
CHAPTER 12 

REGISTER TRANSFER METHODOLOGY: 
P R ACT I C E 

RT methodology is a powerful and versatile design technique. It can be applied to a 
wide variety of applications. In this chapter, we use several examples to illustrate how 
this methodology can be used in different types of problems and to highlight the design 
procedure and relevant issues. 

12.1 INTRODUCTION 

As discussed in Chapter 1 1, RT methodology can be thought of as a design technique that 
realizes an algorithm in hardware. The algorithm can be a complex process or just a simple 
sequential execution, and thus RT methodology is very flexible and versatile. We study five 
examples in this chapter, including a one-shot pulse generator, SRAM controller, universal 
asynchronous receiver and transmitter (UART), greatest common divisor (GCD) circuit, 
and square-root approximation circuit. The one-shot pulse generator is used to compare 
and contrast the differences among the regular sequential circuit, FSM and RT methodology. 
The SRAM controller illustrates the process of generating level-sensitive control signals to 
meet the timing requirement of a clockless device. The GCD circuit is another example 
of realizing a sequential algorithm in hardware. It shows how the hardware can be used to 
accelerate the performance. The UART receiver is a typical control-oriented application, 
which involves complex control structure and decision conditions. The square-root circuit, 
on the other hand, is a typical data-oriented application, which involves mainly arithmetic 
operations over data. 
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Figure 12.1 State diagram of a one-shot pulse generator. 

12.2 ONE-SHOT PULSE GENERATOR 

In Section 8.2.3, we divided sequential circuits into three categories based on the charac- 
teristics of the next-state logic: 

0 Regular sequential circuit. The next-state logic is regular. 
0 FSM. The next-state logic is random. 
0 RT methodology. The next-state logic consists of a regular part and a random part. 

The RT methodology is the most flexible and capable scheme since it can accommodate 
both types of next-state logic. 

The division is created to assist the circuit design and code development. There are 
no formal definitions of regular and random, and some applications can be designed as 
either type. In this section, we use a one-shot pulse generator as an example to illustrate 
the differences among the three types of circuits and to demonstrate the advantages and 
flexibility of the RT methodology. 

A one-shot pulse generator is a circuit that generates a single fixed-width pulse upon 
activation of a trigger signal. We assume that the width of the pulse is five clock cycles. 
The detailed specifications are listed below. 

0 There are two input signals, go and stop, and one output signal, pulse. 
0 The go signal is the trigger signal that is usually asserted for only one clock cycle. 

During normal operation, assertion of the go signal activates the pulse signal for 
five clock cycles. 

0 If the go signal is asserted again during this interval, it will be ignored. 
0 If the stop signal is asserted during this interval, the pulse signal will be cut short 

Although the circuit is simple, it includes a regular part, which counts five clock cycles, 
and a random part, which keeps track of whether the circuit is idle or currently generating 
the pulse. Because of the simplicity, this circuit can be implemented as a pure regular 
sequential circuit, a pure FSM or a design using RT methodology. 

and return to '0'. 

12.2.1 FSM implementation 

We first examine the FSM implementation. The state diagram is shown in Figure 12.1. The 
diagram consists of an idle state and five delay states, which activate the pulse signal for 



ONE-SHOT PULSE GENERATOR 423 

five clock cycles. The five delay states essentially function as a regular sequential circuit 
that counts for five clock cycles. The identical transition patterns of these five states hints 
at the “regularity” of this part of the operation. The corresponding VHDL code is shown 
inListing 12.1. 

Listing 12.1 FSM implementation of a one-shot pulse generator 

l i b r a r y  i e e e ;  
use i e e e  . s t d - l o g i c - 1 1 6 4 .  a l l  ; 
use i e e e .  n u m e r i c - s t d .  a l l  ; 
e n t i t y  p u l s e - 5 c l k  i s  

5 p o r t (  
c l k ,  r e s e t :  i n  s t d - l o g i c ;  
g o ,  s t o p :  i n  s t d - l o g i c ;  
p u l s e  : ou t  s t d - l o g i c  

1; 
10 end p u l s e - 5 c l k  ; 

M 

35 

40 

45 

a r c h i t e c t u r e  f sm-arch of p u l s e - 5 c l k  i s  
t ype  f s m - s t a t e - t y p e  i s  

( i d l e ,  d e l a y l  , d e l a y 2 ,  d e l a y 3 ,  d e l a y 4 ,  d e l a y 5 1  ; 
IS s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : f s m - s t a t e - t y p e ;  

begin 
-- s t a t e  r e g i s t e r  
p r o c e s s  ( c l k  , r e s e t )  
begin 

20 i f  ( r e s e t = ’ l ’ )  t hen  
s t a t e - r e g  <= i d l e ;  

s t a t e - r e g  <= s t a t e - n e x t  ; 
e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  t hen  

end i f  ; 
25 end p r o c e s s ;  

-- n e x t - s t a t e  l o g i c  & o u t p u t  logic 
p r o c e s s  ( s t a t e - r e g  , g o ,  s t o p )  
begin 

p u l s e  <= ’0’; 
c a s e  s t a t e - r e g  is  

when i d l e  => 
i f  g o = ’ l ’  t h e n  

e l s e  

end i f  ; 

i f  s t o p = ’ l ’  t hen  

e l s e  

end i f  ; 
p u l s e  <= ’ 1 ’ ;  

when d e l a y 2  => 
i f  s t o p = ’ l ’  t hen  

e l s e  

s t a t e - n e x t  <= d e l a y l ;  

s t a t e - n e x t  <= i d l e ;  

when d e l a y l  => 

s t a t e - n e x t  < = i d l e ;  

s t a t e - n e x t  < = d e l a y 2  ; 

s t a t e - n e x t  < = i d l e  ; 
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50 

65 

s t a t e - n e x t  < = d e l a y 3 ;  
end i f ;  
p u l s e  <= J l ’ ;  

when d e l a y 3  => 
i f  s t o p =  1 ’ then 

e l s e  

end i f ;  
p u l s e  <= ’ l J ;  

when d e l a y 4  => 
i f  s t o p =  1 ’ then 

e l s e  

end i f  ; 
p u l s e  <= J l ’ ;  

when d e l a y 5  => 
s t a t e - n e x t  < = i d l e ;  
p u l s e  <= ’ l J ;  

s t a t e - n e x t  < = i d l e ;  

s t a t e - n e x t  < = d e l a y 4 ;  

s t a t e - n e x t  < = i d l e ;  

s t a t e - n e x t  < = d e l a y 5 ;  

end c a s e ;  
end p r o c e s s ;  

70 end f sm-arch;  

12.2.2 Regular sequential circuit implementation 

We can also implement the pulse generator as a regular sequential circuit. It can be con- 
sidered a mod-5 counter with a special control circuit to enable or disable the counting. To 
accommodate the generation of a single pulse, an additional FF is needed to flag whether 
the counter is active or idle. The VHDL code is shown in Listing 12.2. 

Listing 12.2 Regular sequential circuit implementation of a one-shot pulse generator 

a r c h i t e c t u r e  r e g u l a r - s e q - a r c h  of  p u l s e - 5 c l k  is  
cons tant  P-WIDTH : n a t u r a l  : = 5 ;  
s i g n a l  c - r e g  , c-next  : u n s i g n e d  (3 downto 0) ; 
s i g n a l  f l a g - r e g  , f l a g - n e x t  : s t d - l o g i c  ; 

5 begin 
- r e g i s t e r  
process  ( c l k  , r e s e t )  
begin 

i f  ( r e s e t = ’ l ’ )  then 
c - r e g  <= ( o t h e r s = > ’ O J ) ;  
f l a g - r a g  <= J O ’ ;  

c - reg  <= c - n e x t ;  
f l a g - r e g  <= f l a g - n e x t  ; 

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l J )  then 

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  logic 
process  ( c - r e g  , f l a g - r e g  , g o ,  s t o p )  
begin 

c -nex t  <= c - r e g ;  
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flag-next <= flag-reg; 
i f  (flag-reg=’O’) and (go=’l‘) then 

flag-next <= ’1 ’ ;  
c-next <= (others=>’O’); 

25 e l s i f  (flag-reg=’l’) and 
((c-reg=P-WIDTH-l) or (stop=’l’)) then 

flag-next <= ’0,; 
e l s i f  (flag,reg= ’ 1 ’ )  then 

c-next <= c-reg + 1; 
M end i f  ; 

end process;  
- o u t p u t  l o g i c  
pulse <= ’1’ when flag-reg=’l’ e l s e  ‘0’; 

end regular-seq-arch; 

There are two registers. The c-reg register is used for the counter, and the f lag-reg 
register indicates whether the counter is active. The critical part of the description is the if 
statement of the next-state logic. The first condition, (f lag,reg= ’ 0 ’ ) and (go= ’ 1 1, 
indicates that the counter is currently idle and the go signal is asserted. Under this condition, 
the flag is asserted and the counter enters the active counting state at the next rising edge 
of the clock. The second condition indicates that the counter reaches 5 or the stop signal 
is asserted and the counting should stop. The last condition indicates that the counter is in 
the active state and should keep on counting. 

In this code, the f l ag ieg  register functions as some sort of state register to keep track 
of the current condition of the circuit. The state transitions are implicitly embedded in the 
if statement of the next-state logic. 

12.2.3 Implementation using RT methodology 

The RT methodology can separate the regular and random logic, and the ASMD chart is 
shown in Figure 12.2. WO states in the chart indicate whether the counter is active, and 
the arcs show the transitions under various conditions. The RT operation in the delay state 
specifies the desired increment of the counter. Following the ASMD chart, we can easily 
derive the VHDL code, as shown in Listing 12.3. 

