
CHAPTER 12

REGISTER TRANSFER METHODOLOGY:
P R ACT I C E

RT methodology is a powerful and versatile design technique. It can be applied to a
wide variety of applications. In this chapter, we use several examples to illustrate how
this methodology can be used in different types of problems and to highlight the design
procedure and relevant issues.

12.1 INTRODUCTION

As discussed in Chapter 1 1, RT methodology can be thought of as a design technique that
realizes an algorithm in hardware. The algorithm can be a complex process or just a simple
sequential execution, and thus RT methodology is very flexible and versatile. We study five
examples in this chapter, including a one-shot pulse generator, SRAM controller, universal
asynchronous receiver and transmitter (UART), greatest common divisor (GCD) circuit,
and square-root approximation circuit. The one-shot pulse generator is used to compare
and contrast the differences among the regular sequential circuit, FSM and RT methodology.
The SRAM controller illustrates the process of generating level-sensitive control signals to
meet the timing requirement of a clockless device. The GCD circuit is another example
of realizing a sequential algorithm in hardware. It shows how the hardware can be used to
accelerate the performance. The UART receiver is a typical control-oriented application,
which involves complex control structure and decision conditions. The square-root circuit,
on the other hand, is a typical data-oriented application, which involves mainly arithmetic
operations over data.

RTL Hardware Design Using VHDL: Coding for Eficiency, Portabiliy, and Scalabiliy. By Pong P. Chu
Copyright @ 2006 John Wiley & Sons, Inc.

421

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

422 REGISTER TRANSFER METHODOLOGY: PRACTICE

Figure 12.1 State diagram of a one-shot pulse generator.

12.2 ONE-SHOT PULSE GENERATOR

In Section 8.2.3, we divided sequential circuits into three categories based on the charac-
teristics of the next-state logic:

0 Regular sequential circuit. The next-state logic is regular.
0 FSM. The next-state logic is random.
0 RT methodology. The next-state logic consists of a regular part and a random part.

The RT methodology is the most flexible and capable scheme since it can accommodate
both types of next-state logic.

The division is created to assist the circuit design and code development. There are
no formal definitions of regular and random, and some applications can be designed as
either type. In this section, we use a one-shot pulse generator as an example to illustrate
the differences among the three types of circuits and to demonstrate the advantages and
flexibility of the RT methodology.

A one-shot pulse generator is a circuit that generates a single fixed-width pulse upon
activation of a trigger signal. We assume that the width of the pulse is five clock cycles.
The detailed specifications are listed below.

0 There are two input signals, go and stop, and one output signal, pulse.
0 The go signal is the trigger signal that is usually asserted for only one clock cycle.

During normal operation, assertion of the go signal activates the pulse signal for
five clock cycles.

0 If the go signal is asserted again during this interval, it will be ignored.
0 If the stop signal is asserted during this interval, the pulse signal will be cut short

Although the circuit is simple, it includes a regular part, which counts five clock cycles,
and a random part, which keeps track of whether the circuit is idle or currently generating
the pulse. Because of the simplicity, this circuit can be implemented as a pure regular
sequential circuit, a pure FSM or a design using RT methodology.

and return to '0'.

12.2.1 FSM implementation

We first examine the FSM implementation. The state diagram is shown in Figure 12.1. The
diagram consists of an idle state and five delay states, which activate the pulse signal for

ONE-SHOT PULSE GENERATOR 423

five clock cycles. The five delay states essentially function as a regular sequential circuit
that counts for five clock cycles. The identical transition patterns of these five states hints
at the “regularity” of this part of the operation. The corresponding VHDL code is shown
inListing 12.1.

Listing 12.1 FSM implementation of a one-shot pulse generator

l i b r a r y i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
use i e e e . n u m e r i c - s t d . a l l ;
e n t i t y p u l s e - 5 c l k i s

5 p o r t (
c l k , r e s e t : i n s t d - l o g i c ;
g o , s t o p : i n s t d - l o g i c ;
p u l s e : ou t s t d - l o g i c

1;
10 end p u l s e - 5 c l k ;

M

35

40

45

a r c h i t e c t u r e f sm-arch of p u l s e - 5 c l k i s
t ype f s m - s t a t e - t y p e i s

(i d l e , d e l a y l , d e l a y 2 , d e l a y 3 , d e l a y 4 , d e l a y 5 1 ;
IS s i g n a l s t a t e - r e g , s t a t e - n e x t : f s m - s t a t e - t y p e ;

begin
-- s t a t e r e g i s t e r
p r o c e s s (c l k , r e s e t)
begin

20 i f (r e s e t = ’ l ’) t hen
s t a t e - r e g <= i d l e ;

s t a t e - r e g <= s t a t e - n e x t ;
e l s i f (c l k ’ e v e n t and c l k = ’ l ’) t hen

end i f ;
25 end p r o c e s s ;

-- n e x t - s t a t e l o g i c & o u t p u t logic
p r o c e s s (s t a t e - r e g , g o , s t o p)
begin

p u l s e <= ’0’;
c a s e s t a t e - r e g is

when i d l e =>
i f g o = ’ l ’ t h e n

e l s e

end i f ;

i f s t o p = ’ l ’ t hen

e l s e

end i f ;
p u l s e <= ’ 1 ’ ;

when d e l a y 2 =>
i f s t o p = ’ l ’ t hen

e l s e

s t a t e - n e x t <= d e l a y l ;

s t a t e - n e x t <= i d l e ;

when d e l a y l =>

s t a t e - n e x t < = i d l e ;

s t a t e - n e x t < = d e l a y 2 ;

s t a t e - n e x t < = i d l e ;

424 REGISTER TRANSFER METHODOLOGY: PRACTICE

50

65

s t a t e - n e x t < = d e l a y 3 ;
end i f ;
p u l s e <= J l ’ ;

when d e l a y 3 =>
i f s t o p = 1 ’ then

e l s e

end i f ;
p u l s e <= ’ l J ;

when d e l a y 4 =>
i f s t o p = 1 ’ then

e l s e

end i f ;
p u l s e <= J l ’ ;

when d e l a y 5 =>
s t a t e - n e x t < = i d l e ;
p u l s e <= ’ l J ;

s t a t e - n e x t < = i d l e ;

s t a t e - n e x t < = d e l a y 4 ;

s t a t e - n e x t < = i d l e ;

s t a t e - n e x t < = d e l a y 5 ;

end c a s e ;
end p r o c e s s ;

70 end f sm-arch;

12.2.2 Regular sequential circuit implementation

We can also implement the pulse generator as a regular sequential circuit. It can be con-
sidered a mod-5 counter with a special control circuit to enable or disable the counting. To
accommodate the generation of a single pulse, an additional FF is needed to flag whether
the counter is active or idle. The VHDL code is shown in Listing 12.2.

Listing 12.2 Regular sequential circuit implementation of a one-shot pulse generator

a r c h i t e c t u r e r e g u l a r - s e q - a r c h of p u l s e - 5 c l k is
cons tant P-WIDTH : n a t u r a l : = 5 ;
s i g n a l c - r e g , c-next : u n s i g n e d (3 downto 0) ;
s i g n a l f l a g - r e g , f l a g - n e x t : s t d - l o g i c ;

5 begin
- r e g i s t e r
process (c l k , r e s e t)
begin

i f (r e s e t = ’ l ’) then
c - r e g <= (o t h e r s = > ’ O J) ;
f l a g - r a g <= J O ’ ;

c - reg <= c - n e x t ;
f l a g - r e g <= f l a g - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l J) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e logic
process (c - r e g , f l a g - r e g , g o , s t o p)
begin

c -nex t <= c - r e g ;

ONE-SHOT PULSE GENERATOR 425

flag-next <= flag-reg;
i f (flag-reg=’O’) and (go=’l‘) then

flag-next <= ’1 ’ ;
c-next <= (others=>’O’);

25 e l s i f (flag-reg=’l’) and
((c-reg=P-WIDTH-l) or (stop=’l’)) then

flag-next <= ’0,;
e l s i f (flag,reg= ’ 1 ’) then

c-next <= c-reg + 1;
M end i f ;

end process;
- o u t p u t l o g i c
pulse <= ’1’ when flag-reg=’l’ e l s e ‘0’;

end regular-seq-arch;

There are two registers. The c-reg register is used for the counter, and the f lag-reg
register indicates whether the counter is active. The critical part of the description is the if
statement of the next-state logic. The first condition, (f lag,reg= ’ 0 ’) and (go= ’ 1 1,
indicates that the counter is currently idle and the go signal is asserted. Under this condition,
the flag is asserted and the counter enters the active counting state at the next rising edge
of the clock. The second condition indicates that the counter reaches 5 or the stop signal
is asserted and the counting should stop. The last condition indicates that the counter is in
the active state and should keep on counting.

In this code, the f l ag ieg register functions as some sort of state register to keep track
of the current condition of the circuit. The state transitions are implicitly embedded in the
if statement of the next-state logic.

12.2.3 Implementation using RT methodology

The RT methodology can separate the regular and random logic, and the ASMD chart is
shown in Figure 12.2. WO states in the chart indicate whether the counter is active, and
the arcs show the transitions under various conditions. The RT operation in the delay state
specifies the desired increment of the counter. Following the ASMD chart, we can easily
derive the VHDL code, as shown in Listing 12.3.

Listing 12.3 FSMD implementation of a one-shot pulse generator

a r c h i t e c t u r e f smd-arch of pulse-5clk i s
constant P-WIDTH: natural := 5;
type fsmd-state-type i s (idle , delay) ;
s i g n a l state-reg , state-next : f smd-state-type ;
s ignal c-reg, c-next: unsigned(3 downto 0);

- s t a t e and d a t a r e g i s t e r s
process (clk , reset)
begin

10 i f (reset=’l’) then

begin

state-reg <= idle;
c-reg <= (o t h e r s = > ’ O ’) ;

state-rag <= state-next ;
e l s i f (clk’event and clk=’l’) then

IS c-reg <= c-next;
end i f ;

426 REGISTER TRANSFER METHODOLOGY: PRACTICE

l-

Figure 12.2 ASMD chart of a one-shot pulse generator.

