A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark

CHAPTER 13

VGA CONTROLLER II: TEXT

13.1 INTRODUCTION

A tile-mapped pixel generation scheme is discussed in Section 12.3. A tile can be considered
as a “super pixel.” Whereas a pixel is defined by a 3-bit word in a bit-mapped scheme, a tile
is mapped to a predesigned pattern. One method of constructing a text display is to treat the
characters as tiles and design the pixel generation circuit with the tile-mapped scheme. We
discuss this method in this chapter and apply it to add scores and rules to the pong game.

13.2 TEXT GENERATION

13.2.1 Character as a tile

When applying a tile-mapped scheme, we treat each character as a tile. In a bit-mapped
scheme, the value of a pixel represents a 3-bit color. On the other hand, the value of a tile
represents the code of a specific pattern. For the text display, we use the 7-bit ASCII code
for the character tiles.

The patterns of the tiles constitute the font of the character set. A variety of fonts are
available. We choose an 8-by-16 (i.e., 8-column-by-16-row) font similar to the one used in
early IBM PC. In this font, each character is represented as an 8-by-16 pixel pattern. The
pattern for the letter “A” is shown in Figure 13.1(a).

The character patterns are stored in a ROM and each pattern requires 2 %8 bits. The
pattern memory is known as font ROM. The original font set consists of 256 patterns,

FPGA Prototyping by VHDL Examples. By Pong P. Chu 291
Copyright ©) 2008 John Wiley & Sons, Inc.

http://www.a-pdf.com/?product-split-demo

292 VGA CONTROLLER II: TEXT

2'1-by-8 ROM
. . character
Lk - : address row .
1 — :

{ 1000001 0000 | 00000000
et L I . 1000001 0001 | 00000000
| =l 00010000
00111000
| e 01101100
K - . 11000110
o T R el . 11000110
[. 11111110
11000110
T 11000110
_______ I 11000110
i |1 11000110
| T 00000000
11 00000000
L 1000001 1110 | 00000000
i 1 1000001 1111 | 00000000

(a) Pixel pattern (b) ROM content

Figure 13.1 Font pattern for the letter A.

including digits, upper- and lowercase letters, punctuation symbols, and many special-
purpose graphic symbols. We implement only the first half [i.e., 128 (27)] of the patterns
and exclude most graphic symbols. To accommodate this set, 27 2% x 8 ROM bits are
needed. It is usually configured as a 2'!-by-8 ROM.

When we use these 8-by-16 characters (i.e., tiles) in a 640-by-480 resolution screen, 80
(ie., %) tiles can be fitted into a horizontal line and 30 (i.e., %) tiles can be fitted into a
vertical line. In other words, the screen can be treated as an 80-by-25 tile screen. We can

put characters on the screen using these scaled coordinates.

13.2.2 Font ROM

Our font set implements the 128 characters of the ASCII code, listed in Table 7.1. The 128
(27) character patterns can be accommodated by a 2'1-by-8 font ROM. In this ROM, the
seven MSBs of the 11-bit address are used to identify the character, and the four LSBs of
the address are used to identify the row within a character pattern. The address and ROM
content for the letter "A" are shown in Figure 13.1(b).

In the ASCII table, the first column (ASCII codes 0014 to 1F;4) are nonprintable control
characters. The font ROM uses these codes to implement special graphic symbols. For
example, the 0616 code will generate a spade pattern, #, on the screen. Note that the 00,¢
code is reserved for a blank tile.

The 2'1-by-8 font ROM can fit neatly into a single block RAM of the Spartan-3 device.
We use the ROM template of Listing 11.6 to ensure that a block RAM will be inferred
during synthesis. Part of the HDL code is shown in Listing 13.1. The complete code has
2!1 rows in constant definition and the file can be downloaded from the companion Web
site.

TEXT GENERATION

Listing 13.1 Partial code of the font ROM

293

library ieee;

use iecee.std_logic_1164. all;

use ieee.numeric_std. all;

entity font_rom is

5 port(
clk: imn std_logic;
addr: in std_logic_vector (10 downto 0);
data: out std_logic_vector (7 downto 0)

).

b
0 end font_rom;

architecture arch of font_rom is
constant ADDR_WIDTH: integer:=11;
constant DATA_WIDTH: integer:=8;

15 signal addr_reg: std_logic_vector (ADDR_WIDTH-1 downto 0);

type rom_type is array (0 to 2**ADDR_WIDTH-1)
of std_logic_vector (DATA_WIDTH-1 downto 0);
— ROM definition
constant ROM: rom_type:=(— 2%11 —by-8
20 —— code x00 (blank space)
"00000000", — 0
"0o0000000", —
"goo000000", —
"00000000", —
25 "00000000", —
"00000000", —
"00000000", —
"00000000", —
"Qo0000000", —
30 "00000000", —
"00000000", —
"00000000", —
"00000000", —
"00000000", —
35 "00000000", —
"00000000", —
— code x01 (smiley face)
"00000000", — 0
"00000000", —
40 "o1111110", —
"10000001t", —
"10100101", —
"10000001", —
"10000001", —
45 "101t1101", —
"10011001", —
"10000001", —
"10000001", —
*01111110", —
50 "QQ0000000", —
"00000000", —
"QQ0000000", —

“ e RO 8 V0N LA W~

* K ok K ok k

* % % %
* %

* * * ¥ x % ¥ *
¥ %X ¥ ¥ x ¥ ¥ x

X % K K K K

DA T A VOONANULANWNS

294 VGA CONTROLLER Ii: TEXT

a 4 row_addr
pixel_y . g
char_addr
a ta
5 font ROM
i character font word
data generation i :
eartiol 7 circuit om_addr © [8
~— font_bit
3 bit_addr
pixel_x -
Figure 13.2 Two-stage text generation circuit.
"00000000", — f
—— code x02
55 . .
)
begin

—— addr register to infer block RAM
process (clk)
60 begin
if (clk’event and clk = ’1’) then
addr_reg <= addr;
end if;
end process;
65 data <= ROM(to_integer (unsigned(addr_reg)));
end arch;

Note that the block RAM-based ROM implementation introduces one-clock-cycle delay,
as discussed in Section 11.4.3.

13.2.3 Basic text generation circuit

The pixel generation circuit generates the pixel values according to the current pixel coor-
dinates (provided by the pixel_x and pixel_y signals) and the external data and control
signals. Pixel generation based on a tile-mapped scheme involves two stages. The first
stage uses the upper bits of the pixel.x and pixel.y signals to generate a tile’s code, and
the second stage uses this code and lower bits to generate the pixel’s value.

