A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark
88 REGULAR SEQUENTIAL CIRCUIT

S o B S s B A N S
- i E g | .
reset . . 1
I N - + i 1
syn_clr I l
load i ;
: 1
en . i i ! —_—
,,,,,, L . i _ i
up | l
40 __ 13 ‘
: : PR - — —1 — - 7
R R S I] 13 @~ 5 16 7 () i1 2 |
min_tick | + : ! B
max_tick ‘ ‘ ‘—*

Figure 4.4 Testbench waveform.

wait on min_tick;
or wait for an absolute time, such as
wait for 4*T; —— wait for 4 clock periods

If an input signal is modified after these statements, we need to make sure that the input
change does not occur at the rising edge of the clock. An additional

wait until falling_edge(clk);

statement should be added when needed.
We can compile the code and perform simulation. Part of the simulated waveform is
shown in Figure 4.4.

4.5 CASE STUDY

After examining several simple circuits, we discuss the design of more sophisticated exam-
ples in this section.

4.5.1 LED time-multiplexing circuit

The S3 board has four seven-segment LED displays, each containing seven bars and one
small round dot. To reduce the use of FPGA's I/O pins, the S3 board uses a time-multiplexing
sharing scheme. In this scheme, the four displays have their individual enable signals but
share eight common signals to light the segments. All signals are active-low (i.e., enabled
when a signal is ’0”). The schematic of displaying ‘3’ on the rightmost LED is shown in
Figure 4.5. Note that the enable signal (i.e., an) is "1110". This configuration clearly can
enable only one display at a time. We can time-multiplex the four LED patterns by enabling
the four displays in turn, as shown in the simplified timing diagram in Figure 4.6. If the
refreshing rate of the enable signal is fast enough, the human eye cannot distinguish the
on and off intervals of the LEDs and perceives that all four displays are lit simultaneously.
This scheme reduces the number of I/O pins from 32 to 12 (i.e., eight LED segments plus
four enable signals) but requires a time-multiplexing circuit. Two variations of the circuit
are discussed in the following subsections.

http://www.a-pdf.com/?product-split-demo

CASE STUDY 89

fﬂzjb
eD:dDUCOdp
e () (0 () [}
2 0.0.0.0.
tdp —
| | l l
an3 an2 an1 an0
1 1 1 0

Figure 4.5 Time-multiplexed seven-segment LED display.

wo | [
A |

an2]_
an3

dp.ab, .. g DD EDEDED in13<:

Figure 4.6 Timing diagram of a time-multiplexed seven-segment LED display.

90 REGULAR SEQUENTIAL CIRCUIT

in0 sseg
int an
in2
in3
disp_mux
reset
(a) Symbol
in0 <
in1
in2 8 sseg
i3 8
in A
18
q_next q_reg
v L d q ° q_reg (17..16)
18 18 2

18 J—> ok
clk reset
‘ 2-t0-4 an

decoder 7

reset

(b) Block diagram

Figure 4.7 Symbol and block diagram of a time-multiplexing circuit.

Time multiplexing with LED patterns The symbol and block diagram of the time-
multiplexing circuit are shown in Figure 4.7, It takes four seven-segment LED patterns,
in3, in2, ini, and in0, and passes them to the output, sseg, in accordance with the enable
signal.

The refresh rate of the enable signal has to be fast enough to fool our eyes but should
be slow enough so that the LEDs can be turned on and off completely. The rate around the
range 1000 Hz should work properly. In our design, we use an 18-bit binary counter for
this purpose. The two MSBs are decoded to generate the enable signal and are used as the
selection signal for multiplexing. The refreshing rate of an individual bit, such as an(0),

becomes 324 Hz, which is about 800 Hz. The code is shown in Listing 4.13.

Listing 4.13 LED time-multiplexing circuit with LED patterns

library iecee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity disp_mux is
5 port (
clk, reset: in std_logic;
in3, in2, ini, in0: in std_logic_vector (7 downto 0);
an: out std_logic_vector (3 downto 0);
sseg: out std_logic_vector (7 downto 0)
10)
end disp_mux ;

CASE STUDY 91

architecture arch of disp_mux is
—— refreshing rate around 800 Hz (50MHz/2°16)
5 constant N: integer:=18;
signal g_reg, q_next: unsigned(N-1 downto 0);
signal sel: std_logic_vector (il downto 0);

begin
—— register
20 process (clk,reset)
begin
if reset=’1’ then
q.reg <= (others=>’0’);
elsif (clk’event and clk=’1’) then
2 q_reg <= g_next;

end if;
end process;

