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Asynchronous Finite-State
Machines

9.1 INTRODUCTION

Most FSM systems are synchronous; that is, theymake use of a clock tomove from one state to

the next. Using a clock to control the synchronous movement between one state and the next

allows the FSM logic time to settle before the next transition and, hence, overcomes some logic

delayproblems thatmayarise.For this reason, synchronous systemsare, by far, themostpopular

in digital electronics; andmostHDLsused to define themare optimized for synchronous system

design.

However, there is another kind of FSM, one that does not use a clock to instigate a

transition between states. This is knows as the asynchronous FSM. In an asynchronous

FSM, the transition between states is controlled by the event inputs, so that the FSM does

not need to wait for a clock signal input. For this reason, asynchronous FSM are sometimes

called ‘event-driven’ FSMs.

A typical event FSM is shown in Figure 9.1. In this FSM, the transition from state s0 to s1will

take place when input s is logic 1 AND input c is logic 0. On reaching state s1, the FSM will

remain in this state until the input cgoes to logic 1, atwhich point itwillmove to state s2.Here, it

will remainuntil inputcgoes to logic0 tomove to state s3, before returning to state s0when input

s goes to logic 0.

In this example, the FSM will only change state when there is a change of input variable;

hence, the event nature of the system.

Sometimes, it is desired to change statewhen there is no input signal change (as has been seen

in clocked driven systems).

In Figure 9.2, the transition between s3 and s0 does not have an input term along the

transitional line. This implies thatwhen the FSM reaches state s3 (when input x became logic 1)

the FSMwillmove to s0. The time taken for the FSM tomove to s0,when it reaches state s3,will

be determined by the propagation delay of the event logic used in the system. Thiswill be as fast

as the logic technology used to implement the design.

An important featurewith event-driven FSM systems is that when the FSM is in a stable state

(perhaps waiting for an input event to move to the next state) the power drain is very low in
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CMOS circuits, since there is no repetitive clock to consume power. This allows asynchronous

(event) systems tobe lowpower,while also beingvery fast. This latter point is due to the fact that

the event FSMwillmove to the next state as soon as the relevant event input changes, and is only

limited by the propagation delay for its event-driven logic.
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9.2 DEVELOPMENT OF EVENT-DRIVEN LOGIC

From the previous section it is clear that an event state diagram can be developed in much the

same way as a clocked driven state diagram. However, whilst with a clocked FSM, the

implementation (synthesis) will make use of some type of flip-flop (D type, T type, or JK

type), the event-driven systemneeds tomakeuse ofmemory elements that donot require a clock

input. This implies that perhaps SR latches are required. But in practice these latches may, in

some cases, needmultiple set (s) andmultiple reset (r) inputs.What follows is the development

of a set of equations that can be used to implement a general ‘event-driven’ cell for each

particular application.

Consider Figure 9.3. This shows the block diagram for the proposed event cell. This cell has a

‘turn-on set’ input to set the cell output to logic 1, a ‘turn-off set’ to turn the cell output to logic 0,

and a hold term input, derived from the cell output to hold the cell either in its set, or rest state.

Inorder todevelop the logic equations for the eventcell a tableof required states for each input

condition is required.This is shown inTable9.1. In this table, the ‘turn-on set’ input is denotedas

s, the ‘turn-off set’ is denotedas r, the current stateof the cell output isQn, and thenext state of the

cell output isQnþ1. The two inputs s and r, together with the current output state, are shown as a

binary sequence. This defines all possible states for the cell.What is now required is to fill in the

required state condition for each Qnþ1 state.

� In row 1, s¼ r¼ 0, and the cell is currently reset. Since our event cell is to remain inwhatever

state it happens to be in, when s¼ r¼ 0, then Qnþ1 ¼ Qn ¼ 0.

� In row2, s¼ r¼0,but the cell is currently set.Therefore,Qnþ1 ¼ 1, since thecellmust remain

in the set state.

� In row3, s¼ 0but r¼ 1, implying a reset condition for the event cell. Since the cell in this row

is currently reset, then Qnþ1 ¼ 0 as well.

� In row 4, s ¼ 0, r ¼ 1 as before, but the cell is currently set, so the required action is that

Qnþ1 ¼ 0 to reset the cell.

Event
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Turn-off
set

Hold term

Output of cell

Basic Event (Asynchronous) Cell

There can be a number of individual turn-on 

inputs and a number of individual turn-off 

inputs to the cell

Figure 9.3 The event cell.
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� Moving to row 5, s¼ 1 and r¼ 0. The cell is currently reset; thus, Qnþ1 ¼ 1 to set the cell.

� In row6, s¼ 1 and r¼ 0 as before, and the cell is currently set; therefore,Qnþ1 ¼ 1 to hold the

cell in its set state.

� In rows 7 and 8, both s¼ 1 and r¼ 1. This is not a very practical condition for the cell, since it

implies that the cell inputs are ambiguous (i.e. set the cell and reset the cell at the same time!).

Clearly, this is impossible. Here, our own common sense will prevail, and both rows 7 and 8

are defined as ‘not allowed’ states. What is meant here is that it is rather hoped that the input

conditions defined by rows 7 and 8 ‘won’t’ happen. This is usually referred to as ‘don’t care’

states. It is important that the ‘don’t care’ does not happen, and this will be assumed in the

design of asynchronous systems that use the corresponding equations being developed here.

The input conditions s¼ 1 and r¼ 1 will not be allowed to occur. This is not too difficult to

ensure, so one marks out the row 7 and 8 Qnþ1 outputs with x.

Table 9.2 illustrates the completed table.

Now, an equation for Qnþ1 can be developed from this table in terms of s, r, and Qn:

Qnþ1 ¼ =s=rQn þ s=r=Qn þ s=rQn þ srQn þ sr=Qn

¼ =s=rQn þ s=r þ sr

¼ =s=rQn þ s:

Table 9.1 State table for the event cell.a

Row s r Qn Qnþ1 event

1 0 0 0 No change

2 0 0 1 No change

3 0 1 0 Reinforced turn off

4 0 1 1 Turn off

5 1 0 0 Turn on

6 1 0 1 Reinforced turn on

7 1 1 0 Not allowed

8 1 1 1 Not allowed

aQn is the present state;Qnþ1 is the next state ofQ. Each row corresponds to a possible

particular condition or state of the event cell. This can be used to determine the

‘characteristic equation’ for the event cell.

Table 9.2 Completed state table for the event cell.

s r Qn Qnþ1

0 0 0 0 No change

0 0 1 1 No change

0 1 0 0 Reinforced reset

0 1 1 0 Turn off (reset)

1 0 0 1 Turn on (set)

1 0 1 1 Reinforced set

1 1 0 x Don’t care

1 1 1 x Don’t care
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Applying the auxiliary rule and rearranging results in the following sequential equation:

Qnþ1 ¼ sþ Qn=r:

The sequential equationproducedhere represents the ‘characteristic equation’ for the eventcell.

Notice that in line 3 the ‘don’t care’ terms s=r þ sr have been reduced to the term s.

The sequential equation can be stated as:

The newoutput state for the event cell is equal to the condition of the set input s or the current

state of the cell Qn and the inverse of the reset input r.

This can be easily proved, as shown below, by defining initial states for s, r, and Qn using the

sequential equation to predict the newoutputQnþ1. Note that, in these equations, the r term is /r,

so r¼ 0 means /r¼ 1, and r¼ 1 means /r¼ 0.

Let s ¼ 1; r ¼ 0; Qn ¼ 0: Then Qnþ1 ¼ 1þ 0 � 1
¼ 1; i:e: cell sets ðoutput changes from 0 to 1Þ:

Let s ¼ 0; r ¼ 0; Qn ¼ 1: Then Qnþ1 ¼ 0þ 1 � 1 ¼ 1;

cell remains set ðoutput remains at logic 1Þ:
Let s ¼ 0; r ¼ 1; Qn ¼ 1: Then Qnþ1 ¼ 0þ 1 � 0 ¼ 0;

cell is reset ðoutput changes from 1 to 0Þ:
Let s ¼ 0; r ¼ 0; Qn ¼ 0: Then Qnþ1 ¼ 0þ 0 � 1 ¼ 0;

cell remains reset ðoutput remains at logic 0Þ:
As it stands, the sequential equation is rather limited because it caters for only a single input s

term and a single input r term. In real event-driven systems there may be a requirement for

multiple set and multiple reset terms so that the cell can be set and reset under different

conditions. But these will be OR terms, since the state diagram is sequential and can only

dealwith one set andone reset condition at a time. So the sequential equation can bemodifiedby

introducing the possibility of multiple set inputs as:

Sum of set inputs
X

s ¼ s1 þ s2 þ � � � þ sn; where sn is the final set input term:

Sum of reset inputs
X

r ¼ r1 þ r2 þ � � � þ rn; where rn is the final rest input term:

Thus, the sequential equation becomes:

Qnþ1 ¼
X

sQ þ Qn �
X

=rQ: ð9:1Þ

This is thefinal formof the sequential equationused todefine the event cell. It is referred to as the

NAND sequential equation [1].

