockstate <= sl;

28 s2: if (anysw & codesw)
29 lockstate <= s3;

30 else if (anysw)

31 lockstate <= wrong;
32 else

33 lockstate <= s2;

34 s3: if (anysw & codesw)
35 lockstate <= unlock;
36 else if (anysw)

37 lockstate <= wrong;
38 else

39 lockstate <= s3;

40 wrong: lockstate <= wrong;
41 unlock: if (timeout)

42 lockstate <= s0;

43 else

44 lockstate <= unlock;
45 default: lockstate <= 3'bx;
46 endcase

47 end

48 always @ (lockstate)

Describing Finite-State Machines 259

49 begin

50 case (lockstate)

51 s0: selsw = 0;

52 sl: selsw=1;

53 s2: selsw = 2;

54 s3: selsw = 3;

55 wrong: selsw = 0;

56 unlock: selsw = 0;

57 default: selsw = 2'bx;

58 endcase

59 end

60 assign locked = (lockstate == unlock) ? 0: 1;
61 assign alarm = (lockstate == wrong) ? 0: 1;
62 assign entimer = (lockstate == unlock) ? 1: 0;

63 endmodule

Listing 8.13 Verilog source description of combination lock FSM.

In common with the previous example, this FSM is of the Moore type; therefore, the
always sequential block starting at line 10 describes the state register and next-state
behaviour only.

The output logic is captured by the combinational always block situated in lines 48—59
inclusive, and the continuous assignments on lines 60—62. The 3-bit state register Lockstate
is declared in line 9 and the six used states are assigned ascending numbers by means of a local
parameter starting in line 6.

The two unused states are exploited as don’t-care states by means of the default branches
in lines 45 and 57 of the source shown in Listing 8.13.

All of the used states, with the exception of state wrong, make use of the if...else
statement to describe the state transition logic defined by the state diagram of Figure 8.36. For
example, the next-state behaviour for state sl is repeated below:

sl : if (anysw & codesw)
lockstate <= s2;
else if (anysw)
lockstate <= wrong;
else
lockstate <= s1;

The first condition to be tested is the expression anysw & code sw; this will be true (logic 1) if
both anysw and codesw are at logic 1. If this is the case, then the state of the FSM is moved to
s2. If the first condition is false, then this leaves the possibility of either input being high or both
inputs being low. The structure of the logic means that code swcannot be high if anyswislow,
soitisonly necessary to test the state of anysw to see whether an incorrect key was pressed and,
hence, move to the alarm state.

260

Describing Combinational and Sequential Logic using Verilog HDL

Ifnokeys are pressed, then the FSM state remains the same, i.e. in this case s1. This is achieved
by means of the final, and optional, else part of the above statement.

The complete combination lock system block diagram, shown in Figure 8.34, is described by
the Verilog source given in Listing 8.14.

oy U1

10
11
12

13
14

15
16
17

18
19
20

21
22
23

24
25
26
27
28
29
30
31
32

33
34
35

module comblock (input clock, clear,
input [7:0] switches,
output alarm, locked,
output sA, SB, sC, sD, SE, SF, SG);

wire mux out, anysw, codesw,
allsw, entimer, timeout;

wire [1:0] selsw;

//4-to-1 multiplexor

assign mux out = selsw == 0? switches][0] :
(selsw == 17? switches[1] :
(selsw == 27? switches[2] :
(selsw == 37? switches[3] : 1'b0)));

//AND gate for all switches
assign allsw = &switches;

edgedet detl (.edge in(mux out),
.detected (codesw),
.clock(clock));

edgedet det2(.edge in(allsw),
.detected (anysw) ,
.clock(clock));

Timer tl(.Clock(clock),
.Start (entimer),
.Timeout (timeout)) ;

lockfsm controller(.clock(clock),
.reset (clear),
.codesw (codesw) ,
.anysw(anysw),
.selsw(selsw),
.locked (locked),
.alarm(alarm),
.entimer (entimer),
.timeout (timeout)) ;

segdisp sgl (.locked(locked),
.alarm(alarm),
.SA(SA),

Describing Finite-State Machines 261

36 .SB(SB),
37 .sC(sC),
38 .SD(SD),
39 .SE(SE),
40 .SF(SF),
41 .SG(SG)) ;

42 endmodule

Listing 8.14 Verilog source description of complete combination lock system.

The comblock module comprises instantiations of the modules discussed previously, along
with two continuous assignments, situated in lines 9 and 14, to implement the four-to-one
multiplexer and the eight-input AND gate respectively.

Simulation of the combination lock system is achieved with the use of a Verilog test module
named test comblock, shownin Listing 8.15.

1 “timescale 1ms / 1ms
module test comblock();

N

// Inputs
reg clock;
reg clear;
reg([7:0] switches;

oy U1 W W

// Outputs
wire alarm;
wire locked;
0 wire SA, SB, SC, SD, SE, SF, SG;

= o 0 J

11 // Instantiate the combination lock
12 comblock UUT (

13 .clock(clock),

14 .clear (clear),

15 .switches (switches),

16 .alarm(alarm),

17 .locked (locked),

18 .SA(SA), .SB(SB), .SC(SC),

19 .SD(SD), .SE(SE), .SF(SF), . SG(SG)
20)

21 initial

22 begin

23 clock =1'b0;

24 forever

25 #50 clock = ~clock;
26 end

27 initial
28 begin
29 clear =1"'bl;

262 Describing Combinational and Sequential Logic using Verilog HDL

30 switches =8'p11111111;

31 repeat (3) @ (negedge clock);
32 clear = 1'b0;

33 repeat (3) @ (negedge clock);
34 switches[0] = 1'b0;

35 repeat (2) @ (negedge clock) ;
36 switches[0] = 1'bl;

