A-PDF Split DEMO : Purchase from www.A-PDF.com to remove the watermark
SIMPLE DESIGN EXAMPLES 79

elsif (clk’event anmd clk=’1’) then
if wr_en=’1’ then
array_reg(to_integer (unsigned(w_addr))) <= w_data;
30 end if;
end if;
end process;
—— read port
r_data <= array_reg(to_integer (unsigned(r_addr)));
;s end arch;

The code includes several new features. First, since no built-in two-dimensional ar-
ray is defined in the std_logic_1164 package a user-defined array-of-array data type,
reg_file_type, is introduced. It is first defined by a type statement and is then used by the
array_reg signal. Second, a signal is used as an index to access an element in the array, as
in array_reg(..w_addr..). Although the description is very abstract, Xilinx software
recognizes this language construct and can derive the correct implementation accordingly.
The array_reg(...) <= ... and ... <= array_reg(...) statements infer decoding and
multiplexing logic, respectively.

Some applications may need to retrieve multiple data words at the same time. This can
be done by adding an additional read port:

r_data2 <= array_reg(to_integer(unsigned(r_addr_2)));

4.2.4 Storage components in a Spartan-3 deviceX#in® specific

In a Spartan-3 device, each logic cell contains a D FF with asynchronous reset and syn-
chronous enable. These D FFs basically constitute the register of Figure 4.2. Since a logic
cell also contains a four-input LUT, it will be wasteful if the cell is just used simply as
1 bit of a massive storage. The Spartan-3 device also has distributed RAM (random access
memory) and block RAM modules, and they can be used for larger storage requirements.
These modules can be configured for synchronous operation, and their characteristics are
somewhat like a restricted version of the register file. The configuration and inference of
these modules are discussed in Chapter 11.

4.3 SIMPLE DESIGN EXAMPLES

We illustrate the construction of several simple, representative sequential circuits in this
section.

4.3.1 Shift register

Free-running shift register A free-running shift register shifts its content to the left
or right by one position in each clock cycle. There is no other control signal. The code for
an N-bit free-running shift-right register is shown in Listing 4.7.

Listing 4.7 Free-running shift register

library ieese;
use ieee.std_logic_1164. all;
entity free_run_shift_reg is

http://www.a-pdf.com/?product-split-demo

80 REGULAR SEQUENTIAL CIRCUIT

generic (N: integer := 8);
5 port(
clk, reset: in std_logic;
s_in: in std_logic;
s_out: out std_logic
)

wend free_run_shift_reg;

architecture arch of free_run_shift_reg is
signal r_reg: std_logic_vector(N-1 downto 0);
signal r_next: std_logic_vector(N-1 downto 0);
15 begin
—— register
process (clk,reset)
begin
if (reset=’1’) then
0 r_reg <= (others=>'0’);
elsif (clk’event and clk=’1’) then
r_reg <= r_next;
end if;
end process;
2 —— next—state logic (shift right 1 bit)
r_next <= s_in & r_reg(N-1 downto 1);
—— output
s_out <= r_reg(0);
end arch;

The next-state logic is a 1-bit shifter, which shifts r_reg right one position and inserts
the serial input, s_in, to the MSB. Since the 1-bit shifter involves only reconnection of
the input and output signals, no real logic is needed. Its propagation delay represents the
smallest possible T¢omp, and the corresponding f,.. represents the highest clock rate that
can be achieved for a given device technology.

Universal shift register A universal shift register can load parallel data, shift its content
left or right, or remain in the same state. It can perform parallel-to-serial operation (first
loading parallel input and then shifting) or serial-to-parallel operation (first shifting and
then retrieving parallel output). The desired operation is specified by a 2-bit control signal,
ctrl. The code is shown in Listing 4.8.

Listing 4.8 Universal shift register

library ieee;
use ieee.std_logic_1164.all;
entity univ_shift_reg is
generic(N: integer := 8);
5 port(
clk, reset: in std_logic;
ctrl: in std_logic_vector (1 downto 0);
d: in std_logic_vector(N-1 downto 0);
q: out std_logic_vector(N-1 downto 0)
10);

end univ_shift_reg;

architecture arch of univ_shift_reg is

30

SIMPLE DESIGN EXAMPLES 81

signal r_reg: std_logic_vector(N-1 downto 0);
signal r_next: std_logic_vector(N-1 downto 0);
begin
—— register
process (clk,reset)
begin
if (reset=’1’) then
r_reg <= (others=>’0’);
elsif (clk’event and clk=’1’) then
r_reg <= r_next;
end if;
end process;
—— next—state logic
with ctrl select
r_next <=

r_reg when "00", ——no op
r_reg(N-2 downto 0) & d(0) when "01", —shift left;
d(N-1) & r_reg(N-1 downto 1) when "10", ——shift right;
d when others; — load

—— output

q <= r_reg;

;s end arch;

The next-state logic uses a 4-to-1 multiplexer to select the desired next value of the
register. Note that the LSB and MSB of d (i.e.,, d(0) and d(N-1)) are used as serial input
for the shift-left and shift-right operations.