Note that there is a corresponding equation called the NOR sequential equation that is

defined as

Qnþ1 ¼ ð
X

sQ þ QnÞ �
X

=rQ: ð9:2Þ

Equations 9.1 and 9.2 are reproduced from Page 19 in Chapter 1 ‘Basic Concepts in Logic Design’, from ‘Problems

and Solutions in Logic Design’ by Zissos, D. by permission of Oxford University Press.
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But it is not usedmuch these days. Youmay like to try to see how this NOR sequential equation is

obtained from the sequential equation. (Hint: AND ðP rQ þP
=rQÞwith the

P
sQ and expand.)

Equation (9.1) can be described for an event cell A as

A ¼
X

ðturn-on sets of AÞ � Aþ
X

=ðturn-off sets of AÞ

and Equation (9.2) as

A ¼ ð
X

ðturn-on set of AÞ þ AÞ �
X

=ðturn-off sets of AÞ:

Both theseequationswereused in thebookProblemsandSolutions inLogicDesignbyD.Zissos

[1] (chapter 1: ‘Basic concepts in logic design’) and are repeated here by permission of Oxford

University Press.

Thenext stage is to showhow the sequential equation canbeused to synthesize an eventFSM.

Thiswill be followedby an example of how to design an event-drivenFSMfroma specification.

Returning to the sequential equation, Equation (9.1), a circuit can be produced. This is shown

in Figure 9.4.

Qnþ1 ¼ sþ Qn � =r:

This is the equation defining the circuit of Figure 9.4. This can be converted intoNAND formby

applying De Morgan’s rule to obtain:

Qnþ1 ¼ =ð=s � =ðQn � =rÞÞ: ð9:3Þ

This iswhere the ‘NAND’sequential equationnamecomes from.The event cell circuit is shown

in Figure 9.5.

Either type can be used in practice, although with PLD and FPGA devices the AND/OR

arrangement fits best.

9.3 USING THE SEQUENTIAL EQUATION TO SYNTHESIZE AN EVENT
FINITE-STATE MACHINE

The event state diagram shown in Figure 9.6 will be used to synthesize an event system. The

design process for event state diagramswill be dealt with later. The system is essentially able to

determine a 0 to 1 transition on the c input.
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Figure 9.4 Basic event cell.
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In this system there are three inputs: st, c, and sp. There is a single output P that is logic 1 in

state s3. Note that there are two event cells in this state diagram: event cell A and event cell B.

These form the secondary state variables.

When the operator asserts input st, the systemmoves from state s0 to s1, where itwaits for the

input c (the incomingpulse) to become logic0 (if c is logic 0 in state s0, then theFSMwill simply

move through s1 to s2).When the FSM reaches s2 the systemwaits forc going high. In thisway,
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Figure 9.6 The basic event-driven system.
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theevent-drivensystem isable tocatch thepositive-going transitionon inputc.ThePoutputwill

remain high until the sp input is asserted. In this way, the P output acts as a memory of the

transition event on c.

When the operator asserts input sp, the FSM will move back to state s0.

This systemcanbe left unattended, since itwill indicate the c0 to1 transition, and asserting sp

will allow the operator to return the system to its initial state again. Note that the system can be

reset to s0 via its reset input as well (not shown).

First, the turn-on set of conditions to set the A event cell must be determined.

The
P

sA is foundby looking for the statewhereAngoes from0to1.This is state s0, forAn ¼ 0

in state s0, andAn ¼ 1 in state s1. There is an input along the transitional line between s0 and s1,

so this input st is included in the turn on set for An. Therefore:

X
sA ¼ s0 � stþ s1 � st: ð9:4Þ

Thereasonwhys1 � st isneeded isbecause the input stmust still be logic1 (active)when theFSM

reaches state s1 to ensure that it will remain in this state.

Now:

X
sA ¼ =An � =Bn � stþ An � =Bn � st ¼ ð=An � =Bn þ An � =BnÞ � st ¼ =Bn � st

due to the application of the logical adjacency rule.Note: this has effectively led to the removal

of the An term in the equation for the turn-on set for event cell An.

Now, looking for the turn-off condition, this occurs in state s2whenAn is changing from1 to0.

Therefore:

X
rA ¼ s2 � cþ s3 � c; ð9:5Þ

since thec inputmustbeheld true in state s3 toensure that the eventcell hold reset. In termsof the

state variables:

X
rA ¼ AnBn � cþ =An � Bn � c ¼ ðAn � Bn þ =An � BnÞ � c ¼ Bn � c:

TheAn term is removed by the logical adjacency rule to leave theBn and c terms. This results in

the turn-off term

X
rA ¼ Bn � c:

The complete sequential equation can now be written thus:

Anþ1 ¼
X

sA þ An �
X

=rA

Anþ1 ¼ =Bn � stþ An � =ðBn � cÞ:

This represents the required behaviour for the event cell A. It is the sequential equation for the

event cell A originally called the NAND sequential equation by Professor D. Zissos in his book

Problems and Solutions in Logic Design [1].

274 Asynchronous Finite-State Machines



The sequential equation for the event cell B can be obtained in the same way:

Bnþ1 ¼
X

sB þ Bn �
X

=rB:

The turn-on set for B is

X
sB ¼ s1 � =cþ s2 � =c ¼ An=Bn � =cþ An � Bn � =c ¼ An � =c: ð9:6Þ

Note here that the application of the logical adjacency rule has removed theBn term in the same

way that the An term in the turn on set equation for Awas dropped.

The turn-off set for B is

X
=rB ¼=ðs3 � spþ s0 � spÞ¼=ð=An � Bn � spþ =An � =Bn � spÞ ¼ =ð=An � spÞ: ð9:7Þ

Likewise, theBn term is droppedusing the logical adjacency rule. Sonow the logic to specify the

behaviour of the event cells is complete.

The complete sequential equation for cell B is thus

Bnþ1 ¼
X

sB þ Bn �
X

=rB: ¼ An � =cþ Bn � =ð=An � spÞ:

The two sequential equations

Anþ1 ¼
X

sA þ An �
X

=rA ¼ =Bn � stþ An � =ðBn � cÞ
Bnþ1 ¼

X
sB þ Bn �

X
=rB: ¼ An � =cþ Bn � =ð=An � spÞ

represent the behavioural logic for the two event cells.

The final equation is the output equation for the signal P. This, like clock-driven systems, is

based on the state, in this case state s3:

P ¼ s3 ¼ =An � Bn:

Note that in the
P

sA set the /An state variable has disappeared and in the
P

/rA set theAn terms

have disappeared.

Likewise, the /Bn and Bn terms have disappeared from the respective
P

sB and
P

/rB sets.

9.3.1 Short-cut Rule

This is always going to be the case since the logical adjacency rulewill always be applied to the

state variable for the cell.

Thus, it is possible to apply a short-cut where in the event cellX the turn-on set
P

sxwill have

the /x term removed, and in the turn-off set
P

/rx the x term will be removed as a result of

applying the logical adjacency rule in Equations (9.4)–(9.7).
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This allows the equations to be written thus:

X
sA ¼ s0 � st ¼ =An � =Bn � st ¼ =Bn � st;

i.e. drop the /A state variable in the 0 to 1 term. This means you do not need to write down the

second term s1 � st in Equation (9.4).
X

rA ¼ s2 � c ¼ AnBn � c ¼ Bn � c;

i.e. drop the A state variable in the 1 to 0 term. This means you do not need to write down the

second term s3 � c in Equation (9.5).
X

sB ¼ s1 � =c ¼ An=Bn � =c ¼ An � =c;

i.e. drop the =B state variable in the 0 to 1 term. The s2 � c term is not required in Equation (9.6).

X
=rB ¼ =s3 � sp ¼ =ð=An:Bn � spÞ ¼ =ð=An � spÞ;

i.e. drop theB statevariable in the1 to0 termandyoudonot need towrite down the terms0 � sp in
Equation (9.7).

Thisprovidesa rapidway toobtain the sequential equationsdirect fromthestatediagram.The

easiest way to remember this rule is to simply ‘drop’ the state variable term in the equation for

that state variable. Therefore, in the equation for A, drop the /A state variable in the
P

sA 0 to 1

transition term. In the equation forB, drop theA state variable in the
P

rA 1 to 0 transition term.

From now on, the short-cut rule will be applied.

Having established the equations, they can now be implemented using a PLD or FPGA.

