
12 VGA Adapter

The design of a VGA adapter capable of displaying characters from a display
RAM on a standard VGA monitor is discussed in this chapter. The chapter
discusses the basics of interfacing with a VGA monitor and develops an
interface using the UP2 development board. Unlike the previous chapter that
dealt with a top-down data/control design, this chapter designs small interfaces
and puts a complete design together. The design methodology presented here
uses Verilog blocks, megafunctions, memories, and schematic capture to
complete the design of a display adapter.

12.1 VGA Driver Operation

A standard VGA monitor consists of a grid of pixels that can be divided into
rows and columns. A VGA monitor contains at least 480 rows, with 640 pixels
per row, as shown in Figure 12.1. Each pixel can display various colors,
depending on the state of the red, green, and blue signals.

Each VGA monitor has an internal clock that determines when each pixel is
updated. This clock operates at the VGA-specified frequency of 25.175 MHz.
The monitor refreshes the screen in a prescribed manner that is partially
controlled by the horizontal and vertical synchronization signals. The monitor
starts each refresh cycle by updating the pixel in the top left-hand corner of the
screen, which can be treated as the origin of an X–Y plane (see Figure 12.1).

A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

http://www.a-pdf.com/?product-split-demo

248 Digital Design and Implementation with Field Programmable Devices

Figure 12.1 VGA Monitor

After the first pixel is refreshed, the monitor refreshes the remaining pixels in
the row. When the monitor receives a pulse on the horizontal synchronization,
it refreshes the next row of pixels. This process is repeated until the monitor
reaches the bottom of the screen. When the monitor reaches the bottom of the
screen, the vertical synchronization pulses, causing the monitor to begin
refreshing pixels at the top of the screen (i.e., at [0,0]).

12.1.1 VGA Timing

For the VGA monitor to work properly, it must receive data at specific times
with specific pulses. Horizontal and vertical synchronization pulses must occur
at specified times to synchronize the monitor while it is receiving color data.

Figure 12.2 shows the timing waveform for the color information with
respect to the horizontal synchronization signal. Based on the clock frequency,
these times translate to certain number of clock cycles shown in this figure.
For example, a horizontal sweep (parameter A) that takes translates
to 800 clock cycles of 25.175 MHz.

Figure 12.2 Horizontal Refresh Cycle

249

Figure 12.3 Vertical Refresh Cycle

Figure 12.3 shows the timing waveform for the color information with
respect to the vertical synchronization signal. Based on the fact that a
horizontal sweep takes (800 clock cycles), the times shown take a
certain number of horizontal refresh cycles that are shown in this figure. For
example, a screen refresh cycle that takes 16.7 ms, translates to 525 horizontal
cycles of

The frequency of operation and the number of pixels that the monitor must
update determines the time required to update each pixel, and the time
required to update the whole screen. The following equations roughly calculate
the time required for the monitor to perform all of its functions.

Where:

The monitor writes to the screen by sending red, green, blue, horizontal and
vertical synchronization signals when the screen is at the expected location.

Time required to update a pixel
25.175 MHz
Time required to update one row
Time required to update the screen

B, C, E=Guard bands
P, Q, S=Guard bands

250 Digital Design and Implementation with Field Programmable Devices

Once the timing of the horizontal and vertical synchronization signals is
accurate, the monitor only needs to keep track of the current location, so it can
send the correct color data to the pixel.

12.1.2 Monitor Synchronization Hardware

The hardware required for VGA signal generation must keep track of the
number of 25.175 MHz clock cycles, and issue signals according to the timing
waveforms of Figure 12.2 and Figure 12.3. The Verilog code of Figure 12.4 uses
the SynchClock clock signal to generate Hsynch (HORIZ_SYNCH of Figure 12.2)
and Vsynch (VERT_ SYNCH of Figure 12.3).