—— next—state logic for the counter
30 q_next <= q_reg + 1;

—— 2 MSBs of counter to control 4—to—1 multiplexing
—— and to generate active —low enable signal
sel <= std_logic_vector(qgq_reg(N-1 downto N-2));
3 process (sel,in0,inl,in2,in3)
begin
case sel is
when "00" =>
an <= "1110";
a0 sseg <= in0;
when "01" =>
an <= "1101";
sseg <= inl;
when "10" =>
45 an <= "1011";
sseg <= in2;
when others =>
an <= "0111";
sseg <= in3;
50 end case;
end process;
end arch;

We use the testing circuit in Figure 4.8 to verify operation of the LED time-multiplexing
circuit. It uses four 8-bit registers to store the LED patterns. The registers use the same
8-bit switch as input but are controlled by individual enable signal. When we press a button,
the corresponding register is enabled and the switch pattern is loaded to that register. The
code is shown in Listing 4.14.

Listing 4.14 Testing circuit for time multiplexing with LED patterns

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity disp_mux_test is

5 port

92

15

20

30

REGULAR SEQUENTIAL CIRCUIT

SW d q
btn(0) en
>
d q
btn(1) en in0 sseg
in1 an
P in2
in3
d q S disp_mux
btn(2) en reset
>
d q
btn(3) ————en
>
ctk

Figure 4.8 LED time-multiplexing testing circuit.

clk: in std_logic;

btn: in std_logic_vector (3 downto 0);

sw: in std_logic_vector (7 downto 0);

an: out std_logic_vector (3 downto 0);

sseg: out std_logic_vector (7 downto 0)
)5

end disp_mux_test;

architecture arch of disp_mux_test is

signal d3_reg, d2_reg: std_logic_vector (7 downto
signal di_reg, dO_reg: std_logic_vector (7 downto

begin

disp_unit: entity work.disp_mux
port map(
clk=>clk, reset=>’0",
in3=>d3_reg, in2=>d2_reg, inl=>dl_reg,
in0=>d0_reg, an=>an, sseg=>sseg);
—— vregisters for 4 led patterns
process (clk)
begin
if (clk’event and clk=’1’) then
if (btn(3)=’1’) then
d3_reg <= sv;
end if;
if (btn(2)=’1’) then
d2_reg <= sw;
end if;
if (btn(1)=’1’) then
dl_reg <= sw;

sseg
an

0);
0);

CASE STUDY 93

hex0 7 00
hex1 Ul hex_to_7se
4 _10_/seg
hex2 - 10 decoder I—+ sseg(6..0)
hex3 n 11 4 7
L1
18
q_next q_reg 17.16
v L g ’ q_reg (17.16)
18 18 2
18 |—>c|k
clk reset
2-to-4
reset l decoder 77— an
4

Figure 4.9 Block diagram of a hexadecimal time-multiplexing circuit.

35 end if;
if (btn(0)=’1’) then
dO_reg <= sw;
end if;
end if;
40 end process;
end arch;

Time multiplexing with hexadecimal digits The most common application of a
seven-segment LED is to display a hexadecimal digit. The decoding circuit is discussed
in Section 3.7.1. To display four hexadecimal digits with the previous time-multiplexing
circuit, four decoding circuits are needed. A better alternative is first to multiplex the
hexadecimal digits and then decode the result, as shown in Figure 4.9.

This scheme requires only one decoding circuit and reduces the width of the 4-to-1
multiplexer from 8 bits to 5 bits (i.e., 4 bits for the hexadecimal digit and 1 bit for the
decimal point). The code is shown in Listing 4.15. In addition to clock and reset, the input
consists of four 4-bit hexadecimal digits, hex3, hex2, hex1, and hex0, and four decimal
points, which are grouped as one signal, dp_in.