Listing 12.3 FSMD implementation of a one-shot pulse generator 

a r c h i t e c t u r e  f smd-arch of pulse-5clk i s  
constant  P-WIDTH: natural :=  5; 
type fsmd-state-type i s  (idle , delay) ; 
s i g n a l  state-reg , state-next : f smd-state-type ; 
s ignal  c-reg, c-next: unsigned(3 downto 0); 

- s t a t e  and d a t a  r e g i s t e r s  
process (clk , reset) 
begin 

10 i f  (reset=’l’) then 

begin 

state-reg <= idle; 
c-reg <= ( o t h e r s = > ’ O ’ ) ;  

state-rag <= state-next ; 
e l s i f  (clk’event and clk=’l’) then 

IS c-reg <= c-next; 
end i f  ; 
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l- 

Figure 12.2 ASMD chart of a one-shot pulse generator. 
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2s 

end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  & d a t a  p a t h  f u n c t i o n a l  u n i t s / r o u t i n g  
process  (state-reg ,go, stop, c-reg) 

20 begin 
pulse <= I O 1 ;  
c-next <= c-reg; 
c a s e  state-reg i s  

when idle => 
i f  go=’ll then 

state-next <= delay; 
e l s e  

state-next <= idle; 
end i f  ; 
c-next <= ( o t h e r s = > ’ O ’ ) ;  

when delay => 
i f  stop=’I then 

e l s e  
state-next <=idle ; 

i f  (c-reg=P-WIDTH-l) then 

e l s e  
state-next <=idle ; 

state-next <=delay; 
c-next <= c-reg + 1; 

end i f  ; 
end i f  ; 
pulse <= I l l ;  

end c a s e ;  
end p r o c e s s ;  

4s end f smd-arch ; 

12.2.4 Comparison 

The pulse generator example shows that we can use an FSM to emulate a regular sequential 
circuit, and vice versa. However, the emulation is cumbersome and convolved, and is 
only possible for a small design. On the other hand, the RT methodology can capture the 
essence of both regular and random logic, and the description is simple, flexible, clear and 
informative. That is why it is such a powerful methodology. 
To further illustrate the capability of the RT methodology, let us consider an expanded 

programmable one-shot pulse generator. In this circuit, the width of the pulse can be 
programmed between 1 and 7. The “programming” is done as follows: 

0 The go and stop signals are asserted at the same time to indicate the beginning of 

0 The desired value is shifted in via the go signal in the next three clock cycles. 
With the RT methodology, we can easily incorporate the extension into the ASMD chart, 

the program mode. 

as shown in Figure 12.3. The corresponding VHDL code is shown in Listing 12.4. 

Listing 12.4 Programmable one-shot pulse generator 

a r c h i t e c t u r e  prog-arch of  pulse-5clk i s  
type fsmd-state-type i s  (idle, delay, shl, sh2, sh3); 
s i g n a l  state-reg , state-next : f smd-state-type ; 
s i g n a l  c-reg , c-next : unsigned (2 downto 0) ; 
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Figure 12.3 ASMD chart of a programmable one-shot pulse generator. 
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5 s i g n a l  w-rag, w-next :  

-- s t a t e  and da ta  r e g  
process  ( c l k  , r e s e t )  
begin 

begin 
unsigned (2  downto 0) ; 

s t e r s  

I5 

25 

30 

35 

U )  

45 

50 

55 

10 i f  ( r e s e t = ’ l ’ >  then 
s t a t e - r e g  <= i d l e ;  
c - r e g  <= ( o t h e r s = > ’ O ’ ) ;  
w-reg <= “ 1 0 1 “ ;  - d e f a u l t  5 - c y c l e  d e l a y  

s t a t e - r e g  <= s t a t e - n e x t  ; 
c - reg  <= c - n e x t ;  
w-reg <= w-next ;  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l J )  then 

end i f ;  
end p r o c e s s ;  

process  ( s t a t e - r e g  , g o ,  s t o p ,  c-reg , w-reg) 
begin 

20 -- n e x t - s t a t e  l o g i c  & da ta  p a t h  f u n c t i o n a l  u n i t s / r o u t i n g  

p u l s e  <= ’0’; 
c-next  <= c - r e g ;  
w-next <= w-reg; 
case s t a t e - r e g  is  

when i d l e  => 
i f  g o = ’ l J  then 

i f  s t o p =  1 then 

e l s e  

end i f ;  
e l s e  

s t a t e - n e x t  <= i d l e ;  
end i f  ; 
c -nex t  <= (o thers=>’O ’1; 

when d e l a y  => 
i f  s t o p =  ’ 1 then 

e l s e  

s t a t e - n e x t  <= s h l ;  

s t a t e - n e x t  <= d e l a y  ; 

s t a t e - n e x t  < = i d l e ;  

i f  (c-reg=w-reg -1) then 
s t a t e - n e x t  < = i d l e  ; 

e l s e  
c-next  <= c - reg  + 1; 
s t a t , e - n e x t  < = d e l a y ;  

end i f  ; 
end i f ;  
p u l s e  <= ’1’; 

w-next <= go & w-reg(2 downto 1) ;  
s t a t e - n e x t  <= s h 2 ;  

w-next <= go & w-reg(2 downto 1) ;  
s t a t e - n e x t  <= s h 3 ;  . 

w-next <= go & w-reg(2 downto 1);  

when s h l  => 

when sh2 => 

when s h 3  => 
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state-next <= idle; 
end c a s e ;  

M end p r o c e s s ;  
end p r o g - a r c h ;  

While we can implement the extended pulse generator as a pure FSM circuit or a pure 
regular sequential circuit in theory, the emulation becomes very involved and error-prone. 
It will require lots of effort to derive the code. 

12.3 SRAM CONTROLLER 

Random access memory (RAM) provides massive storage for digital systems. It is con- 
structed as a two-dimensional array of memory cells. A cell is designed and optimized at 
the transistor level to achieve maximal efficiency. Since the silicon real estate is the primary 
concern, a memory cell is kept as simple as possible. Its control is level sensitive and uses 
no clock signal. To incorporate a RAM device into a synchronous digital system, we need 
a special circuit, known as a memory controller, to act as an interface to the synchronous 
system. Design of the memory controller illustrates control of a clockless subsystem. 

12.3.1 Overview of SRAM 

RAM is organized as a two-dimensional array of memory cells with special decoding and 
multiplexing circuits. The block diagram of a typical 220-by-1 static RAM (SRAM) is 
shown in Figure 12.4(a). It contains a 210-by-210 cell array, two 10-to-21° decoders and 
an VO control circuit. The VO of the SRAM includes a 20-bit address signal, ad, a 1-bit 
bidirectional data signal, d, and three control signals, ce, we and oe. The ad signal is split 
and connected to two decoders, which, in turn, enable the cell of the specified location. 
The three control signals are used to control SRAM operation. The chip select signal, cs, 
specifies whether to enable the SRAM. The output enable signal, oe, and the write enable 
signal, we, choose between write and read modes and control the direction of data flow. 
The function table is shown in Figure 12.4(b). Note that these signals are active low. 

Because of the lack of a clock signal, SRAM timing is quite involved. A set of minimum 
and maximum timing constraints has to be satisfied to ensure proper operation. We first 
examine the timing of a read operation. There are two methods to read data. In the first 
method, both the oe and cs signals are already activated (i.e., ’0’) and the address signal 
is used to access the desired data. It is known as an uddress-controlled read cycle and the 
timing diagram is shown in Figure 12.5(a). In the second method, the address signal is 
already stable and the cs signal already activated, and the oe signal is used to initiate the 
read operation. It is known as an oe-controlled read cycle, and the timing diagram is shown 
in Figure 12.5(b). Note the activities of the tri-state data bus when the oe signal is activated 
and deactivated. 

The relevant timing parameters associated with a read cycle are: 
Taa: address access time, the required time to obtain stable output data after an 
address change. It is somewhat like the propagation delay of the read operation and 
is used to characterize the speed of an SRAM, as in “50-11s SRAM.” 
Toh: output hold from address change time, the time that the output data remains 
valid after the address changes. This should not be confused with the hold time of 
an edge-triggered FF, which is a constraint for the d input. 
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(b) Function table 

Figure 12.4 Block diagram and functional table of a 220-by-1 SRAM. 
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cs=O, we=l , oe=O 

ad 

dout 

(a) Address-controlled read cycle 

cs=O, we=l 

ad x x 
oe 

dout 

(b) oe-controlled read cycle 

Figure 12.5 Timing diagrams of an SRAM read cycle. 
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CS=O 

Figure 12.6 Timing diagram of an SRAM write cycle. 

0 Tolz: output enable to output in low-impedance time, the time for the hi-state buffer 
to leave from the high-impedance state after oe is activated. Note that even when the 
output is no longer in the high-impedance state, the data is still invalid. 

0 To,: output enable to output valid time, the time required to obtain valid data after 
oe is activated. 

0 Tohz: output to Z time, the time for the hi-state buffer to enter the high-impedance 
state. 

0 TrC: read cycle time, the minimal elapsed time between two read operations. It is 
about the same as T,, for SRAM. 

The write cycle is more complex. The timing diagram of a write cycle is shown in 
Figure 12.6. The key to understanding the write cycle timing is the assertion of the we 
signal, which latches the input data into the designated memory cell and plays a key role in 
the write operation. There are three major constraints: 

0 To latch data into the designated memory cell, the we signal must be activated (i.e., 
being '0') for a certain amount of time. This is specified by Twp. 

0 The address needs to be stable for the entire write operation. Actually, it must be 
stable before we is activated and remain stable for a small amount of time after we is 
deactivated. The two time intervals are specified by TaS and Tab. 

0 The input data must be stable in a small window when it is latched. The latch operation 
occurs at the edge when we transits from '0' to '1'. The input data has to be stable 
before and after the edge for a small amount of time. The two time intervals are 
specified by Tds and Tdh. This constraint is somewhat like the constraint imposed 
on the d signal of a D FF at the rising edge of the clock. 

These timing parameters are formally defined as follows: 
0 Twp: write pulse width, the minimal time that the we signal must be activated. 
0 Tas: address setup time, the minimal time that the address must be stable before we 

0 Tab: address hold time, the minimal time that the address must be stable after we is 
is activated. 

deactivated. 
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data-s2m main 
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rlw 

Table 12.1 Timing parameters of two SRAMs 

Parameter 120-11s SRAM 20-11s SRAM 

SRAM 
controller 

Figure 12.7 Role of an SRAM controller. 

0 Tds: data setup time, the minimal time that data must be stable before the latching 

a Tdh: data hold time, the minimal time that data must be stable after the latching edge. 
0 T,,,,.: write cycle time, the minimal elapsed time between two write operations. 

While there has been little change in the basic SRAM architecture over the years, its 
capacity and speed have improved significantly. The address access time (Taa) can range 
from a few nanoseconds to several hundred nanoseconds. The typical timing parameters of 
an older, slow 120-ns SRAM and a more recent 20-ns SRAM are shown in Table 12.1. 

edge (the edge in which we moves from '0' to '1'). 