ONE-SHOT PULSE GENERATOR 427

2s

end p r o c e s s ;
- n e x t - s t a t e l o g i c & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
process (state-reg ,go, stop, c-reg)

20 begin
pulse <= I O 1 ;
c-next <= c-reg;
c a s e state-reg i s

when idle =>
i f go=’ll then

state-next <= delay;
e l s e

state-next <= idle;
end i f ;
c-next <= (o t h e r s = > ’ O ’) ;

when delay =>
i f stop=’I then

e l s e
state-next <=idle ;

i f (c-reg=P-WIDTH-l) then

e l s e
state-next <=idle ;

state-next <=delay;
c-next <= c-reg + 1;

end i f ;
end i f ;
pulse <= I l l ;

end c a s e ;
end p r o c e s s ;

4s end f smd-arch ;

12.2.4 Comparison

The pulse generator example shows that we can use an FSM to emulate a regular sequential
circuit, and vice versa. However, the emulation is cumbersome and convolved, and is
only possible for a small design. On the other hand, the RT methodology can capture the
essence of both regular and random logic, and the description is simple, flexible, clear and
informative. That is why it is such a powerful methodology.
To further illustrate the capability of the RT methodology, let us consider an expanded

programmable one-shot pulse generator. In this circuit, the width of the pulse can be
programmed between 1 and 7. The “programming” is done as follows:

0 The go and stop signals are asserted at the same time to indicate the beginning of

0 The desired value is shifted in via the go signal in the next three clock cycles.
With the RT methodology, we can easily incorporate the extension into the ASMD chart,

the program mode.

as shown in Figure 12.3. The corresponding VHDL code is shown in Listing 12.4.

Listing 12.4 Programmable one-shot pulse generator

a r c h i t e c t u r e prog-arch of pulse-5clk i s
type fsmd-state-type i s (idle, delay, shl, sh2, sh3);
s i g n a l state-reg , state-next : f smd-state-type ;
s i g n a l c-reg , c-next : unsigned (2 downto 0) ;

428 REGISTER TRANSFER METHODOLOGY PRACTICE

l- I

-.(<-+-->
F

Figure 12.3 ASMD chart of a programmable one-shot pulse generator.

ONE-SHOT PULSE GENERATOR 429

5 s i g n a l w-rag, w-next :

-- s t a t e and da ta r e g
process (c l k , r e s e t)
begin

begin
unsigned (2 downto 0) ;

s t e r s

I5

25

30

35

U)

45

50

55

10 i f (r e s e t = ’ l ’ > then
s t a t e - r e g <= i d l e ;
c - r e g <= (o t h e r s = > ’ O ’) ;
w-reg <= “ 1 0 1 “ ; - d e f a u l t 5 - c y c l e d e l a y

s t a t e - r e g <= s t a t e - n e x t ;
c - reg <= c - n e x t ;
w-reg <= w-next ;

e l s i f (c l k ’ e v e n t and c l k = ’ l J) then

end i f ;
end p r o c e s s ;

process (s t a t e - r e g , g o , s t o p , c-reg , w-reg)
begin

20 -- n e x t - s t a t e l o g i c & da ta p a t h f u n c t i o n a l u n i t s / r o u t i n g

p u l s e <= ’0’;
c-next <= c - r e g ;
w-next <= w-reg;
case s t a t e - r e g is

when i d l e =>
i f g o = ’ l J then

i f s t o p = 1 then

e l s e

end i f ;
e l s e

s t a t e - n e x t <= i d l e ;
end i f ;
c -nex t <= (o thers=>’O ’1;

when d e l a y =>
i f s t o p = ’ 1 then

e l s e

s t a t e - n e x t <= s h l ;

s t a t e - n e x t <= d e l a y ;

s t a t e - n e x t < = i d l e ;

i f (c-reg=w-reg -1) then
s t a t e - n e x t < = i d l e ;

e l s e
c-next <= c - reg + 1;
s t a t , e - n e x t < = d e l a y ;

end i f ;
end i f ;
p u l s e <= ’1’;

w-next <= go & w-reg(2 downto 1) ;
s t a t e - n e x t <= s h 2 ;

w-next <= go & w-reg(2 downto 1) ;
s t a t e - n e x t <= s h 3 ; .

w-next <= go & w-reg(2 downto 1);

when s h l =>

when sh2 =>

when s h 3 =>

430 REGISTER TRANSFER METHOOOLOGY: PRACTICE

state-next <= idle;
end c a s e ;

M end p r o c e s s ;
end p r o g - a r c h ;

While we can implement the extended pulse generator as a pure FSM circuit or a pure
regular sequential circuit in theory, the emulation becomes very involved and error-prone.
It will require lots of effort to derive the code.

12.3 SRAM CONTROLLER

Random access memory (RAM) provides massive storage for digital systems. It is con-
structed as a two-dimensional array of memory cells. A cell is designed and optimized at
the transistor level to achieve maximal efficiency. Since the silicon real estate is the primary
concern, a memory cell is kept as simple as possible. Its control is level sensitive and uses
no clock signal. To incorporate a RAM device into a synchronous digital system, we need
a special circuit, known as a memory controller, to act as an interface to the synchronous
system. Design of the memory controller illustrates control of a clockless subsystem.

12.3.1 Overview of SRAM

RAM is organized as a two-dimensional array of memory cells with special decoding and
multiplexing circuits. The block diagram of a typical 220-by-1 static RAM (SRAM) is
shown in Figure 12.4(a). It contains a 210-by-210 cell array, two 10-to-21° decoders and
an VO control circuit. The VO of the SRAM includes a 20-bit address signal, ad, a 1-bit
bidirectional data signal, d, and three control signals, ce, we and oe. The ad signal is split
and connected to two decoders, which, in turn, enable the cell of the specified location.
The three control signals are used to control SRAM operation. The chip select signal, cs,
specifies whether to enable the SRAM. The output enable signal, oe, and the write enable
signal, we, choose between write and read modes and control the direction of data flow.
The function table is shown in Figure 12.4(b). Note that these signals are active low.

Because of the lack of a clock signal, SRAM timing is quite involved. A set of minimum
and maximum timing constraints has to be satisfied to ensure proper operation. We first
examine the timing of a read operation. There are two methods to read data. In the first
method, both the oe and cs signals are already activated (i.e., ’0’) and the address signal
is used to access the desired data. It is known as an uddress-controlled read cycle and the
timing diagram is shown in Figure 12.5(a). In the second method, the address signal is
already stable and the cs signal already activated, and the oe signal is used to initiate the
read operation. It is known as an oe-controlled read cycle, and the timing diagram is shown
in Figure 12.5(b). Note the activities of the tri-state data bus when the oe signal is activated
and deactivated.

The relevant timing parameters associated with a read cycle are:
Taa: address access time, the required time to obtain stable output data after an
address change. It is somewhat like the propagation delay of the read operation and
is used to characterize the speed of an SRAM, as in “50-11s SRAM.”
Toh: output hold from address change time, the time that the output data remains
valid after the address changes. This should not be confused with the hold time of
an edge-triggered FF, which is a constraint for the d input.

SRAM CONTROLLER 431

dew- memory 1
der cell array

I

I I ad I I column decoder I I
x) 10 U

rl I

we + z d
(a) Block diagram

ce we oe Operation Datapind

0 0 - write data in
0 1 0 read data out

1 - - nooperation Z

0 1 1 nooperation Z

(b) Function table

Figure 12.4 Block diagram and functional table of a 220-by-1 SRAM.

432 REGISTER TRANSFER METHODOLOGY: PRACTICE

cs=O, we=l , oe=O

ad

dout

(a) Address-controlled read cycle

cs=O, we=l

ad x x
oe

dout

(b) oe-controlled read cycle

Figure 12.5 Timing diagrams of an SRAM read cycle.

SRAM CONTROLLER 433

CS=O

Figure 12.6 Timing diagram of an SRAM write cycle.

0 Tolz: output enable to output in low-impedance time, the time for the hi-state buffer
to leave from the high-impedance state after oe is activated. Note that even when the
output is no longer in the high-impedance state, the data is still invalid.

0 To,: output enable to output valid time, the time required to obtain valid data after
oe is activated.

0 Tohz: output to Z time, the time for the hi-state buffer to enter the high-impedance
state.

0 TrC: read cycle time, the minimal elapsed time between two read operations. It is
about the same as T,, for SRAM.

The write cycle is more complex. The timing diagram of a write cycle is shown in
Figure 12.6. The key to understanding the write cycle timing is the assertion of the we
signal, which latches the input data into the designated memory cell and plays a key role in
the write operation. There are three major constraints:

0 To latch data into the designated memory cell, the we signal must be activated (i.e.,
being '0') for a certain amount of time. This is specified by Twp.

0 The address needs to be stable for the entire write operation. Actually, it must be
stable before we is activated and remain stable for a small amount of time after we is
deactivated. The two time intervals are specified by TaS and Tab.

0 The input data must be stable in a small window when it is latched. The latch operation
occurs at the edge when we transits from '0' to '1'. The input data has to be stable
before and after the edge for a small amount of time. The two time intervals are
specified by Tds and Tdh. This constraint is somewhat like the constraint imposed
on the d signal of a D FF at the rising edge of the clock.

These timing parameters are formally defined as follows:
0 Twp: write pulse width, the minimal time that the we signal must be activated.
0 Tas: address setup time, the minimal time that the address must be stable before we

0 Tab: address hold time, the minimal time that the address must be stable after we is
is activated.

deactivated.

434 REGISTER TRANSFER METHODOLOGY: PRACTICE

- addr

datam2s

data-s2m main
system

mem ,
rlw

Table 12.1 Timing parameters of two SRAMs

Parameter 120-11s SRAM 20-11s SRAM

SRAM
controller

Figure 12.7 Role of an SRAM controller.

0 Tds: data setup time, the minimal time that data must be stable before the latching

a Tdh: data hold time, the minimal time that data must be stable after the latching edge.
0 T,,,,.: write cycle time, the minimal elapsed time between two write operations.

While there has been little change in the basic SRAM architecture over the years, its
capacity and speed have improved significantly. The address access time (Taa) can range
from a few nanoseconds to several hundred nanoseconds. The typical timing parameters of
an older, slow 120-ns SRAM and a more recent 20-ns SRAM are shown in Table 12.1.

edge (the edge in which we moves from '0' to '1').