The text generation circuit follows this method, and the basic diagram is shown in
Figure 13.2. The screen is treated as a grid of 80-by-30 tiles, each containing an 8-by-
16 font pattern. In the first stage, the pixel x(9 downto 3) and pixel_y(8 downto
4) signals provides the x- and y-coordinates of the current tile location. The character
generation circuit uses these coordinates, combined with other external data, to generate
the value of this tile (labeled char_addr), which corresponds to a character’s ASCII code.
In the second stage, the ASCII code becomes the seven MSBs of the address of the font
ROM and specifies the location of the current pattern. It is concatenated with the four
LSBs of the screen’s y-coordinate [i.e., pixel_y(3 downto 0), labeled row_addr] to
form the complete address (labeled rom_addr) of the font ROM. The output of the font
ROM (labeled font_word) corresponds to an 8-bit row in the pattern. The three LSBs

TEXT GENERATION 295

of the screen’s x-coordinate [i.e., pixel_-x(2 downto 0), labeled bit_addr] specify the
desired pixel location, and an 8-to-1 multiplexer routes the pixel to the output.

13.2.4 Font display circuit

We use a simple font display circuit to verify operation of the font ROM and display all
font patterns on the screen. The 128 patterns are arranged in four rows, which correspond
to the four columns of the ASCII table in Table 7.1. We can obtain each pattern by using
the proper x- and y-coordinates to generate the desired ASCII code, which is labeled the
char.addr signal. The code segment is

char_addr <= pixel_y(5 downto 4) & pixel_x(7 downto 3);

The pixel_x(7 downto 3) signal forms the five LSBs of the ASCII code, and thus 32 (25)
consecutive font patterns will be displayed in a row. The pixel_y(5 downto 4) signal
forms the two MSBs of the ASCII code, and thus four consecutive rows will be displayed.
Since the upper bits of the pixel _x and pixel_y signals are left unspecified, the 32-by-4
region will be displayed repetitively on the screen. An additional code segment is included
to turn on the display for the top-left portion of the screen only. The complete code is shown
in Listing 13.2.

Listing 13.2 Pixel generation of a font display circuit

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity font_test_gen is
5 port(
clk: in std_logic;
video_on: in std_logic;
pixel_x, pixel_y: std_logic_vector (9 downto 0);
rgb_text: out std_logic_vector (2 downto 0)
10)
end font_test_gen;

architecture arch of font_test_gen is
signal rom_addr: std_logic_vector (10 downto 0);
15 signal char_addr: std_logic_vector (6 downto 0);
signal row_addr: std_logic_vector (3 downto 0);
signal bit_addr: std_logic_vector (2 downto 0);
signal font_word: std_logic_vector (7 downto 0);
signal font_bit, text_bit_on: std_logic;
» begin
— instantiate font ROM
font_unit: entity work.font_rom
port map(clk=>clk, addr=>rom_addr, data=>font_word);
—— font ROM interface
25 char_addr<=pixel_y (5 downto 4) & pixel_x(7 downto 3);
row_addr<=pixel_y (3 downto 0);
rom_addr <= char_addr & row_addr;
bit_addr<=pixel_x(2 downto 0);
font_bit <= font_word(to_integer (unsigned(mot bit_addr)));
30 — "on" region limited to top—left corner
text_bit_on <=

296 VGA CONTROLLER II: TEXT

font_bit when pixel_x(9 downto 8)="00" and
pixel_y (9 downto 6)="0000" else

’O’;
35 —— rgb multiplexing circuit
process (video_on,font_bit,text_bit_on)
begin
if video_on=’0’ then
rgb_text <= "000"; ——blank
40 else
if text_bit_on=’1’ then
rgh_text <= "010"; — green
else
rgbh_text <= "000"; — black
n end if;
end if;
end process;
end arch;

The key part of the code is the font ROM interface. For clarity, we define the following
signals for the font ROM, as shown in Figure 13.2:
e char_addr: 7 bits, the ASCII code of the character
e row._addr: 4 bits, the row number in a particular font pattern
e rom_addr: 11 bits, the address of the font ROM; the concatenation of char_addr
and row_addr
e bit_addr: 3 bits, the column number in a particular font pattern
e font_word: 8 bits, a row of pixels of the font pattern specified by rom_addr
e font_bit: 1 bit, one pixel of font_word specified by bit_addr
The connection of these signals follows the diagram in Figure 13.2. The routing of the
font_bit signal is done by a multiplexer, coded as an array with dynamic index:

font_bit <= font_word(to_integer(unsigned(mot bit_addr)));

Note that a row (i.e., a word) in the font ROM is defined with a descending order [i.e., (7
downto 0)]. Since the screen’s x-coordinate is defined in an ascending fashion, in which
the numbers increases from left to right, the order of the retrieved bits must be reversed.
This is achieved by the not operator in the expression.

We need to combine the synchronization circuit and create the top-level description. The
HDL code is shown in Listing 13.3.

Listing 13.3 Top-level description of a font display circuit

library iecee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity font_test_top is
5 port (
clk, reset: in std_logic;
hsync, vsync: out std_logic;
rgb: out std_logic_vector (2 downto 0)
)N
oend font_test_top;

architecture arch of font_test_top is
signal pixel_x, pixel_y: std_logic_vector (9 downto 0);

TEXT GENERATION 297

signal video_on, pixel_tick: std_logic;
15 signal rgb_reg, rgb_next: std_logic_vector (2 downto 0);
begin
—— instantiate VGA sync circuit
vga_sync_unit: entity work.vga_sync
port map(clk=>clk, reset=>reset, hsync=>hsync,
20 vsync=>vsync, video_on=>video_on,
pixel_x=>pixel_x, pixel_y=>pixel.y,
p-tick=>pixel_tick);
— instantiate font ROM
font_gen_unit: entity work.font_test_gen
2 port map(clk=>clk, video_on=>video_on,
pixel_x=>pixel_x, pixel_y=>pixel_y,
rgb_text=>rgb_next);

—— rgb buffer
process (clk)
30 begin

if (clk’event and clk=’1’) then
if (pixel_tick=’1’) then
rgb_reg <= rgb_next;
end if;
3s end if;
end process;
rgb <= rgb_reg;
end arch;

There is subtle timing issue in this circuit. Because of the block RAM implementation,
the font ROM’s output suffers a one-clock-cycle delay. However, since the pixel_tick
signal is asserted every two clock cycles, the pixel_x signal is remained unchanged within
this interval and the corresponding bit (i.e., font_bit) can be retrieved properly. The rgb
multiplexing circuit can use this data, and the desired value is stored to the rgb_reg register
in a timely manner.

