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Describing Combinational
and Sequential Logic using
Verilog HDL

8.1 THE DATA-FLOW STYLE OF DESCRIPTION:
REVIEW OF THE CONTINUOUS ASSIGNMENT

We have already come across numerous examples in the previous chapters of Verilog designs

written in the so-called data-flow style. This style of description makes use of the parallel

statement known as a continuous assignment. Predominantly used to describe combinational

logic, theflowof execution of continuous assignment statements is dictated by events on signals

(usually wires) appearing within the expressions on the left- and right-hand sides of the

continuous assignments. Such statements are identified by the keywordassign. The keyword
is followed by one or more assignments terminated by a semicolon.

All of the following examples describe combinational logic, this being themost common use

of the continuous assignment statement:

//some continuous assignment statements
assign A ¼ q [0], B ¼ q [1], C ¼ q [2];

assign out ¼ (�s1 & �s0 & i0) j
(�s1 & s0 & i1) j
(s1 & �s0 & i2) j
(s1 & s0 & i3);

assign #15 {c_out, sum} ¼ a þ b þ c_in;

The continuous assignment statement forms a static binding between thewire being assigned

on the left-hand side of the¼ operator and the expression on the right-hand side of the assignment

operator. This means that the assignment is continuously active and ready to respond to any
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changes to variables appearing in the right-hand side expression (the inputs). Such changes result

in the evaluation of the expression and updating of the target wire (output). In this manner, a

continuous assignment is almost exclusively used to describe combinatorial logic.

As mentioned previously, a Verilog module may contain any number of continuous assign-

ment statements; they can be inserted anywhere between themodule header and internalwire/
reg declarations and the endmodule keyword.

The expression appearing on the right-hand side of the assignment operator may contain

both reg- and wire-type variables and make use of any of the Verilog operators mentioned in

Chapter 7.

The so-called target of the assignment (left-hand side) must be a wire, since it is continuously
driven. Both single-bit andmulti-bit wiresmay be the targets of continuous assignment statements.

It is possible, although not common practice, to use the continuous assignment statement to

describe sequential logic, in the form of a level-sensitive latch.

The conditional operator (?:) is used on the right-hand side of the assignment on line 2 of the

listing shown in Figure 8.1. When en is true (logic 1) the output q is assigned the value of the

input data continuously.When en goes to logic 0, the outputq is assigned itself, i.e. feedback

maintains the value of q, as shown in the logic diagram below the Verilog listing.

It should be noted that the use of a continuous assignment to create a level-sensitive latch, as

shown in Figure 8.1, is relatively uncommon. Most logic synthesis software tools will issue a

warning message on encountering such a construct.

8.2 THE BEHAVIOURAL STYLE OF DESCRIPTION:
THE SEQUENTIAL BLOCK

The Verilog HDL sequential block defines a region within the hardware description conta-

ining sequential statements; these statements execute in the order they are written, in just the

1 module latch (output q, input data, en); 

2 assign q = en ? data : q; 

3 endmodule

MUX

1

0

q

en

data

Figure 8.1 Describing a level-sensitive latch using a continuous assignment.
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same way as a conventional programming language. In this manner, the sequential block

provides a mechanism for creating hardware descriptions that are behavioural or algorithmic.

Such a style lends itself ideally to the description of synchronous sequential logic, such as

counters and FSMs; however, sequential blocks can also be used to describe combinational

functions.

A discussion of some of the more commonly used Verilog sequential statements will reveal

their similarity to the statementsused in theC language. Inaddition to the two typesof sequential

block described below, Verilog HDL makes use of sequential execution in the so-called task
andfunction elementsof the language.These elements are beyond the scopeof this book; the

interested reader is referred to Reference [1].

Verilog HDL provides the following two types of sequential block:

� The always block. This contains sequential statements that execute repetitively, usually in

response to some sort of trigger mechanism. An always block acts rather like a continuous

loop that never terminates. This type of block can be used to describe any type of digital

hardware.

� The initial block. This contains sequential statements that execute from beginning to

end once only, commencing at the start of a simulation run at time zero. Verilog

initial blocks are used almost exclusively in simulation test fixtures, usually to create

test input stimuli and control the duration of a simulation run. This type of block is not

generally used to describe synthesizable digital hardware, although a simulation model

may contain an initial statement to perform an initialization of memory or to load

delay data.

The two types of sequential block described above are, in fact, parallel statements;

therefore, a module can contain any number of them. The order in which the always and

initial blocks appear within the module does not affect the way in which they execute.

In this sense, a sequential block is similar to a continuous assignment: the latter uses a

single expression to assign a value to a target whenever a signal on the right-hand side

undergoes a change, whereas the former executes a sequence of statements in response to

some sort of triggering event.

Figure 8.2 shows the syntax of the initial sequential block, along with an example

showing how the construct can be used to generate a clock signal.

As can be seen in lines 3 to 8, an initial block contains a sequence of one or more state-

ments enclosed within a begin. . .end block. Occasionally, there is only a single statement

enclosed within the initial block; in this case, it is permissible to omit the begin. . .end
bracketing, as shown in lines 12 and 13. It is recommended, however, that the bracketing is

included, regardless of the number of sequential statements, in order tominimize the possibility

of syntax errors.

Figure 8.2 also includes an exampleinitial block (lines 14 to 21), the purpose of which is

to generate a repetitive clock signal. A local parameter namedPERIOD is defined in line 14; this
sets the time period of the clock waveform to 100 time-units. The execution of the initial
block starts at time zero at line 18, where the CLK signal is initialized to logic 0; note that the

signal CLK must be declared as a reg, since it must be capable of retaining the value last

assigned to it by statements within the sequential block. Also note that the initialization ofCLK
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could have been included as part of its declaration in line 15, as shown below:

15 reg CLK ¼ 1'b0;

Following initialization of CLK to logic 0, the next statements to execute within the

initial block are lines 19 and 20 of the listing in Figure 8.2. These contain an

endless loop statement known as a forever loop, having the general syntax shown

below:

forever
begin

//sequential statement 1

1 //general syntax of the initial sequential block
2 //containing more than one statement
3 initial
4 begin
5   //sequential statement 1 
6   //sequential statement 2 
7   ... 
8 end
9
10 //general syntax of the initial sequential block
11 //containing one statement (no need for begin...end)
12 initial
13   //sequential statement 

14 localparam PERIOD = 100;   //clock period

15 reg CLK;

16 initial
17 begin       
18   CLK = 1'b0;            
19   forever //an endless loop!         
20    #(PERIOD/2) CLK = ~CLK;    
21 end

CLK

00105

0

Figure 8.2 Syntax of the initial block and an example.
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//sequential statement 2
. . .
end

In common with the initial block itself, the forever loop may contain a single

statement or a number of statements that are required to repeat indefinitely; in the latter case,

it must include the begin. . .end bracketing shown above. The example shown in Figure 8.2

contains a single delayed sequential assignment statement in line 20 (the use of the hash symbol

# within a sequential block indicates a time delay). The effect of this statement is to invert the

CLK signal every 50 time-units repetitively; this results in the CLK signal having thewaveform

shown at the bottom of Figure 8.2.

As it stands, the Verilog description contained in lines 14–21 of Figure 8.2 could present

a potential problem to a simulator, in that most such tools have a command to allow the sim-

ulator to effectively run forever (e.g. ‘run –all’ in Modelsim1). The forever loop in lines

19 and 20 would cause a simulator to run indefinitely, or at least until the host computer ran out

of memory to store the huge amount of simulation data generated.

There are two methods by which the above problem can be solved:

1. Include an additional initial block containing a $stop system command.

2. Replace the forever loop with a repeat loop.

The first solution involves adding the following statement:

//n is the no. of clock pulses required
initial #(PERIOD*n) $stop;

The above statement can be inserted anywhere after line 14 within the module containing the

statements shown in Figure 8.2. The execution of the initial block in line 16 commences at the

same time as the statement shown above (0 s); therefore, the delayed $stop command will

execute at an absolute time equal to n*PERIOD seconds. The result is a simulation run lasting

exactly n clock periods. It should be noted that, in order for the above statement to compile

correctly, thevariablenwouldhave to be replacedbyan actual positivenumber orwouldhave to

have been previously declared as a local parameter.

The second solution involves modifying the initial block in lines 16–21 of the listing

given in Figure 8.2 to that shown below:

1 initial
2 begin
3 CLK ¼ 1'b0;
4 repeat (n) //an finite loop
5 begin
6 #(PERIOD/2) CLK ¼ 1'b1;
7 #(PERIOD/2) CLK ¼ 1'b0;
8 end
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9 $stop;
10 end

Therepeat loop is a sequential statement that causes one ormore statements to be repeated

a fixed number of times. In the above case, the variable n defines the number of whole clock

periods required during the simulation run. In this example, the loop body contains two delayed

assignments to the reg named CLK; consequently, the begin. . .end bracketing is required.

Each repetition of therepeat loop lasts for 100 time-units, i.e. one clock period.Once all of

the clock pulses have been applied, the repeat loop terminates and the simulation is stopped

by the system command in line 9 above.

An important point to note regarding the repeat and forever loops is that neither can be

synthesized into a hardware circuit; consequently, these statements are exclusively used in

Verilog test-fixtures or within simulation models.

Listing 8.1a–e shows the various formats of the Verilog HDL sequential block known as the

always block. The most general form is shown in Listing 8.1a: the keyword always is

followed by the so-called event expression; this determines when the sequential statements in

the block (between begin and end) execute. The @(event expression) is required for

both combinational and sequential logic descriptions.

In common with the initial block, the begin. . .end block delimiters can be omitted if

there is only one sequential statement subject to thealways@ condition. An example of this is

shown in Listing 8.1e.

(a)
1 always @(event_expression)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5 . . .
6 end

(b)
1 always @(input1 or input2 or input3. . .)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5 . . .
6 end

(c)
1 always @(input1, input2, input3. . .)
2 begin
3 //sequential statement 1
4 //sequential statement 2
5 . . .
6 end

(d)
1 always @( * )
2 begin
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3 //sequential statement 1
4 //sequential statement 2
5 . . .
6 end

(e)
1 always @(a)
2 y ¼ a * a;

Listing 8.1 Alternative formats for the always sequential block: (a) General form of the always

sequential block; (b) always sequential block with or-separated list; (c) always sequential block

with comma-separated list; (d) always sequential block with wildcard event expression; (e) always
sequential block containing a single sequential statement.

Unlike the initial block, the sequential statements enclosed within an always block

execute repetitively, in response to the event expression. After each execution of the sequ-

ential statements, the always block usually suspends at the beginning of the block of state-

ments, ready to execute the first statement in the sequence. When the event expression next

becomes true, the sequential statements are then executed again. The exact nature of the event

expression determines the nature of the logic being described; as a general guideline, any of the

forms shown in Listing 8.1 can be used to describe combinational logic. However, the format

shown in Listing 8.1b ismost commonly used to describe sequential logic, with somemodifica-

tion (see later).

Also in commonwith theinitial block, signals that are assigned fromwithin analways
blockmust be reg-type objects, since theymust be capable of retaining the last value assigned

to them during suspension of execution.

It should be noted that the always block could be used in place of an initial
block, where the latter contains a forever loop statement. For example, the following

always block could be used within a test module to generate the clock waveform

shown in Figure 8.2:

1 localparam PERIOD ¼ 100; //clock period

2 reg CLK ¼ 1'b0;

3 always
4 begin
5 #(PERIOD/2) CLK ¼ 1'b1;
6 #(PERIOD/2) CLK ¼ 1'b0;
7 end

Thealways sequential block, shown in lines 3 to 7 above, does not require an event expression

since the body of the block contains sequential statements that cause execution to be suspended

for a fixed period of time.

This example highlights an important aspect of thealways sequential block: itmust contain

either at least one sequential statement that causes suspension of execution or the keyword
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always must be followed by an event expression (the presence of both is ambiguous and,

therefore, is not allowed).

The absence of any mechanism to suspend execution in an always block will cause a

simulation tool to issue an error message to the effect that the description contains a zero-delay

infinite loop, and the result is that the simulatorwill ‘hang’, beingunable toproceedbeyond time

zero.

In summary, the use of an always block in a test module, as shown above, is not

recommended owing to the need to distinguish clearly between modules that are

intended for synthesis and implementation and those that are used during simulation

only.

8.3 ASSIGNMENTS WITHIN SEQUENTIAL BLOCKS:
BLOCKING AND NONBLOCKING

An always sequential block will execute whenever a signal change results in the event

expression becoming true. In between executions, the block is in a state of suspension;

therefore, any signal objects being assigned to within the block must be capable of

remembering the value that was last assigned to them. In other words, signal objects that

are assigned values within sequential blocks are not continuously driven. This leads to the

previously stated fact that only reg-type objects are allowed on the left-hand side of a

sequential assignment statement.

The above restriction regarding objects that can be assigned a value fromwithin a sequential

block does not apply to those that appear in the event expression, however. A sequential block

canbe triggered intoactionbychanges inbothregs and/orwires; thismeans thatmodule input

ports, as well as gate outputs and continuous assignments, can cause the execution of a

sequential block and, therefore, behavioural and data-flow elements can bemixed freely within

a hardware description.

8.3.1 Sequential Statements

Table 8.1 contains a list of the most commonly used sequential statements that may

appear within the confines of a sequential block (initial or always); some

are very similar to those used in the C language, while others are unique to the Verilog

HDL.

A detailed description of the semantics of each sequential statement is not included in

this section; instead, each statement will be explained in the context of the examples

that follow. It should also be noted that Table 8.1 is not exhaustive; there are several

less commonly used constructs, such as parallel blocks (fork. . .join) and

procedural continuous assignments, that the interested reader can explore further in

Reference [1].

With reference to Table 8.1, items enclosed within square brackets ( [ ]) are optional, curly
braces ( { }) enclose repeatable items, and all bold keywords must be lower case.
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Table 8.1 The most commonly used Verilog HDL sequential statements.

Sequential statement Description

¼ Blocking sequential assignment

<¼ Nonblocking sequential assignment

; Null statement. Also required at the end of each

statement

begin
{seq_statements}

end

Block or compound statement. Always required if

there is more than one sequential statement

if (expr)
seq_statement

[else
seq_statement ]

Conditional statement, expression (expr) must

be in parentheses. The else part is optional and

the statement may be nested. Multiple statements

require begin. . .end bracketing

case (expr)
{ {value,} : seq_statement }
[default : seq_statement ]

endcase

Multi-way decision, the expression (expr) must be

in parentheses. Multiple values are allowed in each

limb, but no overlapping values are allowed between

limbs. Default limb is required if previous values

do not cover all possiblevalues of expression.Multiple

statements require begin. . .end bracketing

forever
seq_statement

Unconditional loop. Multiple statements require

begin. . .end bracketing

repeat (expr)
seq_statement

Fixed repetition of seq_statement a number of

times equal to expr. Multiple statements require

begin. . .end bracketing

while (expr)
seq_statement

Entry test loop (same as C) repeats as long as expr is

nonzero. Multiple statements require begin. . .end
bracketing

for (exp1; exp2; exp3)
seq_statement

Universal loop construct (same as C). Multiple

statements require begin. . .end bracketing

#(time_value) seq_statement Suspends a block for time_value time-units

@(event_expr) seq_statement Suspends a block until event_expr triggers
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The continuous assignment parallel statement makes use of the ¼ assignment operator

exclusively. As shown in Table 8.1, sequential assignments canmake use of two different types

of assignment:

� blocking assignment – uses the¼ operator;

� nonblocking assignment – uses the<¼ operator.