12.3.2 Block diagram of an SRAM controller

The purpose of a memory controller is to interface the clockless memory and a synchronous
system. The role of an SRAM controller is shown in Figure 12.7. It takes command from
the main system and generates proper signals to store data into or retrieve data from the
SRAM. The main system is a synchronous system. There are two command signals, mem
and rw, and one status signal, ready. The main system activates the mem signal when a

SRAM CONTROLLER 435

addr
- - d 4 ad

en
>

- data-rn2s - d
din -

v - b c,
d q
en
>

we
oe

ready

t-
data-s2rn

Figure 12.8 Block diagram of an SRAM controller.

dout
t- q d

<
en -

-

memory operation is required and uses rw to specify the type of operation (’0’ for write and
’ 1’ for read). The SRAM controller uses the ready signal to indicate whether it is ready for
the operation. The addr signal is the address used to indicate the location of the memory.
The datarm2s and dataX2m signals are the data transferred from the main system to the
SRAM and from the SRAM to the main system respectively.

The main system treats the memory operation as a synchronous operation. For a write
operation, it activates mem, makes rw ’O’, and places the address on addr and data on
d a t a ~ 2 s for one clock cycle. At the rising edge of the clock, this information will be
sampled by the SRAM controller, which, in turn, initiates an SRAM write cycle and gener-
ates proper control signals. It may take several clock cycles to complete an operation. For
a read operation, the main system activates mem, makes rw ’l’, and places the address on
addr for one clock cycle. Again, this information will be sampled by the SRAM controller
at the rising edge of the clock, and an SRAM read cycle is initiated. After a predetermined
number of clock cycles, the SRAM controller will put the data on data-s2m and make the
data available to the main system.

Note that the main system and memory controller are controlled by the same clock.
From the main system’s point of view, the memory operation is completely synchronous.
The combined memory controller and SRAM function somewhat like the register file of
Section 9.3.1. However, whereas accessing a location in a register file can be done in one
clock cycle, it takes many clock cycles to complete an SRAM read or write operation.

The block diagram of the SRAM controller is shown in Figure 12.8. The data path
contains three registers, Raddr , RmzS and Rs2m, which are used to store the address, the
data from the main system to the SRAM, and the data from the SRAM to the main system

rnern -
wr -

-
tii-en control

path

>
~

436 REGISTER TRANSFER METHODOLOGY: PRACTICE

respectively. Since the data input of the SRAM is bidirectional, a tri-state buffer is used to
avoid conflict. The output from the register Rmzs will be placed in the data line, d, when
the tri-state buffer is enabled.

The control path coordinates the overall SRAM access and generates the control signals,
which include the we and oe signals of the SRAM and the enable signals of tri-state buffer
and registers in the data path. There are several requirements for these control signals. First,
the signals must be activated in the order specified in the read and write cycles. Second,
the signals must meet various timing constraints of the SRAM. Finally, the signals need to
ensure that there is no conflict (i.e., fighting) on the bidirectional data line.

12.3.3 Control path of an SRAM controller

We design the control path in two steps:
0 Derive a sketch of an FSM according to the activities in read and write cycles.
0 Refine the FSM with the actual SRAM timing parameters and clock period.

In the first step, we derive a sketch of an FSM that can activate and deactivate various
signals in the desired order. This can be done by dividing the read or write cycles into
multiple parts according to the activities of the signals and assigning a state for each part.
For example, the write cycle can be divided into five parts, as shown in Figure 12.9(a).

A segment of an FSM can be constructed accordingly, as shown in Figure 12.10(a). We
assume that the address and data are stored into the registers before the FSM moves to the
sl state. The data can be placed on the bidirectional line by activating the t r i -en signal.
The task of the FSM is essentially to generate two output signals, we and tri-en, in the
following order: "lO", "00", "Ol", "11" and "10".

Closer examination of the SRAM's timing specifications can help us to simplify the
FSM. For example, Twp is normally much larger than Tds in most SRAMs, and there is no
harm in placing data on the din line earlier. Thus, we can merge the 92 and s3 states into
a single state. Also, since there in no constraint specified between the order of deactivation
of address and data, we can merge the s4 and s5 states. The revised division and FSM
segment are shown in Figures 12.9(b) and 12.10(b) respectively.

There are two issues with the initial sketch. First, the length of a state in the FSM corre-
sponds to the period of the clock signal. The period must be large enough to accommodate
the most strenuous timing parameter. Since Twp is much larger than other parameters, the
time allocated to T,, and Tdh in the ssl and ss3 states are unnecessarily inflated. Second,
in a practical design, the memory controller is usually a part of a larger system, and the
clock rate is determined by the main system. The memory controller cannot have a separate
clock and must work with the system clock.

In the second step, we refine the FSM according to the system clock period and SRAM
timing parameters. The SRAM's access time and the main system's clock rate are the two
key factors in the final design of the control path. The following examples illustrate the
design and relevant issues for a slow SRAM and a fast SRAM.

Control path for a slow SRAM The term slow here means that the SRAM's address
access time (Taa) is relatively large to the main system's clock period. For example, if we
assume that the main system's clock period is 25 ns (i.e.. the clock rate is 40 MHz), the
120-11s SRAM shown in Table 12.1 will be considered as a slow SRAM to this system since
it takes about five clock cycles to complete a memory operation.

Because of the slow SRAM speed, it takes five (i.e., [$$!I) clock cycles to cover Taa
and three (i.e., [El) cycles to cover Twp We need to use multiple states in the FSM to

SRAM CONTROLLER 437

state

ad

we

din

tr-en

state

ad

we

din

tri-en

s l s2 s3 s4 , s5

! + - - - - - T A
p - T , Y

I

I j

! Tw-J a > I

!

I I x
I I

I i
1

I"T
,

Tdh

T
(a) Five-state division

j ssl ; ss2 : ss3 j

-Tdh

@) Three-state division

Figure 12.9 Divisions of a write cycle.

438 REGISTER TRANSFER METHODOLOGY: PRACTICE

Figure 12.10 FSM segments for a write cycle.

SRAM CONTROLLER 439

state

ad

oe

we

dout

din

tri-en

Figure 12.11 Division of read and write cycles of a slow SRAM.

accommodate the timing requirement. Figure 12.11 shows the division in the write and
read cycles. An extra clock cycle, which represents the idle state, is inserted between the
two operations. A read or write operation takes six clock cycles (i.e., 150 ns) to complete.
The periods include one for the idle state and five for a read or write cycle. We can do a
quick check on the SRAM timing parameters:

0 Taa: 120 ns < 125 ns (5*25 ns)
0 Twp: 70 ns < 75 ns (3*25 ns)
0 Tas: 20 ns < 25 ns
0 Tab: 5 nS C 25 nS
0 Tds: 35 ns < 75 ns (3*25 ns)
0 Tdh: 5 nS < 25 nS

It is clear that all timing parameters are satisfied and there is a margin of at least 5 ns.
The quick check is based on an ideal FSMD. To obtain more detailed timing information,

we also need to consider the various propagation delays introduced by the data path and
control path of the memory controller. For example, the oe signal is disabled in the end of
the r5 state and the data on the d line is sampled and stored when the FSM moves from
the r5 state to the idle state. We must perform a detailed timing analysis to ensure that
there is no setup or hold time violation for the Rszm register. The detailed timing diagram
is shown in Figure 12.12. The read operation progresses as follows. At tl , the FSM moves
to the rl state. After the TctTl delay (at t 2) , the oe signal is activated and the SRAM starts
the read operation. After T,, (at t3). the data is available. At t 4 , the FSM moves from
the r5 state to the idle state, and the memory controller samples and stores the data into
the Rszm register. After the Tctrl delay (at ts), the oe signal is deactivated. The data line
(dout) of the SRAM returns to the high-impedance state after the To, delay (at t6) .

440 REGISTER TRANSFER METHODOLOGY PRACTICE

tl 13 b t k t a

clk

state

ad

oe

dout

Figure 12.12 Detailed timing diagram of the read cycle.

To avoid the setup time violation, the data has to be stable before Tsetup of the rising
edge of the clock; that is,

We can use the look-ahead output buffer to minimize Tctrl and reduce it to the clock-to-q
delay (Tcq) of the FE. With a 25-11s clock and 120-ns SRAM, the inequality becomes

Tsetup c 5Tc - Tctrl - Taa

Tsetup + Tcq < 5 ns

This condition can be met by most of today’s device technology.

of the clock:

Since Tctrl is Tcq, this condition can be easily satisfied.
Other timing requirements, such as the data bus conflict, the exact timing on the SRAM’s

Tds and Tdh requirement, can be analyzed in a similar way. Because of the relatively large
safety margin of this design, the initial checking should still be valid.

Following the division and signal activation, we can derive the ASMD chart accordingly,
as shown in Figure 12.13. The VHDL code of the complete memory controller is shown
in Listing 12.5. It includes both the data path and control path. Note that we use the look-
ahead output buffer scheme for the we, oe and tri-en signals to ensure that the signals are
glitch-free and to minimize the clock-to-output delay.

Listing 12.5 Memory controller of a slow SRAM

To avoid the hold time violation, the data has to be stable after Thold of the rising edge

Thold < Tctd + To,

l ibrary i e e e ;
use i e e e . s t d - l o g i c - 1 1 6 4 . a l l ;
e n t i t y sram-ctrl i s

SRAM CONTROLLER 441

Default: 08 <= 1; we <= 1; trim <= 0; ready <= 0

ready <=l

j ,w4 4 , j

Figure 12.13 ASMD chart for a slow SRAM controller.

