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(a) Diagram of a seven-segment LED display 

(b) Hexadecimal digit patterns 

Figure 3.5 Seven-segment LED display and hexadecimal patterns. 

3.7 DESIGN EXAMPLES 

3.7.1 

The sketch of a seven-segment LED display is shown in Figure 3.5(a). It consists of seven 
LED bars and a single round LED decimal point. On the prototyping board, the seven- 
segment LED is configured as active low, which means that an LED segment is lit if the 
corresponding control signal is '0'. 

A hexadecimal digit to seven-segment LED decoder treats a 4-bit input as a hexadecimal 
digit and generates appropriate LED patterns, as shown in Figure 3.5(b). For completeness, 
we assume that there is also a 1-bit input, dp, which is connected directly to the decimal 
point LED. The LED control signals. dp, a, b, c, d. e, f ,  and g, are grouped together as a 
single 8-bit signal, sseg. The code is shown in Listing 3.12. It uses one selected signal 
assignment statement to list all the desired patterns for the seven LSBs of the sseg signal. 
The MSB is connected to dp. 

Hexadecimal digit to seven-segment LED decoder 

Listing 3.12 Hexadecimal digit to seven-segment LED decoder 

l i b r a r y  ieee; 
u s e  ieee. std-logic-1164. a l l  ; 
e n t i t y  hex-to-sseg i s  

p o r t  ( 
hex: i n  std-logic-vector (3 downto 0)  ; 
dp: i n  std-logic; 
sseg: o u t  std-logic-vector (7 downto 0 )  

1 ;  
end hex-to-sseg; 

a r c h i t e c t u r e  arch of hex-to-sseg i s  
b e g i n  

I {I 

w i t h  hex s e l e c t  
sseg(6 downto 0 )  <= 

15 'I 0000001 I' when 'I 0000 I' , 
I' 1 0 0 1 1 1 1 I' when " 0 0 0 1 'I , 
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'I 0 0  100 10 'I when I' 00 10 I' , 
'I 0 0 0 0 1 10 'I when 'I 0 0 1 1 , 
'I 1 0 0 1 1 0 0 when I' 0 1 0 0 'I , 
' I  0 100 100 'I when 'I 0 10 1 'I , 
'I 0 10 0 0 0 0 I' when ' I  0 1 10 I' , 
'I 0 0 0 1  I 1  1 'I when It 0 1  I 1  'I , 
" 0 0 0 0 0 0 0 ~ ~  when " 1 0 0 0 " ,  
'I 0 0 0 0 1 0 0 I '  when 'I 1 0 0 1 I' , 
" 0 0 0 1 0 0 0 "  when " 1 0 1 0 " ,  ---a 
" 1 1 0 0 0 0 0 "  when "1011", -4 
"0110001"  when " I l O O " ,  --c 
" 1 0 0 0 0 1 0 "  when " 1 1 0 1 " ,  --d 
" 0 1 1 0 0 0 0 "  when " I l l O " ,  ---e 

in " 0 1 1 1 0 0 0 "  when o t h e r s  ; --f 
sseg(7) <= d p ;  

end arch; 

There are four seven-segment LED displays on the prototyping board. To save the 
number of FPGA chip's I/O pins, a time-multiplexing scheme is used. The block diagram 
of the time-multiplexing module, disp-mux, is shown in Figure 3.6(a). The inputs are inO, 
inl, in2, and in3, which correspond to four 8-bit seven-segment LED patterns, and the 
outputs are an, which is a 4-bit signal that enables the four displays individually, and sseg, 
which is the shared 8-bit signal that controls the eight LED segments. The circuit generates 
a properly timed enable signal and routes the four input patterns to the output alternatively. 
The design of this module is discussed in Chapter 4. For now, we just treat it as a black box 
that takes four seven-segment LED patterns, and instantiate it in the code. 

Testing circuit We use a simple 8-bit increment circuit to verify operation of the decoder. 
The sketch is shown in Figure 3.6(b). The s w  input is the 8-bit switch of the prototyping 
board. It is fed to an incrementor to obtain sw+l. The original and incremented s w  signals 
are then passed to four decoders to display the four hexadecimal digits on seven-segment 
LED displays. The code is shown in Listing 3.13. 