9.4 IMPLEMENTING THE DESIGN USING SUM OF PRODUCT AS USED
IN A PROGRAMMABLE LOGIC DEVICE

To do this the NAND part of the equations might want to be replaced to turn them into sum of

product terms:

Anþ1 ¼
X

sA þ An �
X

=rA ¼ =Bn � stþ An=ðBn � cÞ
Bnþ1 ¼

X
sB þ Bn �

X
=rB ¼ An � =cþ Bn � =ð=An � spÞ:

In the equation for Anþ1, for example, the term =ðBn � cÞ can be converted using De Morgan’s

rule. The De Morgan rule used here is

=ðX � YÞ ¼¼ =X þ =Y

to produce

=ðBn � cÞ ¼¼ =Bn þ =c:
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This results in

Anþ1 ¼
X

sA þ An �
X

=rA ¼ =Bn � stþ An � ð=Bn þ =cÞ:
¼ =Bn � stþ An � =Bn þ An � =c:

And for the term /(/An � sp), using De Morgan’s rule results in An þ =sp. The final equation is

Bnþ1 ¼
X

sB þ Bn �
X

=rB ¼ An � =cþ Bn � =ð=An � spÞ ¼ An � =cþ Bn � ðAn þ =spÞ

and

Bnþ1 ¼ An � =cþ AnBn þ =sp � Bn:

Using these two sequential equations, the final event cell circuits can be synthesized.

9.4.1 Dropping the Present State n and Next State n þ 1 Notation

Up to now the sequential equations used have been of the form:

Anþ1 ¼
X

sA þ An �
X

=rA;

where Anþ1 is the next state of the event cell. However, it could be written as

A ¼
X

sA þ A �
X

=rA;

where A on the left is taken to be the next state and A on the right the present state of the event

cell. This is, in effect, a recursive equation.

This notation will be used from now on. This can be clearly seen in Figure 9.7, where the

outputsA andB are fed back to inputs. Figure 9.7 illustrates the final circuit for the system. This

could be synthesized using a PLD device such as the 22V10.

9.5 DEVELOPMENT OF AN EVENT VERSION OF THE SINGLE-PULSE
GENERATOR WITH MEMORY FINITE-STATE MACHINE

The clock-driven single-pulse generator circuit that was developed in Chapter 1 when dealing

with synchronous (clock-driven) systemswill nowbe revisited.This time itwill be developedas

an event-driven system.

In the clockedversion, usewasmadeof a systemclock to control the timingof the single pulse

producedwhen the input pwas asserted. However, in an event version, there is no system clock,

so an input (named the c input) will be used for that purpose (it can also be used to set the pulse

duration). The event-driven systemwill make use of this input as an event input that happens to

be changing state at a regular interval, but it will be seen by the event system as ‘an event’ input.

Figure 9.8 illustrates the final system. Looking at the state diagram, it can be seen that the

systemstartswhen input s is asserted, but theFSMwill notmove fromstate s0until both s is logic

Development of an Event Version of the Single-Pulse Generator 277



st

/B

/B

/Cc

A

/C

A

/Spsp

P

A output

B output

/B output

Event cells and output for the system

/A
output

Figure 9.7 Final circuit for the system.

/P,/L

s0

/P,/L

s1

P,L

s2

/P,L

s3

s./c

c

/c

/s

AB
00

AB
10

AB
11

AB
01

Event
System

s

c

P

L

A = ∑s
A
 + A· /∑r

A

B = ∑s
B
 + B· /∑r

B

Equations:

A = /B.s./c + A./(B./c) 
   = /B.s./c + A./B + A.c

B = A.c + B./(/A./s)
   = A.c + A.B + B.s

P = s2 = A.B

L = s2 + s3 = B

Figure 9.8 Event-driven single-pulse system with memory showing block diagram, state diagram and

equations.

278 Asynchronous Finite-State Machines



1 and the c input is at logic 0. The reason for this is that the transition of c from0 to 1 is to be used

to assert the outputs P and L to logic 1 (beginning of the output pulse).

Therefore,when theFSMmoves fromstate s0 to s1 itwaits in s1 for the c input to go to logic 1,

thenmoves to state s2whereP andL aremade logic 1. Thiswill happen on the 0 to 1 transition of

the c input. The FSMwill remain in state s2 until the c input again drops to logic 0, and the FSM

willmove to state s3where theoutputPwill resume its logic 0 statewhile the outputL remains at

logic 1.

At this point, the FSMwill remain in state s3 until the input s reverts back to logic 0, ready for

the next single-pulse generation. Thiswill also cancel the outputL. In this design, the outputL is

beingusedasapulse indicator, since thepulseduration isdependantupon thewidthof thecpulse

and may not be seen by the user.

In this system, the actual width of theP output pulse can be controlled by the logic 1 period of

the c input.

Turning to the equations, the two-event cell equations can be obtained in the sameway as in

the previous example, by first obtaining the turn-on set and then the turn-off set for each

equation, then inserting them into the sequential equations. However, a little thought shows

that each sequential equation can bewritten down directly using the short-cut method, more or

less as has been done in Figure 9.8:

A ¼
X

sA þ A �
X

=rA ¼ s0 � s=cþ A � =ðs2 � =cÞ ¼ =B � s � =cþ A � =ðB � =cÞ
B ¼

X
sB þ B �

X
=rB: ¼ s1 � cþ B � =ðs3 � =sÞ ¼ A � cþ B � =ð=A � =sÞ

with outputs
P ¼ s2 ¼ A � B

and

L ¼ s2þ s3 ¼ A � Bþ =A � B ¼ B:

The two-event cell equations can nowbe converted so that they can be implementedwith sumof

product logic (typically found in PLD devices):

A ¼ =Bs=cþ A � =Bþ A � c
B ¼ Acþ B � Aþ B � s
P ¼ A � B
L ¼ B:

Thecircuit is illustrated inFigure9.9.Notice theReset line (thick line) to initialize theeventcells

to zero. This is essential in order to ensure that the system is reset to state s0. In operation, this

Reset linewill be at logic1.During reset itwill be at logic0, thus clearingbotheventcells to zero.

Clearly, the reset line is ANDed with the turn-on/turn-off logic of the event cells:

A ¼ ð=Bs=cþ A=Bþ AcÞ � Reset
B ¼ ðAcþ ABþ B � sÞ � Reset:
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For clarity, theReset input linewill be left out of the event cell equations, but remember to add

it in when implementing each design, otherwise the circuit will not simulate, since it will not be

able to initialize. At this stage the reader might like to revisit Figure 9.7 and add a reset

connection to allow this circuit to reset to state s0.

9.6 ANOTHER EVENT FINITE-STATE MACHINE DESIGN
FROM SPECIFICATION THROUGH TO SIMULATION

In this next example, an event FSMwill be developed from its written specification through to a

VerilogHDLdescriptionof theFSM(asdescribed inChapter 6).This is then simulatedusing the

Syncad
TM

simulator system.

The ideahere is to illustrate howacompletedesigncanbe implemented.Later, theVerilogfile

could be used to program a PLD device and, hence, realize the design in physical hardware.

9.6.1 Important Note!

Since the Verilog behavioural level is not optimized for an event-driven system, as yet, the

Verilog description is at the Boolean equation level. This is fine for our purposes, since it will

provide a one-to-one correspondencewith the systemequations. It is also possible to implement

A event cell

B event cell

P Output

L output

/B

s

/C

c

/B

A

c
A

s

Reset

Figure 9.9 Circuit for the event-driven FSM system.
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the event-driven system using the gate level direct. The Boolean equation level, however, is

useful for quick simulation and verification. On the other hand, simulating in terms of the logic

gates allows thedesigner toexperimentwithdifferentgatedelayvalues toensure that thecircuits

will not maloperate due to violation of the 33.3% gate tolerance rule (see Section 9.12.3 and

Reference [1] for details).

9.6.2 A Motor Controller with Fault Current Monitoring

This is an event-based FSM used to control a motor. An external device (possibly based on a

Hall-effect transducer) is used tomonitor themotor current. This will be set so that normal start

current is allowed, but if themotor current exceeds some defined limit a fault signal will be sent

to the FSM to switch off the motor and light up a fault LED indicator. The details of the Hall-

effect fault circuitry and the power circuit to switch the motor on and off are excluded from the

diagram of Figure 9.10a.

Figure9.10b shows the state diagramfor theFSMcontroller.Themotor canbe switchedonby

asserting input st, and off by disasserting input st. If a fault is encountered by the FaultDetection

Unit its output signalmswill go high thus causing theFSMtomove into state s2where themotor

will be switched off and the Fault indicator L turned on (an active-low signal). The system will

remain in s2 until the start input st is disasserted to move the FSM into state s3 turning off the

Fault indicator LED L. The FSM can return to its initial state s0 on reaching state s3 if input t is

logic 0.