442 REGISTER TRANSFER METHODOLOGY PRACTICE

port (
5 clk, reset: in std-logic;

mem: in std-logic;
rw: in std-logic;
addr: in std-logic-vector (19 downto 0) ;
data-m2s : i n std-logic ;
we, oe: out std-logic;
ready: out std-logic;
data-s2m : out std-logic ;
d: inout std-logic;
ad: out std-logic-vector (19 downto 0)

10

15) ;
end sram-ctrl ;

a r c h i t e c t u r e arch of sram-ctrl
type state-type i s

20 (idle, rl, r2, r3, r4, r5
s i g n a l state-reg , state-next

35

40

45

55

S

wl, w2, w3, w4, w5);
state-type;

s i g n a l data_m2s_reg, dataem2s-next : std-logic ;
s i g n a l data-s2m_reg, data-s2mqnext : std-logic ;
s i g n a l addr-reg , addr-next : std-logic-vector (19 downto 0) ;

LS s i g n a l tri-en-buf , we-buf , oe-buf: std-logic;
s i g n a l tri-en-reg , we-reg , oe-reg : std-logic ;

- s t a t e & d a t a r e g i s t e r s
process (clk , reset)

begin

30 begin
i f (reset=’l’) then

state-reg <= idle;
addr-reg <= (o t h e r s = > ’ O ’) ;
data-m2s_reg <= ’0 ’ ;
data-s2m_reg <= ’0 ;
tri-en-reg <= ’0 ’ ;
we-reg <= ’1’;
oe-reg <=’l’;

state-rag <= state-next;
addr-rag <= addr-next ;
data-m2s_reg <= data-m2s_next ;
data-s2m_reg <= data-s2m_next ;
tri-an-reg <= tri-en-buf;
we-reg <= we-buf;
oe-reg <= oe-buf;

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
process (state-reg ,mem ,rw ,d,addr ,data-m2s ,

begin

50

data-m2s-reg,data-s2m_reg,addr_reg)

addr-next <= addr-reg;
data-m2s_next <= data_m2s_reg;
data-s2m_next <= data-s2m_reg;
ready <= ’0’;

SRAM CONTROLLER 443

60

65

70

15

SO

85

90

case s t a t e - r e g i s
when i d l e =>

i f mem=’O’ then

e l s e
s t a t e - n e x t <= i d l e ;

i f r w = ’ O ’ then - w r i t e
s t a t e - n e x t <= w l ;
add r -nex t <= a d d r ;
data-rn2s-next <= d a t a

s t a t e - n e x t <= r l ;
addr -nex t <= a d d r ;

e l s e -- read

end i f ;
end i f ;
r e a d y <= ’1’;

when wi =>
s t a t e - n e x t <= w2

when w2 =>
s t a t e - n e x t <= w 3

when w 3 =>
s t a t e - n e x t <= w4;

when w4 =>
s t a t e - n e x t <= w5;

when w5 =>
s t a t e - n e x t <= i d l e ;

when r l =>
s t a t e - n e x t <= r 2

when r 2 =>
s t a t e - n e x t <= r3

when r3 =>
s t a t e - n e x t <= r 4

when 14 =>
s t a t e - n e x t <= r 5

when r 5 =>

.m2s ;

IW

105

s t a t e - n e x t <= i d l e ;
da t a - s2m_nex t <= d ;

end c a s e ;
end p r o c e s s ;

process (s t a t e - n e x t 1
begin

95 - look-ahead o u t p u t l o g i c

t r i - e n - b u f <=’O’;
oe-buf <= ’ 1 ’ ;
we-buf <= ’1 ’ ;
c a s e s t a t e - n e x t i s

when i d l e =>
when w l =>
when w2 =>

we-buf <= ’0’;
t r i - e n - b u f <= ’ 1 ’ ;

we-buf <= ’0’;
t r i - e n - b u f <= ’1’;

when w 3 =>

REGISTER TRANSFER METHODOLOGY: PRACTICE 444

I10

I IS

when w4 =>
we-buf <= '0';
tri-en-buf <= '1';

tri-en-buf <= '1';

oe-buf <= '0';

oe-buf <= '0';

oe-buf <= '0';

oe-buf <= '0';

oe-buf <= '0';

when w5 =>

when rl =>

when r2 =>

when r3 =>

when r4 =>

when r5 =>

end c a s e ;
end process;
-- o u t p u t
we <= we-reg;
oe <= oe-reg;
ad <= addr-reg;
d <= data-m2s_reg when tri-en-reg ='l' e l s e 'Z';
data-s2m <= data_s2m_reg;

end arch;

Control path for a fast SRAM The major problem with the previous memory system
is its speed. Since it takes six clock cycles to read or write a data item from the SRAM, it can
be used only if the main system accesses the memory sporadically. One way to improve the
memory performance is to use a faster SRAM. For example, we can use the 20-11s SRAM
of Table 12.1, whose address access time (Taa) is smaller than the 25-ns clock period of the
main system. Figure 12.14 shows the timing of one possible design, in which a read cycle
and a write cycle are done in one clock cycle. We can again check the division against the
SRAM timing parameters:

Taa: 20 ns c 25 ns
Tw,: 12nsc25ns

0 Tag: 0 ns 5 0 ns
0 Tab: O n s I O n s
Tds: 12nsc25ns
Tdh: Ons 5 Ons

Although all constraints are satisfied, the timing is very tight. The timing of Tag, Tah and
Tdh just meet the specification and there is no safety margin. The propagation delays of the
control path and data path may cause timing violations. We may need to manually fine-tune
the propagation delays of various signals to ensure correct operation.

In this design, a read or write operation requires two clock cycles because the FSM must
return to the id le state after each operation. Since performance is the goal of a fast SRAM
controller, it is desirable to perform back-to-back memory operations without returning to
the idle state. This requires an ad hoc circuit to generate a we pulse whose activation time
is only a fraction of a clock period and more manual fine-tuning on propagation delays to
avoid data bus fighting.

GCD CIRCUIT 445

state

ad

oe

we

dout

din

tri-en

Figure 12.14 Division of read and write cycles of a fast SRAM.

In summary, while it is possible to perform single-clock back-to-back memory opera-
tions, the design imposes very strict and tricky timing requirements on the control signals.
These requirements are delay-sensitive and cannot be expressed or implemented by a regular
FSM. This kind of circuit is not suitable for RT-level synthesis. To implement the controller,
we need to manually derive the schematic using cells from the device library and even to
manually do the placement and routing. Many device manufacturers have recognized the
design difficulty and incorporated the memory controller into a memory chip. This kind
of device is known as synchronous memory. Since the main system only needs to issue
commands, place address and data, or retrieve data at rising edges of the clock, this type of
device greatly simplifies the memory interface to a synchronous system.

12.4 GCD CIRCUIT

The gcd(a, b) function returns the greatest common divisor (GCD) of two positive integers,
a and b. For example, gcd(1 , l O) is 1 and gcd(12,9) is 3. The gcd function can be obtained
by using subtraction, which is based on the equation

i f a = b
gcd(a - b, b) if a > b (" gcd(a, b - a) if a < b

gcd(a, b) =

Assume that a-in and b-in are positive nonzero integers and their GCD is r. The equation
can easily be converted into the following pseudocode:

a = a-in;
b = b-in;
w h i l e (a /= b) c

if (a > b) then
a = a - b ;

446 REGISTER TRANSFER METHODOLOGY: PRACTICE

e l s e

end i f
b = b - a ;

3
r = a ;

To make the pseudocode more compatible with the ASMD chart, we convert the while loop
into a goto statement and use a swap operation to reduce the number of required subtractions.
The revised pseudocode becomes

a = a-in;
b = b-in;

swap: i f (a = b) then
goto stop;

i f (a < b) then - swap a and b
e l s e

a = b; - assume the two o p e r a t i o n s
b = a; - can be done in p a r a l l e l

end i f ;
a = a - b ;
goto swap;

end i f ;
stop: r = a;

The code first moves the larger value into a and then performs a single subtraction of
a - b. This code can easily be converted into an ASMD chart, as shown in Figure 12.15.
As the sequential multiplier circuit of Chapter 11, the start and ready signals are added
to interface external systems. The corresponding VHDL code is shown in Listing 12.6.

Listing 12.6 Initial implementation of a GCD circuit

l i b r a r y ieee ;
use ieee. std-logic-1164. a l l ;
use ieee . numeric-std. a l l ;
e n t i t y gcd i s

5 p o r t (
clk, reset: in std-logic;
start : in std-logic ;
a-in , b-in: in std-logic-vector (7 downto 0) ;
ready : out std-logic ;

10 r : out std-logic-vector (7 downto 0)
1;

end gcd ;

a r c h i t e c t u r e slow-arch of gcd i s
I5 type state-type i s (idle, swap, sub);

s i g n a l state-reg a state-next : state-type;
s i g n a l a-rag , a-next , b-rag a b-next : unsigned (7 downto 0) ;

- s t a t e & d a t a r e g i s t e r s

begin

begin

U) process (clk reset)

i f reset= 1 then
state-reg <= idle;
a-reg <= (o t h e r s = > , O 1 > ;

GCD CIRCUIT 447

F <+,
T

Figure 12.15 ASMD chart of the initial GCD circuit.

448

2.3

30

U

40

4s

50

60

REGISTER TRANSFER METHODOLOGY: PRACTICE

b- rag <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
a - r e g <= a - n e x t ;
b - r eg <= b - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e logic & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
process (s t a t e - r e g a - r e g , b- reg s t a r t a - i n , b - i n)
begin

a - n e x t <= a - r e g ;
b-next <= b - r e g ;
case s t a t e - r e g i s

when i d l e =>
i f s t a r t = ’ l ’ then

a - n e x t <= u n s i g n e d (a - i n) ;
b -nex t <= u n s i g n e d (b - i n) ;
s t a t e - n e x t <= swap;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;
when swap =>

i f (a - r e g = b - r e g) then

e l s e
s t a t e - n e x t <= i d l e ;

i f (a - r e g < b - r e g) then
a -nex t <= b - r e g ;
b-next <= a - r e g ;

end i f ;
s t a t e - n e x t <= s u b ;

end i f ;

a -nex t <= a - r e g - b - r e g ;
s t a t e - n e x t <= swap;

when sub =>

end c a s e ;
end p r o c e s s ;
- o u t p u t
r e a d y <= ’1’ when s t a t e - r e g = i d l e e l s e ’0’;
r <= std-logic-vector(a-reg);

end s l o w - a r c h ;

As discussed in Section 11.5, one factor in the performance of an FSMD is the number
of clock cycles required to complete the computation. In this design, the input values are
subtracted successively until the axeg-bxeg condition is reached. The number of clock
cycles required to complete computation of this GCD circuit depends on the input values.
It requires more time if only a small value is subtracted each time. The calculation of
gcd(1, 28 - 1) represents the worst-case scenario. The loop has to be repeated 28 - 1 times
until the two values are equal. For a circuit with an N-bit input, the computation time is on
the order of 0(2N), and thus this is not an effective design.

