
CHAPTER 7 

UART 

7.1 INTRODUCTION 

Universal asynchronous receiver and transmitter (UART) is a circuit that sends parallel data 
through a serial line. UARTs are frequently used in conjunction with the EIA (Electronic 
Industries Alliance) RS-232 standard, which specifies the electrical, mechanical, functional, 
and procedural characteristics of two data communication equipment. Because the voltage 
level defined in RS-232 is different from that of FPGA I/O, a voltage converter chip is 
needed between a serial port and an FF’GA’s IiO pins. 

The S3 board has a RS-232 port with the standard nine-pin connector. The board contains 
the necessary voltage converter chip and configures the various RS-232’s control signals 
to automatically generate acknowledgment for the PC’s serial port. A standard straight- 
through serial cable can be used to connect the S3 board and PC’s serial port. The S3 board 
basically handles the RS-232 standard and we only need to concentrate on the design of the 
UART circuit. 

A UART includes a transmitter and a receiver. The transmitter is essentially a special 
shift register that loads data in parallel and then shifts it out bit by bit at a specific rate. The 
receiver, on the other hand, shifts in data bit by bit and then reassembles the data. The serial 
line is ’ 1 ’ when it is idle. The transmission starts with a start bit, which is ’O’, followed by 
data bits and an optional parity bit, and ends with stop bits, which are ’1’. The number of 
data bits can be 6,7, or 8. The optional parity bit is used for error detection. For odd parity, 
it is set to ’0’ when the data bits have an odd number of 1’s. For even parity, it is set to ’0’ 
when the data bits have an even number of 1’s. The number of stop bits can be 1, 1.5, or 2. 

FPGA Prototyping by VHDL Examples. By Pong P. Chu 
Copyright @ 2008 John Wiley & Sons, Inc. 

163 

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo


164 UART 

idle 
stop bit 4 G:i*:x d2 x d3 x d4 d5 d6 1 d7 y 

Figure 7.1 Transmission of a byte. 

The transmission with 8 data bits, no parity, and 1 stop bit is shown in Figure 7.1. Note that 
the LSB of the data word is transmitted first. 

No clock information is conveyed through the serial line. Before the transmission starts, 
the transmitter and receiver must agree on a set of parameters in advance, which include the 
baud rate (i.e., number of bits per second), the number of data bits and stop bits, and use of 
the parity bit. The commonly used baud rates are 2400,4800,9600, and 19,200 bauds. 

We illustrate the design of the receiving and transmitting subsystems in the following 
sections. The design is customized for a UART with a 19,200 baud rate, 8 data bits, 1 stop 
bit, and no parity bit. 

7.2 UART RECEIVING SUBSYSTEM 

Since no clock information is conveyed from the transmitted signal, the receiver can retrieve 
the data bits only by using the predetermined parameters. We use an oversampling scheme 
to estimate the middle points of transmitted bits and then retrieve them at these points 
accordingly. 

7.2.1 Oversampling procedure 

The most commonly used sampling rate is 16 times the baud rate, which means that each 
serial bit is sampled 16 times. Assume that the communication uses N data bits and M 
stop bits. The oversampling scheme works as follows: 

1. Wait until the incoming signal becomes 'O', the beginning of the start bit, and then 
start the sampling tick counter. 

2.  When the counter reaches 7, the incoming signal reaches the middle point of the start 
bit. Clear the counter to 0 and restart. 

3. When the counter reaches 15, the incoming signal progresses for one bit and reaches 
the middle of the first data bit. Retrieve its value, shift it into a register, and restart 
the counter. 

4. Repeat step 3 N-1 more times to retrieve the remaining data bits. 
5. If the optional parity bit is used, repeat step 3 one time to obtain the parity bit. 
6. Repeat step 3 M more times to obtain the stop bits. 
The oversampling scheme basically performs the function of a clock signal. Instead of 

using the rising edge to indicate when the input signal is valid, it utilizes sampling ticks to 
estimate the middle point of each bit. While the receiver has no information about the exact 
onset time of the start bit, the estimation can be off by at most &. The subsequent data bit 
retrievals are off by at most from the middle point as well. Because of the oversampling, 
the baud rate can only be a small fraction of the system clock rate, and thus this scheme is 
not appropriate for a high data rate. 



UART RECEIVING SUBSYSTEM 165 

Figure 7.2 Conceptual block diagram of a UART receiving subsystem. 

The conceptual block diagram of a UART receiving subsystem is shown in Figure 7.2. 

UART receiver: the circuit to obtain the data word via oversampling 
0 Baud rate generator: the circuit to generate the sampling ticks 
0 Znterjiace circuit: the circuit that provides buffer and status between the UART re- 

It consists of three major components: 

ceiver and the system that uses the UART 

7.2.2 Baud rate generator 

The baud rate generator generates a sampling signal whose frequency is exactly 16 times 
the UART’s designated baud rate. To avoid creating a new clock domain and violating the 
synchronous design principle, the sampling signal should function as enable ticks rather 
than the clock signal to the UART receiver, as discussed in Section 4.3.2. 

For the 19,200 baud rate, the sampling rate has to be 307,200 (i.e., 19,200*16) ticks per 
second. Since the system clock rate is 50 MHz, the baud rate generator needs a mod-I63 
(i.e., - ::;a$,) counter, in which the one-clock-cycle tick is asserted once every 163 clock 
cycles. The parameterized mod-m counter discussed in Section 4.3.2 can be used for this 
purpose by setting the M generic to 163. 