In a Xilinx Spartan-3 device, a logic cell’s 4-input LUT is implemented by a 16-by-1
SRAM. The same SRAM can also be configured as a cascading chain of sixteen 1-bit SRAM Xilinx
cells, which resembles a 16-bit shift register. This can be used to construct certain forms specific
of shift register and leads to very efficient implementation.

4.3.2 Binary counter and variant

Free-running binary counter A free-running binary counter circulates through a bi-
nary sequence repeatedly. For example, a 4-bit binary counter counts from "0000", "0001",

ey

to "1111" and wraps around. The code for a parameterized N-bit free-running binary

counter is shown in Listing 4.9.

Listing 4.9 Free-running binary counter

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity free_run_bin_counter is
generic (N: integer := 8);
port (
clk, reset: in std_logic;
max_tick: out std_logic;
q: out std_logic_vector (N-1 downto 0)
)

end free_run_bin_counter;

architecture arch of free_run_bin_counter is

82 REGULAR SEQUENTIAL CIRCUIT

Table 4.1 Function table of a universal binary counter

syn.clr load en up qQ* Operation
1 - — — 00.--00 synchronous clear
0 1 - - d parallel load
0 0 1 1 q+1 count up
0 0 1 0 q-1 count down
0 0 0 - q pause

signal r_reg: unsigned(N-1 downto 0);

is signal r_next: unsigned(N-1 downto 0);
begin
— register
process (clk ,reset)
begin
B if (reset=’1’) then

r_reg <= (others=>’07);
elsif (clk’event and clk=’1’) then
r.reg <= r_next,;
end if;
25 end process;
—— next—state logic
r_next <= r_reg + 1;
— output logic
q <= std_logic_vector(r_reg);
30 max_tick <= ’1’ when r_reg=(2**N-1) else ’'0°’;
end arch;

The next-state logic is an incrementor, which adds 1 to the register’s current value. By
definition of the + operator in the IEEE numeric_std package, the operation implicitly
wraps around after the r_reg reaches "1...1". The circuit also consists of an output status
signal, max_tick, which is asserted when the counter reaches the maximal value, "1...1"
(which is equal to 2V — 1).

The max_tick signal represents a special type of signal that is asserted for a single clock
cycle. In this book, we call this type of signal a tick and use the suffix _tick to indicate a
signal with this property. It is commonly used to interface with the enable signal of other
sequential circuits.

Universal binary counter A universal binary counter is more versatile. It can count up
or down, pause, be loaded with a specific value, or be synchronously cleared. Its functions
are summarized in Table 4.1. Note the difference between the reset and syn_clr signals.
The former is asynchronous and should only be used for system initialization. The latter is
sampled at the rising edge of the clock and can be used in normal synchronous design. The
code for this counter is shown in Listing 4.10.

Listing 4.10 Universal binary counter

library ieee;

use ieee.std_logic_1164.all;
use ieee.numeric_std. all;
entity univ_bin_counter is

SIMPLE DESIGN EXAMPLES

s generic (N: integer := 8);
port(
clk, reset: im std_logic;
syn_clr, load, en, up: in std_logic;
d: in std_logic_vector(N-1 downto 0);
10 max_tick, min_tick: out std_logic;
q: out std_logic_vector (N-1 downto 0)
)5

end univ_bin_counter;

sarchitecture arch of univ_bin_counter is
signal r_reg: unsigned(N-1 downto 0);
signal r_next: unsigned(N-1 downto 0);
begin
— register
20 process (clk,reset)
begin
if (reset=’1’) then
r_reg <= (others=>’0’);
elsif (clk’event and clk=’1’) then
25 r_reg <= r_next;
end if;
end process;
— next—state logic
r_next <= (others=>’0’) when syn_clr=’1’ else

20 unsigned (d) when load=’1’ else
r_reg + 1 when en =’1’ and up=’1’
r_reg - 1 when en =’1’ and up=’0’
r_reg;

—— output logic
3 q <= std_logic_vector(r_reg);
max_tick <= ’1’ when r_reg=(2**xN-1) else ’0’;
min_tick <= ’1’ when r_reg=0 else ’0’;
end arch;

83

The next-state logic follows the function table and uses a conditional signal assignment to

prioritize the desired operations.