12.3.2 Block diagram of an SRAM controller 

The purpose of a memory controller is to interface the clockless memory and a synchronous 
system. The role of an SRAM controller is shown in Figure 12.7. It takes command from 
the main system and generates proper signals to store data into or retrieve data from the 
SRAM. The main system is a synchronous system. There are two command signals, mem 
and rw, and one status signal, ready. The main system activates the mem signal when a 
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Figure 12.8 Block diagram of an SRAM controller. 

dout 
t- q d  

< 
en - 

- 

memory operation is required and uses rw to specify the type of operation (’0’ for write and 
’ 1’ for read). The SRAM controller uses the ready signal to indicate whether it is ready for 
the operation. The addr signal is the address used to indicate the location of the memory. 
The datarm2s and dataX2m signals are the data transferred from the main system to the 
SRAM and from the SRAM to the main system respectively. 

The main system treats the memory operation as a synchronous operation. For a write 
operation, it activates mem, makes rw ’O’,  and places the address on addr and data on 
d a t a ~ 2 s  for one clock cycle. At the rising edge of the clock, this information will be 
sampled by the SRAM controller, which, in turn, initiates an SRAM write cycle and gener- 
ates proper control signals. It may take several clock cycles to complete an operation. For 
a read operation, the main system activates mem, makes rw ’l’, and places the address on 
addr for one clock cycle. Again, this information will be sampled by the SRAM controller 
at the rising edge of the clock, and an SRAM read cycle is initiated. After a predetermined 
number of clock cycles, the SRAM controller will put the data on data-s2m and make the 
data available to the main system. 

Note that the main system and memory controller are controlled by the same clock. 
From the main system’s point of view, the memory operation is completely synchronous. 
The combined memory controller and SRAM function somewhat like the register file of 
Section 9.3.1. However, whereas accessing a location in a register file can be done in one 
clock cycle, it takes many clock cycles to complete an SRAM read or write operation. 

The block diagram of the SRAM controller is shown in Figure 12.8. The data path 
contains three registers, Raddr ,  RmzS and Rs2m, which are used to store the address, the 
data from the main system to the SRAM, and the data from the SRAM to the main system 

rnern - 
wr - 

- 
tii-en control 

path 

> 
~ 
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respectively. Since the data input of the SRAM is bidirectional, a tri-state buffer is used to 
avoid conflict. The output from the register Rmzs will be placed in the data line, d, when 
the tri-state buffer is enabled. 

The control path coordinates the overall SRAM access and generates the control signals, 
which include the we and oe signals of the SRAM and the enable signals of tri-state buffer 
and registers in the data path. There are several requirements for these control signals. First, 
the signals must be activated in the order specified in the read and write cycles. Second, 
the signals must meet various timing constraints of the SRAM. Finally, the signals need to 
ensure that there is no conflict (i.e., fighting) on the bidirectional data line. 

12.3.3 Control path of an SRAM controller 

We design the control path in two steps: 
0 Derive a sketch of an FSM according to the activities in read and write cycles. 
0 Refine the FSM with the actual SRAM timing parameters and clock period. 

In the first step, we derive a sketch of an FSM that can activate and deactivate various 
signals in the desired order. This can be done by dividing the read or write cycles into 
multiple parts according to the activities of the signals and assigning a state for each part. 
For example, the write cycle can be divided into five parts, as shown in Figure 12.9(a). 

A segment of an FSM can be constructed accordingly, as shown in Figure 12.10(a). We 
assume that the address and data are stored into the registers before the FSM moves to the 
sl state. The data can be placed on the bidirectional line by activating the t r i -en signal. 
The task of the FSM is essentially to generate two output signals, we and tri-en, in the 
following order: "lO", "00", "Ol", "11" and "10". 

Closer examination of the SRAM's timing specifications can help us to simplify the 
FSM. For example, Twp is normally much larger than Tds in most SRAMs, and there is no 
harm in placing data on the din line earlier. Thus, we can merge the 92 and s3 states into 
a single state. Also, since there in no constraint specified between the order of deactivation 
of address and data, we can merge the s4 and s5 states. The revised division and FSM 
segment are shown in Figures 12.9(b) and 12.10(b) respectively. 

There are two issues with the initial sketch. First, the length of a state in the FSM corre- 
sponds to the period of the clock signal. The period must be large enough to accommodate 
the most strenuous timing parameter. Since Twp is much larger than other parameters, the 
time allocated to T,, and Tdh in the ssl and ss3 states are unnecessarily inflated. Second, 
in a practical design, the memory controller is usually a part of a larger system, and the 
clock rate is determined by the main system. The memory controller cannot have a separate 
clock and must work with the system clock. 

In the second step, we refine the FSM according to the system clock period and SRAM 
timing parameters. The SRAM's access time and the main system's clock rate are the two 
key factors in the final design of the control path. The following examples illustrate the 
design and relevant issues for a slow SRAM and a fast SRAM. 

Control path for a slow SRAM The term slow here means that the SRAM's address 
access time (Taa) is relatively large to the main system's clock period. For example, if we 
assume that the main system's clock period is 25 ns (i.e.. the clock rate is 40 MHz), the 
120-11s SRAM shown in Table 12.1 will be considered as a slow SRAM to this system since 
it takes about five clock cycles to complete a memory operation. 

Because of the slow SRAM speed, it takes five (i.e., [$$!I) clock cycles to cover Taa 
and three (i.e., [El) cycles to cover Twp We need to use multiple states in the FSM to 
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Figure 12.9 Divisions of a write cycle. 
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Figure 12.10 FSM segments for a write cycle. 
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Figure 12.11 Division of read and write cycles of a slow SRAM. 

accommodate the timing requirement. Figure 12.11 shows the division in the write and 
read cycles. An extra clock cycle, which represents the idle state, is inserted between the 
two operations. A read or write operation takes six clock cycles (i.e., 150 ns) to complete. 
The periods include one for the idle state and five for a read or write cycle. We can do a 
quick check on the SRAM timing parameters: 

0 Taa: 120 ns < 125 ns (5*25 ns) 
0 Twp: 70 ns < 75 ns (3*25 ns) 
0 Tas: 20 ns < 25 ns 
0 Tab: 5 nS C 25 nS 
0 Tds: 35 ns < 75 ns (3*25 ns) 
0 Tdh: 5 nS < 25 nS 

It is clear that all timing parameters are satisfied and there is a margin of at least 5 ns. 
The quick check is based on an ideal FSMD. To obtain more detailed timing information, 

we also need to consider the various propagation delays introduced by the data path and 
control path of the memory controller. For example, the oe signal is disabled in the end of 
the r5 state and the data on the d line is sampled and stored when the FSM moves from 
the r5 state to the idle state. We must perform a detailed timing analysis to ensure that 
there is no setup or hold time violation for the Rszm register. The detailed timing diagram 
is shown in Figure 12.12. The read operation progresses as follows. At tl ,  the FSM moves 
to the rl state. After the TctTl delay (at t 2 ) ,  the oe signal is activated and the SRAM starts 
the read operation. After T,, (at t3). the data is available. At t 4 ,  the FSM moves from 
the r5 state to the idle state, and the memory controller samples and stores the data into 
the Rszm register. After the Tctrl delay (at ts), the oe signal is deactivated. The data line 
(dout) of the SRAM returns to the high-impedance state after the To, delay (at t6 ) .  
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Figure 12.12 Detailed timing diagram of the read cycle. 

To avoid the setup time violation, the data has to be stable before Tsetup of the rising 
edge of the clock; that is, 

We can use the look-ahead output buffer to minimize Tctrl and reduce it to the clock-to-q 
delay (Tcq) of the FE. With a 25-11s clock and 120-ns SRAM, the inequality becomes 

Tsetup c 5Tc - Tctrl - Taa 

Tsetup + Tcq < 5 ns 

This condition can be met by most of today’s device technology. 

of the clock: 

Since Tctrl is Tcq, this condition can be easily satisfied. 
Other timing requirements, such as the data bus conflict, the exact timing on the SRAM’s 

Tds and Tdh requirement, can be analyzed in a similar way. Because of the relatively large 
safety margin of this design, the initial checking should still be valid. 

Following the division and signal activation, we can derive the ASMD chart accordingly, 
as shown in Figure 12.13. The VHDL code of the complete memory controller is shown 
in Listing 12.5. It includes both the data path and control path. Note that we use the look- 
ahead output buffer scheme for the we, oe and tri-en signals to ensure that the signals are 
glitch-free and to minimize the clock-to-output delay. 

Listing 12.5 Memory controller of a slow SRAM 

To avoid the hold time violation, the data has to be stable after Thold of the rising edge 

Thold < Tctd + To, 

l ibrary i e e e  ; 
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
e n t i t y  sram-ctrl i s  
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Default: 08 <= 1; we <= 1; trim <= 0; ready <= 0 

ready <=l 

j ,w4 4 , j 

Figure 12.13 ASMD chart for a slow SRAM controller. 
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port ( 
5 clk, reset: in std-logic; 

mem: in std-logic; 
rw: in std-logic; 
addr: in  std-logic-vector (19 downto 0) ; 
data-m2s : i n  std-logic ; 
we, oe: out std-logic; 
ready: out std-logic; 
data-s2m : out std-logic ; 
d: inout std-logic; 
ad: out std-logic-vector (19 downto 0) 

10 

15 ) ; 
end sram-ctrl ; 

a r c h i t e c t u r e  arch of  sram-ctrl 
type state-type i s  

20 (idle, rl, r2, r3, r4, r5 
s i g n a l  state-reg , state-next 

35 

40 

45 

55 

S 

wl, w2, w3, w4, w5); 
state-type; 

s i g n a l  data_m2s_reg, dataem2s-next : std-logic ; 
s i g n a l  data-s2m_reg, data-s2mqnext : std-logic ; 
s i g n a l  addr-reg , addr-next : std-logic-vector (19 downto 0) ; 

LS s i g n a l  tri-en-buf , we-buf , oe-buf: std-logic; 
s i g n a l  tri-en-reg , we-reg , oe-reg : std-logic ; 

- s t a t e  & d a t a  r e g i s t e r s  
process  (clk , reset) 

begin 

30 begin 
i f  (reset=’l’) then 

state-reg <= idle; 
addr-reg <= ( o t h e r s = > ’ O ’ ) ;  
data-m2s_reg <= ’0 ’ ; 
data-s2m_reg <= ’0 ; 
tri-en-reg <= ’0 ’ ; 
we-reg <= ’1’; 
oe-reg <=’l’; 

state-rag <= state-next; 
addr-rag <= addr-next ; 
data-m2s_reg <= data-m2s_next ; 
data-s2m_reg <= data-s2m_next ; 
tri-an-reg <= tri-en-buf; 
we-reg <= we-buf; 
oe-reg <= oe-buf; 