LN
Current Sensor

Fault
Detection

Unit

FSMst

ms

t

M

L

(a) Block Diagram

(b) State Diagram

/M, L

s0

M, L

s1

/M, /L

s2

/M, L

s3

st

/st

ms+t

/st

AB
00

AB
10

AB
11

AB
01

/t

Figure 9.10 The block diagram and state diagram for the motor controller.
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Thesystemcanbe tested in theabsenceofa fault bypressing the test input t.Note that t¼1will

hold the FSM in state s3. The equations for the event cells can now be developed:

A ¼
X

sA þ A �
X

=rA

¼ s0 � stþ A � =ðs1 � =stþ s2 � =stÞ
¼ =B � stþ A � =ð=B � =stþ B � =stÞ
¼ =B � stþ A � ==st
¼ =B � stþ A � st

B ¼
X

sB þ B �
X

=rB

¼ s1 � ðmsþ tÞ þ B � =ðs3 � =tÞ
¼ A �msþ A � t þ B � =ð=A � =tÞ
¼ A �msþ A � t þ A � Bþ B � t

M ¼ s1 ¼ A � =B and L ¼ =s2 ¼ =ðA � BÞ ¼ =Aþ =B:

The schematic diagramof the design is illustrated inFigure 9.11.This has the test input included

so that the system can be tested in the absence of a fault input.

A

/A

B

/B

L Output

Motor
 Output 

M

/B

st

ms

A
t

A

Reset

Figure 9.11 Schematic circuit diagram for the FSM controller.
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Although it is not necessary to drawa circuit diagram, it is useful to see the circuit of the FSM.

Note that the essential interface buffering between the low-voltage FSM circuit and the high-

voltage motor circuit is not shown.

This design can be developed as a Verilog module and this is illustrated in Listing 9.1.

///////////////////////////////////////
module fsm(rst,st,ms,t,M,L,A,B);

output M,L,A,B;
input rst,st,sp,ms,t;

assign
A ¼ (�B&st | A&st)&rst,
B ¼ (A&ms | A&t | A&B | B.t)&rst,
M ¼ A&�B,
L ¼ �A | �B;

endmodule
////////////////////////////////////////

Listing 9.1 FSMmodule.

Note that the module inputs and outputs are defined outside of the parentheses, as was usual in

older style Verilog modules. This is still supported in later versions of the Verolog compiler

tools. Chapter 6 shows the more recent way to define the inputs and outputs.

In the Verilog file, the event equations have been implemented using an assign with blocking

statements. The equations also cater for the test t input to test the system in the absence of a fault.

The Verilog code in Listing 9.2 is a test bench that is used to test the design. A test bench

provides an instance of the FSM, along with a set of test signals to be used in the simulation in

order to verify the design.

module test;
reg st,ms,t,rst;

fsm uut(rst,st,ms,t,M,L,A,B);

initial
begin
$dumpfile("motflt.vcd"); // to get a printout of waveforms.
$dumpvars;
rst¼0;
st¼0;

ms¼0;
t¼0;

// Note it is important to ensure signals change in
// proper sequence. Also to ensure ms and sp are
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// mutually exclusive.
//–––––––––––––––– remove reset

#20 rst¼1;
//–––––––––––––––– move to s1

#20 st¼1;
//–––––––––––––––– stay in s1
//–––––––––––––––– move to s0

#20 st¼0;
//–––––––––––––––– move to s1 again

#20 st¼1;
//–––––––––––––––– move to s2

#20 ms¼1;
//––––––––––––––––

#30 ms¼0;
//–––––––––––––––– move to s3

#20 st¼0;
//–––––––––––––––– move back to s0

#20 st¼0;
//–––––––––––––––– move to s1

#20 st¼1;
//–––––––––––––––– stay in s1
//–––––––––––––––– move to s2

#20 t¼1;
//–––––––––––––––– move to s3

#20 st¼0;
//–––––––––––––––– move to s0
//–––––––––––––––– end of tests.

$stop(60); // stop the simulation.
end

endmodule

Listing 9.2 Test-bench module.

The FSMmodule is very simple and, apart from the input and output defines, consists of only

an assign block. The event cells are defined individually within this block, together with the

output equations.

The test bench module is also seen to be quite simple. One point to note is that the signals

must change one at a time, and with a time delay. This is mandatory, since the event cells can

respond to potential static 1 or 0 hazards (glitches). This will be a necessary requirement with

all event-driven designs.

Finally, Figure 9.12 illustrates the timing waveforms from the simulation.

Comparing thiswith the test benchmodule sequence, it can be seen that the state diagramhas

been traversed twice: once with a fault signal and next with a test signal.
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Note that, in thecaseofa fault, the transition froms2 tos3 tos0 isveryfast and thes3state isnot

apparent in the simulation. In the case of the test, the FSM stops in state s3 until the t input is

returned to its low state. In this way, the operator can test the complete state sequence

(particularly if the state variables are available as LED indicator outputs).

9.7 THE HOVER MOWER FINITE-STATE MACHINE

Ahover-type lawnmower usually uses amechanical interlock to prevent themotor fromstarting

unless the user presses a button before operating the on/off lever. By replacing the mechanical

mechanism with an electronic equivalent, the safety mechanism can be made easier to manu-

facture.

9.7.1 The Specification and a Possible Solution

Ahover lawnmower has a safety button sf thatmust be pressed before operating the start lever st.

When the safety button is pressed, an LED indicator P is lit; when the start lever st is operated

after this, themotorwill turnon.Themotor canbe stoppedby releasing the start lever.The safety

button sf must be pressed before the motor can be restarted with the start lever.

Ablockdiagramwithasuitable statediagramfor the systemare illustrated inFigure9.13aand

b. The specification is a typical one thatmight be given as a specification for a product. Looking

at the original state diagram 1 in Figure 9.13b (with four states), it can be seen that a number of

safety features have been added. This was done during the development of the state diagram as

the true nature of the control sequence was revealed.

0ns 50ns 100ns 150ns 200ns 250ns

test.st

test.ms

test.t

test.rst

test.M

test.L

test.A

test.B

Figure 9.12 Verilog simulation of the design.
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The state diagram controls the sequence of the controller by ensuring that only if the safety

button is pressed before the start lever is operatedwill themotor operate. ThePLEDwill remain

on in s1 if the start button is released. If the safety button is released in either states s1 or s2 the

FSM will move back to state s0.

Note that the FSM will return to s1 when the start lever st is released or the safety button is

released. This ensures that the operator’s hands are onboth the safety buttonand the start lever in

order to start themotor.Theoperatormust see theLEDP turnonbefore the start levercanbeused

to turn on the motor. Finally, note that the unused state s3 has been returned to s0. This ensures

that the system will fall into s0 should a glitch cause it to get into this unused state.

Returning to Figure 9.13, state diagram 2 (with only two states) is an alternative solution,

where combinational logic is used on the inputs (along the transitional lines between s0 and s1).

The logic equations can be deduced in the usual way:

A ¼
X

sA þ A � =
X

rA

¼ s0 � st � sf þ A � =ðs1 � ð=stþ =sfÞÞ
¼ st � sf þ A � =ð=stþ =sfÞ
¼ st � sf þ A � ==ðst � sfÞ
¼ st � sf þ A � st � sf

P ¼ s0 � sf ¼ sf:

Mower
Event

Controller

sf

st

P LED indicator

M Motor output

/P, /M

s0

P, /M

s1

P, M

s2

/P, /M

s3

AB
00

AB
10

AB
11

AB
01

/sf

sf

/st + /sf

st.sf

(b)

(a)

P=sf
, /M
s0

P, M

s1

sf.st

/sf + /st

A
0

A
1State Diagram 1

State Diagram 2

Figure 9.13 (a) Block diagram of themower FSM controller. (b) Two possible state-diagram solutions.
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This latter equation can be seen by noting that theP indicator can be on in s0 (Mealy output) and

also in s1 as a result of getting into s1 via inputs sf � st.
M ¼ s1 ¼ A:

This leads tomore simplified logic requiring only three logic gates: twoANDgates and oneOR

gate. Buffers would, of course, be required for outputs P andM.

Figure 9.14 illustrates the circuit for the mower FSM of state diagram 2 in Figure 9.13.

Additional buffers have been added to provide appropriate power levels. In particular, themotor

outputMwould need to be connected to a relay (static or electromechanical) to isolate the FSM

from the mains electrical supply.

The FSMof state diagram2 is implemented inVerilog using a gate-levelmodule. This allows

individual gates to be given propagation delay values. This is shown in Listing 9.3.

module mowerfsm(st,sf,P,M,A,rst);

input st,sf,rst;
output P,M,A;
wire na,nb,w1,w2;

or #5 g1(A,w1,w2);
and #5 g2(w1,sf,st,rst);
and #5 g3(w2,A,st,sf,rst);
//–––––––––––––––
buf #5 g4(M,A);
//–––––––––––––––
not #5 g5(na,A);
buf #5 g6(P,sf);
//–––––––––––––––

endmodule

Listing 9.3 Mower FSMmodule.

sf

st

Reset

P output

M outputA

w1

w2

/A

Buffer

Buffer

Inverter

g1

g2

g3

g4

g5

g6

Figure 9.14 Schematic circuit diagram of the mower FSM.
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The test bench module is illustrated in Listing 9.4.

module test;
reg rst, st, sf;
mowerfsm uut(st,sf,P,M,A,rst);

initial
begin

$dumpfile("mower.vcd");
$dumpvars;
rst¼0;
st¼0;
sf¼0;
#20 rst¼1;
#20 sf¼1;
#20
#20 st¼1;
#20
#20 st¼0;
#20
#20 st¼1;
#20
#20 sf¼0;
#20
#20 st¼1;
#20
#20 st¼0;
#10 $finish;

end

endmodule

Listing 9.4 Test-bench module.