Thedifference between the above assignments is quite subtle and can result in simulation and/or

synthesis problems if not fully understood.

The blocking assignment is the most commonly used type of sequential assignment when

describing combinational logic. As the name suggests, the target of the assignment is updated

before thenext sequential statement in the sequential block is executed, inmuch the samewayas

in a conventional programming language. In other words, a blocking assignment ‘blocks’ the

execution of the subsequent statements until it has completed. Another aspect of blocking

sequential assignments is that they effectively overwrite each otherwhen assignments aremade

to the samesignal.Anexampleof this is seen in theHammingcodedecoderexampleat theendof

Chapter 7 (see Listing 7.3), where the decoder outputs are initialized to a set of default values

prior to being conditionally updated by subsequent statements.

On encountering a nonblocking assignment, the simulator schedules the assignment to take

place at the beginning of the next simulation cycle, this normally occurs at the end of the

sequential block (or at the point when the sequential block is next suspended). In this manner,

subsequent statements are not blocked by the assignment, and all assignments are scheduled to

take place at the same point in time.

Nonblocking assignments can be used to assign several reg-type objects synch-

ronously, under control of a common clock. This is illustrated by the example shown in

Figure 8.3.

The three nonblocking assignments on lines 17, 18 and 19 of the listing shown in

Figure 8.3 are all scheduled to occur at the positive edge of the signal named ‘CLK’.

This is achieved by means of the event expression on line 15 making use the event qualifier

posedge (derived from positive-edge), i.e. the execution of the always sequential block

is triggered by the logic 0 to logic 1 transition of the signal named CLK. This particular form
of triggering is commonly used to describe synchronous sequential logic and will be

discussed in detail later in this chapter.

The nonblocking nature of the assignments enclosed within the sequential block means

that the value being assigned to R2 at the first positive edge of the clock, for example, is the

current value ofR1, i.e. ‘unknown’ (1'bx). The same is true for the value being assigned toR3
at the second positive edge ofCLK; that is, the current value ofR2,which is also1'bx. Hence,
the initial unknown states of R1, R2 and R3 are successively changed to logic 0 after three

clock pulses; in this manner, the nonblocking assignments describe what is, in effect, a 3-bit

shift register, as shown in Figure 8.4.

Figure 8.5 shows an almost identical listing to Figure 8.3, apart from the three assig-

nments in lines 17, 18 and 19, which in this case are of the blocking variety. The initial value

of regsR1,R2andR3 is unknownasbefore, and theregR0 is initializedat timezero to logic0.

The effect of the blocking assignments is apparent in the resulting simulation result shown in

Figure 8.5: all three signals change to logic 0 at the first positive edge of the CLK. This is due to
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R0 R3
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CLK
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Figure 8.4 Nonblocking assignment equivalent circuit.

`timescale 1 ns/ 1 ns 1 
2 module non_blocking_assignmnts(); 

3 reg R1, R2, R3, R0, CLK; 

4 initial 
5 begin 

R0 = 1'b0;   6 
CLK = 1'b0;   7 

8   repeat(3)
9   begin 
10    #50 CLK = 1'b1; 
11    #50 CLK = 1'b0; 
12 end 
13   $stop; 
14 end

15 always @(posedge CLK)
16 begin //a sequence of non-blocking assignments
17   R1 <= R0; 
18   R2 <= R1; 
19   R3 <= R2; 
20 end

21 endmodule

0ns 50ns 100ns 150ns 200ns 250ns

non_blocking_assignmnts.CLK

non_blocking_assignmnts.R0

non_blocking_assignmnts.R1

non_blocking_assignmnts.R2

non_blocking_assignmnts.R3

Figure 8.3 Illustration of nonblocking assignments.
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the fact that the blocking assignment updates the signal being assigned prior to the next

statement in the sequential block. The result is that the three assignments become what is, in

effect, one assignment of the value of R0 to R3. The equivalent circuit of the always block

listed in Figure 8.5 is shown in Figure 8.6.

The choice of whether to use blocking or nonblocking assignments within a sequential block

depends on the nature of the digital logic being described. Generally, it is recommended that

nonblocking assignments are used when describing synchronous sequential logic, whereas

blocking assignments are used for combinational logic.

`timescale 1 ns/ 1 ns 1 

2 module  blocking_assignmnts(); 

3 reg  R1, R2, R3, R0, CLK; 

4 initial 
5 begin 

R0 = 1'b0; 6 

CLK = 1'b0; 7 

8 repeat (3)

9 begin 
10   #50 CLK = 1'b1; 

11   #50 CLK = 1'b0; 

12 end 
13   $stop; 

14 end

15 always @( posedge CLK )

16 begin //a sequence of blocking assignments
17   R1 = R0; 

18   R2 = R1; 

19   R3 = R2; 

20 end

21 endmodule

0ns 50ns 100ns 150ns 200ns 250ns

blocking_assignmnts.CLK

blocking_assignmnts.R0

blocking_assignmnts.R3

blocking_assignmnts.R2

blocking_assignmnts.R1

Figure 8.5 Illustration of blocking assignments.
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Sequential blocks intended for use within test modules are usually of the initial type;

therefore, blocking assignments are the most appropriate choice.

A related point regarding the above guidelines is that blocking and nonblocking assignments

should not be mixed within a sequential block.

8.4 DESCRIBING COMBINATIONAL LOGIC USING A SEQUENTIAL
BLOCK

The rich variety of sequential statements that can be included within a sequential block means

that the construct can be used to describevirtually any type of digital logic. Figure 8.7 shows the

Verilog HDL description of a multiplexer making use of an always sequential block.

The module header in line 1 declares the output port out as a reg, since it appears on the
left-hand side of an assignment within the sequential block. This example illustrates that

despite the keyword reg being short for register, it is often necessary to make use of the reg
object when describing purely combinational logic.

1 module mux(output reg out, input a, b, sel); 

2 always @(a or b or sel) 
3 begin
4   if (sel) 
5    out = a; 
6   else
7    out = b; 
8 end
9 endmodule

mux
out

a

b

sel

Figure 8.7 A two-input multiplexer described using an always block.

CLK

R0 R3

CLK

D Q

Figure 8.6 Blocking assignment equivalent circuit.
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The event expression in line 2 of the listing in Figure 8.7 includes all of the inputs to the block

in parentheses and separated by the keywordor. This format follows the original Verilog-1995

style; themore recent versions of the language allow either a comma-separated list or the use of

thewildcard ‘ *’ to mean any reg or wire referenced on the right-hand side of an assignment

within the sequential block.

Regardless of the event expression format used, the meaning is the same, in that any input

change will trigger execution of the statements within the block.

The sequential assignments in lines 5 and 7 are of the nonblocking variety, as recommended

previously. The value assigned toout is either thea input or theb input, depending on the state

of the select input sel.
Oneparticular aspect of usinganalways sequential block todescribe combinational logic is

the possibility of creating an incomplete assignment. This occurs when, for example, an

if. . .else statement omits a final else part, resulting in the reg target signal retaining the

value that was last assigned to it.

In terms of hardware synthesis, such an incomplete assignment will result in a latch being

created. Occasionally, this may have been the exact intention of the designer; however, it is a

more common situation that the designer has inadvertently omitted a final else or forgotten to

assign a default value to the output. In either case, most logic synthesis software tools will issue

warning messages if they encounter such a situation.

The following guidelines should be observed when describing purely combinational logic

using an always sequential block:

Include all of the inputs to the combinatorial function in the event expression using one of the

formats shown in Listing 8.1b–d.

To avoid the creation of unwanted latches, ensure either of the following is applicable:

– assign a default value to all outputs at the top of the always block, prior to any

sequential statement such as if, case, etc.;
– in the absence of default assignments, ensure that all possible combinations of input

conditions result in a value being assigned to the outputs.

The example in Figure 8.8 illustrates the points discussed above regarding incomplete

assignments.

The designer of the module latch_implied listed in Figure 8.8 has used an always
block to describe the behaviour of a selector circuit. The 2-bit input sel [1:0] selects one of

three inputs a, b or c and feeds it through to the output y.
The assumption has beenmade thatywill be driven to logic 0 ifsel is equal to2'b11. This

is, of course, incorrect: the omission of a final else clause results in y retaining its current

value (since it is a reg), hence the presence of the feedback connection between the y output

and the lower input of the left-handmultiplexer of the circuit shown in Figure 8.8. The synthesis

tool has correctly inferred a latch from the semantics of the if. . .else statement and the

reg object.

There are two alternativeways in which the listing in Figure 8.8 may be modified in order to

remove the presence of the inferred latch in the synthesized circuit. These are shown in

Figure 8.9a and b, with the corresponding latch-free circuit shown in Figure 8.9c.
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The listing shown inFigure 8.9a adds afinalelsepart in lines 12 and 13; this has the effect of
always guaranteeing the output y is assigned a value under all input conditions. Figure 8.9b

achieves the same result by assigning a default value of logic 0 to output y in line 6.

Of the alternative strategies for latch removal exemplified above, the use of default assign-

ments at the beginning of the sequential block is the more straightforward of the two to apply;

therefore, this is the recommended approach to eliminating this particular problem.

The following examples further illustrate how the Verilog HDL can be used to describe a

combinational logic function using an always sequential block. The first example, shown in

Figure 8.10, describes a three-input to eight-output decoder (similar to theTTLdevice knownas

the 74LS138).

MUX
y

0

1

a

MUX

0

1

b

MUX

0

1

c

sel[1], sel[0]sel[1]

sel[0]

sel[1]

sel[0]

1  module latch_implied(input a, b, c, 
2           input [1:0] sel, 
3          output reg y);
4  always @(*)//wildcard triggering
5  begin
6   if (sel == 2'b00) 
7    y = a; 
8   else if (sel == 2'b01) 
9    y = b; 
10   else if (sel == 2'b10) 

y = c; 11
12 end
13 endmodule

Figure 8.8 Example showing latch inference.
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The functionof thettl138module is todecode a3-bit input hA,B,Ci, andassert oneof eight
active-low outputs. The decoding is enabled by the three G inputs hG1, G2A, G2Bi, which must

be set to the value h1, 0, 0i. If the enable inputs are not equal to h1, 0, 0i, then all of the Youtputs
are set high.

Thisbehaviour is describedusinganalways sequential block that responds tochangesonall
inputs, starting in line3of the listing shown inFigure8.10.TheYoutputs are set to adefault value
of all ones in line 5 and this is followed by an if statement that conditionally asserts one of the

1   module data_selector(input a, b, c, 
2 input  [1:0] sel, 

3 output reg  y); 

4 always @(a, b, c, sel) //same as ‘*’ 
5 begin
6 if (sel == 2'b00) 
7 y = a; 

8 else if (sel == 2'b01) 
9 y = b; 

10   else if (sel == 2'b10) 
y = c; 11  

12   else //final else removes latch  
y = 1'b0; 13  

14 end
15 endmodule 

(a)

1   module data_selector(input a, b, c, 
2           input [1:0] sel, 
3           output reg y); 

4   always @(a or b or c or sel) 
5   begin 
6    y = 1'b0; //default assignment 
7    if (sel == 2'b00) 
8     y = a; 
9    else if (sel == 2'b01) 
10      y = b; 
11     else if (sel == 2'b10) 
12      y = c; 
13    end 
14  
15    endmodule 

(b)

Figure 8.9 Removal of unwanted latching feedback: (a) removal of latch using final

else part; (b) removal of latch using assignment of default output value; (c) synthesized circuit for (a)

and (b).
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Y outputs to logic 0, depending on the decimal equivalent (0–7) of hA, B, Ci, in lines 6 and 7

respectively.

Simulation of the ttl138 module is achieved using the Verilog test-fixture shown in

Figure 8.11. The test-fixture module shown in Figure 8.11 makes use of a so-called named

sequential block starting in line 6. The name of the block,gen_tests, is an optional label that

MUX
y

0

1

a

MUX

0

1

b

MUX

0

1

c

sel[1], sel[0]sel[1]

sel[0]

sel[1]

sel[0]

0

(c)

Figure 8.9 (Continued).

1 module ttl138(input A, B, C, G1, G2A, G2B,  
2     output reg [7:0] Y); 

3 always @(A, B, C, G1, G2A, G2B) 
4 begin 
5   Y = 8'hFF;  //set default output
6   if (G1 & ~G2A & ~G2B) 
7    Y[{A, B, C}] = 1'b0; 
8 end 

9 endmodule

A
B
C

G1
G2A
G2B

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

Figure 8.10 Three-to-eight decoder Verilog description and symbol.
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must be placed after a colon following the keyword begin. Naming a sequential block in this

manner (both always and initial blocks may be named) allows items, such as regs and
integers, to be declared and made use of within the confines of the block. These locally

declared objects may only be referenced from outside the block in which they are declared by

preceding the object name with the block name; for example, the integer t in the listing of

Figure 8.11 could be referenced outside of the initial block as follows:

gen_tests.t

The use of locally declared objects, as described above, allows the creation of a more

structured description. However, it should be noted that, at the time of writing, not all logic

synthesis tools recognize this aspect of the Verilog language.

The integer t is used within the initial block to control the iteration of the for loop

situated between lines 9 and 12 inclusive.The purpose of the loop is to apply an exhaustive set of

input states to the hA, B, Ci inputs of the decoder. The syntax and semantics of the Verilog for
loop is very similar to that of its C-language equivalent, as shown below:

for (initialization; condition; increment) begin
sequential statements

end

The above is equivalent to the following:

initialization;
while (condition) begin
sequential statements
. . .

increment;
end

In line 10 it can be seen how Verilog allows the 32-bit integer to be assigned directly to 3-bit

concatenation of the input signals without the need for conversion.

The timing simulation results are also included in Figure 8.11; these clearly show the

decoding of the 3-bit input into a one-out-of-eight output during the first 800 ns. During the

last 200 ns of the simulation, the enable inputs are set to 3'b000 and then 3'b011 in order to

show all of the Youtputs going to logic 1 as a result of the decoder being disabled.
Finally, it should be noted that thevery simple description of the decoder given in Figure 8.10

isnot intended tobeanaccuratemodelof the actualTTLdevice; rather, it is a simplebehavioural

model intended for fast simulation and synthesis.

A second example is shown in Figure 8.12. This shows the Verilog source description

and symbolic representation of a majority voter capable of accepting an n-bit input word.

The functionof thismodule is to drivea single-bit output namedmaj to either a logic 1or logic 0
corresponding to the majority value of the input bits. Clearly, such a module requires an odd

number of input bits greater than or equal to 3 in order to produce a meaningful output.