Listing 3.13 Hex-to-LED decoder testing circuit 

l i b r a r y  ieee; 
u s e  ieee.std-logic-ll64.all; 
use 
e n t i t y  hex-to-sseg-test i s  

ieee . numeric-std. a l l  ; 

5 p o r t (  
clk: i n  std-logic; 
s w :  i n  std-logic-vector ( 7  downto 0) ; 
an: o u t  std-logic-vector (3 downto 0) ; 
sseg : o u t  std-logic-vector (7  downto 0 )  

l o  ) ;  
end hex-to-sseg-test; 

a r c h i t e c t u r e  arch of hex-to-sseg-test i s  
s i g n a l  inc : std-logic-vector (7 downto 0) ; 

I (  s i g n a l  l e d 3 ,  led2, led1 , ledO: std-logic-vector (7 downto 0) ; 
b e g i n  

-_ i n c r e m e n t  i n p u t  
inc <= std-logic-vector(unsigned(sw) + 1); 
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Figure 3.6 LED time-multiplexing module and decoder testing circuit. 
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2 0  -- i n s t a n t i a t e  f o u r  i n s t a n c e s  of h e x  d e c o d e r s  
__ i n s t a n c e  f o r  4 LSBs  of  i n p u t  
s s e g - u n i t - 0 :  e n t i t y  work .  h e x - t o - s s e g  

-_ i n s t a n c e  f o r  4 MSBs of i n p u t  
2 5  s s e g - u n i t - 1  : e n t i t y  work .  h e x - t o - s s e g  

p o r t  m a p ( h e x = > s w ( 3  downto  0)  , dp = > ' O ' ,  s s e g = > l e d O ) ;  

p o r t  m a p ( h e x = > s w ( 7  downto  4 ) ,  dp = > ' O ' ,  s s e g = > l e d l ) ;  
-- i n s t a n c e  f o r  4 L S B s  o f  i n c r e m e n t e d  v a l u e  
s s e g - u n i t - 2 :  e n t i t y  work .  h e x - t o - s s e g  

p o r t  m a p ( h e x = > i n c ( 3  downto O ) ,  dp =>'1', s s e g = > l e d 2 ) ;  
20 -- i n s t a n c e  for 4 MSBs of  i n c r e m e n t e d  v a l u e  

s s e g - u n i t - 3 :  e n t i t y  work .  h e x - t o - s s e g  
p o r t  m a p ( h e x = > i n c ( 7  downto 4 ) ,  dp = > ' 1 ' ,  s s e g = > l e d 3 ) ;  

__ i n s t a n t i a t e  7 - s e g  LED d i s p l a y  t i m e - m u l t i p l e x i n g  m o d u l e  
15 d i s p - u n i t :  e n t i t y  work .d i sp -mux  

p o r t  map( 
c l k = > c l k ,  r e s e t = > ' O '  , 
i n O = > l e d O ,  i n l = > l e d l ,  i n 2 = > l e d 2 ,  i n 3 = > l e d 3 ,  
a n = > a n ,  s s e g = > s s e g )  ; 

10 end a r c h ;  

We can follow the procedure in Chapter 2 to synthesize and implement the circuit on 
the prototyping board. Note that the disp-rnux.vhd file, which contains the code for the 
time-multiplexing module, and the ucf constraint file must be included in the Xilinx ISE 
project during synthesis. 

3.7.2 Sign-magnitude adder 

An integer can be represented in sign-magnitude format, in which the MSB is the sign and 
the remaining bits form the magnitude. For example, 3 and -3 become "001 1" and "101 1" 
in 4-bit sign-magnitude format. 

A sign-magnitude adder performs an addition operation in this format. The operation 
can be summarized as follows: 

0 If the two operands have the same sign, add the magnitudes and keep the sign. 
0 If the two operands have different signs, subtract the smaller magnitude from the 

One possible implementation is to divide the circuit into two stages. The first stage sorts 
the two input numbers according to their magnitudes and routes them to the max and min 
signals. The second stage examines the signs and performs addition or subtraction on the 
magnitude accordingly. Note that since the two numbers have been sorted, the magnitude 
of max is always larger than that of min and the final sign is the sign of max. 

The code is shown in Listing 3.14, which realizes the two-stage implementation scheme. 
For clarity, we split the input number internally and use separate sign and magnitude signals. 
A generic, N, is used to represent the width of the adder. Note that the relevant magnitude 
signals are declared as unsigned to facilitate the arithmetic operation, and type conversions 
are performed at the beginning and end of the code. 

larger one and keep the sign of the number that has the larger magnitude. 
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Listing 3.14 Sign-magnitude adder 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee . numeric-std. a l l  ; 
e n t i t y  sign-mag-add i s  

5 g e n e r i c  (N: integer : = 4 )  ; -- d e f a u l t  4 b i t s  
p o r t  ( 

a ,  b: i n  std-logic-vector(N-1 downto 0 ) ;  
sum: o u t  std-logic-vector (N-1 downto 0)  