7.2.3 UART receiver 

With an understanding of the oversampling procedure, we can derive the ASMD chart 
accordingly, as shown in Figure 7.3. To accommodate future modification, two constants 
are used in the description. The D-BIT constant indicates the number of data bits, and the 
SB-TICK constant indicates the number of ticks needed for the stop bits, which is 16, 24, 
and 32 for 1, 1.5, and 2 stop bits, respectively. D B I T  and SB-TICK are assigned to 8 and 
16 in this design. 

The chart follows the steps discussed in Section 7.2.1 and includes three major states, 
start, d a t a ,  and s top ,  which represent the processing of the start bit, data bits, and stop 
bit. The s - t i c k  signal is the enable tick from the baud rate generator and there are 16 ticks 
in a bit interval. Note that the FSMD stays in the same state unless the s - t i c k  signal is 
asserted. There are two counters, represented by the s and n registers. The s register keeps 
track of the number of sampling ticks and counts to 7 in the s ta r t  state, to 15 in the data 
state, and to SB-TICK in the s t o p  state. The n register keeps track of the number of data 
bits received in the data state. The retrieved bits are shifted into and reassembled in the b 



166 UART 

....................... rg T 

........................ -- 9 ....................................... 

L F 9  
rF-<-> 

(-I(-) 
......................................... 

I I 

I T 

................................ 

LFg 
i 

(-)(-) rx-donefick <=I 

........... .................... t......... 1 
I 

Figure 7.3 ASMD chart of a UART receiver. 



UART RECEIVING SUBSYSTEM 167 

register. A status signal, rx-done-tick, is included. It is asserted for one clock cycle after 
the receiving process is completed. The corresponding code is shown in Listing 7.1. 

Listing 7.1 UART receiver 

l i b r a r y  i e e e ;  
use i e e e .  s t d - l o g i c - 1 1 6 4 .  a l l  ; 
use i e e e .  n u m e r i c - s t d .  a l l  ; 
e n t i t y  u a r t - r x  i s  

s g e n e r i c (  
DBIT : i n t e g e r  : = 8 ;  -- # d a t a  b i t s  
SB-TICK: i n t e g e r : = 1 6  -- # t i c k s  f o r  s t o p  b i t s  

) ;  
port  ( 

10 c l k ,  r e s e t :  in  s t d - l o g i c ;  
r x :  in  s t d - l o g i c ;  
s - t i c k :  in  s t d - l o g i c ;  
r x - d o n e - t i c k :  out s t d - l o g i c  ; 
d o u t :  out  s t d - l o g i c - v e c t o r  ( 7  downto 0)  

15 ) ; 
end u a r t - r x  ; 

10 

15 

45 

a r c h i t e c t u r e  a r c h  of  u a r t - r x  i s  
type  s t a t e - t y p e  i s  ( i d l e ,  s t a r t ,  d a t a ,  s t o p ) ;  

s i g n a l  s - r e g  , s - n e x t  : u n s i g n e d  ( 3  downto 0)  ; 
s i g n a l  n - r e g  , n - n e x t  : u n s i g n e d  ( 2  downto 0)  ; 
s i g n a l  b - r e g  , b - n e x t  : s t d - l o g i c - v e c t o r  ( 7  downto 0)  ; 

x s i g n a l  s t a t e - r e g  , s t a t e - n e x t  : s t a t e - t y p e ;  

beg in  
zs -- FSMD s t a t e  & d a t a  r e g i s t e r s  

p r o c e s s  ( c l k  , r e s e t )  
beg in  

i f  r e s e t = ’ l ’  then 
s t a t e - r e g  <= i d l e ;  
s - r e g  <= ( o t h e r s = >  ’ 0  J ,  ; 
n - r e g  <= ( o t h e r s = >  J O ’ ) ;  
b - r e g  <= ( o t h e r s = > ’ O ’ ) ;  

s t a t e - r e g  <= s t a t e - n e x t ;  
s - r e g  <= s - n e x t ;  
n - r e g  <= n - n e x t ;  
b - r e g  <= b - n e x t ;  

e l s i f  ( c l k ’ e v e n t  and c l k = ’ l ’ )  then 

end i f  ; 
end p r o c e s s ;  

p r o c e s s  ( s t a t e - r e g  , s - r e g  , n - r e g  , b - r e g ,  ~ - t i c k  , r x )  
beg in  

40 -- n e x t - s t a t e  l o g i c  & d a t a  p a t h  f u n c t i o n a l  u n i t s / r o u t i n g  

s t a t e - n e x t  <= s t a t e - r e g ;  
s - n e x t  <= s - r e g ;  
n - n e x t  <= n - r e g ;  
b - n e x t  <= b - r e g ;  
r x - d o n e - t i c k  < = ’ O ’ ;  
c a s e  s t a t e - r e g  i s  

when i d l e  => 



168 UART 

50 

55 

65 

70 

75  

i f  r x = ’ O ’  then 
s t a t e - n e x t  <= s t a r t ;  
s - n e x t  <= ( o t h e r s = >  ’ 0  ’ 1  ; 

end i f ;  
when s t a r t  => 

i f  ( s - t i c k  = ’1’) then 
i f  s _ r e g = 7  then 

s t a t e - n e x t  <= d a t a ;  
s - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
n - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  