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  & d a t a  p a t h  f u n c t i o n a l  u n i t s / r o u t i n g  
process  (state-reg ,mem ,rw ,d,addr ,data-m2s , 

begin 

50 

data-m2s-reg,data-s2m_reg,addr_reg) 

addr-next <= addr-reg; 
data-m2s_next <= data_m2s_reg; 
data-s2m_next <= data-s2m_reg; 
ready <= ’0’; 
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case  s t a t e - r e g  i s  
when i d l e  => 

i f  mem=’O’ then 

e l s e  
s t a t e - n e x t  <= i d l e ;  

i f  r w = ’ O ’  then - w r i t e  
s t a t e - n e x t  <= w l ;  
add r -nex t  <= a d d r ;  
data-rn2s-next  <= d a t a  

s t a t e - n e x t  <= r l ;  
addr -nex t  <= a d d r ;  

e l s e  -- read 

end i f  ; 
end i f  ; 
r e a d y  <= ’1’; 

when wi => 
s t a t e - n e x t  <= w2 

when w2 => 
s t a t e - n e x t  <= w 3  

when w 3  => 
s t a t e - n e x t  <= w4; 

when w4 => 
s t a t e - n e x t  <= w5; 

when w5 => 
s t a t e - n e x t  <= i d l e ;  

when r l  => 
s t a t e - n e x t  <= r 2  

when r 2  => 
s t a t e - n e x t  <= r3 

when r3 => 
s t a t e - n e x t  <= r 4  

when 14 => 
s t a t e - n e x t  <= r 5  

when r 5  => 

.m2s ; 

IW 

105 

s t a t e - n e x t  <= i d l e ;  
da t a - s2m_nex t  <= d ;  

end c a s e ;  
end p r o c e s s ;  

process  ( s t a t e - n e x t  1 
begin  

95 - look-ahead o u t p u t  l o g i c  

t r i - e n - b u f  <=’O’; 
oe-buf <= ’ 1 ’ ;  
we-buf <= ’1 ’ ; 
c a s e  s t a t e - n e x t  i s  

when i d l e  => 
when w l  => 
when w2 => 

we-buf <= ’0’; 
t r i - e n - b u f  <= ’ 1 ’ ;  

we-buf <= ’0’; 
t r i - e n - b u f  <= ’1’; 

when w 3  => 
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when w4 => 
we-buf <= '0'; 
tri-en-buf <= '1'; 

tri-en-buf <= '1'; 

oe-buf <= '0'; 

oe-buf <= '0'; 

oe-buf <= '0'; 

oe-buf <= '0'; 

oe-buf <= '0'; 

when w5 => 

when rl => 

when r2 => 

when r3 => 

when r4 => 

when r5 => 

end c a s e ;  
end process;  
-- o u t p u t  
we <= we-reg; 
oe <= oe-reg; 
ad <= addr-reg; 
d <= data-m2s_reg when tri-en-reg ='l' e l s e  'Z'; 
data-s2m <= data_s2m_reg; 

end arch; 

Control path for a fast SRAM The major problem with the previous memory system 
is its speed. Since it takes six clock cycles to read or write a data item from the SRAM, it can 
be used only if the main system accesses the memory sporadically. One way to improve the 
memory performance is to use a faster SRAM. For example, we can use the 20-11s SRAM 
of Table 12.1, whose address access time (Taa) is smaller than the 25-ns clock period of the 
main system. Figure 12.14 shows the timing of one possible design, in which a read cycle 
and a write cycle are done in one clock cycle. We can again check the division against the 
SRAM timing parameters: 

Taa: 20 ns c 25 ns 
Tw,: 12nsc25ns  

0 Tag: 0 ns 5 0 ns 
0 Tab: O n s I O n s  
Tds: 12nsc25ns  
Tdh: Ons 5 Ons 

Although all constraints are satisfied, the timing is very tight. The timing of Tag, Tah and 
Tdh just meet the specification and there is no safety margin. The propagation delays of the 
control path and data path may cause timing violations. We may need to manually fine-tune 
the propagation delays of various signals to ensure correct operation. 

In this design, a read or write operation requires two clock cycles because the FSM must 
return to the id le  state after each operation. Since performance is the goal of a fast SRAM 
controller, it is desirable to perform back-to-back memory operations without returning to 
the idle state. This requires an ad hoc circuit to generate a we pulse whose activation time 
is only a fraction of a clock period and more manual fine-tuning on propagation delays to 
avoid data bus fighting. 
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Figure 12.14 Division of read and write cycles of a fast SRAM. 

In summary, while it is possible to perform single-clock back-to-back memory opera- 
tions, the design imposes very strict and tricky timing requirements on the control signals. 
These requirements are delay-sensitive and cannot be expressed or implemented by a regular 
FSM. This kind of circuit is not suitable for RT-level synthesis. To implement the controller, 
we need to manually derive the schematic using cells from the device library and even to 
manually do the placement and routing. Many device manufacturers have recognized the 
design difficulty and incorporated the memory controller into a memory chip. This kind 
of device is known as synchronous memory. Since the main system only needs to issue 
commands, place address and data, or retrieve data at rising edges of the clock, this type of 
device greatly simplifies the memory interface to a synchronous system. 

12.4 GCD CIRCUIT 

The gcd(a, b) function returns the greatest common divisor (GCD) of two positive integers, 
a and b. For example, gcd( 1 , l O )  is 1 and gcd( 12,9) is 3. The gcd function can be obtained 
by using subtraction, which is based on the equation 

i f a = b  
gcd(a - b, b) if a > b (" gcd(a, b - a) if a < b 

gcd(a, b)  = 

Assume that a-in and b-in are positive nonzero integers and their GCD is r. The equation 
can easily be converted into the following pseudocode: 

a = a-in; 
b = b-in; 
w h i l e  (a /= b) c 

if (a > b) then 
a = a - b ;  
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e l s e  

end i f  
b = b - a ;  

3 
r = a ;  

To make the pseudocode more compatible with the ASMD chart, we convert the while loop 
into a goto statement and use a swap operation to reduce the number of required subtractions. 
The revised pseudocode becomes 

a = a-in; 
b = b-in; 

swap: i f  (a = b) then 
goto stop; 

i f  (a < b) then - swap a and b 
e l s e  

a = b; - assume the  two o p e r a t i o n s  
b = a; - can be done in p a r a l l e l  

end i f  ; 
a = a - b ;  
goto swap; 

end i f  ; 
stop: r = a; 

The code first moves the larger value into a and then performs a single subtraction of 
a - b. This code can easily be converted into an ASMD chart, as shown in Figure 12.15. 
As the sequential multiplier circuit of Chapter 11, the start and ready signals are added 
to interface external systems. The corresponding VHDL code is shown in Listing 12.6. 

Listing 12.6 Initial implementation of a GCD circuit 

l i b r a r y  ieee ; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee . numeric-std. a l l  ; 
e n t i t y  gcd i s  

5 p o r t (  
clk, reset: in  std-logic; 
start : in  std-logic ; 
a-in , b-in: in  std-logic-vector (7 downto 0) ; 
ready : out std-logic ; 

10 r : out std-logic-vector (7 downto 0) 
1; 

end gcd ; 

a r c h i t e c t u r e  slow-arch of  gcd i s  
I5 type  state-type i s  (idle, swap, sub); 

s i g n a l  state-reg a state-next : state-type; 
s i g n a l  a-rag , a-next , b-rag a b-next : unsigned (7 downto 0) ; 

- s t a t e  & d a t a  r e g i s t e r s  

begin 

begin 

U) process  (clk reset) 

i f  reset= 1 then 
state-reg <= idle; 
a-reg <= ( o t h e r s = >  , O 1 > ;  
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Figure 12.15 ASMD chart of the initial GCD circuit. 
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b- rag  <= ( o t h e r s = > ’ O ’ ) ;  

s t a t e - r e g  <= s t a t e - n e x t  ; 
a - r e g  <= a - n e x t ;  
b - r eg  <= b - n e x t ;  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  logic & d a t a  p a t h  f u n c t i o n a l  u n i t s  / r o u t i n g  
process  ( s t a t e - r e g  a - r e g  , b- reg  s t a r t  a - i n  , b - i n )  
begin 

a - n e x t  <= a - r e g ;  
b-next  <= b - r e g ;  
case s t a t e - r e g  i s  

when i d l e  => 
i f  s t a r t = ’ l ’  then 

a - n e x t  <= u n s i g n e d ( a - i n ) ;  
b -nex t  <= u n s i g n e d ( b - i n )  ; 
s t a t e - n e x t  <= swap; 

s t a t e - n e x t  <= i d l e ;  
e l s e  

end i f  ; 
when swap => 

i f  ( a - r e g = b - r e g )  then 

e l s e  
s t a t e - n e x t  <= i d l e ;  

i f  ( a - r e g  < b - r e g )  then 
a -nex t  <= b - r e g ;  
b-next <= a - r e g ;  

end i f ;  
s t a t e - n e x t  <= s u b ;  

end i f  ; 

a -nex t  <= a - r e g  - b - r e g ;  
s t a t e - n e x t  <= swap; 

when sub  => 

end c a s e ;  
end p r o c e s s ;  
- o u t p u t  
r e a d y  <= ’1’ when s t a t e - r e g = i d l e  e l s e  ’0’; 
r <= std-logic-vector(a-reg); 

end s l o w - a r c h ;  

As discussed in Section 11.5, one factor in the performance of an FSMD is the number 
of clock cycles required to complete the computation. In this design, the input values are 
subtracted successively until the axeg-bxeg condition is reached. The number of clock 
cycles required to complete computation of this GCD circuit depends on the input values. 
It requires more time if only a small value is subtracted each time. The calculation of 
gcd( 1, 28 - 1) represents the worst-case scenario. The loop has to be repeated 28 - 1 times 
until the two values are equal. For a circuit with an N-bit input, the computation time is on 
the order of 0(2N), and thus this is not an effective design. 

One way to improve the design is to take advantage of the binary number system. For 
a binary number, we can tell whether it is odd or even by checking the LSB. Based on the 
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LSBs of two inputs, several simplification rules can be applied in the derivation of the GCD 
function: 

0 If both a and b are even, gcd(a, b )  = 2 gcd( 4 , ; ) .  
0 If a is odd and b is even, gcd(a, b)  = gcd(a, 4 ) .  
0 If a is even and b is odd, gcd(a, b) = gcd( 4 ,  b) .  