Figure 9.15 illustrates the simulation of state diagram 2 in Figure 9.13. This follows the test-

bench sequence of Listing 9.4.

The simulation starts by activating the sf input. The P indicator turns on. This is followed

by the st input going high, which starts the mower motor. The start input is released and

the motor stops. It can be started again with the start input because the sf input is still

activated. The sf input is then deactivated (with the start input st still asserted) and the motor

turns off.
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Returning to the problem again, and after a little thought, the control of the mower can be

reduced to a combinational one requiring

M ¼ sf � st
P ¼ sf:

This final solution is now obvious when seen, and perhaps you saw this at the beginning of this

example. This is effectively back to a mechanical switch design!

The original solution based on state diagram 1 in Figure 9.13 is correct but requires three

states and two event cells. The second attempt provides an equally working solution with

fewer states using state diagram 2 in Figure 9.13. Finally, the combinational solution

provides the simplest solution. It pays to look at the problems carefully to see whether

they can be simplified. The sequential nature of the specification can easily lead to this kind

of overdesign from the designer.

9.8 AN EXAMPLE WITH A TRANSITION WITHOUT ANY INPUT

Nowconsider the next example in Figure 9.16; in this example, the transition between s3 and s0

does not have any input.

0ns 50ns 100ns 150ns 200ns 250ns

test.rst

test.st

test.sf

test.P

test.M

test.A

Figure 9.15 Mower FSM simulation.
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Here are the equations for this example:

A ¼
X

sA þ A �
X

=rA

¼ s0 � mþ A � =ðs2 � pÞ
¼ =B � mþ A � =ðB � pÞ
¼ =B � mþ A=Bþ A=p:

The equation for B will be obtained by not using the short-cut rule:

B ¼
X

sB þ B �
X

=rB

¼ s1 � =mþ s2=mþ B � =ðs3þ s0Þ
¼ A � =B � =mþ A � B � =mþ B � =ð=A � Bþ =A � =BÞ
¼ A � =mþ B � =ð=AÞ
¼ A � =mþ B � A:

In theequation forB, the
P

=rA term is (by the short-cutmethod)==s3which is==Abecause there
is no input term along the transitional line.

This example does not have anyoutput (something thatmost FSMswould have), but it is only

an academic example.

Remember: add the reset input before trying to simulate the design.

s0 s1

s2s3

m

/m

p

AB

00

AB

10

AB
11

AB
01

Figure 9.16 State diagram with no input along a transition.
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9.9 UNUSUAL EXAMPLE: RESPONDING TO A MICROPROCESSOR-
ADDRESSED LOCATION

Now here is an unusual example. Suppose one has an FSM-based event controller chip (PLD/

FPGA) that is required to synchronize with a microprocessor. A possible solution follows.

In the system shown in Figure 9.17, an address 380h is produced by the address decoding

logic. Thismight be implemented on the PLD/FPGA chip. The output of this is the signal 380h,

which is to be used to operate the FSM.

The FSMwill respond to this signal when c is low bymoving to its state s1, where it will wait

for c to go high.

At this point the FSMwillmove to s2 to assert theACKsignal to signal to themicrocontroller

that it has seen the 380h signal. The FSMwill return to its initial statewhen the signal c goes low

again via state s2 and s3. The signal c is derived from the system clock.

Note that this signal is used by the event FSM to control the return to initial state and thus

provide a clearly definedACKpulsewidth. If thiswere not done, thewidth ofACKsignalwould

be dictated by the propagation time of the event logic only.

The state diagram is shown in Figure 9.18. Here, one can see the turn-on and turn-off terms,

derived from the address decoder and c clock signals. This example shows how a simple event-

driven FSM can be used to provide a control action without having to add a lot of logic to the

system.

In a microprocessor system, the address decoding logic might well be already available; in a

microcontroller systemtheFPGAcouldprovide thedecoding logic aswell as theFSM,although

it is using up a lot of I/O pins. The ACK signal, as implied in Figure 9.17, could be used to

cause an interrupt in the microprocessor system, thus avoiding the need to provide an input

port bit.

Microprocessor

Address
Decoding

Logic FSM

A0

a9

Addr.

380h

ACK

c

Clock
As an event input

How address 380 hex is formed:

                          a9 a8   a7 a6 a5 a4    a3 a2 a1 a0
                           1   1     1   0  0   0       0   0   0   0
                             3               8                     0

int

Figure 9.17 Block diagram of the basic address-activated system.
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This system will work correctly if the clock signal c connection between the micro-

processor and the FSM is short to avoid lead delays. It is also assumed that the clock period

is much greater than the largest propagation delay in the FSM, so as to allow the FSM time

to settle.

The equations are

A ¼
X

sA þ A �
X

=rA

¼ s0 � 380h � =cþ A � =ðs2 � =cÞ
¼ =B � 380h � =cþ A � =ðB � =cÞ

B ¼
X

sB þ B �
X

=rB

¼ s1 � cþ B � =s3
¼ A � cþ B � ==A
¼ A � cþ B � A

ACK ¼ s2

¼ A � B:

/ACK

s0

/ACK

s1

380h· /c

AB
00

AB
10

ACK

s2

/ACK

s3

c

/c

AB
11

AB
01

Figure 9.18 State diagram and equations for address-activated FSM.
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9.10 AN EXAMPLE THAT USES A MEALY OUTPUT

Sometimes it is useful to have an output that is a function of one or more inputs, but only in

particular states. You might remember that during the programmed learning sections a Mealy

FSM was defined as one in which some of the outside world inputs were fed into the outside

world decoder. This next example illustrates this.

9.10.1 Tank Water Level Control System with Solutions

In the example shown in Figure 9.19, a pump is used to fill the tank (bymaking P1¼ 1 and P2¼
0). The idea is to fill the tank so that the liquid level is between the level sensors Sh and Sl.

When this is the case, the outlet flow from the tank is balanced by the inlet flow to the tank via the

pump.

If the liquid level falls below level sensor Sl (l1 asserted), the pump is to be switched to high-

speedmodewhere P1¼ 0 and P2¼ 1. This is important to avoid air locks in the outlet part of the

system.

Should the liquid level rise to level Sh (l2 asserted), the pump is to switch off.

This systemwill work continuously tomaintain the liquid level. It can, of course, be switched

on, or off via the relevant switches st and sp,which could be replacedwith a single on/off switch

if desired.

Table 9.3 shows the relationship between the level sensor inputs l1 and l2, and the outputs to

the pumpP1 and P2 can be constructed as illustrated below.Note that the last row of Table 9.3 is

Tank
Outlet

Inlet

Pump

Sh

Sl

Level 2

Level 1

FSM
st

sp

P1   P2   l2   l1

Water Flow Control System

Sh is High Level Sensor

Sl is Low Level Sensor

Figure 9.19 Block diagram of the FSM-based Mealy pump control system.
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dictated by the practical arrangement of the system.Clearly, thewater level cannot be at the high

setting in the tank and there be no water at the lower setting.

From this information, a state diagram can be developed that will meet the required

specification. Figure 9.20 illustrates the state diagram. In this design, the system resets in to

its idle state and waits for a start signal. Once obtained, the system moves into s1, the dormant

state. It will stay in this state while the water level is above the level 1 sensor. The level sensors

will now dictatewhen the systemwill move to s3. This will only occur if sensor l1 is zero, so the

P2 input can start the pump in high mode to pump water above the lower level sensor. Once in

state s3 the FSMwill move between s3 and s2 tomaintain thewater level between the two level

sensors.

Note that the systemcanbestoppedat anytimeand theFSMwill fall back to state s0.Note also

that the P2 outputwill be disabled in state s3 if stop is activated, thus preventing the pump speed

changing on a transition from s2 to s3 to s1 to s0. Thewater level would then fall to empty once

the system was turned off. If the tank is empty when the system is turned on, then the FSMwill

move from s0 to s1, then straight to s3 to fill the tank to a level between l1 and l2.

Table 9.3 Relationship between level sensor inputs and outputs to the pump.

l1 l2 P1 P2 Comment

1 1 0 0 Pump off, as water is in danger of overflowing tank

1 0 1 0 Pump at normal speed; water between sensors

0 0 0 1 Pump at high speed; water below sensors.

0 1 0 0 Impossible situation; pump off

P1=0
P2=0

s0

P1=0
P2=0

s1

P1=/l2
P2=0

s2

P1=0
P2=/sp

s3

st

1l/ps

sp+l2

/l1 + sp

l1

AB
00

AB
10

AB
01

AB
11

Idle State
Dormant

State

Pump
Hi-Speed

State

Pump
Lo-Speed

State

Note: If Stop switch is pressed the P2 
output will not be active in state s3.