The module header (lines 2 and 3 of the listing in Figure 8.12) includes a parameter
named n to set the number of input bits, having a default value of 5. The use of a parameter
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3 reg   A, B, C, G1, G2A, G2B;  
4 wire   [7:0] Y; 

5 initial   
6 begin   : gen_tests 
7 integer     t; 
8 {G1, G2A, G2B} = 3'b100;    
9 for     (t = 0; t <= 7; t = t + 1) begin

{A, B, C} = t;    10  
#100;    11  

12  end   
  13  //disable the decoder

{G1, G2A, G2B} = 3'b000;   14  
#100;   15  
{G1, G2A, G2B} = 3'b011;   16  
#100;   17  
$stop;   18  

19  end

ttl138 uut(.A(A),  20  
.B(B),     21  
.C(C),     22  
.G1(G1),     23  
.G2A(G2A),     24  
.G2B(G2B),     25  
.Y(Y));    26  

27    endmodule

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns

test_ttl138.gen_tests.t[31:0]

test_ttl138.Y[0]

test_ttl138.Y[1]

test_ttl138.Y[2]

test_ttl138.Y[3]

test_ttl138.Y[4]

test_ttl138.Y[5]

test_ttl138.Y[6]

test_ttl138.Y[7]

test_ttl138.Y[7:0]

test_ttl138.uut.A

test_ttl138.uut.B

test_ttl138.uut.C

test_ttl138.uut.G1

test_ttl138.uut.G2A

test_ttl138.uut.G2B

00 1 2 3 4 5 6 7 8

FE FD FB F7 EF DF BF 7F FF

1 `timescale 1 ns/ 1 ns   
2 module   test_ttl138; 

Figure 8.11 Test fixture and simulation results for the three-to-eight decoder module.
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makes the majority voter module potentially more useful due to it being scalable, i.e. the user

simply sets the parameter to the desired value as part of the module instantiation.

Two register-type objects, in the form of integers are declared in line 4. The first,

num_ones, is used to keep track of the number of logic 1s contained in the input A, and the

second, named bit, is used as a loop counter within the for loop situated in lines 10–15. A

single-bit reg named is_x is declared in line 5 to act as a flag to record the presence of any

unknown or high-impedance input bits.

Thebehaviourof themajority voter is describedusing analways sequential block commen-

cing in line 6 of the listing show in Figure 8.12. The block is triggered by changes in the input

wordA, and starts by initializingis_x andnum_ones to their default values of zero. Thefor
loop then scans through each bit of the inputword, first checking for the presence of an unknown

or high-impedance state and then incrementingnum_ones each time a logic 1 is detected.Note

the use of the case-equality operator (¼¼¼) in line 11 to compare each input bit of A explicitly

with the meta-logical values 1'bx and 1'bz:

(A [bit] ¼¼¼ 1'bx)||(A [bit] ¼¼¼ 1'bz)

1    // n-bit majority voter, (n must be odd and >= 3)
2   module majn #(parameter n = 5) 
3        (input [n-1:0] A, output maj); 

4   integer num_ones, bit; 

5   reg is_x; 

6   always @(A) 
7   begin 
8    is_x = 1'b0; 
9    num_ones = 0; 
10    for (bit = 0; bit < n; bit = bit + 1) begin
11     if ((A[bit] === 1'bx)||(A[bit] === 1'bz)) 
12      is_x = 1'b1; 
13     else if (A[bit] == 1'b1) 
14      num_ones = num_ones + 1; 
15    end 
16  end

17  assign maj = (is_x == 1'b1)? 1'bx :  
18        (n - num_ones) < num_ones;  

19  endmodule

majn

A[n-1:0] maj

Figure 8.12 Verilog description and symbol for an n-bit majority voter.

On completion of thefor loop in line 15, the sequential block suspends until subsequent events

on the input A.

216 Describing Combinational and Sequential Logic using Verilog HDL



The outputmaj is continuously assigned a value based on the outcome of thealways block.
The expression in lines 17 and 18 assigns 1'bx to the output subject to the conditional

expressionbeing true, thereby indicating the presence of an unknownor high impedance among

the input bits. In the absence of any unknown input bits, the output is determined by comparing

the number of logic 1s within A (num_ones) with the total number of bits in A (n):

(n - num_ones) < num_ones

It is left to the reader toverify that the aboveexpression is true (false), i.e. yieldsa logic1 (logic0)

if num_ones is greater (less) than the number of logic 0s in the n-bit input A.
The simulation of a 7-bit majority votermodule is carried out using the test module shown in

Figure 8.13. This testmodule instantiates a 7-bit (n¼ 7)majority voter in line 5. Theinitial
block starting in line 6 sets the input to all zeros in line 8 and then applies an exhaustive set of

input values by means of a repeat loop in lines 9–12 inclusive. The expression 1 << 7, used
to set the number of times to execute the repeat loop, effectively raises the number 2 to the

power 7, by shifting a single logic 1 to the left seven times. This represents an alternative to

using the ‘raise-to-the-power’ operator ‘**’, which is not supported by all simulation and

synthesis tools.

After applying all known values to the A input of the majority voter module, the test module

thenapplies twovaluescontaining themeta-logical states (lines14–17) inorder toverify that the

module correctly detects an unknown input.

Figure 8.13 also shows a sample of the simulation results produced by running the test

module. Inspection of the results reveals that themodule correctly outputs a logic 1when four or

more, i.e. the majority of the inputs, are at logic 1. The behaviour of the internal objects

num_ones and is_x can also be seen to be correct.

8.5 DESCRIBING SEQUENTIAL LOGIC USING A SEQUENTIAL BLOCK

With the exception of the simple level-sensitive latch given in Figure 8.1, Verilog HDL

descriptionsof sequential logic are exclusivelyconstructedusing thealways sequential block.
The reserved words posedge (positive edge) and negedge (negative edge) are used within

the event expression to define the sensitivity of the sequential block to changes in the clocking

signal. Figure 8.14 shows the general forms of the always block that are applicable to purely

synchronous sequential logic, i.e. logic systems where all signal changes occur either on the

rising (a) or falling (b) edges of the global clock signal.

The use of both posedge and negedge triggering is permitted within the same event

expression at the beginning of an always block; however, this does not usually imply dual-

edge clocking. The use of both of the aforementioned event qualifiers is used to describe

synchronous sequential logic that includes anasynchronous initializationmechanism, aswill be

seen later in this section.

Figure 8.15 shows the symbol and Verilog description of what is perhaps the simplest of all

synchronous sequential logic devices: the positive-edge-triggered D-type flip flop.

The module header, in line 1 of the listing in Figure 8.15, declares the output Q to be a reg-
type signal, owing to the fact that itmust retain a value in between active clock edges. The use of

the keyword reg is not only compulsory, but also highly appropriate in this case, since Q
represents the state of a single-bit register.
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1 `timescale 1 ns/ 1 ns 
2 module test_majn; 

3 reg [6:0] Ain; 
4 wire M; 

5 majn #(.n(7)) maj7(.A(Ain), .maj(M)); 

6 initial
7 begin
8 Ain = 0; 
9 repeat (1 << 7) begin

#100; 10  
Ain = Ain + 1; 11  

12  end
#100; 13  
Ain = 7'b1001x01; 14  
#100; 15  
Ain = 7'b000zz11; 16  
#100; 17  
$stop; 18  

19 end
20 endmodule

2.5ms 3.0ms 3.5ms 4.0ms 4.5ms 5.0ms

test_majn.maj7.A[0]

test_majn.maj7.A[1]

test_majn.maj7.A[2]

test_majn.maj7.A[3]

test_majn.maj7.A[4]

test_majn.maj7.A[5]

test_majn.maj7.A[6]

test_majn.maj7.maj

test_majn.maj7.is_x

test_majn.maj7.num_ones[31:0] 33 4 2 3 3 4 3 4 4 5 1 2 2 3 2 3 3 4 2 3 3 4 3 4 4 5 2 3 3 4 3 4

10.5ms 11.0ms 11.5ms 12.0ms 12.5ms 13.0ms

test_majn.maj7.A[0]

test_majn.maj7.A[1]

test_majn.maj7.A[2]

test_majn.maj7.A[3]

test_majn.maj7.A[4]

test_majn.maj7.A[5]

test_majn.maj7.A[6]

test_majn.maj7.maj

test_majn.maj7.is_x

test_majn.maj7.num_ones[31:0] 55 3 4 4 5 4 5 5 6 3 4 4 5 4 5 5 6 4 5 5 6 5 6 6 7 0 3

Figure 8.13 Test fixture and simulation results for the n-bit majority voter.
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The always sequential block in lines 2 and 3 contains a single sequential statement (hence

the absence of the begin. . .end bracketing) that performs a nonblocking assignment of the

input value D to the stored output Q on each and every positive edge of the input named CLK. In
this manner, the listing given in Figure 8.15 describes an ideal functional model of a flip flop:

unlike a real device, it does not exhibit propagationdelays, nor are there anydata set-up andhold

times that must be observed. To include such detailed timing aspects would result in a far more

complicated model, and this is not required for the purposes of logic synthesis.

As mentioned previously, it is conventional to use the nonblocking assignment operator

when describing sequential logic. However, it is worth noting that the above flip-flop description

would perform identically if the assignment in line 3was of the blocking variety. This is due to the

fact that there is only one signal being assigned a value from within the always block.

1 always @(posedge clock)
2 begin
3   //sequential statement 1
4   //sequential statement 2
5   … 
6 end

clock

1 always @(negedge clock)
2 begin
3   //sequential statement 1
4   //sequential statement 2
5   … 
6 end

clock

(a)

(b)

Figure 8.14 General forms of the always block when describing synchronous sequential logic:

(a) positive-edge-triggered sequential logic; (b) negative-edge-triggered sequential logic.

1 module dff(output reg Q, input D, CLK); 

2 always @(posedge CLK) 
3   Q <= D; 

4 endmodule

CLK

D Q

Figure 8.15 A positive-edge-triggered D-type flip-flop.
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Figure 8.16 shows a Verilog test-module and corresponding simulation waveform results

for theD-type flip flop. This test module makes use of two initial sequential blocks to produce

theD andCLK inputs of the flipflop.Line 8 illustrates the use of the@(event_expression)
statement within a test module; in this case, the repeat loop waits for three conse-

cutive negative-edge transitions to occur on the CLK before setting the data input D to a logic 1.

Inspection of the timingwaveformsbelow the listing inFigure 8.16 shows that theQoutput of
the flip flop remains in an unknown state (shaded) until the first 0-to-1 transition of the clock; in

other words, the flip-flop is initialized synchronously. In addition, the change in the data inputD
appears to occur at the second falling-edge of the clock, despite the fact that the repeat loop

specifies three iterations; this apparent discrepancy isdue to thechange from theinitial state
of CLK, i.e. 1'bx, to 1'b0 at time zero, being equivalent to a negative edge at the very start of

1 `timescale 1 ns/ 1 ns 
2 module test_dff(); 

3 reg CLK, D; 

4 wire Q; 

5 initial 
6 begin
7   D = 1'b0; 
8   repeat (3) @(negedge CLK); 
9   D = 1'b1;  
10 end

11 initial 
12 begin
13   CLK = 1'b0; 
14   #100; 
15   repeat(4) begin
16    #50 CLK = 1'b1; 
17    #50 CLK = 1'b0; 
18   end 
19   $stop; 
20 end

21 dff dut(.Q(Q), .D(D), .CLK(CLK));  

22 endmodule 

0ns 100ns 200ns 300ns 400ns

test_dff.dut.CLK

test_dff.dut.D

test_dff.dut.Q

Figure 8.16 D-type flip-flop test module and waveforms.
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the simulation run. Finally, it can be seen that the Q output of the flip-flop changes state

coincident with the rising edge of the clock, in response to the change from logic 0 to logic 1

on the data input at the preceding clock falling edge.

The following examples illustrate how the always sequential block is used to describe a

number of common sequential logic building blocks.

Figure 8.17 shows the symbol and Verilog description for a 4-bit binary counter having an

active-high asynchronous reset input. The input named reset takes priority over the synchro-

nous clock input and, when asserted, forces the counter output to zero immediately. This

aspect of the behaviour is achieved bymeans of the reference to posedge reset in the event

expression in line 4 along with the use of the if. . .else statement in lines 6–9 of the listing in

Figure 8.17.

The presence of the event qualifier posedge before the input reset might imply that

the module has two clocking mechanisms. However, when this is combined with the test for

reset¼¼1'b1 in line6, theoverall effect is tomakereset act as anasynchronous input that
overrides the clock.

When the reset input is at logic 0, a rising edge on the clock input triggers the always
block to execute, resulting in the count being incremented by the sequential assignment

statement located within the else part of the if statement (see line 9).

Consistent with previous sequential logicmodules, the 4-bit counter makes use of nonblock-

ing assignments directly to the 4-bit output signal, this having been declared within the module

header as being of typereg, in line 3. Note that Verilog allows an output port such ascount to

appear oneither side of the assignment operator, allowing thevalue to be eitherwritten to or read

from. This is evident in line 9 of the listing in Figure 8.17, where the current value of count is

incremented and the result assigned back to count.
Figure8.18 showsa testmoduleand thecorrespondingsimulation results for the4-bit counter.

The waveforms clearly show the count incrementing on each positive edge of the clock input,

until the asynchronous reset input RST is asserted during the middle of the count ¼ 8 state,

immediately forcing the count back to zero.

1 // A 4-bit UP Counter with asynchronous reset 
2 module cntr4(input clock, reset,  
3       output reg [3:0] count); 

4 always @(posedge reset or posedge clock) 
5 begin
6   if (reset == 1'b1)
7    count <= 4'b0000; 
8   else  //synchronous part
9    count <= count + 1; 
10 end

11 endmodule

cntr4
reset

count [0..3]
clock

Figure 8.17 Verilog description of a 4-bit counter.
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1 `timescale 1 ns/ 1 ns 
2   module test_cntr4(); 

3   reg CLK, RST; 
4   wire [3:0] Q; 

5   initial 
6   begin 
7 RST = 1'b1; 
8 repeat (3) @(negedge CLK); 
9 RST = 1'b0; 
10  repeat (8) @(negedge CLK); 

RST = 1'b1; 11    
@(12    negedge CLK); 
RST = 1'b0; 13    

14  end

15  initial
16  begin

CLK = 1'b0; 17    
#100; 18    

19  repeat(30) begin
#50 CLK = 1'b1; 20    
#50 CLK = 1'b0; 21    

22  end 
$stop; 23    

24  end

25  cntr4 dut(.clock(CLK), .reset(RST), .count(Q)); 

26    endmodule

0ns 500ns 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms

test_cntr4_ar.dut.clock

test_cntr4_ar.dut.reset

test_cntr4_ar.dut.count[0]

test_cntr4_ar.dut.count[1]

test_cntr4_ar.dut.count[2]

test_cntr4_ar.dut.count[3]

test_cntr4_ar.dut.count[3:0] 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2

900ns 1.0ms 1.1ms 1.2ms 1.3ms

test_cntr4_ar.dut.clock

test_cntr4_ar.dut.reset

test_cntr4_ar.dut.count[0]

test_cntr4_ar.dut.count[1]

test_cntr4_ar.dut.count[2]

test_cntr4_ar.dut.count[3]

test_cntr4_ar.dut.count[3:0] 5 6 7 8 0 1

Figure 8.18 Verilog test-module and simulation results for the 4-bit counter.
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As expected, the 4-bit count value automatically wraps around to zero on the next positive

edge of the clock when the count of all-ones (4'b1111) is reached.
The next example of a common sequential logic module is given in Figure 8.19, showing the

Verilog description and symbol for a 4-bit shift register. The module header declares an active-

low asynchronous clear input named clrbar and a synchronous control input named shift,
the latter enables the contents of the shift register (4-bit output reg q) to shift left on the active
clock edge.