module MonitorSynch
(RedIn, GreenIn, BlueIn, SynchClock, Red, Green, Blue, Hsynch, PixelRow, PixelCol, Vsynch
);

input Redln, Greenln, Blueln, SynchClock;
output Red, Green, Blue, Hsynch, Vsynch;
output [9:0] PixelRow, PixelCol;

reg Red, Green, Blue, Vsynch, Hsynch;
reg [9:0] PixelRow, PixelCol;
reg [9:0] Hcount, Vcount;

always @(posedge SynchClock) begin
if (Hcount == 799) Hcount =0;

else Hcount = Hcount + 1;
if (Hcount >= 661 && Hcount <= 756) Hsynch = 0;

else Hsynch = 1;
if (Vcount >= 525 && Hcount >= 756) Vcount = 0;

else if (Hcount == 756) Vcount = Vcount + 1;
if (Vcount >= 491 && Vcount <= 493) Vsynch = 0;

else Vsynch = 1;

if (Hcount <= 640) PixelCol = Hcount;
if (Vcount <= 480) PixelRow = Vcount;

if (Hcount <= 680 && Vcount <= 480) begin
Red = Redln; Green = Greenln; Blue = Blueln;

end else
{Red, Green, Blue} = 0;

end
endmodule

Figure 12.4 Monitor Synchronization Verilog Code

The code shown, uses color specifications from RedIn, GreenIn and BlueIn
input signals and during the time periods specified by parameter D in Figure
12.2 and parameter R in Figure 12.3, puts them on the Red, Green and Blue
output signals. At any point in time, the Verilog code of Figure 12.4 outputs
the position of the pixel being updated in its 10-bit PixelRow and PixelCol
output vectors.

251

The Hcount variable in this Verilog code keeps track of the number of clock
cycles in each row, and Vcount is the number of horizontal cycles in each
screen. Considering the very first pixel at (0, 0) position, the counting of the
horizontal pixels begins at the beginning of the D region of the waveform of
Figure 12.2. Therefore as the Verilog code shows, Hsynch becomes 0 when
Hcount is between 661 and 756 (this is the B region). Likewise, considering the
beginning of region R as the 0 point, the P region in Figure 12.3 begins at
Vcount of 491 and ends at 493. Therefore, as the code shows, Vsynch is 0
during such Vcount values. With the (0, 0) point defined as such, pixels are
active while Hcount is between 0 and 640 and Vcount is between 0 and 480.
During these count periods output colors are active and PixelRow and PixelCol
outputs reflect Hcount and Vcount respectively.

The Verilog code of Figure 12.4 is defined as a block shown in Figure 12.5
to be used in our implementation of a character display design.

Figure 12.5 Monitor Synchronization Block Specification

12.2 Character Display

The design we are considering in this section is a character display hardware
that outputs an address to a character display memory and inputs an ASCII
code representing the character to display. We assume the display memory has
300 ASCII characters that will be displayed in 15 rows of 20 characters.
Considering the 480 by 640 resolution, this makes each character occupy a
matrix of 32×32 pixels.

In addition to the synchronization module of the previous section, the
character display hardware has a character matrix and a pixel generation
module. The character matrix defines active pixels of the supported characters
and the pixel generation module reads this matrix and produces active color
inputs (RedIn, GreenIn, and BlueIn) for the synchronization module.

252 Digital Design and Implementation with Field Programmable Devices

12.2.1 Character Matrix

In our simple design we use 8×8 character resolution and only support ASCII
characters from 32 to 95. With these 64 supported characters, our character
matrix becomes an 8-bit memory of 512 words, in which every 8 consecutive
words define a character. For example, as shown in Figure 12.6, pixels for
character "5" with ASCII code of 53 decimal, begin at address 0A8 Hex that is
(53-32)×8.

0A8 :
0A9 :
0AA :
0AB :
0AC :
0AD :
0AE :
0AF :

01111110
01100000
01111100
00000110
00000110
01100110
00111100
00000000

;

;
;
;

;

;
;

;

%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%

Figure 12.6 Character Matrix for Character "5"

DEPTH = 512;
WIDTH = 8;
ADDRESS_RADIX = HEX;
DATA_RADIX = BIN;
% Character Matrix ROM, addressed by PixelGeneration module %
CONTENT

BEGIN

% ASCII 0010_0000 to 0010_1111 %
000 :
001 :
002 :
003 :
004 :
005 :
006 :
007 :

1F8 :
1F9 :
1FA :
1FB :
1FC :
1FD :
1FE :
1FF :

END;

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

00000000
00010000
00110000
01111111
01111111
00110000
00010000
00000000

%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%

%
%
%
%
%
%
%
%

Figure 12.7 Character Matrix mif File

;
;

;
;

;
;
;

;
;
;
;
;
;
;
;

;

. . .