s - n e x t  <= s - r e g  + 1 ;  
e l s e  

end i f  ; 
end i f  ; 

when d a t a  => 
i f  ( s - t i c k  = ’1’) then 

i f  s _ r e g = 1 5  then 
s - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
b - n e x t  <= r x  & b - r e g ( 7  downto 1) ; 
i f  n - r e g =  (DBIT -1) then 

e l s e  

end i f ;  

s - n e x t  <= s - r e g  + 1;  

s t a t e - n e x t  <= s t o p  ; 

n - n e x t  <= n - r e g  + 1 ;  

e l s e  

end i f  ; 
end i f  ; 

when s t o p  = >  
i f  ( s - t i c k  = ’1’) then 

i f  s - r e g = ( S B - T I C K - l )  
s t a t e - n e x t  <= i d l e  
r x - d o n e - t i c k  <= ’ 1 ’ 

e l s e  
s - n e x t  <= s - r e g  + 1 ;  

85 end i f ;  

end c a s e ;  
end p r o c e s s ;  
d o u t  <= b - r e g ;  

end i f  ; 

90 end a r c h ;  

hen 

7.2.4 Interface circuit 

In a large system, a UART is usually a peripheral circuit for serial data transfer. The 
main system checks its status periodically to retrieve and process the received word. The 
receiver’s interface circuit has two functions. First, it provides a mechanism to signal the 
availability of a new word and to prevent the received word from being retrieved multiple 
times. Second, it can provide buffer space between the receiver and the main system. There 
are three commonly used schemes: 

Af lagFF 



UART RECEIVING SUBSYSTEM 169 

A flag FF and a one-word buffer 
0 A FIFO buffer 

Note that the UART receiver asserts the rx-ready-tick signal one clock cycle after a data 
word is received. 

The first scheme uses a j a g  FF to keep track of whether a new data word is available. 
The FF has two input signals. One is set-f  lag,  which sets the flag FF to ’l’, and the other 
is clr-f  lag,  which clears the flag FF to ’0’. The rx-ready-tick signal is connected to 
the s e t - f l ag  signal and sets the flag when a new data word arrives. The main system 
checks the output of the flag FF to see whether a new data word is available. It asserts the 
clr-f  l ag  signal one clock cycle after retrieving the word. The top-level block diagram is 
shown in Figure 7.4(a). To be consistent with other schemes, the flag FF’s output is inverted 
to generate the final rx-empty signal, which indicates that no new word is available. In 
this scheme, the main system retrieves the data word directly from the shift register of the 
UART receiver and does not provide any additional buffer space. If the remote system 
initiates a new transmission before the main system consumes the old data word (i.e., the 
flag FF is still asserted), the old word will be overwritten, an error known as data overrun. 

To provide some cushion, a one-word buffer can be added, as shown in Figure 7.4(b). 
When the rx-ready-tick signal is asserted, the received word is loaded to the buffer 
and the flag FF is set as well. The receiver can continue the operation without destroying 
the content of the last received word. Data overrun will not occur as long as the main 
system retrieves the word before a new word arrives. The code for this scheme is shown in 
Listing 7.2. 

Listing 7.2 Interface with a flag FF and buffer 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
e n t i t y  flag-buf i s  

g e n e r i c  (W: integer : =8) ; 
5 p o r t (  

clk, reset: in  std-logic; 
clr-f lag, set-flag : in  std-logic ; 
din: i n  std-logic-vector (W-1 downto 0)  ; 
dout : out  std-logic-vector ( W - I  downto 0 )  ; 

10 f lag: out  std-logic 

1 ;  
end f lag-buf ; 

a r c h i t e c t u r e  arch of  flag-buf i s  
1s s i g n a l  buf-reg, buf-next: std-logic-vector (W-1 downto 0 )  ; 

s i g n a l  f lag-reg , f lag-next : std-logic ; 

-- F F  & r e g i s t e r  
p r o c e s s  (clk, reset) 

beg in  

ZD beg in  
i f  reset=’l’ then 

buf-reg <= ( o t h e r s = > ’ O ’ ) ;  
flag-reg <= ’ 0 ’ ;  

buf -reg <= buf -next ; 
flag-reg <= flag-next; 

e l s i f  (clk’event and clk=’l’) then 

end i f  ; 

25 



170 UART 

Figure 7.4 Interface circuit of a UART receiving subsystem. 



UART TRANSMITTING SUBSYSTEM 171 

35 

end p r o c e s s ;  
__ n e x t  - -s  t a t  e 1 o g  i c  
p r o c e s s  ( b u f - r e g  , f l a g - r e g  , s e t - f l a g  , c l r - f l a g  , d i n )  
beg in  

30 

b u f - n e x t  <= b u f - r e g ;  
f l a g - n e x t  <= f l a g - r e g ;  
i f  ( s e t - f l a g = ’ l ’ )  then 

b u f - n e x t  <= d i n ;  
f l a g - n e x t  <= ’1’; 

f l a g - n e x t  <= ’ 0 ’ ;  
e l s  i f  ( c l r - f  l a g =  ’ 1 ’ )  then 

end i f  ; 
40 end p r o c e s s ;  

__ o u t p u t  l o g i c  
d o u t  <= b u f - r e g ;  
f l a g  <= f l a g - r e g ;  

end a r c h ;  

The third scheme uses a FIFO buffer discussed in Section 4.5.3. The FIFO buffer provides 
more buffering space and further reduces the chance of data overrun. We can adjust the 
desired number of words in FIFO to accommodate the processing need of the main system. 
The detailed block diagram is shown in Figure 7.4(c). 