1 ;  
lo end sign-mag-add ; 

a r c h i t e c t u r e  arch of  sign-mag-add i s  
s i g n a l  mag-a , mag-b : unsigned (N-2 downto 0 )  ; 
s i g n a l  mag-sum , max , min: unsigned (N-2 downto 0)  ; 

1 5  s i g n a l  sign-a , sign-b , sign-sum: std-logic; 
b e g i n  

mag-a <= unsigned (a(N-2 downto 0 )  ; 
mag-b <= unsigned(b(N-2 downto 0 ) )  ; 
sign-a <= a(N-1); 

20 sign-b <= b(N-1); 
-_ s o r t  a c c o r d i n g  t o  m a g n i t u d e  
p r o c e s s  (mag-a ,mag-b , sign-a, sign-b) 
b e g i n  

i f  mag-a > mag-b then 
25 max <= mag-a; 

min <= mag-b; 
sign-sum <= sign-a; 

max <= mag-b; 
min <= mag-a; 
sign-sum <= sign-b; 

e l s e  

end i f  ; 
end p r o c e s s ;  
-- a d d / s u b  m a g n i t u d e  

ii mag-sum <= max + min when sign.-a=sign-b e l s e  
max - min; 

--form o u t p u t  
sum <= std-logic-vector(sign-sum & mag-sum); 

end arch; 

Testing circuit We use a 4-bit sign-magnitude adder to verify the circuit operation. The 
sketch of the testing circuit is shown in Figure 3.7. The two input numbers are connected to 
the 8-bit switch, and the sign and magnitude are shown on two seven-segment LED displays. 
Two pushbuttons are used as the selection signal of a multiplexer to route an operand or the 
sum to the display circuit. The rightmost even-segment LED shows the 3-bit magnitude, 
which is appended with a '0' in front and fed to the hexadecimal to seven-segment LED 
decoder. The next LED displays the sign bit, which is blank for the plus sign and is lit 
with a middle LED segment for the minus sign. The two LED patterns are then fed to the 
time-multiplexing module, dispmux, as explained in Section 3.7.1. The code is shown in 
Listing 3.15. 
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Figure 3.7 Sign-magnitude adder testing circuit. 
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Listing 3.15 Sign-magnitude adder testing circuit 

- sseg 
- an 

l i b r a r y  ieee; 
use ieee. std-logic-1164. a l l  ; 
u s e  ieee . numeric-std. a l l  ; 
e n t i t y  sm-add-test i s  

5 p o r t (  
clk: i n  std-logic; 
btn: i n  std-logic-vector (1 downto 0) ; 
sw: i n  std-logic-vector ( 7  downto 0) ; 
an: o u t  std-logic-vector (3 downto 0) ; 

i n  sseg : o u t  std-logic-vector ( 7  downto 0) 
) ;  

end sm-add-test; 

a r c h i t e c t u r e  arch of sm-add-test i s  
1 5  s i g n a l  sum, mout , oct : std-logic-vector (3 downto 

s i g n a l  led3, led2, led1 , led0 : std-logic-vector ( 

__ i n s t a n t i a t e  a d d e r  
sm-adder-unit : e n t i t y  work. sign-mag-add 

20 g e n e r i c  map ( N = >4) 

b e g i n  

p o r t  map(a=>sw(3 downto 0) , b=>sw(7 downto 4) 
sum=>sum); 

- - 3 - t o  - I  m u x  t o  s e l e c t  a n u m b e r  t o  d i s p l a y  
2:  with btn s e l e c t  

mout <= sw(3 downto 0) when " 0 0 " ,  -- a 
sw(7 downto 4) when " O l " ,  -- b 

sum sum when o t h e r s ;  _- 

0) ; 
downto 0); 

30 -- m a g n i t u d e  d i s p l a y e d  on r i g h t m o s t  7 - s e g  LED 
act <= '0' & mout (2 downto 0) ; 
sseg-unit : e n t i t y  work. hex-to-sseg 

_- s i g n  d i s p l a y e d  on 2 n d  7 - s e g  LED 
p o r t  map(hex=>oct , dp=> ' 0 '  , sseg=>ledO) ; 
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led1 <= "11111110" when mout(3)='l' e l s e  -- m i d d l e  b a r  

-- o t h e r  two 7 - s e g  LEDs b l a n k  
led2 <= " 1 1 1 1 1 1 1 1 " ;  
led3 <= "11111111"; 