Since the divided-by-2 operation corresponds to shifting right one position, it can be im- 
plemented easily in hardware. The previous equation can be extended: 

gcd(a, b )  = 

a i f a = b  
2gcd(;, 4 )  if a # b anda, beven 
gcd(a, 4) if a # b and a odd, b even 
gcd(4,b) ifa#bandaeven,bodd 
gcd(a - b, b) if a > b and a, b odd 
gcd(a, b - a )  if a < b and a, b odd 

To incorporate the new rules into the algorithm, the main issue is how to handle com- 
putation of 2 gcd(5,;). One way is ignoring the factor 2 in initial iterations and using an 
additional register, n, to keep track of the number of occurrences in which both operands 
are even. The final GCD value can be restored by multiplying the initial result by 2n, which 
corresponds to shifting the initial result left n positions. 

The expanded ASMD chart is shown in Figure 12-16. It has several modifications. In the 
swap state, the LSBs of the a and b registers are checked. The register is shifted right one 
position (i.e., divided by 2) if it is even. Furthermore, the n register is incremented if both 
are even. If the a and b registers are odd, they are compared and, if necessary, swapped, 
and the FSM moves to the sub state. An extra state, labeled res (for “restore”), is added 
to restore the final GCD value. The initial result in a is shifted left repeatedly until the n 
counter reaches 0. The corresponding VHDL code is shown in Listing 12.7. 

Listing 12.7 More efficient implementation of a GCD circuit 

a r c h i t e c t u r e  f a s t - a r c h  of  gcd i s  
type  s t a t e - t y p e  i s  ( i d l e ,  swap,  s u b ,  r e s ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : s t a t e - t y p e ;  
s i g n a l  a-reg , a -nex t  b-reg , b-next  : u n s i g n e d  (7 downto 0) ; 

5 s i g n a l  n-reg n - n e x t :  u n s i g n e d ( 2  downto 0); 
begin 

-- s t a t e  & d a t a  r e g i s t e r s  
process  ( c l k  , r e s e t )  
begin 

i f  r e s e t = ’ 1  then 
s t a t e - r e g  <= i d l e ;  
a - r eg  <= ( o t h e r s = >  , O ’ > ;  
b- reg  <= ( o t h e r s = > ’ O ’ ) ;  
n-reg <= ( o t h e r s = > ’ O ’ ) ;  

s t a t e - r e g  <= s t a t e - n e x t  ; 
a - r a g  <= a - n e x t ;  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

b- reg  <= b - n e x t ;  
n-reg <= n - n e x t ;  

20 end i f  ; 
end p r o c e s s ;  
-- n e x t - s t a t e  l o g i c  & da ta  p a t h  f u n c t i o n a l  u n i t s  / r o u t i n g  
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Figure 12.16 ASMD chart of the revised GCD circuit. 
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process ( s t a t e - r e g  , a - r e g ,  b-reg , n - r e g ,  s t a r t  , a - i n ,  b-in , n - n e x t )  
begin 

25 a-next  <= a - r e g ;  
b-next <= b - r e g ;  
n-next <= n - r e g ;  
case s t a t e - r e g  i s  

when i d l e  => 
i f  s t a r t = ’ l ’  then 

a-next  <= u n s i g n e d ( a - i n )  ; 
b-next  <= u n s i g n e d ( b - i n ) ;  
n-next  <= ( o t h e r s = > ’ O ’ ) ;  
s t a t e - n e x t  <= swap; 

s t a t e - n e x t  <= i d l e ;  
e l s e  

end i f  ; 
when swap => 

i f  ( a - r e g - b - r e g )  then 
i f  (n-reg=O) then 

e l s e  

end i f  ; 

i f  ( a - r eg (O)=’O’ )  then - a - r e g  e v e n  

s t a t e - n e x t  <= i d l e ;  

s t a t e - n e x t  <= r e s ;  

e l s e  

a-next  <= ’0’ & a - r e g ( 7  downto 1); 
i f  (b - r eg (O)=’O’ )  then - b o t h  e v e n  

b-next <= ’0’ & b - r e g ( 7  downto 1); 
n-next <= n- reg  + 1; 

end i f  ; 
s t a t e - n e x t  C= swap; 

i f  (b - r eg (O)=’O’ )  then - b-reg e v e n  
b-next <= ’0’ & b - r e g ( 7  downto 1 ) ;  
s t a t e - n e x t  <= swap; 

i f  ( a - r e g  < b- reg )  then 

e l s e  -- a - r e g  odd  

e l s e  - both  a - r e g  and 6 - r e g  odd 

a-next  <= b - r e g ;  
b-next  <= a - r e g ;  

end i f  ; 
s t a t e - n e x t  <= s u b ;  

end i f  ; 
end i f  ; 

end i f  ; 

a-next  <= a - r e g  - b - r e g ;  
s t a t e - n e x t  <= swap; 

a-next  <= a - r e g ( 6  downto 0) & ’0’; 
n-next <= n-reg - 1; 
i f  (n-next=O) then 

e l s e  

when sub => 

when res => 

s t a t e - n e x t  <= i d l e ;  

s t a t e - n e x t  <= res;  
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end i f  ; 
end c a s e ;  

end p r o c e s s ;  
-0 U t p u  t 

80 r eady  <= ’1’ when s t a t e - r e g = i d - e  e l s e  
r <= s t d - l o g i c - v e c t o r  ( a - r e g )  ; 

end f a s t - a r c h  ; 

Now let us consider the number of clock cycles needed to complete one computation. 
Assume that the width of the input operand is N bits. The algorithm gradually reduces the 
values in the a r e g  and breg until they are equal. In the worst case, there are 2N bits to be 
processed initially. If a value is even, the LSB is shifted out and thus the number of bits is 
reduced by 1. If both values are odd, a subtraction is performed and the difference is even, 
and the number of bits can be reduced by 1 in the next iteration. In the most pessimistic 
scenario, the 2N bits can be processed in 2 * 2N iterations, and the required computation 
time is on the order of O( N ) ,  which is much better than the O( 2 N )  of the original algorithm. 

Because of the flexibility of hardware implementation, it is possible to invest extra 
hardware resources to improve the performance. For example, instead of handling the 
data bit by bit in the swap and res  states, we can use more sophisticated combinational 
circuits to process the data in parallel. In the swap state, the circuit checks and shifts out 
the trailing 0’s of a and b. In the res  state, a shift-left barrel shifter restores the final result 
in a single step. The revised VHDL code is shown in Listing 12.8. 

Listing 12.8 Performance-oriented implementation of a GCD circuit 

a r c h i t e c t u r e  f a s t e s t - a r c h  of gcd i s  
type s t a t e - t y p e  i s  ( i d l e ,  swap,  s u b ,  r e s ) ;  
s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : s t a t e - t y p e ;  
s i g n a l  a - r e g  , a-next  , b-reg , b-next  : u n s i g n e d  (7 downto 0) ; 

s s i g n a l  n- reg  n - n e x t ,  a - z e r o ,  b - z e r o :  u n s i g n e d ( 2  downto 0 ) ;  
begin 
- s t a t e  & d a t a .  r e g i s t e r s  
process  ( c l k  , rese t  
begin 

i f  r e s e t = ’ l ’  then 
s t a t e - r e g  <= i d l e ;  
a - r e g  <= ( o t h e r s - > ’ O J ) ;  
b- reg  <= ( o t h e r s = >  ’0 I); 
n - r e g  <= ( o t h e r s = >  ’0 ’ ) ;  

s t a t e - r e g  <= s t a t e - n e x t  ; 
a - r a g  <= a - n e x t ;  
b - r e g  <= b - n e x t ;  
n - r e g  <= n - n e x t ;  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

end i f ;  
end p r o c e s s ;  
-- n e x t - s t a t e  l o g i c  & d a t a  p a t h  f u n c t i o n a l  u n i t s / r o u t i n g  
process  ( s t a t e - r e g  , a-reg , b-reg , n - r e g ,  s t a r t ,  

begin 
a - i n  , b - i n  , a - z e r o  , b - z e r o )  

a -nex t  <= a - r e g ;  
b-next  <= b - r e g ;  
n-next  <= n - r e g ;  
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a-zero  <= ( o t h e r s = > ’ O ’ > ;  
b-zero <= ( o t h e r s = > ’ O ’ ) ;  
c a s e  s t a t e - r e g  is  

when i d l e  => 
i f  s t a r t = ’ l ’  then  

a-next <= u n s i g n e d ( a - i n ) ;  
b-next <= uns igned(b , in)  ; 
n-next <= ( o t h e r s = > ’ O ’ ) ;  
s t a t e - n e x t  <= swap; 

s t a t e - n e x t  <= i d l e ;  
e l s e  

end i f  ; 
when swap => 

i f  ( a - r eg ib - reg )  t h e n  
i f  (n-reg=O) t h e n  

e l s e  

end i f  ; 

i f  ( a - r eg (O)=’ i  and b - r eg (O)=’ l ’ )  t hen  - swap 

s t a t e - n e x t  <= i d l e ;  

s t a t e - n e x t  <= r e s ;  

e l s e  

i f  (a - reg  < b-reg)  t h e n  
a-next <= b-reg ;  
b-next <= a - reg ;  

end i f  ; 
s t a t e - n e x t  <= sub ;  

- s h i f t  out O S  o f  a - r e g  
i f  (a - reg  ( O ) =  ’ 1 ’ ) t h e n  

a-zero < = l t O O O ” ;  
e l s i f  ( a - r e g ( l > = ’ l ’ >  t h e n  

a-zero < = “ 0 0 1 ” ;  
e 1s i f  (a - reg  (2) = ’ 1 ’ 1 t h e n  

a-zero < = l l O l O l l ;  
e l s i f  ( a - r eg  ( 3 ) =  ’ 1 ’ ) t h e n  

a-zero < = “ 0 1 1 ” ;  
e l s i  f ( a - reg  (41.: 1 ’ 1 t h e n  

a-zero <=I1 100” ; 
e l s i f  ( a _ r e g ( 5 ) = ’ 1 ’ )  then  

a-zero < = I 9  101 I) ; 
e l s i f  ( a _ r e g ( 6 ) = ’ 1 ’ )  then  

a-zero <=“110” ;  

e l s e  

a-next <= “0” k a - reg (7  downto 1) ;  

a-next <= * ‘ O O ”  & a - reg (7  downto 2 ) ;  

a-next <= t8000” & a - reg (7  downto 3 ) ;  

a-next <= ”0000” & a - reg (7  downto 4); 

a-next <= ~~00000” & a - reg (7  downto 5 ) ;  

a-next <= ~ ~ 0 0 0 0 0 0 ~ ~  & a - r e g ( 7  downto 6 ) ;  

e l s e  - a - r e g ( 7 ) =  ’ 1  ’ 
a-next <= ~~0000000” & a - r e g ( 7 ) ;  

a-zero <=“111”; 
end i f  ; 
- s h i f t  out 0 s  of b - r e g  

40 
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70 
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I10 