The sequential always block is triggered by the following event expression in line 5 of the

listing shown in Figure 8.19:

always @(negedge clrbar or posedge clock)

The presence of the qualifier negedge indicates that it is the logic 1 to logic 0 transition

(negative edge) of the input clrbar that triggers execution of the sequential block. This, in

conjunction with the test for clrbar being equal to logic 0, at the start of the if. . .else
statement in line 7, implements the asynchronous active-low initialization.

In line 9, the inputshift is comparedwith logic 1 at each positive edge of the clock input. If

this is true, then the following statement updates the output q:

q <¼ {q [2:0], serial};

The above sequential assignment shuffles the least significant three bits of q into the three most

significant bit positions while simultaneously clocking the serial data input (serial) into the
least significant bit position. In other words, a single-bit, left-shift operation is performed for

each clock cycle that shift is asserted.

The corresponding test module for the shift register is provided in Figure 8.20. The module

test_shift4 is very similar to the testmodule shown inFigure8.18 for the4-bit counter.Two

1 //A 4-bit shift register with  
2 //asynch active-low reset and shift enable 
3 module shift4(input clock, clrbar, shift, serial,  
4        output reg [3:0] q); 

5 always @(negedge clrbar or posedge clock) 
6 begin
7   if (clrbar == 1'b0) 
8    q <= 4'b0; 
9   else if (shift == 1'b1)  //synchronous part
10    q <= {q[2:0], serial};   
11 end

12 endmodule 

shift4

shift
q[0..3]

clock

clrbar

serial

Figure 8.19 Verilog description of a 4-bit shift register.
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CLRB = 1'b1; 17  
18  repeat (6) begin

@(19  negedge CLK); 
SER = ~SER; 20  

21  end 
22  end

23  initial
24  begin

CLK = 1'b0; 25  
#100; 26  

27  repeat(30) begin
#50 CLK = 1'b1; 28  
#50 CLK = 1'b0; 29  

30  end 
$stop; 31  

32  end

shift4 dut(.clock(CLK), .clrbar(CLRB),  33  
.shift(SFT), .serial(SER), .q(Q)); 34  

35    endmodule

0ns 500ns 1.0ms 1.5ms 2.0ms 2.5ms 3.0ms

test_shif t4_ar.dut.clock

test_shif t4_ar.dut.clrbar

test_shif t4_ar.dut.shif t

test_shif t4_ar.dut.serial

test_shif t4_ar.dut.q[0]

test_shif t4_ar.dut.q[1]

test_shif t4_ar.dut.q[2]

test_shif t4_ar.dut.q[3]

test_shif t4_ar.dut.q[3:0] 0 1 3 7 F 0 1 2 5 A 5 A 5 B 7 F

1 `timescale 1 ns/ 1 ns
2 module test_shift4(); 

3 reg CLK, CLRB, SFT, SER; 

4 wire [3:0] Q; 

5 initial 
6 begin 
7 CLRB = 1'b0; 
8 SFT = 1'b0; 
9 SER = 1'b1; 
10  repeat (2) @(negedge CLK); 

CLRB = 1'b1; 11  
12  repeat (3) @(negedge CLK); 

SFT = 1'b1; 13  
14  repeat (6) @(negedge CLK); 

CLRB = 1'b0; 15  
@(16  negedge CLK); 

Figure 8.20 Verilog test-module and simulation results for the 4-bit shift register.
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initial sequential blocks are used, one to provide an input stimulus and the other a set of

clock pulses; the resulting simulation waveforms are also shown in Figure 8.20.

The previous two examples have shown how a sequential logic module can be described

having either a single active-high or active-low asynchronous reset. The following example

shows how both asynchronous reset and set inputs can be accommodated, if required.

Figure 8.21 shows the Verilog module and symbol for a D-type flip-flop having true and

complementary outputs along with both a set input and a reset input for asynchronous

initialization to either logic 1or logic 0 respectively.Note that, in general, although this example

makes use of only active-high control inputs, any combination of active-high and active-low

control can be described by use of the posedge and negedge event qualifiers.

Lines 4 and 5 of the listing given in Figure 8.21 or together three inputs to form the

event expression, one of which (clk) is the synchronous clock. This event expression,

combined with the nested if. . .else. . .if. . .else statement, implements the hierarch-

ical reset and set operations in conjunction with synchronous clocking. Notice the use of the

begin. . .end bracketing to enclose the two assignments that make up each part of the

if. . .else statement.

1 //D-Type FF with asynch. Set and Reset
2  module dff_asr(output reg q, qb,  
3         input d, clk, set, reset); 

4  always @(posedge clk or posedge set 
5       or posedge reset)
6  begin
7   if (reset) begin //reset has highest priority 
8    q <= 0; 
9    qb <= 1; 
10     end else if (set) begin //set has second highest 
11      q <= 1; 
12      qb <= 0; 
13     end else begin //clock when set and reset are low
14      q <= d; 
15      qb <= ~d; 
16     end
17    end 
18    endmodule

clk

d q

qb

se
t

re
se

t

Figure 8.21 D-type flip-flop with asynchronous set and reset.
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In certain situations it may be necessary, or indeed desirable, to perform all initialization

synchronously. In this case, all assignments to thereg-typeoutputs of a sequential logicmodule

are synchronized to the positive or negative edges of the master clock input.

The example shown in Figure 8.22 illustrates how the above can be implemented. The figure

shows a Verilog module and symbol for a fully synchronous 8-bit data register. The event

expression in line 5 of the listing shown in Figure 8.22 refers only to the positive edge of theClk
input. Therefore, all assignments to Dataout are subject to this condition, including the reset

operation that occurs when Rst is at logic 1.

The last example in this section is a Verilog design that makes use of various aspects from

previous examples, such as scalability, synchronous clocking and behavioural modelling.

Figure 8.23 shows the listing and symbolic representation for a so-called universal register/

counter capable of performing a number of useful operations, in addition to having scalable

input and output data ports. The latter is achieved by means of a parameter named size
declared in the module header.

The module unireg, as well as being a parallel data register, is capable of performing the

function of an up/down counter as well as providing left and right shifting. The number of bits

thatmakeup the register is definedby aparameter in line 2of the listing, and, as shown, it is set to

a default value of 8.

1  //An 8-bit register with synchronous reset 
2  module REG8SR(output reg [7:0] Dataout, 
3      input [7:0] Datain, 
4      input Rst, Clk); 

5  always @(posedge Clk) //triggers on ‘Clk’ only
6  begin 
7   if (Rst) 
8    Dataout <= 0; 
9   else 
10      Dataout <= Datain; 
11    end 
12    endmodule

REG8SR

Datain[0..7] Dataout[0..7]

Rst

Clk

Figure 8.22 Example of a module using synchronous reset.
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8 always @(posedge clock) //synchronous counter
9 begin 
10 case (mode) 
11  0 : dataout <= 0;        //clear
12  1 : dataout <= datain;   //parallel load
13  2 : dataout <= dataout + 1;   //increment
14  3 : dataout <= dataout - 1;  //decrement
15  4 : begin //shift left using  ‘<<’ operator 
16   dataout <= dataout << 1; 
17   dataout[0] <= serinl; 
18  end 
19    //shift right using concatenation 
20  5 : dataout <= {serinr, dataout[size-1:1]}; 
21 default : dataout <= dataout;  //refresh 
22 endcase
23 end 

24 //continuous assignment to detect zero 
25 assign termcnt = (mode == 3) ? ~|dataout :  
26        ((mode == 2) ? &dataout : 0);  

27 endmodule

unireg

dataout[0..size]

clock

serinl

serinr

mode[0..2]

datain[0..size]

termcnt

1 //Scalable Universal Register/Counter  
2 module unireg #(parameter size = 8)  
3       (input clock, serinl, serinr,  
4     input [2:0] mode, 
5     input [size-1:0] datain,  
6     output reg [size-1:0] dataout,  
7     output termcnt); 

Figure 8.23 A universal counter/register module.
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Thedataoutport of theuniregmodule constitutes the register itself; this is declared in line

6of themoduleheader. Eachoperation that the register performs is synchronizedwith the positive

edges of theclock input; the natureof the operation is determined bya3-bit control input named

mode declared in line 4. The function selection nature of the mode input is implemented using a

case. . .endcase statement between lines 10 and 22; each possible value ofmode corresponds

to one of the unique branches situated in lines 11–21. There are a total of seven operatingmodes,

the last (mode¼ 6 or 7) being covered by the final default branch in line 21.

Serial data inputs are provided for left and right shifting, via input ports serinl and

serinr respectively. With reference to the listing in Figure 8.23, lines 15–18 correspond

to the shift left operation (mode ¼ 4), where the register bits are shifted to the left by one

position and the serial data present on input port serinl is loaded into bit 0 of the register.

This synchronous data movement is achieved through the use of two nonblocking assign-

ments in lines 16 and 17.

Amodevalue of 5 corresponds to a right shift. This corresponds to line 20of the listing,where

the concatenation operator is used to move the most significant size-1 bits into the least

significantsize-1bit positions. The leftmost bit (MSB) of the register is loadedwith the serial

data applied to the serinr input port.

Operatingmodes 0 to 3 are self-explanatory; these correspond to the sequential assignments

situated in lines 11–14 of the listing in Figure 8.23.

The remainingmode of operation is covered by thedefault branch of thecase statement;

this is the refresh mode, corresponding to a mode value of 6 or 7. The default sequential

assignment simply assigns the registerwith the current value ofdataout, i.e. itself. This could
have been achieved in an alternative manner, as shown below:

default: ; // refresh using null statement

The null statement (;) is a ‘do nothing’ statement; in the above context it indicates that the

dataout register is to retain its current value by virtue of not being updated. The choice of

whether to use this method of retaining or refreshing the value stored in a reg-type signal, as
opposed to the method shown in line 21, is a matter of personal preference.

The last output port of theuniregmodule is awire-type signal namedtermcnt, which is
a shortened form of ‘terminal count’. The purpose of this output is to indicate when the register

has reached themaximum orminimum valuewhen operating in count-up or count-downmode

respectively.

Theflexiblenatureof thedataout register lengthmakes it difficult to compare itwith afixed

maximumvalue such as8'hFF; this problem is overcomeby the use of the conditional operator

and the bitwise reduction operators, as shown in the continuous assignment in lines 25 and 26 of

the listing of Figure 8.23, and repeated below:

assign termcnt¼ (mode¼¼ 3) ?�|dataout:((mode¼¼ 2) ? &dataout: 0);

The above expression detectswhen the operatingmode is either ‘count-up’ (2) or ‘count-down’

(3) and respectively assigns the reduction AND or the reduction NOR of dataout to the

termcnt port. It is straightforward to appreciate that the expression will result in a logic 1 if

mode is equal to 2 (3) and all of the register bits are logic 1 (logic 0), otherwise the above

expression will be a logic 0.
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Figure 8.24 includes a listing of a test module named Test_unireg, the purpose of which
is to allow simulation of the universal register/counter described above. The module contains

a declaration of a local parameter (test_size) in line 3 that is effectively a constant value for
use within the enclosing module. In this case, the local parameter test_size is assigned the

value 4.This corresponds to the number of bits contained in the parallel data inputreg, and data
output wire, connected to the register (see lines 7 and 9), as well as being used to override the
value of the parameter that sets the width of the instantiated universal register/counter

(size). This latter use of a local parameter, to determine the value of a parameter used in a

scalable module, is implemented in line 12 of the test module shown in Figure 8.24.

The test module shown in Figure 8.24 includes two initial sequential blocks, the first of

which generates a repetitive clock signal in lines 20–25 inclusive. The second initial block,

spanning lines 26–49, generates a sequence of stimulus signals to exercise the various operating

modesof theuniversal register/counter.Theresultsof running thesimulationare shownbelowthe

listing in Figure 8.24.

After clearing the register to zero by forcing the mode input to zero, the register is

then set to counting-up mode (2) for 30 clock cycles. Inspection of the simulation

waveforms clearly shows the data output bits counting up in binary, during which the

terminal count (termcnt) output goes high coincident with a data output value of all

ones.

The test module then sets the mode control to count-down mode (3) for a further 30 clock

cycles. The data output bits follow a descending sequence and, as expected, the terminal

count output is asserted when the state of all zeros is reached. The other operating modes of

the universal register/counter are activated by subsequent statements in the initial block,

shifting left (mode ¼ 4) and shifting right (mode ¼ 5), parallel load (mode ¼ 1) and
refresh (mode ¼ 7) between lines 38 and 47; the simulation is stopped by the system

command in line 48.

8.6 DESCRIBING MEMORIES

This section presents some very simple modules that can be used as rudimentary

simulation models of RAM and ROM. These modules lack the timing accuracy and

sophistication of the Verilog simulation models that are occasionally provided by

commercial memory-device manufacturers. However, they can nevertheless be used

effectively whenever a fast, functional model is required as part of a larger system

simulation.

The Verilog descriptions discussed in this section serve to further reinforce some of the

aspects that have already been covered, such as scalability and the use of parameters, as well as

behavioural modelling with sequential blocks. In addition to these important elements of

Verilog, the memory models presented here make use of other features not yet covered in

previous chapters; these are as follows:

� arrays – the principle mechanism used to model a memory;

� bidirectional ports – the ability to use a single port as an input or output;

� memory initialization – loading a memory array with values from a file.
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2 module Test_unireg(); 

3 localparam test_size = 4; //size of the unireg 

4 //inputs 
5 reg clock, serinl, serinr; 
6 reg [2:0] mode; 
7 reg [test_size-1:0] datain; 

8 //outputs 
9 wire [test_size-1:0] dataout; 
10 wire termcnt; 

11 //instantiate the unireg module, 4-bits in size 
unireg #(.size(test_size))          12  

mut(.clock(clock),  13  
.serinl(serinl),  14  
.serinr(serinr),  15  
.mode(mode), 16  
.datain(datain),  17  
.dataout(dataout),  18  
.termcnt(termcnt)); 19  

20 initial //generate a 100 ns clock 
21 begin

clock = 0; 22  
23 forever 

#50 clock = ~clock; 24  
25 end

26 initial //apply test inputs 
27 begin

serinl = 0; 28  
serinr = 1; 29  
mode = 0; 30  
datain = 'h9; 31  
#200 mode = 2; 32  

33 repeat (30)  //wait for 30 clock edges
@(34  posedge clock); 

mode = 3; 35  
36 repeat (30)  

1 `timescale 1 ns/1 ns

Figure 8.24 Test module and simulation results for universal register/counter.
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TheVerilog language does not support the creation of a new and distinct composite type such

as an array or record; instead, an array of regs can be declared using the following syntax (an
array of wires can be declared in a similar manner):

//An array of m, n-bit regs
reg [n-1:0] mem [0:m-1];

47    #1000; 
48    $stop; 
49 end
50 endmodule 

0ms 1ms 2ms 3ms 4ms

Test_unireg.mut.clock

Test_unireg.mut.mode[2:0]

Test_unireg.mut.datain[3:0]

Test_unireg.mut.serinl

Test_unireg.mut.serinr

Test_unireg .mut.termcnt

Test_unireg.mut.dataout[0]

Test_unireg.mut.dataout[1]

Test_unireg.mut.dataout[2]

Test_unireg.mut.dataout[3]

Test_unireg.mut.dataout [3:0]

00 2 3

0 1 2 4 7 9 2 5 7 8 9 7 6 4 3 1

6ms 7ms 8ms 9ms

Test_unireg.mut.clock

Test_unireg.mut.mode[2:0]

Test_unireg.mut.datain[3:0]

Test_unireg.mut.serinl

Test_unireg.mut.serinr

Test_unireg .mut.termcnt

Test_unireg.mut.dataout[0]

Test_unireg.mut.dataout[1]

Test_unireg.mut.dataout[2]

Test_unireg.mut.dataout[3]

Test_unireg.mut.dataout [3:0]

4 5 1 2 7

7 6 5 4 3 2 1 0 8 F 9 F 0 1

3

37     @(posedge clock); 
38    mode = 4; 
39   repeat (8) 
40     @(posedge clock); 
41    mode = 5; 
42   repeat (8) 
43     @(posedge clock); 
44    mode = 1; 
45    #400 mode = 2; 
46    #800 mode = 7; 

Figure 8.24 (Continued ).
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The above line declares an array having m elements, each one comprising an n-bit reg. In
this manner, the object named mem can be viewed as a two-dimensional array of bits, i.e.

a memory.