13.2.5 Font scaling

In the tile-mapped scheme, we can scale a tile pattern to larger sizes by “enlarging” the
screen pixels. For example, we can scale the 8-by-16 font to the 16-by-32 font by enlarging
the original pixel four times (i.e., expanding one pixel to four pixels). To perform the
scaling, we just need to shift pixel coordinates to the right 1 bit and discard the LSBs of the
pixel_x and pixel.y signals. This can best be explained by an example. Let us repeat
the previous font displaying circuit with enlarged 16-by-32 fonts. The screen can now be
treated as a grid of 40-by-15 tiles. The new font addresses become

row_addr<=pixel_y (4 downto 1);
bit_addr<=pixel_x (3 downto 1);
char_addr<=pixel_y (6 downto 5) & pixel_x(8 downto 4);

The first two statements imply that the same font bit value will be obtained when
pixel_x(0) and pixel_y(0) are "00", "01", "10", and "11", and this effectively enlarges
the original pixel to four pixels. The text_bit_on condition also needs to be modified to
accommodate a larger region:

298 VGA CONTROLLER Ii: TEXT

row_addr
pixel_y(3..0)
pixel_y(8..4) & 12 i
pixel_x(9..3) J
—» addr_a addr_b ta
i ; 4 “_re char_addr
SW . » din_a dout_b 4’_\?_‘_ font ROM
5
- cur_y =1 tile font_word
A s memory - D 7 font_bit
bin(0) — = rom_addr
d >
cursor
delayed pixel_x(2..0) -
bit_addr

Figure 13.3 Text generation circuit with tile memory.

text_bit_on <=
font_bit when pizxel_x(9)="0" and
pixel_y (9 downto 7)="000" else
J O 2 ;
We can apply this scheme to scale up the font even further. Note that the enlarged fonts
may appear jagged because they simply magnify the original pattern and introduce no new
detail.

13.3 FULL-SCREEN TEXT DISPLAY

A full-screen text display, as the name indicates, uses the entire screen to display text
characters. The character generation circuit now contains a tile memory that stores the
ASCII code of each tile. The design of the tile memory is similar to the video memory of
the bit-mapped circuit in Section 12.5. For easy memory access, we can concatenate the x-
and y-coordinates of a tile to form the address. This translates to 12 bits for the 80-by-30
(i.e., 27-by-25) tile screen. Since each tile contains a 7-bit ASCII code, a 212-by-7 memory
module is required. A synchronous dual-port RAM can be used for this purpose. A circuit
with tile memory is shown in Figure 13.3.

Because accessing tile memory requires another clock cycle, retrieving a font pattern
is now increased to two clock cycles. This prolonged delay introduces a subtle timing
problem. Because the pixel _x signal is updated every two clock cycles, its value has
incremented when the font_word value becomes available. Thus, when the bit is retrieved
by the statements

bit_addr<=pixel_x (2 downto 0);
font_bit <= font_word(to_integer (unsigned(not bit_addr)));

the incremented bit_addr is used and an incorrect font bit will be selected and routed to
the output. One way to overcome the problem is to pass the pixel_x signal through two
buffers and use this delayed signal in place of the pixel_x signal.

We use a simple circuit to demonstrate the design of the full-screen tile-mapped scheme.
The circuit reads an ASCII code from a 7-bit switch and places it in the marked location

FULL-SCREEN TEXT DISPLAY 299

of the 80-by-30 tile screen. The conceptual diagram is shown in Figure 13.3. A cursor is
included to mark the current location of entry, where the color is reversed. The cursor
block keeps track of the current location of the cursor. The circuit uses three pushbutton
switches for control. Two buttons move the cursor right and down, respectively. The third
button is for the write operation. When it is pressed, the current value of the 7-bit switch is
written to the tile memory. The HDL code is shown in Listing 13.4.

Listing 13.4 Pixel generation of a full-screen text display

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std. all;

entity text_screen_gen is

5 port(
clk, reset: std_logic;
btn: std_logic_vector (2 downto 0);
sw: std_logic_vector (6 downto 0);
video_on: in std_logic;

10 pixel_x, pixel_y: in std_logic_vector (9 downto 0);
text_rgb: out std_logic_vector (2 downto 0)

)

end text_screen_gen;

5 architecture arch of text_screen_gen is
—— font ROM
signal char_addr: std_logic_vector (6 downto 0);
signal rom_addr: std_logic_vector (10 downto 0);
signal row_addr: std_logic_vector (3 downto 0);
2 signal bit_addr: unsigned(2 downto 0);
signal font_word: std_logic_vector (7 downto 0);
signal font_bit: std_logic;

— tile RAM
signal we: std_logic;
25 signal addr_r, addr_w: std_logic_vector (i1 downto 0);

signal din, dout: std_logic_vector (6 downto 0);
— 80—-by —30 tile map
constant MAX_X: integer :=80;
constant MAX_Y: integer :=30;

30 —— cursor
signal cur_x_reg, cur_x_next: unsigned(6 downto 0);
signal cur_y_reg, cur_y_next: unsigned (4 downto 0);
signal move_x_tick, move_y_tick: std_logic;
signal cursor_on: std_logic;

35 — delayed pixel count
signal pix_x1_reg, pix_yl_reg: unsigned(9 downto 0);
signal pix_x2_reg, pix_y2_reg: unsigned (9 downto 0);
— object output signals
signal font_rgb, font_rev_rgb:

%0 std_logic_vector (2 downto 0);

begin
—— instantiate debounce circuit for two buttons
debounce_unitO: entity work.debounce
port map(clk=>clk, reset=>reset, sw=>btn(0),
45 db_level=>open, db_tick=>move_x_tick);

300

50

65

70

75

80

85

90

95

VGA CONTROLLER li: TEXT

debounce_unitl: entity work.debounce
port map(clk=>clk, reset=>reset, sw=>btn(l),
db_level=>open, db_tick=>move_y_tick);
—— instantiate font ROM
font_unit: entity work.font_rom
port map(clk=>clk, addr=>rom_addr, data=>font_word);
—— instantiate dual—port tile RAM (2712 —by—7)
video_ram: entity work.xilinx_dual_port_ram_sync
generic map(ADDR_WIDTH=>12, DATA_WIDTH=>7)
port map(clk=>clk, we=>we,
addr_a=>addr_w, addr_b=>addr_r,
din_a=>din, dout_a=>open, dout_b=>dout);
— registers
process (clk)
begin
if (clk’event and clk=’1’) then
cur_x_reg <= cur_x_next;
cur_y_reg <= cur_y_next;
pix_xl_reg <= unsigned(pixel_x); — 2—clock delay
pix_x2_reg <= pix_xl_reg;
pix_yl_reg <= unsigned(pixel_y);
pix_y2_reg <= pix_yl_reg;
end if;
end process;
—— tile RAM write
addr_w <=std_logic_vector(cur_y_reg & cur_x_reg);
we <= btn(2);
din <= sw;
— tile RAM read
—— use undelayed coordinates to form tile RAM address
addr_r <=pixel_y (8 downto 4) & pixel_x(9 downto 3);
char_addr <= dout;
—— font ROM
row_addr<=pixel_y (3 downto 0);
rom_addr <= char_addr & row_addr;
— use delayed coordinate to select a bit
bit_addr<=pix_x2_reg(2 downto 0);
font_bit <= font_word(to_integer(mnot bit_addr));
—— new cursor position
cur_x_next <=
(others=>"0’) when move_x_tick=’1’ and — wrap around
cur_x_reg=MAX_X-1 else
cur_x_reg + 1 when move_x_tick=’1’ else
cur_x_reg ;
cur_y_next <=
(others=>’0’) when move_y_tick=’1’ and — wrap around
cur_y_reg=MAX_Y-1 else
cur_y_reg + 1 when move_y_tick=’1’ else
cur_y_reg;
—— object signals
—— green over black and reversed video for curser
font_rgb <="010" when font_bit=’1’ else "000";
font_rev_rgb <="000" when font_bit=’1’ else "010";