Figure 9.20 First attempt at a solution: four-state FSM with Mealy output.
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This solution can now be developed into a practical system by assigning a set of secondary

state variables. In this example, possible assignments could be

s0 ¼ =A=B s1 ¼ A=B s2 ¼ =AB s3 ¼ AB

or perhaps

s0 ¼ =A=B s1 ¼ =AB s2 ¼ A=B s3 ¼ AB:

Looking at this solution, one may wonder if it could be made simpler. In fact, looking at the

table of sensor inputs and pump outputs, there is a combinational equation that can be formed

using the level sensor inputs l1 and l2, and the two pump outputs P1 and P2. This is because the

physical liquidmovement formsanatural sequence for theproblem.Lookback toTable9.3with

the impossible situation of l1 not active but l2 active, in which the pump should be held off. The

equations for P1 and P2 are

P1 ¼ l1 � =l2
P2 ¼ =l1 � =l2:

However, these on their own are not enough, since there is the start and stop switch inputs to

consider. Assuming that these two switches are push buttons, an eventmemory cell is needed to

allow the system to occupy the two states.

Thefinal system is illustrated inFigure 9.21.Here, the system is only able to operatewhen it is

in state s1. In state s0 it is disabled.

The two equations for P1 and P2 are only truewhen the FSM is in state s1. Therefore, the two

equations are written in the form

P1 ¼ s1 � =l2 � l1
P2 ¼ s1 � =l2 � =l1:

P1=0

P2=0

s0

P1=/l2· l1

P2=/l2· /l1

s1

st

sp

A
0

A
1

Note both P1 and P2 are Mealy outputs in state s1

Figure 9.21 Final solution: two-state FSM with Mealy outputs.
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To obtain the event cell (there is only one in this state diagram)

A ¼
X

sA þ A �
X

=rA:

Therefore:

A ¼ s0 � stþ A � =ðs1 � spÞ:

Replacing s0 and s1 with the secondary state variables gives

A ¼ =A � stþ A � =ðA � spÞ

The /A in /A � st and the A in A � sp need to be dropped (short-cut method), leaving

A ¼ stþ A � =sp:

This is because when the /A term in =A � st is dropped the result is effectively 1 � st, since
=A � 1 ¼ =A.

In a similarway,A � sp is 1 � A � spwhich is 1 � sp¼ sp.Therefore, thefinal set of equations for

this example is

A ¼ stþ A � =sp
P1 ¼ A � l1 � =l2
P2 ¼ A � =l1 � =l2:

Finally, before leaving this example, it is possible to reduce this particular problem to a

combinational logic circuit that does not require an event cell. This is possible owing to the

physical nature of the problem.Thewater in the tank creates a sequential operation for thewater

level sensors.

P1 ¼ l1 � =l2 � st � =sp
P2 ¼ =l1 � =l2 � st � =sp:

This is only possible if the design uses switches that remain open or closedwhen released. If the

system uses push switches that releasewhen one leaves go of them, then the event cell is needed

to remember the switch action.

9.11 AN EXAMPLE USING A RELAY CIRCUIT

The event sequential equations can be used to implement a design using relay logic. This might

seem to be an outdated way to implement an FSM, but, in some cases, old-style electromecha-

nical relaysmight be amore preferred solution.Alternatively, semiconductor static relays could

beused inplaceofelectromechanical relays.Bothcouldbedesigned tooperate athighvoltageor

high current levels.
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In this next example, the design will be implement using logic gates and then relay logic.

Consider the following specification,which is very similar to themotor controller problemof

Section 9.6.

A motor can be started by pressing the start button st, provided the stop button sp is not

pressed. It can be stopped by pressing the stop button provided the start button is not

pressed. If the stop button is pressed while the start button is still pressed, then the motor

is to stop and an indicating LED turned on. The system can only leave this state and

return to its initial state via a manual reset-key-activated switch. The reset key switch can

also be used to deactivate the system regardless of the state of the start and stop

buttons.

The state diagram in Figure 9.22 is developed to implement the specification. In this state

diagram, the motor can be started by pressing the start button st thus moving the FSM to

state s1, but only if sp ¼ 0. The motor can be stopped by pressing the stop button to move

the FSM back to state s0, provided st ¼ 0. Pressing the stop button while the start button is

still pressed will cause the FSM to move to s2, which is an invariant state (from which the

FSM cannot leave without a system reset). The idea is to allow the reset input to move the

FSM back to state s0.

From this, a set of equations can be derived, resulting in

A ¼ =Bst � =spþ ABþ A=spþ A � st
B ¼ A � st � spþ B � =0:

/M, /L

s0

M, /L

s1

/M, L

s2

st·/sp

sp·/st

st.sp

AB

00

AB

10

AB

11

Figure 9.22 Motor controller state diagram.
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Note, there is no turn-off term in theB equation, so thenegated term is=0,whichof course is 1.
The outputs are:

M ¼ s1 ¼ A=B

L ¼ s2 ¼ AB:

These equations are in a suitable form for implementing the design using either a PLDor relays.

A circuit schematic is drawn in Figure 9.23. This circuit uses AND/OR/NOT logic, so is

suitable tobe implemented using aPLDdevice.Note that anANDgate is needed in the feedback

loop for event cell B so that the reset can be used to reset the cell back to its zero state.

However, a little thought will reveal that such a circuit needs a 5 V power supply, and this

would need to be obtained from the mains supply via a transformer and rectifier circuit. The

transformer could be replacedwith amains resistor dropper and single diode and capacitor, but

this still requires these overheads.

An alternative design could be based upon electromechanical or static relays. These have the

advantage that they can be used with a very rough power supply direct from the mains (using

relays that canbeoperatedatmainsvoltageof course).The relay circuit isobtaineddirectly from

the sequential equations.

The circuit in Figure 9.24 is the final result. In this diagram, the relay contacts are shownwith

the relays not operated. This circuit will use a simple half-wave rectifier in series with a suitable

capacitor to obtain a rough DC voltage for the relays A and B. The resistor across the capacitor

provides a discharge path when the supply is disconnected (by a reset for example).

/Bst

B

sp /Sp

Reset

A

B

st

sp

A

B

A

M
output

L
output

/B

B

Event Cell A

Event Cell B

Figure 9.23 Logic circuit for the motor controller FSM.
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ThecirclesAandBrepresent the relayoperatingcoils (or control input to static relays).The

diodes across each coil are needed to provide a path for relay current when the contacts open;

otherwise, the largeEMFacross the coils could damage the switch and relay contacts. These are

usually referred to as ‘catching diodes’.

Note: the reset switch is in series with the supply. This can reset both relays and turn off both

the motor and indicator LED.

Before moving on to look at more asynchronous (event-driven) examples, one needs to

consider the effects of race hazards in event-driven types of FSM.

9.12 RACE CONDITIONS IN AN EVENT FINITE-STATE MACHINE

In this section someof theproblems that canoccur in asynchronous (event)FSMsystemswill be

discussed, with suggestions on how they can be eliminated.

In an event FSM there are three types of potential race condition:

� race between primary inputs;

� race between secondary state variables (the event cells themselves);

� race between primary and secondary variables.

/B st /sp

Relay A
A B

/sp

st

A st sp
Relay B

B

To Motor Contactor

L indicator

Live 240 V 
a.c.

Neutral

A /B

B

R=33K for 
10 mA LED

Capacitor

Reset

Figure 9.24 Relay logic for the motor controller FSM.
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This is particularly important, since one needs to be aware of potential problems that can occur in

event-driven systems in order to avoid making design errors. These are used with permission

fromOxford University Press from their publication Problems and Solutions in Logic Design [1].

9.12.1 Race between Primary Inputs

This is when two signals both happening at the same time on the same transition of a three-way

branch state are expected to cause the FSM to move to one particular state. Clearly, one cannot

guarantee that two (or more) input signals will change at the same time, since there are always

delays in the paths from two or more signals.

Note: to avoid this type of condition, do not try to look formore than one input changing at the

same time.

In the example of Figure 9.18 there are two signals 380h � /c along a transitional line, but in
this case the FSMwas looking for the condition 380h AND /c, and in the next state c was to be

seen to go high before a state change (it must have been low to get to this state). So, this is a

very different situation, where the inputs have a dictated sequence and cannot cause confusion

if they happen at the same time.

9.12.2 Race between Secondary State Variables

This is when the designer has not followed a unit distance coding for the secondary state

sequence (A,B, event cells for example). The use of a none unit distance coding can result in the

FSM falling into a state different to the one intended as a result of unequal propagation delays

between event cells.

Consider the earlier state diagram of Figure 9.18 with the following secondary state

assignment:

s0 ¼ =A=B; s1 ¼ AB; s2 ¼ A=B; s3 ¼ =AB:

If, in state s0, the 380h input is 1 and c is 0, with A changing to 1 before B, then the resulting

transitionmightbes0 to s2, and in s2, sincec is still logic0, a further transition to s3.Since there is

no input along the transitional line between s3 and s0, the FSMwouldmove back to s0!This sort

of behaviour is unpredictable, since if it was B that changed first in state s0 then the transitional

path could be s0 to s3, back to s0.