" 11 1 1  1 1  11 " ; _- b l a n k  

40 

-- in s t a n t i a t e 
disp-unit : e n t i t y  work. disp-mux 

p o r t  map( 

d i s p l a y  m u  1 t i p  1 e x e  r 

clk=>clk, reset=>'O', 

an=>an, sseg=>sseg) ; 
4% inO=>ledO, inl=>ledl, in2=>led2, in3=>led3, 

end arch; 

3.7.3 Barrel shifter 

Although VHDL has built-in shift functions, they sometimes cannot be synthesized auto- 
matically. In this subsection, we examine an 8-bit barrel shifter that rotates an arbitrary 
number of bits to right. The circuit has an 8-bit data input, a, and a 3-bit control signal, amt, 
which specifies the amount to be rotated. The first design uses a selected signal assignment 
statement to exhaustively list all combinations of the amt signal and the corresponding 
rotated results. The code is shown in Listing 3.16. 

Listing 3.16 Barrel shifter using a selected signal assignment statement 

l i b r a r y  ieee; 
use  ieee . std-logic-1164. a l l  ; 
e n t i t y  barrel-shifter i s  

p o r t  ( 
a: i n  std-logic-vector (7 downto 0) ; 
amt: i n  std-logic-vector (2 downto 0) ; 
y :  o u t  std-logic-vector (7 downto 0) 

) ;  
end barrel-shifter ; 

a r c h i t e c t u r e  sel-arch o f  barrel-shifter i s  
b e g i n  

10 

w i t h  amt s e l e c t  
y < =  a when "000" , 

a(l downto 0) & a(7 downto 2) when " O l O " ,  
a(2 downto 0) & a(7 downto 3) when "Oil", 
a(3 downto 0) & a(7 downto 4) when " l O O " ,  
a(4 downto 0) & a(7 downto 5) when "101", 

20 a(5 downto 0) & a(7 downto 6 )  when " 1 1 0 " ,  

a(6 downto 0) & a(7) when o t h e r s ;  -- 1 1 1  

i s  a(0) & a(7 downto 1) when "OOl", 

end sel-arch; 

While the code is straightforward, it will become cumbersome when the number of input 
bits increases. Furthermore, a large number of choices implies a wide multiplexer, which 
makes synthesis difficult and leads to a large propagation delay. Alternatively, we can 
construct the circuit by stages. In the nth stage, the input signal is either passed directly to 
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output or rotated right by 2n positions. The nth stage is controlled by the nth bit of the amt 
signal. Assume that the 3 bits of amt are mzmlmo. The total rotated amount after three 
stages is r 1 z z 2 ~  + m121 + mo2’, which is the desired rotating amount. The code for this 
scheme is shown in Listing 3.17. 

Listing 3.17 Barrel shifter using multi-stage shifts 

a r c h i t e c t u r e  multi-stage-arch of  barrel-shifter i s  
s i g n a l  S O ,  sl: std-logic-vector ( 7  downto 0) ; 

b e g i n  
__ s t a g e  0 ,  s h i f t  0, o r  I b i t  

T S O  <= a(0) & a(7 downto 1) when amt(O)=’l’ e l s e  
a ;  

__ s t a g e  1 ,  s h i f t  0 o r  2 b i t s  
sl <= s O ( 1  downto 0) & s O ( 7  downto 2)  when arnt(l)=’l’ e l s e  

s o  ; 
10 -- s t a g e  2 ,  s h i f t  0 o r  4 b i t s  

y <= s i ( 3  downto 0) & s O ( 7  downto 4) when amt(2)=’l’ e l s e  
s l ;  

end multi-stage-arch ; 

Testing circuit To test the circuit, we can use the 8-bit switch for the a signal, three 
pushbutton switches for the a t  signal, and the eight discrete LEDs for output. Instead of 
deriving a new constraint file for pin assignment, we create a new HDL file that wraps the 
barrel shifter circuit and maps its signals to the prototyping board’s signals. The code is 
shown in Listing 3.18. 