FULL-SCREEN TEXT DISPLAY 301

—— use delayed coordinates for comparison
100 cursor_on <=’1’ when pix_y2_reg(8 downto 4)=cur_y_reg and
pix_x2_reg(9 downto 3)=cur_x_reg else
207,
—— rgb multiplexing circuit
process (video_on,cursor_on,font_rgb,font_rev_rgb)

105 begin
if video_on=’0’ then
text_rgb <= "000"; ——blank
else
if cursor_on=’1’ then
110 text_rgb <= font_rev_rgb;
else
text_rgb <= font_rgb;
end if;
end if;
15 end process;
end arch;

The font ROM interface signals are similar to those in Listing 13.2 except that the
char_addr is obtained from the read port of the tile memory. To facilitate the font ROM
access delay, we creat two delayed signals, pix_x2_reg and pix_-y2_reg, from the current
x- and y-coordinates, pixel _x and pixel_y. Note that the undelayed signals, pixel x
and pixel_y, are used to form the address to access the font ROM, but the delayed signal,
pix_x2_reg, is used to obtain the font bit. The instantiation and interface of the dual-port
tile RAM is similar to those of the video RAM in Listing 12.7.

The cursor_on signal is used to identify the current cursor location. The colors of the
font pattern are reversed in this location. Because the font bits are delayed by two clocks,
we use the delayed coordinates, pix_x2 _reg and pix_y2.reg, for comparison.

The delayed font bits also introduce one pixel delay for the final rgb signal. This implies
the overall visible portion of the VGA monitor is shifted to right by one pixel. To correct
the problem, we should revise the vga_sync circuit and use the delayed pix_x2_reg and
pix_y2_reg signals to generate the hsync and vsync signals. Since the shift has little
effect on the overall video quality, we do not make this modification.

The top-level code combines the text pixel generation circuit and the synchronization
circuit and is shown in Listing 13.5.

Listing 13.5 Top-level system of a full-screen text display

library ieee;
use ieee.std_logic_1164. all;
entity text_screen_top is
port(
5 clk,reset: in std_logic;
btn: in std_logic_vector (2 downto 0);
sw: in std_logic_vector (6 downto 0);
hsync, vsync: out std_logic;
rgb: out std_logic_vector (2 downto 0)
10)

end text_screen_top;

architecture arch of text_screen_top is
signal pixel_x, pixel_y: std_logic_vector (9 downto 0);

302 VGA CONTROLLER I TEXT

15 signal video_on, pixel_tick: std_logic;
signal rgb_reg, rgb_mext: std_logic_vector (2 downto 0);
begin
—— instantiate VGA sync circuit
vga_sync_unit: entity work.vga_sync
20 port map(clk=>clk, reset=>reset,
hsync=>hsync, vsync=>vsync,
video_on=>video_on, p_tick=>pixel_tick,
pixel_x=>pixel_x, pixel_y=>pixel_y);
—— instantiate full —screen text generator
25 text_gen_unit: entity work.text_screen_gen
port map(clk=>clk, reset=>reset, btn=>btn, sw=>sw,
video_on=>video_on, pixel_x=>pixel_x,
pixel_y=>pixel_y, text_rgb=>rgb_next);

— rgb buffer
30 process (clk)
begin

if (clk’event and clk=’1’) then
if (pixel_tick=’1’) then
rgb_reg <= rgb_next;
35 end if;

end if;

end process;

rgh <= rgb_reg;

end arch;

13.4 THE COMPLETE PONG GAME

We create a free-running graphic circuit for the pong game in Section 12.4.3. In this section,
we add a text interface to display scores and messages, and design a top-level control FSM
that integrates the graphic and text subsystems and coordinates the overall circuit operation.
The rules and operations of the complete game are:
e When the game starts, it displays the text of the rule.

After a player presses a button, the game starts.
The player scores a point each time hitting the ball with the paddle.
e When the player misses the ball, the game pauses and a new ball is provided. Three

balls are provided in each session.
e The score and the number of remaining balls are displayed on the top of the screen.
o After three misses, the game is ended and displays the end-of-game message.

In the following subsections, we first discuss the text subsystem, graphic subsystem, and
auxiliary counters, and then derive a top-level FSM to coordinate and control the overall
operation. The conceptual diagram is shown in Figure 13.4.

13.4.1 Text subsystem

The text subsystem of the pong game consists of four text messages:

e Display the score as "Scores: DD" and the number of remaining balls as"Ball: D"
in 16-by-32 font on top of the screen.

THE COMPLETE PONG GAME 303

hsync hsync
vsync vsync
video_on
pixel_x
pixel_y b
> vga_sync €—| pixel_x hit |—p rgb
pixel_y miss —p rgb
mux 9
btn * btn
graph_still
graph_rgb
graph_on
bin > pong_graph
graph_still
—» hit state_reg
—»| miss
pixel_x
d_inc pixel_y
d_clr m100_ digO
[> counter digh
control text_rgb
FSM ball text_on
mu——————-J—_—____
timer_up pong_text
) T
timer_start timer

Figure 13.4 Top-level block diagram of the complete pong game.

o Display the rule message "Rules: Use two buttons to move paddle up or
down." in regular font at the beginning of the game.

o Display the "PONG" logo in 64-by-128 font on the background.

¢ Display the end-of-game message "Game Over" in 32-by-64 font at the end of the
game.

A sketch of the first three messages is shown in Figure 13.5. The end-of-game message is
overlapped with the rule message and not included.

Since these messages use different font sizes and are displayed at different occasions,
they cannot be treated as a single screen. We treat each text message as an individual object
and generate the on status signal and the font ROM address. For example, the logo message
segment is

logo_on <=
’1’ when pix_y(9 downte 7)=2 and
(3<= pix_x(9 downto 6) and pix_x(9 downto 6)<=6) else
’0’;
row_addr_1 <= std_logic_vector(pix_y(6 downto 3));
bit_addr_1 <= std_logic_vector(pix_x(5 downto 3));
with pix_x(8 downto 6) select
char_addr_1 <=
"1010000" when "O011", — P x50
"1001111" when "100", — O x4f
"1001110" when "101", — N x4e

304 VGA CONTROLLER II; TEXT

Score: 00 Ball: 3

Rule:

use two buttons
to move paddle
up and down

Figure 13.5 Text of the pong game.