I15 

120 

125 

Iu) 

i f  ( b _ r e g ( O ) = ' l  ' 1  then  
b - z e r o  <="OOO" ; 

e l s i f  ( b - r e g ( l ) = ' l  ' 1  then 

a - z e r o  <="001" ; 
e l s i f  ( b - r e g ( 2 ) = ' l J >  then  

b -ze ro  < = " 0 1 0 " ;  
e l s i f  ( b - r e g ( 3 ) = ' I J )  then 

b -ze ro  <="011"; 
e l s i f  ( b - r e g ( 4 ) = ' l J )  then 

b -ze ro  <="100"; 
e l s i f  ( b - r e g ( 5 ) = ' l J )  then  

b -ze ro  <="lOl"; 
e l s i f  ( b _ r e g ( 6 ) = ' l J )  then  

b -ze ro  <=I1 110" ; 

b-nex t  <= II0lt & b - r e g ( 7  downto 1); 

b-nex t  <= " O O 1 q  & b - r e g ( 7  downto 2 ) ;  

b-next  <= " O O 0 8 t  & b - r e g ( 7  downto 3 ) ;  

b-next  <= "0000" & b - r e g ( 7  downto 4 ) ;  

b-next  <= "00000" & b - r e g ( 7  downto 5); 

b-next  <= "000000" & b - r e g ( 7  downto 6 ) ;  

e l s e  - b - r e g ( 7 ) =  ' I  ' 
b-next  <= "0000000" & b - r e g ( 7 ) ;  

b -ze ro  <="111"; 
end i f ;  
-- f i n d  common number of O S  
i f  ( a - z e r o  > b - z e r o )  then  

e l s e  

end i f ;  
s t a t e - n e x t  <= swap; 

n-next  <= n- reg  + b - z e r o ;  

n-next  <= n- reg  + a - z e r o ;  

end i f ;  
end i f ;  

a -nex t  <= a - r e g  - b - r e g ;  
s t a t e - n e x t  <= swap; 

case  n - r eg  i s  

when sub => 

when r e s  => 

when l t O O O "  => 
a-next  <= a - r e g ;  

when "001" => a -nex t  <= 
a - r e g  ( 6  downto 0) & '0 ; 

when 11010" => 
a -nex t  <= a - r e g ( 5  downto 0) & a O o t f ;  

when t l O 1 l "  => 
a -nex t  <= a - r e g ( 4  downto 0) & l l O O O 1 t ;  

when "100" =>  a -nex t  <= 
a - r e g ( 3  downto 0) & "0000"; 

when It 101 => 
a -nex t  <= a - r e g ( 2  downto 0) & ~ ~ 0 0 0 0 0 ~ ~ ;  

when l v l l O "  => 
a -nex t  <= a - r e g ( 1  downto 0) & ~ ~ 0 0 0 0 0 0 ~ ~ ;  

when o t h e r s  => 
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Figure 12.17 Transmission of a byte. 

135 a-next  <= a - reg (0 )  & "0000000~~; 
end c a s e ;  
s t a t e - n e x t  <= i d l e ;  

end c a s e ;  
end process;  

ready <= '1' when s t a t e - r e g = i d l e  e l s e  '0'; 
r <= std-logic-vector(a-reg); 

140 -- o u t p u t  

end f a s t e s t - a r c h ;  

12.5 UART RECEIVER 

Universal asynchronous receiver and transmitter (UART) is a scheme that sends bytes of 
data through a serial line. The transmission of a single byte is shown in Figure 12.17. The 
serial line is in the ' 1' state when it is idle. The transmission is started with a start bit, which 
is 'O', followed by eight data bits and ended with a stop bit, which is ' 1'. It is also possible 
to insert an optional parity bit in the end of the data bits to perform error detection. Before 
the transmission starts, the transmitter and receiver must agree on a set of parameters in 
advance, which include the baud rate (i.e., number of bits per second), the number of data 
bits, and use of the parity bit. 

The UART transmitter is essentially a shift register that shifts out data bits at a specific 
rate. Construction of a UART receiver is more involved since no clock information is 
conveyed through the serial line. The receiver can retrieve the data bits only by using the 
predetermined parameters. It uses an oversampling scheme to ensure that the data bits 
are retrieved at the correct point. This scheme utilizes a high-frequency sampling signal 
to estimate the middle point of a data bit and then retrieve data bits at these points. For 
example, assume that the sampling rate is 16 times the baud rate (i.e., there are 16 sampling 
pulses for each bit). The incoming stream can be recovered as follows: 

1. 

2. 

3. 

4. 
5 .  

When the incoming line becomes '0' (i.e., the beginning of the start bit), initiate the 
sampling pulse counter. 
When the counter reaches 7, clear it to 0 and restart. At this point, the incoming 
signal reaches about a half of the start bit (i.e., the middle point of the start bit). 
When the counter reaches 15, clear it to 0 and restart. At this point, the incoming 
signal progresses for one bit and reaches the middle of the first data bit. The data in 
the serial line should be retrieved and shifted into a register. 
Repeat Step 3 seven times to retrieve the remaining seven data bits. 
Repeat Step 3 one more time but without shifting. The incoming signal should reach 
the middle of the stop bit at this point, and its value should be '1'. 

The idea behind this scheme is to use oversampling to overcome the uncertainty of the 
initiation of the start bit. Even when we don't know the exact onset point of the start bit, it 



456 REGISTER TRANSFER METHODOLOGY PRACTICE 

can be off by at most &. The subsequent data bit retrievals are off by at most & from the 
middle point as well. 

With understanding of the oversampling procedure, we can derive the ASMD chart 
accordingly. One issue is the creation of sampling pulses. The easiest way is to treat the 
UART as a separate subsystem that utilizes a clock signal whose frequency is just 16 times 
that of the baud rate. This approach violates the synchronous design principle and should be 
avoided. A better alternative is to use a single-clock enable pulse that is synchronized with 
the system clock, as discussed in Section 9.1.3. Assume that the system clock is 1 MHz 
and the baud rate is 1200 baud. The frequency of the sampling enable pulse should be 
16 * 1200, which can be obtained by a mod-52 counter (note that ’ ; ~ ~ ~ ~ ~  = 52). It can 
easily be coded in VHDL: 

process  (clk , reset 
begin 

i f  reset=’l’ then 

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 
end process;  
- n e x t - - s t a t e / o u t p u t  l o g i c  
clkl6-next <= ( o t h e r s = > ’ O ’ )  when clkl6_reg=51 e l s e  

s-pulse <= ’1’ when clkl6_reg=O e l s e  ’0’; 

clkl6-reg <= ( o t h e r s = > ’ O ’ ) ;  

clkl6-reg <= clkl6,next ; 

clkl6-reg + 1 ; 

The ASMD chart of a simplified UART receiver is shown in Figure 12.18. The chart 
follows the previous steps and includes three major states, s t a r t ,  data and stop, which 
represent the processing of the start bit, data bits and stop bit respectively. The s-pulse 
signal is the enable pulse whose frequency is 16 times that of the baud rate. Note that 
the FSMD stays in the same state unless the s-pulse signal is activated. There are two 
counters, represented by the s and n registers. The s register keeps track of the number 
of sampling pulses and counts to 7 in the start state and to 15 in the data and stop 
states. The n register keeps track of the number of data bits received in the data state. The 
retrieved bits are shifted into and reassembled in the b register. The corresponding VHDL 
code is shown in Listing 12.9. We assume that the system clock is 1 MHz and the baud rate 
is 1200 baud. 

Listing 12.9 Simplified UART receiver 

l ibrary ieee ; 
use ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  uart-receiver i s  

s port(  
clk, reset: in std-logic; 
rx: in std-logic; 
ready: out std-logic; 
pout : out std-logic-vector (7 downto 0) 

10 1 ; 
end uart-receiver ; 

archi tecture  arch of uart-receiver i s  
type state-type i s  (idle, start, data, stop); 
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Figure 12.18 ASMD chart of a UART receiver. 
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I5 s i g n a l  state-rag , state-next : state-type; 
s i g n a l  clkl6-next , clkl6-reg : unsigned (5 downto 0) ; 
s i g n a l  s-reg , s-next : unsigned (3 downto 0) ; 
s i g n a l  n-reg , n-next : unsigned (2  downto 0) ; 
s i g n a l  b-reg , b-next : std-logic-vector ( 7  downto 0) ; 

c o n s t a n t  DVSR: integer := 52; 
M s i g n a l  s-pulse: std-logic; 

begin 

40 

45 

w 

65 

- f r e e - r u n n i n g  mod-52 c o u n t e r ,  i n d e p e n d e n t  of  FSMD 
process  (clk , reset 1 
begin 

i f  resetm’l’ then 

e 1 s i  f (clk ’ event and clk= ’ 1 ’ ) then  

end i f ;  
end p r o c e s s ;  
- n e x t - s t a t e / o u t p u t  l o g i c  
clkl6-next <= ( o t h e r s = >  ’0 ’1 when clkl6-reg=(DVSR-l) e l s e  

s-pulse <= ’1’ when clk16_reg=O e l s e  ’0’; 

clkl6-reg <= ( o t h e r s = > ’ O ’ ) ;  

clkl6-reg <= clkl6-next ; 

clkl6-reg + 1 ; 