One way to improve the design is to take advantage of the binary number system. For
a binary number, we can tell whether it is odd or even by checking the LSB. Based on the

GCD CIRCUIT 449

LSBs of two inputs, several simplification rules can be applied in the derivation of the GCD
function:

0 If both a and b are even, gcd(a, b) = 2 gcd(4 , ;) .
0 If a is odd and b is even, gcd(a, b) = gcd(a, 4) .
0 If a is even and b is odd, gcd(a, b) = gcd(4 , b) .

Since the divided-by-2 operation corresponds to shifting right one position, it can be im-
plemented easily in hardware. The previous equation can be extended:

gcd(a, b) =

a i f a = b
2gcd(;, 4) if a # b anda, beven
gcd(a, 4) if a # b and a odd, b even
gcd(4,b) ifa#bandaeven,bodd
gcd(a - b, b) if a > b and a, b odd
gcd(a, b - a) if a < b and a, b odd

To incorporate the new rules into the algorithm, the main issue is how to handle com-
putation of 2 gcd(5,;). One way is ignoring the factor 2 in initial iterations and using an
additional register, n, to keep track of the number of occurrences in which both operands
are even. The final GCD value can be restored by multiplying the initial result by 2n, which
corresponds to shifting the initial result left n positions.

The expanded ASMD chart is shown in Figure 12-16. It has several modifications. In the
swap state, the LSBs of the a and b registers are checked. The register is shifted right one
position (i.e., divided by 2) if it is even. Furthermore, the n register is incremented if both
are even. If the a and b registers are odd, they are compared and, if necessary, swapped,
and the FSM moves to the sub state. An extra state, labeled res (for “restore”), is added
to restore the final GCD value. The initial result in a is shifted left repeatedly until the n
counter reaches 0. The corresponding VHDL code is shown in Listing 12.7.

Listing 12.7 More efficient implementation of a GCD circuit

a r c h i t e c t u r e f a s t - a r c h of gcd i s
type s t a t e - t y p e i s (i d l e , swap, s u b , r e s) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;
s i g n a l a-reg , a -nex t b-reg , b-next : u n s i g n e d (7 downto 0) ;

5 s i g n a l n-reg n - n e x t : u n s i g n e d (2 downto 0);
begin

-- s t a t e & d a t a r e g i s t e r s
process (c l k , r e s e t)
begin

i f r e s e t = ’ 1 then
s t a t e - r e g <= i d l e ;
a - r eg <= (o t h e r s = > , O ’ > ;
b- reg <= (o t h e r s = > ’ O ’) ;
n-reg <= (o t h e r s = > ’ O ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
a - r a g <= a - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

b- reg <= b - n e x t ;
n-reg <= n - n e x t ;

20 end i f ;
end p r o c e s s ;
-- n e x t - s t a t e l o g i c & da ta p a t h f u n c t i o n a l u n i t s / r o u t i n g

450 REGISTER TRANSFER MNODOLOGY: PRACTICE

F

rT*->

“i)
e--

I

Figure 12.16 ASMD chart of the revised GCD circuit.

GCD CIRCUIT 451

30

35

40

45

so

55

60

€5

70

I5

process (s t a t e - r e g , a - r e g , b-reg , n - r e g , s t a r t , a - i n , b-in , n - n e x t)
begin

25 a-next <= a - r e g ;
b-next <= b - r e g ;
n-next <= n - r e g ;
case s t a t e - r e g i s

when i d l e =>
i f s t a r t = ’ l ’ then

a-next <= u n s i g n e d (a - i n) ;
b-next <= u n s i g n e d (b - i n) ;
n-next <= (o t h e r s = > ’ O ’) ;
s t a t e - n e x t <= swap;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;
when swap =>

i f (a - r e g - b - r e g) then
i f (n-reg=O) then

e l s e

end i f ;

i f (a - r eg (O)=’O’) then - a - r e g e v e n

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= r e s ;

e l s e

a-next <= ’0’ & a - r e g (7 downto 1);
i f (b - r eg (O)=’O’) then - b o t h e v e n

b-next <= ’0’ & b - r e g (7 downto 1);
n-next <= n- reg + 1;

end i f ;
s t a t e - n e x t C= swap;

i f (b - r eg (O)=’O’) then - b-reg e v e n
b-next <= ’0’ & b - r e g (7 downto 1) ;
s t a t e - n e x t <= swap;

i f (a - r e g < b- reg) then

e l s e -- a - r e g odd

e l s e - both a - r e g and 6 - r e g odd

a-next <= b - r e g ;
b-next <= a - r e g ;

end i f ;
s t a t e - n e x t <= s u b ;

end i f ;
end i f ;

end i f ;

a-next <= a - r e g - b - r e g ;
s t a t e - n e x t <= swap;

a-next <= a - r e g (6 downto 0) & ’0’;
n-next <= n-reg - 1;
i f (n-next=O) then

e l s e

when sub =>

when res =>

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= res;

452 REGISTER TRANSFER METHODOLOGY: PRACTICE

end i f ;
end c a s e ;

end p r o c e s s ;
-0 U t p u t

80 r eady <= ’1’ when s t a t e - r e g = i d - e e l s e
r <= s t d - l o g i c - v e c t o r (a - r e g) ;

end f a s t - a r c h ;

Now let us consider the number of clock cycles needed to complete one computation.
Assume that the width of the input operand is N bits. The algorithm gradually reduces the
values in the a r e g and breg until they are equal. In the worst case, there are 2N bits to be
processed initially. If a value is even, the LSB is shifted out and thus the number of bits is
reduced by 1. If both values are odd, a subtraction is performed and the difference is even,
and the number of bits can be reduced by 1 in the next iteration. In the most pessimistic
scenario, the 2N bits can be processed in 2 * 2N iterations, and the required computation
time is on the order of O(N) , which is much better than the O(2 N) of the original algorithm.

Because of the flexibility of hardware implementation, it is possible to invest extra
hardware resources to improve the performance. For example, instead of handling the
data bit by bit in the swap and res states, we can use more sophisticated combinational
circuits to process the data in parallel. In the swap state, the circuit checks and shifts out
the trailing 0’s of a and b. In the res state, a shift-left barrel shifter restores the final result
in a single step. The revised VHDL code is shown in Listing 12.8.

Listing 12.8 Performance-oriented implementation of a GCD circuit

a r c h i t e c t u r e f a s t e s t - a r c h of gcd i s
type s t a t e - t y p e i s (i d l e , swap, s u b , r e s) ;
s i g n a l s t a t e - r e g , s t a t e - n e x t : s t a t e - t y p e ;
s i g n a l a - r e g , a-next , b-reg , b-next : u n s i g n e d (7 downto 0) ;

s s i g n a l n- reg n - n e x t , a - z e r o , b - z e r o : u n s i g n e d (2 downto 0) ;
begin
- s t a t e & d a t a . r e g i s t e r s
process (c l k , rese t
begin

i f r e s e t = ’ l ’ then
s t a t e - r e g <= i d l e ;
a - r e g <= (o t h e r s - > ’ O J) ;
b- reg <= (o t h e r s = > ’0 I);
n - r e g <= (o t h e r s = > ’0 ’) ;

s t a t e - r e g <= s t a t e - n e x t ;
a - r a g <= a - n e x t ;
b - r e g <= b - n e x t ;
n - r e g <= n - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
end p r o c e s s ;
-- n e x t - s t a t e l o g i c & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
process (s t a t e - r e g , a-reg , b-reg , n - r e g , s t a r t ,

begin
a - i n , b - i n , a - z e r o , b - z e r o)

a -nex t <= a - r e g ;
b-next <= b - r e g ;
n-next <= n - r e g ;

GCD CIRCUIT 453

a-zero <= (o t h e r s = > ’ O ’ > ;
b-zero <= (o t h e r s = > ’ O ’) ;
c a s e s t a t e - r e g is

when i d l e =>
i f s t a r t = ’ l ’ then

a-next <= u n s i g n e d (a - i n) ;
b-next <= uns igned(b , in) ;
n-next <= (o t h e r s = > ’ O ’) ;
s t a t e - n e x t <= swap;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;
when swap =>

i f (a - r eg ib - reg) t h e n
i f (n-reg=O) t h e n

e l s e

end i f ;

i f (a - r eg (O)=’ i and b - r eg (O)=’ l ’) t hen - swap

s t a t e - n e x t <= i d l e ;

s t a t e - n e x t <= r e s ;

e l s e

i f (a - reg < b-reg) t h e n
a-next <= b-reg ;
b-next <= a - reg ;

end i f ;
s t a t e - n e x t <= sub ;