253

For implementing the character matrix we use the LPM_ROM megafunction
of Quartus II. This component is available under the storage category of
megafunctions. With the aid of the megafunction wizard, this component is
configured as an 8-bit memory with 9 address lines. During the configuration
process we are asked to enter the Memory Initialization File name (.mif), for
which we use CharMtx.mif. Using the mif format, pixel values (similar to those
shown in Figure 12.6 for character "5") are defined for ASCII characters from 32
to 95. Figure 12.7 shows the beginning and end of this file, from which the
formatting can be seen.

The symbol of the CharMtx component defined in Quartus II is shown in
Figure 12.8. The input of this ROM is a 9-bit address and its output is the
horizontal slice of the display code of the character. The most significant 6 bits
of the address are the ASCII code for the display character, and bits 2 to 0 of
the address determine its slice number.

Figure 12.8 Character Matrix Symbol

module PixelGeneration (PixelRow, PixelCol, Clk, Char, MtxPntr, CharPntr);
input [9:0] PixelRow, PixelCol;
input Clk;
input [7:0] Char;
output [8:0] MtxPntr,
output [8:0] CharPntr;

reg [5:0] MtxStart;
reg [8:0] MtxPntr;
reg [8:0] CharPntr;

wire [4:0] ScreenLine, ScreenPos;
assign ScreenLine = PixelRow [9:5]; // 15 Lines=480/32
assign ScreenPos = PixelCol [9:5]; //20 Positions=640/32

always @(posedge Clk) begin
CharPntr = ScreenLine*20 + ScreenPos;
MtxStart = Char - 32;
// Char resolution is 8 pixel rows, bits [4:2];
MtxPntr = {MtxStart, PixelRow[4:2]};

end
endmodule

Figure 12.9 Pixel Generation Verilog Code

254 Digital Design and Implementation with Field Programmable Devices

12.2.2 Pixel Generation Module

Another component for our character display hardware is the PixelGeneration
module. This module uses the 640×480 pixel coordinates from the
MonitorSynch module and translates it to our low-resolution 20×15 character
coordinates. Using the latter coordinates it generates an address for our
display memory (that contains 300 ASCII codes) and reads the corresponding
ASCII code. This code, offset by 32, and the pixel position that is being
refreshed determine a pointer for the character matrix (CharMtx) discussed
above. The Verilog code of this module is shown in Figure 12.9.

The output of the CharMtx ROM is an 8-bit slice of the character being
displayed. The specific bit that is to be displayed is selected by pixel column
position coming from the MonitorSynch module.

12.2.3 Character Display Hardware

The complete schematic diagram of the character display hardware is shown in
Figure 12.10. This hardware is our VGA adapter that addresses a memory of
300 characters, reads the character and displays it in one of the 300 locations
of the screen. This hardware uses MonitorSynch, PixelGeneration, CharMtx, and
an 8-to-1 multiplexer.

Figure 12.10 VGA Adapter Complete Schematic

255

The MonitorSynch module continuously sweeps across the 640×480 pixel
screen and refreshes pixels with colors specified by its three color inputs. At
the same time it reports the position of the pixel being refreshed to
PixelGeneration. Based on these coordinate, this module calculates the address
of the character that is being displayed, and using the CharMtx and the 8-to-1
multiplexer determines the value of the pixel in the screen position being
refreshed. This pixel value allows color inputs to be used by the MonitorSynch
module for painting the pixel.

12.3 UP2 Prototyping

The design of our VGA adapter of Figure 12.10 is complete in the sense that it
addresses a character and displays it on the monitor. Testing this design
requires a display memory with some data. Figure 12.11 shows a system
utilizing this Adapter circuit to display character contents of DisplayMem while
providing a mechanism of writing new characters into this memory.