Listing 4.15 LED time-multiplexing circuit with hexadecimal digits

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity disp_hex_mux is
s port(
clk, reset: in std_logic;
hex3, hex2, hexl, hexO: in std_logic_vector (3 downto 0);
dp_in: in std_logic_vector (3 downto 0);
an: out std_logic_vector (3 downto 0);
0 sseg: out std_logic_vector (7 downto 0)
)5

end disp_hex_mux ;

REGULAR SEQUENTIAL CIRCUIT

architecture arch of disp_hex_mux is
— each 7—seg led enabled (2°18/4)%25 ns (40 ms)
constant N: integer:=18;
signal q_reg, q_next: unsigned(N-1 downto 0);
signal sel: std_logic_vector (1 downto 0);
signal hex: std_logic_vector (3 downto 0);
signal dp: std_logic;
begin
— register
process (clk,reset)
begin
if reset=’1’ then
q_reg <= (others=>’0’);
elsif (clk’event and clk=’1’) then
q.reg <= g_mnext;
end if;
end process;

— next—state logic for the counter
q_next <= q_reg + 1;

—— 2 MSBs of counter to control 4—to—1 multiplexing
sel <= std_logic_vector(q_reg(N-1 downto N-2));
process (sel ,hex0,hex1,hex2,hex3,dp_in)
begin
case sel is
when "00" =>
an <= "1110";
hex <= hex0;
dp <= dp_in(0);
when "01" =>
an <= "1101";
hex <= hexl;
dp <= dp_in(1);
when "10" =>
an <= "1011";
hex <= hex2;
dp <= dp_in(2);
when others =>
an <= "Q111";
hex <= hex3;
dp <= dp_in(3);
end case;
end process;
— hex—to—7—segment led decoding
with hex select
sseg (6 downto 0) <=
"0000001" when "000O0O",
"1001111" when "0001",
"0010010" when "0010",
"0000110" when "0011",
"1001100" when "0100",

CASE STUDY 95

"0100100" when "0101",
"0100000" when "0110",
"0001111" when "O111",
"0000000" when "1000",

20 "0000100" when "1001",
"0001000" when "1010", ——a
"1100000" when "1011", —b
"0110001" when "1100", ——c¢
"1000010" when "1101", —d

75 "0110000" when "1110", ——e
"0111000" when others; —f

— decimal point
sseg(7) <= dp;
end arch;

To verify operation of this circuit, we define the 8-bit switch as two 4-bit unsigned
numbers, add the two numbers, and show the two numbers and their sum on the four-digit
seven-segment LED display. The code is shown in Listing 4.16.

Listing 4.16 Testing circuit for time multiplexing with hexadecimal digits

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity hex_mux_test is
5 port(
clk: in std_logic;
sw: in std_logic_vector (7 downto 0);
an: out std_logic_vector (3 dewnto 0);
sseg: out std_logic_vector (7 downto 0)
10)

end hex_mux_test;

architecture arch of hex_mux_test is
signal a, b: unsigned (7 downto 0);
15 signal sum: std_logic_vector (7 downto 0);
begin
disp_unit: entity work.disp_hex_mux
port map(
clk=>clk, reset=>’0"’,

0 hex3=>sum(7 downto 4), hex2=>sum(3 downto 0),
hex1=>sw (7 downto 4), hexO=>sw(3 downto 0),
dp_in=>"1011", an=>an, sseg=>sseg);

a <= "0000" & unsigned(sw(3 downto 0));
b <= "0000" & unsigned(sw(7 downto 4));
25 sum <= std_logic_vector(a + b);
end arch;

Simulation consideration Many sequential circuit examples in the book operate at a
relatively slow rate, as does the enable pulse of the LED time-multiplexing circuit. This
can be done by generating a single-clock enable tick from a counter. An 18-bit counter is
used in this circuit:

constant N: integer :=18;

96 REGULAR SEQUENTIAL CIRCUIT

signal q_reg, gq_next: unsigned(N-1 downto 0);

g_next <= g_reg + 1;

Because of the counter’s size, simulating this type of circuit consumes a significant amount
of computation time (i.e., 2'8 clock cycles for one iteration). Since our main interest is in
the multiplexing part of the code, most simulation time is wasted. It is more efficient to use
a smaller counter in simulation. We can do this by modifying the constant statement

constant N: integer:=4;

when constructing the testbench. This requires only 2* clock cycles for one iteration and
allows us to better exercise and observe the key operations.

Instead of using a constant statement and modifying code between simulation and syn-
thesis, an alternative is to define a generic for the relevant parameter. During instantiation,
we can assign different values for simulation and synthesis.

4.5.2 Stopwatch

We consider the design of a stopwatch in this subsection. The watch displays the time in
three decimal digits, and counts from 00.0 to 99.9 seconds and wraps around. It contains
a synchronous clear signal, clr, which returns the count to 00.0, and an enable signal,
go, which enables and suspends the counting. This design is basically a BCD (binary-
coded decimal) counter, which counts in BCD format. In this format, a decimal number is
represented by a sequence of 4-bit BCD digits. For example, 1391 is represented as "0001
0011 1001" and the next number in sequence is 140, which is represented as "0001 0100
0000".