- s h i f t out O S o f a - r e g
i f (a - reg (O) = ’ 1 ’) t h e n

a-zero < = l t O O O ” ;
e l s i f (a - r e g (l > = ’ l ’ > t h e n

a-zero < = “ 0 0 1 ” ;
e 1s i f (a - reg (2) = ’ 1 ’ 1 t h e n

a-zero < = l l O l O l l ;
e l s i f (a - r eg (3) = ’ 1 ’) t h e n

a-zero < = “ 0 1 1 ” ;
e l s i f (a - reg (41.: 1 ’ 1 t h e n

a-zero <=I1 100” ;
e l s i f (a _ r e g (5) = ’ 1 ’) then

a-zero < = I 9 101 I) ;
e l s i f (a _ r e g (6) = ’ 1 ’) then

a-zero <=“110” ;

e l s e

a-next <= “0” k a - reg (7 downto 1) ;

a-next <= * ‘ O O ” & a - reg (7 downto 2) ;

a-next <= t8000” & a - reg (7 downto 3) ;

a-next <= ”0000” & a - reg (7 downto 4);

a-next <= ~~00000” & a - reg (7 downto 5) ;

a-next <= ~ ~ 0 0 0 0 0 0 ~ ~ & a - r e g (7 downto 6) ;

e l s e - a - r e g (7) = ’ 1 ’
a-next <= ~~0000000” & a - r e g (7) ;

a-zero <=“111”;
end i f ;
- s h i f t out 0 s of b - r e g

40

60

65

70

454 REGISTER TRANSFER METHODOLOGY PRACTICE

I10

I15

120

125

Iu)

i f (b _ r e g (O) = ' l ' 1 then
b - z e r o <="OOO" ;

e l s i f (b - r e g (l) = ' l ' 1 then

a - z e r o <="001" ;
e l s i f (b - r e g (2) = ' l J > then

b -ze ro < = " 0 1 0 " ;
e l s i f (b - r e g (3) = ' I J) then

b -ze ro <="011";
e l s i f (b - r e g (4) = ' l J) then

b -ze ro <="100";
e l s i f (b - r e g (5) = ' l J) then

b -ze ro <="lOl";
e l s i f (b _ r e g (6) = ' l J) then

b -ze ro <=I1 110" ;

b-nex t <= II0lt & b - r e g (7 downto 1);

b-nex t <= " O O 1 q & b - r e g (7 downto 2) ;

b-next <= " O O 0 8 t & b - r e g (7 downto 3) ;

b-next <= "0000" & b - r e g (7 downto 4) ;

b-next <= "00000" & b - r e g (7 downto 5);

b-next <= "000000" & b - r e g (7 downto 6) ;

e l s e - b - r e g (7) = ' I '
b-next <= "0000000" & b - r e g (7) ;

b -ze ro <="111";
end i f ;
-- f i n d common number of O S
i f (a - z e r o > b - z e r o) then

e l s e

end i f ;
s t a t e - n e x t <= swap;

n-next <= n- reg + b - z e r o ;

n-next <= n- reg + a - z e r o ;

end i f ;
end i f ;

a -nex t <= a - r e g - b - r e g ;
s t a t e - n e x t <= swap;

case n - r eg i s

when sub =>

when r e s =>

when l t O O O " =>
a-next <= a - r e g ;

when "001" => a -nex t <=
a - r e g (6 downto 0) & '0 ;

when 11010" =>
a -nex t <= a - r e g (5 downto 0) & a O o t f ;

when t l O 1 l " =>
a -nex t <= a - r e g (4 downto 0) & l l O O O 1 t ;

when "100" => a -nex t <=
a - r e g (3 downto 0) & "0000";

when It 101 =>
a -nex t <= a - r e g (2 downto 0) & ~ ~ 0 0 0 0 0 ~ ~ ;

when l v l l O " =>
a -nex t <= a - r e g (1 downto 0) & ~ ~ 0 0 0 0 0 0 ~ ~ ;

when o t h e r s =>

UART RECEIVER 455

Figure 12.17 Transmission of a byte.

135 a-next <= a - reg (0) & "0000000~~;
end c a s e ;
s t a t e - n e x t <= i d l e ;

end c a s e ;
end process;

ready <= '1' when s t a t e - r e g = i d l e e l s e '0';
r <= std-logic-vector(a-reg);

140 -- o u t p u t

end f a s t e s t - a r c h ;

12.5 UART RECEIVER

Universal asynchronous receiver and transmitter (UART) is a scheme that sends bytes of
data through a serial line. The transmission of a single byte is shown in Figure 12.17. The
serial line is in the ' 1' state when it is idle. The transmission is started with a start bit, which
is 'O', followed by eight data bits and ended with a stop bit, which is ' 1'. It is also possible
to insert an optional parity bit in the end of the data bits to perform error detection. Before
the transmission starts, the transmitter and receiver must agree on a set of parameters in
advance, which include the baud rate (i.e., number of bits per second), the number of data
bits, and use of the parity bit.

The UART transmitter is essentially a shift register that shifts out data bits at a specific
rate. Construction of a UART receiver is more involved since no clock information is
conveyed through the serial line. The receiver can retrieve the data bits only by using the
predetermined parameters. It uses an oversampling scheme to ensure that the data bits
are retrieved at the correct point. This scheme utilizes a high-frequency sampling signal
to estimate the middle point of a data bit and then retrieve data bits at these points. For
example, assume that the sampling rate is 16 times the baud rate (i.e., there are 16 sampling
pulses for each bit). The incoming stream can be recovered as follows:

1.

2.

3.

4.
5 .

When the incoming line becomes '0' (i.e., the beginning of the start bit), initiate the
sampling pulse counter.
When the counter reaches 7, clear it to 0 and restart. At this point, the incoming
signal reaches about a half of the start bit (i.e., the middle point of the start bit).
When the counter reaches 15, clear it to 0 and restart. At this point, the incoming
signal progresses for one bit and reaches the middle of the first data bit. The data in
the serial line should be retrieved and shifted into a register.
Repeat Step 3 seven times to retrieve the remaining seven data bits.
Repeat Step 3 one more time but without shifting. The incoming signal should reach
the middle of the stop bit at this point, and its value should be '1'.

The idea behind this scheme is to use oversampling to overcome the uncertainty of the
initiation of the start bit. Even when we don't know the exact onset point of the start bit, it

456 REGISTER TRANSFER METHODOLOGY PRACTICE

can be off by at most &. The subsequent data bit retrievals are off by at most & from the
middle point as well.

With understanding of the oversampling procedure, we can derive the ASMD chart
accordingly. One issue is the creation of sampling pulses. The easiest way is to treat the
UART as a separate subsystem that utilizes a clock signal whose frequency is just 16 times
that of the baud rate. This approach violates the synchronous design principle and should be
avoided. A better alternative is to use a single-clock enable pulse that is synchronized with
the system clock, as discussed in Section 9.1.3. Assume that the system clock is 1 MHz
and the baud rate is 1200 baud. The frequency of the sampling enable pulse should be
16 * 1200, which can be obtained by a mod-52 counter (note that ’ ; ~ ~ ~ ~ ~ = 52). It can
easily be coded in VHDL:

process (clk , reset
begin

i f reset=’l’ then

e l s i f (clk’event and clk=’l’) then

end i f ;
end process;
- n e x t - - s t a t e / o u t p u t l o g i c
clkl6-next <= (o t h e r s = > ’ O ’) when clkl6_reg=51 e l s e

s-pulse <= ’1’ when clkl6_reg=O e l s e ’0’;

clkl6-reg <= (o t h e r s = > ’ O ’) ;

clkl6-reg <= clkl6,next ;

clkl6-reg + 1 ;

The ASMD chart of a simplified UART receiver is shown in Figure 12.18. The chart
follows the previous steps and includes three major states, s t a r t , data and stop, which
represent the processing of the start bit, data bits and stop bit respectively. The s-pulse
signal is the enable pulse whose frequency is 16 times that of the baud rate. Note that
the FSMD stays in the same state unless the s-pulse signal is activated. There are two
counters, represented by the s and n registers. The s register keeps track of the number
of sampling pulses and counts to 7 in the start state and to 15 in the data and stop
states. The n register keeps track of the number of data bits received in the data state. The
retrieved bits are shifted into and reassembled in the b register. The corresponding VHDL
code is shown in Listing 12.9. We assume that the system clock is 1 MHz and the baud rate
is 1200 baud.

Listing 12.9 Simplified UART receiver

l ibrary ieee ;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y uart-receiver i s

s port(
clk, reset: in std-logic;
rx: in std-logic;
ready: out std-logic;
pout : out std-logic-vector (7 downto 0)

10 1 ;
end uart-receiver ;

archi tecture arch of uart-receiver i s
type state-type i s (idle, start, data, stop);

UART RECEIVER 457

I I

,-<->
I T

c + z j j n c n+l

T

Figure 12.18 ASMD chart of a UART receiver.

458 REGISTER TRANSFER METHODOLOGY: PRACTICE

I5 s i g n a l state-rag , state-next : state-type;
s i g n a l clkl6-next , clkl6-reg : unsigned (5 downto 0) ;
s i g n a l s-reg , s-next : unsigned (3 downto 0) ;
s i g n a l n-reg , n-next : unsigned (2 downto 0) ;
s i g n a l b-reg , b-next : std-logic-vector (7 downto 0) ;

c o n s t a n t DVSR: integer := 52;
M s i g n a l s-pulse: std-logic;

begin

40

45

w

65

- f r e e - r u n n i n g mod-52 c o u n t e r , i n d e p e n d e n t of FSMD
process (clk , reset 1
begin

i f resetm’l’ then

e 1 s i f (clk ’ event and clk= ’ 1 ’) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e / o u t p u t l o g i c
clkl6-next <= (o t h e r s = > ’0 ’1 when clkl6-reg=(DVSR-l) e l s e

s-pulse <= ’1’ when clk16_reg=O e l s e ’0’;

clkl6-reg <= (o t h e r s = > ’ O ’) ;

clkl6-reg <= clkl6-next ;

clkl6-reg + 1 ;

- FSMD s t a t e & d a t a r e g i s t e r s
p r o c e s s (clk, reset 1
begin

i f reset=’l then
state-reg <= idle;
s-reg <= (o t h e r s = > ’ O J) ;
n-reg <= (o t h e r s = > ’ O ’) ;
b-reg <= (o t h e r s = > ’ O J) ;

state-reg <= state-next ;
s-reg <= s-next;
n-reg <= n-next;
b-reg <= b-next;

e l s i f (clk’event and clk=’l’) then

end i f ;
end p r o c e s s ;
- n e x t - s t a t e l o g i c & d a t a p a t h f u n c t i o n a l u n i t s / r o u t i n g
process (state-reg ,s-reg ,n-reg, b-reg, s-pulse ,rx)
begin

s-next <= s-reg;
n-next <= n-reg;
b-next <= b-reg;
ready < = ’ O ’ ;
case state-reg i s

when idle =>
i f rx=’O’ then

e l s e

end i f ;
ready <=’1’;

when start =>

state-next <= start;

state-next <= idle;