"1000111" when others; —G x47

The logo_on signal indicates that the current scan is in the logo region and the corresponding
text should be “turned on.” The other statements specify the message content and the font
ROM connections to generate the scaled 32-by-64 characters. The other three segments are
similar. A separate multiplexing circuit examines various on signals and routes one set of
addresses to the font ROM.

The text subsystem receives the score and the number of remaining balls via the ball,
dig0, and digl ports. It outputs the rgb information via the rgb_text port and outputs
the on status information via the 4-bit text_on port, which is the concatenation of four
individual on signals. The complete code is shown in Listing 13.6.

Listing 13.6 Text subsystem for the pong game

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity pong_text is
s port(
clk, reset: in std_logic;
pixel_x, pixel_y: in std_logic_vector (9 downto 0);
dig0, digl: in std_logic_vector (3 downto 0);
ball: in std_logic_vector (1 downto 0);
0 text_on: out std_logic_vector (3 downto 0);
text_rgb: out std_logic_vector (2 downto 0)
)
end pong_text;

s architecture arch of pong_text is
signal pix_x, pix_y: unsigned(9 downto 0);
signal rom_addr: std_logic_vector (10 downto 0);
signal char_addr, char_addr_s, char_addr.l, char_addr_r,
char_addr_o: std_logic_vector (6 downto 0);
20 signal row_addr, row_addr_s, row_addr_l,row_addr_r,
row_addr_o: std_logic_vector (3 downto 0);
signal bit_addr, bit_addr_s, bit_addr_1l,bit_addr_r,
bit_addr_o: std_logic_vector (2 downto 0);

25

30

35

45

50

55

65

70

75

THE COMPLETE PONG GAME

signal font_word: std_logic_vector (7 downto 0);
signal font_bit: std_logic;
signal score_on, logo_on, rule_omn, over_on: std_logic;

signal

rule_rom_addr: unsigned(5 downto 0);

type rule_rom_type is array (0 to 63) of
std_logic_vector (6 downto 0);

— rule

text ROM definition

constant RULE_ROM: rule_rom_type :=

(

— row 1

"1010010"
"1010101"
"1001100"
"1000101"
"0i111010"
"0000000"
"0000000"
"0000000"
"0000000"
"0000000"
"0000000"
"0000000"
0000000
"0000000"
"0000000"
"0000000"
— row 2

"1010101"
"1110011"
"1100101"
"0000000"
"1110100"
"1110111"
"1101111"
"Q000000"
*1100010"
"1110101"
"1110100"
"1110100"
1101114
"1101110"
"1110011"
"0000000"
— row 3

"1110100"
"1101111"
"0000000™"
"1101101"
"1101111"
"1110110"
*1100101"
"0000000™"
"1110000"

-

B o i

S

R B I s

o < o I

305

306

90

95

105

110

s

120

125

VGA CONTROLLER II: TEXT

"1100001", —
"1100100", —
"1100100", —
"1101100", —
“1100101", —
"0000000", —
"0000000", —
— row 4
"1110101", — u
"1110000", — p
"0000000", —
"1100001", — a
"{1101t10", —
"1100100", —
"0000000", —
"1100100", —
"1101111", —
"1110111", —
"1101110", ——
"0101110", — .
"0000000", —
"0000000", —
"g000000", —
"0000000" ——

& ~ Qa8

=

Q

X T O O,

)

begin

pix_x <= unsigned(pixel_x);
pix_y <= unsigned(pixel_y);
— instantiate font ROM
font_unit: entity work.font_rom
port map(clk=>clk, addr=>rom_addr, data=>font_word);

—— Sscore region

— — display score and ball at top left
— — text: "Score:DD Ball:D"

— — scale to 16—by—32 font

score_on <=

’1° when pix_y (9 downto 5)=0 and

pix_x(9 downto 4)<16 else

;o);
row_addr_s <= std_logic_vector(pix_y(4 downto 1));
bit_addr_s <= std_logic_vector (pix_x(3 downto 1));
with pix_x(7 downto 4) select

char_addr_s <=

"1010011" when "0000", — § x53
"1100011" when "0001", — ¢ x63
"1101111" when "0010", — o x6f
"1110010" when "0011", — r x72
"1100101" when "0100", — e x65

"0111010" when "Q101", — : x3a
"011" & digl when "0110", — digit 10

130

135

145

150

155

165

170

175

180

THE COMPLETE PONG GAME

"011" & dig0 when "0111", —— digit I
"0000000" when "1000",
"0000000" when "1001",

"1000010" when "1010", — B x42
"1100001" when "1011", — a x61
"1101100" when "1100", — [x6¢
"1101100" when "1101", — | x6¢c

"0111010" when "1110", —
"01100" & ball when others;

—— logo region:

— — display logo "PONG" at top center
—_— — used as background

— — scale to 64—by—128 font

logo_on <=

’1’ when pix_y (9 downto 7)=2 and

(3<= pix_x(9 downto 6) and pix_x (9 downto 6)<=6)

,O’;
row_addr_1 <= std_logic_vector(pix_y(6 downto 3));
bit_addr_1 <= std_logic_vector(pix_x(5 downto 3));
with pix_x (8 downto 6) select

char_addr_1 <=

"1010000" when "011", — P x50
"1001111" when "100", — O x4f
"1001110" when "101", — N x4e

"1000111" when others; —G x47

— rule region

— — display rule at center

—_ — 4 lines , 16 characters each line
—_ — rule text:

— Rule:

—_ Use two buttons

- to move paddle

—_— up and down

rule_on <= ’1’ when pix_x (9 downte 7) = "010" and
pix_y (9 downto 6)= "0010" else
’o);
row_addr_r <= std_logic_vector(pix_y (3 downto 0));
bit_addr.r <= std.logic_vector(pix_x(2 downto 0));
rule_rom_addr <= pix_y(5 downto 4) & pix_x(6 downto 3);
char_addr_r <= RULE_ROM(to_integer (rule_rom_addr));

—— game over region
—— — display "Game Over" at center
— — scale to 32—by—64 fonts

over_on <=
’1’ when pix_y(9 downto 6)=3 and

307

else

5<= pix_x(9 downto 5) and pix_x(9 downto 5)<=13 else

308

185

195

205

215

220

225

230

235

VGA CONTROLLER Ii: TEXT

,OJ;
row_addr_o <= std_logic_vector(pix_y(5 downto 2));
bit_addr_o <= std_logic_vector(pix_x(4 downto 2));
with pix_x (8 downto 5) select
char_addr_o <=

"1000111" when "0101", — G x47
"1100001" when "0110", —— a x61
"1101101" when "0111", — m x6d
"1100101" when "1000", — e x65
"0000000" when "1001", —

"1001111" when "1010", — O x4f
"1110110" when "1011", — v x76
"1100101" when "1100", — e x65
"1110010" when others; — r x72