The rx-ready-tick signal is connected to the w r  signal of the FIFO. When a new data 
word is received, the w r  signal is asserted one clock cycle and the corresponding data is 
written to the FIFO. The main system obtains the data from FIFO’s read port. After retrieving 
a word, it asserts the r d  signal of the FIFO one clock cycle to remove the corresponding 
item. The empty signal of the FIFO can be used to indicate whether any received data word 
is available. A data-overrun error occurs when a new data word arrives and the FIFO is full. 

7.3 UART TRANSMITTING SUBSYSTEM 

The organization of a UART transmitting subsystem is similar to that of the receiving 
subsystem. It consists of a UART transmitter, baud rate generator, and interface circuit. 
The interface circuit is similar to that of the receiving subsystem except that the main system 
sets the flag FF or writes the FIFO buffer, and the UART transmitter clears the flag FF or 
reads the FIFO buffer. 

The UART transmitter is essentially a shift register that shifts out data bits at a specific 
rate. The rate can be controlled by one-clock-cycle enable ticks generated by the baud 
rate generator. Because no oversampling is involved, the frequency of the ticks is 16 times 
slower than that of the UART receiver. Instead of introducing a new counter, the UART 
transmitter usually shares the baud rate generator of the UART receiver and uses an internal 
counter to keep track of the number of enable ticks. A bit is shifted out every 16 enable 
ticks. 

The ASMD chart of the UART transmitter is similar to that of the UART receiver. 
After assertion of the t x - s t a r t  signal, the FSMD loads the data word and then gradually 
progresses through the start ,  data ,  and s top  states to shift out the corresponding bits. 
It signals completion by asserting the tx-done-tick signal for one clock cycle. A 1-bit 
buffer, tx-reg,  is used to filter out any potential glitch. The corresponding code is shown 
in Listing 1.3.  



172 UART 

Listing 7.3 UART transmitter 

l i b r a r y  ieee; 
use ieee.std-logic-ll64.all; 
use ieee . numeric-std. a l l  ; 
e n t i t y  uart-tx i s  

5 g e n e r i c (  
DBIT : integer : =8  ; -- # d a t a  b i t s  
SB-TICK: integer:=16 -- # t i c k s  f o r  s t o p  b i t s  

1 ;  
port  ( 

10 clk, reset: in std-logic; 
tx-start : in std-logic; 
s-tick: in  std-logic ; 
din: in std-logic-vector ( 7  downto 0)  ; 
tx-done-tick: out std-logic; 

15 tx: out  std-logic 
) ;  

end uart-tx ; 

35 

40 

50 

a r c h i t e c t u r e  arch of  uart-tx i s  
20 type  state-type i s  (idle, start, data, stop); 

s i g n a l  state-reg, state-next : state-type; 
s i g n a l  s-reg , s-next : unsigned (3 downto 0)  ; 
s i g n a l  n-reg , n-next : unsigned (2 downto 0)  ; 
s i g n a l  b-reg , b-next : std-logic-vector (7 downto 0 )  ; 

25 s i g n a l  tx-reg , tx-next : std-logic ; 

-- FSMD s t a t e  C? d a t a  r e g i s t e r s  
p r o c e s s  (clk, reset) 
begin  

begin  

30 i f  reset=’l’ then 
state-reg <= idle; 
s-reg <= ( o t h e r s = > ) O ) ) ;  
n-reg <= ( o t h e r s = > ) O ’ ) ;  
b-reg <= ( o t h e r s = > ) O ’ ) ;  
tx-reg <= )l); 

state-reg <= state-next; 
s-reg <= s-next; 
n-reg <= n-next; 
b-reg <= b-next; 
tx-reg <= tx-next; 

e 1 s i f ( clk ) event and clk= ) 1 ’ ) then 

end i f  ; 
end p r o c e s s ;  
__ n e x t - s t a t e  l o g i c  & d a t a  p a t h  f u n c t i o n a l  u n i t s  / r o u t i n g  
p r o c e s s  (state-reg , s-reg ,n-reg ,b-reg, s-tick, 

begin  

45 

tx-reg,tx-start,din) 

state-next <= state-reg; 
s-next <= s-reg; 
n-next <= n-reg; 
b-next <= b-reg; 
tx-next <= tx-reg ; 