Since the S3 board has a 50-MHz clock, we first need a mod-5,000,000 counter that
generates a one-clock-cycle tick every 0.1 second. The tick is then used to enable counting
of the three-digit BCD counter.

Design | Our first design of the BCD counter uses a cascading structure of three decade
(i.e., mod-10) counters, representing counts of 0.1, 1, and 10 seconds, respectively. The
decade counter has an enable signal and generates a one-clock-cycle tick when it reaches 9.
We can use these signals to “hook” the three counters. For example, the 10-second counter
is enabled only when the enable tick of the mod-5,000,000 counter is asserted and both the
0.1- and 1-second counters are 9. The code is shown in Listing 4.17.

Listing 4.17 Cascading description for a stopwatch

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity stop_watch is
port (
clk: in std_logic;
go, clr: in std_logic;
d2, d1, d0: out std_logic_vector (3 downto 0)

n

)5
oend stop_watch;

architecture cascade_arch of stop_watch is
constant DVSR: integer :=5000000;

40

45

55

60

65

CASE STUDY 97

signal ms_reg, ms_next: unsigned (22 downto 0);
signal d2_reg, di_reg, dO_reg: unsigned(3 downto 0);
signal d2_next, dil_next, dO_next: unsigned (3 downto 0);
signal di_en, d2_en, dO_en: std_logic;
signal ms_tick, dO_tick, di_tick: std_logic;
begin
— register
process (clk)
begin
if (clk’event and clk=’1’) then
ms_reg <= ms_next;
d2_reg <= d2_next;
dl_reg <= di_next;
dO_reg <= dO_next;
end if;
end process;

—— next—state logic
—— 0.1 sec tick generator:@ mod—5000000
ms_next <=
(others=>’0’) when clr=’1’ or
(ms_reg=DVSR amnd go=’1’) else
ms_reg + 1 when go=’1’ else
ms_reg;
ms_tick <= ’1’ when ms_reg=DVSR else ’0’;
— 0.1 sec counter
dO_en <= ’1’ when ms_tick=’1’ else ’07;
dO_next <=
"0000" when (clr=’1’) or (d0_en=’1’ and d0O_reg=9) else
dO_reg + 1 when dO_en=’1"’ else
dO_reg;
d0_tick <= ’1’ when d40_reg=9 else ’0’;
— 1 sec counter
di_en <= 1’ when ms_tick=’1’ and dO_tick=’1’ else ’0’;
dl_next <=
"0000" when (clr=’1’) or (dl_en=’1’ and d1l_reg=9) else
dli_reg + 1 when di_en=’1’ else
dl_reg;
di_tick <= ’1° when di_reg=9 else ’0’;
—— 10 sec counter
d2_en <=
’1° when ms_tick=’1’ and dO_tick=’1’ and di_tick=’1’ else
Q7
d2_next <=
"0000" when (clr=’1’) or (d2_en=’1’ and d2_reg=9) else
d2_reg + 1 when d2_en=’1’ else
d2_reg;

— output logic

d0 <= std_logic_vector (dO_reg);

dl <= std_logic_vector(di_reg);

d2 <= std_logic_vector(d2_reg);
end cascade_arch;

o8 REGULAR SEQUENTIAL CIRCUIT

Note that all registers are controlled by the same clock signal. This example illustrates
how to use a one-clock-cycle enable tick to maintain synchronicity. An inferior approach
is to use the output of the lower counter as the clock signal for the next stage. Although it
may appear to be simpler, it violates the synchronous design principle and is a very poor
practice.

Design ll An alternative for the three-digit BCD counter is to describe the entire structure
in a nested if statement. The nested conditions indicate that the counter reaches .9, 9.9, and
99.9 seconds. The code is shown in Listing 4.18.