— mux for font ROM addresses and rgbh

process (score_on,logo_on,rule_on,pix_x,pix_y,font_bit,
char_addr_s,char_addr_1l,char_addr_r,char_addr_o,
row_addr_s ,row_addr_1,row_addr_r ,row_addr_o,
bit_addr_s,bit_addr_1,bit_addr_r,bit_addr_o)
begin
text_rgb <= "110"; —— yellow background
if score_on=’1’ then
char_addr <= char_addr_s;
row_addr <= row_addr_s;
bit_addr <= bit_addr_s;
if font_bit=’1’ then
text_rgb <= "001";
end if;
elsif rule_on=’1’ then
char_addr <= char_addr_r;
row_addr <= row_addr_r;
bit_addr <= bit_addr_r;
if font_bit=’1’ then
text_rgb <= "001";
end if;
elsif logo_on=’1’ then
char_addr <= char_addr_1;
row_addr <= row_addr_1l;
bit_addr <= bit_addr_1;
if font_bit=’1’ then
text_rgb <= "011";
end if;
else — game over
char_addr <= char_addr_o;
row_addr <= row_addr_o;
bit_addr <= bit_addr_o;
if font_bit=’1’ then
text_rgb <= "001";
end if;
end if;
end process;

THE COMPLETE PONG GAME 309

text_on <= score_on & logo_on & rule_on & over_on;

— font ROM interface

240 rom_addr <= char_addr & row_addr;
font_bit <= font_word(to_integer (unsigned(mot bit_addr)));
end arch;

The structure of each segment is similar. Because the messages are short, they are
coded with the regular ROM template. Since no clock signal is used, a distributed RAM
or combinational logic should be inferred. Generation of the two-digit score depends on
the two 4-bit external signals, dig0 and digl. Note that the ASCII codes for the digits
0,1,...,9, are 3016, 3116, - .., 3916 We can generate the char_addr signal simply by
concatenating "011" in front of dig0 and dig1.

13.4.2 Modified graphic subsystem

To accommodate the new top-level controller, the graphic circuit in Section 12.4.3 requires
several modifications:

e Addagra_still (for “still graphics”) control signal. When it is asserted, the vertical
bar is placed in the middle and the ball is placed at the center of the screen without
movement.

e Add the hit and miss status signals. The hit signal is asserted for one clock cycle
when the paddle hits the ball. The miss signal is asserted when the paddle misses
the ball and the ball reaches the right border.

e Add a graph_on signal to indicate the on status of the graph subsystem.

The modified portion of the code is shown in Listing 13.7.

Listing 13.7 Modified portion of a graph subsystem for the pong game

— new ball position
ball_x_next <=
to_unsigned ((MAX_X)/2,10) when gra_still=’1’ else
5 ball_x_reg + ball_vx_reg when refr_tick=’1’ else
ball_x_reg ;
ball_y_next <=
to_unsigned ((MAX_Y)/2,10) when gra_still=’1’ else
ball_y_reg + ball_vy_reg when refr_tick=’1’ else
10 ball_y_reg ;
—— new ball velocity
process (ball_vx_reg,ball_vy_reg,ball_y_t,ball_x_1,ball_x_r,
ball_y_t,ball_y_b,bar_y_t ,bar_y_b,gra_still)
begin
15 hit <=’07;
miss <=’07;
ball_vx_next <= ball_vx_reg;
ball_vy_next <= ball_vy_reg;
if gra_still="1’ then ——initial velocity
2 ball_vx_next <= BALL_V_N;
ball_vy_next <= BALL_V_P;
elsif ball_y_t < 1 then —— reach top

310 VGA CONTROLLER Il TEXT

ball_vy_next <= BALL_V_P;

elsif ball_y_b > (MAX_Y-1) then —— reach bottom
25 ball_vy_next <= BALL_V_N;
elsif ball_x_1 <= WALL_X_R then — reach wall
ball_vx_next <= BALL_V_P; —— bounce back

elsif (BAR_X_L<=ball_x_r) and (ball_x_r<=BAR_X_R) and
(bar_y_t<=ball_y_b) and (ball_y_t<=bar_y_b) then

30 —— reach x of right bar, a hit
ball_vx_next <= BALL_V_N; — bounce back
hit <= 717,
elsif (ball_x_r>MAX_X) then —— reach right
miss <= ’1°; — a miss
35 end if;

end process;

graph_on <= wall_on or bar_on or rd_ball_on;

13.4.3 Auxiliary counters

The top-level design requires two small utility modules, m100_counter and timer, to
facilitate the counting. The m100_counter module is a two-digit decade counter that
counts from 00 to 99 and is used to keep track of the scores of the game. Two control
signals, d_inc and d_clr, increment and clear the counter, respectively. The code is shown

in Listing 13.8.

Listing 13.8 Two-digit decade counter

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity mi00_counter is
5 port
clk, reset: in std_logic;
d_inc, d_clr: in std_logic;
dig0,digl: out std_logic_vector (3 downto 0)
) .

3
vend mi00_counter;

architecture arch of mi100_counter is
signal digO_reg, digl_reg: unsigned (3 downto 0);
signal digO_next, digl_next: unsigned (3 downto 0);
is begin
—— registers
process (clk,reset)
begin
if reset=’1’ then
20 digl_reg <= (others=>’0’);
digO_reg <= (others=>’07");
elsif (clk’event and clk=’1’) then
digl_reg <= digl_next;
digO_reg <= digO_next;
25 end if;

THE COMPLETE PONG GAME 311

end process;
—— next—state logic for the decimal counter
process (d_clr ,d_inc,digl_reg,digO_reg)
begin
30 digO_next <= digO_reg;
digl_next <= digl_reg;
if (d_clr=’1’) then
digO_next <= (others=>’0’);
digl_next <= (others=>’0’);
35 elsif (d_inc=’1’) then
if digO0_reg=9 then
digO_next <= (others=>’0’);
if digl_reg=9 then — 10th digit
digl_next <= (others=>’0’);

40 else
digl_next <= digl_reg + 1;
end if;
else — dig0 not 9
digO_next <= diglO_reg + 1;
45 end if;
end if;

end process;

dig0 <= std_logic_vector (diglO_reg);

digl <= std_logic_vector(digl_reg);
so end arch;

The timer module uses the 60-Hz tick, timer_tick, to generate a 2-second interval.
Its purpose is to pause the video for a small interval between transitions of the screens. It
starts counting when the timer_start signal is asserted and activates the timer _up signal
when the 2-second interval is up. The code is shown in Listing 13.9.