The capabilities of the Verilog language in terms of array handling were considerably

enhanced with the release of the Verilog-2001 standard, with multidimensional arrays and

the ability to reference an individual bit directly being two of the key improvements. The

aforementioned new features provided by the update are not required by the simple memory

models presented here, however; for further information, see Reference [2].

The other feature commonly made use of in memory models is bidirectional data commu-

nication. Most RAMs make use of a bidirectional three-state data bus to allow both read and

write accesses using a single set of buswires. TheVerilog language provides for this bymeans of

theinoutportmode, alongwith thebuilt-in simulation support for the high-impedance state in

conjunctionwith the resolutionofmultiple signal drivers. It shouldbenoted that theinoutport
is modelled as a wire having one or more drivers. During a read operation, for example, the

inout port is driven by the value being accessed from thememory array; otherwise it is driven

to the high-impedance state.During awrite operation to aRAM, the port is drivenby an external

source which, combined with the high-impedance value being driven onto the data bus by the

memory module itself, automatically resolves to a value to be written into the memory array.

Figure 8.25 shows the symbol andVerilog description of a simple and flexible RAMmodule.

The model is general purpose insofar as it provides scalable address and data buses, allowing

different-sized memories to be instantiated.

Line4of the listingof themodulenamedramdeclares theparametersAwidthandDwidth.
Thesedefine thewidthof theaddressanddataports subsequentlydeclared in lines6and7of
themodule header. Three active-low control signals are declared in line 5, having the following

functionality:

� web – write-enable, writes data into the memory array when low;

� ceb – chip-enable, enables the memory for reading or writing;

� oeb – output-enable, drives the data from the memory array onto the data port during a read

operation.

The length of thememory array is equal to the number 2 raised to the power of the number of

address input bits, i.e. 2Awidth. The local parameter declared on line 8 computes this value by

means of the shift-left operator (since, as mentioned previously, not all simulators support the

‘**’ operator).
The localparam Length is then used in the declaration of the memory array in line 9 of

the listing in Figure 8.25.

Lines 11 and 12 describe the logic for a memory read operation using a continuous assign-

ment, as repeated below:

assign data ¼ (�ceb & �oeb & web) ?
mem [address]: 'bz;

The above statement is executed whenever a change occurs in any of the signals on the right-

hand side of the assignment operator (¼); this includes all of thememory control inputs, as well

as the address value.
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The inclusion of the condition that ‘write-enable’ must be a logic 1 during a read limits the

possibility of a so-called bus contention, the result of trying to perform a read and a write

simultaneously.

The memory word being read is accessed using the familiar array indexing notation ([])
found in the C language and alsowhen accessing individual bits or bit ranges of amulti-bitreg
or wire.

It shouldbepointedout that theVerilog-1995 languagedoesnot allowpart- orbit-selects tobe

used in conjunctionwith anarrayaccess, this beingoneof the enhancements introducedwith the

update resulting in Verilog-2001. This limitation does not affect the simple memory models

discussed here, since all accesses to memory arrays are to whole words only.

The use of a continuous assignment in lines 11 and12of the listing inFigure 8.25 is consistent

with the definition of the data port as mode inout, effectively making it behave as a wire.
The continuous assignment will drive the bidirectional data ports of the memory module with

the high-impedance state if the condition preceding the ‘?’ is false.

1   //A generic static random access memory  
2   //Awidth is no. of address lines 
3   //Dwidth is no. of data lines 

4 module ram #(parameter Awidth = 8, Dwidth = 8) 
5     (input web, oeb, ceb,   
6      inout [Dwidth-1:0] data,   
7     input [Awidth-1:0] address); 

8 localparam Length = (1 << Awidth);  

9 reg [Dwidth-1:0] mem[0:Length-1]; //memory array

10 //memory read 
11 assign data = (~ceb & ~oeb & web) ?  
12 mem[address] : 'bz; 

13 //memory write 
14 always @(posedge web) //occurs on 0-1 transition on web
15   if ((ceb == 1'b0) && (oeb == 1'b1))  

mem[address] = data;  16     

17 endmodule 

ram
web

ceb

oeb

address[Awidth:0]

data[Dwidth:0]

(2Awidth x Dwidth)

Figure 8.25 Verilog description and symbol for a simple RAM.
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The memory write operation is implemented by the sequential always block in lines

14–16 of the listing in Figure 8.25. The incoming data value is latched into the memory

array at the rising edge of the active-low ‘write-enable’ control input, providing the

memory is enabled and not attempting to perform a read. In this case, the bidirectional

data ports of the memory are being used as input wires; the Verilog simulator automati-

cally resolves the value on the data port from the combination of the high-impedance state

being assigned by the continuous assignment in lines 11 and 12 and the value being driven

onto the port from the external source.

Figure 8.26 shows the Verilog source description of a test module for the ram model of

Figure 8.25.An important aspect of the testmoduletest_ram is the requirement todeclare the

local signal tobeconnected to thebidirectional data port of theram as awire rather than areg,
as would normally be the case if it were purely an input.

Thewirenameddata, declared and continuously assigned in lines 9 and10,must bedriven

to the high-impedance state when the memory is being operated in read mode.

In order to achieve the above, the test module makes use of a single-bit reg, named

tri_cntr (short for tri-state control), to control when the data to be written, data_reg, is
driven onto the bus wire data. During write operations, tri_cntr is set high to enable the

data_reg values to be written to the memory array, whereas during read operations

tri_cntr is forced to logic 0 with the corresponding effect of making the data bus wire

high impedance.

A16-byteRAMis instantiated in the testmodule in lines35–38,byoverriding theaddress and

data width parameters with the numbers 4 and 8 respectively. The initial sequential block,

starting at line 11, performs a sequence of 10writes to the address locations 0 to 9; the data being

written is an alternating sequence containing the hexadecimal values 8' h55 and 8'hAA. At
the end of this sequence of writes the address is reset back to zero and the data bus wire is

driven to the high impedance state by setting tri_cntr to logic 0 in line 26. The second

repeat loop situated between lines 27and32 thenperforms10 readoperations fromaddresses

0 to 9, as above.

Figure 8.27 shows a block diagram to illustrate the structure of the test module described in

Figure 8.26.

Simulationof the test-module results in thewaveforms shownbelow the listing inFigure8.26.

As shown, the write operations occur as a result of the webar pulses being applied during the

middleof eachvalid address anddatavalue interval.The resulting storedvalues are then readout

by disabling the datareg source by lowering tri_cntr, and then applying a sequence of

oebar pulses while incrementing the address.

A ROM can be used wherever there is a need to store and retrieve fixed data during a

simulation. For example, a set of test patterns could be stored in a ROM and subsequently

used as test data (both stimulus and responses) for amodule under test during the execution of a

test module.

An embedded microcontroller may make use of an external ROM to store the fixedmachine

code program it will fetch and execute as part of a system-level simulation.

A simple Verilogmodel of a ROM, alongwith the corresponding symbolic representation, is

given in Figure 8.28. In commonwith the RAM described above, the memory is designed to be

scalable, having parameters to define thewidth of both the address bus and the data bus declared

as part of the module header.
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1 //test module for a 16-byte RAM

2 `timescale 1 ns/ 1 ns   
3 module   test_ram; 

4 reg   webar, oebar, csbar; 
5 reg   [7:0] datareg; 
6 reg   tri_cntr;  //data hi-z control
7 reg   [3:0] address; 
8 //three-state buffer for data input/output
9 wire   [7:0] data = (tri_cntr == 1'b1)?  
10       datareg : 8'bz; 
11 initial
12 begin : test 

tri_cntr = 1'b1;   13  //make data available
webar = 1'b1; oebar = 1'b1;    14  
csbar = 1'b1; datareg = 8'b01010101;   15  
address = 4'd0;   16  
#10 csbar = 1'b0;   17  

18 repeat   (10) //perform 10 writes
19 begin   

#10 webar = 1'b0;    20  
#10 webar = 1'b1;    21  
#10 address = address + 1;    22  
datareg = ~datareg;    23  

24   end   
address = 4'd0;   25  
tri_cntr = 1'b0;  //make data high impedance  26  

27 repeat   (10)  //perform 10 reads
28 begin   

#10 oebar = 1'b0;    29  
#10 oebar = 1'b1;    30  

 #10 address = address + 1;    31  
32  end   
33 $stop;
34 end

ram #(.Awidth(4), .Dwidth(8)) 35  
ram_ut(.web(webar),     36  

.oeb(oebar), .ceb(csbar),      37 

.data(data), .address(address));     38  
39 endmodule

Figure 8.26 Test module and simulation results for the simple RAM.
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As in the case of the RAM module of Figure 8.25, the module rom in Figure 8.28 uses a

localparam to calculate the length of the memory using the number of address bits at line 6,

and then goes on to declare the actual memory array at line 7. The behaviour of the model is

encapsulated in a single continuous assignment in line 8 of the listing in Figure 8.28; this

statement assigns the contents of the memory array mem, indexed at location address, to the
dataoutputport, providing that theoutputenablecontrol inputoeb is asserted.Note that, in the
case of theROM, thedata output port is ofmodeoutput rather thaninout, since data are only
ever read from themodule.With theoutput enable control input at logic1, thedataoutput is set to

the high-impedance state.

The actual contents of the ROM array mem are not specified anywhere in the Verilog

description shown in Figure 8.28. For this type of ROM description, the stored data are defined

externally, in an ASCII text file, and loaded into the memory array at the beginning of the

0ns 50ns 100ns 150ns 200ns 250ns 300ns

testram.ram_ut.address [3:0]

testram.datareg[7:0]

testram.tri_cntr

testram.csbar

testram.webar

testram.oebar

testram.ram_ut.data[7:0]

00 1 2 3 4 5 6 7 8 9

5555 AA 55 AA 55 AA 55 AA 55 AA

5555 AA 55 AA 55 AA 55 AA 55 AA

300ns 350ns 400ns 450ns 500ns 550ns 600ns

testram.ram_ut.address [3:0]

testram.datareg[7:0]

testram.tri_cntr

testram.csbar

testram.webar

testram.oebar

testram.ram_ut.data[7:0]

9 0 1 2 3 4 5 6 7 8 9

AA 55

AA ZZ 55 ZZ AA ZZ 55 ZZ AA ZZ 55 ZZ AA ZZ 55 ZZ AA ZZ 55 ZZ AA

Figure 8.26 (Continued ).

data[7:0]
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address[0..3]

data[0..7]
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webar

oebar
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tri_cntr

address[0..3]

datareg[0..7]

initial block

ram_ut

three-state buffer

reg

reg

reg

reg

reg

reg

wire

Figure 8.27 Block diagram of the module test_ram.
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simulation. This method of initializing a ROM can also be used for a RAM, if required. It also

provides a convenientway of loading a large amount of data into amemory fromafilegenerated

by a third-party tool, such as an assembler.

There are two ‘system commands’ that are available for loading a memory array from a text

file:

� $readmemb(‘‘filename’’, array_name);
� $readmemh(‘‘filename’’, array_name);

The difference between the two functions lies in the format used to represent the stored data

within the text file; the first function requires the data to be entered into the text file in binary,

whereas the second makes use of a text file containing hexadecimal values.

Listing 8.2 shows the contents of an example text file containing binary data values for

loading into amemory array. The first line specifies the numeric address, in hexadecimal format,

of the starting location. This is usually equal to zero. Subsequent use of the @hex_address
delimiter allows the memory to be initialized in discrete sections with different blocks of data.

@0
1010 0000 1111 1011 0010 1001 0110 1110
0111 1101 1011 1111 0000 0001 0010 0101

1 //a scalable read only memory module
2 module rom #(parameter Awidth = 8, Dwidth = 8)   
3     (input oeb,   
4     output [Dwidth-1:0] data,   
5     input [Awidth-1:0] address); 

6 localparam Length = (1 << Awidth);  

7 reg [Dwidth-1:0] mem[0:Length-1]; //memory array

8 assign data = (oeb == 1'b0) ? mem[address] : 'bz; 

9 endmodule

rom

oeb

address[Awidth:0]

data[Dwidth:0]

(2Awidth x Dwidth)

Figure 8.28 Verilog description of a ROM.
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1010 0000 1111 1011 0010 1001 0110 1110
0111 1101 1011 1111 0000 0001 0010 0101

Listing 8.2 Contents of the file rom_data.txt.

The actual data values are listed in the order theywill be stored inmemory separated bywhite

space, such as one or more space characters or the new-line character. If the number of values

1 `timescale 1 ns/ 1 ns 
2 module Test_rom(); 

3 wire [3:0] Data; 

4 reg [4:0] Address; 

5 reg oebar; 

6 initial //initialise rom with data from file
7 $readmemb("rom_data.txt", dut.mem); 

8 rom  #(.Awidth(5), .Dwidth(4))   
9 dut(.oeb(oebar),   

.data(Data),   10  

.address(Address)); 11  

12 initial
13 begin

Address = 0; 14  
15 repeat (32) //read entire rom contents
16 begin 

oebar = 1'b1; 17  
#25 oebar = 1'b0; 18  
#50 oebar = 1'b1; 19  
#25; 20  
Address = Address + 1; 21  

22 end 
$stop; 23  

24 end
25 endmodule

0ns 200ns 400ns 600ns 800ns 1.0µs 1.2µs

Test_rom.dut.address[4:0]

Test_rom.dut.oeb

Test_rom.dut.data[3:0]

0000 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D

ZZ A Z 0 Z F Z B Z 2 Z 9 Z 6 Z E Z 7 Z D Z B Z F Z 0 Z 1 Z

Figure 8.29 Verilog test-module for the ROM.
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contained within the text file is less than the size of the memory array, then the remaining

memory array locations are undefined.

The text file namefield‘‘filename’’ is a valid path name to the text file containing the data.

The exact format usedhere dependson the operating systemof the computer used to perform the

Verilog simulation, but generally the name of the text file is all that is required if the file is in the

same location (folder or directory) as the Verilog source files that make use of it.