UART TRANSMITTING SUBSYSTEM 173 

t x - d o n e - t i c k  <= ’ 0 ’ ;  
case  s t a t e - r e g  i s  

when i d l e  => 
t x - n e x t  <= 1 ; 
i f  t x - s t a r t = ’ l ’  then 

s t a t e - n e x t  <= s t a r t ;  
s - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
b - n e x t  <= d i n ;  

end i f  ; 
when s t a r t  => 

t x - n e x t  <= ’ 0 ’ ;  
i f  ( s - t i c k  = ’1’) then 

i f  s _ r e g = 1 5  then 
s t a t e - n e x t  <= d a t a ;  
s - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
n - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  

s - n e x t  <= s - r e g  + 1 ;  
e l s e  

end i f  ; 
end i f ;  

when d a t a  => 
t x - n e x t  <= b - r e g  ( 0 )  ; 
i f  ( s - t i c k  = Jl’) then 

i f  s _ r e g = 1 5  then 
s - n e x t  <= ( o t h e r s = > ’ O ’ ) ;  
b - n e x t  <= ‘ 0 ’  8z b - r e g ( 7  downto 1) ; 
i f  n - r e g =  ( D B I T  -1) then 

e l s e  

end i f  ; 

s - n e x t  <= s - r e g  + 1;  

s t a t e - n e x t  <= s t o p  ; 

n - n e x t  <= n - r e g  + 1 ;  

e l s e  

end i f ;  
end i f  ; 

when s t o p  = >  
t x - n e x t  <= ’ 1 ’ ;  
i f  ( s - t i c k  = ’1’) then 

i f  s - r e g =  (SB-TICK -1) then 
s t a t e - n e x t  <= i d l e ;  
t x - d o n e - t i c k  <= Jl’;  

s - n e x t  <= s -reg  + 1 ;  
e l s e  

end i f  ; 
end i f  ; 

55 

60 

65 

70 

75  

80 

ns 

w 

95 

end c a s e ;  
end p r o c e s s ;  

100 t x  <= t x - r e g ;  
end a r c h ;  



174 UART 

Figure 7.5 Block diagram of a complete UART. 

7.4 OVERALL UART SYSTEM 

7.4.1 Complete UART core 

By combining the receiving and transmitting subsystems, we can construct the complete 
UART core. The top-level diagram is shown in Figure 7.5. The block diagram can be 
described by component instantiation, and the corresponding code is shown in Listing 7.4. 

10 

20 

Listing 7.4 UART top-level description 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  uart i s  

5 g e n e r i c (  
__ D e f a u l t  s e t t i n g  : 
-- 1 9 2 0 0  b a u d ,  8 d a t a  b i t s  , 1 s t o p  b i t ,  2 ^ 2  FIFO 
DBIT : integer : =8; -- # d a t a  b i t s  
SB-TICK: integer:=16; -- # t i c k s  f o r  s t o p  b i t s ,  1 6 / 2 4 / 3 2  

DVSR: integer:= 163; -- baud  r a t e  d i v i s o r  

DVSR-BIT: integer:=8; -- # b i t s  of DVSR 
FIFO-W: integer:=2 -- # a d d r  b i t s  of FIFO 

-- for 1 / 1 . 5 / 2  s t o p  b i t s  

-- DVSR = 5 0 M / ( 1 6 * b a u d  r a t e )  

I 5  -- # w o r d s  in FIFO=2^FIFO-W 
) ;  
p o r t  ( 

clk, reset: i n  std-logic; 
rd-uart , wr-uart : i n  std-logic ; 
r x :  i n  std-logic; 
w-data: i n  std-logic-vector ( 7  downto 0 )  ; 
tx-full, rx-empty: out  std-logic; 



OVERALL UART SYSTEM 175 

r-data: out std-logic-vector ( 7  downto 0) ; 
tx: out std-logic 

25 ) ; 
end uart; 

architecture str-arch of  uart is 

10 signal rx-done-tick: std-logic; 
signal tick: std-logic ; 

signal tx-f if o-out : std-logic-vector ( 7  downto 0) ; 
signal rx-data-out : std-logic-vector ( 7  downto 0) ; 
signal tx-empty , tx-f if o-not-empty : std-logic ; 
signal tx-done-tick : std-logic ; 

baud-gen-unit: entity work.mod-m-counter(arch) 
v begin 

generic map(M=>DVSR , N=>DVSR-BIT) 
port map(clk=>clk, reset=>reset , 

q=>open , max-tick=>tick) ; 
40 uart-rx-unit: entity work.uart-rx(arch) 

generic map(DBIT=>DBIT, SB-TICK=>SB-TICK) 
port map(clk=>clk, reset=>reset , rx=>rx, 

s-tick=>tick, rx-done_tick=>rx-done-tick, 
dout=>rx-data-out ; 

45 fifo-rx-unit: entity work.fifo(arch) 
generic map(B=>DBIT , W=>FIFO-W) 
port map(clk=>clk, reset=>reset , rd=>rd-uart , 

wr=>rx-done-t ick , w-data=>rx-data-out , 
empty=>rx-empty, full=>open, r-data=>r-data); 

50 fifo-tx-unit: entity work.fifo(arch) 
generic map(B=>DBIT , W=>FIFO-W) 
port map(clk=>clk, reset=>reset, rd=>tx-done-tick, 

wr=>wr-uart, w-data=>w-data, empty=>tx-empty, 
full=>tx-full, r-data=>tx-fifo-out); 

5 5  uart-tx-unit : entity work. uart-txcarch) 
g e n e r i c map ( DB I T = > DB I T , SB - T I CK = > SB - T I CK ) 
port map(clk=>clk, reset=>reset , 

tx-start=>tx-fifo-not-empty, 
s-tick=>tick, din=>tx-fifo-out, 

60 tx-done-tick=> tx-done-tick, tx=>tx); 
tx-fifo-not-empty <= not tx-empty; 

end str-arch; 

In the picoBlaze source file (discussed in Chapter 14), Xilinx supplies a customized 
UART module with similar functionality. Unlike our implementation, the module is de- Xilinx 
scribed using low-level Xilinx primitives. It can be considered as a gate-level description specific 
that utilizes Xilinx-specific components. Since the designer has the expert knowledge of 
Xilinx devices and takes advantage of its architecture, its implementation is more efficient 
than the generic RT-level device-independent description of this chapter. It is instructive to 
compare the code complexity and the circuit size of the two descriptions. 