Figure 12.11 Prototyping the VGA Adapter (Adapter)

12.3.1 Display Memory

The DisplayMem block is a memory block of 512 8-bit words, of which only 300
are used. This memory is addressed by Adapter for reading from it, and by
InitDisplay for writing into it. When writing into the memory, the BUSMUX
multiplexer selects addr address output of InitDisplay. Writing into this
memory is clocked, for which the main system clock is used, while reading is
done asynchronous.

The display memory is designed by configuring the LPM_RAM_DQ
megafunction of Quartus II. As with other memories, this megafunction is in
the storage category of megafunctions. While configuring it, a memory
initialization file in the mif format is specified. This file contains test data that

256 Digital Design and Implementation with Field Programmable Devices

will be displayed. Also, during configuration of DisplayMem, input clocking,
write-enable and other memory parameters will be specified.

12.3.2 Address Selection

The BUSMUX multiplexer that selects the read or write address of DiplayMem is
a 9-bit 2-to-1 multiplexer. This unit is a megafunction in Quartus II.

12.3.3 Writing Display Data

The InitDisplay Verilog module of Figure 12.11 has a counter that counts
between 0 and 299 with its Countup input and loads its DataIn input in its data
output when Load is issued. We use this circuit to count to a location in
DisplayMem and load data from UP2 switches into this memory. If Load is
pressed twice in a row, the counter resets to location 0. Count-up and load
input are taken from the UP2 pushbuttons.

module InitDisplay (Clk, Dataln, Countup, Load, Write, data, addr);
input Clk;
input [7:0] Dataln;
input Countup, Load;
output Write;
output [7:0] data;
output [8:0] addr;

reg Write;
reg [8:0] addr;
reg loaded; //two Loads in a row resets

assign data = Dataln;

always @(posedge Clk)
if (Countup) begin

addr = addr + 1;
if (addr ==300) addr = 0;
Write = 0;
loaded = 0;

end else if (Load) begin
if (loaded) begin // perform reset

addr = 0;
loaded = 0;

end else begin // perform loading
Write = 1;
loaded =1;

end
end else Write = 0;

endmodule

Figure 12.12 Module for Manual Loading of Display Memory

InitDisplay is implemented in Verilog in a schematic block of Quartus II. As
shown in the Verilog code of Figure 12.12, DataIn continuously drives data that

257

is the data to be written into the display memory. When Countup is issued,
addr is incremented. When Load is issued, the output Write (write-enable)
becomes active, that causes a write at the addr location.

12.3.4 Pushbutton Interfaces

The DualOnePulsers component of Figure 12.12 uses a dual debouncer (Figure
8.14) and two one-pulse generators (Figure 8.12) to generate synchronous one-
clock duration pulses for every time a pushbutton is pressed.

12.3.5 Pin Assignments

In order to test out design, data and control inputs of Figure 12.11 are
connected to UP2 switches and pushbuttons. The outputs of this circuit should
be connected to FLEX 10K pins according to connections shown in Figure 6.36.
Figure 12.13 shows these pin assignments.

12.3.6 Prototype Operation

Upon programming the FLEX 10K device, the monitor connected to VGA D-sub
connector displays characters in the DisplayMem file. We can write any ASCII
character on the display by setting its ASCII code on the FLEX switches,
pressing the Countup pushbutton some number of times and then pressing
Load to write the ASCII character in the counted location of the screen.

Figure 12.13 Adapter Pin Assignments to the VGA Connector

Note that our hardware only supports ASCII characters from 32 to 95, and
large characters are displayed. To start from location 0, press Load twice.

12.4 Summary

This chapter showed a complete design by use of Verilog, schematics and
megafunctions. Some features of Quartus II, such as use of memory blocks
that were not discussed before, were presented in this chapter. If done

258 Digital Design and Implementation with Field Programmable Devices

properly, the use of memory blocks is an Altera design uses FPGA memory bits
that can free up a large number of logic elements for other uses. Dual-port
memories cannot be implemented with FLEX memory bits and must be
implemented using logic element flip-flops. Not only this is an inefficient use of
logic elements, such memories cannot be initialized with memory initialization
files.

In addition to presenting an elaborate use of Quartus II, this chapter
showed the design of a VGA adapter. Understanding display monitors and
being able to program them is important for logic designers and students in the
digital field.