The call to the system commands $readmemb() and $readmemh()may be made from

within theactualmemorymodule itself, inwhich case thearray_namefield refers to thename

of the memory array defined within the enclosing module, e.g. mem in the listing shown in

Figure 8.28.

In the present example, the initialization of the ROM memory array is performed within

the test-module Test_rom, shown in Figure 8.29. Here, an initial block in lines 6 and 7,

containing a single statement, loads the binary data shown inListing 8.2 into thememory array:

$readmemb(''rom_data.txt'', dut.mem);

As shown above, the reference to mem must be preceded by the instance name of the rom
being instantiated in lines 8–11 of the listing shown in Figure 8.29. The default values of the

address and data widths of the ROM are overridden such that a ‘32 � 4’ (32 words, 4-bits per

word) memory is instantiated; this corresponds to the memory array values defined by the

rom_data.txt file shown in Listing 8.2.

The remainder of the test module shown in Figure 8.29 corresponds to an initial block

between lines 12 and 24 that reads each stored value out from the memory array, from location

0 to31.The resulting simulationwaveforms shownbelow the listing inFigure8.29 illustrate this

process; careful inspection of the data values output during the periodswhenoebar is asserted

reveals that they are identical to those stored in the text file rom_data.txt.
The last example in this section on Verilog memories shows an alternative approach to

describing aROM.Listing 8.3 shows the source description of amodule namedrom_case. As
the name suggests, this variation of a ROM makes use of the Verilog case. . .endcase
sequential statement.

1 //read only memory using a case statement
2 module rom_case #(parameter Awidth ¼ 8, Dwidth ¼ 8)
3 (input oeb,
4 output [Dwidth-1:0] data,
5 input [Awidth-1:0] address);

6 reg [Dwidth-1:0] data_i;

7 always @(address)
8 begin
9 case (address) //define rom contents
10 0: data_i ¼ 'h88;
11 1: data_i ¼ 'h55;
12 2: data_i ¼ 'haa;
13 3: data_i ¼ 'h55;
14 4: data_i ¼ 'hcc;
15 5: data_i ¼ 'hee;
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16 6: data_i ¼ 'hff;
17 7: data_i ¼ 'hbb;
18 8: data_i ¼ 'hdd;
19 9: data_i ¼ 'h11;
20 10: data_i ¼ 'h22;
21 11: data_i ¼ 'h33;
22 12: data_i ¼ 'h44;
23 13: data_i ¼ 'h55;
24 14: data_i ¼ 'h66;
25 15: data_i ¼ 'h77;
26 default: data_i ¼ 'h0; //use `‘x' or ‘0'
27 endcase
28 end
29 //three-state buffer
30 assign data ¼ (oeb ¼¼ 1'b0) ? data_i: 'bz;

31 endmodule

Listing 8.3 Verilog description for the ROM using a case statement.

The module header is identical to that of the module shown in Figure 8.28; this is

followed by the declaration of a reg named data_i having Dwidth bits. This object acts

as a signal to hold the output of the case statement, prior to being fed through the ‘three-

state buffer’ at line 30.

Thealways block in line 7 responds to events on the input address only; the enclosedcase
statement then effectivelymaps each address value to the appropriate data value. In thismanner,

the ‘contents’ of the memory are explicitly defined within the module itself, rather than being

contained in an external file. Thismay restrict this approach to thedescription of relatively small

memories, due to having to specify each value explicitly within the module text.

Where the number of data values is less than the capacity of the memory (2Awidth), the

default branch in line 26must be included to cover the unused memory locations. A default

valueofx rather than zerowill result in a smaller logic circuit if theROMis tobe implemented in

the formof a combinational logic circuit, since anx is interpreted as a ‘don’t care’ condition bya
logic synthesis software tool.

8.7 DESCRIBING FINITE-STATE MACHINES

This section describes how the Verilog HDL can be used to create concise behavioural-style

descriptions of FSMs. The underlying building block of many digital systems, the FSM is a

vitally important part of the digital system designer’s toolbox. The behavioural statements

provided by Verilog facilitate the quick and straightforward creation of synchronous FSM

simulationmodels, once the state diagram has been drawn. This, when combinedwith thewide

availability of powerful logic synthesis software tools, makes the realization of state machines

extremely efficient and rapid.

Figure 8.30 shows the block diagram structure of a general synchronous FSM. As shown in

Figure 8.30, the FSM comprises two major blocks connected in a feedback configuration: the
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STATE REGISTER and the OUTPUT/NEXT-STATE LOGIC. There are several possible

variations on the basic structure; however, the state register generally consists of a collection

of n flip-flops (where 2n must be greater than or equal to the number of FSM states), and the

OUTPUT/NEXT-STATE LOGIC block contains the combinational logic that predicts the next

state and the output values.

The general block diagram shown in Figure 8.30 represents the so-called Mealy FSM,

where the k output bits depend both on the n state bits and the m input bits. Initialization of

the FSM may be provided through the use of an asynchronous Reset input that forces all

of the state flip-flops into a known state (usually zero). One possible disadvantage of the

Mealy FSM architecture is the fact that the Output can change asynchronously, in

response to asynchronous changes in the Input. This can be removed by making the

outputs depend only on the Present-State signal, i.e. the output of the state register.

This modified structure is better known as the Moore FSM. This section will present

guidelines and examples on how to construct Verilog behavioural descriptions of both

Mealy and Moore FSMs.

The starting point in the design of any FSM is the state diagram. This graphical

representation provides a crucially important visual description of the machine’s beha-

viour, allowing the designer to determine the number of states required and establish the

logical transitions between them. Once the number of states has been determined, the next

step is to assign a unique binary code to each state; this is known as the state assignment.

In Verilog, the state assignment can be defined in a number of different ways, using:

� local parameters;

� parameters declared as part of the module header;

� the `define compiler directive.

The first of these is perhaps the most obvious choice, since the state values are likely to

be a set of fixed codes referenced from within the module describing the FSM. The

following line of Verilog illustrates how a set of state values is defined for an FSM having

four states:

localparam s0 ¼ 2'b00,
s1 ¼ 2'b01,

Present-State[n-1:0]

Next-State[n-1:0]

Output[k-1:0]

Clock

STATE REGISTER

D[n-1:0]

Clock

OUTPUT/NEXT-STATE LOGIC

IP[m-1:0]

PS[n-1:0]

OP[k-1:0]

NS[n-1:0]Q[n-1:0]

Reset

Reset

Input[m-1:0]

Figure 8.30 General FSM block diagram.
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s2 ¼ 2'b10,
s3 ¼ 2'b11;

From the point of the above declaration, the symbolic namess0. . .s3 can be used instead of the

binary codes, making the description more readable.

Defining the state values as a set of in-line parameters within the module header provides the

additional flexibility of being able to reassign them when the FSM module is instantiated, as

shown below:

//module header with in-line parameters
module fsm #(parameter s0 ¼ 0,

s1 ¼ 1,
s2 ¼ 2,
s3 ¼ 3)

(input clk, . . ., output. . .);

//overriding default parameter values

fsm #(.s0(2),
.s1(0),
.s2(3),
.s3(1))

F1(.clk(CLK), . . .);

The third approach makes use of the `define compiler directive in a similar manner to the

way in which #define is used in the C/Cþþ languages to perform text substitution. The

compiler directives come before the module header, as shown by the following example:

`define WAIT 4'b001
`define IDLE 4'b011
`define ACK1 4'b101
`define ACK2 4'b110

module fsm(. . .);

Within the body of the fsm module above, reference is made to the defined state values as

follows:

//identifier must be prefixed by grave-accent character
Present-State <¼ `IDLE;

The STATE REGISTER block shown in Figure 8.30 is described by an always sequential

block; therefore, the output signal it assigns tomust be declared as areg-type object, as shown

below:

reg [n-1:0] Present-State; //number of states must be <¼ 2n
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The typical format of the state register sequential block is shown in Listing 8.4.

1 always @(posedge Clock or posedge Reset)
2 begin
3 if (Reset ¼¼ 1'b1)
4 Present-State <¼ s0;
5 else
6 Present-State <¼ Next-State;
7 end

Listing 8.4 General format of state register always block.

As described in previous sections, the sequential block shown in Listing 8.4 describes

synchronous sequential logic with active-high asynchronous initialization (active-low asyn-

chronous initialization is equally possible).

On each 0-to-1 transition of the Clock signal, the Present-State is updated by the

incoming Next-State value in line 6, the latter being produced by the OUTPUT/

NEXT-STATE LOGIC block. Now the Present-State signal is an input to the

OUTPUT/NEXT-STATE LOGIC block; therefore, it responds to this input change, com-

bined with the current values of the inputs, by updating the Next-State output value. The

feedback signal Next-State is now ready for the next positive edge of the clock to occur,

thereby updating the Present-State in a cyclic manner.

It is good practice to split theOUTPUT/NEXT-STATELOGICblock into two separate parts,

one for the outputs and another for the next state. This results in amore readable and, therefore,

maintainable description. Listing 8.5 shows the outlineVerilog source description for the ‘next-

state’ part of this block.

1 always @(Present-State, Input1, Input2, Input3. . .)
2 begin
3 //consider each possible state
4 case (Present-State)
5 s0: if (Input1 ¼¼ 1'b0)
6 Next-State <¼ s1;
7 else
8 Next-State <¼ s0;
9 s1: . . .;
10 s2: . . .;
11 default: Next-State <¼ s0;
12 endcase
13 end

Listing 8.5 General format of next-state always block.

As shown in Listing 8.5, the next-state always block describes combinational logic; there-

fore, the guidelines discussed in Section 8.2 must be observed in order to ensure that Next-
State is assigned a value under all possible conditions. (This is achieved in Listing 8.5 by

means of the default branch in line 11.)

The always sequential block must be sensitive to changes in both the Present-State
signal and all of the FSM inputs, as shown in line 1. The case. . .endcase statement, situated
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between lines 4 and 12 inclusive, considers each possible state and assigns the resulting

Next-State depending on the input conditions. In this manner, the next-state part of the

block describes the flow around the state machine’s state diagram in terms of behavioural

statements. The fact that theNext-State signal is assigned values by analways sequential

block means that it must be declared in a similar manner to the Present-State signal, as

follows:

reg [n-1:0] Next-State; //output of combinational behaviour

Thedefault branch (line 11) of thecase statement is required to define the behaviour of the

FSMfor anyunused states; these states result from the fact that the number ofused statesmaybe

less than the number of possible states. If the FSMfinds itself in an unused state, then the safest

approach is to move it directly and unconditionally to the reset state, otherwise the designer

may take the slightly more risky approach of treating all unused states as don’t care states, in

which case the default branch would be

default: Next-State <¼ 'bx;

The part of the OUTPUT/NEXT-STATE LOGIC block shown in Figure 8.30 that drives the

FSM outputs may be described using either an additional always block or by means of

continuous assignments. The choice between these approaches depends upon the complex-

ity of the output logic. For Moore-type FSMs, the outputs depend only on the present state;

therefore, the expressive capabilities of the continuous assignment are usually adequate.

The potentially more complicated output logic of a Mealy FSM may require the use of a

sequential block, in which case it is important to remember to qualify the outputs as being

of type reg.
The following extract illustrates the use of the continuous assignment to describe the output

logic of a simple Mealy FSM:

assign Output1 ¼ ((Present-State ¼¼ s0)
&& (Input1 ¼¼ 1'b0)) ||
((Present-State ¼¼ s2)
&& (Input2 ¼¼ 1'b1));

Here, the outputOutput1 depends directly on both the present state and the inputs. Avariation

on the use of separate sequential blocks, for the state-register and next-state feedback logic, is to

combine these ina singlealwaysblock.This approachhas theadvantageofmaking theVerilog

description more concise and involves combining the sequential logic behaviour shown in

Listing8.4with the combinational logic behaviour shown inListing8.5, as shown inListing8.6.

1 . . .
2 reg [n-1:0] state; //single state register
3 . . .
4 always @(posedge clock or posedge reset)
5 begin
6 if (reset ¼¼ 1)
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7 state <¼ State0;
8 else
9 case (state)
10 State1: if (Input1 ¼¼ 0)
11 state <¼ State2;
12 else
13 state_reg <¼ read1one;
14 State2: if (Input2 ¼¼ 1)
15 state <¼ State3;
16 else
17 state <¼ State2;
18 . . .
19 default: state <¼ 3'bxxx
20 endcase
21 end

Listing 8.6 General format of combined state-register and next-state logic always block.

Another consequence of using a combined sequential block for the state register and next-

state logic is the removal of the need for two separatereg-type signals forpresent state and next
state.As shown inListing8.6, only a single declaredregnamedstate is required in line 2; the
behavioural description both assigns to (lines 7, 11, 15....) and reads from (line 9) this combined

signal. The combined sequential block is triggered by positive edges on either the clock or reset

input (assuming asynchronous active-high initialization is being employed). After testing for

the reset condition in line6, thebehaviour ismuch the sameas that of thenext-state logicgiven in

Listing 8.5, making use of the case. . .endcase statement to consider each state and input

condition to implement the sequential behaviour described by the state diagram.

In effect, the statements between lines 9 and 20 of the source listing shown in Listing 8.6

describe a self-contained synchronous feedback logic system where the signal state is the

output of a set of D-type flip-flops and the inputs of the flip-flops are described by the

combination of the case and if. . .else statements.

The following example FSM designs serve to illustrate the points discussed above further.

The first example is concernedwith the description of an FSM to control the timers used by two

people playing a game of timed chess, and the second looks at a simple combination lock with

automatic locking mechanism.

8.7.1 Example 1: Chess Clock Controller Finite-State Machine

Figure 8.31 shows the block diagram of a system used by two chess players to record the

amount of time taken to make their respective moves. The players, referred to as Player-A and

Player-B, each have their own timer (TIMER-A and TIMER-B), the purpose of which is to

record the total amount of time taken in hours, minutes and seconds for their moves since the

commencement of the game.

The exact details of the timer internal operation are beyond the scope of this discussion, since

weareprimarilyconcernedwith thedescriptionof theFSMthat controls them.The timercontrol

inputs, en and rst, shown in Figure 8.31, operate as follows:

� rst – when logic 1, resets the time to zero hours, zero minutes and zero seconds.
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� en – when logic 1, enables the time to increment from the current time value. When en is

logic 0, the current elapsed time is held constant.

At the start of a new game, the Reset input is asserted to initialize the system and clear both

timers to zero time. This is achieved bymeans of theClr output of the Chess Clock FSMbeing

drivenhigh, thereby asserting the reset (rst) input of both timers. Each chess player has a push-

button, which when pressed applies a logic 1 to their respective inputs, Pa and Pb, of the Chess
Clock FSM.After resetting the timers, the player who is not making the first move presses their

push-button in order to enable the other player’s timer to commence timing.

For example, if Player-A is to make the first move, then Player-B starts the game by pressing

their push-button. This has the effect of activating the Ta output of the Chess Clock FSMblock

shown in Figure 8.31, in order to enable TIMER-A to record the time taken byPlayer-A tomake

Timer

en rs
t

TIMER-A

Timer

en rs
t

TIMER-B

Chess Clock FSM

T
a

C
lr

T
b

Pa

Pb

R
es

et

C
lo

ck

Reset

CLOCK

Player-A's Button Player-B's Button

Figure 8.31 Block diagram of chess clock system.
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the first move. Once Player-A completes the first move, Player-A’s button is pressed in order to

stop their own timer and start Player-B’s timer (Ta is negated and Tb is asserted).