176 UART 

Figure 7.6 Block diagram of a UART verification circuit. 

7.4.2 UART verification configuration 

Verificafion circuif We use a loop-back circuit and a PC to verify the UART’s operation. 
The block diagram is shown in Figure 7.6. In the circuit, the serial port of the S 3  board is 
connected to the serial port of a PC. When we send a character from the PC, the received 
data word is stored in the UART receiver’s four-word FIFO buffer. When retrieved (via the 
r-data port), the data word is incremented by 1 and then sent back to the transmitter (via 
the w-data port). The debounced pushbutton switch produces a single one-clock-cycle tick 
when pressed and it is connected to the rd-uar t  and wr-uart signals. When the tick is 
generated, it removes one word from the receiver’s FIFO and writes the incremented word 
to the transmitter’s FIFO for transmission. For example, we can first type HAL in the PC 
and the three data words are stored in the FIFO buffer of the UART receiver. We then can 
push the button on the S3 board three times. The three successive characters, IBM, will be 
transmitted back and displayed. The UART’s r-data port is also connected to the eight 
LEDs of the S 3  board, and its t x - f u l l  and rx-empty signals are connected to the two 
horizontal bars of the rightmost digit of the seven-segment display. The code is shown in 
Listing 7.5. 

Listing 7.5 UART verification circuit 
~~ 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
use ieee . numeric-std. a l l  ; 
e n t i t y  uart-test i s  

5 p o r t (  
clk, reset: in std-logic; 
btn: std-logic-vector ( 2  downto 0 )  ; 
r x :  in std-logic; 
t x :  out  std-logic; 

sseg : out std-logic-vector ( 7  downto 0)  ; 
a n :  out std-logic-vector (3 downto 0)  

10 led: out  std-logic-vector ( 7  downto 0 )  ; 

) ;  
end uart-test; 

a r c h i t e c t u r e  arch of uart-test i s  
15 

s i g n a l  tx-full , rx-empty : std-logic; 
s i g n a l  rec-data ,rec-data1 : std-logic-vector ( 7  downto 0 )  ; 



OVERALL UART SYSTEM 177 

signal btn-tick: std-logic; 

__ i n s t a n t i a t e  u a r t  
uart-unit : entity work.uart (str-arch) 

20 begin 

port map(clk=>clk, reset=>reset , rd-uart=>btn-tick, 
wr-uart=>btn-tick, r x = > r x ,  w-data=>rec-datal, 

r-data=>rec-data, tx=>tx); 
15 tx-full=>tx-full, rx-empty=>rx-empty, 

__ i n s  t a n  t i a t e  d e b o u n c e  c i r c u i t  
btn-db-unit : entity work. debounce (fsmd-arch) 

port map(clk=>clk, reset=>reset , sw=>btn(O), 
30 db-level=>open, db-tick=>btn-tick); 

-- i n c r e m e n t e d  d a t a  l o o p  b a c k  
rec-data1 <= std-logic_vector(unsigned(rec-data)+l); 
__ l e d  d i s p l a y  
led <= rec-data; 

sseg <= '1 '  & ( n o t  tx-full) & "11" & (not rx-empty) & "111"; 
35 an <= "1110"; 

end arch; 

HyperTerminal of Windows On PC's side, Windows' HyperTerminal program can 
be used as a virtual terminal to interact with the S3 board. To be compatible with our 
customized UART, it has to be configured as 19,200 baud, 8 data bits, 1 stop bit, and no 
parity bit. The basic procedure is: 

1. 

2.  

3. 

4. 

5. 

Select Start t Programs t Accessories t Communications + HyperTerminal. The 
HyperTerminal dialog appears. 
Type a name for this connection, say fpga-192. Click OK. This connection can be 
saved and invoked later. 
A Connect-to dialog appears. Press the Connecting Using field and select the desired 
serial port (e.g., COM1). Click OK. 
The Port Setting dialog appears. Configure the port as follows: 

0 Bits per second: 19200 
0 Data bits: 8 
0 Parity: None 
0 Stop bits: 1 
0 Flow control: None 

Click OK. 
Select File t Properties + Setting. Click ASCII Setup and check the Echo typed 
characters locally box. Click OK twice. This will allow the typed characters to be 
shown on the screen. 

The HyperTerminal program is set up now and ready to communicate with the S3 board. 
We can type a few keys and observe the LEDs of the S3 board. Note that the received 
words are stored in the FIFO buffer and only the first received data word is displayed. 
After we press the pushbutton, the first data word will be removed from the FIFO and 
the incremented word will be looped back to the PC's serial port and displayed in the 
HyperTerminal window. The full and empty status of the respective FIFO buffers can be 
tested by consecutively receiving and transmitting more than four data words. 