Listing 4.18 Nested if-statement description for a stopwatch

architecture if_arch of stop_watch is
constant DVSR: integer :=5000000;
signal ms_reg, ms_next: unsigned (22 downto 0);
signal d2_reg, dl_reg, dO_reg: unsigned (3 downto 0);

5 signal d2_mnext, dl_next, d0_next: unsigned(3 downto 0);
signal ms_tick: std_logic;
begin

—— register
process (clk)
10 begin
if (clk’event and clk=’1’) then
ms_reg <= ms_next;
d2_reg <= d2_next;
dli_reg <= dl_next;
15 dO0_reg <= dO_next;
end if;
end process;

—— next—state logic
20 — 0.1 sec tick generator: mod—5000000
ms_next <=
(others=>’0’) when clr=’1’ or
(ms_reg=DVSR and go=’1’) else
ms_reg + 1 when go=’1’ else
25 ms_reg;
ms_tick <= ’1’ when ms_reg=DVSR else ’0’;
—— 3—-digit incrementor
process (dO_reg,dl_reg,d2_reg,ms_tick,clr)
begin
30 — default
d0_next <= dO_reg;
dli_next <= di_reg;
d2_next <= d2_reg;
if clr=’1’ then
33 dO_next <= "Q0000";
dl_next <= "0000";
d2_next <= "Q000";
elsif ms_tick=’1’ then
if (d0_reg/=9) then
i) dO_next <= dO_reg + 1;
else —— reach XX9
dO_next <= "Q000";

CASE STUDY 99

if (di_reg/=9) then
dl_next <= di_reg + 1;
as else — reach X99
dl_next <= "Q0C00";
if (d2_reg/=9) then
d2_next <= d2_reg + 1;

else — reach 999
50 d2_next <= "0000";
end if;
end if;
end if;
end if;
55 end process;

—— output logic

d0 <= std_logic_vector (dO_reg);

dl <= std_logic_vector(di_reg);

d2 <= std_logic_vector(d2_reg);
o end if_arch;

Verification circuit To verify operation of the stopwatch, we can combine it with the
previous hexadecimal LED time-multiplexing circuit to display the output of the watch.
The code is shown in Listing 4.19. Note that the first digit of the LED is assigned to O and
the go and clr signals are mapped to two buttons of the S3 board.

Listing 4.19 Testing circuit for a stopwatch

library ieee;
use ieee.std_logic_1164.all;
entity stop_watch_test is
port(
5 clk: in std_logic;
btn: in std_logic_vector (3 downto 0);
an: out std_logic_vector (3 downto 0);
sseg: out std_logic_vector (7 downto 0)
s
wend stop_watch_test;

architecture arch of stop_watch_test is
signal d2, d1, d0: std_logic_vector (3 downto 0);
begin
15 disp_unit: entity work.disp_hex_mux
port map(
clk=>clk, reset=>’0’,
hex3=>"0000", hex2=>d2,
hex1=>d1, hex0=>d0,
20 dp_in=>"1101", an=>an, sseg=>sseg);

watch_unit: entity work.stop_watch(cascade_arch)

port map(
clk=>clk, go=>btn(1l), clr=>btn(0),
25 d2 =>d2, di=>di, d40=>d0);

end arch;

100 REGULAR SEQUENTIAL CIRCUIT

FIFO buffer

—

L

data written data read
into FIFO from FIFO

Figure 4.10 Conceptual diagram of a FIFO buffer.

4.5.3 FIFO buffer

A FIFO (first-in-first-out) buffer is an “elastic” storage between two subsystems, as shown
in the conceptual diagram of Figure 4.10. It has two control signals, wr and rd, for write
and read operations. When wr is asserted, the input data is written into the buffer. The
read operation is somewhat misleading. The head of the FIFO buffer is normally always
available and thus can be read at any time. The rd signal actually acts like a “remove”
signal. When it is asserted, the first item (i.e., head) of the FIFO buffer is removed and the
next item becomes available.

FIFO buffer is a critical component in many applications and the optimized implemen-
tation can be quite complex. In this subsection, we introduce a simple, genuine circular-
queue-based design. More efficient, device-specific implementation can be found in the
Xilinx literature.

Circular-queue-based implementation One way to implement a FIFO buffer is to
add a control circuit to a register file. The registers in the register file are arranged as a
circular queue with two pointers. The write pointer points to the head of the queue, and the
read pointer points to the tail of the queue. The pointer advances one position for each write
or read operation. The operation of an eight-word circular queue is shown in Figure 4.11.

A FIFO buffer usually contains two status signals, full and empty, to indicate that the
FIFO is full (i.e., cannot be written) and empty (i.e., cannot be read), respectively. One of
the two conditions occurs when the read pointer is equal to the write pointer, as shown in
Figure 4.11(a), (f), and (i). The most difficult design task of the controller is to derive a
mechanism to distinguish the two conditions. One scheme is to use two FFs to keep track
of the empty and full statuses. The FFs are set to "1’ and *0’ during system initialization
and then modified in each clock cycle according to the values of the wr and rd signals. The
code is shown in Listing 4.20.