For the purposes of this simulation, it is assumed that the Pa and Pb inputs are asserted

momentarily for at least one clock cycle, and the potential problems resulting from switch

bounce and metastability [3] may be neglected.

In the unlikely event that both players press their buttons simultaneously, the Chess Clock

FSM is designed to disable both timers by negating Ta and Tb.
This will hold each player’s elapsed time until play recommences in the manner described

above, i.e. Player-A (Player-B) presses their push-button to re-enable TIMER-B (TIMER-A).

The state diagram for the Chess Clock FSM is shown in Figure 8.32. As shown, the FSM

makes use of four states having the names shown in the upper half of the state circles. The states

of theFSMoutputsTa,Tb andClr are listed in the lower half of every state circle; those outputs
preceded by ‘/’ are forced to logic 0, whereas those without ‘/’ are forced to logic 1. The

presenceof theoutput stateswithineachof thestate circles indicates that theChessClockFSMis

of the Moore variety.

The values of the inputs,Pa andPb, are shown alongside each corresponding state transition
path (arrow) using a format similar to that used to show the state of the outputs. The movement

from one state to another occurs on the rising edge of the Clock input. Where the number of

transitions shown originating from a given state is less than the total number possible, the

remaining input conditions result in a so-called sling, i.e. the next state is the same as the current

state.

For example, the state named RunA in Figure 8.32 has two transitions shown on the diagram

corresponding to the input conditions hPa, Pbi ¼ h1, 0i and h1, 1i. The remaining input

conditions, hPa, Pbi ¼ h0, 0i and h0, 1i, cause the state machine to remain in the current state;

Stop
/Ta, /Tb, Clr

Wait
/Ta,/Tb,/Clr

RunA
Ta, /Tb, /Clr

RunB
/Ta, Tb, /Clr

Reset

bP ,aP/bP/ ,aP

Pa, /Pb

/Pa, Pb

Pa, Pb

Pa, Pb
Pa, Pb

/Pa, Pb
Pa, /Pb

Figure 8.32 State diagram for chess clock controller FSM.
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hence, there exists a sling in state RunA corresponding to the condition that the Pa input is at

logic 0 and the Pb input can be either logic 0 or logic 1, the latter indicating the presence of a

don’t care condition for input Pb.
The asynchronous, active-high Reset input forces the FSM directly into the state named

Stop, irrespective of any other condition.
The FSM depicted visually by the state diagram shown in Figure 8.32, is described in a

behavioural style by the Verilog HDL listing given in Listing 8.7.

1 module chessclkfsm(input reset, Pa, Pb, clock,
2 output Ta, Tb, Clr);

3 //ascending state assignment
4 localparam RunA ¼ 0, RunB ¼ 1, Stop ¼ 2, Wait ¼ 3;

5 reg [1:0] state;

6 //combined state register and next state sequential block
7 always @(posedge clock or posedge reset)
8 begin
9 if (reset)
10 state <¼ Stop;
11 else
12 case (state)
13 RunA:
14 casex ({Pa, Pb})
15 2'b0x: state <¼ RunA;
16 2'b10: state <¼ RunB;
17 2'b11: state <¼ Wait;
18 endcase
19 RunB:
20 casex ({Pa, Pb})
21 2'bx0: state <¼ RunB;
22 2'b01: state <¼ RunA;
23 2'b11: state <¼ Wait;
24 endcase
25 Stop:
26 case ({Pa, Pb})
27 2'b00: state <¼ Stop;
28 2'b01: state <¼ RunA;
29 2'b10: state <¼ RunB;
30 2'b11: state <¼ Wait;
31 endcase
32 Wait:
33 if (Pa ¼¼ Pb)
34 state <¼ Wait;
35 else if (Pa ¼¼ 1'b1)
36 state <¼ RunB;
37 else
38 state <¼ RunA;
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39 endcase
40 end

41 //Moore output assignments depend only on state
42 assign Ta ¼ state ¼¼ RunA;
43 assign Tb ¼ state ¼¼ RunB;
44 assign Clr ¼ state ¼¼ Stop;

45 endmodule

Listing 8.7 Verilog description of the Chess Clock FSM.

The module chessclkfsmmakes use of a local parameter to define the state values. Each

statenameshown in the state diagramofFigure8.32 is assignedavalue in line4.This is followed

by the declaration of a 2-bit reg to hold the state of the FSM; this description makes use of the

single always block approach outlined in Listing 8.6.

The sequential always block spanning lines 7–40 of the listing shown in Listing 8.7

describes the state register and next-state logic. The presence of a don’t-care condition in one

of the state transitions for states RunA and RunB suggests the use of a special variation of the

case statement known as casex.
Theuseofcasex insteadofcase in lines14and20allows theexplicit useof the ‘don’t-care’

value (x) within the literals specified in lines 15 and 21. In effect, thismeans that one ormore of

the inputs can be either logic 0 or logic 1, e.g. lines 14 and 15 are equivalent to the following:

14 case ({Pa,Pb})
15 2'b00, 2'b01: state <¼ RunA;
16 . . .

The case statement considers each possible value of state; in this example there is no

requirement for a default branch, since the number of states is equal to a power of 2.

State Stop has four unique next states, hence the need for a nested case. . .endcase
statement with four branches, or limbs, situated in lines 27–30 inclusive. The case
statement gives equal priority to each of the individual limbs or branches enclosed within

the bounds of case. . .endcase; hence, the matching expressions must be nonoverlapping

or mutually exclusive. As seen previously, multiple values may be specified on a single

branch, so long as none of these values appears within any other of the branches within the

statement.

The next-state behaviour of the Wait state is described using a nested if. . .else
statement in order to illustrate the flexibility of the Verilog language. It is straightforward to

appreciate that the semantics of the statement in lines 33–38 inclusive of the source

description in Listing 8.7 are equivalent to the state transitions shown on the state diagram

of Figure 8.32, bearing in mind that there is a sling condition corresponding to input values

hPa, Pbi ¼ h0, 0i and h1, 1i.
It should be noted that, despite the priority implied by the nestedif. . .else. . .if statement

semantics, the circuitry resulting from synthesis of this description will not include any

prioritized logic. This is due to the fact that the conditions specified in each part of the

if. . .else statement are mutually exclusive.
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TheoutputsTa,Tb andClr, of theChessClockFSM,are of theMoorevariety, i.e. dependent

on the state of themachine only. These are generated bymeans of the continuous assignments in

lines 42–44 of the source description shown in Listing 8.7. Each output is generated by

continuously comparing the value of the state-register state with the local parameter value

corresponding to the state in which the output is asserted.

In this simple example, each output is asserted in only one state; therefore, the logic of the

outputs amounts to little more than a single AND gate.

The output logic can be further simplified by encoding the states of the FSMwith values that

match the outputs. In the present example, the output values are unique for each state, so this

would involve simplydefining the statevalues tobe the sameas theoutput values, i.e. replace the

local parameter declarations with those shown in lines 4–7 of Listing 8.8.

3 //state assignment matches outputs Ta, Tb, Clr
4 localparam RunA ¼ 3'b100,
5 RunB ¼ 3'b010,
6 Stop ¼ 3'b001,
7 Wait ¼ 3'b000;

8 reg [2:0] state; //no. of state bits ¼ no. of outputs

. . .
39 default: state <¼ 3'bx;
40 endcase

. . .
41 //outputs are equal to state bits
42 assign Ta ¼ state [2];
43 assign Tb ¼ state [1];
44 assign Clr ¼ state [0];

Listing 8.8 Alternative state assignment to match outputs.

The output continuous assignments, situated in lines 42–44 of the listing given in Listing 8.7,

wouldbe replacedby thecorresponding lines shown inListing8.8.As shown, eachoutput isnow

mapped directly to the corresponding bit of the state register.

Another consequence of modifying the state assignments, as described above, is the

need to change the number of state bits to match the number of outputs. The replacement

state-register declaration, in line 8 of Listing 8.8 now declares a register having 3-bits;

therefore, the next-state behaviour must be modified by the addition of a default
branch in line 39, so that the additional (23 � 4 ¼ 4) unused states are covered by the

case statement.

Simulation of the Chess Clock FSM module chessclkfsm is achieved by means of

the simple test module shown in Figure 8.33. The resulting timing waveforms are also

shown in Figure 8.33, where the relationship between the inputs, state and outputs can be

seen to follow that defined by the state diagram. Most Verilog simulation tools provide a

facility whereby the values of the state waveform can be displayed in terms of the state

names used on the state diagram, as is the case here. This is a significant visual aid

when attempting to analyse, understand and verify the behaviour of an FSM using

simulation.
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1 `timescale 1 ms / 1 ms
2 module Test_chessclkfsm();

3 reg RES, A, B, CLK;
4 wire Ta, Tb, Clrt;

5 //generate a 10 Hz clock
6 initial
7 begin
8 CLK ¼ 1'b0;
9 forever
10 #50 CLK ¼ �CLK;
11 end

12 //generate inputs
13 initial
14 begin
15 RES ¼ 1'b1; A ¼ 1'b0; B 1'b0;
16 #200 RES ¼ 1'b0;
17 #200;
18 A ¼ 1'b1;
19 #550 A ¼ 1'b0;
20 #350 B ¼ 1'b1;
21 #750 B ¼ 1'b0;
22 #400;
23 A ¼ 1'b1; B ¼ b1;
24 #350;
25 A ¼ 1'b0; B ¼ 1'b0;
26 #450;
27 A ¼ 1'b1;
28 #800;
29 $stop;
30 end

31 //instantiate the FSM
32 chessclkfsm mut (.reset (RES),
33 .Pa (A), . Pb(B), . clock (CLK),
34 .Ta (Ta), .Tb (Tb), .Clr (Clrt));
35 endmodule

Figure 8.33 Test module and simulation waveforms for chess clock FSM.
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8.7.2 Example 2: Combination Lock Finite-State Machine with Automatic
Lock Feature

The second example of anFSM-based design is a rathermore complex system thatmakes use of

several modules, both combinational and sequential. This example also serves to illustrate the

interactionof anFSMwithother synchronous sequentialmodules, all described inabehavioural

style and clocked by a common clock signal.

Figure 8.34 shows the block diagram of a so-called ‘digital combination lock’ system. At the

heart of the system there is anFSM, labelledCONTROLLER in thefigure, the functionofwhich

is to detect when a user has entered the correct four-digit secret code via the Key Pad Switches,

shown at the left-hand side of Figure 8.34.

The user sees a keypad with eight active-low push-button switches (SW[0]. . .SW[7]). The

first four (SW[0. . .3]) are hardwired into the system via a four-to-one multiplexer; these

represent the code switches. It is up to the user to connect the multiplexer inputs to the keypad

switches corresponding to the secret code; in this manner, the secret access code is hardwired

into the system.

The eight-inputANDgate, connected to all of the switches in Figure 8.34, provides an output

named allsw that goes to logic 0 if any switch is pressed. The output of the four-to-one

multiplexer, named mux_out, will go to logic 0 if the switch being pressed corresponds to the
multiplexer select address input sel[0..1]. In this manner, the multiplexer is able to select

each switch in the code in sequence; the outputmux_outwill go low only if the correct switch

has been pressed.

The input push-button switches are asynchronous inputs by nature, whereas the combination

lock system operates entirely synchronously. It is impossible to predict for how long any push-

button will be pressed; therefore, the duration of the logic 0 pulses coming into the system on

signals mux_out and allsw is entirely unpredictable. If the aforementioned signals were fed

directly into the FSM, then a single key depression lasting 0.5 s, for example, would be

interpreted as a sequence of approximately n inputs, where

n = 0.5/clock_period.

The above problem is overcome by means of the simple ‘edge detector’ circuit shown in

Figure 8.35. The system makes use of two of these circuits, labelled DET1 and DET2 in

Figure 8.34. As shown in Figure 8.35, the circuit is essentially a synchronous 2-bit shift

0s 1s 2s 3s 4s 

Test_chessclkfsm.RES

Test_chessclkfsm.CLK

Test_chessclkfsm.A

Test_chessclkfsm.B

Test_chessclkfsm.Ta

Test_chessclkfsm.Tb

Test_chessclkfsm.Clrt

Test_chessclkfsm.mut.state[1:0] Stop RunB RunA Wait RunB

Figure 8.33 (Continued).
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register with the output of the first flip-flop ANDed with the inverse of the output of the

second flip-flop.

This simple circuit performs both synchronization and edge detection, in that it produces a

single clock-cycle-length logic 1 pulse at the output named detected, near to the point when
the input,edge_in, undergoes a logic 1 to logic 0 transition, regardless of how longedge_in
remains at logic 0.

Neglecting the usual problems of metastability [3], which result whenever there is a need to

interface between asynchronous and synchronous domains, the logic circuit of Figure 8.35

provides an effective means of interfacing the push-button switches to the FSM.

The outputs, codesw and anysw, of the two edge detectors feed directly into the FSM

LOCKFSM.The fact that the edgedetectors and theFSMare clockedby the samesignal ensures

synchronization between the two separate modules such that if a key is pressed, and it is the

correct key(i.e. the four-to-onemultiplexer is selecting thekey), thelockfsm receivesa logic1
pulse on both codesw and anysw during the same clock cycle. The arrival of the two pulses

indicates the correct key was pressed and the FSM then advances to the next state.

TheVerilogdescriptionsof theD-typeflip-flopand theedgedetectorare shown inListings8.9

and 8.10 respectively.

1 module dff(output reg q, input d, clk);

2 always @(posedge clk) q <¼ d;

3 endmodule

Listing 8.9 Verilog source description of D-type flip-flop.

1 module edgedet(input edge_in,
2 output detected,
3 input clock);

4 wire q0, q1;

5 dff dff0(.q(q0), .d(edge_in), .clk(clock));
6 dff dff1(.q(q1), .d(q0), .clk(clock));

7 assign detected ¼ q0 & �q1;

8 endmodule

Listing 8.10 Verilog source description of edge detector.

nq1

q0edge_in

clock

detected

CLK

D Q

!Q CLK

D Q

!Q

Figure 8.35 Logic diagram of edge detector edgedet.
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The block diagram of Figure 8.34 includes a timer module (TIMER) labelled T1. This

module interfaces with the FSM via signals entimer (enable timer) and timeout (timer

timed out) and is clocked by the same master clock as the FSM and edge detectors, ensuring

synchronization.

The function of the timer is to provide an automatic locking mechanism, returning the

system to the locked state after a delay of 30 s subsequent to the system entering the

unlocked state.

The master clock signal is intended to have a frequency of 10 Hz, so the timer imple-

ments the required delay by counting to 30010, as shown in the Verilog source description

shown in Listing 8.11.

1 module Timer(input Clock, Start, output Timeout);
2 //time delay value in clk pulses
3 localparam NUMCLKS ¼ 300;

4 reg [8:0] q;
5 always @(posedge Clock)
6 begin
7 if (!Start||(q ¼¼ NUMCLKS))
8 q <¼ 9'b0;
9 else
10 q <¼ q þ 1;
11 end
12 //decode counter output
13 assign Timeout ¼ (q ¼¼ NUMCLKS);

14 endmodule

Listing 8.11 Verilog source description of automatic lock timer.