Listing 3.18 Barrel shifter testing circuit 

l i b r a r y  ieee ; 
u s e  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  shifter-test i s  

.F p o r t (  
sw: i n  std-logic-vector (7 downto 0) ; 
btn: i n  std-logic-vector (2 downto 0) ; 
led: o u t  std-logic-vector ( 7  downto 0) 

1 ;  
10 end shifter-test; 

a r c h i t e c t u r e  arch of  shifter-test i s  
b e g i n  

shift-unit : e n t i t y  work.barrel-shifter(multi-stage-arch) 
li port map(a=>sw, amt=>btn, y = > l e d ) ;  

end arch; 

3.7.4 Simplified floating-point adder 

Floating point is another format to represent a number. With the same number of bits, 
the range in floating-point format is much larger than that in signed integer format. Al- 
though VHDL has a built-in floating-point data type, it is too complex to be synthesized 
automatically. 
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sort align addsub normalize 

eg. 1 + 0 . 5 4 E 3  - 0 . 8 7 E 4  - 0 . 8 7 E 4  - 0 . 8 7 E 4  
- 0 . 8 7 E 4  + 0 . 5 4 E 3  + 0 . 0 5 E 4  + 0 . 0 5 E 4  

- 0 . 8 2 E 4  
~~~~ 

eg. 2 + O .  5 4 E 3  - 0 . 5 5 E 3  - 0 . 5 5 E 3  - 0 . 5 5 E 3  
- 0 . 5 5 E 3  + 0 . 5 4 E 3  + 0 . 5 4 E 3  + 0 . 5 4 E 3  

- 0 . 0 1 E 3  
~~~~ 

eg. 3 + O .  54E0  -0.55EO -0.55EO -0.55EO 
-0.55EO +0 .54EO +0 .54EO +0 .54EO 

-0.  OlEO 
~ ~ _ _ _ ~  

- 0 . 8 7 E 4  
+O . 0 5 E 4  
- 0 . 8 2 E 4  

- 0 . 5 5 E 3  
+ O .  5 4 E 3  
- 0 . 1 0 E 2  

-0.55EO 
+ O .  5 4 E 0  
-0 .  OOEO 

+ O .  5 6 E 3  
+O . 5 2 E 3  
+ O .  1 0 E 4  

Figure 3.8 Floating-point addition examples. 

Detailed discussion of floating-point representation is beyond the scope of this book. 
We use a simplified 13-bit format in this example and ignore the round-off error. The 
representation consists of a sign bit, s ,  which indicates the sign of the number (1 for 
negative); a 4-bit exponent field, e, which represents the exponent; and an 8-bit significand 
field, f ,  which represents the significand or the fraction. In this format. the value of a 
floating-point number is (-1)‘ * . f  * 2“. The . f  * 2“ is the magnitude of the number and 
(-1)‘ is just a formal way to state that ‘ ‘ s  equal to 1 implies a negative number.” Since 
the sign bit is separated from the rest of the number, floating-point representation can be 
considered as a variation of the sign-magnitude format. 

We also make the following assumptions: 
Both exponent and significand fields are in unsigned format. 
The representation has to be either normalized or zero. Normalized representa- 
tion means that the MSB of the significand field must be ’1’. If the magnitude of 
the computation result is smaller than the smallest normalized nonzero magnitude, 
0.10000000 * 2Oooo, it must be converted to zero. 

Under these assumptions, the largest and smallest nonzero magnitudes are 0.11 11 11 11 * 
2l1I1 and 0.10000000 * 20°00, and the range is about 216 (i.e., 

Our floating-point adder design follows the process of adding numbers manually in 
scientific notation. This process can best be explained by examples. We assume that the 
widths of the exponent and significand are 2 and 1 digits, respectively. Decimal format 
is used for clarity. The computations of several representative examples are shown in 
Figure 3.8. The computation is done in four major steps: 

1. Sorting: puts the number with the larger magnitude on the top and the number with 
the smaller magnitude on the bottom (we call the sorted numbers “big number” and 
“small number”). 

2.  Alignment: aligns the two numbers so they have the same exponent. This can be 
done by adjusting the exponent of the small number to match the exponent of the big 

~AAAA~A~~$i~~).  
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number. The significand of the small number has to shift to the right according to the 
difference in exponents. 

3. Additionhubtraction: adds or subtracts the significands of two aligned numbers. 
4. Normalization: adjusts the result to normalized format. Three types of normalization 

0 After a subtraction, the result may contain leading zeros in front, as in example 2.  
0 After a subtraction, the result may be too small to be normalized and thus needs 

0 After an addition, the result may generate a carry-out bit, as in example 4. 

procedures may be needed: 

to be converted to zero, as in example 3. 

Our binary floating-point adder design uses a similar algorithm. To simplify the imple- 
mentation, we ignore the rounding. During alignment and normalization, the lower bits of 
the significand will be discarded when shifted out. The design is divided into four stages, 
each corresponding to a step in the foregoing algorithm. The suffixes, ‘b’, ‘s’, ‘a’, ‘r’, and 
‘n’, used in signal names are for “big number,” “small number,” “aligned number,” “result 
of additionisubtraction,” and “normalized number,” respectively. The code is developed 
according to these stages, as shown in Listing 3.19. 