UART RECEIVER 459

85

90

i f (s - p u l s e = , O J > then
s t a t e - n e x t <= s t a r t ;

e l s e
i f s _ r e g = 7 then

s t a t e - n e x t <= d a t a ;
s - n e x t <= (o t h e r s = > J O J) ;

s t a t e - n e x t <= s t a r t ;
s - n e x t <= s - r e g + 1;

e l s e

end i f ;
end i f ;

when data =>
i f (s - p u l s e = , O J) then

e l s e
s t a t e - n e x t <= d a t a ;

i f s _ r e g = l 5 then
s - n e x t <= (o t h e r s = > J O J) ;
b-nex t <= r x & b - r e g (7 downto 1);
i f n _ r e g = 7 then

s t a t e - n e x t <= s t o p ;
n-next <= (o t h e r s = > ’0 1 ;

s t a t e - n e x t <= d a t a ;
n-next <= n- reg + 1;

e l s e

end i f ;

s t a t e - n e x t <= d a t a ;
s - n e x t <= s-rag + 1;

e l s e

end i f ;
end i f ;

when s t o p =>
i f (s - p u l s e = ’0,) then

e l s e
s t a t e - n e x t <= s t o p ;

i f s - r eg -15 then
s t a t e - n e x t <= i d l e ;
s - n e x t <= (o t h e r s = > ’ O ’) ;

s t a t e - n e x t <= s t o p ;
s - n e x t <= s - r e g + 1;

e l s e

end i f ;
end i f ;

110 end c a s e ;
end process;
pou t <= b - r e g ;

end a r c h ;

Several extensions are possible for this UART receiver, including adding a parity bit
to detect the transmission error, checking the stop bit for the framing error, and making
the baud rate adjustable. The main problem with the UART scheme is its performance.
Because of the oversampling, the baud rate can be only a small fraction of the system clock
rate, and thus this scheme can be used only for a low data rate.

460 REGISTER TRANSFER METHODOLOGY: PRACTICE

12.6 SQUARE-ROOT APPROXIMATION CIRCUIT

The previous UART example is a typical control-oriented application, which is character-
ized by the dominance of the sophisticated decision conditions and branching structures
in the algorithm. The opposite type is a data-oriented application, which involves mainly
data manipulation and arithmetic operations. It is also known as a computation-intensive
application.

Although a data-oriented application can be implemented by a combinational circuit in
theory, the approach uses a large number of functional units and thus requires a significant
amount of hardware resources. RT methodology allows us to share functional units in a
time-multiplexed fashion, and we can schedule the operations sequentially to achieve the
desired trade-off between performance and circuit complexity. A square-root approximation
circuit in this section illustrates the design procedure and relevant issues of data-oriented
applications.

The square-root approximation circuit uses simple adder-type components to obtain the
approximate value of d m , where a and b are signed integers. The approximation is
obtained by the following formula:

d m x max(((2 - 0.1252) + 0.5y),z)

where z = rnax(la1, lbl) and y = min()al, lbl)

Note that the 0.1252 and 0 . 5 ~ operations correspond to shift 2 right three positions and
shift y right one position, and that no actual multiplication circuit is needed. The equation
can be coded in a traditional programming language. Let the two input operands be a-in
and b-in and the output be r. One possible pseudocode is

a = a-in;
b = b-in;
tl = abs(a);
t2 = abs(b);
x = max(t1, t2);
y = min(t1, t2);
t3 = x*O.125;
t4 = y*o.5;
t5 = x - t3;
t6 = t 4 + t5;
t7 = max(t6, x)
r = t7;

To help VHDL conversion, we intentionally avoid reuse of the same variable name on the
left-hand side of the statements. Because of the lack of control structure, the pseudocode
can be translated to synthesizable VHDL code directly. The corresponding code is shown
in Listing 12.10.

Listing 12.10 Square-root approximation circuit using direct dataflow description

l i b r a r y ieee;
use ieee. std-logic-1164. all ;
use ieee. numeric-std. all ;
e n t i t y sqrt i s

s p o r t (
a-in, b-in: in std-logic-vector (7 downto 0) ;
r: out std-logic-vector (8 downto 0)

SQUARE-ROOT APPROXIMATION CIRCUIT 461

1;
end sqrt;

a r c h i t e c t u r e comb-arch of sqrt is
constant WIDTH: natural : = 8 ;
s i g n a l a, b, x, y: signed(W1DTH downto 0);
s i g n a l tl, t2, t3, t4, t5, t6, t7: signed(W1DTH downto 0);

a <= signed(a-in(W1DTH-1) & a-in); - s i g n e d e x t e n s i o n
b <= signed(b-in(W1DTH-1) & b-in);
tl <= a when a > 0 e l s e

0 - a;
20 t2 <= b when b > 0 e l s e

0 - b;

10

IS begin

x <= tl when tl - t2 > 0 e l s e

y <= t2 when tl - t2 > 0 e l s e

t3 <= l t O O O t t & x(W1DTH downto 3);
t4 <= t t O t t & y(WIDTH downto 1);
t5 <= x - t3;
t6 <= t 4 + t5;

x;

t2 ;

25 tl;

M t 7 <= t6 when t6 - x > 0 e l s e

r <= std-logic-vector (t7) ;
end comb-arch ;

Note that the code consists only of concurrent statements, and thus their order does not
matter. The original sequential execution is embedded in the interconnection of components
and the flow of data. The VHDL code consists of seven arithmetic components, including
one adder and six subtractors. Since the addition and subtractions are not mutually exclusive,
sharing is not possible.

For a data-oriented application, it will be helpful to examine the dependency and move-
ment of the data. This information can be visualized by a dutuflow graph, in which an op-
eration is represented by a node (a circle), and its input and output variables are represented
by the incoming and outgoing arcs. The dataflow graph of the square-root approximation
algorithm is shown in Figure 12.19.

The graph shows that the algorithm has only a limited degree of parallelism since at most
only two operations can be executed concurrently. The seven arithmetic components of the
previous VHDL code cannot significantly increase the performance, and most hardware
resources are wasted. Thus, while the code is simple, it is not very efficient. RTmethodology
is a better alternative.

To transform a dataflow chart to an ASMD chart, we need to specify when and how
operations in the dataflow graph are executed. The transformation include two major tasks:
scheduling and binding. Scheduling specifies when a function (i.e., a circle) can start
execution, and binding specifies which functional unit is assigned to perform the execution.
One important design constraint is the number of functional units allowed to be used in a
design. We can allocate a minimal number of functional units to reduce the circuit size,
allocate a maximal number of units to exploit full potential parallelism, or find a specific
number to achieve the desired trade-off between performance and circuit size. Obtaining

462 REGISTER TRANSFER METHODOLOGY PRACTICE

a b

r

Figure 12.19 Dataflow graph.

SQUARE-ROOT APPROXIMATION CIRCUIT 463

a b

.(
r

Figure 12.20 Schedules with two functional units.

an optimal schedule involves sophisticated algorithms and is a difficult task. Specialized
EDA software tools are needed for a complex dataflow graph.

The dataflow graph of the square-root approximation algorithm involves a variety of
operations. The *.125 and * .5 operations can be implemented by fixed-amount shifting
circuits, which require no physical logic and thus should not be considered in the scheduling
process. The other operations can be constructed by adders with some “glue” and routing
logic. Thus, we can assume that the adderhubtractor is the only functional unit type required
for the algorithm. Because at most two operations can be executed in parallel, the ASMD
design can only utilize up to two functional units.

One possible schedule is shown inFigure 12.20(a). Note that the *. 125 and *.5 operations
are removed from the graph. The parentheses associated with the variables will be explained
later. The dataflow graph is divided into five time intervals, which are later mapped into
five states of an ASMD chart, It utilizes two units. One possible binding is to assign the
two operations in the left column to one unit and the five operations in the right column
to another unit. An alternative schedule and binding is shown in Figure 12.20(b), which
requires the same amount of time to complete the computation. A schedule that uses only

464 REGISTER TRANSFER METHODOLOGY: PRACTICE

a b

Figure 12.21 Schedule with one functional unit.

one functional unit is shown in Figure 12.21. It needs two extra time intervals to complete
the operation.

Once the scheduling and binding are done, the dataflow graph can be transformed into
an ASMD chart. Since each time interval represents a state in the chart, a register is needed
when a signal is passed through the state boundary. The corresponding ASMD chart of
Figure 12.20(a) is shown in Figure 12.22(a). The variables in the graph are mapped into
the registers of the ASMD chart. There are two operations in the sl and s2 states and one
operation in the s3, s4 and s5 states. The start and ready signals and an additional idle
state are included to interface the circuit with an external system.

Additional optimization schemes can be applied to reduce the number of registers and
to simplify the routing structure. For example, instead of creating a new register for each

SQUARE-ROOT APPROXIMATION CIRCUIT 465

y c- min(tl,t2)
x + max(t1,Q)

Figure 12.22 ASMD charts of a square-root approximation circuit.

466 REGISTER TRANSFER METHODOLOGY: PRACTICE

variable, we can reuse an existing register if its value is no longer needed. This corre-
sponds to properly renaming the variables in the dataflow graph. Close examination of
Figure 12.20(a) shows that we can use three variables to cover the entire operation. The
relationship between the new registers and the original registers is:

0 Use r 1 to replace a, t 1 and y.
0 Use r2 to replace b, t 2 and x.
0 Use r3 to replace t5, t 6 and t7.

The replacement variables are shown in parentheses in Figure 12.20(a). The revised ASMD
chart is shown in Figure 12.22(b). The number of the registers is reduced from seven to
three.

The VHDL code can be derived according to the ASMD chart and is shown in List-
ing 12.11. To ensure proper sharing, the two functional units are isolated from the other
description and coded as two separated segments. The first unit uses a single subtractor to
perform the m a x and abs functions. The second unit uses a single adder to perform the abs
and m a x functions as well as addition and subtraction. For clarity, we use the + operator for
the carry-in signal. The synthesis software should be able to map it to the carry-in port of
the adder rather than inferring another adder.