TheTimermodule behaviour is entirely synchronous:with the input namedStart at logic

0, the timer is disabled and the count q held at zero.

The FSM starts the timer when it enters the unlocked state by asserting entimer
(connected to timer input Start), this allows the count q to increment on each

clock edge until it reaches the terminal value NUMCLKS (30010), at which point the

Timeout output of the timer goes high for one clock cycle and the count returns to

zero.

The FSM responds to the logic 1 on its timeout input by returning to state s0, where the

locked output returns high. By returning to state s0, the FSM also negates the entimer
output, thereby disabling the timer until the next time it is required.

The remaining module, as yet not discussed, in the block diagram of Figure 8.34, is the

seven-segment decoder named SEGDISP. This module is purely combinational and drives

an active-low seven-segment display unit that displays the state of the system, based on the

values of the alarm and locked outputs of the FSM: ‘L’ for locked, ‘U’ for unlocked

and ‘A’ for alarm. The Verilog behavioural description of the module is given in List-

ing 8.12.
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1 module segdisp(input locked,alarm,
2 output SA,SB,SC,SD,SE,SF,SG);

3 reg [6:0] seg;

4 always @(locked or alarm)
5 begin
6 if (alarm ¼¼ 0)
7 seg ¼ 7'b0001000; //display ‘A’
8 else if (locked ¼¼ 0)
9 seg ¼ 7'b1000001; //display ‘U’
10 else
11 seg ¼ 7'b1110001; //display ‘L’
12 end

13 assign {SA, SB, SC, SD, SE, SF, SG} ¼ seg;

14 endmodule

Listing 8.12 Verilog source description of seven-segment display decoder.

Figure 8.36 shows the state diagram for thelockfsmmodule at the heart of the combination

lock system.

The FSM is initialized by asserting the asynchronous reset input, this forces it into state s0,

where the locked and alarm outputs are both at logic 1, indicating the system is locked and

not in a state of alarm (alarm is active-low). The 2-bitselsw output of the lockfsm is set to

zero, thereby selecting the first input push-button in the sequence via the four-to-one multi-

plexer. The timer is disabled on account of entimer being at logic 0.

What happens next depends onwhich of the eight push-button switches is pressed. If the first

switch in the code sequence is pressed (SW[0]), then the input signals codesw and anysw go

high simultaneously, causing the FSM tomove into state s1,where it remains until a subsequent

key is pressed.

In state s1 the selsw output of the FSM is set to 1, thereby selecting the second input of the

multiplexer, this being connected to the second switch in the code sequence, SW[1]. Pressing

SW[1] in state s1 asserts both codesw and anysw again, advancing the FSM into state s2.

On entering state s2, the FSM changes selsw to 2, thereby selecting the third input of the

multiplexer, this being connected to the third switch in the code sequence, SW[2].

In a similar manner to that described above, pressing switches SW[2] followed by SW[3]

causes thelockfsm to enter theunlock state, having pressed all four keys (SW[0]. . .SW[3])

in thecorrect order.Thelockedoutputgoes to logic0and the seven-segmentdisplay shows the

letter ‘U’.

As shown in Figure 8.36, the entimer output of the FSM is now asserted, thereby enabling

the timer. The lockfsm will remain in the unlock state for as long as the timeout input

remains at logic 0 (assuming the asynchronous reset input is not asserted).

As discussed above, this corresponds to a duration equal to 30010 clock periods or 30 s,

whereupon the FSM will return to state s0 and reassert the locked output.

In any of the lockfsm states (s0, s1, s2 and s3), pressing the incorrect key pad switch will

result in a pulse arriving from anysw, via the eight-input AND gate, but there will be no such
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pulse on codesw, due to the fact that the currently selected multiplexer input will not be

asserted low.

The statediagramofFigure8.36 shows that, under these circumstances, theFSMwillmove to

statewrong, indicating that the incorrect keywaspressed. In this particular state, the active-low
alarm output is asserted and the display unit outputs the code for the letter ‘A’.

The absence of any transitions leaving state wrong indicates the presence of an

unconditional state transition leading from the wrong state back to itself (a ‘sling’), i.e.

the only way to exit the alarm state is to force an asynchronous reset. Needless to say, the

clear input would, therefore, have to be located in a secure environment, enabling only a

qualified operator to reset the alarm.

The Verilog behavioural description of the lockfsmmodule is shown in Listing 8.13.

1 module lockfsm(input clock, reset,

s0

s1

s2

s3

unlockwrong

reset

codesw, 
anysw

codesw,
anysw

codesw, 
anysw

codesw,
anysw

timeout/codesw, 
anysw

/codesw, 
anysw

/codesw, 
anysw

/codesw, 
anysw

locked,
alarm,

/entimer,
selsw = 0

locked,
alarm,

/entimer,
selsw = 1

locked,
alarm,

/entimer,
selsw = 2

locked,
alarm,

/entimer,
selsw = 3

/locked,
alarm,

entimer,
selsw = 0

locked,
/alarm,

/entimer,
selsw = 0

Figure 8.36 Combination lock FSM (lockfsm) state diagram.
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2 codesw, anysw,
3 output reg [1:0] selsw,
4 output locked, alarm, entimer,
5 input timeout);

6 localparam s0¼3'b000, s1¼3'b001, s2¼3'b010,
7 s3¼3'b011,
8 wrong¼3'b100, unlock¼3'b101;

9 reg [2:0] lockstate;

10 always @(posedge clock or posedge reset)
11 begin
12 if (reset ¼¼ 1'b1)
13 lockstate <¼ s0;
14 else
15 case (lockstate)
16 s0 : if (anysw & codesw)
17 lockstate <¼ s1;
18 else if (anysw)
19 lockstate <¼ wrong;
20 else
21 lockstate <¼ s0;
22 s1 : if (anysw & codesw)
23 lockstate <¼ s2;
24 else if (anysw)
25 lockstate <¼ wrong;
26 else
27 lockstate <¼ s1;
28 s2: if (anysw & codesw)
29 lockstate <¼ s3;
30 else if (anysw)
31 lockstate <¼ wrong;
32 else
33 lockstate <¼ s2;
34 s3: if (anysw & codesw)
35 lockstate <¼ unlock;
36 else if (anysw)
37 lockstate <¼ wrong;
38 else
39 lockstate <¼ s3;
40 wrong: lockstate <¼ wrong;
41 unlock: if (timeout)
42 lockstate <¼ s0;
43 else
44 lockstate <¼ unlock;
45 default: lockstate <¼ 3'bx;
46 endcase
47 end

48 always @(lockstate)
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49 begin
50 case(lockstate)
51 s0: selsw ¼ 0;
52 s1: selsw ¼ 1;
53 s2: selsw ¼ 2;
54 s3: selsw ¼ 3;
55 wrong: selsw ¼ 0;
56 unlock: selsw ¼ 0;
57 default: selsw ¼ 2'bx;
58 endcase
59 end

60 assign locked ¼ (lockstate ¼¼ unlock) ? 0: 1;
61 assign alarm ¼ (lockstate ¼¼ wrong) ? 0: 1;

62 assign entimer ¼ (lockstate ¼¼ unlock) ? 1: 0;

63 endmodule

Listing 8.13 Verilog source description of combination lock FSM.

In common with the previous example, this FSM is of the Moore type; therefore, the

always sequential block starting at line 10 describes the state register and next-state

behaviour only.

The output logic is captured by the combinational always block situated in lines 48–59

inclusive, and the continuous assignments on lines 60–62. The 3-bit state registerlockstate
is declared in line 9 and the six used states are assigned ascending numbers by means of a local

parameter starting in line 6.

The two unused states are exploited as don’t-care states bymeans of the default branches

in lines 45 and 57 of the source shown in Listing 8.13.

All of the used states, with the exception of state wrong, make use of the if. . .else
statement to describe the state transition logic defined by the state diagram of Figure 8.36. For

example, the next-state behaviour for state s1 is repeated below:

s1 : if (anysw & codesw)
lockstate <¼ s2;

else if (anysw)
lockstate <¼ wrong;

else
lockstate <¼ s1;

Thefirst condition tobe tested is the expressionanysw&codesw; thiswill be true (logic1) if
bothanysw andcodesw are at logic 1. If this is the case, then the state of the FSM ismoved to

s2. If the first condition is false, then this leaves the possibility of either input being high or both

inputs being low.The structure of the logicmeans thatcodesw cannot be high ifanysw is low,

so it is only necessary to test the state ofanysw to seewhether an incorrect keywas pressed and,

hence, move to the alarm state.
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If nokeysarepressed, then theFSMstate remains the same, i.e. in this case s1.This is achieved

by means of the final, and optional, else part of the above statement.

The complete combination lock system block diagram, shown in Figure 8.34, is described by

the Verilog source given in Listing 8.14.

1 module comblock(input clock, clear,
2 input [7:0] switches,
3 output alarm, locked,
4 output SA, SB, SC, SD, SE, SF, SG);

5 wire mux_out, anysw, codesw,
6 allsw, entimer, timeout;

7 wire [1:0] selsw;

8 //4-to-1 multiplexor
9 assign mux_out ¼ selsw ¼¼ 0 ? switches [0]:
10 (selsw ¼¼ 1 ? switches [1]:
11 (selsw ¼¼ 2 ? switches [2]:
12 (selsw ¼¼ 3 ? switches [3]: 1'b0)));

13 //AND gate for all switches
14 assign allsw ¼ &switches;

15 edgedet det1(.edge_in(mux_out),
16 .detected(codesw),
17 .clock(clock));

18 edgedet det2(.edge_in(allsw),
19 .detected(anysw),
20 .clock(clock));

21 Timer t1(.Clock(clock),
22 .Start(entimer),
23 .Timeout(timeout));

24 lockfsm controller(.clock(clock),
25 .reset(clear),
26 .codesw(codesw),
27 .anysw(anysw),
28 .selsw(selsw),
29 .locked(locked),
30 .alarm(alarm),
31 .entimer(entimer),
32 .timeout(timeout));

33 segdisp sg1(.locked(locked),
34 .alarm(alarm),
35 .SA(SA),
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36 .SB(SB),
37 .SC(SC),
38 .SD(SD),
39 .SE(SE),
40 .SF(SF),
41 .SG(SG));
42 endmodule

Listing 8.14 Verilog source description of complete combination lock system.

Thecomblockmodule comprises instantiations of themodules discussed previously, along

with two continuous assignments, situated in lines 9 and 14, to implement the four-to-one

multiplexer and the eight-input AND gate respectively.

Simulation of the combination lock system is achieved with the use of a Verilog test module

named test_comblock, shown in Listing 8.15.

1 `timescale 1 ms / 1 ms
2 module test_comblock();

3 // Inputs
4 reg clock;
5 reg clear;
6 reg [7:0] switches;

7 // Outputs
8 wire alarm;
9 wire locked;
10 wire SA, SB, SC, SD, SE, SF, SG;

11 // Instantiate the combination lock
12 comblock UUT(
13 .clock(clock),
14 .clear(clear),
15 .switches(switches),
16 .alarm(alarm),
17 .locked(locked),
18 .SA(SA), .SB(SB),.SC(SC),
19 .SD(SD),.SE(SE),.SF(SF),. SG(SG)
20 );

21 initial
22 begin
23 clock ¼ 1'b0;
24 forever
25 #50 clock ¼ �clock;
26 end

27 initial
28 begin
29 clear ¼ 1'b1;
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30 switches ¼ 8'b11111111;

31 repeat(3) @(negedge clock);
32 clear ¼ 1'b0;

33 repeat(3) @(negedge clock);
34 switches [0] ¼ 1'b0;

35 repeat(2) @(negedge clock);
36 switches [0] ¼ 1'b1;

37 repeat(3) @(negedge clock);
38 switches [1] ¼ 1'b0;

39 repeat(2) @(negedge clock);
40 switches [1] ¼ 1'b1;

41 repeat(3) @(negedge clock);
42 switches[2] ¼ 1'b0;

43 repeat(2) @(negedge clock);
44 switches [2] ¼ 1'b1;

45 repeat(3) @(negedge clock);
46 switches [3] ¼ 1'b0;

47 repeat(2) @(negedge clock);
48 switches [3] ¼ 1'b1;

49 repeat(400) @(negedge clock); //wait for timeout

50 clear ¼ 1'b1;

51 repeat(4) @(negedge clock);
52 clear ¼ 1'b0;
53 repeat(3) @(negedge clock);
54 switches [0] ¼ 1'b0;

55 repeat(2) @(negedge clock);
56 switches [0] ¼ 1'b1;

57 repeat(3) @(negedge clock);
58 switches [5] ¼ 1'b0;

59 repeat(2) @(negedge clock);
60 switches [5] ¼ 1'b1;

61 repeat(3) @(negedge clock);
62 switches [2] ¼ 1'b0;

63 repeat(2) @(negedge clock);
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64 switches [2] ¼ 1'b1;

65 repeat(3) @(negedge clock);
66 switches [3] ¼ 1'b0;

67 repeat(2) @(negedge clock);
68 switches [3] ¼ 1'b1;

69 repeat(4) @(negedge clock);
70 clear ¼ 1'b1;

71 repeat(4) @(negedge clock);

72 $stop;
73 end

74 endmodule

Listing 8.15 Verilog source description of combination lock system test module.

The test-module generates a 10 Hz clock using an initial sequential block starting at

line 21.

0ms 500ms 1.0s 1.5s 2.0s 2.5s 3.0s 3.5s

test_comblock.clear

(a)

test_comblock.clock

test_comblock.alarm

test_comblock.locked

test_comblock.switches[0]

test_comblock.switches[1]

test_comblock.switches[2]

test_comblock.switches[3]

test_comblock.switches[4]

test_comblock.switches[5]

test_comblock.switches[6]

test_comblock.switches[7]

test_comblock.switches[7:0]

test_comblock.UUT.allsw

test_comblock.UUT.anysw

test_comblock.UUT.codesw

test_comblock.UUT.mux_out

test_comblock.UUT.selsw[1:0]

test_comblock.UUT.entimer

test_comblock.UUT.timeout

lockstate[2:0]

test_comblock.UUT.t1.q[8:0]

FF FE FF FD FF FB FF F7

00 1 2 3

s0 s1 s2 s3 unlock

0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 8.37 Combination lock simulation showing: (a) application of correct switch sequence; (b)

automatic locking feature; (c) incorrect key input sequence.
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32.0s 32.2s 32.4s 32.6s 32.8s 
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test_comblock.UUT.anysw

test_comblock.UUT.codesw

test_comblock.UUT.mux_out
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FF
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Figure 8.37 (Continued).
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Asecondinitial block, starting at line 27, exercises the combination lock by applying the

correct sequence of switch inputs in order to reach theunlock state. This is followed by a 40 s

delay, implemented using a repeat loop, to allow observation of the automatic lock feature.

Finally, after resetting the system, an incorrect sequence of switches is applied in order to verify

the operation of the alarm state.

Figure 8.37a–c shows a selection of simulationwaveforms obtained as a result of running the

test-module simulation.
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