Listing 3.19 Simplified floating-point adder 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use  ieee. numeric-std. a l l  ; 
e n t i t y  fp-adder i s  

5 port  ( 

signl , sign2 : in  std-logic ; 
expl , exp2 : in  std-logic-vector (3 downto 0 )  ; 
fracl , frac2: in  std-logic-vector (7 downto 0)  ; 
sign-out: out std-logic; 

frac-out : out  std-logic-vector ( 7  downto 0 )  
10 exp-out : out  std-logic-vector (3 downto 0)  ; 

1 ;  
end fp-adder ; 

1 5  a r c h i t e c t u r e  arch of fp-adder i s  
_- s u f f i x  b ,  s ,  a ,  n f o r  
_- b i g ,  s m a l l ,  a l i g n e d ,  n o r m a l i z e d  number  
s i g n a l  signb , signs : std-logic; 
s i g n a l  expb, exps , expn: unsigned (3 downto 0)  ; 

s i g n a l  sum-norm: unsigned ( 7  downto 0 )  ; 
s i g n a l  exp-diff : unsigned (3 downto 0 )  ; 
s i g n a l  sum: unsigned(8 downto 0); --one e x t r a  f o r  c a r r y  
s i g n a l  leadO: unsigned (2 downto 0) ; 

-- 1 s t  s t a g e :  s o r t  t o  find t h e  l a r g e r  n u m b e r  
p r o c e s s  (signl , sign:!, expl, exp2, fracl , frac2) 
beg in  

:C s i g n a l  fracb, fracs, fraca, fracn: unsigned(7 downto 0 ) ;  

25 beg in  

if (expl & fracl) > (exp2 & frac2) then 
10 signb <= signl; 

signs <= sign2; 
expb <= unsigned (expl) ; 
exps <= unsigned (exp2) ; 
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40 

so 

fracb <= unsigned(frac1); 
5 fracs <= unsigned(frac2); 

e l s e  
signb <= sign2; 
signs <= signl; 
expb <= unsigned (exp2 ) ; 
exps <= unsigned (expl) ; 
fracb <= unsigned(frac2); 
fracs <= unsigned(frac1); 

e n d  i f  ; 
e n d  p r o c e s s ;  

__ 2 n d  s t a g e :  a l i g n  s m a l l e r  n u m b e r  
exp-diff <= expb - exps; 
w i t h  exp-diff s e l e c t  

45 

fraca <= 
fracs 
" 0 " & fracs(7 d o w n t o  1) 
'I 0 0 I' & fracs(7 d o w n t o  2 )  
I' 000 " & fracs(7 downto  3 )  
" 0000 " & fracs(7 d o w n t o  4)  
' ' 0 0 0 0 0 "  & fracs ( 7  d o w n t o  5 )  
" 0 0 0 0 0 0 "  & fracs (7 d o w n t o  6) 
" 0 0 0 0 0 0 0 ' '  & fracs (7) 
" 00000000" 

when 
when 
when 
when 
when 
when 
when 
when 
when 

" 0 0 0 0 "  , 
"OOOl", 
" 0 0 1 0 "  , 
" 0 0 1 1 "  , 
" 0 1 0 0 "  , 
"OlOI", 
" 0 1 10 " , 
"Olll", 
o t h e r s  ; 

60 -- 3 r d  s t a g e  : a d d / s u b t r a c t  
sum <= ( ' 0 '  & fracb) + ( ' 0 '  & fraca) when signb=signs e l s e  

( ' 0 '  & fracb) - ( ' 0 '  & fraca); 

70 

X I 1  

-- 4 t h  s t a g e  : n o r m a l i z e  

lead0 <= " 0 0 0 "  when (sum(7)='l') e l s e  
" 0 0 1 "  when (sum(6)='1') e l s e  
" 0 1 0 "  when (sum(5)='1') e l s e  
'loll" when (sum(4)='1') e l s e  
11100" when (sum(3)='1') e l s e  
" 1 0 1 "  when (sum(2)='1') e l s e  
" 1 1 0 "  when (sum(l)='l') e l s e  
'I 11 1 " ; 

a5 -- c o u n t  l e a d i n g  0 s  

_- s h i f r  s i g n i f i c a n d  a c c o r d i n g  t o  l e a d i n g  0 
- 5  w i t h  lead0 s e l e c t  