37 repeat (3) @ (negedge clock) ;
38 switches[1l] = 1'b0;

39 repeat (2) @ (negedge clock) ;
40 switches[1l] = 1'bl;

41 repeat (3) @ (negedge clock) ;
42 switches[2] =1'b0;

43 repeat (2) @ (negedge clock) ;
44 switches[2] = 1'bl;

45 repeat (3) @ (negedge clock) ;
46 switches[3] = 1'b0;

47 repeat (2) @ (negedge clock) ;
48 switches[3] = 1'bl;

49 repeat (400) @ (negedge clock); //wait for timeout
50 clear = 1'bl;

51 repeat (4) @ (negedge clock);
52 clear = 1'b0;

53 repeat (3) @ (negedge clock) ;
54 switches[0] = 1'b0;

55 repeat (2) @ (negedge clock);
56 switches[0] = 1'bl;

57 repeat (3) @ (negedge clock);
58 switches[5] = 1'b0;

59 repeat (2) @ (negedge clock);
60 switches[5] = 1'bl;

61 repeat (3) @ (negedge clock) ;
62 switches[2] = 1'b0;

63 repeat (2) @ (negedge clock);

Describing Finite-State Machines 263

64 switches[2] = 1'bl;

65 repeat (3) @ (negedge clock) ;
06 switches[3] = 1'b0;

67 repeat (2) @ (negedge clock);
68 switches[3] = 1'bl;

69 repeat (4) @ (negedge clock) ;
70 clear =1"'b1;

71 repeat (4) @ (negedge clock) ;

72 $Sstop;
73 end
74 endmodule

Listing 8.15 Verilog source description of combination lock system test module.

The test-module generates a 10 Hz clock using an initial sequential block starting at
line 21.

@ 0ms |500ms |1.0s |1.55 |2.0s |2.55 |3.0s |3.5$
I T A S T Y T T T O A A A A

test_comblock.clear

test_comblock.clock

test_comblock.alarm

test_comblock.locked |
test_comblock.switches[0] L
test_comblock.switches[1] L
test_comblock.switches[2] L
test_comblock.switches[3] L
test_comblock.switches[4]

test_comblock.switches[5]

test_comblock.switches[6]

test_comblock.switches[7]
test_comblock.switches[7:0] FF [FE] FF [FD] FF [FB[FF [F7]

test_comblock.UUT.allsw

test_comblock.UUT.anysw

N
m
m
m
i

test_comblock.UUT.codesw
test_comblock.UUT.mux_out
1

test_comblock.UUT.selsw[1:0] 0 [
test_comblock.UUT.entimer |

test_comblock.UUT.timeout
lockstate[2:0] s0 | s1 | s2 | s3 | unlock
test_comblock.UUT.1.q[8:0] 0 [1] 2] 3 4] 9 6] 7[8] 9l10[11]12

Figure 8.37 Combination lock simulation showing: (a) application of correct switch sequence; (b)
automatic locking feature; (c) incorrect key input sequence.

264

Describing Combinational and Sequential Logic using Verilog HDL

(b)

L ‘3\2'05\ L ‘3\2'25\ L ‘3\2'4\8 L ‘3\2'6\5 L ‘3\2'88\ !

test_comblock.clear

test_comblock.clock

| S) Sy [S Sy

test_comblock.alarm

test_comblock.locked

test_comblock.switches[0]

test_comblock.switches[1]

test_comblock.switches[2]

test_comblock.switches[3]

test_comblock.switches[4]

test_comblock.switches[5]

test_comblock.switches[6]

test_comblock.switches[7]

test_comblock.switches[7:0]

FE

test_comblock.UUT.allsw

test_comblock.UUT.anysw

test_comblock.UUT.codesw

test_comblock.UUT.mux_out

selsw[1:0]

test_comblock.UUT.entimer

test_comblock.UUT.timeout

1

lockstate[2:0]

unlock [

test_comblock.UUT.t1.q[8:0]

205] 296 | 297 | 298] 299 300 0 [o [o [o [0

test_comblock.clear

test_comblock.clock

test_comblock.alarm

test_comblock.locked

test_comblock.switches[0]

test_comblock.switches[1]

test_comblock.switches[2]

test_comblock.switches[3]

test_comblock.switches[4]

test_comblock.switches[5]

test_comblock.switches[6]

test_comblock.switches[7]

test_comblock.switches[7:0]

FE FF

test_comblock.UUT.allsw

test_comblock.UUT.anysw

test_comblock.UUT.codesw

test_comblock.UUT.mux_out

selsw[1:0]

test_comblock.UUT.entimer

test_comblock.UUT.timeout

lockstate[2:0]

s0 alarm [s0

test_comblock.UUT.t1.q[8:0]

Figure 8.37 (Continued).

References 265

Assecond initial block, starting at line 27, exercises the combination lock by applying the
correct sequence of switch inputs in order to reach the unlock state. This is followed by a40 s
delay, implemented using a repeat loop, to allow observation of the automatic lock feature.
Finally, after resetting the system, an incorrect sequence of switches is applied in order to verify
the operation of the alarm state.

Figure 8.37a—c shows a selection of simulation waveforms obtained as a result of running the
test-module simulation.

REFERENCES

1. Ciletti MD. Modeling, Synthesis and Rapid Prototyping with the Verilog HDL. New Jersey: Prentice
Hall, 1999.

2. Ciletti MD. Advanced Digital Design with the Verilog HDL. New Jersey: Pearson Education, 2003
(Appendix I — Verilog-2001).

3. Wakerly JF. Digital Design: Principles and Practices, 4th edition. New Jersey: Pearson Education,
2006 (Metastability and Synchronization, Section 8.9).