ASCII code In HyperTerminal, characters are sent in ASCII code, which is 7 bits and 
consists of 128 code words, including regular alphabets, digits, punctuation symbols, and 



178 UART 

nonprintable control characters. The characters and their code words (in hexadecimal for- 
mat) are shown in Table 7.1. The nonprintable characters are shown enclosed in parentheses, 
such as (del). Several nonprintable characters may introduce special action when received: 

0 (nul): null byte, which is the all-zero pattern 
0 (bel): generate a bell sound, if supported 
0 (bs): backspace 
0 (ht): horizontal tab 
0 (nl): new line 
0 (vt): vertical tab 
0 (np): newpage 
0 (cr): carriage return 
0 (esc): escape 
0 (sp): space 
0 (del): delete, which is also the all-one pattern 

Since we use the PC’s serial port to communicate with the S3 board in many experiments 
and projects, the following observations help us to manipulate and process the ASCII code: 

0 When the first hex digit in a code word is 016 or 116, the corresponding character is 

0 When the first hex digit in a code word is Z16 or 316, the corresponding character is 

0 When the first hex digit in a code word is 416 or 516,  the corresponding character is 

0 When the first hex digit in a code word is 616 or 716, the corresponding character is 

0 If the first hex digit in a code word is 316, the lower hex digit represents the corre- 

0 The upper- and lowercase letters differ in a single bit and can be converted to each 

Note that the ASCII code uses only 7 bits, but a data word is normally composed of 
8 bits (i.e., a byte). The PC uses an extended set in which the MSB is 1 and the characters 
are special graphics symbols. This code, however, is not part of the ASCII standard. 

a control character. 

a digit or punctuation. 

generally an uppercase letter. 

generally a lowercase letter. 

sponding decimal digit. 

other by adding or subtracting 2016 or inverting the sixth bit. 

7.5 CUSTOMIZING A UART 

The UART discussed in previous sections is customized for a particular configuration. The 
design and code can easily be modified to accommodate other required features: 

0 Baud rate. The baud rate is controlled by the frequency of the sampling ticks of the 
baud rate generator. The frequency can be changed by revising the M generic of the 
mod-m counter, which is represented as the DVSR constant in code. 

0 Number of data bits. The number of data bits can be changed by modifying the upper 
limit of the n-reg register, which is specified as the DBIT constant in code. 

0 Parity bit. A parity bit can be included by introducing a new state between the data 
and stop states in the ASMD chart in Figure 7.3. 

0 Number of stop bits. The number of stop bits can be changed by modifying the 
upper limit of the s-reg register in the stop state of the ASMD chart. The SB-TICK 
constant is used for this purpose. It can be 16,24, or 32, which is for 1, 1.5, or 2 stop 
bits, respectively. 



CUSTOMIZING A UART 179 

Table 7.1 ASCII codes 

Char Code 

(SP) 40 
! 41 

42 
# 43 
$ 44 
% 45 
& 46 

47 
( 48 
1 49 
* 4a 

+ 4b 
4c 
4d 
4e 

I 4f 
0 50 
1 51 
2 52 
3 53 
4 54 
5 55 
6 56 
7 57 
8 58 
9 59 

5a 
5b 

< 5c 
5d 

> 5e 
? 5f 

I1  

5 

- - 

Code 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
Oa 
Ob 
oc 
Od 
Oe 
Of 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
la 
lb  
I C  

Id 
le  
If 

Code 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
2a 
2b 
2c 
2d 
2e 
2f 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3a 
3b 
3c 
3d 
3e 
3f 

Char 

@ 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 
[ 
\ 
1 

Code 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
6a 
6b 
6c 
6d 
6e 
6f 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
7a 
7b 
7c 
7d 
7e 
7f 

Char 

a 
b 

d 
e 
f 
g 
h 
i 

k 
1 
m 
n 

P 
9 
r 

C 

j 

0 

S 

t 
u 
V 

W 

X 

Y 
Z 

{ 

1 

(dell 

I 

x 



180 UART 

0 Error checking. Three types of errors can be detected in the UART receiving subsys- 

- Parity error. If the parity bit is included, the receiver can check the correctness 
of the received parity bit. 

- Frame error. The receiver can check the received value in the s top  state. If 
the value is not ’l’, the frame error occurs. 

- BufSer overrun error. This happens when the main system does not retrieve the 
received words in a timely manner. The UART receiver can check the value 
of the buffer’s f lag-reg signal or FIFO’s f u l l  signal when the received word 
is ready to be stored (i.e., when the rx-done-tick signal is generated). Data 
overrun occurs if the f lag-reg or f u l l  signal is still asserted. 

tem: 

7.6 BIBLIOGRAPHIC NOTES 

Although the RS-232 standard is very old, it still provides a simple and reliable low-speed 
communication link between two devices. The Wikipedia Web site has a good overview 
article and several useful links on the subject (search with the keyword RS232). Serial Port 
Complete by Jan Axelson provides information on interfacing hardware devices to PC’s 
serial port. 