sum-norm <= 
sum(7 d o w n t o  0)  when " 0 0 0 "  , 
sum(6 d o w n t o  0)  & ' 0 '  when " O O l " ,  
sum(5 d o w n t o  0 )  & " 0 0 "  when "OIO", 
s u m ( 4  d o w n t o  0 )  & " 0 0 0 "  when "Oil", 
s u m ( 3  d o w n t o  0 )  & " 0 0 0 0 "  when " l O O " ,  
sum(2 d o w n t o  0 )  & " 0 0 0 0 0 "  when "101", 
s u m ( 1  d o w n t o  0 )  & " 0 0 0 0 0 0 "  when " 1 1 0 " ,  
sum(0) & ~ t O O O O O O O 1 ~  when o t h e r s  ; 

*, 
__ n o r m a l i z e  with s p e c i a l  c o n d i t i o n s  
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90 

95 

p r o c e s s  (sum, sum-norm, expb, leado) 
b e g i n  

i f  s u r n ( S ) = ’ l ’  t h e n  -- w /  c a r r y  o u t ;  s h i f t  f r a c  t o  r i g h t  
expn <= expb + 1 ;  
fracn <= s u m ( 8  downto 1); 

expn <= ( o t h e r s = > ’ O ’ ) ;  -- s e t  t o  0 
fracn <= ( o t h e r s = > ’ O ’ ) ;  

expn <= expb - lead0; 
fracn <= sum-norm; 

e l s i f  (lead0 > expb) t h e n  -- t o o  s m a l l  t o  n o r m a l i z e ;  

e l s e  

end i f ;  
end p r o c e s s ;  

-- f o r m  o u t p u t  
sign-out <= signb; 
exp-out <= std-logic-vector(expn); 
frac-out <= std-logic-vector(fracn); 

I00 

105 end arch; 

The circuit in the first stage compares the magnitudes and routes the big number to the 
signb, expb, and f r acb  signals and the smaller number to the s igns,  exps, and f r a c s  
signals. The comparison is done between expl&f r a c l  and exp2&f rac2. It implies that 
the exponents are compared first, and if they are the same, the significands are compared. 

The circuit in the second stage performs alignment. It first calculates the difference 
between the two exponents, which is expb-exps, and then shifts the significand, f r acs ,  
to the right by this amount. The aligned significand is labeled f raca.  The circuit in the 
third stage performs sign-magnitude addition, similar to that in Section 3.7.2. Note that the 
operands are extended by 1 bit to accommodate the carry-out bit. 

The circuit in the fourth stage performs normalization, which adjusts the result to make 
the final output conform to the normalized format. The normalization circuit is constructed 
in three segments. The first segment counts the number of leading zeros. It is somewhat 
like a priority encoder. The second segment shifts the significands to the left by the amount 
specified by the leading-zero counting circuit. The last segment checks the carry-out and 
zero conditions and generates the final normalized number. 

Testing circuit The floating-point adder has two 13-bit input operands. Since the proto- 
typing board has only one 8-bit switch and four 1-bit pushbuttons, it cannot provide enough 
number of physical inputs to test the circuit. To accommodate the 26 bits of the floating- 
point adder, we must create a testing circuit and assign constants or duplicated switch signals 
to the adder’s input operands. An example is shown in Listing 3.20. It assigns one operand 
as constant and uses duplicated switch signals for the other operand. The addition result is 
passed to the hexadecimal decoders and the sign circuit and is shown on the seven-segment 
LED display. 

Listing 3.20 Floating-point adder testing circuit 

l i b r a r y  ieee; 
use  ieee. std-logic-1164. a l l  ; 
use ieee. numeric-std. a l l  ; 
e n t i t y  fp-adder-test i s  

5 p o r t (  
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clk: in std-logic; 
sw: in std-logic-vector (7 downto 0) ; 
btn: in std-logic-vector (3 downto 0) ; 
an: out std-logic-vector (3 downto 0) ; 

10 sseg: out std-logic-vector (7 downto 0) 
) ;  

end fp-adder-test; 

architecture arch of fp-adder-test is 
1 5  signal signl , sign2 : std-logic; 

signal expl , exp2: std-logic-vector (3 downto 0) ; 
signal fracl , frac2 : std-logic-vector (7 downto 0) ; 
signal sign-out : std-logic; 
signal exp-out : std-logic-vector (3 downto 0) ; 

signal led3, led2, ledl, ledO: 
20 signal frac-out : std-logic-vector (7 downto 0) ; 

std-logic-vector (7 downto 0) ; 
begin 

__ s e t  u p  t h e  f p  a d d e r  i n p u t  s i g n a l s  

expl <= "1000"; 
frac1<= '1' & sw(1) & sw(0) & " 1 0 1 0 1 " ;  
sign2 <= sw(7); 
exp2 <= btn; 