Listing 12.11 Square-root approximation circuit using RT methodology
l i b r a r y ieee;
use ieee. std-logic-1164. a l l ;
use ieee. numeric-std. a l l ;
e n t i t y sqrt i s

5 p o r t (
clk, reset: in std-logic;
start : in std-logic;
a-in, b-in: in std-logic-vector (7 downto 0) ;
ready : out std-logic ;

10 r : out std-logic-vector (8 downto 0)
) ;

end sqrt;

a r c h i t e c t u r e seq-arch of sqrt i s
IS c o n s t a n t WIDTH: integer :=8;

type state-type i s (idle, 51, s2, 93, s4, s5);
s i g n a l state-reg , state-next : state-type;
s i g n a l rl-reg , r2_reg, r3-reg : signed (WIDTH downto 0) ;
s i g n a l rl-next , r2-next , r3-next : signed(W1DTH downto 0) ;

20 s i g n a l sub-op0, sub-opl, diff , aul-out:
signed (WIDTH downto 0) ;

signed (WIDTH downto 0) ;
s i g n a l add-op0, add-opl , sum, au2-out:

s i g n a l add-carry : integer ;

- s t a t e & d a t a r e g i s t e r s
process (clk ,reset)
begin

25 begin

if reset= 1 ’ then
30 state-reg <= idle;

rl-reg <= (o t h e r s = > ’ O ’) ;
r2-reg <= (o t h e r s = > ’ O ’1;

SQUARE-ROOT APPROXIMATION CIRCUIT 467

35

4s

ss

60

6S

70

7s

r 3 - r e g <= (o t h e r s = > ’0 ;

s t a t e - r e g <= s t a t e - n e x t ;
r l - r e g <= r l - n e x t ;
r 2 - r e g <= r2 ,nex t ;
r 3 - r e g <= r 3 - n e x t ;

e l s i f (c l k ’ e v e n t and c l k = ’ l ’) then

end i f ;
U) end process;

-- n e x t - s t a t e l o g i c and d a t a p a t h r o u t i n g
process (s t a r t , s t a t e - r e g , r l - r e g , r 2 _ r e g , r 3 _ r e g ,

begin
a - i n , b-in , au l -ou t , au2-out)

r l - n e x t <= r l - r e g ;
r 2 - n e x t <= r 2 - r e g ;
r3 -nex t <= r 3 - r e g ;
r e a d y <=’O’;
case s t a t e - r e g i s

when i d l e =>
i f s t a r t = ’ 1 ’ then

r l - n e x t <= signed(a-in(W1DTH-1) k a - i n) ;
r2 -nex t <= signed(b-in(W1DTH-1) k b - i n) ;
s t a t e - n e x t <= sl;

s t a t e - n e x t <= i d l e ;
e l s e

end i f ;
r e a d y <=’ l ’ ;

when s l =>
r i - n e x t <= a u l - o u t ; - t l = J a l
r2 -nex t <= au2-out ; - t 2 =lbl
s t a t e - n e x t <= 8 2 ;

r l - n e x t <= a u l - o u t ; - y = m i n (t l , t 2)
r2 -nex t <= au2-out ; - x=max(t l , t 2)
s t a t e - n e x t <= s3;

r3 -nex t <= au2-out ; - t S = x - O . I 2 5 x
s t a t e - n e x t <= s4;

r3 -nex t <= au2-out ; - t 6 = 0 . 5 y + t 5
s t a t e - n e x t <= s5;

r3 -nex t <= au2-out ; - t7=man(t 6 , x)
s t a t e - n e x t <= i d l e ;

when s 2 =>

when s3 =>

when s4 =>

when s5 =>

end c a s e ;
end process;
-- a r i t h m e t i c u n i t I
- s u b t r a c t o r

- i n p u t r o u t i n g
process (s t a t e - r e g , r l - r e g , r 2 - r e g)
begin

80 d i f f <= sub-op0 - s u b - o p l ;

case s t a t e - r e g i s
when sl => - 0 - a

468 REGISTER TRANSFER METHODOLOGY: PRACTICE

90

IM

I35

sub-op0 <= (o t h e r s = > ' O ,) ;
sub-opl <= rl-reg; - a

when others => - s 2 : t 2 - t l
sub-op0 <= r2-reg; - t 2
sub-opl <= rl-reg; - t l

end c a s e ;
end p r o c e s s ;
- o u t p u t r o u t i n g
process (state-reg , rl-reg , r2_reg, diff

9s begin
case state-reg i s

when sl => - - -a1
i f diff (WIDTH)='O' then - (0-a)>O

e l s e

end i f ;

i f diff (WIDTH)='O' then - (t 2 - t l) > O

e l s e

end i f ;

aul-out <= diff ; - - a

aul-out <= rl-reg; - a

when others => - s 2 : m i n (a , b)

aul-out <= rl-rag; -- t l

aul-out <= r2-reg; - t 2

end c a s e ;
110 end p r o c e s s ;

- a r i t h m e t i c u n i t 2
- a d d e r
sum <= add-op0 + add-opl + add-carry;
-- i n p u t r o u t i n g
process (state-reg , ri-reg , r2-regI r3-reg)
begin

115

case state-reg i s
when sl => - 0 - b

add-op0 <= (o t h e r s = > ' O ') ; -0
add-opl <= not r2-reg; - n o t b
add-carry <= 1;

add-op0 <= rl-reg; - t l
add-opl <= not r2-reg; - -not t 2
add-carry <= 1;

when s3 => - -- x - 0 . 1 2 5 ~
add-op0 <= r2-reg; -x
add-opl <= not (" O O O t t & rZ-reg(WIDTH downto 3)) ;
add-carry <= 1;

when s4 => -- O . S * y + t 5
add-op0 <= " O t ' & rl-reg(W1DTH downto 1) ;
add-opl <= r3-reg;
add-carry <= 0;

when others => - t 6 - x
add-op0 <= r3-reg; - t l
add-opl <= not r2-reg; - n o t x
add-carry <= 1;

when 132 => - t l - t 2

end c a s e ;

HIGH-LEVEL SYNTHESIS 469

end process;
140 -- o u t p u t r o u t i n g

process (s t a t e - r e g , r l - r a g , r 2 _ r e g , r 3 - r e g I sum)
begin

case s t a t e - r e g i s
when sl => - 1 bl

145 i f sum(WIDTH)=’O’ then -- (0 - b) > O

I50

IS5

160

au2-out <= sum; -- - b

au2-out <= r2 - r eg ; - b
e l s e

end i f ;
when s2 =>

i f sum (WIDTH) = ’0 ’ then

e l s e

end i f ;
when 831 94 => - +,-

au2-out <= sum;
when others => - s5

i f sum (WIDTH) = 0 ’ then

e l s e

end i f ;

au2-out <= r l - r e g ;

au2-out <= r2 - r eg ;

au2-out <= r3 - r eg ;

au2-out <= r2 - r eg ;

end c a s e ;
165 end process;

- o u t p u t
r <= s t d - l o g i c - v e c t o r (r3 - r eg) ;

end seq-arch ;

12.7 HIGH-LEVEL SYNTHESIS

The square-root approximation circuit of Section 12.6 shows that deriving the optimal RT
design for data-oriented applications is by no means a simple task. The procedure is complex
and involves many sophisticated algorithms. Derivation of this type of circuit belongs to a
specific class of design, known as high-level synthesis or as somewhat misleading behaviorul
synthesis.

The synthesis starts with a set of constraints and an abstract VHDL description similar to
the algorithm’s pseudocode. The high-level synthesis software converts the initial descrip-
tion into an FSMD and automatically derives code for the control path and data path. In
other words, the high-level synthesis software basically transforms from code in the form
of Listing 12.10 to code in the form of Listing 12.11. The main task of the synthesis is
to find an optimal schedule and binding to minimize the required hardware resources, to
maximize performance or to obtain the best trade-off within a given constraint.

High-level synthesis is best for data-oriented, computation-intensive applications, such
as those encountered in signal processing. It requires a separate software package, and its
output is fed to regular synthesis software.

470 REGISTER TRANSFER METHODOLOGY: PRACTICE

12.8 BIBLIOGRAPHIC NOTES

High-level synthesis covers primarily algorithms to perform the binding and scheduling
of hardware resources, with emphasis on functional units. The treatment is normally very
theoretical. The texts, Synthesis and Optimization of Digital Circuits by G. De Micheli,
and High-Level Synthesis: Introduction to Chip and System Design by D. D. Gajski et al.,
provide good coverage on this topic. The square-root approximation circuit is adopted from
the text, Principles of Digital Design by D. D. Gajski, which uses the circuit to demonstrate
the procedures and various optimization algorithms of high-level synthesis.

Problems

12.1 In the ASMD chart of the programmable one-shot pulse generator of Section 12.2,
shifting the desired values requires three states. This operation can be done by using a
single state and a counter.

(a) Revise the ASMD chart to accommodate the change.
(b) Derive the VHDL code of the revised chart.

12.2
regular sequential circuit. Derive the VHDL code.

12.3

Redesign the programmable one-shot pulse generator of Section 12.2 as a pure

Redesign the programmable one-shot pulse generator of Section 12.2 as a pure FSM.
(a) Derive the state diagram.
(b) Derive the VHDL code.

12.4 For the memory controller in Section 12.3, assume that the period of the system
clock is 50 ns. Redesign the circuit for the 120-11s SRAM. The design should use a minimal
number of states in the FSMD.

(a) Derive the revised ASMD chart.
(b) Derive the VHDL code.
(c) Determine the required time to perform a read operation.

12.5 Repeat the Problem 12.4 with a system clock of 15 ns.

12.6 The memory controller of Listing 12.5 must return to the idle state after each
operation. We can improve performance by skipping this state when back-to-back memory
operations are issued.

(a) Derive the revised ASMD chart.
(b) Derive the VHDL code.
(c) When a read operation follows immediately after a write operation, the direction

of data flow in the bidirectional d line changes. Do a detailed timing analysis to
examine whether a conflict can occur. We can assume that the timing parameters
of the tri-state buffer in the data path are similar to those of the SRAM.

(d) Repeat part (c) for a write operation immediately following a read operation.

12.7 The FIFO buffer of Section 9.3.2 uses a register file as temporary storage. Revise
the design to use an SRAM device for storage. Assume that the 120-11s SRAM is used and
the system clock is 25 ns. We wish to design a FIFO controller for this system. Since it
takes several clock cycles to complete a memory operation, the controller should have an
additional status signal, ready, to indicate whether the SRAM is currently in operation.

(a) Derive the ASMD chart for the FIFO controller.