7.7 SUGGESTED EXPERIMENTS 

7.7.1 Full-featured UART 

The alternative to the customized UART is to include all features in design and to dynam- 
ically configure the UART as needed. Consider a full-featured UART that uses additional 
input signals to specify the baud rate, type of parity bit, and the numbers of data bits and 
stop bits. The UART also includes an error signal. In addition to the I/O signals of the 
uar t - top design in Listing 7.4, the following signals are required: 

0 bd-rate: 2-bit input signal specifying the baud rate, which can be 1200,2400,4800, 

0 dnum: 1-bit input signal specifying the number of data bits, which can be 7 or 8 
0 snum: 1-bit input signal specifying the number of stop bits, which can be 1 or 2 
0 par: 2-bit input signal specifying the desired parity scheme, which can be no parity, 

0 e r r :  3-bit output signal in which the bits indicate the existence of the parity error, 

or 9600 baud 

even parity, or odd parity 

frame error, and data overrun error 
Derive this circuit as follows: 

1. Modify the ASMD chart in Figure 7.3 to accommodate the required extensions. 
2. Revise the UART receiver code according to the ASMD chart. 
3. Revise the UART transmitter code to accommodate the required extensions. 
4. Revise the top-level UART code and the verification circuit. Use the onboard switches 

for the additional input signals and three LEDs for the error signals. Synthesize the 
verification circuit. 

5. Create different configurations in HyperTerminal and verify operation of the UART 
circuit. 



SUGGESTED EXPERIMENTS 181 

7.7.2 UART with an automatic baud rate detection circuit 

The most commonly used number of data bits of a serial connection is eight, which cor- 
responds to a byte. When a regular ASCII code is used in communication (as we type in 
the HyperTerminal window), only seven LSBs are used and the MSB is ’0’. If the UART 
is configured as 8 data bits, 1 stop bit, and no parity, the received word is in the form of 
0-dddd-dddO-I, in which d is a data bit and can be ’0’ or ’ 1 ’. Assume that there is sufficient 
time between the first word and subsequent transmissions. We can determine the baud rate 
by measuring the time interval between the first ’0’ and last ’0’. Based on this observation, 
we can derive a UART with an automatic baud rate detection circuit. In this scheme, the 
transmitting system first sends an ASCII code for rate detection and then resumes normal 
operation afterward. The receiving subsystem uses the first word to determine a baud rate 
and then uses this rate for the baud rate generator for the remaining transmission. 

Assume that UART configuration is 8 data bits, 1 stop bit, and no parity bit, and the 
baud rate can be 4800,9600, or 19,200 baud. The revised UART receiver should have two 
operation modes. It is initially in the “detection mode” and waits for the first word. After 
the word is received and the baud rate is determined, the receiver enters “normal mode” 
and the UART operates in a regular fashion. Derive the UART as follows: 

1. Draw the ASMD chart for the automatic baud rate detector circuit. 
2. Derive the VHDL code for the ASMD chart. Use three LEDs on the S3 board to 

indicate the baud rate of the incoming signal. 
3. Modify the UART to include three different baud rates: 4800, 9600, and 19,200. 

This can be achieved by using a register for the divisor of the baud rate generator and 
loading the value according to the desired baud rate. 

4. Create a top-level FSMD to keep track of the mode and to control and coordinate 
operation of the baud rate detection circuit and the regular UART receiver. Use a 
pushbutton switch on the S3 board to force the UART into the detection mode. 

5. Revise the top-level UART code and the verification circuit. Synthesize the verifica- 
tion circuit. 

6. Create different configurations in HyperTerminal and verify operation of the UART. 

7.7.3 UART with an automatic baud rate and parity detection circuit 

In addition to the baud rate, we assume that the parity scheme also needs to be determined 
automatically, which can be no parity, even parity, or odd parity. Expand the previous 
automatic baud rate detection circuit to detect the parity configuration and repeat Experi- 
ment 7.7.2. 

7.7.4 UART-controlled stopwatch 

Consider the enhanced stopwatch in Experiment 4.7.6. Operation of the stopwatch is con- 
trolled by three switches on the S3 board. With the UART, we can use PC’s HyperTerminal 
to send commands to and retrieve time from the stopwatch: 

0 When a c or C (for “clear”) ASCII code is received, the stopwatch aborts current 
counting, is cleared to zero, and sets the counting direction to “up.” 

0 When a g or G (for “go”) ASCII code is received, the stopwatch starts to count. 
0 When a p or P (for “pause”) ASCII code is received, counting pauses. 
0 When a u or U (for “up-down”) ASCII code is received, the stopwatch reverses the 

direction of counting. 



182 UART 

0 When a r or R (for “receive”) ASCII code is received, the stopwatch transmits the 
current time to the PC. The time should be displayed as ‘I DD . D It, where D is a decimal 
digit. 

0 All other codes will be ignored. 
Design the new stopwatch, synthesize the circuit, connect it to a PC, and use HyperTerminal 
to verify its operation. 

7.7.5 UART-controlled rotating LED banner 

Consider the rotating LED banner circuit in Experiment 4.7.5. With the UART, we can 
use PC’s HyperTerminal to control its operation and dynamically modify the digits in the 
banner: 

0 When a g or G (for “go”) ASCII code is received, the LED banner rotates. 
0 When a p or P (for “pause”) ASCII code is received, the LED banner pauses. 
0 When a d or D (for “direction”) ASCII code is received, the LED banner reverses the 

direction of rotation. 
0 When a decimal-digit (i.e., 0, 1, . . ., 9) ASCII code is received, the banner will be 

modified. The banner can be treated as a 10-word FIFO buffer. The new digit will 
be inserted at beginning (i.e., the leftmost position) of the banner and the rightmost 
digit will be shifted out and discarded. 

0 All other codes will be ignored. 

Design the new rotating LED banner, synthesize the circuit, connect it to a PC, and use 
HyperTerminal to verify its operation. 