- FSMD s t a t e  & d a t a  r e g i s t e r s  
p r o c e s s  (clk, reset 1 
begin 

i f  reset=’l then 
state-reg <= idle; 
s-reg <= ( o t h e r s = > ’ O J ) ;  
n-reg <= ( o t h e r s = > ’ O ’ ) ;  
b-reg <= ( o t h e r s = > ’ O J ) ;  

state-reg <= state-next ; 
s-reg <= s-next; 
n-reg <= n-next; 
b-reg <= b-next; 

e l s i f  (clk’event and clk=’l’) then  

end i f  ; 
end p r o c e s s ;  
- n e x t - s t a t e  l o g i c  & d a t a  p a t h  f u n c t i o n a l  u n i t s / r o u t i n g  
process  (state-reg ,s-reg ,n-reg, b-reg, s-pulse ,rx) 
begin 

s-next <= s-reg; 
n-next <= n-reg; 
b-next <= b-reg; 
ready < = ’ O ’ ;  
case  state-reg i s  

when idle => 
i f  rx=’O’ then 

e l s e  

end i f  ; 
ready <=’1’; 

when start => 

state-next <= start; 

state-next <= idle; 
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i f  ( s - p u l s e  = , O J >  then 
s t a t e - n e x t  <= s t a r t ;  

e l s e  
i f  s _ r e g = 7  then 

s t a t e - n e x t  <= d a t a ;  
s - n e x t  <= ( o t h e r s = > J O J ) ;  

s t a t e - n e x t  <= s t a r t ;  
s - n e x t  <= s - r e g  + 1; 

e l s e  

end i f  ; 
end i f  ; 

when data  => 
i f  ( s - p u l s e  = , O J )  then 

e l s e  
s t a t e - n e x t  <= d a t a ;  

i f  s _ r e g = l 5  then 
s - n e x t  <= ( o t h e r s = > J O J ) ;  
b-nex t  <= r x  & b - r e g ( 7  downto 1);  
i f  n _ r e g = 7  then 

s t a t e - n e x t  <= s t o p  ; 
n-next  <= ( o t h e r s = >  ’0 1 ; 

s t a t e - n e x t  <= d a t a ;  
n-next  <= n- reg  + 1; 

e l s e  

end i f  ; 

s t a t e - n e x t  <= d a t a ;  
s - n e x t  <= s-rag + 1; 

e l s e  

end i f  ; 
end i f ;  

when s t o p  => 
i f  ( s - p u l s e  = ’0,) then 

e l s e  
s t a t e - n e x t  <= s t o p ;  

i f  s - r eg -15  then 
s t a t e - n e x t  <= i d l e ;  
s - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  

s t a t e - n e x t  <= s t o p ;  
s - n e x t  <= s - r e g  + 1; 

e l s e  

end i f  ; 
end i f  ; 

110 end c a s e ;  
end process;  
pou t  <= b - r e g ;  

end a r c h ;  

Several extensions are possible for this UART receiver, including adding a parity bit 
to detect the transmission error, checking the stop bit for the framing error, and making 
the baud rate adjustable. The main problem with the UART scheme is its performance. 
Because of the oversampling, the baud rate can be only a small fraction of the system clock 
rate, and thus this scheme can be used only for a low data rate. 
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12.6 SQUARE-ROOT APPROXIMATION CIRCUIT 

The previous UART example is a typical control-oriented application, which is character- 
ized by the dominance of the sophisticated decision conditions and branching structures 
in the algorithm. The opposite type is a data-oriented application, which involves mainly 
data manipulation and arithmetic operations. It is also known as a computation-intensive 
application. 

Although a data-oriented application can be implemented by a combinational circuit in 
theory, the approach uses a large number of functional units and thus requires a significant 
amount of hardware resources. RT methodology allows us to share functional units in a 
time-multiplexed fashion, and we can schedule the operations sequentially to achieve the 
desired trade-off between performance and circuit complexity. A square-root approximation 
circuit in this section illustrates the design procedure and relevant issues of data-oriented 
applications. 

The square-root approximation circuit uses simple adder-type components to obtain the 
approximate value of d m ,  where a and b are signed integers. The approximation is 
obtained by the following formula: 

d m  x max(((2 - 0.1252) + 0.5y),z) 

where z = rnax(la1, lbl) and y = min()al, lbl) 

Note that the 0.1252 and 0 . 5 ~  operations correspond to shift 2 right three positions and 
shift y right one position, and that no actual multiplication circuit is needed. The equation 
can be coded in a traditional programming language. Let the two input operands be a-in 
and b-in and the output be r. One possible pseudocode is 

a = a-in; 
b = b-in; 
tl = abs(a); 
t2 = abs(b); 
x = max(t1, t2); 
y = min(t1, t2); 
t3 = x*O.125; 
t4 = y*o.5; 
t5 = x - t3; 
t6 = t 4  + t5; 
t7 = max(t6, x) 
r = t7; 

To help VHDL conversion, we intentionally avoid reuse of the same variable name on the 
left-hand side of the statements. Because of the lack of control structure, the pseudocode 
can be translated to synthesizable VHDL code directly. The corresponding code is shown 
in Listing 12.10. 

Listing 12.10 Square-root approximation circuit using direct dataflow description 

l i b r a r y  ieee; 
use ieee. std-logic-1164. all ; 
use ieee. numeric-std. all ; 
e n t i t y  sqrt i s  

s p o r t (  
a-in, b-in: in  std-logic-vector (7 downto 0) ; 
r: out std-logic-vector (8 downto 0) 
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1; 
end sqrt; 

a r c h i t e c t u r e  comb-arch of sqrt is 
constant WIDTH: natural : = 8 ;  
s i g n a l  a, b, x, y: signed(W1DTH downto 0); 
s i g n a l  tl, t2, t3, t4, t5, t6, t7: signed(W1DTH downto 0); 

a <= signed(a-in(W1DTH-1) & a-in); - s i g n e d  e x t e n s i o n  
b <= signed(b-in(W1DTH-1) & b-in); 
tl <= a when a > 0 e l s e  

0 - a; 
20 t2 <= b when b > 0 e l s e  

0 - b; 

10 

IS begin 

x <= tl when tl - t2 > 0 e l s e  

y <= t2 when tl - t2 > 0 e l s e  

t3 <= l t O O O t t  & x(W1DTH downto 3); 
t4 <= t t O t t  & y(WIDTH downto 1); 
t5 <= x - t3; 
t6 <= t 4  + t5; 

x; 

t2 ; 

25 tl; 

M t 7  <= t6 when t6 - x > 0 e l s e  

r <= std-logic-vector (t7) ; 
end comb-arch ; 

Note that the code consists only of concurrent statements, and thus their order does not 
matter. The original sequential execution is embedded in the interconnection of components 
and the flow of data. The VHDL code consists of seven arithmetic components, including 
one adder and six subtractors. Since the addition and subtractions are not mutually exclusive, 
sharing is not possible. 

For a data-oriented application, it will be helpful to examine the dependency and move- 
ment of the data. This information can be visualized by a dutuflow graph, in which an op- 
eration is represented by a node (a circle), and its input and output variables are represented 
by the incoming and outgoing arcs. The dataflow graph of the square-root approximation 
algorithm is shown in Figure 12.19. 

The graph shows that the algorithm has only a limited degree of parallelism since at most 
only two operations can be executed concurrently. The seven arithmetic components of the 
previous VHDL code cannot significantly increase the performance, and most hardware 
resources are wasted. Thus, while the code is simple, it is not very efficient. RTmethodology 
is a better alternative. 

To transform a dataflow chart to an ASMD chart, we need to specify when and how 
operations in the dataflow graph are executed. The transformation include two major tasks: 
scheduling and binding. Scheduling specifies when a function (i.e., a circle) can start 
execution, and binding specifies which functional unit is assigned to perform the execution. 
One important design constraint is the number of functional units allowed to be used in a 
design. We can allocate a minimal number of functional units to reduce the circuit size, 
allocate a maximal number of units to exploit full potential parallelism, or find a specific 
number to achieve the desired trade-off between performance and circuit size. Obtaining 
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Figure 12.19 Dataflow graph. 
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Figure 12.20 Schedules with two functional units. 

an optimal schedule involves sophisticated algorithms and is a difficult task. Specialized 
EDA software tools are needed for a complex dataflow graph. 

The dataflow graph of the square-root approximation algorithm involves a variety of 
operations. The *.125 and * .5  operations can be implemented by fixed-amount shifting 
circuits, which require no physical logic and thus should not be considered in the scheduling 
process. The other operations can be constructed by adders with some “glue” and routing 
logic. Thus, we can assume that the adderhubtractor is the only functional unit type required 
for the algorithm. Because at most two operations can be executed in parallel, the ASMD 
design can only utilize up to two functional units. 

One possible schedule is shown inFigure 12.20(a). Note that the *. 125 and *.5 operations 
are removed from the graph. The parentheses associated with the variables will be explained 
later. The dataflow graph is divided into five time intervals, which are later mapped into 
five states of an ASMD chart, It utilizes two units. One possible binding is to assign the 
two operations in the left column to one unit and the five operations in the right column 
to another unit. An alternative schedule and binding is shown in Figure 12.20(b), which 
requires the same amount of time to complete the computation. A schedule that uses only 
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a b  

Figure 12.21 Schedule with one functional unit. 

one functional unit is shown in Figure 12.21. It needs two extra time intervals to complete 
the operation. 

Once the scheduling and binding are done, the dataflow graph can be transformed into 
an ASMD chart. Since each time interval represents a state in the chart, a register is needed 
when a signal is passed through the state boundary. The corresponding ASMD chart of 
Figure 12.20(a) is shown in Figure 12.22(a). The variables in the graph are mapped into 
the registers of the ASMD chart. There are two operations in the sl and s2 states and one 
operation in the s3, s4 and s5 states. The start and ready signals and an additional idle 
state are included to interface the circuit with an external system. 

Additional optimization schemes can be applied to reduce the number of registers and 
to simplify the routing structure. For example, instead of creating a new register for each 
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y c- min(tl,t2) 
x + max(t1,Q) 

Figure 12.22 ASMD charts of a square-root approximation circuit. 
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variable, we can reuse an existing register if its value is no longer needed. This corre- 
sponds to properly renaming the variables in the dataflow graph. Close examination of 
Figure 12.20(a) shows that we can use three variables to cover the entire operation. The 
relationship between the new registers and the original registers is: 

0 Use r 1 to replace a, t 1 and y. 
0 Use r2 to replace b, t 2  and x. 
0 Use r3 to replace t5, t 6  and t7. 

The replacement variables are shown in parentheses in Figure 12.20(a). The revised ASMD 
chart is shown in Figure 12.22(b). The number of the registers is reduced from seven to 
three. 

The VHDL code can be derived according to the ASMD chart and is shown in List- 
ing 12.11. To ensure proper sharing, the two functional units are isolated from the other 
description and coded as two separated segments. The first unit uses a single subtractor to 
perform the m a x  and abs functions. The second unit uses a single adder to perform the abs 
and m a x  functions as well as addition and subtraction. For clarity, we use the + operator for 
the carry-in signal. The synthesis software should be able to map it to the carry-in port of 
the adder rather than inferring another adder. 