Listing 13.9 Two-second timer

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity timer is
5 port (
clk, reset: im std_logic;
timer_start, timer_tick: im std_logic;
timer_up: out std_logic
);

o end timer;

architecture arch of timer is
signal timer_reg, timer_next: unsigned (6 downto 0);
begin

15 — registers
process (clk, reset)
begin

if reset=’1’ then
timer_reg <= (others=>’17);
20 elsif (clk’event and clk=’1’) then
timer_reg <= timer_next;

312

20

VGA CONTROLLER iI: TEXT

end if;
end process;
—— next—state logic
process (timer_start ,timer_reg,timer_tick)
begin

if (timer_start=’1’) then

timer_next <= (others=>’1’);
elsif timer_tick=’1’ and timer_reg/=0 then

timer_next <= timer_reg - 1;
else

timer_next <= timer_reg;
end if;

end process;
—— output logic
timer_up <=’1’ when timer_reg=0 else ’0’;

end arch;

13.4.4 Top-level system

The top-level system of the pong game consists of the previously designed modules, includ-
ing video synchronization circuit, graphic subsystem, text subsystem, and utility counters,
as well as a control FSM and an rgb multiplexing circuit. The block diagram is shown in
Figure 13.4.

The control FSM monitors overall system operation and coordinates the activities of the
text and graphic subsystems. Its ASMD chart is shown in Figure 13.6. The FSM has four
states and operates as follows:

o Initially, the FSM is in the newgame state. The game starts when a button is pressed

and the FSM moves to the play state.

In the play state, the FSM checks the hit and miss signals continuously. When the
hit signal is activated, the d_inc signal is asserted for one clock cycle to increment
the score counter. When the miss signal is asserted, the FSM activates the 2-second
timer, decrements the number of the balls by 1, and examines the number of remaining
balls. Ifitis zero, the game is ended and the FSM moves to the over state. Otherwise,
the FSM moves to the newball state.

The FSM waits in the newball state until the 2-second interval is up (i.e., when the
timer_up signal is asserted) and a button is pressed. It then moves to the play state
to continue the game.

The FSM stays in the over state until the 2-second interval is up. It then moves to
the newgame state for a new game.

The rgb multiplexing circuit routes the text_rgb or graph_rgb signals to output ac-
cording to the text_on and graphic_on signals. The key segment is

if (text_on(3)=’1’) or
(state_reg=newgame and text_on(1)=’1’) or
(state_reg=over and text_on(0)=’1’) then
rgb_next <= text_rgb;

elsif graph_on=’1’ then — display graph
rgb_next <= graph_rgb;
elsif text_on(2)=’1’ then — display logo

rgb_next <= text_rgb;

THE COMPLETE PONG GAME

default : gra_still <= 1

newgame vy

ball « 3
d_clr<=1

F bin/=00 !
~ |

T

{ ball —ball-1)

gra_still <=0

d_inc <= 1

ball — bali - 1
timer_start <=1

|

over i newball

¢

timer_up=1
and btn/=00

Figure 13.6 ASMD chart of the pong controller.

313

314 VGA CONTROLLER Ii: TEXT

else
rgb_next <= "110"; —— yellow background
end if;

The text_on(3)="1" expression is the condition for the scores, which is always displayed.
The text_on(1)="1’ expression is the condition for the rule, which is displayed only
when the FSM is in the newgame state. Similarly, the end-of-game message, whose status
is indicated by the text_on(0) signal, is displayed only when the FSM is in the over
state. The logo, whose status is indicated by the text_on(2) signal, is used as part of the
background and is displayed only when no other on signal is asserted.

The complete code is shown in Listing 13.10.

Listing 13.10 Top-level system for the pong game

library ieece;
use ieee.std_logic_1164. all;
use ieee.numeric_std.all;
entity pong_top is
5 port(
clk, reset: in std_logic;
btn: in std_logic_vector (1 downto 0);
hsync, vsync: out std_logic;
rgb: out std_logic_vector (2 downto 0)
10)5
end pong_top;

architecture arch of pong_top is

type state_type is (newgame, play, newball, over);

is signal video_on, pixel_tick: std_logic;
signal pixel_x, pixel_y: std_logic_vector (9 downto 0);
signal graph_on, gra_still, hit, miss: std_logic;
signal text_on: std_logic_vector (3 downto 0);
signal graph_rgb, text_rgb: std_logic_vector (2 dewnto 0);

20 signal rgb_reg, rgb_next: std_logic_vector (2 downto 0);
signal state_reg, state_next: state_type;
signal dig0, digl: std_logic_vector (3 downto 0);
signal d_inc, d_clr: std_logic;
signal timer_tick, timer_start, timer_up: std_logic;

25 signal ball_reg, ball_next: unsigned(i downto 0);
signal ball: std_logic_vector (1 downto 0);
begin

—— instantiate video synchronization unit
vga_sync_unit: entity work.vga_sync
30 port map(clk=>clk, reset=>reset,
hsync=>hsync, vsync=>vsync,
pixel_x=>pixel_x, pixel_y=>pixel_y,
video_on=>video_on, p_tick=>pixel_tick);
— instantiate text module
3 ball <= std_logic_vector(ball_reg); ——type conversion
text_unit: entity work.pong_text
port map(clk=>clk, reset=>reset,
pixel_x=>pixel_x, pixel_y=>pixel_y,
dig0=>dig0d, digi=>digl, ball=>ball,
40 text_on=>text_on, text_rgb=>text_rgb);

45

50

65

70

75

80

85

THE COMPLETE PONG GAME

—— instantiate graph module
graph_unit: entity work.pong_graph
port map(clk=>clk, reset=>reset, btn=>btn,
pixel_x=>pixel_x, pixel_y=>pixel_y,

gra_still=>gra_still ,hit=>hit, miss=>miss,

graph_on=>graph_on,rgbh=>graph_rgb);
—— instantiate 2—sec timer
timer_tick <= —60—-Hz tick
1’ when pixel_x="0000000000" and
pixel_y="0000000000" else
10 ;
timer_unit: entity work.timer
port map{(clk=>clk, reset=>reset,
timer_tick=>timer_tick,
timer_start=>timer_start,
timer_up=>timer_up);

—— instantiate 2—digit decade counter
counter_unit: entity work.miOO_counter
port map(clk=>clk, reset=>reset,

d_inc=>d_inc, d_clr=>d_clr,
dig0=>dig0, digl=>digl);
— vregisters
process (clk,reset)
begin
if reset=’1’ then
state_reg <= newgame;
ball_reg <= (others=>’0’);
rgb_reg <= (others=>’0");
elsif (clk’event and clk=’1’) then
state_reg <= state_next;
ball_reg <= ball_next;
if (pixel_tick=’1’) then
rgb_reg <= rgb_next;
end if;
end if;
end process;
—— fsmd next—state logic
process (btn ,hit ,miss,timer_up,state_reg,
ball_reg,ball_next)
begin
gra_still <= ’17;
timer_start <=’0’;
d_inc <= ’07;
d_clr <= ’07;
state_next <= state_reg;
ball_next <= ball_reg;
case state_reg is
when newgame =>

ball_next <= "11"; —— three balls
d_clr <= ’1°’; —— clear score
if (btn /= "00") then — button pressed

state_next <= play;
ball_next <= ball_reg - 1;