2 5  signl <= '0'; 

10 frac2 <= '1' & sw(6 downto 0); 

__ i n s t a n t i a t e  fp a d d e r  
fp-add-unit : entity work. fp-adder 

port map( 
3' signl=>signl, sign2=>sign2, expl=>expl, exp2=>exp2, 

fracl=>fracl, fracZ=>frac2, 
sign-out=>sign-out , exp-out=>exp-out , 
frac-out=>frac-out 

1 ;  
40 

__ i n s t a n t i a t e  t h r e e  i n s t a n c e s  of h e x  d e c o d e r s  

sseg-unit-0 : entity work. hex-to-sseg 
e x p  o n  e n  t 

port map(hex=>exp-out , dp=>'O' , sseg=>ledO); 

__ 

45 -- 4 L S B s  of f r a c t i o n  
sseg-unit-1 : entity work. hex-to-sseg 

port map(hex=>frac-out (3 downto 0) , 
dp=>' 1 ' , 

50 sseg-unit-2: entity work. hex-to-sseg 

sseg=>ledl) ; 
-- 4 MSBs o f  f r a c t i o n  

port map(hex=>frac-out ( 7  downto 4 ) ,  
dp=>'O', sseg=>led2); 

__ s i g n  
led3 <= " 1 1 1 1 1 1 1 0 "  when sign-out='l' else -- m i d d l e  b a r  

55 " 11 11 11 11 " ; __ b l a n k  

-_ i 11 s t a n  t i a  t e  7 -  s e g  LED d i s p  l a j  t i m e  - m u  1 t i p 1  e x i n g  m o d u l e  
disp-unit : entity work.disp-mux 
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p o r t  map( 
60 c l k = > c l k ,  r e s e t = > ' O '  , 

i n O = > l e d O ,  i n l = > l e d l ,  i n 2 = > l e d 2 ,  i n 3 = > l e d 3 ,  
a n = > a n ,  s s e g = > s s e g  

1 ;  
end a r c h ;  

3.8 BIBLIOGRAPHIC NOTES 

The Designer's Guide to VHDL by P. J. Ashenden provides detailed coverage on the VHDL 
constructs discussed in this chapter, and the author's RTL Hardware Design Using VHDL: 
Coding for  Eficiency, Portability, and Scalability discusses the coding and optimization 
schemes and gives additional design examples. 

3.9 SUGGESTED EXPERIMENTS 

3.9.1 Multi-function barrel shifter 

Consider an %bit shifting circuit that can perform rotating right or rotating left. An addi- 
tional l-bit control signal, lr, specifies the desired direction. 

1. 

2. 
3. 
4. 

5. 

6. 
7. 

Design the circuit using one rotate-right circuit, one rotate-left circuit, and one 2-to- 1 
multiplexer to select the desired result. Derive the code. 
Derive a testbench and use simulation to verify operation of the code. 
Synthesize the circuit, program the FPGA, and verify its operation. 
This circuit can also be implemented by one rotate-right shifter with pre- and post- 
reversing circuits. The reversing circuit either passes the original input or reverses 
the input bitwise (for example, if an %bit input is a7a6a5a4a3a2a1ao3 the reversed 
result becomes aOa1a2a3f&5a5a6a7). Repeat steps 2 and 3. 
Check the report files and compare the number of logic cells and propagation delays 
of the two designs. 
Expand the code for a 16-bit circuit and synthesize the code. Repeat steps 1 to 5. 
Expand the code for a 32-bit circuit and synthesize the code. Repeat steps 1 to 5. 

3.9.2 Dual-priority encoder 

A dual-priority encoder returns the codes of the highest or second-highest priority requests. 
The input is a 12-bit req signal and the outputs are first and second, which are the 4-bit 
binary codes of the highest and second-highest priority requests, respectively. 

1. Design the circuit and derive the code. 
2. Derive a testbench and use simulation to verify operation of the code. 
3. Design a testing circuit that displays the two output codes on the seven-segment LED 

4. Synthesize the circuit, program the FPGA, and verify its operation. 
display of the prototyping board, and derive the code. 

3.9.3 BCD incrementor 

The binary-coded-decimal (BCD) format uses 4 bits to represent 10 decimal digits. For 
example, 25910 is represented as "0010 0101 1001" in BCD format. A BCD incrementor 