Listing 12.11 Square-root approximation circuit using RT methodology 
l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  sqrt i s  

5 p o r t (  
clk, reset: in  std-logic; 
start : in  std-logic; 
a-in, b-in: in  std-logic-vector ( 7  downto 0) ; 
ready : out std-logic ; 

10 r : out std-logic-vector (8 downto 0) 
) ;  

end sqrt; 

a r c h i t e c t u r e  seq-arch of sqrt i s  
IS c o n s t a n t  WIDTH: integer :=8; 

type  state-type i s  (idle, 51, s2, 93, s4, s5); 
s i g n a l  state-reg , state-next : state-type; 
s i g n a l  rl-reg , r2_reg, r3-reg : signed (WIDTH downto 0) ; 
s i g n a l  rl-next , r2-next , r3-next : signed(W1DTH downto 0) ; 

20 s i g n a l  sub-op0, sub-opl, diff , aul-out: 
signed (WIDTH downto 0) ; 

signed (WIDTH downto 0) ; 
s i g n a l  add-op0, add-opl , sum, au2-out: 

s i g n a l  add-carry : integer ; 

- s t a t e  & d a t a  r e g i s t e r s  
process  (clk ,reset) 
begin  

25 begin 

if reset= 1 ’ then 
30 state-reg <= idle; 

rl-reg <= ( o t h e r s = > ’ O ’ ) ;  
r2-reg <= ( o t h e r s = > ’ O  ’1; 
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r 3 - r e g  <= ( o t h e r s = >  ’0 ; 

s t a t e - r e g  <= s t a t e - n e x t ;  
r l - r e g  <= r l - n e x t ;  
r 2 - r e g  <= r2 ,nex t ;  
r 3 - r e g  <= r 3 - n e x t ;  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

end i f  ; 
U) end process;  

-- n e x t - s t a t e  l o g i c  and d a t a  p a t h  r o u t i n g  
process ( s t a r t ,  s t a t e - r e g  , r l - r e g  , r 2 _ r e g ,  r 3 _ r e g ,  

begin 
a - i n  , b-in , au l -ou t  , au2-out  ) 

r l - n e x t  <= r l - r e g ;  
r 2 - n e x t  <= r 2 - r e g ;  
r3 -nex t  <= r 3 - r e g ;  
r e a d y  <=’O’; 
case s t a t e - r e g  i s  

when i d l e  => 
i f  s t a r t  = ’ 1 ’ then 

r l - n e x t  <= signed(a-in(W1DTH-1) k a - i n ) ;  
r2 -nex t  <= signed(b-in(W1DTH-1) k b - i n ) ;  
s t a t e - n e x t  <= sl; 

s t a t e - n e x t  <= i d l e ;  
e l s e  

end i f  ; 
r e a d y  <=’ l ’ ;  

when s l  => 
r i - n e x t  <= a u l - o u t ;  - t l = J a l  
r2 -nex t  <= au2-out ; - t 2  =lbl  
s t a t e - n e x t  <= 8 2 ;  

r l - n e x t  <= a u l - o u t  ; - y = m i n (  t l  , t 2  ) 
r2 -nex t  <= au2-out ; - x=max( t l  , t 2 )  
s t a t e - n e x t  <= s3; 

r3 -nex t  <= au2-out ; - t S = x - O . I 2 5 x  
s t a t e - n e x t  <= s4; 

r3 -nex t  <= au2-out ; - t 6  = 0 . 5 y + t 5  
s t a t e - n e x t  <= s5; 

r3 -nex t  <= au2-out ; - t7=man( t 6 ,  x )  
s t a t e - n e x t  <= i d l e ;  

when s 2  => 

when s3 => 

when s4 => 

when s5 => 

end c a s e ;  
end process;  
-- a r i t h m e t i c  u n i t  I 
- s u b t r a c t o r  

- i n p u t  r o u t i n g  
process ( s t a t e - r e g  , r l - r e g ,  r 2 - r e g )  
begin 

80 d i f f  <= sub-op0 - s u b - o p l ;  

case s t a t e - r e g  i s  
when sl => - 0 - a  
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90 
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sub-op0 <= ( o t h e r s = > ' O , ) ;  
sub-opl <= rl-reg; - a 

when others  => - s 2 :  t 2 - t l  
sub-op0 <= r2-reg; - t 2  
sub-opl <= rl-reg; - t l  

end c a s e ;  
end p r o c e s s ;  
- o u t p u t  r o u t i n g  
process (state-reg , rl-reg , r2_reg, diff 

9s begin 
case state-reg i s  

when sl => - - -a1 
i f  diff (WIDTH)='O' then - (0-a)>O 

e l s e  

end i f  ; 

i f  diff (WIDTH)='O' then - ( t 2 - t l ) > O  

e l s e  

end i f  ; 

aul-out <= diff ; - - a  

aul-out <= rl-reg; - a 

when others => - s 2 :  m i n ( a , b )  

aul-out <= rl-rag; -- t l  

aul-out <= r2-reg; - t 2  

end c a s e ;  
110 end p r o c e s s ;  

- a r i t h m e t i c  u n i t  2 
- a d d e r  
sum <= add-op0 + add-opl + add-carry; 
-- i n p u t  r o u t i n g  
process  (state-reg , ri-reg , r2-regI r3-reg) 
begin 

115 

case state-reg i s  
when sl => - 0 - b  

add-op0 <= ( o t h e r s = > ' O ' ) ;  -0 
add-opl <= not r2-reg; - n o t  b 
add-carry <= 1; 

add-op0 <= rl-reg; - t l  
add-opl <= not r2-reg; - -not  t 2  
add-carry <= 1; 

when s3 => - -- x - 0 . 1 2 5 ~  
add-op0 <= r2-reg; -x 
add-opl <= not ( " O O O t t  & rZ-reg(WIDTH downto 3 ) ) ;  
add-carry <= 1; 

when s4 => -- O . S * y  + t 5  
add-op0 <= " O t '  & rl-reg(W1DTH downto 1) ;  
add-opl <= r3-reg; 
add-carry <= 0; 

when others => - t 6  - x 
add-op0 <= r3-reg; - t l  
add-opl <= not r2-reg; - n o t  x 
add-carry <= 1; 

when 132 => - t l - t 2  

end c a s e ;  
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end process;  
140 -- o u t p u t  r o u t i n g  

process  ( s t a t e - r e g  , r l - r a g  , r 2 _ r e g ,  r 3 - r e g I  sum) 
begin 

case s t a t e - r e g  i s  
when sl => - 1 bl 

145 i f  sum(WIDTH)=’O’ then -- ( 0 - b ) > O  

I50 

IS5 

160 

au2-out <= sum; -- - b  

au2-out <= r2 - r eg ;  - b 
e l s e  

end i f  ; 
when s2 => 

i f  sum (WIDTH) = ’0 ’ then 

e l s e  

end i f  ; 
when 831 94 => - +,- 

au2-out <= sum; 
when others => - s5 

i f  sum (WIDTH) = 0 ’ then 

e l s e  

end i f  ; 

au2-out <= r l - r e g ;  

au2-out <= r2 - r eg ;  

au2-out <= r3 - r eg ;  

au2-out <= r2 - r eg ;  

end c a s e ;  
165 end process;  

- o u t p u t  
r <= s t d - l o g i c - v e c t o r  ( r3 - r eg )  ; 

end seq-arch ; 

12.7 HIGH-LEVEL SYNTHESIS 

The square-root approximation circuit of Section 12.6 shows that deriving the optimal RT 
design for data-oriented applications is by no means a simple task. The procedure is complex 
and involves many sophisticated algorithms. Derivation of this type of circuit belongs to a 
specific class of design, known as high-level synthesis or as somewhat misleading behaviorul 
synthesis. 

The synthesis starts with a set of constraints and an abstract VHDL description similar to 
the algorithm’s pseudocode. The high-level synthesis software converts the initial descrip- 
tion into an FSMD and automatically derives code for the control path and data path. In 
other words, the high-level synthesis software basically transforms from code in the form 
of Listing 12.10 to code in the form of Listing 12.11. The main task of the synthesis is 
to find an optimal schedule and binding to minimize the required hardware resources, to 
maximize performance or to obtain the best trade-off within a given constraint. 

High-level synthesis is best for data-oriented, computation-intensive applications, such 
as those encountered in signal processing. It requires a separate software package, and its 
output is fed to regular synthesis software. 
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12.8 BIBLIOGRAPHIC NOTES 

High-level synthesis covers primarily algorithms to perform the binding and scheduling 
of hardware resources, with emphasis on functional units. The treatment is normally very 
theoretical. The texts, Synthesis and Optimization of Digital Circuits by G. De Micheli, 
and High-Level Synthesis: Introduction to Chip and System Design by D. D. Gajski et al., 
provide good coverage on this topic. The square-root approximation circuit is adopted from 
the text, Principles of Digital Design by D. D. Gajski, which uses the circuit to demonstrate 
the procedures and various optimization algorithms of high-level synthesis. 

Problems 

12.1 In the ASMD chart of the programmable one-shot pulse generator of Section 12.2, 
shifting the desired values requires three states. This operation can be done by using a 
single state and a counter. 

(a) Revise the ASMD chart to accommodate the change. 
(b) Derive the VHDL code of the revised chart. 

12.2 
regular sequential circuit. Derive the VHDL code. 

12.3 

Redesign the programmable one-shot pulse generator of Section 12.2 as a pure 

Redesign the programmable one-shot pulse generator of Section 12.2 as a pure FSM. 
(a) Derive the state diagram. 
(b) Derive the VHDL code. 

12.4 For the memory controller in Section 12.3, assume that the period of the system 
clock is 50 ns. Redesign the circuit for the 120-11s SRAM. The design should use a minimal 
number of states in the FSMD. 

(a) Derive the revised ASMD chart. 
(b) Derive the VHDL code. 
(c) Determine the required time to perform a read operation. 

12.5 Repeat the Problem 12.4 with a system clock of 15 ns. 

12.6 The memory controller of Listing 12.5 must return to the idle state after each 
operation. We can improve performance by skipping this state when back-to-back memory 
operations are issued. 

(a) Derive the revised ASMD chart. 
(b) Derive the VHDL code. 
(c) When a read operation follows immediately after a write operation, the direction 

of data flow in the bidirectional d line changes. Do a detailed timing analysis to 
examine whether a conflict can occur. We can assume that the timing parameters 
of the tri-state buffer in the data path are similar to those of the SRAM. 

(d) Repeat part (c) for a write operation immediately following a read operation. 

12.7 The FIFO buffer of Section 9.3.2 uses a register file as temporary storage. Revise 
the design to use an SRAM device for storage. Assume that the 120-11s SRAM is used and 
the system clock is 25 ns. We wish to design a FIFO controller for this system. Since it 
takes several clock cycles to complete a memory operation, the controller should have an 
additional status signal, ready, to indicate whether the SRAM is currently in operation. 

(a) Derive the ASMD chart for the FIFO controller. 