Remember, in an asynchronous (event-driven) FSM there is no synchronizing clock to

introduce a delay to allow signals to settle.

Solution: always use a unit distance code for asynchronous (event) FSM systems.

9.12.3 Race between Primary and Secondary Variables

Thefinal race condition to look at is also themost complex. There aremore details to be found in

Reference [1].

Essentially, as the heading suggests, this is a race between the primary (outside world)

inputs to the FSM and its event cell operation (secondary state variables). This is caused if
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the propagation delay through to the primary input path to set the cell is greater than the

secondary delay path (cell output to cell input to cause the cell to set or clear). It can result in the

cell maloperating.

To prevent this kind of race from occurring, ensure that the primary delay Tp is less than the

secondary delay Ts at all times, i.e.

Tp < Ts:

More specifically:

Tpmax < Tsmin:

This leads to the identity defined in Reference [1], repeated here by permission of Oxford

University Press:

Tpmax=Tsmin < 1;

whereTpmax is themaximumpossiblepropagationdelay for aprimary inputpathandTsmin is the

minimum possible delay for a secondary delay path (total gate delays betweenA andB outputs,

for example).

The event cell structure used in the asynchronous designs in this book (and, indeed, in the

Zissos book [1]) meet these requirements if the gate tolerances are within 33.3% of each other.

This is not difficult to achieve in modern integrated circuits, particularly PLD and FPGA

devices.

There is also a somewhat dated paper on gate tolerances in Reference [2] that is worth

studying.

9.13 WAIT-STATE GENERATOR FOR A MICROPROCESSOR SYSTEM

Somemicroprocessor systems have a feature that allows the processor to introduce ‘wait states’

into a particular memory cycle.

Figure9.25 shows thebasic inputoroutput (I/O) cycle timing (simplified for this example,but

accurate in its sequence to produce a working design). In this example, it is assumed that each

memory or I/O cycle consists of four T states created by the system clock c. T1 is address setup

time,T2 readorwrite setup time,T3await state toallowthedatabus time tosettle, andT4used to

read or write data. In this figure, the event FSM controller monitors the chip enable signal ce,

which will go lowwhen a slow I/O device is selected by themicroprocessor software. This will

occur in the T1 timing slot for the particular I/O cycle. There are four T slots per I/O access.

During theT2periodof the clock, either the input/outputwritewor the input/output read r signal

lines will be taken low by the microprocessor.

During theT2period, anoutput signal from theFSM(IORDY),which is a special input signal

to the microprocessor, can be taken low, and if the microprocessor detects this during the T2

period it will insert an additional T period Tw between T3 and T4.

This extra period is known as a wait state (Tw) and it effectively increases the T3 period used

to allow slow devices time to settle before the T4 period that is used to perform the data
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transfer. In this way, a slow I/O device can have its chip enable ce signal monitored by the FSM

controller and used to generate a wait state. To be sure, the particular microprocessor will need

to be consulted to find out how to activate a wait state, but this is usually available in the data

sheets for the microprocessor.

The purpose of the event FSM controller is to identify when to send the IORDY signal line low,

andwhentoreturn ithighagain.Ineffect theeventFSMisbeingusedtodetect thepointin thetiming

diagram of Figure 9.25 at which to generate the IORDY signal to be sent to themicroprocessor.

Using the timing diagram as a guide, the required state diagram can be developed as seen in

Figure 9.26. As can be seen from Figure 9.26, the state diagram follows the sequence by

detectingceandeitherwor rgoing low in state s0 to turnon the IORDY(active-low) signal inT2.

Then, it detectswhen the clock cgoes low in state s1 in order to identifywhen it goeshigh in state

s2 (to identify entry into T3 state). The FSMmust then determine when the clock signal c goes

low again, indicating the point at which IORDY must go high again.

Note that fast memory cycles will not activate the wait-state generator because those chip

select signals will not be connected into the wait-state event FSM controller.

Finally, Figure 9.27 illustrates the sequential equations and output equation for the system. This

example has illustrated how an event-driven FSM can be used to track points in a sequential

sequence of signals. This example could easily be adapted for a particular microprocessor.

However, one must determine the correct sequence from the microprocessor data sheet, since

differentmicroprocessors use their own signals and sequences to control access to slowermemory.

 T1           T2            T3            Tw          T4            T1   

c

ce

w or r

IORDY

I/O Cycle

Address
Decoding

Logic

Event
FSM
Wait
State

Controller

ce

c
w
r

Address

The Event FSM controller must
generate the iordy signal and input
it to the microprocessor at the right
point in its I/O cycle.

Timing waveforms showing how the iordy signal is generated from the ce and iow signals and the FSM

IORDY

The microprocessor supplies the
address of the slow memory

Figure 9.25 Showing the block diagram and memory/IO cycle timing.
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 T1           T2            T3            Tw          T4            T1   

c

ce

w or r

IORDY

I/O Cycle

/ce·(/r+/w) /C C

/C

IORDY

s0

/IORDY

s1

/IORDY

s2

/IORDY

s3

1. Wait for ce and w,
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(should be)

then move on to s2

3. In s2, wait for c to go high
4. In s3 wait for c to go low again

AB
00

AB
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AB
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Figure 9.26 The state diagram and how it was derived from the timing waveform.
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Event Cell Equations:

A = ∑s
A
 + A · / ∑r

A

A = /B·/ce·(/r + /w) + A·/B + A·/C

B = ∑s
B
 + B· / ∑r

B

B = A·/C + B·/(/A·/C)

B = A·/C + A·B + B·C

Output:

IORDY = s0 = /A·/B

Figure 9.27 The sequential equations for the memory/IO FSM controller.
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9.14 DEVELOPMENT OF AN ASYNCHRONOUS FINITE-STATE MACHINE
FOR A CLOTHES SPINNER SYSTEM

Figure 9.28 illustrates the system. There is a spinmotor to spin the clothes drumat high speed so

as to remove excess water from the clothes by centrifugal force. The water released from the

clothes into the drum is removed by the pump.There is awater level sensor to detectwhether the

water level is too high before turning on the spin motor to avoid excess load on the latter.

The user loadswet clothes into the clothes drum and presses the start button st. This starts the

pumpon release of the start button.When thewater level is below thewater level sensor, the spin

motor is started and a timer (not shown here) is started.

In due course, the timer times out and the system stops both the spin motor and the pump. A

done indicator is illuminated to indicate to the user that the spin cycle is complete. The usermust

press the stop button sp before another spin cycle can commence. This system does not have a

sensor to test that the door is closed.Youmight like to add this to the system andmodify the state

diagram to include this feature.

Asuitable state diagram is illustrated inFigure9.29. In this state diagram, onpressing the start

button a test is made to determine whether the water level is above or below the sensor on the

drum. If above the sensor, the FSM moves to s2 via s1 and starts the pump.

Note, the pump can only start if the start button has been released. Once the water level has

dropped below the sensor, the FSM moves to s3 to turn on the spin motor, as well as start the

timer.At timeout, theFSMmoves to s4 to turnoffboth spinmotorandpumpaswell as turnon the

done indicatorD.Note that theFSMcannot leave s4via any transition. In fact, the stop input acts

as a reset input and can stop the system in any state.

Event FSM

Drum

Clothes Drum

Spin
Motor

Pump

Water outlet

Water
Level

Sensor

Water level

        v                            M               P

st                                  sp  

TS
tmo

Time
Delay

Module

D Done

Figure 9.28 Basic system showing a clothes spin system with FSM.
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If, on starting the system, thewater level in thedrumisbelow thewater level sensor, theFSMwill

move froms0 to s1, to s5, then directly to s3. State s5 is needed to allowaunit distance code to be

used for the state machine; s5 is in fact a dummy state.

Note that there is no input along the transitional line connecting s5 to s3. This implies that

when the FSMmoves into s5, it will immediatelymove on to state s3, the delay being that of the

propagation delay of the logic used to implement the event cells B then C.

The equations for the design are

S0

/P, /M,
/TS, /D

s1 s2

P=/st

s5

P=/st,
TS

s3
P=/st,
M, TS

s4
/P, /M,
/TS, D

vts

/v

/v

tmo

ABC
000

ABC
100

ABC
101

ABC
110

ABC
111

ABC
011

Wait for
start signal

Decide on
water level

water level
below sensor,

turn on pump then
so move to
s3 to start 
spin motor

Water level
above sensor

so turn on pump

Spin motor
and pump on

till timeout Timeout so turn
off pump and spin motor

and turn on done indicator

Note: s5 needed
to keep to unit
distance code.

Figure 9.29 State diagram of a possible solution for clothes spinning system.