315

316 VGA CONTROLLER II: TEXT

end if;
95 when play =>
gra_still <= ’07’; — animated screen
if hit=’1’ then
d_inc <= 17, —— increment score
elsif miss=’1’ then
100 if (ball_reg=0) then
state_next <= over;
else
state_next <= newball;
end if;
105 timer_start <= ’1’; ——2—sec timer
ball_next <= ball_reg - 1;
end if;

when newball =>
— wait for 2 sec and wuntil button pressed

no if timer_up=’i’ and (btn /= "00") then
state_next <= play;
end if;

when over =>
—— wait for 2 sec to display game over

1s if timer_up=’1i’ then
state_next <= nevgame;
end if;
end case;
end process;
120 — rgb multiplexing circuit

process (state_reg,video_on,graph_on,graph_rgb,
text_on,text_rghb)

begin
if video_on=’0’ then
125 rgb_next <= "000"; — blank the edge/retrace
else
—— display score, rule or game over
if (text_on(3)=’1") or
(state_reg=newgame and text_on(1)=’1’) or —— rule
130 (state_reg=over and text_on(0)=’1’) then
rgb_next <= text_rgb;
elsif graph_on=’1’ then — display graph
rgb_next <= graph_rgb;
elsif text_on(2)=’1> then —— display logo
135 rgb_next <= text_rgb;
else
rgb_next <= "110"; — yellow background
end if;
end if;
1490 end process;

rgb <= rgb_reg;
end arch;

BIBLIOGRAPHIC NOTES 317

13.5 BIBLIOGRAPHIC NOTES

Several other character fonts are available. Rapid Prototyping of Digital Systems by James
O. Hamblen et al. uses a compact 64-character 8-by-8 font set. The tile-mapped scheme
is not limited to the text display. It is widely used in the early video game. The article
“Computer Graphics During the 8-bit Computer Game Era” by Steven Collins (ACM SIG-
GRAPH, May 1998) provides a comprehensive review of the history and design techniques
of the tile-based game.

13.6 SUGGESTED EXPERIMENTS

13.6.1 Rotating banner

A rotating banner on the monitor screen moves a line from right to left and then wraps
around. It is similar to the Window’s Marquee screen saver. Let the text on the banner
be “Hello, FPGA World.” The banner should be displayed in four different font sizes and
can travel at four different speeds. The font size and speed are controlled by four switches.
Derive the HDL description and then synthesize and verify operation of the circuit.

13.6.2 Underline for the cursor

The full-screen text display circuit in Section 13.3 uses reversed color to indicate the current
cursor location. Modify the design to use an underline to indicate the cursor location. Derive
the HDL description and then synthesize and verify operation of the circuit.

13.6.3 Dual-mode text display

It is sometimes better for text to be displayed on a “vertical” screen. This can be done by
turning the monitor 90 degrees and resting it on its side. Design this circuit as follows:

1. Modify the full-screen text display circuit in Section 13.3 for a vertical screen.

2. Merge the normal and vertical designs to create a “dual-mode” text display. Use a
switch to select the desired mode.

3. Derive the HDL description and then synthesize and verify operation of the circuit.

13.6.4 Keyboard text entry

Instead of switches and buttons, it is more natural to use a keyboard to enter text. We can
use the four arrow keys to move the cursor and use the regular keys to enter the characters.
Use the keyboard interface discussed in Section 8.4 to design the new circuit. Derive the
HDL description and then synthesize and verify operation of the circuit.

13.6.5 UART terminal

The UART terminal receives input from the UART port and displays the received characters
on a monitor. When connected to the PC’s serial port, it should echo the text on Window’s
HypterTerminai. The detailed specifications are:

e A cursor is used to indicate the current location.
o The screen starts a new line when a “carriage return” code (0d;¢) is received.

318 VGA CONTROLLER II: TEXT

i

(a) Tile patterns

sampledvalves 0 0 0 1 1 1 1 0 0 0 O

pattern code

.

0 —
0 g =

stored | 1 —_—
codes ﬁ LTI 00
_ 00 o

(b) Encoding of sampled values

Figure 13,7 Tile patterns and encoding of square wave.

e A line wraps around (i.e., starts a new line) after 80 characters.
e When the cursor reaches the bottom of the screen (i.e., the last line), the first line will
be discarded and all other lines move up (i.e., scroll up) one position.

Derive the HDL description and then synthesize and verify operation of the circuit.

13.6.6 Square wave display

We can draw a square wave by using four simple tile patterns shown in Figure 13.7(a).
Follow the procedure of a full-screen text display in Section 13.3 to design a full-screen
wave editor:

1. Let the tile size be 8 columns by 64 rows. Create a patiern ROM for the four patterns.

2. Calculate the number of tiles on a 640-by-480 resolution screen and derive the proper
configuration for the tile memory.

3. Use three pushbuttons for control and a 2-bit switch to enter the pattern.

4. Derive the HDL description and then synthesize and verify operation of the circuit.

13.6.7 Simple four-trace logic analyzer

A logic analyzer displays the waveforms of a collection of digital signals. We want to
design a simple logic analyzer that captures the waveforms of four input signals in “free-
running” mode. Instead of using a trigger pattern, data capture is initiated with activation of
a pushbutton switch. For simplicity, we assume that the frequencies of the input waveform
are between 10 kHz and 100 kHz. The circuit can be designed as follows:

1. Use a sampling tick to sample the four input signals. Make sure to select a proper rate
so that the desired input frequency range can be displayed properly on the screen.

2. Forapoint in the sampled signal, its value can be encoded as a tile pattern by including
the value of the previous point. For example, if the sampled sequence of one signal is
"00001111000", the tile patterns become "00 000001 11 11 11 10 00 00", as shown
in Figure 13.7(b).

3. Follow the procedure of the preceding square wave experiment to design the tile
memory and video interface to display the four waveforms being stored .

4. Derive the HDL description and then synthesize the circuit.

SUGGESTED EXPERIMENTS 319

To verify operation of the circuit, we can connect four external signals via headers around
the prototyping board. Alternatively, we can create a top-level test module that includes a
4-bit counter (say, a mod-10 counter around 50 kHz) and the logic analyzer, resynthesize
the circuit, and verify its operation.

13.6.8 Complete two-player pong game

The free-running two-player pong game is described in Experiment 12.7.6. Follow the
procedure of the pong game in Section 13.4 to derive the complete system. This should
include the design of a new text display subsystem and the design of a top-level FSM
controller. Derive the HDL description and then synthesize and verify operation of the
circuit.

13.6.9 Complete breakout game

The free-running breakout game is described in Experiment 12.7.7. Follow the procedure
of the pong game in Section 13.4 to derive the complete system. This should include the
design of a new text display subsystem and the design of a top-level FSM controller. Derive
the HDL description and then synthesize and verify operation of the circuit.

This Page Intentionally Left Blank

PART lii

PICOBLAZE
MICROCONTROLLERXILINX SPECIFIC