Listing 4.20 FIFO buffer

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity fifo is

5 generic (
B: natural:=8; —— number of bits
W: natural:=4 — number of address bits
)5
port(
10 clk, reset: in std_logic;

rd, wr: in std_logic;

CASE STUDY 101

rd ptr rd ptr
f wr ptr

sYefo

wr pir
(a). initial (empty) (b). after a write (c). 3 more writes
\/— wr ph'
rd pir rd ptr
/‘ p O//__ wr ptr
(d). after a read (e). 4 more writes (f). 1 more write (full)
rd ptr
wr ptr WT ptr Bt
@ ﬂ m |
rd ptr
(g2). 2 reads (h). 5 more reads (i). 1 more read (empty)

Figure 4.11 FIFO buffer based on a circular queue.

102

40

45

50

55

60

REGULAR SEQUENTIAL CIRCUIT

w_data: in std_logic_vector (B-1 downto 0);

empty, full: out std_logic;

r_data: out std_logic_vector (B-1 downto 0)
)5

end fifo;

architecture arch of fifo is

type reg_file_type is array (2**W-1 downto 0) eof
std_logic_vector (B-1 downto 0);

signal array_reg: reg_file_type;

signal w_ptr_reg, w_ptr_next, w_ptr_succ:
std_logic_vector (W-1 downto 0);

signal r_ptr_reg, r_ptr_next, r_ptr_succ:
std_logic_vector(W-1i downto 0);

signal full_reg, empty_reg, full_next, empty_next:

std_logic;
signal wr_op: std_logic_vector (1 downto 0);
signal wr_en: std_logic;

— register file

process (clk,reset)
begin
if (reset=°1’) then
array_reg <= (others=>(others=>’0’));
elsif (clk’event and clk=’1’) then
if wr_en=’1’ then
array.reg(to_integer (unsigned(w_ptr_reg)))
<= w_data;
end if;
end if;
end process;
—— read port
r_data <= array_reg(to_integer (unsigned(r_ptr_reg)));
—— write enabled only when FIFO is not full
wr_en <= wr and (not full_reg);

— fifo control logic
—— register for read and write pointers
process (clk,reset)
begin
if (reset=’1’) then
w_ptr_reg <= (others=>'0’);
r_ptr_reg <= (others=>’0’);
full_reg <= ’07;
empty_reg <= ’'1°’;
elsif (clk’event and clk=’1’) then
w_ptr_reg <= w_ptr_next;
r_ptr_reg <= r_ptr_next;
full_reg <= full_next;

65

70

75

85

90

95

105

empty_reg <= empty_next;
if;

end process;

w_ptr_succ <=
r_ptr_succ <=

—— next—state
wI_op
process (w_ptr_

begin
w_ptr_next <= w_ptr_reg;
r_ptr_next <= r_ptr_reg;
full_next <= full_reg;
empty_next <= empty_reg;
case wr_op is

successive pointer values
std_logic_vector (unsigned(w_ptr_reg)+1);
std_logic_vector(unsigned(r_ptr_reg)+1);

<= wr & rd;

empty_reg,full_reg)

CASE STUDY

logic for read and write pointers

when "00" => — no op
when "01" => — read
if (empty_reg /= ’1’) then —— not empty

r_ptr_next <= r_ptr_succ;

full_next <= ’0°’;

if (r_ptr_succ=w_ptr_reg) then
empty_next <=’17;

end if;
end if;
when "10" => — write
if (full_reg /= ’1’) then — not full

w_ptr_next <= w_ptr_succ;
empty_next <= ’0’;
if (w_ptr_succ=r_ptr_reg) then
full_next <=’17;
end if;
end if;
when others => — write/read;
w_ptr_next <= w_ptr_succ;
r_ptr_next <= r_ptr_succ;

end case;

end process;

output

full <= full_reg;
empty <= empty_reg;

end arch;

103

reg,w_ptr_succ,r_ptr_reg,r_ptr_succ,wr_op,

The code is divided into a register file and a FIFO controller. The controller consists of
two pointers and two status FFs. Its next-state logic examines the wr and rd signals and takes
actions accordingly. For example, let us consider the "10" case, which implies that only a
write operation occurs. The status FF is checked first to ensure that the buffer is not full.
If this condition is met, we advance the write pointer by one position and clear the empty
status FF. Storing one extra word to the buffer may make it full. This happens if the new
write pointer “catches” the read pointer, which is expressed by the w_ptr_succ=r_ptr_reg

expression.