A ¼
X

sA þ A � =
X

rA

¼ =B � =C � stþ A � =ðB � C � tmoÞ
¼ =B � =C � stþ A � =Bþ A � =C þ A � =tmo

B ¼
X

sB þ B � =
X

rB

¼ A � =C � =vþ A � C � =vþ B

¼ A � =vþ B

C ¼
X

sc þ C � =
X

rc

¼ A � =B � vþ A � Bþ C

¼ A � vþ A � Bþ C:
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The outputs are

P ¼ s2 � =stþ s3 � =stþ s5 � =st
¼ A � C � =stþ A � B � =st

M ¼ s3 ¼ A � B � C TS ¼ s5þ s3 ¼ A � B D ¼ s4 ¼ =A � B � C:

Thestop input spwill be logicallyANDed toeachequationA,B, andC to allow theFSMtoreturn

to ABC¼ 000 when sp is made logic 0.

The Verilog module follows in Listing 9.5. In this module, the equation level is seen

commented out and replaced with a gate-level description.

///////////////////////////////////////////////////
// Spin motor and pump Asyhchronous FSM //

///////////////////////////////////////////////////
module smpfsm(st,sp,v,tmo,P,M,TS,D,A,B,C);

input st,sp,v,tmo;
output P,M,TS,D,A,B,C;

wire w1,w2,w3,w4,w5,w6,w7,w8,w9;
// equation level description. Used in Figure 9.31.
//assign

//A ¼ (�B&�C&st | A&�B | A&�C | A&�tmo)&sp,
//B ¼ (A&�v | B)&sp,
//C ¼ (A&v | A&B | C)&sp,

// alternative gate level description Used in Figure 9.32.
// each gate has been given a delay of 5 time units.

or #5 g1(A,w1,w2,w3,w4);
and #5 g2(w1,�B,�C,st,sp);
and #5 g3(w2,�B,A,sp);
and #5 g4(w3,�c,A,sp);
and #5 g5(w4,�tmo,A,sp);
//–––––––––––––––––––
or #5 g6(B,w5,w8);
and #5 g7(w5,A,�v,sp);
and #5 g11(w8,B,sp);
//–––––––––––––––––––
or #5 g8(C,w6,w7,w9);
and #5 g9(w6,A,v,sp);
and #5 g10(w7,A,B,sp);
and #5 g12(w9,C,sp);
//–––––––––––––––––––––
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P ¼ A&C&�st | A&B&�st,
M ¼ A&B&C,
TS ¼ A&B,
D ¼ �A&B&C;

endmodule
////////////////////////////////////////////////

Listing 9.5 Verilog module for clothes spin FSM.

The test bench module is illustrated in Listing 9.6.

`timescale 1ns / 10ps
module test;

reg st,sp,tmo,v;

smpfsm uut(st,sp,v,tmo,P,M,TS,D,A,B,C);
initial

begin
sp¼0;
st¼0;
v¼0;
tmo¼0;
///////
#10 sp¼1; // remove reset.
#10
#10 v¼1; // water in drum.
#10
#10 st¼1; //start system
#10 //should move to s1 then s2.
#10 st¼0;
#10 // starts pump to empty drum.
#10 // wait for drum empty.
#10 v¼0; // signal that drum empty.
#10 // should move to s3 and turn on spin motor
#10
#10 //waiting for timer to stop spn motor.
#10 tmo¼1; // signal to stop spin motor.
#10 // should have moved to s4.
#10 tmo¼0;
#20 st¼0; //return start to off state.
#10 sp¼0; //stop system and return to s0.
#20
#20 sp¼1; // release reset buton.
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#10 st¼1; //start system with empty drum.
#20
#20 st¼0;
#20 // should move to s1 then s5 then s3.
#10 tmo¼1; // time out. should move to s3.
#20 //waiting for user to press stop.

#10 $stop;
end

endmodule

Listing 9.6 Verilog test-bench module.

Finally, the simulation is shown in Figure 9.30 using the equation-level description. In the

simulation, the event cellsA,B, andC appear to be changing state at the same time in some parts

of the simulation, but in fact the transitions are so fast that the actual transitions cannot be seen.

However, caremust be taken to ensure that propagation timing satisfies the33.3%rulediscussed

in Section 9.12.3.

In Figure 9.31, the simulation using the gate-level description is seen. Here, each gate has

been given a delay value of 5 time-units so that the state transitions can be clearly seen. In

0ns 100ns 200ns 300ns

test.st

test.sp

test.tmo

test.v

test.P

test.M

test.TS

test.D

test.A

test.B

test.C

Figure 9.30 Simulation of a clothes spinner system using equation-level description.
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Figure 9.31, the delays between the gates allow the state transitions to be seen clearly. For

example, the transitions between s1 (ABC ¼ 100) and s2 (ABC ¼ 101), and the transitions

between s1 (ABC¼ 100) to s5 (ABC¼ 110), then on to s3 (ABC¼ 111). The dashed lines help

to identify these transition points.

9.15 CAUTION WHEN USING TWO-WAY BRANCHES

In the state diagram of Figure 9.10 there is a two-way branch in state s1with /st along one

transitional line andmsþ t along the other. These inputs must bemutually exclusive, otherwise

the FSM could maloperate. If this cannot be guaranteed, then the design will need to be

changed so that the state diagram can only change from one state to the next on a single input

change.

Figure 9.32 illustrates a possible alternative design (without the test input t). In this arrange-

ment, the FSM can move from s1 to s2 if either the start input st is returned to logic 0 and/or if

the fault input ms becomes logic 1. On reaching s2 from a fault, the motor is turned off and the

fault indicator L turned on (active-low). If the st input is now returned to logic 0, then the fault

indicator can be turned off but the FSM can only return to s0 if the fault input ms returns to its

logic 0 level.

0ns 100ns 200ns 300ns

test.st

test.sp

test.tmo

test.v

test.P

test.M

test.TS

test.D

test.A

test.B

test.C

Figure 9.31 Gate-level simulation of a clothes spin system.
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The equations for A and B are

A ¼
X

sA þ A �
X

=rA

¼ s0 � stþ A � =ðs2 � =stÞ
¼ =B � stþ A � =ðB � =stÞ
¼ =B � stþ A=Bþ A � st

B ¼
X

sB þ B �
X

=rB

¼ s1 � ðmsþ =stÞ þ B � =ðs3 � =msÞ
¼ A �msþ A � =stþ ABþ B �ms:

The output equations are the same as those for Figure 9.10.

Other examples using two-way branches in this chapter are as follows.

InSection9.10.1,Figure9.20, thereare twopossible two-waybranches: one in state s1and the

other in state s3. Ineach case there aredifferent inputs alongeach transitionpath that could result

inmaloperation; therefore, this design could fail. However, the alternative design in Figure 9.21

overcomes this problem.

In Section 9.11, Figure 9.22, there is a two-way branch in state s1. If input sp is logic 1 in state

s1, then theFSMcanmove to either s0 if st¼0, or to s2 if st¼1. If, however, inputs st and spwere
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(a) Block Diagram
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circuit maloperation.

Figure 9.32 Modified state diagram for the motor controller of Section 9.6.2.
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to change at the same time from logic 0 to logic 1 in state s0, then it is possible that the sequence

shown below could occur:

or

The latter example appears to work correctly.

In general, however, changes in two or more input signals can result in circuit maloperation

due to propagation delays between input signal changes producing static or dynamic hazards.

The best way to handle this situation is to allow only one input to affect the FSM. Figure 9.33

shows how this could be done.

st sp

0 0 in s0

1 0 st reaches logic 1 before sp; move s0 to s1

1 1 move to s2

st sp

0 0 in state s0

0 1 sp reaches logic 1 before st; stay in s0 while signals still changing

1 1 stay in state s0

/M, /L

s0

M, L

s1

M, L

s2

/M, /L

s3

st

/st

sp

/sp

AB
00

AB
10

AB
11

AB
01

Only one input signal change allowed before a state transition

Figure 9.33 Modification to the state diagram of Figure 9.22 to avoid maloperation.
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This, of course is not what the original specification for this FSMwas designed to do. In fact

the idea of trying to produce an event FSM to meet the specification in Figure 9.22 is not very

practical.

Designing anasynchronousFSMtoworkcorrectlyundermultiple changing inputs is not easy

and is beyond the scope of this book. Reference [3] is a good source that covers in detail and in a

formal manner how to develop complex asynchronous FSMs using both Huffman and Muller

circuits. Inparticular, theCgate isused todecouple the set termsand reset terms.This can reduce

the potential for static and dynamic hazards when two or more inputs are changing.

9.16 SUMMARY

This chapter has introduced the idea of asynchronous (event-driven) FSMs and how to design

them for implementation in devices such as PLD and FPGSs, as well as relay circuits. Also, the

simplest method to simulate the designs has been considered, using the Verilog HDL at the

equation and basic gate levels. This allows designs to be implemented directly at either

the equation or logic gate level, and avoids the problems that most HDL systems can introduce

at the behavioural levelwhen implementing event-driven controllers. A number of simple FSM

designs have been considered, showing how the event FSM can be used. In addition, the

potential race problems associated with event-driven FSMs have been discussed, with ways

to avoid these conditions from happening.
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