Mod-m counter A mod-m counter counts from 0 to m — 1 and wraps around. A
parameterized mod-m counter is shown in Listing 4.11. It has two generics. One is M,
which specifies the limit, 7, and the other is N, which specifies the number of bits needed
and should be equal to [log, M|. The code is shown in Listing 4.11, and the default value

is for a mod-10 counter.

Listing 4.11 Mod-m counter

library ieee;
use ieee.std_logic_1164. all;
use ieee.numeric_std. all;
entity mod_m_counter is
5 generic (
N: integer := 4; —— number of bits
M: integer 10 — mod-M

)

84 REGULAR SEQUENTIAL CIRCUIT

port(
10 clk, reset: in std_logic;
max_tick: out std_logic;
q: out std_logic_vector(N-1 downto 0)
)
end mod_m_counter;

architecture arch of mod_m_counter is
signal r_reg: unsigned(N-1 downto 0);
signal r_next: unsigned(N-1 downto 0);
begin
2 —— register
process (clk,reset)
begin
if (reset=’1’) then
r_reg <= (others=>’0’);
25 elsif (clk’event and clk=’1’) then
r_reg <= r_next;
end if;
end process;
— next—state logic
30 r_next <= (others=>’0’) when r_reg=(M-1) else
r_reg + 1;
— output logic
q <= std_logic_vector(r_reg);
max_tick <= ’1’ when r_reg=(M-1) else ’0’;
s end arch;

The next-state logic is constructed by a conditional signal assignment statement. If the
counter reaches M-1, the new value is cleared to 0. Otherwise, it is incremented by 1.

Inclusion of the N parameter in the code is somewhat redundant since its value depends
on M. A more elegant way is to define a function that calculates N from M automatically. In
VHDL, this can be done by creating a user-defined functior in a package and invoking the
package before the entity declaration. This is beyond the scope of this book and the details
may be found in the references cited in the Bibliographic section.

4.4 TESTBENCH FOR SEQUENTIAL CIRCUITS

A testbench is a program that mimics a physical lab bench, as discussed in Section 1.4,
Developing a comprehensive testbench is beyond the scope of this book. We discuss a
simple testbench for the previous universal binary counter in this section. It can serve as a
template for other sequential circuits. The code for the testbench is shown in Listing 4.12.

Listing 4.12 Testbench for a universal binary counter

library ieee;
use ieee.std_logic_1164. all;

entity bin_counter_tb is
send bin_counter_tb;

architecture arch of bin_counter_tb is

TESTBENCH FOR SEQUENTIAL CIRCUITS 85

constant THREE: integer := 3;
constant T: time := 20 ns; — clk period
signal clk, reset: std_logic;
signal syn_clr, load, en, up: std_logic;
signal d: std_logic_vector (THREE-1 downto 0);
signal max_tick, min_tick: std_logic;
signal q: std_logic_vector (THREE-1 downto 0);
begin
R K KK K K K K K 3k R K K ok 3k ok kK K 3k R %k kK K x
—— instantiation
——— 3k 3k 3k 3k ok ok sk K ok sk ok ok sk kR sk ok K ok sk sk ok ok ok ok ko k
counter_unit: entity work.univ_bin_counter (arch)
generic map(N=>THREE)
port map(clk=>clk, reset=>reset, syn_clr=>syn_clr,
load=>load, en=>en, up=>up, d=>4d,
max_tick=>max_tick, min_tick=>min_tick, gq=>q);

sk ok K K KR KK KKK K KR KK KK K KK K F
— clock

sk ok kR R KK KR K KK K K KK K K KK KR K K
— 20 ns clock running forever

process

begin
clk <= 07,
wait for T/2;
clk <= 17,

wait for T/2;
end process;
——— 3k k3 3k K sk koK Sk 3k sk ok K ok kK ok sk R ok sk sk ok ok koK
— reset
—— 3 oK kK K Sk 3k ok kK sk sk koK Sk sk oK k%K K Kk ok ok kK
—— reset asserted for T/2
reset <= ’1°, ’0’ after T/2;

o KK K KK KK K K K K K K K K K KK K KK K
—— other stimulus
ek ok K R R HOR K ok oK SRR K oK oK 3Kk kK oK oK ok kO K K
process
begin
K KR K KK KK KR KR K KKK K KK K R K K
—— dnitial input
ko kK K K kK R K K KR ok R K K K ROk R K
syn_clr <= ’07;

load <= ’07;
en <= ’07;
up <= ’1°’; —— count up

d <= (others=>°0’);

wait until falling_edge (clk);
wait until falling_edge(clk);
——= 3k %k 3k %k ok ok 3k ok ok ok sk ok K ok sk 3k ok ok sk sk ok ok ok ok ok
— test load

—— 3k 5k 3k sk ok ok ok ok ok 3k ok kR kK K ok ok Ok ok sk ok ok ok koK
load <= ’17;

86

65

70

85

90

95

100

105

110

REGULAR SEQUENTIAL CIRCUIT

d <= "01i1";

wait until falling_edge(clk);
load <= ’0°’;

—— pause 2 clocks

wait until falling_edge(clk);
wait until falling_edge(clk);
et EE R E R EEEEESEEEESEEEEE LRSS
—— test syn.clear

—— 3k 3k sk oK K k3K ok K K K Kk ok K Sk Ok K %k ok ok ok K K K
syn_clr <= ’1’; — clear
wait until falling edge(clk);
syn_clr <= ’0’;

e B E R EEEEEEEEEEEEEEESERSEEE
—— test up counter and pause
sk KK ok K KoK R oK oK Sk ok Kk ok Kk ok R K R

en <= ’1’; — count

up <= ’17%;

for 1 im 1 to 10 loop — count 10 clocks
wait until falling_edge (clk);

end loop;

en <=’07;

wait until falling_edge(clk);
wait until falling_edge (clk);
en <=’17;

wait until falling_edge(clk);
wait until falling_edge (clk);
= 3K % K Kk K K 3k ok %k 3k kK 3k koK 3k sk 3k sk ok 3k sk ok ko k
—— test down counter

—— sk ko ok ok ok ok ok ok ok ok ok ok K K oK K ok K oK K ok K ok
up <= ’O’;

for 1 in 1 to 10 loop — run 10 clocks

wait until falling_edge (clk);
end loop;
kR KK R K K R K K K K KK K KKK K K K K K K X
—— other wait conditions
kR KKK KK KK KO KK K K KR KK K KOk
—— continue until g=2
wait until g="010";
wait until falling_edge(clk);
up <= ’17;
— continue until min_tick changes
wait on min_tick;
wait until falling_edge (clk);

up <= :07;
wait for 4xT; —— wait for 80 ns
en <= ’07;

wait for 4xT;
—— 3k ok ok sk ok ok ok ok ok 3k oK 3k ok 3k ok ok ok ok oK oK oK K K ok
— terminate simulation
== ok 3k ok 3k sk ok Sk 3k ok Sk ok ok sk sk ok sk sk ok sk sk ok sk ok ok sk K
assert false
report "Simulation Completed"
severity failure;

value

TESTBENCH FOR SEQUENTIAL CIRCUITS 87

end process ;
115 end arch;

The code consists of a component instantiation statement, which creates an instance of
a 3-bit counter, and three segments, which generate a stimulus for clock, reset, and regular
inputs. Since operation of a synchronous system is synchronized by a clock signal, we
define a constant with the built-in data type time for the clock period:

constant T: time := 20 ns; — clk period

The clock generation is specified by a process:

process
begin
clk <= ’07;
wait for T/2;
clk <= 17,

wait for T/2;
end process;

The clk signal is assigned between *0’ and ’1’ alternatively, and each value lasts for half a
period. Note that the process has no sensitivity list and repeats itself forever.
The reset stimulus involves one statement,

reset <= ’1°, 0’ after T/2;

It indicates that the reset signal is set to ’1” initially and changed to 'O’ after half a period.
The statement represents the “power-on” condition, in which the reset signal is asserted
momentarily to clear the system to the initial state. Note that, by default, the * U’ value (for
uninitialized), not *0°, is assigned to a signal with the std-logic type. Using a short reset
pulse is a good mechanism to perform system initialization.

The last process statement generates a stimulus for other input signals. We first test
the load and clear operations and then exercise counting in both directions. The final
assert false statement forces the simulator to terminate simulation, as discussed in Sec-
tion 2.7.

For a synchronous system with positive edge-triggered FFs, an input signal must be stable
around the rising edge of the clock signal to satisfy the setup and hold time constraints. One
easy way to achieve this is to change an input signal’s value during the *1’-to-’0’ transition
of the clk signal. The falling edge function of the std_logic_1164 package checks
this condition, and we can use it in a wait statement:

wait until falling_edge(clk);

Note that each statement represents a new falling edge, which corresponds to the advance-
ment of one clock cycle. In our template, we generally use this statement to specify the
progress of time. For multiple clock cycles, we can use a loop statement:

for i in 1 to 10 loop — count 10 clocks
wait until falling_edge (clk);
end loop;

There are other useful forms of wait statements, as shown at the end of the process. We
can wait until a special condition, such as “when q is equal to 27,

wait until gq="010";

or wait until a signal changes, such as

